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Preface
Industrialists, marketing leaders, military planners, and space scientists are continually asking their
engineers and designers to produce new designs for all kinds of mechanical systems. Designs that
are simultaneously workable, reliable, long-lived, easy to manufacture, safe, and economical are
envisioned. Often, system components are required to be concurrently light in weight, strong, and
yet fatigue-resistant. At the same time, engineers and designers are being pressed to produce these
designs in ever-shortening time intervals. Consequently, they have to quickly produce analyses that
are accurate, or if inaccurate, they have to make sure they err on the safe side.

In response to these demands, engineers and designers are increasingly relying upon finite
element methods (FEM) and analogous computational procedures for their designs. However, these
methods are primarily methods of analysis and are thus most useful for evaluating proposed designs.
Moreover, they are often expensive, inaccessible, and sensitive to element selection and assump-
tions on loadings and support conditions. In short, they are not always free of error. Even with
steady improvements in FEM accuracy, accessibility, and ease of use, engineers and designers still
need to be able to readily make accurate stress and deformation analyses without undue computa-
tion. Recognizing this need, Alexander Blake published his widely used Practical Stress Analysis in
1982, just when FEM and related methods were becoming popular.

In this third edition of Practical Stress Analysis in Engineering Design, we have completely
rewritten and updated the text of the second edition while maintaining Blake’s popular style. Our
objective is to produce a book to help engineers and designers easily obtain stress and deformation
results for the wide class of common mechanical components. In addition, we have attempted to
supplement the methodologies with a presentation of theoretical bases. At the end of each chapter, a
list of references is provided for a more detailed investigation and also a list of symbols is presented
to aid the reader.

This book is divided into seven parts and consists of 40 chapters. In the first part, we review
fundamental concepts including basic ideas such as stress, strain, and Hooke’s law. We include
analysis in two and three dimensions as well as the use of curvilinear coordinates.

In the second part, we review the fundamental concepts of beam bending and twisting of rods.
We introduce the use of singularity functions for analysis of complex loadings. These two parts
provide the basis for the topics in the remainder of the book. Curvilinear coordinates and singularity
functions are two new topics in this edition.

The third part considers special beam geometries focusing upon thick beams, shear stress in
beams, curved beams, buckling of beams, and shear centers. In the fourth part, we extend the
analysis to plates, panels, flanges, and brackets. We review the fundamentals of plate bending and
then apply the theory to special plate configurations with a focus on circular and annular plates,
flanges and brackets, panels, and perforated=reinforced plates.

The fifth part is devoted to dynamic effects including the concepts of fracture and fatigue failure.
We consider design for seismic loading and impacts and explore stress propagation. We conclude
this part with design concepts to control and prevent fatigue and fracture for systems with repeated
and periodic loadings.

The sixth part discusses piping and various pressure vessel problems and considers both internal
and external pressurized vessels. Bending, buckling, and other vessel responses to high pressure are
evaluated. The part concludes with a consideration of some designs for stiffening of cylindrical
vessels. The seventh part considers some advanced and specialized topics including stress concen-
trations, thermal effects, rings, arches, links, eyebars, and springs.
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Part I

Fundamental Relations
and Concepts

Our objective in this first and introductory part of the book is to provide a review of elementary
force, stress, and strain concepts, which are useful in studying the integrity of structural members.
The topics selected are those believed to be most important in design decisions. A clear under-
standing of these concepts is essential due to the ever increasing safety and economic considerations
associated with structural design.

The integrity of a structure, or of a structural component, depends upon its response to loading,
that is, to the induced stress. This response, measured as deformation, or strain, and life, depends
upon geometric design and material characteristics. For example, the shaft of a machine may be
required to sustain twisting and bending loads simultaneously for millions of revolutions while
keeping transverse deflections within a preassigned tolerance; or a pipe flange bolt simultaneously
subject to axial, transverse, thermal, and dynamic loadings, may be required to maintain a seal under
high and varying pressure.

It is obvious that for many structural configurations, there is a complex arrangement of
interacting structural components and loading conditions. Under such conditions, the task of
obtaining accurate and detailed stress analyses is usually difficult, time consuming, and subject to
intense scrutiny. Fortunately, simple and fundamental stress formulas can often provide insight into
the validity of complex analyses and thus also the suitability of proposed designs. Therefore, in this
first part of the book, we redirect our attention to the fundamental concepts of force, stress,
deformation, strain, and stress–strain relations.
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1 Forces and Force Systems

1.1 CONCEPT OF A FORCE

Intuitively, a ‘‘force’’ is a ‘‘push or a pull.’’ The effect, or consequence, of a force thus depends upon
(i) how ‘‘hard’’ or how large the push or pull is (the force ‘‘magnitude’’); (ii) the place or point of
application of the push or pull; and (iii) the direction of the push or pull. The magnitude, point
of application, and direction form the ‘‘characteristics’’ or defining aspects of a force. With these
characteristics, force is conveniently represented by vectors.

Figure 1.1 depicts a force F (written in bold face to designate it as a vector). The figure shows
F to be acting along a line L which passes through a point P. In this context, L is called the ‘‘line of
action’’ of F. F may be thought of as acting at any place along L. Thus, a force F is sometimes
thought of as a ‘‘sliding vector.’’

1.2 CONCEPT OF A MOMENT

Intuitively, a ‘‘moment’’ is like a ‘‘twisting’’ or a ‘‘turning.’’ The twisting or turning is usually about
a point or a line. Alternatively, a moment is often thought of as a product of a force and a distance
from a point or a line. A more precise definition may be obtained by referring to Figure 1.2 where
F is a force acting along a line L and O is a point about which F has a moment. Let p be a position
vector locating a typical point P of L relative to O. Then the moment of F about O is defined as

MO ¼D p� F (1:1)

Observe in the definition of Equation 1.1 that the position vector p is not necessarily perpendicular
to L or F. Indeed, p is arbitrary in that it can be directed from O to any point on L. It is readily seen,
however, that the result of the vector product in Equation 1.1 is independent of the choice of point P
on L. For, if Q is another point on L as in Figure 1.3, and if position vector q locates Q relative to O,
then MO is seen to be

MO ¼ q� F (1:2)

The consistency of Equations 1.1 and 1.2 is arrived at by expressing q as

q ¼ pþ PQ (1:3)

where, as suggested by the notation, PQ is the position vector locating Q relative to P. By
substituting from Equation 1.3 into Equation 1.2 we have

MO ¼ (pþ PQ)� F ¼ p� Fþ PQ� F ¼ p� F (1:4)

where PQ�F is zero since PQ is parallel to F [1].
Observe further that if the line of action of the force F passes through a point O, thenMO is zero.

Consequently if the line of action of F is ‘‘close’’ to O, then the magnitude of MO is small.
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1.3 MOMENT OF A FORCE ABOUT A LINE

The moment of a force about a point is a vector. The moment of a force about a line is the projection,
or component, along the line of the moment of the force about a point on the line. If F is a force, O is
a point, and L is a line through O as in Figure 1.4, then the moment of F about L, ML, is defined as

ML ¼ (MO .l)l ¼ [(p� F) .l]l (1:5)

where
l is a unit vector parallel to L
p is a position vector from O to a point on the line of action of F

1.4 FORCE SYSTEMS

A force system is simply a collection or set S of forces as represented in Figure 1.5. If the system has
a large number (say N) of forces, it is usually convenient to label the forces by a subscript index as:
F1, F2, . . . , FN, or simply Fi (i¼ 1, . . . ,N) as in Figure 1.6.

A force system is generally categorized by two vectors: (1) the resultant of the system and
(2) the moment of the system about some point O. The resultant R of a force system is simply the
sum of the individual forces. That is,

R ¼
XN

i¼1

Fi (1:6)

The resultant is a free vector and is not associated with any particular point or line of action.
Correspondingly, the moment of a force system S about some point O is simply the sum of the

moments of the individual forces of S about O. That is,

MS
O ¼

XN

i¼1

Pi � Fi (1:7)

L

F

O

FIGURE 1.1 A force F, line of action L, and point P.

L
P

p
O

F

FIGURE 1.2 A force F, line of action L, point O, and a position vector from O to a point P on L.
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L
P

p

q

Q

O

F

FIGURE 1.3 Points P and Q on the line of action of force F.

O

p

F

L
l

FIGURE 1.4 A force F and a line L.

S

FIGURE 1.5 A force system.

F1 F2

FN

Fi

S

FIGURE 1.6 An indexed set of forces.
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where Pi is a position vector from O to a point on the line of action of Fi (i¼ 1, . . . ,N) as represented
in Figure 1.7.

The point O is arbitrary and is usually chosen as a convenient reference point. ‘‘Convenient,’’
however, is subjective, and after computingMS

O as in Equation 1.7 we may be interested in knowing
the moment of S about some other point, say Q. If S contains a large number of forces, the
computation in Equation 1.7 could be quite tedious and thus the additional computation for a
point Q may not be a welcome task. Fortunately, if MS

O and the resultant R of S are known, we
can determine the moment about some point Q without doing the potentially tedious comp-
utation associated with Equation 1.7. MS

O may be expressed in terms of MS
O by the simple relation:

MS
O ¼ MS

Q þOQ� R (1:8)

The validity of Equation 1.8 is readily established by deriving from Equation 1.7 that MS
O

and MS
Q are

MS
O ¼

XN

i¼1

Pi � Fi and MS
Q ¼

XN

i¼1

qi � Fi (1:9)

where, from Figure 1.7, qi is the position vector from Q to a point on the line of action of Fi. Also,
from Figure 1.7 we see that pi and qi are related by the connecting position vector OQ. That is,

pi ¼ OQþ qi (1:10)

By substituting from Equation 1.10 in Equation 1.9, we have

MS
O ¼

XN

i¼1

(OQþ qi)� Fi ¼
XN

i¼1

OQ� Fi þ
XN

i¼1

qi � Fi

¼ OQ�
XN

i¼1

Fi þMS
Q ¼ OQ� RþMS

Q (1:11)

OQ Q

O

F1

FN

F2

Fi

pi qi

S

FIGURE 1.7 A force system S and points O and Q.
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1.5 SPECIAL FORCE SYSTEMS

There are several force systems that are useful in stress analyses. These are reviewed in the
following sections.

1.5.1 ZERO FORCE SYSTEMS

If a force system has a zero resultant and a zero moment about some point, it is called a ‘‘zero
system.’’ Zero systems form the basis for static analyses.

Interestingly, if a force system has a zero resultant and a zero moment about some point, it then
has a zero moment about all points. This is an immediate consequence of Equation 1.8. That is, if
the resultant R is zero and if MO is zero for some point O, then Equation 1.8 shows that MQ is zero
for any point Q.

1.5.2 COUPLES

If a force system has a zero resultant but a nonzero moment about some point O, it is called a
‘‘couple.’’ Equation 1.8 shows that a couple has the same moment about all points: for, if the
resultant R is zero, thenMQ¼MO for any point Q. This moment, which is the same about all points,
is called the ‘‘torque’’ of the couple.

Figure 1.8 depicts an example of a couple. This couple has many forces. If, alternatively, a
couple has only two forces, as in Figure 1.9, it is called a ‘‘simple couple.’’

To satisfy the definition of a couple, the forces of a simple couple must have equal magnitude
but opposite directions.

1.5.3 EQUIVALENT FORCE SYSTEMS

Two force systems S1 and S2 are said to be ‘‘equivalent’’ if they have (1) equal resultants and
(2) equal moments about some point O. Consider two force systems S1 and S2 as represented in
Figure 1.10 with resultants R1 and R2 and momentsMS1

O andMS2
O about some point O. Then, S1 and

S2 are equivalent if

R1 ¼ R2 (1:12)

and

MS1
O ¼ MS2

O (1:13)

FN
Fi

F1

F2

F3

FIGURE 1.8 A couple with many forces.
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It happens that if Equations 1.13 and 1.14 are satisfied, then the moments of S1 and S2 about any and
all points Q are equal. This is derived by using Equation 1.8 to express the moments of S1 and S2 as

MS1
O ¼ MS2

Q þOQ� R1 (1:14)

MS2
O ¼ MS2

Q þOQ� R2 (1:15)

By subtracting these expressions and using Equations 1.12 and 1.13, we have

0 ¼ MS1
Q �MS2

Q or MS1
Q ¼ MS2

Q (1:16)

For a rigid body, equivalent force systems may be interchanged without affecting either the statics or
the dynamics of the body. Thus, if one force system, say S1, has significantly fewer forces than an
equivalent force system S2, then S1 will generally call for a simpler analysis.

For a deformable body, however (such as the bodies and structural components considered in
this book), equivalent force systems cannot be interchanged without changing the stress distribution
and deformation of the body.

Consider, for example, two identical bars B1 and B2 subjected to equivalent force systems
as in Figure 1.11. Each force system is a zero system. The force systems are thus equivalent. Their

F

−F

FIGURE 1.9 A simple couple.

S1

R1

O S2

R2

(a) (b)

•

MS1
O

MS2
O

FIGURE 1.10 Two force systems.
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effects on the deformable bars, however, are dramatically different. In the first instance, the bar is in
tension and is elongated. In the second, the bar is in compression and is shortened.

This example then raises the question: What is the value, if any, of equivalent force systems
for deformable bodies? The answer is provided by Saint Venant’s principle [2] as illustrated by the
following example: consider two identical cantilever beams subjected to equivalent end loadings
as represented in Figure 1.12. St. Venant’s principle states that in the region of the beam near the
end loading, the stresses and strains are different for the two loadings. However, in regions of the
beam far away from the loading, the stresses and strains are the same. This then raises another
question: How far from the load is there negligible difference between the stresses and strains for
the equivalent loading conditions? Unfortunately, the answer here is not so precise, but what is
clear is that the further away a region is from the loading, the more nearly equal are the stresses
and strains. For practical purposes, in this example, there will generally be negligible differences
in the stresses and strains for the two loadings, when the region is an ‘‘order of magnitude’’ of
thickness away from the loading, that is, a distance of 10h away where h is the beam thickness.

1.5.4 EQUIVALENT REPLACEMENT BY A FORCE AND A COUPLE

Consider any force system S. No matter how large (or small) S is, there exists an equivalent force
system S* consisting of a single force passing through an arbitrary point, together with a couple. To
understand this, consider Figure 1.13a, which represents an arbitrary force system S. Let R be the
resultant of S and MO be the moment of S about some point O. Let there be a proposed equivalent
force system S* as shown in Figure 1.13b. Let S* consist of a force F, with line of action passing
through O, together with a couple with torque T. Let F and T be

F ¼ R and T ¼ MO (1:17)

We readily, see that S and S* are equivalent: That is, they have equal resultants and equal moments
about O. (F has no moment about O.)

Observe in Equation 1.17 that the magnitude of T depends upon the location of O. If O is a point
selected within or near S, and if all forces of S have lines of action that are close to O, then the
magnitude of T is small.

1000 N

300 N

1000 N

300 N

B1

B2

FIGURE 1.11 Identical deformable bars subjected to equivalent but different force systems.

S1 S2

FIGURE 1.12 Identical cantilever beams with equivalent end loadings.
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SYMBOLS

B1, B2 Bars
F Force
Fi (i¼ 1, . . . ,N) Series of N forces
L Line
ML Moment about a line L
MO Moment about O
MS

O Moment of system S about O
MQ Moment about Q
MS

Q Moment of system S about Q
O Point
P Point
P Position vector
PQ Position vector from P to Q
pi (i¼ 1, . . . ,N) Position vector from O to force Fi

q Position vector
Q Point
qi (i¼ 1, . . . ,N) Position vector from Q to force Fi

R, R1, R2 Resultants
S, S1, S2, S* Force systems
T Torque of couple
l Unit vector parallel to L

REFERENCES

1. L. Brand, Vector and Tensor Analysis, Wiley, New York, 1947 (chap. 1).
2. I. S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw Hill, New York, 1956, p. 89.

O

O

T = Mo

F = R

(b)(a)

•

FIGURE 1.13 A given force system S (a) and an equivalent force system S* (b).

Huston/Practical Stress Analysis in Engineering Design DK4291_C001 Final Proof page 10 3.11.2008 1:16pm Compositor Name: JGanesan

10 Practical Stress Analysis in Engineering Design



2 Simple Stress and Strain:
Simple Shear Stress and Strain

2.1 CONCEPT OF STRESS

Conceptually, ‘‘stress’’ is an ‘‘area-averaged’’ or ‘‘normalized’’ force. The averaging is obtained by
dividing the force by the area over which the force is regarded to be acting. The concept is illustrated
by considering a rod stretched (axially) by a force P as in Figure 2.1. If the rod has a cross-section
area A, the ‘‘stress’’ s in the rod is simply

s ¼ P=A (2:1)

There are significant simplifications and assumptions made in the development of Equation 2.1:
First, recall in Chapter 1, we described a force as a ‘‘push’’ or a ‘‘pull’’ and characterized it
mathematically as a ‘‘sliding vector’’ acting through a point. Since points do not have area, there
is no ‘‘area of application.’’ Suppose that a body B is subjected to a force system S as in Figure 2.2,
where S is applied over a relatively small surface region R of B. Specifically, let the forces of S be
applied through points of R. Let F be the resultant of S and let A be the area of R. Then a ‘‘stress
vector’’ s may be defined as

s ¼ F=A (2:2)

If R is regarded as ‘‘small,’’ the area A of R will also be small, as will be the magnitude of F.
Nevertheless, the ratio in Equation 2.2 will not necessarily be small. If Q is a point within R, then the
stress vector at Q (‘‘point stress vector’’) sQ be defined as

sQ ¼ lim
A!0

F=A (2:3)

The components of the stress vector sQ are then regarded as stresses at Q, that is, ‘‘point stresses.’’
If the resultant force F in Equation 2.3 is assigned to pass through Q, then the couple torque of the
equivalent force system is negligible (see Section 1.5).

Next, referring again to Equation 2.1, the ‘‘stress’’ in the rod is thus an average stress at the
points of the cross section of the rod. That is, there is the implied assumption that the stress is
the same at all points of the cross section, and that the corresponding stress vectors are directed
along the axis of the rod. For a long, slender rod, at cross sections away from the ends, these
assumptions are intuitively seen to be reasonable and they can be validated both mathematically and
experimentally.

If the rod of Figure 2.1 is deformable, the forces P will tend to elongate the rod. The rod is then
regarded as being in ‘‘tension’’ and the corresponding stress is a ‘‘tension’’ or ‘‘tensile’’ stress.

On the contrary, if the rod is being compressed or shortened by forces P as in Figure 2.3 the
‘‘stress’’ in the rod is again P=A, but this time it is called a ‘‘compressive stress’’ or ‘‘pressure.’’

Tensile stress is customarily considered positive while compressive stress is negative.
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P P

FIGURE 2.1 A rod subject to a stretching (tensile) force.

S

B
R

FIGURE 2.2 A body subjected to a force system.

P P

FIGURE 2.3 A rod subjected to a compression force.

P P

l Original rod

Loaded rod

d

FIGURE 2.4 A rod being elongated by end forces P.

P P

l
Original rod

Loaded rod
d

FIGURE 2.5 A rod being shortened by end forces P.
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Equation 2.1 shows that the dimensions of stress are force per area (length squared). In the
English system, stress is usually measured in pounds per square inch (lb=in.2) or (psi) and in the
International System (SI) in Newtons per square meter (N=m2) or Pascals (Pa). The conversion
between these systems is

1 psi ¼ 6894:76095 Pa (2:4)

and

1 Pa ¼ 0:000145 psi (2:5)

2.2 CONCEPT OF STRAIN

Conceptually, ‘‘strain’’ is an average elongation, shortening, deformation, or distortion due to
applied forces (or ‘‘loading’’). The averaging is obtained by dividing the amount of elongation,
shortening, deformation, or distortion by an appropriate underlying length. This concept may be
illustrated by again considering a rod being stretched, or elongated, by a force P as in Figure 2.4. If ‘
is the length of the unstretched and unloaded rod and if ‘þ d is the length of the elongated rod, then
the average strain « is defined as the elongation d divided by the original length ‘. That is,

« ¼ d=‘ (2:6)

With the rod being elongated, this strain is sometimes called ‘‘tensile strain.’’
On the contrary, if the rod is being compressed or shortened by compressive forces as in Figure

2.5, the average strain is the amount of shortening d divided by the original length ‘. When the rod is
being shortened, the strain is sometimes called ‘‘compressive strain.’’ Compressive strain is cus-
tomarily considered negative while tensile strain is positive.

Observe from Equation 2.6 that unlike stress, strain is a dimensionless quantity.

2.3 SHEAR STRESS

When the force is directed normal (or perpendicular) to the region (or area) of interest (as in Section
2.1), the stress on the area is called ‘‘normal stress’’ or ‘‘simple stress’’ and the resulting strain is
called ‘‘normal strain’’ or ‘‘simple strain.’’ If, however, the force is directed tangent (or parallel) to
the cross section, it is called a ‘‘shear force’’ and the corresponding stress is called a ‘‘shear stress.’’
Figure 2.6 illustrates this concept, where V is a shear (or ‘‘shearing’’) force exerted on a block B.

B

V

FIGURE 2.6 Block B subjected to a shearing force.
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The shear stress t is then defined as

t ¼ V=A (2:7)

where A is the area over which V is acting.
Observe in Figure 2.6 that if we consider a free-body diagram of B, we see that unless there are

vertical forces at the support base, the block will not be in equilibrium. That is, if block B is acted
upon only by shear forces as in Figure 2.7a, then B is not in equilibrium and will tend to rotate.
Thus, to maintain equilibrium, shearing forces with equal magnitudes and opposite directions must
be applied, as in Figure 2.7b.

From Figure 2.7b, we note that shearing forces tend to distort the geometry. That is, a square
will tend to become diamond in shape. This is discussed in the following section.

Finally, shearing of a block as in Figure 2.7b is called ‘‘simple shear’’ and the resulting stress,
‘‘simple shear stress.’’

2.4 SHEAR STRAIN

Consider a block with height h subjected to a shearing force V as in Figure 2.8. As the block yields
to the force and is deformed, the block will have the shape shown (exaggerated) in Figure 2.9, where
d is the displacement of the top edge of the block in the direction of the shearing force. The shear
strain g is then defined as

g ¼ d=h (2:8)

V

V

V

V

V

(b)(a)

V

FIGURE 2.7 A block subjected to shearing forces. (a) Block with shearing forces. (b) Block in equilibrium.

V

h

FIGURE 2.8 Block subjected to a shearing force.
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Observe by comparing Figures 2.8 and 2.9 that if the height h of the block is unchanged during the
deformation (a reasonable assumption for small displacement d), then from Equation 2.8 the shear
strain g may also be expressed as

g ¼ tan u (2:9)

where u is the distortion angle shown in Figure 2.9.
Observe further that if d is small compared with h (as is virtually always the case with elastic

structural materials), then tan u is approximately equal to u and we have the relation:

g ¼ u ¼ d=h (2:10)

Finally, observe the similarity in the form of Equations 2.10 and 2.6 for the shear strain g and the
normal strain « respectively. The shear strain of Equation 2.10 is sometimes called ‘‘simple shear
strain’’ or ‘‘engineering shear strain.’’

Referring again to Figure 2.7b, we see that Equation 2.10 may be interpreted as a measure
of the distortion of the rectangular block into a parallelogram or diamond shape as illustrated
in Figure 2.10. The shear strain is a measure of the distortion of the right angles of the block away
from 908.

