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Preface

Industrialists, marketing leaders, military planners, and space scientists are continually asking their
engineers and designers to produce new designs for all kinds of mechanical systems. Designs that
are simultaneously workable, reliable, long-lived, easy to manufacture, safe, and economical are
envisioned. Often, system components are required to be concurrently light in weight, strong, and
yet fatigue-resistant. At the same time, engineers and designers are being pressed to produce these
designs in ever-shortening time intervals. Consequently, they have to quickly produce analyses that
are accurate, or if inaccurate, they have to make sure they err on the safe side.

In response to these demands, engineers and designers are increasingly relying upon finite
element methods (FEM) and analogous computational procedures for their designs. However, these
methods are primarily methods of analysis and are thus most useful for evaluating proposed designs.
Moreover, they are often expensive, inaccessible, and sensitive to element selection and assump-
tions on loadings and support conditions. In short, they are not always free of error. Even with
steady improvements in FEM accuracy, accessibility, and ease of use, engineers and designers still
need to be able to readily make accurate stress and deformation analyses without undue computa-
tion. Recognizing this need, Alexander Blake published his widely used Practical Stress Analysis in
1982, just when FEM and related methods were becoming popular.

In this third edition of Practical Stress Analysis in Engineering Design, we have completely
rewritten and updated the text of the second edition while maintaining Blake’s popular style. Our
objective is to produce a book to help engineers and designers easily obtain stress and deformation
results for the wide class of common mechanical components. In addition, we have attempted to
supplement the methodologies with a presentation of theoretical bases. At the end of each chapter, a
list of references is provided for a more detailed investigation and also a list of symbols is presented
to aid the reader.

This book is divided into seven parts and consists of 40 chapters. In the first part, we review
fundamental concepts including basic ideas such as stress, strain, and Hooke’s law. We include
analysis in two and three dimensions as well as the use of curvilinear coordinates.

In the second part, we review the fundamental concepts of beam bending and twisting of rods.
We introduce the use of singularity functions for analysis of complex loadings. These two parts
provide the basis for the topics in the remainder of the book. Curvilinear coordinates and singularity
functions are two new topics in this edition.

The third part considers special beam geometries focusing upon thick beams, shear stress in
beams, curved beams, buckling of beams, and shear centers. In the fourth part, we extend the
analysis to plates, panels, flanges, and brackets. We review the fundamentals of plate bending and
then apply the theory to special plate configurations with a focus on circular and annular plates,
flanges and brackets, panels, and perforated/reinforced plates.

The fifth part is devoted to dynamic effects including the concepts of fracture and fatigue failure.
We consider design for seismic loading and impacts and explore stress propagation. We conclude
this part with design concepts to control and prevent fatigue and fracture for systems with repeated
and periodic loadings.

The sixth part discusses piping and various pressure vessel problems and considers both internal
and external pressurized vessels. Bending, buckling, and other vessel responses to high pressure are
evaluated. The part concludes with a consideration of some designs for stiffening of cylindrical
vessels. The seventh part considers some advanced and specialized topics including stress concen-
trations, thermal effects, rings, arches, links, eyebars, and springs.
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Part |

Fundamental Relations
and Concepts

Our objective in this first and introductory part of the book is to provide a review of elementary
force, stress, and strain concepts, which are useful in studying the integrity of structural members.
The topics selected are those believed to be most important in design decisions. A clear under-
standing of these concepts is essential due to the ever increasing safety and economic considerations
associated with structural design.

The integrity of a structure, or of a structural component, depends upon its response to loading,
that is, to the induced stress. This response, measured as deformation, or strain, and life, depends
upon geometric design and material characteristics. For example, the shaft of a machine may be
required to sustain twisting and bending loads simultaneously for millions of revolutions while
keeping transverse deflections within a preassigned tolerance; or a pipe flange bolt simultaneously
subject to axial, transverse, thermal, and dynamic loadings, may be required to maintain a seal under
high and varying pressure.

It is obvious that for many structural configurations, there is a complex arrangement of
interacting structural components and loading conditions. Under such conditions, the task of
obtaining accurate and detailed stress analyses is usually difficult, time consuming, and subject to
intense scrutiny. Fortunately, simple and fundamental stress formulas can often provide insight into
the validity of complex analyses and thus also the suitability of proposed designs. Therefore, in this
first part of the book, we redirect our attention to the fundamental concepts of force, stress,
deformation, strain, and stress—strain relations.






’l Forces and Force Systems

1.1 CONCEPT OF A FORCE

Intuitively, a “force’ is a ““push or a pull.”” The effect, or consequence, of a force thus depends upon
(1) how “hard” or how large the push or pull is (the force “magnitude”); (ii) the place or point of
application of the push or pull; and (iii) the direction of the push or pull. The magnitude, point
of application, and direction form the “‘characteristics’” or defining aspects of a force. With these
characteristics, force is conveniently represented by vectors.

Figure 1.1 depicts a force F (written in bold face to designate it as a vector). The figure shows
F to be acting along a line L which passes through a point P. In this context, L is called the ““line of
action” of F. F may be thought of as acting at any place along L. Thus, a force F is sometimes
thought of as a ““sliding vector.”

1.2 CONCEPT OF A MOMENT

Intuitively, a “moment” is like a “‘twisting” or a “‘turning.”” The twisting or turning is usually about
a point or a line. Alternatively, a moment is often thought of as a product of a force and a distance
from a point or a line. A more precise definition may be obtained by referring to Figure 1.2 where
F is a force acting along a line L and O is a point about which F has a moment. Let p be a position
vector locating a typical point P of L relative to O. Then the moment of F about O is defined as

Mo2p xF (1.1

Observe in the definition of Equation 1.1 that the position vector p is not necessarily perpendicular
to L or F. Indeed, p is arbitrary in that it can be directed from O to any point on L. It is readily seen,
however, that the result of the vector product in Equation 1.1 is independent of the choice of point P
on L. For, if Q is another point on L as in Figure 1.3, and if position vector q locates Q relative to O,
then My, is seen to be

My = q x F (1.2)
The consistency of Equations 1.1 and 1.2 is arrived at by expressing q as
a=p+PQ (1.3)

where, as suggested by the notation, PQ is the position vector locating Q relative to P. By
substituting from Equation 1.3 into Equation 1.2 we have

Mp=p+PQ)xF=pxF+PQxF=pxF (1.4)
where PQ X F is zero since PQ is parallel to F [1].

Observe further that if the line of action of the force F passes through a point O, then My, is zero.
Consequently if the line of action of F is “close’ to O, then the magnitude of My, is small.
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o

FIGURE 1.1 A force F, line of action L, and point P.

(@)

FIGURE 1.2 A force F, line of action L, point O, and a position vector from O to a point P on L.

1.3 MOMENT OF A FORCE ABOUT A LINE

The moment of a force about a point is a vector. The moment of a force about a line is the projection,
or component, along the line of the moment of the force about a point on the line. If F is a force, O is
a point, and L is a line through O as in Figure 1.4, then the moment of F about L, M, is defined as

M, = (Mg e = [(p x F)s AN (1.5)

where
A is a unit vector parallel to L
P is a position vector from O to a point on the line of action of F

1.4 FORCE SYSTEMS

A force system is simply a collection or set S of forces as represented in Figure 1.5. If the system has
a large number (say N) of forces, it is usually convenient to label the forces by a subscript index as:
F,F,, ..., Fy, or simply F; (i=1,...,N) as in Figure 1.6.

A force system is generally categorized by two vectors: (1) the resultant of the system and
(2) the moment of the system about some point O. The resultant R of a force system is simply the
sum of the individual forces. That is,

R:ZF,- (1.6)

The resultant is a free vector and is not associated with any particular point or line of action.
Correspondingly, the moment of a force system S about some point O is simply the sum of the
moments of the individual forces of S about O. That is,

N
Mf):ZPixFi (1.7)
i=1

1
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FIGURE 1.3 Points P and Q on the line of action of force F.

FIGURE 1.4 A force F and a line L.

FIGURE 1.5 A force system.

FIGURE 1.6 An indexed set of forces.
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FIGURE 1.7 A force system S and points O and Q.

where P; is a position vector from O to a point on the line of action of F; (i=1, ..., N) as represented
in Figure 1.7.

The point O is arbitrary and is usually chosen as a convenient reference point. ““Convenient,”
however, is subjective, and after computing MSO as in Equation 1.7 we may be interested in knowing
the moment of S about some other point, say Q. If S contains a large number of forces, the
computation in Equation 1.7 could be quite tedious and thus the additional computation for a
point Q may not be a welcome task. Fortunately, if Mf) and the resultant R of § are known, we
can determine the moment about some point Q without doing the potentially tedious comp-
utation associated with Equation 1.7. Mf) may be expressed in terms of M% by the simple relation:

M}, = Mj, + 0Q x R (1.8)

The validity of Equation 1.8 is readily established by deriving from Equation 1.7 that MSO
and MSQ are

N N
M%:ZP,-XF,- and MgzzqixFi (1.9)
i=1 i=1

where, from Figure 1.7, q; is the position vector from Q to a point on the line of action of F;. Also,
from Figure 1.7 we see that p; and q; are related by the connecting position vector OQ. That is,

p; =0Q +gq; (1.10)
By substituting from Equation 1.10 in Equation 1.9, we have
N N N
My =) (0Q+g)xF, =) 0QxFi+> ¢ xF,
i=1 i=1 i=1

N
=0Q x > F;+ M) =0Q xR +M, (1.11)

i=1
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1.5 SPECIAL FORCE SYSTEMS

There are several force systems that are useful in stress analyses. These are reviewed in the
following sections.

1.5.1 Zero FORCE SYSTEMS

If a force system has a zero resultant and a zero moment about some point, it is called a ““zero
system.” Zero systems form the basis for static analyses.

Interestingly, if a force system has a zero resultant and a zero moment about some point, it then
has a zero moment about all points. This is an immediate consequence of Equation 1.8. That is, if
the resultant R is zero and if My, is zero for some point O, then Equation 1.8 shows that M, is zero
for any point Q.

1.5.2 CouprLEs

If a force system has a zero resultant but a nonzero moment about some point O, it is called a
“couple.” Equation 1.8 shows that a couple has the same moment about all points: for, if the
resultant R is zero, then M, = My, for any point Q. This moment, which is the same about all points,
is called the “torque” of the couple.

Figure 1.8 depicts an example of a couple. This couple has many forces. If, alternatively, a
couple has only two forces, as in Figure 1.9, it is called a “simple couple.”

To satisfy the definition of a couple, the forces of a simple couple must have equal magnitude
but opposite directions.

1.5.3 EQUIVALENT FORCE SYSTEMS

Two force systems S; and S, are said to be “equivalent” if they have (1) equal resultants and
(2) equal moments about some point O. Consider two force systems S; and S, as represented in
Figure 1.10 with resultants R; and R, and moments M3} and M} about some point O. Then, S; and
S, are equivalent if

R, =R, (1.12)
and

M = Mg (1.13)

FIGURE 1.8 A couple with many forces.
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FIGURE 1.9 A simple couple.

It happens that if Equations 1.13 and 1.14 are satisfied, then the moments of S; and S, about any and
all points Q are equal. This is derived by using Equation 1.8 to express the moments of S; and S, as

MJ =M +0Q x R, (1.14)

M3 = Mg +0Q x R, (1.15)
By subtracting these expressions and using Equations 1.12 and 1.13, we have
0=M, —Mj or My =M (1.16)

For a rigid body, equivalent force systems may be interchanged without affecting either the statics or
the dynamics of the body. Thus, if one force system, say S;, has significantly fewer forces than an
equivalent force system S,, then S| will generally call for a simpler analysis.

For a deformable body, however (such as the bodies and structural components considered in
this book), equivalent force systems cannot be interchanged without changing the stress distribution
and deformation of the body.

Consider, for example, two identical bars B; and B, subjected to equivalent force systems
as in Figure 1.11. Each force system is a zero system. The force systems are thus equivalent. Their

S,
M3 {Oz
R R,
/ 1 /

FIGURE 1.10 Two force systems.
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Bl
1000 N <— — 1000 N

BZ
300N —»1 }+— 300 N

FIGURE 1.11 Identical deformable bars subjected to equivalent but different force systems.

effects on the deformable bars, however, are dramatically different. In the first instance, the bar is in
tension and is elongated. In the second, the bar is in compression and is shortened.

This example then raises the question: What is the value, if any, of equivalent force systems
for deformable bodies? The answer is provided by Saint Venant’s principle [2] as illustrated by the
following example: consider two identical cantilever beams subjected to equivalent end loadings
as represented in Figure 1.12. St. Venant’s principle states that in the region of the beam near the
end loading, the stresses and strains are different for the two loadings. However, in regions of the
beam far away from the loading, the stresses and strains are the same. This then raises another
question: How far from the load is there negligible difference between the stresses and strains for
the equivalent loading conditions? Unfortunately, the answer here is not so precise, but what is
clear is that the further away a region is from the loading, the more nearly equal are the stresses
and strains. For practical purposes, in this example, there will generally be negligible differences
in the stresses and strains for the two loadings, when the region is an “order of magnitude” of
thickness away from the loading, that is, a distance of 10h away where & is the beam thickness.

1.5.4 EQUIVALENT REPLACEMENT BY A FORCE AND A COUPLE

Consider any force system S. No matter how large (or small) S is, there exists an equivalent force
system S* consisting of a single force passing through an arbitrary point, together with a couple. To
understand this, consider Figure 1.13a, which represents an arbitrary force system S. Let R be the
resultant of S and My, be the moment of S about some point O. Let there be a proposed equivalent
force system S* as shown in Figure 1.13b. Let S* consist of a force F, with line of action passing
through O, together with a couple with torque T. Let F and T be

F=R and T=M, (1.17)

We readily, see that § and S* are equivalent: That is, they have equal resultants and equal moments
about O. (F has no moment about O.)

Observe in Equation 1.17 that the magnitude of T depends upon the location of O. If O is a point
selected within or near S, and if all forces of S have lines of action that are close to O, then the
magnitude of T is small.

—) S

S S,

FIGURE 1.12 Identical cantilever beams with equivalent end loadings.
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(b)

FIGURE 1.13 A given force system S (a) and an equivalent force system S* (b).

SYMBOLS
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q; (i=1,....N)
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2 Simple Stress and Strain:
Simple Shear Stress and Strain

2.1 CONCEPT OF STRESS

Conceptually, ““stress’ is an “‘area-averaged’ or “‘normalized” force. The averaging is obtained by
dividing the force by the area over which the force is regarded to be acting. The concept is illustrated
by considering a rod stretched (axially) by a force P as in Figure 2.1. If the rod has a cross-section
area A, the ““stress” o in the rod is simply

o =P/A @1

There are significant simplifications and assumptions made in the development of Equation 2.1:
First, recall in Chapter 1, we described a force as a “push” or a “pull” and characterized it
mathematically as a “‘sliding vector” acting through a point. Since points do not have area, there
is no “‘area of application.”” Suppose that a body B is subjected to a force system S as in Figure 2.2,
where S is applied over a relatively small surface region R of B. Specifically, let the forces of S be
applied through points of R. Let F be the resultant of S and let A be the area of R. Then a “‘stress
vector”’ o may be defined as

o =F/A 2.2)

If R is regarded as “‘small,” the area A of R will also be small, as will be the magnitude of F.
Nevertheless, the ratio in Equation 2.2 will not necessarily be small. If Q is a point within R, then the
stress vector at Q (““point stress vector”) o be defined as

Q _ .
o? = lim F/A 2.3)

The components of the stress vector o< are then regarded as stresses at Q, that is, “point stresses.”

If the resultant force F in Equation 2.3 is assigned to pass through Q, then the couple torque of the
equivalent force system is negligible (see Section 1.5).

Next, referring again to Equation 2.1, the “stress’ in the rod is thus an average stress at the
points of the cross section of the rod. That is, there is the implied assumption that the stress is
the same at all points of the cross section, and that the corresponding stress vectors are directed
along the axis of the rod. For a long, slender rod, at cross sections away from the ends, these
assumptions are intuitively seen to be reasonable and they can be validated both mathematically and
experimentally.

If the rod of Figure 2.1 is deformable, the forces P will tend to elongate the rod. The rod is then
regarded as being in “tension’ and the corresponding stress is a “tension” or “tensile” stress.

On the contrary, if the rod is being compressed or shortened by forces P as in Figure 2.3 the
“stress” in the rod is again P/A, but this time it is called a “‘compressive stress’ or ‘“‘pressure.”

Tensile stress is customarily considered positive while compressive stress is negative.

11
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P a— —» P

FIGURE 2.1 A rod subject to a stretching (tensile) force.

B
FIGURE 2.2 A body subjected to a force system.
P — Je—P
FIGURE 2.3 A rod subjected to a compression force.
Y3 Original rod
[ )
|5 ]
P — }—P
Loaded rod
FIGURE 2.4 A rod being elongated by end forces P.
£
[ ] Original rod
| |51
P—I ] «<— P Loaded rod

FIGURE 2.5 A rod being shortened by end forces P.
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Equation 2.1 shows that the dimensions of stress are force per area (length squared). In the
English system, stress is usually measured in pounds per square inch (1b/in.2) or (psi) and in the
International System (SI) in Newtons per square meter (N/rnz) or Pascals (Pa). The conversion
between these systems is

1 psi = 6894.76095 Pa 2.4)
and

1 Pa = 0.000145 psi 2.5)

2.2 CONCEPT OF STRAIN

Conceptually, “‘strain” is an average elongation, shortening, deformation, or distortion due to
applied forces (or “loading’). The averaging is obtained by dividing the amount of elongation,
shortening, deformation, or distortion by an appropriate underlying length. This concept may be
illustrated by again considering a rod being stretched, or elongated, by a force P as in Figure 2.4. If ¢
is the length of the unstretched and unloaded rod and if ¢ + 8 is the length of the elongated rod, then
the average strain ¢ is defined as the elongation § divided by the original length ¢. That is,

e=05/t 2.6)

With the rod being elongated, this strain is sometimes called “‘tensile strain.”

On the contrary, if the rod is being compressed or shortened by compressive forces as in Figure
2.5, the average strain is the amount of shortening & divided by the original length ¢. When the rod is
being shortened, the strain is sometimes called “compressive strain.” Compressive strain is cus-
tomarily considered negative while tensile strain is positive.

Observe from Equation 2.6 that unlike stress, strain is a dimensionless quantity.

2.3 SHEAR STRESS

When the force is directed normal (or perpendicular) to the region (or area) of interest (as in Section
2.1), the stress on the area is called “normal stress’ or “‘simple stress’ and the resulting strain is
called “‘normal strain’ or “‘simple strain.” If, however, the force is directed tangent (or parallel) to
the cross section, it is called a ““shear force” and the corresponding stress is called a “shear stress.”
Figure 2.6 illustrates this concept, where V is a shear (or “‘shearing’) force exerted on a block B.

FIGURE 2.6 Block B subjected to a shearing force.
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(a) (b)

FIGURE 2.7 A block subjected to shearing forces. (a) Block with shearing forces. (b) Block in equilibrium.

The shear stress 7 is then defined as
T=V/A 2.7

where A is the area over which V is acting.

Observe in Figure 2.6 that if we consider a free-body diagram of B, we see that unless there are
vertical forces at the support base, the block will not be in equilibrium. That is, if block B is acted
upon only by shear forces as in Figure 2.7a, then B is not in equilibrium and will tend to rotate.
Thus, to maintain equilibrium, shearing forces with equal magnitudes and opposite directions must
be applied, as in Figure 2.7b.

From Figure 2.7b, we note that shearing forces tend to distort the geometry. That is, a square
will tend to become diamond in shape. This is discussed in the following section.

Finally, shearing of a block as in Figure 2.7b is called ‘“‘simple shear’” and the resulting stress,
“simple shear stress.”

2.4 SHEAR STRAIN

Consider a block with height & subjected to a shearing force V as in Figure 2.8. As the block yields
to the force and is deformed, the block will have the shape shown (exaggerated) in Figure 2.9, where
0 is the displacement of the top edge of the block in the direction of the shearing force. The shear
strain <y is then defined as

y=258/h 2.8)

FIGURE 2.8 Block subjected to a shearing force.
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FIGURE 2.9 Block deformed by shearing force.

Observe by comparing Figures 2.8 and 2.9 that if the height % of the block is unchanged during the
deformation (a reasonable assumption for small displacement &), then from Equation 2.8 the shear
strain 7y may also be expressed as

v =tan6 2.9

where 6 is the distortion angle shown in Figure 2.9.
Observe further that if 6 is small compared with £ (as is virtually always the case with elastic
structural materials), then tan 6 is approximately equal to # and we have the relation:

y=0=5/h (2.10)

Finally, observe the similarity in the form of Equations 2.10 and 2.6 for the shear strain y and the
normal strain & respectively. The shear strain of Equation 2.10 is sometimes called “‘simple shear
strain” or ‘“‘engineering shear strain.”

Referring again to Figure 2.7b, we see that Equation 2.10 may be interpreted as a measure
of the distortion of the rectangular block into a parallelogram or diamond shape as illustrated
in Figure 2.10. The shear strain is a measure of the distortion of the right angles of the block away
from 90°.

4 (n/2-7)

/ (m/2+7) v
|4
(m/2+7)

|4

(r/2-7)

FIGURE 2.10 Distorted block due to shearing forces and shear strain interpretation.
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Area

Body

Resultant of force system
Height

Length

Axial force (“‘push’ or “pull’)
Point

Surface region

Force system

Shear force

Shear strain

Elongation, shortening, displacement
Strain, normal strain
Distortion angle

Stress, normal stress

Stress vector

Shear stress
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Hooke’s Law and Material
Strength

3.1 HOOKEFE'S LAW IN ONE DIMENSION

A simple statement of Hooke’s law is that: “‘the force is proportional to the displacement” or
alternatively (and equivalent) ‘“‘the stress is proportional to the strain.”

As an illustration of this concept, consider a bar or rod being extended by axial loads as in
Figure 3.1. If the magnitude of the load is P and the rod length is extended by an amount J, then
Hooke’s law may be given as

P=k8 or 6=P/k 3.1

where k is a constant.

If the rod of Figure 3.1 has an initial length ¢ and a cross-section area A, then the stress o in the
rod is P/A and the strain ¢ is 8/¢ (see Equations 2.1 and 2.6). Thus, P and 8 may be expressed in
terms of the stress and strain as

P=0A and S6=¢&/ 3.2)

Then by substituting into Equation 3.1 we have

oA =kel or o= (kl/A)e=Ee (3.3)
and
6 =0A/k =Pl/AE (3.4)
where E is defined as
EZ2ke/A (3.5)
Then
k=AE/¢ (3.6)

E is commonly referred to as the “modulus of elasticity” or ““Young’s modulus.”

Hooke’s law also implies that the rod responds similarly in compression. Consider again the rod
of Figure 3.1 subjected to a compressive load P (a “‘push” instead of a “pull”) as in Figure 3.2.
If the rod length is shortened by an amount &, the relation between P and J is again

P=kd (3.7)
Then, as before, we have the relations
o= (kl/A)e = Ee (3.8)

17
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¥4 8
P <— | T—— P
FIGURE 3.1 Rod extended by axial loads.
£ 8
P —I | i <— P
FIGURE 3.2 Rod shortened by axial loads.
and
k=AE/t (3.9

3.2 LIMITATIONS OF PROPORTIONALITY

It happens that Equations 3.4 and 3.8 are only approximate representations of structural material
behavior. Nevertheless, for a wide range of forces (or loads), the expressions provide reasonable and
useful results. When the loads are very large, however, the linearity of Equations 3.4 and 3.8 is no
longer representative of structural material behavior. Unfortunately, a nonlinear analysis is signifi-
cantly more involved. Indeed, for the range of forces that can be sustained by structural material
(such as steel) the stress and strain are typically related as in Figure 3.3.

If the force is large enough to load the material of the rod beyond the proportional limit, the
linear relation between the stress and strain is lost. If the material is loaded beyond the yield point,
there will be permanent (or “plastic’’) deformation. That is, when the loading is removed from a rod
stressed beyond the yielding point, it does not return to its original length, but instead shows a
residual deformation. Alternatively, when the loading is relatively low such that the proportional
limit between the stress and strain is not exceeded, the loading is said to be in the “elastic’ range.

In many instances, it is difficult to know where precisely the yield point is. In actuality, the
apparent linear relation (or line) below the yield point (see Figure 3.3) is a slight curve. In such
cases, the limit of proportionality is often arbitrarily defined as the stress where the residual strain is
0.002 (0.2%), as depicted in Figure 3.4. From a design perspective, however, it is recommended that
the loads be kept sufficiently small so that the stress remains in the elastic range, well below the
yield point. The material is then unlikely to fail and there is the added benefit of a simpler analysis
since the relation between the stress and strain is linear, as in Equations 3.4 and 3.8.

The value of the elastic modulus E of Equations 3.4 and 3.8 is dependent upon the material.
Table 3.1 provides a tabular listing of approximate elastic modulus values for some commonly used
materials [1,2]. But, a note of caution should be added: The values listed are for pure materials
(without defects). Actual materials in use may have slightly lower values due to imperfections
occurring during manufacture.

3.3 MATERIAL STRENGTH

The “‘strength’ of a material is an ambiguous term in that ““strength” can refer to any of the three
concepts: (1) yield strength; (2) maximum tensile (or compressive) strength; or (3) breaking
(fracture or rupture) strength. These are, however, relatively simple concepts. To illustrate them,
consider a bar, or rod, being stretched by axial forces as in Figure 3.5.
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o
Plastic
range <—=— Fracture
Elastic \ Proportional limit
range (Yield point)

0] ' ' €

FIGURE 3.3 Stress—strain relation.

If we construct a graph relating the stress and strain, as in Figures 3.3, 3.4, and 3.6, we can
identify points on the curve with these three strength concepts. Specifically, the “yield strength” is
the stress at which yielding, or alternatively, 0.2% strain occurs (see Figure 3.4). This is also the
beginning of plastic deformation. The ‘“maximum strength’ is the largest stress attained in the rod.
The “breaking strength” is the stress just prior to fracture or rupture. The breaking strength is less
than the maximum strength since the sustainable force P decreases rapidly once extensive plastic
deformation occurs.

Table 3.2 provides a list of approximate strength values for commonly used materials [1,2].

3.4 HOOKEFE'S LAW IN SHEAR
Consider again Hooke’s law for simple stress and strain of Equation 3.4:

o=Ee (3.10)
We can extend this relation to accommodate simple shear stress and strain. Consider again a block
subjected to a shearing force as in Figure 2.6 and as shown again in Figure 3.7. Then, from

Equations 2.7 and 2.8 the shear stress 7 and the shear strain vy are defined as

T=V/A and y=3§8/( (3.11)

=

Yield point

) t 0.002 €

FIGURE 3.4 Yield point definition of a strain of 0.002.
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TABLE 3.1
Selected Values of Elastic Constants
E
Material 10° psi (Ib/in.%) 10° Pa (N/m?)
Steel 30 207
Aluminum 10 69
Copper 17 117
Concrete 4 28
Wood 1.9 13
4 0
j J— ——p
FIGURE 3.5 Axial stretching of a rod.
c
Maximum
strength
Yield Breaking strength
strength

€

FIGURE 3.6 Stress—strain diagram illustrating yield, maximum, and breaking strength.

TABLE 3.2
Selected Material Strengths

Yield Strength Maximum Strength
Material 10° psi (Ib/in.Z) 10° Pa (N/m2) 10° psi (lb/in.z) 10° Pa (N/mz)
Steel 40-80 275-550 60-120 410-820
Aluminum 35-70 240-480 40-80 275-550
Copper 10-50 70-350 30-60 200-400
Concrete — — 4-6 28-40

Wood — — 5-10 35-70




Hooke’s Law and Material Strength 21

’K —
v
FIGURE 3.7 A block subjected to a shearing force.

TABLE 3.3
Selected Values of the Shear Modulus
Material 10° psi (Ib/in.%) 10° Pa (N/m?)
Steel 11.2 77
Aluminum 3.8 27
Copper 6.4 44

where
V is the shearing force
A is the area over which V acts
¢ is the height of the block
o is the horizontal displacement

Then, analogous to Equation 3.10, Hooke’s law for simple shear is

=Gy (3.12)
where the proportional parameter G is called the ‘“‘shear modulus,” *
or the “modulus of rigidity.”

Table 3.3 lists values of the shear modulus for a few commonly used materials [1,2].

modulus of elasticity in shear,”

SYMBOLS

Area

Modulus of elasticity, Young’s modulus
Shear modulus, modulus of rigidity
Spring constant

Length

Axial force

Shear force

Shear strain

R < S™Q >
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6 Elongation, shortening
& Normal strain

o Normal stress

7  Shear stress
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4 Stress in Two and Three
Dimensions

4.1 STRESS VECTORS

Consider an elastic body B subjected to surface loads as in Figure 4.1. Consider a cutting plane N
dividing B into two parts as shown in edge view in Figure 4.2.

Consider the equilibrium of one of the parts of B, say the left part By, as in Figure 4.3. The figure
depicts the forces exerted across the dividing plane by the right portion of B(Br) on the left portion
(Bp). Correspondingly, By exerts equal and opposite forces on Bg.

Consider next a view of the dividing surface of By and a small region R on this surface, as in
Figure 4.4 where forces exerted by Bg on By across R are depicted. Consider now a force system S,
which is equivalent to the system of forces exerted by Bg on By across R. Specifically, let S consist
of a single force P passing through a point P of R together with a couple with torque M (see Section
1.5.3) as represented in Figure 4.5.

Let A be the area of R. Next, imagine that R is decreased in size, or shrunk, around point P. As
this happens, consider the ratio: P/A. As R shrinks, A diminishes, but the magnitude of P also
diminishes. In the limit, as A becomes infinitesimally small the ratio P/A will approach a vector S
given by

S = lim P/A @.1

This vector is called the “stress vector on R at P.”
From Section 1.5.3, it is apparent that as R gets small the magnitude of the couple torque M
becomes increasingly small. That is,

limM =0 (4.2)

Observe that, in general, S is parallel neither to R nor to the normal of R. Observe further that for a
different dividing plane, say N, passing through P, the corresponding stress vector S will be
different than S.

Finally, consider a set of mutually perpendicular unit vectors n,, n,, and n, with n, being normal
to the plane of R, directed outward from By as in Figure 4.6. Let S be expressed in terms of n,, n,,
and n, as

S = Sun, + Syn, + S.n, 4.3)

Then S,, S,, and S are stresses at P with S, being a normal (tension or compression) stress and S,
and S, being tangential (or shear) stresses.

4.2 STRESSES WITHIN A LOADED ELASTIC BODY—NOTATION
AND SIGN CONVENTION

Consider again the loaded elastic body B of Figure 4.1 and consider a small rectangular element E in
the interior of B as represented in Figure 4.7. Let X, Y, and Z be coordinate axes parallel to the edges

23
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T

FIGURE 4.1 An elastic body subjected to surface loads.

@

N

y i

(b)

(©)

FIGURE 4.2 Edge view of a cutting plane devising the elastic body of Figure 4.1.

ANKS NS X

FIGURE 4.3 Equilibrium of the left portion of the elastic body with forces exerted across the dividing plane.

. By,

FIGURE 4.4 A small region of R of the dividing plane.
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FIGURE 4.5 Equivalent force system exerted across R.

of E and with origin O within E as shown. Next, let E be shrunk to an infinitesimal element about O
(as R was shrunk about P in Section 4.1). As in Section 4.1, imagine the coordinate planes to be
cutting planes of E, separating E into six different parts (two for each cutting plane). Then in the
context of the foregoing analysis, each of the six sides (or ‘““cut faces” of E) will have an associated
stress vector with stress components as in Equation 4.3. Thus, with six faces and three stress
components per face, there are 18 stress components (or stresses) associated with element E.

For E to be in equilibrium, while being infinitesimal, the corresponding stress components on
opposite, parallel faces of E must be equal and oppositely directed. Thus, we need to consider only
nine of the 18 stress components. To make an account (or list) of these components, it is convenient
to identify the components first with the face on which they are acting and then with their direction.
We can identify the faces of E with their normals since each face is normal to one of the X, Y, or Z
axes. Since there are two faces normal to each axis, we can think of these faces as being “positive”
or “‘negative” depending upon which side of the origin O they occur. Specifically, let the vertices of
E be numbered and labeled as in Figure 4.8. Then a face is said to be “positive” if when going from
the interior of E to the exterior across a face, the movement is in the positive axis direction.
Correspondingly, a face is “negative” if the movement is in the negative axis direction when
crossing the face. Table 4.1 lists the positive and negative faces of E.

FIGURE 4.6 Unit vectors parallel to normal to region R of By.
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]
e

N\

e

X

FIGURE 4.7 A small rectangular element E of loaded elastic body B (see Figure 4.1).

To account for the nine stress components, it is convenient to use subscript notation such as o;
where the subscripts i and j have the values x, y, and z with the first subscript (i) referring to the face
upon which the stress is applied and the second subscript (j) referring to the direction of the stress
component. We can then arrange the stress components into an array o as

Oxxy Oxy Oy
o= |0y 0Oy Oy “4.4)

Oz Oz Oz

The diagonal elements of this array are seen to be the normal stresses (tension/compression) while
the off-diagonal elements are shear stresses. The shear stresses are sometimes designated by the
Greek letter 7 as in Section 2.3.

A stress component is said to be “positive” if the component is exerted on a positive face in a
positive direction or on a negative face in a negative direction. On the contrary, a stress component
is said to be “negative” if it is exerted on a negative face in the positive direction or a positive face
in the negative direction. (With this sign convention, tension is positive and compression is
negative.)

FIGURE 4.8 Numbering the vertices of element E.
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TABLE 4.1

Positive and Negative Faces of E
Face Normal Axis Face Sign
1234 +X Positive
4356 +Y Positive
6714 +Z Positive
7658 X Negative
2178 -Y Negative
2853 —Z Negative

4.3 EQUILIBRIUM CONSIDERATIONS—INDEX NOTATION

Consider the small rectangular element of Figure 4.8 as drawn again in Figure 4.9. Let the lengths of
the edges be Ax, Ay, and Az. Consider an “overhead” or Z-direction view of the element as in Figure
4.10 where the shear stresses on the X and Y faces in the X- and Y-directions are shown. Next,
imagine a free-body diagram of the element. If the element is sufficiently small, the forces on the
element may be represented by force components acting through the centers of the faces with
magnitudes equal to the product of the stresses and the areas of the faces as in Figure 4.11. By
setting moments about the Z-axis equal to zero, we have

0o AyAzZ(Ax/2) — 0 AxAz(Ay/2) + 0 AyA(Ax/2) — 0 AxAz(Ay/2) = 0 4.5)

By dividing by the element volume, AxAyAz, we obtain
Oxy = Oy (4.6)
Similarly, by considering moment equilibrium about the Y- and Z-axes, we obtain the expressions
Oy, =0y, and o, =0y, 4.7)

These results show that the stress array o of Equation 4.4 is symmetric. That is,

Oxx Oxy Oxg Oxx Oxy Oy
o= |0y Oy Op| = |0y 0 Oy 4.8)
Ox Oz Oz Oxz Oy Oz
Z
E
/
L Y

FIGURE 4.9 Small rectangular element with dimensions Ax, Ay, and Az.
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yx

xy

X
Oy
—
Oy
FIGURE 4.10 X-Y shear stresses on the element of Figure 4.9.
In short,
o =05 Lj=Xx)2 4.9)

Next, consider the equilibrium of a small tetrahedron T as in Figure 4.12, where three of the sides
are normal to coordinate axes. Let n be a unit vector normal to the inclined face ABC of T and let S,,
be the stress vector exerted on ABC. As before, since T is small, let the forces on T be represented by
individual forces passing through the centroids of the faces of 7. Let these forces be equal to the
stress vectors, on the faces of 7, multiplied by the areas of the respective faces.

Let A be the area of face ABC, and let A,, A,, and A_ be the area of the faces normal to the
coordinate axes (OBC, OCA, and OAB). Let n be expressed in terms of the coordinate line unit
vectors as

n = nn, +nn, +nn; (4.10)

Then, it is evident that A,, A,, and A, are

A, =An,, A, =An,, A, =An, 4.11)

1Y

0,,AxAz
0, AxAz
0y, AyAz

O, AyAz o

* — 0, AyAz— X

O,y AyAz

0y, AxAz
0,,AxAz

FIGURE 4.11 X- and Y-direction forces on element E.
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o 2

FIGURE 4.12 Small tetrahedron within a loaded elastic body.

Imagine a free-body diagram of 7. The forces on T may be represented by the four forces: S,A,,
S,A,, S:A., and S,A acting through the centroids of the respective faces, where S,, S,, and S, are the
stress vectors on faces OBC, OCA, and OAB, respectively. The equilibrium of 7 then leads to the

expression:

SAy +S,A, +S.A. +S,A=0 (4.12)

Using the notation in Section 4.2, let the stress vectors be expressed in terms of n,, n,, and n, as

Sy = =0 — TNy — O N, (4.13)
Sy = —oyn, — oyyn, — oy N, 4.14)
S, = —o,n, —oyn, —o.n, (4.15)

Sy = Spny + S0y, + S0, (4.16)

where the negative signs in Equations 4.13, 4.14, and 4.15 occur since OBC, OCA, and OAB are
“negative” faces (see Section 4.2).
By substituting from Equation 4.11 into Equation 4.12 we obtain

neSy +n,Sy, +n.S;+8S, =0 “4.17)

Then, by substituting from Equation 4.13 through 4.16 and setting n,, n,, and n, components equal
to zero, we have

Six = Oty + Oty + T2, (4.18)
Sy = Oyl + Ophy + 00, 4.19)
Spz = Oy + Oyny + T 1; (4.20)

Observe the pattern of the indices of Equations 4.12 through 4.20: repeated indices range through
x, y, and z. Otherwise, the terms are the same. Thus, it is often convenient to use numerical indices
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and summation notation. Let x, y, and z be replaced by 1, 2, and 3. Then Equations 4.17 through
4.20 may be written in a compact form as

3

> nSi+8,=0 (4.21)
j=1
and
3
Sui=Y oy (=123 (4.22)

i=1

Since in three dimensional analyses the sums generally range from 1 to 3, it is usually possible to
delete the summation sign (2) and simply adopt the convention that repeated indices designate a
sum over the range of the index. Thus, Equations 4.21 and 4.22 may be written as

nS;+S, =0 (4.23)
and
Sl’l,' = Ojjh; (l = 1,2, 3) (424)

Finally, consider the equilibrium of a small, but yet finite size, rectangular element of a loaded
elastic body as in Figure 4.13. Let the lengths of the sides of E be Ax, Ay, and Az as shown. Let E be
sufficiently small so that the forces on the faces of E may be represented by stress vectors acting
through the centroids of the faces multiplied by the areas of the respective faces.

Consider the force components in the X-direction. Consider specifically the change in corre-
sponding stresses from one side of E to the other. By using a Taylor series expansion, we can relate
these stresses by the expression:

= 00w | gy LO0m | (e 4.25
T (r<|>nl_0-xx re|ar+ a.x [Jar x""i 8)62 (e|ar( X) o ( ' )

face face face face

X Ay

FIGURE 4.13 A small element within a loaded elastic body.



Stress in Two and Three Dimensions 31

With the element E being small, the terms not shown in the sum of Equation 4.25 are also small.
Indeed, these terms as well as the third term on the right-hand side of Equation 4.25 become
increasingly small as E gets smaller. Hence, to a reasonable degree of accuracy we have

= [0y + (00 /Ox)AX] | (4.26)

front back
face face

Oxx

Similar analyses for the shear stresses in the X-direction lead to the expressions:

Oz ‘ =[ox+ (ao'zx/az)AZ] .

front ack
face face

4.27)

and

Tyx f_| l: [U)'x + (30'\x/8)’)AY] b| (428)

ack
face face

Consider now the X-direction forces of a free-body diagram of E. As E shrinks to a point, the
corresponding stresses on opposite faces become nearly equal in magnitude. Then, a balance of
forces leads to the expression:

OuAyAz — 0 AyAz + [0y /Ox]AyAz
+ 0, AyAx — 0, AyAx + [(O0 ./ 02)Az]AyAx
+ 0y AxAz — 0 AxAz + [(O0y [ 02)Ay]AxAz
= (pAxAyAz)a, 4.29)

where
p is the mass density of B at the origin O, which could be any typical point P on B
a, is the acceleration of P in an inertial reference frame*

By dividing by the element volume, canceling terms, and by the index symmetry for the shear
stresses, we see that Equation 4.29 may be written as

00y /Ox + 00y /Oy + Doy, |0z = pay (4.30)

Similarly, by adding forces in the Y- and Z- directions, we have
00y, /0x + 00y, 0y + 00y, [0z = pay (4.31)
00/ 0x + 00,0y + 00,/ 0z = pla, — g) (4.32)

where g is the gravity acceleration (9.8 m/s or 32.2 ft/s%). Except in the case of large structures, the
gravity (or weight) is usually inconsequential. Thus, in most cases, Equations 4.30, 4.31, and 4.32
have the same form and by using numerical index notation they may be cast into a compact
expression. If we let x — x|, y — x,, and 7 — x5, that is, letting 1, 2, 3 correspond to x, y, z, then
we can write the equations as

00i/0x; = pa; (i=1,2,3) (4.33)

with a sum over the repeated index j.

* See Ref. [1]. For static or slowly moving bodies, which comprise the majority of stress analysis problems, a, will be
zero.
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Equation 4.33 may be written in a more compact form by using the comma notation for
differentiation.* That is,

(), =0()/0x; (4.34)
Then, Equation 4.33 becomes
Tij.j = Pai (435)

A few more comments on notation: whereas repeated indices (such as the j in Equation 4.35)
designate a sum (from 1 to 3), nonrepeated (or ‘““free’’) indices (such as the i in Equation 4.35) can
have any of the values: 1, 2, or 3. In this context, in a given equation or expression, indices are either
free or repeated. Repeated indices are to be repeated only once, but free indices must occur in each
term of an equation. With a repeated index, the letter used for the index is immaterial. That is, any
letter can be used for the index that is repeated. Thus, Equation 4.35 may be written as

Oijj = Oikk = Oigg =+ = pa; (4.36)

4.4 STRESS MATRIX, STRESS DYADIC

As we observed in Section 4.2, it is convenient to assemble the stresses into an array, called the
“‘stress matrix,” as

Oxx Oxy Oy
o= |on Oy Oy (4.37)
Ox Oz Oy

In numerical index notation, we can express o as

o1l O O3
o=[ojl= |02 02 03 (4.38)
031 03 033

Observe that the values of the individual stresses of o depend upon the orientation of the X-, Y-,
Z-axis system and thus upon the direction of the unit vectors n,, n,, and n_, or alternatively upon the
direction of unit vectors n;, n,, and n3. A question arising then is: How are the stresses changed if
the orientation of the coordinate axes are changed? To answer this question, it is convenient to
introduce the concept of a “‘stress dyadic.” A dyadic is simply a product of vectors following the
usual rules of elementary analysis (except for communitivity) (see Ref. [3]). As an illustration,
consider a pair of vectors a and b expressed in terms of mutually perpendicular unit vectors,
n; (i=1,2,3)as

a=an; + anp + aznz = a;n; (4.39)

b= bllll + bzllz + b3n3 = bjllj (440)

where, as before, the repeated indices designate a sum over the range (1 to 3) of the indices. The
dyadic product d of a and b may then be expressed as

* See Ref. [2], for example.
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d = ab = (ajn; + axny + aznz)(b1n; + bymy + b3nz)
= (a;m)(bjm;)
= aibinin; + ajboniny + ajbning
+ abinony + abynomy + abznyn
+ azbinzn; + azbynzn; + azbsnzng
= a;bjn;n;

= dynin; (4.41)

where d;; is defined as the product: a;b;. The unit vector products in Equation 4.41 are called
“dyads.” The order or positioning of the unit vectors in a dyad must be maintained. That is,

nin; # nong, MmNz # N3Ny, N3N # ning (4.42)

Dyadics are sometimes called ‘“‘vector-vectors” because they may be viewed as vectors whose
components are vectors. The components of a dyadic (as well as those of vectors) are sometimes
called “‘tensors” (of rank 2 and rank 1).

Using these concepts and notation, let the stress dyadic o be defined as

g = O'ijn,-nj (4‘43)

Now suppose we are interested in a different orientation of unit vectors. Let ﬁj (j=1,2,3)be aset
of mutually perpendicular unit vectors inclined relative to the n; as depicted in Figure 4.14. Then the
respective orientations of the n; relative to the n; may be defined in terms of direction cosines 7}
given by

It is then obvious that the n; and the n; are related by the expressions [1]:

n;, = Tijﬁj and f'lj = T,'jl'l,' (445)

Observe in Equations 4.44 and 4.45 that the rules regarding free and repeated indices are main-
tained. That is, the free indices match the terms on either side of the equality and the repeated
indices are repeated only once in a given term. Also, in Equation 4.44, the first index (i) of S;; is
associated with the n; and the second index (j) is associated with the m;. This association
is maintained in Equation 4.45.

)

n; n,

FIGURE 4.14 Unit vector sets.
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The stress dyadic o is expressed in terms of the n; as
o = Gynghy (4.46)
then, using Equations 4.45 and 4.43, we get
0ij = TyTy6w and 6Oy = TyTjo; (4.47)

As noted earlier, the o;; and the J, are sometimes called “stress tensors.”

4.5 EIGENVECTORS AND PRINCIPAL STRESSES

Equation 4.47 shows that the value of the stress components depends upon the choice of axis system
and the corresponding unit vector directions. By using well-established procedures in vector, matrix,
and tensor analysis [3], it is seen that the matrix of the stress dyadic can be placed in diagonal form
by the appropriate choice of basis unit vectors. When this is done, with the off-diagonal elements
being zero, the shear stresses vanish and the normal stresses, occurring on the diagonal, have among
them the maximum and minimum normal stresses for all directions. These maximum and minimum
stresses are called “‘principal stresses,” or “eigenvalues” of the stress dyadic. The unit vectors
producing the diagonal stress matrix are called “‘eigenvectors” (or “‘unit eigenvectors”), and they
define what are called the “principal directions’ of the stress dyadic.

In stress analysis for strength considerations and in mechanical component design, it is of
interest to know the values of these principal stresses and the directions of the surfaces over which
they act. The following paragraphs outline a procedure for calculating these stresses and directions.
(Additional details may be found in Refs. [1] and [3].)

Consider again the stress dyadic o of Equation 4.46:

g = O'ijl'lil'lj (448)
Let n, be a unit vector. n, is defined as a unit eigenvector if it satisfies the relation:
ogen, = An, (4.49)
where A is a scalar. That is, n, is an eigenvector if the stress vector associated with n,, is parallel
to n,,.
Let n, be a unit vector perpendicular to the unit eigenvector n,. Then, the shear stress o,
associated with n, and n,, is zero. That is,
Ou =Nge0en, =Angen, =0 (4.50)
Recall that o is symmetric which implies that shear stresses associated with eigenvectors are zero.
The definition of Equation 4.49 may be used to obtain an expression for n,. Let n, be expressed
in terms of a convenient set of mutually perpendicular unit vectors n; (i = 1,2, 3) as

n, = ajng + any + aznz = a;n; = a;ng (451)

Then n, is known once the a; are determined.
By substituting from Equations 4.48 and 4.51 into Equation 4.49, we obtain

O N, = N;o;N;eq; N = N;0jjaiN;eN;

= n,-aijak8jk = ll,'O','jaj = )\a,-ni (452)
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where 8, called Kronecker’s delta function, is defined as

0 j#k
8jk :njol'lk = { 1 jik (453)

0ji has several useful properties. From the definition of Equation 4.53 we see that
Oue =3 (4.54)
Also, if v is any vector expressed in component form as v;n;, we have

Sivi=v, (i=123) (4.55)

This property (used in Equation 4.52), has led 6, at times to be called the “‘substitution symbol.”
Finally, the &;; are the elements of the identity dyadic I defined as

1= nn; = n,-Bijnj (4’56)

where the matrix of elements & is defined as

1 0 0
0=[0;]=]10 1 O 4.57)
0 0 1
The last equality of Equation 4.52 may be written as
o-ijajn[ = )\a;n; (458)
or in component form as
a',-jaj = )\Cli (459)
and in matrix form as
g1 012 013 aj aj
oy 0xn Oon||la|=Ala (4.60)
031 032 033 as aj

Equations 4.58, 4.59, and 4.60 are equivalent to the scalar equations:

(011 —May +opa; +o13a3 =0
o1a1 + (02 —A)ax + op3az =0 (4.61)

03101 +0xnay + (033 —Aaz =0

These equations form a set of three linear algebraic equations for a;, a,, and as. Thus their solution
determines n,. However, since the equations are “homogeneous’ (all right-hand sides are zero),
there is a nonzero solution only if the determinant of the coefficients is zero [4]. That is,

(011 — ) g2 g13
021 (02 —A) 023 =0 (4.62)
031 o3 (033 —A)
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By expanding the determinant, we obtain
A — o\ +oph —om =0 (4.63)
where the coefficients o7, oy, and oy are
o1 =01 + 00+ 033 (4.64)

O = 022033 — 032023 + 0330711 — 013031 + 011022 — 021012 (4.65)

om = 011002033 — 0(1032023 + 012031023 — 012021033 + 021032013 — 03101302 (4.66)

It is clear that oy is the sum of the diagonal elements of the stress matrix, oy is the sum of
the diagonal elements of the matrix of cofactors of the stress matrix, and o7y is the determinant
of the stress matrix.

Equation 4.63 is sometimes called the Hamilton—Cayley equation. It is known that with o being
symmetric (that is, 0, = 0;;), the To0ts (A1, A,, and A3) of the equation are real [3]. When the roots
are distinct, Equations 4.61 form a set of dependent equations for ay, a,, and a3. That is, at most only
two of Equations 4.61 are independent. Thus, there is no solution for a;, a,, and a3 without an
additional equation. But since n, is a unit vector with magnitude 1, we have

a+ata;=1 (4.67)

Observe that the roots, A; of Equation 4.63 are themselves the eigenvalues and thus the principal
stresses. That is, from Equation 4.49 we have

Oua = NgeTen, =NgeAn, = A (4.68)

Since there are three eigenvalues, Aj, A,, and Aj, there are three unit eigenvectors. When the
eigenvalues are distinct, these unit eigenvectors can be shown to be mutually perpendicular [1,3].

4.5.1 ILusTRATIVE COMPUTATION

To illustrate procedures for calculating values of principal stresses and their corresponding direc-
tions (the unit eigenvectors) suppose that the stress matrix relative to a convenient axis system is

5.0625 1.1908 1.0825
o= |1.1908 3.6875 0.6250 | 10* psi (4.69)

1.0825 0.6250 5.7500
Let n;, n,, and n; be unit vectors parallel to the axes, and let the unit eigenvectors have the form:
n, = an; + axny + azny = a;n; 4.70)

Then, from Equations 4.61 the equations determining the a; and the A are

(5.0625 — Ma; + 1.1908a, + 1.0825a3 = 0
1.1908a; + (3.6875 — A)az + 0.6250a; = 0 .71
1.0825a; + 0.6250a, + (5.75 — A)as = 0

where the units of the coefficients are 10* psi.
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The determinantal equation of Equation 4.62 together with Equations 4.64 through 4.66
produces the Hamilton—Cayley equation (Equation 4.63):

A — 14502 + 660 —94.5=0 4.72)
By solving for A we obtain the results

A =30, A,=45 A =70 (4.73)
Let A = A, and substitute into Equation 4.71:

2.0625a\" + 1.190843” + 1.082545” = 0
1.19084{" +0.687543 + 0.6250a" = 0 @74
108254 + 0.6250a3” +3.75045" =0

where the superscript (1) refers to A,. Since Equations 4.74 are dependent, we can obtain specific
values of the agl) by using Equation 4.67:

(@) + (@) + (") =1 4.75)
By selecting any two Equations 4.74 and using Equation 4.75, we obtain the results
a” =05, & =-0.866, d’ =0.0 (4.76)
Similarly, if we let A =X, =4.5, we obtain
ad? =0.6124, a5 =0.3536, o =—0.707 4.77)
Finally, if we let A =A3="7.0, we obtain
a¥ =0.6124, a5 =0.3536, af =0.7071 (4.78)
To summarize these results, the principal stresses are
o1 =3.0x 10" psi, 0, =4.5x 10*psi, o3 =7.0 x 10* psi (4.79)
and the corresponding principal directions are defined by the unit eigenvectors:

nfdl) = 0.5n; — 0.866n; + On3
n{® = 0.6124n; + 0.3536n, — 0.7071n; (4.80)
n{’ = 0.6124n; + 0.3536n, + 0.7071n;

Next, suppose that we form a transformation matrix 7 whose columns are the components of these
unit eigenvectors. That is,

0.5 0.6124 0.6124
T=|-0866 03536 0.3536 (4.81)
0 —-0.7071 0.7071
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Let ¢ be the stress matrix with the principal stresses on the diagonal. That is,

30 O 0
G=|0 45 0 [10*psi (4.82)
0 0 70
Then, we have the relation:
6 =T'oT (4.83)
where TT is the transpose of T. That is,
3.0 0.0 0.0 0.5 —0.866 0 5.0625 1.1908 1.0825
00 45 00| =1]0.6124 0.3536 —0.7071 1.1908 3.6875 0.6250
00 0.0 7.0 0.6124 0.3536 0.7071 1.0825 0.6250 5.75
0.5 0.6124 0.6124
x | —0.866 0.3536  0.3536 (4.84)
0 —-0.7071 0.7071

4.5.2 DiscussION

Observe in the foregoing analysis that the eigenvalues (the roots of the Hamilton—Cayley equation,
Equation 4.72) are real. Observe further that the associated unit eigenvectors of Equations 4.81 are
mutually perpendicular, as predicted earlier. It happens that with the stress matrix being symmetric,
the roots of the Hamilton—Cayley equation are always real and there always exist three mutually
perpendicular unit eigenvectors.

