
http://www.cambridge.org/9780521859721

This page intentionally left blank

Practical Design Verification

Improve design efficiency and reduce costs with this practical guide to formal and

simulation-based functional verification. Giving you a theoretical and practical

understanding of the key issues involved, expert authors explain both formal

techniques (model checking and equivalence checking) and simulation-based

techniques (coverage metrics and test generation). You get insights into practical

issues including hardware verification languages (HVLs) and system-level debugging.

The foundations of formal and simulation-based techniques are covered too, as are

more recent research advances including transaction-level modeling and assertion-

based verification, plus the theoretical underpinnings of verification, including the use

of decision diagrams and Boolean satisfiability (SAT).

Dhiraj K. Pradhan is Chair of Computer Science at the University of Bristol, UK. He

previously held the COE Endowed Chair Professorship in Computer Science at Texas

A & M University, also serving as Founder of the Laboratory of Computer Systems

there. He has also worked as a Staff Engineer at IBM, and served as the Founding CEO

of Reliable Computer Technology, Inc. A Fellow of ACM, the IEEE, and the Japan

Society of Promotion of Science, Professor Pradhan is the recipient of a Humboldt

Prize, Germany, and has numerous major technical publications spanning more than

30 years.

Ian G. Harris is Associate Professor in the Department of Computer Science, University

of California, Irvine. He is an Executive Committee Member of the IEEE Design

Automation Technical Commitee (DATC) and Chair of the DATC Embedded Systems

Subcommittee, as well as Chair of the IEEE Test Technology Technical Committee

(TTTC) and Publicity Chair of the IEEE TTTC Tutorials and Education Group. His

research interests involve the testing and validation of hardware and software systems.

Practical Design Verification

Edited by

DHIRAJ K. PRADHAN
University of Bristol, UK

IAN G. HARRIS
University of California, Irvine

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-85972-1

ISBN-13 978-0-511-65091-8

© Cambridge University Press 2009

2009

Information on this title: www.cambridge.org/9780521859721

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521859721

Contents

List of contributors page x

1 Model checking and equivalence checking 1
Masahiro Fujita

1.1 Introduction 1

1.2 Techniques for Boolean reasoning 2

1.2.1 Binary decision diagrams (BDDs) 3

1.2.2 Boolean satisfiability checker 6

1.2.3 Automatic test-pattern generation

(ATPG) techniques 8

1.3 Model checking techniques 11

1.3.1 Property description with temporal logic 11

1.3.2 Basic algorithms of CTL model checking 14

1.3.3 Symbolic model checking 16

1.3.4 Practical model checking 20

1.4 Equivalence-checking techniques 22

1.4.1 Definition of equivalent designs 23

1.4.2 Latch-mapping problem 23

1.4.3 Practical combinational equivalence checking 24

1.4.4 Sequential equivalence checking (SEC) 28

1.5 Techniques for higher-level design descriptions 35

1.6 References 47

2 Transaction-level system modeling 51
Daniel Gajski and Samar Abdi

2.1 Taxonomy for TLMs 51

2.1.1 Granularity-based classification of TLMs 52

2.1.2 Objective-based classification 60

2.2 Estimation-oriented TLMs 62

2.2.1 Result-oriented modeling (ROM) 63

2.2.2 Similarity to TLM 63

2.2.3 Optimistic modeling 64

2.2.4 Measurements 64

2.3 Synthesis-oriented TLMs 65

2.3.1 Universal bus channel (UBC) 67

2.3.2 Transducer 75

2.3.3 Routing 79

2.3.4 TLMs for C-based design 80

2.3.5 Synthesizable TLMs in practice: MP3 decoder design 83

2.4 Related work on TLMs 89

2.5 Summary and conclusions 90

2.6 References 90

3 Response checkers, monitors, and assertions 92
Harry Foster

3.1 Introduction 92

3.1.1 Identifying what to check 92

3.1.2 Classifying design behavior 93

3.1.3 Observability and controllability 96

3.2 Testbench verification components 97

3.3 Assertion-based verification 99

3.3.1 Brief introduction to SystemVerilog assertion 100

3.4 Assertion-based bus monitor example 102

3.4.1 Basic write operation 104

3.4.2 Basic read operation 105

3.4.3 Unpipelined parallel bus interface requirements 106

3.4.4 Unpipelined parallel bus interface coverage 108

3.4.5 Analysis communication in the testbench 110

3.5 Summary 111

3.6 References 112

4 System debugging strategies 113
Wayne H. Wolf

4.1 Introduction 113

4.2 Debugging tools 114

4.2.1 Logic analyzers and pattern generators 115

4.2.2 Power measurement 116

4.2.3 In-circuit emulators 117

4.2.4 Emulators 117

4.2.5 Profilers 117

4.2.6 CPU simulators 118

4.3 Debugging commands 118

4.4 Functional debugging 119

4.5 Performance-oriented debugging 119

4.6 Summary 120

4.7 References 121

vi Contents

5 Test generation and coverage metrics 122
Ernesto Sánchez, Giovanni Squillero, and Matteo Sonza Reorda

5.1 Introduction 122

5.2 Coverage metrics 128

5.3 Classification of coverage metrics 131

5.3.1 Code coverage metrics 131

5.3.2 Metrics based on circuit activity 136

5.3.3 Metrics based on finite-state machines 137

5.3.4 Functional coverage metrics 140

5.3.5 Error- (or fault-) based coverage metrics 141

5.3.6 Coverage metrics based on observability 143

5.4 Coverage metrics and abstraction levels

of design 144

5.5 Stimuli generation methods 145

5.5.1 Manual generation 146

5.5.2 Automatic generation 147

5.6 Acknowledgements 151

5.7 References 151

6 SystemVerilog and Vera in a verification flow 154
Shireesh Verma and Ian G. Harris

6.1 Introduction 154

6.2 Testbench components 155

6.2.1 Design under verification 156

6.2.2 Monitor 156

6.2.3 Checker 157

6.2.4 Scoreboard 158

6.2.5 Stimulus 159

6.3 Verification plan 160

6.4 Case study 160

6.4.1 DUV 160

6.4.2 Verification plan 163

6.4.3 Testbench 163

6.5 Summary 171

6.6 References 172

7 Decision diagrams for verification 173
Maciej Ciesielski, Dhiraj K. Pradhan, and Abusaleh M. Jabir

7.1 Introduction 173

7.2 Decision diagrams 175

7.2.1 Binary decision diagrams (BDDs) 175

7.2.2 Beyond BDDs 181

7.3 Binary moment diagrams (BMDs) 183

Contents vii

7.4 Taylor expansion diagrams (TEDs) 189

7.4.1 Related work 189

7.4.2 Motivation 190

7.4.3 The Taylor series expansion 191

7.4.4 Reduction and normalization 194

7.4.5 Canonicity of Taylor expansion diagrams 196

7.4.6 Complexity of Taylor expansion diagrams 197

7.4.7 Composition of Taylor expansion diagrams 199

7.4.8 Design modeling and verification with TEDs 202

7.4.9 Implementation and experimental results 204

7.4.10 Limitations of TED representation 209

7.4.11 Conclusions and open problems 212

7.5 Representation of multiple-output functions over

finite fields 212

7.5.1 Previous work 213

7.5.2 Background and notation 214

7.5.3 Graph-based representation 217

7.5.4 Reduction 220

7.5.5 Variable reordering 223

7.5.6 Operations in GF(N) 225

7.5.7 Multiple-output functions in GF(N) 227

7.5.8 Further node reduction 228

7.5.9 Representing characteristic functions

in GF(N) 229

7.5.10 Evaluation of functions 230

7.5.11 Experimental results 233

7.5.12 Conclusions 240

7.6 Acknowledgements 240

7.7 References 240

8 Boolean satisfiability and EDA applications 246
Joao Marques-Silva

8.1 Introduction 246

8.2 Definitions 247

8.2.1 Propositional formulas and satisfiability 247

8.2.2 Boolean circuits 249

8.2.3 Linear inequalities over Boolean

variables 250

8.2.4 SAT algorithms 251

8.3 Extensions of SAT 256

8.4 Applications of SAT in EDA 257

8.4.1 Combinational equivalence checking 257

8.4.2 Automatic test-pattern generation 257

viii Contents

8.4.3 Design debugging 259

8.4.4 Bounded model checking 260

8.4.5 Unbounded model checking 262

8.4.6 Other applications 263

8.5 Conclusions 263

8.6 Acknowledgement 263

8.7 References 263

Index 269

Contents ix

Contributors

Samar Abdi

Center for Embedded Computer Systems, University of California, Irvine, USA

Maciej Ciesielski

University of Massachusetts, Amherst, USA

Harry Foster

Mentor Graphics Corporation, USA

Masahiro Fujita

The University of Tokyo, Japan

Daniel Gajski

Center for Embedded Computer Systems, University of California,

Irvine, USA

Ian G. Harris

University of California, Irvine, USA

Abusaleh M. Jabir

Oxford Brookes University, UK

Joao Marques-Silva

University of Southampton, UK

Dhiraj K. Pradhan

University of Bristol, UK

Matteo Sonza Reorda

Politecnico di Torino, Italy

Ernesto Sánchez

Politecnico di Torino, Italy

Giovanni Squillero

Politecnico di Torino, Italy

Shireesh Verma

Conexant Systems, Inc., USA

Wayne H. Wolf

Georgia Institute of Technology, USA

List of contributors xi

1 Model checking and equivalence
checking

Masahiro Fujita

1.1 Introduction

Owing to the advances in semiconductor technology, a large and complex system that

has a wide variety of functionalities has been integrated on a single chip. It is called

system-on-a-chip (SoC) or system LSI, since all of the components in an electronics

system are built on a single chip. Designs of SoCs are highly complicated and require

many manpower-consuming processes. As a result, it has become increasingly difficult

to identify all the design bugs in such a large and complex system before the chips are

fabricated. In current designs, the verification time to check whether or not a design is

correct can take 80 percent or more of the overall design time. Therefore, the devel-

opment of verification techniques in each level of abstraction is indispensable.

Logic simulation is a widely used technique for the verification of a design. It

simulates the output values for given input patterns. However, because the quality of

simulation results deeply depends on given input patterns, there is a possibility that

there exist design bugs that cannot be identified during logic simulation. Because the

number of required input patterns is exponentially increased when the size of a design

is increased, it is clearly impossible to verify the overall design completely by logic

simulation. To solve this problem, the development of formal verification techniques is

essential. In formal verification, specification and design are translated into math-

ematical models. Formal verification techniques verify a design by proving its cor-

rectness with mathematical reasoning, and, therefore, they can verify the overall

design exhaustively. Since formal verification is a mathematical reasoning process and

logic circuits compute Boolean functions, it is realized on top of basic Boolean rea-

soning techniques, such as binary decision diagrams (BDDs), Boolean satisfiability

checking methods (so-called SAT methods), and automatic test-pattern generation

techniques (ATPG) for manufacturing test fields. The performance of formal verifi-

cation methods relies heavily on the performance of these techniques. Figure 1.1

shows an overview of a formal verification flow. In formal verification, both specifi-

cation and design descriptions are translated into mathematical models using front-end

tools. Finite state machines, temporal logic, Boolean functions, and so on, are used as

mathematical models. After mathematical models are obtained, they are analyzed

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

using BDD and SAT methods. Formal verification is equivalent to simulating all the

cases in logic simulation. If there exists a design bug, formal verification techniques

produce a counter-example to support debugging processes.

There are basically two problems in the verification of designs: model checking and

equivalence checking. Model checking (or property checking) verifies whether a design

satisfies the properties given as its specification. The performance of model checking has

drastically improved in recent years, mainly owing to the significant progress of SAT-

based efficient implementations. Equivalence checking verifies whether two given

designs are equivalent or not. Equivalence checking can be applied to two designs in the

same design level or in two different design levels. Depending on the types of equivalence

definitions, equivalence checking can be made only on combinational parts of the circuits

or on both combinational and sequential parts of the designs. In particular, the former type

of equivalence checking has become very practical, and very large designs, such as those

with more than 10 million gates, can be formally verified in a couple of hours.

In the actual design flow from highly abstracted design stages down to imple-

mentation levels, model checking is applied to each design level to ensure correct

functionality, and equivalence checking is applied to any two different design levels so

that correctness of the designs can be established. In this chapter, I first briefly review

the Boolean reasoning techniques, BDD, SAT, and ATPG methods, in Section 1.2.

Property checking and equivalence checking techniques are presented in Sections 1.3

and 1.4 respectively. In Section 1.5, formal verification techniques used in design

levels higher than RTL are discussed.

1.2 Techniques for Boolean reasoning

In this section, I introduce three Boolean reasoning techniques, BDD, SAT, and ATPG

techniques, which are the bases of formal verification methods. The performance of

Spec

Mathematical
models

Design

Front-end
tool

Verification
engines

Finite state machine
Temporal logic
Boolean function
Other logic expressions

Binary decision diagram (BDD)
Satisfiability check (SAT)
Automatic test-pattern generation (ATPG)

Figure 1.1 Formal verification of design descriptions

2 M. Fujita

formal verification methods fully relies on the performance of these techniques. In

recent years SAT and ATPG methods, especially their program implementations, have

been drastically improved, which make it feasible to verify real-life designs formally

within reasonable time.

1.2.1 Binary decision diagrams (BDDs)

Reduced ordered binary decision diagrams (ROBDDs), simply called BDDs, are a

canonical representation for Boolean functions. For many Boolean functions of

practical interest in VLSI designs, BDDs provide a substantially more compact

representation than other traditional alternatives, such as truth tables, sum-of-products

(SOP) forms, or conjunctive normal form representations. Further, there exist efficient

algorithms to manipulate BDDs. Thus, BDDs and their variants have become widely

used in various areas of digital system design, including logic synthesis and formal

verification of systems that can be represented in finite state machines. Binary decision

diagrams represent the Boolean function as a directed acyclic graph. Let us first

consider binary decision trees, an example of which appears on the left-hand side of

Fig. 1.2, for the majority function, f(x1,x2,x3)¼ (x1^x2)

^

(x2^x3)

^

(x1^x3). The binary

decision tree is a rooted directed tree with two kinds of node, terminal nodes and non-

terminal nodes. Each non-terminal node v is labeled with a variable var(v) and has two

successors, hi(v) and lo(v), corresponding to the cases when var(v) is set to 1 and 0,

respectively. The edge connecting v and hi(v), shown as a solid line (lo(v) is shown as

a dashed line), is labeled with 1 (0). Each terminal node (leaf node of the tree) is

labeled by the Boolean value 0 or 1. Each truth assignment to the variables of the

function has a one-to-one correspondence to a path in the tree from the root to a

terminal node. This path can be traversed by starting with the root node and taking the

edge corresponding to the truth value of the variable labeling the current node. The

value labeling the terminal node is the value of the function under this truth assign-

ment. This representation is, however, fairly redundant. For example, the sub-trees

corresponding to the assignment (x1¼ 0, x2¼ 1) and (x1¼ 1, x2¼ 0) are isomorphic,

and the vertex that corresponds to (x1¼ 0, x2¼ 0) is redundant, since both assignments

to x3 at this point have the same consequence.

0

0

0

0

1

1 1

1

0 00

0

0

0

0

11

1

1

1

1

1

x1

x2

x1

x2 x2

x3

x2

x3 x4 x5 x3

0000 1111 0 1

Figure 1.2 A binary decision tree representation of a Boolean function and its corresponding binary

decision diagram (BDD)

1 Model checking and equivalence checking 3

A BDD could be obtained for a given Boolean function by essentially placing two

restrictions on its binary decision tree representation. The first restriction imposed is a total

order< on the variables labeling the vertices, such that for any vertex u in the diagram, if u

has a non-terminal successor v, then var(u) < var(v). The second set of restrictions

involves merging isomorphic sub-trees and removing redundant vertices by repeatedly

applying the following three reduction rules until no further application is possible.

1.. Remove duplicate terminals Eliminate all but one terminal vertex with a given

label and redirect all arcs going to the eliminated vertices into the remaining vertex.

2.. Remove duplicate non-terminals If two non-terminal vertices u and v have

var(u)¼ var(v), lo(u)¼ lo(v), and hi(u)¼ hi(v), then eliminate one of u or v and

redirect all incoming arcs to the eliminated vertex to the one that remains.

3.. Remove redundant tests If a non-terminal vertex v has hi(v)¼ lo(v), then eliminate

v and redirect all its incoming arcs to hi(v).

The resulting representation is a BDD. Figure 1.2 shows an example. The graph on the

right-hand side is a BDD corresponding to the binary decision tree of the majority

function, shown on the left-hand side in the figure.

Binary decision diagram representations are canonical – that is, two BDDs for a

given Boolean function under a given variable ordering are isomorphic. [1] Because

of this the equivalence of two Boolean functions can be simply checked by a graph

isomorphism check on their respective BDD representations. A function is a tautology

if and only if it is isomorphic to the trivial BDD corresponding to a single terminal 1

vertex and satisfiable if and only if it is not isomorphic to the trivial 0 BDD represented

by a single 0 terminal vertex. A function is independent of a variable x if and only if

there is no vertex labeled with x in its BDD.

The size of a BDD representation is critically dependent on its variable order.

Figure 1.3 shows two different BDD representations for the comparator function. The

one on the left side uses the ordering a1 < a2 < b1 < b2, while the one on the right uses

the order a1 < b1 < a2 < b2. More generally, for an n-bit comparator, the ordering

a1 < . . .<an < b1 <. . .< bn yields a BDD with 3 · 2n� 1 vertices, while the ordering

a1 < b1 <. . .< an < bn gives a BDD of size 3nþ 2. Thus, the size characteristics of the

a1

01

00

0

0

00

0

1

1

1

11

1

1

11
00

1 0

0

0

0

0

1

1

1

1

1
0

0

a2

a2b1 b1

b2 b2
b2

b2

b1 b1

b1b1a2

a1

Figure 1.3 An example of how variable ordering can affect the size of an ROBDD

4 M. Fujita

BDD can change from linear asymptotic growth to exponential asymptotic growth by

altering the variable ordering strategy. In general, finding the optimal BDD variable

order for a given function is a hard problem. Specifically, checking that a given

variable order is optimal for a given function is an NP-complete problem. [2] Some

classes of Boolean function are particularly difficult cases for BDDs, since any vari-

able order results in a BDD with exponential complexity. The Boolean functions for

the middle two outputs of an n-bit integer multiplier are one such example. [3]

The optimal variable order is, however, typically not necessary in order to effect-

ively use BDDs. In practice, we need a variable order that keeps the BDD repre-

sentations within reasonable limits so that suitable algorithms can manipulate them

using the available computer power. In fact, many functions encountered in practical

applications do have reasonably compact BDD representations. Moreover, efficient

heuristics for BDD variable ordering have been developed that keep BDD sizes in

check. One class of variable-ordering heuristics uses domain-specific knowledge to

effect a good ordering. For example, if the Boolean function represents a logic gate

network, then a depth-first traversal on the network graph can provide a good ordering.

[4,5] Another technique, called dynamic reordering or sifting, [6] is an orthogonal

approach, which is used when a domain-specific or constructive ordering algorithm is

not available for the functions being manipulated. The technique simply performs a

sequence of local reordering moves with the aim of reducing BDD size. It does this on

a periodic basis to keep BDD sizes smaller and has often proved to be quite effective in

practice.

One operation that is central to the construction, representation, and manipulation of

BDDs is the restriction or co-factoring operation. A restriction or co-factor of f is the

function that results when some variable x of f is set to a constant value k (0 or 1),

denoted as fx¼k or alternatively as fx for x¼ 1 and f�x for x¼ 0. Given the two co-factors

of a function, it can be expressed using the following identity, known as Shannon’s

expansion: f ¼ x � fxþx � fx.
The manipulation of BDDs – that is, performing logical operations on functions

represented as BDDs – is done using a single universal operation called the ite (if-then-

else) operator (which internally makes use of the restriction operation). [7] The ite

operator is a ternary operator, akin in functionality to a multiplexor (mux) in hardware

or the if-then-else construct available in programming languages. It realizes the

function expressed as iteðf ; g; hÞ ¼ f � g þ f � h, where f, g, and h are Boolean func-

tions (possibly non-unique) represented as BDDs. In particular, ite can be used to

implement any two-variable logic function, such as f � g ¼ iteðf ; g; gÞ and

f � g ¼ iteðf ; 1; gÞ.
Figure 1.4 shows the algorithm used to implement the ite operator for BDDs. It is a

recursive algorithm where the leaves (terminal cases) of the recursion are degenerate

cases of the ite operator for which precomputed and stored solutions are substituted,

such as ite(1,f,g)¼ ite(0,g,f) and f ite(f,g,g)¼ g. During the course of the algorithm, the

BDD being generated may not remain fully reduced and canonical owing to the

addition of new nodes, R. The reduce() function in the figure refers to the application

of the reduction rules discussed earlier. In practical BDD packages, the need for this

1 Model checking and equivalence checking 5

reduce() operation is obviated by maintaining hash tables of both unique BDD nodes

and previous ite calls. New ite calls, as well as new BDD nodes (R) created through

them, are looked up against these hash tables before initiating new ones, thereby

dynamically maintaining and growing a reduced-ordered BDD.

1.2.2 Boolean satisfiability checker

The Boolean satisfiability (SAT) problem is a well-known constraint satisfaction

problem, with many applications in the fields of VLSI computer-aided designs and

artificial intelligence fields. Given a propositional formula u, the Boolean satisfiability

problem posed on u is to determine whether there exists a variable assignment under

which u evaluates to true. Such an assignment, if one exists, is called a satisfying

assignment for u, and u is called satisfiable. Otherwise, u is said to be unsatisfiable.

The SAT problem is known to be NP-complete. [8] However, in recent years, there

have been tremendous advancements in SAT technology, making SAT solvers a viable

option for solving many real-world problems.

Most SAT solvers use a conjunctive normal form (CNF) representation of

the propositional formula. A CNF formula consists of a conjunction of clauses, each of

which is a disjunction of literals, and a literal is a variable or its negation. For example

ðaþ bþ cÞðaþ cÞðaþ bþ cÞ is a propositional formula in CNF over the variables a,

b, and c. It is composed of a conjunction of three clauses. The clause ðaþ bþ cÞ is one
of the clauses, a disjunction of literals a, �b, and c. Note that for a CNF formula to be

satisfied, each of its clauses must be satisfied – that is, evaluate to true. There exist

polynomial algorithms to transform an arbitrary propositional formula into a satisfiability

equivalent CNF formula,which is satisfiable if and only if the original formula is satisfiable.

Most modern SAT solvers are based on the Davis–Putnam–Logemann–

Loveland (DPLL) procedure. [9,10] The DPLL algorithm essentially performs a

ite(f,g,h) {

if (terminal case) {

return computed-result;

 } else { // general case

 let � be the top variable of (f,g,h);

R = new node labeled by �

R.hi←

R.low←

reduce(R)

 return R;

f ← ite(f �,g �,h �)

f ← ite(f �,g �,h �)

f

g

~

~

~

~

Figure 1.4 Algorithm to implement the ite operator

6 M. Fujita

branch-and-bound search over the space of possible Boolean assignments of the

variables of the given propositional formula. It is a sound and complete algorithm –

that is, it finds a satisfying assignment if and only if the given formula is satisfiable.

Figure 1.5 shows the basic processing flow of the DPLL algorithm. This form provides

a suitable framework for illustrating the advanced features of modern DPLL-based

SAT solvers.

The first operation in the algorithm is a set of preprocessing steps (preprocess())

during which it may be discovered that the formula is unsatisfiable. If this is not the

case, the algorithm enters the outermost loop, which consists of choosing an

unassigned variable and assigning to it a value that has not been explored earlier

(decide-next-branch()). If no such variable exists, the current partial assignment is a

satisfying assignment for the formula. Otherwise, the variable assignments deducible

from the current assignments are applied (deduce()) using a procedure known as

Boolean constraint propagation (BCP). This consists of an iterated application of the

unit clause rule, which is applied on unit clauses – that is, clauses with all but one

literal assigned to false and the last literal unassigned. The unit clause rule asserts the

last unassigned literal of each unit clause as true, since the other assignment represents

a search path that cannot lead to a satisfying assignment. A conflict occurs when a

variable is asserted as true as well as false. If BCP does not lead to a conflict, the

decide-next-branch() loop is repeated by choosing further unassigned variables and

values. However, in the event of a conflict, the search backtracks (backtrack()) by

undoing a certain number of decisions and their BCP implied assignments, based on an

analysis of the conflict by analyze-conflict(). If all decisions need to be undone

(i.e., the backtrack-level blevel is 0), the formula is deemed unsatisfiable, since the

entire search space has been exhausted.

The original DPLL algorithm used chronological backtracking – that is, it would

backtrack up to the most recent decision, for which the other value of the variable had

not been tried. However, modern SAT solvers use conflict analysis techniques (shown

as (analyze-conflict) in the figure) to analyze the reasons for a conflict. Conflict

analysis is used to perform conflict-driven learning and conflict-driven backtracking,

which were incorporated independently in the GRASP [11] and rel-sat [12] SAT

sat-solve()
 if preprocess() = CONFLICT then

return UNSAT
while TRUE do

if not decide-next-branch() then

return SAT;
while deduce() = CONFLICT do

blevel ⇐ analyze-conflict();
if blevel = 0 then

return UNSAT;
backtrack (blevel);

done;
done;

Figure 1.5 A generalized DPLL algorithm

1 Model checking and equivalence checking 7

solvers. Conflict-driven learning consists of adding conflict clauses to the formula, to

avoid the same conflict in the future. Conflict-driven backtracking allows non-

chronological backtracking – that is, up to the closest decision that caused the conflict.

These techniques greatly improve the performance of the SAT solver on structured

problems. The conflict analysis is realized using implication graphs, [11,13] which

capture the current state of the SAT solver.

Many other advances have been made in developing the basic components that

comprise the DPLL-based SAT solver: the decision engine (heuristics for choosing

decision variables and values); the deduction engine (data structures and heuristics for

performing BCP and detecting conflicts); and the diagnosis engine (heuristics for

conflict-driven learning). [14] An interesting property of CNF representations was first

exploited by Zhang in the SATO SAT solver [15] to improve the performance of BCP.

It proposed the use of head and tail pointers to point to non-false literals in the list

representation of a clause, and maintained the strong invariant that all literals before

the head pointer, and all literals after the tail pointer, are false. Clearly, detection of a

unit clause during BCP becomes easy – that is, when the head and tail pointers

coincide on an unassigned literal. The main advantage is that the clause status is

updated only when either of the head or tail literals is assigned a false value during

BCP. In particular, this eliminates an update when any of the other literals in the clause

is assigned a value. When the head or tail literal is assigned a false value during BCP,

the associated pointer needs to be moved to another non-false literal, if it exists. This is

facilitated by the strong invariant. However, during backtracking, the head or tail

pointers may need to be moved back again, to maintain the strong invariant.

A different trade-off was proposed in the Chaff SAT solver. [16] Its BCP scheme,

known as two literal watching with lazy update, is also based on tracking only two

literals per clause during BCP. However, Chaff maintains a weak invariant, whereby

the two watched literals are required to be non-false, but there is no ordering

requirement with respect to other false literals. Again, detection of a unit clause during

BCP is easily performed by checking whether both watched pointers coincide, and

whether clause updates on assignment to other literals are eliminated.

Most of the modern-day SAT solvers incorporate the advanced techniques for

conflict-based learning, branching heuristics, and efficient BCP described above as

well as efficient data structures and extremely well-tuned implementations to exploit

their algorithmic power fully. With these advancements, SAT solvers can now analyze

formulas of up to a million variables and three to four million clauses in a few hours of

runtime. Of course, these figures hold for only fairly structured SAT instances derived

from certain classes of real-world problems.

1.2.3 Automatic test-pattern generation (ATPG) techniques

Automatic test-pattern generation (ATPG) is the process of generating a suite of test

vectors that can be used for the purposes of testing a manufactured circuit for

manufacturing faults. Manufacturing faults are physical defects introduced into the

integrated circuit (IC), during the manufacturing process, which result in its incorrect

8 M. Fujita

Primary
inputs

Justify Primary
outputs

PropagateS

S–a–
X0

Figure 1.6 ATPG process for a single stuck-at-0 fault

a

b

c

d

e

f
0

0

0

1

Figure 1.7 An example of implication and learning from circuits

operation. The fault we consider here is one that causes a signal to be permanently

stuck at a logical value 0 or 1 (or a defect that can, for all practical purposes, be

modeled as such). Such a fault is called a stuck-at (0 or 1) fault. Very efficient ATPG

algorithms for stuck-at faults have been developed, which can be applied to Boolean

function reasoning. Therefore, powerful formal verification techniques may be

established using ATPG techniques. Thus, the purpose here is to show basic concepts

and developments in ATPG so that the link of ATPG to formal verification algorithms

becomes evident.

Figure 1.6 illustrates the steps involved in trying to generate a test pattern for a

single stuck-at fault. In this example, the signal s is assumed to be under stuck-at-0

fault. To generate a test for s stuck-at-0, we need to find a vector of primary inputs that

sets signal s to 1 (justification step) such that some primary output differs between the

good circuit and the faulty circuit (propagation step).

As can be seen from the figure, the ATPG problem is basically a sort of SAT problem.

We need to reason about the values of signals based on the constraints shown in the figure.

Automatic test-pattern generation techniques have, however, their own historical devel-

opments rather independent fromSATmethod. Their algorithms and heuristics are mostly

based on logic-circuit structures and properties of logic gates. This means that techniques

used in ATPG methods can be used in SAT methods and vice versa.

One of the most important techniques in ATPG to speed up the test pattern gen-

eration processes is called “learning.” [17,18] As seen in the previous sections, the

concept of learning is also utilized in SAT methods to make them much more efficient.

Similar efficiency can be achieved in ATPG processes by learning implications of

values of signals from the target circuits. Figure 1.7 shows an implication example.

Suppose that input b is 0. Owing to the nature of the AND gate, d and e also become

0. This implies that f is 1. In summary, we have an implication of values that b¼ 0

implies f¼ 1. Please note that this implication process utilizes the functionality of AND

and NOR gates. More learning can be made from this by using the law of contraposition,

1 Model checking and equivalence checking 9

that is, we can also conclude that f¼ 0 implies b¼ 1. As can be seen from the figure, this

learned implication is not so obvious. From f¼ 1 we cannot have fixed values for d and

e, since what is required from f¼ 1 on d and e is that at least one of d and e must be 1,

that is d¼ 1 and e¼* (don’t care) or d¼* and e¼ 1. There are two possible values for d

and e, which means that further reasoning on values of signals is not straightforward. As

can be seen from the example, by using the law of contraposition, many more impli-

cations can be obtained, which will further enhance the ATPG processes.

As the discussions above on the circuits shown in Fig. 1.7, if f¼ 0, there are several

possible cases of values on d and e. As a result, no further simple implication of the

values of signals can be made. On the other hand, in both ATPG and SAT methods,

reasoning is based on case splitting and backtracking, and knowledge about necessary

assignments computed from learning processes is crucial for the number of backtracks

which must be performed. Backtracks occur if wrong decisions have been made, i.e.,

decisions considered wrong if they violate necessary assignments. Hence, it is

important to realize that if all necessary assignments are known at every stage of the

test-pattern generation process (or in general in all Boolean reasoning processes)

backtracks can be avoided. Simple learning methods [17,18] cannot identify all

necessary assignments, based, as they are, on polynomial time-complexity algorithms.

The problem of identifying all necessary assignments is NP-complete and a method

that guarantees identifying all necessary assignments must be exponential in time

complexity. One such technique, which can identify all necessary assignments, is

“recursive learning”. [19] It involves applying learning methods in a recursive way so

that even if multiple cases happen when computing implications, all such cases are

exhaustively analyzed. For example, let us consider the case of f¼ 0 in the circuit of

Fig. 1.7. In this case, there are two cases of values for d and e, i.e., d¼ 1 and e¼* or

d¼* and e¼ 1. Recursive learning procedures analyze one case at a time and

proceed the necessary assignment analysis in a recursive way. The two cases are

shown in Figs. 1.8 (a) and (b), respectively. In (a), d¼ 1 implies a¼ 1 and b¼ 1. In (b),

e¼ 1 implies b¼1 and c¼ 1. The important point here is that in both cases b¼ 1. That

is, b is always 1. So we can conclude that f¼ 0 implies b¼ 1 without using the law of

contraposition. In this simple example, the same implication can also be obtained by

applying the law of contraposition to the implication obtained in Fig. 1.7. In general,

however, much more learning can be obtained with recursive learning techniques,

especially if there are more recursions. The level of recursion is defined as the number

a

b

c

d

e

f
1

1

*

0

1

(a)

a

b

c

d

e

f
1

*

1

0

1
(b)

* 1

Figure 1.8 Two cases for f¼ 0 in the circuit of Fig. 1.7

10 M. Fujita

of nested applications of the learning techniques. In the case of Fig. 1.8, it is called

recursion level 1, since only one level of case-splitting analysis is performed. For more

complicated circuits, multiple levels of recursion can be applied to learn more

necessary assignments. Theoretically if there are sufficiently many recursion levels, all

necessary assignments can be obtained through recursive learning. On the other hand,

the time for recursive learning can increase exponentially with respect to recursion

levels. Therefore, there are trade-offs between the amount of learning on necessary

assignments and the execution time. In practice, two levels of recursive learning give

highly efficient results in terms both of test-pattern generation and its application to

formal verification. As can easily be seen, similar recursion-based learning can be

defined in the context of SAT methods.

As a final remark on ATPG techniques, please note that they can be applied to all

problems discussed in the following sections that can be reduced to SAT problems,

since ATPG and SAT methods are basically trying to solve the same problems with

different viewpoints. Depending on the nature of the verification problems, sometimes

ATPG-based verification is more efficient, while in other situations, SAT-based

verification is better. So, in practical verification tools, both ATPG- and SAT-based

methods are integrated, and they are invoked for verification with some heuristics.

1.3 Model checking techniques

Using the Boolean reasoning techniques introduced in the previous sections, I now

present formal verification techniques mostly targeting hardware designs. Model

checking techniques are discussed in this section and equivalence checking is dis-

cussed in the following sections.

1.3.1 Property description with temporal logic

Model checking is an automatic technique for verifying finite-state concurrent systems. The

procedure involves an exhaustive search of the state space of the design to check if a given

property is satisfied or not. Given sufficient computational resources, the procedure is

guaranteed to terminate with a concrete yes or no answer. To apply model checking to a

given system, the systemneeds to be expressed in a formalismamenable tomodel checking.

Further, it is necessary to state the requirements that the system must satisfy. These

requirements are typically expressed as a set of properties in a suitable logical formalism.

1.3.1.1 Kripke structures
LetAP be a set of atomic propositions. A Kripke structure overAP is a tripleM¼ (S,R,K),

where

� S is a set of states,

� R � S · S is a transition relation that is total; that is, (8s 2 S)(’t 2 S) ((s,t) 2 R),

� K : S ! 2AP is a labeling function.

1 Model checking and equivalence checking 11

A Kripke structure models the state transition graph of a Moore machine, where the

outputs are functions of the current-state variables. The labeling function K associates

with each state a set of atomic propositions that are true in that state. For example,

in the case of a hardware system, the states S could be encoded such that there is a

one-to-one mapping from S to 2L where L is the set of latches, AP corresponds to the

set of outputs of the circuits, and hence K would be a multi-output Boolean function,

K : 2L ! 2AP realizing the outputs.

The targets of model checking are dynamic systems, which are systems that change

their states over time. Temporal logics are a suitable formalism for describing

requirements or properties of such systems for the purpose of model checking.

Temporal logics try to express system behavior over time without explicitly bringing

in the notion of time. The approach used is to describe sequences of transitions

between states in a dynamic system and place queries on these state sequences using a

set of temporal and propositional operators allowed by the logic. Typical queries

include events such as, “A particular state is eventually reached” or, “an erroneous

scenario never occurs.” Here we introduce one most common temporal logic, CTL,

[20] which is a sub-logic of CTL*. So I first define CTL* and then show CTL.

The CTL* formulas describe properties of computation trees. Computation trees

capture all possible executions of the system, starting from the initial state, and can be

created by unwinding the Kripke structure into an infinite tree root at the initial state.

The CTL* formulas are composed of temporal operators and path quantifiers. Path

quantifiers describe the branching structure of the computation tree. There are two path

quantifiers, A and E. They are applied with respect to a particular state to claim that

some property is satisfied for all computation paths (A) or for at least one computation

path (E) starting at the given state. Temporal operators describe the properties of a

given path through the tree. There are five temporal operators in CTL*:

� X (next state) Asserts that the property is true in the next state of the path.

� G (globally or always) Asserts that the property is true in every state of the path.

� F (eventually or sometime) Requires that there exists some state on the path in

which the property is true.

� U (until) This is a binary operator that holds if there exists a state on the path such

that the second property holds in this state and the first property holds in each

preceding state along the path.

� R (release) This is the dual of the U operator that asserts that the second property

holds at every state along the path up to and including the first state where the first

property holds. If there is no such state, then the second property should hold

globally, in every state on the path.

There are two types of formula in CTL*: state formulas (which are true in a particular

state) and path formulas (which are true along a specific path). If AP denotes the set of

atomic propositions, the syntax of state formulas is given as follows:

� If p 2 AP, then it is a state formula.

� If f and g are state formulas, then :f, f ^g, and f

^

g are state formulas.

� If f is a path formula, then A f and E f are state formulas.

12 M. Fujita

Further, path formulas are specified using the following syntax rules:

� If f is a state formula, then f is also a path formula.

� If f and g are path formulas, then :f, f^g, f

^

g, X f, F f, G f, f U g, and f R g are path

formulas.

We define the semantics of CTL* with respect to a Kripke structure M¼ (S,R,K)

defined earlier. An infinite sequence of states, w¼ s0, s1, . . ., is said to be a path inM if

(8i.i� 0)((si,siþ1) 2 R). Let wi denote the suffix of w starting at si. Let (M,s |¼ f) denote

that the state formula f is true for state s in Kripke structure M. Similarly, let

(M, w |¼ g) denote that the path formula g is true for path w in Kripke structure M. Let

f1 and f2 be state formulas. Let g1 and g2 be path formulas. Then the relation |¼ is

defined inductively as follows:

� M,s |¼ p , p2K(s),
� M,s |¼:f1 , M,s |6¼ f1,

� M,s |¼ f1

^

f2 , M,s |¼ f1 or M,s |¼ f2,

� M,s |¼ f1^f2 , M,s |¼ f1 and M,s |¼ f2,

� M,s |¼Eg1 , there exists a path w starting at s such that (M, w|¼g1),
� M,s |¼Ag1 , for every path w starting at s, (M, w |¼ g1),

� M,w |¼ f1 , s is the first state of w and M,s |¼ f1,

� M,w |¼:g1 , M,w | 6¼ g1,

� M,w |¼ g1
^

g2 , M,w |¼ g1 or M,w |¼ g2,

� M,w |¼ g1^g2 , M,w |¼ g1 and M,w |¼ g2,

� M,w |¼Xg1 , M,w1 |¼ g1,

� M,w |¼Fg1 , (’n� 0)(M,wn |¼ g1),

� M,w |¼Gg1 , (8n� 0)(M,wn |¼ g1),

� M,w |¼ g1 Ug2 , (’n� 0)((M,wn |¼ g2)^(8j.0� j< n)(M,w j |¼ g2)),

� M,w |¼ g1 Rg2 , (8n� 0)((8j.0� j< n)(M,wj | 6¼ g1)) (M,wn |¼ g2)).

It is easily seen that the operators

^

, :, X, U, and E are sufficient to express any other

CTL* formula – for example, fR g�:(:fU:g),A f�:E(:f), andG f�:(TrueU:f).
Computation tree logic (CTL) is a sub-logic of CTL*, where path formulas are

restricted to be X f, F f,G f, f U g, and f R g, where f and g are state formulas. There are

ten basic operators in CTL – namely, AX, EX, AG, EG, AF, EF, AR, ER, AU, and

EU. However, all ten can be expressed using the three operators EX, EG, and EU and

using the following relationships:

� AX f�: EX : f,
� EF f�E(True U f),

� AG f�: EF :f,
� AF f�: EG :f,
� A(f U g)� (:E(:gU (:f ^ : g))) ^ (:EG :g),
� A(f R g)�: E(:f U :g),
� E(f R g)�: A(f U g).

1 Model checking and equivalence checking 13

Properties can be broadly classified into safety properties and liveness properties.

Safety properties assert that something undesirable never happens or conversely that

something desirable always happens – for example, it cannot happen that two pro-

cesses are in their critical section simultaneously, or the message received is identical

to the message sent. On the other hand, a liveness property requires that some desirable

state is repeatedly or eventually reached. Thus, liveness properties track the progress

of the system and are, therefore, also referred to as progress properties. Examples of

liveness properties are: every bus request is eventually granted and a car at a traffic

light is eventually allowed to pass.

From a verification standpoint, if a system violates a safety property there will

always exist a finite-length witness of that violation. Thus, safety properties can be

checked on finite executions of the system. In contrast, violations of liveness properties

never have finite-length witnesses. Therefore, liveness properties can only be checked

on infinite-length executions of the system. In that sense, model checking of safety

properties is somewhat easier than that of liveness properties.

1.3.2 Basic algorithms of CTL model checking

The model-checking problem on CTL formulas can be posed as follows:

Given a set of atomic propositions AP, a Kripke structure M¼ (S,R,K), a CTL formula f defined

on AP, and a set of initial states I� S, does every state in I satisfy f?

The algorithm for model checking CTL formulas is an iterative procedure that

computes, for each state s 2 S, a set label(s) of subformulas of f that are true in s. At

the start of the algorithm, that is, in the 0th iteration, each state s is labeled with the

atomic propositions K(s). In iteration i, subformulas of f with i� 1 nested operators are

processed, and each such subformula is added to the label set of the states in which it is

true. Thus, upon termination, states in which f is true would have been labeled with f,

and we can check if each of the initial states have been labeled with f. As discussed

earlier, the CTL operators EX, EU, and EG and the propositional operators :,

^

are

sufficient to express any CTL formula. Thus, assuming that the algorithm has correctly

labeled states with the subformulas f and g in iterations 0 to i� 1, in iteration i the

labeling needs to deal with the five cases, :f, f

^

g, EX f, E(f U g), and EG f. In these

cases, the labeling would proceed as follows:

Case 1 u¼:f. Label all states, except those labeled with f, with the label u.
Case 2 u¼ f

^

g. Label all those states with label u that have been previously

labeled with either f or g.

Case 3 u¼EX f. Label a state with u if and only if it is a predecessor of a state

labeled with f.

Case 4 u¼E(fU g). Figure 1.9 shows a procedure computeEU(), with complexity

O(|S|þ|R|), for handling this case. Essentially, the algorithm starts with all states

labeled with g and does a backward reachability analysis from these states, using

the inverse of the transition relation R, and identifying those states that have a

14 M. Fujita

path p to the g-labeled states such that each state along p is labeled with f. Each

of these states is then labeled with u.
Case 5 u¼EG f. In this case, the first step is to restrict the Kripke structure M¼ (S,

R,K) to exclude those states in which f does not hold (i.e., those not labeled by f)

and restrict R and K appropriately. We construct a modified Kripke structure,

M0 ¼ (S0,R0,K0) where S
0 ¼ {s|s 2 S, f 2 label(s)}, R0 ¼Rs0 · s0, L0 ¼Ls0. With this

restriction, R0 may no longer be a total relation. Next, the labeling of f may be

performed on M0 using the following key result quoted from Clarke, Grumberg,

and Peled. [20] The interested reader is referred to [20] for the proof of this

result.

lemma 1.1 A state s in M (S,R,K) satisfies u¼EG f if and only if the following

conditions hold:

1.. s 2 S0.
2.. There exists a non-trivial strongly connected component (SCC), C in the graph

(S0,R0), and some node t 2 C, such that there is a path from s to t in M0.

A directed graph is called strongly connected if, for every pair of vertices u and v,

there is a path from u to v and also from v to u. The strongly connected components

(SCC) of a directed graph are its maximal strongly connected sub-graphs. These form

a partition of the graph. An SCC is non-trivial if and only if it contains more than

one node or it contains one only node with a self-loop. The second step in the

labeling of states with u¼EG f is to compute the SCCs of M0 ¼ (S0,R0,K0). This can
be done by Tarjan’s O(|S0|þ|R0|) algorithm for SCC computation [21] (denoted by the

function SCC() in Fig. 1.10). Next, all states belonging to non-trivial SCCs are

identified. This is the state set P in Figure 1.10. Finally a backward reachability

search is performed from the states P, using the inverse of the transition relation R0 to
collect those states that have a path to some state in P such that each state along this

path is labeled with f. These states are labeled with u¼EG f. Figure 1.10 gives the

computeEU (f,g) {
P ← {s | g ∈label(s)}
for alls ∈P do

label (s) ←label (s) ∪ {E(f Ug)}
while P ≠ ∅ do

pick a state s ∈P
P ← P – {s}
for all {t | R(t,s)} do

if (E(f Ug)} ∉label (t) ∧ f ∈label(t))
then

label (t) ← label (t) ∪ {E(f Ug)}
P ← P ∪ {t}

end if

Figure 1.9 Algorithm for labeling states of M(S,R,K) that satisfy E(f U g)

1 Model checking and equivalence checking 15

entire algorithm to perform the labeling for u¼EG f. The complexity of this pro-

cedure is O(|S|þ|R|).
To summarize, the overall algorithm for model checking a CTL formula f on the

Kripke structure M¼ (S,R,L) is an iterative procedure that in each iteration picks

subformulas u of f, starting with the innermost nested subformulas and proceeding

outward and labeling states that satisfy u. Picking subformulas in this order ensures

that when the algorithm processes a subformula, the labeling for all its subformulas

will have been completed in earlier iterations. Thus, the labeling procedure for the

current subformula amounts to solving one of the five cases discussed earlier. Each

of these cases has a complexity of, at most, O(|S|þ|R|). Further, there can be, at

most, |f | subformulas of f and, hence, at most, as many iterations in the algorithm.

This gives the overall CTL model-checking algorithm a complexity of

O(| f | · |S|þ|R|).

1.3.3 Symbolic model checking

Originally, model checking used an explicit representation of states. [22] A typical

implementation [23] of this type of explicit model checking stores individual states in a

large hash table, memorizing the states reached during a depth-first traversal of the

state space. Since the number of states of even small systems can be very large – for

example, a 128-bit shift register has 2128 states – this method does not scale, in

particular for sequential circuits. One solution to this so-called state explosion problem

is symbolic model checking, [24] which operates on sets of states instead of individual

states and represents sets of states symbolically in a compact form. For the purposes of

this chapter, I will limit my discussion on symbolic model checking to simple safety

properties, also often called invariants, written in CTL as AGp. This formula specifies

that, for all execution paths, globally in all states along the path, the property p holds.

Alternatively, it states the property that :p, which could be some catastrophic system

state, cannot be reached. Note that for finite systems, many practically relevant

computeEG(f) {
T ← {s | f ∈label (s)}
Q ← SCC (P) // SCC computes the set of non-trivial SCCs

of T
 P ← {s | ∃C ∈Q, s ∈C }
 for all s ∈P do

label (s) ← label (s) ∪ {EGf }
while P ≠ ∅ do

pick a state s ∈P
 P ← P – {s}
 for all {t | t ∈T ∧ R (t,s)} do

 if EG f ∉label (t) then

label(t) ← label (t) ∪ {EGf }
P ← P ∪ {t }

 end if

Figure 1.10 Algorithm for labeling states of M(S,R,K) that satisfy EG f

16 M. Fujita

properties can be translated into simple safety properties. [25] Moreover, this class of

property is sufficient to describe the main technologies and most common usage of

symbolic model checking.

Binary decision diagrams (BDDs) and SAT methods are the two technologies pri-

marily used to realize symbolic model-checking systems. In the following, I review

symbolic model-checking techniques in the context of each of these. The field of

symbolic model checking was revolutionized by the advent of binary decision dia-

grams. In fact, up until the relatively recent interest in SAT-based methods, symbolic

model checking had been synonymous with BDD-based model checking. The paper by

Bryant [26] provides a detailed discussion on representing mathematical systems such

as sets and relations as Boolean functions, called characteristic functions, and real-

izing operations on these mathematical objects (sets, relations, etc.) through equivalent

Boolean operations on their characteristic functions. Thus, sets and relations can be

reasoned upon through BDDs by representing and manipulating their respective

characteristic functions as BDDs.

The overall approach in BDD-based symbolic model checking is to represent the

objects involved in model checking (essentially state sets and the transition relation of

the FSM) as BDDs and realize the state traversal algorithms through suitable Boolean

operations on these BDDs. The following discussion on model checking assumes a

system modeled as a finite state machine (FSM). As discussed earlier, BDDs allow

efficient representation of many real-life Boolean functions and efficient computation of

Boolean operations on them. In particular, BDDs allow an efficient implementation of

the image operation Img, which lies at the core of the breadth-first search in symbolic

model checking. It calculates the states reachable in one step via the transition relation T

from the current set of states SC, by implicitly conjoining the BDD representing SC with

the BDD representing T and projecting the result onto the next-state variables Y (after

eliminating the current-state variables X and primary input variables W).

ImgðYÞ � 9X ;W · SCðX Þ ^ TðX ; Y ;WÞ:
In the context of sequential circuits, we additionally assume that the transition relation

is deterministic. As shown above, however, it may depend on primary inputs, encoded

by a vector W of Boolean variables, which also need to be quantified during image

computation. In the terminology of program verification, Img calculates the strongest

post condition of a given predicate. A basic algorithm for symbolic model checking

simple safety properties can then be formulated as in Fig. 1.11. It represents sets of

states symbolically, and searches in breadth-first order from the initial states to the bad

states. Let B be the set of bad states, in which p does not hold, and I the set of initial

states. This forward model-checking algorithm starts at the initial states and searches

forward along the transition relation. In the literature, one can also find backward

model-checking algorithms. They rely on a dual operation to the Img operation;

PreImg, or equivalently the CTL operator EX. This calculates the set of previous states

SP that may reach the given set of current states SC in one step:

PreImgðX Þ � 9Y ;W · SCðYÞ ^ TðX ; Y ;WÞ:

1 Model checking and equivalence checking 17

A backward model-checking algorithm can be obtained from the forward algorithm

by, in essence, exchanging B with I and Img with PreImg as shown in Fig. 1.12. In

practice, forward traversal is usually much faster. The reason may be that unreachable

states do not have to be visited, and BDDs behave much better. However, not all

temporal properties – for instance, EXp ^ EXq or AG EXp – can be handled with Img

computation only. In certain cases, backward traversal is better – for instance, if the

property p is an inductive invariant. In this case, the backward fix-point computation

terminates after one PreImg computation. A general strategy is to try backward and

forward traversal in parallel.

Both symbolic model-checking algorithms presented so far can be interpreted as

calculating a least fix-point. [27] Significant progress has been made in both the tech-

nology and methodology of BDD-based symbolic model-checking algorithms since the

first such algorithms were proposed in 1990. Current BDD-based model checkers can

typically reason on systems with 200 to 400 state elements or state variables. Binary-

decision-diagram-based model checking is a good match for formally verifying mission-

critical properties on small to medium-sized parts or modules of a system.

Now I discuss verification methods that use SAT solvers for symbolic model

checking. There are two types of method. The first set of techniques has roots in

model-checkm

forward(I, T, B) {
 SC ← ∅;
 SN ← I;
 while SC ≠ SN do

 SN ← SN;
 if B ∩SN ≠ ∅ then
 return “found error trace to bad states”;

end if;

 SN ←SC ∪ Img (SC);
 end while;
 return “no bad state reachable”;
}

Figure 1.11 Forward least fix-point algorithm for safety properties

model-checkν
backward (I, T, G) {

 SC ←“all states”;
SP ← G;

 while SC ≠ SP do

 SC ←SP;
 SP ←SC ∩ PreIm (SC);
end while;

 if I ⇒SC then
 return“only good states reachable”;
 else
 return“found error trace to bad states”;
end if;

}

Figure 1.12 Backward greatest fix-point algorithm for safety properties

18 M. Fujita

BDD-based symbolic state space search where the use of BDDs has been partially or

completely replaced with SAT solvers. The second category comprises methods based

on inductive reasoning. Inductive techniques are sound but usually incomplete in that

they may not be able to prove every correct property. Satisfiability problems arising

from Boolean circuit domains may be encoded as CNF formulas. [28] Essentially, the

method involves encoding each logic gate in the circuit as a CNF formula and conjoins

the CNFs generated for each gate to get the overall CNF representing the circuit.

Figure 1.13 shows an example of the CNF for an AND gate. Any assertions or

conditions specific to the problems can then be encoded as additional clauses and

conjoined with the existing circuit CNF.

As seen above, the essential part of model checking is image operation, which forms

the computational core of symbolic methods for forward model checking, as explained

in the previous section.

SNðY Þ ¼ 9X ;W ;Z · SCðX Þ ^ TðX ; Y ;W ;ZÞ:
In this equation, the variable sets X, Y, W, Z denote the present-state, next-state, input,

and internal (needed for a CNF representation) variables, respectively; and SN, SC, and

T denote the next states, the current states, and the transition relation, respectively.

Although the designs can be encoded in CNF forms for SAT methods, the quantifiers

in the image computation must be eliminated in order to apply SAT methods to the

image computation. In the paper by Abdulla et al., [29] the checks for property

satisfaction and fix-points are formulated as SAT problems, to be solved by standard

SAT solvers. The SAT problems comprise combinations of formulas S*, representing

sets of states. These are obtained by using rewriting rules to eliminate the existential

quantifier in the image or pre-image operations. The most effective rule is an inlining

rule, which substitutes an expression for a variable to be quantified; while the most

expensive is rewriting the existential quantification as a disjunction, which can result

in a size blow-up. A similar effort was made by Williams et al. [30] to use SAT solvers

for CTL model checking. They use a substitution rule very effectively to eliminate the

existential quantifier.

A different approach [31] can be taken, which integrates BDD-based techniques

tightly into the SAT decision procedure. Here, the transition relation T is represented

in CNF, and the set of reachable states S* as BDDs. For image computation, quantifier

elimination is performed by using SAT techniques to enumerate all solutions to the

CNF formula, and by projecting each solution on the set of image variables (Y). The

search for solutions is also constrained by the BDD for SP, using a technique called

BDD bounding, whereby any partial solution in SAT that is inconsistent with the BDD

is regarded as a conflict. This technique is also used effectively to avoid repeating

(a + c) (b + c) (a + b + c)

CNF representation:

AND gate

a

b
c

Figure 1.13 CNF representation for a logic gate

1 Model checking and equivalence checking 19

image-set solutions by bounding against the current SN. In this approach, BDD-based

sub-problems are also generated on the fly, under a partially explored path in SAT.

Though this procedure can be used to perform cube enumeration in SAT alone, the use

of BDD sub-problems is highly beneficial in handling large designs.

Inductive reasoning is another way to implement model checking with SAT

methods. The inductive proof for verifying a property P¼AGp can be derived using a

SAT solver by checking the formulas ubase (the base case) and uinduc (the induction

step) for unsatisfiability.

ubase ¼ I ^ :P0;

uinduc¼ Pk ^ Tðk; k þ 1Þ ^ ð:Pkþ1Þ:
If uinduc is unsatisfiable, the property P is called an inductive invariant. Both formulas,

if unsatisfiable, provide a sufficient (but not necessary) condition for verifying P.

However, the above form of induction, known as simple induction, is not powerful

enough to verify many properties. More powerful forms of induction, known as

induction with depth and unique states induction, are proposed to verify safety

properties. For induction with depth n, the above formulas become:

unbase ¼ I ^ ^n�1
i¼0

Tði; iþ 1Þ
� �

^ _n
i¼0
:Pi;

uninduc ¼ ^kþn
j¼k

Pj

� �
^ ^kþn

i¼k
Tði; iþ 1Þ

� �
^ :Pkþnþ1:

Essentially, induction with depth corresponds to strengthening the induction hypoth-

esis, by imposing the original induction hypothesis on n consecutive time-frames. This

can be further strengthened by requiring that the states appearing on each time-frame

be unique (unique states induction). This restriction results in a complete method for

simple safety properties.

1.3.4 Practical model checking

It is a well-recognized fact that traditional simulation methods, while quite efficient

and scalable, are unable to provide the validation coverage needed to uncover difficult

corner-case bugs. Formal verification techniques can potentially provide complete

coverage. However, the current state of the art in formal methods cannot handle the

complexity and size of modern-day VLSI designs. Thus, there have been significant

efforts in the development of semi-formal validation technologies that attempt to

provide the scalability of simulation techniques and the coverage of formal verifica-

tion. One such attempt, bounded model checking based on SAT solvers, has made

dramatic progress. Bounded model checking based on SAT methods was introduced in

[32] and is rapidly gaining popularity as a complementary technique to BDD-based

symbolic model checking. Given a temporal logic property P to be verified on a finite

transition systemM, the essential idea is to search for counter-examples in the space of

all executions of M whose length is bounded by some integer k.

20 M. Fujita

The problem is formulated by constructing the following propositional formula:

’k ¼ I ^
\k�1
i¼0

Ti ^ ð:PkÞ; ð1:1Þ

where I is the characteristic function for the set of initial states of M, Ti is the

characteristic function of the transition relation of M for time step i. Thus, the

formula I ^ Tk�1
i¼0

Ti precisely represents the set of all executions ofM of length k or less,

starting with a legal initial state, and :Pk is a formula representing the condition that P

is violated by a bounded execution of M of length k or less. Hence, uk is satisfiable if
and only if there exists an execution of M of length k or less that violates the property

P: uk is typically translated to CNF and solved by a conventional SAT solver.

The formula :Pk may be used to express both safety and liveness properties.

Liveness properties of the form AFp are checked by having :Pk represent a loop

within a bounded execution of length at most k, such that p is violated on each state in

the loop. However, the more common application of BMC is for the purpose of

checking safety properties of the form AGp (p is some propositional expression). In

this case, Eq. 1.1 reduces to ’k ¼ I ^ Tk�1
i¼0

Ti ^ ð _
k

i¼0
:PiÞ, where Pi is the expression p in

time step i. Thus, this formula can be satisfied if and only if for some i (i � k) there

exists a reachable state in time step i in which p is violated. Figure 1.14 shows a circuit

representation of this equation, where the block �P denotes a combinational logic block

computing :Pi as a function of the state variables of time step i.

Recent research has improved on both the technology and methodology of the basic

BMCmethod in several ways. These techniques attempt to generate a more compact CNF

for the BMC problem in the hope that it translates into an easier SAT problem. The

bounded cone of influence (BCOI) reduction [33] is a variation on the classical cone of

influence (COI) reduction used in traditional model checking. The intuition is that over a

bounded time interval we need not consider every state variable in the classical COI in

every time step. Specifically, in Fig. 1.14, the BCOI reduction would extract the transitive

fan-in cone of the gate g and construct the BMC-CNF only from this subcircuit. The BCOI

reduction is a cheap, easy-to-apply transformation that is often fairly effective in practice.

Another technique uses binary AND–INVERTER graphs to represent the transition

relation of the system as well as the unrolled transition relation used for the BMC

P

P

 T T TI P

P
1g

Figure 1.14 Bounded model checking

1 Model checking and equivalence checking 21

problem (Fig. 1.14). The graph is compressed as it is built by using an efficient

functional hashing scheme across two levels of logic, as well as term rewriting

techniques. The CNF for the BMC problem is generated from this compressed

representation. The SAT results from earlier BMC runs are used to set appropriate P

nodes (Fig. 1.14) to 0 and then rehash the circuit graph to obtain further compression.

Such techniques work extremely well in practice, especially if the logic-level circuit

used for the verification has been generated through a quick on-the-fly synthesis from

an RTL description.

Although BMC is, by its intent, an incomplete bug-finding method rather than a

complete verification method, a given property can be certified to be true if no

counter-examples are found through BMC, up to the sequential depth of the circuit.

The sequential depth of a circuit is the length of the longest of the shortest paths from

the initial state or states to other reachable states of the system. There have been a few

attempts at computing or estimating the sequential depth of a circuit, for use as a target

depth for BMC. However, the problem of efficiently computing or tightly over-

approximating the sequential depth of industrial size arbitrary sequential circuits

largely remains an open problem. It is well known that different propositional

encodings of the same problem can result in dramatically different run-times on a

given SAT solver. The approach of binary time-frame expansion proposed by Fallah

[34] provides a different propositional encoding of the check for violation of the

property in various time-frames of an unrolled circuit.

Several successful attempts at applying SAT-based BMC technology to industrial

problems have been reported over the past several years. The original proponents of BMC

reported a case study [32] where they applied BMC based on the SAT solvers to verify

safety properties on five control units from the PowerPCTM microprocessor. Bounded

model checking was found to outperform significantly the BDD-based model checker for

several of the benchmarks. Bjesse et al. [35] report a significant increase in bug-finding

speed and efficiency by their application of SAT-BMC to check safety properties in the

memory subsystem of the Alpha microprocessor. A recent comprehensive analysis with

respect to the performance and capacity of BMC has also been presented. [36,37]

Please note that the above techniques based on SAT methods can be cast to the

corresponding problems for ATPG techniques. Therefore, recursive-learning-based

ATPG techniques may efficiently check model designs. In particular, if the design

is given as a logic circuit, ATPG-based model checking methods work very well

compared with SAT-based ones.

1.4 Equivalence-checking techniques

In this section, I discuss formal equivalence-checking methods for RTL or gate-level

designs. As with model-checking, the base methods are based on BDD, SAT, ATPG,

or combined methods. I first discuss the definition of equivalence of sequential circuits

in VLSI-design processes and then present the equivalence-checking methods for both

combinational and sequential circuits.

22 M. Fujita

1.4.1 Definition of equivalent designs

Combinational equivalence checking (CEC) of register-transfer-level (RTL) or gate-

level designs is the most widely adopted and successful formal validation technology

used in modern-day IC design flows. Register-transfer-level or gate-level circuits

arising in the context of IC design flows are usually sequential circuits. It is often the

case that two such sequential circuits are compared for equivalence – for example, two

copies of the same circuit before and after a sequence of manual or automatic opti-

mization steps, respectively. Several notions of sequential hardware equivalence have

been proposed in the literature. However, formal sequential equivalence checking is

generally recognized as a fairly intractable problem that cannot be solved efficiently

for large industrial designs, except in a few special cases.

Sequential circuits can be represented as finite-state machines (FSMs). An FSM,

F¼ (I, O, L, S0, D, k), is a 6-tuple, where I¼ (x1, x2, . . ., xm) is an ordered set of inputs,

O¼ (z1, z2, . . ., zp) is an ordered set of outputs, L is an ordered set of state variables

(denoting latches), S0 � B|L| is a non-empty set of initial states, D: B|L|·Bm ! B|L| is

the next-state function, and k: B|L|·Bm! Bp is the output function. A state S of F is a

Boolean valuation to the state variables L. In the sequel, the present- and next-state

variables corresponding to a latch l will be denoted l and dl, respectively. If the two

sequential circuits being checked for equivalence share the same set of inputs I,

outputs O, and latches L, then it can be shown that it is sufficient to check their

combinational portions for equivalence. In fact, the two sets of latches do not need to

be identical, but there must be some suitable mapping between them (this notion is

formalized below). Thus, in such a scenario, the sequential equivalence-checking

problem can be solved as a sequence of two sub-problems: finding a mapping between

the latches of the two circuits, and then checking the combinational portions of the two

circuits for equivalence under this mapping. The former is known as the latch-mapping

problem and the latter as combinational equivalence checking (CEC).

1.4.2 Latch-mapping problem

Latch mapping is the first problem to be solved when trying to check sequential equiva-

lence of two circuits using CEC. Informally, the idea is to find a mapping of latches

between the two circuits, such that under thismapping (and assuming that the circuits have

the same set of input and output signals), the two circuits produce identical output

sequences when supplied with the same input sequences. To formalize the discussion, let

the two sequential circuits being checked for equivalence be represented by FSMs F1 and

F2, respectively. Further, to simplify the exposition, we assume that the two circuits have

the same identical clock, the same inputs and outputs, and exactly one initial state, denoted

S0,1 and S0,2, respectively. Thus,F1¼ (I, O, L1, S0,1,D1, k1) andF2¼ (I, O, L2, S0,2,D2, k2).
Let L¼ L1 [L2 denote the combined state variables of F1 and F2. Further, if S1 and S2 are

states in the state spaces of F1 and F2, respectively – that is, S1 2 B|L
1
| and S2 2 B|L

2
| – we

use S¼ S1 [S2 to denote the combined state. Similarly, the combined transition function

D is obtained by combining D1 and D2 and the combined initial state S0¼ S0,1 [S0,2.

1 Model checking and equivalence checking 23

The latch-mapping problem is posed on the combined set of latch variables L and

the combined states in the state-space of these variables. A latch mapping is denoted

by a latch-correspondence relation, RL, which is an equivalence relation on the

latches, L. Thus, RL: L·L ! B. Further, the variable correspondence condition, VL:

B|L|! B, is a predicate that defines whether a state S conforms to RL – that is, whether

equivalent latch variables assume identical values in S:

VLðSÞ , 8l1 l2ðRLðl1 l2Þ) Sðl1Þ ¼ Sðl2ÞÞ:
The relation RL is designed to group together latches that are equivalent, under some

notion of sequential equivalence. For the purposes of this exposition, we will use the

following definition of RL, proposed by van Eijk and Jess, [38] based on a sufficient

(but not necessary) condition for latch equivalence.

definit ion 4.2 (Latch correspondence relation) [38] A latch correspondence

relation is an equivalence relation, RL: L ·L ! B, which satisfies the following

conditions:

� It is true in the initial state, S0 , of the combined FSM: VL(S0)¼ 1;

� It is invariant under the next-state function: 8 S 2 B|L|, X 2 Bm: RL(S)) RL(D(S,X)).

Methods for latch mapping can be classified as incomplete methods or complete

methods. Incomplete methods use heuristics to group promising matches without

providing any guarantee on the correctness or completeness of the matching. They can

be function-based or non-function-based. Non-function-based incomplete methods

(e.g., [39]) use name or structural comparisons to group latches. The rationale for such

methods is that combinational optimization, through automatic tools, usually leave net

names and much of the combinational structure unchanged. Function-based incom-

plete methods, such as those proposed in [39] and [40], use random simulation or

ATPG-based searches to generate inequivalence information, which is used to group

latches. Complete methods, on the other hand, are guaranteed to produce a latch

mapping, if one exists, given sufficient computational resources. Almost all complete

methods for latch mapping [41] employ a functional fix-point iteration to refine the set

of latches into a provably correct and complete grouping. Van Eijk’s algorithm, [38]

shown in Fig. 1.15, is an instance of this class of algorithm. It starts with the set of

latch mappings obtained from other methods and tries to increase the set with some

methods (heuristics) and then check if the expanded set is valid or not by actually

verifying the outputs to the latches. It keeps repeating this process until fix-points are

reached.

1.4.3 Practical combinational equivalence checking

Once a latch mapping has been performed on the given pair of FSMs, F1 and F2, the

next step is to perform combinational equivalence checking on the combinational

portions of these circuits. Specifically, this involves solving a combinatorial problem

24 M. Fujita

on a circuit called a miter, [42] shown in Fig. 1.16, which is constructed as follows.

First, the latches in F1 and F2 are removed – that is, the sequential feedback loops are

cut at the latches. For each latch l 2 L1 [L2, the present-state variable l is included in

the set of primary input signals and the next-state variable dl is included in the set of

primary output signals for the respective circuit. Further, each matched set of present-

state variables is merged together (i.e., assumed to be driven through a common

signal), as for the previously generated latch mapping. Note that we have assumed

earlier that the two circuits are driven by the same set of input signals. Hence, in

Fig. 1.16, the input signal set I driving the circuits is the set of common primary inputs

from the original sequential circuits as well as the set of present-state variable signals

from the former latches, merged under the latch mapping. The circuits C1 and C2

shown in the figure comprise the combinational logic circuitry implementing the next-

state functions D and output functions k of FSMs F1 and F2, respectively. The output

signal sets O1 and O2 comprise the output signals of the respective FSMs, as well as

the next-state variables of the former latches. Recall that F1 and F2 were assumed to

have the same set of outputs and the latch mapping allows a matching of the next-state

variables. Thus, in Fig. 1.16, corresponding output signals from O1 and O2 are pairwise

PI

PS

NS

NS

=
?

Yes

No

PI

PS
=
?
=
?
=
?

Apply latch
mapping

assumptions

Initial latch
mapping

approximation

Verify latch
mapping

assumptions

Comb.
logic 1

Comb.
logic 2

Fixed-point ?Iterate

Done !!

Figure 1.15 Van Eijk’s algorithm for latch mapping

I

C1

C2

O2

O1
1?

Figure 1.16 Miter construction for combinational equivalence checking

1 Model checking and equivalence checking 25

exclusive-ORed and a disjunction of these XOR outputs is taken (denoted by the big

XOR gate in the figure). This construction gives us a circuit referred to as a miter.

The combinational equivalence-checking problem, then, is to check if there exists

an input combination at the signals I that causes the miter output to be logic value 1. If

not, then the two combinational circuits are equivalent. However, if such an input

combination exists, then at least one pair of corresponding outputs in the miter would

assume different values under this input. Thus, the two combinational circuits being

compared in the miter are not equivalent. Combinational equivalence checking is,

theoretically, a co-NP-hard problem and, hence, intractable except for relatively small

instances. However, about 20 years ago, researchers working on this problem [43]

made the observation that practical instances of this problem are actually more

tractable, since the two circuits being checked have a high degree of structural (and

hence functional) similarity. This happens because the two circuits are usually dif-

ferent snapshots of the same design picked up from different stages of the design and

optimization process. Automatic tools and even manual design steps touch a small

portion of the design at a time and frequently preserve the overall logical structure of

the design. This single observation revolutionized the scope and usage of combin-

ational equivalence-checking tools in modern RTL design flows.

Almost all industrial CEC tools in use today exploit the notion of structural simi-

larity between the circuits being compared and are based on the principle of equiva-

lence checking using internal equivalences. [42,43] The basic idea here is that since

the two circuits are structurally fairly similar, there are bound to be internal nodes in

the two circuits that functionally correspond with each other. The objective is to detect

these internal equivalences and use them to partition the equivalence check on the

outputs into a series of smaller and more tractable equivalence checks. To illustrate the

principle, let me introduce some notation using the miter in Fig. 1.16 as a basis. Let

I¼ (i1, i2, . . ., in) be the common primary inputs of the combinational circuits C1 and

C2. Let f1(i1, i2, . . ., in) 2 O1 and f2(i1, i2, . . . , in) 2 O2 be corresponding primary

output signals of C1 and C2 to be combinationally verified; that is, we would like to

check if

f1ði1; i2; . . . ; inÞ ¼ f2ði1; i2; . . . ; inÞ: ð1:2Þ
Let x1, x2, . . . , xk and x1

0, x2
0, . . . , xk

0 be corresponding equivalent internal signals in C1

and C2, respectively; that is, say we have already verified that

x1ði1; i2; . . . ; inÞ ¼ x01ði1; i2; . . . ; inÞ; ð1:3Þ

x2ði1; i2; . . . ; inÞ ¼ x02ði1; i2; . . . ; inÞ; ð1:4Þ
. . .

xkði1; i2; . . . ; inÞ ¼ x0kði1; i2; . . . ; inÞ: ð1:5Þ

Further, suppose that signals x1, x2, . . . , xk in C1 form a cut between the inputs and

outputs such that output f1 can be expressed exclusively in terms of these signals as

26 M. Fujita

f1(x1, x2, . . . , xk) and, similarly, f2 can be expressed as f2(x1
0, x2

0, . . . , xk
0). Then, if we

can verify that

f1ðx1; x2; . . . ; xkÞ ¼ f2ðx1; x2; . . . ; xkÞ ðk þ 1Þ
it follows from Eqs. (1.3) to (1.5) that f1(i1, i2, . . . , in)¼ f2(i1, i2, . . . , in). The rationale

of this method is that checking Eq. (1.2), where f1 and f2 are expressed monolithically

in terms of the entire combinational circuitry of C1 and C2, is much more difficult than

checking the sequence of equations for x1 to xkþ 1 which are formulated on much

smaller combinational fragments of C1 and C2. Thus, given the miter of Fig. 1.16, the

overall approach is to proceed topologically from the inputs toward the outputs,

identifying internal potentially equivalent nodes (PENs) such as x1 and x1
0, x2 and x2

0;
then establish their equivalence (as in Eqs. (1.3)–(1.5)); and then proceed to exploit

these to establish the equivalence of topologically deeper PENs (as in the corres-

ponding equation for xkþ 1, all the way to the primary outputs. Figure 1.17 illustrates

this algorithm. Typically, the first step is to perform a quick phase of random simu-

lation on the miter and group together nodes or signals with identical simulation

signatures as PENs. These are then validated in topological order. If a pair of PENs is

found to be equivalent, these signals (and their input cones of influence) are struc-

turally merged. This reduces the effective size of the miter and increases the efficiency

of engines acting on it. If a pair of PENs is found to be inequivalent, the checking

engine would typically return an input vector – that is, an assignment to the signals I,

under which the two signals assume different values. This is then used to refine the

PEN sets by simulating the current miter with this input vector.

Most of the major works in the literature on combinational equivalence checking

as well as most commercial offerings in this area today are broadly based on the

above algorithm for equivalence checking using internal equivalences. The actual

Random

simulation

Gather PENs

Is
x = y?

Refine PEN sets
using counter-

example

Is there an
unjustified PEN

pair x,y ?

Structurally
merge x, y

Done!

PI

PS

PO

NS

Comb.
Logic 1

Comb.
Logic 2

= ?
PO

NS

Combinational miter

after latch mapping

Yes

Yes

No

No
PENs: potentially
equivalent nodes, i.e.,
nodes with identical
simulation signature

BDD/S
AT/A

TPG

PI

PS

PO
NS

Comb.
logic 1

Comb.
logic 2

= ?
PO
NS

Combinational miter
after latch mapping

BDD/S
AT/A

TPG

Figure 1.17 General algorithm for CEC using internal equivalences.

1 Model checking and equivalence checking 27

equivalence checking of each PEN pair is usually performed using one of a variety of

engines, including but not limited to BDDs, SAT solvers, and ATPG (automatic-test-

pattern-generation-based) structural reasoning, and graph isomorphism checks on the

circuit graph. The specific engines used and the heuristics used to guide their

orchestration in picking PENs and validating them form the main differences between

individual CEC tools. Sometimes these choices can lead to substantial savings in

computing resources.

The typical composition of a modern CEC tool is shown in Fig. 1.18. At the core of

the tool is a multi-engine solver, comprising, for example, a BDD engine, a SAT

solver, an ATPG reasoning engine, a random simulation engine, a host of structural

reasoning methods, and a sophisticated set of heuristics for orchestrating these engines

to perform the actual equivalence-checking tasks. The input to CEC tools consists of

two sequential circuits, one or both of which may be specified at RT level. Since all the

engines operate on logic-level circuitry, the typical approach is first to perform a quick

synthesis to gate level and then to proceed with equivalence checking of the gate-level

circuits. Thus, an RT-gate synthesizer is typically included in the CEC tool, as is a

latch mapper to transform the sequential problem to a combinational one. Combin-

ational equivalence checking tools also have comprehensive debugging capabilities to

pinpoint error sources when inequivalences are detected, as well as counter-example

visualization capabilities, the ability to cross-link RTL and gate-level netlists for easy

debugging, and the ability to checkpoint the verification process and restart again from

an intermediate checkpoint. By using the PEN-based equivalence-checking method-

ology and highly efficient Boolean reasoning engines available today, modern CEC

tools can handle circuits of up to a few million gates, flat, in a few hours of run-time.

1.4.4 Sequential equivalence checking (SEC)

If the two sequential circuits to be compared do not have latch mapping, i.e., they have

different state encodings, the equivalence problem cannot be reduced to combinational

equivalence checking. In such cases, we need to reason about sequential circuits

Circuit A

Circuit B

BDD
SAT

ATPG

Structural methods
Learning

Quick
synthesis

Latch
mapper

Counter-example
viewer

Error diagnosis
engine

Circuit A

Circuit B

BDD
SAT

ATPG

Structural methods
Learning

Figure 1.18 A typical modern CEC tool

28 M. Fujita

directly. Intuitively this is a model-checking problem with the property of saying, “The

outputs are always equivalent between the two sequential circuits.” Although

sequential equivalence checking can be solved by model-checking methods, there are

more direct ways to compare the outputs of the two circuits, that is based on forward

traversal in model checking. This is called “reachability analysis.” Reachability

analysis traverses state space in the designs starting from initial states and checks the

equivalence of the outputs, either with explicit state traversal or implicit state traversal

(symbolic traversal). Usually symbolic state traversal can deal with much larger

circuits than explicit state traversal.

First of all, we need to define the sequential equivalence checking problem. Given

sequential circuits are first transformed into finite state machines (FSMs) and then

FSMs are analyzed. An FSM F is represented as a 6-tuple <I, S, d, S0, O, k>, where I

represents the set of input signals, S represents the set of states, d: S· I! S represents

the set of next-state functions, S0 (S0 � S) represents the set of initial states, O

(I \ O¼Ø) represents the set of output signals, and k: S · I!O represents the set of

functions of output signals. For example, we consider an FSM that consists of:

� I¼ {i1},

� S¼ {s1, s2, s3, s4},

� O¼ {o1},

� d(S · I)¼ {d(s1,0)¼ s1, d(s1,1)¼ s2, d(s2,0)¼ s1, d(s2,1)¼ s3,

d(s3,0)¼ s3, d(s3,1)¼ s1, d(s4,0)¼ s3, d(s4,1)¼ s4},

� k (S · I)¼ {k(s1,0)¼ 0, k(s1,1)¼ 1, k(s2,0)¼ 0, k(s2,1)¼ 0,

k(s3,0)¼ 0, k(s3,1)¼ 1, k(s4,0)¼ 0, k(s4,1)¼ 1},

� S0¼ {s1}.

Figure 1.19 shows a state transition graph of an FSM. The reachable states of the FSM

can be enumerated explicitly on the state transition graph. Starting from the initial

states, reachable states are traversed by considering sequences of input signals. For the

example of the FSM shown in Fig. 1.19, we can identify that states s2 and s3 are

reachable from the initial state s1 if the input signal i1 takes the value 1 in states s1 and

s2. On the other hand, there is no way to reach state s4 from the initial state, i.e., s4 is

an unreachable state. In general, no unreachable states are dealt with in formal

verification.

s3

s2s1

s4

Initial state
1/1

0/0

1/0
1/1

0/0
1/1

0/0

0/0

Figure 1.19 An example of a state transition graph of an FSM

1 Model checking and equivalence checking 29

The main drawback of an explicit representation of reachable states is that it cannot

represent reachable states of large circuits. For example, it is impossible to make the

state transition graph of a sequential circuit that has 100 flip-flops because the circuit

may have 2100 reachable states. To overcome this problem, most verification tech-

niques use implicit methods, as shown in Section 1.3. In implicit methods, the set of

reachable states is represented as a characteristic function that is represented by using

BDD or CNF for SAT methods. Therefore, reachable states of large circuits can be

represented efficiently. Let us consider the characteristic function of a set of states. For

a set of states S(S¼ {s1,. . ., sn}) and its subset S0(S0 ¼ {sk1,. . ., skn} (1� ki� n)), a

function vS0 : S ! {0,1} is defined as:

vS0ðsÞ ¼1 ðif s 2 S0Þ
0 ðotherwiseÞ:

The function vS0(s) is called the characteristic function of S0. For example, in the FSM

of Fig. 1.19, we represent states s1, s2, s3, and s4 with variables x1 and x2 such that

s1 ¼ x1 � x2, s2 ¼ x1 � x2, s3 ¼ x1 � x2, and s4 ¼ x1 � x2. When the characteristic function

of the set of reachable states S0 is considered, vS0(s)¼ 1 in states s1, s2, and s3 while vS0
(s)¼ 0 in state s4. Therefore, the logic function of vS0(s) will be x1 þ x2. Figure 1.20

shows the BDD which represents reachable states s1, s2, and s3, where states are

encoded with two state variables x1, and x2.