Vd

q

FIGURE 2.9 Block deformed by shearing force.

V

V

V

V

(π/2 + g )

(π/2 + g )

(π/2 - g )

(π/2 − g )

FIGURE 2.10 Distorted block due to shearing forces and shear strain interpretation.
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SYMBOLS

A Area
B Body
F Resultant of force system
h Height
‘ Length
P Axial force (‘‘push’’ or ‘‘pull’’)
Q Point
R Surface region
S Force system
V Shear force
g Shear strain
d Elongation, shortening, displacement
« Strain, normal strain
u Distortion angle
s Stress, normal stress
s Stress vector
t Shear stress
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3 Hooke’s Law and Material
Strength

3.1 HOOKE’S LAW IN ONE DIMENSION

A simple statement of Hooke’s law is that: ‘‘the force is proportional to the displacement’’ or
alternatively (and equivalent) ‘‘the stress is proportional to the strain.’’

As an illustration of this concept, consider a bar or rod being extended by axial loads as in
Figure 3.1. If the magnitude of the load is P and the rod length is extended by an amount d, then
Hooke’s law may be given as

P ¼ kd or d ¼ P=k (3:1)

where k is a constant.
If the rod of Figure 3.1 has an initial length ‘ and a cross-section area A, then the stress s in the

rod is P=A and the strain « is d=‘ (see Equations 2.1 and 2.6). Thus, P and d may be expressed in
terms of the stress and strain as

P ¼ sA and d ¼ «‘ (3:2)

Then by substituting into Equation 3.1 we have

sA ¼ k«‘ or s ¼ (k‘=A)« ¼ E« (3:3)

and

d ¼ sA=k ¼ P‘=AE (3:4)

where E is defined as

E¼D k‘=A (3:5)

Then

k ¼ AE=‘ (3:6)

E is commonly referred to as the ‘‘modulus of elasticity’’ or ‘‘Young’s modulus.’’
Hooke’s law also implies that the rod responds similarly in compression. Consider again the rod

of Figure 3.1 subjected to a compressive load P (a ‘‘push’’ instead of a ‘‘pull’’) as in Figure 3.2.
If the rod length is shortened by an amount d, the relation between P and d is again

P ¼ kd (3:7)

Then, as before, we have the relations

s ¼ (k‘=A)« ¼ E« (3:8)
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and

k ¼ AE=‘ (3:9)

3.2 LIMITATIONS OF PROPORTIONALITY

It happens that Equations 3.4 and 3.8 are only approximate representations of structural material
behavior. Nevertheless, for a wide range of forces (or loads), the expressions provide reasonable and
useful results. When the loads are very large, however, the linearity of Equations 3.4 and 3.8 is no
longer representative of structural material behavior. Unfortunately, a nonlinear analysis is signifi-
cantly more involved. Indeed, for the range of forces that can be sustained by structural material
(such as steel) the stress and strain are typically related as in Figure 3.3.

If the force is large enough to load the material of the rod beyond the proportional limit, the
linear relation between the stress and strain is lost. If the material is loaded beyond the yield point,
there will be permanent (or ‘‘plastic’’) deformation. That is, when the loading is removed from a rod
stressed beyond the yielding point, it does not return to its original length, but instead shows a
residual deformation. Alternatively, when the loading is relatively low such that the proportional
limit between the stress and strain is not exceeded, the loading is said to be in the ‘‘elastic’’ range.

In many instances, it is difficult to know where precisely the yield point is. In actuality, the
apparent linear relation (or line) below the yield point (see Figure 3.3) is a slight curve. In such
cases, the limit of proportionality is often arbitrarily defined as the stress where the residual strain is
0.002 (0.2%), as depicted in Figure 3.4. From a design perspective, however, it is recommended that
the loads be kept sufficiently small so that the stress remains in the elastic range, well below the
yield point. The material is then unlikely to fail and there is the added benefit of a simpler analysis
since the relation between the stress and strain is linear, as in Equations 3.4 and 3.8.

The value of the elastic modulus E of Equations 3.4 and 3.8 is dependent upon the material.
Table 3.1 provides a tabular listing of approximate elastic modulus values for some commonly used
materials [1,2]. But, a note of caution should be added: The values listed are for pure materials
(without defects). Actual materials in use may have slightly lower values due to imperfections
occurring during manufacture.

3.3 MATERIAL STRENGTH

The ‘‘strength’’ of a material is an ambiguous term in that ‘‘strength’’ can refer to any of the three
concepts: (1) yield strength; (2) maximum tensile (or compressive) strength; or (3) breaking
(fracture or rupture) strength. These are, however, relatively simple concepts. To illustrate them,
consider a bar, or rod, being stretched by axial forces as in Figure 3.5.

P P
l d

FIGURE 3.1 Rod extended by axial loads.

P P
l d

FIGURE 3.2 Rod shortened by axial loads.
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If we construct a graph relating the stress and strain, as in Figures 3.3, 3.4, and 3.6, we can
identify points on the curve with these three strength concepts. Specifically, the ‘‘yield strength’’ is
the stress at which yielding, or alternatively, 0.2% strain occurs (see Figure 3.4). This is also the
beginning of plastic deformation. The ‘‘maximum strength’’ is the largest stress attained in the rod.
The ‘‘breaking strength’’ is the stress just prior to fracture or rupture. The breaking strength is less
than the maximum strength since the sustainable force P decreases rapidly once extensive plastic
deformation occurs.

Table 3.2 provides a list of approximate strength values for commonly used materials [1,2].

3.4 HOOKE’S LAW IN SHEAR

Consider again Hooke’s law for simple stress and strain of Equation 3.4:

s ¼ E« (3:10)

We can extend this relation to accommodate simple shear stress and strain. Consider again a block
subjected to a shearing force as in Figure 2.6 and as shown again in Figure 3.7. Then, from
Equations 2.7 and 2.8 the shear stress t and the shear strain g are defined as

t ¼ V=A and g ¼ d=‘ (3:11)

O e

Plastic
range

Elastic
range

Fracture

Proportional limit
(Yield point)

s

FIGURE 3.3 Stress–strain relation.

O

Yield point

0.002 e

s

FIGURE 3.4 Yield point definition of a strain of 0.002.
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P P
l d

FIGURE 3.5 Axial stretching of a rod.

Breaking strength

Maximum
strength

Yield
strength

e

s

FIGURE 3.6 Stress–strain diagram illustrating yield, maximum, and breaking strength.

TABLE 3.1
Selected Values of Elastic Constants

E

Material 106 psi (lb=in.2) 109 Pa (N=m2)

Steel 30 207

Aluminum 10 69
Copper 17 117
Concrete 4 28
Wood 1.9 13

TABLE 3.2
Selected Material Strengths

Yield Strength Maximum Strength

Material 103 psi (lb=in.2) 106 Pa (N=m2) 103 psi (lb=in.2) 106 Pa (N=m2)

Steel 40–80 275–550 60–120 410–820
Aluminum 35–70 240–480 40–80 275–550

Copper 10–50 70–350 30–60 200–400
Concrete — — 4–6 28–40
Wood — — 5–10 35–70
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where
V is the shearing force
A is the area over which V acts
‘ is the height of the block
d is the horizontal displacement

Then, analogous to Equation 3.10, Hooke’s law for simple shear is

t ¼ Gg (3:12)

where the proportional parameter G is called the ‘‘shear modulus,’’ ‘‘modulus of elasticity in shear,’’
or the ‘‘modulus of rigidity.’’

Table 3.3 lists values of the shear modulus for a few commonly used materials [1,2].

SYMBOLS

A Area
E Modulus of elasticity, Young’s modulus
G Shear modulus, modulus of rigidity
k Spring constant
‘ Length
P Axial force
V Shear force
g Shear strain

TABLE 3.3
Selected Values of the Shear Modulus

Material 106 psi (lb=in.2) 109 Pa (N=m2)

Steel 11.2 77
Aluminum 3.8 27

Copper 6.4 44

V

l

d

g

FIGURE 3.7 A block subjected to a shearing force.
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d Elongation, shortening
« Normal strain
s Normal stress
t Shear stress
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4 Stress in Two and Three
Dimensions

4.1 STRESS VECTORS

Consider an elastic body B subjected to surface loads as in Figure 4.1. Consider a cutting plane N
dividing B into two parts as shown in edge view in Figure 4.2.

Consider the equilibrium of one of the parts of B, say the left part BL, as in Figure 4.3. The figure
depicts the forces exerted across the dividing plane by the right portion of B(BR) on the left portion
(BL). Correspondingly, BL exerts equal and opposite forces on BR.

Consider next a view of the dividing surface of BL and a small region R on this surface, as in
Figure 4.4 where forces exerted by BR on BL across R are depicted. Consider now a force system S,
which is equivalent to the system of forces exerted by BR on BL across R. Specifically, let S consist
of a single force P passing through a point P of R together with a couple with torqueM (see Section
1.5.3) as represented in Figure 4.5.

Let A be the area of R. Next, imagine that R is decreased in size, or shrunk, around point P. As
this happens, consider the ratio: P=A. As R shrinks, A diminishes, but the magnitude of P also
diminishes. In the limit, as A becomes infinitesimally small the ratio P=A will approach a vector S
given by

S ¼ lim
A!0

P A= (4:1)

This vector is called the ‘‘stress vector on R at P.’’
From Section 1.5.3, it is apparent that as R gets small the magnitude of the couple torque M

becomes increasingly small. That is,

lim
A!0

M ¼ 0 (4:2)

Observe that, in general, S is parallel neither to R nor to the normal of R. Observe further that for a
different dividing plane, say N̂, passing through P, the corresponding stress vector Ŝ will be
different than S.

Finally, consider a set of mutually perpendicular unit vectors nx, ny, and nz with nx being normal
to the plane of R, directed outward from BL as in Figure 4.6. Let S be expressed in terms of nx, ny,
and ny as

S ¼ Sxnx þ Syny þ Sznz (4:3)

Then Sx, Sy, and Sz are stresses at P with Sx being a normal (tension or compression) stress and Sy
and Sz being tangential (or shear) stresses.

4.2 STRESSES WITHIN A LOADED ELASTIC BODY—NOTATION
AND SIGN CONVENTION

Consider again the loaded elastic body B of Figure 4.1 and consider a small rectangular element E in
the interior of B as represented in Figure 4.7. Let X, Y, and Z be coordinate axes parallel to the edges
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B

FIGURE 4.1 An elastic body subjected to surface loads.

B

N

BL

BR

(c)(b)(a)

FIGURE 4.2 Edge view of a cutting plane devising the elastic body of Figure 4.1.

BL

FIGURE 4.3 Equilibrium of the left portion of the elastic body with forces exerted across the dividing plane.

BL

R

FIGURE 4.4 A small region of R of the dividing plane.
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of E and with origin O within E as shown. Next, let E be shrunk to an infinitesimal element about O
(as R was shrunk about P in Section 4.1). As in Section 4.1, imagine the coordinate planes to be
cutting planes of E, separating E into six different parts (two for each cutting plane). Then in the
context of the foregoing analysis, each of the six sides (or ‘‘cut faces’’ of E) will have an associated
stress vector with stress components as in Equation 4.3. Thus, with six faces and three stress
components per face, there are 18 stress components (or stresses) associated with element E.

For E to be in equilibrium, while being infinitesimal, the corresponding stress components on
opposite, parallel faces of E must be equal and oppositely directed. Thus, we need to consider only
nine of the 18 stress components. To make an account (or list) of these components, it is convenient
to identify the components first with the face on which they are acting and then with their direction.
We can identify the faces of E with their normals since each face is normal to one of the X, Y, or Z
axes. Since there are two faces normal to each axis, we can think of these faces as being ‘‘positive’’
or ‘‘negative’’ depending upon which side of the origin O they occur. Specifically, let the vertices of
E be numbered and labeled as in Figure 4.8. Then a face is said to be ‘‘positive’’ if when going from
the interior of E to the exterior across a face, the movement is in the positive axis direction.
Correspondingly, a face is ‘‘negative’’ if the movement is in the negative axis direction when
crossing the face. Table 4.1 lists the positive and negative faces of E.

BL

R

M

P

P

FIGURE 4.5 Equivalent force system exerted across R.

R 
nz

nx

ny

BL

FIGURE 4.6 Unit vectors parallel to normal to region R of BL.
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To account for the nine stress components, it is convenient to use subscript notation such as sij

where the subscripts i and j have the values x, y, and z with the first subscript (i) referring to the face
upon which the stress is applied and the second subscript ( j) referring to the direction of the stress
component. We can then arrange the stress components into an array s as

s ¼
sxx sxy sxz

syx syy syz

szx szy szz

2
64

3
75 (4:4)

The diagonal elements of this array are seen to be the normal stresses (tension=compression) while
the off-diagonal elements are shear stresses. The shear stresses are sometimes designated by the
Greek letter t as in Section 2.3.

A stress component is said to be ‘‘positive’’ if the component is exerted on a positive face in a
positive direction or on a negative face in a negative direction. On the contrary, a stress component
is said to be ‘‘negative’’ if it is exerted on a negative face in the positive direction or a positive face
in the negative direction. (With this sign convention, tension is positive and compression is
negative.)

Z

Y

X

E

O

FIGURE 4.7 A small rectangular element E of loaded elastic body B (see Figure 4.1).

Z

Y

X

E

O

6

58

7

1

2 3

4

FIGURE 4.8 Numbering the vertices of element E.
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4.3 EQUILIBRIUM CONSIDERATIONS—INDEX NOTATION

Consider the small rectangular element of Figure 4.8 as drawn again in Figure 4.9. Let the lengths of
the edges be Dx, Dy, and Dz. Consider an ‘‘overhead’’ or Z-direction view of the element as in Figure
4.10 where the shear stresses on the X and Y faces in the X- and Y-directions are shown. Next,
imagine a free-body diagram of the element. If the element is sufficiently small, the forces on the
element may be represented by force components acting through the centers of the faces with
magnitudes equal to the product of the stresses and the areas of the faces as in Figure 4.11. By
setting moments about the Z-axis equal to zero, we have

sxyDyDz(Dx=2)� syxDxDz(Dy=2)þ sxyDyDz(Dx=2)� syxDxDz(Dy=2) ¼ 0 (4:5)

By dividing by the element volume, DxDyDz, we obtain

sxy ¼ syx (4:6)

Similarly, by considering moment equilibrium about the Y- and Z-axes, we obtain the expressions

sxz ¼ szx and szy ¼ syz (4:7)

These results show that the stress array s of Equation 4.4 is symmetric. That is,

s ¼
sxx sxy sxz

syx syy syz

szx szy szz

2

4

3

5 ¼
sxx sxy sxz

sxy syy syz

sxz syz szz

2

4

3

5 (4:8)

TABLE 4.1
Positive and Negative Faces of E

Face Normal Axis Face Sign

1234 þX Positive
4356 þY Positive
6714 þZ Positive
7658 �X Negative

2178 �Y Negative
2853 �Z Negative

Z

Y

X

E

Δz

Δy

Δx

FIGURE 4.9 Small rectangular element with dimensions Dx, Dy, and Dz.
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In short,

sij ¼ sji i, j ¼ x, y, z (4:9)

Next, consider the equilibrium of a small tetrahedron T as in Figure 4.12, where three of the sides
are normal to coordinate axes. Let n be a unit vector normal to the inclined face ABC of T and let Sn
be the stress vector exerted on ABC. As before, since T is small, let the forces on T be represented by
individual forces passing through the centroids of the faces of T. Let these forces be equal to the
stress vectors, on the faces of T, multiplied by the areas of the respective faces.

Let A be the area of face ABC, and let Ax, Ay, and Az be the area of the faces normal to the
coordinate axes (OBC, OCA, and OAB). Let n be expressed in terms of the coordinate line unit
vectors as

n ¼ nxnx þ nyny þ nznz (4:10)

Then, it is evident that Ax, Ay, and Az are

Ax ¼ Anx, Ay ¼ Any, Az ¼ Anz (4:11)

Y

X

syx

sxy

sxy

syx

FIGURE 4.10 X–Y shear stresses on the element of Figure 4.9.

Y
syyΔxΔz

σyxΔxΔz

sxyΔyΔz

sxxΔyΔz − X
sxxΔyΔz

syyΔxΔz

syxΔxΔz

sxyΔyΔz

O

FIGURE 4.11 X- and Y-direction forces on element E.
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Imagine a free-body diagram of T. The forces on T may be represented by the four forces: SxAx,
SyAy, SzAz, and SnA acting through the centroids of the respective faces, where Sx, Sy, and Sz are the
stress vectors on faces OBC, OCA, and OAB, respectively. The equilibrium of T then leads to the
expression:

SxAx þ SyAy þ SzAz þ SnA ¼ 0 (4:12)

Using the notation in Section 4.2, let the stress vectors be expressed in terms of nx, ny, and nz as

Sx ¼ �sxxnx � sxyny � sxznz (4:13)

Sy ¼ �syxnx � syyny � syznz (4:14)

Sz ¼ �szxnx � szyny � szznz (4:15)

Sn ¼ Snxnx þ Snyny þ Snznz (4:16)

where the negative signs in Equations 4.13, 4.14, and 4.15 occur since OBC, OCA, and OAB are
‘‘negative’’ faces (see Section 4.2).

By substituting from Equation 4.11 into Equation 4.12 we obtain

nxSx þ nySy þ nzSz þ Sn ¼ 0 (4:17)

Then, by substituting from Equation 4.13 through 4.16 and setting nx, ny, and nz components equal
to zero, we have

Snx ¼ sxxnx þ sxyny þ sxznz (4:18)

Sny ¼ syxnx þ syyny þ syznz (4:19)

Snz ¼ szxnx þ szyny þ szznz (4:20)

Observe the pattern of the indices of Equations 4.12 through 4.20: repeated indices range through
x, y, and z. Otherwise, the terms are the same. Thus, it is often convenient to use numerical indices

Z

Y

X

A

B

C n
Sn

nz

ny

nx

T

FIGURE 4.12 Small tetrahedron within a loaded elastic body.
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and summation notation. Let x, y, and z be replaced by 1, 2, and 3. Then Equations 4.17 through
4.20 may be written in a compact form as

X3

j¼1

njSj þ Sn ¼ 0 (4:21)

and

Sni ¼
X3

i¼1

sijnj (i ¼ 1, 2, 3) (4:22)

Since in three dimensional analyses the sums generally range from 1 to 3, it is usually possible to
delete the summation sign (S) and simply adopt the convention that repeated indices designate a
sum over the range of the index. Thus, Equations 4.21 and 4.22 may be written as

njSj þ Sn ¼ 0 (4:23)

and

Sni ¼ sijnj (i ¼ 1, 2, 3) (4:24)

Finally, consider the equilibrium of a small, but yet finite size, rectangular element of a loaded
elastic body as in Figure 4.13. Let the lengths of the sides of E be Dx, Dy, and Dz as shown. Let E be
sufficiently small so that the forces on the faces of E may be represented by stress vectors acting
through the centroids of the faces multiplied by the areas of the respective faces.

Consider the force components in the X-direction. Consider specifically the change in corre-
sponding stresses from one side of E to the other. By using a Taylor series expansion, we can relate
these stresses by the expression:

sxx j
front
face

¼ sxx j
rear
face

þ @sxx

@x
j
rear
face

Dxþ 1
2!

@2sxx

@x2
j
rear
face

(Dx)2 þ � � � (4:25)

E

Z

Y

X

Δz

Δy

Δx

FIGURE 4.13 A small element within a loaded elastic body.
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With the element E being small, the terms not shown in the sum of Equation 4.25 are also small.
Indeed, these terms as well as the third term on the right-hand side of Equation 4.25 become
increasingly small as E gets smaller. Hence, to a reasonable degree of accuracy we have

sxx j
front
face

¼ [sxx þ (@sxx=@x)Dx] j
back
face

(4:26)

Similar analyses for the shear stresses in the X-direction lead to the expressions:

szx j
front
face

¼ [szx þ (@szx=@z)Dz] j
back
face

(4:27)

and

syx j
front
face

¼ [syx þ (@syx=@y)Dy] j
back
face

(4:28)

Consider now the X-direction forces of a free-body diagram of E. As E shrinks to a point, the
corresponding stresses on opposite faces become nearly equal in magnitude. Then, a balance of
forces leads to the expression:

sxxDyDz� sxxDyDzþ [@sxx=@x]DyDz

þ szxDyDx� szxDyDxþ [(@szx=@z)Dz]DyDx

þ syxDxDz� syxDxDzþ [(@syx=@z)Dy]DxDz

¼ (rDxDyDz)ax (4:29)

where
r is the mass density of B at the origin O, which could be any typical point P on B
ax is the acceleration of P in an inertial reference frame*

By dividing by the element volume, canceling terms, and by the index symmetry for the shear
stresses, we see that Equation 4.29 may be written as

@sxx=@xþ @sxy=@yþ @sxz=@z ¼ rax (4:30)

Similarly, by adding forces in the Y- and Z- directions, we have

@syx=@xþ @syy@yþ @syz=@z ¼ ray (4:31)

@szx=@xþ @szy@yþ @szz=@z ¼ r(az � g) (4:32)

where g is the gravity acceleration (9.8 m=s or 32.2 ft=s2). Except in the case of large structures, the
gravity (or weight) is usually inconsequential. Thus, in most cases, Equations 4.30, 4.31, and 4.32
have the same form and by using numerical index notation they may be cast into a compact
expression. If we let x! x1, y! x2, and z! x3, that is, letting 1, 2, 3 correspond to x, y, z, then
we can write the equations as

@sij=@xj ¼ rai (i ¼ 1, 2, 3) (4:33)

with a sum over the repeated index j.

* See Ref. [1]. For static or slowly moving bodies, which comprise the majority of stress analysis problems, ax will be
zero.
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Equation 4.33 may be written in a more compact form by using the comma notation for
differentiation.* That is,

( ),i � @( )=@xi (4:34)

Then, Equation 4.33 becomes

sij, j ¼ rai (4:35)

A few more comments on notation: whereas repeated indices (such as the j in Equation 4.35)
designate a sum (from 1 to 3), nonrepeated (or ‘‘free’’) indices (such as the i in Equation 4.35) can
have any of the values: 1, 2, or 3. In this context, in a given equation or expression, indices are either
free or repeated. Repeated indices are to be repeated only once, but free indices must occur in each
term of an equation. With a repeated index, the letter used for the index is immaterial. That is, any
letter can be used for the index that is repeated. Thus, Equation 4.35 may be written as

sij, j ¼ sik,k ¼ si‘,‘ ¼ � � � ¼ rai (4:36)

4.4 STRESS MATRIX, STRESS DYADIC

As we observed in Section 4.2, it is convenient to assemble the stresses into an array, called the
‘‘stress matrix,’’ as

s ¼
sxx sxy sxz

syx syy syz

szx szy szz

2

4

3

5 (4:37)

In numerical index notation, we can express s as

s ¼ [sij] ¼
s11 s12 s13

s21 s22 s23

s31 s32 s33

2
4

3
5 (4:38)

Observe that the values of the individual stresses of s depend upon the orientation of the X-, Y-,
Z-axis system and thus upon the direction of the unit vectors nx, ny, and nz, or alternatively upon the
direction of unit vectors n1, n2, and n3. A question arising then is: How are the stresses changed if
the orientation of the coordinate axes are changed? To answer this question, it is convenient to
introduce the concept of a ‘‘stress dyadic.’’ A dyadic is simply a product of vectors following the
usual rules of elementary analysis (except for communitivity) (see Ref. [3]). As an illustration,
consider a pair of vectors a and b expressed in terms of mutually perpendicular unit vectors,
ni (i¼ 1, 2, 3) as

a ¼ a1n1 þ a2n2 þ a3n3 ¼ aini (4:39)

b ¼ b1n1 þ b2n2 þ b3n3 ¼ bjnj (4:40)

where, as before, the repeated indices designate a sum over the range (1 to 3) of the indices. The
dyadic product d of a and b may then be expressed as

* See Ref. [2], for example.
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d ¼ ab ¼ (a1n1 þ a2n2 þ a3n3)(b1n1 þ b2n2 þ b3n3)

¼ (aini)(bjni)

¼ a1b1n1n1 þ a1b2n1n2 þ a1b3n1n3
þ a2b1n2n1 þ a2b2n2n2 þ a2b3n2n3
þ a3b1n3n1 þ a3b2n3n2 þ a3b3n3n3

¼ aibjninj

¼ dijninj (4:41)

where dij is defined as the product: aibj. The unit vector products in Equation 4.41 are called
‘‘dyads.’’ The order or positioning of the unit vectors in a dyad must be maintained. That is,

n1n2 6¼ n2n1, n2n3 6¼ n3n2, n3n1 6¼ n1n3 (4:42)

Dyadics are sometimes called ‘‘vector-vectors’’ because they may be viewed as vectors whose
components are vectors. The components of a dyadic (as well as those of vectors) are sometimes
called ‘‘tensors’’ (of rank 2 and rank 1).