Suppose that instead of there being three distinct eigenvalues, two of them are equal. In this
case, it happens that every unit vector, which is perpendicular to the unit eigenvector of the distinct
eigenvalue is a unit eigenvector. That is, there are an infinite number of unit eigenvectors parallel to
a plane normal to the unit eigenvector of the distinct eigenvalue. If all three of the eigenvalues are
equal, every unit vector is a unit eigenvector. That is, all directions are principal directions and we
have a state of “hydrostatic pressure.”

Finally, observe that the set of eigenvalues, or principal stresses, contain values that are both
larger (7 x 10* psi) and smaller (3 x 10* psi) than the normal stresses on the diagonal of the stress
matrix of Equation 4.69. We discuss these concepts in more detail in the next section.

4.6 EIGENVALUES AND EIGENVECTORS—THEORETICAL
CONSIDERATIONS

In the foregoing discussion, several claims were made about the roots of the Hamilton—Cayley
equation and about the associated unit eigenvectors. Specifically, it is claimed that the roots are
real and that they contain the values of the maximum and minimum normal stresses. It is also
claimed that associated with these roots (or eigenvalues), there exist mutually perpendicular
eigenvectors. In this section, we discuss these claims. In subsequent sections, we also show that
values of the maximum shear stresses occur on planes inclined at 45° to the planes normal to the unit
eigenvectors.
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4.6.1 MAxIMUM AND MINIMUM NORMAL STRESSES

Let n,, be an arbitrary unit vector, and o be a stress dyadic. Let n; (i =1, 2, 3) form a set of mutually
perpendicular unit vectors and let n, and o be expressed in terms of the n; as

n, = a;n; and o = on;n; (485)

Then, a review of Equations 4.22 and 4.24 shows that the stress vector S, for n, and the normal
stress 0, on a plane normal to n, are

S, =0en, =njo4a;, and 04 = a0 (4.86)
The issue of finding out maximum and minimum values for the normal stress, o, then becomes the
problem of finding out the a; producing the maximum/minimum o, This is a constrained
maximum,/minimum problem because n, is a unit vector, the a; must satisfy the relation:

aa; = 1 (4.87)

We can obtain @; producing the maximum/minimum o, subject to the constraint of Equation 4.87
by using the Lagrange multiplier method [5,6]: Let f(a;) be defined as

f(a,-) = Ouqq + /\(1 — aiai) = a;0yd; + /\(1 - ail-) (488)

where A is a Lagrange multiplier. Then f will have maximum/minimum (extremum) values
when

of [0ay =0, k=1,2,3 (4.89)
By substituting from Equation 4.88 into 4.89, we have
Skimjaj + aia'iijk - 2/\61,‘8ik =0 (490)

where we have used Equation 4.53.* Then by using the properties of 6;; and the symmetry of o we
obtain

oka; + aioig — 2ha; =0
or
oa; = Aay “4.91)
By comparing Equations 4.59 and 4.91 we see that the values of the a;, which produce the

eigenvectors are the same «;, which produce extremal values (maximum/minimum) of the normal
stresses. Moreover, the Lagrange multipliers are the eigenvalues.

4.6.2 ReaL Sorutions oF THE HAMILTON—CAYLEY EQUATION

To see that the roots of the Hamilton—Cayley equation (Equation 4.63) are real, suppose
the contrary, that they are not real. Then, with the equation being a cubic polynomial, there

* Note that Jay/day is 0 if i # k and 1 if i =k, that is da;/0a; = 8.
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will be one real root and a pair of complex conjugate roots [7]. Let these imaginary roots have
the form:

A=p+iv and A=p—iv (4.92)
with i being v —1.
With imaginary roots, the resulting eigenvectors will also be imaginary. That is, they will have
the form:
n=u-+iv 4.93)
where u and v are real vectors. Then, from Equation 4.48 we have
oen =An (4.94)

or

oge(u+1iv) = (u + iv)(u + iv)
= (uu — vv) + i(vu + wv) 4.95)

Equating the real and imaginary parts (recalling that o is real), we have

Oeu = pu —vv (4.96)
and

TeV = vl + wv 4.97)

If we multiply the terms of Equation 4.96 by v and those of Equation 4.97 by u and subtract, we
obtain

VegeU—UeTgeV = —U(VeV+ Uell) (4.98)
But, since o is symmetric, the left-hand side is zero and thus we have
0 = v(v? +u?) (4.99)
Finally, since (v2 + u2) is positive (otherwise the eigenvector would be zero) we have
v=20 (4.100)

Therefore, from Equation 4.92, the roots (or eigenvalues) are found to be real.

4.6.3 MuTuALLY PERPENDICULAR UNIT EIGENVECTORS

Suppose that A, and A, are distinct roots of the Hamilton—Cayley equation with corresponding unit
eigenvectors n, and n,. Then, from Equation 4.48

ogen, =A,n, and oen, = AN, 4.101)
If we multiply the first expression by n,, and the second by n, and subtract, we obtain

n;,-a'onu—nu-a'-nb:(/\u—/\b)na-nb (4102)
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Since o is symmetric, the left-hand side of Equation 4.102 is zero and since A, and A, are distinct,
we have

ngen, =0 (4.103)

That is, n,, is perpendicular to n,. Therefore, if we have three distinct eigenvalues, we will have three
mutually perpendicular unit eigenvectors.

Next, let n,, n,, and n. be a set of mutually perpendicular unit eigenvectors and let them be
expressed as

n, = ajn; + axny + aznz = a;n;
n, = bin; + byny + bsny = b;n; (4.104)
ne = ¢y + oMy + ¢3N3 = ¢

where the n; form a convenient set of mutually perpendicular unit vectors. In matrix form, these
equations may be written as

n, a a as n n;
n, | = bl b2 b3 n | = S np (4 105)
n. cp C (3 n3 n3

where T is a matrix defined by inspection. Since n,, n,, n. and n;, n,, n3 are mutually perpendicular
unit vector sets, it is readily seen that S is an orthogonal matrix. That is, the inverse is the transpose.
Therefore, we can readily solve Equation 4.105 for the n; as

n n, aj b] C n,
m|=S"mn|=|a b ol|l|lmn (4.106)
n; n, az by c3] Ln.

or

n; = an, + bin, +cin,
n, = axn, + bznb + (653 1 P (4107)

n3 = aszng + b3ny + c3n,

Recall that since A,, A, and A are eigenvectors (or principal stresses) and n,, n,, and n, are unit
eigenvectors, the stress dyadic o may be expressed as

o = o;nn; = Angn, + Aynpn, +Angn, (4.108)

Then, by substituting from Equations 4.105 and 4.106, we obtain the expression:

a ay a3 [on o o] [a b c A 0O
b] bz b3 01 022 0723 ap b2 (o) = 0 )\}, 0 (4 109)
ci ¢ ¢l Loy o o3l las by 0 0 A

By comparing Equation 4.109 with Equations 4.83 and 4.84, we see that S'=7 and S=T"
(see Section 4.5.1).
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4.6.4 MuLtirLe (RereaTED) RooTs oF THE HAMILTON—CAYLEY EQUATION

If two of the roots of Equation 4.63 are equal, or if all three roots are equal, there still exist sets
of mutually perpendicular unit eigenvectors. To see this, recall from algebraic analysis that finding
the roots of a polynomial equation is equivalent to factoring the equation [7]. That is, if we know the
roots, say Ay, A, and A3, of Equation 4.63, we know the factors. This means that the following
equations are equivalent:

Mo+ ogh —og =0 (4.110)
and
A =ADA —=A)A —A3) =0 4.111)

By expanding Equation 4.111 and then comparing the coefficients with those of Equation 4.110 we
see that

A+ A+ A3 =07 “4.112)
/\1 +/\2 +/\2)\3 +)\3)\] = o (4113)
/\1)\2)\3 = o1 (4114)

Now, suppose that two of the roots, say A, and A,, are equal. Let n, and n. be unit eigenvectors
associated with roots A, and A 5. Then, with A, and A5 being distinct, the foregoing analysis (Section
4.6.3) shows that n; and n. are perpendicular. Let n, be n, x n.. Then, n,, n,, and n. form a
mutually perpendicular set of unit vectors.

Consider the vector o-en,. Since n,, n,, and n,. form a mutually perpendicular set, let o-en, be
expressed as

oen, = an, + n, + yn, 4.115)
where «a, 3, and vy are scalars to be determined. Observe that, being a dyadic, o may be expressed as

o=0l=0+n,n, +n,n, +n.n.)
(oeny)n, + (eny)n, + oen.)n. 4.116)

where I is the identity dyadic (see Equation 4.56). Since n, and n,, are unit eigenvectors, we have
(see Equation 4.49)

oen, =A7n, and oen. = A3n. “4.117)
By substituting from Equations 4.115 and 4.117 into 4.116 o is seen to have the form:

g = (Oll'la + Bnb + W’ﬂc)ﬂa + )\2nbnb + /\3]’16-115
= angn, + Bnyn, + yn.n, + Arnyn, + Azn.n, (4.118)

Relative to n,, n,, and n., the matrix o of o is then
a 0 O

=B A 0O (4.119)
vy 0 A3
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But since o must be symmetric, we have

B=v=0 (4.120)
Hence, o becomes
o = angn, + y,npn, + Azn:n, 4.121)
and o en, is
oen, = an, (4.122)

Therefore n,, is also a unit eigenvector. Moreover, from Equation 4.122 we see that
a+ A3 =A1+ A+ A3 (4.123)
That is,
a=A =X\ (4.124)

It happens that any unit vector parallel to the plane of n, and n,, is a unit eigenvector. To see this, let
n be the unit vector

n = an, + bn, (4.125)
with a®> + b*>=1. Then,

oen=o0+(an, +bn,) =aocen, + boen,
= aAn, + bA;n, = A(an, + bny)
=An (4.126)

Thus, n is a unit eigenvector.
Similarly, suppose that all three roots of the Hamilton—Cayley equation are equal. That is,

Al=Ar=A3=A (4.127)

Let n, be a unit eigenvector associated with the root A and let n, and n. be unit vectors
perpendicular to n, and to each other. Then we have the expressions:

oen, = An, (4.128)

and

oe+n, = an, + Bn, + yn., oen. = an, + ﬁnb + yn,. (4.129)

The objective is thus to determine «, B, v, &, B, and 7.
From Equation 4.116, o may then be expressed as
g = /\nana + (ana + Bnb + 'Ync)nb + (&na + Bnb + '?nc)nc
= Angn, + an,n, + angn,
+ Onyn, + Bnyny, + By,
+ On.n, + yn.n, + yn.n, (4.130)
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Relative to n,, n,, and n., the matrix o of ¢ is then

A« 6Az
=10 B B (4.131)
0 v v
Since o is to be symmetric, we have
a=a=0 and B=y (4.132)
By using Equations 4.112 through 4.114 and Equations 4.127 and 4.131 we see that
o =A+B+7y=3A (4.133)
on =By —v)+Ay+AB =3\7 (4.134)
om =By —¥) =N (4.135)

(Recall that oy, oy, and oy are respectively the sums of the diagonal elements, the sum of the
diagonal elements of the matrix of cofactors, and the determinant of the stress matrix.) These
equations are found to be redundant,* but a simple solution will be

B=9%=A and y=0 (4.136)
Equations 4.129 then become
oen, =An, and oen,=An, 4.137)

Therefore, n, and n, are unit eigenvectors. In this case, when all three roots of the Hamilton—Cayley
equation are equal, every unit vector is a unit eigenvector. To see this let n be the unit vector.

n = an, + bn, + cn, (4.138)
with a®> + b*>+ > =1. Then,

oen = oe(an, + bn, + cn,)
=acen, + boen, + coen,
= ain, + bAny + cAn,
= A(an. + bn;, + cn.)
=An (4.139)

4.7 STRESS ELLIPSOID

We can obtain a useful geometrical interpretation of the eigenvalue analysis by regarding the
product o«p as an operator on the vector p. That is, as an operator, o transforms the vector p
into the vector q as

oep=q (4.140)

* Observe that the issue of redundancy in Equations 4.133 through 4.135 may be addressed by considering an analogous

two-dimensional analysis with a stress matrix {ﬁ @ } .
Y v
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Let p be a position vector from the origin of a Cartesian axis system to the surface of the unit sphere.
Specifically, let p have the form:

p = xn, + yn, + zn, (4.141)
with
Py +2=1 (4.142)

and with n,, n,, and n, being mutually perpendicular unit eigenvectors. (That is, let the X-, Y-, and
Z-axes be along the principal directions of the stress of a body at a point.) Then o « p becomes

oep =0 (xn, + yn, 4+ zn.) = A1xn, + Aryn, + Ajzn, (4.143)

From Equation 4.140, if we let q be o« p and express q in the form:

q=Xn,+ Yn, + Zn, (4.144)
then we have
X=Ax, Y=ANy, Z=2As3z (4.145)
Using Equation 4.142 we then have
X v z

S| 4.146
vteta (3140

We can recognize Equation 4.146 as the equation of an ellipsoid with center at the origin and
semimajor axes: A1, A,, and A5. This ellipsoid is called the “‘stress ellipsoid.”” In Equations 4.140 and
4.142, if we think of p as a unit vector, then q is a stress vector and the units of X, Y, and Z are the
units of stress.

If n is an arbitrary unit vector, we see from Equation 4.24 that the stress vector S, associated
with n is

S, =0oen (4.147)
The normal stress S,,,, (or o,,,) on a plane normal to n is then
Sin =neoen (4.148)

From Equations 4.140 and 4.142, p is a unit vector, we can identify p with n and then using
Equation 4.144 we have

O'nn —NegeN — n.q
ne(Xn, + Yn, + Zn,) (4.149)

Therefore, we can interpret o,,, as the distance from the origin of the stress ellipsoid to a point Q on
the surface of the ellipsoid, where n is parallel to OQ. Observe then that the maximum and
minimum stresses will occur in the directions of the principal stresses with values among the
eigenvalues (A1, Ao, A3.), or the semimajor and semiminor axes lengths.
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Finally, observe from the ellipsoid equation that if two of the eigenvalues, say A; and A, are

equal, then the ellipsoid has a circular cross section. If all three eigenvalues are equal, the ellipsoid
becomes a sphere and we have a state of “hydrostatic pressure” (see Section 4.5.2).

4.8 MAXIMUM SHEAR STRESS

Consider again the stress dyadic o at a point on a loaded elastic body. Let A1, A,, and A3 be the
values of the principal stresses and let a;, a,, and a3 be the corresponding mutually perpendicular
unit eigenvectors. Then from Equation 4.49 we have

(22X §] :)\131, T «Q) :)\232, Te*aj3 :)\333 (4150)
Next, let ny, n,, and n3 be any convenient set of mutually perpendicular vectors and let n, and n,,
be an arbitrary pair of perpendicular unit vectors with components a; and b; relative to the n;
(i=1,2,3). That is,
n, = a;n; and n, = b,-ni (4151)
Then, the shear stress o, for the directions of n, and n, is
Oap = Nge O oMy, = a;0;b; 4.152)
Observe that since n, and n,, are perpendicular unit vectors we also have the relations:
a;d; = 1, b,‘bl‘ = 1, aibi =0 (4153)
Now, suppose that we are interested in finding the directions of n, and n,, producing the maximum
values of the shear stress o,,;,. Then, we will be looking for the a; and b;, subject to the conditions of
Equations 4.153, so that a,0;b; is maximum. Using the Lagrange multiplier method [56], we are
looking for the a; and b;, which maximize the function: ¢(a;, b;) given by

(,'b = Cl,'O','jbj + Oé(l — a,-ai) + B(l — bibi) + ’)’(O — Cl,‘bl‘) (4154)

where «, B, and vy are Lagrange multipliers and the parenthetical expressions are obtained from
Equations 4.153. Then if ¢ is to be maximum, we must have

0¢p/0a; =0 and 0O¢/0b; =0 (4.155)
or from Equation 4.154,

0 /0a; = oiibj — 2aa; — yb; =0 (4.156)
and

0¢ /0b; = ajoji — 2Bb; — ya; =0 4.157)

Equations 4.156 and 4.157 may be written in index-free notation as

oen, = 2an, + yn, (4.158)
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and
oen, =20n, + yn, (4.159)
By taking the scalar product of these equations with n, and n,, we obtain
N eGeN, =0y =20, NpeOeN, =0p =Y (4.160)
NpeGeN, =0p, =20, NgeOeN, =0, =7 4.161)

Since o, = 0}, we have a = 3. Then, by successively adding and subtracting Equations 4.158 and
4.159 we obtain the expressions:

o+, +ny) = Ca + y)(n, +ny) 4.162)
and
os(n, —ny) = (y — 2a)(n, —ny) (4.163)

Equations 4.162 and 4.163 are identical to Equation 4.49 with (n, +n;) and (n, — n;) now being
eigenvectors, and (2 + ) and (y—2«a) being the eigenvalues. Therefore, (n, + np) / V2 and
(n, — np) / /2 are unit eigenvectors along the directions of the principal stresses, and (2a + )
and (y—2a) are thus values of the principal stresses. Observe further that (n, + ny) / V2 and
(n, —ny) / V2 are perpendicular to each other and that m, and n, are at 45° angles to
(ng, +nyp) / V2 and (n, —ny) / V2 respectively. That is, the maximum values of the shear stress
occur on planes bisecting the planes of the principal stresses. Thus, with (2a 4 y) and Qa — y)
being values of the principal stresses, we can make the assignments

200 +y; = A1, 200+ 7y, =2, 203+ 73 =A3 (4.163)
Y1 — 20(1 = /\2, Y2 — 26!2 = /\3, Y3 — 2&3 = /\1 (4164)

By solving for 2«4, 2a,, and 2a; we obtain
20 = (A1 —A2)/2, 200 = A2 —A3)/2, 203 =(A3 —A)/2 (4.165)

But, from Equations 4.160 and 4.161, we see that these are the values of the maximum shear stresses.

From these results, we see that large shear stresses occur when there are large differences in the
values of the principal stresses and that if a material fails in shear the failure will occur in directions
at 45° relative to the direction of the principal stresses.

4.9 TWO-DIMENSIONAL ANALYSIS—MOHR'’S CIRCLE

We can obtain additional insight into the concepts of principal stresses and maximum shear stresses
by considering a two-dimensional analysis where the stress is primarily planar, or with the shear
stresses in a given direction being zero. Consider, for example, the following stress matrix:

J11 0 0
g = [0’,]] = 0 022 023 (4166)
0 o o3
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where the subscripts i and j refer to mutually perpendicular unit vectors n; (i =1, 2, 3), parallel to
X, Y, Z coordinate axes, with the stress dyadic o having the usual form:

In this context, we see that n; is a unit eigenvector and o, is a principal stress. By following the
procedures in Section 4.5, we can easily obtain the other two unit eigenvectors and principal
stresses.

To this end, observe that with a stress distribution as in Equation 4.166, the determinantal
expression of Equation 4.62 becomes

(o1 =) 0 0
0 (0'32 —)\) 023 =0 (4168)
0 o3 (033 —A)
By expanding the determinant, the Hamilton—Cayley equation takes the simplified form:

A — o1)A? = (022 + T3 + 0003 — 053] =0 (4.169)

where, due to the symmetry of the stress matrix, o3, = 03. By solving Equation 4.169 for A we obtain

0+ 033 0 —on\?2 12
M=o and Ay = TR S0 [(#) —5—0'23} (4.170)

Let n, be a unit eigenvector with components g; relative to the n; (i =1, 2, 4). Then, from Equations
4.61 and 4.67, a; must satisfy the equations:

(11 —ANay +0ay +0az =0
Oay + (022 —A)az + o3a3 =0

Oay + 02302 + (033 — A)az = 0 @170
@ +ad+ a% =1
with the first three being dependent. One immediate solution is
a’=1, a’ =d’ =0 (4.172)
with the corresponding unit eigenvector being
n) = n, (4.173)

To obtain the other two unit eigenvectors, observe that these vectors will be parallel to the Y-Z plane
as depicted in Figure 4.15, where the inclination of the unit eigenvectors is determined by the angle
6 as shown. Then n® and n’ may be expressed as
n® = cosfn, +sinfn; and n® = —sin6n, + cos Oy (4.174)
and thus the components aﬁz) and aE3 ) are
a(lz) =0, a(zz) = cos 0, a§2> =sin6 (4.175)

d¥ =0, a =—sinb, a’ =cosh (4.176)
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n,

FIGURE 4.15 Unit eigenvectors parallel to the Y-Z plane.

Observing Equations 4.175 and 4.176, the fourth expression of Equation 4.171 is similarly satisfied.
The first expression of Equation 4.171 is also satisfied by the first unit eigenvector components. This
leaves the second and third equations, which are dependent. For the second unit eigenvector, these
are equivalent to the single equation:

(022 —A)cos O + gp3sinf =0 4.177)
Solving for tan 6 we obtain
—A A
tan 6 — —[M] -2 92 (4.178)
023 023 023
By substituting for A, from Equation 4.170, we have
5 712
tang = |23 92| | (72798 (4.179)
20’23 20’23
By solving for the radical expression, squaring and simplifying, we obtain
tan” 6 — {w] tand — 1 =0
023
or
sin? 6 + [M} sinf cos@ — cos’ 0 = 0
023
or
[w} sin 26 = cos 20
2023
thus,
2
tan20 = —22 (4.180)

022 — 033
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For the third unit eigenvector and the third eigenvalue, the second expression of Equation 4.171
becomes

(022 — A3)(—sinf) + op3cos6 =0 (4.181)
By substituting for A3 from Equation 4.170 and simplifying we again obtain

2
tan20 = —22 (4.182)
02 — 033

Although Equations 4.180 and 4.182 are the same, they still produce two values of 6 differing by
7/2 radians. That is,

tan 2(0 + 7/2) = tan 26 (4.183)

so that

6 = tan! <i> and 0 = (7/2) +tan™! L (4.184)
02 — 033 On — 033

Equation 4.184 determines the inclination of the unit eigenvectors n{® and n® in the Y-Z plane.
That is, once the value of 6 is known from Equation 4.184, Equations 4.175 and 4.176, then the
components of n? and n® relative to the n; unit vector system can be determined.

Suppose we select n{V, n{?, and n{® as a basis system and for simplicity, let us rename these
vectors simply as a;, a,, and a3. That is, let

n =a (i=1,273) (4.185)

Suppose that 4; (i =1, 2,3) form a mutually perpendicular set of unit vectors with &, parallel to a,
and &, and &; inclined at an angle ¢ relative to a, and as as in Figure 4.16. Suppose further that we
are interested in determining the stresses in the directions of 4, 4,, and a3. To this end, recall that
since the a; are unit eigenvectors, the stress dyadic o expressed in terms of a; has the relatively
simple form:

o = 0jaa = A1aja; + Araxay + Azasas (4.186)

with the stress matrix being

X000
o=10 X 0 (4.187)
0 0 X5

2

a

FIGURE 4.16 Unit vector inclinations.
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Let S be a transformation matrix between the a; and 4; systems with elements of S being S;
defined as

From Figure 4.16, S is then seen to be
1 0 0
S=1[Sij1=10 cos¢ —sing (4.189)

0 sin¢g coso
Next, let the stress dyadic o be expressed in terms of the &; system as
o = 0,23, (4.190)
with the stress matrix ¢ then being

011 012 013

S
|

021 O 023 (4.191)

031 0n 03
From the definition of Equation 4.188, we can relate the a; and the &; unit vectors by the relations:
a;=S;a, and a;=S;q; (4.192)
By substituting in Equation 4.190, we obtain the relation:
Gij = SuSjon = SkiouSy (4.193)
or in the matrix form:
=S50S (4.194)
By substituting from Equations 4.187 and 4.189 we have

1 0 0 A0 O 1 0 0
=10 cos¢p sing 0 A O 0 cos¢p —sing
0 —sin¢g cos¢ 0 0 A3| |0 sing cos¢

or

Al 0 0
=10 (Arcos’d+Assind) (A3 —Ay)sinecos (4.195)
0 (As—Ay)singcosd  (Aysin® ¢ + Aj cos? @)

Therefore, we have the relation:

Gl =011 =A (4.196)
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O3

A A
092, 033

FIGURE 4.17 Stress circle.

A +A3 Ay —A
2+3+2 3 ¢

02 = Ay coszqﬁ—i—)\3 sin2¢ = > > 0s2¢
033 = Aa sin® ¢ 4+ A3 cos® ¢ :/\2 —;/\3 —/\2 ;/\3 cos 2¢
and
0y3 =03 = (A3 —Ap)sin¢cosd = —/% sin 2¢

(4.197)

(4.198)

(4.199)

Equations 4.197 through 4.199 may be represented graphically as in Figure 4.17, where we have
constructed a “‘stress circle” with radius (A, —A3)/2, positioned on a horizontal axis, which
represents the normal stresses: d», and d33. The vertical axis represents the shear stress: 6,3. The
center of the circle is placed on the horizontal axis at the average stress: (A, +A3)/2. With this
construction, we can see that the stresses of Equations 4.197 through 4.199 are represented by the
ordinates and abscissas of the points A and B on the circle at opposite ends of a diameter inclined at
2¢ to the horizontal as in Figure 4.18. This construction for planar stress computation is commonly

known as “Mohr’s circle.”

Also, observe that the maximum shear stress occurs on surfaces inclined at 45° relative to the

directions of the principal stresses.

FIGURE 4.18 Mohr’s circle for planar stress computations.
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SYMBOLS

A Area

a Vector

a;(i=1,2,3) Components of a or n, along n;

AL Ay A, Projections of area A normal to X, Y, Z
B Body

b Vector

b, (i=1,2,3) Components of b along n;

B Left side of B

Br Right side of B

d Dyadic

E Rectangular element

g Gravity acceleration

I Identity dyadic

n(i=1,2,3) Mutually perpendicular unit vectors
n; (i=1,2,3) Mutually perpendicular unit vectors
0 Origin

P Point

P Force

M Couple torque

N Cutting or dividing plane

N Cutting or dividing plane

n Unit vector

n, Unit eigenvectors

n,, n,, n, Mutually perpendicular unit vectors
Ny, Ny, N, Components of n along n,, n,, n,

P. q Position vectors

R Surface region

S Stress vector

S Stress vector

S. Stress vector on a plane normal to n
Sixs Snys Snz Components of S, along n,, n,, n,
S Sy, S, Components of S along n,, n,, n,

T Tetrahedron, Transformation matrix
Ti Direction cosines defined by Equation 4.44
TT Transpose of T

A\ Vector

v; Components of V along n;
x;(i=1,2,3) X, ¥, Z

X, Y, Z Cartesian (rectangular) coordinate axes
Ax, Ay, Az Edges of rectangular element

o Unit matrix

0y Kronecker’s delta symbol, defined by Equation 4.53, Elements of &
A Eigenvalue

Ni, Ao, Az Eigenvalues

p Mass density

o Stress dyadic

o Stress vectors

o (i, j=x,y,2) Stress components
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0;(i=1,2,3)  Stress components

a1, o1, 0711 Hamilton—Cayley equation coefficient defined by Equations 4.63 through
4.66
T Shear stress

7; (i, j=x,y,z) Shear stress components
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5 Strain in Two and Three
Dimensions

5.1 CONCEPT OF SMALL DISPLACEMENT

Just as with stress, we can generalize the concepts of simple strain and simple shear strain from one
dimension to two and three dimensions. For most engineering materials, the displacements and
deformations are small under usual loadings. (Exceptions might be with polymers and biomaterials.)
For small displacements, we can neglect products of displacements and products of displacement
derivatives when compared to linear terms. This allows us to make a linear analysis, and thus, a
simplified analysis.

Even though the analysis is linear, it may still provide insight into the structures and structural
components where the displacements and deformations are not small, as with some polymer and
biomaterials. Linear analyses for such materials simply become more valid, as the displacements
and deformations become smaller.

5.2 TWO-DIMENSIONAL ANALYSES

Consider a small square element E of an elastic body as it would appear before and after
deformation as in Figure 5.1 where the deformation is exaggerated for analysis convenience. Let
the vertices of E before and after deformation be A, B, C, D and A’, B', C', D' respectively and let the
initial sides of E be Ax and Ay (with Ax = Ay).

Let X-Y be a Cartesian axis system parallel to the edges of E before deformation. Let the X-Y
components of the displacement of vertex A (to A’) be u and v. Then the displacements of the other
vertices of E may be approximated by using a truncated Taylor series expansion. For vertices B and D,
the X-Y displacements are

X Y
Vertex B ut ar gt Flpe SRy N 5.1)
ertex B u+ o Axt o os vt oo 1 o .
Ou 1%, , ov 1 0*v
Vertex D: qua Aerz'asz + e V+8Ay+2'82Ay + e (5.2)

To measure the deformation of E, during the displacement, it is convenient to superimpose the
before and after representations of Figure 5.1 as in Figure 5.2 where we have neglected the higher
order terms of the Taylor series expansion.

As a generalization of the concept of simple strain (see Chapter 2), we can define the strain
in the X and Y directions as the normalized elongation (elongation per unit length) of the element
E in the X and Y directions. Specifically, the strain in the X direction, written as &,, may be
approximated as

55
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Y Y
D C D’ ¢
Ay E E
ol A7 & B ol a B
X X
Before deformation After deformation

FIGURE 5.1 Square element E before and after deformation.

du 2 v 2 12
B |A/ B/| N |AB| B [(AX—I—%AX) —|—(%Ax) } — Ax

b Ax Ax
A 220A2] P A A1+ 12 - Ax
- Ax - Ax
Ov
-2 (5.3)

where we have used a binomial expansion [1] and neglected quadratic and higher powers of Ay to
approximate the square root. Similarly, the strain in the Y-direction, &,, is approximately

2 2 1/2
o ou _
A’ D|—|AD| [(Aerf’yAy) +<9yAy) } Ay
R Ay B Ay
[Ay2+2@A Z}I/Z—A Ayl1+1@2| —a
B oy 2Y y_ y 2&) %y y
a Ay B Ay
ov
=z 5.4
By (5.4)

Observe again that the approximation used in obtaining Equations 5.3 and 5.4 become increasingly
valid the smaller Ax, Ay, Ju/0x and Jv/dy become.

ey

C
: T
\4
Ay
a}/ Ay ﬂ Ax
B’ ox

AA Ax B f
] }iaum

ox

FIGURE 5.2 Superposition of deformed and undeformed element.
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e
1 c
g_;Ay Ay WAy
o B 18x
A4 M B 1
~ |,

FIGURE 5.3 Superposition of deformed and undeformed element.

5.3 SHEAR STRAIN

Consider again the superposed deformed and undeformed element E of Figure 5.2. Consider the
distortion of the element from a square to a rhombic shape. We can quantify the distortion by
the shear strain as we did earlier with simple tangential loading (see Figure 2.10). For example, at A,
the shear strain, written as v,,, is the difference between the angle ¢’ shown in Figure 5.3 and /2.
That is,

Yy = /2 — o' (5.5)

From Figure 5.3 we see that 6’ is

o () - ()

ou Ov

Then, by substitution from Equation 5.6 into 5.5, we have

ou Ov

— 4z 7
8y+8x .7)

y}Cy

Referring again to Figure 5.3 and Equation 5.7, we can think of the shear strain y,, as the sum of the
angles {5, and s, shown in Figure 5.4. By comparing Figures 5.3 and 5.4 we see that these angles are

After
deformation
v
(= du/dy)
//)_’/7/ Before
} deformation
VY, (=0v/dx)

FIGURE 5.4 Distortion angles.
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P

ANV
ANV

Before loading After loading

FIGURE 5.5 Cantilever beam before and after end force loading.

simply 9v/0x and Ju/dy. Since these angles are not equal in general, it is often convenient to think
of the shear strain as the average value of the angles (measured in radians) and designated by &,.
That is,

ou Ov

To distinguish these two shear strains &,, is sometimes called the “‘mathematical shear strain’ and
Y.y the “‘engineering shear strain.”

5.4 DISPLACEMENT, DEFORMATION, AND ROTATION

Unfortunately the terms “displacement” and ‘“‘deformation” are occasionally used interchangeably
suggesting that they are the same. To be precise, we should think of ““displacement’ at a point P on
an elastic body B as simply the movement of P during the loading of B. Displacement can occur
with or without deformation. For example, an elastic body can undergo a “rigid body’” movement
where the points of the body have relatively large displacements but the body itself has no
deformation. On the other hand, ‘“deformation” refers to a distortion, or change in shape,
of a body. Whereas displacement can occur without deformation, deformation always involves
displacement.

As an illustration, consider a cantilever beam with an end load as in Figure 5.5. Consider a small
element E of the beam near the end and at the center (on the neutral axis) of the beam as shown in
exaggerated view in Figure 5.6. For all practical purposes, E simply translates and rotates, but it is
not deformed.

In general, an element within a loaded elastic body will undergo deformation, translation, and
rotation. “Deformation” may be measured and represented by the normal and shear strains defined
in Sections 5.2 and 5.3. “Translation” is simply a measure of the change of position of the element.
“Rotation,” however, prompts further consideration: consider again a small square element E, with
vertices A, B, C, D, before and after loading as in Figure 5.7. We can visualize the rotation by

\D E\D

Before loading After loading

FIGURE 5.6 A small element (in exaggerated view) in the center near the end of the cantilever beam of
Figure 5.5.
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Y Y
’ C’
D C D
E
ol 4 B O| A B’
I X I X
Before deformation After deformation

FIGURE 5.7 Square element E before and after deformation.

eliminating the translation: that is, by superposing the before and after representations as in
Figure 5.8. We can further isolate the rotation by eliminating the strain as in Figure 5.9, resulting
in a representation of the element rotation. We can then quantify the rotation of the element in terms
of the rotation of its diagonal AC, which in turn is approximately equal to the average of the
rotations of the sides AB and AC. With counterclockwise rotation assigned as positive (that is,
dextral rotation about the Z-axis), the element rotation w, is then approximately

w, = 1/2(0v/dx — Ju/dy) (5.9)

5.5 GENERALIZATION TO THREE DIMENSIONS

The foregoing concepts and results are readily generalized to three dimensions: let P be a point on
an elastic body B, which is subjected to a general loading as in Figure 5.10. Prior to the loading of B,
let P be at the lower rear vertex of a small cubical element E with sides parallel to the coordinate
axes and having lengths Ax, Ay, Az (all equal) as represented in Figure 5.11. Then, as B is loaded
and deformed, we can imagine E as being translated and rotated and also deformed as in Figure
5.12. We can visualize normal strains along the elongated (or shortened) edges of E and shear
strains, as the faces of E are no longer at right angles to one another, and also visualize the
translation and rotation of the element itself.

X

FIGURE 5.8 Superposition of deformed and undeformed element representation.
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—Ju/dy
l——
c

ov/ox

FIGURE 5.9 Element rotation.

X

FIGURE 5.10 A loaded elastic body B and a point P in the interior of B.

Ay

Az

Z
Ax
%Y
X

FIGURE 5.11 A small cubical element E of an elastic body.

E

17V

=

FIGURE 5.12 Translated, rotated, and deformed element E of a loaded elastic body.
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Let the displacement of P relative to a convenient set of XYZ axes be u, v, w respectively. Then,
as an immediate generalization of Equations 5.3 and 5.4, we obtain the strains along the edges of E
intersecting at P as

ov B 6_w
0z

2o =
ady :

Ou

a0 (5.10)

& = &y =

Similarly, as generalizations of Equations 5.7 and 5.8, the engineering and mathematical shear
strains measuring the angle changes of the faces of E intersecting at P are

_@+@ _@_f_(’)_vv _6_W+@ G.11)
yx”_ﬁy ax =T 5 dy’ Yo = oy T o ’
and
1/0u Ov av  Ow 1 /0w Ou
Exy = E (8_y+8_x)’ Eyz = ( +a—y) Eux = 5 <a + 8_Z> (5.12)

As a generalization of Equation 5.9, we obtain expressions for the rotation of E about the X, Y, and

Z axes as
" 3_W_@ © @_a_w © @_@
* ox oy) T2\ o) Oy Ox

Observe the patterns in terms of Equations 5.10 through 5.13: these patterns become evident if we
rename variables as

(5.13)

X — X1, y — X2, 7— X3
u— up, vV — Uy, W — U3
Ex — E11, & — &, &y E&33 (5.14)
7xy - 712’ y)vz - YZS’ ny - Y3l
Exy 7 €12, &y 7 €23, Ey — E3]
w; — W)2, a)y — W73, Wy — W3]
Then, Equations 5.10 through 5.13 become
Ou, Ouy Ouz
=1 ==, = 5.15
en 8x1 a)C2 8)(?3 ( )
81/!1 81/{2 8142 81/[3 8143 8u1
g o) = (&2 9 = (=42 5.16
Y2 <8xz + 8x1> T2 <8X3 + 0xp a1 X1 + Ox3 (5.16)
1 8u1 8u2 1 8u2 (9143 1 (3%3 aul
h any - 25, - 5.17
e = 2 (6x2 * 6)61) &3 = 2 (8)63 + 8x2 &= 2 Bxl 8)63 ( )
1 /Ou; Ouy 1 [Ouy 6143 1 /0us Ou (5.18)
w = R = — |, o = — .
2= 2 8)62 Bxl = 2 8)(3 8x2 3 2 8x1 8x3



62 Practical Stress Analysis in Engineering Design
The respective terms of these equations are of the same form and they can be generated from one

another by simply permutating the numerical indices (that is, 1 — 2, 2— 3, and 3 — 1). With this
observation, we can simplify the terms in the equations by introducing the notation:

o )/8x,-2( )i (i=1,2,3) (5.19)

Then, Equations 5.15 and 5.17 may be written in the compact form:
1 .
gj = E(ui,j +u) (G,j=1,2,3) (5.20)
Similarly, Equation 5.18 becomes
1 .
wl] = E(ul‘] — I,{N) (l,] = 1, 2, 3) (521)

Observe in Equation 5.20 that
Eij = &ji (522)
Hence, if the &;; are placed into a strain array, or strain matrix, as

€11 €12 €13
& = €21 €22 &3 (523)
€31 €32 &33

then ¢ is symmetric (analogous to the stress matrix o of Chapter 4).
Observe further from Equation 5.21 that

wj = —wj; (5.24)
Hence, if w;; are placed into a rotation array w as

W] W2 O3
w = w71 w2 W3 (525)
w3 W3 W33

we see that the diagonal terms are zero and that the corresponding off-diagonal terms are negative of
each other. That is, @ is skew symmetric and it may be written as

0 w12 w13 0 W, — Wy
W= [ —wi2 0 w3 | = | —W, 0 Wy, (526)
—w13 —w73 0 w; —Wy 0

5.6 STRAIN AND ROTATION DYADICS

Just as the stress matrix elements are scalar components of the stress dyadic, the strain and rotation
matrix elements may be regarded as scalar components of strain and rotation dyadics. To this end,
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let n;, n,, and n3 be mutually perpendicular unit vectors parallel to the X, Y, and Z axes respectively.
Then the strain and rotation dyadics are simply

£=¢gnn;, and ® = w;n;n; 5.27)

(As with the stress dyadic, we can regard the components of the strain and rotation dyadics as
“tensor components.”)

Observe further that with the strain dyadic being symmetric, we can perform an eigenvalue
analysis to obtain the values and the directions for the maximum and minimum strains. The
procedures of such analyses are exactly the same as the eigenvalue analysis for the stress
dyadic in Section 4.5. We can similarly also perform a Mohr circle analysis for two-dimensional
(or planar) problems.

5.7 STRAIN AND ROTATION IDENTITIES

Consider again the strain and rotation components expressed in Equations 5.20 and 5.21 as
1 1
8ij = E(ui,j —+ Mj,,') and wij = E(u,’,]‘ — uj,i) (528)

We see that both the strain and rotation depend directly upon the rate of change of the displacement
from point to point within the body—the so-called “displacement gradients”: u;; (or Ou;/Ox;).
Consider the following identity with the u;;:

1 1
Uij = 5(“1‘,/’ +uji) + 5(“1’,/‘ — ;i) (5.29)

Observe that the terms on the right side of this identity are simply &; and w;;. That is,

Uij = &jj + wjj (5.30)
Consider again the strain components:
1 1 (Ou; Ou;
== (U ; D==—+= 5.31
8./ z(u 5] +u./s) 2 <8Xj +8X,'> ( )

If, during the course of an analysis, we are able to determine the strain components, we can regard
Equations 5.31 as a system of partial differential equations for the displacement components.
However, since Equation 5.31 is equivalent to six scalar equations, but that there are only three
displacement components, the system is overdetermined and thus unique solutions will not be
obtained unless there are other conditions or requirements making the equations consistent. These
conditions are usually called ‘“‘compatibility conditions’ or “‘compatibility equations.”” In theoretical
discussion on elasticity and continuum mechanics (see for example, Refs. [2-9]), these compatibility
equations are developed in a variety of ways and are found to be [2—10]:

Eijke + ke — Eikje — Ejeik = 0 (5.32)
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Since each of the indices has integer values 1, 2, and 3, there are a total of 81 of these equations.
However, due to symmetry of the strain matrix, and identities of mixed second partial derivatives,
only six of the equations are seen to be distinct. These are

£1123 + €311 — &31,12 — €12,13 = 0

£2031 +&3122 — €1223 — &n21 =0

£3312 + €123 — &xn31 —&3132 =0 (5.33)
2e12,12 — €122 — €211 =0

282323 — €233 — €322 =0

2e3131 — €33,11 — €133 =0

It may be convenient to have Equations 5.33 expressed using the usual Cartesian coordinates: x, y, z.
In this convention, the compatibility equations are

ey n D%y, B e,y B ey B
oy0z  Ox*>  Oxdy 0x07
D’eyy  Pey B D*eyy B ey, 0
0z0x = 0y>  Oydz OyOx
e, ey ey, ey B

oxdy = 02  0z0x 9z20y

(5.34
) 828xy B e,y B 828yy —0 )
Oxdy  0y? ox2
D’ey, B D’eyy B e, _0
Oydz 07 Oy?
zﬁzaa Pe., ey _o

0z0x  Ox2 02

Observe the pattern of the indices and terms of Equations 5.33 and 5.34.

Finally, in theoretical discussions (see for example Refs. [6,8,9]), it is asserted that only three of
the six compatibility equations are independent. This is consistent with the need to constrain the six
strain components to obtain a unique set of three displacement components (aside from rigid-body
movement). That is, with six equations and three unknowns, only three constraints are needed.

SYMBOLS

n (i=1,2,3) Mutually perpendicular unit vectors

U, v, w Displacements in X, Y, Z directions

u; i=1,2,3) Displacement

X, ¥, 2 Cartesian coordinates

X, Y Z Cartesian (rectangular) coordinate axes
Yays Yy Yox Engineering shear strains (Sections 5.3 and 5.5)
Y125 Y23, Y31 Engineering shear strains (Section 5.5)
Ax, Ay, Az Element dimensions

& Strain matrix

£ Strain dyadic

g;j (i,j=1,2,3) Strain components
&y, &y, &, Normal strains in X, Y, Z direction
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Exyr Eyzr Exx Mathematical shear strains (Sections 5.3 and 5.5)

w Rotation matrix

(0} Rotation dyadic

W12, W33, W3] Rotations
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6 Curvilinear Coordinates

6.1 USE OF CURVILINEAR COORDINATES

The formulation of the equilibrium equations for stress and the strain—displacement equations are
readily developed in Cartesian coordinates, as in Chapters 4 and 5. In practical stress—strain
analyses, however, the geometry often is not rectangular but instead cylindrical, spherical, or of
some other curved shape. In these cases, the use of curvilinear coordinates can greatly simplify the
analysis. But with curvilinear coordinates, the equilibrium equations and the strain—displacement
equations have different and somewhat more complicated forms than those with Cartesian coord-
inates. To determine the equation forms in curvilinear coordinates, it is helpful to review some
fundamental concepts of curvilinear coordinate analysis. In the following sections, we present a
brief review of these concepts. We then apply the resulting equations using cylindrical and spherical
coordinates.

6.2 CURVILINEAR COORDINATE SYSTEMS: CYLINDRICAL
AND SPHERICAL COORDINATES

6.2.1 CyLINDRICAL COORDINATES

Probably the most familiar and most widely used curvilinear coordinate system is plane polar
coordinates and its extension in three dimensions to cylindrical coordinates: consider an XYZ
Cartesian system with a point P having coordinates (x, y,z) as in Figure 6.1.
Next, observe that P may be located relative to the origin O by a position vector OP, or simply
p, given by
p = xn, + yn, + zn, 6.1)
where n,, n,, and n, are unit vectors parallel to the X-, Y-, and Z-axes as in Figure 6.2.

Suppose now an image of P, say P, is projected onto the X-Y plane as in Figure 6.3. Then we
can also locate P relative to O by the vector sum OP + PP as in Figure 6.4. That is

p = OP = OP + PP (6.2)

Let r be the distance from O to P; z be the distance from Pto P; and 0 be the angle between OP and
the X-axis, as in Figure 6.5. Then we have the expression

OP =rn, and PP =, 6.3)

where n, is a unit vector parallel to OP as in Figure 6.5.
Here, we observe that n, may be expressed in terms of n, and n, as

n, = cos 6n, + sinOn, (6.4)

67
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P (x,,2)

X

FIGURE 6.1 XYZ coordinate system with a point P having coordinates (x, y, z).

Z
P (x,y,2)
n, [
P
O
Y
ny
e
X
FIGURE 6.2 Position vector p locating point P relative to origin O.
VA
P(x,y,2)
© Y
\ p (%,7,0)

X

FIGURE 6.3 Projection of P onto the X—Y plane.
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op P
X

FIGURE 6.4 Position vectors locating P relative to O.

By substituting into Equation 6.3 and by comparing with Equation 6.1 we have
x=rcosf, y=rsinf, z=z (6.5)
Observe that with the Cartesian coordinates of P being (x,y, z), we see from Equation 6.5 that we

can then locate P by specifying the parameters: (r, 6, z), the cylindrical coordinates of P. Observe
further that Equation 6.5 may be solved for r, 6, and z in terms of x, y, and z as

r=@+yY)"Y2, o=tan"'(y/x), z=z2 (6.6)

Suppose that in Equation 6.5 we hold 6 and z to be constants, but let r be a variable, say ¢. Then
we have

x=tcosh, y=tsinh, z=z2 6.7)
These expressions have the form:

x=x(t), y=y0), z=z0 (6.8)

P (x,,2)

X

FIGURE 6.5 Locating P relative to O by parameters r and 0 (cylindrical coordinates).
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which may be interpreted as parametric equations [1] with parameter ¢. Indeed, Equations 6.7 are the
parametric equations of radial lines.

Similarly, in Equation 6.5, if we hold r and z constant and let 6 be a variable parameter ¢,
we have

X =rcost, y=rsint, z=z (6.9)

These are parametric equations of circles.
And, if r and 6 are constants and z is varied, we have

x=rcosf), y=rsinf, z=t (6.10)

These are parametric equations of lines parallel to the Z-axis. The radial lines, the circles, and the
axial lines of Equations 6.8 through 6.10 are the coordinate curves of the cylindrical coordinate
system.

6.2.2 SpHERICAL COORDINATES

Next to cylindrical coordinates, spherical coordinates appear to be the most widely used of the
curvilinear coordinate systems. Figure 6.6 illustrates the parameters p, 6, and ¢ commonly used as
spherical coordinates where p is the distance from the origin O to a typical point P, 6 is the angle
between line OP and the Z-axis, and ¢ is the angle between line OP and the X-axis, where, as
before, P is the projection of P onto the X—Y plane.

As before, let p be the position vector OP locating P relative to O and let n,, n,, and n, be unit
vectors along the X, Y, and Z-axes as in Figure 6.7. Then, we can express p as

p = OP = OP + PP = psin f(cos ¢n, + sin ¢n,) + p cos On, (6.11)
and as
p = xn, + yn, + zn, (6.12)

where, as before, x, y, and z are the Cartesian coordinates of P. By comparing Equations 6.11 and
6.12 we have

x=psinfcos¢p, y=psinfsing, z=pcosh (6.13)
VA
P(p,6,9)
p

6

.
o

Y
~ 5

X

FIGURE 6.6 Spherical coordinate system.



Curvilinear Coordinates 71

P(p,6,¢)

FIGURE 6.7 Position vectors and unit vectors for spherical coordinates.

Equation 6.13 may be solved for p, 6, and ¢ in terms of x, y, and z as

p=0+y 4+ 0=cos ' [z/(Z+y’ + )7, ¢ =tan"' (y/x) (6.14)

As with cylindrical coordinates, we can use the expressions for x, y, and z (as in Equation 6.13)
to obtain parametric equations for the coordinate curves. If we hold 6 and ¢ fixed and vary p
(as parameter ), we have

x = (sinfcosp)t, y = (sinfsind)t, z = (cosb)t (6.15)

There are radial lines projected outward from the origin with inclinations determined by 6 and ¢.
If we hold p and ¢ fixed and vary 6, we have

X =pcos¢sint, y=psin¢sint, z=pcost (6.16)

These are circles with radius p (meridians, great circles of a sphere) with the Z-axis being on a
diameter.
Finally, if we hold p and 6 fixed and vary ¢, we have

x=psinfcost, y=psinfsint, z=pcoso (6.17)

These are circles, with radius p sin 6 (“parallels” on a sphere), parallel to the X-Y plane.

6.3 OTHER COORDINATE SYSTEMS

Although cylindrical and spherical coordinates are by far the most commonly used curvilinear
coordinate systems, there may be occasions when specialized geometry make other coordinate
systems useful for simplifying stress analysis. Even with these specialized coordinate systems the
geometric complexity will introduce complexity into the analysis.

Perhaps the simplest of these specialized coordinate systems are parabolic cylindrical coordin-
ates and elliptic cylindrical coordinates. Analogous to Equation 6.5, the parabolic cylindrical
coordinates (u, v, z) are defined as [2]

x=@—v)/2, y=uv, z=z (6.18)

The corresponding coordinate curves are then families of orthogonally intersecting parabolas in the
X-Y plane with axes being the X-axis together with lines parallel to the Z-axis.
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Similarly, elliptic cylindrical coordinates (u, v, z) are defined as [2]
x=acosh ucos v, y=a sinhu sin v, z=z (6.19)

where a is a constant. The corresponding coordinate curves are then families of orthogonal, confocal
ellipses, and hyperbolas in the X-Y plane with foci at (a, 0) and (—a, 0) together with lines parallel
to the Z-axis.

Reference [2] also shows that by rotating the parabolas of the parabolic cylindrical coordinate
system about the X-axis, we obtain paraboloidal (u,v,¢) coordinates. Similarly, by rotating
the ellipses and hyperbolas of the elliptic cylindrical coordinate system about the X- and Y-axes,
we obtain prolate spheroidal (&, m,¢) coordinates and oblate spheroidal coordinates (&, m, ¢),
respectively.

Other specialized coordinate systems are bipolar coordinates (u,v,z), toroidal coordinates
(u, v, @), and conical coordinates (A, w, v).

6.4 BASE VECTORS

Consider a curve C as represented in Figure 6.10. Let C be defined by parametric equations as
x=x(), y=y®, z=2z0 (6.20)

Let p be a position vector locating a typical point P on C, as in Figure 6.8. Then p may be
expressed as

p = x()n, + y()n, + 2(On, = p(1) 6.21)

where, as before, n,, n,, and n, are mutually perpendicular unit vectors parallel to X-, Y-, and Z-axes
(see Figure 6.8).