Similarly, the characteristic function of the set of next-state functions vd is calcu-
lated as follows. When states in S are represented by using k variables x1, . . ., xk, the

set of next-state functions, d : S · I! S, consists of k next-state functions such that

di : {0,1}
k · I ! {0,1}. When we represent next-state variables as x1

0, . . ., xk
0, the

characteristic function vd(xi
0, di) is represented as follows:

vdðx0i; diÞ ¼
Y

k
i¼1ðx0i � diÞ:

Note that xi
0 � di corresponds to xi

0 · diþxi0 · di.
Let me explain how to calculate the characteristic function for the set of next-state

functions in the FSM of Figure 1.20. Suppose that next-state functions for next-state

x1

x2

0 1

01

1
0

0 1

01

1
0

Figure 1.20 BDD representation of the reachability state set

30 M. Fujita

variables x1
0 and x2

0 are represented as d1(x1, x2, i1)¼ i1 · x2þ i1 · x1 and d2(x1, x2, i1)
¼ i1 · x1 þ x2. The characteristic function of the set of next-state functions is:

vdðx01; x02; d1; d2Þ ¼ ðx01 � d1Þðx02 � d2Þ
vdðx10; x20; x1; x2; i1Þ ¼ x10:x20:x1:i1þ x10:x1:x2:i1þ x10:x21:x1: x2:i1

þ x10:x1:x2:i1þ x10:x20:x1:x2:i1þ x10:x20:x2:i1:

Figure 1.21 shows the algorithm that enumerates reachable states when an FSM is given.

The inputs of the algorithm are the set of states S, the set of input signals I, the set of next-

state functions d, and the set of initial states S0. At the beginning of the algorithm, the set

of reached states Reached, the set of states that are the source of state transitions From,

and the set of states traversed after the kth state transitions Newk are initialized by the set

of initial states S0. Then, the following procedures are carried out while Newk 6¼Ø.

1.. The set of states To that is traversed by one state transition from the states of From

is calculated. Calculating To is called image computation and represented as the

function Img(d,From). The detail of the function Img(d,From) is described later.

2.. Newk is calculated by removing the states in Reached from the states in To.

3.. The obtained Newk is set to From for the next-state enumeration.

4.. Finally, the update of Reached by the union of Reached and Newk is carried out.

The implementation of the function Img(d,From) is different for explicit and implicit

methods. In explicit methods, To is calculated by enumerating all possible inputs for

all states in From. On the other hand, in implicit methods, a smoothing operation is

carried out to calculate To. For a logic function f with n variables (f(x1, x2,. . ., xn)), the

smoothing operation ’xif with respect to variable xi is defined as follows:

9xif ¼ fxi fxi ;

where fxi is derived by assigning 1 for xi in function f while fxi is derived by assigning

0. Similarly, a smoothing operation with respect to variables in a set X¼ (x1,. . . xn) is

defined as follows:

9Xf ¼9 x1ð9x2ð. . . ð9xn f ÞÞÞ:

Reached = From = New
k = 0

do {
k = k + 1;
To =
New
From =
Reached =

} while (
}

BFS_FSMforward(S, I, d, S0) {
Reached = From = New0= S0;
k = 0;d

do { d
k = k + 1;
To = Img(δ,From);
Newk= To – Reached;
From = Newk;
Reached = Reached ∪ Newk;

} while (Newk = 0)
}

Figure 1.21 Breadth first-state traversal algorithm for FSM

1 Model checking and equivalence checking 31

As an example, we apply smoothing operation to variable x1 in a function

f ðx1; x2; x3; x4Þ ¼ x1 � x2 þ x1 � x3 þ x2 � x3 � x4 . . .
fx1 ¼ x2;

fx1 ¼ x3:

Therefore,

9xf ðx1; x2; x3; x4Þ ¼ x1 þ x3:

The function Img(d,From) with smoothing operation is defined as:

Imgðd;FromÞ ¼9 S9IðvFrom � vdÞ:
The product of the characteristic functions vFrom and vd represents the set of states

that are traversed from From by one state transition. Therefore, after the application of

the smoothing operation to the product with respect to variables in S and I, we can

obtain the function that is represented by next-state variables. For example, in the FSM

of Fig. 1.19, we calculate the next states traversed from the initial state x1 � x2 when the
next-state functions d1(x1, x2, i1)¼ i1 · x

2þ i1 · x1 and d1(x1,x2,i1)¼ i1 · x1 � x2 are given.
The characteristic function for the set of next-state functions vd is represented as:

vd ¼ ðx01 � d1Þðx02 � d2Þ ¼ ðx01 � i1 � x2 þ i1 � x1Þðx02 � i1 � x1 � x2Þ:
The characteristic function for the initial state vS0 is represented as:

vS0 ¼ x1 � x2:
Therefore, the next states traversed from the initial state x1 � x2 are calculated by the

product of vd and vS0.

vd:vS0 ¼ ðx01 � i1 � x2 þ i1 � x1Þðx02 � i1 � x1 � x2Þ � ðx1 � x2Þ
¼ ðx01 � 0Þðx02 � i1 � x1 � x2Þ

:

Then, the smoothing operation with respect to the variables in sets S and I is applied.

9Ivd � vS0 ¼ ðx01 � 0Þðx02 � x1:x2Þ
9S9Ivd � vS0 ¼ x01:x

0
2 þ x01 � x02:

As a result, we can identify that the next states for s1 are states s1ðx01 � x02Þ and s2ðx01 � x02Þ.
Equivalence checking of two sequential circuits verifies whether the behavior of two

given FSMs M1¼<I,S,d1,S0,O,k1> and M2¼<I,T,d2,T0,O,k2> is equivalent or not.

This is equivalent to checking whether there exists an input signal that leads to a

different output signal when the same input sequence is given from the initial states of

M1 andM2. Note that bothM1 andM2 have the same set of input signals I and the same

set of output signals O. This problem is considered by using the product machine ofM1

and M2 shown in Fig. 1.22.

In the product machine, the XNOR of output signals is calculated for all input

sequences. The output signals of M1 and M2 are equivalent when the XNOR of each

pair of output signals is 1. On the other hand, M1 andM2 are not equivalent when there

32 M. Fujita

exists a pair of output signals such that XNOR is 0. Therefore, we check whether a pair

of states in M1 and M2 such that XNOR is 0 is reachable from the initial states of the

product machine or not.

The product machine of M1 and M2, M12¼<I,U,d12,U0,{0,1},k12> is defined as:

� I: the set of inputs,

� U¼ S ·T,
� d12: (S ·T) · I ! (S ·T)¼ (d1: S · I ! S, d2: T· I ! T),

� U0¼ S0 ·T0,
� {0,1}: the output value of XNOR,

� k12: (S ·T) · I ! {0,1} (1 if k1(S,I)¼ k2(T,I), 0 otherwise.

Let us verify the equivalence of the two FSMs shown in Fig. 1.23. Note that the set of

reachable states on the product machine is calculated based on the implicit method.

States of FSM M1 are represented as s1 ¼ x1 � x2, s2 ¼ x1 � x2, and s3 ¼ x1 � x2. When

we represent the input signal as i1, the next-state functions d1 and d2 (d1¼ {d1,d2}) and
the output function k1(k1¼ {k1}) are represented as:

d1 ¼ i1:x2 þ i1:x1;

d2 ¼ i1:x1:x2;

k1 ¼ i1:x2:

M2

S

O

O

T

I

M1

Figure 1.22 Equivalence checking on two sequential circuits

0/0

s1
s2 s4

s7 s6

s5

s3

Initial state

1/1

0/0

1/0
1/1

0/0

0/0

Initial state
1/1

0/0

1/1
1/1

0/0

1/1

0/0

M1 M2

Figure 1.23 FSMs extracted from the circuits in Fig. 1.22

1 Model checking and equivalence checking 33

On the other hand, states of FSM M2 are represented as s4 ¼ x3 � x4, s5 ¼ x3 � x4,
s6 ¼ x3 � x4, and s7 ¼ x3 � x4. The next-state functions d3 and d4 (d2¼ {d3, d4}) and the

output function k2(k2¼ {k2}) are represented as:

d3 ¼ x3:x4 þ i1:x3:x4;

d4 ¼ i1:x3 þ i1:x4;

k2 ¼ i1:

The output function of the product machine is calculated as:

k1� k2 ¼ ði1:x2Þ i1 þ i1:x2

¼ ði1 þ x2Þi1 þ i1:x2

¼ i1 þ x2:

The function implies that the value of XNOR is 1 when i1¼ 0, regardless of the state

variables. On the other hand, the value of XNOR depends on the value of x2 when

i1¼ 1. The outputs of M1 and M2 are different in the states where x2¼ 1 because in

such states XNOR will be 0. Therefore, we check whether those states are reachable

from the initial states of M12 or not.

Suppose that the next-state variables of M1 and M2 are represented as x1
0, x2

0, x3
0, and

x4
0. The characteristic function of the set of next-state functions forM12 is represented as:

vd12 ¼ vd1:vd2 ¼ ðx01 � d1Þðx02 � d2Þðx03 � d3Þðx04 � d4Þ
¼ ðx01 � i1:x2 þ i1:x1Þðx02 � i1:x1:x2Þ
ðx03 � x3:x4 þ i1:x3:x4Þðx04 � i1:x3 þ i1:x4Þ:

The characteristic function of the initial state s1:s4 is represented as:

vU0 ¼ vS0:vT0 ¼ x1:x2:x3:x4:

Therefore, the set of the next states traversed from the initial state s1:s4 is calculated as:

vd12:vU0 ¼ ðx01 � i1:x2 þ i1:x1Þðx02 � i1:x1:x2Þðx03 � x3:x4 þ i1:x3:x4Þ
ðx04 � i1:x3 þ i1:x4Þðx1:x2:x3:x4Þ

¼ ðx03 � 0Þðx02 � i1:x1:x2Þðx03 � 0Þðx04 � i1:x4Þ:

Then, we apply the smoothing operation to the variables in sets U and I.

9Ivd12:vU0 ¼ ðx01 � 0Þðx02 � x1 : x2Þðx03 � 0Þðx04 � x4Þ;
9U9Ivd12:dU0 ¼ x01:x

0
2:x
0
3:x
0
4 þ x01:x

0
2:x
0
3:x
0
4:

As a result, we can identify that the next states of the initial state s1:s4 are states s1:s4
and s2:s5. Since x2

0 is 1 in state s2:s5, the product machine produces 0. This means that

the two FSMs are inequivalent. The state transition graph of the product machine is

shown in Fig. 1.24.

34 M. Fujita

1.5 Techniques for higher-level design descriptions

In this section, we introduce equivalence-checking methods for design descriptions

that are higher level than RTL. High-level design descriptions are represented in

program-like formats, and design languages based on C/Cþþ languages are typically

used. [44,45] To reason about C/Cþþ language constructs, not only Boolean reasoning

but also so-called word-level reasoning is essential for efficient verification. For example,

one integer variable is a single variable, although it must be expanded into 32 Boolean

variables if Boolean reasoning is applied. If we always expand such variables into mul-

tiples of Boolean variables, the number of variables for Boolean reasoning, like the ones

based on SAT solvers and BDD-based routines, easily becomes too large to be processed.

Instead, any reasoning procedures on high-level design descriptions should apply word-

level analysis methods, which deal as much as possible with all word-level variables as

they are. If they somehow fail, analysis methods are switched to Boolean-based ones.

There are decision procedures, such asCVC [46], that can dealwithword-level variables.

Although theymay be based on Boolean SAT solvers as their final reasoning engines, they

try to use word-level analysis as much as possible. Here, I concentrate on the use of such

decision procedures on equivalence checking for high-level design descriptions.

Another important issue in high-level equivalence checking is the fact that the two design

descriptions being compared are typically very similar, since the design processes in high

levels consist of a series of small design refinements. If equivalence checking is applied to

the descriptions before and after each such small refinement, the difference between the two

design descriptions is very small, in the sense that most of the descriptions are the same and

there are many internal equivalent corresponding variables. This is basically the same

situation as the equivalence checking on two combinational circuits, discussed earlier,

which is widely used for formal verification nowadays in industry. Therefore, by parti-

tioning the given design descriptions into much smaller ones through the equivalent vari-

ables, the equivalence-checking problem becomes a collection of many small ones. This

gives us the ability to deal with the large and practical design descriptions used in industry.

The basic method used to compare two high-level design descriptions is symbolic

simulation. Since word-level analysis methods should be used as much as possible,

symbolic simulation – where each variable is given symbolic values instead of

concrete values – can easily accommodate word-level reasoning procedures, such as

s1s4

s1s2

s2s5

s3s6

Initial state

1/1

0/1

1/0
1/1

0/1

0/1

1/1

0/1

Figure 1.24 Product FSM generated from the two FSMs in Fig. 1.23

1 Model checking and equivalence checking 35

decision procedures. Also, if necessary, Boolean reasoning can also be incorporated

into symbolic simulation in the same way as word-level reasoning.

Here, I briefly review the high-level design flow from the viewpoint of equivalence-

checking technology. Then I present symbolic simulation for high-level design

descriptions, followed by an introduction of a couple of improved equivalence-

checking algorithms based on symbolic simulation that utilize the similarity of the two

descriptions to be compared.

Verification of designs is one of the most important tasks in the design of large and

complicated systems. Target designs are becoming larger and more complex as integration

technologies rapidly improve. This trend makes the verification of the whole design more

and more difficult – so much so that design times are dominated by their verification times.

Therefore, it is very important to try to verify design descriptions at as high a level as

possible. In general, the higher the level of the design description, the smaller the number of

components to be analyzedwhen theyare verified.Whenadescriptionof a design is changed

for some reason, it is possible that an error has been introduced into the design. If such an

error is found in the later stages of the design flow, design productivity is decreased sig-

nificantly, because the modification that may be required at the higher-level descriptions

may entail going back to the initial stages of the design process. To solve this problem, the

error shouldbe sought andcorrected as early as possible before implementation.This implies

that formal equivalence checking of design descriptions before and after transformations of

design descriptions is one of the most important issues in higher-level design stages.

I now present formal equivalence-checking methods for two C descriptions. The

basic verification engine for equivalence checking of high-level design descriptions is

symbolic simulation. Given two C descriptions, symbolic simulation-based methods

verify whether variables corresponding to output signals in a design are equivalent or

not, when all variables corresponding to input signals are assumed to be equivalent. As

a result of symbolic simulation, variables that are identified as equivalent to each other

in the two descriptions are collected into the same equivalence class. Therefore, we

can prove the equivalence of variables corresponding to output signals by checking

whether they are in the same equivalence class or not.

In general, formal methods, including symbolic simulation, will fail when dealing

with very large designs. To solve this problem, in the method discussed here, textual

differences between descriptions are utilized to reduce the number of equivalence

checks of variables. This means that only the variables related to textual differences

are verified during symbolic simulation. Therefore, this method is particularly efficient

when the two descriptions are similar to each other, because we can expect that there

will be few equivalence checks carried out during symbolic simulation. As noted

earlier, this is essentially the same strategy used in combinational equivalence-

checking methods now commonly used in industry. Equivalence checking on

descriptions of large designs is essentially like partitioning large descriptions into a

collection of much smaller ones. Therefore, in general, the more similar the two

descriptions to be compared, the more efficient the equivalence-checking processes.

Symbolic simulation has become one of the most common techniques in hardware

verification. Since variables in the descriptions are treated as symbols rather than as

36 M. Fujita

concrete-valued bit vectors, symbolic simulation can efficiently verify larger

descriptions than traditional logic simulation. Here, I present a symbolic simulator for

the equivalence checking of two C descriptions. The characteristics of the extended

symbolic simulator are as follows [47]:

1.. Symbolic simulation starts from the beginning of the descriptions.

2.. When an expression is simulated symbolically, an equivalence class (EqvClass) for

the expression is created.

3.. If two variables in different EqvClasses are proved to be equivalent during sym-

bolic simulation, the two EqvClasses are merged into a single EqvClass.

4.. When a case split occurs owing to conditional statements in the C descriptions, all

potentially executable paths are simulated.

5.. Functions can be uninterpreted in symbolic simulation. Two uninterpreted function

calls to the same function are assumed to be equivalent when all their arguments are

equivalent. This is everything we assume on uninterpreted functions. If necessary,

interpretation can be introduced to such functions so that more detailed reasoning

can be made.

6.. After symbolic simulation, the two variables are equivalent if they belong to the

same EqvClass.

A simple example of equivalence checking in terms of symbolic simulation is shown in

Fig. 1.25. In this example, we can verify the equivalence of the variable reg0 in the two

given descriptions. Initially, the variables reg1 and reg2 are assumed to be equivalent in

Assumption: the variables reg1 and reg2
 are equivalent in both descriptions.

description 1

Transitions of EqvClasses

Beginning of simulation
(from assumption)

End of simulation

reg0 = reg1 + reg2;

src1 = reg1;
 src2 = reg2;
reg0 = src1 + src2;

description 2

(A)

(B)

E1= (reg1_1, reg1_2)
E1= (reg2_1, reg2_2)

E1= (reg1_1, reg1_2, src1_2)
E2= (reg2_1, reg2_2, src2_2)

E1= (reg1_1, reg1_2, src1_2)
E2= (reg2_1, reg2_2, src2_2)
E93= (reg0_1, reg0_2, reg1_1+ reg2_1)

E1= (reg1_1, reg1_2, src1_2)
E2= (reg2_1, reg2_2, src2_2)
E93= (reg0_1, reg1_1+ reg2_1)
E4= (reg0_2, src1_2, + src2_2,)

(A)

(B)

reg0_1 and reg0_2 are in the same EqvClass

Figure 1.25 Example of equivalence checking based on symbolic simulation

1 Model checking and equivalence checking 37

both descriptions, because these variables correspond to input signals. These assump-

tions are expressed in the two EqvClasses, E1 and E2. Note that we denote a variable v in

description 1 as v_1 and in description 2 as v_2. At first, expressions for the variables

src1 and src2 in description 2 are simulated before reaching point (A). This results in

src1_2 being inserted into E1 and src2_2 into E2, because src1_2 is equal to reg1_2, and

src2_2 is equal to reg2_2. Then, two additional EqvClasses, E3 and E4, are created before

reaching point (B). Finally, reg1_1 and reg2_1 are substituted for src1_2 and src2_2 in E4,

respectively, because from E1 and E2 we find out that src1_2 is equivalent to reg1_1, and

src2_2 is equivalent to reg2_1. This means that E3 and E4 are equivalent to each other.

Therefore, E3 and E4 are merged into a new EqvClass, E03. As a result, we can conclude

that the variable reg0 is equivalent in both descriptions, because the occurrences of reg0
in both descriptions are in the same EqvClass.

In simple symbolic simulations, the equivalence of the following pairs of expres-

sions cannot be directly proved, because symbolic simulation does not interpret the

functionality of the expressions.

aþ a; 2 	 a;
ðaþ bÞ þ c; aþ ðbþ cÞ;
a 	 ðbþ cÞ; a 	 bþ a 	 c:

To prove the equivalence of these expressions, the method calls for some sort of

decision procedure, such as a cooperating validity checker (CVC). [46] This is a

decision procedure that checks the logical validity of given formulas. Formulas are

represented by propositional operators and equations between linear mathematical

expressions. Such decision procedures can accept quantifier-free formulas in first-order

logic. In addition, the formulas can have the following:

� Linear real arithmetic formulas: the supported operators are addition, subtraction,

multiplication by a constant, division by a constant, equality, and inequality,

� Real arrays,

� Inductive data types (for example, lists and trees).

We can improve the ability of equivalence checking between variables by using decision

procedures in the symbolic simulation for analysis of the simulation results. Compared

with substitution used in symbolic simulation, decision procedures generally take longer

to compute equivalence because they utilize several theorems to check validity.

To narrow the areas for symbolic simulation, program slicing [48] can be used as

preprocessing. It is an operation that identifies semantically meaningful decom-

positions of programs. In symbolic simulations, program slicing can be used to extract

all expressions that are relevant to the difference between the two descriptions to be

compared. As a result, the equivalence checking of two descriptions is reduced to the

verification of the extracted variables. Program slicing can be used in the context of

symbolic simulation in the following ways. Backward slicing for a variable v extracts

all expressions that affect the variable v. Forward slicing for a variable v, on the other

hand, extracts all expressions that are affected by the variable v. Chopping from a

variable s to a variable t is the product set of the forward slice for s and the backward

38 M. Fujita

slice for t. In symbolic simulations, chopping is initially applied to each description

from input variables to output variables. Therefore, all expressions relevant to vari-

ables for input and output signals in the descriptions are extracted by chopping. As a

result, we can avoid wasteful verification of statements that are irrelevant to the

variables of input and output signals. In addition to the chopping operation, computing

successors, some sorts of forward slicing, can be carried out so that successors for a

variable v are all expressions that are directly affected by v.

The flow of equivalence checking based on identification of textual differences in

the two design descriptions [49] is shown in Fig. 1.26. As initial inputs, two designs to

be compared are given as functions written in C. The variables corresponding to input

and output signals in the functions (called input variables and output variables,

respectively) are defined by designers. The methods verify whether all output variables

are equivalent when all input variables are assumed to be equivalent.

After input variables and output variables are given, chopping is carried out from

input variables to output variables. This operation extracts only parts of descriptions

that are affected by input variables and that affect output variables. Therefore, only the

extracted descriptions are verified during symbolic simulation.

There are restrictions on the descriptions in C/Cþþ languages that can be verified,

as the targets are hardware design descriptions. These restrictions make the equiva-

lence-checking problems considerably easier and able to deal with realistic sizes of

designs. The designs to be verified are allowed to have the following elements:

� All operators (they are not interpreted in symbolic simulation),

� Arrays,

C description 1 C description 2

Definition of
input and output

variables

Preprocesses

Identification
of textual

differences

Making textual
correspondence

Symbolic
simulation with

textual differences

Result
(equivalent, inequivalent)

Figure 1.26 The flow of equivalence checking based on textual difference

1 Model checking and equivalence checking 39

� Assignments including compound assignments,

� If-then-else conditional branches,

� Functions and function calls,

� For loops and while loops (they are unrolled before symbolic simulation),

� No pointer uses (or all pointer uses are analyzed and replaced by certain variables),

� No dynamic memory allocation,

� No recursive function calls.

Though a symbolic simulator can receive all types of operator, subsets of operators can

be understood by the decision procedures that are used to decide the equivalence

classes. If, however, the decision procedures cannot understand an operator in a for-

mula, they may return the result that the descriptions being compared are not

equivalent (fail to show the equivalence). In such cases, the method may return with

false-negative results. The method verifies whether or not the behaviors of the given

descriptions are equivalent. Therefore, the data types of variables and the problems of

overflow or underflow cannot be checked in this method.

In addition, we assume that the given descriptions have the same control flows, with

the same correspondence between them, as explained in the following. This is because

we assume that the design flow is a collection of small design refinement steps and that

the given descriptions have only few differences. First of all, for convenience, several

preprocesses, such as in-lining of macro definitions, are carried out on the given

descriptions. This can be done by C compilers’ preprocessors with the appropriate

options. Then, the user-defined functions that do not affect functionalities of designs

are removed from the descriptions. For example, input or output functions such as

scanf and printf are removed. When there are loop structures in the descriptions, these

must be unrolled using the symbolic simulation methods shown in this chapter. If the

number of iterations of a loop is fixed, the loop is unrolled the same number of times as

the number of iterations. On the other hand, if the number of iterations is infinite or

dependent on input variables, the number of unrollings is specified by users. The

equivalence checking will be performed up to this number of iterations for the loop

descriptions. If the number of unrollings is not large enough, some possible execution

paths in the original descriptions may not exist in the descriptions after loop unrolling.

Therefore, the completeness of the equivalence checking depends on the number of

unrollings, if loop unrolling is carried out.

After the preprocesses, textual differences between the two given descriptions are

identified. This can be done in many ways. The simplest way is to use the standard

UNIX command diff, which is what I have done here. After textual differences are

identified, we can take textual correspondence between descriptions. By using infor-

mation on textual differences, we can establish a one-to-one correspondence between

expressions in the two descriptions. This is based on the assumption that the two

design descriptions are not much different. If they are, the one-to-one mapping gen-

eration may simply fail, which is not dealt with here. Figure 1.27 shows an example of

the textual correspondence between the descriptions. If the corresponding expressions

are textually equivalent, they are marked as “E.” If the corresponding expressions are

40 M. Fujita

textually different, they are marked as “D.” Like the expression for the variable tmp in

description 2 of Fig. 1.27, if an assignment appears in only one of the descriptions, a

dummy assignment, such as

tmp ¼ tmp;

is inserted in the other description to create the correspondence. With this matching

process, the two descriptions will have the same number of statements.

To ensure textual correspondence between descriptions, my proposed method will

only handle two descriptions that have the same control flows. In other words, we can

verify the equivalence of a refinement carried out on a design, as long as it does not

change the control flow of the design. If there are small differences in control flow,

another type of matching process may be applied before symbolic simulation. If the

difference is large, however, my proposed method does not work.

After the processes described above are completed, symbolic simulation to check

the equivalence of output variables is carried out. Earlier, I introduced equivalence

checking in terms of symbolic simulation. To find equivalent variables, every

EqvClass is checked whenever a new EqvClass is created. This means that equivalence

checking of variables increases with the square of the size of simulated descriptions.

To reduce the number of equivalence checks of variables between the descriptions, my

proposed method uses textual differences, which are identified before simulation.

The flow of the algorithm to check the equivalence of a pair of expressions is shown in

Fig. 1.28. Depending on whether the pair is marked “E” or “D,” the way to simulate and

create the EqvClass is different. If the pair is marked “E” and is not affected by variables

whose equivalence is not proved, a new EqvClass for the pair is created without checking

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

x8 = W7 * (x4 + x5);
x4 = x8 + (W1 + W7) *x4;
x5 = x8 – (W1 + W7) *x5;
x0 = x0 – x1;

x4 = W7 * x5 + w1 * tmp;
x5 = W7 * tmp – w1 *x5;
x0 = x0 – x1;

tmp = x4;

x8 = W7 * (x4 + x5);

x4 = x8 + (W1 – W7) * x4;
x5 = x8 – (W1 + W7) * x5;
x0 = x0 – x1;

tmp = tmp
x8 = x8;

x4 = W7 *x5 + W1 * tmp;
x5 = W7 *tmp – W1 * x5;
x0 = x0 – x1;

tmp = x4;

(D)

(D)

(D)

(D)

(E)

Description 1 Description 2

Identification of textual difference
and taking their correspondence

Figure 1.27 Example of correspondence between expressions in the descriptions

1 Model checking and equivalence checking 41

the equivalence. If the pair is marked “D” or is affected by variables whose equivalence is

not proved, the equivalence between expressions is verified. After the verification, if the

expressions are proved to be equivalent, the two EqvClasses for the expressions are

merged. Otherwise, my proposed method evaluates whether these expressions are for

output variables or not. If these expressions are assignments for output variables, my

method terminates verification and shows all EqvClasses created during symbolic simu-

lation as a counter-example. If, however, the expressions are assignments not for output

variables, successors for the pair of simulated expressions are computed by using program

slicing in order to identify expressions that are directly affected by this pair. Later, when

the simulation reaches the expressions identified as successors for non-equivalent vari-

ables, the equivalence of variables assigned by these expressionsmust be verified, because

such variables are affected by the variables whose equivalence is not proved.

In the equivalence-checking method, equivalence checking of variables is omitted if

pairs of expressions are textually equivalent and not affected by variables whose

An expression
in description 1

An expression
in description 2

Yes

Yes

Yes

No

No

Are the expressions
to output variables?

Do forward slicing
to identify expressions

that are affected by
the two expressions

Terminate simulation
showing expressions which
are the source for which the
equivalence is not proved

Create EqvClass for each
expression and verify

the equivalence

Create a new EqvClass for
the pair of expressions

No

NoYes

Are they marked
as “E”?

Are they affected by
variables for which the

equivalence is not
proved?

Are they equivalent?

Merge two EqvClasses

Figure 1.28 Equivalence checking for a pair of expressions

42 M. Fujita

equivalence is not proved. Therefore, the present method is very efficient when two

given descriptions are close to each other, because the equivalence checking between

variables is applied only a few times. As a result, we can reduce the verification time

significantly. I explain the present method with a simple example, shown in Fig. 1.29.

Initially, the input variables in1 and in2 are assumed to be equivalent in both

descriptions. We verify whether the output variable out is equivalent (or not) in both

descriptions. Note that after textual correspondence is taken, all variables in descrip-

tion 1 are denoted as v_1, whereas all variables in description 2 are denoted as v_2.

In the first “D,” two EqvClasses for a_1 and a_2 are created. Then, the equivalence

of a_1 and a_2 is verified. Since they are not equivalent, successors for a_1 and a_2

are computed to identify expressions that are directly affected by a_1 and a_2. The

assignments to the variable e_1 are identified in description 1, whereas the assignments

for the variable e_2 are identified in description 2. In the first, second, and third “E,”

three EqvClasses are created without checking the equivalence of b_1 and b_2, c_1

and c_2, and d_1 and d_2. This is because corresponding expressions are textually

equivalent, and they are not affected by variables whose equivalence is not proved. In

the fourth “E,” two EqvClasses for the variables e_1 and e_2 are created separately,

although they are marked “E.” This is because these variables are affected by none-

quivalent variables a_1 and a_2. Then, we can identify that the variables e_1 and e_2

are not equivalent by equivalence checking. Therefore, successors for e_1 and e_2 are

For the 5th E:
E8 = (out_1, (d_1 + e_1) >> 8)
E9 = (out_2, (d_2 + e_2) >> 8)

For the 4th E:
E6 = (e_1, 1108 * (a_1 + b_1))
E7 = (e_2, 1108 * (a_2 + b_2))

For the 1st D:
E1 = (a_1, 3 * in2_1)
E2 = (a_2, in2_2 * in2_2)

For the 1st, 2nd, and 3rd E:
E3 = (b_1, b_2, 360 + in1_1, 360 + in1_2)
E4 = (c_1, c_2, 2408 * (in1_1 + in2_1), 2408 * (in1_2 + in2_2))
E5 = ((d_1, d_2, c_1 –4017 * b_1, C_2 –4017 * b_2)

a_2 = in2_2 * in2_2;a_1 = 3 * in2_1;
b_1 = 360 + in1_1;
c_1 = 2408 * (in1_1 + in2_1);
d_1 = c_1 – 4017 * b_1;
e_1 = 1108 * (a_1 + b_1);
out_1 = (d_1 + e_1) >> 8;

b_2 = 360 + in1_2;
c_2 = 2408 * (in1_2 + in2_2);
d_2 = c_2 – 4017 * b_2;
e_2 = 1108 * (a_2 + b_2);
out_2 = (d_2 + e_2) >> 8;

D

Input in1 and in2 (they are equivalent in both descriptions)
Output out

E
E
E
E
E

description 1

Transitions of EqvClasses

description 2

Figure 1.29 A simple equivalence-checking example

1 Model checking and equivalence checking 43

computed. As a result, the assignments to the variables out_1 and out_2 are identified.

Finally, in the last “E,” two EqvClasses for variables out_1 and out_2 are created.

Since they are not equivalent because of the effect from e_1 and e_2, we can conclude

that the output variable out is not equivalent between descriptions.

So far, I have presented equivalence-checking methods for two C descriptions by

means of symbolic simulation. To verify the equivalence efficiently, the method

identifies textual differences between two descriptions and utilizes them well so that

the number of equivalence checks can be drastically reduced. The method is par-

ticularly useful when two large descriptions with few differences are given. The

method, however, still traverses all statements from the beginning to the end –

although textual differences are used to skip statements with no change. To obtain

more efficient equivalence checking, it is necessary to start from each difference (such

as a textually different statement) to prove the equivalence, instead of traversing all

statements. If the differences are proved to be equivalent, then no further analysis is

needed. If some of the differences are not proved to be equivalent, the area to be

analyzed may have to be extended so that equivalence can be proved in the extended

areas. This extended process can continue until the equivalence is proved or the

extension reaches the primary inputs or outputs. In the latter cases, non-equivalence

has been proved.

This extension-based method could be much more efficient in cases where large

design descriptions have only small differences and they are equivalent. If they are not

equivalent, that is the worst case for this method in general, since we have to continue

extension until we reach primary inputs or outputs. The overall flow of the extension-

based equivalence-checking method is shown in Fig. 1.30 [50]. As inputs, two C

programs are given, with the definition of input and output variables. In addition, the

correspondence of those variables between programs is given. Then, my method

verifies the equivalence of the output variables by using symbolic simulation and

reports the verification result (“equivalent” or “not equivalent”). Textual difference

identification can be performed in the same way as above – for example, with the use

of the UNIX diff command. Also, for the purpose of creating correspondence between

statements in both descriptions, dummy statements are inserted into the descriptions in

the following cases:

� When an assignment is removed, the assignment to the same variable, such as a¼ a;

is inserted.

� When a conditional branch is removed, the same branch structure is inserted where

all assignments are replaced by ones to the same variable.

Since these inserted statements clearly preserve the original behavior, the result of

verification is not changed. Even if many statements are different, the descriptions

after the inserted dummy statements cannot be twice as large as the original

descriptions.

Then, program-slicing techniques are applied, and the verification area is extracted.

The initial verification area for a difference is two sets of statements corresponding to

the difference (one set from each description). Note that a difference may consist of

44 M. Fujita

several statements. We can define input variables and output variables of a local

verification area as follows:

� Local input variable A variable corresponding to a data-dependence edge coming

from outside the verification area and into the area,

� Local output variable A variable corresponding to a data-dependence edge coming

from inside the verification area and out to the area.

Only when a variable is a local output variable in each description is its equivalence

checked in the verification. Although other local output variables are not checked for

this difference, they will be taken into account in verification for other differences, if

required. A pair of corresponding local input variables is equivalent in the following

cases:

� They are not affected by any differences that are proved to be non-equivalent.

� They are already proved to be equivalent by the verification of another difference.

Program 1

Are there any differences
to be verified?

Identification of
textual differences

Program 2

No

No

No

Yes

Yes

Yes

Termination with
the result “not equivalent”
(counter-example is produced)

Equivalence checking
by symbolic simulation

Is the equivalence
proved?

Extension of
the verification area

Is the verification
area extended any more?

Decision of the initial
verification area and
defined or used variables

Termination with
the result “equivalent”

Figure 1.30 The extension-based equivalence-checking algorithm

1 Model checking and equivalence checking 45

In the verification, equivalences of other pairs of local input variables are considered to

be unknown variables. If all pairs of local output variables are proved to be equivalent,

the verification area of the difference is also proved to be equivalent. On the other hand,

if the equivalence of any local output variables is not proved, the verification area is

extended so that preceding or succeeding statements are included. If the equivalence for

a local verification area is not proved, the area is extended based on the dependence

relation given by program-slicing techniques. The extension is required because the

equivalence of a difference can be proved after extending the verification area.

There are three types of extension for the verification areas: backward extension,

forward extension along data dependence, and forward extension along control

dependence. In extension, multiple statements that present assignments to the same

variable are added to the verification area when their control dependences are dif-

ferent. In such cases, the nodes that control these assignments are also added. After the

extensions, the local input and output variables are derived for the new verification

area, and verification is carried out. I now show how the extension-based method

works using an example shown in Fig. 1.31. We assume that the variables in1 and in2

are the primary inputs of the program, and the variable out is the primary output. The

statement x¼ x; in description 1 is added as a dummy statement to make a corres-

pondence to x¼ xþ c; in description 2.

First, the first difference D1 is verified. The first verification area in the figure is A;

its local input variables are a and c, and its local output variable is the variable x. Since

all local input variables are unknown, the equivalence of x cannot be proved. Thus, in

this case, we decide to extend the area backward from a. Then, the extended verifi-

cation area becomes the area B, and the verification is carried out again. In this case,

the local input variables are in1, in2, and c, and the local output variables are x and

(in1 > in2). Since the equivalence of x cannot be proved after the verification with the

area B, we decide to extend the area forward from x and obtain the area C. After the

verification with this area C, we can prove the equivalence of x. The verification for the

difference D2 is not carried out, since it is included in the verification for D1. Then, as

 if (in1 > in2) {

} else {

}

out = x + y ;

Description 1 Description 2

a = in1 + in2;

b = in1 * 5;
c = in2 * 3;

a = in2 – in1;

x = a + c;

x = x ;
y = b – c;

b = in1 * 3;
c = in2 * 5;

D1

D2

 if (in1 > in2) {

} else {

}

out = x + y ;

a = in1 + in2;

b = in1 * 5;
c = in2 * 3;

a = in2 – in1;

x = a ;

x = x + c;
y = b – c;

b = in1 * 3;
c = in2 * 5;

in1

in1 in2

in2 in1

in1

in2

in2
in1> in2 in1> in2

x = a + b

x = x

x = a

x = x + c

a = in1+ in1 a = in1– in1 a = in1+ in2 a = in1– in2

T F

c

A
B

C

c

Figure 1.31 Example of equivalence checking based on extension of verification areas

46 M. Fujita

the difference is all verified, it can be said that the two descriptions are functionally

equivalent.

In general, a verification area can have multiple local input and output variables.

Therefore, there are a number of different ways to apply backward and forward

extensions. This makes it difficult to define the best strategy for extensions. In the

following, I list some reasonable strategies for extensions that commonly occur in

practice:

� Apply backward extensions until the start points of the programs, and then apply

forward extensions until the end points,

� Apply forward extensions and backward extensions in turn,

� First apply backward extensions m times, and then apply forward extensions n times

(m and n are predefined numbers).

These strategies are similar to ones in equivalence checking of gate-level circuits.

In practical cases, designers know which kinds of refinement are carried out. In such

cases, a specific strategy for the refinement can be applied to improve the verification

speed. By incorporating this type of knowledge into the equivalence-checking tech-

niques, highly efficient comparisons can be made for high-level design descriptions,

which potentially gives dramatic reductions of design bugs found in the later design

stages. It is always most important to eliminate as many design errors (bugs) as

possible in as early design stages as possible. In this sense, formal verification in

higher-level design stages can take the most important role in the total VLSI design

flow. This C/Cþþ-based design methodology, which consists of many small refine-

ments of designs, is now emerging and the need of its formal verification support is

becoming indispensable [51].

1.6 References
[1] R. E. Bryant (1986). Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677–691.

[2] R. E. Bryant (1992). Symbolic Boolean manipulation with ordered binary decision

diagrams. ACM Computing Surveys, 24(3):293–318.

[3] R. E. Bryant (1991). On the complexity of VLSI implementations and graph representations

of Boolean functions with application to integer multiplication. IEEE Transactions on

Computers, 40(2):205–213.

[4] M. Fujita, H. Fujisawa, and N. Kawato (1988). Evaluation and improvements of Boolean

comparison method based on binary decision diagrams. In Proceedings of the IEEE

International Conference on Computer-Aided Design, pp. 2–5. IEEE Computer Society

Press.

[5] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli (1988). Logic verification

using binary decision diagrams in a logic synthesis environment. In Proceedings of the

IEEE International Conference on Computer-Aided Design, pp. 6–9. IEEE Computer

Society Press.

[6] R. Rudell (1993). Dynamic variable ordering for ordered binary decision diagrams. In

Proceedings of the IEEE International Conference on Computer-Aided Design, pp. 42–47.

IEEE Computer Society Press.

1 Model checking and equivalence checking 47

[7] K. S. Brace, R. L. Rudell, and R. E. Bryant (1990). Efficient implementation of a BDD

package. In Proceedings of the 27th IEEE/ACM Design Automation Conference, pp. 40–45.

IEEE Computer Society Press.

[8] M. Garey and D. Johnson (1979). Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman.

[9] M. Davis and H. Putnam (1960). A computing procedure for quantification theory. Journal

of the ACM, 7(3):201–215.

[10] M. Davis, G. Logemann, and D. Loveland (1962). A machine program for theorem-

proving. Communications of the ACM, 5(7):394–397.

[11] J. Marques-Silva and K. Sakallah (1999). GRASP: a search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48(5):506–521.

[12] R. Bayardo and R. Schrag (1997). Using CSP lookback techniques to solve real-world SAT

instances. In Proceedings of the National Conference on Artificial Intelligence,

pp. 203–208.

[13] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik (2001). Efficient conflict driven

learning in a Boolean satisfiability solver. Proceedings of the IEEE/ACM International

Conference on Computer Aided Design, pp. 279–285.

[14] M. Prasad, A. Biere, and A. Gupta (2005). A survey of recent advances in SAT-based

formal verification. International Journal on Software Tools for Technology Transfer

(STTT), 7(2):156–173.

[15] H. Zhang (1997). SATO: an efficient propositional prover. In W. McCune, ed., Pro-

ceedings of the 14th International Conference on Automated Deduction, Lecture Notes in

Computer Science, vol. 1249, pp. 272–275. Springer.

[16] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik (2001). Chaff: engineering

an efficient SAT solver. In Proceedings of the 39th ACM/IEEE Design Automation Con-

ference.

[17] M.H. Schulz and E. Auth (1989). Improved deterministic test pattern generation with

applications to redundancy identification. IEEE Transactions on Computer-Aided Design,

8(7):811–816.

[18] J. Rajski and H. Cox (1990). A method to calculate necessary assignments in algorithmic

test pattern generation, Proceedings of the International Test Conference, pp. 25–34.

[19] W. Kunz and D.K. Pradhan (1994). Recursive learning: a new implication technique for

efficient solutions to CAD problems – test, verification, and optimization. IEEE Trans-

actions on Computer-Aided Design, 13(9):1143–1158.

[20] E. Clarke, O. Grumberg, and D. Peled (1999). Model Checking. MIT Press.

[21] T. Cormen, C. Leiserson, R. Rivest, and C. Stein (2001). Introduction to Algorithms.

2nd edn. MIT Press and McGraw-Hill.

[22] E. Clarke and E. Emerson (1981). Design and synthesis of synchronization skeletons using

branching time logic. In Proceedings of Workshop on Logic of Programs, Lecture Notes in

Computer Science, vol. 131, pp. 52–71. Springer-Verlag.

[23] G. Holzmann (1991). Design and Validation of Computer Protocols. Prentice Hall.

[24] K. McMillan (1993). Symbolic Model Checking: An Approach to the State Explosion

Problem. Kluwer Academic Publishers.

[25] V. Schuppan and A. Biere (2004). Efficient reduction of finite state model checking to

reachability analysis. Software Tools for Technology Transfer (STTT), 5(1–2):185–204.

[26] R. E. Bryant (1992). Symbolic Boolean manipulation with ordered binary decision dia-

grams. ACM Computing Surveys, 24(3):293–318.

48 M. Fujita

[27] J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill (1994). Symbolic model checking

for sequential circuit verification. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 13(4):401–424.

[28] T. Larrabee (1992). Test pattern generation using Boolean satisfiability. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 11(1):4–15.

[29] P. Abdulla, P. Bjesse, and N. E�en (2000). Symbolic reachability analysis based on SAT-

solvers. In S. Graf and M. Schwartzbach, eds., Proceedings of the 6th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), Lecture Notes in Computer Science, vol. 1785, pp. 411–425. Springer.

[30] P. Williams, A. Biere, E. Clarke, and A. Gupta (2000). Combining decision diagrams and

SAT procedures for efficient symbolic model checking. In E. Allen Emerson and A. Prasad

Sistla, eds., Proceedings of the 12th International Conference on Computer Aided Veri-

fication (CAV), Lecture Notes in Computer Science, vol. 1855, pp. 124–138. Springer.

[31] A. Gupta, Z. Yang, P. Ashar, and A. Gupta (2000). SAT based state reachability analysis

and model checking. In W. Hunt and S. Johnson, eds., Proceedings of the 3rd International

Conference on Formal Methods in Computer-Aided Design (FMCAD), Lecture Notes in

Computer Science, vol. 1954, pp. 354–371. Springer.

[32] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu (1999). Symbolic model

checking using SAT procedures instead of BDDs. In Proceedings of the 36th ACM/1EEE

Conference on Design Automation, pp. 317–320.

[33] A. Biere, E. Clarke, R. Raimi, and Y. Zhu (1999). Verifying safety properties of a Pow-

erPC microprocessor using symbolic model checking without BDDs. In N. Halbwachs and

D. Peled, eds., Proceedings of the 11th International Conference on Computer-Aided

Verification (CAV), Lecture Notes in Computer Science, vol. 1633, pp. 60–71. Springer.

[34] F. Fallah (2002). Binary time-frame expansion. In Proceedings of the IEEE/ACM

International Conference on Computer Aided Design, pp. 458–464.

[35] P. Bjesse, T. Leonard, and A. Mokkedem (2001). Finding bugs in an alpha microprocessor

using satisfiability solvers. In G. Berry, H. Comon, and A. Finkel, eds., Proceedings of the

13th International Conference on Computer-Aided Verification, Lecture Notes in Com-

puter Science, vol. 2102, pp. 454–464. Springer.

[36] F. Copti, L. Fix, R. Fraer, et al. (2001). Benefits of bounded model checking in an

industrial setting. In G. Berry, H. Comon, and A. Finkel, eds., Proceedings of the 13th

International Conference on Computer-Aided Verification, Lecture Notes in Computer

Science, vol. 2102, pp. 436–453. Springer.

[37] N. Amla, R. Kurshan, K. McMillan, and R. Medel (2003). Experimental analysis of

different techniques for bounded model checking. In H. Garavel and J. Hatcliff, eds.,

Proceedings of the 9th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, Lecture Notes in Computer Science, vol. 2619,

pp. 34–48. Springer.

[38] C. van Eijk and J. Jess (1995). Detection of equivalent state variables in finite state machine

verification. Proceedings of International Workshop on Logic Synthesis, pp. 3.35–3.44.

[39] H. Cho and C. Pixley (1997). Apparatus and Method for Deriving Correspondences

between Storage Elements of a First Circuit Model and Storage Elements of a Second

Circuit Model. US patent 5 638 381.

[40] D. Anastasakis, R. Damiano, H.-K. Ma, and T. Stanion (2002). A practical and efficient

method for compare-point matching. In Proceedings of the 39th IEEE/ACM Design

Automation Conference, pp. 305–310.

1 Model checking and equivalence checking 49

[41] K. Ng, M. Prasad, R. Mukherjee, and J. Jain (2003). Solving the latch mapping problem in

an industrial setting. Proceedings of the 40th IEEE/ACM Design Automation Conference,

pp. 442–447.

[42] D. Brand (1993). Verification of large synthesized designs. In Proceedings of the IEEE/

ACM International Conference on Computer-Aided Design, pp. 534–537.

[43] C. Berman and L. Trevillyan (1989). Functional comparison of logic designs for VLSI

circuits. In Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pp. 456–459.

[44] SystemC. www.systemc.org/.

[45] D.G. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao (2000). SpecC: Specification

Language and Methodology. Kluwer Academic.

[46] A. Stump, C. Barret, and D. Dill (2002). CVC: a cooperating validity checker. In

Proceedings of the International Conference on Computer-Aided Verification.

[47] G. Ritter (2000). Formal Sequential Equivalence Checking of Digital Systems by Symbolic

Simulation. Ph.D. thesis, Darmstadt University of Technology and Universit�e Joseph

Fourier.

[48] M. Weiser (1979). Program Slices: Formal, Psychological, and Practical Investigations of

an Automatic Program Abstraction. Ph.D. thesis, University of Michigan.

[49] T. Matsumoto, H. Saito, and M. Fujita (2005). An equivalence checking method for C

descriptions based on symbolic simulation with textual differences. IEICE Transactions on

Fundamentals, E88-A(12):3315–3323.

[50] T. Matsumoto, H. Saito, and M. Fujita (2006). Equivalence checking of C programs by

locally performing symbolic simulation on dependence graphs. In Proceedings of Inter-

national Symposium on Quality Electronic Design, pp. 370–375.

[51] T. Matsumoto, H. Saito, and M. Fujita (2005). Equivalence checking for transformations

and optimizations in C programs on dependence graphs. In Proceedings of International

Workshop on Logic and Synthesis, pp. 357–366.

50 M. Fujita

www.systemc.org/

2 Transaction-level system modeling

Daniel Gajski and Samar Abdi

Model-based verification has been the bedrock of electronic design automation. Over

the past several years, system modeling has evolved to keep up with improvements in

process technology fueled by Moore’s law. Modeling has also evolved to keep up with

the complexity of applications resulting in various levels of abstraction. The design

automation industry has evolved from transistor-level modeling to gate level and

eventually to register-transfer level (RTL). These models have been used for

simulation-based verification, formal verification, and semi-formal verification.

With the advent of embedded systems, the software content in most modern designs

is growing rapidly. The increasing software content, along with the size, complexity,

and heterogeneity of modern systems, makes RTL simulation extremely slow for any

reasonably sized system. This has made system verification the most serious obstacle

to time to market.

The root of the problem is the signal-based communication modeling in RTL. In any

large design there are hundreds of signals that change their values frequently during

the execution of the RTL model. Every signal toggle causes the simulator to stop and

re-evaluate the state of the system. Therefore, RTL simulation becomes painfully slow.

To overcome this problem, designers are increasingly resorting to modeling such

complex systems at higher levels of abstraction than RTL.

In this chapter, we present transaction-level models (TLMs) of embedded systems

that replace the traditional signal toggling model of system communication with

function calls, thereby increasing simulation speed. We discuss essential issues in

TLM definition and explore different classifications as well as cases for TLMs. We

will also provide an understanding of the basic building blocks of TLMs. A basic

knowledge of system-level design and discrete event simulation is helpful but not

required for understanding TLM concepts.

2.1 Taxonomy for TLMs

Transaction-level modeling is an emerging concept that still has not been fully

standardized in the industry. Different people have different notions of how TLMs

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

should appear, both syntactically and semantically. This is because the original TLM

definition did not provide any specific structure or semantics. However, the argument

for establishing standards in TLMs is a very strong one. This is because without

standards there is no possibility of sharing models, having common synthesis and

analysis tools, and so on. Ad-hoc transaction-level modeling may seem attractive for

having fast simulation speed for a specific design, but that approach is not conducive to

establishing TLM as a viable modeling abstraction like RTL.

In 2003, a breakthrough paper on establishing taxonomy for TLMs was published.

The idea was to open up the debate on what are the useful system-level models and

how to position TLMs as an abstraction above RTL. The taxonomy was based on the

granularity of detail in modeling the computation and communication for systems with

multiple processing elements. In this section, we will present this original taxonomy

with a simple example to demonstrate the differences between the proposed TLMs as

well as the positioning of the TLM with respect to RTL and specification. Then we

look at a different classification of TLMs based on the design objective for which the

TLM is used.

2.1.1 Granularity-based classification of TLMs

In a TLM, the details of communication amongst computation components are sep-

arated from the details of computation components themselves. Communication is

modeled by channels that are simply a repository for communication services. This is

very similar to a class in Cþþ. In fact, SystemC is a popular system design language

that uses Cþþ classes to implement channels. The channel communication services

are used by transaction requests that take place by calling interface functions of these

channels. Unnecessary details of communication and computation are hidden in a

TLM and may be added later in the design process. Transaction-level models speed up

simulation and allow the exploration and validation of design alternatives at a higher

level of abstraction. However, the definition of TLMs is not well understood. Without

clear definition of TLMs, any predefined TLMs cannot be easily reused. Moreover, the

usage of TLMs in the existing design domains, namely modeling, validation, refine-

ment, exploration, and synthesis, cannot be systematically developed. Consequently,

the inherent advantages of TLMs do not effectively benefit designers. To eliminate

some ambiguity of TLMs, we attempt to define several TLMs explicitly, each of which

may be adopted for a different design purpose.

To simplify the design process, designers generally use a number of intermediate

models. The intermediate models slice the entire design process into several smaller

design stages, each of which has a specific design objective. Since the models can be

simulated and estimated, the result of each of these design stages can be independently

validated. To relate different models, we introduce the system modeling graph shown

in Fig. 2.1. The x-axis in the graph represents granularity of computation and the y-axis

represents granularity of communication. On each axis, we have three degrees of

time accuracy: untimed, approximate-timed, and cycle-timed. Untimed computation

or communication represents the pure functionality of the design without any

52 D. Gajski and S. Abdi

implementation details. Approximate-timed computation or communication contains

system-level implementation details, such as the selected system architecture and the

mapping relations between tasks of the system specification to the processing elements

of the system architecture. The execution time for approximate-timed computation or

communication is usually estimated at the system level without cycle-accurate RTL or

ISS (instruction-set simulation) level evaluation. Cycle-timed computation or com-

munication contains implementation details at both system level and the RTL or ISS

level, such that cycle-accurate estimation can be obtained.

We define six abstract models in the system-modeling graph, based on the timing

granularity of computation and communication. These models, labeled A to F, are

indicated on the graph by circles. Model A is the specification model, which has no

notion of timing for either computation or communication. Model B is the component-

assembly model, which has an approximate notion of timing for the computation part

but all communication is modeled to execute in zero time. Model C is the bus-

arbitration model, where the communication delay due to bus arbitration is factored

in. Therefore, it models communication timing approximately. Model D is the bus-

functional model, which reports accurate communication delays by factoring in both

arbitration and the detailed bus protocol. However, the computation is still approxi-

mately timed. Model E is the cycle-accurate-computation model, which reports

computation delays at the clock-cycle level of accuracy. However, the bus protocols

are not modeled, which makes the communication timing only an approximation.

Finally, we have model F, which is dubbed the implementation model because this

model is traditionally the starting point for standard design tools. Both communication

and computation are modeled down to the cycle-accurate level and all transactions are

implemented using signal toggling according to the bus protocols. Amongst these

models, the component-assembly model (B), bus-arbitration model (C), bus-functional

Computation

Communication

A B

C

D F

Approximate-timed

Approximate-timed

E

Cycle-timed

Cycle-timed

Untimed

Untimed

Figure 2.1 System modeling graph

2 Transaction-level system modeling 53

model (D), and cycle-accurate computation model (E) are TLMs, and are indicated

by shaded circles on the system modeling graph. A system-level design process takes

a specification model (A) to its corresponding implementation (F). A methodology

using TLMs may take any route from A to F via B, C, D, and E depending on the

type of application, complexity of the platform and the focus of the verification

effort. A simple methodology (A!C!F) is highlighted in Fig. 2.1. We will now

delve into the modeling style and semantics of models A to F using a simple running

example.

2.1.1.1 Specification model
This model captures only the system functionality and is free of any implementation

details. In some literature it is also referred to as the untimed functional model.

Figure 2.2 shows a simple specification model using graphical illustration. The round-

edged rectangular boxes represent computation as a sequence of function calls or

operations. We will call these computation units behaviors. Behaviors may also be

organized into hierarchical behaviors. For example, behaviors B2 and B3 are composed

to execute in parallel inside a hierarchical behavior B2B3. Behaviors that are not

hierarchical are called leaf behaviors. These behaviors carry C code inside them that

models the functionality of the behavior. Behaviors may communicate with each other

using variables that are illustrated as rectangular boxes. A solid directed edge from a

behavior to a variable indicates that the behavior writes to the variable. A solid

directed edge from a variable to a behavior indicates that the behavior reads the

variable.

v1

v1= a * a;
B1

v2=v1+ b * b;

v4=v2+v3;
c = sequ (v4);

B2

B4

v3= v1– b * b;
B3

B2B3

v2 v3

Figure 2.2 The specification model

54 D. Gajski and S. Abdi

2.1.1.2 Component-assembly model
Although the specification model captures the design functionality, this is not enough

for system-level verification. It is also important to verify how the design would

behave when the various behaviors in the specification are distributed across different

components in the platform. The verification objective is to make sure that the control

and data dependencies of the behaviors are retained even if those behaviors might

possibly execute in parallel on independent processing elements. This is where the

component-assembly TLM comes into the picture.

In the component-assembly model, the basic modeling objects stay the same as the

specification model, with the addition of the message passing channel as shown in

Fig. 2.3. There is also a slight modification in the semantics of the behaviors in this

model. The behaviors at the top level of the model represent concurrently executing

processing elements (PEs) and global memories. This is in contrast to the specification

model, where all the behaviors represent pure functionality. The mapping of behaviors

in the specification model to the PEs in the platform is captured by creating an

appropriate behavior hierarchy. The leaf-level behaviors of the specification model,

namely B1, B2, B3, and B4 in our example, are grouped under the top-level PE

behaviors. Since B1 is mapped to PE1, it appears under the hierarchy of PE1, which

indicates that the functionality of B1 will be executed by PE1. Therefore, looking at the

model, we can immediately see that B2 will be executed by PE2 while B3 and B4 will

be executed by PE3.

This rearrangement of behavioral hierarchy has an impact on the communication

between the behaviors as well. The PEs and memories communicate through the newly

introduced message passing channels. If two behaviors with data dependence in the

specification model are mapped to different PEs, then a channel must be introduced to

v1= a * a;

PE1

v2= v1+ b * b;
B2

PE2

v3= v1 – b * b;

v4= v2+ v3;
c = sequ (v4);

PE3

B4

B3

B1

cv2

v3

cv11

cv
1

2

Figure 2.3 The component-assembly model

2 Transaction-level system modeling 55

preserve the original communication semantics. This is evident from the new channels

cv11 and cv12 that replace the variables v1 and v2 in the original specification model.

Since the writer of v1 (B1) is mapped to PE1 and the reader of v1 (B2) is mapped to PE2,

a channel (cv11) is introduced in the component-assembly model from PE1 to PE2, to

model this data transfer between B1 and B2.

The system TLM at this level is a parallel composition of all the PE and memory

behaviors. These TLM semantics reflect the design structure at the system level.

However, the structure is modeled only for the computation part of the design, not the

communication. The message-passing channels do not reflect the actual bus transac-

tions but rather abstract the communicated data into abstract types. Although the

computation structure is modeled in the component assembly model, it must be noted

that the top-level behaviors are not explicitly distinguished from each other. This is

because we want to keep the identity of the processing elements flexible at this time. A

PE can be a custom hardware, a general-purpose processor, a DSP, or an IP. Some

properties of the targeted PE may be included in the behavior model. One such key

property is the approximate time it takes for the target PE to execute a certain function

or operation. The estimated time of computation may be measured by profiling the

code and performing system-level estimation. The estimated time is annotated into the

code by inserting wait statements.

At this level of abstraction, any timing estimation is very coarse. For an accurate

estimation, one would need to model either the micro-architecture or the finite-state

machine for the PE. This would obviously slow down the simulation speed and it

would take longer to evaluate the performance of the platform. This is an important

trade-off that the designer must make while selecting the right TLM for his or her

design space exploration. If one wants to make a coarse-grained comparative meas-

urement of different platforms and mappings, the component-assembly model would

suffice.

2.1.1.3 Bus-arbitration model
The bus-arbitration model, as the name suggests, models the communication at the

bus level and also takes into account the delays resulting from arbitration over the bus.

In comparison with component assembly model, channels between PEs in the bus-

arbitration model represent buses, which are called abstract bus channels. Figure 2.4

shows the bus-arbitration model for our running example. The channels have three

different types of interface: the master interface, the slave interface, and the arbiter

interface. The channels still implement data transfer through message passing. The

actual bus protocols are not modeled explicitly. Instead, the channel broadly abstracts

all protocols as either blocking or non-blocking. Therefore, no cycle-accurate or pin-

accurate protocol details are specified. In contrast with the point-to-point message-

passing channels of the component-assembly model, the abstract bus channels have

estimated approximate time delays for each transaction. This delay is incorporated into

the channel methods using one wait statement per transaction.

The sharing of different transactions between independent PEs on the same channel

poses additional modeling challenges. Since PEs are assumed to be executing

56 D. Gajski and S. Abdi

concurrently, independent inter-PE transactions may be attempted at the same time.

The channel methods, therefore, need to distinguish between different transactions.

Note that this problem would not occur in the component assembly model because the

channels are point-to-point. Hence, all transactions are attempted sequentially, owing

to the sequential execution semantics of leaf behaviors. The straightforward way to

solve this problem in the bus-arbitration model is to use logical addresses for different

transactions. As a result, the behavior calling the bus-channel method must supply the

logical address of the transaction as a parameter. A simple addressing scheme would

be to name each logical address the same as the original point-to-point channel. This

scheme is illustrated in Fig. 2.4, where the bus channel encapsulates the original point-

to-point channels in one shared entity. We can see that this mechanism of addressing is

employed in all shared bus protocols, either explicitly as unique address buses or as a

time-multiplexed addressing phase.

Another consequence of sharing independent transactions is the possibility of

resource contention. The bus channels symbolize the physical buses in the system’s

bus architecture, just as the PE behaviors symbolized the computation resources in the

component-assembly model. Since several different PEs connect to the same bus, there

is a possibility that two transactions may be attempted in parallel. However, owing to

the shared bus resources, these transactions must be serialized for correct execution.

Traditionally, all shared buses implement some sort of arbitration method to perform

this transaction serialization. Typically, this arbiter is a dedicated computation com-

ponent that orders the bus transactions according to some specific policy. The trans-

actions from the PEs themselves have to be modified. The PE may no longer call the

communication function and expect immediate data transfer. Instead the channel

function must be modified to make a request to the arbiter and wait for the grant before

attempting the data transfer. Since there are two functions (send and receive) that must

be executed for the transaction, one of these functions must be responsible for making

1. Master interface
2. Slave interface
3. Arbiter interface

v1= a * a;

PE4

(Arbiter)

v2= v1+ b * b;
B2

PE2

PE1

v3= v1– b * b;

v4= v2+ v3;
c = sequ (v4);

PE3

B4

B3

v3

B1
3

1 2

cv12

cv11

cv2

Figure 2.4 The bus-arbitration model

2 Transaction-level system modeling 57

the request to the arbiter. For any given transaction, the function called by the PE

designated as master makes the arbitration request. The other PE must call the dual

communication function as a slave. The master and slave interfaces to the bus channels

are provided specifically for this reason. Methods exported by the master interface

request arbitration and PEs assigned to be masters connect to this interface of the bus

channel. The arbiter has its own dedicated interfaces that spool over all the arbitration

requests from time to time and give the grant to the highest priority transaction based

on the bus-arbitration policy. This policy is implemented inside the arbiter behavior.

2.1.1.4 Bus-functional model
The bus-functional model contains time- and cycle-accurate communication and

approximate timed computation. The name comes from the fact that the detailed bus is

modeled according to the specific protocol definition for both arbitration and data

transfer. However, the computation part remains untouched from the bus-arbitration

model. Further, we identify two types of bus-functional model, depending on the

protocol definition. The real-time-accurate model is implemented if the protocol

definition is asynchronous with timing constraints. The cycle-accurate protocol model

is implemented when the bus protocol definition is provided on a clock cycle basis.

The time-accurate model specifies the real time delay of communication, which is

determined by the time diagram of the bus protocol. The cycle-accurate model can

specify the time in terms of the clock cycles it takes to perform a bus read or write

operation. It can easily be seen that, based on the clock cycle, a cycle accurate protocol

model may be converted to a real time-accurate one. Conversely, a real time-accurate

model may be converted to a cycle-accurate model in a design step called protocol

refinement.

In the bus-functional model, the message-passing bus channels of the bus-arbitration

model are replaced by protocol channels. Inside a protocol channel, the wires of the

bus are represented by instantiating corresponding variables or signals. The commu-

nication methods inside the channel follow the detailed bus protocol by reading and

writing the variables or signals that represent the bus wires. Since timing delay is

associated with each such operation, the resulting model reports the timing accuracy

with respect to the chosen bus protocol. At its interface, a protocol channel provides

the same functions as the message passing bus channel. Therefore, there is no

modification to the PE behavior code. Figure 2.5 shows the bus-functional model for

our running example. As we can see, the bus signals are instantiated inside the bus

channel, thereby replacing the approximate timed abstract data transfer with accurate

timed protocol. The primary usage of this model is in debugging the implementation of

the bus protocol.

2.1.1.5 Cycle-accurate computation model
The cycle-accurate computation model contains cycle-accurate implementations of

behaviors and approximate-timed communication. This model also derives from the

bus-arbitration model. In contrast with the derivation of the bus-functional model, we

now leave the bus channels unchanged. However, the behaviors are modified both at

58 D. Gajski and S. Abdi

the PE level and at the leaf level. At the PE level, the behaviors are modified by

replacing the abstract interface ports with pin-accurate ports. This change is visible

in Fig. 2.6. The leaf-level behaviors are replaced by equivalent PE-specific SW or

HW code. If the PE is a processor, then the leaf behaviors for that PE are replaced

by corresponding compiled code. This replacement can be seen for PE1 and PE2 in

Fig. 2.6, where assembly instructions have replaced the abstract C code. If the PE is a

custom HW block, then a finite-state machine with data path is generated to replace

1. Master interface
2. Slave interface
3. Arbiter interface

v1= a * a;

PE4

(Arbiter)

v2= v1+ b * b;
B2

PE2

PE1

v3= v1– b * b;

v4= v2+ v3;
c = sequ (v4);

PE3

B4

B3

v3

B1
3

1 2Ready
Ack

Address[15:0]

Data[31:0]

Figure 2.5 The bus-functional model

1. Master interface
2. Slave interface
3. Arbiter interface
4. Wrapper

MOV r1, 10
MUL r1, r1, r1

....

PE4

cv12

cv11

cv2

s0

s1

s2

s3

PE3

PE1

MLA
r1, r2, r2, r1

....

....
PE2

s0

s1

s2

s3

s4

4

3

21

4

4

4

Figure 2.6 The cycle-accurate computation model

2 Transaction-level system modeling 59

the C code with synthesizable HW representation. We can see this modification in the

case of PE3 and PE4 (the original arbiter).

Since the ports of the PE behaviors have changed, direct connection of PEs to

abstract bus channels is no longer possible. To deal with this problem, a new modeling

artifact, called the wrapper, is introduced into the model. These wrappers are special

channels that convert data transfer from protocol-specific signal toggling on the PE’s

ports to abstract bus channel function calls. This mechanism functions as a bridge from

the PEs to the respective bus interfaces. The primary purpose of this model is to debug

the implementation of the PE. Therefore, it is possible to mix different levels of

abstraction in this model. For example, if we are only interested in debugging the RTL

implementation of PE3, then PE1, PE2, and PE4 may be left at the same level of

abstraction as in the bus-arbitration model. In such a scenario, we would not need the

wrappers for PE1, PE2, and PE4. Hence, it is possible to create a high simulation speed

model that is detailed only for one specific PE.

2.1.1.6 Implementation model
The implementation model has both cycle-accurate communication and cycle-accurate

computation, as shown in Fig. 2.7. The components are defined in terms of their

register-transfer or instruction-set architecture. Note that all the channels from the

previous models have been replaced by wires at the system level. The implementation

model can be derived from the bus functional model or the cycle accurate computation

model. PE1 and PE2 are microprocessors while PE3 and PE4 are custom hardware

units. The high-level synchronization of the bus channel is replaced by the interrupt

signals and the interrupt generation and control logic. The data transfer has been

replaced by protocol-specific bus interface logic and SW drivers. Essentially, all the

communication functionality that was encapsulated in the bus channel methods is now

incorporated in the PE behaviors. The implementation model is the model that typ-

ically serves as the input to standard EDA tools. The path from the specification model

to the implementation model in the system modeling graph defines the transaction-

level design methodology. We showed how the different transaction-level models can

be utilized for different types of verification tasks. A sound taxonomy of TLMs and a

well-defined path from specification are essential to allow overall system verification

and synthesis.

2.1.2 Objective-based classification

So far we have looked at the classification of TLMs based on the modeling detail for

computation and communication. As TLMs became more popular they have been

employed for embedded SW development, fast performance predictions and, finally,

synthesis. In the following sections we will present a classification of TLMs on the

basis of modeling objectives. All contemporary TLMs are executable and are used for

validation of system-level design. Also, all TLMs are constructed to allow program-

ming and validation of embedded software. However, the focus of the modeling effort

depends on the methodology used. On the one hand, designers may have a well-defined

60 D. Gajski and S. Abdi

communication platform and only wish to tweak computation parameters for opti-

mization. For this class of design objectives, TLMs have emerged that put the emphasis

on the accuracy of estimated communication performance along with providing high

simulation speed. On the other hand, platform designers may want to move to a higher

level of abstraction for the sake of simplifying design specification. To fulfil this

objective, it is imperative that TLMs should have well-defined synthesis semantics. The

synthesis semantics and modeling rules are necessary to develop a framework where

high-level abstract TLMs can be brought down to RTL and C implementations. Such

low-level representation can then be easily input to traditional SW and HW tools like

compilers and logic synthesizers. Another advantage of well-defined TLM semantics is

the possibility of automatically generating TLMs from an abstract description of the

platform, such as a graphical design input. In the following sections, we will take a look

at these two modeling approaches. We will also examine whether these two approaches

are entirely orthogonal or whether we have a middle ground that can give us the best of

all worlds: simplified modeling, easy design input, high simulation speed, acceptable

estimation, and, most importantly, a path to implementation.

s0

s1

s2

s3

s4

s0

s1

s2

s3

PE1

PE4 PE3

PE2

MOV r1, 10
MUL r1, r1, r1

MLA r1, r2, r2, r1

....

...

....

MCNTR
MADDR
MDATA

Interrupt

Interrupt

Req

Interrupt

Req

Figure 2.7 The implementation model

2 Transaction-level system modeling 61

2.2 Estimation-oriented TLMs

To explore why this trade-off (see Fig. 2.8) exists, let us examine the size of data

blocks that are typically modeled for representing abstract communication. Figure 2.9

shows how an application transfers a block of data. This block of data is called a user

transaction and is not restricted in size. A real bus, however, has a limitation on the

size of data blocks it can transfer. Therefore, a user transaction is broken down into

smaller elements, called bus transactions. A bus transaction is a bus primitive (e.g., a

store word, or store burst). Internally, the bus system needs multiple bus cycles to

transfer a bus transaction. For example, a bus master needs to apply the address, then

the data, and finally waits for the slave acknowledgement.

Traditionally in TLM the designer of the bus model chooses one of the described

granularity levels. This choice dramatically influences the accuracy and performance

of the model. Modeling at the granularity of bus cycles will lead to an accurate

model. However, handling each individual bus cycle will make the model slow.

Examining the other extreme, handling complete user transaction leads to a very fast

model (since there are fewer events to be modeled), but will also be inaccurate.

Events that unexpectedly happen within a user transaction cannot be simulated by

the model.

Time

User Transaction

Bus Transaction

Bus Cycle

User transaction

Bus transaction

Bus cycle

Data granularity

Figure 2.9 Granularity of data handling

Performance
Low High

Inaccurate

Accurate
ROM

A
cc

u
ra

cy

Figure 2.8 TLM trade-off

62 D. Gajski and S. Abdi

It is intuitively understandable that a fine-grained model, which handles each

individual bus cycle, will be slower than a coarse-grained model, which, for instance,

handles user transactions only. However, we must ask what the main contribution to

this performance penalty is. In a discrete event-simulation engine, the simulation time

is advanced by wait-for-time statements. Additionally, on each call of a wait-for-time

statement the simulation scheduler is executed and may context switch to another task.

Therefore, there is a significant penalty involved with frequently calling a wait-for-

time statement.

In the traditional TLM, the bus is modeled incrementally. The model incrementally

advances the time for its granularity step (bus cycle, bus transaction, or user trans-

action). After each time advance it determines who can access the bus next. Therefore,

a bus-cycle-based model will execute many wait-for-time statements and will be

accurate but slow. On the other hand, a user-transaction-based model executes only

one wait-for-time statement (one per user transaction). It will be fast, but inaccurate. It

will not be able to react to any event inside the time scope of the user transaction.

2.2.1 Result-oriented modeling (ROM)

Result-oriented modeling is a modeling approach similar to TLM that hides internal

states and minimizes them in order to gain execution speed. However, it does not adhere

to a fixed granularity level like a traditional TLM would do. Instead of incrementally

modeling a user transaction, it uses an optimistic prediction approach. Right at the

beginning of the transaction, ROM calculates the total time for transferring the whole

user transaction. After waiting for the predicted time, it checks whether the initial

assumptions still hold true and takes corrective measurements if necessary.

2.2.2 Similarity to TLM

Like a TLM, ROM is based on the hiding of communication internals from the user. It

avoids using signals and individual wires and implements data transfers by use of a

single memory copy operation. In ROM, the application is only aware of the timing at

the boundaries of a user transaction. All activities of the bus model within the user

transaction are hidden from the communicating parties. The callers of the channel-

interface functions are not aware that the transaction is split into multiple bus trans-

actions and cycles. They are also unaware if there are competing transactions such that

arbitration is involved. In other words, all communication details are encapsulated in

the ROM communication channel. A very simple intuitive interface is presented to the

application code developer.

However, to get the best of both worlds, we also have to do something to speed up

the simulation. The main idea for speeding up the simulation is to replace the sequence

of wait operations with one single wait-for-time statement. Reducing the number of

wait operations is the biggest contributor to increased execution performance. This

avoids running the scheduling algorithm in the simulation engine and, thus, also

reduces the number of possible context switches.

2 Transaction-level system modeling 63

2.2.3 Optimistic modeling

We now look at how the transaction delay is predicted. Between the start and end times of

a user transaction, the ROM can freely rearrange or omit internal events and state changes

in order to eliminate costly context switches in the simulator. Instead of distributing

individual wait-for-time statements to different phases of the transaction (e.g., arbitration,

address, and data phase), it dynamically calculates the total time for a user transaction.

Figure 2.10 illustrates a data transfer in the ROM methodology. Note that no bus

cycles are shown between the start and the end of the user transaction. Instead, the

ROM implements an optimistic approach. We define the start time to be the simulated

time when the application requests a user transaction. At this instant, the ROM channel

makes an optimistic prediction. It calculates the earliest finish time for this transfer,

taking into account the current state of the bus. The ROM channel then waits for the

initial predicted time. During the wait time, another higher priority application process

may access the bus, which may cause the transaction to take longer than initially

predicted. This is because the transaction from the original lower priority process may

be preempted. The ROM method records such an access as a disturbing influence. This

is indicated by the diagonal arrows in Fig. 2.10.

After the initially calculated time has passed, the ROM verifies whether any dis-

turbing influence has occurred (i.e., some higher priority transfer preempted the cur-

rent transfer). If no disturbing influence is found, the transaction is complete. Note that

in this best-case scenario, ROM uses only a single wait statement. In that sense it is

similar to the abstract bus model used in a bus-arbitration TLM.

However, if a disturbing influence is found (as shown in Fig. 2.10), ROM recal-

culates the time for the requested user transaction, taking the updated bus state into

account. Recall that the bus-state update has occurred as a result of the preemption by

a higher-priority transaction. It then takes a corrective measure and waits for the

additional time over the initial prediction. Since the original wait time is the most

optimistic, any updates would only result in further waits. In other words, ROM would

never need to roll back the predicted time. This fact guarantees the feasibility of a

ROM-based simulation model. With the corrective measure, an overly optimistic

initial prediction is corrected so that ROM can achieve 100% accuracy.

2.2.4 Measurements

Figure 2.11 illustrates the accuracy of the AMBA AHB models in a set-up where two

application processes concurrently access the bus. The average error in transaction

Time

ROM
Corrective
measure Optimistic prediction

Disturbing influenceStart Finish

Figure 2.10 Data transfer in ROM

64 D. Gajski and S. Abdi

duration for the high-priority master over a varying degree of bus contention is shown.

As targeted, the ROM shows 0% error for all measurements. It lies right on top of the

x-axis. The bus-functional model, which models at a bus-cycle granularity, is accurate

as well. In contrast, the traditional TLM versions (bus-arbitration TLM and com-

ponent-assembly TLM) show significant error rates. These errors increase linearly with

growing bus contention. At 45% contention, the component-assembly TLM reaches

45% error, making any system-timing analysis based on this TLM questionable.

To show that ROM provides high simulation speed as well, the simulation performance

in a two-application process set-up was also measured. The higher-priority process pro-

duces a bus utilization of 33%. This means that the lower priority master is preempted at

least one third of the time. Obviously, themore the preemption, the more corrective action

needs to be taken by the ROM. Consequently, there would be a higher number of waits

executed, whichwould result in slower simulation speed. For the set-up, the lower-priority

process sends user transactions of increasing size, as shown on the x-axis of Fig. 2.12.

Figure 2.12 reveals the tremendous performance benefit of ROM. Both ROM and

component assembly TLM are equally fast. They are three orders of magnitude faster

than the bus-functional model, and one order of magnitude faster than the bus-arbi-

tration TLM. All the models show a characteristic saw-tooth shape, owing to the non-

linear split of user transactions into bus transactions. Combining the accuracy and

performance measurements, we can conclude that ROM escapes the TLM trade-off

for the AMBA AHB models. It is both 100% accurate and as fast as the fastest

component-assembly TLM.

2.3 Synthesis-oriented TLMs

Estimation-oriented modeling is important for evaluating if a certain design’s per-

formance is satisfactory to a relatively high degree of confidence. However, it is also

0

10

20

30

40

50

0 10 20 30 40 50

A
ve

ra
g

e
er

ro
r

(%
)

Bus contention (%)

Bus functional model
Bus-arbitration
Component assembly
ROM

ROM/
BFM

ATLM

TLM

Figure 2.11 Accuracy of the AMBA AHB models

2 Transaction-level system modeling 65

very important to develop TLMs that can be synthesized to their respective RTL and C

implementations. This modeling effort is crucial in making TLM a true next level of

abstraction above the current industry standard. In this section, we give details of new

research that is being done in the field of synthesizable TLMs.

The key differentiating aspect of synthesizable TLMs is that the platform objects

and composition rules are clearly defined. Also, the semantics of how the transaction

level platform objects map to their low-level implementations is also defined. To start

with, the platform is assumed to be composed of four different types of object. These

are processes, buses, memories, and transducers. Processes are similar to behaviors in

that they capture the computation in the system. Buses capture the synchronization,

arbitration, and data transfer between processes. Memories are storage units for

addressable data and may be accessed over the bus connected to the memory.

Transducers are special objects that serve as a bridge between two processes that do

not share a bus. The postulation is that these objects form the necessary and sufficient

set of entities needed to model a heterogeneous multiprocessor system design. From a

TLM standpoint, the buses and transducers are the key objects, since they form the

communication architecture of the design.

The buses are modeled as special channels, called universal bus channels (UBCs),

that have well-defined templates and provide basic communication services. Processes

and memories connect to UBCs in different ways. Processes use the UBC service

functions to communicate amongst themselves in a rendezvous fashion. They may

also use the UBC to read or write data to memories connected to the respective UBC.

Memories connect to the UBC to expose their local data for access by processes

connected to the UBC. Transducers are special PEs that consist of two or more

specialized processes and a local first-in-first-out (FIFO) buffer. These specialized

processes connect to different UBCs. Processes connected to different UBCs may send

data “through” the transducer, which works in a store and forward fashion. In this

0.001

0.01

0.1

1

10

100

1 10 100 1000

S
im

u
la

ti
o

n
 t

im
e

(m
s)

Transaction size (bytes)

Bus functional model
Bus-arbitration
Component assembly
ROM

Figure 2.12 Performance of AMBA AHB models

66 D. Gajski and S. Abdi

section we will look at the modeling details of the UBC and the transducer and also

discuss how a TLM may be constructed for a multiprocessor design with several buses,

transducers, and memories. Finally, we will present TLM simulation and synthesis

results for various designs of an MP3 decoder.