Using these concepts and notation, let the stress dyadic s be defined as

s ¼ sijninj (4:43)

Now suppose we are interested in a different orientation of unit vectors. Let n̂j ( j¼ 1, 2, 3) be a set
of mutually perpendicular unit vectors inclined relative to the ni as depicted in Figure 4.14. Then the
respective orientations of the n̂j relative to the ni may be defined in terms of direction cosines Tij
given by

Tij ¼ ni � n̂j (4:44)

It is then obvious that the ni and the n̂j are related by the expressions [1]:

ni ¼ Tijn̂j and n̂j ¼ Tijni (4:45)

Observe in Equations 4.44 and 4.45 that the rules regarding free and repeated indices are main-
tained. That is, the free indices match the terms on either side of the equality and the repeated
indices are repeated only once in a given term. Also, in Equation 4.44, the first index (i) of Sij is
associated with the ni and the second index ( j) is associated with the nj. This association
is maintained in Equation 4.45.

n2ˆ

n3

n1

n2

n1ˆ n3ˆ

FIGURE 4.14 Unit vector sets.
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The stress dyadic s is expressed in terms of the n̂j as

s ¼ ŝk‘n̂kn̂‘ (4:46)

then, using Equations 4.45 and 4.43, we get

sij ¼ TikTj‘ŝk‘ and ŝk‘ ¼ TikTj‘sij (4:47)

As noted earlier, the sij and the ŝk‘ are sometimes called ‘‘stress tensors.’’

4.5 EIGENVECTORS AND PRINCIPAL STRESSES

Equation 4.47 shows that the value of the stress components depends upon the choice of axis system
and the corresponding unit vector directions. By using well-established procedures in vector, matrix,
and tensor analysis [3], it is seen that the matrix of the stress dyadic can be placed in diagonal form
by the appropriate choice of basis unit vectors. When this is done, with the off-diagonal elements
being zero, the shear stresses vanish and the normal stresses, occurring on the diagonal, have among
them the maximum and minimum normal stresses for all directions. These maximum and minimum
stresses are called ‘‘principal stresses,’’ or ‘‘eigenvalues’’ of the stress dyadic. The unit vectors
producing the diagonal stress matrix are called ‘‘eigenvectors’’ (or ‘‘unit eigenvectors’’), and they
define what are called the ‘‘principal directions’’ of the stress dyadic.

In stress analysis for strength considerations and in mechanical component design, it is of
interest to know the values of these principal stresses and the directions of the surfaces over which
they act. The following paragraphs outline a procedure for calculating these stresses and directions.
(Additional details may be found in Refs. [1] and [3].)

Consider again the stress dyadic s of Equation 4.46:

s ¼ sijninj (4:48)

Let na be a unit vector. na is defined as a unit eigenvector if it satisfies the relation:

s . na ¼ lna (4:49)

where l is a scalar. That is, na is an eigenvector if the stress vector associated with na is parallel
to na.

Let nb be a unit vector perpendicular to the unit eigenvector na. Then, the shear stress sab

associated with na and nb is zero. That is,

sab ¼ na .s . nb ¼ lna . nb ¼ 0 (4:50)

Recall that s is symmetric which implies that shear stresses associated with eigenvectors are zero.
The definition of Equation 4.49 may be used to obtain an expression for na. Let na be expressed

in terms of a convenient set of mutually perpendicular unit vectors ni (i¼ 1, 2, 3) as

na ¼ a1n1 þ a2n2 þ a3n3 ¼ aini ¼ aknk (4:51)

Then na is known once the ai are determined.
By substituting from Equations 4.48 and 4.51 into Equation 4.49, we obtain

s . na ¼ nisijnj . aknk ¼ nisijaknj . nk

¼ nisijakdjk ¼ nisijaj ¼ laini (4:52)
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where djk, called Kronecker’s delta function, is defined as

djk ¼ nj . nk ¼ 0 j 6¼ k
1 j ¼ k

�
(4:53)

djk has several useful properties. From the definition of Equation 4.53 we see that

dkk ¼ 3 (4:54)

Also, if v is any vector expressed in component form as vjnj, we have

dijvj ¼ vj (i ¼ 1, 2, 3) (4:55)

This property (used in Equation 4.52), has led dij at times to be called the ‘‘substitution symbol.’’
Finally, the dij are the elements of the identity dyadic I defined as

I ¼ nini ¼ nidijnj (4:56)

where the matrix of elements d is defined as

d ¼ [dij] ¼
1 0 0
0 1 0
0 0 1

2
4

3
5 (4:57)

The last equality of Equation 4.52 may be written as

sijajni ¼ laini (4:58)

or in component form as

sijaj ¼ lai (4:59)

and in matrix form as

s11 s12 s13

s21 s22 s23

s31 s32 s33

2

4

3

5
a1
a2
a3

2

4

3

5 ¼ l
a1
a2
a3

2

4

3

5 (4:60)

Equations 4.58, 4.59, and 4.60 are equivalent to the scalar equations:

(s11 � l)a1 þ s12a2 þ s13a3 ¼ 0

s21a1 þ (s22 � l)a2 þ s23a3 ¼ 0

s31a1 þ s32a2 þ (s33 � l)a3 ¼ 0

(4:61)

These equations form a set of three linear algebraic equations for a1, a2, and a3. Thus their solution
determines na. However, since the equations are ‘‘homogeneous’’ (all right-hand sides are zero),
there is a nonzero solution only if the determinant of the coefficients is zero [4]. That is,

(s11 � l) s12 s13

s21 (s22 � l) s23

s31 s32 (s33 � l)

������

������
¼ 0 (4:62)
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By expanding the determinant, we obtain

l3 � sIl
2 þ sIIl� sIII ¼ 0 (4:63)

where the coefficients sI, sII, and sIII are

sI ¼ s11 þ s22 þ s33 (4:64)

sII ¼ s22s33 � s32s23 þ s33s11 � s13s31 þ s11s22 � s21s12 (4:65)

sIII ¼ s11s22s33 � s11s32s23 þ s12s31s23 � s12s21s33 þ s21s32s13 � s31s13s22 (4:66)

It is clear that sI is the sum of the diagonal elements of the stress matrix, sII is the sum of
the diagonal elements of the matrix of cofactors of the stress matrix, and sIII is the determinant
of the stress matrix.

Equation 4.63 is sometimes called the Hamilton–Cayley equation. It is known that with s being
symmetric (that is, sij¼sji), the roots (l1, l2, and l3) of the equation are real [3]. When the roots
are distinct, Equations 4.61 form a set of dependent equations for a1, a2, and a3. That is, at most only
two of Equations 4.61 are independent. Thus, there is no solution for a1, a2, and a3 without an
additional equation. But since na is a unit vector with magnitude 1, we have

a21 þ a22 þ a23 ¼ 1 (4:67)

Observe that the roots, li of Equation 4.63 are themselves the eigenvalues and thus the principal
stresses. That is, from Equation 4.49 we have

saa ¼ na .s . na ¼ na . lna ¼ l (4:68)

Since there are three eigenvalues, l1, l2, and l3, there are three unit eigenvectors. When the
eigenvalues are distinct, these unit eigenvectors can be shown to be mutually perpendicular [1,3].

4.5.1 ILLUSTRATIVE COMPUTATION

To illustrate procedures for calculating values of principal stresses and their corresponding direc-
tions (the unit eigenvectors) suppose that the stress matrix relative to a convenient axis system is

s ¼
5:0625 1:1908 1:0825
1:1908 3:6875 0:6250
1:0825 0:6250 5:7500

2
4

3
5104 psi (4:69)

Let n1, n2, and n3 be unit vectors parallel to the axes, and let the unit eigenvectors have the form:

na ¼ a1n1 þ a2n2 þ a3n3 ¼ aini (4:70)

Then, from Equations 4.61 the equations determining the ai and the l are

(5:0625� l)a1 þ 1:1908a2 þ 1:0825a3 ¼ 0

1:1908a1 þ (3:6875� l)a2 þ 0:6250a3 ¼ 0

1:0825a1 þ 0:6250a2 þ (5:75� l)a3 ¼ 0

(4:71)

where the units of the coefficients are 104 psi.
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The determinantal equation of Equation 4.62 together with Equations 4.64 through 4.66
produces the Hamilton–Cayley equation (Equation 4.63):

l3 � 14:5l2 þ 66l� 94:5 ¼ 0 (4:72)

By solving for l we obtain the results

l1 ¼ 3:0, l2 ¼ 4:5, l3 ¼ 7:0 (4:73)

Let l¼ l1 and substitute into Equation 4.71:

2:0625a(1)1 þ 1:1908a(1)2 þ 1:0825a(1)3 ¼ 0

1:1908a(1)1 þ 0:6875a(1)2 þ 0:6250a(1)3 ¼ 0

1:0825a(1)1 þ 0:6250a(1)2 þ 3:750a(1)3 ¼ 0

(4:74)

where the superscript (1) refers to l1. Since Equations 4.74 are dependent, we can obtain specific
values of the a(1)i by using Equation 4.67:

a(1)1

� �2 þ a(1)2

� �2 þ a(1)3

� �2 ¼ 1 (4:75)

By selecting any two Equations 4.74 and using Equation 4.75, we obtain the results

a(1)1 ¼ 0:5, a(1)2 ¼ �0:866, a(1)3 ¼ 0:0 (4:76)

Similarly, if we let l¼ l2¼ 4.5, we obtain

a(2)1 ¼ 0:6124, a(2)2 ¼ 0:3536, a(2)3 ¼ �0:707 (4:77)

Finally, if we let l¼ l3¼ 7.0, we obtain

a(3)1 ¼ 0:6124, a(3)2 ¼ 0:3536, a(3)3 ¼ 0:7071 (4:78)

To summarize these results, the principal stresses are

s1 ¼ 3:0� 104 psi, s2 ¼ 4:5� 104 psi, s3 ¼ 7:0� 104 psi (4:79)

and the corresponding principal directions are defined by the unit eigenvectors:

n(1)a ¼ 0:5n1 � 0:866n2 þ 0n3

n(2)a ¼ 0:6124n1 þ 0:3536n2 � 0:7071n3

n(3)a ¼ 0:6124n1 þ 0:3536n2 þ 0:7071n3

(4:80)

Next, suppose that we form a transformation matrix T whose columns are the components of these
unit eigenvectors. That is,

T ¼
0:5 0:6124 0:6124

�0:866 0:3536 0:3536
0 �0:7071 0:7071

2

4

3

5 (4:81)
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Let ŝ be the stress matrix with the principal stresses on the diagonal. That is,

ŝ ¼
3:0 0 0
0 4:5 0
0 0 7:0

2

4

3

5104 psi (4:82)

Then, we have the relation:

ŝ ¼ TTsT (4:83)

where TT is the transpose of T. That is,

3:0 0:0 0:0

0:0 4:5 0:0

0:0 0:0 7:0

2
64

3
75 ¼

0:5 �0:866 0

0:6124 0:3536 �0:7071

0:6124 0:3536 0:7071

2
64

3
75

5:0625 1:1908 1:0825

1:1908 3:6875 0:6250

1:0825 0:6250 5:75

2
64

3
75

�
0:5 0:6124 0:6124

�0:866 0:3536 0:3536

0 �0:7071 0:7071

2

64

3

75 (4:84)

4.5.2 DISCUSSION

Observe in the foregoing analysis that the eigenvalues (the roots of the Hamilton–Cayley equation,
Equation 4.72) are real. Observe further that the associated unit eigenvectors of Equations 4.81 are
mutually perpendicular, as predicted earlier. It happens that with the stress matrix being symmetric,
the roots of the Hamilton–Cayley equation are always real and there always exist three mutually
perpendicular unit eigenvectors.

Suppose that instead of there being three distinct eigenvalues, two of them are equal. In this
case, it happens that every unit vector, which is perpendicular to the unit eigenvector of the distinct
eigenvalue is a unit eigenvector. That is, there are an infinite number of unit eigenvectors parallel to
a plane normal to the unit eigenvector of the distinct eigenvalue. If all three of the eigenvalues are
equal, every unit vector is a unit eigenvector. That is, all directions are principal directions and we
have a state of ‘‘hydrostatic pressure.’’

Finally, observe that the set of eigenvalues, or principal stresses, contain values that are both
larger (7� 104 psi) and smaller (3� 104 psi) than the normal stresses on the diagonal of the stress
matrix of Equation 4.69. We discuss these concepts in more detail in the next section.

4.6 EIGENVALUES AND EIGENVECTORS—THEORETICAL
CONSIDERATIONS

In the foregoing discussion, several claims were made about the roots of the Hamilton–Cayley
equation and about the associated unit eigenvectors. Specifically, it is claimed that the roots are
real and that they contain the values of the maximum and minimum normal stresses. It is also
claimed that associated with these roots (or eigenvalues), there exist mutually perpendicular
eigenvectors. In this section, we discuss these claims. In subsequent sections, we also show that
values of the maximum shear stresses occur on planes inclined at 458 to the planes normal to the unit
eigenvectors.
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4.6.1 MAXIMUM AND MINIMUM NORMAL STRESSES

Let na be an arbitrary unit vector, and s be a stress dyadic. Let ni (i¼ 1, 2, 3) form a set of mutually
perpendicular unit vectors and let na and s be expressed in terms of the ni as

na ¼ aini and s ¼ sijninj (4:85)

Then, a review of Equations 4.22 and 4.24 shows that the stress vector Sa for na and the normal
stress saa on a plane normal to na are

Sa ¼ s . na ¼ nisijaj and saa ¼ aisijaj (4:86)

The issue of finding out maximum and minimum values for the normal stress, saa, then becomes the
problem of finding out the ai producing the maximum=minimum saa. This is a constrained
maximum=minimum problem because na is a unit vector, the ai must satisfy the relation:

aiai ¼ 1 (4:87)

We can obtain ai producing the maximum=minimum saa subject to the constraint of Equation 4.87
by using the Lagrange multiplier method [5,6]: Let f (ai) be defined as

f (ai) ¼ saa þ l(1� aiai) ¼ aisijaj þ l(1� aii) (4:88)

where l is a Lagrange multiplier. Then f will have maximum=minimum (extremum) values
when

@f =@ak ¼ 0, k ¼ 1, 2, 3 (4:89)

By substituting from Equation 4.88 into 4.89, we have

dkisijaj þ aisijdjk � 2laidik ¼ 0 (4:90)

where we have used Equation 4.53.* Then by using the properties of dij and the symmetry of s we
obtain

skjaj þ aisik � 2lak ¼ 0

or

skjaj ¼ lak (4:91)

By comparing Equations 4.59 and 4.91 we see that the values of the ai, which produce the
eigenvectors are the same ai, which produce extremal values (maximum=minimum) of the normal
stresses. Moreover, the Lagrange multipliers are the eigenvalues.

4.6.2 REAL SOLUTIONS OF THE HAMILTON–CAYLEY EQUATION

To see that the roots of the Hamilton–Cayley equation (Equation 4.63) are real, suppose
the contrary, that they are not real. Then, with the equation being a cubic polynomial, there

* Note that @ak=@ak is 0 if i 6¼ k and 1 if i¼ k, that is @ai=@ak¼ dik.
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will be one real root and a pair of complex conjugate roots [7]. Let these imaginary roots have
the form:

l ¼ mþ iy and �l ¼ m� iy (4:92)

with i being
ffiffiffiffiffiffiffi�1

p
.

With imaginary roots, the resulting eigenvectors will also be imaginary. That is, they will have
the form:

n ¼ uþ iv (4:93)

where u and v are real vectors. Then, from Equation 4.48 we have

s . n ¼ ln (4:94)

or

s . (uþ iv) ¼ (mþ iy)(uþ iv)

¼ (mu� yv)þ i(yuþ mv) (4:95)

Equating the real and imaginary parts (recalling that s is real), we have

s . u ¼ mu� yv (4:96)

and

s . v ¼ yuþ mv (4:97)

If we multiply the terms of Equation 4.96 by v and those of Equation 4.97 by u and subtract, we
obtain

v .s . u� u .s . v ¼ �y(v . vþ u . u) (4:98)

But, since s is symmetric, the left-hand side is zero and thus we have

0 ¼ y(v2 þ u2) (4:99)

Finally, since (v2þ u2) is positive (otherwise the eigenvector would be zero) we have

y ¼ 0 (4:100)

Therefore, from Equation 4.92, the roots (or eigenvalues) are found to be real.

4.6.3 MUTUALLY PERPENDICULAR UNIT EIGENVECTORS

Suppose that la and lb are distinct roots of the Hamilton–Cayley equation with corresponding unit
eigenvectors na and nb. Then, from Equation 4.48

s . na ¼ lana and s . nb ¼ lbnb (4:101)

If we multiply the first expression by nb and the second by na and subtract, we obtain

nb .s . na � na .s . nb ¼ (la � lb)na . nb (4:102)
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Since s is symmetric, the left-hand side of Equation 4.102 is zero and since la and lb are distinct,
we have

na . nb ¼ 0 (4:103)

That is, na is perpendicular to nb. Therefore, if we have three distinct eigenvalues, we will have three
mutually perpendicular unit eigenvectors.

Next, let na, nb, and nc be a set of mutually perpendicular unit eigenvectors and let them be
expressed as

na ¼ a1n1 þ a2n2 þ a3n3 ¼ aini

nb ¼ b1n1 þ b2n2 þ b3n3 ¼ bini

nc ¼ c1n1 þ c2n2 þ c3n3 ¼ cini

(4:104)

where the ni form a convenient set of mutually perpendicular unit vectors. In matrix form, these
equations may be written as

na

nb

nc

2

4

3

5 ¼
a1 a2 a3
b1 b2 b3
c1 c2 c3

2

4

3

5
n1

n2

n3

2

4

3

5 ¼ S

n1

n2

n3

2

4

3

5 (4:105)

where T is a matrix defined by inspection. Since na, nb, nc and n1, n2, n3 are mutually perpendicular
unit vector sets, it is readily seen that S is an orthogonal matrix. That is, the inverse is the transpose.
Therefore, we can readily solve Equation 4.105 for the ni as

n1
n2
n3

2
4

3
5 ¼ ST

na
nb
nc

2
4

3
5 ¼

a1 b1 c1
a2 b2 c2
a3 b3 c3

2
4

3
5

na
nb
nc

2
4

3
5 (4:106)

or

n1 ¼ a1na þ b1nb þ c1nc

n2 ¼ a2na þ b2nb þ c2nc

n3 ¼ a3na þ b3nb þ c3nc

(4:107)

Recall that since la, lb, and lc are eigenvectors (or principal stresses) and na, nb, and nc are unit
eigenvectors, the stress dyadic s may be expressed as

s ¼ sijninj ¼ lanana þ lbnbnb þ lcncnc (4:108)

Then, by substituting from Equations 4.105 and 4.106, we obtain the expression:

a1 a2 a3
b1 b2 b3
c1 c2 c3

2
4

3
5

s11 s12 s13

s21 s22 s23

s31 s32 s33

2
4

3
5

a1 bl c1
a2 b2 c2
a3 b3 c3

2
4

3
5 ¼

la 0 0

0 lb 0

0 0 lc

2
4

3
5 (4:109)

By comparing Equation 4.109 with Equations 4.83 and 4.84, we see that ST¼ T and S¼ TT

(see Section 4.5.1).
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4.6.4 MULTIPLE (REPEATED) ROOTS OF THE HAMILTON–CAYLEY EQUATION

If two of the roots of Equation 4.63 are equal, or if all three roots are equal, there still exist sets
of mutually perpendicular unit eigenvectors. To see this, recall from algebraic analysis that finding
the roots of a polynomial equation is equivalent to factoring the equation [7]. That is, if we know the
roots, say l1, l2 and l3, of Equation 4.63, we know the factors. This means that the following
equations are equivalent:

l3 � sIl
2 þ sIIl� sIII ¼ 0 (4:110)

and

(l� l1)(l� l2)(l� l3) ¼ 0 (4:111)

By expanding Equation 4.111 and then comparing the coefficients with those of Equation 4.110 we
see that

l1 þ l2 þ l3 ¼ sI (4:112)

l1 þ l2 þ l2l3 þ l3l1 ¼ sII (4:113)

l1l2l3 ¼ sIII (4:114)

Now, suppose that two of the roots, say l1 and l2, are equal. Let nb and nc be unit eigenvectors
associated with roots l2 and l3. Then, with l2 and l3 being distinct, the foregoing analysis (Section
4.6.3) shows that nb and nc are perpendicular. Let na be nb� nc. Then, na, nb, and nc form a
mutually perpendicular set of unit vectors.