This configuration is directly analogous to that encountered in elementary kinematics where p(#)
locates a point P in space as it moves on a curve C. The velocity v of P is then simply dp/dz. That is

. pt+An—p@®) . Ap
V= AIIILHO At B AI}TO At (6.22)

From the last term of Equation 6.22, we see that v has the direction of Ap as d Af becomes small.
But Ap is a chord vector of C as represented in Figure 6.9. Thus, as At gets small and consequently
as Ap gets small, Ap becomes nearly coincident with C at P. Then in the limit, as Az approaches 0,
Ap and thus v are tangent to C at P.

X n

FIGURE 6.8 Curve C defined by parametric equations.
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Ap c

p(t+At)

X

FIGURE 6.9 Chord vector Ap along C.

If we regard C as a coordinate curve of a curvilinear coordinate system, and imagine C as being
defined by parametric equations as in Equation 6.20, by as in Equations 6.7, 6.9, and 6.10, and with
Equations 6.15 through 6.17 for spherical coordinates, then the derivatives of the coordinate
functions [x(#), y(¢), z(f)] with respect to the parameter ¢ are the components of vectors tangent to
the coordinate curves. These vectors are called: “‘base vectors.”

To illustrate this, consider the cylindrical coordinate system in Section 6.2.1 as defined by
Equation. 6.5. The base vectors are simply the derivatives of the position vector p of P relative to the
coordinates which play the role of the parameter ¢. Specifically, from Equation 6.5, we have

p = xn, + yn, + zn,

=rcos 0 n,+r sinOn, + zn, (6.23)
Then the base vectors are
op/or 2 g, = cos fn, + sindn, (6.24)
op/o6 2 gy = —r sinf n, +r cosf n, (6.25)
op/0z 2 g, =n. (6.26)

Similarly, for spherical coordinates, the position vector p is determined from Equation 6.13 as
p=p sinfcos¢ n, +p sinf sin¢n, + pcosOn; (6.27)

The base vectors are then

op/0p = g, =sinf cos¢ n, +sinfsiné ny + coson, (6.28)
Op/00 =gy =p cosBcos¢d n,+ p cosBsing n, — psiné n, (6.29)
op/0¢ =g, = —psinfsing n, + psin6 cos n, (6.30)

Observe that the cylindrical coordinate base vectors g,, gy, and g, (of Equations 6.24 through 6.26)
are mutually perpendicular but they are not all unit vectors (the magnitude of g, is r). Also, the
spherical coordinate base vectors g,, g¢, and g4 (of Equations 6.28 through 6.30) are mutually
perpendicular, but only g, is a unit vector. In general, the base vectors are not necessarily even
mutually perpendicular, but for three-dimensional systems, they will be noncoplanar.
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6.5 METRIC COEFFICIENTS, METRIC TENSORS

The scalar (dot) product of two base vectors, say g; and g;, is called a “metric coefficient’ and is
written as g;;. That is,

gilgeg (j=1273) 6.31)

Since there are nine such products, they may be gathered into an array, or matrix, G given by

811 812 813
G=1[gjl= |81 &2 & (6.32)
831 832 833

Since the scalar product is commutative, G is symmetric. g; are also called “metric tensor
components.”

The metric coefficients are directly related to a differential arc length ds of a curve: consider
again a curve C as in Figure 6.10. Let p locate a point P on C and let Ap be an incremental position
vector as shown. In the limit, as Af becomes infinitesimal, Ap becomes the differential tangent
vector dp, where 7 is the parameter as in the foregoing sections. The magnitude of dp is equal to a
differential arc length ds of C.

Let a curvilinear coordinate system have coordinates designated by g¢', ¢, and ¢°, or ¢'
(i=1,2,3), where for convenience in the sequel, we will use superscripts (not to be confused with
exponents) to distinguish and label the coordinates. Then with this notation, the base vectors are

g =0p/dq (i=1,23) (6.33)

where now p = p(¢'). Then, using the chain rule for differentiating functions of several variables, the
differential vector dp becomes

0 0
dp—a—p +a—p2d +a—(ll)3dq3
3
op _ op
dd' = e.d 6.34
Eza g q = gdq (6.34)

where, as before, we are employing the repeated-index summation convention.

Ap
p(t)

p(t+At)

X

FIGURE 6.10 Curve C with incremental position vector.
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Hence, the differential arc length ds is given by

(ds)* = dpedp = |dp|* = gidg'+ g;dd = g;dq'dq’

75

(6.35)

As an illustration of these concepts, consider again the cylindrical and spherical coordinate systems

discussed in Section 6.2. First, for cylindrical coordinates, we have

From Equations 6.24 through 6.26 the base vectors are

g =g =cosf n,+sinf n,
g, =gy = —r sinf n,+r cosf n,
g3 :gz =1

Then, from Equation 6.31 we have

g =8r=1, 8g»=2gmw= rz’ 83 =8z =1

and

In matrix form, G is (see Equation 6.32)

1 0
G=I[gil= 1|0 r?
0 O

- o O

Then, from Equation 6.35 the arc length ds is given by
ds* = dr’ + r7d6* + dz’
Similarly, for spherical coordinates, we have
¢ =p ¢=0 ¢=¢
From Equations 6.28 through 6.30, the base vectors are

g =g, =sinf cos¢ n, +sinb sin¢g n, +cos6 n,
g, =gy =p cosh cos¢ n,+p cosf sin¢ n, —psin 6 n,

g; =g, = —psin Osin ¢ n,+p sinf cos¢ ny
Then, from Equation 6.31 we have

g =8p,=1 gr=gp= Pz’ 833 = P2 S

(6.36)

(6.37)
(6.38)
(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)
(6.46)
(6.47)

(6.48)



76 Practical Stress Analysis in Engineering Design

and
gi=0 i#j (6.49)
In matrix form, G is
1 0 0
G=l[g;]= |0 p? 0 (6.50)
0 0 p2sin’0

Then, from Equation 6.35, the arc length ds is given by

ds* = dp® + p*>d6? + p?*sin® H*d¢p? (6.51)

6.6 RECIPROCAL BASE VECTORS

The base vectors defined in Section 6.4 are tangent to the coordinate curves and are therefore useful
for the expression of stress, strain, and displacement along these directions. The base vectors,
however, are not in general unit vectors nor are they necessarily mutually perpendicular. The
question arising then is: How are physical quantities to be expressed in terms of these vectors? Or
specifically, given a vector v and noncoplanar base vectors g;, g, and g3, if v is to be expressed as

v=0g +0g +0g; (6.52)
what are the values of the parenthetical quantities (or components) and how are they to be
determined?

To answer these questions, recall that if n;, n,, and n; are mutually perpendicular unit vectors,
then a vector v may be expressed in terms of these vectors as
vV =vin; + vynp + v3N3 = y;n; (6.53)
where the scalar components v; (i=1,2, 3) are
Vi =VeNnj, Vv, =Velp, V3=Ven; or v,=ven; (i=1,2,3) (6.54)
Thus, v may be expressed as

v=(ven)n; + (vem)n, + (ven3)n3 = (ven,)n; (6.55)

Consider Equation 6.52 now. Let the parenthetical quantities be designated as v', v*, and v* where,
again, the superscripts are indices, not to be confused with exponents. Then v has the form

v=vlg, +1g, +V’g; =g, (6.56)
Let the base vectors g; (i =1, 2, 3) be noncoplanar, but not necessarily mutually perpendicular. Then

the vector product: g, x g3 is nonzero and perpendicular to both g, and g3, and thus normal to the
coordinate surface determined by g and g>. Consider the scalar (dot) product of g, x g with v:

Veg, X 83 = Vl(gl °g X g)+ Vz(gz'gz X g3) + V3(gs'gz X 83)
=v'(g,+8, x &) (6.57)
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where the last two terms are zero because triple scalar products with duplicate vectors are zero (see
Section 3.5.1). Hence vlis

v =veg, xg;/(g, X 8 083) (6.58)
Similarly, by multiplying by g5 x g; times g, x g, we find v* and v* to be

V= vegy X g/(8 X g 083) (6.59)
and

V=veg X 8,/(8 X g e8) (6.60)

Considering Equation 6.54 and the results of Equations 6.58 through 6.60, we can simplify the
expressions for v' by introducing ‘‘reciprocal base vectors’ defined as

g 2o xa/e £lmxe/es €28 xn/e (6.61)
where g is defined as
g=g Xgeg =detG (6.62)
Then, Equations 6.58 through 6.60 become

vl:Vogl, vzzv-gz, v3:Vog3 (6.63)

or simply
Vi=veg (i=1,2,3) (6.64)
Then, Equation 6.56 becomes
V=(Veghg +(vegg, + (veg'gy = (vegg (6.65)
(Compare these results with Equations 6.54 and 6.55.)
Regarding notation, from Equations 6.54 and 6.65, it is convenient for curvilinear coordinates to
adopt the summation convention that there is a sum over repeated indices between subscripts and
superscripts, and that free indices must be consistently subscripts or superscripts in each term of an

equation.
Next, from Equation 6.61 we have

gleg =1, gegy=1, gogy=1

(6.66)
glegy=g7eg =0, geg3=g"+g =0 gheg=g.g=0
or more succinctly
i i i li=j

Where 8} is called Kronecker’s delta function (see Equation 4.53).
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Let reciprocal metric tensor coefficients g” be defined as
gi=g.g (6.68)
Then, it is apparent from Equations 6.31, 6.62, and 6.67 that
ghe =0, g =4¢"g, g=gg, g xgg=1/g (6.69)
Also, if we write v in the form
v=1g =g (6.70)
then the components are related by the expressions
V=g and v = gy’ (6.71)
The base vectors g; are sometimes called ““covariant base vectors” and g’ are called “‘contravariant

base vectors.”” Correspondingly in Equations 6.70 and 6.71, the v; are called ““‘covariant compon-
ents” and the V' “contravariant components” [3-5].

6.7 DIFFERENTIATION OF BASE VECTORS

Recall from Equation 4.35 that the equilibrium equations are
oy j=pa; or 0o;/0x; = pa; (6.72)

Recall from Equation 5.32 that the strain—displacement equations are
1
gij = W, + u; or ¢g;= 5(8ui/8xj + 8uj/8x,-) (673)

In these fundamental equations of stress analysis, we see that spatial derivatives occur in most of
the terms.

Also, in spatial/vector differentiations, the vector differential operator V() is frequently used
as basis of the gradient, divergence, and curl operations [4,6]. In Cartesian coordinates V( ) is
defined as

V() = 1118( )/8X] =+ nza( )/8)62 + n38( )/8)63 = n,-(’)( )/8)(,' (6.74)

where the n; are mutually perpendicular unit vectors parallel to the coordinate axes.
In curvilinear coordinates, Equation 6.74 has the form

V() =g'00/9q" + 800 /0q> + g00)/0g® = g'00)/0q' (6.75)

where g' are reciprocal base vectors (“‘contravariant base vectors™) as developed in the previous
section, and the ¢'(i=1,2,3) are curvilinear coordinates. Equation 6.75 is easily obtained from
Equation 6.74 by routine coordinate transformation [4,5,7].

If v is a vector function of the spatial variables, the gradient, divergence, and curl of v are

Gradient: Vv ; divergence: Vev; curl: V xv (6.76)
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In Cartesian coordinates where the unit vectors are constants (not spatially dependent), the gradient,
divergence, and curl have relatively simple forms. Specifically, if a vector v is expressed as

V =vin; + vy + vinz = v;N; (677)
where v,(i =1, 2, 3) are dependent upon the spatial coordinates, then Vv, Vv, and V X v become
Gradient

Av = 8v1/8x1n1n1 + 8v1/8x2n1n2 + 8v1/8X3n1n3
+ 8vz/8x1n2n1 + 6V2/8x2n2n2 + 8V2/8x3n2n3
+ BV3/8x1n3n1 + 6\13/8)621'13112 + 6\/3/6)63113113 (6.78)

or alternatively

Vv = Bvi/axjninj = Vij ;N (679)

where (as before) the comma designates spatial differentiation.

Divergence
Vv =0vi/0x1 + Ovy/0xs + Ov3/0x3 = Ov;/Ox; = vy (6.80)
Curl
V X v =(0vy/0x3 — Ov3/Ox)m; + (Ov2/Ox; — Ovy /Ox3)ny + (Ovy/Oxy — Ov2/Ox1)ns - (6.81)

Suppose that a vector v is expressed in curvilinear coordinates with either covariant or contravariant
base vectors as

V= Vig[ = ngj (6.82)

Unlike the unit vectors of Cartesian coordinates, the base vectors are not generally constant. Hence,
when we apply the gradient, divergence, and curl operators to v, we need to be able to evaluate the
spatial derivatives of the base vectors. To this end, consider first the derivative: dg;/ dq'. As before, to
simplify the notation, it is convenient to use a comma to designate partial differentiation, where the
derivatives are taken with respect to the curvilinear coordinates. That is,

Osi = 90)/ 04" (6.83)

Next, consider that ng/aqi or g;;is a vector with free indices i and j. As such g; ; can be represented
in the vector form as

g =Tlg, (6.84)

)

where the components Ff-‘]- are sometimes called Christoffel symbols [3-5,7]. Since the Ff-‘]- have three
indices, there are 27 values for all the possible combinations of i, j, and k. Fortunately, for the
curvilinear coordi_nate systems of common interest and importance, most of the Ff;. are zero. Also,
since g; is Op/0q', g;; may be expressed as

g, =0°p/0q'0q = p/dq'dq =g, (6.85)



80

Thus I‘g is symmetric in i and j. That is,

k 1k
rk =1t
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(6.86)

To evaluate '}, it is convenient to introduce the covariant form I';; defined as

Lj’

D ¢
Uije = grel';

(6.87)

The utility of the I'y; is readily seen by differentiating the metric tensor elements. Specifically,

8ijk = (8i*8) i = &ik*& + &i* &k
=Tygreg+ Thgoegi = gyl + gl

= Lig + Ujni

(6.88)

By permutating the indices in Equation 6.88 and then by adding and subtracting equations, we obtain

Ly = (1/2)(8xij + 8ujii

Then, from the definition of Equation 6.87, I‘Z- are

F; _ gkérij[

— &ij) (6.89)

(6.90)

As an illustration of the values of these expressions, we find that for cylindrical coordinates, F,-jk

and Fg are

T =T =Ty =Tee=r,

and all other I are zero. Also,

F%2:F§1 =Ffo=FZr= 1/r, I‘éz:l"ggz—r

and all other I‘z are Zero.

[y = Tger = —1 (6.91)

(6.92)

(Recall from Equation 6.40 that the metric coefficients are: g,, = 1, ggo = v% 8- = 1, and gi=0,

i )

For spherical coordinates, the I';; and 1"5 are

Fin=Tsp = Fpoo = F0p0 =1,
T35 = 323 = Dgpp = Lgpp = p° sin® cos 6,
[331 = Lggp = —p sin 0,

and all other I';; are zero. Also,

2 2 0 0
I, =15 = Fp0 = Fep = =P,

3 3
I3, =T%, =Ty, =T, = cos®,

I}, = [hy=—p sin® 6,

and all other Ff-‘]- are zero.

1—‘133 = F313 = FPd’d’ = Fqspd, =r sin20

I'yoi =Te9p = —p (6.93)
330 =Tgee = —pzsin(?cos 0
[y =T3, =10, =T} =1/p
L, =Tf=—p (6.94)

I3 = Fz,d) = —sinfcos
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. . . _ 2 2.2
. — 1L, 5600 — ) - 5
(Recall from Equation 6.48 that the metric coefficients are g,, =1, goo = p”, g4 = p~ sin” 6, and

8i=0,i#j) A
Finally, consider the differentiation of the reciprocal (contravariant) base vectors g'. From
Equation 6.67, we have

gog =08 (6.95)

1

By differentiating with respect to ¢*, we obtain
g8 +8-g =0 (6.96)
But, from Equation 6.84, the g;, are
g =g, (6.97)

Then, by substituting into Equation 6.96, we have
gi.g{k = _Fflfk (6.98)

Thus, g{k are

j

g, = —Tg (6.99)

6.8 COVARIANT DIFFERENTIATION

Recall that in our formulation for stress and strain, we found that the stress components satisfy
equilibrium equations, where there are derivatives with respect to the space coordinates, and the
strain involves derivatives of the displacement vector. In both cases, there are spatial derivatives of
vector functions. If we formulate the equations using Cartesian coordinates, the unit vectors along
the coordinate axes are constants and the derivatives may be obtained by simply differentiating the
components. If, however, we formulate the equations using curvilinear coordinates, the vector
functions will be expressed in terms of base vectors, which will generally vary from point-to-point
in space. Therefore, in differentiating vector functions expressed in curvilinear coordinates, we need
to differentiate the base vectors. We can use the formulation developed in the previous section to
obtain these derivatives.

Let u be a vector, say, a displacement vector, and let u be expressed in terms of base vectors as

u = ulg, (6.100)
Then, using Equation 6.84, the derivative of u with respect to ¢’ is

a“/aqi = 6(”kgk)/a‘]i = “{(igk + ”kgk,i
- uf‘igk +ufTg,
= (uh +u'T})g, (6.101)

More succinctly, we can write these expressions as

Ou/dq =u; =ulg, (6.102)
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where 1%, is defined as
uf = b+ Thu! (6.103)

and is called the “covariant derivative” of u*.
Next, let u be expressed in the form

u = gk (6.104)
Then, the derivative with respect to ¢' is

o/oq' = 0(ug") /g = ueig" + g

k k (
= ug —wlyg

= (i — )t (6.105)
or
ou/oq =u; = ug" (6.106)
where uy.; is defined as
U = ug; — Uity (6.107)

and is called the covariant derivative of uy.

Observe in Equations 6.102 and 6.106 that the derivative of u may be obtained by simply
evaluating the covariant derivative of the components (as defined in Equations 6.103 and 6.107) and
leaving the base vectors unchanged. From another perspective, we can view the covariant derivative
of a scalar or a nonindexed quantity as the same as a partial derivative. That is, if ¢ is a scalar then

0p/0q = b, = ¢, (6.108)
Also, for a vector u we have
ou/oq =u; =u; (6.109)

Then, by formally applying the product rule for differentiation, we have

du/dq = u; = (u'g),
=ulg, +u'g, (6.110)

For the result to be consistent with that of Equation 6.102 the covariant derivative of the base vector
g, must be zero. That is

g, =0 (6.111)
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The validity of Equation 6.111 is evident from Equations 6.107 and 6.97. That is,

8ri = 8ki — Fiigﬂ
=T —Tig =0 6.112)

Similarly, we see that the covariant derivatives of the base vectors gk as well as the metric tensors
are zero.
Finally, consider the dyadic D expressed as

D =dyg'g = dg'g; = digg = digg 6.113)

Then, by following the same procedure as in the differentiation of vectors, we see that the derivative
of D relative to ¢ may be expressed as

OD/0q" =Dy = dug'g = d,g'g; = di;g.8 = d'gg (6.114)

. . . j i
where covariant derivatives djjx, djj .1, df;k, and d;, are

digs. = djic — Uiydyy — Tydi (6.115)
diy = dy — Typdy + Tyd; (6.116)
iy =d, +Tyd —Td, (6.117)
d) = d +Tyd¥ + T, d" (6.118)

6.9 EQUILIBRIUM EQUATIONS AND STRAIN-DISPLACEMENT
RELATIONS IN CURVILINEAR COORDINATES

Consider the stress equilibrium equation (Equation 4.35) and the strain—displacement equations
(Equation 5.20) again

Oij,j = pPai (6.119)

and
1
gjj = E(Mi’j + I/tj’i) (6.120)

Although these equations have been developed in Cartesian coordinates, they may be expressed in a
vector form, which in turn may be used to express them in curvilinear coordinates. To this end, by
comparing Equation 6.119 with Equation 6.80, we see that we can express Equation 6.119 as

Veo =pa (6.121)

here, o is the stress dyadic (see Section 4.4) and a is the acceleration vector at a point of the body
where the equilibrium equation holds, and where, as before, V is the vector differential operator.
Recall from Equation 6.75 that in curvilinear coordinates V has the form

V() =g'00/0q1 + g°00)/0q: + g 00) /g3
=¢'9()/04" (6.122)
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Then the left-hand side of Equation 6.121 becomes

Veo =gedo/0d =g+ 0(go;g’) /04"
=g O'ij;kgigj = giko'ij;kgj
= G-jk;kg] = Ujl'c;kg/
Then Equation 6.121 becomes

olg = pa = pajg (6.123)

or in component form

ol =pa; or ai;=pa; (6.124)

Next, recall from Equation 6.79 that if u is a vector, say, the displacement vector, then in Cartesian
coordinates, Vu is

Vu = u;jn;n; (6125)

where, as before, the n; (i =1, 2, 3) are mutually perpendicular unit vectors. In curvilinear coordi-
nates Vu is

Vu = u;;g'g (6.126)

Thus, we see that in curvilinear coordinates the strain tensor may be expressed as
1
&j = E(ui;_/‘ + ;) (6.127)

Observe that in comparing Equations 6.119 and 6.120 with Equations 6.124 and 6.127, the
difference is simply that the partial differentiation of Cartesian coordinates is replaced with the
covariant differentiation of curvilinear coordinates. ‘

Using the results of Equations 6.115 and 6.107, we see that o{d and u;;; may be expressed as

oy = oy — Loy + Dot (6.128)

and

N (6.129)

Lt,';/‘ = U; J Flj
To illustrate the forms of these equations for cylindrical coordinates, we can use the results in
Equation 6.92 for the Christoffel symbol components. The equilibrium equations (Equation 6.124)
become [8]

0o, 0o,y 00, B

W+(1/”) o0 + oz + (1/r) (o — 009) = pay, (6.130)
0o g Jogg 00, _
o +(1/”)W+ Bz +(2/r)ow = pag (6.131)
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80’97 60‘27

8

aa— rz

+(1/n +(1/o,. = pa, (6.132)

and the strain—displacement equations (Equation 6.127) become

ou,

o =" (6.133)
ou, O
&9 =(1/2) {(l/r)a—”r+£—(l/r)ue} (6.134)
=(1/2) <8uz a”’) (6.135)
0z

g9 = (1/r) (— + u) (6.136)
—(1/2) [8”‘9 +(/r )a”z] 6.137)

Ju,
Ez = aiz (6.138)

Similarly, for spherical coordinates we can use the results of Equation 6.94 for the Christoffel
symbol components. The equilibrium equations become [8]

oo .

8;’) 8¢) — Og¢gp — Opg + Opg COL 0) = pa, (6.139)
Jo
a;”” 8 ¢ 0 1 (1/p) By + Ty cOLO — 04y cotO) = pag  (6.140)
99, +(1/ sm@) +(1/ pa (6.141)
where p is now the mass density. The strain—displacement equations become
Ou
Epp = a—; (6.142)
u Ou
gpp = (1/2) [(1//_‘»)80”— (ua/p)+ap”] (6.143)
. Ou ou

&pp = (1/2) {(l/p sm@)a—(;—(ud,/p)+a—;] (6.144)
Epyg = (l/p)( + l/tp) (6145)
g9y = (1/2) [(l/p)— —(1/p)ug cot® + (1/psin ) &f)} (6.146)

es0 = (1/p) [(1/sin 0)%” +u, + up cot 0} (6.147)
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SYMBOLS

a Acceleration vector

C Curve

D Dyadic

dyj, df,d’j (i,j=1,2,3) Elements of dyadic matrices

g (i=1,2,3) Base vectors

gi (i=1,2,3) Reciprocal base vectors

g;.j=12,3) Metric coefficients, metric tensor components
Metric coefficient array

n; (i=1,2,3) Mutually perpendicular unit vectors

Ty, Ny, 1, Mutually perpendicular unit vectors

o Origin

P Point

P Position vector

qi (i=1,2,3) Curvilinear coordinates

r, 0,z Cylindrical coordinates

s Arc length

t Parameter

u Displacement vector

u; i=1,2,3) Displacements

\Y% Vector

v;(i=1,2,3)n; n; components of vector v

vij (,j=1,2,3) Partial derivative of v; with respect to q’

vii (i,j=1,2,3) Covariant derivative of v; with respect to qi

X, Y, Z Cartesian (rectangular) coordinate axes

X, ), Z Cartesian coordinates

x; (i=1,2,3) Cartesian coordinates

Fi,’" G, j, k=1,2,3) Christoffel symbols (Section 6.7)

Fij(i, j,k=1,2,3) Christoffel symbols (Section 6.7)

Ap Chord vector

g (i,j=1,2,3) Strain tensor components

p, b, 0 Spherical coordinates

o Stress dyadic

0;(,j=1,2,3) Stress tensor components
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7 Hooke’s Law in Two
and Three Dimensions

7.1 INTRODUCTION

In Chapter 3, we saw that Hooke’s law predicts a linear relationship between simple stress and
simple strain. In this chapter, we extend this elementary concept to two and three dimensions. As
before, we will restrict our attention to small strain. The resulting relations then continue to be linear
between the stresses and strains.

We begin our analysis with a discussion of Poisson’s ratio, or “transverse contraction ratio,”
which quantifies induced strain in directions perpendicular to an applied strain, such as a rod
shrinking laterally as it is elongated.

7.2 POISSON’S RATIO

Consider a rod with a square cross section subjected to an axial load as in Figure 7.1. Intuitively as the
rod is stretched or elongated, the cross-section area will become smaller. Poisson’s ratio is a measure
or quantification of this effect. Specifically, for the rod of Figure 7.1, Poisson’s ratio v is defined as

V= —8&y/Ex (7.1)

where the X-axis is along the rod and the Y-axis is perpendicular to the rod, as shown. From the
simple geometry of the rod we see that &, and &,, are

& =06,/ and &, =—8,/a (7.2)

where &, is the elongation of the rod, 8, is the shrinking of the cross section, £ is the rod length, and
a is the cross section side length. Poisson’s ratio is then a measure of the contraction of the rod as it
is stretched. Consequently, Poisson’s ratio is occasionally called the ““transverse contraction ratio.”

As a further illustration of this concept, consider a circular cross-section rod being elongated
as in Figure 7.2. As the rod is stretched, the circular cross section will become smaller as represented
(in exaggerated form) in Figure 7.3 where a is the undeformed cross-section radius and 9§, is the
radius decrease. During stretching, the radial displacement u, of a point Q in the cross section is
proportional to the distance of Q from the axis as in Figure 7.4. That is,

u, = —6,(r/a) (7.3)

where the minus sign indicates that Q is displaced toward O as the cross section shrinks. The radial
strain ¢,, is then (see Equation 6.133)

&y = 0u,/Or = —=6,/a (7.4)
If the rod is elongated with a length change (or stretching) 8, (see Figure 7.2), the axial strain &, is

Exx = Oy /0 (7.5)

87
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Y

2 — k—a

P~ [[J—p O—x
— by,

FIGURE 7.1 An elongated rod with a square cross section.

p <+— [ —>0p
— s,

0O—X
2a

FIGURE 7.2 An elongated rod with a circular cross section.

FIGURE 7.3  Shrinkage of rod cross section.

FIGURE 7.4 Rod cross section with typical point Q.
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TABLE 7.1
Typical Values of Poisson’s Ratio
Upper theoretical limit 0.50

(perfectly deformable

material)
Lead 0.43
Gold 0.42
Platinum 0.39
Silver 0.37
Aluminum (pure) 0.36
Phosphor bronze 0.35
Tantalum 0.35
Copper 0.34
Titanium (pure) 0.34
Aluminum (wrought) 0.33
Titanium (alloy) 0.33
Brass 0.33
Molybdenum (wrought) 0.32
Stainless steel 0.31
Structural steel 0.30
Magnesium alloy 0.28
Tungsten 0.28
Granite 0.28
Sandstone 0.28
Thorium (induction-melted) 0.27
Cast iron (gray) 0.26
Marble 0.26
Glass 0.24
Limestone 0.21
Uranium (D-38) 0.21
Plutonium (alpha phase) 0.18
Concrete (average water content) 0.12
Beryllium (vacuum-pressed powder) 0.027
Lower theoretical limit 0.000

(perfectly brittle material)

Poisson’s ratio v is then simply the negative ratio of the radial and axial strains. Thus v is

V= _8rr/8xx = (8r/6x)(€/a) (7.6)

Observe that v is a material property. That is, the values of v depend upon the character of the
material being deformed. Table 7.1 provides a list of typical values of » for common materials.

Since v is a measure of the shrinkage of a loaded rod, as in the foregoing examples, it is also
a measure of the volume change of a loaded body. Consider again the elongated round bar of
Figure 7.2. The undeformed volume V of the rod is simply

V = mad®l (7.7)

From Figures 7.2 and 7.3 we see that the deformed volume V is
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V =m(a—8,)°(L +6,) (7.8)

Since 8, and &, are small, V may reasonably be expressed as

V =7 (a® - 2a8,)({ +8,) = m(a*l — 2als, + a*§,) (7.9)

The volume change AV is then

AV =V -V = 7(-2als, + a*8,) (7.10)
But from Equation 7.6, 8, is
8, = vdy(a/l) (7.11)
Hence, AV becomes
AV = 7(=2v + 1)a’5, (7.12)

Finally, the volumetric strain defined as AV/V is
AV/V = (1 = 21)(6,/0) = (1 — 2v)ey (7.13)

As a final example, consider the small rectangular parallelepiped block depicted in Figure 7.5.
Let the block be loaded with a uniform, outward (tension) pressure on the face perpendicular to the
X-axis. Let the edges of the block before loading be a, b, and c. After being loaded, the block

Z z
b
a
| |
c
e
Y e ey Y
o ’A‘// ;?
Ve
X X
(a) (b)
Z
1+ eyy)b
N,
Ex¥
X)(
v | (1+¢,)c
| y
X

(©)

FIGURE 7.5 Uniform X-direction load and deformation of a rectangular block. (a) Rectangular block,
(b) uniform X-directional load, and (c) deformed block.
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edges vyill be (for small deformation): (1 + ex)a, (1 + &,,)b, and (1 + &,;)c. Then the block volumes
V and V, before and after deformation respectively, are

V = abc (7.14)
and

V= (1 +ewa(l + &,)b(1 + &,)c
=abc(l + gy + &y + &) (7.15)

The volumetric strain AV/V is then
AVIV =(V=V)/V =g+ &y + & (7.16)
But from Equation 7.1, &,, and &,, may be expressed in terms of &, as
&y = —V&y and &, = —Vey (7.17)
The volumetric strain is then

AV/V = (1 — 2v)ey (7.18)

7.3 BRITTLE AND COMPLIANT MATERIALS

If a material does not contract or shrink transversely when loaded, that is, if the Poisson’s ratio v is
zero, then the material is said to be “brittle.”” Conversely, if a brittle material has no transverse
contraction, then the Poisson’s ratio is zero.

Alternatively, if a material shrinks so that the volume of a loaded body remains constant, the
material is said to be “‘incompressible’” or “fully compliant.”” Conversely, for a fully compliant
material, the volume change, AV, is zero during loading. Then from Equation 7.18, we have

1-2v=0 or v=1/2 (7.19)

Therefore, Poisson’s ratio ranges from 0 to 1/2.

7.4 PRINCIPLE OF SUPERPOSITION OF LOADING

The principle of superposition states that multiple loadings on an elastic body may be considered
individually and in any order, for evaluating the stresses and strains due to the loadings. That is, the
state of stress or strain of an elastic body subjected to multiple loads is simply the addition (or
“superposition”) of the respective stresses or strains obtained from the individual loads.

In other words, individual loads on a body do not affect each other and therefore in stress and
strain analyses, they may be considered separately (or independently) in any order.

The principle of superposition is very useful in analysis, but unfortunately, it is not always
applicable, especially in heavily loaded bodies with large deformation. However, if the deformation
is small and if linear stress—strain equations are applicable, the principle holds.

7.5 HOOKE’'S LAW IN TWO AND THREE DIMENSIONS

In Chapter 3, we discussed the fundamental version of Hooke’s law, which simply states that for
uniaxial (one-dimensional) stress and strain, the stress o is proportional to the strain &, that is
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oc=E¢ or e¢=0/E (7.20)

(see Equation 3.4) where E is usually called the ‘“modulus of elasticity,” the “elastic modulus,” or
“Young’s modulus.”” In Chapter 3, we also saw that this fundamental version of Hooke’s law is
readily extended to shear stresses and shear strains. That is, for simple shearing of a block, the shear
stress 7 and the shear strain vy are related by

T=Gy or y=1/G (7.21)

(see Equation 3.12) where the proportional constant G is sometimes called the ‘“‘shear modulus,”
the ““modulus of elasticity in shear,” or the “modulus of rigidity.”

We can use Poisson’s ratio and the principle of superposition to extend these fundamental
relations to two and three dimensions where we have combined stresses and strains in two or more
directions as well as shear stresses and strains in various directions. To this end, consider again a
small rectangular elastic block or element subjected to tension as in Figure 7.6. Let the resulting
tensile stresses be oy, oy,, and o,. Then by the use of Poisson’s ratio and the principle of
superposition, the strains on the elemental black are

ga = (1/E)[0w — v(0oy + 0] (7.22)
Ey = (1/E)[0'yy - V(o-zz + Uxx)] (723)
gz = (1/E)lo; — v(0x + 0yy)] (7.24)

These results are obtained assuming that all the stresses are positive (tension). If, however, some or all
of the stresses are negative (compression), the expressions are still valid. We then simply have
negative values inserted for those negative stresses in the right side of Equations 7.22, through 7.24.

Observe further that Equations 7.22, through 7.24 are linear in both the stresses and the strains.
Therefore, we can readily solve the equations for the stresses in terms of the strains, which give the
expressions

V(Syy +éez) + (1 —v)en

Tor = (1 + v)(1 —2v) (7.25)
_ V(é‘zz + 8xx) + (1 - V)gyy

T = P -2 (7:20)

o, = E V(axx + 8}')7) + (1 B V)gzz (727)

(1 + v)(1 —2v)

X

FIGURE 7.6 A rectangular elastic element subjected to tension loading.
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V4

e \'E

X

FIGURE 7.7 A rectangular elastic element subjected to shear loading.

Consider the shear stresses and strains: imagine a series of shearing forces applied to an elastic
elemental block as in Figure 7.7. As a result of the shear stress—strain relations of Equations 7.21
and the principle of superposition the resulting shear stresses and strains on the block are related by
the equations

Ty = GV Yy = (1/G)Ty (7.28)
Tyz = G’sz’ Y}'z = (I/G)Tyz (729)
T =GV Voo = (1/G)Ty (7.30)

Alternatively, using the tensor notation of Chapters 4 and 5 (see for example, Equation 5.8),
we have

Oy = 2Geyy, &y = (1/2G)0yy, (7.31)
0y = 2Gey,, £y, = (1/2G)0y (1.32)
0n =2Gey, &, =(1/2G)0, (7.33)

7.6 RELATIONS BETWEEN THE ELASTIC CONSTANTS

The elastic constants E, v, and G are not independent. Instead only two of these are needed to fully
characterize the behavior of linear elastic materials. Consider a square plate with side length placed
in tension as in Figure 7.8. As a result of the tensile forces and the resulting tensile stress, the
plate will be elongated and narrowed as represented in Figure 7.9, where we have labeled the plate

- —_—
- —_—
- —_—
- —_—
B _—
< —_—
- B —
B _—
B _—
B _—

FIGURE 7.8 A square plate under tension.
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Y Before
deformation

A v/12 B
X
™ u/2
D ¢
After D C
deformation

FIGURE 7.9 Plate in tension (X-axis) before and after deformation.

corners as A, B, C, and D before deformation, and as A, B, C , and D after deformation. Let the
amount of elongation be u and that of narrowing be v. Then the strains in the X- and Y-directions are

ex=u/a and &, =—v/a (7.34)
But from the definition of Poisson’s ratio (see Equation 7.1), we have
Ey = —V&xy O V=1vU (7.35)

Consider now the diamond PQRS within the plate before and after deformation (PQRS’) as in
Figure 7.10. The difference between the angle ¢ and 90° is a measure of the shear strain vy of the
diamond. That is,

y=m/2—¢ (7.36)

To quantify vy in terms of the loading, consider a force analysis or free-body diagram of
the triangular plate POR as in Figure 7.11, where F is the resultant tensile load on the original
square plate, o, is the uniform tensile stress, ¢ is the plate thickness, and a is the side length of the
original square plate. From the symmetry of the loadings, we have equivalent force systems as in
Figure 7.12. Consider the force system in the right sketch of the figure: the force components
parallel to the edges are shearing forces. They produce shear stresses 7 on those inclined edges as

T = (V2/HF [(aV2/2)t = F)2at = 0/2 (7.37)
A ? B A p B
s Q S ? AQ
D R c P R ¢

@ (b)

FIGURE 7.10 A diamond PQORS within the undeformed and deformed plate. (a) Before deformation and
(b) after deformation.
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P

Oy A <—r F=o0,,at

R

FIGURE 7.11 Force balance on triangular plate POR of the square plate of Figures 7.8 through 7.10.

where (av/2/2)t is the area of an inclined edge and the final equality is seen in Figure 7.11.

Next, consider the shear strain of Equation 7.36: specifically, consider the deformation of the
triangular plate POR into POR as in Figure 7.10 and as shown again with exaggerated deformation
in Figure 7.13. Let 6 be the half angle at Q. That is,

0=d¢/2 (7.38)
From Figure 7.13, we see that

tan @ = [(a — v)/2]/[(a + u)/2] = (a — v)(a — u)
=[1 — w/a))/[1 + u/a)] =[1 — /[l + (u/a)] "

= (1 — /@l — /] =1-2-2
a a
:l_ujv (7.39)

where we have used a binomial expansion [1] to approximate [1 + (#/a)] ' and where we have
neglected higher order terms in the displacement u and v. Then by substituting from Equations 7.34
and 7.35 into 7.39, we have

tanf =1 — (1 +v)u/a)=1—(1+v)exn (7.40)

From Equation 7.63, the shear strain vy is

y=(m/2)— ¢ = (7/2) — 20 (7.41)
2 p
P P 4
< z
F/2 - F
F Q F
2 p
F/2 < 4
R R \% F

FIGURE 7.12 Equivalent force systems on triangular plate POR.
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—— (a+u)2 4’{

FIGURE 7.13 Deformed triangle PQOR into POR.

Then 6 is
0 = (m/4) —(v/2) 7
Then tan 6 is
Ty tan /4 — tany/2
f=tan{——7) =
tan tan(4 2) 1 + (tan 77/4)( tan 'y/z)

== (12904

=1 —y/20-y/2)y=1~y (7.43)
where we have used the trigonometric identity [1]:

tanA — tan B
tanA —-B) = ———— 7.44
an ( ) 1 +tanAtan B ( )

and where again we have assumed that vy is small in the binomial expansion of (1 4 y/2)"", in the
product (1 — y/2)(1 — y/2), and in the approximation of tan y/2 by /2. (That is, we have neglected
all but linear terms in 7y.)

Next, recall from the fundamental shear stress—strain equation, we have

y=7/G=0x/2G (7.45)

where the last equality follows from Equation 7.37. Then from Equation 7.43, tan 6 is

O-XX
tanf =1 — (1 ' =1—=—= 7.46
an (I +v)e G ( )

Finally, by comparing Equations 7.40 and 7.46, we have

Oxx
tanf =1—(1 w=1—-=

an 1 +ve G
or (7.47)

(1 + Ve = 0/2G
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But &,, is 0,/E. Therefore G is
G=E/2(1+v) (7.48)

7.7 OTHER FORMS OF HOOKF’S LAW

In Section 7.5, we saw that Hooke’s law may be written for the strains in terms of the stresses as (see
Equations 7.22 through 7.24, and 7.31 through 7.33):

g = (1/E)0w — W0y + 02)] (7.49)
gy = (1/E)[oy, — (0 + o)) (7.50)
2. = (1/E)[02 — (0 + 0] (7.51)
£y = (1/2G)0y, (7.52)
&y. = (1/2G)a,. (7.53)
£ = (1/2G)0, (7.54)

Also from Equations 7.25 through 7.27, and 7.31 through 7.33, the stresses may be expressed in
terms of the strain as

v(gy + &) + (1 — V)ex

=E ’
Tox (I+»)(1 -2v) 7
vi(e,; + &) + (1 — v)gy,

,=E ] ’
Oyy (1+v)(1 —2v) (730
o — V(e + &y) + (1 — v)eg, (7.57)

z 1 +» —-2v) .

Oy = 2Geyy (7.58)
o, = 2Gs,, (7.59)
0 = 2Gey, (7.60)

We can express these equations in more compact form by using index notation and by reintroducing
and redefining the expressions

A=¢en+teyt+e;, O=0n+oy,+oy, (7.61)
where, as before, A is the dilatation and ® will be recognized as the sum of the diagonal elements of
the stress matrix (see Equation 4.64). To use index notation, let x, y, and z become 1, 2, and 3
respectively. Then A and ® may be expressed as

A=¢g1+enten=¢cy and O =0 +0n +033 =0k (7.62)

where, repeated indices designate a sum from 1 to 3. Using this notation, it is readily seen that
Equations 7.49 through 7.54 may be combined into a single expression as

g; = —(v/E)®S; + 7;;/2G (7.63)



98 Practical Stress Analysis in Engineering Design

where, §;; is Kronecker’s delta symbol defined as

L J0 i#j
5,,{1 iy (7.64)

Equation 7.61 may be validated by simply writing the individual terms. For example, & is
en = —(v/E)o +0on +033) +011/2G (7.65)
But from Equation 7.47, 1/2G is (1 + v)/E. Thus & is

enn = —W/E) o +0n+033)+ A +v)o /E
or (7.66)
en = (1/E)o1 — v(oxn + 033)]

This is similar to Equation 7.49. The other five elements of Equation 7.61 are similarly validated.
Also, Equations 7.55 through 7.60 may be written in the compact form

ojj = A0;A + 2Geyj (7.67)
where A is defined as

vE

A and G are sometimes called Lamé constants.

7.8 HYDROSTATIC PRESSURE AND DILATATION

Equations 7.61 and 7.67 can be used to obtain a relation between the first stress invariant @ and the
dilatation A (the first strain invariant). Specifically, in Equation 7.67, by replacing i with j and
adding, we obtain

ojj =0 =A5;A +2Gg;; = BA +2G)A (7.69)
By substituting for A and G from Equations 7.48 and 7.68, we have
3\ +2G=E/(1—2v) (7.70)
Therefore, Equation 7.69 becomes
O=[E/(1-2v)]A or A[(l—-2v)/E]O® (7.71)

If each of the normal stresses are equal, we have a state of ““hydrostatic pressure.”” In particular, let
the stresses be

Ol =00 =033=—P (7.72)
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where p is the pressure and the negative sign is used since pressure is compressive. Then O is

0=-3p

Then Equation 7.71 becomes

—p = [E/3(1 — 2v)]A 2 kA

where k is called the “bulk modulus™ defined by inspection as
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Shear strain
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Sum of diagonal elements of strain matrix
Volume change

Strain
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Shear stress components
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Part 11

Straight and Long Structural
Components: Beams, Rods, and Bars

In this second part, we apply the concepts documented in the first part. We start with a discussion of
stress, strain, and displacement of beams, rods, and bars. These are the most commonly used
structural elements and components in the design of structures and machines.

We focus on thin straight members, looking primarily at the concepts of bending and torsion. In
the first part (Chapters 2 and 3), we have already considered simple extension and compression of
rods. In this part, we will also look at the consequences of bending and torsion, that is, the resulting
stresses, strains, and displacements. In the next part, we will look at thick and curved beams and
buckling of beams. In subsequent parts, we will look at assemblages of beams in the form of trusses
and frames.

Finally, from an analytical perspective, there is no major difference between a rod, a bar,
or a beam. Generally, the distinction refers to the shape of the cross section with beams being
rectangular, rods being round, and bars being square or hexagonal. But these are rather arbitrary
classifications.






8 Beams: Bending Stresses
(Flexure)

8.1 BEAMS

A beam is simply a long, slender member as represented in Figure 8.1, where ¢ is the length of the
beam, £ is its height, and b is its thickness. An immediate question is: what is meant by “long and
slender?”” That is, how long is “long” or equivalently, how slender is ‘“‘slender?” Unfortunately,
these questions have no precise answers. We can certainly say that whatever approximations are
made, by assuming a beam to be long and slender, become more appropriate the longer (or more
slender) the beam becomes. While this is reassuring, and potentially useful, it is still not very
specific. A general rule is that a beam is long or slender if its length £ is an order of magnitude (i.e.,
10 times) larger than the cross section dimensions. That is, in Figure 8.1 the beam may be regarded
as long as

£>10h and ¢ > 10b 8.1

8.2 LOADINGS

Beams may be loaded in three principal ways: (1) axially (producing longitudinal extension or
compression); (2) transversely (producing bending); and (3) in torsion (producing twisting). Figure
8.2 illustrates these loading methods.

Beams may, of course, have combinations of these loadings. When the deformations from
combined loadings are small, the resulting displacements and stresses from these loadings may be
obtained by superposition.

In Chapters 8 and 9, we will discuss bending, which results from transverse loading. We will
consider torsion in Chapter 10 and axial loading in Chapter 11 in connection with buckling. We
will also consider axial loading in trusses as a means for developing the finite element method
(FEM). Recall that axial loading and deformation are also discussed in Part I (see Chapters 2 and 3).

8.3 COORDINATE SYSTEMS AND SIGN CONVENTIONS

The coordinate system and sign conventions establishing positive and negative directions are
essential features of any stress analysis. For beam bending, the sign conventions are especially
important, particularly because there is disagreement among analysts as to which convention to use.
While each of the various conventions has advantages (and disadvantages), a key to a successful
analysis is to stay consistent throughout the analysis.

We will generally follow the sign convention of three-dimensional stress analysis established in
Chapter 4. That is, stresses and displacements at points of positive element faces are positive if they
are in positive directions, and negative if they are in negative directions. Conversely, stresses and
displacements at points of negative element faces are positive if they are in negative directions and
negative if they are in positive directions. Recall that a “positive face’ of an element is a face where
one goes in the positive direction in crossing the face by going from inside to outside of the element.
Correspondingly a “‘negative face” of the element has one going in a negative direction in crossing
the face while going from inside to outside of the element.
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A
N n

FIGURE 8.1 A rectangular beam.

In our convention, we place the X-axis along the axis of the beam. Since many beams are
weight-bearing structures, we choose the Y-axis to be downward, producing positive beam dis-
placements for weight (or gravity) forces. The Z-axis is then inward when viewing the X-Y plane, as
in Figure. 8.3, where the origin O is placed at the left end of the beam as shown.

In beam structural analyses, we are principally interested in loadings, shear forces, bending
moments, stresses, and displacements. In the following paragraphs and figures, we describe and
illustrate the positive direction for these quantities.

First, for loading, since our focus in this chapter is on transverse loadings, the positive direction
for the applied forces is in the positive Y-axis as illustrated in Figure. 8.4. (Note that if the beam
displacement is small, we can also have transverse loading in the Z-direction and then superpose the
analyses results.)

Next, transverse beam loading, as in Figure 8.4, produces transverse shearing forces and
bending moments on the beam. Figure 8.5 shows the positive directions for the shearing forces.
Observe that the positive shear force V acts on the positive face (cross section) in the positive
direction and on the negative cross section in the negative direction.

Figure 8.6 shows the conventional positive directions for the bending moments produced by
transverse loadings. Unfortunately, these directions are opposite to those suggested by elasticity
theory. In this case, the positive moment on the positive face is directed in the negative Z-direction.
The advantage of this departure from elasticity theory is that the resulting stresses are positive in the
lower portion of the beam cross section where the bending moment is positive. That is, adopting the
convention of Figure. 8.6 leads to the familiar expression

o = My/I (8.2)

where [ is the second moment of area of the beam cross section (that is, I = f y?dA). Finally,
Figure 8.7 illustrates the positive directions for beam displacement and cross section rotation.

or

—
Je—o

@ —) H(—

FIGURE 8.2 Methods of beam loading. (a) Axial loading, (b) transverse loading, and (c) torsional loading.
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Y Z

FIGURE 8.3 Beam coordinate axes.
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FIGURE 8.4 Positive-directed transverse forces on a beam.
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FIGURE 8.5 Positive directions for shearing forces.
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FIGURE 8.6 Positive directions for bending moments.
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FIGURE 8.7 Positive directions for displacement and rotation of a beam.
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Segment -/

FIGURE 8.8 A segment of a loaded beam.

8.4 EQUILIBRIUM AND GOVERNING EQUATIONS

Consider a short segment of a transversely loaded beam as in Figure 8.8. Let g(x) represent the
loading on the beam per unit length. Let Ax be the segment length and V and M be the shear and
bending moment on the left end of the segment respectively as in Figure 8.9. With the segment
length Ax being small, we can conveniently use the beginning term of a Taylor series expansion to
represent the shear and bending moment on the right side of the segment as shown in the figure.
Consider a free-body diagram of the segment. As Ax becomes vanishingly small, we can safely
neglect the higher order terms in the shear and bending moment expressions on the right side of the
beam. Correspondingly, the resultant force on the segment due to the loading function g(x) is then
approximately gAx, where ¢ is simply an average value of g(x) across the short segment.

Using these approximations, we may envision a free-body diagram of the segment as in Figure
8.10. Then by adding forces vertically, we obtain

dv
or
dv
- — 4
o q (8.4)

Similarly, by setting moments about the left end equal to zero, we have

aM av
o M- VAr- (E Ax> Ax — (gAv)AX/2 = 0 (8.5)

By again neglecting higher powers in Ax, we obtain

M
— =

v 0 M + M Ax + -
MC \A) dx

[
dv

V+ an-'—

4 (8.6)

]
Ax

FIGURE 8.9 Beam segment, with loading ¢(x), shear V, and bending moment M.
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qlAx
v M+dﬂAx
M dx
ql P
dv
V+ Ax
dx

FIGURE 8.10 Free-body diagram of the beam segment.

Finally, by substituting for V from Equation 8.6 in Equation 8.4, we obtain

d*m

w4 (8.7)

8.5 BEAM DEFLECTION DUE TO BENDING

Consider again a portion of a beam being bent due to transverse loads as in Figure 8.11. Consider a
segment (or “element’) (e) of the beam and let Ax be the length of (e) as shown in Figure 8.11. Let
the transverse loading produce a bending moment M on the beam as indicated in the figure. Finally,
let an axis system be introduced with origin O at the left end of (e), with the X-axis along (e) and the
Y-axis below the plane of (e) as shown in Figure 8.11.

As the beam is bent by the bending moments, it will of course no longer be straight but slightly
curved as represented in exaggerated form in Figure 8.12, where Q is the center of the curvature of
the arc formed at O by the beam centerline and p is the corresponding radius of curvature.

Let N be a centerline axis of the beam which is straight before bending but then curved after
bending as shown in Figure 8.12. The principal tenet of elementary beam bending theory is that
during bending plane cross sections normal to the beam axis N before bending remain plane and
normal to N during and after bending. As a consequence, as the beam is bent upwards (positive
bending) as in Figure 8.12, the upper longitudinal fibers of the beam are shortened and correspond-
ingly, the lower longitudinal fibers are lengthened.

Figure 8.13 shows an enlarged view of element (e) of the bent beam. With the upper fibers
of the beam, and hence also of (e), being shortened, with the lower fibers being lengthened, and with
the cross section normal to the beam axis remaining plane during bending, there will exist at some
mid elevation of (e), a fiber that is neither shortened nor lengthened due to the bending. Indeed, if we
consider the thickness of the beam in the Z-direction, there will be a strip or surface of the beam,
which is neither shortened nor lengthened by the bending. This surface is sometimes called a
“neutral surface” of the beam.

Y

FIGURE 8.11 A beam segment, or element, in bending.
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Q
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O | Ax=pA6
P X
Y (e)

FIGURE 8.12 Exaggerated bending of the beam segment.

Let the X—Y plane be placed at the mid section of the beam in the Z-direction and let the origin O
be placed on the neutral surface. Then the intersection of the neutral surface with the X-Y plane is a
curve called the “neutral axis™ of the beam. We now identify N in Figures 8.12 and 8.13 with this
neutral axis. Before bending, N and the X-axis are coincident, but N is a “material”’ line and the
X-axis is a ““spatial” line.