2.3.1 Universal bus channel (UBC)

The universal bus channel is a channel model that abstracts the system bus as a single

unit of communication. The UBC provides the basic communication services of

synchronization, arbitration, and data transfer that are part of a transaction. In this

section, we will discuss the modeling of each of these services inside a UBC. We

broadly classify transactions as either synchronized or unsynchronized. Synchronized

transactions take place between two processes and require their synchronization, as the

name suggests. Non-synchronized transactions (or memory transactions) are memory

read-and-write operations performed by processes that require only arbitration and

data transfer.

2.3.1.1 Synchronization
Synchronization is required for two processes to exchange data reliably. A sender

process must wait until the receiver process is ready, and vice versa. This is essential for

two reasons. Firstly, the receiver must wait until the sender has sent the data so that the

received data are valid. Secondly, after sending the data, the sender must block until

the data have been received so as to avoid overwriting the sent data. This type of

synchronization is often referred to as double-handshake or rendezvous synchronization.

To realize rendezvous synchronization at an abstract level, we use the simple

concepts of flag and event. A synchronization table is used in the UBC to keep the

flags and events that are indexed by process IDs. Each unique pair of communicating

processes that are connected to the same UBC has a unique <flag, event> set. These

flags and events are used by a process to notify its transaction partner process that it is

ready. Synchronization between two processes takes place by one process setting the

flag and the other process checking and resetting the flag. Once the flag has been reset,

the transacting processes are said to be synchronized.

We will refer to the process setting the flag as the initiator and the process resetting

the flag as the resetter. The initiator and resetter processes for a given transaction may

be determined either at compile time or at run time. If the initiator process is not fixed

at compile time, then the process that becomes ready first sets the flag while the

process that becomes ready second resets the flag. For example, consider that there is a

transaction between processes P1 and P2, and assume that P2 becomes ready first, as

illustrated in Fig. 2.13. Process P2 tests and sets the synchronization flag in a single

atomic operation. When P1 becomes ready, it attempts to test and set the flag. How-

ever, this flag is already set, so P1 recognizes that P2 is ready and resets the flag.

Arbitration and data transfer begin once the flag is reset by the second arriving process,

in this case P1. Since the test-and-set is atomic, this scheme works even if processes

become ready at the same time. Since there are several communicating processes that

2 Transaction-level system modeling 67

may share the same bus channel, a table of synchronization flags is kept in the UBC.

This table is indexed by the pair of communicating processes.

If the synchronization mode for a process is to be decided dynamically, the memory

storing the synchronization flag must provide atomic test-and-set operations. In many

cases, this is infeasible and difficult to design. The simpler alternative is to fix the syn-

chronization modes of the processes a priori. For example, in the earlier example, wemay

fix P1 as the initiator process for this transaction and P2 as the resetter process at compile

time. This scenario is illustrated in Fig. 2.14. Hence, only P1 can set the synchronization

flag for the pair [P1, P2]. If P2 is ready first, it must keep reading the flag until P1 sets it.

Although such a mechanism is fairly easy to implement in hardware, simulating a

continuous checking of the flag by P2 can become really slow. To avoid this problem,

the continuous reading of the flag is modeled as P2 waiting for the synchronization

P1 P2

Sync.
Flag

ReadyTest &

reset

Test &
set

Ready

Data
transfer

T
im

e

Figure 2.13 Synchronization mode decided dynamically

Listing 2.1 Synchronize function in UBC

void Synchronize (unsigned int MyID, unsigned int PartnerID,

unsigned int MyMode){

if (MyMode¼¼UBC_INITIATOR & MyID¼¼P_ID_P1 &&

PartnerID¼¼P_ID_P2){
sync_flag_P1_P2¼1;
sync_event_P1_P2.notify();

}

if (MyMode¼¼UBC_RESETTER && PartnerID¼¼P_ID_P1 &&

MyID¼¼P_ID_P2){
While (sync_flag_P1_P2 !¼ 1){

wait(sync_event_P1_P2);

}

sync_flag_P1_P2¼0;
}

. . .

}

68 D. Gajski and S. Abdi

event from P1 after the flag is set. Like the synchronization flag, the synchronization

event is also defined by all pairs of processes in the synchronization table. Process P1

notifies this event when it sets the synchronization flag. Once P2 reads the flag as set, it

recognizes that P1 is ready and resets the flag. Arbitration and data transfer begin once

the flag is reset by P2. Listing 2.1 shows the synchronization function inside the UBC

for the fixed-mode style. The body of the first if statement is executed when the

synchronize function is called by the initiator process that sets the synchronization flag

and notifies the event. The body of the second if statement is executed by the resetter

process that checks for the status of the synchronization flag. If the flag is not yet set, it

waits for the synchronization event that confirms that the flag has been set. Then it

resets the flag and proceeds. The mechanism for both initiator and resetter ensures that

rendezvous synchronization would always be guaranteed, irrespective of the execution

speed or arrival time of the communicating processes.

Synthesis of synchronization involves deciding the location of the synchronization

flag and code generation in the communicating processes for setting and resetting the

flag. For instance, in a typical interrupt-based scheme, the flag resides in the local

memory of the CPU that acts as the resetter. An interrupt signal from an HW peripheral

initiator sets this flag. The interface logic of the peripheral contains states that drive the

interrupt signal. The interrupt controller in the CPU checks the flag every clock cycle.

Alternately, the flag may reside in the local memory of the HW peripheral. Then, the

flag may be set locally in the HW. The register containing the flag must have a bus

address for the CPU to check the flag regularly by reading the HW register. This

mechanism is called polling.

2.3.1.2 Arbitration
Since a bus is a shared resource, multiple transactions attempted at the same time must

be ordered sequentially. Arbitration is modeled into the UBC to reflect such a

sequential ordering of transactions. After synchronization, the resetter process attempts

to reserve the bus for data transfer. This is achieved by an arbitration request by the

resetter process. An arbitration policy for the bus is used to determine when this

request will be granted. Data transfer starts following a grant. Finally, on completion

of the transfer, the bus is released by the resetter process. The arbitration policy is now

Test
Test

Set Reset
Ready

T
im

e Ready

P1 (initiator) P2 (resetter)

Sync.
flag

Data
transfer

Figure 2.14 Synchronization mode decided statically

2 Transaction-level system modeling 69

used to grant the bus to some other requesting process. In UBC, the arbitration features

are modeled with a set of variables, events, and functions, as shown in Fig. 2.15.

All of the arbitration functionality takes place using flags and functions that are

encapsulated inside the channel. None of the functions or variables is visible outside

the scope of the channel. This is because the arbitration functionality is only to be used

by the send and receive functions provided by the channel itself.

Arbitration requests are made by setting arbitration request flags indexed by the

requesting process IDs. For any transaction, the resetter process sets its corresponding

arbitration request flag to get permission from the arbiter to get the bus and start a

transfer. In common bus-protocol terminology, the resetter is often referred to as the

bus master. This is because the master controls all transactions on the bus. Arbitration

grants are modeled as setting of grant flags, also indexed by process IDs. If a certain

arbitration flag is set, it means that a bus transaction is in progress. If none of the

arbitration flags is set, the bus is said to be idle or available. The setting and resetting

of arbitration grant flags is done exclusively by the channel’s arbiter policy function.

This is done to denote which process has been granted the bus by the arbiter. Naturally,

since the physical bus is a shared resource, in TLM we must ensure that at any given

time only one grant flag is set per bus channel. For example the grant for P3 alone is set

although both P2 and P3 have requested the bus.

After making the arbiter request, the requesting process must continuously check if

its grant flag is set. Only then can it proceed with the data transfer. Here we face the

same problem as the continuous synchronization flag-checking problem described

earlier. Even though the checking mechanism is feasible in HW, its simulation is

extremely slow. We again resort to intelligent usage of events for modeling the flag-

checking functionality in the TLM. We define the event ArbitrationGranted that is

notified every time an arbiter-grant flag has been set. The event is notified after the

setting of the grant flag inside the ArbiterPolicy function. The processes that have

made an arbiter request wait for this event. Whenever the event is issued, the processes

check their respective grant flags. If their grant flag is set, they proceed with data

transfer, else they return to wait for the ArbitrationGranted event.

Arbitration req. flags

Arbitration gnt. flags

A
rb

it
ra

ti
o

n
 g

n
t.

 e
ve

n
t 0 1 1

Arbiter policy ()

P1 P2 P3

P1 P2 P3

0 0 1

Figure 2.15 Transaction-level model of arbiter inside UBC

70 D. Gajski and S. Abdi

To set the arbiter request flag, an ArbiterRequest function is provided inside the

UBC. This function is called by the communication service functions when the latter

are called by a resetter process. The parameter to the ArbiterRequest function is the

process ID of the requester. This function is internal to the UBC and not visible to

processes connected to the UBC. Similarly, an ArbiterGrant function is provided that

returns when the ArbitrationGrant flag for the respective process is set. The parameter

to this function is the process ID. This function is also internal to the UBC and not

visible to processes connected to the UBC. After a transaction is complete, the bus

must be made available to other transactions. This responsibility of releasing the bus

also rests with the resetter process. For this purpose, an ArbiterRelease function

is provided inside the UBC for use by the communication service methods. The

ArbiterRelease function resets the arbitration request flag for the respective process.

The parameter of this function is the process ID of the calling resetter process. Just like

the ArbiterRequest and ArbiterGrant functions, this function is also internal to the

UBC and not visible to processes connected to the UBC.

The most important function for arbitration inside the UBC is the ArbiterPolicy

function. This function effectively determines which process must get the bus amongst

competing resetter processes. In real hardware implementation, an independent

module executes the arbiter policy. Inside the UBC, however, there is no way of

modeling an active process because channels are passive entities for communication

whilst all the computation is done inside active processes inside PE behaviors. A

simple mechanism is used to achieve the modeling of an arbiter’s policy inside the

passive UBC. The ArbiterPolicy is called by ArbiterRequest after setting

the respective arbiter request flag. It is also called after the request flag is reset from the

ArbiterRelease function. In effect, the arbiter evaluates the grant only when the request

pattern changes. If the request pattern remains unchanged, the status quo is maintained

and the arbiter is simply in an idle state. Any arbitration policy may be modeled inside

the ArbiterPolicy function. The event ArbitrationGranted is notified for every exe-

cution of this function after one of the grant flags is set. The notification of this event

wakes up any process that is waiting for arbitration grant. The ArbiterPolicy function

does not take any parameters. This function is also internal to the UBC and not visible

to processes connected to the UBC.

2.3.1.3 Addressing and data transfer
Data transfer is the part of a transaction where the data are copied from a sender

process’s memory into the memory of the receiver process. For unsynchronized

transactions, transfer corresponds to reading or writing memory by a process. To

distinguish between different data transfers, an addressing mechanism is used. All

memories also have a range of addresses on the bus that they are connected to. Several

variables and events are used to model addressing and data transfer in a UBC.

An address table keeps the addresses that are used by a process to transfer data

between processes or between processes and memories. It is indexed by process IDs

and memory ID and is local to the UBC. An example address table for a UBC

connected to three processes and two memories is shown in Fig. 2.16. For

2 Transaction-level system modeling 71

unsynchronized memory transactions, the reader or writer process always sets the

transaction address that is read by the memory controllers. The addressable space of a

memory for a given process is given by the range in the entry with the column of the

process ID and the row of the memory ID. For example, process P2 can address

memory between 0 · 22 and 0 · 48 in device M1 (see column P2, row M1). To access

memory on the bus, the process must be able to make an arbitration request. For

synchronized transactions, the resetter process writes the transaction address. For our

earlier example in Fig. 2.14, P2 uses address 0 · f2 for its transaction with P1 (column

P2, row P1). The address values can be real bus addresses or some virtual addresses, so

long as each entry for synchronized transactions is unique. Memories may have

overlapping address space for multiple processes. For example, the address space of

M2 for P2 and P3 (row M2, columns P2 and P3) is overlapping.

During the execution of the transaction, we use the bus address variable to store the

starting address of the active transaction. This variable is set immediately after

the arbitration grant and before the data transfer begins. For synchronized transactions,

the resetter process writes this variable (Listing 2.2). The initiator process waits for the

transaction address to be written to BusAddress. For memory transactions, the reader–

writer process writes this variable. Memory controllers always wait for this variable to

be set within the memory’s address range.

The initiator process and the memory controller processes must continuously check

the value of BusAddress to see if they must initiate the copying of data. This leads to

our usual problem, similar to the continuous flag checking needed for synchronization

and arbitration. We use the usual mechanism of the event to speed up the simulation of

continuous address checking. The writing of BusAddress is followed by the notifica-

tion of event AddressSet by the resetter process. Listing 2.3 shows how the

X

X

0xf2
0xf6

0xfb

0xa0

0xd2

0xd6 X

0x10-
0x80

0x10-
0x60

0x60-
0x80

0x8f-
0xa6

0x9f-
0xa2

0x8f-
0xa6

P1

P1

P2

P3

M1

M2

P2 P3

Figure 2.16 Table showing the memory map of processes and memories on the UBC

Listing 2.2 Addressing by resetter in UBC

if (MyProcID¼¼P_ID_P1 && ReceiverProcID¼¼P_ID_P2)
BusAddress¼ADDR_P1_P2;

AddrSet.notify();

72 D. Gajski and S. Abdi

communication function called by process P1 looks up the address table, sets the

BusAddress variable to the right table entry, and notifies the AddressSet event.

Listing 2.3 shows the same transaction from the initiator process P2’s end. The

communication function looks up the address table to find the right address that will be

set by P1 for this transaction. If the BusAddress variable is already set to this value, it

means that the data have already been written on the bus. If not, then P2 must wait for

the AddrSet event before rechecking the bus address. The AddrSet event wakes up the

initiator process to commence the data transfer.

Since the UBC is a very abstract model of the bus, we do not incorporate bus and

protocol level details in the TLM. All data that are transacted in the UBC may be of

arbitrary size and type. A pointer mechanism is used in the UBC to model arbitrary

data-type transfer. We define a DataPtr variable that keeps the pointer to transacted

data. This pointer is set by the sender or writer process during a transfer. The receiver

or reader copies data pointed to by DataPtr into its local memory. Since there is no

type associated with DataPtr, we need an extra variable to keep the size of the

transacted data. The DataSize variable keeps the size of transacted data in bytes. It is

set by the reader or writer process during a memory transaction. Memory controllers

use this value to determine the number of bytes to copy. Furthermore, the memory

access service in the UBC provides both read and write access to the memory con-

nected to the bus. Therefore, along with the pointer to data and size, a flag is needed to

distinguish between a read or a write transaction of the memory controller side. We use

RdWr as a Boolean flag inside the UBC to indicate if a memory transaction is a read

(0) or a write (1). This flag is written by the reader or writer process and checked by the

memory during a memory transaction.

Listing 2.4 shows the Memory Access function provided in the UBC in a SystemC

TLM. For memory transactions, the reader or writer process sets BusAddress. This is

followed by the notification of event AddrSet, which wakes up the other process or

memory controller that is snooping on the address bus. At the other end, the memory

controller reads the address BusAddress to check if the address falls in its range. If the

address on the bus is in range, then the memory must provide access to the right data.

This is done by first computing the offset, which is the difference of the BusAddress

and the low address of the memory. A pointer to the local memory (modeled as an

array in the controller process) is needed to retrieve the correct data using the offset. If

the operation is a read then the memory controller sets DataPtr to the right address in

Lisiting 2.3 Address checking by initiator in UBC

If (MyProcID¼¼P_ID_P2 && SenderProcID¼¼P_ID_P1){
While (BusAddress!¼ADDR_P1_P2){

wait(AddrSet);

}

}

2 Transaction-level system modeling 73

the local memory according to computed offset. If the operation is a write, the memory

controller performs a memory copy from the data pointed to by DataPtr of DataSize

number of bytes.

2.3.1.4 UBC user functions
User functions are communication service functions provided by the UBC that are

visible to the user and called by processes and memories connected to the UBC. Here

we summarize the user functions provided for making both synchronized and memory

transactions on the bus.

1.. Send is the method used by a process to send data to another process using syn-

chronized transaction. The synchronization mode of the sender is selected as ini-

tiator, resetter (if determined at compile time), or either (if determined at run time).

The parameters are the sender process ID, the receiver process ID, a pointer to the

data being sent, the size of the data in bytes, and the synchronization mode. The

receiver process must be connected to the UBC and must execute the Recv function

for this transaction. The synchronization mode of the receiver for this transaction

must be complementary to the sender. That is, if the sender mode is initiator then

the receiver mode must be resetter and vice versa. If the sender mode is either, then

the receiver mode must also be either.

2.. Recv is the method used by a process to receive data from another process using

synchronized transaction. The synchronization mode of the receiver is selected as

initiator, resetter (if determined at compile time), or either (if determined at run

time). The parameters are the receiver process ID, the sender process ID, a pointer

to the location where the received data will be copied, the size of the data in bytes

and the synchronization mode. The sender process must be connected to the UBC

Listing 2.4 MemoryAccess function in UBC called by the memory controller

void MemoryAccess (unsigned int MEM_LOW, unsigned int MEM_HIGH,

unsigned char *local_mem){

while (1) {

while (BusAddress < MEM_LOW | BusAddress > MEM_HIGH){

wait (AddrSet);

}

if (RdWr ¼¼ UBC_READ) {

DataPtr ¼ local_mem þ (BusAddress - MEM_LOW);

}

else if (RdWr ¼¼ UBC_WRITE) {

memcpy (local_memþ (BusAddress - MEM_LOW), DataPtr, DataSize);

}

wait (BUS_DELAY, SC_NS);

}

}

74 D. Gajski and S. Abdi

and must execute the Send function for this transaction. The synchronization mode

of the sender for this transaction must be complementary to the receiver. That is, if

the receiver mode is initiator then the sender mode must be resetter and vice versa.

If the receiver mode is either, then the sender mode must be either.

3..Write is the method used by a process to write data to a contiguous memory

location in a non-blocking fashion. The parameters are the writer process ID, the

starting memory address, a pointer to the data that need to be written, and the size

of the data in bytes.

4.. Read is the method used by a process to read data from a contiguous memory

location in a non-blocking fashion. The parameters are the reader process ID, the

starting memory address, a pointer to the local memory where the read data will be

stored, and the size of the data in bytes.

5..MemoryAccess is the method used by the memory controller to service a write or

read call from a process connected to the UBC. The parameters are low and high

boundaries of the address range for this memory and a pointer to the start of the

local memory of the device.

2.3.2 Transducer

The UBC is a sufficient communication modeling object for TLMs of processes

executing on PEs that are connected to buses. However, in both homogeneous and

heterogeneous systems, it is possible for several buses to exist in the system design.

Furthermore, it is possible that processes that are not connected to a common bus may

want to exchange data. Therefore, a special process is needed that receives data from

the sender process on the first bus, stores it temporarily, and then forwards it to the

receiver process over the second bus. In general, several such “bridging” processes

may be needed in a dense heterogeneous system. It must be further noted that these

bridging processes are used exclusively for communication and have no implication

for the application itself. The only service that the application desires from the

communication architecture is the reliable transmission of data from the sender pro-

cess to the receiver process. To keep the modeling of communication and computation

orthogonal, a generic template for the bridging logic would be immensely useful. In

fact, we can define a TLM for this bridging module just as we defined the UBC for the

bus. We will now introduce the transaction level modeling of the bridging module that

we refer to as the transducer.

Figure 2.17 shows the simplest possible transducer. The transducer connects two

buses, and its purpose is to facilitate multi-hop transactions, where one process sends

data to another process that is not directly connected to the sender via a UBC. The

basic functionality of the transducer is simply to receive data from the sender process,

store it locally, and send it to the receiver process once the latter becomes ready. In the

illustrated example, the transducer models two separate processes, IF1 and IF2, which

interface the PEs on Bus1 and Bus2 to the local FIFO. We assume that the flow of data

is from left to right. That is, PE1 uses Bus1 and interface IF1 to write to the FIFO, while

PE2 uses Bus2 and interface IF2 to read from the FIFO. Notice the two ready signals

2 Transaction-level system modeling 75

emanating from the two interfaces. The Rdy1 signal is triggered when the FIFO is full

to indicate that PE1 must wait for some space to be vacated in the FIFO before writing

any further. Conversely, Rdy2 signals PE2 if the FIFO is empty, so PE2 must wait until

the FIFO has some data. The signaling mechanism and FIFO ensure that data can be

sent reliably from PE1 to PE2 even though they do not share a common bus.

Building on the concept of a controlled FIFO, we can generalize the transducer for

any platform of any degree of complexity. Figure 2.18 shows the TLM template of

such a generalized transducer. The top-level behavior is connected to two different

buses that are modeled by channels UBC1 and UBC2. There may be an arbitrary

number of FIFOs, depending on the storage strategy inside the transducer. For example,

we may dedicate one FIFO per pair of communicating processes. On the other extreme,

there may be one unified FIFO for all possible transactions with dynamic allocation of

FIFO space. Therefore, the FIFO channels may be parameterized. However, they pro-

vide four standard functions as indicated in Fig. 2.18 for checking the state of the FIFO

and for reading or writing data from and to it.

To communicate with processes on UBC1 and UBC2, a special pair of transducer

processes is defined. These are labeled IO1 and IO2 in Fig. 2.18. The purpose of the IO

behaviors is to send and receive the communicated data over the respective buses and

also to write or read it on the FIFO. For this purpose, these behaviors use the Send and

Recv functions of the respective UBCs. However, this is not enough if there are

multiple processes on either bus. This is because IO behaviors have no way of

knowing which process to expect data from or which process to send data to. To solve

Transducer

FIFO

Bus1

PE1 IF1 IF2 PE2

Bus2
Bus1 read interface Bus2 write interface

Rdy1 Rdy2

Figure 2.17 A simple transducer module

max_pkt_size

F_Tx()

MayIRead()
MayIWrite()

Read()
Write()

GetNextReq()
Clear()

Requests1 Requests2FIFO1

IO1 IO2

max_pkt_size

F_Tx()

GetNextReq()
Clear()To

UBC1

To
UBC 2

FIFON

Figure 2.18 TLM template for transducer

76 D. Gajski and S. Abdi

this ambiguity, we introduce another pair of behaviors called Requests1 and Requests2.

The request behaviors consist of a memory that is divided into slots where each

process may write its communication request. The buffer in the request behavior is

partitioned and uniquely addressed for each pair of processes communicating through

the transducer. The IO behavior is interfaced to the request behavior to check for any

pending requests and to call the right UBC function with the relevant parameters.

2.3.2.1 FIFO buffers
The data in transit via the transducer is stored in circular buffers, modeled as FIFO

channels. The number of channels in a buffer is flexible. It may be as few as one channel

and as many as the total number of communication paths through the transducer. Each

path through the transducer must have one buffer assigned to it, although the buffers

may be shared between different paths. The higher the degree of sharing, the more

complex the management of buffers inside the FIFO channel becomes. Each buffer is

modeled as a channel and implements an interface that supports four functions. These

interfaces are connected to the request behavior for checking FIFO status and to the IO

behavior for performing read and write on the FIFO. The interface functions are:

1..MayIWrite, which returns true if the requested space is available in the buffer and

otherwise returns false;

2..MayIRead, which returns true if the requested number of bytes are present in the

buffer and otherwise returns false;

3.. BufferWrite, which copies the incoming data to the buffer and updates the tail

pointer;

4.. BufferRead, which copies data from the buffer to the output and updates the head

pointer.

2.3.2.2 Request behaviors
In general, before any data are sent or received to or from the transducer, a request

must be made. This request is necessary to allow the transducer interface to check if

the internal FIFO buffers can accommodate the data or supply it. Such a request may

be included in the packet itself, but if the packet cannot fit in the FIFO then an

alternative mechanism is needed to handle this scenario. Additional logic must be

implemented in the transducer IO behavior to reject the packet. Also, additional

functionality is needed in the sender process to detect a packet rejection and to resend

it. For simplicity, we will consider the scenario where the PE writes the request,

followed by synchronization and data transfer. In the case of multiple competing

processes, the requests from different processes are arbitrated by the transducer request

behavior. Communication with the successful requesting process is initiated.

There are two request behaviors in the transducer, one for each bus interface. The

number of words per request buffer is equal to the number of communication paths

through the bridge. The request buffer is modeled as any other memory module in a PE

and thus has an address range on the bus. Each word in the request buffer has a unique

bus address. The requesting process writes the number of bytes it expects to read or

2 Transaction-level system modeling 77

write into the communication path’s corresponding request buffer. The request buffer

is a module that supports two functions:

1..GetNextReady checks the request words in the buffer in a round-robin fashion. For the

chosen request, it checks whether the corresponding buffer has enough data or space to

complete a transaction of the requested size, calling the buffers’ functions MayIWrite

andMayIRead. If the FIFO status check returns True, it returns the request ID and path,

otherwise it checks the next pending request. Listing 2.5 shows a sample snippet from

the GetNextReady function implemented by the request behavior.

2.. ClearRequest removes the request from the buffer by setting the size to zero.

2.3.2.3 IO behaviors
The IO module is the interface function of the transducer that talks to other processes

on the bus. It starts by calling the GetNextReady function in the request buffer. Then,

for the selected sender or receiver process, it calls the UBC receive or send function,

respectively. The IO module assumes the role of the resetter if the process is the

initiator, and vice versa. The data received from the sender are written to the cor-

responding FIFO. The data to be sent to the receiver are first read from the corres-

ponding FIFO before calling the transducer send function. Once the requested

transaction is completed, the IO behavior removes the request by calling the Clear

function in the request behavior.

Listing 2.5 GetNextReady function inside the transducer request behavior

. . .

if (RequestBuffer[1]){

*Near ¼ P_ID_P1;

*Remote ¼ P_ID_P2;

*size ¼ RequestBuffer[1];

*TransferType ¼ UBC_SEND;

*Mode ¼ UBC_RESETTER;

if (FIFO1->May|Write (*Remote, *Near, *size) ¼ ¼ TRUE)

return TRUE;

}

if (RequestBuffer[2]){

*Near ¼ P_ID_P1

*Remote ¼ P_ID_P2;

*size ¼ RequestBuffer[2];

*TransferType ¼ UBC_RECV;

*Mode ¼ UBC_RESETTER;

if (FIFO2->May|Read (*Near, *Remote, *size) ¼ ¼ TRUE)

return TRUE;

}

. . .

78 D. Gajski and S. Abdi

2.3.3 Routing

In a platform consisting of several buses and processes, it may be possible that two

communicating processes do not share a bus. In such cases, the transaction between the

processes must be routed through a set of buses and intermediate transducers. Such

transactions are also known as multi-hop transactions. To enable multi-hop transactions,

the TLM consists of a global routing table that is indexed by the process IDs. Each table

entry gives a set of possible routes from a source process to a destination process.

Consider the simple example of a system shown in Fig. 2.19. The design consists of two

processes P1 and P2. P1 is connected to buses B1 and B3 while P2 is connected to buses B2

and B3. A transducer is used to bridge B1 and B2. Therefore, to send data from P1 to P2,

there are two possible paths that may be chosen. Either the data may be sent directly over

B3 or they may be sent over two hops; first from P1 to Tx over B1 and then from Tx to P2

over B2. A similar choice of reverse paths exists for sending data from P2 to P1. The

decision about the specific route to be selected for a given transaction may be made by the

designer. The TLM must contain the information about all possible routes between all

pairs of processes. This is important because the application developer is only concerned

about the end-to-end communication between processes. A list of routes will allow the

designer to know which particular UBC to use for a certain choice of route. This infor-

mation is made available in the global routing table, as shown in Fig. 2.20.

The routing table is indexed by the pair of communicating processes. A route can be

either a bus or a string of alternating buses and processes. A route always starts and

ends with a bus. A transaction from a source process to a destination process may take

place as several transactions over intermediate hops. At each hop, the sender deter-

mines the receiver (which is either the final destination or the sender for the next hop)

by looking at the global routing table and choosing a route from itself to the

P1 P2

Tx

B1

B
2

B3

Figure 2.19 Example of design with multiple routes

P1

P1 X

B3,
B1 – Tx – B2

P2

P2 X

B3,
B2 – Tx – B1

Figure 2.20 Global routing table

2 Transaction-level system modeling 79

destination. If process P1 wants to send data to P2, it must first execute a route-

selection function that returns the first bus and the first intermediate process in the

route. Assume that the routing function returns B1 and Tx. P1 then uses the send

function of B1’s UBC to send the data to Tx, by making the request for source P1 and

destination P3. The interface of Tx connected to B2 then reads the data from the FIFO

and calls the send function of B2 to send the data to the final destination P2.

The routing function must be called by a process to select the appropriate UBC for

the next hop. Therefore, the routing decision cannot be part of the UBC. If sending

data from source to destination requires more than one transaction, the destination

must send the source an acknowledgement transaction to maintain the double hand-

shake semantics between source and destination.

2.3.4 TLMs for C-based design

So far we have looked at the building blocks of modeling the communication archi-

tecture at the transaction level. We have also looked at how to use the building blocks

and processes to create TLMs. In this section we will look at the organization of TLMs

in SystemC and its development from a practical standpoint.

Every processing element (PE) can consist of processes and memory elements. We

can define multiple PEs in a platform, and they must be connected to at least one bus.

The processing elements that contain processes have a defined internal structure,

which contains C code, global functions prototypes, and SystemC code.

2.3.4.1 Processes
The processes are the C programs that execute on PEs. These programs need to

interface with SystemC code in order to perform communication with other concur-

rently executing PEs in different PEs. Figure 2.21 shows how the code is organized in

Comm. API
prototypes

for p

Application C code for p

File1.c FileN.c

Include

Platform model

Comm. API functions

send_p_p1() {…}
recv_p_p1() {…}

UBC definition

PE module

UBC_INTERFACE bus;
SC_THREAD(p);

p->send_p_p1() {…}
p->recv_p_p1() {…}

Call

Implement

Executable TLM

Figure 2.21 Executable TLM code organization

80 D. Gajski and S. Abdi

a process object. We see in Fig. 2.21 a representation of the executable TLM, which

has three basic parts. First, there are the communication API prototypes, which are the

global function prototypes that are included in the application C code (lower left

corner). This code uses the communication APIs to access the third block: the platform

model (right side of the figure). The platform model contains the communication API

code that accesses SystemC code in each PE module, in order to communicate with the

buses. A sample SystemC code for a process is shown in Listing 2.6.

Each process resides inside a function in the SystemC class sc_module. The con-

structor initializes all processes by defining the functions as independent sc_threads.

The interface to the UBC is modeled using the sc_port template class. The commu-

nication APIs will access this port to communicate with the bus. Inside each thread, a

global pointer such as ptr_P1 is assigned to the current object, and then the C function

representing the process is called. The communication APIs exported to the applica-

tion C code are global functions, which call the UBC methods inside the corresponding

process’s sc_thread. They are defined after each sc_module. For every process that

executes with the process in this sc_module, a pair of communication functions is

created. These are abstracted at the level of point-to-point send and receive. However,

the implementation of the functions uses the relevant UBC calls.

Listing 2.7 shows the implementation of one such point-to-point send function. The

function is for process P1 to send data to process P2. However, there is no direct bus

connection between P1 and P2. Instead the transaction goes over a transducer.

Therefore, the send transaction consists of two parts. First, a request must be written in

the request buffer memory of the transducer. The address of this request is defined in

the macro ADDR_TxReq_P1_P2 that implies that the source is P1 and the destination is

P2. The size of the data (r) is written into this address in the request buffer. Then the

UBC send function is called to complete the transaction from the sender’s end. The

Listing 2.6 SystemC class encapsulating a C process

extern “C” int P1(void);

void *ptr_P1;

class P1: public sc_module{

public:

SC_HAS_PROCESS(P1);

P1(sc_module_name name):sc_module(name){

SC_THREAD(main);

}

sc_port<i_ubc> busport;

int main(){

ptr_p1¼this;
P1();

}

};

2 Transaction-level system modeling 81

bus-port object is the port of the process P1 that is eventually bound to the UBC at the

top level instantiation of P1.

Listing 2.8 shows, as an example, the implementation of a point-to-point receive

function. The function is for process P1 to receive data from process P2. As mentioned

earlier, there is no direct bus connection between P1 and P2. Instead the data must be

received via a transducer. Therefore, the receive transaction consists of two parts.

First, a request must be written in the request buffer memory of the transducer. The

address of this request is defined in the macro ADDR_TxReq_P2_P1 that implies that

the source is P2 and the destination is P1. The size of the data (r) is written into this

address in the request buffer. Then the UBC receive function is called to complete the

transaction from the receiver’s end.

In summary, every processing element is modeled at transaction level in SystemC as

a sc_module with one or more sc_threads, each one modeled simply using C code. For

every process, there exist global point-to-point communication functions that are

called by the C code of the process. These point-to-point functions are built on top of

the UBC communication functions. In the case of memory elements, the sc_module

contains an array of variables and a port to communicate with the buses. The main

Listing 2.7 Implementation of point-to-point Send using UBC function calls

extern “C” void send_P1_P2(void *ptr, int size, int mode) {

P1 *p ¼ (P1*) ptr_P1;

//Send request to transducer

unsigned int r¼size;
p->busport->write(P_ID_P1,ADDR_TxReq_P1_P2,

(unsigned char*)&r,sizeof(unsigned int);

p->busport->send(P_ID_P1,P_ID_Tx1,ptr, size, mode

P_ID_P1, P_ID_P2);

}

Listing 2.8 Implementation of point-to-point Recv using UBC function calls

extern “C” void recv_P_ID_P1_P2_(void *ptr, int size, int mode){

P1 *p ¼ (P1*)ptr_P1;

unsigned int src¼ P_ID_P2;

unsigned int dest= P_ID_P1;

//Send request to transducer

unsigned int r¼size;
p->busport->write(P_ID_P1,ADDR_TxReq_P2_P1,

(unsigned char *)&r,sizeof(unsignedint));

p->busport->recv(P_ID_P1,P_ID_Tx1, ptr,size, mode, &src, &dest);

}

82 D. Gajski and S. Abdi

method in the sc_module calls the UBCMemoryAccess function and passes the pointer

to the local array as the parameter. Other processes write and read this memory using

the UBC’s communication functions.

2.3.5 Synthesizable TLMs in practice: MP3 decoder design

So far we have looked at the concepts of synthesizable TLMs and practical methods

for developing them in a C-based design methodology. We now take a look at some

TLMs for different platforms to execute the MP3 decoder application. Figure 2.22

shows a functional block diagram of the MP3. There are five stages in the MP3

decoder. The first stage is Huffman decoding. In this stage, the MP3 bitstream is

converted into 576 frequency lines, which are divided into 32 sub-bands with 18

frequency lines. For each channel in stereo mode, three functions, namely alias

reduction, IMDCT, and filtercore, are executed sequentially. Each filtercore imple-

ments a fixed-point DCT function. Finally, the PCM block implements the gener-

ation of the decoded pulse-code-modulated file. Out of all the functions, the DCT in

the filtercore and the IMDCT functions are the most computer intensive. Therefore,

they are ideal candidates for custom implementation on HW. Also, the functions for

the two different channels are data independent, so they can possibly be executed in

parallel.

With the above application profile in mind, four different platforms were chosen for

implementing the MP3 decoder. The first platform was simply executing everything in

SW on a Microblaze processor synthesized on Xilinx board. The other three platforms

we created by selectively moving the computer-intensive DCT and IMDCT functions

to custom hardware blocks. This section describes the three platforms that were used to

implement the MP3 decoder. It also provides experimental results that demonstrate the

potential of a system design and verification methodology based around synthesizable

TLMs.

Figure 2.23 shows the first example platform. On the left side of the figure, there is a

Microblaze processor. The small picture in the Microblaze is the miniaturization of the

MP3 decoder functional block diagram in Fig. 2.22. The black box in the Microblaze is

the DCT for the left channel and it is not implemented as in software. Instead, it is

implemented as a separate module in hardware and is depicted as a gray box on the

Huff
dec

Filter
core

Filter
core

IMDCT

PCM

IMDCT
MP3

Left channel

Right channel

Alias
red

Alias
red

Two granules

Figure 2.22 MP3 decoder algorithm

2 Transaction-level system modeling 83

I/O I/O
co

n
tr

o
lle

r1

R
eq

u
es

t
b

u
ff

er
2

R
eq

u
es

t
b

u
ff

er
1

I/O
co

n
tr

o
lle

r1

B
u

s 2
co

n
tr

o
lle

r
B

u
s 1

co
n

tr
o

lle
r

FI
FO

12

FI
FO

21

O
P

B
 –

 D
H

B
 u

n
iv

er
sa

l b
ri

d
g

e

O
P

B
D

H
B

M
ic

ro
b

la
ze

Le
ft

-c
h

an
n

el
D

C
T

re
g

1
I/O
re

g
1

Fi
gu

re
2.
23

A
rc
h
it
ec
tu
re

w
it
h
le
ft
ch
an
n
el

D
C
T
in

h
ar
d
w
ar
e

right side of the figure. The Microblaze is connected to the on-chip peripheral bus

(OPB) and the hardware DCT is connected to the double-handshake bus (DHB).

To enable communication between the process mapped to the Microblaze and the

DCT process mapped to HW, the OPB-DHB transducer is inserted. This transducer

handles all the communication between the two buses. Inside the transducer, there are

two request buffers, two I/O controllers, and two FIFOs. Two request buffers on each

side of the bus have two partitions. One partition is used to store a “send request” from

the OPB to the DHB and the other partition is used to store a “receive request” from

the DHB to the OPB. Inside each FIFO there is only one partition. The partition in

FIFO12 is used to store the data from OPB to DHB and the other parition in FIFO21 is

used to store the data from DHB to OPB. These partitions are shown as shaded boxes

in the transducer.

Figure 2.24 shows our second example. In this example, both DCTs for left and

right channels are implemented in hardware. Therefore, there are two black boxes in

Microblaze, and there are two DCTs on the DHB. In the transducer, there are four

partitions in each request buffer. The first two request buffers are used for the left-

channel DCT and the next two request buffers are used for the right-channel DCT.

Each DCT uses two request buffers to store “send request” and “receive request”. In

each FIFO, there are two partitions. The first partition is used by the left-channel DCT

and the second partition is used by the right-channel DCT. Each FIFO is unidirec-

tional, as in the previous platform instance.

Figure 2.25 shows our third and platform example. All DCTs and IMDCTs are

implemented in hardware. Therefore, there are four black boxes in Microblaze, and there

are two DCTs and two IMDCTs on the DHB. As mentioned previously, one DCT or

IMDCT uses two request buffers to store send and receive requests. Therefore, there are

eight partitions in each request buffer. Also, one DCT or IMDCT uses one FIFO partition

and there are four hardware components. As a result, there are four partitions in each FIFO.

Synthesizable TLMs using UBC for buses and transducer template for the trans-

ducers were written for each platform. We also implemented all these four platforms

on Xilinx multimedia demonstration board, which uses VirtexII 2000 ff896 FPGA.

The FPGA features 10 752 slices and 56 BRAMs (1008 kbits). The board-level models

were written manually as well as synthesized according to the synthesis semantics of

the TLM objects. Here, we present results pertaining to development time and val-

idation time for the TLMs. We also draw a contrast in TLM-based modeling and

verification versus traditional manual design.

2.3.5.1 Development time
Figure 2.26 shows the growth of time spent in modeling for different levels of

abstraction. These development times are shown for the different platforms described

earlier. “SWþ 0” refers to a fully SW implementation. “SWþ 1” refers to the second

platform, where only one of the DCT blocks was implemented in HW. “SWþ 2”

represents the platforms with DCT for both channels implemented in HW and

executed concurrently. Finally, “SWþ 4” refers to the platform with both DCTs as

well as IMDCTs implemented in HW.

2 Transaction-level system modeling 85

I/O re
g

1
I/O re
g

2

I/O
co

n
tr

o
lle

r1

R
eq

u
es

t
b

u
ff

er
2

R
eq

u
es

t
b

u
ff

er
1

I/O
co

n
tr

o
lle

r2

B
u

s 2
co

n
tr

o
lle

r
B

u
s 1

co
n

tr
o

lle
r

FI
FO

12

FI
FO

21

O
P

B
 –

 D
H

B
 u

n
iv

er
sa

l b
ri

d
g

e

O
P

B
D

H
B

M
ic

ro
b

la
ze

Le
ft

-c
h

an
n

el
D

C
T

R
ig

h
t-

ch
an

n
el

D
C

T

Fi
gu

re
2.
24

A
rc
h
it
ec
tu
re

w
it
h
le
ft
an
d
ri
g
h
t
D
C
T
s
in

h
ar
d
w
ar
e

I/O re
g

1
I/O re
g

2

I/O
co

n
tr

o
lle

r1

R
eq

u
es

t
b

u
ff

er
2

R
eq

u
es

t
b

u
ff

er
1

I/O
co

n
tr

o
lle

r2

B
u

s 2
co

n
tr

o
lle

r
B

u
s 1

co
n

tr
o

lle
r

FI
FO

12

FI
FO

21

O
P

B
 –

 D
H

B
 u

n
iv

er
sa

l b
ri

d
g

e

O
P

B
D

H
B

M
ic

ro
b

la
ze

Le
ft

-c
h

an
n

el
D

C
T

R
ig

h
t-

ch
an

n
el

D
C

T

Le
ft

-c
h

an
n

el
IM

D
C

T

R
ig

h
t-

ch
an

n
el

IM
D

C
T

Fi
gu

re
2.
25

A
rc
h
it
ec
tu
re

w
it
h
le
ft
an
d
ri
g
h
t
D
C
T
s
an
d
IM

D
C
T
s
in

h
ar
d
w
ar
e

The four levels of abstraction enumerated on the x-axis are the specification model, the

TLM in the synthesizable style, the RTLmodel, and the boardmodel that was downloaded

for testing on the Xilinx FPGA. A top-down design methodology was followed, where

each lower-level model was derived from the next higher-level model. The development

time for each abstraction level is cumulative, in the sense that the indicated development

time at a given level includes the development times for models at higher levels.

A pure specification model without any implementation details took only a few

person-days to code, test, and debug. It can be noted that this time is the same for all

platforms. This is because the specification model does not capture any aspect of the

platform, but only models the functionality. The TLMs took 6–10 days to develop,

depending on the complexity of the platforms. The highest amount of time was spent

in developing the RTL models because of the inherent complexity of modeling and

verification in low-level hardware description languages (HDLs). Once the RTL

models were finalized, it took less than three or four additional days to implement

them successfully on the board. From these results, it is obvious that the bulk of the

design effort is in developing the RTL models, which can be eliminated using syn-

thesizable TLMs. This is because, using the synthesis semantics of the TLM objects, it

would be possible to derive the RTL code in no time using automation tools.

2.3.5.2 Validation time
Figure 2.27 shows the validation time for simulating the four designs at different levels of

abstraction. The simulation time is measured for decoding one frame of input MP3 data.

The board data refers to the actual time it took for the MP3 decoder to run on the board. It

can be clearly seen that the simulation speed of RTLmodels is a huge bottleneck in design

time. The RTL simulation time is of the order of several hours compared with a few

seconds for all other abstraction levels. This verification effort can be drastically min-

imized if there exists a reliable and proven path from the TLM to the RTL models. With

synthesizable TLMs this path can be realized. As a result, most of the validation effort

may be concentrated at the TLM level, where it is more feasible to develop models for

different platforms and also non-prohibitive to validate them extensively.

0

10

20

30

40

50

60

70

Spec. TLM RTL Board
Models

P
e
rs

o
n

-d
a
y
s SW + 0

SW + 1

SW + 2

SW + 4

Figure 2.26 Modeling time grows sharply as we go beyond TLM

88 D. Gajski and S. Abdi

2.4 Related work on TLMs

Transaction-level modeling has gained a lot of attention recently, ever since it was

introduced [1] as part of a high-level SystemC [2,3] modeling initiative. Several use

models and design flows [4,5,6] have been presented centering around TLM. In [14],

the authors present semantics of different TL models based on timing granularity.

Similarly, design optimization and evaluation has also been proposed using practical

TLMs. [7] Generic bus architecture was defined in [8]. There have been several

approaches to automatically generating executable SystemC code from abstract

descriptions. [9] Modeling languages, such as UML and behavioral descriptions of

systems in SystemC, have been proposed. Techniques have been proposed for the

generation of SystemC TLMs from task graphs. [10] Transaction-level model gener-

ation in the SpecC [11] modeling language has been proposed for design-space

exploration [12]. This method generates complex SpecC channel models for TLM in

the SpecC language. Yu and Abdi have presented a novel technique and tool [13,14]

for generating SystemC TLMs from application C code and graphical platforms. The

proposed TLM semantics allow users to generate TLMs without understanding new

system-level design languages, such as SystemC.

On the simulation front, Schirner and D€omer have proposed a result-oriented

modeling (ROM) framework and methodology [15,16] that accurately models a bus

transaction delay with the speed of transaction-level simulation. Siegmund and M€uller

[7] describe with SystemCSV an extension to SystemC and propose SoC modeling at

three different levels of abstraction: physical description at the register-transfer level

(RTL), a more abstract model for individual messages, and a most abstract model

utilizing transactions. Their paper focuses on the interface description allowing a

Spec. RTL Board
Models

SW + 1
SW + 2
SW + 4

0
1
2
3
4
5
6
7
8
9

10

TLM

s

SW + 0

X18.06 h
17.71 h
17.56 h
15.93 h

Figure 2.27 Verification time for TLMs is significantly lower than for RTL

2 Transaction-level system modeling 89

multilevel simulation. In [18], Caldari et al. describe the results of capturing the

AMBA rev. 2.0 bus standard in SystemC. The bus system has been modeled at two

levels of abstraction: first, a bus functional model at RTL, and second, a model at

transaction-level simulating individual bus transactions. [19] The described state

machine-based TLM reaches a speed-up of 100 over the RTL model. Coppola et al.

[20] also propose abstract communication modeling. They present the IPSIM frame-

work and show its efficient simulation. Their paper delivers a general overview of the

SoC refinement and introduces their intra-module interface. Gerstlauer and Gajski

describe in [21] a layered approach and propose models that implement an increasing

number of International Organization for Standardization (ISO) open system inter-

connection (OSI) networking layers. They explain how to arrange communication and

the granularity levels of simulation. Pasricha et al. [22] describe an approach for

modeling on-chip communication architecture using TLMs. The paper introduces the

concept of a model that is cycle-count accurate at transaction boundaries (CCATB) as

a TLM semantics.

2.5 Summary and conclusions

In summary, we presented an overview of the state of the art in transaction-level

modeling of embedded systems. We discussed the semantics of transaction-level

models and provided two different types of TLM classification. The granularity-based

classification positions TLMs between functional specification and pin- or cycle-

accurate implementation. The concept of separating computation from communication

was presented and the channel concept was introduced as a key TLM object. We also

looked at objective-based classification of TLMs for estimation and synthesis. We

realized that TLMs are multi-use and there is a possibility of merging these TLM

definition efforts to create singular models that can be used for early design space

exploration as well as inputs for a new class of system design tools that can bring these

TLMs to a working implementation. Only then can TLMs become successfully

adopted for IP exchange, fast verification, and globally distributed system design.

2.6 References
[1] F. Ghenassia (2005). Transaction-Level Modeling with SystemC: TLM Concepts and

Applications for Embedded Systems. Springer.

[2] T. Gr€otker, S. Liao, G. Martin, and S. Swan (2002). System Design with SystemC. Kluwer

Academic.

[3] Open SystemC Initiative (OSCI) . www.systemc.org.

[4] L. Cai and D. Gajski (2003). Transaction level modeling: an overview. In Proceedings of

the 1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and

System Synthesis, pp. 19–24.

[5] A. Donlin (2004). Transaction level modeling: flows and use models. In Proceedings of

the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and

System Synthesis, pp. 75–80.

90 D. Gajski and S. Abdi

www.systemc.org.

[6] K. Keutzer, A. R. Newton, J.M. Rabaly, and A. Sangiovanni-Vicentelli (2000). System

level design: orthogonalization of concerns and platform-based design. IEEE Transactions

on Computer-Aided Design of Circuits and Systems, 19(12):1523–1543.

[7] O. Ogawa (2003). A practical approach for bus architecture optimization at transaction level.

In Proceedings of the Conference on Design, Automation and Test in Europe, p. 20176.

[8] W. Klingauf, R. Gunzel, O. Bringmann, P. Parfuntseu, and M. Burton (2006). Greenbus – a

generic interconnect fabric for transaction level modeling. In Proceedings of the 43rd

Annual Conference on Design Automation, pp. 905–910.

[9] A. Sarmento, W. Cesario, and A. Jerraya (2004). Automatic building of executable models

from abstract SoC architectures made of heterogeneous subsystems. In Proceedings of the

15th IEEE International Workshop on Rapid System Prototyping.

[10] D.D. Gajski, J. Zhu, R. D€omer, A. Gerstlauer, and S. Zhao (2000). SpecC: Specification

Language and Design Methodology. Kluwer.

[11] S. Klaus, S. Huss, and T. Trautmann (2002). Automatic generation of scheduled SystemC

models of embedded systems from extended task graphs. In Proceedings of the Inter-

national Forum on Design Languages.

[12] D. Shin, A. Gerstlauer, J. Peng, R. Doemer, and D. Gajski (2006). Automatic generation of

transaction-level models for rapid design space exploration. In Proceedings of the Inter-

national Conference on Hardware/Software Codesign and System Synthesis.

[13] L. Yu and S. Abdi (2007). Automatic TLM generation for C based MPSoC design. In

Proceedings of High Level Design Validation and Test (HLDVT).

[14] L. Yu and S. Abdi (2007). Automatic SystemC TLM generation for custom communication

platforms. In Proceedings of International Conference on Computer Design (ICCD).

[15] G. Schirner and R. D€omer (2005). Abstract communication modeling: a case study using

the CAN automotive bus. In A. Rettberg, M. Zanella, and F. Rammig, eds., From

Specification to Embedded Systems Application, Springer-Verlag.

[16] G. Schirner and R. D€omer (2006). Fast and accurate transaction level models using result

oriented modeling. In Proceedings of ICCAD, pp. 363–368.

[17] R. Siegmund and D. M€uller (2001). SystemCSV: an extension of SystemC for mixed

multi-level communication modeling and interface-based system design. In Proceedings of

Design Automation and Test in Europe, pp. 26–32.

[18] M. Caldari, M. Conti, M. Coppola, et al. (2003). Transaction-level models for AMBA bus

architecture using SystemC 2.0. In Proceedings of Design Automation and Test in Europe,

pp. 26–31.

[19] G. Schirner and R. Doemer (2006). Quantitative analysis of transaction level models for

the AMBA bus. In Proceedings of the Design Automation and Test Conference in Europe.

[20] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia (2003). IPSIM: SystemC 3.0

enhancements for communication refinement. In Proceedings of Design Automation and

Test in Europe, pp. 106–111.

[21] A. Gerstlauer and D.D. Gajski (2002). System-level abstraction semantics. In Proceedings

of International Symposium on System Synthesis, pp. 231–236.

[22] S. Pasricha, N. Dutt, and M. Ben-Romdhane (2004). Fast exploration of bus-based on-chip

communication architectures. In Proceedings of International Conference on Hardware/

Software Codesign and System Synthesis (CODESþISSS), pp. 242–247.

2 Transaction-level system modeling 91

3 Response checkers, monitors,
and assertions

Harry Foster

3.1 Introduction

Functional verification is the process of confirming that an implementation has preserved

the intent of the design. The intent of the design might be initially captured in an

architectural or micro-architectural specification using a natural language, while the

implementation might be captured as an RTL model using a hardware description

language. During the verification planning process, there are three fundamental issues

that must be addressed: what functionality of the design must be checked (observability),

how the design is to be checked (input scenarios and stimulus), and when the verification

process is complete (which is often defined in terms of a functional or structural cov-

erage model). Although input stimulus generation, coverage measurement, and output

checking are tightly coupled conceptually, contemporary simulation testbench infra-

structures generally separate these functions into loosely coupled verification compon-

ents. This chapter discusses response checking, monitors, and assertions as techniques of

specifying design intent in a form amenable to verification.

3.1.1 Identifying what to check

Prior to creating response checkers, monitors, or assertions, it is necessary to identify

what must be checked, which is generally part of a project’s verification planning

process. Figure 3.1 illustrates an abstract view of a typical design flow. The flow

begins with developing a natural-language requirements document, which we refer to

as an architectural specification. Next, we create an architectural model to validate the

algorithmic concepts. Once validated, the architectural specification is refined; this

shifts the focus from an algorithmic view of the design to a performance and feature

view required for implementation. We refer to this as the micro-architectural speci-

fication, which partitions the architecture into a number of functional blocks.

Once the micro-architectural specification is approved, serious work begins on the

verification plan, which traditionally has been a simulation-centric verification plan,

although a verification plan might include formal verification, acceleration, emulation,

and other more contemporary verification processes.

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

The verification plan is the specification for the functional verification process. It

typically contains the following elements:

� Overview description of the verification levels (for example, block, cluster, system),

� Architectural, micro-architectural, and implementation feature list that must be verified,

� Verification strategy (for example, directed test, constraint-random simulation,

formal verification, emulation, and so forth),

� Completion criteria;

T Coverage goals,

T Bug rate curve,

T Verification mean time between failure.

� Resource requirements,

� Schedule details,

� Risks and dependencies.

In a contemporary verification plan, deciding what design features will be verified using

static functional formal verification versus dynamic simulation-based approaches

requires an understanding of design behaviors suitable for formal verfication. The fol-

lowing section classifies various design behaviors.

3.1.2 Classifying design behavior

Deciding whether to create a response checker, monitor, or assertion to verify a

particular design feature is influenced by the target verification method we have

Architectural
spec.

Architectural
model

µ-arch.
spec.

Verification
plan

RTL
implementation

Verification
implementation

Functional
verification

Synthesis,
timing,

physical flow

Figure 3.1 Abstract view of a typical design flow

3 Response checkers, monitors, and assertions 93

selected during the verification planning process. For example, it might be possible

to create a set of declarative assertions written in either the IEEE Std 1850–2005

Property Specification Language (PSL) [1] or IEEE Std 1800–2005 System Verilog [2]

assertion language that would work in both simulation and formal verification. As an

alternative, it might be significantly easier to capture a particular simulation-based data

integrity check using a response checker written in C or Cþþ. Deciding an appropriate
verification method often requires an understanding of which design behaviors are best

suited for a particular method. This section classifies various design behaviors and

suggests appropriate verification techniques.

We can classify the behavior of today’s digital systems as reactive or transform-

ational. A reactive system is a system that continuously interacts with its environment.

In other words, the current internal state of the system combined with the environment’s

applied input stimuli to the system determine how the system will react in terms of its

next-state and output response. A classic example of a reactive system is a traffic-light

controller. In fact, most controllers are reactive by definition, where their inputs arrive in

endless and perhaps unexpected sequences. A transformational system, on the other

hand, has all inputs ready when invoked – and an output response is produced after a

certain computation period. A classic example of a transformational system is a floating-

point multiplier.

We can refine our system-behavior classification into design behavior that is either

sequential or concurrent.

Sequential designs, as shown in Fig. 3.2, typically operate a single stream of input

data, even though there may be multiple packets at various stages of the design

pipeline at any instant. An example of such sequential behavior is an instruction

decode unit that decodes a processor instruction over many stages. Another example is

an MPEG encoder block that encodes a stream of data. Often, the behavior of a

sequential hardware block can be coded in a software language such as C or SystemC.

In the absence of any other concurrent events that can interfere with the sequential

computation, these blocks can be adequately verified in simulation, often validating

against a C reference model.

Formal verification, on the other hand, usually faces state-explosion for sequential

designs because most interesting end-to-end properties typically involve most state-

holding elements of this class of design.

Concurrent designs, as shown in Fig. 3.3, deal with multiple streams of input data

that collide with each other. An example is a tag generator block that serves multiple

requesting agents and concurrently handles tag returns from other agents. Another

example is an arbiter, especially when it deals with complex priority schemes. Both

Figure 3.2 Sequential paths

94 H. Foster

examples predominately have control state-holding elements in the cone-of-influence

for the response checker (or assertion), as shown in Fig. 3.4.

An example of a datapath-intensive concurrent design is a switch block negotiating the

traffic of packets going from multiple ingress ports to multiple egress ports. While the

cone-of-influence of this type of design can havemany state-holding elements, especially if

the datapath is wide, a clever use of decomposition can verify correctness of one datapath

bit at a time using functional formal verification (for example, model checking). This

process of decomposition effectively reduces a predominantly datapath problem to a

predominantly control problem. The exponential number of interesting input combinations

makes achieving high simulation-based coverage challenging on concurrent designs.

Another way to characterize design blocks is as either control or datapath oriented.

We can further characterize datapath design blocks as either data transport or data

transform, as shown in Fig. 3.5.

Data transport blocks essentially transport packets that are generally unchanged

from multiple input sources to multiple output sources, for example, a PCI express

Irrelevant
logic

Design
block

Response
checker

Cone of
influence

Figure 3.4 Cone-of-influence

Figure 3.3 Concurrent paths

Design
verification

Data transport Data transform

Control Datapath

Figure 3.5 Design behavior

3 Response checkers, monitors, and assertions 95

data link layer block. Data transform blocks perform a mathematical computation or

an algorithm over different inputs, for example, an IFFT convolution block.

What makes data transport blocks amenable to formal verification is the inde-

pendence of the bits in the datapath, often making the functional formal verification

independent of the width of the datapath. Unfortunately, this kind of decomposition is

usually not possible in data transform blocks.

3.1.2.1 Design behavior best suited for functional formal verification
As discussed, functional formal verification is effective for control logic and data

transport blocks containing high concurrency. Examples of these blocks are: arbiters of

many different kinds, on-chip bus bridges, power management units, DMA controllers,

host-bus interface units, schedulers (implementing multiple virtual channels for QoS),

interrupt controllers, memory controllers, token generators, credit manager blocks, and

digital interface blocks (PCI express).

3.1.2.2 Design behavior better suited for simulation or emulation
In contrast, design blocks that generally do not lend themselves to functional formal

verification using model checking tend to be sequential in nature and potentially

involve some type of data transformation. Verifying these types of designs is generally

better accomplished using simulation or emulation. Examples of designs that perform

mathematical functions or involve some type of data transformation include floating-

point units, graphics shading units, convolution units in DSP designs, and MPEG

decoders.

3.1.3 Observability and controllability

Fundamental to the discussion of response checkers, monitors, and assertions is

understanding the concepts of controllability and observability. Controllability refers

to the ability to influence an embedded finite state-machine, structure, or specific line

of code within the design by stimulating various input ports. While in theory a

simulation testbench has high controllability of the design model’s input ports during

verification, it can have very low controllability of a model’s internal structure.

Observability, in contrast, refers to the ability to observe the effects of a specific

internal finite state-machine, structure, or stimulated line of code. Thus, a testbench

generally has limited observability if it only observes the external ports of the design

model (because the internal signals and structures are often hidden from the testbench).

To identify a design error using the testbench approach, the following conditions

must hold (that is, evaluate true):

. 1. The testbench must generate a proper input stimulus to activate (that is, sensitize)

a bug,

. 2. The testbench must generate a proper input stimulus to propagate all effects

resulting from the bug to a response checker or monitor attached to an output port.

96 H. Foster

It is possible, however, to set up a condition where the input stimulus activates a design

error that does not propagate to an observable output port (as shown in Fig. 3.6). In these

cases, the first condition cited above applies, but the second condition is absent.

Embedding internal assertions in the design model increases observability. In this

way, the verification environment no longer depends on generating a proper input

stimulus to propagate a bug to a response checker attached to an output port. Thus, any

improper or unexpected behavior can be caught closer to the source of the bug, in

terms of both time and location in the design intent.

While assertions help solve the observability challenge in simulation, they do not

help with the controllability challenge. However, by adopting an assertion-based,

constraint-driven simulation environment, or applying formal property checking

techniques to the design assertions, we are able to address the controllability challenge.

3.2 Testbench verification components

Historically, testbenches have been monolithic programs where checkers and stimulus

generators were often tightly coupled. However, today’s contemporary testbenches are

generally partitioned into components that are organized abstraction layers, as shown

in Fig. 3.7. [3]

At the lowest level of abstraction is the design under verification (DUV), which is a

signal-level, cycle-accurate model whose communication occurs through pins.

Transactors (such as drivers, monitors, and responders) are abstraction converters

responsible for adapting higher-level, untimed (or partially timed) transactions into a

cycle-accurate sequence of interface signal values. Hence, it is unnecessary for the

transaction level to understand the specific details of a DUV’s interface protocols since

these details are isolated within the transactors.

Figure 3.8 illustrates how various verification components might be connected in a

contemporary testbench.

The details of the verification components for our contemporary testbench are given

in Table 3.1.

Bug

0

1

1

Figure 3.6 Poor observability misses bugs

3 Response checkers, monitors, and assertions 97

In general, testbench verification components, such as the ones illustrated in our con-

temporary testbench, are written using a combination of procedural programming lan-

guages and hardware description languages (for example, C/Cþþ, SystemC, VHDL,

Verilog, or SystemVerilog), as well as declarative temporal languages (for example, PSL).

Control Test controller

Testbench
specific

Analysis Coverage
collectors

Scoreboards Golden
models

Performance
analyzers

Stimulus
generators SlavesMasters

Constraints

Environment

Design
specific

Drivers Monitors Responders

Protocol
specific

Transactors

DUV

Pins

Untimed
transactions

Untimed or
partially timed
transactions

Transactions

Figure 3.7 Contemporary simulation testbench layers

DUVDriver

Monitor

Responder

Monitor

Scoreboard /
response checker

Stimulus
generator

Coverage
collector

Test
controller

Slave

Transaction
level

Cycle-accurate
level

= Assertion

Figure 3.8 Contemporary testbench verification component interconnect

98 H. Foster

3.3 Assertion-based verification

The need for an advanced verification methodology, with improved observability of

design behavior and improved controllability of the verification process, has increased

significantly. Over the last decade, a methodology based on the notion of “assertions”

has been identified as a powerful verification paradigm that can ensure enhanced

productivity, higher design quality, and, ultimately, faster time to market and higher

value to engineers and end users of electronics products. [4] Assertions, as used in

this context, are concise, declarative, expressive, and unambiguous specifications of

desired system behavior, which are used to guide the verification process.

Assertions can be expressed using a temporal property language, such as the IEEE

1850 PSL. In addition to improving observability, using assertions results in higher

design quality through:

� Improved understanding of the design space – resulting from the engineer’s

intimate analysis of the requirements, which often uncovers design deficiencies

prior to RTL implementation,

Table 3.1 Contemporary testbench verification components

Testbench component Description

DUV Device under verification. This is a pin-level component whose function is being

verified by the testbench.

Stimulus generator This component generates transaction-level stimulus, either directed or random. It

contains the algorithms and constraints used to generate directed random stimulus.

Driver The driver converts the transaction-level stimulus into pin activations on the DUV.

Monitor The monitor is a complement to the driver. It watches pin activity and converts it to

transactions. The monitor is passive; it does not change any pins.

Responder A responder is similar to a driver. It connects to a bus and will drive activity on the

bus. The responder responds to activity on the bus rather than initiating it.

Slave A slave is a transaction-level device whose activity is driven by the responder.

Scoreboard A scoreboard tracks transaction-level activity from two or more devices and keeps

track of information that can show if the DUV is functioning properly. For

example, it might track packets in versus packets out to see if all the packets sent

into a communication device made it out intact.

Response checker A response checker is connected like a scoreboard. Rather than just tracking useful

metrics, a response checker must determine whether all the responses of the DUV are

correct with respect to the stimulus. In effect, it is a transaction-level model of the DUV.

Coverage collector A coverage collector has counters organized in bins. It simply counts the

transactions that are sent to it and puts the counts in the appropriate bins.

Test controller The test controller is the decisionmakerwithin the testbench. It completes the loop from

stimulus generator through driver, monitor, scoreboard, and coverage collector.

Assertion An assertion is a specialized checker that monitors a combination of signals for correct

temporal behavior. Assertions can be specified using a temporal property-specification

language (for example, PSL), and are synthesized into checkers as part of the

simulation environment. Alternatively, an assertion can be specified using a library

of pre-synthesized assertion checkers (for example, the Accellera OVL).

3 Response checkers, monitors, and assertions 99

� Improved communication of design intent among multiple stakeholders in the design

process,

� Improved verification quality through the adoption of assertion-based verification

techniques.

3.3.1 Brief introduction to SystemVerilog assertion

This section provides an overview of IEEE Std 1800–2005 SystemVerilog Assertion

(SVA), which is demonstrated in Section 3.4.

A sequence is a finite series of Boolean events, where each expression represents a

linear progression of time. Thus, a sequence describes a specific behavior. A Sys-

temVerilog sequence is often described using regular expressions. This enables us to

specify concisely a range of possibilities for when a Boolean expression must hold.

Sequences can be constructed as follows (where b is a Boolean expression):

b A Boolean expression is a sequence in its simplest form,

sequence ## sequence A sequence constructed by concatenating two sequences.

We can specify a time window with a cycle delay operation and a range.

sequence ## [range] sequence A sequence constructed by concatenating two

sequences.

SystemVerilog lets the user specify repetitions when defining sequences of Boolean

expressions. The repetition counts can be specified as either a range of constants or a

single constant expression. SystemVerilog supports three different types of repetition

operator, as described in the following section.

3.3.1.1 Consecutive repetition
The consecutive repetition operator [*m:n] describes a sequence (or Boolean expression)

that is consecutively repeated with one cycle delay between each repetition. For example,

b½	2

specifies that Boolean expression b is to be repeated for exactly two clock cycles. This

is the same as specifying:

b ## 1 b:

In addition to specifying a single repeat count for a repetition, SystemVerilog

permits the specification of a range of possibilities for a repetition. SystemVerilog

range repeat-count rules are summarized as follows:

� Each repeat count specifies a minimum and maximum number of occurrences. In

the example [*m:n], m is the maximum and n <¼ m.

� The repeat count [*n] is the same as [*n:n].

� Sequences as a whole cannot be empty.

100 H. Foster

� If n is 0, then there must be either a prefix or a postfix term within the sequence

specification.

� The keyword $ can be used as a maximum value within a repeat count to indicate

the end of simulation. For formal verification tools, $ is interpreted as infinity (for

example, [*1:$] describes a repetition of one to infinity).

3.3.1.2 Non-consecutive count repetitions
The non-consecutive count repetition operation [*n:m] describes a sequence where

one or more clock cycle delays are possible between the repetitions. The resulting

sequence may proceed beyond the last Boolean expression occurrence in the repeti-

tion. For example,

a # # 1 b ½¼ 1
 # # 1 c

is equivalent to the sequence:

a # # 1 ! b ½	0 : $
 # # 1 b !! ! b½	0 : $
1 c:

In other words, there can be any number of cycles between a and c as long as there is

one b. In addition, there can be any number of cycles between a and the occurrence of

b, and any number of cycles between b and the occurrence of c (that is, b is not

required to precede c by exactly one cycle).

3.3.1.3 Non-consecutive exact repetitions
The non-consecutive exact repetition operator [->n:m] describes a sequence where

a Boolean expression is repeated with one or more cycle delays between the repetitions

and the resulting sequence terminates at the last Boolean expression occurrence in the

repetition. For example,

a ## b½�>1
 # # c

is equivalent to the sequence:

a ## 1 !b½	0 : $
#1 b# #1 c:

In other words, there can be any number of cycles between a and c as long as there is

one b. In addition, b is required to precede c by exactly one cycle.

3.3.1.4 Sequence implication
SystemVerilog also supports operators that build complex properties out of

sequences:

seq1 |-> seq2 – sequence seq2 starts in the last cycle of

sequence seq1 (overlap),

seq1 |¼> seq2 - sequence seq2 starts in the first cycle after

sequence seq1

3 Response checkers, monitors, and assertions 101

3.3.1.5 Built-in functions
Assertions are commonly used to evaluate certain specific characteristics of a design

implementation, such as whether a particular signal is onehot. The following system

functions are included to facilitate this common assertion functionality:

� $onehot () returns true when one bit of a multi-bit expression is high.

� $onehot0 () returns true when zero or one bit of a multi-bit expression is high.

� $stable () returns true when the previous value of the expression is the same as

the current value of the expression.

� $rose () returns true when an expression was previously zero and the current value

is non-zero. If the expression length is more than one bit, then only bit zero is used

to determine a positive edge.

� $fell () returns true when an expression was previously one and the current value

is zero. If the expression length is more than one bit, then only bit zero is used to

determine a positive edge.

3.3.1.6 Declarations
SystemVerilog Assertion supports named property and sequence declarations with

optional arguments, which facilitate reuse. These parameterized declarations can be

referenced by name and instantiated in multiple places in designs with unique argu-

ment values. For example, we could specify the property that a and b are mutually

exclusive as shown in Fig. 3.9.

3.4 Assertion-based bus monitor example

Assertions can be a very powerful tool to check the behavior of a system, but they can

also be extremely useful in gathering coverage information about the transactions that

have occurred. In looking at the bigger verification problem, however, a question often

arises: Is it possible to create an assertion-based bus monitor that can be used in both

simulation and formal verification? This section demonstrates how to create an

assertion-based bus monitor that can be reused within a formal verification environ-

ment. The example is a simple unpipelined bus protocol, which is based on the

AMBA� Advanced Peripheral Bus (APB) protocol. [5] The goal in this section is to

demonstrate the process of creating an assertion-based bus monitor, not to teach you

all the details about a particular industry standard. Hence, I present a generic, simple,

unpipelined-parallel-bus protocol design, which should allow you to focus on the

process without getting overwhelmed by details.

property p_mutex (clk, a, b);
 @(posedge clk)
 !(a & b);
endproperty
assert property (p_mutex(clk, enable1, enable2);

Figure 3.9 SystemVerilog Assertion property declaration example

102 H. Foster

Let us begin by examining a simple, unpipelined parallel-bus protocol design as

illustrated in Fig. 3.10.

For this example, all signal transitions relate only to the rising edge of the bus clock

(bclk).

Table 3.2 summarizes the bus interface signals.

We use a conceptual state machine to describe the operation of the bus for slave 0

(bsel [0]). Figure 3.11 illustrates its state diagram.

After a reset (that is, brst_n ¼¼ 0), the simple parallel bus is initialized to its

default INACTIVE state, which means that both bsel and ben are de-asserted. To

initiate a transfer, the bus moves into the start state, where a slave select signal, bsel

[n], is asserted by the master, selecting a single slave component (in our case, bsel

[0]). The bus only remains in the start state for one clock cycle, and will then move

to the active state on the next rising edge of the clock. The active state only lasts a

bclk

 brst_n

 bsel[0]

 ben

 baddrI/F I/F

Master Slave 0

 bwrite

 bdata

Figure 3.10 A simple, unpipelined-parallel-bus protocol design

Table 3.2 Signal description

Name Summary Description

bclk Bus clock The rising edge if bclk is used to time all

bus transfers.

brst_n Bus reset An active low bus reset.

bsel Slave select signal These signals indicate that a slave has been

selected. Each slave has its own select (for

example, bsel[0] for slave 0).

ben Strobe enable Use to time bus accesses.

bwrite Transfer When high, write access.

direction When low, read access

baddr[31:0] Address Address bus.

bdata[31:0] Data bus Write data driven when bwrite is high.

Read data read when bwrite is low.

3 Response checkers, monitors, and assertions 103

single clock cycle for the data transfer. Then, the bus will move back to the start state

if another transfer is required, which is indicated by the selection signal remaining

asserted. Alternatively, if no additional transfers are required, the bus moves back to

the inactive state when the master de-asserts the slave’s select and bus enable signals.

The address (baddr[31:0]), write control (bwrite), and transfer enable (ben)

signals are required to remain stable during the transition from the start to active state.

However, it is not a requirement that these signals remain stable during the transition

from the active state back to the start state.

3.4.1 Basic write operation

Figure 3.12 illustrates a basic write operation for the simple parallel bus interface

involving a bus master and slave zero (bsel [0]).

At clock one, since both the slave select (bsel [0]) and bus enable (ben) signals

are de-asserted, our bus is in an inactive state, as previously defined in the conceptual

state machine. The state variable in the basic write operation waveform is actually a

conceptual state of the bus, not a physical state implemented in the design.

The first clock of the transfer is called the start cycle, which the master initiates by

asserting one of the slave select lines. For our example, the master asserts bsel [0],

and this is detected by the rising edge of clock two. During the start cycle the master

places a valid address on the bus and, in the next cycle, places valid data on the bus.

These data will be written to the currently selected slave component.

The data transfer (referred to as the active cycle) actually occurs when the master

asserts the bus enable signal. In our case, it is detected on the rising edge of clock

three. The address, data, and control signals all remain valid throughout the active

cycle.

No transfer

No transfer

Set-up

Set-up

Inactive
bsel[0] == 0

ben == 0

Start
bsel[0] ==1
ben == 0

Active
bsel[0] ==1
ben == 1

Transfer

Figure 3.11 Conceptual state machine describing bus operation

104 H. Foster

When the active cycle completes, the bus enable signal (ben) is de-asserted by the

bus master, and thus completes the current single-cycle write operation. If the master

has finished transferring all data to the slave (that is, there are no more write oper-

ations), then the master de-asserts the slave select signal (for example, bsel [0]).

Otherwise, the slave-select signal remains asserted, and the bus returns to the start

cycle to initiate another write operation. It is not necessary for the address data values

to remain valid during the transition from the active cycle back to the start cycle.

3.4.2 Basic read operation

Figure 3.13 illustrates a basic read operation for the simple parallel bus interface

involving a bus master and slave zero (bsel [0]).

Just like the write operation, since both the slave select (bsel[0]) and bus enable

(ben) signals are de-asserted at clock one, the bus is in an inactive state, as the

conceptual state machine previously defined. The timing of the address, write, select,

and enable signals are all the same for the read operation as they were for the write

operation. In the case of a read operation, the slave must place the data on the bus for

the master to access during the active cycle, which the basic read operation figure

0

Inactive Start

Data 1

Addr 1

Active Inactive

baddr

bwrite

bsel [0]

ben

bdata

state

1 2 3 4

Figure 3.12 Basic write operation

0

Inactive Start

Data 1

Addr 1

Active Inactive

baddr

bwrite

bsel [0]

ben

bdata

state

1 2 3 4

Figure 3.13 Basic read operation

3 Response checkers, monitors, and assertions 105

illustrates at clock three. Like the write operation, back-to-back read operations are

permitted from a previously selected slave. However, the bus must always return to the

start cycle after the completion of each active cycle.

3.4.3 Unpipelined parallel bus interface requirements

When creating a set of SVA interface assertions for the simple parallel bus, the first

task is to identify a comprehensive list of natural language requirements. We begin by

classifying the requirements into categories, as shown in Table 3.3.

To create a set of SystemVerilog assertions for our simple parallel bus, we begin by

creating some modeling code to map the current values of the bsel and ben control

signals (driven by the bus master) to the conceptual bus states. We then write a set of

assertions to detect protocol violations by monitoring illegal bus state transitions, as

shown in Fig 3.14.

We are now ready to write assertions for our bus interface requirements. Our first

requirement states that after a reset, the bus must be initialized to an inactive state (which

means that the bsel signals and ben are de-asserted). Hence, Fig. 3.15 demonstrates

how to write a SystemVerilog property for this requirement, and then asserts the property.

Similarly, we can write assertions for all the bus legal state requirements as shown

in Fig 3.16.

In the previous example, we created a set of properties that specifies the legal bus

state transitions, as defined by our conceptual state machine.

� Property p_valid_inactive_transition specifies that if the bus is currently

in an inactive state, then the next state of the bus must be either inactive again or a start

state.

Table 3.3 Unpipelined requirements

Property name Summary

Bus legal state

p_state_reset_inactive Initial state after reset is inactive

p_valid_inactive_transition Active state does not follow inactive

p_valid_start_transition Inactive state does not follow start

p_valid_active_transition Active state does not follow active

p_no_error_state Bus state must be valid

Bus select

p_bsel_mutex Slave select signals are mutually exclusive

p_bselX_stable Slave select signals remain stable from start to active

Bus address

p_baddr_stable Address remains stable from start to active

Bus write control

p_bwrite_stable Control remains stable from start to active

Bus data

p_wdata_stable Data remains stable from start to active

106 H. Foster

� Property p_valid_start_transition specifies that if the bus is currently in

a start state, then on the next clock cycle, the bus must be in an active state.

� Property p_no_active_to_active specifies that if the bus is in an active

state, then on the next clock cycle, the bus must be in either an inactive state or a

start state.

� Finally, property p_no_error_state specifies that only valid combinations of

psel and en are permitted on the bus.

For the bus select requirements, we can write a set of SVA properties and assert these

properties as shown in Fig. 3.17.

The remaining requirements in Figure 3.18 specify that the bus controls, address,

and data signals must remain stable between a bus start state and a bus active state.

property p_state_reset_inactive;
 @(posedge bclk)
 $rose(brst_n) |-> (state==INACTIVE);
endproperty
assert property (p_state_reset_inactive);

Figure 3.15 Bus-must-reset-to-inactive-state requirement

module unpipelined_bus_mon (
 bclk,

brst_n,
 bsel,
 ben,
 bwrite
);

parameter MAX_SLAVES = 4;
 input bclk;
 input brst_n;
 input MAX_SLAVES–1:0] bsel;
 input ben;
 input bwrite;

 localparam INACTIVE = 2'b00;
 localparam START = 2'b01;
 localparam ACTIVE = 2'b10;
 localparam ERROR = 2'b11;

 wire bus_reset = ~brst_n;
 wire bus_inactive = ~|(bsel) && ~ben;
 wire bus_start = |(bsel) && ~ben;
 wire bus_active = |(bsel) && ben;

wire bus_error = ~|(bsel) && ben;
wire [1:0] state; // conceptual state machine

 assign state = bus_reset ? INACTIVE :
bus_inactive ? INACTIVE :
bus_start ? START :
bus_active ? ACTIVE :

ERROR ;
 // SystemVerilog Assertions here

endmodule

Figure 3.14 Modeling code mapping bus to conceptual states

3 Response checkers, monitors, and assertions 107

Although we did not explicitly state a low power requirement, many parallel buses

require that the data and address lines hold their previous values to prevent switching

(and, thus, consuming power). We can easily extend the properties in our previous

example to check for stability between the inactive-to-inactive state, the active-to-

inactive state, and the active-to-start state.

3.4.4 Unpipelined parallel bus interface coverage

The objective of adding coverage into our assertion-based monitor is to identify the

proper occurrence for various types of bus transaction, which will ultimately help us

analyze the quality of our simulation’s random-generated stimulus. We use our

assertion-based monitor to convert the bus pin-level activity to transaction streams,

which are then reported to a coverage collector (see Figure 3.8). The coverage

property p_bsel_mutex;
 @(posedge bclk) disable iff (!brst_n)
 $onehot0(psel);
endproperty
assert property (p_bsel_mutex);

Figure 3.17 Bus-select-mutually-exclusive requirements

property p_valid_inactive_transition;

 @(posedge bclk) disable iff (!rst_n)

 (state==INACTIVE) |=>

 (state==INACTIVE || state==START);

endproperty

assert property (p_valid_inactive_transition);

property p_valid_start_transition;
 @(posedge bclk) disable iff (!rst_n)
 (state==START) |=> (state==ACTIVE);
endproperty
assert property (p_valid_start_transition);

property p_valid_active_transition;
 @(posedge bclk) disable iff (!rst_n)
 (state==ACTIVE) |=>
 (state==START || start==INACTIVE);
endproperty
assert property (p_valid_active_transition);

property p_no_error_state;
 @(posedge bclk) disable iff (!brst_n)

(state!=ERROR);
endproperty
assert property (p_no error_state);

Figure 3.16 SystemVerilog assertions for bus legal-state requirements

108 H. Foster

collector can then count activity in terms of transactions or fields contained in trans-

action objects.