Consider the vector s . na. Since na, nb, and nc form a mutually perpendicular set, let s . na be
expressed as

s . na ¼ ana þ bnb þ gnc (4:115)

where a, b, and g are scalars to be determined. Observe that, being a dyadic, s may be expressed as

s ¼ s . I ¼ s . (nana þ nbnb þ ncnc)

¼ (s . na)na þ (s . nb)nb þ s . nc)nc (4:116)

where I is the identity dyadic (see Equation 4.56). Since na and nb are unit eigenvectors, we have
(see Equation 4.49)

s . nb ¼ l2nb and s . nc ¼ l3nc (4:117)

By substituting from Equations 4.115 and 4.117 into 4.116 s is seen to have the form:

s ¼ (ana þ bnb þ gnc)na þ l2nbnb þ l3ncnc

¼ anana þ bnbna þ gncna þ l2nbnb þ l3ncnc (4:118)

Relative to na, nb, and nc, the matrix s of s is then

s ¼
a 0 0
b l2 0
g 0 l3

2

4

3

5 (4:119)
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But since s must be symmetric, we have

b ¼ g ¼ 0 (4:120)

Hence, s becomes

s ¼ anana þ g2nbnb þ l3ncnc (4:121)

and s . na is

s . na ¼ ana (4:122)

Therefore na is also a unit eigenvector. Moreover, from Equation 4.122 we see that

aþ l2l3 ¼ l1 þ l2 þ l3 (4:123)

That is,

a ¼ l1 ¼ l2 (4:124)

It happens that any unit vector parallel to the plane of na and nb is a unit eigenvector. To see this, let
n be the unit vector

n ¼ ana þ bnb (4:125)

with a2þ b2¼ 1. Then,

s . n ¼ s . (ana þ bnb) ¼ as . na þ bs . nb

¼ al1na þ bl2nb ¼ l1(ana þ bnb)

¼ l1n (4:126)

Thus, n is a unit eigenvector.
Similarly, suppose that all three roots of the Hamilton–Cayley equation are equal. That is,

l1 ¼ l2 ¼ l3 ¼ l (4:127)

Let na be a unit eigenvector associated with the root l and let nb and nc be unit vectors
perpendicular to na and to each other. Then we have the expressions:

s . na ¼ lna (4:128)

and

s . nb ¼ ana þ bnb þ gnc, s . nc ¼ âna þ b̂nb þ ĝnc (4:129)

The objective is thus to determine a, b, g, â, b̂, and ĝ.
From Equation 4.116, s may then be expressed as

s ¼ lnana þ (ana þ bnb þ gnc)nb þ (âna þ b̂nb þ ĝnc)nc

¼ lnana þ ananb þ ânanc

þ 0nbna þ bnbnb þ b̂nbnc

þ 0ncna þ gncnb þ ĝncnc (4:130)
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Relative to na, nb, and nc, the matrix s of s is then

s ¼
l a â
0 b b̂
0 g ĝ

2

4

3

5 (4:131)

Since s is to be symmetric, we have

a ¼ â ¼ 0 and b̂ ¼ g (4:132)

By using Equations 4.112 through 4.114 and Equations 4.127 and 4.131 we see that

sI ¼ lþ bþ ĝ ¼ 3l (4:133)

sII ¼ (bĝ � g2)þ lĝ þ lb ¼ 3l2 (4:134)

sIII ¼ l(bĝ � g2) ¼ l3 (4:135)

(Recall that sI, sII, and sIII are respectively the sums of the diagonal elements, the sum of the
diagonal elements of the matrix of cofactors, and the determinant of the stress matrix.) These
equations are found to be redundant,* but a simple solution will be

b ¼ ĝ ¼ l and g ¼ 0 (4:136)

Equations 4.129 then become

s . nb ¼ lnb and s . nc ¼ lnc (4:137)

Therefore, nb and nc are unit eigenvectors. In this case, when all three roots of the Hamilton–Cayley
equation are equal, every unit vector is a unit eigenvector. To see this let n be the unit vector.

n ¼ ana þ bnb þ cnc (4:138)

with a2þ b2þ c2¼ 1. Then,

s . n ¼ s . (ana þ bnb þ cnc)

¼ as . na þ bs . nb þ cs . nc

¼ alna þ blnb þ clnc
¼ l(anc þ bnb þ cnc)

¼ ln (4:139)

4.7 STRESS ELLIPSOID

We can obtain a useful geometrical interpretation of the eigenvalue analysis by regarding the
product s . p as an operator on the vector p. That is, as an operator, s transforms the vector p
into the vector q as

s . p ¼ q (4:140)

* Observe that the issue of redundancy in Equations 4.133 through 4.135 may be addressed by considering an analogous

two-dimensional analysis with a stress matrix b b̂
g ĝ

� �
.
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Let p be a position vector from the origin of a Cartesian axis system to the surface of the unit sphere.
Specifically, let p have the form:

p ¼ xna þ ynb þ znc (4:141)

with

x2 þ y2 þ z2 ¼ 1 (4:142)

and with na, nb, and nc being mutually perpendicular unit eigenvectors. (That is, let the X-, Y-, and
Z-axes be along the principal directions of the stress of a body at a point.) Then s . p becomes

s . p ¼ s � (xna þ ynb þ znc) ¼ l1xna þ l2ynb þ l3znc (4:143)

From Equation 4.140, if we let q be s . p and express q in the form:

q ¼ Xna þ Ynb þ Znc (4:144)

then we have

X ¼ l1x, Y ¼ l2y, Z ¼ l3z (4:145)

Using Equation 4.142 we then have

X2

l21
þ Y2

l22
þ Z2

l23
¼ 1 (4:146)

We can recognize Equation 4.146 as the equation of an ellipsoid with center at the origin and
semimajor axes: l1, l2, and l3. This ellipsoid is called the ‘‘stress ellipsoid.’’ In Equations 4.140 and
4.142, if we think of p as a unit vector, then q is a stress vector and the units of X, Y, and Z are the
units of stress.

If n is an arbitrary unit vector, we see from Equation 4.24 that the stress vector Sn associated
with n is

Sn ¼ s . n (4:147)

The normal stress Snn (or snn) on a plane normal to n is then

Snn ¼ n .s . n (4:148)

From Equations 4.140 and 4.142, p is a unit vector, we can identify p with n and then using
Equation 4.144 we have

snn ¼ n .s . n ¼ n . q

¼ n . (Xna þ Ynb þ Znc) (4:149)

Therefore, we can interpret snn as the distance from the origin of the stress ellipsoid to a point Q on
the surface of the ellipsoid, where n is parallel to OQ. Observe then that the maximum and
minimum stresses will occur in the directions of the principal stresses with values among the
eigenvalues (l1, l2, l3.), or the semimajor and semiminor axes lengths.
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Finally, observe from the ellipsoid equation that if two of the eigenvalues, say l1 and l2 are
equal, then the ellipsoid has a circular cross section. If all three eigenvalues are equal, the ellipsoid
becomes a sphere and we have a state of ‘‘hydrostatic pressure’’ (see Section 4.5.2).

4.8 MAXIMUM SHEAR STRESS

Consider again the stress dyadic s at a point on a loaded elastic body. Let l1, l2, and l3 be the
values of the principal stresses and let a1, a2, and a3 be the corresponding mutually perpendicular
unit eigenvectors. Then from Equation 4.49 we have

s . a1 ¼ l1a1, s . a2 ¼ l2a2, s . a3 ¼ l3a3 (4:150)

Next, let n1, n2, and n3 be any convenient set of mutually perpendicular vectors and let na and nb
be an arbitrary pair of perpendicular unit vectors with components ai and bi relative to the ni
(i¼ 1, 2, 3). That is,

na ¼ aini and nb ¼ bini (4:151)

Then, the shear stress sab for the directions of na and nb is

sab ¼ na .s . nb ¼ ajsijbj (4:152)

Observe that since na and nb are perpendicular unit vectors we also have the relations:

aiai ¼ 1, bibi ¼ 1, aibi ¼ 0 (4:153)

Now, suppose that we are interested in finding the directions of na and nb producing the maximum
values of the shear stress sab. Then, we will be looking for the ai and bi, subject to the conditions of
Equations 4.153, so that aisijbj is maximum. Using the Lagrange multiplier method [56], we are
looking for the ai and bi, which maximize the function: f(ai, bi) given by

f ¼ aisijbj þ a(1� aiai)þ b(1� bibi)þ g(0� aibi) (4:154)

where a, b, and g are Lagrange multipliers and the parenthetical expressions are obtained from
Equations 4.153. Then if f is to be maximum, we must have

@f=@ai ¼ 0 and @f=@bi ¼ 0 (4:155)

or from Equation 4.154,

@f=@ai ¼ sijbj � 2aai � gbi ¼ 0 (4:156)

and

@f=@bi ¼ aisji � 2bbi � gai ¼ 0 (4:157)

Equations 4.156 and 4.157 may be written in index-free notation as

s . nb ¼ 2ana þ gnb (4:158)

Huston/Practical Stress Analysis in Engineering Design DK4291_C004 Final Proof page 46 4.11.2008 12:42pm Compositor Name: JGanesan

46 Practical Stress Analysis in Engineering Design



and

s . na ¼ 2bnb þ gna (4:159)

By taking the scalar product of these equations with na and nb, we obtain

na .s . nb ¼ sab ¼ 2a, nb .s . nb ¼ sbb ¼ g (4:160)

nb .s . na ¼ sba ¼ 2b, na .s . na ¼ saa ¼ g (4:161)

Since sab¼sba we have a¼b. Then, by successively adding and subtracting Equations 4.158 and
4.159 we obtain the expressions:

s . (na þ nb) ¼ (2aþ g)(na þ nb) (4:162)

and

s . (na � nb) ¼ (g � 2a)(na � nb) (4:163)

Equations 4.162 and 4.163 are identical to Equation 4.49 with (naþ nb) and (na� nb) now being
eigenvectors, and (2aþ g) and (g� 2a) being the eigenvalues. Therefore, (na þ nb)

ffiffiffi
2

p	
and

(na � nb)
ffiffiffi
2

p	
are unit eigenvectors along the directions of the principal stresses, and (2aþ g)

and (g� 2a) are thus values of the principal stresses. Observe further that (na þ nb)
ffiffiffi
2

p	
and

(na � nb)
ffiffiffi
2

p	
are perpendicular to each other and that na and nb are at 458 angles to

(na þ nb)
ffiffiffi
2

p	
and (na � nb)

ffiffiffi
2

p	
respectively. That is, the maximum values of the shear stress

occur on planes bisecting the planes of the principal stresses. Thus, with (2aþ g) and (2a� g)
being values of the principal stresses, we can make the assignments

2a1 þ g1 ¼ l1, 2a2 þ g2 ¼ l2, 2a3 þ g3 ¼ l3 (4:163)

g1 � 2a1 ¼ l2, g2 � 2a2 ¼ l3, g3 � 2a3 ¼ l1 (4:164)

By solving for 2a1, 2a2, and 2a3 we obtain

2a1 ¼ (l1 � l2)=2, 2a2 ¼ (l2 � l3)=2, 2a3 ¼ (l3 � l1)=2 (4:165)

But, from Equations 4.160 and 4.161, we see that these are the values of the maximum shear stresses.
From these results, we see that large shear stresses occur when there are large differences in the

values of the principal stresses and that if a material fails in shear the failure will occur in directions
at 458 relative to the direction of the principal stresses.

4.9 TWO-DIMENSIONAL ANALYSIS—MOHR’S CIRCLE

We can obtain additional insight into the concepts of principal stresses and maximum shear stresses
by considering a two-dimensional analysis where the stress is primarily planar, or with the shear
stresses in a given direction being zero. Consider, for example, the following stress matrix:

s ¼ [sij] ¼
s11 0 0
0 s22 s23

0 s32 s33

2
4

3
5 (4:166)
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where the subscripts i and j refer to mutually perpendicular unit vectors ni (i¼ 1, 2, 3), parallel to
X,Y,Z coordinate axes, with the stress dyadic s having the usual form:

s ¼ nisijnj (4:167)

In this context, we see that n1 is a unit eigenvector and s11 is a principal stress. By following the
procedures in Section 4.5, we can easily obtain the other two unit eigenvectors and principal
stresses.

To this end, observe that with a stress distribution as in Equation 4.166, the determinantal
expression of Equation 4.62 becomes

(s11 � l) 0 0
0 (s32 � l) s23

0 s32 (s33 � l)

2
4

3
5¼ 0 (4:168)

By expanding the determinant, the Hamilton–Cayley equation takes the simplified form:

(l� s11)[l
2 � (s22 þ s33)lþ s22s33 � s2

23] ¼ 0 (4:169)

where, due to the symmetry of the stress matrix, s32¼s23. By solving Equation 4.169 for lwe obtain

l1 ¼ s11 and l2,l3 ¼ s22 þ s33

2
� s22 � s33

2


 �2
þs2

23

� �1=2
(4:170)

Let na be a unit eigenvector with components ai relative to the ni (i¼ 1, 2, 4). Then, from Equations
4.61 and 4.67, ai must satisfy the equations:

(s11 � l)a1 þ 0a2 þ 0a3 ¼ 0

0a1 þ (s22 � l)a2 þ s23a3 ¼ 0

0a1 þ s23a2 þ (s33 � l)a3 ¼ 0

a21 þ a22 þ a23 ¼ 1

(4:171)

with the first three being dependent. One immediate solution is

a(1)1 ¼ 1, a(1)2 ¼ a(1)3 ¼ 0 (4:172)

with the corresponding unit eigenvector being

n(1)a ¼ n1 (4:173)

To obtain the other two unit eigenvectors, observe that these vectors will be parallel to the Y–Z plane
as depicted in Figure 4.15, where the inclination of the unit eigenvectors is determined by the angle
u as shown. Then n(2)a and n(3)a may be expressed as

n(2)a ¼ cos un2 þ sin un3 and n(3)a ¼ �sin un2 þ cos un3 (4:174)

and thus the components a(2)i and a(3)i are

a(2)1 ¼ 0, a(2)2 ¼ cos u, a(2)3 ¼ sin u (4:175)

a(3)1 ¼ 0, a(3)2 ¼ �sin u, a(3)3 ¼ cos u (4:176)
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Observing Equations 4.175 and 4.176, the fourth expression of Equation 4.171 is similarly satisfied.
The first expression of Equation 4.171 is also satisfied by the first unit eigenvector components. This
leaves the second and third equations, which are dependent. For the second unit eigenvector, these
are equivalent to the single equation:

(s22 � l) cos uþ s23 sin u ¼ 0 (4:177)

Solving for tan u we obtain

tan u ¼ � s22 � l2
s23

� �
¼ l2

s23
� s22

s23
(4:178)

By substituting for l2 from Equation 4.170, we have

tan u ¼ s33 � s22

2s23

� �
þ s22 � s33

2s23

� 
2

þ 1

" #1=2

(4:179)

By solving for the radical expression, squaring and simplifying, we obtain

tan2 u� s33 � s22

s23

� �
tan u� 1 ¼ 0

or

sin2 uþ s22 � s33

s23

� �
sin u cos u� cos2 u ¼ 0

or

s22 � s33

2s23

� �
sin 2u ¼ cos 2u

thus,

tan 2u ¼ 2s23

s22 � s33
(4:180)

θ

na na

Z

Y

n3

n2

(3) (2)

FIGURE 4.15 Unit eigenvectors parallel to the Y–Z plane.
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For the third unit eigenvector and the third eigenvalue, the second expression of Equation 4.171
becomes

(s22 � l3)(�sin u)þ s23 cos u ¼ 0 (4:181)

By substituting for l3 from Equation 4.170 and simplifying we again obtain

tan 2u ¼ 2s23

s22 � s33
(4:182)

Although Equations 4.180 and 4.182 are the same, they still produce two values of u differing by
p=2 radians. That is,

tan 2(uþ p=2) � tan 2u (4:183)

so that

u ¼ tan�1 s23

s22 � s33

� 

and u ¼ (p=2)þ tan�1 s23

s22 � s33
(4:184)

Equation 4.184 determines the inclination of the unit eigenvectors n(2)a and n(3)a in the Y–Z plane.
That is, once the value of u is known from Equation 4.184, Equations 4.175 and 4.176, then the
components of n(2)a and n(3)a relative to the ni unit vector system can be determined.

Suppose we select n(1)a , n(2)a , and n(3)a as a basis system and for simplicity, let us rename these
vectors simply as a1, a2, and a3. That is, let

n(i)a ¼ ai (i ¼ 1, 2, 3) (4:185)

Suppose that âi (i¼ 1, 2, 3) form a mutually perpendicular set of unit vectors with â1 parallel to a1
and â2 and â3 inclined at an angle f relative to a2 and a3 as in Figure 4.16. Suppose further that we
are interested in determining the stresses in the directions of â1, â2, and â3. To this end, recall that
since the ai are unit eigenvectors, the stress dyadic s expressed in terms of ai has the relatively
simple form:

s ¼ sijaiaj ¼ l1a1a1 þ l2a2a2 þ l3a3a3 (4:186)

with the stress matrix being

s ¼
l1 0 0
0 l2 0
0 0 l3

2
4

3
5 (4:187)

ˆ

q

a1, â1 

a2

a3a3

a2ˆ

FIGURE 4.16 Unit vector inclinations.
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Let S be a transformation matrix between the ai and âi systems with elements of S being Sij
defined as

Sij ¼ ai . âj (4:188)

From Figure 4.16, S is then seen to be

S ¼ [Sij] ¼
1 0 0

0 cosf �sinf

0 sinf cosf

2
64

3
75 (4:189)

Next, let the stress dyadic s be expressed in terms of the âi system as

s ¼ ŝijâiâj (4:190)

with the stress matrix ŝ then being

ŝ ¼
ŝ11 ŝ12 ŝ13

ŝ21 ŝ22 ŝ23

ŝ31 ŝ32 ŝ33

2
64

3
75 (4:191)

From the definition of Equation 4.188, we can relate the ai and the âi unit vectors by the relations:

ai ¼ Sijâj and âi ¼ Sjiaj (4:192)

By substituting in Equation 4.190, we obtain the relation:

ŝij ¼ SkiSljskl ¼ SkisklSlj (4:193)

or in the matrix form:

ŝ ¼ STsS (4:194)

By substituting from Equations 4.187 and 4.189 we have

ŝ ¼
1 0 0

0 cosf sinf

0 �sinf cosf

2
64

3
75

l1 0 0

0 l2 0

0 0 l3

2
64

3
75

1 0 0

0 cosf �sinf

0 sinf cosf

2
64

3
75

or

ŝ ¼
l1 0 0

0 (l2 cos
2 fþ l3 sin

2 f) (l3 � l2) sinf cosf

0 (l3 � l2) sinf cosf (l2 sin
2 fþ l3 cos

2 f)

2

64

3

75 (4:195)

Therefore, we have the relation:

ŝ11 ¼ s11 ¼ l1 (4:196)
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ŝ22 ¼ l2 cos
2 fþ l3 sin

2 f ¼ l2 þ l3
2

þ l2 � l3
2

cos 2f (4:197)

ŝ33 ¼ l2 sin
2 fþ l3 cos

2 f ¼ l2 þ l3
2

� l2 � l3
2

cos 2f (4:198)

and

ŝ23 ¼ ŝ32 ¼ (l3 � l2) sinf cosf ¼ � l2 � l3
2

sin 2f (4:199)

Equations 4.197 through 4.199 may be represented graphically as in Figure 4.17, where we have
constructed a ‘‘stress circle’’ with radius (l2� l3)=2, positioned on a horizontal axis, which
represents the normal stresses: ŝ22 and ŝ33. The vertical axis represents the shear stress: ŝ23. The
center of the circle is placed on the horizontal axis at the average stress: (l2þ l3)=2. With this
construction, we can see that the stresses of Equations 4.197 through 4.199 are represented by the
ordinates and abscissas of the points A and B on the circle at opposite ends of a diameter inclined at
2f to the horizontal as in Figure 4.18. This construction for planar stress computation is commonly
known as ‘‘Mohr’s circle.’’

Also, observe that the maximum shear stress occurs on surfaces inclined at 458 relative to the
directions of the principal stresses.

l3 l2

s23

s22, s33

ˆ

ˆ ˆ

FIGURE 4.17 Stress circle.

l3 l22f

A

s23ˆ

s22ˆ
s33ˆ

s23ˆ

FIGURE 4.18 Mohr’s circle for planar stress computations.
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SYMBOLS

A Area
a Vector
ai (i¼ 1, 2, 3) Components of a or na along ni
Ax, Ay, Az Projections of area A normal to X,Y, Z
B Body
b Vector
bi (i¼ 1, 2, 3) Components of b along ni
BL Left side of B
BR Right side of B
d Dyadic
E Rectangular element
g Gravity acceleration
I Identity dyadic
ni (i¼ 1, 2, 3) Mutually perpendicular unit vectors
n̂i (i¼ 1, 2, 3) Mutually perpendicular unit vectors
O Origin
P Point
P Force
M Couple torque
N Cutting or dividing plane
N̂ Cutting or dividing plane
n Unit vector
na Unit eigenvectors
nx, ny, nz Mutually perpendicular unit vectors
nx, ny, nz Components of n along nx, ny, nz
p, q Position vectors
R Surface region
S Stress vector
Ŝ Stress vector
Sn Stress vector on a plane normal to n
Snx, Sny, Snz Components of Sn along nx, ny, nz
Sx, Sy, Sz Components of S along nx, ny, nz
T Tetrahedron, Transformation matrix
Tij Direction cosines defined by Equation 4.44
TT Transpose of T
V Vector
vi Components of V along ni
xi (i¼ 1, 2, 3) x, y, z
X, Y, Z Cartesian (rectangular) coordinate axes
Dx, Dy, Dz Edges of rectangular element
d Unit matrix
dij Kronecker’s delta symbol, defined by Equation 4.53, Elements of d
l Eigenvalue
l1, l2, l3 Eigenvalues
r Mass density
s Stress dyadic
s Stress vectors
sij (i, j¼ x, y, z) Stress components
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ŝij (i¼ 1, 2, 3) Stress components
sI, sII, sIII Hamilton–Cayley equation coefficient defined by Equations 4.63 through

4.66
t Shear stress
tij (i, j¼ x, y, z) Shear stress components
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5 Strain in Two and Three
Dimensions

5.1 CONCEPT OF SMALL DISPLACEMENT

Just as with stress, we can generalize the concepts of simple strain and simple shear strain from one
dimension to two and three dimensions. For most engineering materials, the displacements and
deformations are small under usual loadings. (Exceptions might be with polymers and biomaterials.)
For small displacements, we can neglect products of displacements and products of displacement
derivatives when compared to linear terms. This allows us to make a linear analysis, and thus, a
simplified analysis.

Even though the analysis is linear, it may still provide insight into the structures and structural
components where the displacements and deformations are not small, as with some polymer and
biomaterials. Linear analyses for such materials simply become more valid, as the displacements
and deformations become smaller.

5.2 TWO-DIMENSIONAL ANALYSES

Consider a small square element E of an elastic body as it would appear before and after
deformation as in Figure 5.1 where the deformation is exaggerated for analysis convenience. Let
the vertices of E before and after deformation be A, B, C, D and A0, B0, C0, D0 respectively and let the
initial sides of E be Dx and Dy (with Dx¼Dy).

Let X–Y be a Cartesian axis system parallel to the edges of E before deformation. Let the X–Y
components of the displacement of vertex A (to A0) be u and n. Then the displacements of the other
vertices of Emay be approximated by using a truncated Taylor series expansion. For verticesB andD,
the X–Y displacements are

X Y

Vertex B: uþ @u

@x
Dxþ 1

2!
@2u

@x2
Dx2 þ � � � n þ @n

@x
Dxþ 1

2!
@2n

@x2
Dx2 þ � � � (5:1)

Vertex D: uþ @u

@y
Dyþ 1

2!
@2u

@y2
Dy2 þ � � � n þ @n

@y
Dyþ 1

2!
@2n

@y2
Dy2 þ � � � (5:2)

To measure the deformation of E, during the displacement, it is convenient to superimpose the
before and after representations of Figure 5.1 as in Figure 5.2 where we have neglected the higher
order terms of the Taylor series expansion.

As a generalization of the concept of simple strain (see Chapter 2), we can define the strain
in the X and Y directions as the normalized elongation (elongation per unit length) of the element
E in the X and Y directions. Specifically, the strain in the X direction, written as «x, may be
approximated as
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«x ¼ jA0 B0j � jABj
Dx

¼
Dxþ @u

@xDx
� �2þ @n

@xDx
� �2h i1=2

�Dx

Dx

¼ Dx2 þ 2 @u
@xDx

2
� �1=2�Dx

Dx
¼ Dx 1þ 1

2 (2)
@u
@x

� �� Dx

Dx

¼ @n

@y
(5:3)

where we have used a binomial expansion [1] and neglected quadratic and higher powers of Dy to
approximate the square root. Similarly, the strain in the Y-direction, «y, is approximately

«y ¼ jA0 D0j � jADj
Dy

¼
Dyþ @n

@y Dy
� �2

þ @u
@yDy

� �2
� 	1=2

�Dy

Dy

¼
Dy2 þ 2 @n

@yDy
2

h i1=2
�Dy

Dy
¼

Dy 1þ 1
2 (2)

@n
@y

h i
� Dy

Dy

¼ @n

@y
(5:4)

Observe again that the approximation used in obtaining Equations 5.3 and 5.4 become increasingly
valid the smaller Dx, Dy, @u=@x and @n=@y become.