Consider a fiber of (e) along the neutral axis N. Since this fiber is neither shortened nor
lengthened during bending, its length will remain as Ax. However, after bending, this fiber will
be curved forming an arc with radius p and subtended angle A# as represented in Figure 8.12. Thus,
the fiber length is also pAf. That is

Ax = pAb (8.8)
Consider a fiber of distance y beneath the neutral axis N, shown shaded in Figure 8.13. This

fiber will also be curved into an arc. But, although its original length is Ax, its deformed length is
(p 4+ ¥)ABz. The strain ¢ of this fiber is simply

8:(P+y)A0—Ax:(p+y)A0—pA0:X

8.9
Ax pAd p (8.9)

\/

o) px=pho

W

Y

FIGURE 8.13 Enlarged, view of element (e).
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8.6 BEAM STRESSES DUE TO BENDING

Equation 8.9 shows that the axial strain of the beam varies linearly across the beam cross section.
(This is a direct consequence of the requirement that beam cross sections normal to the beam axis
before bending remain plane and normal to the beam axis during and after bending.) From Hooke’s
law, the axial stress in the beam will also vary linearly across the cross section. Specifically, the
axial stress o is

o =Ee = (E/p)y (8.10)

Consider the relation between the axial stress and the beam bending moment. Consider particularly
the stresses and bending moment at a typical cross section of a beam, as represented in Figure 8.14.
For the purpose of simplifying the analysis, let the beam cross section be rectangular, and consider
an end view as in Figure 8.15. Let the cross section dimensions be b and & as shown. Then for
equilibrium, the stress produced by the applied bending moment must have the same moment about
the Z-axis as the bending moment M itself. That is,

/2

J oybdy =M (8.11)

~h/2
By substituting for o from Equation 8.10, we have

h/2

M= J (E/p)y*bdy = (E/p)(bh /12)
—h/2

or
M=EIl/p (8.12)

where I is defined as b’ /12 and is generally called “the second moment of area’ or the “‘moment of
inertia” of the cross section.
Equation 8.13 holds for other rectangular cross sections, such as that of I-beams as well.
Observe further in the development of Equation 8.13 that for a given cross section E/p is a
constant across the cross section. That is, E/p is independent of y. However p will, in general, vary
from point to point along the beam axis.

Y
/

Y

FIGURE 8.14 Bending moment and axial stress in a typical beam cross section.
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FIGURE 8.15 Beam cross section.
Finally, by eliminating E/p between Equations 8.10 and 8.12, we obtain the familiar relation:
o=My/l (8.13)

For a rectangular cross section, as in Figure 8.15, the maximum value of y is /2. Thus, the
maximum bending stress at the top (compression) and bottom (tension) of the beam with values

Oy = £6M /bh* (8.14)

min

For a beam with a nonrectangular cross section, if the maximum distance from a material point of
the cross section to the neutral axis is ¢, we have the widely used expression

Omw = £Mc/I (8.15)

min
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9 Beams: Displacement
from Bending

9.1 BEAM DISPLACEMENT AND BENDING MOMENT

Equation 8.12 provides the fundamental relationship between the bending moment applied to a
beam and the resulting induced curvature of the beam’s centerline:

M=EIl/p ©.1)

where
M is the bending moment
p is the radius of curvature
I is the second moment of area of the beam cross section about the neutral axis
E is the modulus of elasticity

In general, the bending moment is a function of the axial position x along the beam. Thus, in view of
Equation 9.1, the radius of curvature is also a function of x.

Consider a planar curve C represented in the X—Y plane by the function: f(x), as in Figure 9.1.
It is known [1] that the radius of curvature p of C can be expressed in terms of f and its derivatives as

p = [1+ (dy/dx)*/?/d%y/dx* 9.2)

We can readily apply Equation 9.2 with the curved centerline (or neutral axis) of a beam since the
induced curvature due to bending is small. Since dy/dx is the beam slope, it will be small and thus
the product (dy/dx)” is negligible compared to 1. That is,

(dy/dx)> < 1 and p =~ 1/d*y/dx® 9.3)

Recall that with our sign convention, the Y-axis pointing downward, opposite to that of Figure 9.1.
Therefore, to maintain our convention for positive bending, as in Figure 8.6, with the Y-axis
pointing downward, Equation 9.3 becomes

p=—d’y/dF 9.4)

Equation 9.4 provides a differential equation determining the beam axis displacement in terms of the
axis curvature, and thus in terms of the bending moment, via Equation 9.1. That is

d2y
s —M/EI 9.5)

9.2 BEAM DISPLACEMENT IN TERMS OF TRANSVERSE SHEAR
AND THE LOADING ON THE BEAM

By using Equation 9.3, we can relate the displacement of the transverse shear V and the applied
loading function g(x). Recall from Equations 8.4 and 8.6 that the bending moment M, shear V, and
load g are related by the simple expressions

111
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Y
/\/\C:y ~ )
X
FIGURE 9.1 A planar curve C.
dM/dx=V and dV/dx= —¢q 9.6)
Therefore, by substituting from Equation 9.3 we have
d’y d*y

The second expression of Equation 9.7 is the governing ordinary differential equation for the
displacement of the neutral axis due to the beam loading. Once this equation is solved and y(x) is
known, we can immediately determine the transverse shear V and bending moment M along the
beam axis using the expressions

V = —EId*y/d® and M = —EId*y/dx* 9.8)

9.3 BEAM SUPPORTS, SUPPORT REACTIONS,
AND BOUNDARY CONDITIONS

Equation 9.7 provides a fourth-order, ordinary differential equation for beam displacement once the
loading function g(x) is known. Upon solving (or integrating) the equations, there will be four
constants of integration to be evaluated. We can evaluate these constants using the auxiliary
conditions (or ‘““boundary conditions™) required by the beam supports. We discuss these concepts
in the following paragraphs.

There are four principal types of supports: (1) built-in (“clamped” or “cantilever’); (2) simple
(““pin” or “roller”); (3) free (“‘unconstrained”); and (4) elastic.

9.3.1 BuiLt-IN (CLAMPED OR CANTILEVER) SUPPORT

In this case, the beam end is completely supported or fixed, that is, the beam end is restrained from
moving in both translation and rotation, as represented in Figure 9.2. This means that at the support,

FIGURE 9.2 A beam with a built-in (clamped or cantilever) support at the right end.
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§ |

FIGURE 9.3 A simple (pin) support.

the beam displacement y and the beam rotation dy/dx are zero. Thus, if the origin of the beam axis is
at the left end and the support is at x =/, we have

y() =0 and %(ﬁ) =0 9.9

Observe that for the conditions of Equation 9.9 to be satisfied, the support will exert a force and a
moment on the beam. The magnitude of this force and moment can be determined from the loading
conditions using a free-body diagram.

9.3.2 SimpLE (PIN OR ROLLER) SUPPORT

Here the support provides a vertical constraint for the beam, but it allows for beam rotation, as
represented in Figure 9.3. Thus if the support is at say x = a (with the origin being at the left end of
the beam), we have

ya)=0 and M(a)=0 9.10)

where, as before, M(x) is the bending moment along the beam axis. Since from Equation 9.8 M is
—Eld* y/dxz, we have the simple support condition:

d2
az(a)zo 9.11)

Finally, the magnitude of the reaction force, exerted by the support to restrain the vertical movement
of the beam, may be obtained using a free-body diagram from the given loading conditions.

9.3.3 FRree (UNCONSTRAINED) SUPPORT

In this case, the beam has no restraint at the support, that is, the shear V and the bending moment M
at the support are zero as in Figure 9.4. Thus, if the free end is at x = ¢, we have the conditions:

V@ =0 and M(a)=0 9.12)

or in view of Equation 9.8 we have the conditions:

d? d?
a);(a):O and af(a):o (9.13)

FIGURE 9.4 A free end at x=a.
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FIGURE 9.5 Elastic force and moment supports.

9.3.4 ELASTIC SUPPORT

In this case, the beam displacement (or rotation) is not fully constrained, but instead it is resisted by
a force (or moment) proportional to the displacement (or rotation) as suggested by spring models of
Figure 9.5. The shear force V and bending moment M are

d
V(a) = kyy(@) and M(a) = ky d—i(a) (9.14)
where, as before, x =1 is the location of the support.

9.4 SUMMARY OF GOVERNING EQUATIONS
For convenience, we briefly summarize the pertinent equations:

Bending moment

Equation 9.3: M = —EId*y/dx* (9.15)
Shear
Equation 9.7: V = —EId’y/dx’ (9.16)
Load
Equation 9.7: ¢ = EId*y/dx* (9.17)
The support conditions are
Built-in (clamped)
Equation 9.9: y =dy/dx =0 (9.18)
Simple (pin)
Equation 9.10: y = d?y/dx* =0 9.19)
Free
Equation 9.13: d*y/dx* = dy/dx® =0 (9.20)
Elastic

Equation 9.14: V = kyy, M = ky dy/dx (9.21)
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FIGURE 9.6 Uniformly loaded cantilever beam.

9.5 ILLUSTRATIONS

We can illustrate the application of the governing equations of the foregoing sections with a few
elementary examples: specifically, we will consider cantilever and simply supported beams under
uniform and concentrated loadings. The objective in each case is to determine the displacement,
shear, and bending moment along the beam axis.

9.5.1 UNIFORMLY LOADED CANTILEVER BEAM

Consider first a cantilever beam supported (that is, built-in or clamped) at its left end and loaded
with a uniform load along its span as in Figure 9.6, where / is the beam length and w is the load per
unit length along the beam.

We can determine the reactions at the support by using a free-body diagram as in Figure 9.7
where Vg and Mg are the shear and bending moment applied to the beam by the support at x =0.
To find Vg and Mo, it is useful to consider an equivalent free-body diagram as in Figure 9.8. From
this figure, it is obvious that V5 and Mg are

Vo=wl and Mo = —wl*/2 (9.22)
We can now readily determine the bending moment, shear, and displacement along the beam axis

using Equations 9.15, 9.16, and 9.17, respectively. Specifically, in Equation 9.17, the load g(x)
along the beam is

qg(x) =w (9.23)
Thus, Equation 9.17 becomes
EI d*y/dx* = w (9.24)
By integrating Equation 9.24, we have
EIl &y/dx* =wx +¢; = -V (9.25)
4o
Mg w

@ uunhnnin

FIGURE 9.7 Free-body diagram of the uniformly loaded cantilever beam.
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A Vo
Mo wl
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FIGURE 9.8 Equivalent free-body diagram of the uniformly loaded cantilever beam.

where the last equality follows from Equation 9.16. Since the shear V is Vg (=w/{) when x =0, we
find the integration constant ¢, to be

1 = —Vo = —w/l (926)
By substituting from Equation 9.26 in Equation 9.25 and integrating again, we have
EI d®y/dx* = wx*/2 —wlx + ¢y = —M (9.27)

where the last equality follows from Equation 9.15. Since the bending moment M is Mg (= —wéz/ 2)
where x =0, we find the integration constant ¢, to be

e = —Mo = wl*/2 (9.28)
By substituting from Equation 9.28 in Equation 9.27 and integrating again, we have
EI dy/dx = wx® /6 — wix? /2 + wl?x/2 + c3 (9.29)
But from Equation 9.18, dy/dx is zero when x =0, the integration constant c; is
c3=0 (9.30)

Finally, by substituting from Equation 9.30 in Equation 9.29 and integrating again, we find the
displacement y to be

Ely = wx* /24 — wix® /6 + w5 J4 + ¢4 (9.31)
But from Equation 9.18, y is zero when x =0, the integration constant c, is
cy =0 (9.32)

In summary, from Equations 9.25, 9.26, and 9.27 the shear, bending moment, and displacement are

V(x) = (—wx + wl) /EI (9.33)
M(x) = (—wx* /2 + wlx — wi? /2) EI (9.34)
y(x) = (wx* /24 — wix’ /6 + wix* /4)/EI (9.35)

The maximum bending moment M,,,x occurs at x =0 as

Mipax = —wl*/2EI (9.36)
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FIGURE 9.9 Cantilever beam with a concentrated end load.

The maximum displacement y,,., occurs at x =/ as

Ymax = wl* /8EI 9.37)

9.5.2 CANTILEVER BEAM WITH A CONCENTRATED END LOAD

Consider next a cantilever beam, built-in at its left end and loaded with a single vertical force on its
right end as in Figure 9.9. Let the beam length be ¢ and the load magnitude be P as indicated in the
figure. As before, our objective is to determine the displacement, bending moment, and shear along
the length of the beam.

To begin the analysis, consider a free-body diagram of the beam as in Figure 9.10, where Vg and
Mo are the shear and bending moment applied to the beam by the support.

Then for equilibrium, Vg and Mg are

Vo=0 and Mo = —P¢ (9.38)
The beam loading may thus be represented as in Figure 9.11.

Next, consider a free-body diagram of a segment of the beam to the left of a cross section
which is a distance x from the left end support as in Figure 9.12. Then by considering the
equilibrium of the segment, we immediately see that the shear V and bending moment M on the
cross section at x are

V=P and M=-P{ —x) (9.39)
The beam displacement y may now be determined using Equation 9.15:
EI d®y/dx* = —M = P({ — x) (9.40)

By integrating, we have

EI dy/dx = Plx — Px*/2 + ¢, (9.41)

FIGURE 9.10 Free-body diagram of the beam of Figure 9.9.
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(5
re
FIGURE 9.11 Beam loading.
But since the beam is clamped at its left end, we have (at x =0):
dy
a(O) =0 sothatc; =0 (9.42)

Then by integrating again, we have
Ely = Pix*/2 — PX’ /6 4¢3 (9.43)
But since the beam is supported at its left end, we have (at x =0):
y(0)=0 sothatc, =0 (9.44)

Therefore, the displacement y(x) is

2 3
y = (P/EI) (% — x6> (9.45)

These results show that the maximum beam displacement, y,.x, occurs at the right end as
Ymax = PC*/3EI (9.46)

Also, from Equation 9.39, the maximum bending moment M,,,,, is seen to occur at the left end of the
beam as

Muyax = —PC (9.47)
Finally, from Equation 9.39, the shear V is constant along the beam as

V=P

v Y

FIGURE 9.12 Free-body diagram of a left side segment of the beam.
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FIGURE 9.13 A uniformly loaded, simply supported beam.

9.5.3 SimpLY SuprPORTED BEAM WITH A UNIFORM LOAD

Consider now a simply supported beam with a uniform load as in Figure 9.13. As before, let w be
the loading per unit beam length and ¢ be the length of the beam. Consider a free-body diagram of
the beam as in Figure 9.14 and a free-body diagram with equivalent loading as in Figure 9.15, where
V1. and Vg are the shear loadings on the beam at the supports, by the supports. From Figure 9.15,
these shear loadings are

VL=wl/2 and Vg = —wl/2 (9.48)

(Observe that in Figures 9.14 and 9.15 the shear forces are shown in their positive direction using
our convention of Section 8.3.)

Consider next a free-body diagram of a segment, say a left segment, of the beam as in
Figure 9.16, where V and M are the shear and bending moment respectively on a cross section at
a distance x from the left support. Consider also a free-body diagram of the segment with equivalent
loading as in Figure 9.17. Then by enforcing equilibrium, by setting the sum of the vertical forces
equal to zero and also the sum of the moment of the forces about the left end equal to zero, we obtain

V=0 9.49)
and
M —wx(x/2) —Vx=0 (9.50)
Solving for V and M, we obtain
V=w({/2—x) 9.51)
and
M = (wx/2)(¢ — x) (9.52)

In knowing the moment distribution along the beam, as in Equation 9.52, we may use Equation 9.15
to determine the displacements:

\/ Vr

FIGURE 9.14 Free-body diagram of the simply supported, uniformly loaded beam.
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wt
Vi k
A
FIGURE 9.15 Free-body diagram with equivalent beam loading.
EId*y/dx* = —M = —(wx/2)({ — x) (9.53)
Then by integrating, we have
Eldy/dx = —wlx* /4 +wx’ /6 + ¢| (9.54)
and
Ely = —w€x3/12 + wx4/24 +cx+ o (9.55)

We can determine the integration constants by recalling that y is zero at the supports. That is,
yO0)=0=c, and y(f) =0=—wl*/c; +wl*/24 + ¢l (9.56)
Then c¢; and ¢, are
ci=wl/24 and c¢; =0 (9.57)
Therefore, the displacement y of the beam centerline is
y = W/12ED[x*/2 — xX*0 + x* /2] (9.58)

From Equations 9.52 and 9.58, the maximum bending moment and maximum displacement are seen
to occur at midspan as

Mupax = wl? /4 and  ypax = Swi*/384EI (9.59)
wl_
2
wx

NS

v

FIGURE 9.16 Free-body diagram of a left-side segment of the beam.
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—

vv

FIGURE 9.17 Free-body diagram of the segment with equivalent loading.

9.5.4 SimprLy SurPORTED BEAMS WITH A CONCENTRATED INTERIOR LOAD

As a final illustration of the procedure, consider a simply supported beam with an interior
concentrated load as in Figure 9.18, where, ¢ is the beam length, and a and b are the distances of
the point of loading from the left and right end supports as shown.

Consider a free-body diagram of the beam as in Figure 9.19, where the support reactions are
represented by shear forces Vi and Vi as shown. By setting the sum of the forces equal to zero and
by setting the sum of the moment of the forces about the right end equal to zero, we have

—VL+P+Vg=0 and -V ¢+Pb=0 (9.60)
or
VL=Pb/l and V5 =—Pa/l 9.61)
Consider next a free-body diagram of a segment of the beam to the left of the load as in Figure 9.20
where x is the segment length and where, as before, V and M are the shear and bending moment
respectively on the right end of the segment. By setting the sum of the forces equal to zero and by
setting the sum of the moment of the forces about the left end equal to zero, we have
V—Pb/{=0 and M—Vx=0 9.62)
Thus, the bending moment M is

M = Vx = Pbx/¢ (9.63)

From Equation 9.15, the displacement of the beam segment may be determined from the expression

EId*y/dx* = —M = —Pbx /! (9.64)
By integrating, we have
EIdy/dx = —Pbx*/2( + ¢, (9.65)
P

FIGURE 9.18 Simply supported beam with an internal concentrated load.
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VL Vi

FIGURE 9.19 Free-body diagram of internally loaded, simply supported beam.

and
Ely = —Pbx’ /6( + c1x + ¢3 (9.66)

With the beam having a simple support at x = 0, we have y(0) = 0, and thus ¢, is zero. Therefore, for
0 < x < a, the beam displacement is

Ely = —Pbx’ /60 + c1x (0 < x < a) (9.67)
Next, consider in a similar manner a free-body diagram of a segment of the beam to the right of the
load as in Figure 9.21, where £ is the segment length and where now V and M are the (positively
directed) shear and bending moment on the left end of the segment. By enforcing the equilibrium
conditions, we have
V+Pa/t=0 and M+VE=0 (9.68)
Thus the bending moment M is
M = Pat /! (9.69)
We can again use Equation 9.15 to determine the beam displacement. To do this, however, it is
convenient to consider x as the distance of the left end of the segment from the left support. That is,
let & be
E=l—x x>a (9.70)

Then the bending moment of Equation 9.69 is

M = Pa(l — x)/! 9.71)

Pb/t
A

—)

Vv

FIGURE 9.20 Free-body diagram of the left segment of the beam.
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%4 Pa/e

C

FIGURE 9.21 Free-body diagram of the right segment of the beam.

Equation 9.15 then becomes

EId’y/dx* = —M = —Pa(l — x)/! (9.72)
By integrating, we have
Eldy/dx = —(Pa/{)fx 4 (Pa/{)x* /2 + c3 9.73)
and
Ely = —(Pa/l)({x* /2) + (Pa/0)(x* /6) + c3x + ¢4 (9.74)

With the beam having a simple support at x = ¢, we have y(¢{) =0, or
0 = —Pal*/2 + Pal®/6 + c3l + ¢4 (9.75)
or
¢4 = —c3l + Pal®/3 (9.76)
Thus by substituting for ¢4 in Equation 9.72, the beam displacement is given by
Ely = —(Pa/l)({x*/2) + (Pa/)(x* /6) + c3(x — €) + Pal*/3 (9.77)
Equations 9.66 and 9.77 provide expressions for the beam displacement for 0 < x < a (Equation
9.66) and for a < x < ¢ (Equation 9.77). Observe that both equations have undetermined constants:
c1 in Equation 9.66 and c3 in Equation 9.77. These constants can now be evaluated by requiring that
the beam displacement and the beam slope have the same values at x =a as determined from each

equation. (That is, the beam displacement must be continuous and smooth at x = a.) Therefore, by
equating the results for the displacement at x =a from Equations 9.66 and 9.77, we have

—Pba’ /60 + ca = —Pa’ |2 + Pa* /6( + c3(a — €) 4 Pal* /3 (9.78)
or since b is ¢ — a, we have
cia+ c3(0 — a) = Pal*/3 — Pa’ /3 9.79)

Similarly, by equating the expressions for the displacement derivatives at x = a from Equations 9.65
and 9.73, we have

—Pba* /20 + ¢| = —Pa* + Pa’ /20 + c3 (9.80)
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or since b is £ — a, we have
c1 —c3 = —Pa*/2 (9.81)
By solving Equations 9.79 and 9.81 for ¢, and c3, we have
c1 =Pa(l/3+a*/60 —a/2) and c3 = pa(l/3 + a*/6() (9.82)

Finally, by substituting these results into Equations 9.66 and 9.77, we obtain the beam displace-
ment as

Ely = —Pbx’ /6( + Pax({/3 + a*/6¢ —a/2) 0<x<a (9.83)
and
Ely = (Pa/l)(x* /6 — Ix* ]2 + (*x/3 + a’x/6 — la*/6) (a < x < () (9.84)

In these results, if a=b=1¢/2 (that is, a centrally loaded beam), then the displacement under the
load is

y = P{? /ASEI (9.85)

From equations 9.63 and 9.69, we can deduce for a centrally loaded beam (that is, a =b = ¢/2) the
maximum bending moment occurs under the load as

Minax = PL/4 (9.86)

9.6 COMMENT

The illustrations in the above discussion show that by using free-body diagrams to determine beam
loading, bending, and shear and by integrating the governing equations of Section 9.4, we can
determine beam displacement along the centerline. The last illustration shows that this procedure
can be cumbersome with even relatively simple configurations. The difficulty arises primarily with
concentrated loading, which leads to singularities and discontinuities. In Chapter 10, we discuss
singularity functions, which enable us to overcome the difficulty with concentrated loads and to
greatly simplify the procedure.

SYMBOLS

A Length, value of x

B Beam depth (in Z-axis direction)
C Plane curve

¢; (i=1,2,3,4) Integration constants

E Elastic modulus

1 Second moment of area

kar Spring constant for bending

ky Spring constant for shear

l Beam length
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Subscripts designating left and right
Bending moment

Origin of X- and Y-axes

Load

Loading

Shear force

Uniform load per unit length

X-axis coordinate

Cartesian (rectangular) coordinate axes
Y-axis coordinate, displacement
Segment length

Radius of curvature

=

T X% I <R VORI
=
N
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’IO Beam Analysis Using
Singularity Functions

10.1 USE OF SINGULARITY FUNCTIONS

The final example of Chapter 9 (a simply supported beam with an interior-concentrated load)
illustrates a difficulty in traditional beam analysis with concentrated loads. The solution procedure
requires separate analyses on both sides of the load, and the solution itself requires two expressions
depending upon the position of the independent variable relative to the load. We can avoid these
difficulties by using singularity functions.

In this chapter, we introduce these functions and illustrate their use with some examples as in
Chapter 9. We then discuss some less-trivial configurations. Singularity functions are developed
using the properties of the Heavyside unit step function and the Dirac delta function [1]. Typically,
these functions are defined as follows.

10.1.1 Heavysipe UNiT STer FUNCTION

The unit step function ¢(x — a) is defined as

0 x<a

¢(x—a)={1 x> a (10.1)

Graphically, ¢(x —a) may be represented as in Figure 10.1. Observe that ¢(x —a) appears as
a “step” at x=a. However, ¢p(x —a) is not continuous at x=a and therefore the derivative
of ¢(x — a) does not exist at x =1, in the context of elementary analysis. Nevertheless, if we regard
¢(x — a) as a generalized function, we can define its derivative as the Dirac delta function: §(x — a).

10.1.2 Dirac DEeLTA FUNCTION

This function, which is sometimes called the “impulse’ function, is defined as

0 x#a

X X=a

8(x —a) = { (10.2)

Graphically, 6(x — a) may be represented as in Figure 10.2. If §(x — a) is to be the derivative of
é(x — a), we have the relation

x— a) = J&g — )¢ (10.3)
6
where b is a constant. If b < a < ¢, we have

Ja(g —a)dé =1 (10.4)
b
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¢(x—a)

o a X

FIGURE 10.1 Unit step function.

Finally, if f(x) is a continuous function, we have the relation
fla) = Jf(x)ﬁ(x —a)dx (10.5)
b

The Dirac delta function is a convenient mathematical model of a concentrated load. Indeed, if we
think of a concentrated load as a force exerted over a vanishingly small area, we have a stress
concentration or infinite stress. Since our objective here is beam displacement, as opposed to local
surface effects, we can eliminate the singularity by integrating as in Equation 10.3. This integration
is conveniently performed using the methodology and formalism of singularity functions as devel-
oped in the following paragraphs.

10.2 SINGULARITY FUNCTION DEFINITION

Singularity functions are designated using angular brackets: <-> with the following properties [2]:

0 x < a for all n
0 x>aforn<0
cx—a>'—Q > x=aforn=—1
+o0 x=aforn=-2
1 x>aforn=0

x—a)* x>aforn>0

10.3 SINGULARITY FUNCTION DESCRIPTION AND ADDITIONAL
PROPERTIES

Singularity functions are especially useful for modeling concentrated and discontinuous loadings on
structures (particularly beams). Specifically, for a concentrated load with magnitude P at x =1, we

O(x—a)

O a X

FIGURE 10.2 Unit impulse function (Dirac).
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Y

<x—a>’1

O a X

FIGURE 10.3 Representation of <x — a>"" (Dirac delta function).

can use the function P <x —a>""'. Figure 10.3 provides a pictorial representation of <x —a>"".
Recall that the positive direction for beam loading is downward.

For a uniform load with intensity wo beginning at x = 1, we can use the function w, <x — a>°.
Figure 10.4 provides a pictorial representation of <x — a>°.

For a concentrated moment with intensity Mg at x = a, we can use the function Mg <x — a>"".
Figure 10.5 provides a pictorial representation of <x —a>"2. (Recall again that the positive
direction for bending moment is in the negative Z-direction for a moment applied to a positive
beam face and in the positive Z-direction for a moment applied to a negative beam face.)

The derivatives and antiderivatives of <x — a>" are defined by the expressions [2]

<x—a>"T'=<x—a>" n<0

<x—a>"=n<x—a>"1' n>0

Elagla

<é—a>"dé =<x—a>"' n<o0 (10.6)

<E—a>"dé=<x—a>""/n4+1 n>0

S — O —

where b < a.
Finally, upon integration, we often encounter the “ramp” and “parabola” functions <x — a>"
and <x — a>>. Figures 10.6 and 10.7 provide a pictorial representation of these functions.

O X

FIGURE 10.4 Representation of <x—a>"" (heavyside unit step function).
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<x—as?

(N
0 _/ X

FIGURE 10.5 Representation of the function <x —a>">.

10.4 ILLUSTRATION OF SINGULARITY FUNCTION USE

10.4.1 UNIFORMLY LOADED CANTILEVER BEAM

See Section 9.5.1 and consider again the cantilever beam supported at its left end and loaded with a
uniform load along its span as in Figure 10.8, where / is the beam length and w is the load per unit
length.

Consider a free-body diagram of the beam to determine the support reactions as in Figure 10.9
where Vi and Mg are the shear and bending moment applied to the beam by the support. From the
diagram, Vg and Mg are readily seen to be (see Equation 9.22)

Vo=wl and Mo = —wl*/2 (10.7)

From the results of Equation 10.7, the loading on the beam including that from the support reaction
is that shown in Figure 10.10. Using the singularity functions, the loading function g(x) may be
expressed as

gx) = —Wl?/2) <x —0>"2 —wl <x—0>"! 4w <x—0>° (10.8)

where the origin of the X-axis is at the left end of the beam. Recall also that the positive direction is
down for loads and on the left end of the beam, the positive direction is clockwise for bending
moments.

Referring to Equation 9.17, the governing equation for the displacement is

EId*y/dx* = g(x) = —wl?/2) <x —0>"2 —wl <x— 0>~ 4w <x - 0>° (10.9)
Y
<x—a>!
(@] a X

FIGURE 10.6 Ramp singularity function.
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Y

<x—a>2

e) a X

FIGURE 10.7 Parabolic singularity function.

Then by integrating, we have
EIdy/d® = =V = —(wl?/2) <x— 0> —wl <x—0>" +w<x—0>" +¢;  (10.10)
where V is the shear on the beam cross section. Since V is zero when x = ¢, we have
0=0—wl+wl+c (10.11)
or
c1=0 (10.12)
By integrating again, we have
EId*y/d* = —M = —(wl*/2) <x —0>% —wl <x —0>' +w<x—0>%/2+¢c,  (10.13)
where M is the bending moment on the cross section. Since M is zero when x = ¢, we have
0= —Wl/2) —wl® + Wl*/2) + ¢, (10.14)
or
¢y = wt? (10.15)
By integrating again, we have

Eldy/dx = —(wl*/2) <x —0>" —wl <x—0>2/2+w <x—0>3/6 + wl’x+c3  (10.16)

LT

14

FIGURE 10.8 Uniformly loaded cantilever beam.
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A Vo
Mg w

¢ LT

FIGURE 10.9 Free-body diagram of the uniformly loaded cantilever beam.

Since dy/dx=0 when x =0, we have
c3=0 (10.17)
Finally, by integrating fourth time, we have
Ely = —(w?)2) <x —0>2/2 —wl <x —0>3/6 +w <x — 0>*/24 +wl?x* /2 + ¢4 (10.18)
Since y =0 when x =0, we have
cy =0 (10.19)
Thus, the beam displacement is seen to be
y=W/ED[—(}/4) <x—0>? — (£/6) <x — 0> + <x — 0>*/24 + (°? /2] (10.20)
The maximum displacement y,,., will occur at x=/ as
Ymax = WE/ED[~(1/4) — (1/6) + (1/24) + (1/2)] = wl*/8EI (10.21)

Observe that the results of Equations 10.20 and 10.21 match those of Equations 9.35 and 9.38.

10.4.2 CANTILEVER BEAM wiTH A CONCENTRATED END LOAD

Consider again the example of Section 9.5.2, the cantilever beam supported at its left end and loaded
with a concentrated force at its right end as in Figure 10.11. As before, let the beam length be ¢ and
the load magnitude be P. Figure 10.12 presents a free-body diagram of the beam and the support
reactions are seen to be

Vo=P and Mo = —Pl (10.22)

| wt

sz w

’ ( b

FIGURE 10.10 Loading on the beam.
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FIGURE 10.11 Cantilever beam with a concentrated end load.

The loading experienced by the beam is shown in Figure 10.13. The loading function g(x),
expressed in terms of singularity functions, is then

L Pl<x—0>24P<x—0>71 (10.23)

glx)y=—-P<x—0>"
From Equation 9.17 the governing equation for the displacement is
Eld*y/dx* = g(x) = —P <x—0>"' —Pl<x— 0> + P <x—£>"" (10.24)
By integrating, we have

EIdy/d = -V =—-P<x—0>"—Pl<x—0>""4+P<x—1>"4¢ (10.25)

Since the shear is zero at x = ¢, we have

0=—P—-0+P+c (10.26)
or
=0 (10.27)
By integrating again, we have
EIldy/d* = M = P <x—0>' —PL<x—-0>"+P<x—(>" 40, (10.28)

Since the bending moment is zero at x = ¢, we have
0=—-Pl—Pl+ (10.29)
or

¢y =2P¢ (10.30)

Vo P

ik |

FIGURE 10.12 Free-body diagram of the beam of Figure 10.11.
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P P

= '

FIGURE 10.13 Beam loading.

By integrating the equation a third time, we have
Eldy/dx = —P <x—0>2/2 = P{ <x —0>' + P <x —0>%/2 + 2Plx + c3
But with the fixed (cantilever) support at x =0, we have dy/dx=0 at x=0 and thus
0=-0-0+0+4+04c3
or
c;3=0
Finally, by integrating the equation a fourth time, we have
Ely=—P <x—0>%/6 — Pl <x—0>?/2 4+ P <x—{>/6 + Plx* + ¢4
But with the fixed support at x =0, we have y=0 at x=0 and thus
0=—0-04+0+4+0+c4
or
cs =0
Therefore, the beam displacement is
y=(P/ED[—<x—0>/6 —0 <x—0>?/2+ <x—£>7/6 + (x*]
The maximum beam displacement y,,,x occurs at x = ¢ with the value

Ymax = PL?/3EI

(10.31)

(10.32)

(10.32)

(10.33)

(10.34)

(10.35)

(10.36)

(10.37)

Observe that the results of Equations 10.36 and 10.37 match those of Equations 9.45 and 9.46.

10.4.3 SimpLy SurPORTED BEAM wWiTH A UNIFORM LOAD

Next consider the example of Section 9.5.3 of a simply supported beam with a uniform load as in
Figure 10.14, where again w is the load per unit length and /¢ is the beam length. Consider a free-
body diagram of the beam as in Figure 10.15. From the figure, the reaction shearing forces Vi and

Vr are (see Equation 9.48)

VL = w€/2 and VR = —w€/2

(10.38)
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1m#mm ¢ i

FIGURE 10.14 Uniformly loaded simply supported beam.

Figure 10.16 then illustrates the loading on the beam.
Using the singularity functions, the loading g(x) on the beam may be expressed as

qx) = —(wl/2) <x —0>"" fw<x—0>" —(wl/2) <x —£>7! (10.39)
From Equation 9.17, the governing equation for the beam displacement is then
Eld*y/dx* = g(x) = —wl/2) <x —0>"1 4w <x — 0> —(wl/2) <x —£>7" (10.40)
By integrating, we obtain
EIdy/d® = —V = —(wl/2) <x — 0> +w <x—0>' —(wl/2) <x—£>" +¢;  (10.41)
By integrating again, we have

EIdy/dx* = —M = —(wl/2) <x — 0> +w <x —0>2/2 — Wl/2) <x —{>' 4 cix+
(10.42)

In Equations 10.41 and 10.42, ¢, and ¢, are integration constants to be determined by the support
conditions. Recall that with simple supports the moment exerted by the support is zero. Therefore,
M =0 at x=0 and x =/{. Thus from Equation 10.42, we have

0=-0+0-0+0+c, (10.43)

and
0= —wl/2+wl/2—0+cit (10.44)

or
;=0 and ¢ =0 (10.45)

|

L VR

T

FIGURE 10.15 Free-body diagram of the simply supported, uniformly loaded beam.
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w

WL

wt/2 wt/2

FIGURE 10.16 Loading on the beam.

By integrating Equation 10.42 again, we obtain
Eldy/dx = —(wl/2) <x —0>2/2 +w <x — 0>°/6 — (Wl/2) <x —£>?/2+ ¢35  (10.46)
And again
Ely = —(wl/2) <x —0>3/6 +w <x —0>%/24 — (wl/2) <x —£>3/6 + c3x + s (10.47)

where the integration constants c3 and ¢4 may be evaluated by recalling that with simple supports the
displacements are zero at the supports. Thus, we have at x=0

0=04+0—-0+0+cy (10.48)
and at x=1¢
0= —(Wl/2)(*/6) + wt* /24 — 0 + ¢34 (10.49)
Hence
;=0 and c3=wl*/24 (10.50)

Therefore, the displacement y(x) becomes
y=W/24EDN[-20 <x — 0> 4 <x —0>* =20 <x — (>3 + £*x] (10.51)
The maximum displacement y,,,x will occur at the midspan (x =/¢/2) as

Swet

Ymax = (w/24EDE[(=2/8) + (1/16) + (1/2)] = 2o

(10.52)

Observe that the results of Equations 10.51 and 10.52 are the same as those of Equations 9.58
and 9.59.

10.4.4 SimprLy SuprPORTED BEAM WITH A CONCENTRATED INTERIOR LOAD

Finally, consider the example of Section 9.5.4 of a simply supported beam with a concentrated
interior load as in Figure 10.17, where, as before, ¢ is the beam length and a and b are the distances
from the load to the left and right ends of the beam, as shown.
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¢ P

FIGURE 10.17 Simply supported beam with an interior-concentrated load.

Figure 10.18 shows a free-body diagram of the beam with the support reactions represented by
the shear forces V| and V. For beam equilibrium, we observe that (see Equation 9.61)

VL=Pb/{ and Vg =—Pa/l (10.53)
Using the singularity functions, the loading g(x) on the beam may then be expressed as
qx) = —(Pb/l) <x —0>"' + P <x—a>"" —(Pajt) <x — £>"" (10.54)
From Equation 9.17, the governing equation for the beam displacement is then
Eld*y/dx* = q(x) = —(Pb/t) <x —0>"' + P <x—a>"" —(Pa/t) <x—£>""  (10.55)
Then by integrating, we have
EIdy/dx® = —V = —(Pb/l) <x —0>" + P <x —0>" —(Pa/l) <x —£>° +¢;  (10.56)
and
EId’y/dx* = —M = (Pb/l) <x —0>' + P <x —a>' —(Pa/l) <x —{>' +cix+ ¢, (10.57)

For a simply supported beam, M is zero at the supports, that is, M =0 at x=0 and x=/. Then at
x=0, we have

0=04+0—-040+c, or ¢=0 (10.58)
and at x =/, we have

0=—(Pb/O+PEl—a)—0+ct

Vi Vi

FIGURE 10.18 Free-body diagram of internally loaded, simply supported beam.
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or
0=—-Pb+Pb+cil or ¢ =0 (10.59)
By integrating the equation a third and fourth time, we obtain
Eldy/dx = —(Pb/) <x —0>%/2+ P <x—a>*2/— (Pa/t) <x —{>*/2+c;  (10.60)
and
Ely = —(Pb/l) <x —0>/6 + P <x —a>>/6 —(Pa/l) <x —{>3/6 + c3x+ ¢y  (10.61)
But with the simple supports, y is zero at the beam ends. Therefore, at x =0, we have
0=-0+0-040+4+c4 or c4=0 (10.62)
and at x =/, we have
0= —(Pb/0))6) + Pl —a)’/6 —0+c3l or c3=(Pb/6O)(* — b (10.63)
By substituting from Equations 10.62 and 10.63 in 10.61 the displacement y becomes

y = (1/6ED[(—Pb/l) <x — 0>’ +P <x —a>> —(Pa/l) <x — (>’ +(Pb/O)((* — b*)x|

(10.64)
Observing the result of Equation 10.64 if 0 <x <a, we have
Ely = (—Pb/{)(x*/6) + (Pb/{)(1* — b?)(x/6)
= —Pbx*/6( 4 Pax(!/3 + a* |6/ — a/2) (10.65)

which is identical to the result of Equation 9.83. Similarly, in Equation 10.64 if a <x </, we have

Ely = —(Pb/60)x’ + (P/6)(x — a)® + (Pb/6)({* — b*)x
= (Pa/0)(x* /6 — €x* ]2 + (*x/3 + a’x /6 — La®/6) (10.66)
which is identical to the result of Equation 9.84. (In Equations 9.69 and 9.70, the validation is

obtained by letting b = ¢ — a and by performing routine analysis.)
Finally, in Equation 10.64 if x=a=>b=/{/2, we obtain the maximum displacement as

Ymax = P? J48EI (10.67)

This result matches that of Equation 9.85.

10.5 DISCUSSION AND RECOMMENDED PROCEDURE

The principal advantages of singularity functions are their simplicity in use and their broad range of
application. They are particularly useful in modeling concentrated loads and discontinuous loadings.
This utility is immediately seen in comparing the two analyses of the simply supported beam
with the interior-concentrated load (in Sections 9.5.4 and 10.4.4). With the traditional method in
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Section 9.5.4, we needed to use multiple free-body diagrams and separate equations for locations

such as to the left and right of the load. With singularity functions, however, we simply model the

load with the function P <x —a>"" and then integrate, as we solve the governing equation.
Specifically, the steps in using singularity functions for beam bending analyses are as follows:

1. For a given beam loading g(x) and support conditions, construct a free-body diagram of the
beam to determine the support reactions.

2. Model the loading function a(x) and the support reactions by using the singularity
functions of Section 10.2. (M <x — x>~ is a concentrated moment M at xo; P <x — x>
is a concentrated force P at xg; g <x — xo>" is a uniform load q beginning at xo; etc.)

3. Form the governing differential equation:

Eld'y/dx* = g(x)

(see Equation 9.17.)

4. Determine the boundary conditions (auxiliary conditions) from the support conditions.

5. Integrate the governing equation and evaluate the integration constants by using the
auxiliary conditions.

10.6 COMMENTS ON THE EVALUATION OF INTEGRATION CONSTANTS

Observe that in the process of integrating the governing differential equation for the beam displace-
ment, we first obtain an expression for the transverse shear V in the beam, and then by integrating
again, an expression for the bending moment M in the beam. These expressions, together with the
support conditions, may be used to evaluate constants of integration. Thus if displacement condi-
tions are also used to evaluate the constants, we have a means of checking the values obtained.

To illustrate these ideas, consider again the simply supported beam with a concentrated interior
load as shown in Figures 10.17 and 10.19. Recall from Sections 9.5.3 and 10.4.4 that the left and
right support reactions are Pb/¢ and Pa//, and that the beam loading including the support reactions
may be modeled as in Figure 10.20.

Next, recall from Equation 10.54 that the loading function g(x) on the beam is

qx) = —=(Pb/l) <x —0>"' + P <x—a>"' —(Pa/t) <x —£>""! (10.68)
and from Equation 10.55 that the governing equation for the beam displacement is
EId*y/dx* = q(x) = —(Pb/l) <x — 0> 4+ P <x—a>"' —(Pa/t) <x—0>""  (10.69)

Finally, by integrating we have an expression for the shear V in the beam as (see Equation 10.56)

FIGURE 10.19 Simply supported beam with an interior-concentrated load.
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Pb/e Pa/t

FIGURE 10.20 Equivalent loading on the beam of Figure 10.19.

EIdy/dx* = -V = —(Pb/l) <x — 0> + P <x —a>" —(Pa/t) <x —(>° +¢;  (10.70)

where c; is an integration constant.

Recall that in the solution of this problem in Section 10.4.4, we discovered that the integration
constant ¢, is zero as a result of the bending moments at the supports being zero. We can also see
that c¢; is zero by examining the shear forces in the beam at the supports. Consider, for example, the
support at the left end of the beam as depicted in Figure 10.21. The reaction force of the support is
shown in Figure 10.22. Recall that the shear force V is positive when it is exerted on a positive face
(cross section) of the beam in the positive direction, or on a negative face in the negative direction.
Correspondingly, the shear is negative when exerted on a positive face in the negative direction, or
on a negative face in the positive direction.

Consider cross sections just to the left (x =07) and just to the right (x =07) of the support as in
Figure 10.23a and b. In the first case (a), the shear is zero, whereas in the second case the shear is:
V =+ Pb/¢ (positive because of a negatively directed force on a negative face). Similarly for beam
cross sections just to the left and to the right of the right-end support (where the reaction force
magnitude is Pa/f), we have the shear zero on the face x=/" and —Pa/¢ on the face x=/{"
(negative since the force is negatively directed on a positive face), as represented in Figure 10.24.
Table 10.1 lists these results.

Referring now to Equation 10.69 (written again here), we see that each of the four conditions of
Table 10.1 leads to ¢; =0.

V=(Pb/l) <x—0>"—P<x—a>"+(Pajl) <x—1>° —¢ (10.71)

10.7 SHEAR AND BENDING MOMENT DIAGRAMS

Stresses in beams discussed in most books on strength and mechanics of materials give considerable
emphasis usually to the construction of shear and bending moment diagrams. These diagrams are
graphical representations of the shear force V and the bending moment M along the beam span. The

FIGURE 10.21 Left-end support of the beam of Figure 10.19.
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Pb/e

FIGURE 10.22 Left-end support reaction force.

x=0"—* x=0" —>

(a) Pb/t (b) Pb/et

FIGURE 10.23 Beam cross sections just to the left (a) and just to the right (b) of the left-end support.
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FIGURE 10.24 Beam cross section just to the left and just to the right of the right-end support.

TABLE 10.1

Shear on Cross Section Faces Near the Beam Supports

Face Shear V

x=0" 0

a. Cross Section Just Left of the Support b. Cross Section Just Right of the Support
x=0"% Pb/t
x=0" —Pa/t

x=0" 0
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FIGURE 10.25 Simply supported beam with an interior-concentrated load.

shear and bending moment are needed to determine the shear stress (in relatively thick beams) and
the flexural, or bending, stress as in the formula o = Mc/I. Shear and bending moment diagrams are
thus convenient not only for determining the shear and bending stresses, but also for finding the
positions along the beam where the maximum values of these stresses occur.

Singularity functions are especially useful for constructing shear and bending moment dia-
grams. To illustrate this, consider again the simply supported beam with the interior-concentrated
load as in the foregoing sections and as shown again in Figure 10.25. From Equations 10.69 and
10.70, the shear V is

V=(Pb/l) <x—0>"—P<x—a>" +(Pa/t) <x—1>° (10.72)

Figure 10.26 shows a graph of this function, where the ordinate V is positive upward.
From Equation 10.57, the bending moment M is (note that ¢, and ¢, are zero)

M= (Pb/l) <x—0>' —P<x—a>'+(Pajt) <x— (> (10.73)

Figure 10.27 shows a graph of this function.
As a further illustration of the use of singularity functions to construct shear and bending
moment diagrams, consider the cantilever beam with a uniform load as in Figure 10.28. From Figure

10.10, the loading on the beam is as shown in Figure 10.29. From Equation 10.8, the loading g(x) on
the beam is

gx) = —Wl/2) <x — 0> —wl <x— 0> 4w <x—0>° (10.74)

From Equations 10.10 and 10.12, the shear V along the beam axis is

V=wl/2)<x—0>"4+wl<x—0>" —w<x—0>! (10.75)
|4
Pb/e
— X
0 a ¢
Pa/t

FIGURE 10.26 Transverse shear diagram for a simply supported beam with an interior-concentrated load.
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FIGURE 10.27 Bending moment diagram for a simply supported beam with an interior-concentrated load.

Figure 10.30 shows a graph of this function, where the positive direction is upward.
From Equations 10.13 and 10.15, the bending moment M along the beam axis is

M=wl/2) <x—0>" +wl <x—0>' —w<x—0>%/2 —wi? (10.76)

Figure 10.31 shows a graph of this function.

10.8 ADDITIONAL ILLUSTRATION: CANTILEVER BEAM WITH UNIFORM
LOAD OVER HALF THE SPAN

To illustrate the use of singularity functions with a somewhat less simple example, consider the
cantilever beam with a right-end support but loaded with a uniform load over the first half of the
beam, starting at the free end as in Figure 10.32, where, as before, ¢ is the length of the beam and w
is the uniform load per unit length. Also, as before, let the objective of the analysis be to determine
the beam displacement g, together with expressions for the shear loading V (transverse or perpen-
dicular to the beam axis), and the bending moment M.

We can readily determine y, V, and M by following the procedure of Section 10.5: first, we can
determine the support reaction from the free-body diagram of Figure 10.33, where we represent the
built-in support reaction by the shear force V, and bending moment M,, as shown. From this figure,
we immediately find V, and M, to be

Vi=-wl/2 and M, = —-3W(*/8 (10.77)
Next, from Figure 10.33, the loading function g(x) along the beam is
gx) =w <x—0>" —w <x — /2> —(wl/2) <x — (> —@Bwl?/8) <x —£>"2 (10.78)
Third, from Equation 9.17, the governing differential equation is

EId*y/dx* = g(x) =w <x —0>0 —w <x — £/2>0 —(wl/2) <x —(>"1 —Bwl?/8) <x —(>2
(10.79)

FIGURE 10.28 Uniformly loaded cantilever beam.
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FIGURE 10.29 Loading on the beam.
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FIGURE 10.30 Transverse shear diagram for the uniformly loaded cantilever beam.

FIGURE 10.31 Bending moment diagram for the uniformly loaded cantilever beam.

FIGURE 10.32 Cantilever beam with a half span uniform load.
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FIGURE 10.33 Free-body diagram for the beam of Figure 10.32.
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Finally, since the beam has a free end at x=0 and a fixed end at x=/, we have the auxiliary
condition:

atx=0: V=M=0 or d&y/d’=d%y/dx’=0 (10.80)
atx=1/¢ y=dy/dx=0 (10.81)

and also at x = £: V= —EId’y/dx® = —wl/2 and M = —EId*y/dx* = —3wl?/8 (10.82)
By integrating Equation 10.79, we have

EIdfy/d = —V=w<x—0>' —w<x—£/2>" —wl/2) <x— 1> —Bwl?/8) <x—1>"" + ¢,

(10.83)
Since V=0 when x =0, we have
=0 (10.84)
Note also at x={¢", V=—w//2, so that
wl/2 =wl —w({/2) — 0+ c
or
=0 (10.85)
By integrating again, we have
EId?y/d* = —M =w <x—0>%/2 —w < x — £/2 >%/2 —(wl/2) <x — £>'
—Bwl?/8) <x —1>° +¢; (10.86)
Since M =0 when x =0, we have
=0 (10.87)
Note also at x=¢"!, M= —3w€2/8, so that
3wl /8 = w2 —w(£/2)* )2 =0 — 0+ ¢,
or
=0 (10.88)

By integrating the equation a third time, we have

Eldy/dx=w <x—0>>/6 —w <x—£/2>3/6 —(wl/2) <x —{>%)2 — Bwl*/8) <x — > +¢;
(10.89)

But dy/dx=0 when x =/, so that

0=wl/6 —wt/2)%6 —0—0+c3
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or

c3 = —Twl? /48 (10.90)
Finally, by integrating a fourth time, we have

Ely=w<x—0>%/24 —w <x—£/2>%/24 —(wl/2) <x—(>3/6
— (Bwl?/8) <x — £>%/2 — Twl’x/48 + ¢4 (10.91)

But y=0 when x=/, so that
0 =wl*/24 —w(l/2)* /24 —0 — 0 — Twl* /48 + ¢4
or
s = (41/384)we* (10.92)

To summarize, from Equations 10.83, 10.84, 10.86, 10.87, 10.91, and 10.92, the shear V, bending
moment M, and displacement y are

V=W/ED[—<x—0>"+ <x—£/2>" +(£/2) <x —(>" +(3¢°/8) <x — {>""] (10.93)

M = W/ED[—<x—0>?/2+ <x—£/2>%/2+ (£/2) <x — {>" + (30*/8) <x — £>"]
(10.94)

and

y=W/ED[<x—0>%/24 — <x—0/2>%/24 —0 <x—(>7/12 =30* <x — (>?]16
— 70x/48 + 41¢*/384] (10.95)

SYMBOLS

a, b, c Values of x

c;(i=1,2,3,4) Integration constants

E Elastic modulus

1 Second moment of area

l Beam length

A Values of x just to the left and just to the right of x=/
L,R Subscripts designating left and right
M Bending moment

Mo Concentrated moment

n Integer

o Origin at X, Y, and Z-axes

P Concentrated load

q(x) Loading function

Vv Shear

w Uniform load per unit length

wo Uniform load per unit length
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X X-axis coordinate

<x—a>" Singularity function (see Section 10.2)

X, Y, Z Cartesian (rectangular) coordinate axes

y Displacement, Y-axis coordinate

0,0" Values of x just to the left and just to the right of the origin O
6(x—a) Dirac delta function, impulse function

d(x—a) Heavyside unit step function
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’l’l Beam Bending Formulas for
Common Configurations

11.1  PROSPECTUS

Recall from Equation 9.17 that the governing differential equation for the beam displacement y is
EIDd*y/dx* = g(x) (11.1)

where
E is the elastic modulus
I is the second moment of area of the beam cross section
x is the axial dimension
q(x) is the loading function

This equation has been integrated and solved for a large number of diverse loading and support
conditions. References [1-3] provide a comprehensive list of results of these integrations.

In the following sections, we provide lists of a few of the more common and presumably, most
useful of these results. We tabulate these results in Section 11.6.

11.2 CANTILEVER BEAMS

11.2.1 Lert-END SupPORTED CANTILEVER BEAM

Figure 11.1a through c shows the positive directions for the loading, the support reactions, and the
displacements for a cantilever beam supported at its left end. Recall that at the built-in support,
the displacement y and the slope dy/dx of the beam are zero.

11.2.2 CANTILEVER BEAM, LEFT-END SuPPORT, AND CONCENTRATED END LOAD

Figure 11.1b and ¢ shows loading, support reaction, and displacement results for the left-end
supported cantilever beam with a concentrated right-end load.
Analytically, the shear V, bending moment M, and displacement y, may be expressed as

V=P<x—0>"4+Pl<x—0>""-P<x—1>° (11.2)
(See Equations 10.25 and 10.26.)
M=P<x—0>"4+Pl<x—0>"—P<x—¢>"-2P¢ (11.3)
(See Equations 10.28 and 10.30.)
and
y=(P/ED[—<x —0>%/6 —0 <x —0>%/2 +<x —£>%/6 4 (x*] (11.4)

149
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FIGURE 11.1 Positive loading, reaction, and displacement directions for a left-end supported cantilever

beam. (a) Positive loading direction (Y-direction), (b) positive direction for left-end support reactions, and
(c) positive transverse displacement direction (Y-direction).

with
Vmax = PC3/3EI at x =/ (11.5)

Figure 11.3a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)
11.2.3 CanNTIiLEVER BEAM, LEFT-END SupPORT, AND UNIFORM LOAD

Figure 11.4a through c shows loading, support reactions, and displacement results for the left-end
supported cantilever beam with a uniformly distributed load.