When creating a set of SVA interface assertions for our simple parallel bus, our

first task is to identify a list of natural language coverage items as shown in

Table 3.4.

Figure 3.19 demonstrates how to add coverage to our assertion-based monitor using

a contemporary testbench analysis communication facility (for example, see

AVM [3]).

The property p_transaction tracks the occurrence of (possibly consecutive) trans-

actions on the bus. It uses the local variables psize and pkind to record the burst size

and the type of the transaction. The type of transaction is recorded in the pkind local

variable of the property when the state transitions from inactive to start, at which time

the psize counter, which will record the size of the burst, is initialized to zero. As for

property p_bselX_stable;
 @(posedge bclk) disable iff (!brst_n)
 (state==START) |=> $stable(bsel);
endproperty
assert property (p_bselX_stable);

property p_bwrite_stable =
 @(posedge bclk) disable iff (!brst_n)
 (state==START) |=> $stable(bwrite);
endproperty
assert property (p_bwrite_stable);

property p_wdata_stable

 @(posedge bclk) disable iff (!brst_n)
 (state==START) |=> $stable(wdata);

endproperty

assert property (p_wdata_stable);

property p_baddr_stable;
 @(posedge bclk) disable iff (!brst_n)
 (state==START) |=> $stable(baddr);
endproperty
assert property (p_baddr_stable);

Figure 3.18 Bus-must-remain-stable requirements

Table 3.4 Unpipelined coverage items

Coverage item name Summary

c_transaction Cover types of transactions (bwrite=1 for write,

bwrite=0 for read) and cover burst length

(single or back-to-back transactions)

3 Response checkers, monitors, and assertions 109

the state diagram in Fig. 3.11, and the p_valid_start_transition property in Table 3.3,

the state must transition from start to active on the next clock, at which time we

increment the psize counter. After this, the state may, for an unspecified number of

times (including zero), cycle between start and active, while incrementing psize in

each active state to reflect the size of the burst. After the last active state, it will

transition back to inactive. On successful completion of this property, the docov()

function is called, which allows the gathered coverage information to be communi-

cated to the rest of the testbench.

3.4.5 Analysis communication in the testbench

The simplest way to communicate coverage or other analysis information from a

module in today’s contemporary testbenches (for example, the AVM [3]) is to use

the analysis_fifo, which is a specialized transaction-level communication object.

The analysis_fifo is modeled as a class. The monitor module accesses the

write() method of the fifo, which is a non-blocking function that stores the

specified transaction in the fifo, from which the coverage collector will retrieve

it. The monitor module is defined with an analysis_fifo port as shown in

Fig. 3.20:

As you can see, SystemVerilog allows the monitor module to have an input port

whose type is the parameterized analysis_fifo class. Our contemporary testbench

supports connecting the “other” side of the analysis_fifo object to the coverage

collector, which may itself be implemented as either a module or a class. The

property p_transaction;
 int psize;
tr_t pkind;

 @(posedge bclk)
((state==INACTIVE)

 ##1 (state==START),
 psize=0, pkind = tr_t'(bwrite)) |=>
 ((state==ACTIVE), ++psize)
 ##1 ((start==START) ##1
 ((state==ACTIVE), ++psize)) [*0:$]
 ##1 ((state==INACTIVE), docov(size, pkind));
 endproperty
 c_transaction: cover property (p_transaction);

 function void docov (tr_s sval, tr_t kval);
 mem_cov_t tr = new();
 tr.size = sval;
 tr.kind = kval;
 tr.trEnd = $time;
 af.write(tr); // send to analysis_fifo

 endfunction

Figure 3.19 SystemVerilog coverage property

110 H. Foster

mem_cov_t object type contains all the information needed by the coverage collector

to report the transactions that occurred. In a similar manner, any of the other properties

could be extended to communicate success or failure information back to the testbench

as well.

3.5 Summary

In this chapter, I discussed response checking, monitors, and assertions as techniques of

specifying design intent in a form amenable to verification. Functional verification is the

process of confirming that the intent of the design has been preserved in its imple-

mentation. The intent of the design might initially be captured in an architectural or

micro-architectural specification using a natural language, while the implementation

might be captured as an RTL model using a hardware description language. During

the verification planning process, there are three fundamental issues that must be

addressed: what functionality of the design must be checked (observability), how

the design is to be checked (input scenarios and stimulus), and when the verification

process is complete (which is often defined in terms of a functional or structural cov-

erage model). Although input stimulus generation, coverage measurement, and output

checking are conceptually tightly coupled, contemporary simulation testbench infra-

structures generally separate these functions into loosely coupled verification compon-

ents. With the emergence of assertion and property language standards, such as the IEEE

PSL and SVA, design teams are investigating assertion-based verification techniques.

Yet there is a huge disconnection between attempting to specify an ad hoc set of

assertions and implementing an effective verification flow that includes a comprehensive

simulation checker. In this chapter, I demonstrated a systematic set of steps that have

been found effective for creating assertion-based bus monitors that can be used within a

contemporary testbench.

module unpipelined_bus_mon (
 bclk,
 brst_n,
 bsel,
 ben,
 bwrite,

analysis_fifo #(mem_cov_t) af // analysis_fifoa
);
 ...
 endmodule

 module top;

analysis_fifo #(mem_cov_t) af = new(“mon_fifo”);

 unpipelined_bus_mon mon(.af(af) ,…);

 ...

 endmodule

Figure 3.20 Contemporary testbench coverage analysis

3 Response checkers, monitors, and assertions 111

3.6 References
[1] IEEE Standard for Property Specification Language (PSL), IEEE Std. 1850–2005.

[2] IEEE Standard for SystemVerilog: Unified Hardware Design, Specification and Verification

Language, IEEE Std. 1800–2005.

[3] Verification Cookbook: Advanced Verification Methodology (SystemC and SystemVerilog),

Mentor Graphics Corporation, Version 1.2, October 28, 2005.

[4] H. Foster, A. Krolnik, and D. Lacey (2004). Assertion-Based Design. 2nd edn., Kluwer.

[5] ARM (1999). AHB – AMBA Specification, rev. 2.0. ARM.

112 H. Foster

4 System debugging strategies

Wayne H. Wolf

4.1 Introduction

Debugging embedded software is harder than debugging programs on a PC. In general-

purpose software, our overriding goal is functionality or input–output behavior. Embedded

systems have different andmore stringent design goals than business or scientific software.

Functional correctness is still a given, but it is only the first of many requirements placed on

the system. These goals make embedded system debugging a very different problem.

First, embedded systems must meet real-time performance goals. Almost meeting

the deadline doesn’t count – a task must finish all its work by its deadline. Debugging a

program for performance requires a different set of tools than is used for functional

debugging. Real-time debugging is closely related to the underlying hardware archi-

tecture on which the program will execute, and so is much more closely tied to the

platform than is functional debugging.

Second, many embedded systems are power and energy limited. Even embedded

processors that are not powered by a battery are generally designed to power budgets to

reduce heat dissipation and system cost. Like real-time performance, power and energy

consumption are closely related to the hardware platform and require very different tools.

In both these cases, the characteristics and organization of the hardware platform are

important determinants of the program characteristics that we want to measure and

debug. When debugging programs for workstations, most of the platform dependen-

cies that we care about come from the operating system and associated libraries. Most

programmers don’t worry about, for example, the details of the memory system. But

debugging real-time systems must take into account all aspects of the hardware:

processors, memory system, and I/O.

Several features of a platform that can influence real-time performance and power or

energy consumption are:

� The pipeline introduces dependencies between nearby instructions that can cause

data-dependent variations in performance and power consumption.

� The cache can have huge effects on performance. Because cache misses are expensive,

cache behavior also has a profound influence on power and energy consumption.

� Bus and network contention can cause real-time performance problems.

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

All this is complicated by the fact that many embedded systems are multiprocessors.

Figure 4.1 shows a block diagram of the TI OMAP, which is designed for multimedia-

enabled cell phones. This platform provides two processors, an ARM and a DSP, that

communicate via shared memory and mailboxes. The ARM tends to perform general-

purpose functions and uses the DSP as a slave to perform computationally intensive

signal processing. Debugging even a two-processor system requires substantial

knowledge of the middleware that governs the interactions between the processors. We

should expect to see more and more embedded platforms with tens of processors and

even more complex debugging processes.

4.2 Debugging tools

Debugging embedded systems requires a large set of tools. Some debugging tasks can be

performed with simulator-based tools while other sorts of debugging require hardware.

Software debuggers are the base-level debugging tool. A software debugger allows

the programmer to stop execution of the program, examine the state of the machine,

and in some cases alter the program state before resuming execution.

Profilers can be surprisingly useful. A profiler counts the number of times that

subroutines or blocks of code are executed. Profilers don’t tell you details of the

platform behavior, but they can be used as early warning devices to spot initial per-

formance problems.

Simulators allow more detailed analysis of the program’s behavior on a platform.

Simulators provide more and easier state visibility than is possible with most plat-

forms. A wide variety of simulators exist:

� Cache simulators simulate the state of the cache instruction-by-instruction but not

all the details of the rest of the processor.

� Cycle-accurate simulators simulate the exact number of clock cycles required to

execute instructions.

� Power simulators estimate the energy consumption of programs on a cycle-by-cycle

basis.

C55x

ARM9

Memory/
processor
interface

Bridge
I/O

devices

Figure 4.1 TI OMAP architecture

114 W. H. Wolf

Platforms allow us to execute code with actual inputs and outputs. A platform may be

an exact copy of the target system or it may be a variation. Certain types of I/O

behavior are hard to simulate and much easier to test using platforms. We may not

have simulators for some platforms and, therefore, be forced to debug on hardware.

Platforms do generally provide less visibility than do simulators.

Logic analyzers and oscilloscopes can be useful for performance and power

analysis. Most programmers prefer software-oriented approaches to debugging, but

measuring the platform directly may uncover some transient information that would be

hard to catch otherwise. Analog measurements triggered by logic analyzers can be

used to make short-term power measurements.

Test generation and test coverage tools are often used for functional debugging.

However, relatively little is known about how to generate tests or measure test cov-

erage for real-time performance or power and energy analysis.

In-circuit emulators allow us to examine the state of a processor that is installed in a

system.

4.2.1 Logic analyzers and pattern generators

Logic analyzers [1] allow a large number of digital signals to be measured simul-

taneously. At its most basic level, a logic analyzer is a bank of very simple oscillo-

scopes. The measurement probes of a logic analyzer do not record voltages as

accurately as would a traditional oscilloscope, but they provide enough resolution to

determine the logic level of a signal (low, high, unknown). Because the logic analyzer

can record many channels at once – high-end logic analyzers can record over 100

channels – they can provide a snapshot view of the behavior of the digital system.

As shown in Fig. 4.2, a logic analyzer consists of an array of probes and conversion

circuits. Trace capture is initiated by a trigger. The trigger may be simple, such as

when a signal goes high. More complex triggers are Boolean combinations of signals.

The most complex triggers are specified by state machines – first see one signal, then

another, etc. Once the logic analyzer is triggered, data are captured periodically from a

A/D

Memory Display

Probe A/D...

Figure 4.2 Organization of a logic analyzer

4 System debugging strategies 115

clock signal supplied by the unit under test. In some cases, a series of asynchronous

events may be used to clock the trace capture. The captured traces are stored in a

buffer memory for display. Logic analyzer traces must be fairly deep, at least 10 000

cycles, to be useful for most applications. Trace buffers of a million cycles deep are

fairly common.

The user interface of the logic analyzer can display the traces in many different ways.

Not only can the user scroll through time, but the user interface can also group and

format signals. By properly specifying the user interface requirements, the user can

format the trace data to look like the timing diagrams found in the processor’s data sheet.

Some logic analyzers include pattern generators that can provide stimuli to a system.

The pattern data are stored in a memory similar to the trace memory. The pattern

generator must be triggered similarly to the triggering of the logic analyzer; in common

usage the two share the same trigger. Probe circuitry applies the data to the circuit.

Modern low-cost logic analyzers are hosted by PCs. The data acquisition unit is

attached to a PC that provides the user interface.

4.2.2 Power measurement

A simple way to measure power is shown in Fig. 4.3. [2] This measurement technique

is designed to measure power in steady state for single instructions or very small

sections of code. The CPU executes the code to be measured in a loop. An ammeter (or

a voltmeter across a low-value resistor) measures the current going into the processor.

The ammeter and the power supply voltage tell us the power consumption. However,

care needs to be taken to determine what components are fed by the power supply tap

being measured. Many modern evaluation boards provide measurement points that

allow the CPU current to be measured separately from the current supplied to other

components on the board. The measurement can be calibrated by also measuring the

power consumption of an empty loop and comparing that value to the power con-

sumption of the loop with the code.

More sophisticated power measurements can be made with oscilloscopes and logic

analyzers. An oscilloscope can be used to measure the transient voltage across a

measurement resistor. Some logic analyzers have built-in oscilloscopes that allow one

or two channels to be measured with high accuracy under control of the logic analyzer.

The logic analyzer’s trigger can be used to determine when the oscilloscope

CPU

+

A

Figure 4.3 Basic power measurement

116 W. H. Wolf

measurement is taken. This technique allows us to determine the input power over a

short time interval. However, the power supply network’s transient behavior must be

taken into account to verify the accuracy of such measurements.

4.2.3 In-circuit emulators

An in-circuit emulator (ICE), [3] unlike a logic analyzer, allows the user to examine

the internal state of a microprocessor. The in-circuit emulator replaces the stock CPU

and provides facilities for program debugging, such as tracing and breakpointing. The

in-circuit emulator is connected to a host PC that runs the debugging user interface.

The host sends commands to the ICE and receives data from the ICE for display.

One way to build an in-circuit emulator is to build a custom module that implements

the CPU architecture and provides the necessary host interface. This approach is

practical only for very small, simple processors. Many modern in-circuit emulators are

built using the CPU’s own boundary scan system. Some CPUs put internal registers on

the scan chain. Boundary scans can be used to examine register values and change

them as necessary.

In-circuit emulation provides a powerful debugging interface. Most importantly, the

system can be debugged on real data with real devices. Not only can the internal state

of the CPU be checked; it can also be modified by scanning in a new value. This allows

the user to correct problems temporarily and continue execution.

4.2.4 Emulators

Emulators and in-circuit emulators are, unfortunately, very different tools and com-

plementary tools with very similar names. While an in-circuit emulator allows soft-

ware executing on a CPU to be debugged, an emulator allows a custom hardware

design to be executed before a chip is implemented.

Early emulators [4] were built from a large number of field-programmable gate

arrays (FPGAs) connected in a network. A logic design could be compiled into the

FPGA network. Emulators could generally execute logic designs at clock rates less

than that achievable by a custom VLSI implementation, but could run much faster than

an HDL simulator. The emulator could be plugged into existing hardware so that the

emulated logic design could be run in its final environment. The emulator provides a

number of debugging features. More recent emulators use a form of hardware-

accelerated simulation to implement the logic design.

4.2.5 Profilers

A profiler gathers statistics by measuring an executing program on a standard CPU.

There are two major ways to implement profiling. One method, known as PC sam-

pling, uses a timer to interrupt the program to be profiled periodically and record

the program’s PC value. The other method inserts code into the program to be profiled

that increments counters each time the program’s execution passes certain points.

4 System debugging strategies 117

A separate program can be used as the profiled program finishes to display the statistics

gathered from execution.

gprof [5] is a widely used Unix profiler. gprof produces trace files that are post-

processed to generate reports for the user. Intel Vtune is designed to profile both

single-threaded and multi-threaded applications.

4.2.6 CPU simulators

A CPU simulator is a program that implements the instruction set of a CPU. The

simulator can read binary files and execute them with the same results as the CPU.

The simulator is, of course, much slower than the CPU.

Simulators can be constructed at many different levels of accuracy. For embedded

system debugging, the most interesting type of software simulator is the cycle-accurate

simulator. This simulator not only implements the functionality of the instruction set, it

also determines the number of clock cycles required to execute each instruction. Cycle-

accurate simulation is not simple – instruction execution time depends on pipeline state,

cache state, and data values. Cycle-accurate simulators are very complex programs; a

cycle-accurate simulator may not exist for the CPU model that you are interested in.

Power simulators are cycle-accurate simulators that also estimate the power con-

sumption of program execution. Power simulators are even more complex than cycle-

accurate simulators. The power number consumption values they produce are not exact

but are generally reasonable estimates.

SimpleScalar [6] is a well-known cycle-accurate simulation framework. Simple

Scalar is a toolkit that allows you to create a simulator for a CPU architecture of your

choice. SimpleScalar models have been constructed for a number of popular CPUs.

SimplePower [7] and Wattch [8] are two well-known power simulators.

4.3 Debugging commands

Several types of debugging commands or features are useful when debugging

embedded systems. Some of them are typical in general-purpose debuggers while

some are unique to embedded systems.

General-purpose debuggers offer four major types of debugging command:

� Instructions can be traced. When the program counter reaches the location of a

traced instruction, the debugger emits a message. Tracing allows the user to keep

track of program execution.

� Breakpoints can be inserted. When the program counter reaches a breakpoint location,

execution of the target program stops. Control returns to the debugger interface.

� Memory locations can be examined. These locations can be either data or

instructions.

� Memory locations can be changed. Again, the changed locations can be either data

or instructions.

118 W. H. Wolf

General-purpose debuggers also provide source-level debugging. A minimal debugger

would simply list the contents of a location in hex or some other base, independent of

whether the location is for code or data. A more sophisticated debugger will disas-

semble the location to its assembly location. Source-level debugging goes one step

further and relates the memory image to the original high-level language source code.

General-purpose debuggers work by modifying the target program’s image in

memory. Instructions in the target program are replaced by calls to the debugger. The

replaced instructions must be executed separately, typically by moving the debugger

call temporarily to a new location.

Specialized embedded-system debugging tools relate primarily to information about

time. Traces are a common way to display execution data. While general-purpose

debuggers trace only selected instructions, logic analyzers or ICEs capture traces of

activity on every clock cycle. Logic analyzers and ICEs can often display traces in

assembly-language format. They may allow the user to filter the trace to show only

certain items, such as when a specified location is accessed. Some in-circuit emulators

provide timers that can be used to measure the time required for a specified action or to

control when an action takes place.

4.4 Functional debugging

The goal of functional debugging is to find and fix problems in the program’s basic input

and output behavior. Functional debugging does not take into account timing properties

of the systems, which means that some sorts of I/O related bugs cannot be found using

functional debugging techniques. However, functional debugging is an important first

step – clearing out functional bugs makes it simpler to identify more subtle timing bugs.

A surprising amount of functional debugging can be done without the target platform. A

great deal of code is developed on other platforms and then moved to the embedded target.

This approach takes advantage of powerful debugging environments and the faster turn-

around times generally given by native-only development. Code developed on another

platform can and should be debugged on the initial platform before moving it to the target.

To test the code, I/O stubs must generally be developed to adapt the code to the

development platform. Since the target I/O is not available, input must be provided

somehow and outputs must be captured for analysis. In many cases, input traces can be

captured or generated by some means and kept as files on the development system.

Stub routines can then read the trace files and provide the input data to the code in the

proper format. The stub routines can simulate timing constraints on inputs by aligning

traces to be sure that the proper combinations of inputs are delivered together.

4.5 Performance-oriented debugging

How do we know that we missed a performance or power requirement? A good place

to start is by profiling the program. Profiling only counts the number of times that

4 System debugging strategies 119

source code units of function – subroutines or lines of code – are executed. However,

this is often enough to help us find the big performance problems. Profiling is easy,

quick, and doesn’t require the platform in either simulated or real form. We can save

more detailed methods for debugging problems that require them.

A fundamental choice when debugging the system is whether to debug the platform

or to debug a simulation. Larger examples can generally be run on the platform, since

the I/O devices are available. However, it may be hard to breakpoint or otherwise

observe the required behavior on the platform. In many cases, a combination of

platform and simulator debugging runs may be required to isolate and fix the problem.

A timing bug is the failure of a system to generate an output at the required time.

Timing bugs can be caused by many different errors. Let us consider them one at a

time.

A single process or program may take too long to execute. In this case, an in-circuit

emulator or CPU simulator should help debug the program. Profiling may be able to

help isolate the problem as well.

The cache behavior of a programmay cause timing problems. Cache behavior is more

complex to debug than simple performance problems because it often depends on

program state. The contents of both the data and instruction cache depend on input data

values – instruction behavior may depend upon data values. Therefore, the programmay

exhibit the timing bug under some circumstances but not others. Furthermore, in banked

memory systems, placement of data in memory may cause timing problems.

The behavior of I/O devices may influence timing. Subtle changes in the behavior of

asynchronous devices may cause timing problems that influence the behavior of a

program. Consider, for example, what happens when a device driver takes too long to

execute. In a priority-driven interrupt system, the driver may prevent another lower-

priority driver from responding, either delaying the data from that device or causing it

to be dropped totally.

Multitasking and the real-time operating system (RTOS) may cause timing prob-

lems or amplify other timing problems. For example, if a high-priority process takes

too long to execute, it may delay the execution of a lower-priority process. This

problem is ultimately fixed by reducing the execution time of the faulty process, but

the problem must be traced through the RTOS to be fully understood.

Unfortunately, relatively little is known about causal analysis for performance. We

don’t have good ways to generate input vector sets that are likely to expose timing bugs.

As a result, we simply have to rely on functional testing to uncover timing problems.

Because the test sequences aren’t designed to uncover testing problems, they don’t give

us much information as to the possible causes of the timing problems. Only careful

debugging can be used to find the root causes and possible cures for timing bugs.

4.6 Summary

The bad news is that embedded systems provide the opportunity for a much wider

repertoire of bugs than do general-purpose programs. Embedded systems can exhibit a

120 W. H. Wolf

wide variety of timing and power consumption bugs in addition to typical functional

bugs.

The good news is that embedded system programmers have a wide range of tools

available to help them. In-circuit emulators, simulators, and other tools can help

expose system state in ways that can clarify the behavior of timing and power bugs.

4.7 References
[1] R.A. Witte (1993). Electronic Test Instruments: Theory and Applications, PTR Prentice

Hall.

[2] V. Tiwari, S. Malik, and A. Wolfe (1994). Power analysis of embedded software: a first step

toward software power minimization. IEEE Transactions on VLSI Systems, 2(4):437–445.

[3] J.G. Ganssle (1999). ICE technology unplugged. Embedded Systems Programming, 12(11).

www.embedded.com/1999/9910/9910sr.htm.

[4] S. P. Sample, M. R. D’Amore, and T. S. Payne (1992). Apparatus for Emulation of Elec-

tronic Hardware System. US patent 5 109 353.

[5] J. Fenlason and R. Stallman (1998). GNU gprof: The GNU Profiler. www.cs.utah.edu/dept/

old/texinfo/as/gprof_toc.html.

[6] SimpleScalar LLC. http://www.simplescalar.com.

[7] W. Ye, N. Vijaykrishna, M. Kandemir, and M. J. Irwin (2000). The design and use of

SimplePower: a cycle-accurate energy estimation tool. In Proceedings of the Design

Automation Conference. ACM Press.

[8] D. Brooks, V. Tiwari, and M. Martonosi (2000). Wattch: a framework for architectural-level

power analysis and optimizations. In 27th International Symposium on Computer Archi-

tecture.

4 System debugging strategies 121

www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html.
www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html.
http://www.simplescalar.com
www.embedded.com/1999/9910/9910sr.htm.

5 Test generation and coverage
metrics

Ernesto S�anchez, Giovanni Squillero, and Matteo Sonza Reorda

5.1 Introduction

Digital circuits are usually produced following a multi-step development process

composed of several intermediate design phases. Each one is concluded by the

delivery of a model that describes the digital circuit in increasing detail and with

different abstraction levels. The first design step usually produces the highest

abstraction level model, which describes the general behavior of the circuit leaving

internal details out; whereas the last steps provide lower-level descriptions, with more

detail and closer to the actual implementation of the circuit. Clearly, the lower the

abstraction level, the higher the complexity of the resulting model.

In the following, some of the main characteristics of the most commonly adopted

design abstraction levels as well as the main features of the delivered models at each

level will be sketched. It is important to note that levels of abstraction higher or lower

than those described here could also exist in a design cycle; but we only focus on the

most commonly adopted ones.

� Architectural level

This is often the highest abstraction level: the circuit model delivered here is used as

a reference since it contains few implementation details. The main goal at the

architectural level is to provide a block architecture of the circuit implementing the

basic functional specifications. The delivered model is usually exploited to evaluate

the basic operations of the design and the interactions among the components within

the system. At this design level, a complete simulatable model may be built in some

high-level language; typically, these models do not contain timing information.

� Register transfer level (RTL)

Models delivered at this level contain all functional details of the design, together

with accurate cycle-level timing information. At this level, clocked storage elements

become visible, and (as the name recalls) these storage elements are mainly

registers. However, the resulting models do not include detailed timing information,

such as propagation delays of each block.

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

� Gate level

At this level the design is described in terms of logic gates. All the interconnections

between different elements within the design are thoroughly detailed, as well as all

individual logic gates. Complex designs at this level can be difficult to simulate,

owing to the high amount of available information that the models contain (e.g., a

16 · 16 multiplier, described in no more than 20 lines using a hardware description

language, could count on about 2.5k gates). This level is still significantly abstract

because there is no information about actual transistors.

� Transistor level

This level is often not considered as an abstraction level of the circuit because the

delivered model entirely represents the design in terms of transistors and their

interconnecting wires. Designers can usually simulate only some logic cells at this

level in order to characterize them, but it is often impractical to simulate whole

designs at this level.

It is important to note that a complete design can also be represented using a mixed

approach; for example, a mixed model could be composed of a general structure at the

RTL abstraction level, some other logic blocks described at behavioral level, and some

blocks described at gate level.

Figure 5.1 represents the different levels of a typical design cycle, correlating the

abstraction levels with some of the most popular languages used to describe the circuit

in each phase. It must be noted that most common hardware description languages

(HDLs), such as VHDL and Verilog, can be used at all top three levels of abstraction

detailing in minor or major detail the circuit models.

Throughout the design cycle, design models could be produced resorting to very

different approaches, including manual and automated ones. Regardless of the

exploited approach, delivered models at every abstraction level are very likely to be

inserted with design errors (i.e., design differences with respect to the desired

specifications) that must be repaired.

Design debugging, i.e., identifying and removing design errors, is neither a trivial

nor a cheap task; in fact, currently the budget devoted to perform this task approaches

60% of the total cost in the design process. [1]

Architectural
level

RTL

Gate level

System C
System Verilog

VHDL
Verilog

EDIF

Transistor level SPICE

Figure 5.1 Abstraction levels of a typical design cycle

5 Test generation and coverage metrics 123

To guarantee that the implemented circuit meets the desired specifications, every

time a new model is delivered, an audit process must be performed to ensure that the

delivered model complies with the initial specifications. It would not be appropriate,

on the contrary, to perform a single verification step of the implemented circuit at the

end of the whole manufacturing process: in fact, there is no doubt that the sooner a bug

is detected the lower is the cost for correcting it. Uncovered bugs resulting from

inadequate verification at early stages generate expensive situations, like the famous

FDIV bug in the Pentium� processor. [2]

The terms validation and verification are quite often used by the research com-

munity and deserve some attention. The Institute of Electrical and Electronics

Engineers in the IEEE Standard 1012–1998 defines validation as, “The confirmation

by examination and provisions of objective evidence that the particular requirements

for a specific intended use are fulfilled;” and verification as, “The confirmation by

examination and provisions of objective evidence that specified requirements have

been fulfilled.” [3] In the field of design, this definition is usually synthesized, stating

that, “Design validation is concerned with building the right product, while design

verification is concerned with building the product right.”

Speaking about digital circuit design, when the physical circuit is not yet built

(i.e., during early design stages), the demonstration that the intent of a design is

preserved in its implementations has been called design verification. In other words,

design verification is the process of verifying that all modeled behaviors of a design

are consistent with another model. The reference model may represent a set of

properties that the system needs to fulfill, such as, “All cache reads are consistent,”

but it is usually a higher-level design described at a different abstraction level.

In this chapter, we will call verification the process that aims at guaranteeing the

correct translation of the model delivered at a certain abstraction level to its successive

model. The reader should be aware that, despite their exact definitions, in the technical

literature the terms verification and validation are sometimes used interchangeably.

If the circuit is physically built, the audit process performed on the actual circuit is

called test [4] and should mainly aim at identifying either possible imperfections in the

manufacturing process or defects introduced during the same process.

Usually, the model of the circuit to be verified, validated, or tested is called the

device under test (DUT).

Design verification methodologies have been developed in a multi-flavored spec-

trum, ranging from manual verification techniques to formal verification techniques,

and including, for example, random and semi-random approaches. Briefly, verification

methodologies can be generically defined either as formal or simulation-based, and

both methods exploit dynamic or static approaches, emphasizing the capacity to

consider – or ignore – time information.

Formal verification methodologies use exhaustive mathematical techniques to prove

that circuit responses to all possible inputs and all possible reachable states of the

circuit conform to the specifications. These methods do not rely on the generation of

input information to verify the design.

124 E. S�anchez, G. Squillero, and M. Sonza Reorda

Generally speaking, formal verification may always be seen as theorem-proving

within a given logic system. [5] However, in practice, research in this field falls within

various sub-categories, such as: automated theorem proving, model checking, and

equivalence checking. Since formal verification is out of the scope of this chapter,

herein only a brief description is drafted:

� Automated theorem proving

This is the oldest and most general form of formal verification, and it has been

studied and practised since the 1960s. The idea is to represent two models or

properties as two formulas f and g in a reasonably expressive logic, then prove f) g.

While such an approach is potentially very general, results in automated theorem

proving are limited algorithmically. Most implications in a general context are

undecidable, and tackling them requires extensive user involvement. However,

in restricted logics, such as linear-time temporal logic (LTL), proving the theorem

f) g is equivalent to testing the unsatisfiability of the formula f ^:g, which is

always decidable. [6]

� Model checking

This can be seen as a special case of proving the theorem f) g, where f is a state

transition model and g is a logical formula stating a property or specification of f) g.

The computational tree logic (CTL), introduced by Clarke and Emerson in 1982, [7]

is commonly used, since it enables to carry out the check in a time linearly

dependent on the size of f and g. Model checking is used, for example, to verify the

control parts of a circuit, but it would be impractical to verify most circuit data paths

using this method.

� Equivalence checking

This is the most popular technique for formally verifying circuits. Essentially,

approaches based on this method compare two models, and proceed in two phases: a

Boolean network representing the design is extracted from the new model of the

design (e.g., the model delivered at gate level); then, to verify the model, an

equivalence evaluation is performed between the obtained network and a reference

network, usually obtained at one of the previous steps of the design. The Boolean

networks are usually represented using binary decision diagrams (BDDs). An

introduction to BDDs used in formal verification is available in [8].

Equivalence checking is suitable for verifying two structurally similar designs that

present a one-to-one mapping of circuit states. Since RTL models are usually produced

by design engineers, gate-level models are the resulting process of several optimiza-

tions. Thus, state machines extracted from both models could be very different, since

gate-level optimizations occasionally compact the circuit by merging some internal

states or even by moving logic blocks from one side of a register to another. In fact,

this method does not work as well comparing an RTL design with a gate-level one.

Computational resources (in particular, CPU time and memory) required to verify a

design formally become significant even for medium complexity circuits.

On the other hand, when applicable, these methods provide valuable results, which

are characterized by their exactness and independence of any specific input stimuli.

5 Test generation and coverage metrics 125

Simulation-based methodologies aim at uncovering design errors by thoroughly

exercising the current model of the circuit. Briefly speaking, a verification process

based on circuit simulation requires three basic elements to be performed: input

information (also called the set of stimuli), the model of the device under evaluation

(also called the design or device under test), and finally the response checker, which

generates the pass or fail information regarding the inspection process based on the

comparison between the observed and expected behavior. It is clear that depending on

the design stage, the audit process could be performed in different ways. For example,

depending on the design state, the method could be based on a logic simulator or resort

directly to the circuit (if the device has been built already).

Figure 5.2 shows the typical environment used to perform the audit process. This

framework is valid if the proof has to be performed by simulating the circuit as well as

if it is executed on the real circuit.

A set of stimuli is usually defined as the collection of inputs to the design under test

or under verification. It could include, for example: configuration information, test

patterns, instructions, and communication frames containing protocol errors to excite

correction mechanisms. [8] On the other hand, the capacity of the set of stimuli to find

bugs, errors, or faults in the device under test is called its test quality. In manufacturing

testing, sets of stimuli are usually called test sets: however, herein the term test sets

will be avoided.

Example 5.1 Let us analyze the combinational 32-bit multiplier shown in Fig. 5.3. The

multiplier circuit has two 32-bit inputs A and B, and a 64-bit output O.

Pass or fail

Set of
stimuli

DUT

Response
checker

Simulation or execution environment

Figure 5.2 Audit environment

32-bit
multiplier

32

32
A

B 64

O

Figure 5.3 32-bit multiplier

126 E. S�anchez, G. Squillero, and M. Sonza Reorda

Exhaustively verifying the multiplier model by simulation using the verification

scheme presented in Fig. 5.2 requires, as described already, the set of stimuli, the

model under verification, and a response checker. Taking into consideration that the

circuit is a combinational block, the set of stimuli that exhaustively verify the circuit

must include all possible combinations of A and B (232 · 232).
Supposing that the multiplier is described in a hardware description language at

RTL, and that the simulation of a single input configuration takes 1 ls (including the

comparison process of the circuit outputs O with the attended values) the whole

verification process will take about 584 thousand years of simulation.

In the 32-bit multiplier case, the search space of inputs includes 264 possibilities.

However, if the circuit is sequential, the complete space is further enlarged, owing to

the number of states reachable by the circuit. In fact, if the circuit is sequential, it has

to be activated with every possible input stimulus in every possible state. Thus, a

sequential circuit counting on m primary inputs, and n state elements reaching, at most,

2n states, must be exhaustively verified by exercising 2m · 2n possibilities. It must be

noted that while not all 2n states may be reachable, the effort required to bring the

circuit in a particular state might be not insignificant.

Based on the above examples, the reader can easily understand why simulation-

based verification is rarely exhaustive: more frequently, the set of stimuli includes a

carefully selected subset of the possible input configurations only.

Design engineers are usually interested in peculiar stimuli that deserve their

attention. Some special cases may excite design particularities. Other stimuli, instead,

may represent interesting cases that activate design functionalities in a singular

manner. These stimuli are usually called corner cases.

In the case of the 32-bit multiplier, a set of special cases may contain some pairs of

values containing, for example, one or both of the inputs A or B set to zero, or the

multiplication of the largest values as well as the lowest ones, etc.

Tackling a more complex design, a set of corner cases built to verify a microprocessor

core could include the execution of valid but unexpected instructions during the exe-

cution flow of an assembly program. For example, the execution of the ret instruction,

which returns the program control from a subroutine, without the preliminary execution

of the corresponding call instruction that invokes the subroutine is a corner case.

Special cases and corner cases should be included in a good set of stimuli, since they

normally have a high error detection capability.

Simulation-based methodologies are strongly dependent on the quality of the set of

stimuli used to excite the design. These methodologies are seldom exhaustive and only

consider a limited subset of possible circuit behaviors. Since the quality of the results

first depends on the percentage of applied stimuli with respect to the total number of

possible stimuli, they almost never achieve 100% confidence of correctness.

It is obvious that different sets of stimuli could have different error detection cap-

abilities, even if their length is comparable. Thus, regardless of the generation method,

the key question is, how good is a set of stimuli produced at every design step?

Asserting the quality of a set of stimuli is, therefore, a major issue in the verification

or validation area, which requires the introduction of new concepts. In fact, it is

5 Test generation and coverage metrics 127

necessary to find appropriate mechanisms to produce sets of stimuli efficiently at every

design phase.

A test criterion is a condition that defines what constitutes an adequate test. [10]

Consequently, with respect to verification methodologies, the main idea consists of

defining some testing criteria to assess the stimuli generation adequately. Each

abstraction level in the design flow could count on appropriate metrics, strictly related

to the description of the model, and be able to point out when the set of stimuli is

satisfactory. Furthermore, choosing an adequate evaluation mechanism could help

guide the verification process and determine when it can be terminated.

Coverage metrics were first defined in software testing as the measure of how

thoroughly exercised a program is by quantifying the capacity of a given input

stimulus to activate specific properties of the program code. [11]

Thus, borrowing the idea from software testing, a coverage metric for hardware

verification can be defined to assure the adequacy of the set of stimuli, and the

collected information about coverage could be exploited as a useful test criterion.

5.2 Coverage metrics

Taking into account the ideas sketched before, coupling stimuli-generation methods

based on simulation with coverage analysis will provide information on how thor-

oughly a design has been exercised, driving the stimuli generation process without

requiring any redundant effort. Coverage metrics can be used to guide the generation

of sets of stimuli (e.g., as test criteria), as well as to evaluate the effectiveness of

pseudo-random strategies by acting as heuristic measures that quantify verification

completeness; finally, coverage analysis can help to identify inadequately exercised

design aspects. [12]

Coverage metrics measure how thoroughly a design model has been covered (i.e.,

exercised) by a specific set of stimuli; usually, these measurements are expressed as a

percentage value. [9]

The goal for a specific coverage metric could be implicitly or explicitly described

with respect to the set of stimuli that is able to maximize the metric. For example, the

statement coverage measures whether every statement of the source code is executed

and it could be represented by a value in the range between 0 and 100%. It is clear that

the metric does not provide any explicit information about the appropriate set of

stimuli capable of getting the most out of this metric. On the other hand, a functional

metric that evaluates whether a series of well-defined corner cases have been exercized

presents explicit information about the set of stimuli in charge of maximizing the

coverage. This metric could be also expressed as a percentage. However, it could be

better to describe the obtained results using a check table.

The higher the coverage values obtained by a given set of stimuli, the higher the

confidence in the design it can provide. Intuitively, high coverage values imply high

system activation. However, it is worth noting that coverage does not imply that the

design conforms to the specifications. A complete coverage on any particular metric

128 E. S�anchez, G. Squillero, and M. Sonza Reorda

could never guarantee a 100% flaw-free design, nor thorough code inspection.

Moreover, it is not possible to select one single coverage metric as the most reliable.

[12,13] Therefore, the current verification trend is to combine multiple coverage

metrics, to obtain better results.

Performing a verification process guided by coverage metrics allows the achieve-

ment of high design verification but limits the redundant efforts. Coverage metrics act

as heuristic measures for quantifying the verification completeness and identifying

inadequately exercised design aspects.

In 1974, Brian Kernighan, the creator of the C language, stated that, “Everyone

knows debugging is twice as hard as writing a program in the first place.” This

statement concerns software design; however, the same implication can be stated in the

case of circuit design. Thus, it is really important to define clearly the verification

strategy to be adopted.

As mentioned by Piziali in [14], the real success of a simulation-based verification

process relies on the adequacy of the initial verification route-map, called the functional

verification plan. A verification plan must define important test cases targeting specific

functions of the design, and it must also describe a specific set of stimuli to apply to the

design model. The verification plan can also allocate specific validation tasks to spe-

cialized engineers. Roughly speaking, the verification plan is composed of three aspects:

� Coverage measurement, defining the verification problem, the different metrics to

be used, and the verification progress;

� Stimulus generation, providing the required stimuli to exercise thoroughly the

device adhering to the directives given;

� Response checking, describing how to demonstrate that the behavior of the device

conforms to the specifications.

Usually, the coverage metrics included in the verification plan are selected based on

the designers’ expertise, the ease of applicability, and a strict evaluation of the

computational resources. Depending on the abstraction level of the available DUT

model, some coverage data could be irrelevant; therefore, coverage data must be

collected as soon as it is practical but not sooner. It is important to collect adequate

information: if there are some metrics that do not deserve attention, it is better to avoid

spending time on collecting the related information. Collecting meaningless infor-

mation does not mean performing a real verification progress.

When several coverage metrics are used, it might be better to combine the collected

values into a single overall coverage metric, using, for example, a weighted average of

several coverage metrics. Let us consider three different metrics, CM1, CM2, and CM3;

a scale factor can be assigned to each coverage value, weighting properly the con-

sidered metric:

Ct ¼ 0:3CM1 þ 0:5CM2 þ 0:2CM3: ð5:1Þ

In this case, CM2 is the most relevant metric of the set. Weighting metrics must be

carefully performed, so as to both avoid masking small but essential contributions, and

magnify meaningless information regarding any minor metric.

5 Test generation and coverage metrics 129

Unfortunately, no well-defined standard set of metrics able to guarantee acceptable

design error detection exists. In fact, choosing a set of metrics to be included in the

verification plan is a particularly critical task, which is customarily based on the

experience acquired by the verification team.

Some issues should be taken into consideration when choosing coverage metrics.

Specifically, it is important to:

� Evaluate the computational effort required to measure each coverage metric during

the simulation process,

� Be able to generate and measure the test stimuli progress avoiding excessive efforts,

� Minimize the required modifications to the verification tools.

Additionally, it seems that no metric is superior to another; then a comparative measure

of metric goodness needs to be established by intuitive or empiric experience. [10]

As mentioned before, an exhaustive circuit verification tries to evaluate thoroughly

the whole set of possibilities of the stimuli–response space. However, even for a

medium complexity circuit, the number of possibilities is quite large.

Aiming at reducing the space of stimuli and responses, it is possible to introduce a

new concept: the coverage model. A coverage model is a subset of the stimuli–

response space that will prove, with an acceptable degree of confidence, that the

functionality of the design is correct. [9]

Example 5.2 Let us suppose that you need to verify the circuit model of the pro-

grammable 32-bit down counter shown in Fig. 5.4; each time it is reset, it loads a

32-bit word and the countdown starts. The counter exploits an additional control bit E

to enable the counter operation. Therefore, the space of stimuli for this simple circuit

consists of 232 · 22 possibilities. Thus, assuming that verifying by simulating an input

requires on average about 10 ls, about two days of simulation are required to verify

the counter exhaustively. On the other hand, we could consider a coverage model that

looks for special cases only. This means forcing the counter to load only a few values

such as: all walking ones (32), all walking zeros (32), all ones (1), all zeros (1), and

finally two particular cases: 55555555h (1) and AAAAAAAAh (1); for every con-

figuration, the counter is forced to load it, and then the counter’s ability to compute

correctly the next value on the outputs is checked. Let us suppose also that for every

input word, the counter is programmed twice: once to enable the countdown, and once

32-bit down
counter

32

RST

E

Out

Clk

32

Figure 5.4 32-bit down counter

130 E. S�anchez, G. Squillero, and M. Sonza Reorda

to disable it. The results obtained from these experiments could still leave us with

sufficient confidence about the correctness of the circuit model, and it is not necessary

to spend a large amount of time to verify the design exhaustively, since the simulation

of 136 input configurations only is required.

5.3 Classification of coverage metrics

In the following, some of the most common coverage metrics proposed in the literature

and adopted in practice will be described and discussed. An introduction about the

basic metric concepts is provided and in some cases specific examples are included.

The classification presented here mainly follows what is proposed in [12].

5.3.1 Code coverage metrics

Code coverage metrics directly derive from metrics used in software testing. These

metrics identify which code structures belonging to the circuit description are exer-

cised by the set of stimuli, and whether the control flow graph corresponding to the

code description has been thoroughly traversed. The structures exploited by code

coverage metrics range from a single line of code to if-then-else constructs.

5.3.1.1 Statement coverage (SC)
Statement coverage is the most basic form of code coverage: statement coverage is a

measure of the number of executable statements within the model that have been

exercised during the simulation. Executable statements are those that have a definite

action during runtime and do not include comments, compile directives (or declar-

ations), etc. Statement coverage counts the execution of each statement on a line

individually, even if there are several statements on that line.

Example 5.3 Let us assume that it is necessary to verify the model of an ALU

described in VHDL at RTL. The scheme of the ALU is illustrated in Fig. 5.5. The

ALU has 2-bit input signals A and B.

2-bit ALUSel
Vbit

2 2
A B

2
2

Res

Sel
0 0 Add numbers

0 1 Subtract numbers

1 0 Logic AND

1 1 Logic OR

E

Figure 5.5 2-bit ALU

5 Test generation and coverage metrics 131

If the enable signal E holds the value 1, the ALU performs one out of four oper-

ations, otherwise the outputs become 0. The results of the performed operations are

shown in the 2-bit signal and eventually in Vbit, the overflow bit.

In the VHDL description of the circuit presented in the following, the executable

statements of the code have been enumerated to facilitate analysis.

entity ALU is

port(A: in stdlogicvector(1 downto 0);

B: in stdlogicvector(1 downto 0);

SEL: in stdlogicvector(1 downto 0);

E: in stdlogic;

RES: buffer stdlogicvector (1 downto 0);

Vbit: out stdlogic

);

end ALU;

architecture RTL of ALU is

begin

process(A,B,SEL,E)

begin

1 RES 00;

2 Vbit 0;

3 if (E 1) then

4 if (SEL 00) then

5 RES A B;

6 if (A(1) 1 and B(1) 1 and RES(1) 0)

or (A(1) 0 and B(1) 0 and RES(1) 1) then

7 Vbit 1;

8 else

9 Vbit 0;

10 elsif (SEL 01) then

11 RES A–B;

12 if (A(1) 1 and B(1) 0 and RES(1) 0)

or (A(1) 0 and B(1) 1 and RES(1) 1) then

13 Vbit 1;

14 else

15 Vbit 0;

16 elsif (SEL 10) then

17 RES A and B;

18 else

19 RES A or B;

end if;

end if;

end process;

end RTL;

132 E. S�anchez, G. Squillero, and M. Sonza Reorda

The ALU description consists of some if statements, which select the different oper-

ations to be performed. In each branch of the if statements, assignments are made to the

output signals (res and Vbit) according to the value of the control signals (E and sel). It is

interesting to note that lines 6–9 as well as 12–15 are devoted to computing the overflow.

A set of stimuli devised to verify the circuit description must be composed of some

stimulus, which contains a complete input signal configuration for the ALU (i.e., valid

values for both control and input signals). In the following each stimulus is described

using this format: (A, B, sel, E).

ALU-Set1 ¼ fð00; 01; 00; 1Þ; ð11; 10; 00; 1Þ; ð01; 01; 01; 1Þ;
ð01; 11; 00; 1Þ; ð10; 01; 10; 1Þ; ð01; 00; 11; 1Þg:

ALU-Set1 maximizes the statement coverage of the 2-bit ALU by executing all code

lines at least. The first two stimuli are devoted to exercising the ADD operation, the

next two undergo the SUB operation and the last input vectors exercise the AND once,

and the OR once, respectively.

5.3.1.2 Branch coverage (BC)
Branch coverage reports whether Boolean expressions tested in control structures

(such as the if statement and the while statement) evaluate to both true and false. The

entire Boolean expression is considered as one true-or-false predicate regardless of

whether it contains logical AND or logical OR operators. Branch coverage is some-

times called decision coverage.

Considering the set of stimuli of Example 5.3, devised to maximize the statement

coverage, it is possible to note that branch coverage is not saturated, since the statement 3

is never false; then, BC could be easily maximized by adding the following set of stimuli:

ALU-Set2 ¼ {(00, 01, 00, 0)}.

Example 5.4 Consider the following piece of code:

. . .

wait until RST¼‘1’;
. . .

Suppose that the available set of stimuli does not contain any stimulus causing RST to

assume value 0. Even if statement coverage could be maximized, the branch coverage

cannot be 100% covered because RST¼‘1’ will always be true.

5.3.1.3 Condition coverage (CC)
Condition coverage can be considered as an extension of branch coverage: it reports

the true or false outcome of each Boolean sub-expression contained in branch state-

ments, separated by logical AND and logical OR if they occur. Condition coverage

measures the sub-expressions independently of each other.

5 Test generation and coverage metrics 133

Recalling Example 5.3, ALU-Set1 does not allow CC to reach 100% coverage

because the Boolean sub-expressions of the statements 6 and 12 are not thoroughly

exercised. The reader is invited to devise a set of stimuli able to maximize CC of the 2-

bit ALU.

Example 5.5 Let us consider the following VHDL code fragment:

. . .

CONTROL: process (INPUT)

begin

case INPUT is

when (3 5)

Z A and B;

when 1

Z A or B;

when others

null;

end case;

end process CONTROL;

Let us assume that there are two available sets of stimuli for the control variable

INPUT ranging from 0 to 7:

set1 ¼ fð0Þ; ð1Þ; ð3Þg;
set2 ¼ fð0Þ; ð1Þ; ð3Þ; ð5Þg:

In both cases, the branch coverage equals 100%; however, set2 reaches a higher value in

the condition coverage, since this set of stimuli thoroughly excites the “when (3 | 5)¼>”

statement.

5.3.1.4 Expression coverage (EC)
Expression coverage is the same as condition coverage, but instead of covering branch

decisions it covers concurrent signal assignments. It builds a focused truth table based

on the inputs to a signal assignment using the same technique as condition coverage.

Maximizing EC for Example 5.3 requires a set of stimuli larger than the sets

exploited to maximize SC, BC, and CC, since signal res must be activated thoroughly.

5.3.1.5 Path coverage (PC)
A circuit description could be embodied by its control flow graph that schematizes,

using a graph, all possible paths that may be traversed at simulation time. Path cov-

erage refers to the number of exercised paths present in the control flow graph of the

circuit during the simulation of a set of stimuli. The number of paths in a circuit

description that contains, for example, a loop structure could easily be very large.

134 E. S�anchez, G. Squillero, and M. Sonza Reorda

Then, it is not feasible trying to cover all paths in a circuit. Instead, a representative set

of reduced paths may be chosen.

Example 5.6 Consider the following VHDL fragment.

signal a : bit;

begin

if (a) then

{ – sequence 1 of statements

} else

{ – sequence 2 of statements

}

end if;

if (!a) then

{ – sequence 3 of statements

} else

{ – sequence 4 of statements

}

end if;

end;

Figure 5.6 shows a control flow graph representation of the piece of code previously

presented. Control statements such as “if (a) then” are represented by decision points, while

statement sequences 1, 2, 3, and 4 are depicted as the elaboration squares S1, S2, S3, and S4.

In the control flow graph in Fig. 5.6 it is possible to identify four possible paths:

P1¼ (S1, S3), P2¼ (S1, S4), P3¼ (S2, S3), and P4¼ (S2, S4). However, taking into

S1

a

S2

False True

S3

!a

S4

False True

S1

a

!a

a

P2 P3

S2

S4 S3

!a

Figure 5.6 Control flow graph

5 Test generation and coverage metrics 135

consideration the actual information on the control statements, it is only possible to

traverse half of them (P2 and P3).

Today, most simulation and verification tools allow easy measurement of code

coverage metrics. However, we already mentioned that a thorough coverage in code

metrics is not enough to guarantee complete circuit verification.

Supposing that a collected value Ct of coverage must be computed to gather the

contributions of all code coverage metrics obtained when applying the set of stimuli

ALU-SET1 to the ALU design described in Example 5.3, and assuming the following

scale factors for each coverage metric: 0.2 for SC, 0.2 for BC, 0.3 CC, 0.2 EC, and 0.1

PC; the reader is invited to compute Ct.

5.3.2 Metrics based on circuit activity

Metrics based on circuit activity measure the activity of some portions of the design.

These metrics mainly target interconnections, memory elements, and internal net-

works. Actual details about the final circuit structure may not be present at higher

abstraction levels of the design. In fact, valid structural information at these levels of

design is only present in module interconnections. At lower levels, however, memory

elements and circuit networks come near to the actual circuit description; therefore,

coverage metrics targeting activation of circuit structures are better suited at lower

levels. However, as mentioned before, models at lower abstraction levels contain huge

quantities of information that make extensive simulations unaffordable. In the

following, the measure of the toggle activity will be considered as an example of

these metrics.

5.3.2.1 Toggle coverage (TC)
Toggle coverage reports the number of nodes or storage elements that toggle at least

once from 0 to 1 and at least once from 1 to 0 during the execution of a program. At the

RTL, registers are targeted and, since RTL registers correspond to memory elements

with an acceptable degree of approximation, the toggle coverage is an objective

measure of the activity of the design. Indeed, this is a very peculiar metric and can be

sensibly used to guarantee high activity in circuits present after the targeted registers.

Example 5.7 A description at RTL of the 32-bit multiplier is presented in Fig. 5.7. Let

us suppose that it is necessary to maximize the toggle coverage of the input and output

registers of the circuit.

By applying the short sequence of input values contained in the following set, it is

possible to reach 100% of TC (over the input and output registers).

setTC ¼ fð ::: 00h; ::: 00hÞ; ð ::: AAh; ::: AAhÞ; ð ::: 55h; ::: 55hÞ; ð ::: 00h; ::: 00hÞ;
ð ::: 55h; 02hÞ; ð01h; ::: 55hÞ; ð ::: 00h; ::: 00hÞg:

136 E. S�anchez, G. Squillero, and M. Sonza Reorda

The value setTC is composed of seven pairs of values for the A and B inputs of the

32-bit multiplier; in the set, values preceded by “. . .” mean that the next hex value is

repeated for all eight nibbles of the 32-bit word. The first four pairs guarantee the

toggle coverage of the inputs, whereas the final three pairs act over the output.

5.3.3 Metrics based on finite-state machines

A finite-state machine (FSM) is a representation of a sequential circuit formed by

modeling its behavior based on states, transitions, and actions. Thus, a coverage metric

that represents the covered states of the circuit’s FSM must be able to measure, quantify,

and exercise the circuit sequential behavior. The classical representation of the finite-

state machine of a digital circuit is a connected graph (normally called a state graph)

corresponding to the states reachable by the circuit. Two metrics can be defined on

this graph.

5.3.3.1 FSM transition coverage (FSM-TC)
Transition coverage measures the number of distinct edges traversed during the

simulation of the set of stimuli.

5.3.3.2 FSM state coverage (FSM-SC)
State coverage measures the number of distinct nodes visited during the simulation of

the set of stimuli.

Example 5.8 Let us consider the state graph of a 2-bit down counter (shown in

Fig. 5.8). In this case, the circuit has a 2-bit control word (ctr) that allows the circuit to

operate in one out of four operation modes: 00 hold, 01 count, 10 load, and 11 reset.

The initial value is provided by a 2-bit input word (in). Whenever a new input value is

loaded (ctr¼ 11), the down counter loads the 2-bit word and the countdown may start

if the control word becomes 01. Finally, the counter holds the current value if the

control word assumes value 00, and it is reset by applying 11 to ctr.

X

A B

O

entity 32-MUL is
port (A: in std_logic_vector (31 downto 0);

B: in std_logic_vector (31 downto 0);
O: out std_logic_vector (31 downto 0));

end 32-MUL;
architecture RTL of 32-MUL is
begin

process(A,B)
begin

O <= A * B;
 end process;
end RTL;

Figure 5.7 RTL description of a 32-bit multiplier

5 Test generation and coverage metrics 137

Let us suppose that it is necessary to generate a set of stimuli able to reach 100%

coverage with respect to the FSM-SC metric. Clearly, a simple set of stimuli that

provides the input word 11 is able to reach all possible states of the state graph by

applying some clock cycles. On the other hand, assuming that FSM-TC must be

maximized, this requires a set of stimuli larger than the previous one, since each edge

in the state graph must be traversed. Indeed, to be able to traverse the edges related to

the reset function of the counter (ctr¼ 11), it may be necessary to load each input word

and then reset the circuit without counting.

Example 5.9 The following segment of code is a summary of the VHDL description of

the control unit of an i8051 microprocessor. [15]

architecture bhv of controlunit is

type statetype is (reset,fetch,decode,execute,

incpc);

type executetype is (exe1, exe2, exe3, exe4, exe5);

signal cpustate: statetype;

signal executestate: executetype;

begin

process(clock, rst, IRword)

variable OPCODE: stdlogicvector(3 downto 0);

begin

if rst0 then

. . . reset all – Reset state

cpustate reset;

executestate exe1;

elsif (clockevent and clock1) then

case cpustate is

when reset – RESET pc

PC 000000000000;

– Reset memory

00 01

1011

ctr = 11

ctr = 00

ctr = 01

in =11and ctr =10

in = 00 and ctr = 10
in = 01 and ctr = 10

in = 10 and ctr = 10

ctr = 00

ctr = 00ctr = 00

ctr = 01

ctr = 01

ctr =11 ctr = 11

Figure 5.8 State graph of a 2-bit down counter

138 E. S�anchez, G. Squillero, and M. Sonza Reorda

. . .

cpustate fetch;

when fetch – Fetch instruction

PCincPC 1;

IRread 1;

. . .

state decode;

when decode – Decode the instruction

OPCODE : IRword(15 downto 12);

case OPCODE is

when NOP ¼>¼>
state incpc;

when MOV1 ¼>¼>
case executestate is

when exe1

– MEM address;

executestate exe2;

when exe2

– Load memory value to register

executestate exe1;

cpustate incpc;

when MOV2

case executestate is

when exe1

. . .

when ACC_and_MEMDIR ¼>¼>
case executestate is

when exe1

. . .

. . .

when others

state fetch;

end case;

when incpc – increment PC

. . .

state fetch;

when others null;

end case;

end if;

end process;

end bhv;

5 Test generation and coverage metrics 139

The i8051 control unit can be modeled as an FSM. Figure 5.9 shows a state graph

corresponding to the bolded lines of the previous piece of code. It is possible to

identify clearly four states of the microprocessor: reset, fetch, decode, and increment

PC. The system remains in these states for one clock cycle, only, while it remains in

the execution state, represented by the dashed circle, or for a different number of clock

cycles, depending on the instruction type to be executed. Figure 5.9 does not contain all

the possible instructions of the microprocessor; however, three different instructions

are considered. The NOP instruction requires only one clock cycle at the execution

stage that actually does not perform any useful computation, while LOAD MEM DIR

demands two clock cycles, and ACC þ MEM DIR takes three clock cycles.

Assuming that the set of stimuli is composed of assembly programs, it is easy to

reach 100% of coverage in the FSM state metric (FSM-SC) by executing at least once

every type of instruction existing in the i8051 instruction set.

5.3.4 Functional coverage metrics

As the name suggests, functional coverage metrics target design functionalities during

the verification process. These metrics are composed of a set of very precise test cases

that exercise the design in well-defined situations, guaranteeing that the design under

evaluation complies with some design functionalities. Often, the functions to be

covered by these test cases are summarized in a check table.

In a verification team, the team manager is in charge of developing a group of tables

containing the main functionalities to be tackled by the verification process. These

tables are then distributed to skill engineers, who must create the appropriate sets of

stimuli depending on the assigned tasks.

Reset
state

Fetch
state

Decode
state

Increment
PC

Reset

NOP

LOAD
MEM DIR

ACC +
MEM DIR

MEM
address

calculation

Load
MEM
to Reg

MEM
address

calculation

READ
MEM

ALU
EXE

d

Figure 5.9 State graph for the i8051

140 E. S�anchez, G. Squillero, and M. Sonza Reorda

Note that functional coverage deals with the functions implemented by a circuit, and

not by its implementation: therefore, from the latter it is not possible to compute any

functional coverage metric. On the other hand, it is worth noting that an advantage of

these metrics is that they are independent (and can be computed independently) of the

circuit implementation.

Example 5.10 Table 5.1 explicitly describes the initial set of test programs required to

verify functionally the RTL description of the i8051 processor previously outlined.

The verification engineer must complete the table as soon as the results are avail-

able. In the proposed example in Table 5.1, the sets of programs to be performed

elaborate different types of instructions. The table not only allows one to check

whether all circuit functions have been addressed, but also to verify the cost (in terms

of memory size and duration) of the corresponding test programs.

5.3.5 Error- (or fault-) based coverage metrics

Even though every one of the presented metrics here tries to exercise the circuit model

finding errors present in the model of the circuit under evaluation better in some cases

there is a loose relationship between the coverage metric and the actual design errors.

On the contrary, error- and fault-based coverage metrics do not rely on the description

format on which the model of the design is described, since these metrics are directly

related to specific errors or fault models.

5.3.5.1 Mutation coverage (MC)
Design errors cannot easily be mapped to well-defined error models; however, in some

cases, design errors due to typographical mistakes produced by the design engineer during

the typing process have been successfully modeled by artificial mutations of the code.

An interesting way to measure how well design errors are likely to be detected or

not by a set of stimuli consists of inserting some artificial errors into the design under

verification, and then checking whether they are detected by the available set of

Table 5.1 Checkboard to verify the i8051 functionally

Test program description Memory size (bytes) Time (clock cycles) Check box

All logic instructions XXX YYY �
All arithmetic instructions

All memory instructions

All jump instructions

All input or output instructions

All addressing modes

5 Test generation and coverage metrics 141

stimuli. To calculate the test quality of the set of stimuli, the original model (without

any change) is simulated in parallel with the model artificially changed, and then if the

circuit outputs are different, the injected fault is detected. Mutation coverage is a

typical example of coverage metric based on this approach.

This coverage metric mimics mutation coverage from software testing. In particular,

this metric models a hypothetical design error by injecting a small local mutation in

the design description. The resulting description, called a mutant, is simulated in

parallel with the original design using the same set of stimuli.

Considering a fragment of code at the RTL, it is easy to inject small mutations into

the design under verification. The following code mutations are a representative subset

of possible design errors:

� Replacement of arithmetic operators,

� Changing constant values,

� Replacement of relational operators,

� Replacement of variables in operations and assignments,

� Replacement of logical operators,

� Deletion of operands from arithmetical operations.

Example 5.11 Considering the VHDL code fragment of the 2-bit ALU exposed in

Example 5.3, and supposing that only some mutations of the arithmetic (þ, �, /, ·) and
logic (AND, OR, XOR) operators are available, the possible mutations in lines 5 and

17 are shown in Tables 5.2 and 5.3.

The reader is invited to generate a set of stimuli able to maximize the mutation

coverage of the code lines mutated as described in Tables 5.2 and 5.3.

Table 5.2 Possible mutations of line 5 in Example 5.3

Original Line 5 mutations

Res <¼ A þ B; Res <¼ A / B;
Res <¼ A * B;
Res <¼ A � B;

Table 5.3 Possible mutations of line 17 in Example 5.3

Original Line 17 mutations

Res <¼ A AND B; Res <¼ A OR B;
Res <¼ A XOR B;

142 E. S�anchez, G. Squillero, and M. Sonza Reorda

5.3.5.2 Coverage metrics using fault models of manufacturing testing
Faultmodels try to bridge the gap between the physical reality of the circuits and the circuit-

design description. Actually, regarding manufacturing testing, a fault model tries to model

physical defects that may appear in the circuit after manufacturing. For example, sticking

one of the input or output signals of a logic gate at a predetermined logic value (1 or 0). This

fault model is called single stuck-at 0 or 1, and it is the most popular fault model used in

digital circuit manufacturing tests. [4] Usually, to facilitate coverage measurements, it is

assumed that only one fault is present in the circuit model at the simulation time. A set of

stimuli covers a fault if the circuit containing that fault causes a different output behavior of

the design with respect to the original behavior of the fault-free circuit.

Some fault models (e.g., single stuck-at) are easy to simulate using modern logic

simulators, and there are tools (named automatic test pattern generators, or ATPGs),

that are able to generate sets of stimuli tackling them. For these reasons, it is some-

times convenient to use some metric based on these fault models to evaluate the test

quality of a set of stimuli devised for verification.

Coverage metrics used in manufacturing testing are strongly related to fault models

emulating physical errors. These fault models are broadly used to assert the test quality

of test sets produced for post-production testing. As mentioned before, the most

popular fault model is the single stuck-at fault; however, the research community has

defined several fault models that must be taken into consideration when performing

a set of stimuli. Since a deep description of manufacturing fault models is out of

the scope of this chapter, only the most commonly used fault models are listed here:

stuck-at, bridge, delay, transition, and cross-talk.

5.3.6 Coverage metrics based on observability

Figure 5.2 schematizes a classical simulation-based design verification environment.

Commonly, verification is performed by comparing circuit responses with a reference

database obtained previously. However, it is also a common practice to verify the

circuit design by running the DUT in parallel with a reference model described at a

different level of abstraction (usually called a golden model) or by the addition of

circuit monitors or internal assertions that confirm the correct behavior of the DUT. [6]

Running the DUT and a golden model in parallel avoids the need to check circuit

primary outputs each time. It could also be possible to observe some internal variables

on the DUT by checking their behavior against the golden model variable’s behavior.

In some cases, it is possible to observe only a reduced set of variables; thus, the

remaining variables are usually called unobserved variables.

Coverage metrics based on observability are able to determine a discrepancy from

the desired behavior of the DUT by observing whether an observed variable takes a

value that conflicts with the expected value specified by the reference model.

5.3.6.1 Observability-based code coverage metric (OCCOM)
The observability-based code coverage metric was introduced in [7]. In this approach,

the DUT is considered as a structural interconnection of modules. The modules can be

5 Test generation and coverage metrics 143

composed of combinational logic and registers. Given a set of stimuli, and using a

logic simulator, controllability metrics can easily be computed. The authors of

OCCOM define a single tag model. A tag at a code location represents the possibility

that an incorrect value was computed at that location. For the single tag model, only

one tag is identified and propagated at a time. The goal, given a stimulus and a

description of the model, is to determine whether (or not) tags injected at each location

are propagated to the primary outputs of the system. The percentage of propagated tags

is defined as the code coverage under the proposed metrics. A two-phase approach is

used to compute OCCOM: first, the circuit description is modified, eventually by the

addition of new variables and statements, and the modified descriptions are simulated,

using a standard simulator; second, tags (associated with logic gates, arithmetic

operators, and conditions) are then injected and propagated, using a flow graph

extracted from the circuit description.

In conclusion, in a coverage-driven verification process, the strategy becomes

how to use the best implementation vehicle to hit most of the points with the least

effort.

5.4 Coverage metrics and abstraction levels of design

Now that the different categories of metrics have been introduced, it is important to

underline once more that the choice of the most suitable metric (or set of metrics) to

achieve a given verification goal for a given design is a very critical task, which must

be performed taking into account several parameters, including the level of abstraction

of the currently available description of the circuit. In fact, the level of abstraction

strongly affects the choice.

First of all, it is important to consider the ease of computation of each metric (e.g., in

terms of simulation cost for measuring the metric itself); moreover, the cost depends

on whether some additional or unavailable information is required to compute the

metric. Finally, some thought has to be given to the current state of the art, looking for

recognized metric efficiency in terms of obtained results.

Functional coverage, mutation coverage, and coverage metrics based on FSMs can

be computed even when high-level descriptions, only, are available, and implemen-

tation details still have to be decided; functional and FSM metrics are mainly con-

cerned with design functionalities, whereas mutation metrics focused on design errors

are more likely to be used at high abstraction levels. Additionally, the cost required to

measure these metrics at high abstraction levels is relatively low.

Verification processes performed at register level exploit code coverage metrics

better, since this set of metrics has been developed to target specific software structures

that are exploited very often at this abstraction level.

On the other hand, observability-oriented, toggle-based, and manufacturing metrics

are more strictly related to low-level circuit implementation details. Indeed, coverage

metrics targeting circuit activation of circuit structures are better suited at lower levels

of abstraction.

144 E. S�anchez, G. Squillero, and M. Sonza Reorda

5.5 Stimuli generation methods

While it is accepted that implementing a simulation or execution environment, as

described in Fig. 5.2, is not an easy mission, probably the most difficult task is stimuli

generation. The research community has deeply studied the stimuli generation domain,

and the proposed methodologies range from manual generation to random approaches,

including deterministic and heuristic methods. Even if the methods described herein

target design verification, these have also been called test-generation methods.

A stimulus has been defined in the introduction as the input to the design under test

or under verification. A set of stimuli might include, but is not limited to, configuration

information, test patterns, transactions, instructions, assembly programs, exceptions,

and data packets. [9] The kind of stimulus and its characteristics depend on the circuit

under analysis and on the level of abstraction the analysis is performed on.

Depending on the control scheme exploited to generate stimuli, generation method-

ologies can be defined as either open-loop or closed-loop, depending on whether the

methoduses feedback informationor not.While bothmethodologies directly dependon the

circuit description, regardless of the abstraction level, open-loop methodologies generate

stimuli resorting to the previously acquired test experience in terms of design knowledge as

well as data gathered in former verification campaigns. The main difference between these

methods is the use or not of feedback information during the stimuli-generation process.

Figure 5.10 represents the work flow used to generate a set of stimuli resorting to

open loop mechanisms (also called feedback-based). As shown in Fig. 5.10, the first

step in the open-loop scheme consists in the abstraction of valid information about the

circuit. This internal representation of the circuit could be based on very simple

constraints about the possible values to be assumed by some inputs, or even complex

graphs representing all possible interconnections among memory elements in the

design. Once the circuit representation is acquired, the set of stimuli is generated,

resorting, for example, to some automatic algorithm or manual strategy.

In 1998, a program called VERTIS was introduced [18]; this algorithm is able to

automatically generate assembly programs suitable for processor verification without

using feedback information. VERTIS takes as input the assembly language instruction

set of the processor, and the operations performed by the processor in response to each

instruction, and produces an assembly program without exploiting feedback information.

The methodology is developed as follows: first, for each instruction, VERTIS is able

to generate a sequence of instructions that enumerates all the combinations of the

operations and systematically selects operands; second, a set of additional instructions

Set of
stimuli

Circuit
design
model

Information
abstraction

Circuit
representation

Stimuli
generator

Figure 5.10 Open-loop generation scheme

5 Test generation and coverage metrics 145

is added to the original program, and is able to compress a signature containing the

valuable information about the execution of the program.

Closed-loop methodologies include in the generation processes an evaluator module

that is able to elaborate the stimulus candidates and return a feed back value representing

the stimulus quality. The basic scheme of the closed-loop methods is illustrated in

Fig. 5.11; the stimuli generator creates a stimulus candidate that is evaluated, and then it

is or is not added to the final set of stimuli depending on whether the new stimulus

satisfies test quality conditions initially defined in the generation process set-up. For

example, a logic-circuit simulator may be used as a stimuli evaluator for collecting code-

coverage information regarding the simulation process of the device under verification.

The feedback information is usually exploited in one out of three possible aspects of

the generation:

� Threshold

The feedback information is used by the stimuli generator to determine when the set

of stimuli is complete; otherwise, the stimuli generator will continue producing

stimuli information. For example, the set of stimuli is considered complete when all

code coverage metrics equal 90%; otherwise, the stimuli generator continues to

produce new stimuli information.

� Feedback-sifted generation

The feedback information is exploited to accept or discard new stimuli. For

example, only new candidates able to increase the coverage in a set of selected

metrics will be added to the final set.

� Feedback-driven generation

The feedback information is used by the stimuli generator to indicate stimuli

candidates that better comply with the quality conditions required in the process,

and then to optimize them. Evolutionary algorithms usually exploit feedback-driven

generation to produce sets of stimuli.

Stimuli generation could be performed following two mainly different methods:

manual and automatic. Manual generation is performed by human beings, whereas

automatic methods may be based on different approaches, such as random techniques

and deterministic or heuristic algorithms.

5.5.1 Manual generation

Manual stimuli generation (also called directed generation) may be performed by

verification, test, or even design engineers. Sets of stimuli are generated manually by

Set of
stimuli

Circuit
design
model

Stimulus
candidate

Stimuli
generator Evaluator ?

Figure 5.11 Closed-loop generation scheme

146 E. S�anchez, G. Squillero, and M. Sonza Reorda

following the verification strategy defined by the verification team. First, the verifi-

cation strategy tackles the main functionalities of the design, and then, both special and

corner cases are addressed for verification.

Regularly, the verification team employs expert engineers who have acquired a

significant know-how while they were involved for example in circuit design. A

verification engineer can manually write a set of stimuli tackling special and corner

cases, which are really difficult to reach using other generation techniques.

For example, in the processor-design cycle, one of the most common methods used

to verify the processor design initially consists of the generation of some assembly

programs containing all the processor instructions. Afterwards, more sophisticated

programs may be manually devised to excite specific design particularities.

To devise stimuli generation efficiently by hand, a deep knowledge about the device

under evaluation is usually required. Let us suppose that a set of stimuli must be

manually generated to verify the handshaking properties of a device originally devised

to perform a communication protocol. It is clear that the verification engineer must be

familiar with the handshaking properties of the communication protocol; moreover,

some knowledge about the device implementation details might also be useful to

generate the set of stimuli competently and more successfully look for possible design

errors. In fact, sets of stimuli are really time consuming and expensive to generate

by hand.

The main advantage of the manual generation of sets of stimuli is that this method

does not require the development of complex and usually expensive tools to generate

the stimuli automatically. Additionally, since this method mainly relies on the

engineer’s expertise, manual generation of sets of stimuli may start even sooner, and

before detailed information about the device implementation is available.

On the contrary, the main disadvantage of manual generation techniques is that the

resulting set of stimuli strongly relies on the engineer’s knowledge and might be easily

biased by his or her beliefs. Additionally, its cost can be very high, since it requires

highly skilled engineers to generate effective sets of stimuli. Supposing that the

engineer in charge of the verification process is the same design engineer; then, it is

likely that a misconception introduced in the design step deriving a design error will

not be detected by the set of stimuli generated.

5.5.2 Automatic generation

Manual approaches used to generate sets of stimuli do not provide a standard solution

for the design-verification problem, because there is no guarantee of the accuracy of

the results that can be achieved in terms of errors or bugs found. Thus, the research

community has developed different techniques to generate sets of stimuli automatic-

ally, resorting to different approaches.

Methodologies to generate sets of stimuli automatically usually rely on software

tools. Some of them resort to an internal representation of the device under verifica-

tion, generating the sets of stimuli in two phases: first, a special representation of the

design is extracted from the available model, in the case that this representation does

5 Test generation and coverage metrics 147

not yet exist. This internal representation could be either that produced by the designer,

or an ad-hoc one (possibly extracted from the latter), and based on graphs, state

machines, or other representations. Second, the actual set of stimuli is generated

exploiting the previously acquired information. On the contrary, some other automatic

generation mechanisms directly use the design under verification to produce the sets of

stimuli.

An automatic closed-loop method to generate a set of stimuli for digital circuit

verification should be characterized by:

� High flexibility regarding the targeted circuit, to allow the maximum applicability

of the method;

� Syntactically correct generation of input information depending on the specific

singularities of the targeted design, for example, special constraints required in

some input variables;

� High versatility with respect to the evaluation system, to allow the tackling of

different verification problems at different abstraction levels;

� Ability to drive the generation process exploiting a feedback measure, such as a

coverage metric.

In recent years, the research community has focused efforts on automatic generation

of stimuli, trying to provide alternative techniques for the automatic generation of

verification sets of stimuli. Delivered solutions have been mainly based on deter-

ministic and random approaches; however, emerging methodologies based on different

heuristics have demonstrated their suitability. Most of the deterministic approaches

are open-loop-based strategies; conversely, several pseudo-random methods exploit

closed-loop schemes.

Automatic generation of stimuli based on closed-loop mechanisms is really effi-

cient; however, the main drawback regarding these methods is the computational effort

involved to produce a good set of stimuli, because it is necessary to evaluate high

quantities of candidates to complete the final set. Additionally, automatic generation

requires an environment that in some cases is really difficult and expensive to set up.

5.5.2.1 Deterministic generation techniques
Deterministic approaches generate the stimuli-exploiting algorithms that use exact

decision mechanisms, and mainly utilize the information extracted from the design

under verification during the generation process.

Algorithms that automatically generate test vectors, aiming at testing through simu-

lation, have been called ATPG (automatic test-pattern generation). The term ATPG was

first introduced for manufacturing testing tools; however, this term is also currently

accepted in design validation and verification. Some ATPG techniques can also be suc-

cessfully exploited to generate sets of stimuli not only for testing, but for verification, too.

It is worth noting that most of the ATPG-like algorithms exploited to generate auto-

matically sets of stimuli maximize the coverage of the single stuck-at faults of the circuit.

The classical deterministic approach to generating test patterns suitable for manu-

facturing testing automatically was first described in [19]. This deterministic algorithm

148 E. S�anchez, G. Squillero, and M. Sonza Reorda

was called D-Algorithm (D-ALG) and it was the first widely accepted algorithm for

automatic generation of test patterns. The D-ALG is capable of finding test vectors for

all detectable faults in a given combinational circuit. The author developed a complete

mathematical description in the D-ALG, based on the “calculus of the D-cube,” which

guarantees that a test will always be generated for detectable stuck-at faults.

Path-oriented decision making (PODEM) improved on the efficiency of the D-ALG

by noting that all nodes in a combinational circuit are completely determined by the

primary input values. [20] After identification of the target stuck-at fault, PODEM

assigns input values one at a time and immediately simulates the results. This process

guarantees that any conflict can be resolved by complementing the latest input

assignment setting, otherwise, no solution can exist for the current set of input

assignments. When conflict occurs for both logic states on the first input pin selected,

the fault is guaranteed to be undetectable. The process starts by initializing all inputs to

the unknown (X). Subsequently, the logic value of any given node within the circuit

will either be X or will be dominated by an already selected logic value (from a

previous input logic assignment). The search continues as long as no node value

conflicts with the fault sensitization and propagation requirements. As the input logic

assignment and simulation progress, any conflict is a function of the latest input logic

assignment coupled with all current input pin logic assignments, since all X-valued

nodes are dominated by the most recent logic selections. All combinations of input

logic values for the yet-undetermined input pins need not be attempted because they

cannot resolve the present conflict. A significant portion of the search space can thus

be discarded without requiring computer time to search that portion of the space

explicitly.

Tackling verification of combinational circuits, some algorithms based on PODEM

have been developed to generate sets of stimuli automatically; for example in [21], the

authors describe a verification algorithm, called PLOVER-PODEM, whose enumer-

ation phase is based on PODEM. Parallel-logic verification schemes have been

exploited.

Let us consider a sequential circuit design that must be verified. The verification

process could follow the two-step strategy described before: in the first step, an FSM

of the circuit is extracted from the available description of the design. Then, as a

second step, a deterministic algorithm is exploited to generate stimuli able to traverse

all edges of the FSM automatically.

Tackling microprocessor cores verification, in [22] the authors described an algorithm

to extract a very small FSM that encapsulates the processor control behavior. The

generation process is evolved in three phases: first, the FSM model is directly extracted

from the design model. Second, all possible transition paths with a given finite length are

generated; path coverage is used to measure the quality of the generated stimuli. Third,

all the FSM state transition paths are translated to instruction sequences.

5.5.2.2 Random generation techniques
Random strategies are some of the most popular methods of generating sets of stimuli

because they are simple and require low human intervention; these strategies randomly

5 Test generation and coverage metrics 149

explore the stimuli search space, looking for acceptable information to complete the

set of stimuli; in synthesis, random approaches introduce probabilistic decision

mechanisms in the algorithm of generation.

Guaranteeing a thorough verification of the circuit is necessary to generate huge sets

of inputs that could require massive computational resources in terms of memory and

time. It is important to note that stimuli generation based on random approaches

requires little effort in generating sets of stimuli automatically; however, most of the

effort is consumed by the evaluation mechanism exploited to assert the stimuli quality.