E

Y

X
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Before deformation After deformation

FIGURE 5.1 Square element E before and after deformation.
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FIGURE 5.2 Superposition of deformed and undeformed element.
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5.3 SHEAR STRAIN

Consider again the superposed deformed and undeformed element E of Figure 5.2. Consider the
distortion of the element from a square to a rhombic shape. We can quantify the distortion by
the shear strain as we did earlier with simple tangential loading (see Figure 2.10). For example, at A,
the shear strain, written as gxy, is the difference between the angle u0 shown in Figure 5.3 and p=2.
That is,

gxy ¼ p=2� u0 (5:5)

From Figure 5.3 we see that u0 is

u0 ¼ p=2� @u

@y
Dy


 ��
Dy� @n

@x
Dx


 ��
Dx

¼ p=2� @u

@y
� @n

@x
(5:6)

Then, by substitution from Equation 5.6 into 5.5, we have

gxy ¼
@u

@y
þ @n

@x
(5:7)

Referring again to Figure 5.3 and Equation 5.7, we can think of the shear strain gxy as the sum of the
angles cx and cy shown in Figure 5.4. By comparing Figures 5.3 and 5.4 we see that these angles are

C

B

C�

B�

ΔxA, A�

q'
Δy

∂v
∂y

Δy
∂v
∂x Δx

∂x
∂u Δx

∂u
∂y Δy

FIGURE 5.3 Superposition of deformed and undeformed element.
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ψy

(= ∂u/∂y)

(= ∂v/∂x)

FIGURE 5.4 Distortion angles.
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simply @v=@x and @u=@y. Since these angles are not equal in general, it is often convenient to think
of the shear strain as the average value of the angles (measured in radians) and designated by «xy.
That is,

«xy ¼ 1=2
@u

@y
þ @v

@x


 �
¼ (1=2)gxy (5:8)

To distinguish these two shear strains «xy is sometimes called the ‘‘mathematical shear strain’’ and
gxy the ‘‘engineering shear strain.’’

5.4 DISPLACEMENT, DEFORMATION, AND ROTATION

Unfortunately the terms ‘‘displacement’’ and ‘‘deformation’’ are occasionally used interchangeably
suggesting that they are the same. To be precise, we should think of ‘‘displacement’’ at a point P on
an elastic body B as simply the movement of P during the loading of B. Displacement can occur
with or without deformation. For example, an elastic body can undergo a ‘‘rigid body’’ movement
where the points of the body have relatively large displacements but the body itself has no
deformation. On the other hand, ‘‘deformation’’ refers to a distortion, or change in shape,
of a body. Whereas displacement can occur without deformation, deformation always involves
displacement.

As an illustration, consider a cantilever beam with an end load as in Figure 5.5. Consider a small
element E of the beam near the end and at the center (on the neutral axis) of the beam as shown in
exaggerated view in Figure 5.6. For all practical purposes, E simply translates and rotates, but it is
not deformed.

In general, an element within a loaded elastic body will undergo deformation, translation, and
rotation. ‘‘Deformation’’ may be measured and represented by the normal and shear strains defined
in Sections 5.2 and 5.3. ‘‘Translation’’ is simply a measure of the change of position of the element.
‘‘Rotation,’’ however, prompts further consideration: consider again a small square element E, with
vertices A, B, C, D, before and after loading as in Figure 5.7. We can visualize the rotation by

P

Before loading After loading

FIGURE 5.5 Cantilever beam before and after end force loading.

E E

P

Before loading After loading

FIGURE 5.6 A small element (in exaggerated view) in the center near the end of the cantilever beam of
Figure 5.5.
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eliminating the translation: that is, by superposing the before and after representations as in
Figure 5.8. We can further isolate the rotation by eliminating the strain as in Figure 5.9, resulting
in a representation of the element rotation. We can then quantify the rotation of the element in terms
of the rotation of its diagonal AC, which in turn is approximately equal to the average of the
rotations of the sides AB and AC. With counterclockwise rotation assigned as positive (that is,
dextral rotation about the Z-axis), the element rotation vz is then approximately

vz ¼ 1=2(@v=@x� @u=@y) (5:9)

5.5 GENERALIZATION TO THREE DIMENSIONS

The foregoing concepts and results are readily generalized to three dimensions: let P be a point on
an elastic body B, which is subjected to a general loading as in Figure 5.10. Prior to the loading of B,
let P be at the lower rear vertex of a small cubical element E with sides parallel to the coordinate
axes and having lengths Dx, Dy, Dz (all equal) as represented in Figure 5.11. Then, as B is loaded
and deformed, we can imagine E as being translated and rotated and also deformed as in Figure
5.12. We can visualize normal strains along the elongated (or shortened) edges of E and shear
strains, as the faces of E are no longer at right angles to one another, and also visualize the
translation and rotation of the element itself.
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X
O
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BA
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B�A�O

Y

X
Before deformation After deformation

FIGURE 5.7 Square element E before and after deformation.
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D�
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Y
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FIGURE 5.8 Superposition of deformed and undeformed element representation.

Huston/Practical Stress Analysis in Engineering Design DK4291_C005 Final Proof page 59 3.11.2008 12:22pm Compositor Name: JGanesan

Strain in Two and Three Dimensions 59



D C

BA

C�

Y

X

∂v/∂x

−∂u/∂y

FIGURE 5.9 Element rotation.
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FIGURE 5.10 A loaded elastic body B and a point P in the interior of B.
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FIGURE 5.11 A small cubical element E of an elastic body.
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FIGURE 5.12 Translated, rotated, and deformed element E of a loaded elastic body.
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Let the displacement of P relative to a convenient set of XYZ axes be u, v, w respectively. Then,
as an immediate generalization of Equations 5.3 and 5.4, we obtain the strains along the edges of E
intersecting at P as

«x ¼ @u

@x
, «y ¼ @v

@y
, «z ¼ @w

@z
(5:10)

Similarly, as generalizations of Equations 5.7 and 5.8, the engineering and mathematical shear
strains measuring the angle changes of the faces of E intersecting at P are

gxy ¼
@u

@y
þ @v

@x
, gyz ¼

@v

@z
þ @w

@y
, gzx ¼

@w

@x
þ @u

@z
(5:11)

and

«xy ¼ 1
2

@u

@y
þ @v

@x


 �
, «yz ¼ 1

2
@v

@z
þ @w

@y


 �
, «zx ¼ 1

2
@w

@x
þ @u

@z


 �
(5:12)

As a generalization of Equation 5.9, we obtain expressions for the rotation of E about the X, Y, and
Z axes as

vx ¼ 1
2

@w

@x
� @u

@y


 �
, vy ¼ 1

2
@v

@z
� @w

@y


 �
, vz ¼ 1

2
@u

@y
� @v

@x


 �
(5:13)

Observe the patterns in terms of Equations 5.10 through 5.13: these patterns become evident if we
rename variables as

x ! x1, y ! x2, z ! x3
u ! u1, v ! u2, w ! u3
«x ! «11, «y ! «22, «z ! «33
gxy ! g12, gyz ! g23, gzx ! g31

«xy ! «12, «yz ! «23, «zx ! «31
vz ! v12, vy ! v23, vx ! v31

(5:14)

Then, Equations 5.10 through 5.13 become

«11 ¼ @u1
@x1

, «22 ¼ @u2
@x2

, «33 ¼ @u3
@x3

(5:15)

g12 ¼
@u1
@x2

þ @u2
@x1


 �
, g23 ¼

@u2
@x3

þ @u3
@x2


 �
, g31 ¼

@u3
@x1

þ @u1
@x3


 �
(5:16)

«12 ¼ 1
2

@u1
@x2

þ @u2
@x1


 �
, «23 ¼ 1

2
@u2
@x3

þ @u3
@x2


 �
, «31 ¼ 1

2
@u3
@x1

þ @u1
@x3


 �
(5:17)

v12 ¼ 1
2

@u1
@x2

� @u2
@x1


 �
, v23 ¼ 1

2
@u2
@x3

� @u3
@x2


 �
, v31 ¼ 1

2
@u3
@x1

� @u1
@x3


 �
(5:18)
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The respective terms of these equations are of the same form and they can be generated from one
another by simply permutating the numerical indices (that is, 1! 2, 2! 3, and 3! 1). With this
observation, we can simplify the terms in the equations by introducing the notation:

@( )=@xi ¼D ( ),i (i ¼ 1, 2, 3) (5:19)

Then, Equations 5.15 and 5.17 may be written in the compact form:

«ij ¼ 1
2
(ui, j þ uj,i) (i, j ¼ 1, 2, 3) (5:20)

Similarly, Equation 5.18 becomes

vij ¼ 1
2
(ui, j � uj,i) (i, j ¼ 1, 2, 3) (5:21)

Observe in Equation 5.20 that

«ij ¼ «ji (5:22)

Hence, if the «ij are placed into a strain array, or strain matrix, as

« ¼
«11 «12 «13
«21 «22 «23
«31 «32 «33

2
4

3
5 (5:23)

then « is symmetric (analogous to the stress matrix s of Chapter 4).

Observe further from Equation 5.21 that

vij ¼ �vji (5:24)

Hence, if vij are placed into a rotation array v as

v ¼
v11 v12 v13

v21 v22 v23

v31 v32 v33

2
4

3
5 (5:25)

we see that the diagonal terms are zero and that the corresponding off-diagonal terms are negative of
each other. That is, v is skew symmetric and it may be written as

v ¼
0 v12 v13

�v12 0 v23

�v13 �v23 0

2
4

3
5 ¼

0 vz �vx

�vz 0 vy

vz �vy 0

2
4

3
5 (5:26)

5.6 STRAIN AND ROTATION DYADICS

Just as the stress matrix elements are scalar components of the stress dyadic, the strain and rotation
matrix elements may be regarded as scalar components of strain and rotation dyadics. To this end,
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let n1, n2, and n3 be mutually perpendicular unit vectors parallel to the X, Y, and Z axes respectively.
Then the strain and rotation dyadics are simply

« ¼ «ijninj and v ¼ vijninj (5:27)

(As with the stress dyadic, we can regard the components of the strain and rotation dyadics as
‘‘tensor components.’’)

Observe further that with the strain dyadic being symmetric, we can perform an eigenvalue
analysis to obtain the values and the directions for the maximum and minimum strains. The
procedures of such analyses are exactly the same as the eigenvalue analysis for the stress
dyadic in Section 4.5. We can similarly also perform a Mohr circle analysis for two-dimensional
(or planar) problems.

5.7 STRAIN AND ROTATION IDENTITIES

Consider again the strain and rotation components expressed in Equations 5.20 and 5.21 as

«ij ¼ 1
2
(ui, j þ uj,i) and vij ¼ 1

2
(ui, j � uj,i) (5:28)

We see that both the strain and rotation depend directly upon the rate of change of the displacement
from point to point within the body—the so-called ‘‘displacement gradients’’: ui,j (or @ui=@xj).
Consider the following identity with the ui,j:

ui,j � 1
2
(ui,j þ uj,i)þ 1

2
(ui,j � uj,i) (5:29)

Observe that the terms on the right side of this identity are simply «ij and vij. That is,

ui,j � «ij þ vij (5:30)

Consider again the strain components:

«ij ¼ 1
2
(ui, j þ uj,i) ¼ 1

2
@ui
@xj

þ @uj
@xi


 �
(5:31)

If, during the course of an analysis, we are able to determine the strain components, we can regard
Equations 5.31 as a system of partial differential equations for the displacement components.
However, since Equation 5.31 is equivalent to six scalar equations, but that there are only three
displacement components, the system is overdetermined and thus unique solutions will not be
obtained unless there are other conditions or requirements making the equations consistent. These
conditions are usually called ‘‘compatibility conditions’’ or ‘‘compatibility equations.’’ In theoretical
discussion on elasticity and continuum mechanics (see for example, Refs. [2–9]), these compatibility
equations are developed in a variety of ways and are found to be [2–10]:

«ij,k‘ þ «k‘,ij � «ik,j‘ � «j‘,ik ¼ 0 (5:32)
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Since each of the indices has integer values 1, 2, and 3, there are a total of 81 of these equations.
However, due to symmetry of the strain matrix, and identities of mixed second partial derivatives,
only six of the equations are seen to be distinct. These are

«11,23 þ «23,11 � «31,12 � «12,13 ¼ 0

«22,31 þ «31,22 � «12,23 � «23,21 ¼ 0

«33,12 þ «12,33 � «23,31 � «31,32 ¼ 0

2«12,12 � «11,22 � «22,11 ¼ 0

2«23,23 � «22,33 � «33,22 ¼ 0

2«31,31 � «33,11 � «11,33 ¼ 0

(5:33)

It may be convenient to have Equations 5.33 expressed using the usual Cartesian coordinates: x, y, z.
In this convention, the compatibility equations are

@2«xx
@y@z

þ @2«yz
@x2

� @2«zx
@x@y

� @2«xy
@x@z

¼ 0

@2«yy
@z@x

þ @2«zx
@y2

� @2«xy
@y@z

� @2«yz
@y@x

¼ 0

@2«zz
@x@y

þ @2«xy
@z2

� @2«yz
@z@x

� @2«zx
@z@y

¼ 0

2
@2«xy
@x@y

� @2«xx
@y2

� @2«yy
@x2

¼ 0

2
@2«yz
@y@z

� @2«yy
@z2

� @2«zz
@y2

¼ 0

2
@2«zx
@z@x

� @2«zz
@x2

� @2«xx
@z2

¼ 0

(5:34)

Observe the pattern of the indices and terms of Equations 5.33 and 5.34.
Finally, in theoretical discussions (see for example Refs. [6,8,9]), it is asserted that only three of

the six compatibility equations are independent. This is consistent with the need to constrain the six
strain components to obtain a unique set of three displacement components (aside from rigid-body
movement). That is, with six equations and three unknowns, only three constraints are needed.

SYMBOLS

ni (i¼ 1, 2, 3) Mutually perpendicular unit vectors
u, v, w Displacements in X, Y, Z directions
ui (i¼ 1, 2, 3) Displacement
x, y, z Cartesian coordinates
X, Y, Z Cartesian (rectangular) coordinate axes
gxy, gyz, gzx Engineering shear strains (Sections 5.3 and 5.5)
g12, g23, g31 Engineering shear strains (Section 5.5)
Dx, Dy, Dz Element dimensions
« Strain matrix
« Strain dyadic
«ij (i, j¼ 1, 2, 3) Strain components
«x, «y, «z Normal strains in X, Y, Z direction
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«xy, «yz, «zx Mathematical shear strains (Sections 5.3 and 5.5)
v Rotation matrix
v Rotation dyadic
v12, v23, v31 Rotations
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6 Curvilinear Coordinates

6.1 USE OF CURVILINEAR COORDINATES

The formulation of the equilibrium equations for stress and the strain–displacement equations are
readily developed in Cartesian coordinates, as in Chapters 4 and 5. In practical stress–strain
analyses, however, the geometry often is not rectangular but instead cylindrical, spherical, or of
some other curved shape. In these cases, the use of curvilinear coordinates can greatly simplify the
analysis. But with curvilinear coordinates, the equilibrium equations and the strain–displacement
equations have different and somewhat more complicated forms than those with Cartesian coord-
inates. To determine the equation forms in curvilinear coordinates, it is helpful to review some
fundamental concepts of curvilinear coordinate analysis. In the following sections, we present a
brief review of these concepts. We then apply the resulting equations using cylindrical and spherical
coordinates.

6.2 CURVILINEAR COORDINATE SYSTEMS: CYLINDRICAL
AND SPHERICAL COORDINATES

6.2.1 CYLINDRICAL COORDINATES

Probably the most familiar and most widely used curvilinear coordinate system is plane polar
coordinates and its extension in three dimensions to cylindrical coordinates: consider an XYZ
Cartesian system with a point P having coordinates (x, y, z) as in Figure 6.1.

Next, observe that P may be located relative to the origin O by a position vector OP, or simply
p, given by

p ¼ xnx þ yny þ znz (6:1)

where nx, ny, and nz are unit vectors parallel to the X-, Y-, and Z-axes as in Figure 6.2.
Suppose now an image of P, say P̂, is projected onto the X–Y plane as in Figure 6.3. Then we

can also locate P relative to O by the vector sum OP̂þ P̂P as in Figure 6.4. That is

p ¼ OP ¼ OP̂þ P̂P (6:2)

Let r be the distance from O to P̂; z be the distance from P̂ to P; and u be the angle between OP̂ and
the X-axis, as in Figure 6.5. Then we have the expression

OP̂ ¼ rnr and P̂P ¼ znz (6:3)

where nr is a unit vector parallel to OP̂ as in Figure 6.5.
Here, we observe that nr may be expressed in terms of nx and ny as

nr ¼ cos unx þ sin uny (6:4)

Huston/Practical Stress Analysis in Engineering Design DK4291_C006 Final Proof page 67 4.11.2008 12:43pm Compositor Name: JGanesan

67



P (x, y, z)

O
Y

X

Z

FIGURE 6.1 XYZ coordinate system with a point P having coordinates (x, y, z).
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FIGURE 6.2 Position vector p locating point P relative to origin O.
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FIGURE 6.3 Projection of P onto the X–Y plane.
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By substituting into Equation 6.3 and by comparing with Equation 6.1 we have

x ¼ r cos u, y ¼ r sin u, z ¼ z (6:5)

Observe that with the Cartesian coordinates of P being (x, y, z), we see from Equation 6.5 that we
can then locate P by specifying the parameters: (r, u, z), the cylindrical coordinates of P. Observe
further that Equation 6.5 may be solved for r, u, and z in terms of x, y, and z as

r ¼ (x2 þ y2)1=2, u ¼ tan�1(y=x), z ¼ z (6:6)

Suppose that in Equation 6.5 we hold u and z to be constants, but let r be a variable, say t. Then
we have

x ¼ t cos u, y ¼ t sin u, z ¼ z (6:7)

These expressions have the form:

x ¼ x(t), y ¼ y(t), z ¼ z(t) (6:8)

O
Y

X

Z

P

P

PPˆ

ˆˆOP

FIGURE 6.4 Position vectors locating P relative to O.
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X

Z

P (x, y, 0)ˆ

z

r
q

nr

nz

nx

ny

FIGURE 6.5 Locating P̂ relative to O by parameters r and u (cylindrical coordinates).
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which may be interpreted as parametric equations [1] with parameter t. Indeed, Equations 6.7 are the
parametric equations of radial lines.

Similarly, in Equation 6.5, if we hold r and z constant and let u be a variable parameter t,
we have

x ¼ r cos t, y ¼ r sin t, z ¼ z (6:9)

These are parametric equations of circles.
And, if r and u are constants and z is varied, we have

x ¼ r cos u, y ¼ r sin u, z ¼ t (6:10)

These are parametric equations of lines parallel to the Z-axis. The radial lines, the circles, and the
axial lines of Equations 6.8 through 6.10 are the coordinate curves of the cylindrical coordinate
system.

6.2.2 SPHERICAL COORDINATES

Next to cylindrical coordinates, spherical coordinates appear to be the most widely used of the
curvilinear coordinate systems. Figure 6.6 illustrates the parameters r, u, and f commonly used as
spherical coordinates where r is the distance from the origin O to a typical point P, u is the angle
between line OP and the Z-axis, and f is the angle between line OP̂ and the X-axis, where, as
before, P̂ is the projection of P onto the X–Y plane.

As before, let p be the position vector OP locating P relative to O and let nx, ny, and nz be unit
vectors along the X, Y, and Z-axes as in Figure 6.7. Then, we can express p as

p ¼ OP ¼ OP̂þ P̂P ¼ r sin u(cosfnx þ sinfny)þ r cos unz (6:11)

and as

p ¼ xnx þ yny þ znz (6:12)

where, as before, x, y, and z are the Cartesian coordinates of P. By comparing Equations 6.11 and
6.12 we have

x ¼ r sin u cosf, y ¼ r sin u sinf, z ¼ r cos u (6:13)

O
Y

X

Z

P̂

q
r

P ( ρ, q, f)

f

FIGURE 6.6 Spherical coordinate system.
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Equation 6.13 may be solved for r, u, and f in terms of x, y, and z as

r ¼ (x2 þ y2 þ z2)1=2, u ¼ cos�1 [z=(x2 þ y2 þ z2)1=2], f ¼ tan�1 (y=x) (6:14)

As with cylindrical coordinates, we can use the expressions for x, y, and z (as in Equation 6.13)
to obtain parametric equations for the coordinate curves. If we hold u and f fixed and vary r
(as parameter t), we have

x ¼ (sin u cosf)t, y ¼ (sin u sinf)t, z ¼ (cos u)t (6:15)

There are radial lines projected outward from the origin with inclinations determined by u and f.
If we hold r and f fixed and vary u, we have

x ¼ r cosf sin t, y ¼ r sinf sin t, z ¼ r cos t (6:16)

These are circles with radius r (meridians, great circles of a sphere) with the Z-axis being on a
diameter.

Finally, if we hold r and u fixed and vary f, we have

x ¼ r sin u cos t, y ¼ r sin u sin t, z ¼ r cos u (6:17)

These are circles, with radius r sin u (‘‘parallels’’ on a sphere), parallel to the X–Y plane.

6.3 OTHER COORDINATE SYSTEMS

Although cylindrical and spherical coordinates are by far the most commonly used curvilinear
coordinate systems, there may be occasions when specialized geometry make other coordinate
systems useful for simplifying stress analysis. Even with these specialized coordinate systems the
geometric complexity will introduce complexity into the analysis.

Perhaps the simplest of these specialized coordinate systems are parabolic cylindrical coordin-
ates and elliptic cylindrical coordinates. Analogous to Equation 6.5, the parabolic cylindrical
coordinates (u, v, z) are defined as [2]

x ¼ (u2 � v2)=2, y ¼ uv, z ¼ z (6:18)

The corresponding coordinate curves are then families of orthogonally intersecting parabolas in the
X–Y plane with axes being the X-axis together with lines parallel to the Z-axis.
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Z

P̂

q

nx

ny
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r

p

f

P (ρ, q, f)

FIGURE 6.7 Position vectors and unit vectors for spherical coordinates.
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Similarly, elliptic cylindrical coordinates (u, v, z) are defined as [2]

x ¼ a cosh u cos v, y ¼ a sinh u sin v, z ¼ z (6:19)

where a is a constant. The corresponding coordinate curves are then families of orthogonal, confocal
ellipses, and hyperbolas in the X–Y plane with foci at (a, 0) and (�a, 0) together with lines parallel
to the Z-axis.

Reference [2] also shows that by rotating the parabolas of the parabolic cylindrical coordinate
system about the X-axis, we obtain paraboloidal (u, v,f) coordinates. Similarly, by rotating
the ellipses and hyperbolas of the elliptic cylindrical coordinate system about the X- and Y-axes,
we obtain prolate spheroidal (j,h,f) coordinates and oblate spheroidal coordinates (j,h,f),
respectively.