Pe3/3EI

(c)

FIGURE 11.2 Concentrated end loading, support reactions, and end displacement for a left-end supported
cantilever beam. (a) Concentrated end loading (beam length ¢, load magnitude P), (b) support reactions
(Vo =P, Mo = —PY), and (c) end displacement (elastic modulus E, second area moment /).
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FIGURE 11.3 Shear, bending moment, and displacement of left-end supported cantilever beam with a

concentrated right-end load. (a) Transverse shear, (b) bending moment, and (c) displacement.

Analytically, the shear V, bending moment M, and displacement y, may be expressed as
V=wl72) <x—0>" 4wl <x—0>" —w <x — 0> (11.6)

(See Equations 10.10 and 10.12.)

@

1 lwe 4/8EI

WTez ]%%

(c)

FIGURE 11.4 Uniform loading, support reaction, and end displacement for a left-end supported cantilever
beam. (a) Uniform load (beam length ¢, load intensity w per unit length), (b) support reaction (Vo =w{, Mo =
—wfz/ 2), and (c) end displacement (elastic modulus E, second area moment I).
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FIGURE 11.5 Shear, bending moment, and displacement of left-end supported cantilever beam with a
uniformly distributed load. (a) Transverse shear, (b) bending moment, and (c) displacement.

M= Wh72) <x — 0> +wl<x— 0> —w<x —0>%/2 — we? (11.7)
(See Equations 10.13 and 10.15.)
and
y = W/ED[—(£*/4) <x — 0> — (£/6) <x — 0> + <x — 0>Y/24 + (?x72] (11.8)
with
Ymax = W' /8EI at x=1/ (11.9)

Figure 11.5a through c provides graphical representations of these results. (Note that the positive
ordinate direction is downward.)
11.2.4 RIGHT-END SuPPORTED CANTILEVER BEAM

Figure 11.6a through c shows the positive directions for loading, support reactions, and displace-
ments for a cantilever beam supported at its right end. Recall that at the built-in support, the
displacement y, and the slope dy/dx, of the beam are zero.

11.2.5 CanTiLEvER BEAM, RIGHT-END SuPPORT, AND CONCENTRATED END LOAD

Figure 11.7a through ¢ shows loading, support reaction, and displacement results for the right-end
supported cantilever beam with a concentrated right-end load.
Analytically, the shear V, bending moment M, and displacement y may be expressed as

V=-P<x—0>"+P<x—0>"+ Pl <x—0>7" (11.10)
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(c)

FIGURE 11.6 Positive loading, reaction, and displacement directions for a right-end supported cantilever
beam. (a) Positive loading (Y-direction), (b) positive direction for right-end support reactions, and (c) positive
transverse displacement direction (Y-direction).

M=-P<x—0>'"+P<x—(>"+Pl<x—>° (11.11)
y = (P/ED[<x—0>/6— <x —{>/6 —PL <x —{>%/2 —P{*x/2 + P{* /3] (11.12)

with
Ymax = PCJ3EI at x=1( (11.13)

Figure 11.8a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward as before.)
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FIGURE 11.7 Concentrated end loading, support reactions, and end displacement for a right-end supported
cantilever beam. (a) Concentrated end loading (beam length ¢, load magnitude P), (b) support reaction
(Vy=—P, My;= —P{), and (c) end displacement (elastic modulus E, second area moment /).
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FIGURE 11.8 Shear, bending moment, and displacement of a right-end supported cantilever beam with a
concentrated left-end load. (a) Transverse shear, (b) bending moment, and (c) displacement.

11.2.6 CANTILEVER BEAM, RIGHT-END SupPORT, AND UNIFORM LOAD

Figure 11.9a through c shows loading, support reactions, and displacement results for the right-end
supported cantilever beam with a uniformly distributed load.
Analytically, the shear V, bending moment M, and displacement y may be expressed as

V=-w<x—0>" 4wl <x—>" 4+ wl/2) <x—1>""! (11.14)
M=—w/2) <x—0>> 4wl <x—0>"" +wl?2) <x—£>° (11.15)
w
¢
()
A We we/8EI

(b) ©

FIGURE 11.9 Uniform loading, support reactions, and end displacement for a right-end supported cantilever
beam. (a) Uniform load (beam length ¢, load intensity w per unit length), (b) support reaction (V,= —2/,
M,= fwﬁz/Z), and (c) end displacement (elastic modulus E, second area moment /).
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FIGURE 11.10 Shear, bending moment, and displacement of right-end supported cantilever beam with a
uniformly distributed load. (a) Transverse shear, (b) bending moment, and (c) displacement.

and
y=W/ED[<x —0>%/24 —(£/6) <x — >> —(£*]4) <x —(>? —Px/6+ 048]  (11.16)

Figure 11.10a through c provides graphical representations of these results. (Note that the position
ordinate direction is downward.)

11.3 SIMPLY SUPPORTED BEAMS

11.3.1 PosiTive DIRECTIONS

Figure 11.11a through c shows the positive direction for loading, support reactions, and displace-
ment for simply supported beams. Recall that at the supports the displacement y, and the moment M
of beam are zero.

11.3.2 SimprLy SurPORTED BEAM AND CONCENTRATED CENTER LOAD

Figure 11.12a through c shows loading, support reactions, and displacement results for a simply
supported beam with a centrally placed concentrated load.
Analytically, the shear V, bending moment M, and displacement y may be expressed as
V=(P/2)<x—0>" —P<x—0/2>° +(P/2) <x —£>° (11.17)
(See Equation 10.56.)
M= (P/2) <x—0>' —P<x—10/2>" +(P/2) <x —(>! (11.18)

(See Equation 10.57.)
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FIGURE 11.11 Positive loading, reaction, and displacement direction for a simply supported beam.
(a) Positive loading direction (Y-direction), (b) positive direction for support reactions, and (c) positive
transverse displacement direction (Y-direction).

and
y = (P/12ED[(3/4)*x — 2 <x — 0> + <x — £/2> —<x —£>7] (11.19)

with
Ymax = P2 JASEI at x=1(/2 (11.20)

(See Equation 10.59.)
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FIGURE 11.12 Loading, support reactions, and displacement of a simply supported beam with a concen-
trated center load. (a) Concentrated center load (beam length ¢, load magnitude P), (b) support reactions
(Vo=P/2, Vy=—P/2, Mo=M,=0), and (c) center beam displacement (elastic modulus E, second area
moment /).
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FIGURE 11.13 Shear, bending moment, and displacement of a simply supported beam with a concentrated
center load. (a) Transverse shear, (b) bending moment, and (c) displacement.

Figure 11.13a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.3.3 SimpLy SupPORTED BEAM AND CONCENTRATED OFF-CENTER LOAD

Figure 11.14a through c shows loading, support reactions, and displacement results for a simply
supported beam with an off-center concentrated load.

Pb/e Pa/t Y
A A

O e .

(b) ()

FIGURE 11.14 Loading, support reactions, and displacement of a simply supported beam with an off-center
concentrated load. (a) Off-center, concentrated load (beam length ¢, load magnitude P), (b) support reactions
(Vo=Pb/t, V,= —Pa/l, Mo =M,=0), and (c) beam displacement.
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Analytically, the shear V, bending moment M, and displacement y may be expressed as
V =(Pb/l) <x—0>" —P <x—a>" +(Pa/t) <x —(>° (11.21)
M= (Pb/l) <x—0>"" —P <x—a>"4+(Pajl) <x —{>' (11.22)
and
y = (P/6ED[(b/O)(* — bP)x —(b/l) <x — 0> + <x —a>> —(a/f) <x—£>3]  (11.23)

In this case, the maximum displacement is not under the load but instead is between the load and the
center of the beam. Specifically, if the load is to the left of center, that is, if a < £/2, ymax is [1]:

Ymax = (Pa/3EIO[(% — a®)/31? (a< ()2) (11.24)
occurring at
x=xpm =L —[(> —a»/3]1'? (a<)2) (11.25)
Similarly, if the load is to the right of center, that is, if a > £/2, Yy is [2,3]:
Ymax = (Pb/3EIO[(* — b)) /31 (a> (/2) (11.26)
occurring at
x=xn = [2—=0*/3P* (a>1/2) (11.27)
Observe that Equations 11.24 through 11.27 are also valid if a=b=4¢/2. (See also
Equation 11.20.)

Figure 11.15a through c provides graphical representation of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.3.4 SimpLy SuPPORTED BEAM AND UNIFORM LOAD

Figure 11.16a through c shows loading, support reactions, and displacement results for a simply
supported beam with a uniform load.
Analytically, the shear V, the bending moment M, and the displacement y may be expressed as

V=wl/2) <x—0>" —w <x—0>' 4 (wl/2) <x —£>° (11.28)
(See Equation 10.41.)
M= wl/2) <x—0>! —w <x —0>%/2 + (wl/2) <x — £>! (11.29)

(See Equation 10.42.)
and

y = W/24ED[-20 <x — 0> + <x — 0>* =20 <x — £>% + Px] (11.30)
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Vimax = (PbI3EIO)[(£% - b?)/3]3%
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Yimax = (Pa/3EIL)[(£2 - a2)/3]32

e~
[<_ [(€2_a2)/3] 1/2_.|
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FIGURE 11.15 Transverse shear, bending moment, and displacement results for a simply supported beam
with an off-center concentrated load. (a) Transverse shear, (b) bending moment, and (c) maximum displace-

ment (elastic moment E, second area moment [).

w we/2 we/2
] o) 14
177777777 ¢ /777%777
(@) (b)
5wet/384E]

o~

()

FIGURE 11.16 Loading, support reactions, and displacement of a simply supported beam with a uniform load.
(a) Uniform load (beam length ¢, load intensity w per unit length), (b) support reaction (Vo =wt/2, V,= —w{/2,
M/{ =0), and (c) center beam displacement (elastic modulus E, second area moment I).
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FIGURE 11.17 Transverse shear, bending moment, and displacement of a simply supported beam with a
uniform load. (a) Transverse shear, (b) bending moment, and (c) displacement.

with
Vmax = SWE/38EI  at x=1{/2 (11.31)

(see Equations 10.51 and 10.52.)
Figure 11.17a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.4 DOUBLE BUILT-IN BEAMS

11.4.1 PosiTive DIRECTIONS

Figure 11.18a through c shows the positive direction for loading, support reactions, and displace-
ment for double built-in beams. Recall that at the supports the displacement y and the displacement
slope dy/dx are zero.

11.4.2 DousLe BuiLt-IN SurPORTED BEAM AND CONCENTRATED CENTER LOAD

Figure 11.19a through ¢ shows loading, support reactions, and displacement results for a doubly
built-in supported beam with a centrally placed concentrated load.
Analytically, the shear V, bending moment M, and displacement y may be expressed as

V=(P/2) <x—0>% —(P/8) <x —0>"" =P <x— /2> +(P/2) <x — {>°
+(PL/8) <x —£>7" (11.32)
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q®) My 1 M,

I, N

() Y

FIGURE 11.18 Positive loading, reaction, and displacement directions for double built-in beams. (a) Positive
loading direction (Y-direction), (b) positive direction for support reactions, and (c) positive transverse displace-
ment direction (Y-direction).

M =—(Pl/8) <x—0>" +(P/2) <x—0>' —P<x—£/2>" +(P/2) <x —£>!

+(PL)2) <x —£>° (11.33)
and
y = (P/2ED[{ <x —0>?/8 — <x —0>°/6 + <x — £/2>°/3
—<x =336 — 1 <x—0>2/8] (11.34)
p P/2 P/2
A A
N /2 /2 — Pe/8 Pe/8
S = ( J
N Z

—
)

=
—
=3
=

Pe3/192E1

—
———

/1]
ANABAINN

(c)

FIGURE 11.19 Loading, support reactions, and displacement of a doubly built-in beam with a concentrated
center load. (a) Concentrated center load (beam length ¢, load magnitude P), (b) support reactions (Vo= FP/2,
V,=—P/2, Mo=—P{/8, M,=—P{/8), and (c) center beam displacement (elastic modulus E, second area
moment /).
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FIGURE 11.20 Shear, bending moment, and displacement of a doubly built-in beam with a concentrated
center load. (a) Transverse shear, (b) bending moment, and (c) displacement.

with
Ymax = PP J192EI  at x = (/2 (11.35)

Figure 11.20a through c¢ provides positive graphical representations of these shear, bending
moment, and displacement results. (Note the positive ordinate direction is downward.)

11.4.3 DousLe BuiLt-IN SurporTED BEAM AND CONCENTRATED OFF-CENTER LOAD

Figure 11.21a through c shows loading, support reactions, and displacement results for a doubly
built-in supported beam with an off-center concentrated load.
Analytically, the shear V, bending moment M, and displacement y may be expressed as

V = P(b*/*)3a +b) <x — 0> —Pab®/*) <x — 0>~ —P <x—a>°

+ P@® /) (a +3b) <x — £>° + P(@®b/0?) <x —£>7! (11.36)
M = P(b*/6*)(3a +b) <x — 0>! —P(ab*/£2) <x — 0> —P <x —a>!

+ P@ /) a +3b) <x — {>' +Pa’b/* <x— (>0 (11.37)

and

y = (P/EIP)[~b*Ba + b) <x — 0>3/6 + ab*l <x — 0>%/2 +£3 <x —a>>/6
—a*(a+3b) <x —1>3/6 —a*bl <x — 1>%/2] (11.38)
In this case, the maximum displacement is not under the load but instead between the load

and the center of the beam (see Figure 11.21c). Specifically, if the load is to the left of center,
that is, if @ < £/2, ymax is
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P(b%/1€%)(3a + b) P(a?/€%)(a + 3b)

C )

Pab2/€2 PaZb/€2
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(c)
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(b) a>€/2>b/w—E
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!

FIGURE 11.21 Loading, support reactions, and displacement of a double built-in supported beam with
an off-center concentrated load. (a) Off-center, concentrated load (beam length ¢, load magnitude P),
(b) support reaction (Vo = P(b?/£3)(3a + b), Mo = —Pab*/1?, Vi = —P(a®/{*)(a + 3b), M; = —Pa’b/{?),
and (c) beam displacement (see Equations 11.39 through 11.42 for values of y,.x and xy,.).

Ymax = 2Pa*b* /3(a + 3bYEl  (a< {/2)
occurring at

x—xm—f—H—?’b—ﬁ/(a—l—?)b)

Similarly, if the load is to the right of center, that is, if @ > £/2, y.x is
Ymax = 2Pa’b*/3(3a + bY’El  (a> (/2)
occurring at

X =xm =2al/(Ba+b)

(11.39)

(11.40)

(11.41)

(11.42)

Observe that Equations 11.39 through 11.42 are also valid if a =b = ¢/2. (see also Equation 11.35.)
Figure 11.22a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.4.4 DousLe BuiLt-IN SupPorTED BEAM AND UNIFORM LOAD

Figure 11.23a through c shows loading, support reactions, and displacement results for a double

built-in supported beam with a uniform load.
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—P(a?/€3 )(a+3b) + -Pa’b/€? 1
—Pab?/€? '\
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(a) (b)
ol @ ‘
ymax-—
o ma 2Pa’b’/3(a+3b)%Ei, a<?/2
xm=€—2bl/(a+3b)= &%/(a+3b)
o 2 x, a ¢
ymax-
Vimax = 2Pa’b*/3(3a + b*EL, a > /2

% =2al/(3a +b)

FIGURE 11.22 Shear, bending moment, and displacement results for a doubly built-in beam with an off-
center concentrated load. (a) Transverse shear, (b) bending moment, and (c) displacement.

Analytically, the shear V, the bending moment M, and the displacement y may be expressed as

V=-w<x—0>"+Wwl/2) <x—0>" —w?/12) <x — 0>""
+ WP/12) <x — 0>+ (wl/2) <x —£>°

wt/2

wt/2

C

we?/12
(b)

wé?/12

(11.43)

we*/384E1

(©

FIGURE 11.23 Loading, support reactions, and displacement of a doubly built-in beam with a uniform load.
(a) Uniform load (beam length ¢, load intensity w per unit length), (b) support reactions (Vo=wl / 2, V,=
—wl/2, Mo=M,= WL’2/2), and (c) center beam displacement (elastic modulus E, second area moment /).
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FIGURE 11.24 Shear, bending moment, and displacement of a double supported beam with a uniform load.
(a) Transverse shear, (b) bending moment, and (c) displacement.

M= —w<x—0>%2+Wl/2) <x—0>! —(w?/12) <x — 0>°

+ Wl /12) <x — €50 +(w/2) <x — > (11.44)
y = (W/24ED[<x — 0>* —20) <x — 0>3 + 2 <x — 0>2
— P <x—0>% -0 <x—10>7] (11.45)
with
Ymax = wl*/38EI at x=1/2 (11.46)

Figure 11.24a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.5 PRINCIPLE OF SUPERPOSITION

In most beam problems of practical importance, the loading is not as simple as those in the previous
sections or even as those in more comprehensive lists, as in Refs. [1-3]. By using the principle of
superposition, however, we can use the results listed for the simple loading cases to solve problems
with much more complex loadings. The procedure is to decompose the given complex loading into
simpler loadings of the kind listed above, or of those in the references. The principle of superpos-
ition then states that the shear, bending moment, and displacement for the beam with the complex
loading may be obtained by simply combining (that is, “‘superposing’’) the respective results of the
simpler cases making up the complex loading.
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The principle is a direct result of the linearity of the governing differential equation. To observe
this, suppose a loading function g(x) is expressed as

q(x) = q1(x) + q2(x) (11.47)
The governing differential equation is then
Eld*y/dx* = q() = q1(0) + q2(0) (11.48)
The general solution of this equation may be expressed as [4]:
Y=Y+ (11.49)
where y, is the solution of the homogeneous equation
d*y/dx* =0 (11.50)

and y,, is any (“particular”’) solution of Equation 11.48. Suppose that y,; and y,, are solutions of the
equations

Eld*y/dx* = q(x) and EId*y/dx* = ¢>(x) (11.51)
That is,
Eldy, /dx* = qi(x) and Eld%y,/dx* = ¢»(x) (11.52)

Then by adding the respective sides of Equation 11.52, we have

Eld'y, /dx* + Eld*y, /dx* = q1(x) + q2(x) (11.53)

or
EId*(yp1 + yp2)/dx* = q1(x) + q2(x) = q(x) (11.54)

or
Yp = Yp1 +¥Vp2 (11.55)

Equation 11.55 shows that the linearity of the governing equation allows individual solutions to
equations with individual parts of the loading function to be added to obtain the solution to the
equation with the complete loading function. This establishes the superposition principle.

To illustrate the procedure, suppose a simply supported beam has a uniform load w and a
concentrated center load P as in Figure 11.25. Then by using the principle of superposition, we can

p

FIGURE 11.25 A simply supported beam with a uniform load w and a concentrated center load P.
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P/2 + wl/2 P/2 + wt/2
A A (P£3/48EI) + (5we*/384E])

b)
(a) (

FIGURE 11.26 Support reactions and displacement of a simply supported beam with a uniform load and a
concentrated center load. (a) Support reactions (Vo=P/2=wl/2, V,=—P/2 —wl/2, Mo=M,=0) and
(b) center beam displacement (elastic modulus E, second area moment /).

combine the results of Figures 11.16 and 11.17 to obtain representations of the support reactions and
displacement. Figure 11.26 shows the results.

Similarly, by combining Equations 11.17 through 11.20 with Equations 11.28 through 11.31,
respectively, we obtain analytical representations of the shear (V), bending moment (M), and
displacement (y) results. That is,

V=[P/2) +wl/2)] <x—0>" —P <x—1£/2>" —w <x—0>!

+ [(P/2) + (wt/2)]) <x — £>° (11.56)
M =[(P/2) + (Wl/2)] <x —0>' =P <x—£/2>" —w <x—0>%/2
+ [(P/2) + Wl/2)] <x —£>! (11.57)
—(P2+wt/2) + ¢
0 X
-P2 -+ e/2
° e ¢ X p
P2t (P/4) +(wt?/8)
(P/2+wt/2) 4
M
(a) ®)
o 22 ¢
: — X
(PE/48EI) /
+ (5we*/384EI)
y

(c)

FIGURE 11.27 Shear, bending moment, and displacement of a simply supported beam with a uniform load
and a concentrated center load. (a) Transverse shear, (b) bending moment, and (c) displacement.
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and
y = (1/12ED[P(3/4)*x —2P <x —0>> + P <x—€/2>> —P <x— (>3
—wl <x—0>° +w<x—0>Y2 —wl <x— 1> +wlx/2] (11.58)
with
Ymax = (PC? J48EI) + (Swt* /384EI) (11.59)

Finally by combining Figures 11.13 and 11.17, we have a graphical representation of these results as
shown in Figure 11.27a through c. (Note that, as before, the positive ordinate direction is down-
ward.)

Finally, observe that in the superposition process the location of the position of the maximum
displacement and maximum moment can shift away from the position with the elementary com-
ponent loading.

11.6 SUMMARY AND FORMULAS FOR DESIGN

Tables 11.1 through 11.3 provide a concise summary of the foregoing results together with
additional results for (1) cantilever, (2) simple support, and (3) double built-in support beams.*

TABLE 11.1
Cantilever Beams: Maximum Bending Moment and Maximum Displacement for Various
Loading Conditions

Maximum Bending

Loading Moment Maximum Displacement
P
l 1
Mpyax = PL Ymax = 3El
14
w
w2 wlt
Mpax = T Ymax = @
14

* These tables were part of Alexander Blake’s second edition of Practical Stress Analysis in Engineering Design, Marcel
Dekker, New York, 1990.



Beam Bending Formulas for Common Configurations

169

TABLE 11.1 (continued)

Cantilever Beams: Maximum Bending Moment and Maximum Displacement for Various

Loading Conditions

Loading

Maximum Bending

9o

Moment
MmLIX - W(gz _ a2)
2
MO
rv Minax = Mo
L —a)
Minax = qOT
e2
Minax = qOT
go( —a)
Mpox = ——F—
2

Maximum Displacement

_ w(l — a)[60(L + a)’ — 3a(a® + 27)]
}max - 48E1

Mol?
Py = — ——
Jmax 2EI

_ qo(t — a)[14({ — a)® + 405> — 135¢°

Yimax 1620E1
2a+ /¢
e =
3
got*
Ymax @

C golt — a)[17(t — a)* + 90X (7L — a)]
Fmax = 32401

eﬁa-‘,—%
T3

(continued)
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TABLE 11.1 (continued)
Cantilever Beams: Maximum Bending Moment and Maximum Displacement for Various
Loading Conditions

Maximum Bending

Loading Moment Maximum Displacement
9o
5 11got*
Miax = qo_ Ymax = do
3 120E1
14
TABLE 11.2

Simply Supported Beams: Maximum Bending Moment and Maximum Displacement
for Various Loading Conditions

Maximum Bending
Loading Moment Maximum Displacement

v Pt _ PP
‘ ‘ max — 4 ymax - 48E1
| 2/2 2/2 |
P
' A Pab(a + 2b)[3a(a + 2b)]'/?
Jmax —
Pab , . e
Munax === at x = 0.58(a® + 2ab)"/
when a > b
e | b
14
X
w
we? Swe
Mmzx = max —
x =g Ymax = 304F1
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TABLE 11.2 (continued)
Simply Supported Beams: Maximum Bending Moment and Maximum Displacement
for Various Loading Conditions

Maximum Bending

Loading Moment Maximum Displacement
6e) .
Mg = 0.064w0> Vax = %
at x = 0.58¢ = 0.52/
—
14
90
gol* got*
Minax = —+~ ax —
G ; SN Im = 12081
| 2/2 2/2 |
90
2 4
Mmax = % Ymax = 3q0é
640EI
) | /2
Mo

I 0.064Mo(*
Ymax = — (=7

M=Mqg EI
at x = 0.42¢
— ¢
x |
Mo
0<x<a 5 2 >
Mo Mox _ Mox(3b* — £° + x°)
max — Z ym:lx_ 6EI€
a b Mo(f — x)(3a® — 2002 + 2
a<x</t Ymax = — of x)a *+%)
Mox 6EI(
e M=Mo ==
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TABLE 11.3

Doubly Built-In Beams: Maximum Pending Moment and Maximum Displacement

for Various Loading Conditions

Loading

r
¢/2 £/2
14
d e
- w
b/2 | b/2
[G— ] (4
¢ ¢ )

Maximum
Bending Moment

Fora<b
Pab?
Ma="5

Fora>b
Pa*b

Mg = Iz
Moo — PL

max — 8

wb
Rl = <@> X

[4€*(¢ + 2d) — b*(c — a)]

M, = w—b><
YY)

{D*(L 4 3(c — a)] — 24¢%d)}

Maximum Displacement
2(b
0+ 2b
2pa*h?
3EI( + 2b)

Fora<b and x =

Ymax =

20
{4 2a

Fora>b and x =

2pa’b?
3EI( + 2a)?

Ymax =

PP
Ymax =90 E1

ForO<x<a

_ 3M1X2 +R1x3
ymaXi 6E1
Fora<x<(a+b)

Ymax =

12M 5% 4+ 4R x> — g(x — a)*

24E1

o w
Ymax = 3e4Fl




Beam Bending Formulas for Common Configurations

173

TABLE 11.3 (continued)
Doubly Built-In Beams: Maximum Pending Moment and Maximum Displacement
for Various Loading Conditions

Loading

Maximum
Bending Moment

Maximum Displacement

o 6Moab o 2M 1 14
R =— 7 For x = R, and a>3
Mob({ — 3a) 2M;
M] = Ymax = —
2 3EIR?
_ Moa(2l — 3a) L, 2M, ¢
M, = 7 Forx=1/ R and a<3
Ry=—R __
2 = 1 Ymax = 3 EIR%
90
_ 390t _ Qot” .
R, = ET YVmax = T64E] (maximum)
_ 90t Al x—
. R, = >0 at x=0.525¢
2
¢ Mg = M(maximum)
¢ A 20
SYMBOLS
a, b Length coordinates
E Elastic modulus
1 Second moment of area
4 Beam length
M Bending moment
M, Moment at end ¢
Mo Moment at end O
0 Coordinate system origin
P Concentrated load
q(x) Loading
\% Shear force
Vo Shear force at end O
w Uniform loading
XY, Z Cartesian (rectangular) coordinate axes
X X-axis coordinate
<x —a> Singularity function (see Section 10.2)
Y Y-axis coordinate; displacement

Y,

Shear force at end ¢
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12 Torsion and Twisting
of Rods

12.1 INTRODUCTION

Beams and rods often fail in shear due to excessive twisting or torsion. This frequently occurs
with overly tightened bolt/nut systems, with torsion bars, drive shafts, and beams with off-center
loads. In this chapter, we review the fundamentals of the torsion of rods with the corresponding
stress and displacement analyses. Since most rods subjected to torsion have circular cross sections,
we begin our discussion with round bars. After that, we briefly consider bars with noncircular cross
sections and hollow tubes.

12.2 BASIC ASSUMPTIONS IN THE TWISTING OF RODS OR ROUND BARS

When a rod (round bar) is subjected to a twisting moment, every cross section is in a state of pure
shear. The shear stresses across the cross section then produce a resultant moment over the cross
section, which is equal to the applied twisting moment but oppositely directed.

To study this behavior in greater detail, we make the following basic assumptions:

1. The rod material is homogeneous and isotropic

2. Hooke’s law is applicable so that the shear stress at a point is proportional to the shear
strain at that point

3. Plane circular cross sections remain plane during twisting (for round bars)

4. Radial lines of the cross section remain straight and radial during twisting (for round bars)

The last assumption has special meaning because it implies that the stresses and strains at a point are
directly proportional to the radial coordinates of the point. Hence, the maximum shear stress occurs
at the perimeter of the cross section. (This behavior is thus different from the case of transverse shear
of the beams due to bending, where the maximum shear stress is found at the neutral axis as
discussed in Chapter 13.)

12.3 STRESSES, STRAINS, AND DEFORMATION
(TWISTING) OF ROUND BARS

Assumptions 3 and 4 (cross sections remain plane and radial lines remain straight during twisting)
form the basis for our stress and strain analysis of twisting circular bars. The rationale for these
assumptions stems from the circular symmetry of the cross section (see Refs. [1-6]). These
assumptions have also been validated experimentally.

To develop the analysis, consider a circular cross sectional rod R subjected to a twisting moment
T as in Figure 12.1. Consider a segment AB of R as in Figure 12.2. Let the length of AB be /.

During the twisting of segment AB, let the cross section at A be regarded as fixed. Then consider
the rotation of the cross section at B relative to cross section at A. On the surface between A and B,
let PQ be a longitudinal line which is initially parallel to the rod axis as represented in Figure 12.3.
Next, suppose that section B is rotated relative to A through an angle 6 (due to the twisting moment)
as represented in Figure 12.4. During the twisting let Q be rotated to Q' and let y be the angle

175
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:) %) (% :)T
T k R

FIGURE 12.1 A circular cross-sectional rod subjected to a twisting moment.

between PQ and PQ’, measured at P, as shown. If the twist angle 0 is small and consequently 7 is
also small, we can identify vy with the shear strain on the rod surface. Thus if the segment AB has
length ¢ and radius r, we see from Figure 12.4 that 6 and y are related by the simple expressions

r@ =0y or y=(r/0)f (12.1)

Next, imagine an interior cylindrical segment of AB having radius p as in Figure 12.5. By similar
reasoning we see that the shear strain y at an interior point P at end A is

y = (p/0)0 (122)
The shear stress 7 at P is then (see Equation 3.12):
T=Gy=Gpo/!l (12.3)

where G is the shear modulus.

Observe that Equation 12.3 shows that the shear stress on a cross section varies linearly along a
radial line. It is zero on the axis and it reaches its maximum value on the perimeter. The same
remarks hold for the shear strain.

Observe further that the radial and axial (normal) stresses are zero. Finally, observe that these
characteristics of the stress distribution are direct consequences of the assumptions of Section 12.2.

We can use Equation 12.3 to obtain an expression for the twisting torque 7 in terms of the twist
angle 0. Specifically, equilibrium requires that the twisting torque must be equal to the sum of the
moments of the shear stresses on the cross section about the axis of the cross section. To develop
this, consider the shear stress on a small element (e) of the cross section as represented in Figure
12.6, where p and ¢ are the polar coordinates of (e). The twisting torque 7 is then

2

T= J Jmp dp d¢ = J Jp(Gpﬁ/f)p dp d¢
00 0 0

2

27 r
=(Gh/0) J J p® dp dp = (GO /) (mr/2) (12.4)
00

A B

FIGURE 12.2 A segment AB of the twisted rod in Figure 12.1.



Torsion and Twisting of Rods 177

_P<A O_

B
FIGURE 12.3 Rod segment AB with longitudinal line PQ.

Y Q//O
Ry

14

A

FIGURE 12.4 Twisting of segment AB through an angle 6 at B.

4G G

A B

FIGURE 12.5 An interior cylindrical segment of AB.

FIGURE 12.6 Shear stress () and element (e) of the cross section of a twisted cylindrical segment.
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or
T =(Go/0)J (12.5)

where J, defined as 7r*/2, is the second polar moment of area (or “polar moment of inertia”") of the
Ccross section.
Equation 12.5 may be solved for the twist angle 6 as

0=Tt/JG (12.6)
Finally, by substituting for 6 in Equation 12.3, we have
T="Tp/J (12.7)

Equations 12.6 and 12.7 are the fundamental relations for the stress and twist angle for
twisted circular rods. Note the similarity between Equations 12.6 and 3.4 and between Equations
12.7 and 8.2.

12.4 TORSION OF NONCIRCULAR CROSS-SECTIONAL BARS

If a twisted bar has a noncircular cross section, the axial symmetry is lost and consequently the
simplifying assumptions of Section 12.2 are no longer valid. Indeed, if a twisted bar has a
noncircular cross section, as in Figure 12.7, it is unreasonable to expect that before twisting plane
cross sections normal to the axis will remain plane during and after twisting. Instead, in the absence
of applied axial forces, the asymmetry produces warping of the cross section as the bar is twisted.
Correspondingly, radial lines in the cross section, stemming from the axis, no longer remain straight
during twisting. The warped cross section and the curving of the radial lines make the stress and
deformation analysis significantly more difficult, although it is still mathematically tractable.
It simply involves solving a second-order linear partial differential equation.

From a design perspective, however, bars with circular cross sections are suitable for the vast
majority of torsion applications. Thus the rather complex analysis of twisted bars with noncircular
cross sections is relatively of minor importance from a design perspective. Therefore, we will omit it
here, but interested readers may see Ref. [7] and [8] for details of the analysis.

Nevertheless, there are occasions when twisting of a noncircular cross-sectional bar may be of
interest. In these cases, the most common cross section shapes are either square, rectangular, or
composite combinations of rectangular shapes.

For rectangular cross sections, the absence of symmetry (as opposed to that of circular cross
sections) means that the perimeter will be distorted during twisting. This in turn produces warping
of the cross section, and as noted earlier, radial lines going outward from the bar axis do not remain
straight. Consequently, simple expressions for the stress distribution across the cross section (such
as Equation 12.7) do not hold for rectangular cross sections.

()9 —)3

FIGURE 12.7 A twisted bar with a noncircular cross section.
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Maximum

/ shear stress
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shear stress

FIGURE 12.8 Points of maximum shear stress in the cross section of a twisted rectangular bar.

From a practical stress analysis and design perspective what is of greatest interest is the
magnitude and location of the maximum stress, and the angle of twist of the bar. The theoretical
analyses show that the maximum stress occurs at the perimeter or boundary of the cross section
at those points which are closest to the bar axis [1,7,8]. Thus, for a rectangular cross-sectional bar
the maximum stress (shear stress) occurs at the midpoint of the long side (see Figure 12.8).
Interestingly, the corners of the rectangular cross section are found to be without stress.

For rectangular bars the magnitudes of the maximum shear stress 7, and the twist angle 6 can
conveniently be approximated from the expressions

0=T(/GK and T = T/K; (12.8)

where the factors K and K are listed in Table 12.1, and b and / are the dimensions of the rectangular
cross section as in Figure 12.8.

Observe the similarity of Equations 12.8 for a rectangular cross section, to Equations 12.6 and
12.7 for a circular cross section. In this regard, K and K of Table 12.1 may be interpreted as
“section moduli.”

12.5 ILLUSTRATION: TWISTING OF A RECTANGULAR STEEL BAR

Consider a rectangular steel bar B with length 16 in. and cross section dimensions 4.2 in. and 1.4 in.
Let B be subjected to a twisting moment of 4000 in. Ib. Let the shear modulus G be 11.6 x 10° psi.
Suppose we want to determine the angle of twist 6 and the maximum shear stress 7,,x. To do this, in
Table 12.1 let b=4.2 in. and h=1.4 in. For b/h =3 K and K, are given by

K/bh* =0.263 and K,/bh* = 0.267 (12.9)

TABLE 12.1

Torsional Parameters for Rectangular Sections

b/h 1.0 1.2 1.5 2.0 2.5 3.0 4.0 5.0 10
K/bh® 0.141 0.166 0.196 0.229 0.249 0.263 0.281 0.291 0312

Ks/bh2 0.208 0.219 0.231 0.246 0.258 0.267 0.282 0.291 0.312
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Thus K and K are

K =3.031 and K;=12.198 (12.10)

Then from Equation 12.8, we have

_(4000)(16) - .
6= (116)(10(3.031) — 0.00182 rad = 0.104 (12.11)

and

Tmax = 4000/2.198 = 1820 psi (12.12)

12.6 TORSION OF NONCIRCULAR, NONRECTANGULAR BARS

By solving the governing partial differential equation for the torsion of prismatic bars, it is possible
to obtain data for stress distribution and as well as moment/twist relations for a wide variety of cross
section shapes [7,8]. References [5] and [9] provide a summary of some of these results.

The solution of the partial differential equation involves the evaluation and the approximation of
infinite series or alternative numerical procedures. It happens that there are other approximate
procedures which are simpler and perhaps more intuitive but which can provide quite accurate
results for torsion problems, particularly for noncircular and nonrectangular cross sections.

Among the most popular of these alternative approximation procedures is the ‘“soap-film” or
“membrane” analogy. In this procedure, a tube or a duct is formed whose cross section has the same
shape as that of a given bar. The end of the duct is then covered with an elastic membrane. Finally,
the interior of the duct is pressurized, causing an outward bulging or deformation of the membrane.
Figure 12.9 illustrates the concept.

It happens that the slope of the deformed membrane satisfies the same partial differential
equation as that of the shear stress in the cross section of the twisted noncircular bar. That is, the
shear stress at any point of the bar cross section is proportional to the slope of the inflated
membrane. The direction of the shear stress is perpendicular to the direction for measuring the
membrane slope. Finally, the angle of twist of the bar is proportional to the volume created by the
deformed membrane.

If we can visualize an inflated membrane covering a duct with a cross section of interest, then by
focusing upon the slope of the membrane, we have a qualitative impression of the shear stress across
the cross section of the analogous twisted bar.

Inflated

Membrane membrane >
< > <% Pressure 0
(b)

(c)

(a)

FIGURE 12.9 Illustration of deformed membrane covering a pressurized duct (having a cross section same as
that of a given noncircular bar). (a) Cross section of a noncircular bar, (b) duct with the same cross section with
a membrane cover, and (c) pressurized duct and outward deformed membrane.
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allin

N /
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FIGURE 12.10 Approximation of a cross-section shape by rectangular elements. (a) Given cross section and
(b) composite rectangular approximation.

Another useful procedure for torsional stress analysis of prismatic bars, with noncircular and
nonrectangular cross sections, is the ““superposition method.” In this procedure, we simply approxi-
mate a given cross section shape by a combination of rectangles, as illustrated in Figure 12.10. The
torsional parameters K and K for the composite section, and hence also for the given original cross
section, are approximately equal to the sums of the K and K values, respectively, of the individual
rectangles as obtained from Table 12.1.

The accuracy of the superposition method depends upon the “goodness-of-fit” of the rectangles
approximating the given original cross section. The approximation is improved by increasing the
number of rectangles but then the computational effort is also increased.

12.7 TORSION OF THIN-WALLED DUCTS, TUBES, AND CHANNELS

Consider again a circular bar or a rod. This time, let the rod be hollow, having an annular cross
section as in Figure 12.11. Let the inner and outer radii be r; and r,. Then the polar moment of
inertia J is

J = (m/2)(ry — 1) (12.13)
From Equations 12.6 and 12.7 the shear stress 7 and the twist angle 6 are

T=Tr/] and 0 =T(/JG (12.14)

where
T is the applied twisting moment
£ is the rod length
G is the shear modulus

FIGURE 12.11 Circular rod with an annular cross section.
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FIGURE 12.12 A thin-walled annular cross section.

Suppose that the annular wall is thin with thickness ¢ as in Figure 12.12. The inner and outer
radii are then related by the simple expression

ro=1ri+1t (12.15)
Then J becomes

J = (m/2)(r —r}
=/ [+ 0" =]
= (7/2)@rt + 6r}t + drt® + 1Y) (12.16)

If ¢ is small compared with r;, J is approximately
J ~2mrit (12.17)
Consequently the shear stress 7 and the twist angle 6 are then approximately
T T/2mit and 6= T¢/2mrtG (12.18)
or
7~ T/2At and 0= T{/2ArtG (12.19)
where A is the cross section area of the thin-walled cylinder or “tube.”
We can generalize these results for application with thin-walled tubes with noncircular cross
section. Consider such a tube, with wall thickness 7, subjected to a twisting moment 7, as

represented in Figure 12.13. Consider an element (e) of the tube as in Figure 12.14 and as shown
in enlarged views in Figure 12.15.

G @ G-

FIGURE 12.13 A noncircular cross-sectional tube subjected to twisting (torsion).
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e @ i

FIGURE 12.14 Element (e) of thin-walled twisted tube.

Finally, consider a free-body diagram of (e) as in Figure 12.16 where ¢, called the “‘shear flow,”
is the sum of the shear stress across the tube thickness. That is,

q= JT dr (12.20)

By considering the equilibrium of the element, we see that the shear flow on the upper edge of the
element g, is equal to the shear flow on the lower edge of the element g,. That is,

Gu=qr=4q (12.21)

This result means that the shear flow is constant around the perimeter of the tube.

We can relate the twist moment 7 to the shear flow around the perimeter by adding the moments
of the shear flow ¢ on differential perimeter elements, about the centroid O of the tube cross section,
as represented in Figure 12.17. Specifically, T is given by

T= vJ|r x g ds| = qJ\r x ds]| (12.22)

where
ds is a differential length vector
r is the position vector from the centroid O to the differential length element
the integral is a line integral along the perimeter of the tube

Observe that the vector product magnitude |r x ds| may be expressed as
|r x ds| = |r||ds||sin ¢ (12.23)

where ¢ is the angle between r and ds as represented in Figure 12.18. Observe further that |ds|sin ¢
may be visualized as the base of a very slender isosceles triangle whose height is |r| as suggested in
Figure 12.19. The area dA of the triangle is then simply

dA = (1/2)|r||ds|sin ¢ (12.24)

Outside view Inside view

FIGURE 12.15 Views of tube element.
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™
A

e

FIGURE 12.16 Free body diagram of tube element.

qds

/

4\ds

FIGURE 12.17 Shear flow at an element of the twisted tube. (Note that a differential length element does not
have a finite length, but it is shown as finite in the figure simply to illustrate the differential shear flow force.)

FIGURE 12.18 Angle ¢ between r and ds.

/" |ds| sin ¢

Y

FIGURE 12.19 Differential isosceles triangle forming a differential cross-section area dA.
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Then by substituting Equation 12.24 into Equations 12.23 and 12.22, we see that the twist moment
T is simply

T = 2Aq (12.25)

where A is the cross section area of the tube.
Finally, observe that the shear stress 7 is approximately equal to ¢/z, where ¢ is the tube wall
thickness. Thus 7 is approximately

T =T/2At (12.26)

(See Equation 12.14.)

A review of the analysis shows that the results of Equations 12.25 and 12.26 are valid even if the
tube wall thickness ¢ is not uniform. Also, note that these equations are not valid if the tube is split
(i.e., without a continuous perimeter).

SYMBOLS

Cross-section leader

Cross sections of rod R
Dimensions of a rectangular cross-sectional bar
Shear modulus

Second polar moment of area
Torsion factors (see Table 12.1)
Rod length

Points on the surface of R

Shear flow

Rod

Radial coordinate; rod radius

Arc length

Twisting moment

Thickness of cylindrical shell
Shear strain

Twisting angle, angular coordinate
Radial coordinate

Shear stress

Angular coordinate
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Part Il

Special Beam Geometries:
Thick Beams, Curved Beams,
Stability, and Shear Center

In this part, we consider deviations from the classical beam and loading conditions of Part I. Even
though these deviations take us away from the simple flexural and torsional loading of straight
beams, the deviations and changes are not uncommon in their occurrence and use in structural
designs. Indeed, most structural members, which resemble beams are in reality, not long straight
members with simple and/or fixed end supports.

To determine the effects of geometrical changes on beam stresses and deformations, we initially
consider thick (or short) beams where transverse shear stress maybe important. We then look at
curved beams and the effects of curvature on beam stresses (Chapter 14). We consider application
with hooks and clamps.

In Chapter 15, we examine the conditions where beams and columns can buckle and fail under
axial compression loading. This failure usually occurs before yield stress is reached. We consider
the effects of various support conditions and the length of the members. We also briefly consider
buckling resistance of plates and panels.

Finally, in Chapter 16, we consider the effects of load placement within a cross section and how
changes in the line of action of a load can affect the stresses and stability of a beam.






13 Thick Beams: Shear Stress
in Beams

13.1 DEVELOPMENT OF SHEAR STRESS IN A BEAM

Consider a layered medium, such as a deck of cards, in the shape of a beam as suggested in Figure 13.1.
Let the layered structure be subjected to both pure bending and to transverse loading as represented in
Figures 13.2 and 13.3. Let the pure bending be simulated by rigid plates attached to the ends of the
beam as represented in Figure 13.4, where an exaggerated representation of the resulting beam
deformation is also given. Observe that the plates create tension in the lower layers of the beam and
compression in the upper layers so that adjacent layers do not slide relative to one another.

Next, consider the case of bending via transverse loading as in Figure 13.3. If there is no friction
between the layers, the layers will slide relative to one another producing a deformation pattern as in
Figure 13.5. If, however, there is friction between the layers or if the layers are bonded, tangential
forces (shear forces) will prevent the layers from sliding relative to one another. These shear forces
will in turn create shear stresses on the surfaces of the layers. We will quantify these stresses in the
following paragraphs.

13.2 SHEAR LOADING ANALYSIS

Consider again the beams subjected to pure bending and to concentrated force transverse loading as
in Figures 13.2 and 13.3 and as shown again in Figures 13.6 and 13.7. In case of pure bending, the
bending moment M is constant along the beam length. Consequently the flexural stress o is the same
for all cross sections along the beam length. In case of the concentrated transverse load, however,
the bending moment is not constant along the beam length and thus in this case the flexural stress
varies from cross section to cross section.

Recall from Section 11.3.2 that for a simply supported, center-loaded beam, the bending
moment M is (see Equations 10.57 and 11.18):

M=P/2)<x—0>' —P<x—£/2>" +(P/2) <x—{>! (13.1)

where, as before, the bracket notation <-> designates the singularity function (see Section 10.2),
£ is the beam length, and x is the coordinate along the beam axis with the origin at the left end. This
expression is best represented graphically as in Figure 13.8 (Figure 11.13b).

If the bending moment M varies along the beam length, causing a variation in flexural or axial
force from cross section to cross section, then a longitudinal fiber element will not be in equilibrium
in the absence of shear stress on the element. That is, with varying bending moment, shear stress is
needed to maintain equilibrium of the longitudinal element. To see this, consider a longitudinal
element (e) of a narrow rectangular cross-sectional beam as in Figure 13.9, where the cross section
dimensions are b and & as shown, and the element dimension are Ax (length), Ay (height), and b
(depth), also as shown. (As before, the positive X-axis is to the right along the neutral axis of the
beam and the positive Y-axis is downward.)

Suppose that the loading on the beam produces a bending moment M, which varies along the
beam span. Then in Figure 13.9, the bending moment at cross section A will be different from that at
cross section B. This means that the stress on (e) at end A is different from that at end B.

189
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FIGURE 13.1 Layered media in the shape of a beam.

FIGURE 13.2 Pure bending of a layered beam.

FIGURE 13.3 Transverse loading of a layered beam.

FIGURE 13.4 Simulation of pure bending of a layered beam.

FIGURE 13.5 Simple support simulation of bending via transverse loading.
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FIGURE 13.6 Pure bending of a beam.

FIGURE 13.7 Bending via transverse load.
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FIGURE 13.8 Bending moment for simply supported center-loaded beam.
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FIGURE 13.9 Longitudinal element (e) of a rectangular cross-sectional beam.

191



192 Practical Stress Analysis in Engineering Design

To quantify this difference, recall the fundamental flexural stress expression (see Equations 8.2
and 8.13):

o = My/I (13.2)

where 1 is the second moment of area of the cross section (I=bh>/12 for a rectangular cross
section). Thus the stresses at sections A and B are

OA :MAy/I and OB :MBy/I (133)
We may relate the moments at A and B relative to each other, using a Taylor series as

dM
MB:MA"_E Ax—|— (134)

A

If the element length Ax is small, the unwritten terms of Equation 13.4 can be neglected so that the
moments on the beam cross sections at A and B can be represented as in Figure 13.10.

dm
Ma +—

dxAx

A

Observe now from Equation 13.1 that with the moments differing from cross section A to B by the
amount (dM/dx)Ax, the stresses at the ends of element (e) differ by (dM/dx)(Ax)(y/I). This stress
difference in turn will produce a difference in end loadings on (e) by the amount (dM/dx)(Ax)(y/DbAy.
Then to maintain equilibrium of (e), the shear stresses on the upper and lower surfaces of (e) need
to produce a counterbalancing shear force on (e) equal to (dM/dx)(Ax)(y/DbAy.

To further quantify the shear forces consider a free-body diagram of that portion of the beam
segment between A and B and beneath (e) as in Figure 13.11 where F,4 and Fjp are the axial force
resultants on the beam segment at ends A and B, and S is the resultant of the shearing forces due to
the shear stresses on the segment at the interface with (e). Then by setting forces in the axial
direction equal to zero (to maintain equilibrium), we have

—Fys—S+Fp=0 or S=Fp—F, (13.5)

My
MA+% Ax
A

A Ax B

FIGURE 13.10 Moments on beam cross sections A and B.
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S (shear force)

-— — —— -
F, /& %Tf (axial force)

Ax B

FIGURE 13.11 Free-body diagram of lower portion of beam segment.

For a rectangular cross-sectional beam with width b and depth &, F,4, Fg, and S may be expressed as

e h/2
Fy = J oab dy = J My(y/Db dy (13.6)

y y

/2 h/2 /2
dm,
Fp = J opb dy = J Mpgb dy = J (MA+EAAx>(y/I)b dy (13.7)

y y y

and
S = TybAx (13.8)
By substituting these expressions into Equation 13.5, we have
h/2 h/2
dM,4
TyybAX = My —|—EAX (y/Db dy — | Ma(y/D)b dy
y y
(13.9)

h/2
dM,
1 Ax(y/Db dy

¥y
h/2

(dMy /dx)(y/Ddy

Tyy =
y

From Equation 8.6 dM,/dx is the transverse shear V at A. Hence, the shear stress (for the rectangular

cross section) is

B2 B s h/2_ h2 yz
ydy=(V/D(y*/2) | =/ T3 (13.10)
y

y

Txy = (V/ 1 )
In general, for a nonrectangular cross section, the shear stress is

(13.11)

/2
Ty = (V/Ib) J ydAZvo/m
y
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. . . h . . .
where by inspection Q is defined as |, /2 y dA, where dA is the cross section area element and b is the
cross section width at elevation y. Q is the moment of area of the cross section, beneath y, about
the line in the cross section parallel to the Z-axis, and at elevation y.

13.3 MAXIMUM TRANSVERSE SHEAR STRESS

As an illustration of the use of Equation 13.11, consider the special case of a rectangular cross
section, governed by Equation 13.10. In this case, Q is

h/2 n/2

h/2 oy
Q:JydA:bedA:byz/Z | :b(§—3> (13.12)
y y g
By substituting into Equation 13.11 the shear stress has the form
/’12 y2
Ty = VQ/Ib = (V/I) <§ - E) (13.13)

Recalling now that for a rectangular cross section the second moment of area [/ is

I =bh/12 (13.14)
Therefore, the shear stress becomes
6V (h?
T”:@<X_y) (13.15)

Equation 13.15 shows that the shear stress distribution across the cross section is parabolic, having
values zero on the upper and lower surfaces and maximum value at the center, as represented in
Figure 13.12.

From Equation 13.15, the maximum shear stress (occurring a y =0) is

Tmax = (3/2)(V/A) (13.16)

Y

FIGURE 13.12 Shear stress distribution on a rectangular beam cross section.
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Equation 13.16 shows that for a rectangular cross section, the maximum shear stress is 1.5 times as
large as the average shear stress (V/A) across the cross section or 50% larger than the average shear
stress. In Section 13.4, we present analogous results for commonly used nonrectangular cross
section shapes.

Finally, observe that the maximum shear stress occurs at the neutral axis where the normal
(flexural) stress is minimum (zero), whereas the maximum flexural stress occurs at the upper and
lower surfaces where the shear stress is minimum (zero).

13.4 NONRECTANGULAR CROSS SECTIONS

Consider a beam with a circular cross section. An analysis similar to that in Section 13.3 shows that
the shear stress distribution across the cross section is parabolic. Here, however, the maximum shear
stress is found to be 4/3 times the average shear stress. That is

Tmax = (4/3)(V/A) (circular cross section) (13.17)

Other beam cross sections of interest include hollow circular cross sections, I-beam sections, and
open-channel cross sections. Table 13.1 shows the shear stress distribution together with a listing of
maximum values for these cross sections.

Beams with open cross sections, such as I-beams or T-type beams transmit the shear loads
primarily through the webs, and the maximum stress closely approximates that obtained by dividing
the shear load by the area of the web. The effect of a flange on the shear stress distribution is small
and can usually be neglected. In rapidly changing cross section geometry, however, some judgment
is required to determine which portions of the cross section are likely to behave as flanges and which
should be treated as webs.