In fact, even statistical analyses have been proposed to decrease as much as possible

the generation of redundant stimuli. [23]

Habitually, random strategies are equipped with initialization mechanisms that

allow repeatability in the stimuli generation campaigns; for instance, most of the

random generation tools are provided with the possibility of selecting the initial seed

of the random function to produce repeatable results. Even though this fact inhibits the

actual randomness properties of a stimuli generator, herein the term random is used

anyhow (a more correct term would be pseudo-random).

Random strategies must be carefully configured before use because these techniques

could generate large quantities of information incapable of improving the set of

stimuli. In fact, some designs require specific sequences of inputs to be thoroughly

verified; the kinds of circuit that are difficult to test or verify using random strategies

have been called random resistant circuits, and in these situations random-based

generation strategies could fail in reaching the target quality.

A well known random resistant circuit is a pipelined processor; indeed, verifying the

correct design of pipelined microprocessors requires sequences of suitable instructions

(e.g., to excite specific control mechanisms such as data forwarding [24]) that can

hardly be generated randomly.

In a verification process based on random generation, it is very important to identify

stimuli that can be created without any constraints from others that require constraints

to ensure that valid stimuli are being created. Other stimuli require additional or

modified constraints to create certain special cases.

The ability to create well-defined patterns between different input signals is directly

related to the ability to express the constraints able to cause the pattern to be generated.

Let us suppose that it is necessary to generate data communication frames to verify a

serial communication device using a random-stimuli generator; it is possible that this

process becomes an inefficient task if special constraints correlating the parity bit with the

dataword if the internal structures of the data communication frames are not clearlydefined.

As another example, let us consider a random constrained generator of a set of

stimuli for processors called Genesys, which is a random-based generator of test

programs suitable for microprocessor verification, developed by IBM. [25] The system

consists of three basic interacting components: a generic, architecture-independent test

generator, an external specification, which holds a formal description of the targeted

processor, and a behavioral simulator used to predict the results of instruction exe-

cution. Additionally, the user can control the generation process by specifying desired

biasing towards special events. As exemplified by the authors of [25], the result of zero

150 E. S�anchez, G. Squillero, and M. Sonza Reorda

for an ADD instruction is typically of special importance, whereas its relative

probability of occurring randomly is practically non-existent, and should, thus, be

generated with a reasonable probability.

Random techniques can be included either in an open-loop method, or in a feedback-

based one. If included in a closed-loop strategy, the random generation mechanism will

generate stimulus information until a stop condition is reached. Indeed, feedback-based

strategies including random generation are usually merely cumulative: feedback infor-

mation is not used to optimize stimuli, but a new stimulus is added to the test or

verification set if it increases the test or verification quality of the whole set of stimuli,

only. Therefore, at the end of the generation process, all the gathered information will

compose the set of stimuli, regardless of the real value of the generated stimulus.

The main advantage of random strategies is the low human intervention required to

perform the generation experiments. Additionally, it is interesting to highlight the fact

that generation is not biased by the human understanding of the design behavior.

5.5.2.3 Emerging generation techniques
Emerging methodologies based on new heuristics are being successfully exploited to

generate optimal stimuli automatically when it is impractical to find perfect solutions,

owing to the high amounts of resources required in terms of computational time and

memory. Evolutionary algorithms are sketched here as an interesting example of these

kinds of generation mechanism.

Evolutionary algorithms (EA) are based on pseudo-random generation and are able

to guide the generation process using feedback information. These optimization

algorithms are based on the natural-selection paradigm.

Roughly speaking, in evolutionary computation there is an initial population of

individuals. These individuals are evaluated using a fitness function, and the fittest ones

(called parents) survive and produce new individuals (or children). These new indi-

viduals join the population and older individuals may be removed from it. The whole

process is performed in genetic cycles called generations. New individuals are produced

by either mutation or cross-over operators. Mutation operators make a random change to

the parent; whereas cross-over operators perform recombinations of the parents.

Evolutionary algorithms have been successfully exploited to generate sets of stimuli

for digital circuits described at RTL and gate level, [26] [27] and also for verifying

complex circuits such as processor cores. [28]

5.6 Acknowledgements

The authors wish to thank Massimiliano Schillaci and Michelangelo Grosso for their

valuable comments.

5.7 References
[1] Semiconductor Industry Association (2002). International Technology Roadmap for

Semiconductors 2002 Update. www.semichips.org/pre_stat.cfm?ID=153.

5 Test generation and coverage metrics 151

www.semichips.org/pre_stat.cfm?ID=153

[2] T. R. Halfhill (1995). The truth behind the Pentium bug. Byte (March). www.byte.com/art/

9503/sec13/art1.htm.

[3] IEEE Standard for Software Verification and Validation, IEEE Std 1012–1998 (1998).

[4] M. L. Bushnell and V. Agrawal (2000). Essentials of Electronic Testing for Digital,

Memory and Mixed-Signal VLSI Circuits Kluwer Academic.

[5] R. Kurshan (1994). Computer-Aided Verification of Coordinating Processes. Princeton

University Press.

[6] W.W. Bledsoe and D.W. Loveland, eds. (1984). Automated Theorem Proving: After 25

Years, Contemporary Math 29, American Mathematical Society.

[7] E.M. Clarke and E.A. Emerson (1982). Design and synthesis of synchronization skeletons

for branching time temporal logic. In Proceedings Logic of Programs Workshop, LNCS

131, pp. 52–71. Springer-Verlag.

[8] A. J. Hu (1997). Formal hardware verification with BDDs: an introduction. In IEEE Pacific

Rim Conference on Communications, Computers and Signal Processing, vol. 2,

pp. 677–682.

[9] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale, (2006). Verification Methodology for

SystemVerilog. Springer.

[10] H. Zhu, P. A.V. Hall, and J. May (1997). Software unit test coverage and adequacy. ACM

Computing Surveys, 29(4):366–427.

[11] J. B. Goodenough and S. L. Gerhart (1977). Toward a theory of testing: data selection

criteria. In R. T. Yeh, ed., Current Trends in Programming Methodology, vol. 2, pp. 44–79.

Prentice-Hall, Englewood Cliffs.

[12] S. Tasiran and K. Keutzer (2001). Coverage metrics for functional validation of hardware

designs. IEEE Design and Test of Computers, 18(4):36–45.

[13] J. L. Chien-Nan, C. Chen-Yi, J. Jing-Yang, L. Ming-Chih, and J. Hsing-Ming (2000). A

novel approach for functional coverage measurement in HDL circuits and systems. In IS-

CAS2000: The 2000 IEEE International Symposium on Circuits and Systems, pp. 217–220.

[14] A. Piziali (2004). Functional Verification Coverage Measurements and Analysis. Kluwer

Academic Publishers.

[15] J. Simsic and S. Teran (2001). 8051 Core: Overview. http://www.opencores.org/projects.

cgi/web/8051/overview.

[16] M. Kantrowitz and L.M. Noack (1996). I’m done simulating; now what? Verification

coverage analysis and correctness checking of the DECchip 21164 alpha microprocessor.

In The 33rd Design Automation Conference, pp. 325–330. ACM Press.

[17] F. Fallah, S. Devadas, and K. Keutzer (2001). OCCOM: efficient computation of ob-

servability-based coverage metrics for functional verification. IEEE Transactions on

Computer-Aided Design, 20(8):1003–1015.

[18] J. Shen and J. A. Abraham (1998). Native mode functional test generation for processors

with applications to self test and design validation. In IEEE International Test Conference,

pp. 990–999.

[19] J. P. Roth (1996). Diagnosis of automata failures: a calculus and a method. IBM Journal of

Research and Development, 10:278–291.

[20] P. Goel (1981). An implicit enumeration algorithm to generate tests for combinational

logic circuits. IEEE Transactions on Computers, C-30(3):215–222.

[21] H.-K. T. Ma, S. Devadas, R.-S. Wei, and A. Sangiovanni-Vincentelli (1989). Logic veri-

fication algorithms and their parallel implementation. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 8(2):181–189.

152 E. S�anchez, G. Squillero, and M. Sonza Reorda

www.byte.com/art/9503/sec13/art1.htm
www.byte.com/art/9503/sec13/art1.htm
http://www.opencores.org/projects.cgi/web/8051/overview
http://www.opencores.org/projects.cgi/web/8051/overview

[22] J. Shen and J. A. Abraham (1999). Verification of processor microarchitectures. IEEE VLSI

Test Symposium, pp. 189–194.

[23] Y. Malka and A. Ziv (1998). Design reliability estimation through statistical analysis of

bug discovery data. In 35th Design Automation Conference, pp. 644–649. ACM Press.

[24] D. A. Patterson and J. L. Hennessy (1996). Computer Architecture – A Quantitative

Approach. 2nd edn. Morgan Kaufmann.

[25] L. Fournier, Y. Arbetman, and M. Levinger (1999). Functional verification methodology

for microprocessors using the Genesys test-program generator. Application to the x86

microprocessors family. In IEEE Design, Automation and Test in Europe Conference and

Exhibition, pp. 434–441.

[26] V. Hahanov, A. Babich, A. Sokolov, and V. Pudov (2002). Deterministic method of genetic

algorithms of test generation for digital systems verification. In Modern Problems of Radio

Engineering, Telecommunications and Computer Science, IEEE Proceedings of the

International Conference, pp. 257–258.

[27] Z. Stamenkovic, H. Dahmen, and U. Glaeser (2001). VHDL design validation by genetic

manipulation techniques. In IEEE 22nd International Conference on Microelectronics,

vol. 2, pp. 735–738.

[28] F. Corno, E. Sanchez, M. Sonza Reorda, and G. Squillero (2004). Automatic test program

generation – a case study. IEEE Design and Test, 21(2):102–109.

5 Test generation and coverage metrics 153

6 SystemVerilog and Vera
in a verification flow

Shireesh Verma and Ian G. Harris

6.1 Introduction

The goal of this chapter is to illustrate the practical applicability of the

simulation-based validation concepts in the book by applying them to a design

example. We will use both SystemVerilog [1] and Vera [2] as hardware-verification

languages (HVLs) in which we will implement the entire validation framework for the

design example. Simulation is the most widely used technique for verification of

design models. The design to be verified is described in a hardware-description lan-

guage (HDL) and is referred to as the design under verification (DUV). This provides

an executable model or models of the DUV. These models could be developed at

different levels of abstraction.

A high-level design specification is then analyzed to produce stimulus or input test

vectors. The input test vectors are applied to the models. The inputs are propagated

through the model by a simulator and finally the outputs are generated. A monitor is

used to check the output of the DUV against expected outputs for each input test

vector. It is constructed based on an interpretation of the expected design behavior

from the specification. If there is any observed deviation from the expected output, a

design error is considered to have been found, and debugging tools are used to trace

back and diagnose the source of the problem. The problem usually arises from either

incorrectly modeled design or incorrectly modeled timing. Once the problem source is

identified, it is fixed and the new model is simulated. In an ideal world, the model

should be tested for all possible scenarios. However, this would amount to generating

an infeasible number of test vectors. Since only a limited number of test vectors can be

simulated, the goal should be to identify and pick the most useful ones. The usefulness

of a test case is usually defined by the extent to which it covers, or rather uncovers, the

features of the design. Moreover, a test case that verifies an already verified part of the

design does not add any value. Coverage metrics provide a measure of the degree to

which a design has been verified.

Therefore, several coverage metrics have been invented to quantify the usefulness of

a test case [3]. The simulation performance can be improved either by speeding up the

simulator or by choosing test cases intelligently to maximize coverage with minimal

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

simulation runs. One optimization is to reduce test generation time by giving con-

straints to stimuli and testing with only valid inputs. Monitoring non-primary output

variables in the model reduces debugging time by pointing out the error closer to its

source. The success of this method of verification depends on both the quantity and the

quality of the test vectors.

6.2 Testbench components

A typical industrial verification environment consists of a multitude of components. [4]

They include the DUV, stimulus, monitor, checking, and scoreboard components.

The complete assembly of such a set-up is called a testbench. Figure 6.1 shows such

an environment. Different tool vendors might show additional or fewer components

depending on how they choose to organize their tool flow. Figure 6.1 represents all the

core functional aspects of a verification environment. In general, a testbench includes

all the code needed to create, observe, and check a deterministic input sequence given

to the design. This input sequence may be generated by a direct approach or by a

random method. The testbench is a closed system in the sense that the top level of the

test bench has no inputs or outputs. It is effectively a model of the universe from the

standpoint of the DUV. In terms of work division, a verification engineer develops

code for components of the testbench universe and the designer develops HDL

description of the DUV. The former is typically written in a hardware-verification

language (HVL), such as SystemVerilog or Vera, or a general-purpose programming

DUV

Transaction
generator

Driver

Coverage
monitor

Assertions

Scoreboard

Checkers

Input
monitor

Output
monitor

Top-level testbench

Figure 6.1 A typical industrial simulation environment

6 SystemVerilog and Vera in a verification flow 155

language, such as C or Cþþ, whereas the latter is developed using HDLs. The

components developed in HVL or C or Cþþ communicate with the simulation engine

through an API. The effective design of a testbench entails making sure that the design

is stimulated with interesting input patterns, which cover as much functionality as

possible and that the expected responses are computed based on these input patterns.

The design can be ascertained to be functioning as intended by exercising all the

functionality and by predicting and checking all responses. In the following sections,

we present a brief discussion of each component of the verification environment.

6.2.1 Design under verification

The DUV sits at the core of the verification environment. Almost all of the other

components interact with the DUV. The task of verification is to find the design errors

present in the DUV. The DUV is represented by an HDL description of the design.

During simulation, the HDL description is interpreted or compiled into a model

capable of being simulated. The exact nature of the model depends on the simulator

being used. The difference in these models arises from different kinds of interpreters

and compilers used in different simulators.

The DUV can represent any level of hierarchy in the design. It may represent a

macro, a logical unit, a chip, or an entire system. Irrespective of the level of hierarchy

to which the DUV belongs, all the other components of the testbench are customized to

exercise and verify it. The DUV may be described at any level of abstraction including

behavioral, RTL, gate, or transistor level. Irrespective of the abstraction level, veri-

fication involves making sure that the DUV functionality matches its intent.

The stimulus components manipulate the inputs of the DUV and the checker and

monitor components observe its outputs. Depending on the verification needs, monitor

or checker components may be embedded inside the DUV in some cases.

6.2.2 Monitor

A monitor is a model that observes different aspects of a verification environment. It is

a self-contained component that observes the outputs of the DUV for protocol cor-

rectness, the inputs and non-primary outputs of the DUV for functional coverage

analysis and scoreboard updates, and the internals of the DUV for events of interest to

the environment. A monitor cannot cause any side effect on the verification envir-

onment, since it does not drive any signal into the DUV; it only receives the inputs and

callbacks to itself. So, it is reusable at other levels.

6.2.2.1 Input monitor
An input monitor collects the input signals to the DUV and passes it to the scoreboard

which uses those data to compute expected outputs and compare them to the ones

provided by the output monitor. The input monitors may have a checker component

embedded in them, depending on the implementation.

156 S. Verma and I. G. Harris

6.2.2.2 Output monitor
An output monitor observes the outputs of the DUV. These outputs are compared with

the expected outputs posted on the scoreboard and any mismatch is considered an

error. The output monitors may have a checker component embedded in them,

depending on the implementation.

6.2.2.3 Coverage monitor
A coverage monitor collects input, output, and internal signals from the DUV. This

information is also used by the monitor to generate functional coverage data. The input

signals provide a coverage estimate of the stimulus, whereas the internal and output

signals provide an estimate of the coverage of functionality. In advanced verification

environments, the stimulus components also use coverage data obtained from internal

DUV probes or DUV inputs by the monitor to steer the stimulus generation. This is

called coverage-directed stimulus generation. In SystemVerilog and Vera these

monitors are called coverage groups.

Monitors also provide post-simulation information, which could be used for debugging

purposes. A trade-off has to be made while probing input, output, and internal signals of

the DUV for collecting information to be passed on to the checker or scoreboard by

limiting the internal probes to ease excessive reliance on the design for information.

6.2.3 Checker

The purpose of checkers is to verify the correctness of the DUV. A checker is one of

the more complicated components to implement, since it has to have an incisive notion

of correctness of the design. There are three types of checker from an implementation

perspective. The protocol and functional correctness checkers communicate with the

input and output monitors or scoreboard for the information they need while the

assertions hook up to the DUV directly for sampling input, output, and internal signals.

6.2.3.1 Protocol checker
A protocol checker is supposed to signal an error if the DUV does not follow the

underlying protocol. These protocol compliance checkers are implemented based on

the design specification and not based on the intent of the designer. They may obtain

stimulus information from external monitors or the scoreboard or have embedded

monitors for that purpose in order to predict functional results independently. They use

this information to compute the expected reference value of outputs independent of the

DUV execution, which are then compared with the collected outputs of the DUV. In

the case of a miscompare, the checker flags an error and halts the simulation. Since

there may be many requests and interacting stimuli in a single test case, a checker has

to correlate input requests with output responses.

6.2.3.2 Functional correctness checker
Functional correctness checkers have to be aware of internal intricacies of the DUV to

the extent that they are very often considered as reference models. Traditionally,

6 SystemVerilog and Vera in a verification flow 157

functional correctness was checked by analyzing test case traces by hand and by

observing results on the DUV outputs. This was possible since the earlier designs were

simpler and had fewer corner conditions and complex interactions. But with increasing

design complexity, automated checker components, which are like miniature reference

models, are essential. They are very similar to protocol checkers in terms of com-

munication with the rest of the testbench. In addition to access to the inputs and

outputs of DUV they may also need internal signals for computing the expected

results, depending on the complexity of the underlying reference model. A trade-off

has to be made in terms of dependency on internal signals, which represent reliance on

designer’s intent. This reliance cannot be completely avoided in this case because of

the involved nature of functional correctness checks.

6.2.3.3 Assertions
Assertions can be considered as monitors as well as checkers. [5] They do not interact

with the rest of the testbench other than the DUV. They monitor input, output, and

internal signals of the DUV and check the design for correctness. One major difference

between assertions and the other two checkers is that the former executes concurrently

with the design while the latter do not. The assertions continuously monitor correct-

ness of the DUV while it is executing, whereas the other two checkers check the

outputs only at the end of the execution. The assertions are modeled to reflect desired

properties, which should be exhibited by DUV during its execution. Any deviation

from these properties causes a violation of the associated assertion and an error is

flagged at the run time. Assertions afford a checking mechanism very tightly coupled

to the design. However, the trade-off is to keep the DUV properties precise. If

they become complex, then the assertions run the risk of replicating the DUV

implementation.

6.2.4 Scoreboard

A scoreboard is a temporary holding location for information that a checker may

require. A checker uses a scoreboard in two ways. The main difference between the

two methods stems from which component acts as a reference model to check cor-

rectness. In this first method, the checker component contains the reference model. The

scoreboard examines the inputs for transactions to occur, captures relevant infor-

mation, and stores the information for later use. When the checker observes a con-

dition on the outputs of the DUV, it fetches data from the scoreboard by making a call

to it. The scoreboard implementation depends on the DUV functionality. If the DUV

follows a FIFO protocol, the scoreboard would also follow the same protocol. If the

DUV follows a complex queuing algorithm, then a complex function, such as a search

based on port number, will have to be performed in the scoreboard to obtain the correct

data. The returned data are used by the reference model in the checker to compute

expected results, which are then compared with the DUV output signals.

In the second method, the scoreboard contains the reference model, which performs

the expected result computation based on the observed input stimulus. The checker

158 S. Verma and I. G. Harris

observes the DUV output events, queries the scoreboard for the expected data, and

then performs the comparison. Either of the work-division schemes between checker

and scoreboard is fine, so long as the choice of reference model placement remains

consistent.

Sometimes, if the implementation is simple, the scoreboard also subsumes the

checker component.

6.2.5 Stimulus

The stimulus components manipulate inputs to the DUV. These components ensure

that the DUV is simulated through enough design states to verify its functionality

adequately. The stimulus components typically consist of transaction generators,

drivers, and irritators. A stimulus component also maintains a record of its activity for

post-simulation analysis needed for test-case debugging.

6.2.5.1 Transaction generator
The transaction generators model the behavior of real design entities of the system of

which the DUV is a subsystem. To create stimuli to be applied to the DUV, the

transaction generator merely needs to model the interface inputs to the DUV, instead

of modeling the entire behavior of these design entities. This interface is called a

transaction interface. Only having to model the interface to be presented to the DUV

without getting into the internal-logic-level details of the external design entities

drastically reduces the complexity of development of a transaction generator, as well

as simplifying the verification as a whole. The generator can produce stimulus in the

following three ways:

� Random The stimuli are completely randomly generated from their value space

using a pseudo-random generator.

� Constrained random The stimuli are constrained by specifying the relationship

between the inputs or bounds on the values of the inputs. Sophisticated constraint

solvers are used for this purpose. This method is used when the completely random

method yields stimuli inadmissible by the DUV.

� Directed This method is used to generate stimuli to reach certain design states in the

simulation that are very difficult to attain using the random and constrained-random

methods.

The above mechanisms ensure detection of design errors in corner cases.

6.2.5.2 Driver
A driver takes as input the stimulus generated by the transaction generator and applies

it to the inputs of the DUV. This whole process is called a transaction. A driver

accurately models the interface protocol with the DUV. It is responsible for application

of the inputs to the DUV in an appropriate sequence. It is also used to simulate the

reset behavior by driving reset values of inputs into the DUV.

6 SystemVerilog and Vera in a verification flow 159

6.2.5.3 Irritator
Sometimes during the verification of complex DUVs, it is very difficult to simulate

certain design states or, as they are called, corner cases. In these cases, in the interest of

thorough verification, some internal signals of the design have to be forced to certain

values in order for the DUV to execute the corner states. The mechanisms that inject

these values onto the internal signals are called irritators. They also follow one of the

three methods for value generation, as described in Section 6.2.5.1.

6.3 Verification plan

The Verification plan is a very important part of the verification process. It should be

the first step in the verification process. The idea is for verification engineers to

acquaint themselves thoroughly with the functionality of the DUV. A baseline veri-

fication plan consists of the following:

� A list of the design features to be verified,

� The details of correctness checks required to ensure that the DUV is correct with

respect to those features,

� The details of coverage monitors required to make sure that those features are

exercised in simulation.

The Verification plan is thoroughly reviewed with the design engineers so that the

intricacies of the design choices are brought to the attention of the verification

engineers. This allows the verification engineers to produce an unambiguous and

faultless verification environment.

6.4 Case study

We will take up a design as an exercise and show through a sequence of steps how a

verification environment is set up and a DUV is verified. We will demonstrate this with

both SystemVerilog and Vera. These two languages have striking similarities, to the

extent that most of the verification infrastructure code is reusable among the two.

Unless it is explicitly mentioned, each code example discussed applies to System-

Verilog as well as Vera; the filename extension will need to be changed to .vr from .sv,

except in the case of HDL code, in which case it will be .sv in both these languages.

Both SystemVerilog and Vera code examples are shown separately in the instances

where they differ.

6.4.1 DUV

The example in Fig. 6.2 shows a typical interrupt controller. The controller takes

interrupt information, such as interrupt event, interrupt event mask, and interrupt

mask, as inputs and generates interrupt as an output. It also clears interrupt lines based

160 S. Verma and I. G. Harris

input clock, reset;
input [3:0] Event;
input [3:0] EventMask;
input [3:0] Mask;
input [3:0] ClrMode;
input [3:0] StatWrData;
input StatRegWr;
input StatRegRd;

output [3:0] Status;
output reg [3:0] dynMask;
output reg intr;

integer i;

always @ (posedge clock or negedge reset)
begin

end
end

end
always @ (posedge clock or negedge reset)

begin
if (!reset) dynMask <= 0;
else

if (StatRegRd)
dynMask <= dynMask | Status;

else
if (StatRegWr)

dynMask <= dynMask & StatWrData;
end

always @ (posedge clock or negedge reset)
begin
if (!reset) intr <= 1’b0;
else

if (((Status & ~dynMask) & Mask) == {4{1’b0}})
intr <= 1’b0;

else
intr <= 1’b1;

end
endmodule

module intCtrl (
// Inputs
clock, reset, Event, EventMask, ClrMode, StatRegRd,
StatRegWr, StatWrData, Mask,
// Outputs
Status, dynMask, intr);

if (!reset) Status <= 0;
else

begin
for (i=0; i<4; i++)

begin
if (Event[i] && EventMask[i])

Status[i] <= 1’b1;
else

if (ClrMode[i])
if (StatRegRd)

Status[i] <= 1’b0;
else

if (StatRegWr && !StatWrData[i])
Status[i] <= 1’b0;

Figure 6.2 A four-line interrupt controller (filename: intCtrl.sv)

6 SystemVerilog and Vera in a verification flow 161

on a read or a write operation on the interrupt status register. The Verilog design

description always has three process blocks.

The controller has four interrupt lines, which allows for four different interrupt

events. For signals with four bits, each bit corresponds to an interrupt line. The

following is a description of the input signals:

� Event Each of the four bits represents a unique incoming interrupt event. A set bit

signifies the presence of the corresponding event and vice versa.

� EventMask Each of the four bits represents masking information for an interrupt

event. A set bit means that the corresponding event should be taken into account

when computing the interrupt status, and vice versa.

� ClrMode Each of the four bits depicts the mode of clearing of an interrupt status bit

pertaining to an interrupt event. A set bit wouldmean that the status bit should be cleared

on a read of the interrupt status register. Otherwise, the status bit would be cleared on a

write to the interrupt status register (a zero written to the corresponding bit).

� StatRegRd This indicates a read of the interrupt status register.

� StatRegWr This indicates a write to the interrupt status register.

� StatWrData Each of the four bits represents the data to be written to the

corresponding bit of the interrupt status register.

� Mask Each of the four bits contains the masking information for an interrupt status

bit. A set bit signifies that the corresponding interrupt status line should be taken

into account for computation of the final interrupt.

The following is a description of the output signals:

� Status Each of the four bits represents whether an interrupt event has been recorded

or not. A set bit indicates the presence of an event and vice versa.

� dynMask Each of the four bits represents dynamic masking information for an

interrupt status bit. This is used to mask off a status bit that has already resulted in

the generation of an interrupt. A set bit indicates that the corresponding interrupt

status bit should be ignored in the course of computation of the final interrupt. These

bits are cleared by a write to the interrupt status register, which sets its

corresponding bits to one or zero.

� intr This is the final interrupt signal generated. The dynMask and the Mask values

are ANDed with the contents of the interrupt status register. The intr is generated if

any bit in the interrupt status register remains set after this computation.

The first process computes an AND of the interrupt event and the interrupt event

mask information and sets the interrupt status lines in the interrupt status register if the

corresponding bits remain set after the computation. It also administers the interrupt

clearing information as to whether an interrupt line should be cleared on a read from or

a write to the interrupt status register.

The second process generates the dynamic masking information dynMask, to be

used in conjunction with the interrupt status register, while generating the interrupt

signal so that an already existing event in the interrupt status register does not end up

regenerating the interrupt.

162 S. Verma and I. G. Harris

The third process generates the final interrupt if any interrupt status register bits stay

set after applying the masks, dynMask and Mask.

6.4.2 Verification plan

Table 6.1 represents a verification plan for the interrupt controller described above.

The following plan is not meant to be exhaustive: it is aimed at giving the reader an

idea of how one should go about developing such a plan. Coming up with a more

detailed plan can be taken as an exercise by the reader.

6.4.3 Testbench

Figure 6.3 depicts the top-level HDL testbench, which applies to both SystemVerilog-

and Vera-based verification environments. Line numbers 14 through 21 generate the

clock and the reset such that the design is kept under reset for ten clock cycles before

the transactions are applied. Line numbers 22 through 34 instantiate the DUV. Line

number 35 instantiates the top-level SystemVerilog or Vera testbench, which is bound

to the port interface instantiated in line numbers 36 through 48.

Figures 6.4(a) and (b) depict the port interface definition in SystemVerilog and Vera

respectively. The purpose of this interface is to provide a mapping between the ports of

the DUV and those of the testbench. One exception is the port tr_no which is added

just to keep track of the input transactions.

Figure 6.5 shows the top level of the SystemVerilog testbench, which will be

identical for Vera. The only difference will be in the file name, which will be tb.vr in

the latter case, as opposed to tb.sv in the former. In lines 12 through 16, it instantiates

the transaction generator, scoreboard, input, output, and coverage monitors. In lines 17

through 20, input and output monitoring tasks are invoked in parallel so that the data

could be posted to the scoreboard. In the end, the task gen_trans is invoked to generate

transactions.

Figure 6.6 presents the base object definition containing the data members that will

be generated, manipulated, or observed by the testbench. Lines 2 through 8 represent

inputs to the DUV. The rand type declaration allows them to be randomized. Lines 9

through 11 represent the outputs that are observed in the testbench. Line 12 depicts a

variable tr_no, which is an artifact of the testbench to keep track of transactions, so

that expected values of outputs could be compared with the computed values.

Figure 6.7 shows the code for the transaction generator. Lines 2 and 3 instantiate the

transaction object and the driver. The “new” function in lines 4 through 8 connects the

driver class to the defined port interface. The figure depicts three tasks to demonstrate

generation of transactions in random, constrained-random, and direct modes.

The task gen_random_trans in lines 9 through 20 generates 20 completely random

transactions. It instantiates a transaction object in each of the 20 iterations, and creates

random values for each of the rand type data fields of the transaction object using a

native SystemVerilog function called randomize(). It then stores the iteration number

as the transaction number in the data field tr_no. The transaction number is tracked, to

6 SystemVerilog and Vera in a verification flow 163

Table 6.1 Verification plan

No. Property or feature Correctness Coverage

1. Status of an interrupt event

in conjunction with the

event masking data must

be reflected in the interrupt

status register

i. If there is an interrupt event

and if the corresponding

interrupt mask is set, then the

event must be reflected in the

interrupt status register.

ii. If there is an interrupt event

and if the corresponding

interrupt mask is not set, then

the event must not show up in

the interrupt status register.

i. All four interrupt event types

should be generated.

ii. All interrupt event mask bits

should be exercised.

iii. Interrupt event masking and

unmasking should be exer-

cised for all interrupt events.

(This will require cross-prod-

uct coverage of the above

two.)

2. Interrupt status register

must be cleared based on

the clearing mode selected

i. Interrupt status register must

be cleared on its read if clear

on read mode is selected.

ii Interrupt status register must

be cleared only on a write of

zero to it if clear on write

mode is selected.

i. Clear on read and write modes

both must be exercised for all

the four interrupt status bits.

ii. Read from the status register

must occur.

iii. Write to the status register

must occur.

iv. 0 and 1 must both be written

to every bit of the status

register.

v. Read mode must be selected

in conjunction with a read

operation. (A cross-product of

i and ii above.)

vi. Write mode must be selected

in conjunction with write

operation. (A cross-product of

i, iii, and iv above.)

3. An interrupt event must

not be able to generate an

interrupt more than once

unless the same event type

is re-asserted.

i. If there is an interrupt status

register read, the dynamic

masking register must update

itself so as to mask the status

bits corresponding to active

interrupt events.

ii. If there is a write of 0 to the

interrupt status register, the

dynamic masking register

must update itself so as to

unmask the status bits corres-

ponding to active interrupt

events.

i. A read of the interrupt status

register must occur.

ii. A write of the interrupt status

register must occur.

iii. Interrupt status register bits

must show both active and

inactive interrupt events.

iv. A write to the interrupt status

register must result in status

bits being both 0 and 1.

v. A cross-product of i and iii

above.

vi. A cross-product of ii and iv

above.

4. The interrupt should be

generated if an interrupt

status register bit stays

high after masking

computation has been

performed on it.

i. Interrupt must be generated

if any interrupt status bit stays

high after masking.

ii. Interrupt must not be generated

if none of the interrupt status

bits stays high after masking.

i. Both scenarios of interrupt

occurring and not occurring

must be exercised.

ii. Interrupt should be generated

because of all interrupt events

at least once.

164 S. Verma and I. G. Harris

compare expected outputs with the obtained outputs in the scoreboard. It finally

invokes the task drive_intCtrl from the driver class to propagate the transaction created

to the DUV ports.

The task gen_constr_trans in lines 21 through 32 is quite similar to gen_ran-

dom_trans, except for line number 27, where it adds a constraint such that none of the

1 `include “intCtrl.sv”

2 module intCtrl_tb ();
3 wire [3:0] Event;
4 wire [3:0] EventMask;
5 wire [3:0] Mask;
6 wire [3:0] ClrMode;
7 wire [3:0] StatWrData;
8 wire StatRegWr;
9 wire StatRegRd;
10 wire [3:0] Status;
11 wire [3:0] dynMask;
12 wire intr;
13 reg clock, reset;

14 initial clock = 0;
15 always #1 clock = ~clock;
16 initial
17 begin
18 reset = 1;
19 repeat(10) @ (posedge clock);
20 reset = 0;
21 end
22 intCtrl intCtrl_inst(
23 .clock (clock),
24 .reset (reset),
25 .Event (EventMask),
26 .ClrMode (ClrMode),
27 .StatRegRd (StatRegRd),
28 .StatRegWr (StatRegWr),
29 .StatWrData (StatWrData),
30 .Mask (Mask),
31 .Status (Status),
32 .dynMask (dynMask),
33 .intr (intr)
34);

35 intCtrl_top top (ports);

36 intCtrl_interface ports(
37 .clock (clock),
38 .reset (reset),
39 .Event (EventMask),
40 .ClrMode (ClrMode),
41 .StatRegRd (StatRegRd),
42 .StatRegWr (StatRegWr),
43 .StatWrData (StatWrData),
44 .Mask (Mask),
45 .Status (Status),
46 .dynMask (dynMask),
47 .intr (intr)
48);

49 endmodule

Figure 6.3 HDL testbench top (filename: top.sv)

6 SystemVerilog and Vera in a verification flow 165

20 randomly created constraints have all the four interrupt lines masked. This is just a

sample constraint; more constraints can be added to tune the pattern generation in a

desired way.

The task gen_direct_trans in lines 33 through 46 generates an extremely directed

single transaction aimed at verifying a very specific scenario. It exercises the scenario

where:

� There is an interrupt event in line 2 (second bit from left in Event),

� None of the events or the interrupts is masked,

� The interrupt status register is set to clear on a write to it,

� A write of 0 to the corresponding bit of status register is issued.

Finally, the generated transaction is driven to the DUV ports by the driver task

drive_intCtrl.

1 interface intCtrl_interface (
3 input wire clock,
4 input wire reset,
5 input logic [3:0] Event,
6 input logic [3:0] EventMask,
7 input logic [3:0] Mask,
8 input logic [3:0] ClrMode,
9 input logic [3:0] StatWrData,
10 input logic StatRegWr,
11 input logic StatRegRd,
12 output logic [3:0] Status,
13 output logic [3:0] dynMask,
14 output logic intr,
15 input logic tr_no
16);
17 endinterface

Figure 6.4(a) Port interface for SystemVerilog (filename: intCtrl_interface.sv)

1 interface intCtrl_interface (
3 input clock CLOCK;
4 input reset PHOLD #1;
5 input [3:0] Event PHOLD #1;
6 input [3:0] EventMask PHOLD #1;
7 input [3:0] Mask PHOLD #1;
8 input [3:0] ClrMode PHOLD #1;
9 input [3:0] StatWrData PHOLD #1;
10 input StatRegWr PHOLD #1;
11 input StatRegRd PHOLD #1;
12 output [3:0] Status PHOLD #1;
13 output [3:0] dynMask PHOLD #1;
14 output intr PHOLD #1;
15 input tr_no PHOLD #1;
16);
17 endinterface

Figure 6.4(b) Port interface for Vera (Filename: intCtrl_interface.vr)

166 S. Verma and I. G. Harris

The transactions can be generated in random, constrained-random, or directed

modes, depending on the choice of task used in the top-level SystemVerilog testbench

in line number 21 of Figure 6.7.

Figure 6.8 shows the driver that delivers the generated stimulus to the DUV ports.

In lines 3 through 14, the port interface is initialized as would be the case when

starting from reset. The task drive_intCtrl in lines 15 through 27 connects the data

fields of the transaction object to corresponding ports of the DUV through the port

interface.

1 class intCtrl_base_object;
2 rand bit [3:0] Event;
3 rand bit [3:0] EventMask;
4 rand bit [3:0] Mask;
5 rand bit [3:0] ClrMode;
6 rand bit [3:0] StatWrData;
7 rand bit StatRegWr;
8 rand bit StatRegRd;
9 bit [3:0] Status;
10 bit [3:0] dynMask;
11 bit [3:0] intr;
12 bit tr_no;
13 endclass

Figure 6.6 Base object (filename: object.sv)

1 `include “intCtrl_interface.sv”

2 program intCtrl_top (intCtrl_interface ports);
3 `include “intCtrl_base_object.sv”
4 `include “intCtrl_driver.sv”
5 `include “intCtrl_xgen.sv”
6 `include “intCtrl_scoreboard.sv”
7 `include “intCtrl_ip_monitor.sv”
8 `include “intCtrl_op_monitor.sv”
9 `include “intCtrl_cov.sv

10 initial
11 begin
12 intCtrl_scoreboard sb = new ();
13 intCtrl_ip_monitor ipm = new (sb, ports);
14 intCtrl_op_monitor opm = new (sb, ports);
15 intCtrl_xgen xgen = new (ports);
16 intCtrl_cov cov = new (ports);
17 fork
18 ipm.input_monitor();
19 opm.output_monitor();
20 join_none
21 xgen.gen_random_trans();
22 repeat (20) @ (posedge ports.clock);
23 end
24 endprogram

Figure 6.5 SystemVerilog testbench top (filename: tb.sv)

6 SystemVerilog and Vera in a verification flow 167

Figure 6.9 shows the input monitor, which collects transaction data from input ports

of the DUV. Lines 5 through 10 show instantiations of the scoreboard and port

interface with the new function. The task input_monitor in lines 11 through 29 exe-

cutes in a non-terminating while loop, creates a transaction object, and stores the

inputs in the corresponding fields of the object. It also copies the transaction number in

the tr_no field, so that the transaction could be tracked against the corresponding

outputs when posted on the scoreboard using the scoreboard task post_input.

1 class intCtrl_xgen;
2 intCtrl_base_object intCtrl_object;
3 intCtrl_driver intCtrl_driver;

4 function new (virtual intCtrl_ports ports);
5 begin
6 inCtrl_driver = new (ports);
7 end
8 endfunction

9 task gen_random_trans();
10 begin
11 int i, result;
12 for (i = 0; i < 20; i++)
13 begin
14 intCtrl_object = new ();
15 result = intCtrl_object.randomize();
16 intCtrl_object.tr_no = i;
17 intCtrl_driver.drive_intCtrl(intCtrl_object);_
18 end
19 end
20 endtask
21 task gen_constr_trans();
22 begin
23 int i, result;
24 for (i = 0; i < 20; i++)
25 begin
26 intCtrl_object = new ();
27 result = intCtrl_object.randomize() with

 {Mask[3:0] != 4’b0000};
28 intCtrl_object.tr_no = i;
29 intCtrl_driver.drive_intCtrl(intCtrl_object);_
30 end
31 end
32 endtask
33 task gen_direct_trans();
34 begin
35 intCtrl_object = new ();
36 intCtrl_object.Event = 4’b0010;
37 intCtrl_object.Event Mask = 4’b1111;
38 intCtrl_object.Mask = 4’b1111;
39 intCtrl_object.ClrMode = 1’b0;
40 intCtrl_object.StatWrData = 4’b0000;
41 intCtrl_object.StatRegWr = 1’b1;
42 intCtrl_object.StatRegRd = 1’b0;
43 intCtrl_object.tr_no = 0;
44 intCtrl_driver.drive_intCtrl(intCtrl_object);_
45 end
46 endtask

48 endclass

Figure 6.7 Transaction generator (filename: intCtrl_xgen.sv)

168 S. Verma and I. G. Harris

Figure 6.10 shows the output monitor, which is used to collect transaction data

from output ports of the DUV. Lines 5 through 10 show instantiations of the

scoreboard and port interface with the new function. The task output_monitor in lines

11 through 25 executes in a non-terminating while loop, creates a transaction object,

and stores the outputs in the corresponding fields of the object. It also copies the

transaction number in the tr_no field so that the transaction could be tracked against

the corresponding inputs when posted on the scoreboard using the scoreboard task

post_output.

Figure 6.11 presents the assertions corresponding to the correctness check items in the

third column of Table 6.1. For example, the assertion corresponding to the correctness

item i. under feature number 1. is named property_1_i. The assertions are shown in lines

14 through 27. The assertion file is included in the top-level HDL testbench and the

assertion module is bound to the DUV with the bind statement in line number 29.

Figure 6.12 shows the coverage monitors implemented in SystemVerilog. Each of

the cover points or cross products in lines 8 through 32 represents a coverage item in

the fourth column of Table 6.1. For example, the cover point corresponding to the

coverage item i. under feature number 1. is named cov_1_i. The cover points sample

the signals from the port interface. The cross-product coverage items are implemented

as cross products between the coverage points on the individual signals involved, as

shown in line number 11.

1 class intCtrl_driver;
2 virtual intCtrl_ports ports;

3 function new (virtual intCtrl_ports ports);
4 begin
5 this.ports = ports;
6 ports.Event = 0;
7 ports.EventMask = 0;
8 ports.Mask = 0;
9 ports.ClrMode = 0;
10 ports.StatWrData = 0;
11 ports.StatRegWr = 0;
12 ports.StatRegRd = 0;
13 end
14 endfunction

15 task drive_intCtrl (intCtrl_base_object object);
16 begin
17 @ (posedge ports.clock);
18 ports.Event = object.Event;
19 ports.Event Mask = object.EventMask;
20 ports.Mask = object.Mask;
21 ports.ClrMode = object.ClrMode;
22 ports.StatWrData = object.StatWrData;
23 ports.StatRegWr = object.StatRegWr;
24 ports.StatRegRd = object.StatRegRd;
25 $display(“Interrupt stimulus received”);
26 end
27 endtask
28 endclass

Figure 6.8 Driver (filename: intCtrl_driver.sv)

6 SystemVerilog and Vera in a verification flow 169

1 class intCtrl_ip_monitor;
2 intCtrl_base_object intCtrl_object;
3 intCtrl_scoreboard sb;
4 virtual intCtrl_ports ports;

5 function new (intCtrl_scoreboard, virtual intCtrl_ports ports);
6 begin
7 this.sb = sb;
8 this.ports = ports;
9 end
10 endfunction

11 task input_monitor ();
12 begin
13 while (1)
14 begin
15 @ (posedge ports.clock);
16 intCtrl_object = new ();
17 $display(“Input monitor : Transaction %d Stored”, ports.tr_no);
18 intCtrl_object.Event = ports.Event;
19 intCtrl_object.EventMask = ports.EventMask;
20 intCtrl_object.Mask = ports.Mask;
21 intCtrl_object.ClrMode = ports.ClrMode;
22 intCtrl_object.StatWrData = ports.StatWrData;
23 intCtrl_object.StatRegWr = ports.StatRegWr;
24 intCtrl_object.StatRegRd = ports.StatRegRd;
25 intCtrl_object.tr_no = ports.tr_no;
26 sb.post_input(intCtrl_object);
27 end
28 end
29 endtask
30 endclass

Figure 6.9 Input monitor (filename: intCtrl_ip_monitor.sv)

1 class intCtrl_op_monitor;
2 intCtrl_base_object intCtrl_object;
3 intCtrl_scoreboard sb;
4 virtual intCtrl_ports ports;

5 function new (intCtrl_scoreboard, virtual intCtrl_ports ports);
6 begin
7 this.sb = sb;
8 this.ports = ports;
9 end

10 endfunction

11 task output_monitor ();
12 begin
13 while (1)
14 begin
15 @ (negedge ports.clock);
16 intCtrl_object = new ();
17 $display(“Output monitor : Transaction %d Retrieved”, ports.tr_no);
18 intCtrl_object.tr_no = ports.tr_no;
19 intCtrl_object.Status = ports.Status;
20 intCtrl_object.dynMask = ports.dynMask;
21 intCtrl_object.intr = ports.intr;
22 sb.post_output(intCtrl_object);
23 end
24 end
25 endtask
26 endclass

Figure 6.10 Output monitor (filename: intCtrl_op_monitor.sv)

170 S. Verma and I. G. Harris

For cases where the cross product of individual samples becomes prohibitively

large, only interesting cases are monitored. For example, in lines 17 through 20, a

cross product of signals ClrMode, StatRegWr, and StatWrData is being taken. How-

ever, only the cross product items where StatRegWr is 1 are monitored.

6.5 Summary

This chapter demonstrates the use of SystemVerilog and Vera as HDLs for functional

verification. We do not specifically promote the use of these particular languages,

although they both have excellent features for verification. We present the use of these

1 module intCtrl_assert (
2 input clock, reset,
3 input [3:0] Event,
4 input [3:0] EventMask,
5 input [3:0] Mask,
6 input [3:0] ClrMode,
7 input [3:0] StatWrData,
8 input StatRegWr,
9 input StatRegRd,

10 input [3:0] Status,
11 input [3:0] dynMask,
12 input intr
13);

14 generate
15 genvar bit_count;
16 for (bit_count=0; bit_count<4; bit_count++)
17 begin
18 property_1_i: assert property (@(posedge clock) disable iff (!reset)
(Event[bit_count] && EventMask[bit_count]) |=> Status[bit_count];
19 property_1_ii: assert property (@(posedge clock) disable iff (!reset)
!(Event[bit_count] && EventMask[bit_count]) |=> !Status[bit_count];
20 property_2_i: assert property (@(posedge clock) disable iff (!reset)
(ClrMode[bit_count] && StatRegRd) |=> !Status[bit_count];
21 property_2_ii: assert property (@(posedge clock) disable iff (!reset)
(!ClrMode[bit_count] && StatRegWr && !StatWrData[bit_count]) |=> !Status[bit_count];
22 property_3_i: assert property (@(posedge clock) disable iff (!reset) (StatRegRd
&& Status[bit_count]) |=> dynMask[bit_count];
23 property_3_ii: assert property (@(posedge clock) disable iff (!reset) (StatRegWr
&& !StatWrData[bit_count]) |=> !dynMask[bit_count];
24 property_4_i: assert property (@(posedge clock) disable iff (!reset) (|((Status &
~dynMask) & Mask) |=> intr;
25 property_4_ii: assert property (@(posedge clock) disable iff (!reset) (!|((Status &
~dynMask) & Mask) |=> !intr;
26 end
27 endgenerate
28 endmodule

29 bind intCtrl intCtrl_assert intCtrl_assert_inst (.*);

Figure 6.11 Correctness check with assertions

6 SystemVerilog and Vera in a verification flow 171

languages here to assist in the application of some of the verification ideas presented in

this book with real simulation tools. This chapter gives only an introductory view of

the use of SystemVerilog and Vera.

6.6 References
[1] IEEE Standard for SystemVerilog: Unified Hardware Design, Specification and Verification

Language, IEEE Std. 1800–2005.

[2] F. Haque, J. Michelson, and K. Khan (2001). The Art of Verification with VERA. Verifi-

cation Central.

[3] I. G. Harris (2005). Hardware/software covalidation. IEE Proceedings on Computers and

Digital Techniques, 152(3):380–392.

[4] B. Wile, J. C. Goss, and W. Roesner (2005). Comprehensive Functional Verification.

Morgan Kaufman.

[5] H. Foster, A. Krolnik, and D. Lacey (2004). Assertion-Based Design. 2nd edn. Kluwer.

1 class intCtrl_cov;
2 virtual intCtrl_ports ports;
3 function new (virtual intCtrl_ports ports);
4 begin
5 this.ports = ports;
6 end
7 endfunction
8 covergroup cvg @ (posedge clock);
9 cov_1_i: coverpoint ports.Event;

10 cov_1_ii: coverpoint ports.EventMask;
11 cov_1_iii: cross cov_1_i, cov_1_ii;
12 cov_2_i: coverpoint ports.ClrMode;
13 cov_2_ii: coverpoint ports.StatRegRd;
14 cov_2_iii: coverpoint ports.StatRegWr;
15 cov_2_iv: coverpoint ports.StatWrData;
16 cov_2_v: cross cov_2_i, cov_2_ii;
17 cov_2_vi: cross cov_2_i, cov_2_iii, cov_2_iv
18 {
19 bins b1 = binsof(cov_2_iii) intersect {1};
20 }
21 cov_3_iii: coverpoint ports.Status;
22 cov_3_v: cross cov_2_ii, cov_3_iii
23 {
24 bins b2 = binsof(cov_2_ii) intersect {1};
25 }
26 cov_4_i: coverpoint ports.intr;
27 cov_4_ii: cross cov_4_i, cov_1_i
28 {
29 bins b2 = binsof(cov_4_i) intersect {1} &&
30 ! binsof(cov_1_i) intersect {0};
31 }
32 endgroup
33 endclass

Figure 6.12 Coverage groups in SystemVerilog (filename: intCtrl_cov.sv)

172 S. Verma and I. G. Harris

7 Decision diagrams for verification

Maciej Ciesielski, Dhiraj K. Pradhan, and Abusaleh M. Jabir

7.1 Introduction

Having matured over the years, formal design verification methods, such as theorem

proving, property and model checking, and equivalence checking, have found

increasing application in industry. Canonical graph-based representations, such as

binary decision diagrams (BDDs), [1] binary moment diagrams (BMDs), [2] and their

variants, play an important role in the development of software tools for verification.

While these techniques are quite mature at the structural level, the high-level verifi-

cation models are only now being developed. The main difficulty is that such verifi-

cation must span several levels of design abstraction. Verification of arithmetic designs

is particularly difficult because of the disparity in the representations on the different

design levels and the complexity of logic involved.

This chapter addresses verification based on canonical data structures. It presents

several canonical, graph-based representations that are used in formal verification, and,

in particular, in equivalence checking of combinational designs specified at different

levels of abstraction. These representations are commonly known as decision dia-

grams, even though not all of them are actually decision-based forms. They are graph-

based structures whose nodes represent the variables and whose directed edges rep-

resent the result of the decomposition of the function with respect to the individual

variables. Particular attention is given to arithmetic and word-level representations.

An important common feature of all these representations is canonicity, which is

essential in combinational equivalence checking. A form is canonical if the repre-

sentation of a function in that form is unique. Canonical graph-based representations

make it possible to check whether two combinational functions are equivalent by

checking whether their graph-based representations are isomorphic. Isomorphism can

be checked in constant time, once the representation has been constructed, by testing if

the two functions share the same root of the diagram.

The canonical diagrams can be fully characterized by the following basic properties,

described in detail in this chapter:

1..Decomposition principle, which defines the types of function that can be modeled

by the diagram and the underlying decomposition method. They include binary

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

decomposition for Boolean functions, some form of multi-valued decomposition for

integer-valued functions, and moment decomposition or other non-binary expan-

sions for arithmetic functions.

2.. Simplification rules that make the diagram minimal and irredundant, hence

canonical. Different rules apply to different types of diagrams.

3.. Composition algorithms, which, given graph-based representations for functions

F and G, specify how to construct a similar representation for function F < op >

G, where < op > represents an operation defined for the given application domain

(Boolean, arithmetic, finite field, etc.). The composition algorithms, commonly

known as APPLY algorithms, recursively apply the given operation < op > to

the decomposed functions, depending on the type of functions and operations

allowed.

One of the most well known and commonly used canonical diagram representations

is binary decision diagram (BDD). [1] Binary decision diagrams are based on the well-

known Shannon (or more accurately, Boole) function expansion, which decomposes

the function into two co-factors, f(x¼ 0) and f(x¼ 1). Each sub-graph resulting from

such a decomposition can be viewed as a decision (x¼ 0 or x¼ 1) taken at a

decomposing variable, justifying the name decision diagram. Binary decision dia-

grams have been developed for Boolean functions and logic circuits represented at the

bit level and used extensively in representing and verifying bit-level designs, such as

control and random logic. Thanks to their compact, canonical form they truly revo-

lutionized the field of combinational verification and logic synthesis and found

applications in many other fields, such as satisfiability, testing, and synthesis. How-

ever, because of their exponential worst-case size complexity, they have had limited

success in modeling and verifying RTL designs with significant arithmetic compon-

ents, especially with multipliers.

Another canonical form described in this chapter is a binary moment diagram

(BMD), [2] developed specifically for arithmetic functions. Binary moment diagrams

are based on a moment decomposition principle, which treats an arithmetic function as

a linear function with Boolean inputs and integer (or real-valued) outputs. The two

sub-functions resulting from the decomposition represent the two moments (constant

and linear) of the function, rather than a “decision.” For this reason, BMDs do not

technically belong to a category of decision diagrams but form a class of their own.

Binary moment diagrams find important applications in verifying arithmetic designs

with bit-level inputs and integer outputs.

Two newer types of diagrams, called Taylor expansion diagrams (TEDs) and finite-

field decision diagrams (FFDDs), have recently been introduced to address the need

for a more abstract design representation, with inputs and outputs allowed to take

either integer or discrete (finite-field) values. Both of these diagrams can be thought of

as extensions of BDDs and BMDs, with inputs and outputs represented as symbolic

variables. The two diagrams differ in arithmetic representation of the data (infinite-

precision integer vs. finite-field arithmetic) and the type of decomposition used (Taylor

expansion vs. multi-valued Galois field (GF) decomposition).

174 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

Taylor expansion diagrams (TEDs) [3] are based on Taylor expansions of poly-

nomial representation of the computation expressed in the design. Both inputs and

outputs are treated as infinite-precision integers (or real numbers) and are repre-

sented by symbolic variables. The power of abstraction, combined with canonicity

and compactness, makes the TED particularly attractive for verification of designs

specified at the behavioral and algorithmic levels, such as datapaths and signal

processing systems. Computations performed by those designs can often be

expressed as polynomials and can be efficiently represented with TEDs, with

memory requirements several orders of magnitude smaller than those of other known

representations. Taylor expansion diagrams can also serve as a vehicle to transform

the initial functional representation of the design into a structural representation

in the form of a dataflow graph (DFG); as such, they are applicable to behavioral

synthesis, or, more specifically, to behavioral transformations, which can also be

used in verification.

Finite-field decision diagrams (FFDDs) [4] are an extension of multiple-terminal

decision diagrams, but with inputs and outputs represented in the finite-field (also

called Galois field, GF) arithmetic rather than in the integer domain. Finite-field

representation has numerous applications in cryptography, error-control systems, fault-

tolerant designs, and digital signal processing. Finite-field decision diagrams allow

the simulation and verification of such systems to be performed more efficiently on a

higher level of abstraction. The verification can be performed either at the bit or at

the word level; it is not restricted to word boundaries and can be used to model and

verify any combination of output bits.

7.2 Decision diagrams

Binary decision diagrams (BDD) have emerged as the representation of choice for

many applications, ranging from representation of Boolean function, through verifi-

cation and satisfiability, to logic synthesis. Even though BDDs (albeit under a different

name) have been known since the late 1950s, it was the seminal work of Bryant [1]

that brought to light their importance as canonical representations for Boolean logic.

This section briefly reviews the basic theory and algorithms of BDDs, taken from

multiple sources. [1,5–7]

7.2.1 Binary decision diagrams (BDDs)

A binary decision diagram is a graph-based data structure, which represents a set of

binary-valued decisions, culminating at an overall decision that can be either true or

false. Specifically, a BDD is a directed acyclic graph (DAG) whose nodes represent the

decisions, and edges represent the decision types (true or false). The final decision

evaluated at the root represents the overall function encoded by the BDD. Ordered and

reduced BDDs are irredundant and canonical, i.e., a representation of a function in that

form is unique. Formally, a BDD is defined as follows:

7 Decision diagrams for verification 175

definit ion 7.1 A binary decision diagram (BDD) is a rooted directed acyclic graph

G(V,E) with a set of nodes V and a set of edges E. The vertex set V contains two types

of vertex:

� Two terminal nodes (leaves), corresponding to constants 0 and 1.

� A set of variable nodes {u}, each associated with a Boolean variable v¼ var(u).

Each node has exactly two outgoing edges, pointing to two child functions, low(u)

and high(u). (In the figures, the two child edges are represented as dotted and solid

lines, respectively.)

The function of node u 2 V, associated with variable v¼ var(u), is given by

f u ¼ v � lowðuÞ þ v� high(u), where low(u) and high(u) are the functions of the low and

high children of u, respectively. In particular, the function evaluated at the root

represents the logic function encoded in the BDD.

The decomposition principle
The above definition basically states that a BDD is based on a Shannon (Boole)

expansion of function f, applied recursively to its variables. That is,

f u ¼ �m � f�v þ m � fm; ð7:1Þ
where fv ¼ lowðuÞ and fv ¼ highðuÞ are the negative and positive co-factors of f with

respect to the decomposing variable v.

definit ion 7.2 A BDD is ordered (denoted OBDD) if on all paths from the root to

its terminal nodes, the variables appear in the same linear order: x1< x2< . . .> xn.

Furthermore, the OBDD is reduced (denoted ROBDD) if it satisfies two properties:

1.. (Irredundancy) No variable node u has identical low and high children, i.e., low

(u) 6¼ high(u).

2.. (Uniqueness) No two distinct nodes u and v have the same variable name and the

same low and high children. That is, var(u)¼ var(v), low(u)¼ low(v), high(u)¼
high(v)) u¼ v.

The above definition provides the reduction rules for BDDs: rule 1 removes redundant

nodes with identical low and high children; rule 2 merges isomorphic sub-graphs. The

resulting ROBDDs form an irredundant representation, i.e., no two nodes of the

ROBDD represent the same Boolean function. Two ROBDDs are isomorphic if there

is a one-to-one mapping between the vertex sets that preserves adjacency, indices, and

leaf values. Thus, two isomorphic ROBDDs represent the same function. Conversely,

two Boolean expressions that represent the same logic function have isomorphic

ROBDDs for a given ordering of variables. In this sense, ROBDDs form a canonical

representation.

The following lemma, from Bryant, states the canonicity of ROBDDs. [1]

lemma 7.3 For any Boolean function f there is exactly one ROBDD with root node u

and variable order x1< x2< . . .< xn such that f u¼ f(x1, x2, . . . , xn).

176 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

BDD construction
An algorithm has been proposed by Bryant to reduce OBDD. The resulting diagram,

ROBDD, is irredundant, minimal, and canonical. The algorithm visits the OBDD

bottom up, from the leaf nodes to the root, and labels each vertex v2V with an

identifier id(v). The reduction rules are then applied to remove redundant nodes and

merge isomorphic sub-graphs. As a result, an ROBDD is identified by a subset of

vertices with different identifiers.

The algorithm is illustrated in Fig. 7.1, taken from [5] for function f¼ (aþ b)c. An

OBDD is constructed from the original expression, as shown in Fig 7.1(a). Then, the

nodes of the OBDD are labeled with identifiers, as a function of the variable name and

their children. First, the leaf nodes (0 and 1) are labeled with identifiers id¼ 1 and

id¼ 2, respectively. Then the vertices v4,v5 on the bottom-most level, corresponding to

variable c, are labeled with their identifiers. In this case both nodes are assigned the

same identifier, id¼ 3, since they correspond to the same variable and have children

with the same identifiers. They are replaced by a single node, v4 (visited first), added to

the ROBDD. Next, the algorithm visits vertices v2,v3, associated with variable b.

Vertex v2 is assigned identifier id¼ 4 and is added to the ROBDD. The left (low) and

right (high) children of node v3 have the same identifier, so v3 inherits their identifier

and is discarded as redundant. Finally, the root v1 associated with variable a is visited

and assigned the identifier id¼ 5. It is added to the ROBDD as a unique node with this

identifier. The resulting ROBDD is shown in Fig. 7.1(c).

In practice, ROBDDs are built directly from a Boolean formula, avoiding the

reduction step and possible memory overflow problems. This approach is based on

applying the Shannon decomposition, f ¼ v � fv þ v � fv, iteratively to the variables of

the formula in a predetermined order. Canonicity and minimality of such constructed

ROBDDs are accomplished by using a hash table, called the unique table, which

contains a key for each vertex of an ROBDD, and which uniquely identifies the function

associated with that node. The key is a triple, composed of the variable name and the

identifiers of the low and high children. The unique table is constructed from the bottom

0 0 10

a

b

c

0 0 1 10

a

c

b

id=1 id=1 id=2 id=2id=1

id = 3 id =3

id =3id = 4

id = 5

10

id = 4

id= 5

id=1 id=2

id = 3

a

b

c

(b) (c)(a)

1

v2

v4

v1

v3

v5

v2 v2

v4

v1

v4

v1

v3

v5

Figure 7.1 Construction of an ROBDD for f ¼ (aþ b)c: (a) OBDD for the variable order a,b,c; (b) OBDD

with unique identifiers; (c) ROBDD for variable order a,b,c.

7 Decision diagrams for verification 177

up. When a new node is considered for the addition to the ROBDD, a lookup in the table

determines whether another vertex in the table already implements the same function-

ality by comparing the keys. If this is the case, the pointer of the new node is set to the

one existing in the table; otherwise a new entry is made in the table for the new node.

In this way, no redundant nodes are added to the table and the table represents an

ROBDD. The run-time complexity of this and other ROBDD construction algorithms is

O(2n), where n is the number of variables. Similarly, the size of the ROBDD is, in

the worst case, exponential. The details of the construction of an ROBDD can be found

in [1,5].

Binary decision diagrams provide a compact representation of Boolean logic. Each

path of the BDD from root to terminal node 1 represents a product term (on-set cube)

of the function encoded in the BDD. It is computed as a product of variables, along the

path, at their respective polarity. For example, for a BDD in Fig. 7.1, a path {v1, v2, v4, 1}

corresponds to the product term �abc. The logic function encoded in a BDD is then

evaluated as a logical sum (or) of product terms associated with the on-paths.

Similarly, a path from the root to the terminal node 0 represents a complement of the

function. This feature is useful for function complementation, which can be achieved

in constant time by simply exchanging the 0 and 1 terminal nodes.

Reduced ordered binary decision diagrams can naturally represent multiple-output

functions by modeling them as ROBDDs with shared sub-graphs. In the following, we

will refer to ROBDD simply as BDD, since some ordering of the variables is always

imposed on the BDD, and the ROBDD must be reduced in order to be canonical.

BDD composition – the APPLY algorithm
Another way of constructing a BDD for a given Boolean expression is to compose

BDDs of its sub-expressions using Boolean connectives, such as AND, OR, or XOR.

The algorithm that performs such a composition is known as the APPLY algorithm.

The basic idea comes, again, from the recursive application of Shannon expansion

theorem for arbitrary binary operator <op>:

f<op>g ¼ �v f�v<op>g�vð Þ þ v fv<op>gvÞ:ð ð7:2Þ
Starting with the topmost variable v in the two functions, the formula is applied

recursively to all the variables in the order that they appear in their respective BDDs

(f and g must have compatible ordering for the algorithm to work). If v is the top

variable of f and g, then the operator < op > is applied to their respective co-factors.

If f does not depend on fv, then fv ¼ fv ¼ f and the co-factor is the function itself.

The worst-case complexity of the APPLY algorithms is O(n1 · n2), where n1 and n2 are

the number of variables in the two BDDs.

Using the above algorithm, one can construct a BDD for an arbitrary Boolean

network or a gate-level netlist. First, a trivial BDD is built for the variables repre-

senting primary inputs, and then BDDs of each expression or logic gate are constructed

from the BDDs of their immediate inputs, in topological order, from primary inputs to

primary outputs.

178 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

Operations on BDDs can be done in polynomial time of their size (number of nodes).

However, the real complexity is hidden in their construction, which is expensive in both

time and space. Binary decision diagrams can be exponential in size and cause memory

explosion, especially for designs containing arithmetic functions, such as multipliers

(BDDs cannot be built for multipliers larger than about 16· 16 bits).

Variable ordering
The size of a BDD strongly depends on the ordering of the variables. The size of

the BDD (measured as the number of nodes) is, in the worst case, exponential in

the number of variables. Reduced ordered binary decision diagrams representing

adder functions are particularly sensitive to the variable order; they can have expo-

nential size in the worst case and a linear size in the best case. There are functions

(such as multipliers), whose BDD size is exponential regardless of the ordering.

Furthermore, there are functions for which the sum of products (SOP) or product of

sums (POS) forms are more compact than the BDDs. Many constraint functions of

covering problems fall into this category. Figure 7.2 shows two BDDs for function

F¼ x1x2þ x3x4þ x5x6 constructed with two different orderings of variables, lexico-

graphical, and interleaved. One can see a significant difference in BDD size.

While the variable ordering problem is NP-complete, efficient heuristic variable

ordering algorithms exist, based on both static (related to lexicographical) and

dynamic ordering (swapping variables on two adjacent levels). [8]

x1

x2

x3

x4

x6

x5

x1

F

2c

2b

2a

29

28

27

(a) (b)

0
0

36

39 37 35

34

33

3a

3e 3d 3b 38

3c 3f

40

F

1
1

x3

x5

x2

x4

x6

Figure 7.2 Effect of variable ordering on BDD size for function F¼ x1x2þ x3x4þ x5x6: (a) for variable

order x1,x2,x3,x4,x5,x6, (b) for variable order x1,x3,x5,x2,x4,x6.

7 Decision diagrams for verification 179

Extensions
Several extensions have been proposed for BDDs. One of them makes use of com-

plemented edges by labeling BDD edges with complement attributes. This feature

makes it possible to represent a function and its complement as a single sub-graph with

two edges coming into the root of the sub-graph, one with positive polarity and the

other with negative polarity. In general, BDDs with complemented edges result in a

smaller BDD size and provide a means to complement a BDD in constant time. To

maintain the canonicity, certain restrictions are imposed on the placement of the

complemented edges. Namely, only low edges, corresponding to negative co-factors,

may be assigned complement attributes. Notice that for BDDs with complemented

edges, only one constant function (1) and, hence, only one terminal node (leaf 1) is

needed, since 0 can be derived from its complement.

Applications and limitations of BDDs
Owing to their compactness, canonicity, and ease of manipulation, BDDs have found

numerous applications in design, synthesis, verification, and testing of digital designs.

In general, BDDs are an efficient data structure for storing and evaluating Boolean

functions and discrete structures. Large sets of discrete elements can be encoded in

binary and compactly represented as characteristic functions in BDDs. Binary decision

diagrams are particularly handy in representing transition relations of product machines

for the purpose of sequential equivalence checking using state traversal. [7]

In particular, BDDs have found widespread application in a number of verification

problems, including combinational equivalence checking, [9] implicit state enumer-

ation and FSM traversal, [7,10] symbolic model checking, [11,12] and test vector

generation. Their biggest claim to fame comes from their applications to combin-

ational equivalence checking. Once two logic functions are represented by their

respective ROBDDs (with the same variable order), one can test whether the two

functions are equivalent by testing whether their ROBDDs are isomorphic. In practice,

checking for equivalence between two functions is performed by constructing a single,

multi-rooted BDD, rather than checking for graph isomorphism. The two functions are

equivalent if they share the same root. This test can be made in constant time, once the

BDD is built for the two functions.

Logic equivalence can be illustrated with the BDD shown in Figure 7.1(c). The

ROBDD in the figure, constructed for function f¼ (aþ b)c, also represents function

g¼ a · cþ b · c, as well as a number of other equivalent functions, all having the same

BDD for a fixed variable order. As mentioned earlier, BDDs can be built for an

arbitrary gate-level network or a multiple-output Boolean function. Such created

BDDs can then be used to check the equivalence of the netlist to another netlist, or to

the initial Boolean specification of the design.

Another obvious application of BDDs is satisfiability (SAT). A Boolean function is

satisfiable if there exists an assignment of Boolean values to its variables that makes

the function true (f ¼ 1). Many verification, synthesis, and optimization problems can

be reduced to the SAT problem. Being decision diagrams, BDDs can be used to solve

the SAT problem in linear time in its size. Once the formula to be satisfied is converted

180 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

to a BDD, the BDD is traversed to find one or more paths from the root to the terminal

node 1. A satisfying solution exists, so long as the BDD is not empty. This important

feature of decision diagrams finds its application in deterministic test generation, used

in simulation-based verification. A target assignment, not adequately covered by semi-

random or directed simulation, is specified and solved using BDD-based SAT.

The BDD-based approach to the SAT problem can be illustrated with the example in

Figure 7.1(c). Two satisfying solutions for f¼ 1, corresponding to the paths from the

root to node 1, are {ac} and {�abc}.

A special case of SAT is related to finding a satisfying assignment for f¼ 0. A

notion of easily invertible form was introduced by Bryant to denote a representation

for which it is always possible to find a zero of the function (solve for f¼ 0) in

polynomial time. [13] Clearly, BDDs are easily convertible functions, since one can

find a solution to the problem by tracing the path from the root to the terminal node 0.

Another special case of SAT involves testing for tautology, i.e., testing if the function

is identical to 1 for all assignments of Boolean variables. This can be done in constant

time by testing if BDD for the function is reduced to constant 1.

Several efficient implementations of software programs supporting BDDs have been

developed for a wide set of purposes. [14] One of the most popular packages, available

on the World Wide Web, is the CUDD package. [15]

In summary, BDDs have been very successful in verifying control-dominated

applications and are a part of a number of formal verification systems, such as SMV

[12] and VIS. [16] However, as the designs have grown in size and complexity, the

size-explosion problems of BDDs have limited their scope. Furthermore, their use in

designs containing large arithmetic data-path units have been limited due to prohibi-

tive memory requirements, especially for large multipliers.

7.2.2 Beyond BDDs

In an attempt to obtain a more compact representation for Boolean functions, different

flavors of Boolean decomposition have been tried. These diagrams, collectively known

as decision diagrams, are still based on a “point-wise” binary decomposition, but use a

different interpretation of the diagram nodes.

One such representation is based on the XOR (exclusive OR) decomposition:

f ¼ f�x � xfDx ¼ fx � �xfDx; ð7:3Þ
also known as Red–Miller or Davio decomposition. Here, fDx denotes the Boolean

difference of function f w.r.t. variable x, i.e., f Dx ¼ fx � fx, where � represents an XOR

operation.

Ordered functional decision diagrams (OFDDs) [17] are based on such a decom-

position. This representation is analogous to that of OBDDs, except that the two

outgoing arcs at each node represent the negative co-factor and the Boolean difference

of the function w.r.t. the node variable. As with OBDDs, OFDD representation is

canonical and many operations can be implemented with algorithms of polynomial

complexity. However, several important features differentiate the two representations.

7 Decision diagrams for verification 181

First, different reduction rules are applied to make the graph canonical. Second, the

evaluations of a function on an OFDD involves more than tracing a path. In particular,

for a node variable x, both sub-graphs must be evaluated and an XOR computed. Such

an evaluation can be performed in linear time in the number of nodes by a post-order

traversal of the graph. An interesting feature of OFDDs is that, for certain classes of

function (in particular, arithmetic functions based on XORs), OFDDs are exponen-

tially more compact than ROBDDs, but the reverse is also true. To obtain the

advantages of each representation, Drechsler et al. proposed a hybrid form, called

ordered Kronecker FDD (OKFDD). [18] In this representation, each variable can use

any of the three decompositions given by Eqs. 7.1–7.3, potentially leading to a rea-

sonable reduction in the graph size.

Another variant of BDD representation, called zero-suppressed BDDs (ZBDDs), was

developed byMinato for solving combinatorial problems. [19] Zero-suppressedBDDs are

particularly suitable for applications involving sparse sets of bit vectors. It can be shown

that ZBDDs reduce the size of the representation of a set of n-bit vectors over OBDDs by

at most a factor of n. In practice, the reduction is large enough to have a significant impact.

Numerous attempts have been made to extend the capabilities of BDDs to target

arithmetic circuits and designs with word-level specifications. This requires extending

the concept of Boolean function representation to integer and real-valued functions

over Boolean variables. The resulting graph-based representations for functions with a

Boolean domain and an integer range are commonly known as word-level decision

diagrams (WLDDs). [20,21]

One straightforward way to represent numeric-valued functions is to use the

branching structure of a BDD, but to allow arbitrary values on the terminal nodes.

Such a representation is referred to as a multi-terminal BDD (MTBDD) [22] or

algebraic decision diagram (ADD). [23] Evaluating an MTBDD or ADD for a given

variable assignment is similar to evaluating a BDD. However, MTBDDs are inefficient

in representing functions yielding values over a large range, as this requires a large

number of terminal nodes and results in a large number of paths (MTBDDs tend to be

trees rather than graphs).

For such applications, alternative representations have been proposed, such as edge-

valued BDDs (EVBDDs). [24] These forms incorporate numeric weights on the edges,

to allow greater sharing of sub-graphs and to reduce the size of the overall repre-

sentation. Evaluating a function represented by an EVBDD involves tracing the path

determined by the variable assignment and adding the products of variable values

along the path, weighted by the corresponding edge weights. This representation grows

linearly as the number of bits, a major improvement over MTBDDs. However, the

overhead for storing and normalizing the edge weights to make the representation

canonical makes them less efficient. There are classes of function, such as arithmetic

functions, for which EVBDD has unacceptable size complexity. In particular, the

EVBDD representation for integer multipliers, F¼X · Y, grows exponentially with the

number of bits of its operands. A good review of WLDDs can be found in [20,21].

In the next section, another type of word-level diagram is described, based on a

different, non-pointwise decomposition principle.

182 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

7.3 Binary moment diagrams (BMDs)

An alternative approach to representing numeric functions, especially those encoun-

tered in arithmetic circuits, involves changing the function decomposition with respect

to its variables.

The decomposition principle
Binary moment diagrams (BMDs), introduced by Bryant [13], use a modified

Shannon’s expansion, in which a Boolean variable is treated as a binary (0,1) integer

variable. The complement of x is modeled as x ¼ 1� x, and the terms of the expansion

are regrouped around variable x, resulting in the following formula:

f ðxÞ ¼ ð1� xÞ � f�x þ x:fx

¼ f�x þ x � ðfx � f�xÞ
¼ f�x þ x � fDx;

ð7:4Þ

where ·, þ, and � denote multiplication, addition, and subtraction, respectively. The

above decomposition is termed moment decomposition; f�x is the constant moment, and

fDx¼ fx� fx is the linear moment. In this form, f can be viewed as a linear function in x,

with fx as the constant term, and fDx as the linear coefficient of f (the partial derivative

of f with respect to x). This expansion still relies on the assumption that variable x is

Boolean, i.e., evaluates to either 0 or 1. However, it departs from a point-wise,

decision-based decomposition and performs the decomposition of a linear function

based on its first two moments.

Each node of a BMD describes a function in terms of its moment decomposition

with respect to the variable labeling the node, as shown in Fig. 7.3(a). The two

outgoing arcs from each node denote the constant moment (shown as dashed lines) and

the first moment (solid lines) of the function w.r.t. the decomposing variable. Part (b)

of the figure shows the BMD representation of the unsigned integer X¼ 4x2þ 2x1þ x0

encoded with n¼ 3 bits. The constants in the terminal nodes of the BMD can be moved

to their edges, and represented as edge-weights, as shown in Fig. 7.3(c). The resulting

0 1 2 4

f ∆x =

y y

0 1

1

2

4

(b)

f

f(x =1)−f(x = 0)f(x=0)

x
x0

x1

x2

x0

x1

x2

(c)(a)

Figure 7.3 Binary moment diagrams: (a) the moment decomposition principle; (b) BMD for binary

encoded integer X¼ 4x2þ 2x1þ x0; (c) *BMD for X.

7 Decision diagrams for verification 183

diagram is termed a multiplicative binary moment diagram, or *BMD. The term

multiplicative derives from the fact that, when evaluating a function along a path from

root to one of its terminal nodes, the weights combine multiplicatively along the path.

Similarly to BDDs, a function encoded in a *BMD is evaluated by adding the

terms encoded in the paths. However, two major features differentiate *BMDs from

the decision diagrams discussed earlier:

1.. *BMDs are not decision diagrams, since they are based on moment decomposition,

rather than a point-wise Shannon expansion.

2.. *BMDs are multiplicative diagrams, in the sense that each path from a root to a

terminal node is a product of the variables labeling the nodes and the edge weights

along the path.

Figure 7.4 shows *BMDs for addition and multiplication expressed at word

levels. Note that the size of *BMDs for these operations grows linearly with the word

size n.

Reduction rules
Each node in the *BMD is represented as a triple < v, low(v), high(v)> , with two

weights associated with the constant and linear moments, w0(v), w1(v). It is assumed

that the set of variables is totally ordered, as in a BDD. To maintain the canonical

form, certain reduction rules must be imposed on the *BMD during node creation and

weight manipulation (normalization). In principle, these rules are similar to those in

10

1

2

4

1

2

4

10

2

4

4

1

2

1

(b)(a)

x2 x2

x1 x1

x0 x0

y2 y2

y1 y1

y0 y0

Figure 7.4 *BMD representations for word levels operations: (a) sum X þ Y; (b) product X Y.

184 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

BDDs, but must follow the rules of regular algebra (þ,·) rather than Boolean

algebra (_;^).

1.. Irredundancy When a linear moment at node v is 0, the function at the node

evaluates to its constant moment, i.e., does not depend on v. In this case node v is

redundant and is removed. (Note that this rule differs from the redundancy

reduction rule for BDD).

2..Uniqueness This rule is similar to that of BDD: any two nodes indexed by the same

variable and having the same two moments represent the same function and are

merged in the BMD into a single node. This rule, however, is applied after the

normalization, described next.

Normalization
Several rules for manipulating edge weights are imposed on the graph to make the

graph canonical. For non-zero values of the linear moment at node v, the weights of its

two edges are normalized by factoring out the greatest common divisor (gcd) of

the argument weights w ¼ gcd(w0(v),w1(v)), which is then pushed to the root edge of

node v. By convention, the sign of the extracted weight must match the sign of the

constant moment; in this way, gcd always returns a non-negative value. Normalization

is performed from the bottom up, from the leaf nodes to the root. Each normalized

node is stored in the hash table, where each entry is indexed by a key composed of the

variable and the two moments. Duplicate entries are automatically removed, resulting

in an irredundant, minimal, and canonical representation.

As with BDDs, the *BMD representation of a function depends on the variable

order, but *BMDs are much less sensitive to variable ordering than BDDs.

The APPLY algorithms
As with BDDs, *BMDs are constructed by starting with base functions, corresponding

to constants and single variables, and then building more complex functions according

to some operation. Algorithms similar to the APPLY algorithm for BDDs have been

proposed. However, while there is a single APPLY algorithm for BDDs for an arbi-

trary Boolean operator, *BMDs require algorithms tailored specifically for the indi-

vidual operations, such as ADD, SUB and MULT. [13] In general,

f<op>g ¼ f<op>gð Þ�xþ x f<op>gð ÞDx; ð7:5Þ
where

f<op>bð Þ�x¼ f�x<op>g�xð Þ; ð7:6Þ
and

f<op>gð ÞDx ¼ f<op>gð Þx� f<op>gð Þ�x
¼ fx<op>gxð Þ � f�x � g�xð Þ
¼ fx þ fDxð Þ <op> gx þ gDxð Þ � f�x � g�xð Þð Þ:

ð7:7Þ

7 Decision diagrams for verification 185

However, in the case of the multiply operation, special attention must be paid because

of the introduction of the term containing x2.

f � g ¼ ðf�x þ x � fDxÞ � ðg�x þ x � gDxÞ
¼ f�x � g�x þ x � ðf�x � gDx þ fDx � g�xÞ þ x2 � fDx � gDx:

ð7:8Þ

The multiply operation must be linearized by replacing x2 with x, since x is a Boolean

variable. This gives the following result for multiplication:

f � g ¼ f�x � g�x þ x � ðf�x � gDx þ fDx � g�x þ fDx � gDxÞ: ð7:9Þ
The APPLY algorithms proceed by traversing the argument graphs and recursively

apply the operation to the sub-graphs. To reduce the number of recursive calls, a hash

table is maintained, keyed by the arguments of the previous calls, allowing the pro-

gram to reuse previous computations.