Other specialized coordinate systems are bipolar coordinates (u, v, z), toroidal coordinates
(u, v,f), and conical coordinates (l,m, n).

6.4 BASE VECTORS

Consider a curve C as represented in Figure 6.10. Let C be defined by parametric equations as

x ¼ x(t), y ¼ y(t), z ¼ z(t) (6:20)

Let p be a position vector locating a typical point P on C, as in Figure 6.8. Then p may be
expressed as

p ¼ x(t)nx þ y(t)ny þ z(t)nz ¼ p(t) (6:21)

where, as before, nx, ny, and nz are mutually perpendicular unit vectors parallel to X-, Y-, and Z-axes
(see Figure 6.8).

This configuration is directly analogous to that encountered in elementary kinematics where p(t)
locates a point P in space as it moves on a curve C. The velocity v of P is then simply dp=dt. That is

v ¼ lim
Dt!0

p(t þ Dt)� p(t)

Dt
¼ lim

Dt!0

Dp

Dt
(6:22)

From the last term of Equation 6.22, we see that v has the direction of Dp as d Dt becomes small.
But Dp is a chord vector of C as represented in Figure 6.9. Thus, as Dt gets small and consequently
as Dp gets small, Dp becomes nearly coincident with C at P. Then in the limit, as Dt approaches 0,
Dp and thus v are tangent to C at P.

P (x, y, z)

O Y

X

Z

p

nx

ny

nz C

FIGURE 6.8 Curve C defined by parametric equations.
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If we regard C as a coordinate curve of a curvilinear coordinate system, and imagine C as being
defined by parametric equations as in Equation 6.20, by as in Equations 6.7, 6.9, and 6.10, and with
Equations 6.15 through 6.17 for spherical coordinates, then the derivatives of the coordinate
functions [x(t), y(t), z(t)] with respect to the parameter t are the components of vectors tangent to
the coordinate curves. These vectors are called: ‘‘base vectors.’’

To illustrate this, consider the cylindrical coordinate system in Section 6.2.1 as defined by
Equation. 6.5. The base vectors are simply the derivatives of the position vector p of P relative to the
coordinates which play the role of the parameter t. Specifically, from Equation 6.5, we have

p ¼ xnx þ yny þ znz
¼ r cos u nx þ r sin uny þ znz (6:23)

Then the base vectors are

@p=@r ¼D gr ¼ cos unx þ sin uny (6:24)

@p=@u ¼D gu ¼ �r sin u nr þ r cos u ny (6:25)

@p=@z ¼D gz ¼ nz (6:26)

Similarly, for spherical coordinates, the position vector p is determined from Equation 6.13 as

p ¼ r sin u cosf nx þ r sin u sinfny þ r cos unz (6:27)

The base vectors are then

@p=@r ¼ gr ¼ sin u cosf nx þ sin u sinf ny þ cos unz (6:28)

@p=@u ¼ gu ¼ r cos u cosf nx þ r cos u sinf ny � r sin u nz (6:29)

@p=@f ¼ gf ¼ �r sin u sinf nx þ r sin u cosf ny (6:30)

Observe that the cylindrical coordinate base vectors gr, gu, and gz (of Equations 6.24 through 6.26)
are mutually perpendicular but they are not all unit vectors (the magnitude of gu is r). Also, the
spherical coordinate base vectors gr, gu, and gf (of Equations 6.28 through 6.30) are mutually
perpendicular, but only gr is a unit vector. In general, the base vectors are not necessarily even
mutually perpendicular, but for three-dimensional systems, they will be noncoplanar.

O
Y

X

Z

p(t)
CΔp

p(t+Δt)

FIGURE 6.9 Chord vector Dp along C.
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6.5 METRIC COEFFICIENTS, METRIC TENSORS

The scalar (dot) product of two base vectors, say gi and gj, is called a ‘‘metric coefficient’’ and is
written as gij. That is,

gij ¼D gi . gj (i, j ¼ 1, 2, 3) (6:31)

Since there are nine such products, they may be gathered into an array, or matrix, G given by

G ¼ [gij] ¼
g11 g12 g13
g21 g22 g23
g31 g32 g33

2

4

3

5 (6:32)

Since the scalar product is commutative, G is symmetric. gij are also called ‘‘metric tensor
components.’’

The metric coefficients are directly related to a differential arc length ds of a curve: consider
again a curve C as in Figure 6.10. Let p locate a point P on C and let Dp be an incremental position
vector as shown. In the limit, as Dt becomes infinitesimal, Dp becomes the differential tangent
vector dp, where t is the parameter as in the foregoing sections. The magnitude of dp is equal to a
differential arc length ds of C.

Let a curvilinear coordinate system have coordinates designated by q1, q2, and q3, or qi

(i¼ 1, 2, 3), where for convenience in the sequel, we will use superscripts (not to be confused with
exponents) to distinguish and label the coordinates. Then with this notation, the base vectors are

gi ¼ @p=@qi (i ¼ 1, 2, 3) (6:33)

where now p¼ p(qi). Then, using the chain rule for differentiating functions of several variables, the
differential vector dp becomes

dp ¼ @p

@q1
dq1 þ @p

@q2
dq2 þ @p

@q3
dq3

¼
X3

i¼1

@p

@qi
¼ @p

@qi
dqi ¼ gidq

i (6:34)

where, as before, we are employing the repeated-index summation convention.

O
Y

X

Z

p(t) CΔp

p(t+Δt)

FIGURE 6.10 Curve C with incremental position vector.
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Hence, the differential arc length ds is given by

(ds)2 ¼ dp . dp ¼ jdpj2 ¼ gidq
i . gjdq

j ¼ gijdq
idqi (6:35)

As an illustration of these concepts, consider again the cylindrical and spherical coordinate systems
discussed in Section 6.2. First, for cylindrical coordinates, we have

q1 ¼ r, q2 ¼ u, q3 ¼ z (6:36)

From Equations 6.24 through 6.26 the base vectors are

g1 ¼ gr ¼ cos u nx þ sin u ny (6:37)

g2 ¼ gu ¼ �r sin u nx þ r cos u ny (6:38)

g3 ¼ gz ¼ nz (6:39)

Then, from Equation 6.31 we have

g11 ¼ grr ¼ 1, g22 ¼ guu ¼ r2, g33 ¼ gzz ¼ 1 (6:40)

and

gij ¼ 0, i 6¼ j (6:41)

In matrix form, G is (see Equation 6.32)

G ¼ [gii] ¼
1 0 0
0 r2 0
0 0 1

2
4

3
5 (6:42)

Then, from Equation 6.35 the arc length ds is given by

ds2 ¼ dr2 þ r2du2 þ dz2 (6:43)

Similarly, for spherical coordinates, we have

q1 ¼ r, q2 ¼ u, q3 ¼ f (6:44)

From Equations 6.28 through 6.30, the base vectors are

g1 ¼ gr ¼ sin u cosf nx þ sin u sinf ny þ cos u nz (6:45)

g2 ¼ gu ¼ r cos u cosf nx þ r cos u sinf ny � r sin u nz (6:46)

g3 ¼ gc ¼ �r sin u sin f nx þ r sin u cosf ny (6:47)

Then, from Equation 6.31 we have

g11 ¼ grr ¼ 1, g22 ¼ guu ¼ r2, g33 ¼ r2 sin2 u (6:48)
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and

gij ¼ 0 i 6¼ j (6:49)

In matrix form, G is

G ¼ [gij] ¼
1 0 0
0 r2 0
0 0 r2 sin2 u

2

4

3

5 (6:50)

Then, from Equation 6.35, the arc length ds is given by

ds2 ¼ dr2 þ r2du2 þ r2 sin2 u2df2 (6:51)

6.6 RECIPROCAL BASE VECTORS

The base vectors defined in Section 6.4 are tangent to the coordinate curves and are therefore useful
for the expression of stress, strain, and displacement along these directions. The base vectors,
however, are not in general unit vectors nor are they necessarily mutually perpendicular. The
question arising then is: How are physical quantities to be expressed in terms of these vectors? Or
specifically, given a vector v and noncoplanar base vectors g1, g2, and g3, if v is to be expressed as

v ¼ ( ) g1 þ ( ) g2 þ ( ) g3 (6:52)

what are the values of the parenthetical quantities (or components) and how are they to be
determined?

To answer these questions, recall that if n1, n2, and n3 are mutually perpendicular unit vectors,
then a vector v may be expressed in terms of these vectors as

v ¼ v1n1 þ v2n2 þ v3n3 ¼ vini (6:53)

where the scalar components vi (i¼ 1, 2, 3) are

v1 ¼ v . n1, v2 ¼ v . n2, v3 ¼ v . n3 or vi ¼ v . ni (i ¼ 1, 2, 3) (6:54)

Thus, v may be expressed as

v ¼ (v . n1)n1 þ (v . n2)n2 þ (v . n3)n3 ¼ (v . ni)ni (6:55)

Consider Equation 6.52 now. Let the parenthetical quantities be designated as v1, v2, and v3 where,
again, the superscripts are indices, not to be confused with exponents. Then v has the form

v ¼ v1g1 þ v2g2 þ v3g3 ¼ vigi (6:56)

Let the base vectors gi (i¼ 1, 2, 3) be noncoplanar, but not necessarily mutually perpendicular. Then
the vector product: g2� g3 is nonzero and perpendicular to both g2 and g3, and thus normal to the
coordinate surface determined by g2 and g3. Consider the scalar (dot) product of g2� g3 with v:

v . g2 � g3 ¼ v1(g1 . g2 � g3)þ v2(g2 . g2 � g3)þ v3(g3 . g2 � g3)

¼ v1(g1 . g2 � g3) (6:57)
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where the last two terms are zero because triple scalar products with duplicate vectors are zero (see
Section 3.5.1). Hence v1 is

v1 ¼ v . g2 � g3=(g1 � g2 . g3) (6:58)

Similarly, by multiplying by g3� g1 times g1� g2 we find v2 and v3 to be

v2 ¼ v . g3 � g1=(g1 � g2 . g3) (6:59)

and

v3 ¼ v . g1 � g2=(g1 � g2 . g3) (6:60)

Considering Equation 6.54 and the results of Equations 6.58 through 6.60, we can simplify the
expressions for vi by introducing ‘‘reciprocal base vectors’’ defined as

g1 ¼D g2 � g3=g, g2 ¼D g3 � g1=g, g3 ¼D g1 � g2=g (6:61)

where g is defined as

g ¼ g1 � g2 . g3 ¼ det G (6:62)

Then, Equations 6.58 through 6.60 become

v1 ¼ v . g1, v2 ¼ v . g2, v3 ¼ v . g3 (6:63)

or simply

vi ¼ v . gi (i ¼ 1, 2, 3) (6:64)

Then, Equation 6.56 becomes

v ¼ (v . g1)g1 þ (v . g2)g2 þ (v . g3)g3 ¼ (v . gi)gi (6:65)

(Compare these results with Equations 6.54 and 6.55.)
Regarding notation, from Equations 6.54 and 6.65, it is convenient for curvilinear coordinates to

adopt the summation convention that there is a sum over repeated indices between subscripts and
superscripts, and that free indices must be consistently subscripts or superscripts in each term of an
equation.

Next, from Equation 6.61 we have

g1 . g1 ¼ 1, g2 . g2 ¼ 1, g3 . g3 ¼ 1

g1 . g2 ¼ g2 . g1 ¼ 0, g2 . g3 ¼ g3 . g2 ¼ 0, g3 . g1 ¼ g1 . g3 ¼ 0
(6:66)

or more succinctly

gi . gj ¼ gi . g
j ¼ dij ¼

1 i ¼ j
0 i 6¼ j

�
(6:67)

Where dij is called Kronecker’s delta function (see Equation 4.53).
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Let reciprocal metric tensor coefficients gij be defined as

gij ¼ gi . gj (6:68)

Then, it is apparent from Equations 6.31, 6.62, and 6.67 that

gikgkj ¼ dij, gi ¼ gijgj, gi ¼ gijg
j, g1 � g2 . g3 ¼ 1=g (6:69)

Also, if we write v in the form

v ¼ vigi ¼ vjg
i (6:70)

then the components are related by the expressions

vi ¼ gijvj and vi ¼ gijv
j (6:71)

The base vectors gi are sometimes called ‘‘covariant base vectors’’ and gi are called ‘‘contravariant
base vectors.’’ Correspondingly in Equations 6.70 and 6.71, the vi are called ‘‘covariant compon-
ents’’ and the vi ‘‘contravariant components’’ [3–5].

6.7 DIFFERENTIATION OF BASE VECTORS

Recall from Equation 4.35 that the equilibrium equations are

sij, j ¼ rai or @sij=@xj ¼ rai (6:72)

Recall from Equation 5.32 that the strain–displacement equations are

«ij ¼ ui, j þ uj, i or «ij ¼ 1
2
(@ui=@xj þ @uj=@xi) (6:73)

In these fundamental equations of stress analysis, we see that spatial derivatives occur in most of
the terms.

Also, in spatial=vector differentiations, the vector differential operator r( ) is frequently used
as basis of the gradient, divergence, and curl operations [4,6]. In Cartesian coordinates r( ) is
defined as

r( ) ¼ n1@( )=@x1 þ n2@( )=@x2 þ n3@( )=@x3 ¼ ni@( )=@xi (6:74)

where the ni are mutually perpendicular unit vectors parallel to the coordinate axes.
In curvilinear coordinates, Equation 6.74 has the form

r( ) ¼ g1@( )=@q1 þ g2@( )=@q2 þ g3@( )=@q3 ¼ gi@( )=@qi (6:75)

where gi are reciprocal base vectors (‘‘contravariant base vectors’’) as developed in the previous
section, and the qi(i¼ 1, 2, 3) are curvilinear coordinates. Equation 6.75 is easily obtained from
Equation 6.74 by routine coordinate transformation [4,5,7].

If v is a vector function of the spatial variables, the gradient, divergence, and curl of v are

Gradient: rv ; divergence: r . v ; curl: r� v (6:76)
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In Cartesian coordinates where the unit vectors are constants (not spatially dependent), the gradient,
divergence, and curl have relatively simple forms. Specifically, if a vector v is expressed as

v ¼ v1n1 þ v2n2 þ v3n3 ¼ vini (6:77)

where vi(i¼ 1, 2, 3) are dependent upon the spatial coordinates, then rv, r . v, and r� v become

Gradient

�v ¼ @v1=@x1n1n1 þ @v1=@x2n1n2 þ @v1=@x3n1n3

þ @v2=@x1n2n1 þ @v2=@x2n2n2 þ @v2=@x3n2n3
þ @v3=@x1n3n1 þ @v3=@x2n3n2 þ @v3=@x3n3n3 (6:78)

or alternatively

rv ¼ @vi=@xjninj ¼ vi,j ninj (6:79)

where (as before) the comma designates spatial differentiation.

Divergence

r . v ¼ @v1=@x1 þ @v2=@x2 þ @v3=@x3 ¼ @vi=@xi ¼ vi,i (6:80)

Curl

r� v ¼ (@v2=@x3 � @v3=@x2)n1 þ (@v2=@x1 � @v1=@x3)n2 þ (@v1=@x2 � @v2=@x1)n3 (6:81)

Suppose that a vector v is expressed in curvilinear coordinates with either covariant or contravariant
base vectors as

v ¼ vigi ¼ vjg
j (6:82)

Unlike the unit vectors of Cartesian coordinates, the base vectors are not generally constant. Hence,
when we apply the gradient, divergence, and curl operators to v, we need to be able to evaluate the
spatial derivatives of the base vectors. To this end, consider first the derivative: @gi=@q

j. As before, to
simplify the notation, it is convenient to use a comma to designate partial differentiation, where the
derivatives are taken with respect to the curvilinear coordinates. That is,

( ),i ¼ @( )=@qi (6:83)

Next, consider that @gj=@q
i or gi,j is a vector with free indices i and j. As such gi,j can be represented

in the vector form as

gi, j ¼ Gk
ijgk (6:84)

where the components Gk
ij are sometimes called Christoffel symbols [3–5,7]. Since the Gk

ij have three
indices, there are 27 values for all the possible combinations of i, j, and k. Fortunately, for the
curvilinear coordinate systems of common interest and importance, most of the Gk

ij are zero. Also,
since gi is @p=@q

i, gi,j may be expressed as

gi, j ¼ @2p=@qi@qj ¼ @2p=@qi@qi ¼ gj,i (6:85)
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Thus Gk
ij is symmetric in i and j. That is,

Gk
ij ¼ Gk

ji (6:86)

To evaluate Gk
ij, it is convenient to introduce the covariant form Gijk defined as

Gijk ¼D gk‘G
‘
ij (6:87)

The utility of the Gijk is readily seen by differentiating the metric tensor elements. Specifically,

gij,k ¼ (gi . gj),k ¼ gi,k . gj þ gi . gj,k

¼ G‘
ikg‘ . gj þ G‘

jkg‘ . gi ¼ g‘jG
‘
ik þ g‘iG

‘
jk

¼ Gikj þ Gjki (6:88)

By permutating the indices in Equation 6.88 and then by adding and subtracting equations, we obtain

Gijk ¼ (1=2)(gki, j þ gkj,i � gij,k) (6:89)

Then, from the definition of Equation 6.87, Gk
ij are

Gk
ij ¼ gk‘Gij‘ (6:90)

As an illustration of the values of these expressions, we find that for cylindrical coordinates, Gijk

and Gk
ij are

G122 ¼ G212 ¼ Gruu ¼ Guru ¼ r, G221 ¼ Guur ¼ �1 (6:91)

and all other Gijk are zero. Also,

G2
12 ¼ G2

21 ¼ Gu
ru ¼ Gu

ur ¼ 1=r, G1
22 ¼ Gr

uu ¼ �r (6:92)

and all other Gk
ij are zero.

(Recall from Equation 6.40 that the metric coefficients are: grr¼ 1, guu¼ g2, gzz¼ 1, and gij¼ 0,
i 6¼ j.)

For spherical coordinates, the Gijk and Gk
ij are

G122 ¼ G212 ¼ Gruu ¼ Guru ¼ r, G133 ¼ G313 ¼ Grff ¼ Gfrf ¼ r sin2u

G233 ¼ G323 ¼ Guff ¼ Gfuf ¼ r2 sin u cos u, G221 ¼ Guur ¼ �r

G331 ¼ Gffr ¼ �r sin2 u, G332 ¼ Gffu ¼ �r2sin u cos u

(6:93)

and all other Gijk are zero. Also,

G2
12 ¼ G2

21 ¼ Gu
ru ¼ Gu

ur ¼ �r, G3
13 ¼ G3

31 ¼ Gf
rf ¼ Gf

fr ¼ 1=r

G3
23 ¼ G3

32 ¼ Gf
uf ¼ Gf

fu ¼ cos u, G1
22 ¼ G

r
uu ¼ �r

G1
33 ¼ G

r
ff ¼ �r sin2 u, G2

33 ¼ Gu
ff ¼ � sin u cos u

(6:94)

and all other Gk
ij are zero.
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(Recall from Equation 6.48 that the metric coefficients are grr¼ 1, guu¼ r2, gff¼ r2 sin2 u, and
gij¼ 0, i 6¼ j.)

Finally, consider the differentiation of the reciprocal (contravariant) base vectors gi. From
Equation 6.67, we have

gi . g
j ¼ dji (6:95)

By differentiating with respect to qk, we obtain

gi,k . gj þ gi . g
j
,k ¼ 0 (6:96)

But, from Equation 6.84, the gi,k are

gi,k ¼ G‘
ikg‘ (6:97)

Then, by substituting into Equation 6.96, we have

gi . g
j
,k ¼ �Gj

ik (6:98)

Thus, gj,k are

gj,k ¼ �Gj
ijg

i (6:99)

6.8 COVARIANT DIFFERENTIATION

Recall that in our formulation for stress and strain, we found that the stress components satisfy
equilibrium equations, where there are derivatives with respect to the space coordinates, and the
strain involves derivatives of the displacement vector. In both cases, there are spatial derivatives of
vector functions. If we formulate the equations using Cartesian coordinates, the unit vectors along
the coordinate axes are constants and the derivatives may be obtained by simply differentiating the
components. If, however, we formulate the equations using curvilinear coordinates, the vector
functions will be expressed in terms of base vectors, which will generally vary from point-to-point
in space. Therefore, in differentiating vector functions expressed in curvilinear coordinates, we need
to differentiate the base vectors. We can use the formulation developed in the previous section to
obtain these derivatives.

Let u be a vector, say, a displacement vector, and let u be expressed in terms of base vectors as

u ¼ ukgk (6:100)

Then, using Equation 6.84, the derivative of u with respect to qi is

@u=@qi ¼ @ ukgk
� �

=@qi ¼ uk,igk þ ukgk,i

¼ uk,igk þ ukG‘
kig‘

¼ uk,i þ u‘G‘
‘i

� �
gk (6:101)

More succinctly, we can write these expressions as

@u=@qi ¼ u,i ¼ uk;igk (6:102)
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where uk;i is defined as

uk;i ¼ uk,i þ Gk
‘iu

‘ (6:103)

and is called the ‘‘covariant derivative’’ of uk.
Next, let u be expressed in the form

u ¼ ukg
k (6:104)

Then, the derivative with respect to qi is

@u=@qi ¼ @ ukg
k

� �
=qi ¼ uk,ig

k þ ukg
k
,i

¼ uk,ig
k � ukG

k
‘ig

‘

¼ uk,i � u‘G
‘
ki

� �
gk (6:105)

or

@u=@qi ¼ u,i ¼ uk;jg
k (6:106)

where uk;i is defined as

uk;i ¼ uk,i � G‘
kiu‘ (6:107)

and is called the covariant derivative of uk.
Observe in Equations 6.102 and 6.106 that the derivative of u may be obtained by simply

evaluating the covariant derivative of the components (as defined in Equations 6.103 and 6.107) and
leaving the base vectors unchanged. From another perspective, we can view the covariant derivative
of a scalar or a nonindexed quantity as the same as a partial derivative. That is, if f is a scalar then

@f=@qi ¼ f,i ¼ f;i (6:108)

Also, for a vector u we have

@u=@qi ¼ u,i ¼ u;i (6:109)

Then, by formally applying the product rule for differentiation, we have

@u=@qi ¼ u;i ¼ ukgk
� �

;i

¼ uk;igk þ ukgk;i (6:110)

For the result to be consistent with that of Equation 6.102 the covariant derivative of the base vector
gk must be zero. That is

gk;i ¼ 0 (6:111)
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The validity of Equation 6.111 is evident from Equations 6.107 and 6.97. That is,

gk;i ¼ gk,i � G‘
kig‘

¼ G‘
kig‘ � G‘

kig‘ ¼ 0 (6:112)

Similarly, we see that the covariant derivatives of the base vectors gk as well as the metric tensors
are zero.