It should be noted that the foregoing analyses and maximum shear stress values are valid only
when the shear loading is equivalent to a single force acting through the centroid of the cross section
(“‘centroidal loading’). When this occurs, no torsional moments are created. The condition of
centroidal loading is usually satisfied when the beam cross section is symmetric about the Y-axis.

Finally, consider the case of the tubular cross section (hollow cylinder beam). The result listed
in Table 13.1 for the maximum shear stress is obtained by assuming that the wall thickness ¢ is small
compared with the radius R. There can be occasions, however, when an annular cross-sectional
beam has a thick wall. To address this, R. C. Stephens [1] has developed an expression for the
maximum shear stress as a function of the inner and outer radii » and R as

4R*+ R+ %)
Tmax = tav TR 1) (13.18)
where, as before, 7,, is the average shear stress across the cross section (V/A).
Table 13.2 provides a tabular listing of computation results using Equation 13.17 for various
r/R ratios.

13.5 SIGNIFICANCE OF BEAM SHEAR STRESS

A question arises from a design perspective: how significant is the shear stress in beams? To answer
this question, consider a simply supported beam with a concentrated central load as in Figure 13.13.

In this case, at the center of the beam, we have a relatively large shear load with a relatively
small bending moment. Specifically, recall from Section 11.3.2 that the shear and bending moment
diagrams for the beam are as in Figures 13.14 and 13.15.
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TABLE 13.1
Shear Stress Distribution and Maximum Shear Stress for Various Beam
Cross Sections

Type of Cross Shear Stress Maximum
Section Distribution Shear Stress

Tmax = (3/2)Tav

(Tav = V/A)
Rectangular
—_— Tmax
s Tnax = (4/3)(V/A)
(Tav = V/A)
Circular
Tmax
t
. Ty Tmax = Z(V/ A)
(Tav = V/ A)
4
Hollow (thin-walled tube)? —f T ~—

l L Veh( ok
\ m oy 4h

I and channel

% See Table 13.2 for additional data for tubes.
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TABLE 13.2
Maximum Shear Stresses for Tubular Cross-Section Beams
with Various Wall Thicknesses

r/R 0 0.2 0.4 0.6 0.8 1.0
Tmax/Tav 1.333 1.590 1.793 1.922 1.984 2.000

. 1t

FIGURE 13.13 A simple support beam with a concentrated center load.

—P/2
¢
Q X
£/2
P2
Vv
FIGURE 13.14 Shear diagram for simply supported center-loaded beam.
e/2 4
0 / , ¥
PIA T
M

FIGURE 13.15 Bending moment diagram for simply supported center-loaded beam.
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From these figures we see that at the center of the beam, the shear and bending moment are
V=P/2 and M =Pl/4 (13.19)
For a rectangular cross section, the maximum shear stress 7,,,,x is (see Table 13.1):
Twmax = (3/2/(V/A) = (3/2)(P/2bh) (13.20)

where, as before, b and h are the cross section width and depth. Correspondingly, the maximum
flexural stress o,y iS

Omax = Mumaxc/I = (PL/4)(h/2)/bh* [12)
or
Omax = 3P/2bh* (13.21)
The ratio of maximum shear to flexural stress is then

3P/4bh

Tmax / Omax =

Equation 13.22 shows that in this relatively common loading and support configuration, for long
thin beams, the shear stress is small and unimportant. For thick beams (say & > £/5), the shear stress
is as large as one tenth or more of the flexural stress.

SYMBOLS

A Area

A, B Beam sections

b Beam depth

Fy, Fp Axial force resultants on sections A and B
h Beam thickness

1 Second moment of area of the beam

l Beam length

M Bending moment

P Concentrated force

(0] Defined by Equation 13.11

r, R Tube radii

S Shear force

t Wall thickness

\% Shear force

X X-axis coordinate

<x—a>"  Singularity functions (see Section 10.2)
XY Z Cartesian (rectangular) coordinate axes
y Y-axis coordinate

Ax, Ay Element (¢) dimensions

a Normal stress

T Shear stress

Xy

REFERENCE
1. R. C. Stephens, Strength of Materials—Theory and Examples, Edward Arnold, London, 1970.



14 Curved Beams

14.1 HISTORICAL PERSPECTIVE

Curved beams and other relatively thin curved members are commonly found in machines and
structures such as hooks, chain links, rings, and coils. The design and analysis of curved members
has interested structural engineers for over 150 years. Early developments are attributed to Winkler
[1,2] in 1867. However, experimental verification of the theory did not occur until 1906 when tests
were conducted on chain links, at the University of Illinois [3]. These tests were later expanded to
circular rings providing good agreement with Winkler’s work.

Winkler’s analysis (later to be known as the Winkler-Bach formula) expressed the maximum
flexural stress o, for a curved beam as

M c
O'max :A_R |:1 “rm] (14.1)

where
M is the applied bending moment
A is the beam cross section area
R is the distance from the area centroid to the center of curvature of the unstressed beam
c is the distance from the centroid to the inner perimeter of the beam
A is a geometric parameter defined as

_ n
A= l/AJR—_H]dA (14.2)

where the integration is over the cross section and 7 is the distance of a differential area element
from the centroid C as in Figure 14.1.

Observe in Equation 14.1 that unlike the flexural stress expression for straight beams (o= Mc/I,
Equation 8.15), the stress is nonlinearly related to the distance ¢ from the centroid axis to the outer
fibers of the cross section. Also observe that the use of Equation 14.1 requires knowledge of the
geometric parameter A of Equation 14.2. Table 14.1 provides series expressions for A for a variety of
cross section shapes.

Even though Winkler’s results appeared as early as 1867, English and American practices did
not adopt his analysis until 1914 when Morley published a discussion about curved beam design [4],
giving support to the Winkler-Bach theory. The adequacy of the theory was later (1926) supported
by tests conducted by Winslow and Edmonds [5].

Although the stress represented by Equations 14.1 and 14.2 has been demonstrated to provide
reasonable results, it needs to be remembered that it is nevertheless approximate. More exact and
more useful expressions may be obtained by accounting for a shift in the neutral axis position, as
discussed in the following section.

14.2 NEUTRAL AXIS SHIFT

Consider a segment of a curved beam, subjected to bending as in Figure 14.2. Recall that for straight
beams we assumed that plane sections normal to the beam axis, prior to bending, remain plane
during and after bending. Interestingly, it happens that the same assumption is reasonable for curved
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Axis of
curvature

R

FIGURE 14.1 Cross-section geometry of a curved beam.

beams. Indeed, experiments have shown that for a reasonable range of loading and beam
deformation, there is very little distortion of sections normal to the beam axis during bending.

With straight beams the preservation of planeness of the normal cross sections leads to the linear
stress distribution across the cross section, that is, o = Mc/I (see Equation 8.13). With curved beams,
however, the preservation of planeness of normal cross sections leads to a nonlinear stress distribution,
and consequently a shaft in the neutral axis toward the center of curvature of the beam.

TABLE 14.1

Values of A of Equation 14.2

QS

R R+c
A=-1 +E{[b1h+(R+c1)(b7bl)] log, <R72> - (bfbl)h}

where A is the area of cross section

3@ @ e @ R
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TABLE 14.1 (continued)
Values of \ of Equation 14.2

<-c1 -><Cz->

R
! )\:71+X[b1loge(RJrc])+(t7b|)logE(R+c4)

+ (b —Dlog, (R — c3) — blog, (R — ¢3)]

where A is the area of cross section

In the expression for the unequal 7 given above
make ¢4, = c¢; and b; = t, so that

R
A=-—1 +X[tloge R+c1)+ (b —1log, (R—c3) —blog, (R — ¢2)]

Area = A = tc; — (b — t)cz + bc; (applies to U and T sections)

[ >}
1__
Kl
4
Y

R—»

To understand the reason for the nonlinear stress distribution and the neutral axis shaft, consider
an enlarged view of the bending of a beam segment as in Figure 14.3. Specifically, consider the
rotation of section B;Bg and the stretching and compression of circular arc fibers PQ and P'Q’. If
section B;Bg is to remain plane during bending, fibers near the outside of the segment, such as PQ,

TABLE 14.2
Stress Concentration Factors for Curved Beams
o
R/c Inner Face Outer Face /R
1.2 3.41 0.54 0.224
1.4 2.40 0.60 0.151
1.6 1.96 0.65 0.108
1.8 1.75 0.68 0.084
2.0 1.62 0.71 0.069
3.0 1.33 0.79 0.030
4.0 1.23 0.84 0.016
6.0 1.14 0.89 0.0070
8.0 1.10 0.91 0.0039
10.0 1.08 0.93 0.0025
I_L, 1.2 2.89 0.57 0.305
I | 1.4 2.13 0.63 0.204
) | 1.6 1.79 0.67 0.149
1.8 1.63 0.70 0.112
| 2.0 1.52 0.73 0.090
' R ' 3.0 1.30 0.81 0.041
4.0 1.20 0.85 0.021
6.0 1.12 0.90 0.0093
8.0 1.09 0.92 0.0052
10.0 1.07 0.94 0.0033

(continued)
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TABLE 14.2 (continued)
Stress Concentration Factors for Curved Beams

¢o
R/c Inner Face Outer Face /R
b 1.2 3.01 0.54 0.336
14 2.18 0.60 0.229
| 1.6 1.87 0.65 0.168
Nl ® 1.8 1.69 0.68 0.128
v ] 2.0 1.58 0.71 0.102
3.0 133 0.80 0.046
[ R 4.0 1.23 0.84 0.024
6.0 1.13 0.88 0.011
8.0 1.10 0.91 0.0060
10.0 1.08 0.93 0.0039
3b, 1.2 3.09 0.56 0.336
| |14 225 0.62 0.229
. ; 1.6 1.91 0.66 0.168
&[ SIRIRT 1.73 0.70 0.128
— 7 2.0 1.61 0.73 0.102
' R i 3.0 1.37 0.81 0.046
4.0 1.26 0.86 0.024
6.0 1.17 0.91 0.011
8.0 1.13 0.94 0.0060
10.0 1.11 0.95 0.0039
5b 1.2 3.14 0.52 0.352
14 2.29 0.54 0.243
/ | 16 1.93 0.62 0.179
< S 1.8 1.74 0.65 0.138
| 2.0 1.61 0.68 0.110
! 3.0 1.34 0.76 0.050
i | 40 1.24 0.82 0.028
-~ 6.0 1.15 0.87 0.012
8.0 1.12 0.91 0.0060
10.0 1.10 0.93 0.0039
1.2 3.26 0.44 0.361
14 2.39 0.50 0.251
1.6 1.99 0.54 0.186
1.8 1.78 0.57 0.144
2.0 1.66 0.60 0.116
3.0 1.37 0.70 0.052
4.0 1.27 0.75 0.029
6.0 1.16 0.82 0.013
8.0 1.12 0.86 0.0060
10.0 1.09 0.88 0.0039
9t/2 3t/2 1.2 3.63 0.58 0.418
T 14 2.54 0.63 0.299
MZ ! 1.6 2.14 0.67 0.229
' % | 1.8 1.89 0.70 0.183
. g 2.0 1.73 0.72 0.149
! —»ia;/ | 3.0 1.41 0.79 0.069
- | 4.0 1.29 0.83 0.040
[P 6.0 1.18 0.88 0.018
8.0 1.13 0.91 0.010

10.0 1.10 0.92 0.0065




Curved Beams 203

TABLE 14.2 (continued)
Stress Concentration Factors for Curved Beams

¢0
R/c Inner Face Outer Face /R
it 3t 2 12 3.55 0.67 0.409
\ | 1.4 2.48 0.72 0.292
7 ! 1.6 207 0.76 0.224
Vo | 1.8 1.83 0.78 0.178
5 ) 543 | 2.0 1.69 0.80 0.144
[ . 3.0 1.38 0.86 0.067
I | 4.0 1.26 0.89 0.038
: 6.0 1.15 0.92 0.018
I“'R—| 8.0 1.10 0.94 0.010
10.0 1.08 0.95 0.065
4t 12 2.52 0.67 0.408
1.4 1.90 0.71 0.285
1.6 1.63 0.75 0.208
1.8 1.50 0.77 0.160
2.0 1.41 0.79 0.127
: 3.0 1.23 0.86 0.058
j—R | 4.0 1.16 0.89 0.030
6.0 1.10 0.92 0.013
8.0 1.07 0.94 0.0076
10.0 1.05 0.95 0.0048
_.|5|<_ 12 3.28 0.58 0.269
-| 1.4 2.31 0.64 0.182
1.6 1.89 0.68 0.134
_H <3 | 1.8 1.70 0.71 0.104
. | 2.0 1.57 0.73 0.083
; 3.0 1.31 0.81 0.038
c | 4.0 1.21 0.85 0.020
R 6.0 1.13 0.90 0.0087
8.0 1.10 0.92 0.0049
10.0 1.07 0.93 0.0031
2 1.2 2.63 0.68 0.339
v |'_|T| | 1.4 2.97 0.73 0.280
VA ! 1.6 1.66 0.76 0.205
gT *!5!/ - | 1.8 1.51 0.78 0.159
+ | | = 2.0 1.43 0.80 0.127
Z | 3.0 1.23 0.86 0.058
Q‘ L] R 40 115 0.89 0.031
= e 6.0 1.09 0.92 0.014
8.0 1.07 0.94 0.0076
10.0 1.06 0.95 0.0048

Source: Wilson, B. J. and Quereau, J. F., A simple method of determining stress in curved flexural
members, Circular 16, Engineering Experiment Station, University of Illinois, 1927.

are lengthened, whereas fibers near the inside of the segment, such as P'Q’, are shortened. Then at
some point N in the interior of section B;Bo, the circular arc fibers will neither be lengthened nor
shortened during the bending. Indeed an entire surface of such points will occur thus defining a
“neutral surface” composed of zero length-change fibers. Suppose that fibers PQ and P'Q’ are at
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FIGURE 14.2 Bending of a beam segment.

equal distances from the neutral surface on the outer and inner sides of the surface. Then with the
cross section remaining plane, the amount 8p, that PQ is lengthened is equal to the amount 8py
that P'Q’ is shortened during the segment bending, as illustrated in Figure 14.4, where the
postbending orientation of section B;Bg is superposed upon the prebending orientation of B;Bo.
Due to the curvature of the beam, the length of fiber PQ is greater than that of P'Q’ (see Figure 14.3).
Therefore, the magnitude of the strain in PQ is less than that in P'Q’. That is,

but |PQ| > |P'Q| (14.3)

[8ro| = [0

In this notation, the strains are

[ero| = [8rol/IPOI and |epg| = [5po|/IP'Q] (14.4)
and thus in view of Equation 14.3, we have
|epo| < |epg (14.5)
With the stress being proportional to the strain, we then have
|oro| < |ore (14.6)

Equation 14.6 demonstrates the nonlinear stress distribution along the cross section. That is, stresses
at equal distances from the neutral surface do not have equal magnitudes. Instead, the stresses
are larger in magnitude at those points closer to the inner portion of the beam, as represented in
Figure 14.5.

Outside

Ag Bo
P Q
—=— Centerline
P’ Q
4 / B;
Inside
(a) °0 (b) e O

Neutral surface

FIGURE 14.3 Deformation of a beam segment. (a) Before bending. (b) After bending.
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After bending

B; K Orientation before bending

*0

FIGURE 14.4 Rotation of section B;Bg during bending.

The nonlinear stress distribution over the cross section causes a shift in the neutral axis toward
the inner surface of the beam. To see this, observe that in pure bending the resultant normal force on
the cross section is zero. Then with larger stresses near the inner surface, the neutral axis must be
shifted toward the inner surface to reduce the area where these larger stresses occur so that the
resultant normal force on the cross section will be zero.

We can quantify the neutral axis shift by evaluating the normal cross section forces and then
setting their resultant equal to zero. To this end, consider further the displacement, rotation, and
strain of a cross section. Specifically, consider a circumferential fiber parallel to the central axis of
the beam and at a distance y outwardly beyond or “above’ the neutral axis as in Figure 14.6. In this
figure the inner and outer radii of the beam are R; and Rp, measured as before, from the center of
curvature O of the beam. R is the radius of the centroidal axis and p is the radius of the neutral axis.
The difference & between the centroidal and neutral axes radii (R — p) is a measure of the shift in the
neutral axis (to be determined).

Let r be the distance from O to the circumferential fiber as shown in Figure 14.6. Let the fiber
subtend an angle A as shown. The length ¢ of the fiber is then

¢ =rAd (14.7)

Finally, let y be the radial distance from the fiber to the neutral axis.

|

FIGURE 14.5 The form of the stress distribution across the cross section of a curved beam.
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Circumferential
fiber

Centroidal

\'

I~ Ri
Neutral
axis

FIGURE 14.6 Curved beam geometry/notation.

Let the beam be subjected to a bending moment M, which tends to increase the curvature (thus
decreasing the radius of curvature) of the beam. Then if the circumferential fiber is above or beyond
the neutral axis, it will be lengthened by the deforming beam. Let u, represent this increase in
length. Then the circumferential strain &, (normal strain) at the radial location r of the fiber is

g9 = ug/l =ug/rA6 (14.8)

Next, observe that if the cross section remains plane during bending, the circumferential displace-
ment uy will be linearly related (proportional) to y. That is,

up = ky (14.9)

where k is a constant. Also observe from Figure 14.6 that the radial distance r from the curvature
center O to the circumferential fiber may be expressed as

r=R—-6+y (14.10)
Hence the normal strain becomes

g9 =ky/(R—8+Y) (14.11)
The corresponding circumferential stress (normal stress) oy is then
09 =Eeg = Eky/(R—8 +) (14.12)

In this analysis, we have assumed that the beam deformation and consequently the cross section
rotation are due to pure bending through an applied bending moment M. That is, there was no
applied circumferential loading. Thus the resultant of the circumferential (or normal) loading due to
the normal stress must be zero. That is,

JcrgdA =0 (14.13)
A

where A is the cross section area. By substituting from Equation 14.12 we have

EkydA yda
Ji(R—S—ky)_o or Ji(R—S—Fy)_O (14.14)
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Again, from Figure 14.6 we see that y may be expressed in terms of the neutral axis radius p as
y=r—p=r—(R—-68) and r=y+R—-6 (14.15)

Then Equation 14.14 yields

e e =HI+(5?RH<M

=A+ (6 — R)J (14.16)
A

Hence, the neutral axis shift 6 and the neutral axis radius of curvature p are
6—R—A/J(dA/r) and p—A/J(dA/r) (14.17)
A A

Observe that the neutral axis shift § away from the centroidal axis is a function of the curved beam
geometry and not the loading on the beam.

14.3 STRESSES IN CURVED BEAMS

Consider again a segment of a curved beam subjected to bending moments as in Figure 14.2 and as
shown again in Figure 14.7. Recall from Equation 14.12 that the stress oy at a point y above the
neutral axis is

= Eky/(R— 56 +) (14.18)

where
k is a constant introduced in Equation 14.9, to describe the preservation of the planeness of the
cross section during bending
0 is the amount of inward shift of the neutral axis away from the centroidal axis (given by
Equation 14.17)
E is the modulus of elasticity

As noted earlier and as seen in Equation 14.18, oy is not linear in y but instead o has a nonlinear
distribution across the cross section, as represented in Figure 14.5 and as represented again in
Figure 14.7.

Although Equation 14.18 provides an expression for the stress distribution across the cross
section, it is of limited utility without knowledge of k. To determine k, observe that we can express k

Centroidal
axis

FIGURE 14.7 Stress distribution on a cross section of a beam element.
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in terms of the applied bending moment M by evaluating the sum of the moments of the
stress-induced elemental forces (opdA) about the neutral axis. That is,
Eky*dA

- 14.19
R—-6+y ( )

M= [yona = |

A A

We can simplify the evaluation of this integral by following an analysis used by Singer [6].
Specifically, in the numerator of the integrand let one of the y factors be replaced by the identity

y=y+R—-6)—-(R—-06)=R—-6+y)—(R—9) (14.20)

Then Equation 14.19 becomes

2
M:EkU y*dA ] _Eka[R—5+y)—(R—8)]dA

R—8+y R—-0+y)
or
M = Ek Uy dA — (R S)JR =5 +y)} (14.21)

The first integral of Equation 14.21 is simply the area moment about the neutral axis, or Ad. That is,
Jy dA = Ad (14.22)

To see this, let i be the distance from the centroidal axis to a typical fiber as in Figure 14.7. Then by
the definition of a centroid [7], we have

Jn dA=0 (14.23)

But from Figure 14.7 we see that 7 is
n=y—29 (14.24)

By substituting this expression for 1 into Equation 14.23, we immediately obtain Equation 14.22.
Next, in view of Equation 14.14, we see that the second integral in Equation 14.21 is zero.
Therefore, using Equation 14.22 the bending moment M of Equation 14.21 is

M = EkAS (14.25)
Then k is
k= M/EAS (14.26)
Finally, by substituting for k into Equation 14.18, we have
o9 = My/AS(R — 8 +y) = My/Adr (14.27)
where, from Figure 14.7, r takes the value R — & +y.

Although Equation 14.27 provides the bending stress distribution across the cross section, it
may be practical nor convenient to use due to the need to know the neutral axis shift 6 which neither
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may not be easily evaluated for a given cross section. (See Equation 14.17 for an analytical
expression of J.)

In practical design problems, however, we are generally interested in knowing the maximum
bending stress in the beam, that is, the stress at the inner radius. To simplify the procedure for
finding this stress, Wilson and Quereau [8] conducted an extensive series of tests on curved beams
with various cross sections, measuring the strain and then evaluating the stress. Using the results
of these tests, they determined that the maximum bending stress in a curved beam (at the inner
radius R;) may be estimated by the simple formula:

o9 = kMc/I (14.28)

where
K is a stress concentration factor
c is the distance from the centroid axis to the inner surface (or ‘““face”)

The same formula may be used to determine the stress at the outer surface. Table 14.2 provides
values of k as well as neutral axis shift expressions, for a variety of common cross section shapes.

Finally, it should be noted that Equations 14.27 and 14.28 provide the value of normal stress
over the cross section due to bending. The total (or resultant) stress on the cross section is the
superposition of the bending stress and other normal (axial) and shear stresses on the cross section,
arising from the applied loads.

14.4 APPROXIMATION OF STRESS CONCENTRATION FACTORS

When we examine the values of the stress concentration factors (k) in Table 14.2, we see that in
spite of rather large differences in cross section geometry, the factors themselves do not vary much
over a wide range of R/c or R/(R — R;) ratios. Figure 14.8 provides a general graphical description of
the variation of k with R/(R — R;). [Recall that R is the radius of the centroidal axis and R; is the
inner radius of the beam (see Figure 14.6).]

In curved beam and hook design, it is usually a common practice to incorporate generous factors
of safety. Therefore, the use of approximate stress concentration factors based upon Figure 14.8 may
be quite acceptable. This approximation becomes increasingly accurate as the cross section becomes
more compact and as the beam radii become larger.

3.0

|t

2.5

2.0 \

1.5

1.0

Stress concentration factor, K

0.5

2 3 4 5
Curved beam parameter, R/(R—R;)

FIGURE 14.8 Approximate stress concentration factor as a function of geometric parameter R/(R—R;).
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14.5 APPLICATION: STRESSES IN HOOKS

The common lifting hook is an example of a curved beam. We can use the foregoing concepts to
obtain the insight and data for the stresses in these important structural components. To this end,
consider the model of a hook shown in Figure 14.9. From our foregoing analysis, we know that the
maximum tension and compression stresses occur at the inner and outer extremes of section AA,.
Using the Winkler-Bach analysis (see Equation 14.1), Gough et al. [9] developed expressions for
the tensile stress o (at the inner surface) and the compressive stress o, (at the outer surface) as

P H, ¢ H,
_r ) R B 14.2
oy A[(cos@ R)A(Rc)+R] (14.29)
and
P H, d—c H,
g, = 1 [(cos@ R))\(R+d— 9 R} (14.30)
where

P is the load on the hook

A is the cross section area

0 is the angular coordinate (measured relative to the horizontal, see Figure 14.9)

R is the centroidal axis radius of curvature

H, is the horizontal distance between the centers of curvature of the inner and outer surfaces

d and c are cross section width and distance from the centroidal axis to the inner surface (see
Figure 14.9)

A is the geometric parameter of Equation 14.2 and as listed in Table 14.1

In many cases H, is small or zero so that Equations 14.29 and 14.30 reduce to

Pccos6

~“AR-0 (14.31)

Ty
and

P(d — c¢)cosf
_ _Pld=c)cosh 14.32
YT T MR+ d -0 (14.32)

Finally, if the hook cross section is reasonably uniform, the maximum stresses occur, where 6 is zero, as
Pc

(47

Projected distance
H,=between the centers
C of curvature

X 1 X

B \— 6 = Arbitrary angle
d JLP measured from a
horizontal axis

y

FIGURE 14.9 Notation for a working portion of a machine hook.
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and

Pd —o¢)

o, = MR d—0 (14.34)
Observe that although lifting hooks are examples of curved beam, they have features which
complicate the analysis: (1) their cross section is generally not uniform; (2) the cross section
shape is usually neither circular nor rectangular; (3) there is a significant axial load creating normal
stresses on the cross section, which need to be superimposed upon the bending stresses; and (4) at
the point of application of the load, there will be contact stresses which could be as harmful as the
bending stresses. Nevertheless, the foregoing analysis is believed to be useful for providing
reasonably accurate estimates of the hook stresses as such the analysis is likely to be more
convenient than numerical methods (e.g., finite element analyses) and experimental analyses.

14.6 EXAMPLE OF CURVED BEAM COMPUTATIONS

14.6.1 FLEXURE OF A CURVED MACHINE BRACKET

Consider a curved machine bracket as in Figure 14.10. Let the bracket form a semicircle and let the
cross section have a T-shape with dimensions as shown. For the 10,000 1b (45,480 N) load, the
objective is to estimate the maximum stress in the bracket.

From the foregoing analysis, we know that the maximum stress occurs at point B. From the
cross section geometry, we have (in the notation of Section 14.3)

A=2625in2, ¢=10in., R=6.0in., [=2in* (14.35)

From Table 14.2, the stress concentration factor k is 1.18. Then using Equation 14.28, the stress o,
due to bending is kMc/I. Also, the load geometry creates axial loading at the support end. The axial
stress o7, from this loading is kP/A. Hence, the resultant stress o at B is

op = k(P/A+ Mc/I)
10,000 N (10,000)(12.0)(1.0)}

= (1.18)

2.625 2.0

P =10,000 Ib

3in.
—

FIGURE 14.10 Machine bracket geometry.
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0.5 in,

FIGURE 14.11 Half-circle clamp.

or
op =753001b/in> (519 N/min%) (14.36)

Observe that the contribution of the axial loading (P/A) is relatively small compared with that of the
bending (Mc/1).

14.6.2 ExpANSION OF A MACHINE CLAMP

Consider next a semicircular machine clamp as in Figure 14.11. Let the cross section be the same as
that in the previous example. Let a load magnitude P of 12,000 1b be applied to the interior ends of
the clamp as shown. The objective, as before, is to determine the maximum stress in the clamp.
From the foregoing analysis, we see that the maximum stress will occur at point B on the inner
surface of the bracket.
As before, from the cross section geometry, we have

A=2625in2, ¢=10in., R=6.0in, I=2in* (14.37)

From Table 14.2, the stress concentration factor k is again 1.18. Thus from Equation 14.28, by
including the axial loading (P/A), the stress o at B is

op = k(P/A+ Mc/I)

12,000  (12,000)(7.5)(1.0)
2.625 2.0)

= (1.18)

or

op =58,4901b/in.”> (403 N/min%) (14.38)
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If we envision the clamp as a hook we can use Equation 14.33 to compute the stress, where A may
be obtained from Table 14.1 (the next to the last entry) as 0.0163. That is,

_ Pc
TBT AR — o)
B (12,000)(1.0)
T (2.625)(0.0163)(6.0 — 1.0)
or
op = 56,0901b/in.> (387 N/min?) (14.39)

The results of Equation 14.38 and 14.39 differ by approximately 4%. In the majority of practical
designs such differences should be well within the customary factors of safety.

14.7 FURTHER COMMENTS ON THE STRESSES IN CURVED
BEAMS AND HOOKS

Our focus, in this chapter, has been on the stress in curved beams, with application in brackets and
hooks. We have not similarly discussed displacements. The reason is that curved members are used
primarily for strength. The curvature causes the loads to be supported both axially and in the
transverse directions. With straight members, the loading is generally supported either only axially
or only in flexure. Thus curved members can support considerably higher loads than their straight
counterparts.

With the focus on strength or the ability to support loads, the displacements are usually of less
concern. If, for example, a lifting hook is sufficiently strong to support its load, its displacement and
deformation is of little or no concern.

Regarding hooks, the stresses on the inner and outer surfaces can be quite different from that on
the inner surface being largest. Thus for material and weight efficiency, it is reasonable to design the
cross section with greater thickness at the inner surface. From a manufacturing perspective, it is
convenient to use a trapezoidal (‘“bull-head’’) shaped cross section or an “I’” or a “T”” cross section.

Once the basic cross section shape is determined, the parameter of greatest interest is the ratio of
the depth of the cross section to the inner radius of curvature for a given stress. From a practical
design perspective, Gough et al. [9] suggest using the following expressions for the depth D of
circular and trapezoidal cross section shapes.

CIRCULAR SECTION
D =0.023P"? +0.18R; (14.40)
TrAPEZOIDAL OR BuLL-HEAD SEcCTION
D =0.026 P'/*> + 0.20R; (14.41)
where D is in inches and P is the hook load in pounds.
We may also use finite element methods to obtain insights into the stresses in curved members
and hooks. Some caution is encouraged, however, when estimating maximum stresses. If the stresses

exceed the yield stress of the material, plastic deformation can occur changing the geometry and
redistributing the loading and thus altering the stress values and the stress distribution.
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SYMBOLS

A Beam cross section area

A, B Beam sections

C Centroid

c Distance from neutral axis to beam surface in straight beams; distance from centroid
to inner surface

D Depth of circular and trapezoidal cross section shapes

d Cross-section width

E Elastic modulus

H, Horizontal distance between centers of curvature

1 Second moment of area

k Constant

L Arch length

M Bending moment

N Neutral surface

P Hook load

PQ, P'Q' Curved fibers

R Distance from area cross section to center of curvature of curved beam

R, Ro Inner and outer radii

uy Tangential displacement

XY Z Cartesian (rectangular) coordinate system

y Y-axis coordinate

y Radial coordinate

o Increment

Opo Lengthening of fiber PQ

Spo Shortening of fiber P'Q’

& Normal strain

& Circumferential strain

n Length measure within a cross section as in Equation 14.2

0 Angular coordinate

K Stress concentration faction

A Geometric parameter of Equation 14.2

p Radius of curvature

o Normal stress

o, Compressive stress

o Tensile stress

gy Tangential stress
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15 Stability: Buckling of Beams,
Rods, Columns, and Panels

15.1 INTRODUCTION

In testing the material strength, the focus is generally directed toward determining material response
to tension. Most strength tests are performed by simply measuring the elongation of a rod as a function
of an axial tensile load. Homogeneous and isotropic materials (particularly metals) are then assumed
to have similar strength properties when compressed. Compression tests are thus often not conducted.
Even though Hooke’s law (with a linear stress—strain relation) is generally found to be valid for both
tension and compression, compression loading often produces changes in structural geometry, which
can then lead to buckling even before a yield stress is reached. In this chapter, we look at the
phenomenon of buckling and the associated concepts of stability of beams, rods, columns, and panels.

15.2 LONG BARS SUBJECTED TO COMPRESSION LOADING

Consider a long, slender rod or bar subjected to an axial compressive loading as in Figure 15.1. If
the geometry is ideal and the loads are centered on the bar axis, the bar will simply shorten due to
the loading. If, however, the geometry is not perfect, the bar may bend and buckle as represented in
Figure 15.2. As the bar buckles, the greatest deflection will occur at midspan as indicated.

As the bar is buckling, it will experience a bending moment along its length due to the lateral
displacement. By inspection, in Figure 15.2 we see that the bending moment M at a cross section at
distance x along the bar is simply

M =Py (15.1)

Recall from Equation 9.3 that the bending moment is related to the displacement by the moment—
curvature relation:

M = EId’y/dx* (15.2)

Then by substituting from Equation 15.1 into Equation 15.2, we have the governing differential
equation:

d?y/dx* 4+ (P/El)y =0 (15.3)
The general solution of Equation 15.3 may be written as
y=Acos/P/EIl x+ Bsin+/P/EIl x (15.4)
where the integration constants A and B may be determined from the boundary conditions. The bar
of Figure 15.1 may be regarded as having simple or pinned supports. This means that the
displacements at the ends are zero. That is,

y(0) = y() =0 (15.5)

217
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P—— 4

FIGURE 15.1 Long bar subjected to axial compressive load.

By imposing these conditions, we have
A=0 and Bsin\/P/EI{=0 (15.6)

where the second condition is satisfied if either B is zero or if \/P/EI ¢ is zero. If B is zero, the bar is
straight without buckling. If \/P/EI { is zero, we have

\/P/EI { = nm (15.7)

where n is an integer.
Therefore, the smallest load P, satisfying this expression is

P = El? /1 (15.8)

This load is called “‘the Euler critical buckling load.”

Observe in Equation 15.8 that P, is independent of the strength of the bar material, instead it
depends only upon the elastic modulus (the stiffness) of the bar and upon the bar geometry. Observe
further that P, decreases as the square of the length. Finally, observe that if the bar has a rectangular
but not a square cross section, as in Figure 15.3, then the lowest buckling load will occur with
bending about the short side axis (or the Y-axis) in the figure.

15.3 BUCKLING WITH VARIOUS END-SUPPORT CONDITIONS

15.3.1 CrampeD (NONROTATING) ENDs

Consider a bar being compressed axially, whose ends are restrained from rotation as represented in
Figure 15.4. Although in reality there are no supports which are completely rigid or without rotation,
we know that bolted, welded, and bonded end supports can greatly restrict rotation. With such
supports, the compressed bar being kept from rotating at its ends, is less likely to buckle than a
similar bar with pinned ends. Nevertheless, as the compression load is increased, the bar will buckle.
It will deform into a shape shown with exaggerated displacement as in Figure 15.5.

The symmetry of the bar supports and the loading, and the assumed rigidity of the supports
require that the bar have zero slope at its ends (x =0 and x = ¢). and at its middle (x = ¢/2). Also the
symmetry requires that there be inflection points at quarter spans: x =¢/4 and x=23¢/4. Since an
inflection point has no curvature (i.e., d*y/dx* = 0), the bending moment at such points is zero.

FIGURE 15.2 Buckled bar under axial compressive loading.
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zZ

FIGURE 15.3 Rectangular cross section.

From a buckling perspective, these observations indicate that the bar will behave as a pinned-end
bar (a simply supported bar) with end supports at x = £/4 and x = 3¢/4. Thus for buckling, the bar is
equivalent to a pinned-end bar with length ¢/2. Therefore, from Equation 15.8 we see that the
critical buckling load P, is

P = EIT*/(£/2)? (15.9)

15.3.2 A CiampPeD (NONROTATING) AND A FrRee END

Consider next a bar with one end clamped or fixed (nonrotating) and the other end free, as a
cantilever beam. Let the bar be loaded at its free end by an axial load P as represented in
Figure 15.6. As P is increased, the bar will buckle as represented (with exaggerated displacement)
in Figure 15.7.

The bar displacement as in Figure 15.7 may be viewed as being of the same shape as the right
half of the buckled bar with free ends of Figure 15.2 and as shown again in Figure 15.8.

That is, due to symmetry, the center of the bar has no rotation and is thus equivalent to clamped
support at that point. Therefore, the clamped-free end support bar with length ¢ behaves as an
unsupported end bar with length 2¢. Therefore, from Equation 15.8, the buckling load P, is

Py = EIm?/(20)* = El7* /40 (15.10)

15.3.3 A CiampeD (NONROTATING) AND A PINNED END

Finally, consider an axially compressed bar with clamped and pinned ends as represented in its
buckled state in Figure 15.9. As before, let the origin O be at the left end of the bar, which in this
case is the pinned (roller supported) end.

As the beam is buckled with the left end constrained from vertical displacement, there will occur
a reaction moment at the right end (the clamped end). This in turn means that except at the left end
(at the pin support), there will be a bending moment throughout the bar.

] fas

P — j«e—P

" v

FIGURE 15.4 Axially compressed bar with clamped (nonrotating) ends.
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fas 4 4.
Ewg\ t/4 38/4 m

FIGURE 15.5 Buckled bar with clamped (nonrotating) ends.

P P-X

FIGURE 15.6 Axially loaded bar with fixed and free supports.

/%—P

FIGURE 15.7 Buckled bar with clamped and free-end supports.

e

0 €2 ¢

FIGURE 15.8 Buckled bar with axial loading on unsupported ends.

o

Pcr% —X

FIGURE 15.9 Pinned/clamped axially loaded compressed rod.
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x M _Ly
%—»% )
R Vv
FIGURE 15.10 Free-body diagram of a left end segment of the buckled, pinned/clamped bar.

To qualify the bending moment, consider a free-body diagram of a segment of the left end of the
bar as in Figure 15.10 where x is the segment length, R is the reaction force at the pin support and M
and V are the bending moment and shear on the right end. By setting moments about the right end
equal to zero, we have

M = Rx + Py (15.11)

where, as before, y is the displacement of the bar due to buckling.
Recall again from Equation 9.3 that the bending moment M is related to the curvature d2y/dx2 as

EId’y/dx* = —M (15.12)
Thus the governing differential equation for the bar displacement is
EId*y/dx* = —(Rx + Pey)
or
d?y/dx* + (P../El)y = —R/EI (15.13)

The general solution of this equation is seen to be (homogeneous and particular solutions)

y = A sin kx + B cos kx —(R/EDx (15.14)
where k is given by
kK> = Po/EI or k= +/Py/EI (15.15)
The auxiliary (boundary) conditions are
y=0atx=0 and y=dy/dx=0atx=1/¢ (15.16)
The first of these leads to
B=0 (15.17)

Then at x=/¢, we have

0=A sinkl — (R/ED¢ and dy/dx =0 = kA cos k! — R/EI (15.18)
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By eliminating R/EI between the last two expressions, we have
0 =A sin k¢ — klA cos k¢ or tan kl =kl (15.19)

Equation 15.19 is a transcendental equation whose solution (roots) may be obtained numerically and
are listed in various mathematical tables (see e.g., [1]). The smallest root is

kl = 4.49341 (15.20)
Then from Equation 15.15, the critical buckling load P, is

P, = (4.49341)°El/* (15.21)

15.4 SUMMARY OF RESULTS FOR LONG BAR BUCKLING
WITH COMMONLY OCCURRING END CONDITIONS

Table 15.1 provides a listing of the foregoing results for buckling loads and Figures 15.11 through
15.14 provide a pictorial representation of the results.

TABLE 15.1

Axial Buckling Load for Long Bars

End-Supports Buckling Load, P,

1. Pinned—pinned P = El/(* =9.87EI/(*

2. Clamped—clamped P..=4mEl/(* = 39 48El/(*

3. Clamped—free P = EI/AC =2 ATEI/*

4. Clamped—pinned P = (4.4934)°El/(* = 20.19E1/(*

P, = xkEI/¢? xk=9.87

FIGURE 15.11 Pinned-pinned buckled bar.

NN wid)
P———————
P, = kEI/€? Kk =39.48

FIGURE 15.12 Clamped-clamped buckled bar.

7
% P,

P, = kEI/€? k=247

FIGURE 15.13 Clamped-free buckled bar.
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/M;— 5

P, = KEI/£? k=20.19

FIGURE 15.14 Clamped-pinned buckled bar.

In the table and figures, £ is the distance between the supports. Recall again that these results are
valid for long, slender bars, that is, £/« > 0 where k is the minimum radius of gyration of the cross
section.

If the bars are not so slender, they may fail in compression before buckling. In these cases,
minor changes in support conditions are important. We will discuss these concepts in the following
sections.

15.5 INTERMEDIATE LENGTH BARS AND COLUMNS—JOHNSON FORMULA

Consider again the foregoing results: Specifically, for a long axially loaded bar, the critical load Py,
leading to buckling is (see Equation 15.8)

Py = mEI /1 (15.22)

Observe again that although P, is proportional to the elastic modulus (or stiffness) of the bar
material, P, does not depend upon the strength of the bar material. That is, a long bar could buckle
and lead to structural failure before the bar reaches the yield stress.

For short bars buckling is not usually an issue, but as axial loads are increased, high compres-
sive stresses can occur. For intermediate length bars, however, as axial loads become large, the bar
may fail either by buckling or by yielding to compressive stress. The transition between failure
modes, that is, between buckling and compressive yielding, is of particular interest.

To explore this, consider the compression stress o, on a bar as it is about to buckle.
Specifically, let o, be defined as

Ocr = Pcr/A (15.23)

where, as before, A is the cross section area of the bar. Then for the pin—pin supported bar we have
oo = TE(I/A)/? = TE/({/k)? (15.24)

where we have replaced the second moment of area I by Ak?, with k being the “radius of gyration”
of the cross section. The ratio ¢/k is called the “‘slenderness ratio” of the bar.

Figure 15.15 provides a graphical representation of Equation 15.24 where o, (the “critical
stress”) is expressed in terms of the slenderness ratio (¢/k). Observe that for short bars, where the
slenderness ratio is small, Equation 15.24 shows that a large load is required to buckle the bars.
However, for large loads the unbuckled bar will attain large compressive stresses, ultimately
yielding due to the stress.

For design purposes, engineers have suggested that axial loading for nonbuckled bars should be
bounded so that the stress is no more than half the yield stress S, [2—4]. Thus for design, Figure
15.15 is replaced by Figure 15.16.
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Buckling

Critical stress o,

Slenderness ratio (£/u)

FIGURE 15.15 Critical stress as a function of the slenderness ratio.

For a refinement in practical design considerations, J.B. Johnson [3,5] proposed that the curve of
Figure 15.16 be replaced by a smoother curve as in Figure 15.17, where the left end of the curve is
based upon Johnson’s formula for critical stress, o;:

T =Sy — (S§ /4772E) (/) (15.25)

where, as before, Sy is the compressive yield stress.
In Figure 15.17, the transition point between the curves of Equations 15.24 and 15.25 is found

by simply equating the stress values. That is,
TE[((/k)? = Sy — (S§ /4772E) (/) (15.26)

Solving for ¢/k, we obtain the slenderness ratio at the transition point to be

U/ = 2mE/S))"/? (15.27)

Stress

Yield

0.5S,

Buckling

Safe
design

Slenderness ratio (£/k)

FIGURE 15.16 Design curve for axially loaded bars.
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Yielding/buckling

Stress

Transition
point

Safe
design

Slenderness ratio (£/k)

FIGURE 15.17 Johnson curve for axially loaded bars.

15.6 INTERMEDIATE LENGTH BARS AND COLUMNS—ECCENTRIC
LOADING AND THE SECANT FORMULA

Consider again an axially loaded bar in compression as in Figure 15.18. Recall that Saint Venant’s
principle states that equivalent force systems (see Section 1.5.3) exerted on a body produce the same
stress state at locations away from the loading site, but different stress states at locations near the
loading site [6—8]. Therefore, if an axially loaded bar is long the stress state away from the ends is
insignificantly affected by the method of application of the loads at the ends. However, if the bar
is short the means of loading can make a measurable difference along the bar in the stress state.

To explore this, consider the end loading of a relatively short axially loaded bar as represented
in Figure 15.19. In an actual bar, however, the loading geometry is not perfect and insofar as the
loading can be represented by a single axial force P as in Figure 15.19, P will not be precisely on
the axis but instead it will be displaced away from the axis by a small distance e as in Figure 15.20.
This load displacement or eccentricity gives rise to a bending moment with magnitude Pe in the bar,
which in turn can affect the stresses and buckling tendency of the bar.

P—— Je——P

FIGURE 15.18 An axially loaded bar.

FIGURE 15.19 End loading of a short bar.

FIGURE 15.20 Off-axis axial load.
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To quantify the effect of the eccentric loading, recall again the bending moment/curvature
relation of Equation 9.3:

EId*y/dx* = —M (15.28)

As the loading is increased and the beam begins to deflect and buckle, the bending moment M at a
typical cross section will be

M =Py +e) (15.29)
Then by substituting into Equation 15.28, we have
d*y/dx* + (P/El)y = —Pe/EI (15.30)

If we regard the bar as having pinned—pinned end supports, the auxiliary boundary conditions of
Equation 15.30 are

y=0atx=0 and x=7/ (15.31)
The general solution of Equation 15.30 is

Y=+ (15.32)

where
yh is the general solution of the homogeneous equation (right side zero)
Yp is a particular solution

It is readily seen that yy, and y, may be written as

yh = A cos \/P/EIx+ B sin \/P/Elx (15.33)

and
Y, =—e (15.34)

Therefore, the general solution of Equation 15.30 is
y=A cos /P/EIx+ B sin \/P/Elx — e (15.35)
By enforcing the end conditions of Equation 15.31 we have at x=0,

0=A—¢ or A=c¢ (15.36)

and then at x=/,

0=ecos \/P/EI{+ B sin \/P/EIl — e
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or

B = e[l —cos \/P/EIl]/sin \/P/EIl (15.37)

Therefore, from Equation 15.35 the displacement is

y= e{cos PJEIx + [(1 — cos \/PJEI) sin \/P/EIx/ sin \/PJEIf] — 1} (15.38)

By symmetry, we see that the maximum displacement y,,,, occurs at midspan (x = £/2). Thus yp,y is

Ymax = e{—l +cos P/E1§+ {(1 —cos \/P/EIl) sin \/}Wﬂ /sin \/}We}
{_1 + V/PJET sin/PJEIL + sin/PJEL, - cos /PJEI¢ sinmﬂ / sin me}
{_1 + ¢7oﬁ57§+ mﬂ / sin ﬁ/‘m}
:e{_1+ _2sin¢foﬁz7§cos¢p—/ﬁ§ / \/15/7574\/}751;”
{
{

or

l
Ymax = e<—1 + sec \/P/EIE) (15.39)

From Equation 15.29, the maximum bending moment is then

Moax = P(Ymax + €) = Pe sec (\/P/Elﬁ) (15.40)

The maximum compressive stress o,x due to the combination of axial loading, buckling, and
bending is then

Omax = (P/A) + (Max c/I) = (P/A) + (Pce sec \/P/EI§> /I
= (P/A) [1 + (ceA/I) sec \/P/Elg]
or

Tmax = (P/A) {1 + (ce/k?) sec(\/P/EA;;)] (15.41)

where as before
c is the distance from the neutral axis to the most distant perimeter
k is the radius of gyration of the cross section area moment
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From a design perspective, if we restrict the maximum stress to say S (perhaps a fraction of the
compressive yield stress), we then have from Equation 15.41,

S=(P/A) {1 + (ce/K?) Sec(\/m%)}

or

P= SA/ [1 + (ce/K?) sec (\/P/EA %)] (15.42)

Equation 15.42 is the so-called “‘secant column formula.”” It is applicable for intermediate length
bars (10 < ¢/k < 100). It provides a design guide for the applied load P. The formula, however, has
the obvious problem of being rather cuambersome as P appears nonlinearly (in the square root of the
secant argument). Thus for a given geometry and bar material, an iterative procedure is probably the
most practical procedure for finding P.

15.7 BUCKLING OF PLATES

Plate and panel buckling form another class of problems in elastic structure design. Local
instabilities can occur during compressive loading which may or may not lead to global buckling.
Figure 15.21 illustrates a plate subjected to a typical compressive load where ¢ and b are the plate
dimensions, in its plane, ¢ is the thickness, and S is the compressive loading (force per area: bf).

As noted, buckling resistance of a plate is necessarily not lost when local distortion occurs.
Indeed, significant residual strength can remain even with local distortions. Therefore, a design
analysis may take a twofold approach: (1) we may opt to have no buckling deformation at all or
alternatively (2) we may allow local buckling as long as the structural integrity of the overall
structural design is not compromised.

The general form of the stress expression for buckling in a plate as in Figure 15.21 is

oo = KpE(t/b)* (15.43)
¢
s — ] b s

FIGURE 15.21 Plate subjected to compressive in-plane loading.
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where
o, is the stress where buckling occurs (the “critical stress’)
Kp is a buckling stress coefficient
E is the elastic modulus

The buckling coefficient k;, is analogous to the column factor  of Figures 15.11 through 15.14. As
with the column factor, the buckling coefficient depends upon the edge constraint. The buckling
coefficient is a nondimensional quantity and it is sometimes called the “plate coefficient.”

When the critical stress o, calculated from Equation 15.43 is less than the yield strength of the
material, the buckling is considered to be “elastic.” The design value of o obtained from Equation
15.43 should be regarded as an upper limit as stresses that actually occur are usually smaller. The
difference is mainly due to geometric irregularities, which inevitably occur in actual designs. Such
occurrences and stress differences increase as the plate thickness 7 decreases.

When the critical stress exceeds the yield strength of the plate material, the buckling is
“inelastic.” The yield stress is thus a natural limit for the critical stress.

In many practical problems of plate buckling, the ratio of plate length to width, ¢/b, is greater than
5. In such cases the buckling coefficient, k,, is virtually independent of the length. For lower length to
width ratios, the buckling coefficient increases somewhat but it is a common conservative practice
to ignore this change and to consider the edge supports as the primary controlling factor. The choice
of the value for k,, however, depends to a large extent upon engineering judgment. Table 15.2
presents usual accepted values of k, for a variety of common supports. These values are intended for
materials characterized by a Poisson’s ratio of 0.3. Again, as in the case of structural columns,
the fixed supports of condition 5 are practically never realized. Unless the weight requirements are
such that the fixed-end condition must be satisfied, the most practical design solution is to assume
either simple supports (condition 3) or the simple support-free support (condition 1).

When a long plate of width b is supported along the two long sides and is loaded in
compression, condition 3 of Table 15.2 provides a good model for estimating the buckling load.

If the nonloaded edges of the plate are free of support (unlike the conditions of Table 15.2), they
are no longer compelled to remain straight. The plate then behaves like a column or an axially
compressed bar.

Since all the condition illustrated in Table 15.2 provide some degree of edge restraint, plates
with those support conditions will not buckle as a compressed rod. Instead, upon buckling there will

TABLE 15.2
Buckling Stress Coefficients for Edge-Loaded Flat Plates
(Poisson’s Ratio »=0.3)

Simple support % Free K,=0.38

Fixed support %ZZI Free K,=1.15

Simple support gf:H Simple support K,=3.62
3.

Simple support . 7 Fixed support K,=4.90

Fixed support %5:% Fixed support K,=6.30

Note: All loaded edges are simply supported and plates are considered to be relatively long.
Loading is perpendicular to the plane of the paper.
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FIGURE 15.22 A cantilever beam with a narrow rectangular cross section.

be interval twisting and bending. This is why the buckling loads of plates and panels are consid-
erably higher than those of bars and columns.

15.8 BUCKLING DUE TO BENDING

When the cross section of a beam is narrow and rectangular, as for example in Figure 15.22, the
beam will have a tendency to buckle due to lateral bending and twisting. This bending/twisting
failure occurence depends upon the magnitude of the loading, the end support conditions and the
cross section geometry. While the mathematical analysis of this problem is somewhat detailed (see
[8,9]), it is possible to provide some design guidelines as outlined in the following paragraphs.

Consider a beam with a tall /narrow rectangular cross section as that in Figure 15.22. Let & be
the height of the cross section and let b be the base width, and let £ be the beam length as shown.
Consider four loading and end support cases as represented in Figure 15.23.

Depending upon the supports and load positions, the critical load leading to lateral bending and
twisting has the form [9,10]:

Pe = k(b>h/0*)[1 — 0.63(b/W)EG)"/* (15.44)
where as before
E and G are the moduli of elasticity and rigidity (shear modulus)

k 1s a numerical coefficient as listed in Table 15.3

In the first case (ends-free), P, in Equation 15.44 is to be replaced by M../¢. In the third case
(simple-support), the ends are held vertical but still allowed to rotate in the vertical plane.

MC[' Mcr
1. Ends free [ ]

P

cr

2. Cantilever

3. Simple support /-)4>r /7%7

4. Built-in supports

FIGURE 15.23 Loading and end supports for lateral buckling of a narrow rectangular cross-section beam.
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TABLE 15.3
Critical Loading Coefficient « of Equation 15.44
for Loading Cases of Figure 15.23

Loading Case Coefficient k
1. Free ends, end moment 0.524

2. Cantilever, end force 0.669

3. Simple support, midspan force 2.82

4. Built-in supports, midspan force 26.6

Several comments may be useful for design considerations: First, observe the product EG in
Equation 15.44. This arises from the combined bending and twisting as a beam buckles.