Unlike operations on BDDs, which have run-time complexities that are polynomial

in the number of variables, most operations on *BMDs potentially have exponential

complexity. However, as demonstrated by Bryant, these exponential cases do not arise

in practical applications. [13] Furthermore, the size of the arguments is significantly

smaller in word-level applications than in bit-level applications, resulting in reasonable

run-times.

For word-level expressions (XþY) and (X*Y), where X and Y are n-bit vectors, the

*BMD representation is linear in the number of bits n. Also, function cX, where c is a

constant, has a linear size representation in *BMD. However, the size of *BMD for Xk

is O(nk). Thus, for high-degree polynomials defined over words with large bit widths,

as commonly encountered in many DSP applications, filters, etc., *BMD remains an

expensive representation.

Boolean logic
A *BMD can be adapted to also represent Boolean logic, which is important for designs

with Boolean connectives. The following equations are used to model Boolean logic:

NOT : �x ¼ ð1� xÞ; ð7:10Þ

AND : x ^ y ¼ x � y; ð7:11Þ

OR : x _ y ¼ xþ y� x � y; ð7:12Þ

XOR : x� y ¼ xþ y� 2x � y: ð7:13Þ
Figure 7.5 shows *BMD representations for these basic Boolean operators. [2] In the

diagrams, x and y are Boolean variables represented by binary variables, and þ and ·

represent algebraic operators of ADD and MULT, respectively. The resulting func-

tions are 0,1 integer functions.

Multiplicative binary moment diagrams provide a concise representation of functions

defined over bit vectors, or words of data, having a numeric representation. In particular

they can efficiently encode integer-valued functions defined over binary-encoded words,

186 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

X ¼Pi2
ixi, where each xi ¼ 0 or 1. Figure 7.6 shows examples of *BMD representation

for signed integers using several sign schemes (signed magnitude, ones complement, and

twos complement). All commonly used encodings can be similarly represented.

Applications to word-level verification
Multiplicative binary moment diagrams have been successfully used in formal veri-

fication of arithmetic circuits. Figure 7.7 illustrates an approach to arithmetic circuit

verification proposed in [13,25]. The goal is to prove a correspondence between a logic

circuit, represented by a vector of Boolean functions f, and the design specification,

represented by a word-level function f. The inputs to the Boolean circuit f are vectors

of Boolean signals, x1, x2, . . . , xk; the inputs to the specification function F are word-

level signals (symbolic variables) X1, X2, . . ., Xk. To compare the two designs, each of

the Boolean vectors xi is transformed into a word-level signal Xi using an encoding

function Enci(xi), and connected to the appropriate input of F. An encoding function

simply provides the interpretation of the bit vectors. An example of such an encoding

function (in this case, unsigned integer) is shown in Figure 7.3. Similarly, the output of

0 1

x

y

0 1

x

1

−1

x

y y

−1

0 1

y

x

y

−2

NOT AND XOROR

Figure 7.5 *BMD representation for Boolean operators: (a) NOT: �x¼ (1� x); (b) AND: x^ y¼ xy;

(c) OR: x_ y¼ xþy�xy; (d) XOR: x� y¼ xþ y�2x

0 1

1

2

4

−8

0 1

1

2

4

−7

0 1

1

2

4

−2

(b)(a) (c)

x2
x2 x2

x1
x1 x1

x0
x0 x0

x3
x3 x3

Figure 7.6 *BMD representations for word-level operations: (a) sign magnitude; (b) twos complement;

(c) ones complement.

7 Decision diagrams for verification 187

the logic circuit f is transformed to a word-level function using an encoding function

Enc0. The general task of verification is then to prove the equivalence between the

circuit output, interpreted as a word, and the output of the word-level specification.

Enc0ðf ðx1; . . . ; xkÞÞ ¼ FðEnc1ðx1Þ; . . . ; EnckðxkÞÞ: ð7:14Þ
Multiplicative binary moment diagrams can provide a suitable data structure for this

form of verification. Taylor expansion diagrams, described in the next section, can be

used for the final comparison at the word-level.

A serious limitation of *BMDs is that they cannot be used for solvingSATproblems. This

is because *BMDs are multiplicative diagrams, i.e., the weights combine multiplicatively

along the path from the terminal node to the root. Solving the integer-valuedSATproblem in

this structure is equivalent to solving the integer factorization problem. They are also not

“easily invertible,” as defined earlier in the context of the decision diagrams.

Several variants of *BMD representation have been proposed in the literature. Chen

and Bryant introduced multiplicative power hybrid decision diagrams (PHDDs) that

allow floating point arithmetic to be handled. [26] This is the only known form that

supports floating point operation in a graph without introducing rational numbers, by

representing the mantissa and exponent as connected sub-graphs. However, the size of

the graph, even for the adder function, grows exponentially with the size of the

exponent size.

Drechsler et al. extended *BMDs to a form called K*BMD to make the decom-

position more efficient in terms of the graph size. This is done by admitting multiple

decomposition types and allowing both additive and multiplicative edge weights. [27]

However, a set of restrictions imposed on the edge weights to make it canonical makes

such a graph difficult to construct. The K*BMD is characterized by linear complexity

of the word-level operations for sum, product, and cX, and can represent Xk in O(nk�1)
nodes. As we will see in the next section, this result can be further improved with

TEDs, [3] which offer linear size complexity for this and other word-level operations.

Bit−level

Word−level

Enc1

Enc2

Enck

F

Enc0

X1

x1

x2

xk

X2

Xk

f

= ?

Figure 7.7 General verification problem: prove correspondence between a word-level specification and bit-

level implementation

188 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

7.4 Taylor expansion diagrams (TEDs)

Before formally introducing TEDs, we briefly review previous work and recent advances

in word-level equivalence checking and the supporting symbolic representations.

7.4.1 Related work

In the realm of high-level design verification, the issue of abstraction of symbolic,

word-level computations has received a lot of attention. This is visible in theorem-

proving techniques, automated decision procedures for Presburger arithmetic, [28,29]

techniques using algebraic manipulation, [30] symbolic simulation, [31] or in the

decision procedures that use a combination of theories. [32,33] Term rewriting sys-

tems, particularly those used for hardware verification [34–36] also represent com-

putations in high-level symbolic forms. These representations and verification

techniques, however, do not rely on canonical forms. For example, verification tech-

niques using term rewriting are based on rewrite rules that lead to normal forms. Such

forms may produce false negatives, which may be difficult to analyze and resolve.

Various forms of high-level logic have been used to represent and verify high-level

design specifications. Such representations are mostly based on quantifier-free frag-

ments of first-order logic. The research that deserves particular mention includes: the

logic of equality with uninterpreted functions (EUF) [37] and with memories

(PEUFM), [38,39] and the logic of counter arithmetic with lambda expressions and

uninterpreted functions (CLU). [40] These logics are often transformed into canonical

representations, such as BDDs and BMDs, or into SAT instances or other normal

forms. [41,42] To avoid exponential explosion of BDDs, equivalence verification is

generally performed by transforming high-level logic description of the design into

propositional logic formulas [33,38,40] and employing satisfiability tools [43,44] for

testing the validity of the formulas. While these techniques have been successful in the

verification of control logic and pipelined microprocessors, they have found limited

application in the verification of large datapath designs.

Word-level ATPG techniques [45–49] have also been used for RTL and behavioral

verification. However, their applications are generally geared toward simulation,

functional vector generation or assertion property checking, but not so much toward

high-level equivalence verification of arithmetic designs.

Symbolic algebra methods
Many computations encountered in behavioral design specifications can be represented

in terms of polynomials. This includes digital signal and image processing designs,

digital filter designs, and designs that employ complex transformations, such as DCT,

DFT, WHT, etc. Polynomial representations of discrete functions have been explored

in the literature long before the advent of contemporary canonical graph-based

representations. In particular, Taylor’s expansion of Boolean functions has been

studied in [50, 51]. However, these works mostly targeted classical switching theory

problems: logic minimization, functional decomposition, fault detection, etc. The issue

7 Decision diagrams for verification 189

of abstraction of bit-vectors and symbolic representation of computations for high-

level synthesis and formal verification was not their focus.

Commercial symbolic algebra tools, such as Maple, [52] Mathematica, [53] and

MatLab, [54] use advanced symbolic algebra methods to perform efficient manipu-

lation of mathematical expressions, including fast multiplication, factorization, etc.

However, despite the unquestionable effectiveness of these methods for classical

mathematical applications, they are less effective in modeling large scale digital cir-

cuits and systems, and, in particular, in polynomial verification. For example, symbolic

algebra tools offered by Mathematica and the like cannot unequivocally determine the

equivalence of two polynomials. The equivalence is checked by subjecting each

polynomial to a series of expand operations and comparing the coefficients of the two

polynomials ordered lexicographically. As stated in the manual of Mathematica 5,

“There is no general way to find out whether an arbitrary pair of mathematical

expressions are equal.”[53] Furthermore, Mathematica, “Cannot guarantee that any

finite sequence of transformations will take any two arbitrarily chosen expressions to a

standard form.”

In contrast, the TED data structure described here provides an important support for

equivalence verification by offering a canonical representation for multi-variate

polynomials.

Equivalence checking
Equivalence checking has been researched thoroughly and there is a vast amount of

literature on the topic, including satisfiability (SAT) approaches, [45,48,49,55,56]

verification of arithmetic on bit-level, [57–59] symbolic approaches, and others. [60–66]

A typical approach to equivalence checking (EC), employed by industrial tools, involves

identifying structural equivalences or similarities between pairs of points (called cut points)

in the two designs. The portions of designs identified as having equivalent cut points are

removed from the design and the EC verification is repeated on the reduced designs.

However, the main difficulty lies in identifying such cut points in designs described in

different levels (e.g., RTL and algorithmic). Another challenge in EC verification comes

from structural optimizations, employed by behavioral or high-level synthesis (such as

factorization, resource sharing, change of order of operators, operatormerging, etc.), which

reduce the level of similarity between the candidate cut points. The next section provides a

motivating example for the development of symbolic equivalence techniques based on

functional, rather than structural, approach and the associated canonical representation.

7.4.2 Motivation

The following example, shown in Fig. 7.8(a) and (b), taken from the Synopsys tech-

nical bulletin, [67] illustrates the perceived difficulty of functional verification of

arithmetic designs in the case of combinational transformation, called resource shar-

ing. Resource sharing transforms the netlist by moving the operators to maximize

sharing of the resources, in this case the multiplication. The arithmetic proof engine

190 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

(APF) of Synopsys’ Formality tool cannot solve this problem using cut points because

internally equivalent points are lost during such a transformation.

This problem can be solved, however, by generating symbolic expressions for the

original and the transformed forms in a canonical form, and proving that they are

equivalent. Namely, the function computed by the original design shown in Fig. 7.8(a)

can be written as

z ¼ A � B � sel þ C � D � ð1� selÞ; ð7:15Þ
while the design in Fig. 7.8(b) can be expressed as

A � sel þ C � ð1� selÞð Þ � ðB � sel þ D � ð1� selÞÞ: ð7:16Þ
Since sel is a binary variable, sel2 ¼ sel and sel · (1 – sel) ¼ 0, and the above expression

reduces to Eq. 7.16. These expressions can be captured by a canonical data structure

with symbolic input variables A, B, C, D, sel. Such a diagram is shown in Fig. 7.8(c).

The equivalence of the two designs can be verified by testing whether the diagrams

corresponding to the two designs are isomorphic, which is the case here (only one

graph is shown). This is the main idea behind Taylor expansion diagrams, described

next. Note that, unlike BMDs, this diagram represents the designs with arbitrary bit

width; that is the designs can be verified for equivalence regardless of their word sizes,

assuming infinite-precision arithmetic.

7.4.3 The Taylor series expansion

A known limitation of all decision and moment diagram representations is that word-

level computations, such as A þ B, require the function to be decomposed with respect

(c)

(b)(a)

A

B

C

D

A

CZ Z

B

D

*

*

*
1

1

1
0

0

0

sel sel

Z

sel

ONE

A

C

B –1

D

Figure 7.8 Verification of resource sharing: (a) z ¼ sel? (A·B) : (C·D); (b) z ¼ (sel? A : C) · (sel ? B : D); (c)

canonical TED showing functional equivalence of the two structures: z ¼ A · B · sel þ C · D ·

(1 – sel) ¼ (A · sel þ C · (1 – sel)) · (B · sel þ D ·(1 – sel)) for sel ¼ 0,1

7 Decision diagrams for verification 191

to bit-level variables A[k], B[k]. Such an expansion creates a large number of variables

in the respective diagram framework and requires excessive memory and time to

operate upon them. To represent and process the HDL description of a large design

efficiently, it is desirable to treat the word-level variables as algebraic symbols,

expanding them into their bit-level components only when necessary.

Consider the *BMD for A · B, shown in Fig. 7.9, which depicts the decomposition

with respect to the bits of A and B. It would be desirable to group the nodes corres-

ponding to the individual bits of these variables to abstract the integer variables they

represent, and use the abstracted variables directly in the design. Figure 7.9 depicts the

idea of such a symbolic abstraction of variables from their bit-level components.

To achieve the type of abstracted representation depicted above, one can rewrite the

moment decomposition f ¼ f xþ x � ðf x � f xÞ as f ¼ f ðx ¼ 0Þ þ x � @ðf Þ@x . This equation

resembles a truncated Taylor series expansion of the linear function f with respect to x.

By allowing x to take integer values, the binary moment decomposition can be gen-

eralized to a Taylor series expansion, where integer variables do not need to be

expanded into bits.

In this approach, an algebraic, multi-variate expression, f(x,y,. . .), can be viewed as

a continuous, differentiable function over a real domain. It can be decomposed using

the Taylor series expansion with respect to variable x as follows [68]:

f ðxÞ¼
X1
k¼0

1

k!
ðx� x0Þkf kðx0Þ ¼ f ðx0Þ þ xf 0ðx0Þ þ 1

2
x2f 00ðx0Þ þ . . . ; ð7:17Þ

where f 0(x0), f
00(x0), etc., are first-, second-, and higher-order derivatives of f with

respect to x, evaluated at x0 ¼ 0. The derivatives of f evaluated at x ¼ 0 are inde-

pendent of variable x, and can be further decomposed w.r.t. the remaining variables,

one variable at a time. The resulting recursive decomposition can be represented by a

decomposition diagram, called the Taylor expansion diagram, or TED.

B [0:2]

A [0:2]

0 110

b2

b1

b0

a2

2
1

a0

a1 4

2

1
*BMD: A*B

TED: A*B

4a2 + 2a1 + a0 = >A [0:2]

4b2 + 2b1 + b0= >B [0:2]

Figure 7.9 Abstraction of bit-level variables into algebraic symbols for F ¼ A · B

192 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

The Taylor series expansion can be used to represent computations over integer and

Boolean variables, commonly encountered in HDL descriptions. Arithmetic functions

and dataflow portions of those designs can be expressed as multi-variate polynomials

of finite degree, for which the Taylor series is finite.

definit ion 7.4 The Taylor expansion diagram, or TED, is a directed acyclic graph

(U, V, E, T), representing a multi-variate polynomial expression U, where V is the set

of nodes, E is the set of directed edges, and T is the set of terminal nodes in the graph.

Every node v 2 V has an index var(v) which identifies the decomposing variable. The

function at node v is determined by the Taylor series expansion at x ¼ var(v) ¼ 0,

according to Equation 7.17. The number of edges emanating from node v is equal to

the number of non-empty derivatives of f (including f(0)) w.r.t. variable var(v). Each

edge points to a sub-graph whose function evaluates to the respective derivative of the

function with respect to var(v). Each sub-graph is recursively defined as TED w.r.t. the

remaining variables. Terminal nodes evaluate as constants.

Starting from the root, the decomposition is applied recursively to the subsequent

children nodes. The internal nodes are in one-to-one correspondence with the suc-

cessive derivatives of function f w.r.t. variable x evaluated at x ¼ 0. Figure 7.10 depicts

one-level decomposition of function f at variable x. The kth derivative of a function

rooted at node v with var(v) ¼ x is referred to as a k-child of v; f(x ¼ 0) is a 0-child,

f 0 (x ¼ 0) is a 1-child, 1
2! f
00ðx ¼ 0Þ is a 2-child, etc. We shall also refer to the

corresponding arcs as 0-edge (dotted), 1-edge (solid), 2-edge (double), etc.

Example 7.1 Figure 7.11 shows the construction of a TED for the algebraic expression

F ¼ A2 þ AB þ 2AC þ 2BC. Let the ordering of variables be A,B,C. The decomposition

is performed first with respect to variable A. The constant term of the Taylor expansion is

F(A ¼ 0) ¼ 2 · B · C. The linear term of the expansion gives F 0(A ¼ 0) ¼ B þ 2C; the

quadratic term is 1
2
� F 00ðA ¼ 0Þ ¼ 1

2
� 2 ¼ 1. This decomposition is depicted in Fig. 7.11

(a). Now the Taylor series expansion is applied recursively to the resulting terms with

respect to variable B, as shown in Fig. 7.11(b), and subsequently with respect to

variable C. The resulting diagram is depicted in Fig. 7.11(c), and its final reduced and

normalized version (to be explained in Section 7.4.4) is shown in Fig. 7.11(d). The

function encoded by the TED can be evaluated by adding all the paths, from the non-

zero terminal nodes to the root, each path being a product of the variables in their

respective powers and the edge weights, resulting in F ¼ A2 þ AB þ 2AC þ 2BC.

x3

x2x

x

1

v

....

f

f (0) f 9(0) f 99(0)/2

f 09(0)/3!

Figure 7.10 A decomposition node in a TED

7 Decision diagrams for verification 193

Using the terminology of computer algebra, [69] TED employs a sparse recursive

representation, where a multivariate polynomial p(x1, . . ., xn) is represented as:

pðx1; . . . ; xnÞ ¼
Xm
i¼0

piðx1; . . . ; xn�1Þxin: ð7:18Þ

The individual polynomials pi(x1, . . ., xn�1) can be viewed as coefficients of the

leading variable xn at the decomposition level corresponding to xn. By construction, the

sparse form stores only non-zero polynomials as the nodes of the TED.

7.4.4 Reduction and normalization

It is possible to reduce the size of an ordered TED further by a process of TED

reduction and normalization. Analogous to BDDs and *BMDs, Taylor expansion

diagrams can be reduced by removing redundant nodes and merging isomorphic sub-

graphs. In general, a node is redundant if it can be removed from the graph, and its

incoming edges can be redirected to the nodes pointed to by the outgoing edges of the

node, without changing the function represented by the diagram.

definit ion 7.5 A TED node is redundant if all of its non-0 edges are connected to

terminal 0.

If node v contains only a constant term (0-edge), the function computed at that node

does not depend on the variable var(v), associated with the node. Moreover, if all

the edges at node v point to the terminal node 0, the function computed at the node

evaluates to zero. In both cases, the parent of node v is reconnected to the 0-child of v,

as depicted in Fig. 7.12.

The identification and merging of isomorphic sub-graphs in a TED are analogous to

that of BDDs and *BMDs. Two TEDs are considered isomorphic if they match in both

their structure and their attributes; i.e. if there is a one-to-one mapping between the

vertex sets and the edge sets of the two graphs that preserve vertex adjacency, edge

labels, and terminal leaf values. By construction, two isomorphic TEDs represent

the same function. To make the TED canonical, any redundancy in the graph must be

eliminated and the graph must be reduced. The reduction process entails merging

the isomorphic sub-graphs and removing redundant nodes.

A

1

F9(A=0) = B + 2C

F (A=0) = 2BC

1

A

B

0

B

2C

1

A

B

0

B

C

2

A

B

0

B

C

1

2

(a)

1/2 F99(A=0) = 1

(b) (d)(c)

Figure 7.11 Construction of a TED for F ¼ A2þABþ 2ACþ 2BC: (a)�(c) decomposition w.r.t. individual

variables; (d) normalized TED

194 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

def init ion 7.6 A Taylor expansion diagram is reduced if it contains no redundant

nodes and has no distinct vertices v and v0, such that the sub-graphs rooted at v and v0

are isomorphic. In other words, each node of the reduced TED must be unique.

It is possible to reduce the graph further by exploiting the sharing of common sub-

expressions by performing normalization, similar to the method described for *BMDs.

[2] The normalization procedure starts by moving the numeric values from the non-

zero terminal nodes to the terminal edges, where they are assigned as edge weights.

This is shown in Fig. 7.11(d) and Fig. 7.13(b). By doing this, the terminal node holds

constant 1. This operation applies to all terminal edges with terminal nodes holding

values different from 1 or 0. As a result, only terminal nodes 1 and 0 are needed in the

graph. The weights at the terminal edges may be further propagated to the upper edges

of the graph, depending on their relative values. The TED normalization process that

accomplishes this is defined as follows.

def init ion 7.7 A reduced, ordered TED representation is normalized when:

� The weights assigned to the edges spanning out of a given node are relatively prime,

� Numeric value 0 appears only in the terminal nodes,

� The graph contains no more than two terminal nodes, one each for 0 and 1.

By ensuring that the weights assigned to the edges spanning out of a node are

relatively prime, the extraction of common sub-graphs is enabled. Enforcing the rule

that none of the edges is allowed zero weight is required for the canonization of the

diagram. When all the edge weights have been propagated up to the edges, only the

values 0 and 1 can reside in the terminal nodes.

The normalization of the TED representation is illustrated by an example in

Fig. 7.13. First, as shown in Fig. 7.13(b), the constants (6, 5) are moved from terminal

nodes to terminal edges. These weights are then propagated up along the linear edges

to the edges rooted at nodes associated with variable B, see Fig. 7.13(c). At this point

the isomorphic sub-graphs (BþC) are identified at the nodes of B and the graph is

subsequently reduced by merging the isomorphic sub-graphs, as shown in Fig. 7.13(d).

It can be shown that the normalization operation can reduce the size of a TED

exponentially. Conversely, transforming a normalized TED to a non-normalized TED

can, in the worst case, result in an exponential increase in the graph size. This result

follows directly from the concepts of normalization of BDDs and BMDs. [2]

u

v

0

y

x

uy

Figure 7.12 Removal of redundant node with only a constant term edge

7 Decision diagrams for verification 195

7.4.5 Canonicity of Taylor expansion diagrams

It now remains to be shown that an ordered, reduced, and normalized Taylor expansion

diagram is canonical; i.e., for a fixed ordering of variables, any algebraic expression is

represented by a unique reduced, ordered, and normalized TED. First, we recall Taylor’s

theorem, proved in [68].

theorem 7.8 (Taylor’s theorem [68]) Let f(x) be a polynomial function in the

domain R, and let x ¼ x0 be any point in R. There exists one and only one unique

Taylor series with center x0 that represents f(x) according to Eq. 7.17.

This theorem states the uniqueness of the Taylor series representation of a function,

evaluated at a particular point (in our case at x¼ 0). This is a direct consequence of the

fact that the successive derivatives of a function evaluated at a point are unique. Using

Taylor’s theorem and the properties of reduced and normalized TEDs, it can be shown

that an ordered, reduced, and normalized TED is canonical.

theorem 7.9 For any multivariate polynomial f with integer coefficients, there is a

unique (up to isomorphism) ordered, reduced, and normalized Taylor expansion dia-

gram denoting f, and any other Taylor expansion diagram for f contains more vertices.

In other words, an ordered, reduced, and normalized TED is minimal and canonical.

proof The proof of this theorem follows directly the arguments used to prove the

canonicity and minimality of BDDs [1] and *BMDs. [2]

Uniqueness First, a reduced TED has no trivial redundancies; the redundant nodes are

eliminated by the reduce operation. Similarly, a reduced TED does not contain any

isomorphic sub-graphs. Moreover, after the normalization step, all common sub-

expressions are shared by further application of the reduce operation. By virtue of

Taylor’s theorem, all the nodes in an ordered, reduced, and normalized TED are unique

and distinguished.

1 0 1 0 1

C

A

B

5

56

6

1 0 1 0 1

C

A

B

6
5

0

(A + 5A + 6)(B + C)22A (B + C) + 5A(B + C) + 6(B + C)

0 1

C

A

B

6 0 5

B

C

1

A

6 5 1

(d)(c)(b)(a)

Figure 7.13 Normalization of the TED for F ¼ (A2þ 5Aþ 6)(BþC)

196 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

Canonicity We now show that the individual Taylor expansion terms, evaluated

recursively, are uniquely represented by the internal nodes of the TED. First, for

polynomial functions, the Taylor series expansion at a given point is finite and,

according to Taylor’s theorem, the series is unique. Moreover, each term in the

Taylor series corresponds to the successive derivatives of the function evaluated at

that point. By definition, the derivative of a differentiable function evaluated at a

particular point is also unique. Since the nodes in the TED correspond to the recur-

sively computed derivatives, every node in the diagram uniquely represents the

function computed at that node. Since every node in an ordered, reduced, and nor-

malized TED is distinguished and uniquely represents a function, the Taylor expansion

diagram is canonical.

Minimality We now show that a reduced, ordered, and normalized TED is also

minimal. This can be proved by contradiction. Let G be a graph corresponding to a

reduced, normalized, and, hence, canonical TED representation of a function f.

Assume that there exists another graph G0, with the same variable order as G, rep-

resenting f that is smaller than G. This would imply that graph G could be reduced to

G0 by the application of reduce and normalize operations. However, this is not

possible, as G is a reduced and normalized representation and contains no redun-

dancies. The sharing of identical terms across different decomposition levels in the

graph G has been captured by the reduction operation. Thus G0 cannot have a

representation for f with fewer nodes than G. Hence G is a minimal and canonical

representation for f.

7.4.6 Complexity of Taylor expansion diagrams

Let us now analyze the worst-case size complexity of an ordered and reduced Taylor

expansion diagram. For a polynomial function of degree k, decomposition with

respect to a variable can produce kþ 1 distinct Taylor expansion terms in the worst

case.

theorem 7.10 Let f be a polynomial in n variables and maximum degree k. In the

worst case, the ordered, reduced, normalized Taylor expansion diagram for f requires

O(kn�1) nodes and O(kn) edges.

proof The top level contains only one node, corresponding to the first variable. Since

its maximum degree is k, the number of distinct child nodes at the second level is

bounded by kþ 1. Similarly, each of the nodes at this level produces up to kþ 1 child

nodes at the next level, giving rise to (kþ 1)2 nodes, and so on. In the worst case, the

number of children increases in geometric progression, with the level i containing up

to (kþ 1)i�1 nodes. For an n-variable function, there will be n� 1 such levels, with

the nth level containing just two terminal nodes, 1 and 0. Hence the total number of

internal nodes in the graph is N¼Pn�1
i¼0 ðk þ 1Þi¼ ðkþ1Þn�1

k
: The number of edges E can

be similarly computed as E¼Pn
i¼1 ðk þ 1Þi¼ ðkþ1Þnþ1�1

k
� 1; since there may be up to

7 Decision diagrams for verification 197

(kþ1)n terminal edges leading to the 0 and 1 nodes. Thus, in the worst case, the total

number of internal nodes required to represent an n-variable polynomial with degree k

is O(kn�1) and the number of edges is O(kn).

One should keep in mind, however, that the TED variables represent symbolic,

word-level signals, and the number of such signals in the design is significantly

smaller than the number of bits in the bit-level representation. Subsequently, even an

exponential size of the polynomial with a relatively small number of such variables

may be acceptable. Moreover, for many practical designs the complexity is not

exponential.

Finally, let us consider the TED representation for functions with variables encoded

as n-bit vectors, X¼Pn�1
i¼0 2ixi: For linear expressions, the space complexity of TED is

linear in the number of bits n, the same as for *BMDs. For polynomials of degree k �
2, such as X2, etc., the size of the *BMD representation grows polynomially with the

number of bits, as O(nk). For K*BMDs the representation also becomes non-linear,

with complexity O(nk� 1), for polynomials of degree k� 3. However, for ordered,

reduced, and normalized TEDs, the graph remains linear as the number of bits, namely

O(n · k), for any degree k, as stated in the following theorem.

theorem 7.11 Consider variable X encoded as an n-bit vector, X¼Pn�1
i¼0 2ixi.

The number of internal TED nodes required to represent Xk in terms of bits xi is

k(n�1) þ 1.

proof We shall first illustrate it for the quadratic case, k ¼ 2. Let Wn be an n-bit

representation of X :X ¼Wn¼
Pn�1

i¼0 2ixi¼ 2ðn�1Þxn�1 þWn�1 where Wn�1¼
Pn�2

i¼0 2ixi
is the part of X containing the lower (n�1) bits. With that,

W 2
n¼ ð2n�1xn�1 þWn�1Þ2¼ 22ðn�1Þx2n�1 þ 2nxn�1Wn�1 þW 2

n�1: ð7:19Þ
Furthermore, let

Wn�1¼ ð2n�2xn�2 þWn�2Þ; ð7:20Þ
and

W 2
n�1¼ ð22ðn�2Þx2n�2 þ 2n�1xn�2Wn�2 þW 2

n�2Þ: ð7:21Þ
Notice that the constant term (0 edge) of Wn�1 w.r.t. variable xn�2 contains the term

Wn�2, while the linear term (1 edge) of W 2
n�1 contains 2

n�1 Wn�2. This means that the

term Wn�2 can be shared at this decomposition level by two different parents. As a

result, there are exactly two non-constant terms, Wn�2 and W 2
n�2; at this level, as

shown in Fig. 7.14.

In general, at any level l, associated with variable xn�l, the expansion of terms W 2
n�l

andWn�l will create exactly two different non-constant terms, one representing W 2
n�l�1

and the other Wn�l�1; plus a constant term 2n�l. The term Wn�l�1 will be shared, with
different multiplicative constants, by W 2

n�l and Wn�l.
This reasoning can be readily generalized to arbitrary integer degree k; at each level

there will always be exactly k different non-constant terms. Since on the top-variable

198 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

(xn�1) level there is only one node (the root), and there are exactly k non-constant

nodes at each of the remaining (n�1) levels, the total number of nodes is equal to

k(n�1)þ 1.

The derivation of TED representation for X2 generalized to n bits is shown in Fig. 7.15.

Table 7.1 compares the worst-case size complexity of the canonical “decision”

diagrams described in this chapter in terms of the number of nodes as a function of the

size of their operands (bit width n). It shows a significantly lower worst-case com-

plexity for TED than for other representations.

7.4.7 Composition of Taylor expansion diagrams

Taylor expansion diagrams can be composed to compute complex expressions from

simpler ones. This section describes general composition rules to compute a new TED

as an algebraic sum (þ) or product (·) of two TEDs. The general composition process

for TEDs is similar to that of the APPLY operator for BDDs, [1] in the sense that the

n2
1

1

1

2

2

2
2(n−1)

2
2(n−1)

2
2(n−2)

1

xn−2

Wn−2

Wn−1Wn−1 Wn−1
2Wn−1

2Wn
2Wn

Wn−2 xn−3

xn−2

xn−1 xn−1

n−1
2 2n−2

2n

Figure 7.14 Construction of TED for X2 with n bits

1

1

1

1

0

x0 x0 x0 x0

x1 x1 x1 x1

x2 x2 x2 x2

x3

11

4

2

16

8

64

16

4

4

1

1

1

0 11 1

4

8

4

16

4

2

1

. . .

. . .

1

1

k +1
2

2(k +1)
2

2
2k x (k −1)

xk k+2
2

1

2
(k−1)

x3

x2

x1

x0

Figure 7.15 Derivation of TED representation for X2 with n bits

7 Decision diagrams for verification 199

operations are recursively applied on respective graphs. However, the composition

rules for TEDs are specific to the rules of the algebra (R, ·, þ).
Starting from the roots of the two TEDs, the TED of the result is constructed by

recursively constructing all the non-zero terms from the two functions, and combining

them, according to the given operation, to form the diagram for the new function. To

ensure that the newly generated nodes are unique and minimal, the REDUCE operator

is applied to remove any redundancies in the graph.

Let u and v be two nodes to be composed, resulting in a new node q. Let var(u) ¼ x,

and var(v) ¼ y denote the decomposing variables associated with the two nodes. The

top node q of the resulting TED is associated with the variable with the higher order,

i.e., var(q) ¼ x, if x � y, and var(q) ¼ y otherwise. Let f, g be two functions rooted at

nodes u, v, respectively, and h be a function rooted at the new node q.

For the purpose of illustration, we describe the operations on linear expressions, but

the analysis is equally applicable to polynomials of arbitrary degree. In constructing

these basic operators, we must consider several cases:

1.. Both nodes u, v are terminal nodes. In this case a new terminal node q is created as

val(q) ¼ val(u) þ val(v) for the ADD operation, and as val(q) ¼ val(u) . val(v) for

the MULT operation.

2.. At least one of the nodes is non-terminal. In this case, the TED construction

proceeds according to the variable order. Two cases need to be considered here:

(a) when the top nodes u, v have the same index, and (b) when they have different

indices. The detailed analysis of both cases is given in [70]. Here, we show

the multiplication of two diagrams rooted at variables u and v with the same

index.

hðxÞ¼ f ðxÞ � gðxÞ
¼ ðf ð0Þ þ xf 0ð0ÞÞ � ðgð0Þ þ xg0ð0ÞÞ
¼ ½f ð0Þgð0Þ
 þ x½f ð0Þg0ð0Þ þ f 0ð0Þgð0Þ
 þ x2½f 0ð0Þg0ð0Þ
:

ð7:22Þ

In this case, the 0-child of q is obtained by pairing the 0-children of u, v. Its 1-child

is created as a sum of two cross products of 0- and 1-children, thus requiring an

additional ADD operation. Also, an additional 2-child (representing the quadratic

term) is created by pairing the 1-children of u, v. This is shown in Fig. 7.16.

Table 7.1 Size complexity of different canonical diagrams

Diagram type X X þ Y X · Y Xk cX

MTBDD exp. exp. exp. exp. exp.

EVBDD lin. lin. exp. exp. exp.

*BMD lin. lin. lin. nk lin.

K*BMD lin. lin. lin. nk� 1 lin.

TED const. const. const. (n-1)k –

200 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

Figure 7.17 illustrates the application of the ADD and MULT procedures to two

TEDs. As shown in the figure, the root nodes of the two TEDs have the same variable

index. The MULT operation requires the following steps: (i) performing the multipli-

cation of the respective constant (0-) and linear (1-) children nodes; and (ii) generating

the sum of the cross-products of the 0- and 1-children. On the other hand, the two TEDs

corresponding to the resulting cross product, as highlighted in the figure, have different

variable indices for their root nodes. In this case, the node with the lower index cor-

responding to variable C is added to the 0-child of the node corresponding to variable B.

It should be noted that the ADD and MULT procedures described above will ini-

tially produce non-normalized TEDs, with numeric values residing only in the terminal

nodes, requiring further normalization. When these operations are performed on

normalized TEDs, with weights assigned to the edges, the following modification is

required: when the variable indices of the root nodes of f and g are different, the edge

weights have to be propagated down to the children nodes recursively. Downward

u0*v1+u1*v0
u0*v0

x 2
u*vx

x1
*

u0 u1 v0 v1

u vx x
=

u1*v1

Figure 7.16 Multiplicative composition for nodes with the same variables

0

6A

5C

12

A + 2C

10

4A

3B

A + B

0,0

0,7

0,2 1

B

C

8,7

0 2

C 7

0 1

B 8

+
=

0,20,0

0,5

1,0 1,2

1,5

1,0 1,2

1,5 C

1,10,1

3,1
B

4,6A

3,5

1,1

+

C

B

0 1

A

BB

C
2

* =

(A + B)(A + 2C)

Figure 7.17 Example of MULT composition: (AþB)(Aþ2C)

7 Decision diagrams for verification 201

propagation of edge weights results in dynamic updating of the edge weights of the

children nodes. In each recursion step, this propagation of edge weights down to

the children proceeds until the weights reach the terminal nodes. The numeric values

are updated only in the terminal nodes. Every time a new node is created, the

REDUCE and NORMALIZE operations must be performed to remove any redun-

dancies from the graph and generate a minimal and canonical representation.

7.4.8 Design modeling and verfication with TEDs

Using the operations described in the previous section, Taylor expansion diagrams can

be constructed to represent various computations over integers in a compact, canonical

form. The compositional operators ADD and MULT can be used to compute any

combination of arithmetic functions by operating directly on their TEDs. However, the

representation of Boolean logic, often present in RTL designs, requires special attention

since the output of a logic block must evaluate to a Boolean rather than to an integer

value.

Boolean logic
As with *BMDs, one can also define TED operators for Boolean logic, OR, AND, and

XOR, where both the range and domain of function are Boolean. This can be done in

much the same way as for *BMDs. In fact, the TED and *BMD for a Boolean logic are

identical, because they require only the first moment decomposition (refer to Fig. 7.5).

Similarly, one can derive other operators that rely on Boolean variables as one of

their inputs, with other inputs being word-level. One such example is the multiplexer,

MUX, (c, X, Y)¼ c ·X þ (1 � c), where c is a binary control signal, and X and Y are

word-level inputs.

In general, TED, which represents an integer-valued function, will also correctly

model designs with arithmetic and Boolean functions. Note that the ADD (þ) function
will always create correct integer results over Boolean and integer domains, because

Boolean variables are treated as binary (0,1), a special case of integer. However, the

MULT (·) function may create powers of Boolean variables, xk, which should be

reduced to x. A minor modification of TED is made to account for this effect, so that

the Boolean nature of variable x can be maintained in the representation. Such

modified Taylor expansion diagrams are also canonical.

TED construction for RTL designs
The TED construction for an RTL design starts with building trivial TEDs for its

primary inputs. Partial expansion of the word-level input signals is often necessary

when one or more bits from any of the input signals fan out to other parts of the design.

This is the case in the designs shown in Figs. 7.18 (a) and (b), where bits ak ¼ A[k] and

bk ¼ B[k] are derived from word-level variables A and B. In this case, the word-level

variables must be decomposed into several word-level variables with shorter bit-

widths. In our case, A ¼ 2(kþ1)Ahi þ 2kak þ Alo and B ¼ 2(kþ1)Bhi þ 2kbk þ Blo, where

Ahi ¼ A[n�1:kþ1], ak ¼ A[k], and Alo ¼ A[k�1:0], and similarly for variable B.

202 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

ak > bk

ak

bk

ak

bk

−

+
* 1

0

D

F1
F2

s2s1

B

A

D

*

*

− 0
1

B

A

(b)(a)

F2 F1

D

aK.1

–1

aK.2

bK.1

Ahi

–1

Bhi

–1

T1

256 Alo.2

32

Alo.1

–1

256

Bllo.2

32

Blo.1 16

–64

–1

8

bK.2

–1

 D

 aK

 bK

 Ahi

 Bhi

 Alo

 Blo

(c)

Figure 7.18 RTL verification using canonical TED representation: (a), (b) functionally equivalent RTL

modules; (c) the isomorphic TED for the two designs

7 Decision diagrams for verification 203

Variables Ahi, ak, Alo, Bhi, bk, Blo form the abstracted primary inputs of the system. The

basic TEDs are readily generated for these abstracted inputs from their respective

bases (Ahi, ak, Alo) and (Bhi, bk, Blo).

Once all the abstracted primary inputs are represented by their TEDs, Taylor

expansion diagrams can be constructed for all the components of the design. Taylor

expansion diagrams for the primary outputs are then generated by systematically

composing the constituent TEDs in topological order, from the primary inputs to the

primary outputs. For example, to compute A þ B in Figs. 7.18(a) and (b), the ADD

operator is applied to functions A and B (each represented in terms of their abstracted

components). The subtract operation, A � B, is computed by first multiplying B with

a constant �1 and adding the result to the TED of A. The multipliers are constructed

from their respective inputs using the MULT operator, and so on. To generate a TED

for the output of the multipliers, the Boolean functions s1 and s2 first need to be

constructed as TEDs. Function s1 is computed by transforming the single-bit com-

parator ak > bk into a Boolean function and is expressed as an algebraic equation,

s1 ¼ ak
V �bk ¼ ak: ð1� bkÞ, as described in this section. Similarly, s2 ¼ �ak _ bk is

computed as s2 ¼ 1 � ak . (1 � bk) and represented as a TED. Finally, the TEDs for the

primary outputs are generated using the MUX operator with the respective inputs. As a

result of such a series of composition operations, the outputs of the TED represent

multi-variate polynomials in terms of the primary inputs of the design.

TED-based verification
After having constructed the respective ordered, reduced, and normalized Taylor

expansion diagram for each design, the test for functional equivalence is performed by

checking for isomorphism of the resulting graphs. In fact, the TED-based verification

is similar to that using BDDs and BMDs: the generation of the TEDs for the two

designs under verification takes place in the same TED manager; when the two

functions are equivalent, both functions point to the same root of the common TED.

This is shown in Fig. 7.18(c).

It should be noted that the arithmetic operations in these designs assume that no

overflow is produced by any of the intermediate signal. That is, functions F1 and F2 are

functionally equivalent under the infinite-precision computation model. This limitaion

is a natural consequence of the design representation on the abstract level, where a

notion of the individual bits is not available.

7.4.9 Implementation and experimental results

A prototype version of TED software for behavioral HDL designs has been implemented

using as a front-end a popular high-level synthesis system, GAUT [71]. This system was

selected for its commercial quality, robustness, and open architecture. The input to the

system is a behavioral VHDL or C description of the design. The design is parsed and

the extracted dataflow is automatically transformed into canonical TED representation.

204 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

The core computational platform of the TED package consists of a manager that

performs the construction and manipulation of the graph. It provides routines to store and

manipulate the nodes, edges, and terminal values uniquely, in order to keep the diagrams

canonical. To support canonicity, the nodes are stored in a hash table, implemented as

unique table, similar to that of the CUDD package. [14, 15] The table contains a key for

each vertex of the TED, computed from the node index and the attributes of its children

and the edge weights. As a result, the equivalence test between two TEDs reduces to a

simple scalar test between the identifiers of the corresponding vertices.

Variable ordering

Since TEDs are a canonical representation subject to the imposition of a total ordering

of the variables, it is desirable to search for a variable order that would minimize the

size of TEDs. Dynamic variable ordering for TEDs is based on local swapping of

adjacent variables in the diagram, similar to those employed in BDD ordering. [72, 73]

It has been shown that, as with BDDs, local swapping of adjacent variables does not

affect the structure of the diagram outside the swapping area.

In addition, TEDs can be subjected to static ordering. Typically, the variables are

ordered topologically, from primary inputs to primary outputs, in the order in which

the signals appear in the design specification. Coefficients are usually represented as

weights associated with TED edges. In some cases, however, it may be beneficial to

treat some of the coefficients as special variables, rather than weights associated with

edges, and place them in the TED graph above all the signal variables. This is par-

ticularly important when TEDs are used for the purpose of expression simplification

and TED decomposition, as it facilitates symbolic factorization and common sub-

expression elimination. [74]

Experimental set-up

Several experiments were performed using the prototype TEDify software on a

number of dataflow designs described in behavioral VHDL. The designs range from

simple algebraic (polynomial) computations to those encountered in signal- and

image-processing algorithms. Simple RTL designs with Boolean-algebraic interface

were also tested.

The experiments with TED were conducted as follows. The design described in

behavioral VHDL or C was parsed by a high-level synthesis system GAUT. [71] The

extracted dataflow was then automatically translated into a canonical TED repre-

sentation using the experimental software TEDify. Comparisons against *BMDs were

conducted to demonstrate the power of abstraction of TED representation. For this

purpose, each design was synthesized into a structural netlist from which *BMDs were

constructed. In most cases, BDDs could not be constructed, owing to their prohibitive

size, and they are not reported. Experiments confirm that word-size abstraction by

TEDs results in much smaller graph size and computation times than for *BMDs.

7 Decision diagrams for verification 205

Verification of high-level transformations

During the process of architectural synthesis, the initial HDL description often pro-

ceeds through a series of high-level transformations. For example, the computation

AC þ BC can be transformed into an equivalent one, (A þ B)C, which better utilizes

the hardware resources. Taylor expansion diagrams are ideally suited to verifying the

correctness of such transformations by proving the equivalence of the two expressions,

regardless of the word size of the input or output signals. We performed numerous

experiments to verify the equivalence of such algebraic expressions. Results indicate

that both time and memory usage required by TEDs is orders of magnitude smaller

than with *BMDs. For example, the expression (A þ B)(C þ D), where A, B, C, and D

are n-bit vectors, has a TED representation containing just four internal nodes,

regardless of the word size. The size of the *BMD for this expression varies from 418

nodes for the 8-bit vectors, to 2808 nodes for 32-bit variables. Binary decision diagram

graphs could not be constructed for operands with more than 15 bits.

RTL verification

As mentioned earlier, TEDs offer the flexibility of representing designs containing both

arithmetic operators and Boolean logic. We used the generic designs of Figure 7.18 and

performed a set of experiments to observe the efficiency of TED representation under

varying size of Boolean logic. The size of the algebraic signals A, B was kept constant at

32 bits, while theword size of the comparator (or the equivalent Boolean logic) was varied

from 1 to 20. As the size of Boolean logic present in the design increases, the number of

bits extracted from A, B also increases (the figure shows it for single bits). Table 7.2 gives

the results obtained with TED and compares themwith those of *BMDs. Note that, as the

size of Boolean logic increases, the TED size converges to that of *BMD. This is to be

expected, as *BMDs can be considered as a special (Boolean) case of TEDs.

Array processing

An experiment was also performed to analyze the capability of TEDs of representing

computations performed by an array of processors. The design that was analyzed is an

Table 7.2 Size of TED vs. Boolean logic for the design in Fig. 7.18a

Bits *BMD TED

(k) Size CPU time Size CPU

4 4620 107 s 194 44 s

8 15 k 87 s 998 74 s

12 19 k 93 s 999 92 s

16 23.9 k 249 s 4454 104 s

18 Timeout >12 h 12.8 k 29min

20 Timeout >12 h Timeout >12 h

206 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

n · n array of configurable processing elements (PE), which is a part of a low-power

motion-estimation architecture. [75] Each processing element can perform two types

of computations on a pair of 8-bit vectors, Ai,Bi, namely (Ai � Bj) or (A
2
i � B2

j), and

the final result of all PEs is then added together. The size of the array was varied from

4 · 4 to 16 · 16, and the TED for the final result was constructed for each config-

uration.

When the PEs are configured to perform subtraction (Ai � Bj), both TEDs and

*BMDs can be constructed for the design. However, when the PEs are configured to

compute A2
i � B2

j, the size of *BMDs grows quadratically. As a result, we were

unable to construct *BMDs for the 16 · 16 array of 8-bit processors. In contrast, the

TEDs were constructed easily for all the cases. The results are shown in Table 7.3.

Note that we were unable to construct the BDDs for any size n of the array for the

quadratic computation.

DSP computations

One of the most suitable applications for TED representation is the algorithmic

description of dataflow computations, such as digital signal and image processing

algorithms. For this reason, we have experimented with the designs that implement

various DSP algorithms.

Table 7.4 presents some data related to the complexity of the TEDs constructed for

these designs. The first column in the table describes the computation implemented

by the design. These include: FIR and IIR filters, fast Fourier transform (FFT),

elliptical wave filter (Elliptic), least mean square computation (LMS128), discrete

cosine transform (DCT), matrix product computation (ProdMat), and Kalman filter

(Kalman). Most of these designs perform algebraic computations by operating on

vectors of data, which can be of arbitrary size. The next column gives the number of

inputs for each design. While each input is a 16-bit vector, TED represents them as

word-level symbolic variables. Similarly, the next column depicts the number of 16-

bit outputs. The remaining columns of the table show: the BMD size (number of

nodes); the CPU time required to construct the BMD for the 16-bit output words; the

TED size (number of nodes) required to represent the entire design. The CPU time

required to generate TED diagrams does not account for the parsing time of the

GAUT front end.

Table 7.3 PE computation: ðA2
i � B2

j Þ

Array size *BMD TED

(n· n) Size CPU time Size CPU time

4· 4 123 3s 10 1.2 s

6· 6 986 3.4 s 14 1.5 s

8· 8 6842 112s 18 1.6 s

16 · 16 Out of memory – 34 8.8 s

7 Decision diagrams for verification 207

 s
v1

8_
o

 s
v2

6_
o

in
p

.1

 s
v3

8_
o

in
p

.2

 s
v3

3_
o

in
p

.3

 s
v3

9_
o

in
p

.42

 o
u

tp

in
p

.5

 s
v2

_o

in
p

.6

 s
v1

3_
o

in
p

.7
in

p
.8

sv
2.

1

T
1

6

sv
33

.1

6

sv
39

.1

2

sv
13

.1

2

sv
26

.1

2

5
sv

18

4

sv
2.

2

4

sv
33

.2

4

sv
39

.2 4sv
13

.2 4

sv
26

.2

3

2

sv
2.

3

2

sv
33

.3

5

sv
39

.3

2 3

sv
13

.3 sv
26

.3

sv
38

2

sv
2.

4

2

sv
33

.4

5

sv
39

.4

6

sv
13

.4

2

sv
26

.4 2

2

sv
2.

5 2

sv
33

.5 6sv
39

.5

9

sv
13

.5

2

sv
2.

6

sv
33

.6

3

sv
39

.6 5

10

sv
2.

7

9

sv
33

.72

sv
39

.7

sv
13

.6 3

11

sv
2.

8 11

sv
33

.8 3

sv
39

.8 3

sv
13

.7 8

sv
26

.5

2

3

 in
p

 s
v2

 s
v3

3

 s
v3

9

 s
v1

3

 s
v2

6

 s
v1

8

 s
v3

8

Fi
gu

re
7.
19

E
ll
ip
ti
c
w
av
e
fi
lt
er
:
T
E
D

st
ru
ct
u
re

o
b
ta
in
ed

au
to
m
at
ic
al
ly

fr
o
m

V
H
D
L
d
es
cr
ip
ti
o
n

Figure 7.19 depicts a multiple-output TED for the elliptical wave filter (design

elliptic), where each root node corresponds to an output of the design.

Algorithmic verification

This final set of experiments demonstrates the natural capability of Taylor expansion dia-

grams of verifying the equivalence of designs described at the algorithmic level. Consider

two dataflow designs computing convolution of two real vectors, A(i),B(i), i¼ 0, . . .N�1,
shown in Fig. 7.20. The design in Fig. 7.20(a) computes the FFT of each vector, computes

the product of the FFT results, and performs the inverse FFT operation, producing output

IFFT. The operation shown in Fig. 7.20(b) computes the convolution directly from the two

inputs, CðiÞ ¼PN�1
k¼0 AðkÞ ·Bði� kÞ. A TED was used to represent these two compu-

tations for N ¼ 4 and to prove that they are, indeed, equivalent. Figure 7.21 depicts the

TED for vector C of the convolution operation, isomorphic with the vector IFFT. All

graphs are automatically generated by our TED-based verification software.

As illustrated by the above example, TEDs can be suitably augmented to represent

computations in the complex domain. In fact, it can be shown that TEDs can represent

polynomial functions over an arbitrary field. The only modification required is that the

weights on the graph edges are elements of the field, and that the composition MULT

and ADD are performed with the respective operators of the field. Subsequently, TEDs

can also be used to represent computations in the Galois field. [76]

7.4.10 Limitations of TED representation

Taylor expansion diagrams have several natural limitations. As mentioned earlier,

TEDs can only be used to represent infinite-precision arithmetic, and cannot represent

modular arithmetic. Furthermore, they can only represent functions that have finite

Taylor expansions, and, in particular, multi-variate polynomials with finite-integer

degrees. For polynomials of finite-integer degree k � 1, successive differentiation of

Table 7.4 Signal processing applications

Design Input size Output size

*BMD size

(nodes)

BMD CPU

time (s)

TED size

(nodes)

TED CPU

time (s)

Dup-real 3 · 16 1· 16 92 10 5 1

IIR 5 · 16 1· 16 162 13 7 1

FIR16 16 · 16 1· 16 450 25 18 1

FFT 10 · 16 8· 16 995 31 29 1

Elliptic 8 · 16 8· 16 922 19 47 1

LMS128 50 · 16 1· 16 8194 128 52 1

DCT 32 · 16 16· 16 2562 77 82 1

ProdMat 32 · 16 16· 16 2786 51 89 1

Kalman 77 · 16 4· 16 4866 109 98 1

7 Decision diagrams for verification 209

the function ultimately leads to zero, resulting in a finite number of terms. However,

those functions that have infinite Taylor series (such as ax, where a is a constant)

cannot be represented with a finite TED graph. To represent exponentials using TEDs,

one must expand the integer variable into bits, X ¼ {xn�1, xn�2, . . ., x0}, and use the

TED formulas to represent the function in terms of the bits. Such a TED would be

structurally similar to the *BMD representation of the function.

While TED representation naturally applies to functions that can be modeled as

finite polynomials, the efficiency of TEDs relies on their ability to encode the design in

terms of its word-level symbolic inputs, rather than bit-level signals. This is the case

with the simple RTL designs shown in Fig. 7.18, where all input variables and internal

signals have simple, low-degree polynomial representation. The abstracted word-level

inputs of these designs are created by partial bit selection (ak, bk) at the primary inputs,

and a polynomial function can be constructed for the outputs. However, if any of the

internal or output signals is partitioned into sub-vectors, such sub-vectors cannot be

represented as polynomials in terms of the symbolic, word-level input variables, but

depend on the individual bits of the inputs. The presence of such signal splits creates a

fundamental problem for the polynomial representations, and TEDs cannot be used

x

x

x

x

A0

A1

A2

A3

B0

B1

B2

B3

FFT(A)

FFT(B)

FAB0

FAB1

FAB2

FAB3 In
vF

F
T

(F
A

B
)

IFFT3

IFFT1

IFFT2

IFFT0

Conv(A,B)

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

Figure 7.20 Equivalent computations: (a) FFT-Product-Inv(FFT); (b) convolution

210 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

efficiently in those cases. For similar reasons, TED cannot represent modular arith-

metic. An attempt to fix this problem was proposed in [76], by modeling the discrete

functions as finite, word-level polynomials in the Galois field (GF). The resulting

polynomials, however, tend to be of much higher degree than the original function,

with the degree depending on the signal bit width, making the representation less

efficient for practical applications. This is the case where TEDs can exhibit space

explosion similar to that encountered in BDDs and BMDs.

Another limitation of TEDs is that they cannot represent relational operators (such

as comparators, A � B, A ¼¼ B, etc.) in symbolic form. This is because the Taylor

series expansion is defined for functions and not for relations. Relations are char-

acterized by discontinuities over their domain and are not differentiable. To use

TEDs to represent relational operators, often encountered in RTL descriptions, the

expansion of word-level variables and bit vectors into their bit-level components is

required.

Despite these limitations, TEDs can be successfully used for verifying equivalence

of high-level, behavioral, and algorithmic descriptions. Such algorithmic descriptions

typically do not exhibit signal splits, resulting in polynomial functions over word-level

variables.

A0.1 A0.2

C0C1C2C3

A0.3 A0.4

B0.1

B3.1

B1.1

A3.1

A1.1

A2.1

B2.1

T1

B0.4B0.3

B1.3

A1.2

B0.2

B1.2

A0

B0

A3

B1

B2

B3

A1

A2

Figure 7.21 TED for convolution vector C, isomorphic with IFFT

7 Decision diagrams for verification 211

7.4.11 Conclusions and open problems

This section described a compact, canonical, graph-based representation, called the

Taylor expansion diagram (TED). It has been shown that, for a fixed ordering of

variables, the TED is a canonical representation that can be used to verify equivalence

of arithmetic computations in dataflow designs. It has been shown how TEDs can be

constructed for behavioral and some RTL design descriptions. The power of

abstraction of TEDs makes them particularly applicable to dataflow designs specified

at the behavioral and algorithmic level.

For larger systems, especially those involving complex bit-select operations, and

containing large portions of Boolean logic, relational operators, and memories, TEDs

can be used to represent those portions of the design that can be modeled as poly-

nomials. Equivalence checking of such complex design typically involves finding

structurally similar points of the designs under verification. The TED data structure

can be used here to raise the level of abstraction of large portions of designs, aiding in

the identification of such similar points and in the overall verification process. In this

sense, TEDs complement existing representations, such as BDDs and *BMDs, in

places where the level of abstraction can be raised.

The experiments demonstrate the applicability of TED representation to verification

of dataflow designs specified at behavioral and algorithmic levels. This includes

portions of algorithm-dominant designs, such as signal processing for multimedia

applications and embedded systems. Computations performed by those designs can often

be expressed as polynomials and can be readily represented with TEDs. The test for

functional equivalence is then performed by checking the isomorphism of the resulting

graphs. Of particular promise is the use of TEDs in the verification of algorithmic

descriptions, where the use of symbolic, word-level operands, without the need to

specify bit width, is justified. A number of open problems remain to be researched to

make TEDs a reliable data structure for high-level design representation and verification.

In addition to these verification-related applications, TEDs prove useful in algo-

rithmic and behavioral synthesis and optimization for DSP and dataflow applications.

[74] Taylor expansion diagram data structures, representing a functional view of the

computation, can serve as an efficient vehicle to obtain a structural representation,

namely the dataflow graph (DFG). This can be obtained by means of graph decom-

position, which transforms the functional TED representation into a structural DFG

representation. By properly guiding the decomposition process, the resulting DFG can

provide a better starting point for the ensuing architectural (high-level) synthesis, than

that extracted directly from the original HDL specification.

7.5 Represention of multiple-output functions over finite fields

This section presents a method for representing multiple-output, binary, and word-level

functions in GF(N) (N¼ pm; p a prime number and m a non-zero positive integer) based

on decision diagrams (DD). The presented DD is canonical and can be made minimal

with respect to a given variable order. The DD has been tested on benchmarks including

212 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

integer multiplier circuits and the results show that it can produce better node com-

pression (more than an order of magnitude in some cases) than shared BDDs. The

benchmark results also reflect the effect of varying the input and output field sizes on the

number of nodes. Methods of graph-based representation of characteristic and encoded

characteristic functions in GF(N) are also presented. The performance of the proposed

representations has been studied in terms of average path lengths and the actual

evaluation times with 50 000 randomly generated patterns on many benchmark circuits.

All these results reflect that the proposed technique can outperform existing techniques.

7.5.1 Previous work

Finite fields have numerous applications in public-key cryptography [78] to encounter

channel errors and for protection of information, error control codes, [78] and digital

signal processing [79]. Finite fields gained significance with practical lucrativeness of

the elliptic-curve crypto systems. The role of finite fields in error control systems is

well established and contributes to many fault-tolerant designs. In the EDA industry,

the role of multi-valued functions, especially in the form of multi-valued decision

diagrams (MDD), is well described in [80,81]. Word-level diagrams can be useful in

high-level verification, logic synthesis, [1,82] and software synthesis. [83] Multi-

valued functions can also be represented in finite fields, as shown in [84]. Finite fields

can represent many arithmetic circuits very efficiently. [85] Also, there are fine-grain

FPGA structures for which arithmetic circuits in finite fields seem to be highly effi-

cient. The varied use of finite fields leads to the design of high-speed, low-complexity

systolic VLSI realizations. [86] Fast functional simulation in the design cycles is a key

step in all these applications. [87]

Most existing techniques for word-level representation, e.g., [2, 88], are not capable

of efficiently representing arbitrary combinations of bits or nibbles, i.e., sub-vectors,

within a word. The proposed framework for representing circuits can deal with these

types of situation by treating each sub-vector as a word-level function in GF(2m),

where m denotes the number of bits within a sub-vector. The word-level functions are

then represented as canonic word-level graphs. Hence the proposed technique offers a

generalized framework for verifying arbitrary combinations of bits or words.

Another situation where existing word-level techniques seem to have difficulty is

representing non-linear design blocks, such as comparators, at the register transfer

level, RTL (e.g., in the integer domain). The proposed framework does not suffer from

this critical shortcoming.

As an example of representing an arbitrary combination of output bits in a multiple-

output function, let’s consider a four-input eight-output binary function. The MSB

expressed by f¼Pm(10,11,12,13,14,15),1 and the LSB g¼P m(4,5,6,7,8,9,10,11,

14,15) can be represented on the same diagram as shown in Fig. 7.22. [89] The BDD-

based representation of this circuit will require a larger number of nodes.

1 The notation h¼P m(p1,p2, . . ., pq) is used to represent the truth-table of a function where each pr
(1� r� q) is the decimal equivalent of a row in the input part of the table with an output of 1, i.e., each pr
is a minterm from the ON set in its decimal form.

7 Decision diagrams for verification 213

Although research has been done on representing circuits in finite fields, [85, 90] the

theoretical basis was carried out, for example, in the spectral domain for a fixed value,

e.g., four in [90]. Unlike these techniques, this section presents a generalized frame-

work for the design, verification, and simulation of circuits in finite fields based on the

MDD-like graph-based form. The proposed DD has advantages over other diagrams,

such as [2], in that, in addition to applications in multiple-valued algebra, it is not

restricted to word boundaries, but instead it can be used to represent and verify any

combination of output bits. Unlike [91], which is not a DD and, hence, lacks many

features present in a DD, the proposed diagram does not have such shortcomings. Also,

unlike [81], the proposed DD represents finite fields and extension fields, while [81] is

based on MIN-MAX post-algebra.

Owing to its canonicity, the proposed technique can be used for verifying circuits at the

bit or word-level by checking for graph isomorphism, which can be done very quickly.

Fast evaluation times of multiple-output functions is significant in the areas of logic

simulation, testing, satisfiability, and safety checking. [92, 93] The proposed DDs also

offer much shorter average path lengths and, hence, evaluation times [94] than shared

BDDs, with a varying trade-off between evaluation times and spatial complexity.

7.5.2 Background and notation

Finite fields
Let GF(N) denote a set of N elements, where N¼ pm, p is a prime number and m a non-

zero positive integer, with two special elements 0 and 1 representing the additive and

multiplicative identities respectively, and two operators; addition ‘þ’ and multipli-

cation ‘·’. The function GF(N) defines a finite field, also known as a Galois field, if it

forms a commutative ring with identity over these two operators, in which every

element has a multiplicative inverse. In other words, GF(N) defines a finite field if the

following properties hold:

� Associativity: 8a,b,c 2 GF(N) (aþ b)þ c¼ aþ (bþ c), and (a · b) · c¼ a · (b · c).

� Identity: 8a 2 GF(N) aþ 0¼ 0þ a¼ a, and a · 1¼ 1 · a¼ a. Here, 0 and ‘1’ are the

additive and multiplicative identities respectively.

� Inverse: 8a 2 GF(N) ’� a,a�1 2 GF(N), such that aþ (�a)¼ 0 and a · a�1¼ 1.

Here, �a and a�1 are the additive and multiplicative inverses respectively.

x2

x1

10, 11

10, 11

100100

00 01

11

00, 01

Figure 7.22 Representing two bits simultaneously

214 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

� Commutative: 8a,b 2 GF(N) aþ b¼ bþ a, and 8c,d 2 GF(N)-{0}c · d¼ d · c.

� Distributive: ‘·’ distributes over ‘þ’, i.e. 8a,b,c 2 GF(N) a · (bþ c)¼ (a · b) + (a · c).

Here, p, which is a prime number, is called the characteristic of the field, and satisfies

the following conditions:

ðaÞ 1þ 1þ � � � þ 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
p times

¼ 0:

ðbÞ pa ¼ 0; 8 a 2 GFðNÞ:
Also 8a 2 GF(N), aN¼ a, and for a 6¼ 0, aN�1¼ 1. The elements of GF(N) can be

represented as polynomials over GF(p) of degree, at most, n� 1. There exists an

element a 2 GF(N) for which the powers of a, a2, . . ., aN–1 are distinct and represent

the non-zero elements of the field. Here a is called the primitive element of the field.

Additional properties of GF(N) can be found in [78,84].

Generation of finite fields
A polynomial p(x) over GF(pm) is said to be primitive if it is irreducible (i.e., cannot be

factored into lower degree polynomials), and if the smallest positive integer r for

which p(x) divides xr� 1 is r¼ pm� 1.

For example, the polynomial p(x)¼ x3þ xþ 1 is primitive over GF(2), because the

smallest positive integer for which it is a divisor of xr� 1 is r¼ 7¼ 23� 1, i.e., x7� 1.

Finite fields over GF(2m) and m� 2 can be generated with primitive polynomials

(PP) of the form pðxÞ ¼ xm þPm�1
i¼0 cix

i; where ci 2 GF(2). [78]

For example, given the PP p(x)¼ x3þ xþ 1, we can generate GF(8) as follows. Let

a be a root of p(x), i.e., p(a)¼ 0. Hence, a3¼ aþ 1¼ 0 or a3¼ aþ 1. In general, any

element b 2 GF(2m) can be represented in this polynomial form as bðxÞ ¼Pm�1
i¼0 bix

i,

where bi 2 {0,1}. In this way, all the elements of GF(8) can be generated as shown in

Table 7.5. Note that since each coefficient bi 2 {0,1}, each element in its polynomial

form can also be represented as a bit vector, as shown in the third column. The bit

vectors can be stored as integers in a computer program. For example, the element a4

is 5 in decimal, and can be stored as an integer.

Table 7.5 Generation of GF(23)

Exponential

representation

Polynomial

representation Bit vector

0 ¼ 0 $ [0,0,0]

a0 ¼ 1 $ [0,0,1]

a1 ¼ a2 $ [0,1,0]

a2 ¼ a2 $ [1,0,0]

a3 ¼ aþ 1 $ [0,1,1]

a4 ¼ a2þ a $ [1,1,0]

a5 ¼ a3þ a2¼ a2þ aþ 1 $ [1,1,1]

a6 ¼ a2þ 1 $ [1,0,1]

7 Decision diagrams for verification 215

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

(a) Addition

× 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

(b) Multiplication

Figure 7.23 Addition and multiplication over GF(4)

Operations over finite fields
For any a,b 2 GF(2m), if a and b are in their polynomial forms as aðxÞ ¼Pm�1

i¼0 aixi

and bðxÞ ¼Pm�1
i¼0 bix

i, where ai, bi 2 {0,1} and 0� i<m, then multiplication over GF

(2m) can be defined as w(x)¼ a(x) · b(x) mod p(x), where p(x) represents the PP used

to generate the fields [78, 84, 95]. As an example, let a, b 2 GF(4), which is generated

with the PP p(x)¼ x2þ xþ 1. Also let a(x)¼ x and b(x)¼ xþ 1. Then

a � b ¼ aðxÞ � bðxÞ mod pðxÞ
¼ x � ðxþ 1Þ mod x2 þ xþ 1

¼ x2 þ x mod x2 þ xþ 1

¼ 1:

If the elements are in their exponential form, as in the first column of Table 7.5, then

multiplications can also be carried out as follows. Let a,b 2 GF(2m), a¼ ax and b¼ ay,
then a · b¼ a(xþ y) mod 2m� 1

, where the addition is carried out over integers. For

example, from Table 7.5 a5 · a6¼ a(5þ 6) mod 7¼ a4 over GF(8).
Note that aþ b, i.e., addition over GF(2m), is the bitwise EXOR of the bit vectors

corresponding to a(x) and b(x). For example, let a¼ a5 and b¼ a6 from Table 7.5. We

also have a¼ [1,1,1] and b¼ [1,0,1]. Hence aþ b¼ [0,1,0], which is a.
Figure 7.23 shows multiplication and addition tables over GF(4).

Notation
The following notation is used in this chapter.

Let IN¼ {0,1, . . ., N� 1}, and d: IN!GF(N) be a one-to-one mapping, with

d(0)¼ 0. Let f|xk¼ y, called the co-factor of f w.r.t. xk¼ y, represent the fact that all

occurrences of xk within f are replaced with y, i.e. f|xk¼ y¼ f(x1,x1, . . ., xk¼ y, . . ., xn).

The notation f|xi¼ yi,xiþ 1¼ yiþ 1, . . ., xiþ j¼ yiþ j (or just f|yi,yiþ 1, . . ., yiþ j when the

context is clear) will be used to represent the replacement of variables xi,xiþ 1,. . .,xiþj
with the values yi,yiþ 1, . . ., yiþ j respectively.

We shall use the notation |A| to represent the total number of nodes in a graph A.

We have the following in GF(N).

theorem 7.12 A function f(x1,x2, . . ., xk, . . ., xn) in GF(N) can be expanded as follows.

f ðx1; x2; . . . ; xk; . . . ; xnÞ ¼
XN�1
e¼0

geðxkÞ f jxk¼dðeÞ; ð7:23Þ

where ge (xk)¼ 1� [xk� d(e)]N� 1.

216 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

proof The proof is made by perfect induction as follows. From the properties of GF

(N) we have, for any a 2 GF(N) such that a 6¼ 0, aN� 1¼ 1. Now, in Theorem 7.12 if

xk¼ d(r), then gr(xk)¼ 1 for r 2 IN. Furthermore, gs(xk)¼ 0 8s 2 IN and s 6¼ r.

Therefore, only one term, namely f(x1,x2,. . .,d(r),. . .,xn), remains on the right-hand-

side of Eq. 7.20, while all the remaining terms equate to zero. Hence the proof follows.

In Theorem 7.12, ge(xk) is called a multiple-valued literal.
2 Theorem 7.12 is known as

the literal-based expansion of functions in GF(N). Theorem 7.12 reduces to the

Shannon’s expansion over GF(2) as follows. If we put N¼ 2 in Eq. 7.20 then

f ðx1; x2; . . . ; xnÞ ¼
X2�1
e¼0

geðxkÞf jxk¼dðeÞ

¼ g0ðxkÞf jx¼0 þ g1ðxkÞf jx¼1
¼ �xxf jx¼0 þ xkf jx¼1;

where �x represents that x appears in its complemented form.

The product of literals is called a product term or just a product. Two product terms

are said to be disjoint if their product in GF(N) equates to zero. An expression in GF

(N) constituting product terms is said to be disjoint if all of its product terms are

pairwise disjoint.

Section 7.5.3 presents the theory behind the graph-based representation and its

reduction, with methods for additional node and path optimizations. Section 7.5.9

provides the theory behind representing functions in GF(N) in terms of graph-based

characteristic and encoded characteristic functions. The proposed methods offer much

shorter evaluation times than existing approaches and Section 7.5.10 provides a tech-

nique for calculating the average path lengths for approximating the evaluation times for

the proposed representations. The proposed technique has been tested on many bench-

mark circuits. Finally, in Section 7.5.11, we present the experimental results.

7.5.3 Graph-based representation

Any function in GF(N) can be represented by means of an MDD-like data structure.

[81] However, unlike traditional MDDs, which are used to represent functions in

the MIN-MAX post-algebra, the algebra of finite fields needs to be considered.

Although an MDD type of data structure has been used for representing functions in

finite fields in [90], the underlying mathematical framework was considered for GF(4)

only, no generalization was proposed for higher-order fields and their extensions, and

no experimental results were reported, even though it was reported that generalization

can be made. Also, no technique seems to exist, which can further optimize an MDD-

like representation of functions in GF(N) by zero-terminal node suppression and

2 The term literal was chosen because in GF(2) this expression reduces to the traditional Boolean literal,

i.e., it represents a variable or its complement (inverse).

7 Decision diagrams for verification 217

normalization. It should be noted that the technique of [81] has used a type of edge

negation based on modular arithmetic. However, modular arithmetic in the form

considered in [81] does not naturally comply with extension fields. Since an MDD

has been defined in terms of functions in the MIN-MAX post-algebra, to distinguish

between these two algebras, the MDD-like representation of functions in finite fields

will be called multiple-output decision diagrams or MODDs. Hence, traditional

MDDs result in a post-algebraic MIN-MAX SOP form, while with the MODD a

canonic polynomial expression in GF(N) can be obtained. As an example, the

MODD of Fig. 7.27(a), which represents a four-valued function with values in {0,1,a,b}
(assuming a¼ 2 and b¼ 3), yields the following expression in the MIN-MAX post-

algebra:

f ðx1; x2; x3Þ ¼ bðxb1xb2 _ x
f1;ag
1 x

f1;a;bg
2 x

b
3 _ x

b
1x
f1;ag
2 x

b
3 _ x01x

f1;ag
2 x

b
3Þ

_ aðxb1xf1;ag2 xa3 _ x
f1;ag
1 x

f1;a;bg
2 xa3 _ x01x

f1;ag
2 xa3Þ

_ ðxb1xf1;ag2 x13 _ x
f1;ag
1 x

f1;a;bg
2 x13 _ x01x

f1;ag
2 x13Þ:

Here the symbol _ has been used to denote MAX. MIN is denoted by the product-

like notation. The expression xSi , where �{0,1,a,b}, is a literal defined in the

MIN-MAX postalgebra as xSi ¼MAX_VALUE, where MAX_VALUE¼ b in this case, if

xi 2 $; xSi ¼ 0 otherwise. In contrast xSi ¼ 1 if xi 2 s; xSi ¼ 0 otherwise in GF(N)

(Theorem 7.12). The following multi-variate polynomial results from the MODD

in GF(4) by application of Theorem 7.12 followed by expansion and rearranging

the terms:

f ðx1; x2; x3Þ ¼ bx31x
3
2 þ ax21x

3
2 þ x1x

3
2 þ ax31x

2
2 þ x21x

2
2 þ bx1x

2
2

þ x3x2 þ bx21x2 þ ax1x2 þ bx22x3 þ ax2x3 þ bx21x
3
2x3

þ ax1x
3
2x3 þ ax21x

2
2x3 þ x1x

2
2x3 þ x21x2x3 þ bx1x2x3:

definit ion 7.13 (decis ion diagram) A decision diagram in GF(N) is a rooted

directed acyclic graph with a set of nodes V containing two types of nodes: (A) A set of

N terminal nodes or leaves with out-degree zero, each one labeled with a d(s) and s 2
IN. Each terminal node u is associated with an attribute value(u) 2 GF(N). (b) A set of

non-terminal nodes, with out-degree of N. Each non-terminal node v is associated with

an attribute var(v)¼ xi and 1� i� n, and another attribute childj(v) 2 V, 8j 2 IN,

which represents each of the children (direct successors) of v.

The correspondence between a function in GF(N) and an MODD in GF(N) can be

defined as follows.

definit ion 7.14 (recurs ive expansion) An MODD in GF(N) rooted at v

denotes a function f v in GF(N) defined recursively as follows: (a) If v is a terminal

node, then f v¼ value(v), where value(v) 2 GF(N). (b) If v is a non-terminal node with

var(v)¼ xi, then f v is the function

218 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

f vðx1; x2; . . . ; xi; . . . ; xnÞ ¼
XN�1
e¼0

geðxiÞf childeðvÞ;

where ge(xi)¼ 1� [xi� d(e)]N� 1.

Each variable xi and 1� i� n in an MODD is associated with one or more nodes,

which appear at the same level in the MODD. More precisely, the nodes associated

with variable xi correspond to level (i� 1) and vice versa. Therefore level �i, cor-
responding to variable xiþ 1, can contain at most Ni nodes. Hence, the root of the

MODD contains exactly one node, and the level before the external nodes can contain,

at most, Nn� 2 nodes.

lemma 7.15 Theorem 7.12 results in a disjoint expression, i.e., the product terms in

Eq. 7.20 are mutually (pairwise) disjoint.

proof In Eq. 7.20 ge(xk)¼ 1 iff xk¼ d(e). For all other values of xk ge(xk)¼ 0. Let us

consider any two literals gr(xk) and gs(xk), such that r 6¼ s. Two cases may arise:

Case I xk 6¼ d(r) and xk 6¼ d(s). In this case both gr(xk) and gs(xk) will equate to 0.

Therefore, gr(xk) · gs(xk)¼ 0.

Case II Either xk¼ d(r) or xk¼ d(s), but not both. If xk¼ d(r), then gr(xk)¼ 1 and

gs(xk)¼ 0; otherwise, gr(xk)¼ 0 and gs(xk)¼ 1. Therefore, gr(xk) · gs(xk)¼ 0.

Hence the proof follows.

Example 7.2 Let us consider the MODD shown in Fig. 7.24(a). This MODD represents

the following function in GF(3): f(x1,x2)¼ g1(x1)þ g2(x1)g1(x2)þ a· g2(x1)g2(x2),

where gr(xs)¼ 1� [xsminus; d(r)]2.
Here both the levels 0 and 1, corresponding to the variables x1 and x2 respectively,

contain exactly one node each.

0

0

0 1

0

0 1

1,a 0,a

0 0

(a) (b)

1

1

a a

aa

aa

1

1

x1

x2

x1x1
x2

x1

1

Figure 7.24 Effect of variable ordering

7 Decision diagrams for verification 219

Lemma 7.15 yields the following.

theorem 7.16 Each path from the root node to a non-zero terminal node in an

MODD represents a disjoint product term in GF(N).

7.5.4 Reduction

We have the following from Theorem 7.12.

corollary 7 .17 In Eq. (20), if 8 i,j 2 IN and i 6¼ j f|xk¼ d(i)¼ f|xk¼ d(j), then f¼
¼ f|xk¼ d(0)¼ f|xk¼ d(1)¼ . . .¼ f|xk¼ d(N�1).
proof By perfect induction. Let h¼ f|xk¼ d(0)¼ f|xk¼ d(1)¼ . . .¼ f|xk¼ d(N�1).
Then Eq. 7.20 becomes f ¼ h

PN�1
e¼0 geðxkÞ.

For any a 2 GF(N) such that a 6¼ 0, aN�1¼ 1. Now in Theorem 7.12, if xk¼ d(r),
then gr(xk)¼ 1 for r 2 IN. Furthermore, gs(xk)¼ 0, 8s 2 IN, and s 6¼ r. Therefore,PN�1

e¼0 geðxkÞ becomes 1, which implies f¼ h. Hence the proof.

Based on the above, an MODD can be reduced as outlined in the following.

Reduction rules
There are two reduction rules:

� If all the N children of a node v point to the same node w, then delete v and connect

the incoming edge of v to w. This follows from Corollary 7.17.

� Share equivalent sub-graphs.

A DD in GF(N) is said to be ordered if the expansion in Eq. 7.20 is recursively carried

out in a certain linear variable order such that on all the paths throughout the graph the

variables also respect the same linear order.

A DD in GF(N) said to be reduced if: (a) There is no node u 2 V, such that 8i,j 2 IN

and i 6¼ j, childi(u)¼ childj(u). (b) There are no two distinct nodes u,v2 V which have the

same variable names and same children, i.e., var(u)¼ var(v) and childi(u)¼ childi(v)8i 2
IN implies u¼ v. We have the following from the definition of the MODD:

lemma 7.18 For any node v in a reduced DD in GF(N), the sub-graph rooted at v is

itself reduced.

Canonicity
A reduced, ordered MODD in GF(N) based on the expansion of Theorem 7.12 is

canonical up to isomorphism. This is stated in the following:

Example 7.3 Let us consider the MODD in Fig. 7.24(a) representing a function in

GF(3). The path a,1 represents the product term X¼ ga(x1)g1(x2). The path a,a rep-

resents the product term Y¼ ga(x1
)ga(x2). Clearly X and Y are disjoint, because X·

Y¼ 0 as g1(x2) · ga(x2)¼ 0.