Finally, consider the dyadic D expressed as

D ¼ dijg
igj ¼ djig

igj ¼ dijgig
j ¼ dijgigj (6:113)

Then, by following the same procedure as in the differentiation of vectors, we see that the derivative
of D relative to qk may be expressed as

@D=@qk ¼ D,k ¼ dij;kg
igj ¼ dji;kg

igj ¼ dij;kgigj ¼ dijgigj (6:114)

where covariant derivatives dij;k, dij;k, d
j
i;k, and dij;k are

dij;k ¼ dij,k � G‘
ikd‘j � G‘

jkdi‘ (6:115)

dji;k ¼ dji,k � G‘
ikd

j
‘ þ G‘

‘kd
‘
i (6:116)

dij;k ¼ dij,k þ Gi
‘kd

‘
j � Gj

jkd
i
‘ (6:117)

dij;k ¼ dij,k þ Gi
‘kd

‘j þ Gj
‘kd

i‘ (6:118)

6.9 EQUILIBRIUM EQUATIONS AND STRAIN–DISPLACEMENT
RELATIONS IN CURVILINEAR COORDINATES

Consider the stress equilibrium equation (Equation 4.35) and the strain–displacement equations
(Equation 5.20) again

sij, j ¼ rai (6:119)

and

«ij ¼ 1
2
(ui, j þ uj,i) (6:120)

Although these equations have been developed in Cartesian coordinates, they may be expressed in a
vector form, which in turn may be used to express them in curvilinear coordinates. To this end, by
comparing Equation 6.119 with Equation 6.80, we see that we can express Equation 6.119 as

r .s ¼ ra (6:121)

here, s is the stress dyadic (see Section 4.4) and a is the acceleration vector at a point of the body
where the equilibrium equation holds, and where, as before, r is the vector differential operator.
Recall from Equation 6.75 that in curvilinear coordinates r has the form

r( ) ¼ g1@( )=@q1 þ g2@( )=@q2 þ g3@( )=@q3

¼ gk@( )=@qk (6:122)
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Then the left-hand side of Equation 6.121 becomes

r .s ¼ gk . @s=@qk ¼ gk . @ gisijg
j

� �
=@qk

¼ gk .sij;kg
igj ¼ giksij;kg

j

¼ sk
j;kg

j ¼ sk
j;kg

j

Then Equation 6.121 becomes

sk
j;kg

j ¼ ra ¼ rajg
j (6:123)

or in component form

sk
j;k ¼ raj or sj

i;j ¼ rai (6:124)

Next, recall from Equation 6.79 that if u is a vector, say, the displacement vector, then in Cartesian
coordinates, ru is

ru ¼ ui,jninj (6:125)

where, as before, the ni (i¼ 1, 2, 3) are mutually perpendicular unit vectors. In curvilinear coordi-
nates ru is

ru ¼ ui;jg
igj (6:126)

Thus, we see that in curvilinear coordinates the strain tensor may be expressed as

«ij ¼ 1
2
(ui; j þ uj;i) (6:127)

Observe that in comparing Equations 6.119 and 6.120 with Equations 6.124 and 6.127, the
difference is simply that the partial differentiation of Cartesian coordinates is replaced with the
covariant differentiation of curvilinear coordinates.

Using the results of Equations 6.115 and 6.107, we see that sj
i;j and ui;j may be expressed as

sj
i;j ¼ sj

i,j � G‘
ijs

j
‘ þ Gj

‘js
‘
i (6:128)

and

ui;j ¼ ui,j � Gk
ijuk (6:129)

To illustrate the forms of these equations for cylindrical coordinates, we can use the results in
Equation 6.92 for the Christoffel symbol components. The equilibrium equations (Equation 6.124)
become [8]

@sp

@r
þ (1=r)

@sru

@u
þ @srz

@z
þ (1=r)(sp � suu) ¼ rar (6:130)

@sru

@r
þ (1=r)

@suu

@u
þ @suz

@z
þ (2=r)sru ¼ rau (6:131)
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@srz

@r
þ (1=r)

@suz

@u
þ @szz

@z
þ (1=r)srz ¼ raz (6:132)

and the strain–displacement equations (Equation 6.127) become

«rr ¼ @ur
@r

(6:133)

«ru ¼ (1=2) (1=r)
@ur
@r

þ @uu
@r

� (1=r)uu

� �
(6:134)

«rz ¼ (1=2)
@uz
@r

þ @ur
@z

� �
(6:135)

«uu ¼ (1=r)
@uu
@u

þ ur

� �
(6:136)

«uz ¼ (1=2)
@uu
@z

þ (1=r)
@uz
@u

� �
(6:137)

«zz ¼ @uz
@z

(6:138)

Similarly, for spherical coordinates we can use the results of Equation 6.94 for the Christoffel
symbol components. The equilibrium equations become [8]

@srr

@r
þ (1=r sin u)

@srf

@f
þ (1=r)

@sru

@u
þ (1=r) (2srr � sff � suu þ sru cot u) ¼ r̂ar (6:139)

@srf

@r
þ (1=r sin u)

@sfu

@f
þ (1=r)

@suu

@u
þ (1=r) (3sru þ suu cot u� sff cot u) ¼ r̂au (6:140)

@srf

@r
þ (1=r sin u)

@sff

@f
þ (1=r)

@sfu

@u
þ (1=r) (3srf þ 2sfu cot u) ¼ r̂af (6:141)

where r̂ is now the mass density. The strain–displacement equations become

«rr ¼ @ur
@r

(6:142)

«ru ¼ (1=2) (1=r)
@ur
@u

� (uu=r)þ @uu
@r

� �
(6:143)

«rf ¼ (1=2) (1=r sin u)
@ur
@f

� (uf=r)þ @uf
@r

� �
(6:144)

«uu ¼ (1=r)
@uu
@u

þ ur

� �
(6:145)

«uf ¼ (1=2) (1=r)
@uf
@u

� (1=r)uf cot uþ (1=r sin u)
@uu
@f

� �
(6:146)

«ff ¼ (1=r) (1=sin u)
@uf
@r

þ ur þ uu cot u

� �
(6:147)
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SYMBOLS

a Acceleration vector
C Curve
D Dyadic
dij, d

j
i , d

ij (i, j ¼ 1, 2, 3) Elements of dyadic matrices
gi (i¼ 1, 2, 3) Base vectors
gi (i¼ 1, 2, 3) Reciprocal base vectors
gij (i, j¼ 1, 2, 3) Metric coefficients, metric tensor components
G Metric coefficient array
ni (i¼ 1, 2, 3) Mutually perpendicular unit vectors
nx, ny, nz Mutually perpendicular unit vectors
O Origin
P Point
p Position vector
qi (i¼ 1, 2, 3) Curvilinear coordinates
r, u, z Cylindrical coordinates
s Arc length
t Parameter
u Displacement vector
ui (i¼ 1, 2, 3) Displacements
V Vector
vi (i¼ 1, 2, 3) ni ni components of vector v
vi,j (i, j¼ 1, 2, 3) Partial derivative of vi with respect to qj

vi;j (i, j¼ 1, 2, 3) Covariant derivative of vi with respect to qj

X, Y, Z Cartesian (rectangular) coordinate axes
x, y, z Cartesian coordinates
xi (i¼ 1, 2, 3) Cartesian coordinates
Gijk (i, j, k¼ 1, 2, 3) Christoffel symbols (Section 6.7)
Gk
ij(i, j, k ¼ 1, 2, 3) Christoffel symbols (Section 6.7)

Dp Chord vector
«ij (i, j¼ 1, 2, 3) Strain tensor components
r, f, u Spherical coordinates
s Stress dyadic
sij (i, j¼ 1, 2, 3) Stress tensor components
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7 Hooke’s Law in Two
and Three Dimensions

7.1 INTRODUCTION

In Chapter 3, we saw that Hooke’s law predicts a linear relationship between simple stress and
simple strain. In this chapter, we extend this elementary concept to two and three dimensions. As
before, we will restrict our attention to small strain. The resulting relations then continue to be linear
between the stresses and strains.

We begin our analysis with a discussion of Poisson’s ratio, or ‘‘transverse contraction ratio,’’
which quantifies induced strain in directions perpendicular to an applied strain, such as a rod
shrinking laterally as it is elongated.

7.2 POISSON’S RATIO

Consider a rod with a square cross section subjected to an axial load as in Figure 7.1. Intuitively as the
rod is stretched or elongated, the cross-section area will become smaller. Poisson’s ratio is a measure
or quantification of this effect. Specifically, for the rod of Figure 7.1, Poisson’s ratio n is defined as

n ¼ �«yy=«xx (7:1)

where the X-axis is along the rod and the Y-axis is perpendicular to the rod, as shown. From the
simple geometry of the rod we see that «xx and «yy are

«xx ¼ dx=‘ and «yy ¼ �dy=a (7:2)

where dx is the elongation of the rod, dy is the shrinking of the cross section, ‘ is the rod length, and
a is the cross section side length. Poisson’s ratio is then a measure of the contraction of the rod as it
is stretched. Consequently, Poisson’s ratio is occasionally called the ‘‘transverse contraction ratio.’’

As a further illustration of this concept, consider a circular cross-section rod being elongated
as in Figure 7.2. As the rod is stretched, the circular cross section will become smaller as represented
(in exaggerated form) in Figure 7.3 where a is the undeformed cross-section radius and dr is the
radius decrease. During stretching, the radial displacement ur of a point Q in the cross section is
proportional to the distance of Q from the axis as in Figure 7.4. That is,

ur ¼ �dr(r=a) (7:3)

where the minus sign indicates that Q is displaced toward O as the cross section shrinks. The radial
strain «rr is then (see Equation 6.133)

«rr ¼ @ur=@r ¼ �dr=a (7:4)

If the rod is elongated with a length change (or stretching) dx (see Figure 7.2), the axial strain «xx is

«xx ¼ dx=‘ (7:5)
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FIGURE 7.1 An elongated rod with a square cross section.
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FIGURE 7.2 An elongated rod with a circular cross section.
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FIGURE 7.3 Shrinkage of rod cross section.
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a

FIGURE 7.4 Rod cross section with typical point Q.
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Poisson’s ratio n is then simply the negative ratio of the radial and axial strains. Thus n is

n ¼ �«rr=«xx ¼ (dr=dx)(‘=a) (7:6)

Observe that n is a material property. That is, the values of n depend upon the character of the
material being deformed. Table 7.1 provides a list of typical values of n for common materials.

Since n is a measure of the shrinkage of a loaded rod, as in the foregoing examples, it is also
a measure of the volume change of a loaded body. Consider again the elongated round bar of
Figure 7.2. The undeformed volume V of the rod is simply

V ¼ pa2‘ (7:7)

From Figures 7.2 and 7.3 we see that the deformed volume V̂ is

TABLE 7.1
Typical Values of Poisson’s Ratio

Upper theoretical limit

(perfectly deformable
material)

0.50

Lead 0.43

Gold 0.42
Platinum 0.39
Silver 0.37

Aluminum (pure) 0.36
Phosphor bronze 0.35
Tantalum 0.35
Copper 0.34

Titanium (pure) 0.34
Aluminum (wrought) 0.33
Titanium (alloy) 0.33

Brass 0.33
Molybdenum (wrought) 0.32
Stainless steel 0.31

Structural steel 0.30
Magnesium alloy 0.28
Tungsten 0.28
Granite 0.28

Sandstone 0.28
Thorium (induction-melted) 0.27
Cast iron (gray) 0.26

Marble 0.26
Glass 0.24
Limestone 0.21

Uranium (D-38) 0.21
Plutonium (alpha phase) 0.18
Concrete (average water content) 0.12

Beryllium (vacuum-pressed powder) 0.027
Lower theoretical limit
(perfectly brittle material)

0.000

Huston/Practical Stress Analysis in Engineering Design DK4291_C007 Final Proof page 89 3.11.2008 5:55pm Compositor Name: VAmoudavally

Hooke’s Law in Two and Three Dimensions 89



V̂ ¼ p(a� dr)
2(‘þ dx) (7:8)

Since dr and dx are small, V̂ may reasonably be expressed as

V̂ ¼ p a2 � 2adr
� �

(‘þ dx) ¼ p a2‘� 2a‘dr þ a2dx
� �

(7:9)

The volume change DV is then

DV ¼ V̂ � V ¼ p �2a‘dr þ a2dx
� �

(7:10)

But from Equation 7.6, dr is

dr ¼ ndx(a=‘) (7:11)

Hence, DV becomes

DV ¼ p(�2n þ 1)a2dx (7:12)

Finally, the volumetric strain defined as DV=V is

DV=V ¼ (1� 2n)(dx=‘) ¼ (1� 2n)«xx (7:13)

As a final example, consider the small rectangular parallelepiped block depicted in Figure 7.5.
Let the block be loaded with a uniform, outward (tension) pressure on the face perpendicular to the
X-axis. Let the edges of the block before loading be a, b, and c. After being loaded, the block

(a)

Z

c

b
a

Y

X

Z

Y

X

(b)

X

Z

Y

(1 + e xx)a
(1 + eyy)b

(1 + ezz)c

(c)

FIGURE 7.5 Uniform X-direction load and deformation of a rectangular block. (a) Rectangular block,
(b) uniform X-directional load, and (c) deformed block.
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edges will be (for small deformation): (1þ «xx)a, (1þ «yy)b, and (1þ «zz)c. Then the block volumes
V and V̂ , before and after deformation respectively, are

V ¼ abc (7:14)

and

V̂ ¼ (1þ «xx)a(1þ «yy)b(1þ «zz)c

¼ abc(1þ «xx þ «yy þ «zz) (7:15)

The volumetric strain DV=V is then

DV=V ¼ (V̂ � V)=V ¼ «xx þ «yy þ «zz (7:16)

But from Equation 7.1, «yy and «zz may be expressed in terms of «xx as

«yy ¼ �n«xx and «zz ¼ �n«xx (7:17)

The volumetric strain is then

DV=V ¼ (1� 2n)«xx (7:18)

7.3 BRITTLE AND COMPLIANT MATERIALS

If a material does not contract or shrink transversely when loaded, that is, if the Poisson’s ratio n is
zero, then the material is said to be ‘‘brittle.’’ Conversely, if a brittle material has no transverse
contraction, then the Poisson’s ratio is zero.

Alternatively, if a material shrinks so that the volume of a loaded body remains constant, the
material is said to be ‘‘incompressible’’ or ‘‘fully compliant.’’ Conversely, for a fully compliant
material, the volume change, DV, is zero during loading. Then from Equation 7.18, we have

1� 2n ¼ 0 or n ¼ 1=2 (7:19)

Therefore, Poisson’s ratio ranges from 0 to 1=2.

7.4 PRINCIPLE OF SUPERPOSITION OF LOADING

The principle of superposition states that multiple loadings on an elastic body may be considered
individually and in any order, for evaluating the stresses and strains due to the loadings. That is, the
state of stress or strain of an elastic body subjected to multiple loads is simply the addition (or
‘‘superposition’’) of the respective stresses or strains obtained from the individual loads.

In other words, individual loads on a body do not affect each other and therefore in stress and
strain analyses, they may be considered separately (or independently) in any order.

The principle of superposition is very useful in analysis, but unfortunately, it is not always
applicable, especially in heavily loaded bodies with large deformation. However, if the deformation
is small and if linear stress–strain equations are applicable, the principle holds.

7.5 HOOKE’S LAW IN TWO AND THREE DIMENSIONS

In Chapter 3, we discussed the fundamental version of Hooke’s law, which simply states that for
uniaxial (one-dimensional) stress and strain, the stress s is proportional to the strain «, that is
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s ¼ E« or « ¼ s=E (7:20)

(see Equation 3.4) where E is usually called the ‘‘modulus of elasticity,’’ the ‘‘elastic modulus,’’ or
‘‘Young’s modulus.’’ In Chapter 3, we also saw that this fundamental version of Hooke’s law is
readily extended to shear stresses and shear strains. That is, for simple shearing of a block, the shear
stress t and the shear strain g are related by

t ¼ Gg or g ¼ t=G (7:21)

(see Equation 3.12) where the proportional constant G is sometimes called the ‘‘shear modulus,’’
the ‘‘modulus of elasticity in shear,’’ or the ‘‘modulus of rigidity.’’

We can use Poisson’s ratio and the principle of superposition to extend these fundamental
relations to two and three dimensions where we have combined stresses and strains in two or more
directions as well as shear stresses and strains in various directions. To this end, consider again a
small rectangular elastic block or element subjected to tension as in Figure 7.6. Let the resulting
tensile stresses be sxx, syy, and szz. Then by the use of Poisson’s ratio and the principle of
superposition, the strains on the elemental black are

«xx ¼ (1=E)[sxx � n(syy þ szz)] (7:22)

«yy ¼ (1=E)[syy � n(szz þ sxx)] (7:23)

«zz ¼ (1=E)[szz � n(sxx þ syy)] (7:24)

These results are obtained assuming that all the stresses are positive (tension). If, however, some or all
of the stresses are negative (compression), the expressions are still valid. We then simply have
negative values inserted for those negative stresses in the right side of Equations 7.22, through 7.24.

Observe further that Equations 7.22, through 7.24 are linear in both the stresses and the strains.
Therefore, we can readily solve the equations for the stresses in terms of the strains, which give the
expressions

sxx ¼ E
n(«yy þ «zz)þ (1� n)«xx

(1þ n)(1� 2n)
(7:25)

syy ¼ E
n(«zz þ «xx)þ (1� n)«yy

(1þ n)(1� 2n)
(7:26)

szz ¼ E
n(«xx þ «yy)þ (1� n)«zz

(1þ n)(1� 2n)
(7:27)

Z

Y

X

FIGURE 7.6 A rectangular elastic element subjected to tension loading.
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Consider the shear stresses and strains: imagine a series of shearing forces applied to an elastic
elemental block as in Figure 7.7. As a result of the shear stress–strain relations of Equations 7.21
and the principle of superposition the resulting shear stresses and strains on the block are related by
the equations

txy ¼ Ggxy, gxy ¼ (1=G)txy (7:28)

tyz ¼ Ggyz, gyz ¼ (1=G)tyz (7:29)

tzx ¼ Ggzx, gzx ¼ (1=G)tzx (7:30)

Alternatively, using the tensor notation of Chapters 4 and 5 (see for example, Equation 5.8),
we have

sxy ¼ 2G«xy, «xy ¼ (1=2G)sxy (7:31)

syz ¼ 2G«yz, «yz ¼ (1=2G)syz (7:32)

szx ¼ 2G«zz, «zx ¼ (1=2G)szx (7:33)

7.6 RELATIONS BETWEEN THE ELASTIC CONSTANTS

The elastic constants E, n, and G are not independent. Instead only two of these are needed to fully
characterize the behavior of linear elastic materials. Consider a square plate with side length placed
in tension as in Figure 7.8. As a result of the tensile forces and the resulting tensile stress, the
plate will be elongated and narrowed as represented in Figure 7.9, where we have labeled the plate

Z

Y

X

FIGURE 7.7 A rectangular elastic element subjected to shear loading.

FIGURE 7.8 A square plate under tension.
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corners as A, B, C, and D before deformation, and as Â, B̂, Ĉ, and D̂ after deformation. Let the
amount of elongation be u and that of narrowing be v. Then the strains in the X- and Y-directions are

«xx ¼ u=a and «yy ¼ �v=a (7:34)

But from the definition of Poisson’s ratio (see Equation 7.1), we have

«yy ¼ �n«xx or v ¼ nu (7:35)

Consider now the diamond PQRS within the plate before and after deformation (P̂Q̂R̂Ŝ) as in
Figure 7.10. The difference between the angle f and 908 is a measure of the shear strain g of the
diamond. That is,

g ¼ p=2� f (7:36)

To quantify g in terms of the loading, consider a force analysis or free-body diagram of
the triangular plate PQR as in Figure 7.11, where F is the resultant tensile load on the original
square plate, sxx is the uniform tensile stress, t is the plate thickness, and a is the side length of the
original square plate. From the symmetry of the loadings, we have equivalent force systems as in
Figure 7.12. Consider the force system in the right sketch of the figure: the force components
parallel to the edges are shearing forces. They produce shear stresses t on those inclined edges as

t ¼ (
ffiffiffi
2

p
=4)F=(a

ffiffiffi
2

p
=2)t ¼ F=2at ¼ sxx=2 (7:37)

Before
deformation

Y

X

v/2

u/2

A B
B̂

ˆ

A

D C
C

After
deformation

ˆ

ˆ

D

FIGURE 7.9 Plate in tension (X-axis) before and after deformation.
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ˆ

ˆ
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f

ˆ

ˆ

ˆ

ˆ

ˆ

FIGURE 7.10 A diamond PQRS within the undeformed and deformed plate. (a) Before deformation and
(b) after deformation.
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where (a
ffiffiffi
2

p
=2)t is the area of an inclined edge and the final equality is seen in Figure 7.11.

Next, consider the shear strain of Equation 7.36: specifically, consider the deformation of the
triangular plate PQR into P̂Q̂R̂ as in Figure 7.10 and as shown again with exaggerated deformation
in Figure 7.13. Let u be the half angle at Q̂. That is,

u ¼ f=2 (7:38)

From Figure 7.13, we see that

tan u ¼ [(a� v)=2]=[(aþ u)=2] ¼ (a� v)(a� u)

¼ [1� (v=a)]=[1þ (u=a)] ¼ [1� (v=a)][1þ (u=a)]�1

ffi [1� (v=a)][1� (u=z)] ¼ 1� v

a
� u

a

¼ 1� uþ v

a
(7:39)

where we have used a binomial expansion [1] to approximate 1þ (u=a)½ ��1 and where we have
neglected higher order terms in the displacement u and v. Then by substituting from Equations 7.34
and 7.35 into 7.39, we have

tan u ¼ 1� (1þ v)(u=a) ¼ 1� (1þ v)«xx (7:40)

From Equation 7.63, the shear strain g is

g ¼ (p=2)� f ¼ (p=2)� 2u (7:41)

F =sxxatsxx at

P

Q

R

FIGURE 7.11 Force balance on triangular plate PQR of the square plate of Figures 7.8 through 7.10.
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FIGURE 7.12 Equivalent force systems on triangular plate PQR.
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Then u is

u ¼ (p=4)� (g=2) (7:42)

Then tan u is

tan u ¼ tan
p

4
� g

2

� �
� tanp=4� tan g=2

1þ ( tanp=4)( tan g=2)

ffi 1� g=2
1þ g=2

¼ 1� g

2

� �
1þ g

2

� ��1

ffi (1� g=2)(1� g=2) � 1� g (7:43)

where we have used the trigonometric identity [1]:

tan (A� B) � tanA� tanB

1þ tanA tanB
(7:44)

and where again we have assumed that g is small in the binomial expansion of (1þ g=2)�1, in the
product (1� g=2)(1� g=2), and in the approximation of tan g=2 by g=2. (That is, we have neglected
all but linear terms in g.)

Next, recall from the fundamental shear stress–strain equation, we have

g ¼ �=G ¼ sxx=2G (7:45)

where the last equality follows from Equation 7.37. Then from Equation 7.43, tan u is

tan u ¼ 1� (1þ v)«xx ¼ 1� sxx

2G
(7:46)

Finally, by comparing Equations 7.40 and 7.46, we have

tan u ¼ 1� (1þ v)«xx ¼ 1� sxx

2G
or

(1þ v)«xx ¼ sxx=2G

(7:47)

a − v

(a+ u)/2
P

R

Q

ˆ

ˆ

ˆ
q

f

FIGURE 7.13 Deformed triangle PQR into P̂Q̂R̂.