Next, note that I-beams are used in many structural applications, whereas Equation 15.44 and
Table 15.3 are applicable only for beams with rectangular cross sections. I-beams, which can have
various cross section dimensions, are thus more difficult to study than beams with a rectangular
profile. Nevertheless data for lateral bending/buckling are provided as Refs. [9,10].

Further in Equation 15.44 and Table 15.3 we have considered only concentrated point loads.
Many applications have uniform loading or combined loadings. Here again Refs. [9,10] provide
useful data for critical loading. From a structural design perspective, however, concentrated loading
is more harmful than uniform loading. Thus for conservative design the data of Table 15.3 provide a
safer design.

Finally, care should be taken when using any such data as in actual design exact ideal geometry
will not occur. The actual critical buckling loads may thus be lower than those predicted by using
the tabular data. Therefore, generous factors of safety should be used.

15.9 BUCKLING OF COLUMNS LOADED BY THEIR OWN WEIGHT

Tall heavy columns commonly occur as chimneys, towers, and poles. The buckling analysis is
similar to the previous analyses although more detailed [9]. Nevertheless we can still obtain
estimates of critical weight density ycg. Most column structures do not have a uniform diameter,
but instead they are larger at the base. A conservative (safer) analysis is then to simply consider a
structure with uniform diameter as represented in Figure 15.24, where ¢ is the load per unit length.

— ¢+— - e 4 4— <—

FIGURE 15.24 Heavy uniform cross-section column.
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Using a standard flexural analysis [9] and an energy analysis [11], the critical load per unit
length gcr is approximately

gcr = 7.89EI /(3 (15.45)

We can illustrate the use of this expression with an elementary design problem: suppose we want to
determine the maximum length £, of a hollow, thin-walled aluminum column with an average
radius  of 2.0 in. and a wall thickness 7 of 0.2 in. Let the elastic modulus £ be 10 x 10° psi and the
weight density y be 0.098 Ib/in.>.
For a relatively thin pipe with radius r and wall thickness ¢, the weight ¢ per unit length is
approximately
q = 2mrty (15.46)

Also, the second moment of area [ is approximately
I =ar't (15.47)
Then by substituting these expressions into Equation 15.45, we have
2arrty = 7.897 Er’t/ 0

or

0 = lpax = 1.58(EF /y)'/3 (15.48)
Hence for the given data, £, is

lmax = 97.7 ft =29.77 m (15.49)

This is a relatively tall column. Interestingly, the maximum stress is small. Indeed, the stress o at the
base is only

o= W/A = 27Trt'y€max/277rt = '}’Emax (15.50)

or

o = (0.098)(97.7)(12) = 114.9 psi (15.51)

Observe that in this example the design is governed by stability rather than stress limitations. Also
note that the stability calculations assume ideal geometry. An eccentricity or other geometric
irregularity will make the structure less stable. Therefore, factors of safety should be incorporated
into stability computations for the design of actual structures.

15.10 OTHER BUCKLING PROBLEMS: RINGS AND ARCHES

The buckling of circular rings and arches is a classical problem, which has been studied extensively.
Reference [9] provides an analysis of the phenomenon and Figure 15.25 provides a summary of the
more important common cases, where the notation is the same as in the foregoing section. Case 3 for
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FIGURE 15.25 Buckling loads for rings and arches.
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FIGURE 15.26 Arch buckling factor 8 as a function of the half arch angle «,.

a fixed ends arch, involves a parameter B8 (the “arch buckling factor’) which satisfies the transcen-
dental equation

B tan a, cot(a,B) =1 (15.52)

Figure 15.26 provides a graphical representation of the relationship between 8 and aq.

15.11 SUMMARY REMARKS

In this chapter, we have attempted to simply document and list the most important and most widely
used buckling and stability formulas. The references, particularly Refs. [9,10,12], provide additional
information for more specialized cases.

In structural design, when compressive loading occurs, stability (as opposed to material failure)
is often the controlling factor in the integrity of the structure. The analyses and resulting formulas of
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this chapter have, for the most part, assumed ideal geometry and centralized loading condition. In
actual design, however, this is a rare case. Thus the critical load values may be too high. Therefore
as noted earlier, caution and generous factors of safety need to be employed in the design of those
structures and components which may be subjected to high compressive loads.

SYMBOLS
A Cross-section area
A, B Integration constants
A, b Length, width measurements
E Elastic modulus
E Load offset (see Figure 15.20)
G Shear modulus
H Depth measurement
1 Second moment of area
k Constant (see Equation 15.15)
K, Buckling coefficient; plate coefficient
l Length
M Bending moment
M., Critical bending moment
P Applied load
P, Euler buckling load
q Distributed loading
R Reaction force; radius
r Radius
Sy Compressive yield stress
t Pipe thickness
\% Shear
w Weight
X,Y,Z Cartesian (rectangular) coordinate axes
by X-axis coordinate
y Y-axis coordinate
Yh General solution of homogeneous differential equation
Yp Particular solution of differential equation
a, Angle (see Figure 15.25)
B Buckling arch factor
oY Weight density
K Cross-section “radius of gyration™
O Stress at buckling
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’l 6 Shear Center

16.1 INTRODUCTORY COMMENTS

Recall in Chapter 15, on stability, we saw that for the buckling of tall, thin cross section beams, the
cross section may rotate and warp at loads well below the yield stress loads (see Figures 16.1 and
16.2). If the geometry is ideal and the line of action of the loading is centered in the cross section,
the warping is less likely to occur. If a thin-web cross section geometry is less simple, as is usually
the case, warping is likely unless the load is carefully placed.

To illustrate this further, consider a cantilever beam with a cross section in the shape of a
U-section or channel, as in Figure 16.3. (This is a classic problem discussed in a number of texts
[1-3].) Suppose the cross section is oriented that the open side is up as in Figure 16.4. Thus with
ideal geometry a carefully placed and centered load will not produce warping. If, however, the cross
section is rotated through say 90° as in Figure 16.5, it is not immediately clear where the load
should be placed to avoid warping.

Surprisingly, it happens that if the line of action of the load is placed through the centroid of the
cross section, the beam will still tend to warp. But there is a point, called the “‘shear center,” through
which the load can be placed where warping will not occur. Our objective in this chapter is to
establish the existence and location of the shear center.

16.2 SHEAR FLOW

The warping, twisting, and buckling of beam cross sections is most pronounced when the cross
section has webs, flanges, or other thin-walled components. With webs or flanges, the strength is
primarily in the plane of the web or flange. That is, a web, a flange, a panel, or a plate has most of its
strength in directions parallel to the plane of the member (so-called “membrane strength’). Webs,
panels, flanges, and plates have far less resistance to forces directed normal to their planes than to
in-plane loading.

For beams with cross sections composed of thin-walled members, such as an I-beam or a
channel beam, external loads are then largely supported by in-plane forces in the thin-walled
sections. These forces in turn give rise to shear stresses in these thin-walled sections. To evaluate
these stresses, it is helpful to reintroduce the concept of ““‘shear flow,” which we discussed briefly in
Section 12.7.

Consider a web or thin-walled portion of a beam cross section, which is subjected to a shear
force as in Figure 16.6. Consider an element e of the web as in Figures 16.7 and 16.8. Let the web
thickness be ¢ and the shear stress on the shear-loaded face of the web be 7.

Then from Equation 12.20, we define the shear flow ¢ on the web simply as the integral of the
shear stress across the web. That is

o

JT dz (16.1)

Specifically from Figure 16.8, g is

t
q= JTxde (16.2)
0

237
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o

FIGURE 16.1 Tall, thin cross section cantilever beam with end loading.

S

FIGURE 16.2 Warping of tall, thin cross section cantilever beam with end loading.

FIGURE 16.3 Channel shape cross section.

o

FIGURE 16.4 Cantilever, channel cross section, beam with end side up.

~I

FIGURE 16.5 Cantilever, channel cross section, beam with open side to the right.
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14

FIGURE 16.6 A thin-walled beam cross section web subjected to a shear force.

FIGURE 16.7 Element e of a shear-loaded web.

FIGURE 16.8 Element e of the shear-loaded web.
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q q
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FIGURE 16.9 Shear flow in a narrow web.

Shear flow is often interpreted as being analogous to the flow of a liquid in a narrow channel as
represented in Figure 16.9. We will develop this analogy in the following section showing how the
“flow” can go around a corner.

Finally, shear flow is useful for determining the shear force on a web. For example, in a right-
angle web as in Figure 16.9 and as shown again in Figure 16.10, we can obtain the horizontal and
vertical shear forces (H and V) on the web by simply integrating the shear flow in the horizontal
and vertical directions. That is,

c B
H:Jqu and V:Jq dy (16.3)
B A

16.3 APPLICATION WITH NARROW WEB BEAM CROSS SECTION

Recall from Section 4.3 that in the interior of bodies subjected to loading, equilibrium or rectangular
elements requires that shear stresses on abutting perpendicular faces have equal magnitude. Con-
sider for example, the element shown in Figure 16.11 with faces perpendicular to the coordinate
axes. Then moment equilibrium requires that the shear stresses shown satisfy the relations

Tyx = Tays Ty = Tyg Tag = Tix (16.4)
(See Section 4.3.)
5 c
4|_, H
Y
X
AL

FIGURE 16.10 Horizontal and vertical shear forces on a right-angle web.
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FIGURE 16.11 Element in the interior of a body under loading

In more general index notation, Equations 16.4 are contained within the expression
gjj = 0Oji ( 1 65)

where o; represents the stress on the ““i-face” in the j direction.

The interpretation and application of Equation 16.4 with shear flow is that the shear flows at
perpendicular mating surfaces are of equal magnitude but with opposing directions as illustrated in
Figure 16.12.

Remarkably these opposing shear flows on perpendicular abutting surfaces cause the uniformly
directed shear flow around corners in a plane, as in Figure 16.9. To see this, consider a right-angle
cross section of a web as in Figure 16.13 where there is a vertical shear force V, causing a shear flow
q as shown.

Next, consider three portions, or subsections, of the right-angle section as shown in Figure
16.14, where we have named points A, B, C, and D to aid in the identification. Consider first
subsection @ as shown in Figure 16.15: from the shear flow pattern shown in Figure 16.12, we
obtain the resulting shear on the top face of subsection @. Observe that this face is in contact with
the bottom face of the long square subsection @.

Consider next subsection @ as shown in enlarged view in Figure 16.16. From the action—
reaction principle, the shear on the bottom face of the subsection @ has the same magnitude but
opposite direction to that on the top face of subsection ®. From Figures 16.13 and 16.14, we see
that the top and left side faces of subsection @ are free surfaces and thus free of shear stresses.
Therefore, to maintain equilibrium of the subsection the back face of the subsection must have a
balancing shear to that on the bottom face. Figure 16.17 presents a representation of this back
face shear.

q q

FIGURE 16.12 Shear flow at abutting perpendicular surfaces.
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_
L~~~

FIGURE 16.13 Shear at a right-angle web.

A B

® ® ]

O

o~

FIGURE 16.14 Subsections of a right-angle web.

Q)

FIGURE 16.15 Shear flow on subsection ®.

Y

D C

FIGURE 16.16 Shear flow on the bottom face of subsection @.



Shear Center 243

FIGURE 16.17 Equilibrium of shear forces on the bottom and back faces of subsection @.

Finally, consider the equilibrium of subsection @: Figure 16.18 shows an enlarged view of the
subsection and the shear flow in the interior abutting face with subsection @ and on the web. Again
by the principle of action-reaction with the shear directed toward edge BC on @ it is directed away
from BC on ®. Then referring again to Figure 16.12 we see that the shear flow in the web of
subsection @ is directed away from edge BC as shown.

Considering the result of Figure 16.18 it is obvious that the shear flow in the right-angle web of
Figure 16.13 is directed around the corner as in Figure 16.9 and as shown again in Figure 16.19.

16.4 TWISTING OF BEAMS/SHEAR CENTER

The foregoing results provide a basis for understanding the shear distribution on a webbed
beam cross section. To develop this, consider again the channel cross section cantilever beam
of Figure 16.4 as shown again in Figures 16.20 and 16.21. Let the beam has an end load P as in
Figure 16.22.

Consider now a free-body diagram of a beam segment at the loaded end as in Figure 16.23. The
figure shows the shear flow distribution over the interior cross section of the segment. Observe
that the shear flow creates a counterclockwise axial moment (from the perspective of the figure).
The extent of the resulting axial rotation (or twist) is dependent on the lateral placement of the end
load P.

If there is to be no rotation, the load P must create an equal magnitude but oppositely directed
moment to that of the shear flow. Specifically, in view of Figure 16.23, if there is to be no twist
of the beam, the load must be applied outside the closed end of the cross section as represented
in Figure 16.24. The point C* where the line of action of P intersects the neutral axis is called
the “shear center.” In the following sections, we illustrate the procedure for locating the
shear center.

q\
———q

C

FIGURE 16.18  Equilibrium of shear forces on subsection ®.
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FIGURE 16.19 Shear flow around a corner in a right-angle web.

|

FIGURE 16.20 Cantilever, channel cross section, beam with open side to the right.

FIGURE 16.21 Right side view of cantilever, channel cross section, beam.

pr

FIGURE 16.22 Right side view of end-loaded cantilever beam with a channel cross section.
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[ —

FIGURE 16.23 Rear view of the free-body diagram of the right beam segment.

16.5 EXAMPLE: SHEAR CENTER OF A CHANNEL BEAM

The concepts discussed above can be illustrated and quantified by continuing our consideration
of the end-loaded cantilever channel beam example, as represented in Figure 16.25. As noted earlier,
this problem is often cited in texts on strength and mechanics of materials (see “References”).

From the discussion of Section 16.4, it is clear that the shear center will be located on the left
side, or outside of the channel as in Figure 16.24 as well as in Figure 16.26.

To determine the precise location of the shear center C* (dimension d in Figure 16.26) let the
dimensions of the cross section be as shown in Figure 16.27 where b and & are the nominal base and
height of the cross section respectively with the web thickness ¢ being small compared to b and 4.

Recall from Chapter 13 that for thick beams a varying bending moment along the beam
produces a shear force V on the cross sections, which in turn leads to horizontal shear stresses in
the beam. Specifically, Equation 13.11 states that the horizontal shear stress 7 is

T=VQ/Ib (16.6)

where Q is the moment of the area above (or beneath) the site where the shear stress is to be
calculated, with the moment taken about the neutral axis; [ is the second moment of area of the cross
section about the neutral axis; and b is the width of the cross section at the site where the shear stress
is to be calculated.

We can conveniently use Equation 16.6 to obtain an expression for the shear flow g in a web. To
deduce this, recall from Section 16.3 that shear flows at perpendicular mating surfaces are of equal
magnitude but with opposite directions as illustrated in Figure 16.12. Thus the shear flow in a web
has the same magnitude with opposite direction to the horizontal shear flow obtained from the
horizontal shear stress. The horizontal shear stress in turn is immediately obtained from Equation
16.1 by integrating through the web thickness.

C* — $ - — T- ——————— Neutral axis

FIGURE 16.24 Load placement to counteract the shear flow moment and to produce zero twist.
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FIGURE 16.25 End-loaded cantilever beam with a channel cross section.

In Equation 16.6, the base width b becomes the web thickness ¢. Then with the thickness being
small the shear flow g is simply

b
g= JT dt ~ br = VQ/I (16.7)
0]

By using Equation 16.7, we can determine the shear flow at all points of a webbed cross section.
To illustrate and develop this, let a coordinate axis system (£, 17) be placed upon the channel cross
section with origin A, as shown in Figure 16.28. Let A, B, C, D, and E be selected points in the cross
section. Let g4 be the shear flow at the origin A. Then from Equation 16.7, g4 is simply

qa = VOu/I (16.8)
where Q4 is the moment of the cross section area above A about the neutral axis. That is,
04 = (h/2)(O(h/4) + (b1)(1/2) = (th*/8) + (bth/2) (16.9)

where again the web thickness 7 is assumed to be small compared to the base and height dimensions
b and h. Therefore, g, is

qa = (V/D[(th*/8) + (bth/2)] (16.10)

Neutral axis

FIGURE 16.26 Shear center location.
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FIGURE 16.27 Channel cross section dimensions.

Next, for point B we have
g8 = (V/)QOp

where from Figure 16.28, Qp is seen to be

Op = tlh/2) — nl{n + [(h/2) — n]/2} + (bt)(h/2)
= (t/2)[(W*/4) — 7?1 + bth/2 (16.11)

where 7 is the vertical coordinate of B above the origin A. Therefore, gp is
qs = (V/D{(t/2)(2* /4) — ] + (bth/2)} (16.12)
For point C, we have

gc = (V/DQc¢ (16.13)

where from Figure 16.28, Q¢ is seen to be

Qc = (bt)(h/2) (16.14)

D

C ° }E

A Neutral axis

==

FIGURE 16.28 Coordinate axes and selected points of the channel cross section.
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Therefore, gc is
qc = (V/D(b1)(h/2) (16.15)
For point D, we have
gp = (V/DQp (16.16)
where from Figure 16.28, Op, is seen to be
Op = (b — H)1(h/2) (16.17)
where £ is the horizontal coordinate of D. Therefore, Qp is
Op = (V/DI(bth/2) — (£th/2)] (16.18)
Finally, for point E, at the end of the flange Qp is seen to be zero. Therefore, g is
ge =0 (16.19)

By summarizing the foregoing results, we can see the pattern of the shear flow throughout the web:

qa = (V/D[(th* /8) + (bth)/2)]
gs = (V/D{(t/2)[(h*/4) — n*] + (bth/2)}

gc = (V/D(bt)(h/2) (16.20)
gp = (V/D[(bth/2) — (éth/2)]
qe =0

Observe that the shear flow has a quadratic distribution in the vertical web and a linear distribution
in the horizontal flanges.

We can now obtain the resulting shear forces on the flanges and the vertical web by simply
integrating the shear flow along the length of the flanges and web: specifically, let the shear forces in
the flanges and web be H and V, as in Figure 16.29, where notationally we use V to distinguish from
the applied shear force V over the cross section. Then from Equations 16.3 and 16.18 H is seen to be

b b
H= Jqu§ _ J(V/I)[(brh/z) (&) 2))d¢
0 0
b
= (V/DI(bth/2)é — (th/2)(€*/2)] (\)

or

H = (V/Db*th/4 (16.21)
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FIGURE 16.29 Resultant shear forces on the flanges and web of the channel beam cross section.

Similarly, from Equations 16.3 and 16.22, the vertical force V is

h/2 h/2

V= J gpdn = J (V/D{(t/2)[H* [4) — 0] + (bth/2)}dn
h/2 —h/2

h/2

= (V/DI(t/2)(h*4)n — (t/2)(1° /3) + (bth/2)n] |/
—h/2

or

V = (V/D[(th* | 12) + (tbh? /2)] (16.22)

Remembering that I is the second moment of area of the beam cross section about the neutral axis,
we see by inspection of Figure 16.28 that for small ¢, I is approximately

I = (th/12) + (tbh? ]2) (16.23)

Then by comparing Equations 16.22 and 16.23, it is clear that the computed shear force V on the
vertical web is approximately the same as the applied shear over the cross section. That is, for small
t, we have

V=V (16.24)

Finally, to locate the shear center we simply need to place the line of action of the given load P
outside (or to the left in the end view) of the beam cross section so that the axial moment created by
the shear forces H and V, on the flanges and web, is counteracted by the moment created by P.
Specifically, in Figure 16.30 the line of action of P must be placed a distance d to the left of the cross
section so that the system of forces shown is a zero system (see Section 1.5.1), that is, in both force
and moment equilibrium.

From Figure 16.30 it is clear that force equilibrium occurs if

P=V (16.25)
Moment equilibrium will occur if

Pd = hH (16.26)
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d

FIGURE 16.30 Placement of beam end load P to counteract the shear forces on the beam cross section.

Hence, from Equation 16.21 and Equations 16.23, 16.24, and 16.25, d is

d = hH/P = h(V/D)b*th /4P
= D*th? /Al = (b*th? | )[(th® /12) + (tbh* /2)]
= b?/[(h/3) + 2b]

or
d = 3b/[6 + (h/b)] (16.27)

This analysis and the results are of course specific to an end-loaded cantilever beam with an open-
channel cross section. The procedures, however, are directly applicable for other web/flange cross
section beams.

16.6 A NUMERICAL EXAMPLE

The expressions in the foregoing section are immediately applicable in locating the shear center, in
determining the twisting moment if the line of action of a load is not through the shear center, and in
determining the resulting distortion, for an end-loaded, open channel, cantilever beam. To illustrate
the magnitude of the effects, consider a 25 ft. long beam with cross section dimensions as in Figure
16.31. As before, let C* be the shear center and G be the centroid as represented in Figure 16.32.

With this configuration, the load will induce a shear flow through the flanges and web of the
cross sections as illustrated in Figure 16.33. Figure 16.34 illustrates the resultant shear forces H and
V in the flanges and web.

From the given data and Equations 16.21 and 16.24 it is obvious that H and V are

H = (V/I)(thb* /4) = (3000/126)[(0.25)(12)(5)* /4] = 446.41b (16.28)
and
V =V =30001b (16.29)

where, from Equation 16.23, [ is seen to be

I = (th®/12) + (tbh? /2) = [(0.25)(12)* /12] + [(0.25)(5)(12)* /2] = 126in.* (16.30)



Shear Center 251

5in.

-

0.25 in.

12 in. h

t

:I%

FIGURE 16.31 Channel beam cross section dimensions.

3000 Ib

L

FIGURE 16.32 Shear center and centroid locations.
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FIGURE 16.33 Beam support and loading.
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FIGURE 16.34 Resultant shear forces in the flanges and web of the cross section.
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Equation 16.27 shows that the shear center C* is located a distance d outside the web given by
d=3b/[6+ h/b] = (3)(5)/[6 + (12/5)] = 1.786in. (16.31)

A question arising is: to what extent is a twisting moment induced if the line of action of the end

load is placed through the centroid G of the cross section? To answer this question, consider that G

is located inside the channel cross section a distance & from the web as illustrated in Figure 16.32.
An elementary analysis shows that for thin flanges and web ¢ is

E=D"/2b+h) = (5?*/[(2)(5) + 12] = 1.136in. (16.32)
The induced twisting moment 7 is then
T = P(d + & = 3000(1.786 + 1.136) = 8766 in./1b (16.33)

To put this in perspective, the rotation 6, or distorting twist, of the beam due to a misplaced load
through the centroid is (see Equation 12.6):

0=T¢/JG (16.34)
where J is the second polar moment of area of the cross section relative to the shear center, ¢ is the
beam length, and G is the shear modulus. For the cross section dimensions of Figure 16.31, J is seen
to be

J = Jwer + Jflange + Jﬂange (16.35)

where Jyep and Jiange are

Jweb = (th* /12) 4 (th)d* = [(0.25)(12)* /12] 4 [(0.25)(12)(1.786)*] = 45.57 in.* (16.36)

and
Jttange = (b /12) + (t)[(h/2)* + (d + b/2)*]
= [(0.25)(5)*/12] 4 (0.25)(12)[(12/2)% 4 (1.786 + 5/2)*]
=165.7in.* (16.37)
Then J is
J = 45.57 + (2)(165.7) = 376.98 in.* (16.38)

If the beam is made of steel with G being approximately 11.5 x 10° psi, and its length ¢ is 25 ft., the
twist is
6 = (8766)(25)(12)/(376.98)(11.5)(10)® = 6.066 x 107! rad
=3.476 x 1072 degrees (16.39)

For many cases of practical importance, this would seem to be a relatively small and unimportant
distortion. Thus for many webbed sections, where the shear center would seem to be important, the
resulting distortion from randomly placed loading may not be harmful.
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SYMBOLS
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Beam width

Shear center

Web element

Shear modulus

Horizontal force

Beam height

Second moment of area

Second polar moment of area

Beam length

Loading

Shear flow (see Equations 16.1 and 16.3)
Moment of the area above (or beneath) a point where shear stress is to be calculated
Web thickness

Applied torque

Shear force on a cross section

Computed shear force from the shear flow
Rectangular (Cartesian) coordinate axes
Point coordinates relative to X, Y, Z

Twist angle

Coordinate axes

@@, j=1, 2, 3) Stress matrix components
Shear stress

(i, j=x, ¥, z) Shear stress on the /-face in the J-direction
Shear stress on the X-face in the Z-direction
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Plates, Panels, Flanges, and Brackets

Second only to beams, plates are the most widely used of all structural components. In buildings,
plates and panels are used for floors, walls, roofs, doors, and windows. In vehicles, they also form
flooring, windows, and door components. In addition, curved plates and panels make up the external
structures of cars, trucks, boats, ships, and aircraft. In machines, these thin members form virtually
all the structural components and many of the moving parts.

The design and analysis of plates, panels, flanges, and brackets is considerably more complex
than that for beams, rods, or bars. The loading on plate structures, however, is usually simpler, and
often consists of only a uniform pressure. Also, the behavior of beams provides insight into the
behavior of plates, particularly in response to flexural-type loadings.

In this fourth part, we review the fundamental equations governing the structural behavior of
plates and other associated thin-walled members. We consider various modelings and approxima-
tion methods that simplify the analysis without compromising the accuracy of the stress and
displacement evaluations.

We begin with the flexural response of simple plates and then go on to more complex
geometries and loadings in applications with panels, flanges, and brackets.






’l 7 Plates: Bending Theory

17.1 HISTORICAL PERSPECTIVE AND INTRODUCTORY REMARKS

Plate theory and the behavior of plates as structural components, have been fascinating and popular
subjects for analysts and structural engineers for hundreds of years. The study of plates dates back to
the eighteenth century, long before the development of elasticity theory. Well known theorists
associated with plate theory include Euler, Bernoulli, Lagrange, Poisson, Navier, Fourier, Kirchoff,
Kelvin, Tait, Boussinesque, Levy, Love, VonKarman, and Reissner. The most important develop-
ments occurred during the nineteenth century in France, stimulated in part by Napoleon.

Plates are regarded as two-dimensional, thin, flat structures. Of particular interest is their
response to loadings directed normal to their plane. The analytical focus is thus upon flexure (or
bending) as opposed to in-plane loading.

At times, plates have been thought of as two-dimensional beams, particularly when they are
bent in only one direction. More rigorous analyses require the solution of partial differential
equations with various kinds of boundary conditions. As such, the number of simplifying assump-
tions needed to obtain closed-form solutions is staggering. As a consequence, analysts have been
continually searching for approximation methods providing insight into plate behavior, enabling
efficient structural design.

Plates may be divided into four general categories:

1. Thick plates or slabs (shear is the predominant consideration)

2. Plates with average thickness (flexure is the predominant consideration)

3. Thin plates (both flexural stress and in-plane tension are important considerations)
4. Membranes (in-plane tension and stretching are the most important considerations)

In this chapter, we focus on the second category, that is, plates sufficiently thin that shear effects can
be neglected but also thick enough that in-plane forces are negligible.

17.2  MODELING AND SIMPLIFYING ASSUMPTIONS

A plate is modeled as a thin, initially flat, uniformly thick structural component supported on its
edges and loaded in the direction normal to its plane. Figure 17.1 shows a portion of a plate together
with coordinate axes directions.

Most modern theories of plate behavior such as those of Vinson et al. [1-4] are developed using
the three-dimensional equations of linear elasticity and then reducing them to a two-dimensional
form by integrating through the thickness of the plate. A number of simplifying assumptions enable
this development. These are

1. The plate is initially flat with uniform thickness.

2. The plate thickness is small compared with the edge dimensions (rectangular plates) or the
diameter (circular plates).

3. The plate is composed of a homogeneous, isotropic, and linear elastic material.

4. Loading is applied normal to the plane of the plate.

257
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X

FIGURE 17.1 Coordinate axes for a plate segment.

5. The plate supports the loading by its resistance to flexure (bending). Equivalently in-plane
(“membrane’’) forces are negligible in their support of loadings normal to the plate.

6. The maximum displacement of the plate is less than the thickness of the plate.

7. Line elements normal to the middle surface before loading remain straight and normal to
the middle surface during and after loading.

8. Line elements normal to the middle surface undergo neither lengthening nor shortening
during loading.

9. Stresses normal to the plane of the plate are small compared with the flexural stresses.

10. Slopes of the plate surfaces, due to bending, are small.

Analytically, these assumptions imply that the displacement components (u, v, w), in Cartesian
coordinates as in Figure 17.1, have the following forms:

M(x,y’Z)ZZa(x»)’) (171)
V(x’y’ Z) - ZB (x’ Y) (172)
w(x,y,2) = w(x,y) (17.3)

17.3 STRESS RESULTANTS

As noted earlier, we can obtain governing equations for plate flexure by integrating the equations of
elasticity through the plate thickness. The resulting plate equations are then simpler and fewer in
number than the elasticity equations.

In the process, as we integrate the stresses through the thickness, we obtain ““‘stress resultants,”
and in a similar manner as we integrate the moments of the stresses about coordinate axes, we obtain
bending and twisting moments.

To develop this, it is helpful to first recall the sign conventions of elasticity as discussed in
Chapter 4 (see Section 4.2). Specifically, positive directions are in the positive (increasing value)
coordinate axis directions. A ““positive face’ of an element is a surface normal to a coordinate axis
such that when crossing the surface, from inside the element to the outside, a point moves in the
positive axis direction. Negative directions and negative faces are similarly defined. Stresses are
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X

FIGURE 17.2 Plate element with coordinate axes.

then positive or negative as follows: a stress is positive if it is exerted on a positive face in a positive
direction or on a negative face in a negative direction. A stress is negative if it is exerted on a
positive face in a negative direction or on a negative face in a positive direction.

Consider a rectangular element (e) of a plate as in Figure 17.2. For convenience, let the X-, Y-,
Z-axes be oriented and placed relative to the element as shown, with origin O at the center of the
element.

As before, let the stresses on the faces of (e) be designated by o; where i and j can be x, y, or z,
with the first subscript pertaining to the face and the second to the direction.

Consider the stresses on the positive X-face of (e): 0y, 0y, and o,.. First, for o,,, by integration
through the thickness & we have

/2
J ondz 2 Ny (17.4)
—h/2
where N,, is a force per unit edge length and directed normal to the X-face, as represented in Figure
17.3. Let the line of action of N,, be placed through the center of the X-face. N,, is thus along the
midplane of (e) and is a “‘membrane” force.
Next, for o,,, we have
h/2
D
nydZ = Sxy (17.5)
—h/2
where S, is a shear force per unit edge length and, like N,,, let its line of action be placed through
the center of the X-face. S,, is directed along the Y-axis and it is also in the midplane of (e).
Therefore S,, is also a membrane force.
Finally, for o,,, we have
h/2

J oedz 2 0, (17.6)
“h/2



260 Practical Stress Analysis in Engineering Design

~~

e

X

FIGURE 17.3 Stress resultant normal to the X-face.

where Q,, is also a shear force per unit length and, like N,, and S,,, let its line of action be placed
through the center of the X-face. Q,, is directed along the Z-axis and is therefore perpendicular to the
midplane of (e). Thus, unlike N,, and S,,, O, is not a membrane force.

Figure 17.4 provides a representation of Ny, Sy,, and Q..

Consider now the stresses on the positive Y-face of (e): oy, 0y, and o,.. By an analysis similar
to that on the X-face we have

n/2 h/2 n/2
J odz 28, J Tz 2 N,,, J o dz 2 0y (17.7)
—h)2 —h)2 —h/2

where the stress resultants S, N,,, and Q,. are forces per unit edge length and are directed parallel
to the X-, Y-, and Z-axes, respectively. If we let the lines of action of S,,, N,,, and Q,, pass through
the center of the Y-face, we see that Sy, and N,, are membrane forces and that Q,, is perpendicular to
the midplane of (e). Figure 17.5 provides a representation of these resultants.

Syy

J; Y

7
X/

FIGURE 17.4 Stress resultants on the X-face of a plate element.
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FIGURE 17.5 Stress resultants on the Y-face of a plate element.
Observe that since o, = oy, we have
Sey = Syx (17.8)

Observe further that the stress resultants are not actual forces but instead they are entities of
equivalent force systems (see Section 1.5.3). As such, the lines of action of the resultants can be
placed through arbitrary points (in this case, the centers of the element faces) and then equivalency
is ensured by calculating the moments about those points. The following section documents
these moments.

17.4 BENDING AND TWISTING (WARPING) MOMENTS

Consider the modeling of the stress systems on the faces of a plate element by equivalent force
systems consisting of stress resultants passing through the face centers together with stress couples.
Consider now the moments of these stress couples: specifically, consider the moments of the
SITESSES Oy, Oy, and o, acting on the X-face of a plate element, about the X- and Y-axes (see
Figure 17.6). First, for o,,, from our experience with beam analysis (see Chapter 8), and with our
assumptions of line elements normal to the undeformed midplate plane remaining straight and
normal to the plane during bending, we expect o, to vary linearly in the Z-direction, through the
thickness of the plate. As such o, will create a moment (a flexural moment) about the Y-axis.
Following the notation of Ref. [1], we call this moment M, and define it as

n/2
M, = J 20 dz (17.9)
—h/2

Observe that with the o, stresses being directed along the X-axis, they will have no moment about
the X-axis.
Next, for the shear stresses o, we will have a “twisting” or “warping” moment about the

X-axis which we call T, defined as

e)
Ty = J 20,dz (17.10)
—h/2
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FIGURE 17.6 Plate element.

Observe that with the o, being directed along the Y-axis, they will have no moment about the

Y-axis.

Finally, for the vertical shear stresses o, we expect, from our experience in beam analysis, that
the o, will have a symmetric distribution across the face and then will not produce a moment about

either the X- or Y-axes.

In a similar analysis for the stresses on the Y-face, we see that the normal stresses o, produce

a flexural moment M, about the X-axis defined as

h/2
M, = J 70yydz
—h/2

0,y, being parallel to the Y-axis, do not have any moment about the Y-axis.
The shear stresses o, will produce a warping moment 7, about the X-axis as

h/2

Ty = J 20,dz
—h/2

Oy, being parallel to the X-axis, will have no moment about the X-axis.
Observe that with o, being equal to o,, we have

Ty =T,

(17.11)

(17.12)

(17.13)

Finally, the vertical shear stresses o, being symmetrically distributed across the Y-face, will have

no moments about either the X- or Y-axes.
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17.5 EQUILIBRIUM FOR A PLATE ELEMENT

Recall from Equations 4.30 through 4.32 that for a body under loading, the equilibrium of a
rectangular “‘brick” element within the body requires that the stresses satisfy the equilibrium
equations

00y 00y, 00y

e 0 (17.14)
80'yx Jo vy do,,

) v _ 17.1
- n 5 + o 0 (17.15)
Ooo | Doy 00z 0 (17.16)

Ox ady 0z

where the edges of the element are parallel to the coordinate axes.

We can use these equilibrium equations to obtain equilibrium equations for plate elements by
integrating the equations through the plate thickness. To this end, consider again the rectangular
plate element of Figure 17.2 and as shown in Figure 17.7. Recall that the simplifying assumptions of
plate theory require the plate support loading to be perpendicular to its plane by flexure, that is, by
forces and moments on the plate element faces normal to the X- and Y-axes. The first two
equilibrium equations (Equations 17.14 and 17.15) involve stresses on these faces. Therefore, we
will initially consider integration of these equations and reserve analysis of the third equation
(Equation 17.16) until later.

First consider Equation 17.14: by integrating through the plate thickness, we have

n/2 h/2 h/2
aO'XX 30xv ao—m

: —Sdz = 17.1
Jaxdu—Jaydz—i-JaZdz 0 (17.17)
—h/2 —h/2 —h/2

VA

/(9)
h
| Ol — N v

X

FIGURE 17.7 Plate element.
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Since x, y, and z are independent variables, we have

5 h/2 5 h/2 h/z(9

o
= wdZ + =— d ~dz=0 17.18
pp Jo- Z+8y JO’,Q z+ J 5z ( )

+2% 45 | =0 (17.19)

Regarding the last term, observe that with the elements of the stress matrix being symmetric, that is
0, =0y, we have o, = 0. But 0, is zero on the plate surface since the loading is assumed to be
directed perpendicular to the plane of the plate. Therefore, the third term of Equation 17.18 is zero.
That is,

n/2 /2
O | =0on | =0uh/2) —o(—h/2)=0 (17.20)
—h/2 —h/2

Thus Equation 17.19 takes the simple form

N, 95y _

— 17.21
Ox Qy 0 ( )

Similarly, by integrating Equation 17.15 through the thickness we obtain

O0Syx . ONy,
— 4+ —==0 17.22

e+ By ( )
Next, consider the moments of the stresses on the X- and Y-faces about the X- and Y-axes: If we
multiply Equation 17.14 by z and integrate through the plate thickness we have

h/2 h/2 h/2

00 00y, 00,
—d =d = =0 17.23
Jzax 7+ Jzay z+ Jzaz ( )
—h/2 —h/2 —h/2

In the first two terms with x, y, and z being independent, we can move the derivatives outside the
integrals and in the third term we can integrate by parts, obtaining

h/2 h/2 h/2 n/2
0 0
— J 70 dz + — J 20y dz + 20y, J — J o,dz=0 (17.24)
Ox Jy

—h/2 —h)2 —hj2  —h)2

In the third term (the integrated term) with the symmetry of the stress matrix and with the plate being
loaded only in the direction normal to the plate, we see that the term is zero. Finally, by using the
definitions of Equations 17.9, 17.10, and 17.6, Equations 17.23 and 17.24 become

M. | OT,
Ox Jdy

—0x=0 (17.25)
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By a similar analysis in integrating Equation 17.15 we obtain

0T, n oM,
Ox Jdy

—0y=0 (17.26)

Then consider the third equilibrium equation (Equation 17.16): if we integrate through the plate
thickness we have

h/2 h/2 h/2
00, 0oy J 00,
—d d dz=0 17.27
J g 7+ J By 7+ oz z ( )
—h/2 —h/2 —h/2

Then by the independence of x, y, and z, the symmetry of the stress matrix, and in view of the
definition of Equations 17.6 and 17.7, we have

_ h/2
anz + aQ{h, 4 o | =0 (1728)
Ox dy ~h/2

Recall that a simplifying assumption of plate theory is that the external loading is normal to the
plane of the plate (assumption 4), and also in the interior of the plate, the stresses normal to the plane
of the plate (o,) are relatively small and can be neglected (assumption 9). Let the positive Z-axis
designate the direction of positive loading. Then as a consequence of these assumptions we may
regard the loading as being applied to either the upper or the lower plate surfaces, or equivalently to
the mid plane. Let p(x,y) be the loading. Then if we consider the loading in terms of the surface
stresses, p(x,y) may be expressed as

Py =0z | —oz | (17.29)
h/2 ~h/2
Therefore Equation 17.28 becomes
00x: | 00y
- : ») =0 17.30
af+@+mw (17.30)

Finally, consider integrating the moments of the stress derivatives in Equation 17.16

/2 h/2 h/2

asz (90'7y ao—zz

- P : = 1 . 1
Jzaxdu— Jzaydz+ Jzazdz 0 (17.31)
—h/2 —hJ2 —h/2

It happens in view of the simplifying assumptions of plate theory, that each of these terms is either
zero or negligible. Consider the first term: again due to the independence of x, y, and z, we have

h/2 h/2
00 0
dz =— d 17.32
J . Ox . Ox J Wl ( )
—h/2 —h/2

Observe that, as in the theory of beam bending, the shear stress distribution across the plate
thickness is expected to be parabolic or at least symmetric, that is, an even function symmetric
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about the midplane. Then with z being an odd function, the antiderivative will be even and with

equal limits, the integral is zero.
A similar reasoning provides the same result for the second term.
In the third term, by integrating by parts, we have

/2 hy/2
0o, h/2
z dz=z0, | — 0. dz
0z —h/2
—h/2 —h/2
hy2
= /2o, | —(=h/2) | oy — Jozzdz
) —h/2 i

Due to the assumption on the loading on the plate we have

Oz | = —0 |
h/2 —h/2

(17.33)

(17.34)

Thus the first two terms of Equation 17.33 cancel and the third term is insignificant in view of

assumption 9 which states that the normal stresses o, are small in the interior of the plate.

17.6  SUMMARY OF TERMS AND EQUATIONS

For reference purposes, it is helpful to summarize the foregoing results. The coordinate directions
for a plate element are shown again in Figure 17.8. The plate thickness 4 is small compared with
the in-plane dimensions of the plate but still sufficiently large that membrane forces, if they exist,
do not affect the flexural (bending) forces. That is, loads applied normal to the plane of the
plate are supported by flexural forces as opposed to membrane (or midplane) forces. Finally, in
Figure 17.8 the Z-axis is normal to the plane of the plate and the X- and Y-axes are in the midplane

of the plate.

X

FIGURE 17.8 Plate element and coordinate directions.
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17.6.1 IN-PLANE NORMAL (MEMBRANE) FORCES

hj2 h/2
Nxx(l?A‘) J Ondz Ny_y(in J oy,dz (17.35)
—h/2 —h/2

(Numbers under the equal sign refer to the original defining equation numbers.)

17.6.2 IN-PLANE SHEAR FORCES

h/2 h/2
Sy = S”"(l?s) J nydz(iﬂ J O yxdz (17.36)
—h/2 —h/2

17.6.3 VERTICAL (Z-DIRECTION) SHEAR FORCES

h/2 h/2
sz(i@ J o dz Qyz(l?ﬂ J 0y.dz (17.37)
—h/2 —h/2
17.6.4 BENDING MOMENTS
n/2 h/2
* (179) J 70,dz My<17%11> J 20y,dz (17.38)
—h/2 —h/2
17.6.5 TwiISTING MOMENTS
/2 /2
Txy(nim J 20ydz = Tyx(”ﬁz) J 20y, dz (17.39)
—h/2 —h/2

17.6.6 LoADING CONDITIONS

Loads are applied in the direction normal to the plane of the plate. With the plate being thin, these
loads may be regarded as equivalent to equally divided forces on the upper and lower surfaces of the
plate as

S p—— (17.40)

Z

X, = O
P y)(|729> h/2 2

Alternatively, the loading may be regarded as being applied at the midplane.
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17.6.7 EqQuiLiBRIUM EQUATIONS

(1) In-plane (membrane) forces:

ONee | 0Sy_  OSu | OSy (17.41)
Ox Oy (17.21) Ox dy (17.22)
(ii) Vertical (Z-direction) forces:
90y | 90y
< = = 17.42
Ox + Oy +p(x,y)(17'20)0 (17.42)
(iii) Moment equations:
oM, 0T, oT,, OM,
200 =0, v 2 _0,=0 17.43
Ox + Jdy O Ox + Jdy O ( )

17.6.8 COMMENT

The normal stress o, is assumed to be small in the interior of the plate, but on the surface the normal
stress may be interpreted as the loading p(x,y), as in Equation 17.40. Next, on the surface, the
loading is assumed to be normal to the surface. Consequently the shear stresses on the surface are
zero. This in turn means that the shear forces O, and Q,,, are zero at the surface. Finally, as in beam
theory, the shear forces are assumed to be quadratic across the plate thickness and the normal
stresses o, and o, are assumed to be linear across the thickness.

17.7 STRESS-STRAIN-DISPLACEMENT RELATIONS

In Chapter 7, we developed stress—strain equations in Cartesian coordinates which, from Equations
7.49 through 7.54, can be expressed as

e = (1/E) [0 — oy + 02)] (17.44)
&y = (1/E)[oy, — (o, + 0] (17.45)
ez = (1/E) [0 — U0 + 0yy)] (17.46)
& = (1/2G)a, (17.47)
&y, = (1/2G)oy, (17.48)
e = (1/2G)0o-, (17.49)

where ¢;; (i,j=x,y,z) are elements of the strain tensor, E is the elastic constant, G is the shear
modulus and v is Poisson’s ratio. Earlier, in Chapter 5, we developed the strain—displacement
relations:

& = 0u/Ox, &y =0v/0y, &,=0w/0z (17.50)

&y = (1/2)(0u/0y + Ov/0x), &y, = (1/2)(Ov/0z+ Ow/0x), &5 = 1/2(0w/0x + Ou/02)
(17.51)

(See Equations 5.10, 5.11, 5.12, 5.15, 5.16, 5.17, and 5.32.)
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From our simplifying assumptions based upon the thinness of the plate, we have the displace-
ments u, v, and w of the form

u=zalx,y), v=z6xy), w=w,Yy) (17.52)

where « and 3 are constants (see Equations 17.1 through 17.3). Also, the normal stress o, in the interior
of the plate is small and negligible (assumption 9), so that for the purpose of analysis we have

0. =0 (17.53)

By substituting Equations 17.52 and 17.53 into 17.50 and 17.51, we obtain:

Exr = Ou)Ox = 200 /Ox = (1/E)(0xx — v0y) (17.54)

£y = Ov/Dy = 20B/ 0y = (1/E)(0yy — V0w (17.55)

£ = OW)0z =0 = —(W/E) 0w + 0yy) (17.56)

26 = Ou)By + Ov/0x = z0a /Dy + 20B/0x = (1/G)ay (17.57)
28y, = Ov/Dz 4 Ow /By = B + Ow/dy = (1/G)oy. (17.58)
26, = Ow/0x + Ou/dz = Ow/0x + a = (1/G)o, (17.59)

By integrating these equations through the thickness of the plate, we can obtain the constitutive
equations (or reduced stress-displacement) equations for a plate.

17.8 INTEGRATION OF STRESS-STRAIN-DISPLACEMENT EQUATIONS
THROUGH THE THICKNESS OF THE PLATE

Consider first Equation 17.54:

200 /0x = (1/E)(0xx — vOyy) (17.60)

Multiplying by z and integrating we have

h/2 h/2 h/2
J Z0a/0xdz = (1/E) J 20 dz — (V/E) J 20,dz (17.61)
—h/2 —h/2 —h/2

Then in view of Equation 17.38, we have
(h*/12) 0a/Ox = (1/E) (My — v My) (17.62)

Next, recall the basic assumption of plate theory that line elements normal to the middle surface
before loading remain straight and normal to the middle surface during and after loading (assump-
tion 7). This means that locally the plate is not distorted during bending, which in turn means that
the shear strains on surfaces normal to the Z-axis are zero. That is,

£x=0 and &,=0 (17.63)
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or
Ou/dz+0w/dx=0 and Ov/0z+ Ow/0y =0 (17.64)
or in view of Equations 17.1 and 17.2, we have
ow/0x=—a and Ow/dy= -8 (17.65)
Then by substituting the first of these results into Equation 17.64 we obtain
(1/EYM, — vM,) = —(3*w/0x*) (h*/12) (17.66)
Next consider Equation 17.55:
z0B/0y = (1/E)(0yy — Vo) (17.67)
By an analysis similar to the foregoing we obtain
(1/EYMy — v M,) = —(0*w/0y*) (h*/12) (17.68)
Thirdly, consider Equation 17.56:
Ow/0z =0 — (V/E)(0x + Oyy) (17.69)
Since this equation represents Z-displacement derivatives in the Z-direction, which are small, the
terms do not contribute to flexural moments. Therefore, we can ignore the moment of this equation.
Consider Equation 17.57:
z(0a/Dy) + z(OB/0x) = (1/G)oyy (17.70)

Multiplying by z and integrating, we have

h/2 h/2 h/2
Jzz(8a/6y)dz+ Jzz(ﬁﬁ/ax)dz:(l/G) Jzaxydz (17.71)
—h/2 —h/2 —h/2

or in view of Equation 17.39 we have
(W /12)(0a /By + OB /0x) = (1/G)T,, 17.72)

By using Equation 17.65 we can express da/dy and 9B/0x in terms of second mixed derivatives of
w so that Equation 17.72 takes the simplified form

Pw
0x Qy

(1+v)
E

Ty = —(1/12) (17.73)

where we have replaced G by E/2(1 + v) (see Equation 7.48).
Finally, regarding Equations 17.58 and 17.59, we have already incorporated them into our
analysis through the use of Equation 17.65.
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Consider next the direct integration of the stress—displacement relations of Equations 17.54
through 17.59, which will involve the in-plane, or membrane force effects. For Equation 17.54,
we have

h)2 ye)
J z0a/0xdz = (1/E) J (O — voyy)dz (17.74)
—h/2 —h/2

or in view of Equation 17.35 we have

h/2
(Da/0x)(Z*/2) | =0=(1/E)Nu— (v/E)Nyy
—h/2
or
Ny — Ny =0 (17.75)

Similarly, for Equation 17.55, we obtain

Ny — VN =0 (17.76)
Next, for Equation 17.56 we have
h/2 h/2
J ondz + J oy,dz =0 (17.77)
—h/2 —h/2
or
Ny + Ny =0 (17.78)
For Equation 17.57, we have
h/2 h/2 n/2
O opB
J ngz—i— J Zadz =(1/G) J Oydz (17.79)
—h/2 —h/2 —h/2
or
h/2 h/2
e/ /2 | +©@B/o0Z[2 | =(1/G)Sy
—h/2 —h/2

Since the integrated terms cancel to zero, we have

Sey =0 (17.80)
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Finally, for Equations 17.58 and 17.59, recall that the assumptions of plate theory require that there
be no distortion within the plate during bending (assumption 7). This means that the shear strains ¢,,
and &,, are zero (see Equations 17.63, 17.58, and 17.59) leading to

(1/G)oy. =0 and (1/G)oy, =0 (17.81)

By integrating through the thickness we have

/2 h/2
(1/G) J 0y.dz = (1/G)0y. =0 and (1/G) J 0wdz = (1/G)0y, = 0 (17.82)
—h/2 —h/2

These expressions appear to present a contradiction in view of Equation 17.30, which states that
the shear forces Q.. and Q,, must support the surface normal loading and thus cannot be zero. The
explanation, or resolution, is that Equations 17.30 and 17.82 are both within the range of the
approximations of plate theory. Specifically, no distortion implies an infinite shear modulus G,
which satisfies Equation 17.82. An infinite value of G, however, implies an infinite elastic modulus
E, which creates difficulties in other equations.

A better interpretation is that in the flexure of a plate the material near the surface provides the
flexural strength. Also, since the external loading is normal to the plate surface, the shear stresses on
the surface and consequently in the regions close to the surface are zero. In the midplane regions,
however, the flexural support is minimal. But here the shear is not zero. Therefore Equation 17.82
may be viewed as approximately satisfying the flexural response for a plate, particularly in the
surface regions of the plate. Alternatively, Equation 17.30 may be viewed as approximately satisfying
the loading equilibrium of the plate, particularly in the interior, midplane region.

17.9 GOVERNING DIFFERENTIAL EQUATIONS

We can now obtain the governing differential equation for plate flexure by combining the equilib-
rium equations and the stress—strain (moment—slope) equations. To this end, it is helpful to list some
principal relations from the foregoing sections:

17.9.1 EqQuiLiBRIUM EQUATIONS (SEE SECTION 17.5)

(1) Moment—shear relations:

oM, OTyy
— U 0 17.83
Ox ady Q *1725) ( )
8Tyx 8M
ox -Qy, = (1726) (17.84)
(2) Shear—loading relation:
00y 8Qyz
17.
Ox Oy T pw y)(l730) (17.85)
(3) In-plane (membrane) forces:
NXX Xy
0 0Sx =0 (17.86)

Ox dy (7.21)
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0S,  ON,
Ox dy 122

17.9.2 DISPLACEMENT/SHEAR ASSUMPTIONS

(1) Displacements:

U, a(a ,y)v(7—2)zl3( y)wm—g)W(x ,Y)

(2) Shear strains (in surface regions):

e, = 0, &,
“(17.63) Y (17.63)
(3) Surface slopes:

ow ow

= - _a 2=
Ox (17.65) dy (17.65) B

17.9.3 MOMENT—CURVATURE AND IN-PLANE FORCE RELATIONS

(1) Moment—curvature:

h w n
(A/E)M; — (17 66) (_2) 2 (17.66) (E) Ox

h n
(1/E)M, — (17 68) (_2> Ay (1765 (ﬁ)

I+v T 0w Oa n
E Y773 Ox0y 17.62) dy

(2) In-plane force relations:

N, = 0
Y1175

N,y — =
7 *17.76)

Ny +Nyy(17%78)0

Sey = 0
Y (17.80)

17.9.4 GOVERNING EQUATION
We can solve Equations 17.91 through 17.93 for M,, M,, and T, as

Pw Pw
= oG rgs)

Oa
ox

9B

dy

op
ox

)
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(17.87)

(17.88)

(17.89)

(17.90)

(17.91)

(17.92)

(17.93)

(17.94)

(17.95)

(17.96)

(17.97)

(17.98)
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O*w Pw
M,=-D|>=+ v 17.
g (5y2+vax2> (17.99)
*w
Ty = —(1 — V)Daxay (17.100)
where D is defined as
D2ER/12(1 — %) (17.101)

Then by substituting these results into the equilibrium equations (Equations 17.83 and 17.84) we
obtain

o (0*w O*w
*D& <W+8—y2> =0 (17.102)
and
0 (Pw Pw
i (WJ“a_yz) _o. (17.103)
Let the operator V> be defined as
20\ 2 @ @
VO = T oy (17.104)

Then Equations 17.102 and 17.103 have the simplified forms:

,D%vzw _o. (17.105)

and

—D§V2w =0Q,, (17.106)
X

Finally by substituting for Q.. and Q,. in Equation 17.85, we have
DV*w = p(x,y) (17.107)

or more explicitly

@+2 84W +@
ox* Ox20y?  Oy?