220 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

theorem 7.19 For any n variable function f(x1,x2, . . ., xn) in GF(N) there is exactly

one reduced ordered DD in GF(N) with respect to a specific variable order, which is

minimal with respect to the reduction rules.

proof The proof is done by induction on the number of arguments n in f.

Base case: If n¼ 0, then the function yields a constant inGF(N). The resulting reduced,

ordered DD in GF(N) has exactly one node, namely the terminal node with a value in

GF(N). Therefore, any function in GF(N) with n ¼ 0 will have exactly one external

node with the same value in GF(N), and, hence, will be unique. Note that any

reduced, ordered DD in GF(N) with at least one non-terminal node would yield a

non-constant function.

Induction hypothesis Assume that the theorem holds for all functions with n � 1

arguments.

Induction step We show that the theorem holds for any function f in GF(N) with n

arguments. Without loss of generality, let us assume that the variables are ordered

as (x1, x2, . . ., xn). Considering the first variable x1,

f ðx1; x2; . . . ; xnÞ ¼
XN�1
e¼0

geðx1Þf jx1 ¼ dðeÞ; ð7:24Þ

where ge(x1)¼ 1� [x1� d(e)]N� 1.

Let f z represent the function realized by the sub-graph rooted by z. In a reduced,

ordered DD in GF(N) for f, each f |x1 ¼ d(i), 8i 2 IN, is represented by a sub-graph

rooted by ui. Since each f|x1 ¼ d(i) is a function of n � 1 variables, so each ui, 8i 2 IN,

represents a unique reduced, ordered DD in GF(N), by the induction hypothesis.

Two cases may arise:

Case 1 8i,j 2 IN and i 6¼ j, ui ¼ uj. It must be the case that, f ui ¼ f uj, which implies

that f |x1 ¼ d(i)¼ f ui ¼ f uj ¼ f |x1 ¼ d(j). Therefore, ui ¼ uj, 8i,j 2 IN and i 6¼ j, is a

reduced, ordered DD in GF(N) for f. This is also unique, since if it is not, then

owing to the ordering x1, it would appear in the root node v if it appears at all.

This would imply that f ¼ fv. Therefore, from the definition of a DD in GF(N),

we must have f |x1¼ d(k)¼ f v|x1¼ d(k)¼ f childk(v), 8k 2 IN. Since, by assumption,

f |x1 ¼ d(i) ¼ f ui ¼ f uj ¼ f |x1 ¼ d(j), 8i,j 2 IN and i 6¼ j, this would imply that all

the children of v would be the same. This is a contradiction, because it violates

the fact that the DD is reduced. Hence, the reduced, ordered DD in GF(N) must

be unique.

Case 2 ’S � IN, such that 8 k,l 2 S and k 6¼ l, uk 6¼ ul. Therefore, by the induction

hypothesis, f uk 6¼ f ul, 8 k,l 2 S and k 6¼ l. Let w be a node with var(w) ¼ x1, and

childq(w) ¼ uq, 8 q 2 IN.

Therefore,

f w ¼
XN�1
e¼0

geðx1Þf ue ;

where ge(x1) ¼ 1� [x1 � d(e)]N�1, and the DD in GF(N) rooted by w is reduced.

7 Decision diagrams for verification 221

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Algorithm ReduceDD(n : node) : node;
begin

if n is a terminal node, then
if IsIn(n,HT), then return LookUp(HT,n)
else begin

HT : = insert(n,HT); (*Initially HT = ∅*)
return n

end;
else begin

ni : = ReduceDD(childi (n)),∀i ∈IN ;
if nj = nk ,∀j,k ∈IN and j k, then return v0

else if IsIn(n,HT), then return LookUp(HT,n)
else begin

HT: = insert(n,HT);
return n

end
end

end;

Figure 7.25 A reduction algorithm for MODDs in GF(N)

By assumption f ut ¼ f |x1 ¼ d(t), 8t 2 IN. Therefore, from Eq. 7.21, f w ¼ f.

Suppose that this reduced, ordered DD in GF(N) is not unique, and that there exists

another reduced, ordered DD in GF(N) for f rooted by w0. Now, f w
0 ¼ f, and it must be

the case that f w
0
|x1 ¼ d(k) 6¼ f w

0
|x1 ¼ d(l), 8k,l 2 S, and k 6¼ l. If this is not the case, then

f |x1 ¼ d(i) ¼ f w
0
|x1 ¼ d(i)¼ f childi(w0) ¼ f childj(w0) ¼ f w

0
|x1 ¼ d(j) ¼ f |x1 ¼ d(j), 8i, j 2 IN

and i 6¼ j. This is a contradiction, since this would imply that all the children of w0

would be the same, thus violating the fact that the DD is reduced.

Now, owing to the ordering, var(w0) ¼ x1 ¼ var(w). In addition, since f w
0 ¼ f, it

follows that f childr(w0) ¼ f |x1 ¼ d(r) ¼ f ur ¼ f childr(w), 8r 2 IN. Therefore, by the

induction hypothesis, childr(w
0) ¼ ur ¼ childr(w), 8r 2 IN. Therefore, it follows that

w ¼ w0, by induction. Hence the proof for uniqueness follows by induction.

Minimality We now prove the minimality of a reduced, ordered DD GF(N) in terms

of the total number of nodes, with respect to the reduction rules. Suppose that the

reduced, ordered DD in GF(N) for f is not minimal with respect to the reduction rules.

Then we can find a smaller DD in GF(N) for f as follows. If the DD in GF(N) contains

a node v with childi(v) ¼ childj(v), 8i, j 2 IN and i 6¼ j, then eliminate v and for any

node w with childk(w) ¼ v (k 2 IN), make childk(w) ¼ child0(v).

If the DD in GF(N) contains distinct but isomorphic sub-graphs rooted by v and v0, then
eliminate v0 and for any node w such that childk(w) ¼ v0 (k 2 IN), make childk(w) ¼ v.

A reduction algorithm
A reduction algorithm for MODD appears in Fig. 7.25. In order for sharing of equivalent

sub-graphs, sub-graphs already present in the MODD are placed in a table. In lines 4, 6,

12, and 14 we have assumed that checking for membership and addition of an element to

such a table can be carried out in constant time, e.g., by using a hash table (HT). Hence, the

complexity of the algorithm is O(|G|) since each node can be made to be visited just once

during the reduction process, where G is an MODD of a function before the reduction.

222 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

However, an algorithm for the creation of MODDs from the functional description in

GF(N) will have a complexity O(Nn) in the worst case. The algorithm for the creation of

MODDs can be derived fromEq. 7.20. The efficiency of the algorithm can be improved in

general by noting that during the recursive expansion with respect to each variable, certain

variables may not appear for further recursive calls. Therefore, the recursion tree need not

be expanded in the direction of a variable that does not appear. The efficiency can be

further improved by incorporating Lemma 7.20 based on a dynamic programming-like

approach, as discussed in Section 7.5.6, which has been done for the experimental results

in Section 7.5.11. In this case, the network in GF(N) is traversed in the topological order

from the inputs to the outputs and Lemma 7.20 is applied iteratively.

Note that the size of a reduced MODD depends heavily on the variable ordering, as

in any other DD [1,81]. The depth of an MODD is O(n) in the worst case since each

variable appears once at each level in the worst case.

7.5.5 Variable reordering

The size, i.e., number of nodes, of an MODD depends on the order of the variables

during its construction. For example, the MODD in Figure 7.24(a) represents a function

in GF(3) under the variable order (x1,x2). Figure. 7.24(b) shows the same function in GF

(3), but under the variable order (x2,x1). Clearly, Fig. 7.24(a) contains fewer nodes than

Fig. 7.24(b). Given an n variable function in GF(N), the size of the solution space for

finding the best variable order is O(n!), which is impractical for large values of n. Hence,

a heuristic level-by-level swap-based algorithm is considered in this chapter.

The theory behind variable reordering in GF(N) is based on Theorem 7.12 as

follows. Without loss of generality, let us assume that variables x1 and x2 are to be

swapped. From Theorem 7.12 we have,

f ðx1; x2 . . . ; xnÞ ¼ g0ðx1Þðg0ðx2Þf 0;0 þ g1ðx2Þf 0;1 þ � � � þ gN�1ðx2Þf
�� ����

0;N�1Þ
þ g1ðx1Þðg0ðx2Þf 1;0 þ g1ðx2Þf

�� ��
1;1
þ � � � þ gN�1ðx2Þf 1;N�1

�� ��þ � � �
þ gN�1ðx1Þðg0ðx2Þf N�1;0 þ g1ðx2Þf

�� ��
N�1;1þ � � � þ gN�1ðx2Þf N�1;N�1

�� ��:
If x1 and x2 are swapped, then, again from Theorem 7.12, the following function fs

results:

f ðx1; x2 . . . ; xnÞ ¼ g0ðx2Þðg0ðx1Þf 0;0 þ g1ðx1Þf 1;0 þ � � � þ gN�1ðx1Þf
�� ����

N�1;0Þ
þ g1ðx2Þðg0ðx1Þf 1;0 þ g1ðx1Þf

�� ��
1;1
þ � � � þ gN�1ðx1Þf jN�1;1Þ þ � � �

þ gN�1ðx2Þðg0ðx1Þf 0;N�1 þ g1ðx1Þf
�� ��

1;N�1þ � � � þ gN�1ðx1Þf jN�1;N�1Þ;

where f � fs. It can be noted by comparing f and fs that in fs each literal ge(x1) (ge(x2)) is

swapped with ge(x2) (ge(x1)) for e 2 IN, and each co-factor f|r,s (f|s,r) is swapped with f|s,r
(f|r,s). Figure 7.26 shows the MODDs corresponding to f (top MODD) and fs (bottom

MODD). In the top MODD, variables x1 and x2 appear in levels 0 and 1 respectively,

while the co-factors appear as external nodes. This can be a more general case, e.g., the

two variables may appear in any arbitrary but consecutive levels in a larger MODD, e.g.,

variables xi and xiþ 1 and 2 < i � n. Clearly, to swap two variables all we have to do is:

(a) swap the contents of the nodes (i.e. the variables) in the two levels, and (b) swap each

7 Decision diagrams for verification 223

1

0

0

1
0

1
0

1

f 0,1

x1 x1x1

x1 x1 x1

x2

x2

0
1

0

0
1

1
0

1
N−1

N−1

N−1N−1

N−1

N−1

N−1
N−1

After Swapping

Before Swapping

fs

f

f 0,N−1

f 0,N−1

f 1,N−1 f N−1,0 f N−1,1 f N−1,N−1f 1,0 f 1,1f 0,0

f 1,0 f N−1,0 f N−1,1 f 1,N−1 f N−1,N−1f 0,1 f 1,1f 0,0

Figure 7.26 Theory behind reordering

co-factor f |r,s (f |s,r) with f |s,r (f |r,s). However, care must be exercised when a level has

one or more missing nodes from reduction. If this happens, the missing nodes may have

to be recreated in the swapped version. Also, some nodes may become redundant after

the swap, in which case the redundant nodes must not appear in the final result (refer to

Example 7.4). However, if a node at level�i (0 � i < n), which is to be swapped with

level�i þ 1, does not have any children at level�i þ 1, then it can be moved to level�i
þ 1 directly. By similar reasoning, if a node at level�i þ 1 does not have any parent

nodes at level�i, then that node can be moved up to level�i directly. Note that swapping
two levels i and i þ 1 does not affect the other levels, i.e., those in the range 0 � j < i

(if i > 1) and i þ 1 < k < n (if i < n�1).
The heuristic swap-based variable reordering algorithm presented in the following is

based on this (Theorem 7.12). A swap-based variable reordering algorithm exists for

BDD, [8] but it is not suitable for MODD reordering.

The algorithm uses an array of hash tables, where the array indexes correspond to the

levels in an MODD for direct access to each of the nodes within a level. It proceeds by

224 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

sifting a selected level (i.e., a variable) up or down by swapping it with a previous or

next level. The level with the largest number of nodes is considered first, and then the

one with the next largest node count, and so on, i.e., the array of hash tables is sorted in

descending order of the hash-table sizes. Once the level to be sifted first is considered it

is sifted up if it is closer to the root, or down if it is closer to the external nodes. If it lies

in the middle, then the decision to sift either up or down is made arbitrarily. The

algorithm stops after a complete sift-up-and-down operation. The complexity of the

algorithm can be argued to be O(n2). [8] Various heuristics have been considered to limit

the sift and swap operations for speed up the algorithm. For example, if a sift-up (down)

operation doubles the node count, no more sift-up (down) operations are carried out.

7.5.6 Operations in GF(N)

Algebraic operations
Algebraic operations, such as addition, multiplication, subtraction, and division, in

GF(N) can be carried out between two MODDs. Consider the following lemma, which

can be shown to hold by perfect induction.

lemma 7.20 Let f(x1, . . ., xi, . . ., xn) and h(x1, . . ., xi, . . ., xn) be two functions in

GF(N), and let � represent an algebraic operation in GF(N). Then

f � h ¼
XN�1
e¼0

geðxiÞðf jxi¼dðeÞ � hjxi¼dðeÞÞ; ð7:25Þ

where ge(xi) ¼ 1�[xi�d(e)]N�1.
Lemma 7.20 can be implemented recursively to perform algebraic operations between

MODDs. However, application of Lemma 7.20 directly will almost certainly be explosive

Example 7.4 Figure 7.27 shows the basic idea behind the swap algorithm. Fig. 7.27(a)

shows the original MODD for a function f(x1,x2,x3) in GF(4) generated by recursive

expansion of Theorem 7.12. Here, variables x1,x2 and x3 appear in levels 0, 1, and 2

respectively. Level 1 (i.e., variable x2) contains the largest number of nodes. Hence,

this is considered to be the starting point of the sift operation. Level 1 is equidistant

from level 0 and level 2. Hence, a sift-up is chosen arbitrarily. Swapping between level

0 and 1 results in Fig. 7.27(b). The nodes shown with broken lines are redundant owing

to the fact that all their children point to the same node (Corollary 7.17). Hence, these

nodes are not considered in the final result of Fig. 7.27(c). For example, considering

the paths with the edge x2 ¼ 1 in Fig. 7.27(b), all the paths with edge x2 ¼ 1 leading to

node x3 in Fig. 7.27(a) have the edges with variable x1 ¼ i for i ¼ 0,1,a,b. Therefore,
node x1 becomes redundant by Corollary 7.17, if node x1 appears after node x2 under

this circumstance. The same reasoning applies to the other two nodes with variable x1
shown with the broken lines.

It can be shown that further sift operations do not yield additional node reduction.

The original node count was five, and the new node count is three.

7 Decision diagrams for verification 225

0 1

0 1

x2x2x2

x1

(a)

(c)

(b)

x30b

β

ba

b

b

b

1 a

a

a

a

a

0 1

0

1

0

1

0

0

1

0

1

1

1 0b

b

b

a

a

a

a

x2

x3

x1x1x1x1

01

0

1

01

0

1

x2

x1

x3
b

b

b

a

a

a

a

b

Figure 7.27 Reordering example

226 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

in terms of the search space. Two things can be done to eliminate this. Firstly, while

the resulting DD in GF(N) is being constructed, it can be reduced at the same time.

Secondly, intermediate results can be stored in a cache (dynamic programming), thus

eliminating many operations, which will otherwise have to be repeated.

Let Gf and Gh be the reduced MODDs for f and h respectively. The complexity

of such an operation can be reasoned about by considering the case for BDDs. [1]

Assuming that insertion and deletion from the cache can be carried out in constant

times, owing to the dynamic programming nature the number of recursive calls can be

limited to O(|Gf|·|Gh|).

Composition
We have the following, which can be shown to hold by perfect induction.

lemma 7.21 Let f(x1, x2, . . ., xi, . . ., xn) and h(x1, x2, . . ., xn) be two functions in

GF(N). Then,

f jxi¼h ¼
XN�1
e¼0

1� ðh� dðeÞÞN�1
h i

f jxi ¼ dðeÞ: ð7:26Þ

An algorithm for composition of two functions in GF(N) can be formed based on

Lemma 7.21 in a manner similar to that for a BDD. [1] For this operation, we require a

restrict operation in GF(N), similar to that for a BDD, and the algebraic operations

presented previously. The restrict algorithm can be constructed for a reduced ordered

DD in GF(N) in a manner similar to that for a BDD, and is not shown here, for brevity.

Multiple-valued SAT
Given a function f(x1,x2, . . .,xn) in GF(N) and T � IN� {0}, the idea is to find an

assignment for xi, 8i 2 {1,2, . . .,n}, such that the value of f is {d(s)|s 2 T}. If such an

assignment exists, then f is said to be satisfiable (MV-SAT); otherwise it is unsatisfiable.

The MV-SAT problem finds applications in bounded model checking, simulation,

testing, and verification. An algorithm for any such satisfying assignment will have a

complexity O(|Gf|), where Gf is the reduced MODD for the function f in GF(N). An

algorithm for all such assignments would have an exponential complexity. However,

this process can be speeded up by considering characteristic and encoded characteristic

functions in GF(N) and their evaluation times as discussed in Sections 7.5.9 and

7.5.10. [92,93]

7.5.7 Multiple-output functions in GF(N)

For multiple-input multiple-output binary functions, the inputs or outputs can be arbi-

trarily grouped into m-bit chunks and each m-bit chunk can be represented in GF(2m)

with a single MODD. Further node reduction can be obtained by sharing the nodes

between each of the MODDs representing a chunk of bits. Such an MODD is called a

shared MODD or SMODD. The general idea is shown in Fig. 7.28. The SMODD is,

basically, a single diagram with multiple root nodes, which is also canonic. The can-

onicity of the SMODD can be argued in a similar manner as for a single MODD.

7 Decision diagrams for verification 227

Similar reasoning can be carried over to higher-order fields. Given any multiple-

output function in GF(R), where R is a power of a prime, the inputs and outputs can

be arbitrarily grouped into m R-valued chunks and each chunk can be represented in

GF(Rm) by means of an MODD. Then an SMODD will represent all the chunks

simultaneously.

The concept of levels is applicable to SMODDs across all the outputs simultaneously

by trivial reasoning. Therefore, the theory behind variable reordering, as discussed in

Section 7.5.5, applies equally well to SMODDs. In this case, when levels i and i þ 1 (0

� i < n) are swapped, all the nodes in levels i and i þ 1 across all the outputs have to be

considered simultaneously. Therefore, the swap-based sift-reordering algorithm dis-

cussed in Section 7.5.5 works equally well for SMODDs and MODDs.

7.5.8 Further node reduction

Further node reduction can be obtained by means of the following two rules, in

addition to the two rules presented in Section 7.5.3.

� Zero suppression Suppress the 0-valued terminal node, along with all the edges

pointing to it.

� Normalization Move the values of the non-zero terminal nodes as weights to the

edges, and ensure that (a) the weight of a specific valued edge (e.g., that with the

highest value) is always 1, and (b) assuming P represents the set of all the paths,

8z 2 P the GF(N) product of all the weights along z is equal to the value of the

function corresponding to z.

Note that the zero suppression rule is unlike the reduction rule for the zero-suppressed

BDD. [96] It can be argued that the above two rules will also maintain the canonicity

if the weights are assigned in a fixed order throughout the graph during normalization.

A reduced graph obtained using the above four reduction rules in GF(N) will be called

a zero-suppressed normalized MODD or a ZNMODD. The values of the terminal

nodes in an MODD are distributed as weights over each path in the ZNMODD. To

read a value of a function from a ZNMODD, first the path corresponding to the inputs

is determined. Then all the weights along that path are multiplied in GF(N), which

f0 f1 fm

Input variables

10 N−1

Figure 7.28 General structure of shared MODD

228 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

corresponds to the value of that function. In the rest of the chapter, the weight of the

highest-valued edge will be normalized to 1, unless otherwise stated.

7.5.9 Representing characteristic functions in GF(N)

The characteristic function (CF) defines a relation over inputs and outputs, such that

CF ¼ 1 if for a specific input combination the output is valid; otherwise CF ¼ 0.

Let us consider a multiple-output function defined over finite fields: f(x1,x2,. . .,xn) ¼
(y1,y2,. . .,ym). Let X ¼ (x1,x2,. . .,xn) and Y ¼ (y1,y2,. . .,ym). Then the (n þ m)-input

1-output CF is defined as

Example 7.5 Let us consider the function f(x1,x2) ¼ [0b1001a000000000] in GF(4),

where {0,1,a,b} are the elements of GF(4). Figure 7.29(a) shows this function realized

by means of a reduced MODD. Figs. 7.29(b)–(d) show the gradual conversion to

ZNMODD. Here, the lines with zero, one, two, and three cuts represent the values 0, 1,

a, and b respectively. Note how the weights are moved around and adjusted.

In Fig. 7.29(b) the terminal node with 0-value is suppressed along with all the edges

pointing to it. Also the non-zero values of the terminal nodes are moved as weights

associated with the terminal edges. Let us normalize with respect to the highest-valued

edge, i.e., make the weight of the highest valued edges, b in this case, equal to 1. The

a-edge of the left sub-graph rooted at x2 has a weight of a. Therefore, to make its

weight equal to 1, a is moved up one level, while the 1-edge is assigned a weight of b
to maintain the correctness of the underlying function. This results in the ZNMODD of

Fig. 7.29(c). Clearly, in Fig. 7.29(c) the two sub-graphs rooted at x2 are isomorphic,

which can be shared resulting in the ZNMODD of Fig. 7.29(d).

Now, let us find the value of f(1,1). This should yield a 1. From Fig. 7.29(d),

this corresponds to the path ab. The value of this function is, therefore, 1 · a · b ¼
a · b ¼ 1. Similarly, f(1,a) yields 1 · a · 1 ¼ a, and so on.

Note that the total number of paths in Fig. 7.29(a) is ten, while that in Fig. 7.29(d) is

only four.

x2 x2

x1

al
be

(b)

1

x2 x2

x1

be

al

be

(c)

1

x2

x1

(d)

be

al

b

a

1beal10

(a)

x2 x2

x1

Figure 7.29 Example of ZNMODD reduction

7 Decision diagrams for verification 229

� ðX ; YÞ ¼ 1 if f ðX Þ ¼ Y

0 otherwise:

�
An SMODD can be constructed from the above, which will constitute the n input

variables and m auxiliary variables (AV) corresponding to each of the outputs. Such an

SMODD will be called a CF-SMODD. Given an input combination of f, the nodes

corresponding to the AVs in the CF-SMODD decide the outputs of f. For each node

corresponding to an AV, except for only one edge, all the edges lead to the terminal

node 0. The edge leading to the non-zero terminal node determines the output of the

function. Examples of the CF can be found in [97].

The concept of CF can be extended by allowing output encoding, since there is only

one possible set of outputs for a given input combination. The resulting function can be

represented by a mapping g:Gn · Gl! G, where l ¼ blogN(m)e and will be called the

encoded CF or ECF. The ECF has l AVs. Each output is defined by one of the Nl input

combinations in an l AV function. As with the CF-SMODD, an ECF can be repre-

sented by means of an SMODD, which we shall call the ECF-SMODD. The following

example illustrates the key points.

7.5.10 Evaluation of functions

The evaluation of the SMODDs is required to find a satisfying assignment corres-

ponding to an input pattern. The path corresponding to the given input pattern is traced

from the root node to one of the terminal nodes, and the value of the terminal node

gives the satisfying assignment, if it exists. This is an O(n) operation, which can

become a bottleneck, especially when the number of inputs is large and there are many

input patterns to be evaluated. However, fast evaluation is highly desirable for

applications in simulation, testing, and safety checking [92,93].

Example 7.6 Let us consider a five-input three-output binary function defined as fol-

lows, with the inputs denoted by the variables (x0,x1,x2,x3,x4) and the outputs denoted

by (f0,f1,f2).

f0 ¼
X

mð15; 23; 26; 29; 30; 31Þ
f1 ¼

X
mð1; 2; 4; 8; 11; 13; 14; 16; 21; 22; 26; 31Þ

f2 ¼
X

mð3; 5; 6; 7; 8; 9; 14; 11; 12; 13; 17; 19; 20; 21; 22; 23; 24; 25; 26; 28Þ:
Let us assume that the function is encoded in GF(4) with inputs and outputs grouped as

X0 ¼ (x0,x1), X1 ¼ (x2,x3), X2 ¼ x4, F0 ¼ (f0,f1), F1 ¼ f2. The CF of this function is

u(X0,X1,X2,F0,F1). We have assumed that the binary combinations 10 ¼ a and 11 ¼ b.
The variables F0 and F1 can be encoded as A0 ¼ 0 for F0 and A0 ¼ a for F1, resulting in
the ECF g(X0,X1,X2,A0). Note that we can encode four functions using one AV. Here

we have only two functions. The resulting ECF-SMODD appears in Fig. 7.30(a).

230 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

In the case of a CF, the outputs are evaluated at the AVs. As we know, all the outgoing

edges except only one edge lead to the zero terminal node. The remaining edge indicates

the value of the function.With the ECF, once we reach the node corresponding to the AV,

the paths corresponding to each of the output encodings are traced to find the value.

For example, let us consider an input pattern (x0¼ 1, x1¼ 1, x2¼ 0, x3¼ 0, x4¼ 1)

for the ECF-SMODD of Fig. 7.30. The pattern is (X2¼ a, X1¼ 0, X0¼ b) if it is

encoded in GF(4) (Example 7.6). The path traced by the evaluation is shown in bold.

After reaching node A0 in the path, the path corresponding to the given encoding for

each output has to be taken into account. In this case, the encoding was defined as

A0¼ 0 for F0 and A0¼ a for F1. Hence, if we take the path corresponding to A0¼ 0

we end up at terminal node 1, thus giving us F0¼ 1. Similarly, F1¼ a. This results in
(f0 ¼ 0, f1 ¼ 1, f2 ¼1), which is the required evaluation.

Comparison of evaluation times
Functions can be represented and evaluated by means of SMODD, CF-SMODD, or

ECF-SMODD. This section provides a mechanism for comparing the evaluation times

for each of the cases. We have tested our theory on many benchmarks, and the results

appear in Section 7.5.11. A good estimation of evaluation times can be obtained by

computing the average path length (APL), which we define below.

1.. Node-traversing probability (P(Vi)) The probability of traversing the node Vi when

an MODD is traversed from the root node to a terminal node.

2.. Edge-traversing probability (P(ej,vi)) The probability of traversing the edge

j ¼ 0,1, . . ., pm�1 from the node Vi, i.e. Pðej;viÞ ¼ PðViÞ
pm

, for nodes corresponding to

the input variables.

3.. The edge-traversing probability for edges emanating from a node corresponding to

an AV is P(ej,vi) ¼ P(Vi) since all the edges have to be traversed for determining all

the outputs of the function.

x1

x0 x0 x0

A0 A0 A0 A0A0

1l0l al bl

x1

x2

x0

x1

x0 x0 x0

A0 A0 A0 A0A0

1l0l al bl

x1

x2

x0

0,1
a,b

b 0

1,a 1,a b0

0
1,a

b 0

1,a

b 0 b 0

1,a
b

1,a

1,a,b
0 0,1,b a

1,b

0 a

1,a,b

0

1,a,b

0

0.5 0.5

0.5b
0.5b

0.125

0.25

0.125 0

0.25
0.125

1b

0.375b0.375b 0.125b0.125b

0.1875

0.625 0.03125

0.03125

0.09375

0.1875

0.09375

0.09375

0.09375
0.625

0.09375

0.03125

0.0625b
0.3125b

0.625b0.625b0.3125b

(b)(a)

Figure 7.30 (a) ECF-SMODD, (b) computation of APL

7 Decision diagrams for verification 231

4.. The node-traversing probability is equal to the sum of all the edge-traversing

probabilities incident on it.

5.. Average path length (APL) For an SMODD, the APL is equal to the sum of the

node-traversing probabilities of the non-terminal nodes. For a CF-SMODD and

ECF-SMODD, the APL is equal to the sum of the node traversing probabilities of

those nodes above the AVs, and the APLs for each sub-graph rooted at the AVs.

6.. The average path length of a shared MODD is the sum of the average path lengths

of the individual MODDs.

An algorithm for computing the APL for ECF-SMODD appears in Fig. 7.31. Algo-

rithms for computing the APLs for SMODD and CF-SMODD can be formulated from

this algorithm, which we have implemented in Section 7.5.11, but the details have

been left out for brevity.

For example the node- and edge-traversing probabilities of the ECF-SMODD in

Fig. 7.30(a) appear in Fig. 7.30(b). The first three levels in the tree correspond to the

input variables. Hence, the probabilities are computed using definitions 1, 2, and 4.

However, since all the outputs have to be considered, the APL for each sub-tree is

separately computed at the auxiliary nodes. The probabilities at the auxiliary

nodes correspond to the sums of the APLs of each sub-tree of the outputs. The APL is

1þ ð0:5þ 0:5Þ þ ð0:125þ 0:375þ 0:375þ 0:125Þ þ ð0:3125þ 0:625þ 0:625þ
0:3125þ 0:0625Þ ¼ 4:9375:

Figure 7.31 Algorithm for calculation of APL in ECF-SMODD

232 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

7.5.11 Experimental results

The techniques in this chapter have been applied to a number of benchmarks, including

integer-multiplier circuits. The program was developed in Cþþ (Gnu Cþþ 3.2.2) and

tested on a Pentium-4 machine with 256MB RAM, running RedHat Linux 9 (kernel 2.4).

Performance
Table 7.6 shows results from the standard IWLS’93 and MCNC benchmark sets.

Columns “I/P” and “O/P” represent the total number of inputs and outputs, column

“SBDD” shows the number of nodes obtained using the shared ROBDD representa-

tion, while column GF(2r) represents the number of nodes obtained based on the

proposed DD for a field size of 2r. In column GF(2r), r adjacent bits are grouped

together for each variable in GF(2r). The nodes of the proposed DD are also shared

across the outputs. The same notation is used for the other tables.

The columns with the headings “W/o reord” and “Reord” present the node count

without and with variable reordering. A first-come, first-served variable ordering is

considered for the “W/o reord” columns. For the reordering, the variable-by-variable

swap-based sifting algorithm of Section 7.5.5 has been employed. Significant node

reduction is apparent for many circuits, e.g., misex3c. However, in some cases, the

node count has increased, owing to the lack of sharing. Note that successive swap

operation in a particular direction (up or down) is only carried out if a swap operation

does not increase the size of the MODD by two or more. This restriction can be relaxed

(e.g., by considering the maximum allowable size increase to be 1.5 times) to obtain

better results sometimes. However, this also increases the execution time, as more

swaps are carried out. Variable reordering algorithms exist for MDDs. [98] However,

they cannot be directly compared with the presented technique because the presented

technique has been applied to varying input and output field sizes, while [98] seems to

have ignored this aspect.

Apart from the benchmark 9sym, all the circuits have been tested up to GF(16).

Benchmark 9sym is a single-output circuit and, hence, its testing in higher-order fields

seemed to be unjustified. In Table 7.6, the input and output field sizes are kept the

same. Clearly, as we move to a higher-order field the number of nodes is reduced for

the majority of the cases. Also, as we move to a higher-order field, node reduction

owing to reordering seems to be more effective.

For the rest of the tables, apart from Table 7.9, reordering has not been done, to

illustrate the other properties of the MODD more effectively, e.g., the effect on the

node count when the input and output field sizes are varied, and when the MODDs are

ordered based on the evaluation times.

Table 7.7 represents the results for the same set of benchmarks under the same

variable ordering but the input field size is varied while the output field size is kept at

constant 2. Clearly, the number of nodes has reduced further for many benchmarks as

compared with Table 7.6. The reason seems to be improved sharing of nodes between

the different outputs.

7 Decision diagrams for verification 233

Ta
bl
e
7.
6
S
am

e
fie
ld
si
ze

fo
r
in
pu
t
an
d
ou
tp
ut

G
F
(2

2
)

G
F
(2

3
)

G
F
(2

4
)

B
en
ch
m
ar
k

I/
P

O
/P

S
B
D
D

W
/o

re
o
rd

R
eo
rd

W
/o

re
o
rd

R
eo
rd

W
/o

re
o
rd

R
eo
rd

5
·
p
l

7
1
0

8
8

4
8

4
2

4
3

3
5

2
7

1
6

9
sy
m

9
1

3
3

1
7

1
7

1
0

1
0

–
–

ap
ex

4
9

1
9

1
0
2
1

5
3
6

5
1
5

3
2
4

3
2
4

2
4
1

1
3
6

b
l2

1
5

9
9
1

7
8

4
7

4
8

4
5

6
1

5
1

b
w

5
2
8

1
1
8

7
6

7
2

5
9

4
7

5
9

2
1

cl
ip

9
5

2
5
4

1
3
6

8
9

8
8

4
1

4
9

3
1

m
is
ex

3
c

1
4

1
4

8
4
4

5
0
5

2
7
9

3
9
6

1
8
1

5
8
6

1
5
6

d
u
k
e2

2
2

2
9

3
6
6

7
9
3

5
0
7

7
8
3

4
4
5

6
0
1

4
5
3

ta
b
le
5

1
7

1
5

6
8
5

7
5
1

6
7
8

6
3
6

6
3
6

4
9
9

3
4
8

e6
4

6
5

6
5

1
9
4

9
4
3

5
6
9

8
5
8

6
0
1

6
2
4

4
9
5

co
rd
ic

2
3

2
7
5

2
9

2
8

2
1

2
0

1
5

1
5

m
is
ex

2
2
5

1
8

1
0
0

9
3

8
1

5
0

4
2

4
5

4
1

p
d
c

1
6

4
0

5
9
6

4
3
3

3
1
0

3
8
4

3
8
4

2
1
2

2
1
2

sp
la

1
6

4
6

6
2
8

3
5
2

3
3
9

2
6
1

2
6
1

1
5
5

1
5
5

ex
lO
lO

1
0

1
0

1
4
0
2

6
6
2

6
5
4

3
4
6

3
4
4

6
7
0

2
0
7

Table 7.8 shows the result with input field size kept at constant 2 and the output field

size varied, again under the same variable ordering. In general, the number of nodes

seems to have increased, owing to lack of sharing between the different outputs. In

other words, higher output field size seems to hamper sharing of nodes between

different outputs, even though the number of nodes in each output may reduce. This

observation seems to be consistent with the conclusion drawn from Table 7.7.

Table 7.9 shows results for n*n integer multipliers for n¼ 2,3,4,5,6. The input and

output field sizes are kept the same in this table. Clearly a substantial reduction in the

Table 7.7 I/P field varying with constant output field size of 2

Benchmark I/P O/P SBDD GF(22) GF(23) GF(24)

5xpl 7 10 88 57 51 43

9sym 9 1 33 18 16 22

apex4 9 19 1021 509 346 240

bl2 15 9 91 69 56 60

bw 5 28 118 71 47 42

clip 9 5 254 149 106 69

misex3c 14 14 844 450 300 246

Table 7.8 O/P field size varying with constant input field size of 2

Benchmark I/P O/P SBDD GF(22) GF(23) GF(24)

5xpl 7 10 88 87 77 87

9sym 9 1 33 – – –

apex4 9 19 1021 1031 989 983

bl2 15 9 91 102 84 126

bw 5 28 118 154 148 140

clip 9 5 254 227 211 195

misex3c 14 14 844 903 978 1333

Table 7.9 Same field size for both input and output

GF(22) GF(23) GF(24)

Multiplier SBDD W/o reord Reord W/o reord Reord W/o reord Reord

2*2 14 7 7 6 5 1 –

3*3 51 28 28 15 15 16 9

4*4 157 98 87 84 60 31 31

5*5 471 254 249 183 183 272 121

6*6 1348 795 731 736 624 431 428

7 Decision diagrams for verification 235

number of nodes is noticeable for the majority of the benchmarks. In some cases,

reordering has produced further improvement, e.g., the 4 * 4 and 6 * 6 multipliers in GF

(8). Although we have not explicitly shown the results in GF(25) and GF(26), MODD

reported only 63 nodes as opposed to the 471 nodes for SBDD for the 5 * 5 multiplier

in GF(25). Also, for the 6 * 6 multiplier, the number of nodes reported by the MODD in

GF(26) is only 127 as opposed to 1348 for the SBDD, i.e., more than an order of

magnitude reduction. Also, this table suggests that the node reduction seems to

improve as we consider larger and more practical integer multipliers.

Table 7.10 shows the results with varying input field size and a constant output field

size of 2. Again, considerable improvement has been observed for some benchmarks,

owing to the improved sharing of the nodes across the outputs.

Table 7.11 shows the results for the multipliers with fixed input field size and

varying output field size. As anticipated, the number of nodes has increased owing to

the possible lack of sharing.

As we move to a higher-order field from a lower-order field, the number of nodes

usually decreases. This decrease is also associated with a smaller number of levels and

shorter path lengths than conventional BDDs and their variants.

Evaluation time
Table 7.12 shows the results for the APLs compared with those for SBDDs. For the

majority of cases, the APLs are significantly lower than those in the SBDDs. Also, as

we go from GF(4) to GF(8), the APLs reduce further. On average, the APLs are three

times less in GF(4) and about six times less in GF(8) as compared with the SBDDs.

That is, the evaluation time essentially halves as we go from GF(4) to GF(8). Note that

Table 7.10 I/P field varying with constant output field size of 2

Multiplier SBDD GF(22) GF(23) GF(24)

2*2 14 9 10 4

3*3 51 33 24 28

4*4 157 78 64 55

5*5 471 263 190 127

6*6 1348 695 389 465

Table 7.11 O/P field size varying with constant input field size of 2

Multiplier SBDD GF(22) GF(23) GF(24)

2*2 14 15 11 12

3*3 51 50 65 46

4*4 157 178 194 260

5*5 471 490 553 755

6*6 1348 1587 1917 1890

236 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

Ta
bl
e
7.
12

A
PL

co
m
pa
re
d
w
ith

S
B
D
D

S
M
O
D
D

B
D
D

G
F
(4
)

G
F
(8
)

B
en
ch
m
ar
k

I/
P

O
/P

N
o
d
es

A
P
L

N
o
d
es

A
P
L

%
Im

p
.

N
o
d
es

A
P
L

%
Im

p
.

d
u
k
e2

2
2

2
9

3
6
6

1
5
0
.3

7
9
3

8
0
.6
1

1
8
6

7
8
3

4
8
.8
7

3
0
7

co
rd
ic

2
3

2
–

–
2
9

4
.4
1

–
2
1

3
.2
9

–

m
is
ex
2

2
5

1
8

1
0
0

7
5
.6

9
3

1
6
.5
5

4
5
6

5
0

8
.6
1

8
7
7

v
g
2

2
5

8
9
0

4
8
.9

8
9
2

2
4
.1
5

2
0
2

8
6
7

1
7
.2

2
8
4

ta
b
le
5

1
7

1
5

6
8
5

1
1
4
.1

7
5
1

3
2
.1
2

3
5
5

6
3
5

1
6
.0
2

7
1
2

p
d
c

1
6

4
0

5
9
6

2
1
5
.4

4
3
3

5
2
.5
8

4
0
9

3
8
4

3
3
.1
3

6
5
0

e6
4

6
5

6
5

1
9
4

2
5
6

9
4
3

6
4
.9
6

3
9
4

8
5
8

5
6
.2
7

4
5
4

sp
la

1
6

4
6

6
2
8

2
2
6
.6

3
5
2

4
7
.3
3

4
7
8

2
6
1

3
0
.1
8

7
5
0

ex
lO
lO

1
0

1
0

–
–

6
6
2

2
4
.6
9

–
3
4
6

1
4
.7
4

–

ex
5

8
6
3

–
–

1
9
4

6
6
.7
2

–
1
4
4

3
6
.0
5

–

b
l2

1
5

9
–

–
7
8

1
5
.3
4

–
4
8

8
.3
1

–

x
6
d
n

3
9

5
2
3
5

4
1
.2

2
1
2

7
.2
6

5
6
7

1
6
5

4
.0
9

1
0
0

ex
ep

3
0

6
3

6
7
5

2
5
5
.7

4
6
2

5
3
.8
6

4
7
4

4
0
9

3
3
.4
4

7
6
4

x
ld
n

2
7

6
1
3
9

4
1

1
5
1

1
0
.3

3
9
7

1
2
0

6
.5
6

6
2
4

x
9
d
n

2
7

7
1
3
9

5
0
.4

1
6
0

1
2
.6

3
9
9

1
7
4

1
0
.6
6

4
7
2

m
ar
k
l

2
0

3
1

1
1
9

1
1
5
.7

1
4
9

3
6
.9
5

3
1
3

1
5
0

2
6
.6
3

4
3
4

m
ai
n
p
la

2
7

5
4

1
8
5
7

2
7
7
.5

2
4
1
4

1
3
8
.2
6

2
0
0

1
6
6
7

7
0
.7
4

3
9
2

ri
sc

8
3
1

–
–

5
8

2
3
.7
2

–
3
2

1
3
.3
3

–

x
p
ar
c

4
1

7
3

1
9
4
7

3
0
4
.8

1
9
2
5

9
4
.4
6

3
2
2

1
5
5
0

5
8
.2
2

5
2
3

ap
ex
4

9
1
9

–
–

5
3
6

3
6
.5
4

–
3
2
4

1
6
.7
3

–

A
ve
ra
g
e

2
3
.5

2
9
.7

5
5
5

1
5
5
.2
3

5
6
4
.3
5

4
2
.1
7

3
6
8

4
4
9
.4
5

2
5
.6
5

5
2
4
.5

Ta
bl
e
7.
13

A
PL

w
ith

ra
nd
om

pa
tt
er
n
si
m
ul
at
io
n
in
G
F(
4)

S
M
O
D
D

C
F
-S
M
O
D
D

E
C
F
-S
M
O
D
D

B
en
ch
m
ar
k
(I
P
/O
P
)
N
o
d
es

A
P
L

R
an
d
o
m

si
m
u
la
ti
o
n

N
o
d
es

A
P
L

R
an
d
o
m

si
m
u
la
ti
o
n

N
o
d
es

A
P
L

R
an
d
o
m

si
m
u
la
ti
o
n

d
u
k
e2

(2
2
/2
9
)

7
9
3

8
0
.6
1

4
0
2
3
6
0
5

4
4
5

8
.1

4
0
5
1
2
6
.5

4
7
0

2
8
.0
3

4
3
9
2
0
6
.5

co
rd
ic

(2
3
/2
)

2
9

4
.4
1

2
2
0
7
7
1
.5

3
0

5
.1
4

2
5
6
7
7
5

2
8

4
.1
7

8
3
4
6
6
.8

m
is
ex
2
(2
5
/1
8
)

9
3

1
6
.5
5

8
2
5
1
5
5

1
3
1

6
.6
5

3
1
7
4
1
0

8
3

4
.2
2

8
4
3
5
0
.6

ta
b
le
5
(1
7
/1
5
)

7
5
1

3
2
.1
2

1
6
0
5
1
0
5

5
5
5

6
.5
1

3
2
6
3
8
6
.5

6
0
4

1
4
.6
7

2
0
1
9
2
0

p
d
c
(1
6
/4
0
)

4
3
3

5
2
.5
8

2
6
3
0
2
2
5

1
3
5
6

9
.2
8

4
6
4
1
8
2

4
1
8

6
3
.5
4

1
2
0
0
0
0
0

e6
4
(6
5
/6
5
)

9
4
3

6
4
.9
6

3
2
5
1
3
6
0

6
6

1
.3
3

6
6
6
4
3
.5

4
4
2

1
3
.2
4

2
2
6
7
0
0

sp
la

(1
6
/4
6
)

3
5
2

4
7
.3
3

2
3
8
4
4
2
0

1
4
5
4

7
.2
6

3
5
6
0
0
0

3
4
5

4
7
.9
3

9
6
1
3
9
5

ex
lO
lO

(1
0
/1
0
)

6
6
2

2
4
.6
9

1
2
3
4
4
2
0

5
5
5

7
.2
9

3
4
3
2
2
5

6
5
5

3
6
.5
5

6
0
0
0
0
0

ex
5
(8
/6
3
)

1
9
2

6
6
.7
2

3
3
3
7
7
1
5

9
8
0

2
0
.7
7

1
0
8
3
5
8
0

2
0
5

1
1
0
.7
2

2
2
0
0
0
0
0

b
l2

(1
5
/9
)

7
8

1
5
.3
4

7
6
7
2
3
0

1
5
7

7
.1
1

2
6
5
6
4
6
.5

6
2

2
1
.6

4
0
0
0
0
0

x
6
d
n
(3
9
/5
)

2
1
2

7
.2
6

3
6
3
7
9
6
.5

2
0
1

5
.4

2
6
5
8
6
1
.5

1
4
4

3
.0
8

5
0
1
2
.8

ex
ep

(3
0
/6
3
)

4
6
2

5
3
.8
6

2
6
9
5
0
7
0

1
4
5
9

1
0
.0
5

4
9
3
5
3
1
.5

4
2
3

2
3
.7
5

5
0
9
2
2
0

x
ld
n
(2
7
/6
)

1
5
1

1
0
.3

5
1
5
4
9
5

3
5
8

6
.7
3

3
3
2
3
9
5

1
2
7

5
.9
2

2
.7
1

x
9
d
n
(2
7
/7
)

1
6
0

1
2
.6

6
2
8
6
9
5

4
5
6

7
.9
5

3
9
7
4
8
3

1
2
9

6
.4
7

1
2
9
3
3
3
.4

m
ar
k
l
(2
0
/3
1
)

1
4
9

3
6
.9
5

1
8
5
0
3
0
0

2
8
1

8
.6
9

4
2
6
8
2
8
.5

1
1
6

1
8
.4

3
2
3
7
1
3
.5

m
ai
n
p
la

(2
7
/5
4
)

2
4
1
4

1
3
8
.2
6

6
9
1
4
4
0
0

2
1
5
3

9
.5
6

4
6
8
0
3
3
.5

8
1
1

4
1
.5
1

1
0
8
3
4
0
5

ri
sc

(8
/3
1
)

5
8

2
3
.7
2

1
1
8
5
4
1
0

6
4

4
.9
7

2
4
8
5
3
5

5
5

1
4
.9
1

2
1
5
9
5
3
.5

x
p
ar
c
(4
1
/7
3
)

1
9
2
5

9
4
.4
5

4
7
3
2
9
1
5

2
5
3
7

5
.3
1

2
6
0
8
4
0

9
8
3

1
6
.6
3

3
3
7
3
2
6
.5

ap
ex
4
(9
/1
9
)

5
3
6

3
6
.5
4

1
8
2
5
9
7
0

1
0
7
8

1
0
.8
1

5
4
0
4
5
5

5
0
5

1
7
.7

2
0
4
0
9
3
.5

Ta
bl
e
7.
14

A
PL

w
ith

ra
nd
om

pa
tt
er
n
si
m
ul
at
io
n
in
G
F(
8)

S
M
O
D
D

C
F
-S
M
O
D
D

E
C
F
-S
M
O
D
D

B
en
ch
m
ar
k

(I
P
/O
P
)

N
o
d
es

A
P
L

R
an
d
o
m

si
m
u
la
ti
o
n

N
o
d
es

A
P
L

R
an
d
o
m

si
m
u
la
ti
o
n

N
o
d
es

A
P
L

R
an
d
o
m

si
m
u
la
ti
o
n

d
u
k
e2

(2
2
/2
9
)

7
8
3

4
8
.8
7

2
4
4
4
8
0
0

3
7
3

6
.5
3

3
2
6
4
5
6
.5

4
1
2

2
9
.1
5

6
3
7
5
7
5

co
rd
ic

(2
3
/2
)

2
1

3
.2
9

1
6
5
2
1
5

2
2

3
.6
8

1
8
4
2
8
6
.5

2
0

2
.7

9
0
1
4
5

m
is
ex
2
(2
5
/

1
8
)

5
0

8
.6
1

4
2
9
5
9
3
.5

8
8

4
.2

2
0
4
3
8
5

4
3

1
6
.6
3

4
0
0
0
0
0

ta
b
le
5
(1
7
/1
5
)

6
3
5

1
6
.0
2

8
0
1
9
5
0

3
7
9

4
.4
8

2
2
4
1
0
4
.5

2
4
7

4
.2
8

2
0
7
8
6
6
.5

p
d
c
(1
6
/4
0
)

3
8
4

3
3
.1
3

1
6
5
6
3
6
0

1
0
9
6

5
.6
2

2
8
1
1
9
0

3
8
7

5
7
.1
3

1
2
0
0
0
0
0

e6
4
(6
5
/6
5
)

8
5
8

5
6
.2
7

2
8
1
3
1
8
0

4
4

1
.1
4

5
7
1
2
1
.5

4
4
3

3
.0
1

7
5
3
2
6
.2
5

sp
la

(1
6
/4
6
)

2
6
1

3
0
.1
8

1
5
0
9
9
5
0

1
1
3
2

3
.7
7

1
8
8
6
4
9

2
5
9

3
1
.6

8
4
8
1
4
5

ex
lO
lO

(1
0
/

1
0
)

3
4
6

1
4
.7
4

7
3
7
0
9
5

3
3
7

5
.8

2
7
4
0
6
0

3
4
5

2
2
.7
3

4
0
0
0
0
0

ex
5
(8
/6
3
)

1
4
4

3
6
.0
5

1
8
0
2
6
0
5

6
5
2

1
3
.2
8

6
6
3
8
6
5

1
4
8

6
8
.0
5

1
6
0
0
0
0
0

b
l2
(1
5
/9
)

4
8

8
.3
1

4
1
5
0
7
5

1
2
0

5
.4
3

2
6
5
6
4
6
.5

4
6

1
6
.0
5

4
0
0
0
0
0

x
6
d
n
(3
9
/5
)

1
6
5

4
.0
9

2
0
6
1
4
0

2
3
2

2
.7
1

1
3
4
7
2
5

1
5
1

2
.4
5

8
1
7
6
4
.3
3

ex
ep

(3
0
/6
3
)

4
0
9

3
3
.4
4

1
6
7
4
2
6
5

1
0
7
3

6
.5
4

3
2
7
2
4
6
.5

3
6
8

1
5
7
.1
8

4
5
3
6
1
4
6
.5

x
ld
n
(2
7
/6
)

1
2
0

6
.5
6

3
2
7
9
8
3
.5

3
0
2

5
.2
3

2
5
9
1
2
0

1
2
1

1
4
.5
6

4
0
0
0
0
0

x
9
d
n
(2
7
/7
)

1
7
4

1
0
.6
6

5
3
2
7
8
5

2
1
6

5
.2
7

2
6
3
2
9
5
.5

1
2
9

5
.1
6

1
2
9
1
0
3
.7
5

m
ar
k
l
(2
0
/3
1
)

1
5
0

2
6
.6
3

1
8
5
0
3
0
0

1
9
6

6
.5
3

3
3
2
6
6
8
.5

1
1
6

1
3
9
.8
7

8
0
0
4
0
0

m
ai
n
p
la

(2
7
/

5
4
)

1
6
6
7

7
0
.7
4

3
5
4
5
1
6
5

1
5
9
3

6
.6
9

3
2
9
9
1
5

5
3
7

9
1
.7
1

2
7
6
4
6
4
0

ri
sc

(8
/3
1
)

3
2

1
3
.3
3

6
6
6
3
3
0

4
4

3
.1

1
5
4
9
8
0
.5

3
5

2
7
.1
6

8
0
0
0
0
0

x
p
ar
c
(4
1
/7
3
)

1
5
5
0

5
8
.2
2

2
9
1
4
6
7
0

1
8
2
0

3
.8

1
8
8
0
2
5

7
3
1

3
.2
2

5
9
7
3
3
.2
5

ap
ex
4
(9
/1
9
)

3
2
4

1
6
.7
3

8
3
7
5
3
0

7
2
2

7
.4
6

3
7
3
0
4
7

3
2
5

2
4
.7
3

4
0
0
0
0
0

the number of nodes in the SMODDs is almost identical on average to that in the

SBDDs. This is because the SMODDs have been ordered based on the APLs, which

does not necessarily guarantee reduced node count. The dashes (‘�’) in the table

indicate that results for those circuits (i.e., ex1010, ex5, b12, risc, apex4) are not

available for the BDDs.

Tables 7.13 and 7.14 present a comparison of the APLs for SMODD, CF-SMODD,

and ECF-SMODD for the benchmark circuits modeled in GF(4) and GF(8), respect-

ively. These tables also show the results for 50 000 random vectors. The results for

random pattern simulation constitute the net total path lengths for the 50 000 vectors.

The spatial complexity is reflected by the node count and the speed of evaluation by

the APLs and random pattern simulations. These results reflect a speed-up over current

methods for simulation such as in [94]. The trade-off between these two factors across

the representations is clearly evident from the results shown in these tables. In general,

it can be seen that the CF-SMODD clearly wins out in terms of speed, whereas the

ECF-SMODD tries to optimize between the speed and node count.

7.5.12 Conclusions

This chapter focused on a framework for representing multiple-output binary and

word-level circuits based on canonic DDs in GF(N). We showed that such reduced

ordered DDs are canonical and minimal with respect to a fixed variable ordering.

Techniques for further node and path optimization have also been presented. We also

presented the theory for representing functions in GF(N) in terms of their CF and ECF

under the same framework.

The proposed DDs have been tested on many benchmarks with varying input and

output field sizes. The results suggest superior performance in terms of node com-

pression as well as reduced APLs, which implies improved evaluation times. This has

also been confirmed by a simulation of 50 000 randomly selected vectors. Overall, the

results seem to suggest that the proposed framework can serve as an effective medium

for verification as well as for simulation, testing, and safety checking.

7.6 Acknowledgements

The work on TEDs described in this chapter has been supported by a grant from the

National Science Foundation under award No. CCR-0204146, INT-0233206, and

CCR-0702506. The work on FFDDs has been funded, in part, by the Engineering and

Physical Science Research Council, UK Grant No. GR/S40855/01.

7.7 References
[1] R. E. Bryant (1986). Graph-based algorithms for Boolean function manipulation. IEEE

Transactions Computers, C–35(8):691–677.

[2] R. E. Bryant and Y.A. Chen (1995). Verification of arithmetic functions with binary

moment diagrams. In DAC–95.

240 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

[3] M. Ciesielski, P. Kalla, and S. Askar (2006). Taylor expansion diagrams: a canonical

representation for verification of dataflow designs. IEEE Transactions on Computers,

55(9):1188–1201.

[4] A.M. Jabir, D. K. Pradhan, A. K. Singh, and T. L. Rajaprabhu (2007). A technique for

representing multiple output binary functions with applications to verification and simula-

tion. IEEE Transactions on Computers, 56(8):1133–1145.

[5] G. DeMicheli (1994). Synthesis and Optimization of Digital Circuits. McGraw-Hill.

[6] R. Anderson (1997). An Introduction to Binary Decision Diagrams, www.itu.dk/people/hra/

notes-index.html.

[7] G. Hachtel and F. Somenzi (1998). Logic Synthesis and Verification Algorithms. Kluwer

Academic.

[8] R. Rudell (1993). Dynamic variable ordering for ordered binary decision diagrams. In

IEEE International Conference on Computer-Aided Design, pp. 47–42.

[9] O. Coudert and J. C. Madre (1990). A unified framework for the formal verification of

sequential circuits. In Proceedings of ICCAD, pp. 126–129.

[10] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli (1990).

Implicit state enumeration of finite state machines using BDDs. In Proceedings of ICCAD,

pp. 130–133.

[11] E. A. Emerson (1990). Temporal and modal logic. In J. van Leeuwen, ed., Formal Models

and Semantics, Handbook of Theoretical Computer Science, vol. B, pp. 996–1072. Else-

vier Science.

[12] K. L. McMillan (1993). Symbolic Model Checking. Kluwer Academic.

[13] R. E. Bryant and Y-A. Chen (1995). Verification of arithmetic functions with binary

moment diagrams. In Proceedings of the Design Automation Conference, pp. 535–541.

[14] K.S. Brace, R. Rudell, and R. E. Bryant (1990). Efficient implementation of the BDD

package. In Proceedings of the Design Automation Conference, pp. 40–45.

[15] F. Somenzi (1998). CUDD: CU Decision Diagram Package. Release 2.3.0, University of

Colorado at Boulder, USA. http://vlsi.colorado.edu/~fabio/CUDD/.

[16] R. K. Brayton, G.D. Hachtel, A. Sangiovanni-Vencentelli, et al. (1996). Vis: a system for

verification and synthesis. In Proceedings of the Computer Aided Verification Conference,

pp. 428–432.

[17] U. Kebschull, E. Schubert, and W. Rosentiel (1992). Multilevel logic synthesis based on

functional decision diagrams. In EDAC, pp. 43–47.

[18] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A. Perkowski (1994). Efficient

representation and manipulation of switching functions based on order kronecker function

decision diagrams. In Proceedings of the Design Automation Conference, pp. 415–419.

[19] S. Minato (1993). Zero-suppressed BDDS for set manipulation in combinatorial problems.

In Proceedings of the Design Automation Conference, pp. 272–277.

[20] R. E. Bryant (1995). Binary decision diagrams and beyond: enabling technologies for

formal verification. In International Conference on Computer-Aided Design.

[21] S. H€oreth and R. Drechsler (1999). Formal verification of word-level specifications. In

Design, Automation and Test in Europe, pp. 52–58.

[22] E.M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang (1993). Spectral transforms

for large boolean functions with applications to technology mapping. In Proceedings of the

Design Automation Conference, pp. 54–60.

[23] I. Bahar, E. A. Frohm, C.M. Gaona, et al. (1993). Algebraic decision diagrams and their

applications. In International Conference on Computer Aided Design, pp. 188–191.

7 Decision diagrams for verification 241

www.itu.dk/people/hra/notes-index.html
www.itu.dk/people/hra/notes-index.html
http://vlsi.colorado.edu/~fabio/CUDD/.

[24] Y-T. Lai and S. Sastry (1992). Edge-valued binary decision diagrams for multi-level

hierarchical verification. In Proceedings of the Design Automation Conference,

pp. 608–613.

[25] Y-T. Lai, M. Pedram, and S. B. Vrudhula (1993). FGILP: an ILP solver based on function

graphs. In International Conference on Computer-Aided Design, pp. 689–685.

[26] Y-A. Chen and R. Bryant (1997). PHDD: an efficient graph representation for floating

point circuit verification. In IEEE International Conference on Computer-Aided Design,

pp. 2–7.

[27] R. Drechsler, B. Becker, and S. Ruppertz (1997). The K*BMD: a verification data

structure. IEEE Design & Test of Computers, 14(2):51–59.

[28] H. Enderton (1972). A Mathematical Introduction to Logic. Academic Press.

[29] T. Bultan, R. Gerber, and C. League (1998). Verifying systems with integer constraints and

Boolean predicates: a composite approach. In Proceedings of the International Symposium

on Software Testing and Analysis, pp. 113–123.

[30] S. Devadas, K. Keutzer, and A. Krishnakumar (1991). Design verification and reachability

analysis using algebraic manipulation. In Proceedings of the International Conference on

Computer Design.

[31] G. Ritter (1999). Formal verification of designs with complex control by symbolic simu-

lation. In Advanced Research Working Conference on Correct Hardware Design and

Verification Methods (CHARME). Springer-Verlag LCNS.

[32] R. E. Shostak (1984). Deciding combinations of theories. Journal of ACM, 31(1):1–12.

[33] A. Stump, C.W. Barrett, and D. L. Dill (2002). CVC: a cooperating validity checker. In

E. Brinksma and K. Guldstrand Larsen, eds., 14th International Conference on Computer

Aided Verification (CAV), Lecture Notes in Computer Science, vol. 2404, pp. 500–504.

Springer-Verlag.

[34] M. Chandrashekhar, J. P. Privitera, and J.W. Condradt (1987). Application of term

rewriting techniques to hardware design verification. In Proceedings of the Design Auto-

mation Conference, pp. 277–282.

[35] Z. Zhou and W. Burleson (1995). Equivalence checking of datapaths based on canonical

arithmetic expressions. In Proceedings of the Design Automation Conference.

[36] S. Vasudevan (2003). Automatic Verification of Arithmetic Circuits in RTL using term

rewriting systems. M.S. thesis, University of Texas, Austin.

[37] J. Burch and D. Dill (1994). Automatic verification of pipelined microprocessor control. In

Computer Aided Verification. LCNS, Springer-Verlag.

[38] R. Bryant, S. German, and M. Velev (2001). Processor verification using efficient

reductions of the logic of uninterpreted functions to propositional logic. ACM Transactions

in Computational Logic, 2(1):1–41.

[39] M. Velev and R. Bryant (2003). Effective use of Boolean satisfiability procedures in the

formal verification of superscalar and VLIW Microprocessors. Journal of Symbolic

Computation, 35(2):73–106.

[40] R. Bryant, S. Lahiri, and S. Seshia (2002). Modeling and verifying systems using a logic of

counter arithmetic with lambda expressions and uninterpreted functions. In D. Brinksma

and K.G. Larsen, eds., Computer Aided verification, Lecture Notes in Computer Science,

vol. 2404, pp. 106–122. Springer.

[41] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal (2003). BDD based procedures for a

theory of equality with uninterpreted functions. Formal Methods in System Design, 22

(3):205–224.

242 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

[42] L. Arditi (1996). *BMDs can delay the use of theorem proving for verifying arithmetic

assembly instructions. In Proceedings of Formal Methods in CAD (FMCAD). Springer-

Verlag.

[43] M. Moskewicz, C. Madigan, L. Zhang, Y. Zhao, and S. Malik (2001). Chaff: engineering

an efficient SAT solver. In Proceedings of the 38th Design Automation Conference,

pp. 530–535.

[44] E. Goldberg and Y. Novikov (2002). BerkMin: a fast and robust SAT-solver. In Pro-

ceedings of Design Automation and Test in Europe, DATE-02, pp. 142–149.

[45] C.-Y. Huang and K.-T. Cheng (2001). Using word-level ATPG and modular arithmetic

constraint solving techniques for assertion property checking. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 20:381–391.

[46] M. Iyer (2003). RACE: a word-level ATPG-based constraints solver system for smart

random simulation. In International Test Conference, ITC-03, pp. 299–308.

[47] R. Brinkmann and R. Drechsler (2002). RTL-datapath verification using integer linear

programming. In Proceedings of ASP-DAC.

[48] Z. Zeng, P. Kalla, and M. Ciesielski (2001). LPSAT: a unified approach to rtl satisfiability.

In Proceedings DATE, pp. 398–402.

[49] F. Fallah, S. Devadas, and K. Keutzer (1998). Functional vector generation for HDL

models using linear programming and 3-satisfiability. In Proceedings of the Design

Automation Conference, pp. 528–533.

[50] G. Bioul and M. Davio (1972). Taylor expansion of Boolean functions and of their

derivatives. Philips Research Reports, 27(1):1–6.

[51] A. Thayse and M. Davio (1973). Boolean differential calculus and its application to

switching theory. IEEE Transactions on Computers, C-22(4):409–420.

[52] Maple. www.maplesoft.com.

[53] Mathematica. www.wolfram.com.

[54] The MathWorks. Matlab. www.mathworks.com.

[55] M. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik (2002). Combining strengths of

circuit-based and CNF-based algorithms for a high-performance SAT solver. In Design

Automation Conference (DAC-2002), pp. 747–750.

[56] Z. Zeng, K. Talupuru, and M. Ciesielski (2005). Functional test generation based on word-

level SAT. In Journal of Systems Architecture, 5:488–511.

[57] R. E. Bryant and Y-A. Chen (1995). Verification of arithmetic functions with binary

moment diagrams. In Design Automation Conference, pp. 535–541.

[58] Y.A. Chen andR.E. Bryant (1997). *PHDD: an efficient graph representation for floating point

verification. In Proceedings of the International Conference on Computer Aided Design.

[59] D. Stoffel and W. Kunz (2004). Equivalence checking of arithmetic circuits on the

arithmetic bit level. IEEE Transactions on CAD, 23(5):586–597.

[60] N. Shekhar, P. Kalla, F. Enescu, and S. Gopalakrishnan (2005). Equivalence verification of

polynomial datapaths with fixed-size bit-vectors using finite ring algebra. In International

Conference on Computer-Aided Design.

[61] P. Sanchez and S. Dey (1999). Simulation-based system-level verification using polyno-

mials. In High-Level Design Validation and Test Workshop, HLDVT.

[62] R. Drechsler (2000). Formal Verification of Circuits. Kluwer Academic.

[63] Y. Lu, A. Koelbl, and A. Mathur (2005). Formal equivalence checking between system-

level models and RTL, embedded tutorial. In International Conference on Computer Aided

Design (ICCAD’05).

7 Decision diagrams for verification 243

www.maplesoft.com
www.wolfram.com
www.mathworks.com

[64] P. Georgelin and V. Krishnaswamy (2006). Towards a Cþþ-based design methodology

facilitating sequential equivalence checking. In Design Automation Conference (DAC’06),

pp. 93–96.

[65] D. Brier and R. S. Mitra (2006). Use of C/Cþþ models for architecture exploration and

verification of DSPs. In Design Automation Conference (DAC’06), pp. 79–84.

[66] Calypto Design Systems. www.calypto.com.

[67] A. Vellelunga and D. Giramma (2004). The formality equivalence checker provides

industry’s best arithmetic verification coverage. Verification Avenue, Synopsys Technical

Bulettin, 5(2):5–9.

[68] E. Kryrszig (1999). Advanced Engineering Mathematics. John Wiley and Sons, Inc.

[69] F. Winkler (1996). Polynomial Algorithms in Computer Algebra. Springer.

[70] M. Ciesielski, P. Kalla, Z. Zeng, and B. Rouzeyre (2002). Taylor expansion diagrams: a

compact canonical representation with applications to symbolic verification. In Design

Automation and Test in Europe, pp. 285–289.

[71] P. Coussy and D. Heller (2006). GAUTY – High-Level Synthesis Tool From C to RTL.

Universit�e de Bretagne-Sud. www-labsticc.univ-ubs.fr/www-gaut/.

[72] R. Rudell (1993). Dynamic variable ordering for binary decision diagrams. In Proceedings

of the International Conference on Computer-Aided Design, pp. 42–47.

[73] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and E. Boutillon (2004). Variable

ordering for Taylor expansion diagrams. In IEEE International High Level Design Val-

idation and Test Workshop, HLDVT-04, pp. 55–59.

[74] M. Ciesielski, S. Askar, D. Gomez-Prado, J. Guillot, and E. Boutillon (2007). Data-flow

transformations using Taylor expansion diagrams. In Design Automation and Test in

Europe, pp. 455–460.

[75] P. Jain (2002). Parameterized Motion Estimation Architecture for Dynamically Varying

Power and Compression Requirements. M.S. thesis, Dept. of Electrical and Computer

Engineering, University of Massachusetts.

[76] D. Pradhan, S. Askar, and M. Ciesielski (2003). Mathematical framework for representing

discrete functions as word-level polynomials. In IEEE International High Level Design

Validation and Test Workshop, HLDVT-03, pp. 135–139.

[77] W. Stallings (1999). Cryptography and Network Security. Prentice Hall.

[78] S. B. Wicker (1995). Error Control Systems for Digital Communication and Storage.

Prentice Hall.

[79] R. E. Blahut (1984). Fast Algorithms for Digital Signal Processing. Addison-Wesley.

[80] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli (1998). Multi-valued

decision diagrams: theory and applications. Multiple Valued Logic, 4(1–2):9–62.

[81] D.M. Miller and R. Drechsler (2002). On the construction of multiple-valued decision

diagrams. In Proceedings of the 32nd ISMVL, pp. 245–253.

[82] C. Scholl, R. Drechsler, and B. Becker (1997). Functional simulation using binary decision

diagrams. In International Conference Computer-Aided Design (ICCAD’97), pp. 8–12.

[83] Y. Jiang and R.K. Brayton (2002). Software synthesis from synchronous specification

using logic simulation techniques. In Design Automation Conference (DAC’02),

pp. 319–324.

[84] D.K. Pradhan (1978). A theory of Galois switching functions. IEEE Transactions on

Computers, C–27(3):239–249.

[85] K.M. Dill, K. Ganguly, R. J. Safranek, and M.A. Perkowski (1997). A new Zhegalkin

Galois logic. In Proceedings of the Read-M€uller–97 Conference, pp. 247–257.

244 M. Ciesielski, D. K. Pradhan, and A.M. Jabir

www.calypto.com
www-labsticc.univ-ubs.fr/www-gaut/.

[86] C.H. Wu, C.M. Wu, M.D. Sheih, and Y. T. Hwang (2004). High-speed, low-complexity

systolic design of novel iterative division algorithm in GF(2m). IEEE Transactions on

Computers, 53:375–380.

[87] P. C. McGeer, K. L. McMillan, and A. L. Sangiovanni-Vincentell (1995). Fast discrete

function evaluation using decision diagram. In International Conference Computer-Aided

Design (ICCAD’95), pp. 402–407.

[88] M. J. Ciesielski, P. Kalla, Z. Zeng, and B. Rouzeyere (2002). Taylor expansion diagrams: a

compact, canonical representation with applications to symbolic verification. In Design

Automation and Test in Europe.

[89] A. Jabir and D. Pradhan (2004). MODD: a new decision diagram and representation for

multiple output binary functions. In Design Automation and Test in Europe (DATE’04),

pp. 1388–1389.

[90] R. S. Stankovi and R. Drechsler (1997). Circuit design from Kronecker Galois field

decision diagrams for multiple-valued functions. In ISMVL-27, pp. 275–280.

[91] D.K. Pradhan, M. Ciesielski, and S. Askar (2003). Mathematical framework for repre-

senting discrete functions as word-level polynomials. In Proceedings of the HLDVT’03,

pp. 135–142.

[92] P. Asher and S. Malik (1995). Fast functional simulation using branching programmes. In

ICCAD’95, pp. 408–412.

[93] J. T. Butler, T. Sasao, and M. Matsuura (2005). Average path length of binary decision

diagrams. IEEE Transaction Computers, 54(9):1041–1053.

[94] T. Sasao, Y. Iguchi, and M. Matsuura (2002). Comparison of decision diagrams for

multiple-output logic functions. In Proceedings of the IWLS.

[95] A. Reyhani-Masoleh and M.A. Hasan (2004). Low complexity bit parallel architectures

for polynomial basis multiplication over GF(2m). IEEE Transactions on Computers,

53(8):945–959.

[96] S. Minato (1993). Zero-suppressed BDDs for set manipulation in combinatorial problems.

In Proceedings of the 30th IEEE/ACM Design Automation Conference (DAC’93),

pp. 272–277.

[97] A. Jabir, T. Rajaprabhu, D. Pradhan, and A. Singh (2004). MODD for CF: a compact

representation for multiple-output functions. In Proceedings of the International Confer-

ence High Level Design and the Value Testing (HLDVT’04).

[98] F. Schmiedle, W. Gunther, and R. Drechsler (2001). Selection of efficient re-ordering

heuristics for MDD construction. In Proceedings of the 31st IEEE International Sympo-

sium on Multi-Valued Logic (ISMVL’01), pp. 299–304.

7 Decision diagrams for verification 245

8 Boolean satisfiability and EDA
applications

Joao Marques-Silva

8.1 Introduction

Boolean satisfiability (SAT) is a widely used modeling framework for solving com-

binatorial problems. It is also a well-known decision problem in theoretical computer

science, being the first problem to be shown to be NP-complete. [11] Since SAT is NP-

complete, and unless P=NP, all SAT algorithms require worst-case exponential time.

However, modern SAT algorithms are extremely effective at coping with large search

spaces, by exploiting the problem’s structure when it exists. [2–4] The performance

improvements made to SAT solvers since the mid 1990s motivated their application to

a wide range of practical applications, from cross-talk noise prediction in integrated

circuits [5] to termination analysis in term-rewrite systems. [6] In some applications,

the use of SAT provides remarkable performance improvements. Examples include

model-checking of finite-state systems, [7–9] design debugging, [10] AI planning,

[11,12] and haplotype inference in bioinformatics. [13] Additional successful examples

of practical applications of SAT include termination analysis in term-rewrite systems,

[6] knowledge-compilation, [4] software-model checking, [15,16] software testing, [17]

package management in software distributions, [18] checking of pedigree consistency,

[19] verification of pipelined processors, [20-21] symbolic-trajectory evaluation, [22]

test-pattern generation in digital systems, [23] design debugging and diagnosis, [10]

identification of functional dependencies in Boolean functions, [24] technology-mapping

in logic synthesis, [25] circuit-delay computation, [26] and cross-talk-noise prediction.

[5] However, this list is incomplete, as the number of applications of SAT has been on

the rise in recent years. [18,19,24]

Besides practical applications, SAT has also influenced a number of related decision

and optimization problems, which will be referred to as extensions of SAT. Most

extensions of SAT either use the same algorithmic techniques as used in SAT, or use

SAT as a core engine. One of the most promising extensions of SAT is satisfiability

modulo theories (SMT). [27,28] Other applications of SAT include pseudo-Boolean

(PB) constraints, [29,30] maximum satisfiability (MaxSAT), [31,32] model counting

(#SAT), [33,34] and quantified-Boolean formulas (QBF). [35]

Practical Design Verification, eds. Dhiraj K. Pradhan and Ian G. Harris. Published by Cambridge University

Press. ª Cambridge University Press 2009.

As illustrated, many practical applications of SAT are in electronic design auto-

mation (EDA) and in the areas of verification, [7–9,20,22,26] testing, [23,36,37] and

also synthesis. [24,25] Accordingly, this chapter overviews both SAT algorithms and

some of the most successful practical applications of SAT in EDA. Moreover, the

chapter summarizes some other well-known applications, and overviews the use of

SAT in some of its best-known extensions. The chapter is organized as follows.

Section 8.2 introduces the notation used in the remainder of the chapter. Section 8.3

outlines research work in representative extensions of SAT. Afterwards, Section 8.4

illustrates practical applications of SAT, by focusing on a number of concrete case

studies. Finally, the chapter concludes in Section 8.5.

8.2 Definitions

8.2.1 Propositional formulas and satisfiability

Propositional formulas are defined over a finite set of Boolean variables X. Individual

variables can be represented by letters x, y, z, w, and o, and subscripts may be used (e.g.,

x1). The propositional connectives considered will be :, _, ^, !, and $. Parentheses

will be used to enforce precedence. Most SAT algorithms require propositional formulas

to be represented in conjunctive normal form (CNF). A CNF formula u consists of a

conjunction of clauses x, each of which consists of a disjunction of literals. A literal is

either a variable xi or its complement :xi. A CNF formula can also be viewed as a set of

clauses, and each clause can be viewed as a set of literals. Throughout this chapter, the

representation used will be clear from the context. Consider a CNF formula u with two

clauses xj and xk, such that xj�xk. Then xj is said to subsume xk. All variable

assignments that satisfy xj also satisfy xk. In this situation, xk can be removed from u.
Arbitrary propositional formulas can be converted to CNF in linear time and space by

adding additional variables. This conversion is addressed in the next section.

In the context of search algorithms for SAT, variables can be assigned a logic value,

either 0 or 1. Alternatively, variables may also be unassigned. Assignments to the

problem variables can be defined as a function m : X ! {0, u, 1}, where u denotes an

undefined value used when a variable has not been assigned a value in {0,1}. Given an

assignment m, if all variables are assigned a value in {0,1}, then m is referred to as a

complete assignment. Otherwise it is a partial assignment.

Assignments serve for computing the values of literals, clauses, and the complete CNF

formula, respectively, lm, xm, and um. A total order is defined on the possible assignments,

0 < u < 1. Moreover, 1 � u ¼ u. As a result, the following definitions apply:

lt ¼ mðxiÞ if l ¼ xi
1� mðxiÞ if l ¼ :xi;

�
ð8:1Þ

xv ¼ max lvjl 2 xf g; ð8:2Þ

’v ¼ minfxvjx 2 ’g: ð8:3Þ

8 Boolean satisfiability and EDA applications 247

The assignment function m will also be viewed as a set of tuples (xi, vi), with vi 2 {0, 1}.

Adding a tuple (xi, vi) to m corresponds to assigning vi to xi, such that m(xi) ¼ vi.

Removing a tuple (xi, vi) from m, with m(xi) 6¼ u, corresponds to assigning u to xi.

Given an assignment, clauses and CNF formulas can be characterized as unsatisfied,

satisfied, or unresolved. A clause is unsatisfied if all its literals are assigned value 0. A

clause is satisfied if at least one of its literals is assigned value 1. A clause is unre-

solved if it is neither unsatisfied nor satisfied. A CNF formula u is satisfied if all

clauses are satisfied, and is unsatisfied if at least one clause is unsatisfied. Otherwise it

is unresolved. The SAT problem for a CNF formula u consists of deciding whether

there exists an assignment to the problem variables, such that a given CNF formula u is

satisfied, or proving that no such assignment exists. As mentioned earlier, the satis-

fiability problem for general propositional formulas is NP-complete [1] and so is the

satisfiability problem for CNF formulas.

Given a partial assignment, an unresolved clause such that all but one literal are

assigned value 0, and the remaining literal is assigned, is said to be unit. [38] A key

procedure in SAT algorithms is the unitary clause rule: [38] if a clause is unitary, then

its sole unassigned literal must be assigned value 1 for the clause to be satisfied. The

iterated application of the unit clause rule is referred to as unit propagation or Boolean

constraint propagation (BCP). [39]

8.2.1.1 Resolution
Resolution [38] represents a fundamental operation in Boolean satisfiability. Let �
represent the resolution operator. For two clauses xj and xk, for which there is a

unique variable x such that one clause has a literal x and the other has literal :x, xj �
xk contains all the literals of xj and xk with the exception of x and :x.

Resolution forms the basis of one of the first algorithms for SAT [38] and is an

often-used technique for preprocessing CNF formulas. [40,41] Even though resolution-

based algorithms are not effective in practice, modern SAT algorithms use the reso-

lution operation in a number of ways, including during preprocessing and for learning

new clauses. These uses are described below.

Boolean satisfiability algorithms based on resolution iteratively remove variables by

applying the resolution operation between all pairs of clauses containing a literal and

its complement. Satisfied clauses are discarded, and the process stops when no more

resolution operations can be performed. If the empty clause is derived, the original

CNF formula is unsatisfiable.

Example 8.1 Consider the CNF formula:

’ ¼ ðx1 _ x2Þ ^ ðx1 _ :x3Þ ^ ð:x1 _ :x2Þ ^ ð:x1 _ :x3Þ:
By applying the resolution operation for removing x1, the following CNF formula is

obtained:

’0 ¼ ðx2 _ :x2Þ ^ ð:x2 _ :x3Þ ^ ð:x2 _ :x3Þ ^ ð:x3Þ:

248 J. Marques-Silva

The first clause is trivially satisfied and can be removed. The second and third clauses

are subsumed by the fourth clause, and so can also be removed. Hence, the resulting

CNF formula becomes:

’00 ¼ ð:x3Þ:
No more resolution operations can be applied. The empty clause was not derived.

Hence the formula is satisfiable, x3 ¼ 0 is a necessary assignment. The remaining

assignments can be identified by branching and propagation of necessary assignments.

8.2.2 Boolean circuits

Many practical applications are often represented in some intermediate representation,

from which a CNF formula is then generated. Combinational circuits are one of the

most often used intermediate representations. [7,11,15,18] Combinational Boolean

circuits are composed of gates and connections between gates. In this chapter, only

simple gates are considered and restricted to basic operations: NOT, AND, OR, XOR,

or alternatively �, ., þ, �. Observe that XOR(x,y) ¼ OR(AND(x,NOT(y)), AND(NOT

(x), y)), or, alternatively, x � y ¼ x · �y þ �x · y. Moreover, for simplicity, two-input

single-output gates are assumed. The notation y ¼ OP(x1, x2) denotes a gate with

output y, and inputs x1 and x2, and OP is one of the basic operations.