=p/D (17.108)
An advantage of the form of Equation 17.107, in addition to its simplicity is that we can readily
express it in polar coordinates and then apply it with circular plates.

By solving Equations 17.94 through 17.97 for N,,, N,,, and S,,, we immediately obtain

Nu=0, Ny=0, S,=0 (17.109)
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These results are consistent with the loading being directed normal to the plane of the plate, and with
the small displacement so that in-plane (membrane) effects are independent of flexural effects.
Vinson [1] shows that it is possible to have in-plane forces without violating the assumptions of
plate theory. That is, with small displacements a plate can independently support loading normal to
the plate surface and in-plane (membrane) forces. In other words, the flexural and membrane effects
are decoupled (see Ref. [1] for additional details).

17.10 BOUNDARY CONDITIONS

Consider a rectangular plate and an edge perpendicular to the X-axis: the common support and end
conditions are (1) simple support (zero displacement and zero moment, along the edge); (2) clamped
(zero displacement and zero rotation); (3) free; and (4) elastic. The following paragraphs list the
resulting conditions on the displacements for these conditions.

17.10.1  SimpLe (HINGE) SuPPORT

In this case, the plate edge has restricted (zero) displacement, but it is free to rotate (about an axis
parallel to the edge, the Y-axis). That is

w=0 and M,=0 (17.110)

From Equation 17.98, M, is expressed in terms of the displacement w as

Pw  Pw

17.10.2 Ciampep (Fixep or BuiLt-IN) Support

In this case, the edge displacement and rotation are zero. That is

w=0 and Ow/dy=0 (17.112)

17.10.3 Free EDGE

In this case, there are no external restrictions on the movement of the edge. That is, there are no
forces nor moments applied to the edge. Analytically, this means

Q.=0, M,=0, T,=0 (17.113)

A difficulty with these equations, however, is that we now have three boundary conditions whereas
the biharmonic operator V* of the governing equation (Equation 17.107) requires only two
conditions per edge.* Therefore, to be consistent with the assumptions of plate theory, we need to
combine the conditions of Equation 17.113, reducing the number from three to two. This can be
accomplished using an ingenious analysis, attributed to Kirchoff: Recall that the stresses on the edge
normal to the X-axis are o,, 0, and o,,. The shear stresses are the sources of the twisting moment
T, and the shear force Q,,. By examining the equilibrium of an element of the edge, we can
approximately combine 7, and Q,, into an “effective’ shear force V,, defined as

sz = sz + aTxy/ay (17.114)

* A fourth order equation in two dimensions requires eight auxiliary conditions, or two per edge for a rectangular plate.
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To see this consider a representation of 7, by a pair of equal magnitude but oppositely directed
vertical forces as in Figure 17.9. As such T}, is represented by a simple couple (see Section 1.5.2)
and the directions of the two forces are irrelevant as long as they are parallel (that is, they may be
vertical, as well as horizontal). Next, consider a representation of the twisting moment at a small
distance Ay along the edge as in Figure 17.9. Using the first term of a Taylor series, the twisting
moment at this location is approximately 7', + (0T\,/0y)Ay. Then by superposing adjoining forces
we have an upward force of (0T, + Jy)Ay on an element of length Ay (see Figure 17.9). Hence
there is a net vertical force V., on the element given by Q..+ 0T,,/0y as in Equation 17.114. By
substituting from Equations 17.100 and 17.102 we see that V., may be expressed in terms of the
displacement w as

Pw Pw

Vie = Op. + 0T,y /0y = —D | ——+ (2 — V)W (17.115)

ox3
Then for a free edge the boundary conditions of Equation 17.113 are replaced by the conditions

M,=0 and V,=0 (17.116)

or in view of Equations 17.98 and 17.115

Pw O*w Pw Pw
Frga =0 ad Get@ongas =0

— 17.117
Ox? 0y? ox3 ( )

17.10.4 Erastic EDGE SuPPORT

An “elastic edge” provides support proportional to the displacement and/or rotation. If, for
example, an X-face is an elastic edge, the shear provided by the support is proportional to the
Z-direction displacement w and/or the rotation, or slope, is proportional to the flexural moment.
That is

Vi, = —kqw and/or M, = —kOw/Ox (17.118)

Then by substituting from Equations 17.98 and 17.115 we have

Pw & Pw  Pw

w
W+(2—V)T6y2:kdw/0 and W+a—y2:kr/D (17.119)

e
Ay _.| |._ / T, +(0T,,/3y) Ay

xy

FIGURE 17.9 Representation of twisting moment along an edge normal to the X-axis.
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17.11 INTERNAL STRESSES

Using Equations 17.98 through 17.103 we can immediately obtain expressions for the bending
moments, the twist, and the shearing forces in terms of the displacement:

My = —D(a;Tv; + f;%) (17.120)
My = —D(?;TV; + f;%) (17.121)
T oy (1 u)nggy (17.122)
O =0 —Da% (?;Tv; - ?;T;V) (17.123)
O 77y P gy ((;27»: - g%v) (17.124)
where D is defined as
D 2 ER/12(1 — 1A (17.125)

Recall from beam theory that in the interior of the beam the axial stresses due to bending (the
flexure) increase linearly across the cross section away from the neutral axis. That is, the stress is
proportional to the distance, above or below, the neutral axis. Recall also in a beam that the shear
stress has a quadratic (parabolic) distribution across the cross section. Since the assumptions of plate
theory are analogous to those of beam theory, the stress distributions across the plate cross sections,
about the midplane, are consequently analogous to those of beam theory. Specifically, for the
stresses on the cross sections normal to the X- and Y-axes, we have

O = Mz/(B)12), 0y = Tyz/(B®/12), o, = M,z/(h*/12) (17.126)

and

0w = (0201 — 2z/h)?], oy = (30,./2)[1 — (2z/h)’] (17.127)

The procedure for determining these stresses is straight-forward: we solve the governing equation
Vio= p/D, Equation 17.107, for a given loading p(x, y), subject to the boundary conditions (see
Section 17.10) appropriate for a given plate support. Next, knowing the displacement, we can use
Equations 17.120 through 17.124 to determine the bending moments, twist, and shear forces.
Finally, Equations 17.126 and 17.127 provide the stresses.

17.12 COMMENTS

When compared with elementary beam theory, the assumptions of classical plate theory as in
Sections 17.1 and 17.2 are considerably numerous and restrictive. The complexity of the geometry
with bending in two directions, necessitates the simplifications provided by the assumptions. Even
so, the resulting analysis is still not simple. Ultimately we need to solve a fourth-order partial
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differential equation (Equation 17.107) with varying degrees of boundary conditions. Closed form
solutions are thus elusive or intractable except for the simplest of loading and boundary conditions.

In the following chapters, we will look at some of these elementary solutions. We will then
consider problems of more practical importance in structural design and the ways of obtaining stress

analyses for those cases.

SYMBOLS

D ER*/12(1 — v*) (see Equation 17.101)

E Elastic constant

(e) Plate element

G Shear modulus

h Plate thickness

ky, ke Shear and moment coefficients (see Equation 17.118)

M, Bending moment per unit edge length on the X-face (see Equation 17.9)

My Bending moment per unit edge length on the Y-face (see Equation 17.11)

Ny Membrane force per unit edge length in the X-direction (see Equation 17.4)

Ny, Shear farce per unit edge length on the Y-face in the Y-direction (see Equation
17.7)

o Origin of X, Y, Z coordinate axes

px,y) Surface pressure; loading

O, Shear force per unit edge length on the X-face in the Z-direction (see Equa-
tion 17.6)

Oy, Shear force per unit edge length on the Y-face in the Z-direction (see Equa-
tion 17.7)

Sy Shear force per unit edge length, on the X-face in the Y-direction (see Equa-
tion 17.5)

Sy Shear force per unit edge length, on the Y-face in the X-direction (see Equa-
tion 17.7)

T, Twisting moment per unit edge length on the X-face, about the X-face (see
Equation 17.10)

T, Twisting moment per unit edge length on the Y-face about the Y-face (see
Equation 17.12)

u,v,w Displacements in the X, Y, Z direction

Vi Effective shear (see Equation 17.114)

XY, Z Rectangular (Cartesian axes)

X, ¥,2 Coordinates relative to X, Y, Z

a, B Rotations of plate X-face, Y-face cross sections

&; (i, j=x,y,z) Strain matrix components

v Poisson’s ratio

o (i, j=x,y,z) Stress matrix components; stresses on the i-face in the j-direction
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18 Plates: Fundamental
Bending Configurations
and Applications

18.1 REVIEW

In Chapter 17, we established the governing partial differential equation for plate deformation due to
bending as a result of loading normal to the plate (Equation 17.107):

Viw =p/D (18.1)

where
w is the displacement normal to the plate
p is the loading function
D is (Equation 17.91)

D = ER’/12(1 — %) (18.2)

where
h is the plate thickness
E and v are the elastic modulus and Poisson’s ratio

In Cartesian coordinates the V* operator has the form

0 70 90
40y
Vo= oxt T 28X28y2 Oy*

(18.3)

In cylindrical coordinates the V* operator has the form [1]

PO, 100 120
20y 2N 2N, 2 TN
Vo= or? Jrr or +}'2 06*
19 ( 00\ 180
“ror (r—ar) TR o 1y

so that V*() is then
V) = V2V2() (18.5)

In Cartesian coordinates, p is a function of x and y. In cylindrical coordinates, p is a function of r and 6,
although for most circular plate problems of practical importance the loading is axisymmetric,
that is p = p(r).

279
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For rectangular plates the boundary conditions are

1. Simple (hinge) support (parallel to Y-axis):

? o?
w=0 and _v21/+va_;2v

% =0 (M,=0) (18.6)

(See Equation 17.112.)
2. Clamped (fixed) support (parallel to Y-axis):

w=0 and Ow/Ox=0 (18.7)
(See Equation 17.112.)
3. Free edge (parallel to Y-axis):
Pw Pw FPw Fw
— —=0 d —+2-0——=0 18.8
Ox? v 0y? ne o i )8x8y2 (18.8)

(See Equation 17.117.)

For circular plates the most common supports are simple support and clamped (built-in) support.
For axisymmetric loading these may be expressed as [2]:

1. Simple support:

Pw v ow
— —_— _—— = 1 .
w=0 and 2ty o 0 (18.9)
2. Clamped support:
w=0 and Ow/dr=0 (18.10)

The procedure for a given problem is to solve Equation 18.1 for w subject to the appropriate
boundary conditions. Then knowing w, the bending moments and shears may be computed and
from these the stresses may be evaluated. For rectangular plates, the moments, shears and stresses
are given by Equations 17.120 through 17.127. For axisymmetrically loaded circular plates, the
radial bending moment, shear, and stresses are [2]

dw  vdw
d|1d dw
Q’:_Ddr[rcir+ (rdr)] (18.12)
or = Myz/(h*/12) (18.13)
o 3Qr Z 2
=" [1 - <h—/2> ] (18.14)

In the following sections, we will review some elementary and fundamental plate loading problems
and their solutions.
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Z
f :j;?;gﬁ Y
MY
MX

X

FIGURE 18.1 Pure bending of a rectangular plate.

18.2 SIMPLE BENDING OF RECTANGULAR PLATES [3]

Consider first a rectangular plate subjected to pure bending as represented in Figure 18.1.
Specifically let there be uniform moments applied along the edges as shown and let the twisting
moment 7T, be zero. That is,

My =My, My=My, T,=0 (18.15)
Then from Equations 17.120, 17.121, and 17.122 the plate curvatures are

82w MxO — VMy()

=" DA (18.16)
82w Myo - VMX()

0w

By (18.18)

From the third of these expressions, we immediately see that the displacement w has the form

w=f@)+g() (18.19)
Then
82W o de _ Mx() — IJMy() (18 20)
o d2 D —1?) :
and
2 2
My — vM,
a_vzt/:d_(;’:_yoivzw (18.21)
Oy dy D(1 —v?)
By integration we obtain
My — vM,
fo) = -0 P02 4 vt (18.22)

O 2d(1 —1?)
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and
My() - VMX() 2
=y — 18.23
g0 D 7)) vt ( )
where cy, ..., ¢4 are constants. Therefore the displacement is
M,y — vM,, M,y —vM
W= P02 PO TIH0 . L eyt et (18.24)

T2 =) T 2D — )

To uniquely specify the displacement, we can eliminate rigid body movement by the conditions:
0 0
w(©0,00=0, 2X0,00=0, 20,0)=0 (18.25)
Ox Qy

The displacement then becomes

MxO — VMyQ 2 ]Wyo — VMX() 2

,y) = — 18.26
R TR Sy, v (18.26)
The plate surface then has the form of an elliptical paraboloid.
Finally, if the moments M,y and M, are equal w has the simplified form:
K +y?
g AN 18.27
v °2D(1 + ») (18.27)

18.3 SIMPLY SUPPORTED RECTANGULAR PLATE

Consider a rectangular plate with dimensions a and b (along the X- and Y-axes) with hinged (pinned)
edge supports. Let the origin of the axis system be placed at a corner, as in Figure 18.2. Let the
loading on the plate be p(x,y). The governing equation is then (see Equations 17.107 and 17.108)

I*w Iw  dw
W= 2 s = D 18.28
where the boundary conditions are
w(0,y) = w(x,0) = w(a,y) = wx,b) =0 (18.29)
V4
0 b
Y

X

FIGURE 18.2 Rectangular plate and axis system.
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Pw Pw Pw Pw
W(O»)’) = 8—))2()6,0) = w(a,)’) = a—yz()@b) =0

The boundary conditions of Equations 18.29 will be satisfied if we can express the displacement w
in terms of series of sine functions mmx/a and ny/b. This is feasible since these functions form a
“complete” and “‘orthogonal” system, with their sum forming a Fourier series [4,5]. Therefore we
seek a solution, w(x,y) of Equation 18.28 in the form

Wi, y) = ZZAmmsm( )in(”Zx> (18.30)

By substituting into Equations 18.28 we obtain:

A [( )ﬁz(?)%?) + (”;Tﬂ sin<$) sin(”bﬂ) — /D (1831)

We can also express p(x,y) in a double sine series as

Mg

>

m=1 n

1

p(x,y):ii m,,sm( )sin(?) (18.32)

m=1 n=1

where by Fourier expansion [4] the coefficients B,,, may be expressed as

B _ 4
mn — ab

By substituting from Equation 18.32 into Equation 18.31, we have

52> am| () +2() (5) + () s (") sn ()

m=1 n=1

p(x,y)sin(m;m) sin ( . )dxdy (18.33)

S — o
S —

o]

=(1/D) i ZB’"” sm( ) 'n(nz-x)

m=1 n=1
or

i i{ {(@>2+<%>2}2—(1/D)Bm} sm( ;Tx) sin(?) —0 (18.34)

m=1 n=1

This expression is identically satisfied by setting the coefficients of sin(mx/a) sin(nry/b) equal to
zero. Then we have

an

(RN

Ay = (1/D) (18.35)
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Finally, by substituting A,,,, in Equation 18.30 with Equation 18.37, the displacement w is seen to be

w=(l /D)mi‘T 2 {(@) i(ﬂ) zr sin (m;”) sin (?) (18.36)
a b

where B,,,, are given by Equation 18.33.

18.4 SIMPLY SUPPORTED RECTANGULAR PLATE WITH A UNIFORM LOAD

As an immediate application of the foregoing result, consider a simply supported rectangular plate
with a uniform load py. Then from Equation 18.33, the coefficients B,,, are

a b
4 . (nmy
— —)dx d
= J Jposm sm( b ) y
00
or
_ 4po
B, = 5 (cosmm — 1)(cosnm — 1) (18.37)
mnir

Then from Equation 18.35, A,,, are seen to be

4py (cosmm — 1)(cosnm — 1)
oD mn[<%)2+(g)2}

Consequently the displacement w may be written as

(18.38)

mn —

. /mTX\ . (NTy
i g () ()
—D mz ; o (18.39)
m (? + ﬁ)
where only the odd terms are used in the summations.

The presence of multiplied integers in the denominator of the expression for A,,,, in Equation 18.38
provides for rapid convergence. To see this, consider a square plate (a = b): the first four A,,,, are

B 4poa* 4poa* 16poa*

N — P 18.40
7576D° "F T 72976D ( )

Observe that As3/A;; is then only 5.48 x 10>,

18.5 SIMPLY SUPPORTED RECTANGULAR PLATE
WITH A CONCENTRATED LOAD
Next consider a simply supported rectangular plate with a concentrated load, with magnitude p, at a

point P, having coordinates (§,7) as represented in Figure 18.3. Timoshenko and Woinosky-Kreiger
solve this problem in their treatise on plate theory [6]. Their procedure is to apply a uniform load
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o

X

FIGURE 18.3 Concentrated point load on a simply supported rectangular plate.

over a rectangular region of the plate and then reduce the region to a point while simultaneously
increasing the load. The resulting displacement w is

4P x oo SiD (_mwf) sin (H—Zn)
w="3 § : § : : PR
mrabD £~ £ m- n

(az * b2)

sin (m;m) sin (?) (18.41)

Observe that this result could have been obtained by an analysis of Equations 18.33 and 18.36 by
using a two-dimensional singularity (or impulse) function (see Chapter 10).

18.6 COMMENTS

The solutions presented in Equations 18.36, 18.39, and 18.41 are the most elementary of the many
possible solutions of rectangular plate problems. References [6—8] provide many other solutions and
the listings in Roark and Young [9] and Pilkey [10] provide additional solutions.

Although the solutions of Equations 18.36, 18.39, and 18.41 are relatively simple in their forms
and formulation, they nevertheless have double infinite series. Even though convergence is rela-
tively rapid, as seen in Section 18.4, for computational purposes it is sometimes helpful to look for
simpler forms of solutions. By insightful analysis [2,6], it is seen that these solutions may be
expressed in a single series. This in turn has produced a number of results of practical importance
[6,9,10].

Finally, a feature of the solution of simply supported rectangular plates is that the surface
may become anticlastic. This may be simulated by forces concentrated at the corners. At one
time, this feature was used in experiments to verify the basic theory of plate bending. For
example, the corners of a uniformly downward loaded, simply supported square plate have a
tendency to rise.

18.7 CIRCULAR PLATES

Circular plates are used in virtually all kinds of structural applications. For the most part, the loading
and support are axisymmetric.

We can obtain the governing equations for circular plates by following the same procedures as
in Chapter 17. Alternatively, we can simply make a coordinate transformation from rectangular
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coordinates (x,y, z) to cylindrical coordinates (7, 6, z). Recall from Equations 17.107 and 18.1 that
the governing equation for the plate deformation w is

Vw =p/D (18.42)
The operator V40 may be expressed as V2V2(). In cylindrical coordinates V2() is [1]

52() 15() 48]

V3() = 18.43
0= i ( )
Correspondingly, the equilibrium equations are [2,6]
aQr 1 8Q0
- = . ,0) = 18.44
8+r80+ Q+p(r0) 0 (18.44)
oM, 1T,y M,—M, B
o Froet @0 (1849
T,y 10My 2
-2+ M, — = 18.4
or + r 00 0= Q=0 (18.46)

where
0O, and Qy are the shear forces per unit length on the radial and circumferential faces of an
interior element
M, and M, are the bending moments per unit length on the radial and circumferential faces
T, is the twisting moment

In terms of the displacement w, the moments and twist are [2]

Pw vow v Pw
M = D[arz +?E*72W} (1847)
[P 1 Pw +18w+ Pw (18.48)
T T ar T T oe? '
1 0w 1 aw

As with rectangular plates we assume that the in-plane (membrane) forces are either zero or
sufficiently small that they do not affect the shears, moments, or displacements due to bending.

When the loading and support are axisymmetric, the foregoing equations simplify considerably:
V2() and V*() are

d? 1d 1d

r dr

dO
dr

and

4 22 ldf d d()
VO=vv0=1 2 { e [r dr(r dr)]} (1851)
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The equilibrium equations (Equations 18.44, 18.45, and 18.46) then become

do, 1
Q +-0,+p() =0 (18.52)
dr r
M, M =My (18.53)
dr r

where Equation 18.46 is identically satisfied.
Similarly, the moment—displacement equations (Equations 18.47, 18.48, and 18.49) become

dw  vdw
M, =D [ﬁ ’ E} (18.54)
1 dw d>w
Mg = — |:; E"r‘ 14 dr2:| (1855)
To=0 (18.56)

Finally, by solving Equations 18.45 and 18.46 for O, and Qy and using Equations 18.54, 18.55, and
18.56 we have

Bw 1w 1 dw
.= —D - _ -7 18.57
0 {dr3 + rdrz 2 dr] ( )
and
0y =0 (18.58)

18.8 SOLUTION OF THE GOVERNING EQUATION FOR CIRCULAR PLATES

From Equations 18.42 and 18.51, the governing equation for an axisymmetrically loaded and
axisymmetrically supported circular plate is

1df dfld/ dw
; 5{75 [;5 (rg)” =p(n)/D (18.59)

Thus if we know p(r), we can integrate four times to obtain w(r) and then we can compute the
bending moments and shear forces using Equations 18.54 through 18.58. The radial and circum-
ferential flexural stresses are then simply [2]

_ Mz and o0y = My
T /12 /12

o-rr

(18.60)

Similarly the shear stresses are [2]

2
09 =0, 09, =0, .= 32% ll - (h/%) ] (18.61)
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Upon integrating Equation 18.59 four times, we obtain four constants of integration, which may be
evaluated from the support and symmetry conditions. As an illustration, suppose p(r) is a uniform
load Py: then the four integrations of Equation 18.59 leads to

P, 4
w= % + c1rnr + car? + c3lnr + ¢4 (18.62)
where cy, ..., ¢4 are the integration constants. From Equations 18.54 through 18.58, the bending

moment and shear forces are then seen to be

P, 2
M, = —D[3 + V)lg—rD +2¢1(1 + v)nr + (3 + v)ey

+20,(1 +v) + c3(v — 1) /7] (18.63)

P, 2
My = —D[(1 + 31/)% + (1 + v)2ciénr + (1 4+ 3v)cy

+2(1 + v)es + (1 — v)e3 /7] (18.64)
T,y =0 (18.65)

0 =— <§g+ 4‘:) (18.66)

0y =0 (18.67)

For finite displacement, finite shear, and finite bending moment at the origin (plate center), we
must have

ci=0 and c¢3=0 (18.68)

We can use the support conditions to evaluate ¢, and c¢4. Consider the two common support cases:
(1) simple support and (2) clamped (or fixed) support.

18.8.1 SimpLy SupPORTED, UNIFORMLY LOADED, CIRCULAR PLATE

In this case the support conditions are
When r=a

w=0 and M,=0 (18.69)

where a is the plate radius. From Equations 18.62 and 18.68, the second boundary conditions
lead to

2

P()a
M, (a)=0=03+ V)lé—D—F 2c,(1 +v)
or
P 2
oy = — ot ¥ Poa (18.70)

"~ 2(1+v) 16D
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From Equations 18.62 and 18.68 the first condition of Equation 18.69 then becomes

P()Cl4 34 v P0a4

wa) = 0= " 20+ 16D €

4

or

Poa* (540
= 18.71
“ = 64D <1+v> (18.71)

Therefore the displacement w of Equation 18.62 becomes

Po [4 23+v) ,, 54v 4,
_ _ 2T 18.72
v 64D{r 1+ “7 T (18.72)
18.8.2 CrLamprep UNIFORMLY LOADED CIRCULAR PLATE

In this case the support conditions are
when r=1

w=0 and 2 —0 (18.73)
dr

From Equations 18.62 and 18.68 dw/dr is seen to be

P 2 (18.74)
Then the second boundary condition becomes
d—W(a) =0= M—i— 2¢ha
dr 16D
or
) =— I;;—a; (18.75)

From Equations 18.62 and 18.68, the first condition of Equation 18.73 then becomes

P0a4 P0a4
= 0 = _—_—
wia) 64D 32D
or
P0a4
=— 18.76
“ = 64D (18.70)
Therefore the displacement w of Equation 18.62 becomes
P
90t — 245 + %) (18.77)

"= 64D
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18.9 CIRCULAR PLATE WITH CONCENTRATED CENTER LOAD

Centrally loaded circular plates are common structural components. We can study them in the same way
as we did for rectangular plates with concentrated loads. We can apply a uniform load over a central
circular region of the plate with radius b (b < a), with a being the plate radius. Then as b is reduced to
zero with the overall load remaining the same, we have the concentrated load configuration.
Timoshenko and Woinowsky-Krieger [6] present the details of this analysis. The results for a simple
supported and clamped plate are summarized in the following sections.

18.9.1 SimpLy SuPPORTED CIRCULAR PLATE WITH A CONCENTRATED CENTER LOAD

The deflection w at any point of a distance r from the plate center is [6]

_ P 3+ v > 2 )
W=1e 5 {<1+V)(a ro)+2r En(r/a)} (18.78)

where P is the magnitude of the concentrated center load. The maximum deflection, occurring at
r=20, is then

Pa® [(3+v
Wmax = 167D (1 T 1/) (18.79)

18.9.2 CramPeD CIRCULAR PLATE wWiTH A CONCENTRATED CENTER LOAD

The deflection w at any point of a distance » from the plate center is [6]

p
Y= lemD

[(@® — 1) + 2r%n(r/a)] (18.80)

where again P is the magnitude of the concentrated center load. The maximum deflection, occurring
at r=0, is then

Pd?

max — 7, 18.81
Wmax = T6mD (18.80)

18.10 EXAMPLE DESIGN PROBLEM

Consider a clamped circular plate with radius a with a uniform load as in Figure 18.4. Suppose the
center deflection 6 is equal to the thickness % of the plate. Determine the flexural stresses on the
surface at the center and at the rim support.

h w=h

L _
LRUIHHHRHHTHAN

FIGURE 18.4 Uniformly loaded clamped circular plate.
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SoLuTioN
From Equation 18.77, the displacement is
W:i(r4 —2a%rP +a% (18.82)
64D
The deflection & at the center (r=0) is
P0a4
= 64D (18.83)
From Equation 18.60 the upper surface flexural stresses are
M,(h/2) ) Mo(h/2) )
"= T3 1oy r = = h .84
O =5 figy ~ OMi/N®and ow = IR = oMo/ (18.84)
From Equations 18.63, 18.64, 18.68, 18.75, and 18.76 M, and M, are seen to be
B+ vpor? | (14 v)poa’
M, = e (18.85)
and
(1 +3v)por? | (14 w)poa’
My = 6 + 16 (18.86)
Then at the center, with r=0, the stresses are
1 1
oy =2 ¥ Y po@/h?) and oy = 20 @2 /) (18.87)

Suppose now, that according to the example statement 8, as given by Equation 18.83, is equal to
the thickness, h of plate, then the corresponding loading po is

_ 64Dh _ 16Eh*

= 18.88
Po= "3 T30 — 2t (18.88)
The stresses at the center are then
2Eh?
(Trr:O'HB:az“ —) (18.89)

Similarly, from Equations 18.63 at the plate rim where r=a, the bending moments are
M, = fp0a2/8 and My = fpova2/8 (18.90)
From Equation 18.60 the upper surface flexural stresses are

o 73p0a2/4h2 and o = 73pova2/4h2 (18.91)
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Then with pg given by Equation 18.88, o, and g4y become

4ER? 4vER?

and opp=—-———5— (18.92)

I = T S 1 — )22

Observe that the stresses on the upper plate surface are positive in the center of the plate (tension)
and negative at the rim (compression).

18.11 A FEW USEFUL RESULTS FOR AXISYMMETRICALLY
LOADED CIRCULAR PLATES

By similar analyses we can obtain results for other problems of practical importance. Table 18.1
provides a listing of a few of these for the case where Poisson’s ratio is 0.3. Specifically, the
maximum displacement w,,, and the maximum stress o ,,x and their locations are given.

TABLE 18.1
A Few Useful Formulas for Axisymmetrically
Loaded Circular Plates

1. Simple rim support, central uniform load

Omax = IZ—X; [1‘5 + 1.95¢n(ro /x) — 0.263(x/r0)2}(at the center)

s [1.733r3 — 0.683x*¢n(ro/x) — 1.037x]

L

Wmax =

o

2. Simple rim support, central ring load

p
n

Omax = [0.167 +0.6214n(ry /x) — 0.167(x/r0)2](at the center)
Wmax = ELh3 [0,551(% — ) - 0‘434x22n(r0/x)}
p

| | |

<—x—>|

To
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TABLE 18.1 (continued)
A Few Useful Formulas for Axisymmetrically
Loaded Circular Plates

3. Clamped rim support, central uniform load

2
P ’% [1.5— 0.75(x/x0)*] at the rim for x > 0.58r

px*

Tmax = 73 [1.95¢n(ro/x) + 04488(x/r0)2] at the rim  for x < 0.58r

px*

Wanas = s [0.683r3 — 0.683x% (] (rp /x) — 0.5124

L T

<_x_.|

7 |
4. Clamped rim support, central ring load
0.477
O = =30 [1 = (/r)"] atthe rim for x > 0315

0.31
Omax = th [2€n(r0/x) + (x/ro)* — 1] at the center for x < 0.31ry

p

Wiax = £ [0.217(F — x*) — 0.434x*¢n(ro /%))

| |

<_x_.|

¥o |

18.12 COMMENTS

All the foregoing analyses and examples have simple loadings (uniform load or concentrated load)
and simple (pinned) or clamped (fixed or built-in) supports. Nevertheless, they represent many
structural applications, particularly when plates are used as closures or covers.

If the loadings or support are more complex we have several options:

1. We can attempt to approximately solve the governing partial differential equation. After
all, the governing equation is itself an approximation based upon numerous simplifying
assumptions (see Chapter 17).

2. We can consult the several fine handbooks of solutions and approximate solutions to
various plate loading and support configurations [9,10].

3. We can seek a finite element solution. This is a useful approach if software and computer
hardware are available.

4. We can approximate a given structure or loading with simpler models.

In Chapter 19, we examine modeling and approximations for flanges, brackets, and panels.
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SYMBOLS

A Circular plate radius

a b Plate edge dimensions

A, B, Fourier coefficients (see Equations 18.30, 18.32, 18.33, and 18.35)
D ER*/12(1 — v*) (see Equation 18.2)

E Elastic modulus

h Plate thickness

M, Radial bending moment

M,, M,  Edge bending moments

M,,, My, Uniform values of M,, M,

M, Tangential bending moment

p Loading normal to the plate surface

Po Uniform loading

0. Radial shear force

Qo Tangential shear force

r Radial (polar) coordinate

T, T,y  Twisting moments

w Plate displacement, normal to the plane
X, Y, Z Rectangular (Cartesian) coordinate axes
X, ¥, 2 Coordinates relative to X, Y, Z

0 Angular (polar) coordinate

0 Center displacement of a circular plate
v Poisson’s ratio

Oy, Opp Radial stress

(o Shear stress

(o) Shear stress

Ty, Shear stress

Tho Tangential stress
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’l 9 Panels and Annular Plate
Closures

19.1 PROBLEM DEFINITION

Some of the fundamentals outlined in the previous chapters point to the degree of complexity of the
various plate solutions. When plate applications arise, a good deal of specialization is required,
backed up by experimental work. This type of information is not easy to obtain and the designer has
to fall back on the classical solutions and the conservative assumptions of elasticity. In this chapter
on panels, we will attempt to summarize some of the more basic practical data related to those plate
configurations that occur most frequently and which can be used as approximate models for more
complex solutions.

A typical structural panel may be defined as a flat material, usually rectangular, elliptical, or
similar in shape, which forms a part of the surface of a wall, door, cabinet, duct, machine
component, fuselage window, floor, or similar component. The panel boundaries illustrated in
Figure 19.1 may involve some degree of fixity or freedom when a given panel is subjected to
uniform loading. A difficult consideration in estimating the panel strength and rigidity is the choice
of the correct boundary condition. This process depends entirely on a knowledge of loading and
support, which varies from problem to problem. The boundary conditions can vary from being
completely built-in to having a simple roller-type support, allowing full freedom of rotation. In the
majority of practical configurations, some intermediate conditions exist, requiring engineering
judgment in selecting the most realistic model for panel support. The design criteria for uniform
transverse loading can be governed by either the maximum bending strength or the allowable
maximum deflection. Our purpose is to provide a set of working equations and charts suitable
for design.

19.2 DESIGN CHARTS FOR PANELS

Simple rectangular panels are often supported by structural shapes whose bending stiffness is
relatively high compared with that of the panels themselves. Under these conditions, fixed edges
can be assumed in the calculations. However, when the supporting shapes are such that a finite slope
can develop in the plane perpendicular to the panel, the design should be based on a simple support
criterion. Table 19.1 provides a summary of some of the more commonly used design equations for
the rectangular and the elliptical panels.

In Figures 19.2 and 19.3, we graph the design factors A; through Ag against the panel length
ratio a/b. For a rectangular panel, a and b denote the smaller and larger sides, respectively. For an
elliptical geometry, a and b are the minor and major axes, respectively. While the maximum
bending stress is found at the center for the simply supported rectangular and elliptical panels,
built-in panels are stressed more at the supports. For a rectangular built-in panel, this point is at the
midpoint of the longer edge. In the built-in elliptical panel, the maximum bending stress is at the
ends of the minor axis a. The example problem of Section 19.4 shows that the maximum deflection
is a function of the a/b ratio. By taking b = 2a, we find Ag to be: 3(1 — Vz)/l 18. This compares well
with the value obtained from the graph of Figure 19.3.
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Panel edge

I@ Roller

Panel edge
Simple S {
support ¢
condition
Pin
Panel edge
“&é E Flexible link
§ Panel edge
Fixed ﬂ \

Completely fixed
support

diti
condition § \

FIGURE 19.1 Examples of edge conditions for panel design.

19.3 SIMILARITIES OF RECTANGULAR AND ELLIPTICAL PANELS

The charts given in Figures 19.2 and 19.3 indicate a definite correlation between rectangular and
elliptical panels in their structural behavior. For this reason, a great number of panel shapes that fall
between the rectangular and elliptical boundaries can be designed with the help of the charts given
in Figures 19.2 and 19.3. For example, the arbitrary profile shown in Figure 19.4 should
display strength and rigidity characteristics, which might be termed as intermediate between those
of the elliptical and rectangular configurations, provided that the overall a and b dimensions
remain the same.

The design engineer concerned with such a problem can develop an individual method of
interpolation between the relevant results. For instance, the ratio of the unused corner area F to the
total area difference between the rectangular and elliptical geometries can be used as a parameter. In
terms of the dimensions indicated in Figure 19.4, this parameter may be defined as 16F/ab(4 — ).

TABLE 19.1
Design Equations for Simple Panels under Uniform Loading
Type of Panel Maximum Stress Maximum Deflection
. qa*A, qa*Ay
Rect 1 )\ rted S= o=
ectangular simply supporte 2 i
A A
Rectangular built-in S = aa s 6= qa 74
1 EP
2 4
e ) qgaAs qa“Ae
Elliptical simply supported S = ) 6= 7
A A
Elliptical built-in s=207 s

12 - EP
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FIGURE 19.2  Stress chart for simple panels.
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FIGURE 19.3 Deflection chart for simple panels.
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Rectangular panel

Elliptical
panel

Arbitrary
profile

¥
J

FIGURE 19.4 Comparable plate configurations.

It should be emphasized, however, that such a linear interpolation can be justified only because of
the inherent similarities in the structural behavior of the rectangular and elliptical configurations. The
error introduced by this procedure is expected to be relatively small and certainly acceptable within
the scope of the preliminary design, which under normal conditions, involves ample margins of safety.

19.4 EXAMPLE DESIGN PROBLEM

Figure 19.5 depicts a pressure plate of rectangular geometry with rounded-off corners. It is simply
supported and carries a uniform transverse loading of 200 psi. Assuming the dimensions shown in
the figure and steel as the material, calculate the maximum stresses and deflections using the
interpolation method described in Section 19.3.

SoLuTION

From Figure 19.5 the unused corner area A is

A:1f§=0.215in.2 (19.1)

|
T
l
|
|
|
!
|
|
|
|
i
|
4 in

e S
le—
le—
le—
le—
le—
0.25 in
le—

8in.

FIGURE 19.5 Panel of arbitrary profile.
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The total unused corner area between the rectangular and elliptical boundaries is

(4—m 44 —m) . 9
ab T =8 x 16 =1.717in. (19.2)

The dimensionless ratio is then

0.215
———=0.12 19.
717 0.125 (19.3)

For a/b=4/8=0.5, Figure 19.2 gives approximately
A1 =0.61, A5 =0.53 (19.4)
The equation for interpolating the required stress factor can now be set up as follows:

(A1 — As)16A
T —— 19

Hence,

0.61 —(0.61 —0.53) x 0.125 = 0.600

and using the formula for a rectangular plate from Table 19.1 gives

200 x 16 x 0.600
~09.25 x 0.25

=30,720psi (212 N/mm?) (19.6)
From Figure 19.3
Ay =0.11, As=0.096 (19.7)

Again, the interpolation formula for this case is

(Ay — Ap)16A
Az = ab(4 — ) 198

and since the parameter 16A/ab(4 — 7) =0.125, as before, we get
0.110 — (0.110 — 0.096)0.125 = 0.1083

Hence, using the plate deflection formula from Table 19.1 yields

200 x 256 x 0.1083
T 30 %106 x0.253

=0.012in. (0.30mm) (19.9)

19.5 ANNULAR MEMBERS

Circular plates with centered round holes form a large class of problems related to flanges, rings, and
circular closures, with numerous structural applications. For axisymmetric loading and support, the
governing equations for the displacement, bending moments, twisting moments, and shear forces
are given by Equations 18.62 through 18.67 as

4
w :%+c]r2€nr+czr2+c3€nr+64 (19.10)



300 Practical Stress Analysis in Engineering Design

2
M,=—-D [(3 + 1/)[i + 2¢1(1 + v)lnr + (3 + v)cy

16D
+20(1 +v) + c3(v — 1)/r2] (19.11)

por’

My = —-D {(1 + 31/)@ + (1 + v)2ciénr + (1 4+ 3v)y
+2(1 4+ v)ey + (1 — V)C3/r2] (19.12)
Ty=0 (19.13)
Pol Cl

L = —D(— 4—) 19.14
o p T4 ( )
Qs =0 (19.15)
where, cy, ..., ¢4 are integration constants arising in the integration of Equation 18.59, and where
the notation is the same as that in Chapter 18. As before, the constants ¢, .. ., c4 are to be evaluated

using the support conditions.

To illustrate the procedure, consider a plate with a central opening and uniformly distributed
edge moments as in Figure 19.6. If there is no transverse loading, the pressure p,, and the shear Q,
are zero. That is

pPo=0 and Q,=0 (19.16)
Then from Equation 19.14 we see that c; is zero.
c =0 (19.17)
Then from Equation 19.12 M, is
M, = —D[2c,(1 + v) + (c3/r) (v — 1)] (19.18)
From the loading depicted by Figure 19.6 the edge (rim) conditions are
Atr=r: M, =M; andat r=r,: M, =M, (19.19)

or

M; = —D[2c(1 4+ v) + (c3/rD)(w — 1)) (19.20)

h
M"W@M‘ Mi u,

r

—17,

FIGURE 19.6 Annular plate with uniform edge moments.
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and
My = —D[2c:(1 +v) + (c3/r2)(w — 1) (19.21)

By solving ¢; and c3, we obtain

2 2 - M-
¢ = 21)??3 V)(IZO’B gy ad = Im (19.22)
If the plate is supported at its outer rim such that
w=0 when r=r, (19.23)
Then from Equations 19.10, 19.16, and 19.17 we have
0= czrg + c3lnry + ca (19.24)
From Equation 19.22 it is obvious that, ¢, is
o (Morg — Miriz)rg (M; — Mo)rizrgénr0 (19.25)

T2D(1+ )2 —12) | D — )2 — )

Finally, by substituting for cy,..., ¢4 in Equations 19.10 and 19.11, the displacement and radial
bending moment are

1 (Mor2 — Mird)(r2 — r*) (Mo — My)r2r(énry — fnr)
w= ) (19.26)
D(rz —r}) 21 +v) 1—v
and
=D [roM? — P2M? — (M, — My)r?r2 /%] (19.27)
(o] 1

As a second illustration, suppose the inner rim of the plate is restricted from displacement and
rotation as represented in Figure 19.7. Then with a radial moment A, at the outer rim and an absence
of loading on the surface, the edge (rim) conditions are

Atr=r: w=0 and dw/dr=0 (19.28)

M h

o

G

X

FIGURE 19.7 Annular plate with fixed inner rim and movement at the outer rim.
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and

Atr=ry: M, = M, (19.29)
Using a similar analysis, the displacement and radial bending moment become

B Mor(z) [rlz —r 4 2ri2€n(r/ri)]
2021 +v) + (1 —v)]

(19.30)

and

M1+ v+ (1 =)0/
20+ vy + (1 —v)

T

(19.31)

19.6 SELECTED FORMULAS FOR ANNULAR PLATES

Table 19.2 provides a listing for the maximum stress o ,,x and the maximum displacement w,,, for
several support and loading conditions of axisymmetrically loaded annular plates. Figures 19.8
through 19.11 provide values of the parameters F,..., Fg and By, ..., Bg for Poisson ratio »: 0.3.
As before, & is the plate thickness.

TABLE 19.2
Maximum Stress and Displacement Values for Axisymmetrically Loaded Circular Plates
for Various Support Conditions

Simple support at the outer rim and ring I P

7 G,

PF, Pr2B!
Omax =~ Whmax= .2
hZ

loaded at the inner rim

Simple support at the inner rim and uniform

h r
load on the plate l l
% Ti
T L To _.l

_ proFZ pr?)B2
O-max*—z max —
h ER?
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TABLE 19.2 (continued)
Maximum Stress and Displacement Values for Axisymmetrically Loaded Circular Plates
for Various Support Conditions

Clamped inner rim and uniform load on the plate h p p

4
2 proB
> F. _ 03
Crax = profs Whax = 3
h2 Eh
Simple support at the outer rim, horizontal slope h p p

at the inner rim, and uniform load on the plate

Clamped outer rim, horizontal slope at the inner
rim, ring load at the inner rim

Clamped outer rim, horizontal slope at the inner
rim, ring load at the inner rim

ke Y

PF, Pr2 B
‘max ~ 7 max ~ W

[0

(continued)
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TABLE 19.2 (continued)

Maximum Stress and Displacement Values for Axisymmetrically Loaded Circular Plates

for Various Support Conditions

Simple support at the outer rim and uniform load
on the plate

Simple support at the outer rim, horizontal slope at
the inner rim, and ring load at the inner rim

Note:

IR
T%% B

PV%B7

w e
En®

‘max —

Omax = 7 Wmax = E—hB

Figures 19.8 through 19.11 provide values of F; and B; (i=1, ..., 8) for Poisson ratio v=0.3.

Stress factors

\

N\

2

3 4

Radius ratio, R,/R;

FIGURE 19.8 Stress factors F; through F, for the annular plates of Table 19.2.
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Radius ratio, R,/R;

FIGURE 19.9 Stress factors Fs through Fg for the annular plates of Table 19.2.
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FIGURE 19.10 Plate displacement factors B, By, Bs, Bg, and Bg for the annular plates of Table 19.2.
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FIGURE 19.11

SYMBOLS

A

A through Ag
a

B, through Bg
b

C1, Cp, C3

D

E

F

F, through Fg
h

My, M;, M,
Mi’ Mo

Mr’ MO

Po

q
Qr7 Qb‘
R;
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P
1.2 A
1.0
B,

§ B7 —
S 08 —
(a1 Bl
- [ LB
2 / 7
2 06 7
[
[a)

0¢4 //

0.2 /

1 2 3 4

Radius ratio, R,/R;

Plate displacement factors By, B,, and B; for the annular plates of Table 19.2.

Corner area

Factors for panels

Smaller side or minor axis

Plate deflection factors

Larger side or major axis
Integration constants

Plate flexural rigidity; EA’/12(1 — v*) (see Equation 18.2)
Modulus of elasticity

Corner area

Plate stress factors

Plate thickness

Bending moments

Inner and outer bending moments
Radial and transverse bending moment
Uniform load

Uniform load

Radial and transverse shear

Inner radius of plate

Outer radius of plate

Radial coordinate

Inner and outer radii

Stress

Yield strength

Thickness of plate

Twisting moment
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Transverse displacement
Total load on plate
Arbitrary distance
Maximum deflection
Poisson’s ratio

Slope, rad
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20 Flanges

20.1 INTRODUCTORY REMARKS

Flanges and support rings have various configurations. They present an extensive variety of analysis
and design problems. Forces acting on these members can arise from any direction. Those acting out
of plane are the most difficult to describe analytically.

As a result of these difficulties and complexities, problems involving circular flanges with
reinforced gussets are seldom found in the open literature. The configurations and loadings on these
structural components necessitate a detailed three-dimensional analysis. Even with the help of finite
element methods (FEM), the design of these components represents a tedious and costly procedure.
Thus a design engineer may have to make difficult decisions in practical cases because of the lack of
a well-established design methodology and a lack of readily available published results.

These issues can lead to gross overdesign and excessive cost, especially where large-diameter
pipes with great pipe lengths and large flanges are involved. In conventional conservative design
applications, the trend appears to be toward greater depth and larger overall sizes of the components.
A review of flange design theory and practice is therefore useful. In this chapter, we present such
a review.

As evidenced by recent theoretical and experimental work, flange analysis can be very time-
consuming even in the case of simpler flange configurations and simple loadings. It is helpful,
therefore, not only to suggest a simplified approach to the problems at hand but also to review some
of the more commonly accepted theoretical concepts and formulas.

The objective of our review is to develop usable procedures for practical applications. In this
regard, the theoretical information concerned with generic flange design is useful for developing a
simplified approach and philosophy for designing rib-stiffened configurations. We base our review
upon selected references and flange design standards of the United States, the United Kingdom, and
Germany [1-18].

20.2 STRESS CRITERIA

One of the key messages included in this section concerns the idea of elastic versus plastic stresses.
Since the great majority of practising engineers have been taught in the tradition of the theory of
elasticity and the concept of the elastic strength of materials, it is relatively easy to misinterpret the
true meaning of computed stresses. In fact, it is often presumed that the calculated values exceeding
the elastic limit must necessarily be dangerous. This seems to be particularly misleading where the
design formulas give the sum of the bending and membrane stresses without due allowance for
material ductility and stress redistribution.

In a typical integral-type flange, that is, where the flange is butt-welded to the wall of the pipe,
the adjacent portion of the wall is considered to act as a hub. The accepted design practice calls for
calculation of the three major stresses: maximum axial stress in the hub, radial stress in the flange
ring at its inside diameter, and the corresponding tangential stress at the same point. The theoretical
and experimental evidence indicates that the axial stress in the hub is frequently by far the highest
and it is often used as the basic design criterion for sizing the wall thickness. Some applications
of this general rule are considered here in evaluating the maximum theoretical stress in the hub of a
rib-stiffened flange.
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The selection of a suitable design criterion and the corresponding calculation procedure depends
in general upon the flange geometry and the materials involved. Various theories and design
methods in the past utilized straight beam, cantilever, circular ring, and plate model approaches
for the purpose of checking the flange stresses. The method of rib sizing, proposed in this section, is
based on the theory of beams on elastic foundation.

20.3 EARLY DESIGN METHODS

The development of pressure vessels having increasingly higher pressures and temperatures has
been a stimulus of increased interest in flange stress formulas in the West [2—4]. Early flange design
involved hubs of approximately uniform thickness and the designs were checked by calculating the
tangential stress at the inner diameter of the flange, ignoring entirely the possibility of the hub
stresses. Further limitations of the early methods involved their narrow range of applicability, as
they were developed for specific types and proportions of the flanges. This predicament persisted
until publication of the Waters-Taylor formulas [9], which were based on theoretical and experi-
mental results. This classical paper marked the start of extensive deliberations of various approaches
to flange design.

20.4 THIN HUB THEORY

When the hub is relatively thin and a critical section is assumed to exist along one of the flange
diameters, the maximum stress can be calculated from a simple beam formula. This approach, which
is probably one of the earliest and best known, is illustrated in Figure 20.1, where we assume that
the flange is clamped along this radial cross section. The design is based on bending due to the
external moment obtained by lumping together all bolt loads and utilizing the concept of a moment
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FIGURE 20.1 Flange fixed along radial cross section.
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arm. In effect, a simple beam model is postulated where the net cross section is found by subtracting
the projected areas of bolt holes. Using the notation indicated in Figure 20.1, the available section
modulus for the flange ring becomes

_ (Br — d)H*

z
3

(20.1)

Utilizing the moment arm shown in Figure 20.1, the available section modulus for the Figure 20.1
we obtain the maximum bending stress o}, from the elementary beam formula. Note that the
term 2a/ follows from a consideration of the centers of gravity for the two concentric, semicircular
arcs. Hence

Wa

95 B i (20.2)

O'bZO

Obviously, Equation 20.2 is only approximate since the curvature of the flange ring and the effect of
the pipe wall have been ignored. Nevertheless, the method is a rather ingenious use of the theory of
straight beams and it gives surprisingly good results when applied to loose flanges or flanges welded
to thin pipes. The effect of radial stresses in such flanges can, of course, be neglected.

20.5 FLANGES WITH THICK HUBS

When a pipe is relatively thick and the circumferential stresses are ignored by assuming a number of
radial slots, a cantilever beam method is sometimes employed. The corresponding notation and
configurational details for this analytical model are given in Figure 20.2. This method of calculation

W = Total bolt load

Hypothetical slot

FIGURE 20.2 Flange with a thick hub.
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FIGURE 20.3 Flange treated as a circular ring.

yields only radial stresses and it is expected to have a rather limited field of application. In reality, it
can be used only in the case of a relatively thin flange made integral with the thick pipe of a large
diameter. Under these conditions the maximum radial stress o, becomes

Wa

95 R (20.3)

o, =0

When radial stresses are expected to be relatively small, a significant refinement is achieved by
utilizing the theory of rings [6]. The corresponding mode of deformation and the basic notation are
given in Figure 20.3, where the cross section of the flange ring is assumed to rotate through angle 6,
shown in an exaggerated manner. The cross-sectional dimensions of the flange ring are relatively
small compared to the ring diameter and it is assumed the rectangular shape of the cross section does
not change under stress. The latter assumption is consistent with the idea of neglecting radial
stresses, which suggests that this theory applies to flanges attached to relatively thin pipes.

20.6 CRITERION OF FLANGE ROTATION

In establishing the equations for calculating the bending moment and the shearing force per unit
length of the inner circumference of the pipe, where the flange ring and the pipe are joined, radial
deflection is assumed to be zero and the angle of rotation of the edge of the pipe is made equal to the
angle of rotation of the flange cross section. In Figure 20.3, this angle is denoted by 6 and has been
the theory of local bending and discontinuity stresses in thin shells [11] used, together with the
theory of a circular ring subjected to toroidal deformation.

Following the formulation and analysis of Timoshenko [6], the maximum bending stress o, in
the pipe using this theory and the notation of Figure 20.3 is

Op = 6]‘4()/7—'2 (204)
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where M, is the bending moment per unit length of the inner circumference of the flange with radius
R;, and is given by

i(Ro — R
Mo = (1 +BH/2) + (1Vi/(v202BSRi))(15{/T)3 log, (Ro/R) (20.5)
and the corresponding shear force is
Qo = BMo (20.6)
where S is
By = % (20.7)

The parameter 3 is useful in the analysis of beams on an elastic foundation indicating the extent of
stress-affected zones in the vicinity of edge or local loading.

In Equation 20.5, W; denotes the force per unit length of the inner circumference of the flange
corresponding to radius R;. The external bending moment applied to the flange involves the moment
arm, which in Timoshenko’s case is defined as R, — R;. A brief comparison with other methods
indicates that the assumption of different moment arms is bound to significantly affect the calculated
results. It is quite likely that Equation 20.5 will always overestimate the bending moment M,
because of the maximum moment arm used. Under the actual conditions, the loading may be