Converting Boolean circuits to CNF is straightforward, and follows the procedure

outlined by G. Tseitin. [42] Consider a gate y ¼ OP(x1, x2). The CNF representation

captures the valid assignments between the gate inputs and outputs. Hence, u(y, x1, x2)¼
1 if the predicate y ¼ OP(x1, x2) holds true. The CNF representations for simple gates are

shown in Table 8.1 (observe that XOR gates can be replaced by NOT, AND, and OR as

described above). For generality, the number of inputs considered for AND and OR gates

is unrestricted. Even though Tseitin’s transformation is arguably the most often used,

there are a number of effective alternatives including Plaisted and Greenbaum’s. [43]

Example 8.2 For the example circuit of Fig. 8.1, the resulting CNF formula using

Tseitin’s transformation is:

’ ¼ða _ xÞ ^ ðb _ xÞ ^ ð:a _ :b _ :xÞ^
ðx _ :yÞ ^ ðc _ :yÞ ^ ð:x _ :c _ yÞ^
ð:y _ zÞ ^ ð:d _ zÞ ^ ðy _ d _ :zÞ ^ ðzÞ:

Table 8.1 CNF representation of simple gates

Gate CNF representation

y ¼ NOT(x1) (:y _ :x1)(y _ x1)

y ¼ AND(x1,. . ., xk) (y _ :x1 : . . ._ :xk) ^ Kk
i¼1(xi _ :y)

y ¼ OR(x1,. . ., xk) (y _ :x1 : . . ._ :xk) ^ Kk
i¼1(xi _ :y)

8 Boolean satisfiability and EDA applications 249

Another often-used technique consists of exploiting the sharing of common structure

in Boolean circuits. Examples of representations that exploit structural sharing are

reduced Boolean circuits (RBC), [44] Boolean expression diagrams (BED), [45] and

and-inverter graphs (AIG). [46]

Observe that it is straightforward to represent arbitrary propositional formulas as

Boolean circuits. First, note that :, ^, and _ represent a sufficient set of connectives.

Second, associate a new Boolean variable with each level of parenthesis in the

propositional formula. As a result, it is straightforward to represent arbitrary propos-

itional formulas in CNF.

8.2.3 Linear inequalities over Boolean variables

Linear inequalities over Boolean variables are a widely used modeling technique. For

example, with the objective of modeling an integer variable r that can take one out of k

values, i.e., 1 � r � k, one often-used approach is to create k Boolean variables x1, . . .,

xk, such that xi ¼ 1, 1 � i � k, if r ¼ i. In addition, since r must take one of its possible

values, then one of the xi variables must be assigned value 1. Hence,

Xk
i¼1

xij ¼ 1; ð8:4Þ

which can be represented as:

Xk
i¼1

xi � 1

 !
^

Xk
i¼1

xi � 1

 !
: ð8:5Þ

The previous example illustrates special cases of linear inequalities, referred to as

cardinality constraints, the general form being R xi � k. More general constraints are

often necessary, and so in general it is necessary to develop solutions for encoding

linear inequalities of the form:

Xk
i¼1

aixi � b: ð8:6Þ

The encoding proposed by J. Warners [47] ensures that linear inequalities can be

encoded into CNF in linear time and space, and uses adders as the basic operator.

Despite being optimal in terms of the space required, Warners’s encoding does not

guarantee arc-consistency, i.e., the ability to imply all necessary assignments given

a partial assignment. Other encodings exist [30,48] that can use binary decision

a

b

x y

c d

z = 1?

Figure 8.1 Example circuit

250 J. Marques-Silva

diagrams (BDDs) or sorting networks, among other structures. For arbitrary linear

inequalities, BDDs guarantee arc-consistency but can require exponential space in

the worst case. Sorting networks require polynomial space but do not guarantee

arc-consistency.

For cardinality constraints, a number of polynomial encodings ensure arc-

consistency, including BDDs, sorting networks, [30] and sequential counters. [49]

Given its widespread use, the encoding for R xi � 1 using sequential counters is:

ð:x1 _ s1Þ ^ ð:xk _ :sk�1Þ^
K1<i<kðð:xi _ siÞ ^ ð:si�1 _ siÞ ^ ð:xi _ :si�1ÞÞ;

ð8:7Þ

where si are additional auxiliary Boolean variables. Inspection of the formula allows

the conclusion that, at most, one xi can be assigned value 1, for which si�1, with i > 1,

is assigned value 0 and s i is assigned value 1. For all xi, with i > 1, for which si�1 ¼ si,

then xi must be assigned value 0. Moreover, observe that encoding R xi � 1 is

immediate with a single clause and, given Eq. 8.7, so is the encoding of R xi ¼ 1.

An alternative solution, which reduces the number of auxiliary variables is to use

bitwise encoding. [50] Consider constraint R xi� 1. Create r auxiliary variables, where

r ¼ 1 if k ¼ 1 and r ¼ blog kc if k > 1. Let u0, . . ., ur�1 be the auxiliary variables. Now
associate with each xi the binary representation of i � 1. Finally, for each xi create the

clauses: (:xi _ pj), j ¼ 0, . . ., r � 1, where pj ¼ uj if the binary representation of i � 1

has value 1 in position j, and pj ¼� uj otherwise. If a given variable xi is assigned

value 1, then the literals pj in the binary clauses must be assigned value 1, thus

encoding the binary representation of i � 1. Since the pj literals can encode, at most,

one binary representation, all other xi variables must be assigned value 0. For con-

straint R xi � 1 with k variables, the bitwise encoding requires O(log k) variables and

O(k log k) clauses, i.e., O(log k) for each variable in the constraint.

Finally, more general constraints can be encoded into CNF (e.g., [51]), albeit this is

seldom used in practical settings.

8.2.4 SAT algorithms

A vast number of different algorithms have been proposed for the SAT problem over

the years. [52] Examples include different proof systems, [38,53] backtrack searching,

[54] and local searching. [55] In addition, dedicated solvers have been developed for

non-clausal forms, including, for example, automatic test pattern generation (ATPG)

algorithms [56,57] and recursive learning. [58]

Despite the existence of many alternative algorithms for SAT, the most effective for

solving satisfiability in EDA problems are based on backtrack searching with clause

learning. These algorithms are referred to as conflict-driven clause learning (CDCL)

SAT solvers, and are overviewed in the next section.

In addition, the following sections summarize recent work on non-clausal SAT

solvers, and also techniques for preprocessing instances of SAT, both in clausal and in

non-clausal form.

8 Boolean satisfiability and EDA applications 251

8.2.4.1 CDCL SAT algorithms
The CDCL SAT solvers are derived from the well-known DPLL SAT algorithm, first

described in [54], but including techniques first proposed in [38]. Moreover, CDCL

SAT solvers implement a number of essential search techniques, including clause

learning and non-chronological backtracking. [2]

In modern CDCL solvers, as in most implementations of DPLL, logical conse-

quences are derived with unit propagation. Unit propagation is applied after each

branching step (and also during preprocessing), and is used for identifying variables

that must be assigned a specific Boolean value. If an unsatisfied clause is identified, a

conflict condition is declared, and the algorithm backtracks.

In CDCL SAT solvers, each variable xi is characterized by a number of properties,

including the value, the antecedent, and the decision level, denoted respectively by

m(ui) 2 {0, u, 1}, a(xi) 2 u [{NIL}, and d(xi) 2 {�1, 0, 1, . . ., |X|}. A variable xi that is

assigned a value as the result of applying the unit clause rule is said to be implied. The

unit clause x used for implying variable xi is said to be the antecedent of xi, a(xi) ¼ x.
For variables that are decision variables or are unassigned, the antecedent is NIL.

Hence, antecedents are only defined for variables whose value is implied by other

assignments. The decision level of a variable xi denotes the depth of the decision tree

at which the variable is assigned a value in {0,1}. The decision level for an unassigned

variable xi is �1, d(xi) ¼ �1. The decision level associated with variables used for

branching steps (i.e., decision assignments) is specified by the search process, and

denotes the current depth of the decision stack. Hence, a variable xi associated with a

decision assignment is characterized by having a(xi) ¼ NIL and d(xi) > 0. Alterna-

tively, the decision level of xi with antecedent x is given by:

dðxiÞ ¼ maxðf0g [fdðxjÞjxj 2 x ^ xj 6¼ xigÞ: ð8:8Þ
The notation xi ¼ v @ d is used to denote that m(xi) ¼ v and d(xi) ¼ d. Moreover, the

decision level of a literal is defined as the decision level of its variable, d(l) ¼ d(xi) if
l ¼ xi or l ¼ :xi.

During the execution of a DPLL-style SAT solver, assigned variables, as well as

their antecedents, define a directed acyclic graph I¼ (VI, EI), referred to as the

implication graph. [2]

The vertices in the implication graph are defined by all assigned variables and one

special node j, VI � X [{j}. The edges in the implication graph are obtained from the

antecedent of each assigned variable: if x ¼ a(xi), then there is a directed edge from

each variable in x, other than xi, to xi. If unit propagation yields an unsatisfied clause

xj, then a special vertex j is used to represent the unsatisfied clause. In this case, the

antecedent of j is defined by a(j) ¼ xj.

Example 8.3 (Implication graph) Consider the CNF formula:

’1 ¼ x1 ^ x2 ^ x3 ^ x4 ^ x5 ^ x6

¼ ðx1 _ x31 _ :x2Þ ^ ðx1 _ :x3Þ ^ ðx2 _ x3 _ x4Þ
^ ð:x4 _ :x5Þ ^ ðx21 _ :x4 _ :x6Þ ^ ðx5 _ x6Þ:

ð8:9Þ

252 J. Marques-Silva

Assume decision assignments x21 ¼ 0@2 and x31 ¼ 0@3. Moreover, assume the

current decision assignment x1 ¼ 0@5. The resulting implication graph is shown in

Fig. 8.2, and yields a conflict because clause (x5 _ x6) becomes unsatisfied.

In the presence of conflicts, modern CDCL SAT solvers learn new clauses. [2]

Learnt clauses are then used to implement non-chronological backtracking. [2]

Example 8.4 (Clause learning) For the CNF formula of Example 8.3, a new clause

(x1 _ x31 _ x21) is learnt by analyzing the causes of the conflict. [2] For this example,

the conflict takes place at decision level 5. The analysis of the conflict discards all

assignments at decision level 5, with the exception of the decision assignment (i.e.,

x1 ¼ 0). In addition, all assignments at decision levels less than 5, that are used for

deriving the conflict, are also kept. This process can be implemented by traversing the

implication graph, with the restriction that only vertices assigned at the current

decision level are visited.

Moreover, the structure of the conflicts can be exploited by identifying unique

implication points (UIPs). [2] For this example, x4¼ 1@5 is a UIP, and so the learnt clause

would be_(:x4_ x21). This would be the clause learnt by recent CDCLSAT solvers. [3,4]

Algorithm 8.1 shows the standard organization of a CDCL SAT solver, which

essentially follows the organization of DPLL. With respect to DPLL, the main dif-

ferences are the call to function Conflict Analysis each time a conflict is identified, and

the call to Backtrack when backtracking takes place. Moreover, the Backtrack pro-

cedure allows for non-chronological backtracking.

In addition to the main CDCL function, the following auxiliary functions are used:

� UnitPropagation consists of the iterated application of the unit clause rule. If an

unsatisfied clause is identified, then a conflict indication is returned.

� PickBranchingVariable consists of selecting a variable to assign and the respective

value.

x2�0@5

x1�0 @ 5

x31� 0 @ 3

x3�0@5

x4�1@5

x21�0@2

x6�0@5

x5� 0 @ 5

w1

w1

w2

w3

w3 w5

w4 w6

w6

w5

k

Figure 8.2 Implication graph for Example 8.3

8 Boolean satisfiability and EDA applications 253

� ConflictAnalysis consists of analyzing the most recent conflict and learning a

new clause from the conflict. The organization of this procedure is described

elsewhere. [2]

� Backtrack backtracks to the decision level computed by ConflictAnalysis.

� AllVariablesAssigned tests whether all variables have been assigned, in which case

the algorithm terminates, indicating that the CNF formula is satisfiable. An

alternative criterion to stop execution of the algorithm is to check whether all

clauses are satisfied. However, in modern SAT solvers that use lazy data structures,

clause state cannot be maintained accurately, and so the termination criterion must

be whether all variables are assigned.

Arguments to the auxiliary functions are assumed to be passed by reference. Hence, u
and m are supposed to be modified during execution of the auxiliary functions.

The typical CDCL algorithm shown does not account for a few often-used tech-

niques as well as key implementation details. A state-of-the-art SAT solver imple-

ments the typical CDCL algorithm shown above, and also uses the following

techniques:

� Identification of unique implication points (UIPs) [2] (see Example 8.4). Unique

implication points represent dominators [59] in the implication graph. Given the

special structure of implication graphs, UIPs are identified in linear time.

� Memory efficient lazy data structures. [3] Lazy data structures require essentially

no effort during backtracking. Moreover, during propagation, only a fraction of a

variable’s clauses are updated.

Algorithm 8.1 Typical CDCL algorithm

CDCL(u, m)
1 if (UnitPropagation (u, m) ¼¼ CONFLICT)

2 then return UNSAT

3 dl 0 B Decision level

4 while (not AllVariablesAss igned (u, m))
5 do (x, v) ¼P ickBranchingVariable (u, m) B Decide stage

6 dl dl þ 1 B New decision: update decision level

7 v v [{(x, v)}

8 B Deduce stage

9 if (UnitPropagation (u, v) ¼¼ CONFLICT)

10 then b ¼ ConflictAnalys is (u, v) B diagnose stage

11 if (b< 0)

12 then return UNSAT

13 else Backtrack(u, m, b)
14 dl b B Backtracking: update decision level

15 return SAT

254 J. Marques-Silva

� Adaptive branching heuristics, usually derived from the variable state independent

decaying sum (VSIDS) heuristic. [3] The VSIDS heuristic associates a weight with

each variable. The weights are regularly divided by a constant, and each is

incremented when the variable participates in a conflict.

� Integration of search restarts, by using some completeness criterion. [60,61] An often-

used completeness criterion is to increase the number of conflicts in between restarts.

� Implementation of clause-deletion policies. [62] Existing clause-deletion policies

evaluate how often learnt clauses are used for identifying conflicts. Clauses that are

used less often can be deleted.

Because modern backtrack-search SAT solvers learn clauses, it is straightforward to

track all the learnt clauses, and use these clauses to construct a resolution refutation (or

unsatisfiability proof) of the original formula. [63]

8.2.4.2 Non-clausal SAT algorithms
A number of alternatives to clausal CDCL SAT solvers have been proposed in recent

years. [46,57,64–66] Modern non-clausal SAT solvers implement the most effective

techniques used in clausal SAT solvers, including clause learning and non-chrono-

logical backtracking. In addition, non-clausal SAT solvers use dedicated representa-

tions of Boolean networks, e.g., AIG. [46]

One key technique of non-clausal SAT solvers is the identification of shared sub-

structures. The existence of shared sub-networks in Boolean circuits allows the

reduction of both the number of Boolean variables and the number of clauses used.

Another often-used technique is to use structural information to simplify the SAT

problem being solved. Examples include maintaining a justification frontier [64] and

identifying observability “don’t cares.” [67] In addition, specialized forms of learning

have also been proposed. [46]

8.2.4.3 Preprocessing
Preprocessing of CNF formulas aims at modifying CNF formulas, such that these

formulas become simpler to solve by SAT solvers. Preprocessing can consist of adding

or removing clauses or variables. [40,41,68–70]

The simplest form of resolution is based on probing value assignments to variables.

[70] A number of techniques based on variants of resolution have also been proposed.

[40,41,68,69] For example, NiVER [40] applies resolution operations while the

number of the literals in the CNF formula can be reduced.

Example 8.5 Consider the CNF formula:

ðx1 _ x2Þ ^ ð:x2 _ x3Þ ^ ð:x2 _ x4Þ:
By applying the resolution operation with respect to x2, the resulting equivalent CNF

formula (after simplification) becomes:

ðx1 _ x3Þ ^ ðx1 _ x4Þ:

8 Boolean satisfiability and EDA applications 255

The first formula contains six literals, whereas the second CNF formula contains four

literals. Hence, NiVER replaces the original formula by the second one.

8.3 Extensions of SAT

A number of extensions of SAT allow greater modeling flexibility than plain SAT.

Purely Boolean examples include quantified Boolean formulas (QBF), pseudo-

Boolean (PB) solving and optimization, and maximum satisfiability (MaxSAT) and

variants. The most effective algorithmic techniques used in SAT have also been

applied in most extensions of SAT, thus enabling significant practical applications.

This section briefly surveys these extensions of SAT.

Pseudo-Boolean (PB) constraints generalize SAT by considering linear inequalities

over Boolean variables instead of clauses. Moreover, a linear cost function can be

considered. The pseudo-Boolean optimization problem can be defined as follows: [71]

Minimize
X
j2N

cj:xj

subject to
X
j2N

aijlj � bi;

xj 2 f0; 1g; aij; bi 2 Nþ0 ; j 2 N ; i 2 M

N ¼ f1; :::; ng;M ¼ f1; :::;mg:

ð8:10Þ

The problem of optimizing PB-constraints is NP-hard. Moreover, as in the case of

SAT, a number of effective algorithms have been proposed [29,30] that integrate and

extend the most effective SAT techniques.

The maximum satisfiability (MaxSAT) problem can be stated as follows. Given an

instance of SAT represented in conjunctive normal form (CNF), compute an assign-

ment to the variables that maximizes the number of satisfied clauses. Variations of the

MaxSAT problem include the partial MaxSAT problem, the weighted MaxSAT

problem, and the weighted partial MaxSAT problem. In the partial MaxSAT problem

some clauses (i.e., the hard clauses) must be satisfied, whereas others (i.e., the soft

clauses) may not be satisfied. In the weighted MaxSAT problem, each clause has a

given weight, and the objective is to maximize the sum of the weights of satisfied

clauses. Finally, in the weighted partial MaxSAT, the hard clauses must be satisfied, a

weight is associated with each soft clause, and the objective is to maximize the sum of

the weights of satisfied clauses. The MaxSAT problem and its variants provide a

versatile modeling solution and a growing number of practical applications, [31,32]

including the ability to solve PB optimization problems. Despite the potential appli-

cations, the most effective SAT techniques cannot be applied directly in algorithms for

MaxSAT. As a result, the best performing algorithms use branch and bound searching

with sophisticated bounding. [31,34] Recent work has shown how to use SAT itera-

tively for solving MaxSAT. [72,73]

One SAT-related decision problem is quantified Boolean formula (QBF), a well-

known example of PSPACE-complete decision problems. The QBF problem finds a

256 J. Marques-Silva

large number of potential practical applications, including model checking. [74] A QBF

formula is a CNF formula where the Boolean variables are quantified, and is of the form:

Q1x1 Q2x2 ::: Qnxn’; ð8:11Þ
where Qi 2 {’, 8} and u is a CNF formula. Recent algorithms for QBF have integrated

and extended the most effective SAT techniques. [35] Nevertheless, the performance

improvements in QBF solvers have not been as significant as in SAT solvers.

Besides extensions of SAT based on Boolean domains, a number of extensions

exist, including satisfiability modulo theories. [27,28]

8.4 Applications of SAT in EDA

This section overviews the application of SATand extensions of SAT in a number of areas,

namely combinational equivalence checking, [75] automatic test-pattern generation, [23]

design debugging, [76] bounded model checking, [7] and unbounded model checking.

[8,9] The applications are organized by increasing problem formulation complexity.

8.4.1 Combinational equivalence checking

An essential circuit design task is to check the functional equivalence of two circuits.

The simplest form of equivalence checking addresses combinational circuits. Let CA

and CB denote two combinational circuits, both with inputs x1, . . . , xn and both with m

outputs, CA with outputs y1, . . . , ym and CB with outputs w1, . . . , wm. The function

implemented by each of the two circuits is defined as follows: fA : {0, 1}n! {0, 1}m,

and fb : {0, 1}
n! {0, 1}m. Let x 2 {0, 1}n and define fA(x) ¼ (fA,1(x), . . . , fA,m(x)) and

fB(x) ¼ (fB,1(x), . . . , fB,m(x)). The two circuits are not equivalent if the following

condition holds:

9x2f0;1gn91�i�m fA;iðxÞ 6¼ fB;i ðxÞ; ð8:12Þ
which can be represented as the following satisfiability problem:

V
n

i¼1
ðfA;iðxÞ � fB;iðxÞÞ ¼ 1: ð8:13Þ

The resulting satisfiability problem is illustrated in Fig. 8.3, and is referred to as a

miter. [75] From the results of the previous section it is straightforward to encode the

combinational equivalence checking problem in CNF. Somewhat surprisingly, com-

binational equivalence checking can be challenging for SAT solvers. Hence, a number

of techniques, including miter preprocessing and solving intermediate equivalence

checking problems, are often used. [46,67]

8.4.2 Automatic test-pattern generation

Fabricated integrated circuits may be subject to defects, which may cause circuit

failure. The most widely used approach for identifying fabrication defects is

8 Boolean satisfiability and EDA applications 257

automatic test-pattern generation (ATPG). [78] Moreover, the most often-used

model for representing fabrication defects is the single stuck-at fault model (SSF),

[78] where a single connection in the circuit is assumed to be stuck at a given logic

value, either 0 or 1, denoted respectively by stuck-at 0 (or sa-0) and stuck-at 1 (or sa-

1). Automatic test-pattern generation consists of computing input assignments that

allow demonstration of the existence or absence of each target fault, or proof that no

assignment exists (hence, it is essentially a modified satisfiability problem). When

such an assignment exists, it is said that the target fault has been detected. In what

follows, combinational circuits are assumed, but the same ideas can be extended to

sequential circuits. [78]

To compute an input assignment to detect a given target fault x sa-v, two copies of

the circuit are considered. The first copy represents the circuit without the fault, and is

referred to as the good circuit. The second copy represents the circuit with the fault,

and is referred to as the faulty circuit.

Using the notation of the previous section, a Boolean function is associated with

each copy of the circuit: the good circuit is described by fG : {0, 1}n ! {0, 1}m, and

the faulty circuit is described by fF : {0, 1}n ! {0, 1}m. As a result, the fault will be

detected if for some input assignment, the outputs of the two circuits differ:

9x2f0;1gn91�i�m fG;iðxÞ 6¼ fF;iðxÞ: ð8:14Þ
As before, this condition can be represented as the following satisfiability problem:

_n
i¼1
ðfG;iðxÞ � fF;iðxÞÞ ¼ 1: ð8:15Þ

Observe that the miter can also be used for representing the problem of ATPG, when A

represents the good circuit and B represents the faulty circuit. Even though Eq. 15 can

be encoded directly into CNF and solved with a SAT solver, this is, in general, not

effective. As a result, the model is modified to provide additional structural infor-

mation. [23,36,37] The faulty circuit is only partially represented, involving only the

nodes whose value can differ from the good circuit. For each such node x, an

x1 y1

ym

w1

wm

Circuit A

Circuit B

O = 1?

xn

Figure 8.3 Combinational equivalence checking

258 J. Marques-Silva

additional variable xS is used to denote whether the values in the two circuits differ.

The variable xS is referred to as the sensitization variable of node x and takes value 1 if

the values of x in the two circuits differ. If xG is the value in the good circuit and xF is

the value in the faulty circuit, then xS is defined as:

xS $ ðxG � xFÞ: ð8:16Þ

Example 8.6 Consider the example circuit in Fig. 8.4(a), with target fault v sa-0. The

modified circuit is shown in Fig. 8.4(b). The fault effect is represented by discon-

necting u0 from u and setting u0 to 0. The primary inputs for the two circuits are

connected. If there is assignment that satisfies o = 1, then the fault is detected. It is

straightforward to generate the CNF from the circuit in Fig. 8.4(b), e.g., by using

Tseitin’s transformation.

The use of SAT in ATPG was first proposed by T. Larrabee. [23] Improvements

based on preprocessing were described in [36]. Additional improvements were further

proposed in [37], including the reuse of learnt clauses in between target faults and the

encoding of conditions for unique sensitization points. [78]

8.4.3 Design debugging

Design debugging is used in the VLSI design cycle to identify design errors at the gate

level. Assume a set of input stimuli I and a set of expected output responses O, which

a

(a) Example circuit

(b) Modified circuit

a

b

b

c

c

z

zg

zf

yg

yf

y

y sa–0

y� = 0

0 = 1?

Figure 8.4 SAT-based ATPG

8 Boolean satisfiability and EDA applications 259

can be provided by a simulation tool. The design debugging problem assumes sets

I and O and an incorrect circuit C, and seeks to identify gate errors in the design,

i.e., gates that implement incorrect functionality.

For simplicity, a combinational circuit C is assumed, with CNF representation CNF

(C). The input stimulus I is represented as a set of assignments to the circuit inputs,

I ¼ {x1 ¼ v1, . . ., xn ¼ vn}. The output responses are also represented as a set of

assignments to the circuit outputs O ¼ {z1 ¼ u1, . . ., zm ¼ um}. Finally, the actual

circuit is represented by the CNF formula CNF(C).

The unit clauses associated with I and O are hard clauses, i.e., must be satisfied,

whereas the clauses associated with the circuit are soft clauses (i.e., may not be

satisfied). The design debugging problem consists of satisfying the resulting

CNF formula, such that the number of satisfied soft clauses is maximized, and all

the hard clauses are also satisfied. Hence, the design debugging problem is

naturally represented as an instance of the partial maximum satisfiability

problem. [76]

8.4.4 Bounded model checking

Given a set of propositional symbols R, a Kripke structure is defined as a 4-tuple M ¼
(S, I, T, L), where S is a finite set of states, I � S is a set of initial states, T � S · S is a

transition relation, and L : S ! P(R) is a labeling function, where P(R) denotes the

power set over the set of propositional symbols. Temporal logics allow the description

of properties of systems. Two propositional temporal logics are widely used: linear-

time logic (LTL) and computation-tree logic (CTL). [79] In this chapter, temporal

properties are described in LTL, but CTL could also have been considered. Model

checking algorithms can be characterized as explicit-state or implicit-state (or sym-

bolic). [79] Explicit state-model checking algorithms represent the states of the tran-

sition relation explicitly, whereas symbolic model checking algorithms do not. Initial

symbolic model checking algorithms were based on binary decision diagrams (BDDs).

[8] Over the last decade, a number of alternatives based on Boolean satisfiability

(SAT) have been proposed. [7–9]

Most work on SAT-based model checking assumes safety properties G ws, where

ws is a purely propositional formula. The interpretation is that ws must hold on all

reachable states of M. For simplicity, the Kripke structure M ¼ (S, I, T, L) will be

represented by the 3-tupleM ¼ (I, T, F), where I is a predicate representing the initial

states, T is a predicate representing the transition relation, and F is a predicate

representing the failing property (i.e., F ¼ :ws), defined on state variables (denoted

as set Y). Moreover, the predicates I, T, or F assume the underlying Kripke structure

M ¼ (S, I, T, L) and associated target formula ws. Observe that the states are not

explicitly represented. A set of variables Y encodes the possible states, and predicate

T encodes whether the system can go from state (represented with variables) Yi to

state Yi+1.

260 J. Marques-Silva

Algorithm 8.2 Or organization of BMC

BMC(M ¼ (I, T, F), l)
1 k 0

2 while k � l
3 do u Cnf (Bmc(M, k),W)

4 if Sat (u)
5 then return false B Found counter-example

6 k k þ 1

7 return true

As mentioned earlier in the chapter, bounded model checking focuses on safety prop-

erties G ws, denoting that ws must hold globally. The solution to addressing this problem

with SAT is to consider the complement F :ws, representing the condition that ws will

not hold in some reachable state. The condition :ws will be referred to as the failing

property, and represented with a predicate F. Bounded model checking consists of

iteratively unfolding the transition relation, while checking whether the failing property

holds. The generic Boolean formula associated with SAT-based BMC is: [7]

IðY0Þ ^
^

0�i<k

TðYi; Yiþ1Þ ^
� _

0�i�k
FðYiÞ

�
: ð8:17Þ

Equation (8.17) is referred to as BMC(M,k), and represents the unfolding of the

transition relation for k time steps, where I(Y0) represents the initial state (at time step

0), T(Yi, Yi+1) represents the transition relation between states at time steps i and i+1,

respectively Yi and Yi+1, and F(Yi) represents the failing property at time step i. Given

the proposition formula BMC(M,k), it is straightforward to generate a CNF formula u,
as described earlier in this chapter. The resulting CNF formula can then be evaluated

by a SAT solver.

The typical organization of BMC for safety properties is illustrated in Algorithm

8.2. The details regarding the sets of variables associated with each propositional

formula are omitted, but are clear from the context. Moreover, the encoding of the

BMC formula to CNF is shown as function CNF(), and uses a set of auxiliary Boolean

variables W. Finally, l represents an upper bound on the unfolding of the transition

relation. Experimental evidence has confirmed SAT-based BMC to be an extremely

competitive technique, which has been used in industrial settings. [81]

A key difficulty with BMC is its inability to prove that there is no counter-example

for a given safety property G ws. Unless the recurrence (or the reachability) diameter

[81] of an automation is known, it is not possible to precompute the value of the upper

bound (l) used in Algorithm 8.2. In general, the recurrence diameter of an automaton

is not known, and so BMC is incomplete. Hence, if the BMC algorithm returns true it

does not imply that a counter-example cannot be identified. In recent years, different

approaches have been proposed for ensuring the completeness of SAT-based model

checking. These approaches will be referred to as unbounded model checking (UMC).

8 Boolean satisfiability and EDA applications 261

Well-known examples include the use of induction [8] and interpolation. [9] The next

section outlines the use of induction.

8.4.5 Unbounded model checking

To describe UMC approaches, the following predicates are defined:

UNFOLDðM ; r; sÞ ¼ IðYrÞ ^
� ^

r�i<s

TðY i; Yiþ1Þ
�
: ð8:18Þ

Equation 8.18 represents the unfolding of the transition system for s � r time steps,

with s � r. The first state (represented with state variables Yr) must be one of the initial

states. Each set of variables Yi represents a state reached after i � r time steps, starting

from one of the initial states.

TRANðM ; s; tÞ ¼
^
s�i<t

TðYi; Yiþ1Þ: ð8:19Þ

Equation 8.19 captures the transition relation for t � s time steps, with t � s.

FAILðM ; u; vÞ ¼
^

u�i<v

TðYi;Yiþ1Þ
 !

^
_

u�i<v

FðYiÞ
 !

: ð8:20Þ

Equation 8.20 represents the transition relation for the last v � u time steps, with v� u,

during which the failing property is checked for.

Hence, we can express the BMC formula in terms of these predicates:

BMCðM ; r; s; tÞ ¼ UNFOLDðM ; r; sÞ ^ FAILðM ; s; tÞ
¼ UNFOLDðM ; r; rÞ ^ TRANðM ; r; sÞ ^ FAILðM ; s; tÞ: ð8:21Þ

Sheeran et al. proposed the first complete approach for SAT-based UMC. [8] To

present this UMC solution, let us introduce a predicate that holds true for paths with no

repeated states in the transition system:

LOOPFREEðM ; r; sÞ ¼ TRANðM ; r; sÞ ^
^

r�i<j�s
ðYi 6¼ YjÞ: ð8:22Þ

Algorithm 8.3 Induction-based UMC algorithm

UMC(M¼ (I, T, F))

1 k 0

2 while true

3 do if not Sat (I(Y0) ^ LoopFree (M, 0, k)) B Check fixed point

4 then return true

5 if not Sat(LoopFree (M, 0, k) ^ Fail (M, k, k)) B Check fixed point

6 then return true

7 if Sat(I(Y0) ^ Tran (M, 0, k) ^ Fail (M, k, k))

8 then return false B Found counter-example

9 k kþ 1

262 J. Marques-Silva

Algorithm 8.3 outlines the induction-based UMC algorithm of Sheeran et al. The

existence of a counter-example is tested in line 7. Moreover, the induction step is

tested in lines 3 and 5. If, for a given k, there can be no loop-free paths of length k

starting from an initial state, and a counter-example has not yet been found, then a

counter-example cannot be found. Similarly, if for a given k, there can be no loop free

paths of length k reaching a failing property, and a counter-example has not yet been

found, then a counter-example cannot be found. Further improvements to induction-

based UMC, including the use of incremental SAT, are described in [82].

8.4.6 Other applications

Boolean satisfiability finds many other applications in EDA. Besides the applications

described above, other well-known examples include verification of pipelined proces-

sors, [20,21] symbolic trajectory evaluation, [22] design debugging and diagnosis with

SAT, [10] identification of functional dependencies in Boolean functions, [24] tech-

nology mapping in logic synthesis, [25] circuit-delay computation, [26] and cross-talk

noise prediction [13]. The reader is referred to the bibliography for additional detail.

8.5 Conclusions

Boolean satisfiability is an NP-complete decision problem, and all existing algorithms

require worst-case exponential time in the size of the problem representation.

Nevertheless, modern SAT algorithms are remarkably efficient, capable of solving

large, complex examples from real applications. The efficiency of SAT algorithms has

motivated their use in an ever-increasing number of practical applications, ranging

from cross-talk noise prediction in integrated circuits to termination analysis of term-

rewrite systems, and including model checking of hardware and software systems.

Moreover, SAT finds many natural applications in EDA, in the areas of verification,

testing, and synthesis. This chapter summarizes the organization of the most effective

SAT algorithms for solving practical EDA problems, and provides an overview of

some of the most successful applications of SAT in EDA. Moreover, the chapter

summarizes recent work on representative extensions of SAT, which are increasingly

being used in EDA.

8.6 Acknowledgement

This work is partly supported by EU projects IST/033709 and ICT/217069 and by

EPSRC grant EP/E012973/1.

8.7 References
[1] S. Cook (1971). The complexity of theorem proving procedures. In Proceedings of the

Third Annual Symposium on Theory of Computing, pp. 151–158.

8 Boolean satisfiability and EDA applications 263

[2] J. Marques-Silva and K. Sakallah (1996). GRASP: a new search algorithm for satisfiability.

In International Conference on Computer-Aided Design, pp. 220–227.

[3] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik (2001). Engineering an

efficient SAT solver. In Design Automation Conference, pp. 530–535.

[4] N. Een and N. S€orensson (2003). An extensible SAT solver. In International Conference

on Theory and Applications of Satisfiability Testing, pp. 502–518.

[5] P. Chen and K. Keutzer (1999). Towards true crosstalk noise analysis. In International

Conference on Computer-Aided Design, pp. 132–138.

[6] C. Fuhs, J. Giesl, A. Middeldorp, et al. (2007). SAT solving for termination analysis with

polynomial interpretations. In International Conference on Theory and Applications of

Satisfiability Testing, pp. 340–354.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs

(1999). In Tools and Algorithms for the Construction and Analysis of Systems 5th Inter-

national Conference, pp. 193–207.

[8] M. Sheeran, S. Singh, and G. Stalmarck (2000). Checking safety properties using induction

and a SAT solver. In Formal Methods in Computer-Aided Design, pp. 108–125.

[9] K. L. McMillan (2003). Interpolation and SAT-based model checking. In Computer-Aided

Verification, 15th International Conference, pp. 1–13.

[10] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas (2005). Fault diagnosis and logic

debugging using Boolean satisfiability. IEEE Transactions on Computer-Aided Design, 24

(10):1606–1621.

[11] B. Selman and H. Kautz (1992). Planning as satisfiability. In European Conference on

Artificial Intelligence, pp. 359–363.

[12] J. Rintanen, K. Heljanko, and I. Niemela (2006). Planning as satisfiability: parallel plans

and algorithms for plan search. Artificial Intelligence, 170(12–13):1031–1080.

[13] I. Lynce and J. Marques-Silva (2006). Efficient haplotype inference with Boolean satis-

fiability. In National Conference on Artificial Intelligence.

[14] A. Darwiche (2004). New advances in compiling CNF into decomposable negation normal

form. In European Conference on Artificial Intelligence, pp. 328–332.

[15] D. Jackson, I. Schechter, and I. Shlyakhter (2000). Alcoa: the Alloy constraint analyzer. In

International Conference on Software Engineering, pp. 730–733.

[16] E.M. Clarke, D. Kroening, and F. Lerda (2004). A tool for checking ANSI-C programs. In

Tools and Algorithms for the Construction and Analysis of Systems, pp. 168–176.

[17] S. Khurshid and D. Marinov (2004). TestEra: specification-based testing of java programs

using SAT. Automated Software Engineering Journal, 11(4):403–434.

[18] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner (2007). OPIUM: optimal package install/

uninstall manager. In International Conference on Software Engineering, pp. 178–188.

[19] P. Manolios, M.G. Oms, and S.O. Valls (2007). Checking pedigree consistency with PCS.

In Tools and Algorithms for the Construction and Analysis of Systems. 13th International

Conference, pp. 339–342.

[20] M.N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures in the

formal verification of superscalar and vliw microprocessors. Journal of Symbolic

Computation, 35(2):73–106.

[21] P.Manolios and S.K. Srinivasan (2005). Refinement maps for efficient verification of pro-

cessor models. In Design, Automation and Testing in Europe Conference, pp. 1304–1309.

[22] J.-W. Roorda and K. Claessen (2005). A new SAT-based algorithm for symbolic trajectory

evaluation. In Advanced Research Working Conference on Correct Hardware Design and

Verification Methods, pp. 238–253.

264 J. Marques-Silva

[23] T. Larrabee (1992). Test pattern generation using Boolean satisfiability. IEEE Transactions

on Computer-Aided Design, 11(1):4–15.

[24] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko (2007). Scalable exploration of

functional dependency by interpolation and incremental SAT solving. In International

Conference on Computer-Aided Design, pp. 227– 233.

[25] S. Safarpour, A. G. Veneris, G. Baeckler, and R. Yuan (2006). Efficient SAT-based

Boolean matching for FPGA technology mapping. In Design Automation Conference,

pp. 466–471.

[26] P. C. McGeer, A. Saldanha, P.R. Stephan, R.K. Brayton, and A. L. Sangiovanni-Vincentelli

(1991). Timing analysis and delay-fault test generation using path-recursive functions. In

International Conference on Computer-Aided Design, pp. 180–183.

[27] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani (2002). A SAT

based approach for solving formulas over Boolean and linear mathematical propositions. In

International Conference on Automated Deduction, pp. 195–210.

[28] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli (2004). DPLL(T):

fast decision procedures. In 16th International Conference on Computer-Aided Verifica-

tion, pp. 175–188.

[29] V. Manquinho and J. Marques-Silva (2000). Search pruning conditions for Boolean

optimization. In European Conference on Artificial Intelligence, pp. 130–107.

[30] N. E�en and N. S€orensson (2006). Translating pseudo-Boolean constraints into SAT.

Journal on Satisfiability, Boolean Modeling and Computation, 2:1–25.

[31] C.M. Li, F. Many’a, and J. Planes (2007). New inference rules for Max-SAT. Journal of

Artificial Intelligence Research, 30:321–359.

[32] F. Heras, J. Larrosa, and A. Oliveras (2007). MiniMaxSat: a new weighted Max-SAT

solver. In International Conference on Theory and Applications of Satisfiability Testing,

pp. 41–55.

[33] R. Bayardo, Jr. and J. Pehoushek (2000). Counting models using connected components. In

National Conference on Artificial Intelligence, pp. 157–162.

[34] T. Sang, P. Beame, and H.A. Kautz (2005). Heuristics for fast exact model counting.

In International Conference on Theory and Applications of Satisfiability Testing,

pp. 226–240.

[35] R. Letz (2002). Lemma and model caching in decision procedures for quantified Boolean

formulas. In U. Egly and C.G. Ferm_uller, eds., International Conference on Automated

Reasoning with Analytic Tableaux and Related Methods, Lecture Notes in Computer

Science, vol. 2381, pp. 160–175. Springer-Verlag.

[36] P. R. Stephan, R.K. Brayton, and A. L. Sangiovanni-Vincentelli (1996). Combinational

test generation using satisfiability. IEEE Transactions on Computer-Aided Design,

15(9):1167–1176.

[37] J. Marques-Silva and K. Sakallah (1997). Robust search algorithms for test pattern gen-

eration. In IEEE Fault-Tolerant Computing Symposium, pp. 152–161.

[38] M. Davis and H. Putnam (1960). A computing procedure for quantification theory. Journal

of the ACM, 7:201–215.

[39] R. Zabih and D.A. McAllester (1988). A rearrangement search strategy for determining

propositional satisfiability. In National Conference on Artificial Intelligence, pp. 155–160.

[40] S. Subbarayan and D.K. Pradhan (2004). NiVER: non-increasing variable elimination

resolution for preprocessing SAT instances. In International Conference on Theory and

Applications of Satisfiability Testing, pp. 276–291.

8 Boolean satisfiability and EDA applications 265

[41] N. E�en and A. Biere (2005). Effective preprocessing in SAT through variable and clause

elimination. In International Conference in Theory and Applications of Satisfiability

Testing, pp. 61–75.

[42] G. S. Tseitin (1968). On the complexity of derivation in propositional calculus. Studies in

Constructive Mathematics and Mathematical Logic, Seminars in Mathematics, vol. 8, part

II, pp. 115–125. Steklov Mathematical Institute.

[43] D.A. Plaisted and S. Greenbaum (1986). A structure-preserving clause form translation.

Journal of Symbolic Computation, 2(3):293–304.

[44] P. A. Abdulla, P. Bjesse, and N. Een (2000). Symbolic reachability analysis based on SAT

solvers. In S. Graf and M. Schwartzbach, eds., Tools and Algorithms for the Construction

and Analysis of Systems, Lecture Notes in Computer Science, vol. 1785, pp. 411–425.

Springer-Verlag.

[45] H. R. Andersen and H. Hulgaard (1997). Boolean expression diagrams. In Twelfth Annual

IEEE Symposium on Logic in Computer Science, pp. 88–98.

[46] A. Kuehlmann, V. Paruthi, F. Krohm, and M.K. Ganai (2002). Robust Boolean reasoning

for equivalence checking and functional property verification. IEEE Transactions on

Computer-Aided Design, 21(12):1377–1394.

[47] J. P. Warners (1998). A linear-time transformation of linear inequalities into conjunctive

normal form. Information Processing Letters, 68(2):63–69.

[48] O. Bailleux, Y. Boufkhad, and O. Roussel (2006). A translation of pseudo Boolean con-

straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2:191–200.

[49] C. Sinz (2005). Towards an optimal CNF encoding of Boolean cardinality constraints. In

International Conference on Principles and Practice of Constraint Programming, pp. 827–831.

[50] S.D. Prestwich (2007). Variable dependency in local search: prevention is better than cure. In

International Conference on Theory and Applications of Satisfiability Testing, pp. 107–120.

[51] T. Walsh (2000). SAT v CSP. In International Conference on Principles and Practice of

Constraint Programming, pp. 441–456.

[52] J. Gu, P.W. Purdom, J. Franco, and B.W. Wah (1997). Algorithms for the satisfiability

(SAT) problem: a survey. In D. Du, J. Gu, and P.M. Pardalos, eds., Satisfiability Problem:

Theory and Applications, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, vol. 35, pp. 19–151. American Mathematical Society.

[53] M. Sheeran and G. Stalmarck (1998). A tutorial on Stalmarck’s proof procedure for

propositional logic. In Proceedings of the International Conference on Formal Methods in

Computer-Aided Design.

[54] M. Davis, G. Logemann, and D. Loveland (1962). A machine program for theorem-

proving. Communications of the ACM, 5:394–397.

[55] B. Selman, H. Levesque, and D. Mitchell (1992). A new method for solving hard satis-

fiability problems. In National Conference on Artificial Intelligence, pp. 440–446.

[56] M.H. Schulz, E. Trischler, and T.M. Sarfert (1998). SOCRATES: a highly efficient

automatic test pattern generation system. IEEE Transactions on Computer-Aided Design, 7

(1):126–137.

[57] P. Tafertshofer and A. Ganz (1999). SAT based ATPG using fast justification and

propagation in the implication graph. In International Conference on Computer-Aided

Design, pp. 139–146.

[58] W. Kunz and D. Pradhan (1994). Recursive learning: a new implication technique for

efficient solutions to CAD problems-test, verification, and optimization. IEEE Transac-

tions on Computer-Aided Design, 13(9):1143–1158.

266 J. Marques-Silva

[59] R. E. Tarjan (1974). Finding dominators in directed graphs. SIAM Journal on Computing,

3(1):62–89.

[60] C. P. Gomes, B. Selman, and H. Kautz (1998). Boosting combinatorial search through

randomization. In National Conference on Artificial Intelligence, pp. 431–437.

[61] L. Baptista and J. Marques-Silva (2000). Using randomization and learning to solve hard

real-world instances of satisfiability. In International Conference on Principles and

Practice of Constraint Programming, pp. 489–494.

[62] E. Goldberg and Y. Novikov (2002). BerkMin: a fast and robust SAT-solver. In Design,

Automation and Testing in Europe Conference, pp. 142–149.

[63] L. Zhang and S. Malik (2003). Validating SAT solvers using an independent resolution-

based checker: practical implementations and other applications. In Design, Automation

and Testing in Europe Conference, pp. 10880–10885.

[64] L. G. e Silva, L. Silveira, and J. Marques-Silva (1999). Algorithms for solving Boolean

satisfiability in combinational circuits. In Design, Automation and Test in Europe Con-

ference, pp. 526–530.

[65] A. Kuehlmann, M. Ganai, and V. Paruthi (2001). Circuit-based Boolean reasoning. In

Design Automation Conference.

[66] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. E�en (2006). Improvements to com-

binational equivalence checking. In International Conference on Computer-Aided Design,

pp. 836–843.

[67] Z. Fu, Y. Yu, and S. Malik (2005). Considering circuit observability don’t cares in CNF

satisfiability. In Design, Automation and Testing in Europe Conference, pp. 1108–1113.

[68] J. Marques-Silva (2000). Algebraic simplification techniques for propositional satisfiabil-

ity. In International Conference on Principles and Practice of Constraint Programming,

pp. 537–542.

[69] F. Bacchus (2002). Enhancing Davis Putnam with extended binary clause reasoning. In

National Conference on Artificial Intelligence.

[70] I. Lynce and J. Marques-Silva (2003). Probing-based preprocessing techniques for prop-

ositional satisfiability. In International Conference on Tools with Artificial Intelligence,

pp. 105–110.

[71] P. Barth (1995). A Davis–Putnam enumeration algorithm for linear pseudo-

Boolean optimization. Technical report MPI-I-95-2-003, Max Planck Institute for Com-

puter Science.

[72] Z. Fu and S. Malik (2006). On solving the partial MAX-SAT problem. In International

Conference on Theory and Applications of Satisfiability Testing, pp. 252–265.

[73] J. Marques-Silva and J. Planes (2008). Algorithms for maximum satisfiability using un-

satisfiable cores. In Design, Automation and Testing in Europe Conference.

[74] N. Dershowitz, Z. Hanna, and J. Katz (2005). Bounded model checking with QBF. In

International Conference on Theory and Applications of Satisfiability Testing, pp. 408–414.

[75] D. Brand (1993). Verification of large synthesized designs. In International Conference on

Computer-Aided Design, pp. 534–537.

[76] S. Safarpour, H. Mangassarian, A. Veneris, M.H. Liffiton, and K.A. Sakallah (2007).

Improved design debugging using maximum satisfiability. In Formal Methods in Com-

puter-Aided Design, 7th International Conference, pp. 13–19.

[77] J. Marques-Silva and T. Glass (1999). Combinational equivalence checking using satis-

fiability and recursive learning. In Design, Automation and Test in Europe Conference,

pp. 145–149.

8 Boolean satisfiability and EDA applications 267

[78] M. Abramovici, M.A. Breuer, and A.D. Friedman (1990). Digital Systems Testing and

Testable Design. Computer Science Press.

[79] E.M. Clarke, O. Grumberg, and A. Peled (1999). Model Checking. MIT Press.

[80] K. L. McMillan (1993). Symbolic Model Checking. Kluwer Academic.

[81] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu (2003). Bounded model

checking. Advances in Computers, 58:118–149.

[82] N. Een and N. Sorensson (2003). Temporal induction by incremental SAT solving. In

Workshop on Bounded Model Checking, ENTCS, vol. 89.

268 J. Marques-Silva

Index

2-bit down counter, state graph, 137–8

32-bit down counter, verification, 130–1

32-bit multiplier, 126–7, 136–7

abstract bus channels, 56

Accellera OVL, 99

adaptive branching heuristics, 255

adequacy, 128

advanced microcontroller bus architecture

(ARMA), 90

Algebraic Decision Diagrams (ADDs), 182

alias reduction, 83

Alpha microprocessor, 22

AMBA APB protocol, 102

AMBA models

accuracy, 64

performance, 65

analyze-conflict operator, 7

and-inverter graphs (AIG), 21, 250, 255

APPLY algorithms, 174–94, 178

for *BMDs, 185–6

for BDDs, 199

see also composition algorithms and rules

arc-consistency, 250–1

architectural-level design, 92, 122

arithmetic/logic unit (ALU) verification,

131–3, 142

assertions, 99–102, 158

in BUS monitor example, 102–11

for interrupt controller verification, 169

and observability, 97

audit process, 124, 126

automated theorem proving, 125

automatic test pattern generation (ATPG), 8–11,

143, 148–9, 257–9

word-level techniques, 189

average path length (APL), 231–2, 236–40

backtrack operator, 7

backtracking,

chronological, 7

non-chronological, 252, 253

with clause learning, 251

see also conflict-driven clause learning (CDCL);

SAT solvers

backtracking, chronological, 7

backward model-checking, 17–18

base objects definition, 163

BDD bounding, 19–20

behavioral designs, 204–5

behaviors, 54

in component-assembly model, 55–6

timing of, 56

benchmarks

IWLS’93, 233

MCNC, 233

binary decision diagrams (BDDs), 3–6, 173, 174,

175–81

applications, 180

and Boolean networks, 125

canonicity, 4

and combinational equivalence checking, 180

complemented edges, 180

construction, 177, 178

definition, 176

extensions, 180

isomorphic, 4, 176

as linear inequality encoding, 250

low edges, 180

and model checking, 17–18

reduction rules, 4

size, 4–5, 179, 181

software for, 181

variable reordering, 4–5, 224

and word-level specifications, 182

binary decision trees, 3

binary decomposition, 173

binary moment diagrams (BMDs), 173, 174, 183–8

binary time-frame expansion, 22

Boole function expansion, 174

Boolean circuits, 249–50

conversion to CNFs, 249

structural sharing, 250

Boolean Constraint Propagation (BCP), 7, 248

Boolean decomposition, 181–2

Boolean Expression Diagrams (BED), 250

Boolean reasoning techniques, 2–11

Boolean satisfiability (SAT) problem, 6–8, 188

algorithms for, 251–5

using BDDS, 180–1

for CNFs, 248

extensions, 246–7, 256–7

multi-valued, 227

NP-completeness, 246

see also SAT solvers

boundary scan, 117

bounded cone of influence (BCOI) reduction, 21

bounded model checking, 20–2, 260–2

branch coverage (BC) metrics, 133

bridge faults, 143

bus-arbitration TLM model, 53, 56–8, 65

bus-functional TLM model, 53, 58, 65

bus transaction block, 62

buses, 66

C/Cþþ languages, 35–47, 94

classes, 52

equivalence checking, 36

caches, 113, 114, 120

canonicity, 173

of graphs, 173–5

of ROBDDs, 176

cardinality, 251

cardinality constraints, 250

CCATB models, 90

CF-SMODDs, 230

average path length, 232

evaluation, 231, 240

Chaff SAT solver, 8

characteristic functions, 17, 30–1

evaluation, 231

in GF(N), 229–30

check tables, 128, 140

checkers, 155, 156, 157–8

children, 151

chopping see program slicing

chronological backtracking, 7

circuit activity metrics, 136–7

circuit delay computation, 263

circuit observability don’t cares, 255

circuits, finite field representation, 214

clause deletion policies, 255

clause learning, 251

see also conflict-driven clause learning (CDCL);

SAT solvers

closed-loop stimuli generation, 145, 146, 148

co-factoring operation, 5

co-NP-hard problem, 26

code coverage metrics, 131–6, 144

co-factors, 216

combinational equivalence checking (CEC), 23,

24–8, 180, 257

see also equivalence checking; sequential

equivalence checking

combinational portions, 23, 24–6

complete assignment, 247

complex numbers, and TEDs, 209

component-assembly TLM model, 53, 55–6, 65

composition algorithms and rules, 174–94,

199–202, 227

see also APPLY algorithms

computational tree logic (CTL), 13, 125, 260

computational trees, 12

compute EU procedure, 14

concurrent design behavior, 94–5

condition coverage (CC) metrics, 133–4

cone-of-influence (COI), 21, 95

conflict analysis, 7–8

conflict-driven clause learning (CDCL) SAT

solvers, 252–5

conjunctive normal form (CNF), 6, 19, 247

and BDDs, 3

for BMC, 21

conversion from Boolean circuits, 249

and linear equalities, 250–1

preprocessing of, 255–6

satisfiability, 248

connected graphs see state graphs

constrained random stimuli generation, 159

contrapostum, law of, 9–10

control design blocks, 95

control flow graphs, 134–6

controllability, 96

cooperating validity checker (CVC), 35, 37–8

corner cases, 127, 147, 159, 160

coverage collector, 99

coverage groups, 157

coverage measurement, 129

coverage metrics, 128–30, 154

choice of, 130, 144

classification of, 130–44

ease of computation, 144

and manufacturing faults, 143

coverage model, 130–1

coverage monitors, 157, 169

coverage-directed stimulus generation, 157

CPU simulators, 118

cross-over operators, 151

cross-talk fault model, 143

cross-talk noise, 263

CT*, 12

CTL, 12, 14–16

CTL*, 12–13

CUDD package, 181, 205

cut points, 190

cycle-accurate computation model, 53, 54,

58–60

cycle-accurate simulators, 114, 118

270 Index

D-Algorithm (D-ALG), 148–9

dataflow graphs, 175, 212

data forwarding, 150

data transform blocks, 95, 96

data transport blocks, 95–6

datapath design blocks, 95–6

Davio decomposition see XOR decomposition

Davis Punam Logemann–Loveland (DPLL)

procedure, 6–8, 252, 253

debuggers, 118–19, 263

decide-next-branch loop, 7

decision assignments, 252

decision coverage see branch coverage (BC) metrics

decision diagrams, 174, 181–2

in GF(N), 218

see also algebraic decision diagrams; binary

decision diagrams; finite field decision

diagrams; multiple-output decision diagrams;

multi-valued decision diagrams; reduced

ordered binary decision diagrams; word level

decision diagrams

decision levels, 252

decision procedures, 37

decomposition principle, 173–4

for BDDs, 176–8

for BMDs, 183–4

see also Boolean decomposition; first moment

decomposition; XOR decomposition

deduce operator, 7

delay faults, 143

design abstraction levels, 122–3

design debugging, 259–60

design engineers, 125, 155, 160

design flow overview, 36

design under verification (DUV) layer, 154

interrupt controller verification, 160–3

testbench component, 97, 99, 155, 156

design verification, definition, 124

deterministic stimuli generation, 148–9

device under test (DUT), 124, 126, 129, 143

directed acyclic graphs (DAG), 175

directed graphs, 15, 175

directed stimuli generation, 146–7, 159

discrete cosine transform, 207, 209

disturbing influence, 64

double handshake, 67–9

drivers, 99, 159, 167

dynamic reordering, 5

easily invertible form, 181

ECF-SMODD, 230, 231, 232

average path length, 232

evaluation, 231–2, 240

edge traversing probability, 231, 232

edge-valued BDDs (EVBDDs), 182

size complexity, 200

elliptic wave filter, 207, 209

embedded systems, debugging, 113–14, 119

overview, 113–14, 120–1

tools, 114–19

functional, 119

performance-oriented, 119

emulation, 96, 115, 117

encoded characteristic functions (ECFs), 230

energy consumption see power consumption

equivalence checking, 2, 125, 190

for C descriptions, 36

high-level, 34–47

and textual differences, 39

word-level, 189–91

see also combinational equivalence checking;

sequential equivalence checking

error-based coverage metrics see fault-based

coverage metrics

evaluator module, 146

evolutionary algorithms, 151

explicit-state model checking, 260

exponentials, and TEDs, 210

expression coverage (EC) metrics, 134

failing property, 261

fast Fourier transform, 207, 209

fault-based coverage metrics, 141–3

FDIV bug, 124

feedback-based stimuli generation, 145–6

feedback-driven stimuli generation, 146

feedback-sifted stimuli generation, 146

field-programmable gate arrays (FPGAs), 117

FIFO buffers, 77

filtercore function, 83

finite field decision diagrams (FFDDs), 174, 175

finite fields,

applications, 213

characteristic, 215

definition, 214

generation of, 215

graph representation, 217–20

notation for, 216

operations on, 216

and representation of circuits, 214

see also Galois fields

finite state machines (FSMs), 23

for microprocessor core verification, 149

reachable states, 29–31

for sequential checking, 29–30

traversal, 180

finite state machine-based metrics, 137–40, 144

FIR filter, 207, 209

first moment decomposition, 202

floating-point operations see multiplicative power

hybrid decision diagrams,

formal verification, 1–2, 96, 124–5

Index 271

formality tool, arithmetic proof engine (APF), 190

forward model-checking, 17

functional correctness checker, 157–8

functional coverage metrics, 128, 140–1, 144

functional debugging, 119

functional dependencies, 263

functional verification, 92–7, 110, 129

Galois fields, 175, 209, 211, 214

see also finite fields

gate design level, 123

gates, 125, 249

GAUT architect synthesis tool, 204, 205, 207

generations, 151

Genesys test data generator, 150–1

golden model, 143

gprof profiler, 118

granularity, and simulation speed, 52–60, 62–3

handshakes, 67–9, 147

hardware description languages (HDL), 123, 154

DUV descriptions, 155, 156

simulators, 117

hardware verification languages (HVL), 155

high-level design specification, 154

high-level logics, 189

Huffman decoding, 83

i801 microprocessor, 138–40, 141

IEEE 1850 PSL standard, 99–102, 111

IIR filter, 207, 209

image computation, 31–2

image operation, 17, 19–20

IMDCT function, 83

Img operator, 17

implementation model, 53, 60

implication graphs, 8, 252–3

implicit-state enumeration, 180

implicit-state model checking, 260

in-circuit emulators, 115, 117, 119

induction with depth, 20

inductive reasoning, 19, 20

inductive variant, 20

infinite precision computation model, 204

inlining rule, 19

input monitors, 156, 168

instruction pipeline, 113

Intel Vtune profiler, 118

internal equivalences, 26

interrupt controller case study, 160–71

invariants see safety properties

IPSIM framework, 90

irritators, 159, 160

isomorphism, 173, 176

ite operator, 5–6

IWLS’93 benchmark, 233

justification frontiers, 255

K*BMD diagrams, 188, 200

Kalman filters, 207, 209

Kernighan, Brian, 129

keys, 205

Kripke structures, 11–12

for bounded model checking, 260

for CTL model checking, 14, 15, 16

latches, 23–4

correspondence relation, 24

mapping problem, 23

lazy data structures, 254

learning, in ATPG, 9–10

least mean square computation, 207, 209

linear inequalities, 250–1

linear-time temporal logic (LTL), 125, 260

literal-based expansion, 217

liveness, 14, 21

local search, 251

logic analyzers, 115–16, 116–17, 119

logic of counter arithmetic with lambda expressions

and uninterpreted functions (CLU), 189

logic of equality with uninterpreted functions

(EUF), 189

logic simulation, 1

see also simulation

manager, 205

manual stimuli generation, 146–7

manufacturing faults, 8–9, 257–9

coverage metrics, 143, 144

Maple, 190

Mathematica, 190

MatLab, 190

matrix product computation, 207, 209

maximum satisfiability (MaxSAT), 246,

256

MCNC benchmark, 233

memories, 66

metrics see coverage metrics

microarchitectural specification, 92

Microblaze processor, 83, 83–5

MIN-MAX post algebra, 214, 217, 218

miters, 25, 26, 257, 258

model checking, 2, 11–22, 125

for BDDs, 17–18

bounded, 260–2

model counting, 246

moment decomposition, 174, 183, 192

monitors, 99, 154, 155, 156–7, 169

Moore machines, 12

MP3 decoder, 83–5

block diagram, 83

design validation, 88

272 Index

development, 85–8

multi-hop transactions, 79–80

multiple coverage metrics, 129

multiple-input multiple-output functions, 227

multiple-output functions, finite field

representation, 212–13

evaluation of, 230–2

see also multiple-output decision diagrams

multiple-output decision diagrams (MODDs),

algebraic operations, 225–7

canonicity, 220–2

composition rules, 227

evaluation time, 236–40

form of, 218

and GF(N) functions, 218–20

minimality, 222

and multiple-input multiple-output functions,

227

and multi-valued SAT, 227

performance, 233–6

reduction, 220, 222–3, 228–9

variable reordering, 223–5

multi-hop transactions, 79

multiple-valued literals, 217

multiplicative binary moment diagrams (*BMDs),

184–8

and APPLY algorithm, 185–6

and Boolean logic, 186

and Boolean satisfiability problem, 188

reduction rules, 184–5

normalization, 185

size complexity, 200

signal processing applications, 207, 209

and Taylor expansion diagrams, 205

variable ordering, 185

variants, 188

and word-level verification, 187–8

multiplicative diagrams, 184

multiplicative power hybrid decision diagrams

(PHDDs), 188

multiprocessors, debugging, 114

multi-terminal BDD (MTBDD), 182

size complexity of, 200

multi-valued decision diagrams (MDDs), 213,

233

multi-valued decomposition, 174

multi-valued SAT problem (MV-SAT), 227

mutant descriptions, 142

mutation coverage (MC) metrics, 141–2, 144

mutation operators, 151

NiVER resolution package, 255–6

nodes,

nomenclature, 193

potentially equivalent, 27–8

reduction of see reduction

redundant, 194

node traversing probability, 231, 232

non-chronological backtracking, 252, 253

non-linear design blocks, representation, 213

NP-complete problems, 5, 6, 10, 246

observability, 92, 96, 111

observability-based code coverage metric

(OCCOM), 143–4

open-loop stimuli generation, 145, 151

optimistic modeling, 64

optimistic prediction, 63

ordered binary decision diagrams (OBDDs), 176,

181–2

reduction of, 177

ordered functional decision diagrams (OFDDs),

181–2

ordered Kronecker FDDs (OKFDDs), 182

oscilloscopes, 115, 116–17

OSI layer implementation, 90

output monitors, 157, 169

parents, 151

partial assignment, 247, 250–1

partial MaxSAT, 256

pattern generators, 116

path coverage (PC) metrics, 134–6

path quantifiers, 12

path-oriented decision making (PODEM), 149

PC sampling, 117

PCI express data link layer block, 95

Pentium processor, 124

performance-oriented debugging, 119

pipelined processors, 263

platforms

constituent objects, 66

debugging of, 113–14, 120

as debugging tool, 115

PLOVER-PODEM algorithm, 149

polling, 69

port interface, for interrupt controller verification,

163

power consumption, 113, 114, 118

power measurement, 116–17

power simulators, 114, 118

PowerPC microprocessor, 22

preprocess operator, 7

preprocessing, 255–6, 259

Presburger arithmetic, 189

primitive elements, 215

processes, 66, 80–3

product terms, 217, 219

profilers, 114, 117–18, 119–20

program slicing, 38–9

properties, 14

property specification language (PSL), 94, 99

Index 273

propositional formulas, 247

assignments, 247–8

see also decision assignments

protocol channels, 58

protocol checkers, 157

protocol refinement, 58

pseudo-Boolean constraints, 246, 256

PSPACE-completion decision problems, 256

quantified boolean formulas (QBFs), 256–7

quantifier-free logic, 189

random resistant circuits, 150

random stimuli generation, 149–51, 159

reachability analysis, 29

reactive systems, 94

real time-accurate models, 58

recursive expansion, 218–19

recursive learning, 10–11, 251

Red–Miller decomposition see XOR decomposition

reduce function, 5

reduced boolean circuits (RBC), 250

reduced ordered binary decision diagrams

(ROBDDs), 176

canonicity, 176

isomorphism, 176

Shannon decomposition, 177–8

reduction

of *BMDs, 184–5

of BDDs, 4, 176

of MODDs, 220, 222–3, 228–9

of OBDDs, 177

of ROBDDs, 177–8

reference models, 157–8, 158–9

register transfer level (RTL) models, 125

as design level, 122

development time, 88

simulation speed, 51, 127

relational operators, and TEDs, 211

rendezvous synchronization see double handshake

resolution, 248–9, 255

resolution refutation, 255

resource contention, 57–8, 65

resource sharing, 190–1

responders, 99

response checking, 99, 126, 129

restriction operation, 5

result oriented modeling (ROM), 63–4, 89

routing, of transactions, 79–80

safety properties, 14, 16–17, 21, 260–1

SAT solvers, 6–8

applications, 246, 263

auxiliary functions, 253–4

bounded model checking, 20–2

Chaff, 8

SATO, 8

symbolic model checking, 18–20

see also Boolean satisfiability problem

satisfiability see Boolean satisfiability problem

satisfiability modulo theories (SMT), 246, 257

satisfying assignment, 6

SATO SAT solver, 8

SBDDs, evaluation time, 236–40

scoreboards, 99, 155, 157, 158–9

sequential depth, 22

sequential design behaviour, 94

sequential equivalence checking (SEC), 23, 28–34

see also combinational equivalence checking;

equivalence checking

Shannon expansion, 174, 177–8, 217

shared MODDs (SMODDs), 227–8

average path length, 232

evaluation, 230–2, 240

variable reordering, 228

shared sub-structures, 255

sifting, 5

signal processing applications

for *BMDs, 207, 209

for TEDs, 207–9

similarity of designs

simple induction, 20

SimplePower, 118

SimpleScalar, 118

simulation

of design behavior, 96

flow of, 154

speed of, 130–1, 154–5

simulation-based verification, 126–8

simulators,

debugging of, 120

as debugging tool, 114

single stuck-at faults, 143

single tag models, 144

slave devices, 99

slicing, 38–9

SMV verification system, 181

software debuggers, 114

sparse recursive representation, 194

SpecC, 89

special cases, 127, 147

specification models, 53, 54, 88

state coverage metric (FSM-SC), 137

state explosion problem, 16

state graphs, 137–8, 140

state transition graphs, 29

statement coverage (SC) metrics, 128, 131–3

stimuli, 145, 155, 156, 159

stimuli sets, 126, 127–8

generation of, 99, 129, 145–51, 157

structural sharing, Boolean circuits, 250

structural similarity, 26–7

274 Index

stuck-at faults, 9, 143, 149, 258–9

sum-of-products forms, 3

swap-based algorithm see binary decision diagrams,

variable reordering

symbolic abstraction, 192

symbolic algebraic design methods, 189–90

symbolic simulation, 35, 36–7

symbolic trajectory evaluation, 263

synthesis oriented TLMs, 65–6, 88

system LSIs, 1

system on a chip (SoC), 1

SystemVerilog Assertion (SVA) package, 94, 100,

111, 123

interrupt controller case study, 160, 163–71

SystemC, 52, 89–90, 94

processes, 80–3

TLMs for, 80–8

SystemCSV, 89

tags, 144

Tarjan’s algorithm, 15

task graphs, 89

tautology, 181

Taylor expansion diagrams (TEDs), 174–5,

192–212

algorithmic-level verification, 209

for array processing, 206–7

for behavioural HDL, 204–5

and *BMDs, 205, 206

and Boolean logic, 202, 206

canonicity, 196, 197

and complex numbers, 209

composition rules, 199–202

decomposition, 193–4

definition of, 193

and exponentials, 210

functional equivalence verification, 204

and Galois fields, 209

high-level transformation verification, 206

isomorphism, 194

limitations, 209–11

minimality, 197

normalization, 195

reduction, 194–5

and relational operators, 211

and RTL verification, 202–4, 205, 206

signal processing applications, 207–9

size, 197–9, 205, 206

static ordering, 205

uniqueness, 196

variable ordering, 205

Taylor series, 192–3

uniqueness, 196

technology mapping, 263

TEDify software, 205

temporal logics, 12, 260

temporal operators, 12

term rewriting systems, 189

test controllers, 97–9

test criterion, 128

test generation tools, 115

test quality, 126

test sets, 126

testbenches,

analysis communication, 110–11

components, 97, 99, 155–60

and error identification, 96–7

for interrupt controller case study, 163–71

textual differences, 36, 39

threshold stimuli generation, 146

TI OMAP multiprocessor, 114

timing bugs, 120

toggle coverage (TC) metrics, 136–7, 144

traces, 119

transition coverage metric (FSM-TC), 137

transaction generators, 159

for interrupt controller verification, 163–7

transaction interfaces, 159

transaction level modeling (TLM)

accuracy of, 64–5

developments in, 89–90

estimation oriented, 62–5

synthesis oriented, 65–6

taxonomy, 51–61

types of, 51–61

transactions, 159

transactors, 97

transducers, 66, 75–8

transformational systems, 94

transistor design level, 123

transition coverage see finite state machine

transition coverage (FSM-TC)

transition faults, 143

truth tables, 3

Tseitin’s transformation, 249

UML language, 89

unbounded model checking (UMC), 262–3

unique implication points (UIPs), 253, 254

unique states induction, 20

unique tables, 177–8, 205

unit clause rule, 7, 248, 252

unit clauses, 7–8

unit propagation, 248, 252

universal bus channel (UBC), 66–7

addressing, 71–4

arbitration, 69–71

data transfer, 71–4

memory access, 73–4

synchronization, 67–9

user functions, 74–5

unsatisfiability proof, 255

Index 275

untimed functional model see specification model

user transaction blocks, 62

validation, IEEE definition, 124

Van Eijk’s algorithm, 24

variable reordering,

for BDDs, 4–5

for MDDs, 233

for MODDs, 223– 5

for SMODDs, 228

see also dynamic reordering

variable state independent decaying sum (VSIDS)

heuristic, 255

Vera, interrupt controller case study, 160,

163–71

verification, IEEE definition, 124

verification engineers, role of, 140, 155, 160

verification plans and planning, 92–3, 111, 160

for interrupt controller, 163–4

Verilog see SystemVerilog Assertion (SVA)

package

VERTIS test generator, 145–6

VHDL hardware description language, 123

VirtexII FPGA, 85

VIS verification system, 181

Warner’s encoding, 250

Wattch, 118

weighted MaxSAT, 256

weighted partial MaxSAT, 256

word-level analysis, 35

word-level ATPG, 189

word level decision diagrams (WLDDs), 182, 213

word-level equivalence checking, 189–91

word-level representation, 213

for BDDs, 182

wrappers, 60

Xilinx board, 83, 85, 88

XOR decomposition, 181–2

zero-suppressed BDD (ZBDD), 182

zero-suppressed normalized MODD (ZNMODD),

228–9

276 Index

	Half-title
	Title
	Copyright
	Contents
	Contributors
	1 Model checking and equivalence checking
	1.1 Introduction
	1.2 Techniques for Boolean reasoning
	1.2.1 Binary decision diagrams (BDDs)
	1.2.2 Boolean satisfiability checker
	1.2.3 Automatic test-pattern generation (ATPG) techniques

	1.3 Model checking techniques
	1.3.1 Property description with temporal logic
	1.3.1.1 Kripke structures

	1.3.2 Basic algorithms of CTL model checking
	1.3.3 Symbolic model checking
	1.3.4 Practical model checking

	1.4 Equivalence-checking techniques
	1.4.1 Definition of equivalent designs
	1.4.2 Latch-mapping problem
	1.4.3 Practical combinational equivalence checking
	1.4.4 Sequential equivalence checking (SEC)

	1.5 Techniques for higher-level design descriptions
	1.6 References

	2 Transaction-level system modeling
	2.1 Taxonomy for TLMs
	2.1.1 Granularity-based classification of TLMs
	2.1.1.1 Specification model
	2.1.1.2 Component-assembly model
	2.1.1.3 Bus-arbitration model
	2.1.1.4 Bus-functional model
	2.1.1.5 Cycle-accurate computation model
	2.1.1.6 Implementation model

	2.1.2 Objective-based classification

	2.2 Estimation-oriented TLMs
	2.2.1 Result-oriented modeling (ROM)
	2.2.2 Similarity to TLM
	2.2.3 Optimistic modeling
	2.2.4 Measurements

	2.3 Synthesis-oriented TLMs
	2.3.1 Universal bus channel (UBC)
	2.3.1.1 Synchronization
	2.3.1.2 Arbitration
	2.3.1.3 Addressing and data transfer
	2.3.1.4 UBC user functions

	2.3.2 Transducer
	2.3.2.1 FIFO buffers
	2.3.2.2 Request behaviors
	2.3.2.3 IO behaviors

	2.3.3 Routing
	2.3.4 TLMs for C-based design
	2.3.4.1 Processes

	2.3.5 Synthesizable TLMs in practice: MP3 decoder design
	2.3.5.1 Development time
	2.3.5.2 Validation time

	2.4 Related work on TLMs
	2.5 Summary and conclusions
	2.6 References

	3 Response checkers, monitors, and assertions
	3.1 Introduction
	3.1.1 Identifying what to check
	3.1.2 Classifying design behavior
	3.1.2.1 Design behavior best suited for functional formal verification
	3.1.2.2 Design behavior better suited for simulation or emulation

	3.1.3 Observability and controllability

	3.2 Testbench verification components
	3.3 Assertion-based verification
	3.3.1 Brief introduction to SystemVerilog assertion
	3.3.1.1 Consecutive repetition
	3.3.1.2 Non-consecutive count repetitions
	3.3.1.3 Non-consecutive exact repetitions
	3.3.1.4 Sequence implication
	3.3.1.5 Built-in functions
	3.3.1.6 Declarations

	3.4 Assertion-based bus monitor example
	3.4.1 Basic write operation
	3.4.2 Basic read operation
	3.4.3 Unpipelined parallel bus interface requirements
	3.4.4 Unpipelined parallel bus interface coverage
	3.4.5 Analysis communication in the testbench

	3.5 Summary
	3.6 References

	4 System debugging strategies
	4.1 Introduction
	4.2 Debugging tools
	4.2.1 Logic analyzers and pattern generators
	4.2.2 Power measurement
	4.2.3 In-circuit emulators
	4.2.4 Emulators
	4.2.5 Profilers
	4.2.6 CPU simulators

	4.3 Debugging commands
	4.4 Functional debugging
	4.5 Performance-oriented debugging
	4.6 Summary
	4.7 References

	5 Test generation and coverage metrics
	5.1 Introduction
	5.2 Coverage metrics
	5.3 Classification of coverage metrics
	5.3.1 Code coverage metrics
	5.3.1.1 Statement coverage (SC)
	5.3.1.2 Branch coverage (BC)
	5.3.1.3 Condition coverage (CC)
	5.3.1.4 Expression coverage (EC)
	5.3.1.5 Path coverage (PC)

	5.3.2 Metrics based on circuit activity
	5.3.2.1 Toggle coverage (TC)

	5.3.3 Metrics based on finite-state machines
	5.3.3.1 FSM transition coverage (FSM-TC)
	5.3.3.2 FSM state coverage (FSM-SC)

	5.3.4 Functional coverage metrics
	5.3.5 Error- (or fault-) based coverage metrics
	5.3.5.1 Mutation coverage (MC)

	5.3.6 Coverage metrics based on observability
	5.3.6.1 Observability-based code coverage metric (OCCOM)

	5.4 Coverage metrics and abstraction levels of design
	5.5 Stimuli generation methods
	5.5.1 Manual generation
	5.5.2 Automatic generation
	5.5.2.1 Deterministic generation techniques
	5.5.2.2 Random generation techniques
	5.5.2.3 Emerging generation techniques

	5.6 Acknowledgements
	5.7 References

	6 SystemVerilog and Vera in a verification flow
	6.1 Introduction
	6.2 Testbench components
	6.2.1 Design under verification
	6.2.2 Monitor
	6.2.2.1 Input monitor
	6.2.2.2 Output monitor
	6.2.2.3 Coverage monitor

	6.2.3 Checker
	6.2.3.1 Protocol checker
	6.2.3.2 Functional correctness checker
	6.2.3.3 Assertions

	6.2.4 Scoreboard
	6.2.5 Stimulus
	6.2.5.1 Transaction generator
	6.2.5.2 Driver
	6.2.5.3 Irritator

	6.3 Verification plan
	6.4 Case study
	6.4.1 DUV
	6.4.2 Verification plan
	6.4.3 Testbench

	6.5 Summary
	6.6 References

	7 Decision diagrams for verification
	7.1 Introduction
	7.2 Decision diagrams
	7.2.1 Binary decision diagrams (BDDs)
	The decomposition principle
	BDD construction
	BDD composition - the APPLY algorithm
	Variable ordering
	Extensions
	Applications and limitations of BDDs

	7.2.2 Beyond BDDs

	7.3 Binary moment diagrams (BMDs)
	The decomposition principle
	Reduction rules
	Normalization
	The APPLY algorithms
	Boolean logic
	Applications to word-level verification

	7.4 Taylor expansion diagrams (TEDs)
	7.4.1 Related work
	Symbolic algebra methods
	Equivalence checking

	7.4.2 Motivation
	7.4.3 The Taylor series expansion
	7.4.4 Reduction and normalization
	7.4.5 Canonicity of Taylor expansion diagrams
	7.4.6 Complexity of Taylor expansion diagrams
	7.4.7 Composition of Taylor expansion diagrams
	7.4.8 Design modeling and verfication with TEDs
	Boolean logic
	TED construction for RTL designs
	TED-based verification

	7.4.9 Implementation and experimental results
	Variable ordering
	Experimental set-up
	Verification of high-level transformations
	RTL verification
	Array processing
	DSP computations
	Algorithmic verification

	7.4.10 Limitations of TED representation
	7.4.11 Conclusions and open problems

	7.5 Represention of multiple-output functions over finite fields
	7.5.1 Previous work
	7.5.2 Background and notation
	Finite fields
	Generation of finite fields
	Operations over finite fields
	Notation

	7.5.3 Graph-based representation
	7.5.4 Reduction
	Reduction rules
	Canonicity
	A reduction algorithm

	7.5.5 Variable reordering
	7.5.6 Operations in GF(N)
	Algebraic operations
	Composition
	Multiple-valued SAT

	7.5.7 Multiple-output functions in GF(N)
	7.5.8 Further node reduction
	7.5.9 Representing characteristic functions in GF(N)
	7.5.10 Evaluation of functions
	Comparison of evaluation times

	7.5.11 Experimental results
	Performance
	Evaluation time

	7.5.12 Conclusions

	7.6 Acknowledgements
	7.7 References

	8 Boolean satisfiability and EDA applications
	8.1 Introduction
	8.2 Definitions
	8.2.1 Propositional formulas and satisfiability
	8.2.1.1 Resolution

	8.2.2 Boolean circuits
	8.2.3 Linear inequalities over Boolean variables
	8.2.4 SAT algorithms
	8.2.4.1 CDCL SAT algorithms
	8.2.4.2 Non-clausal SAT algorithms
	8.2.4.3 Preprocessing

	8.3 Extensions of SAT
	8.4 Applications of SAT in EDA
	8.4.1 Combinational equivalence checking
	8.4.2 Automatic test-pattern generation
	8.4.3 Design debugging
	8.4.4 Bounded model checking
	8.4.5 Unbounded model checking
	8.4.6 Other applications

	8.5 Conclusions
	8.6 Acknowledgement
	8.7 References

	Index