Huston/Practical Stress Analysis in Engineering Design DK4291_C007 Final Proof page 96 3.11.2008 5:55pm Compositor Name: VAmoudavally

96 Practical Stress Analysis in Engineering Design



But «xx is sxx=E. Therefore G is

G ¼ E=2(1þ v) (7:48)

7.7 OTHER FORMS OF HOOKE’S LAW

In Section 7.5, we saw that Hooke’s law may be written for the strains in terms of the stresses as (see
Equations 7.22 through 7.24, and 7.31 through 7.33):

«xx ¼ (1=E)[sxx � v(syy þ szz)] (7:49)

«yy ¼ (1=E)[syy � v(szz þ sxx)] (7:50)

«zz ¼ (1=E)[szz � v(sxx þ syy)] (7:51)

«xy ¼ (1=2G)sxy (7:52)

«yz ¼ (1=2G)syz (7:53)

«zx ¼ (1=2G)szx (7:54)

Also from Equations 7.25 through 7.27, and 7.31 through 7.33, the stresses may be expressed in
terms of the strain as

sxx ¼ E
n(«yy þ «zz)þ (1� n)«xx

(1þ n)(1� 2n)
(7:55)

syy ¼ E
n1(«zz þ «xx)þ (1� n)«yy

(1þ n)(1� 2n)
(7:56)

szz ¼ E
n(«xx þ «yy)þ (1� n)«zz

(1þ n)(1� 2n)
(7:57)

sxy ¼ 2G«xy (7:58)

syz ¼ 2G«yz (7:59)

szx ¼ 2G«zx (7:60)

We can express these equations in more compact form by using index notation and by reintroducing
and redefining the expressions

D ¼ «xx þ «yy þ «zz, Q ¼ sxx þ syy þ szz (7:61)

where, as before, D is the dilatation and Q will be recognized as the sum of the diagonal elements of
the stress matrix (see Equation 4.64). To use index notation, let x, y, and z become 1, 2, and 3
respectively. Then D and Q may be expressed as

D ¼ «11 þ «22 þ «33 ¼ «kk and Q ¼ s11 þ s22 þ s33 ¼ skk (7:62)

where, repeated indices designate a sum from 1 to 3. Using this notation, it is readily seen that
Equations 7.49 through 7.54 may be combined into a single expression as

«ij ¼ �(n=E)Qdij þ sij=2G (7:63)
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where, dij is Kronecker’s delta symbol defined as

dij ¼ 0 i 6¼ j
1 i ¼ j

�
(7:64)

Equation 7.61 may be validated by simply writing the individual terms. For example, «11 is

«11 ¼ �(n=E)(s11 þ s22 þ s33)þ s11=2G (7:65)

But from Equation 7.47, 1=2G is (1þ n)=E. Thus «11 is

«11 ¼ �(n=E)(s11 þ s22 þ s33)þ (1þ n)s11=E

or

«11 ¼ (1=E)[s11 � n(s22 þ s33)]

(7:66)

This is similar to Equation 7.49. The other five elements of Equation 7.61 are similarly validated.
Also, Equations 7.55 through 7.60 may be written in the compact form

sij ¼ ldijDþ 2G«ij (7:67)

where l is defined as

l ¼ vE

(1þ v)(1� 2v)
(7:68)

l and G are sometimes called Lamé constants.

7.8 HYDROSTATIC PRESSURE AND DILATATION

Equations 7.61 and 7.67 can be used to obtain a relation between the first stress invariant Q and the
dilatation D (the first strain invariant). Specifically, in Equation 7.67, by replacing i with j and
adding, we obtain

sjj ¼ Q ¼ ldjjDþ 2G«jj ¼ (3lþ 2G)D (7:69)

By substituting for l and G from Equations 7.48 and 7.68, we have

3lþ 2G ¼ E=(1� 2v) (7:70)

Therefore, Equation 7.69 becomes

Q ¼ [E=(1� 2v)]D or D[(1� 2v)=E]Q (7:71)

If each of the normal stresses are equal, we have a state of ‘‘hydrostatic pressure.’’ In particular, let
the stresses be

s11 ¼ s22 ¼ s33 ¼ �p (7:72)
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where p is the pressure and the negative sign is used since pressure is compressive. Then Q is

Q ¼ �3p (7:73)

Then Equation 7.71 becomes

�p ¼ �
E=3(1� 2v)

	
D ¼D kD (7:74)

where k is called the ‘‘bulk modulus’’ defined by inspection as

k ¼ E=3(1� 2v) ¼ lþ (2=3)G (7:75)

SYMBOLS

a Cross section side length, radius
a, b, c Lengths
E Modulus of elasticity
F Force
G Shear modulus, Lame constant
k Bulk modulus
p Hydrostatic pressure
r Radius
u, v, w Displacements
ui (i¼ 1, 2, 3; x, y, z) Displacement components
V Volume
V
_

Volume of a deformed body or element
g Shear strain
gij (i, j¼ 1, 2, 3; x, y, z) Engineering strain components
d Elongation
D Sum of diagonal elements of strain matrix
DV Volume change
« Strain
« (i, j¼ 1, 2, 3; x, y, z) Strains, Strain matrix elements
Q Sum of diagonal elements of stress matrix
u, f Angle measure
l Lamé constant
n Poisson’s ratio
s Stress
sij (i, j¼ 1, 2, 3; x, y, z) Stresses, stress matrix elements
t Shear stress
tij (i, j¼ 1, 2, 3; x, y, z) Shear stress components
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Part II

Straight and Long Structural
Components: Beams, Rods, and Bars

In this second part, we apply the concepts documented in the first part. We start with a discussion of
stress, strain, and displacement of beams, rods, and bars. These are the most commonly used
structural elements and components in the design of structures and machines.

We focus on thin straight members, looking primarily at the concepts of bending and torsion. In
the first part (Chapters 2 and 3), we have already considered simple extension and compression of
rods. In this part, we will also look at the consequences of bending and torsion, that is, the resulting
stresses, strains, and displacements. In the next part, we will look at thick and curved beams and
buckling of beams. In subsequent parts, we will look at assemblages of beams in the form of trusses
and frames.

Finally, from an analytical perspective, there is no major difference between a rod, a bar,
or a beam. Generally, the distinction refers to the shape of the cross section with beams being
rectangular, rods being round, and bars being square or hexagonal. But these are rather arbitrary
classifications.

Huston/Practical Stress Analysis in Engineering Design DK4291_S002 Final Proof page 101 3.11.2008 4:17pm Compositor Name: BMani



Huston/Practical Stress Analysis in Engineering Design DK4291_S002 Final Proof page 102 3.11.2008 4:17pm Compositor Name: BMani



8 Beams: Bending Stresses
(Flexure)

8.1 BEAMS

A beam is simply a long, slender member as represented in Figure 8.1, where ‘ is the length of the
beam, h is its height, and b is its thickness. An immediate question is: what is meant by ‘‘long and
slender?’’ That is, how long is ‘‘long’’ or equivalently, how slender is ‘‘slender?’’ Unfortunately,
these questions have no precise answers. We can certainly say that whatever approximations are
made, by assuming a beam to be long and slender, become more appropriate the longer (or more
slender) the beam becomes. While this is reassuring, and potentially useful, it is still not very
specific. A general rule is that a beam is long or slender if its length ‘ is an order of magnitude (i.e.,
10 times) larger than the cross section dimensions. That is, in Figure 8.1 the beam may be regarded
as long as

‘ > 10h and ‘ > 10b (8:1)

8.2 LOADINGS

Beams may be loaded in three principal ways: (1) axially (producing longitudinal extension or
compression); (2) transversely (producing bending); and (3) in torsion (producing twisting). Figure
8.2 illustrates these loading methods.

Beams may, of course, have combinations of these loadings. When the deformations from
combined loadings are small, the resulting displacements and stresses from these loadings may be
obtained by superposition.

In Chapters 8 and 9, we will discuss bending, which results from transverse loading. We will
consider torsion in Chapter 10 and axial loading in Chapter 11 in connection with buckling. We
will also consider axial loading in trusses as a means for developing the finite element method
(FEM). Recall that axial loading and deformation are also discussed in Part I (see Chapters 2 and 3).

8.3 COORDINATE SYSTEMS AND SIGN CONVENTIONS

The coordinate system and sign conventions establishing positive and negative directions are
essential features of any stress analysis. For beam bending, the sign conventions are especially
important, particularly because there is disagreement among analysts as to which convention to use.
While each of the various conventions has advantages (and disadvantages), a key to a successful
analysis is to stay consistent throughout the analysis.

We will generally follow the sign convention of three-dimensional stress analysis established in
Chapter 4. That is, stresses and displacements at points of positive element faces are positive if they
are in positive directions, and negative if they are in negative directions. Conversely, stresses and
displacements at points of negative element faces are positive if they are in negative directions and
negative if they are in positive directions. Recall that a ‘‘positive face’’ of an element is a face where
one goes in the positive direction in crossing the face by going from inside to outside of the element.
Correspondingly a ‘‘negative face’’ of the element has one going in a negative direction in crossing
the face while going from inside to outside of the element.

Huston/Practical Stress Analysis in Engineering Design DK4291_C008 Final Proof page 103 7.11.2008 10:15pm Compositor Name: MSubramanian

103



In our convention, we place the X-axis along the axis of the beam. Since many beams are
weight-bearing structures, we choose the Y-axis to be downward, producing positive beam dis-
placements for weight (or gravity) forces. The Z-axis is then inward when viewing the X–Y plane, as
in Figure. 8.3, where the origin O is placed at the left end of the beam as shown.

In beam structural analyses, we are principally interested in loadings, shear forces, bending
moments, stresses, and displacements. In the following paragraphs and figures, we describe and
illustrate the positive direction for these quantities.

First, for loading, since our focus in this chapter is on transverse loadings, the positive direction
for the applied forces is in the positive Y-axis as illustrated in Figure. 8.4. (Note that if the beam
displacement is small, we can also have transverse loading in the Z-direction and then superpose the
analyses results.)

Next, transverse beam loading, as in Figure 8.4, produces transverse shearing forces and
bending moments on the beam. Figure 8.5 shows the positive directions for the shearing forces.
Observe that the positive shear force V acts on the positive face (cross section) in the positive
direction and on the negative cross section in the negative direction.

Figure 8.6 shows the conventional positive directions for the bending moments produced by
transverse loadings. Unfortunately, these directions are opposite to those suggested by elasticity
theory. In this case, the positive moment on the positive face is directed in the negative Z-direction.
The advantage of this departure from elasticity theory is that the resulting stresses are positive in the
lower portion of the beam cross section where the bending moment is positive. That is, adopting the
convention of Figure. 8.6 leads to the familiar expression

s ¼ My=I (8:2)

where I is the second moment of area of the beam cross section (that is, I ¼ Ð
y2dA). Finally,

Figure 8.7 illustrates the positive directions for beam displacement and cross section rotation.

h
ℓb

FIGURE 8.1 A rectangular beam.

or 
(a)

(b)

(c)

FIGURE 8.2 Methods of beam loading. (a) Axial loading, (b) transverse loading, and (c) torsional loading.
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Y

X

Z

FIGURE 8.3 Beam coordinate axes.

Y

FIGURE 8.4 Positive-directed transverse forces on a beam.

Y

X
V

V

FIGURE 8.5 Positive directions for shearing forces.

Z

M M

FIGURE 8.6 Positive directions for bending moments.

Y

q

FIGURE 8.7 Positive directions for displacement and rotation of a beam.

Huston/Practical Stress Analysis in Engineering Design DK4291_C008 Final Proof page 105 7.11.2008 10:15pm Compositor Name: MSubramanian

Beams: Bending Stresses (Flexure) 105



8.4 EQUILIBRIUM AND GOVERNING EQUATIONS

Consider a short segment of a transversely loaded beam as in Figure 8.8. Let q(x) represent the
loading on the beam per unit length. Let Dx be the segment length and V and M be the shear and
bending moment on the left end of the segment respectively as in Figure 8.9. With the segment
length Dx being small, we can conveniently use the beginning term of a Taylor series expansion to
represent the shear and bending moment on the right side of the segment as shown in the figure.
Consider a free-body diagram of the segment. As Dx becomes vanishingly small, we can safely
neglect the higher order terms in the shear and bending moment expressions on the right side of the
beam. Correspondingly, the resultant force on the segment due to the loading function q(x) is then
approximately qDx, where q is simply an average value of q(x) across the short segment.

Using these approximations, we may envision a free-body diagram of the segment as in Figure
8.10. Then by adding forces vertically, we obtain

qDxþ dV

dx
Dx ¼ 0 (8:3)

or

dV

dx
¼ �q (8:4)

Similarly, by setting moments about the left end equal to zero, we have

dM

dx
Dx� VDx� dV

dx
Dx

� �
Dx� (qDx)Dx=2 ¼ 0 (8:5)

By again neglecting higher powers in Dx, we obtain

dM

dx
¼ V (8:6)

q(x)

Segment

FIGURE 8.8 A segment of a loaded beam.

q(x)

Δx

dM
dx
___M + Δx + ...

dV
dx
___V +

V
M

Δx + ...

FIGURE 8.9 Beam segment, with loading q(x), shear V, and bending moment M.
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Finally, by substituting for V from Equation 8.6 in Equation 8.4, we obtain

d2M

dx2
¼ �q (8:7)

8.5 BEAM DEFLECTION DUE TO BENDING

Consider again a portion of a beam being bent due to transverse loads as in Figure 8.11. Consider a
segment (or ‘‘element’’) (e) of the beam and let Dx be the length of (e) as shown in Figure 8.11. Let
the transverse loading produce a bending moment M on the beam as indicated in the figure. Finally,
let an axis system be introduced with origin O at the left end of (e), with the X-axis along (e) and the
Y-axis below the plane of (e) as shown in Figure 8.11.

As the beam is bent by the bending moments, it will of course no longer be straight but slightly
curved as represented in exaggerated form in Figure 8.12, where Q is the center of the curvature of
the arc formed at O by the beam centerline and r is the corresponding radius of curvature.

Let N be a centerline axis of the beam which is straight before bending but then curved after
bending as shown in Figure 8.12. The principal tenet of elementary beam bending theory is that
during bending plane cross sections normal to the beam axis N before bending remain plane and
normal to N during and after bending. As a consequence, as the beam is bent upwards (positive
bending) as in Figure 8.12, the upper longitudinal fibers of the beam are shortened and correspond-
ingly, the lower longitudinal fibers are lengthened.

Figure 8.13 shows an enlarged view of element (e) of the bent beam. With the upper fibers
of the beam, and hence also of (e), being shortened, with the lower fibers being lengthened, and with
the cross section normal to the beam axis remaining plane during bending, there will exist at some
mid elevation of (e), a fiber that is neither shortened nor lengthened due to the bending. Indeed, if we
consider the thickness of the beam in the Z-direction, there will be a strip or surface of the beam,
which is neither shortened nor lengthened by the bending. This surface is sometimes called a
‘‘neutral surface’’ of the beam.

___

___

qΔx
dM
dxM +

dV
dx

V +

V
M

Δx

Δx

FIGURE 8.10 Free-body diagram of the beam segment.

Δx

(e)

M M

X

Y

O

FIGURE 8.11 A beam segment, or element, in bending.
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Let the X–Y plane be placed at the mid section of the beam in the Z-direction and let the origin O
be placed on the neutral surface. Then the intersection of the neutral surface with the X–Y plane is a
curve called the ‘‘neutral axis’’ of the beam. We now identify N in Figures 8.12 and 8.13 with this
neutral axis. Before bending, N and the X-axis are coincident, but N is a ‘‘material’’ line and the
X-axis is a ‘‘spatial’’ line.

Consider a fiber of (e) along the neutral axis N. Since this fiber is neither shortened nor
lengthened during bending, its length will remain as Dx. However, after bending, this fiber will
be curved forming an arc with radius r and subtended angle Du as represented in Figure 8.12. Thus,
the fiber length is also rDu. That is

Dx ¼ rDu (8:8)

Consider a fiber of distance y beneath the neutral axis N, shown shaded in Figure 8.13. This
fiber will also be curved into an arc. But, although its original length is Dx, its deformed length is
(rþ y)Duz. The strain « of this fiber is simply

« ¼ (r þ y)Du� Dx

Dx
¼ (r þ y)Du� rDu

rDu
¼ y

r
(8:9)

Q

Δq

r

O

(e)Y

X

N
Δx = rΔq

FIGURE 8.12 Exaggerated bending of the beam segment.

O

y

Y

N

X
Δx=rΔq

(r +y)Δq

FIGURE 8.13 Enlarged, view of element (e).
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8.6 BEAM STRESSES DUE TO BENDING

Equation 8.9 shows that the axial strain of the beam varies linearly across the beam cross section.
(This is a direct consequence of the requirement that beam cross sections normal to the beam axis
before bending remain plane and normal to the beam axis during and after bending.) From Hooke’s
law, the axial stress in the beam will also vary linearly across the cross section. Specifically, the
axial stress s is

s ¼ E« ¼ (E=r)y (8:10)

Consider the relation between the axial stress and the beam bending moment. Consider particularly
the stresses and bending moment at a typical cross section of a beam, as represented in Figure 8.14.
For the purpose of simplifying the analysis, let the beam cross section be rectangular, and consider
an end view as in Figure 8.15. Let the cross section dimensions be b and h as shown. Then for
equilibrium, the stress produced by the applied bending moment must have the same moment about
the Z-axis as the bending moment M itself. That is,

ðh=2

�h=2

syb dy ¼ M (8:11)

By substituting for s from Equation 8.10, we have

M ¼
ðh=2

�h=2

(E=r)y2b dy ¼ (E=r)(bh3=12)

or

M ¼ EI=r (8:12)

where I is defined as bh3=12 and is generally called ‘‘the second moment of area’’ or the ‘‘moment of
inertia’’ of the cross section.

Equation 8.13 holds for other rectangular cross sections, such as that of I-beams as well.
Observe further in the development of Equation 8.13 that for a given cross section E=r is a

constant across the cross section. That is, E=r is independent of y. However r will, in general, vary
from point to point along the beam axis.

Y

s

X

M

FIGURE 8.14 Bending moment and axial stress in a typical beam cross section.
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Finally, by eliminating E=r between Equations 8.10 and 8.12, we obtain the familiar relation:

s ¼ My=I (8:13)

For a rectangular cross section, as in Figure 8.15, the maximum value of y is h=2. Thus, the
maximum bending stress at the top (compression) and bottom (tension) of the beam with values

smax
min

¼ �6M=bh2 (8:14)

For a beam with a nonrectangular cross section, if the maximum distance from a material point of
the cross section to the neutral axis is c, we have the widely used expression

smax
min

¼ �Mc=I (8:15)

SYMBOLS

b Beam width
c Half beam height
E Modulus of elasticity
(e) Element
h Beam height
I Second moment of area
‘ Beam length
M Bending moment
N Neutral axis
O Origin
Q Center of curvature
q(x) Loading
V Shear force
X, Y, Z Cartesian (rectangular) coordinate axes
x, y, z Coordinates relative to X, Y, and Z
« Normal strain
r Radius of curvature
s Normal stress

Z

Y

h

b

FIGURE 8.15 Beam cross section.
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9 Beams: Displacement
from Bending

9.1 BEAM DISPLACEMENT AND BENDING MOMENT

Equation 8.12 provides the fundamental relationship between the bending moment applied to a
beam and the resulting induced curvature of the beam’s centerline:

M ¼ EI=r (9:1)

where
M is the bending moment
r is the radius of curvature
I is the second moment of area of the beam cross section about the neutral axis
E is the modulus of elasticity

In general, the bending moment is a function of the axial position x along the beam. Thus, in view of
Equation 9.1, the radius of curvature is also a function of x.

Consider a planar curve C represented in the X–Y plane by the function: f (x), as in Figure 9.1.
It is known [1] that the radius of curvature r of C can be expressed in terms of f and its derivatives as

r ¼ [1þ (dy=dx)2]3=2=d2y=dx2 (9:2)

We can readily apply Equation 9.2 with the curved centerline (or neutral axis) of a beam since the
induced curvature due to bending is small. Since dy=dx is the beam slope, it will be small and thus
the product (dy=dx)2 is negligible compared to 1. That is,

(dy=dx)2 � 1 and r � 1=d2y=dx2 (9:3)

Recall that with our sign convention, the Y-axis pointing downward, opposite to that of Figure 9.1.
Therefore, to maintain our convention for positive bending, as in Figure 8.6, with the Y-axis
pointing downward, Equation 9.3 becomes

r ¼ �d2y=dx2 (9:4)

Equation 9.4 provides a differential equation determining the beam axis displacement in terms of the
axis curvature, and thus in terms of the bending moment, via Equation 9.1. That is

d2y

dx2
¼ �M=EI (9:5)

9.2 BEAM DISPLACEMENT IN TERMS OF TRANSVERSE SHEAR
AND THE LOADING ON THE BEAM

By using Equation 9.3, we can relate the displacement of the transverse shear V and the applied
loading function q(x). Recall from Equations 8.4 and 8.6 that the bending moment M, shear V, and
load q are related by the simple expressions
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dM=dx ¼ V and dV=dx ¼ �q (9:6)

Therefore, by substituting from Equation 9.3 we have

d3y

dx3
¼ �V=EI and

d4y

dx4
¼ q=EI (9:7)

The second expression of Equation 9.7 is the governing ordinary differential equation for the
displacement of the neutral axis due to the beam loading. Once this equation is solved and y(x) is
known, we can immediately determine the transverse shear V and bending moment M along the
beam axis using the expressions

V ¼ �EId3y=dx3 and M ¼ �EId2y=dx2 (9:8)

9.3 BEAM SUPPORTS, SUPPORT REACTIONS,
AND BOUNDARY CONDITIONS

Equation 9.7 provides a fourth-order, ordinary differential equation for beam displacement once the
loading function q(x) is known. Upon solving (or integrating) the equations, there will be four
constants of integration to be evaluated. We can evaluate these constants using the auxiliary
conditions (or ‘‘boundary conditions’’) required by the beam supports. We discuss these concepts
in the following paragraphs.

There are four principal types of supports: (1) built-in (‘‘clamped’’ or ‘‘cantilever’’); (2) simple
(‘‘pin’’ or ‘‘roller’’); (3) free (‘‘unconstrained’’); and (4) elastic.

9.3.1 BUILT-IN (CLAMPED OR CANTILEVER) SUPPORT

In this case, the beam end is completely supported or fixed, that is, the beam end is restrained from
moving in both translation and rotation, as represented in Figure 9.2. This means that at the support,

C: y = f (x)

Y

X

FIGURE 9.1 A planar curve C.

ℓ

FIGURE 9.2 A beam with a built-in (clamped or cantilever) support at the right end.
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the beam displacement y and the beam rotation dy=dx are zero. Thus, if the origin of the beam axis is
at the left end and the support is at x¼ ‘, we have

y(‘) ¼ 0 and
dy

dx
(‘) ¼ 0 (9:9)

Observe that for the conditions of Equation 9.9 to be satisfied, the support will exert a force and a
moment on the beam. The magnitude of this force and moment can be determined from the loading
conditions using a free-body diagram.

9.3.2 SIMPLE (PIN OR ROLLER) SUPPORT

Here the support provides a vertical constraint for the beam, but it allows for beam rotation, as
represented in Figure 9.3. Thus if the support is at say x¼ a (with the origin being at the left end of
the beam), we have

y(a) ¼ 0 and M(a) ¼ 0 (9:10)

where, as before, M(x) is the bending moment along the beam axis. Since from Equation 9.8 M is
�EId2 y=dx2, we have the simple support condition:

d2y

dx2
(a) ¼ 0 (9:11)

Finally, the magnitude of the reaction force, exerted by the support to restrain the vertical movement
of the beam, may be obtained using a free-body diagram from the given loading conditions.

9.3.3 FREE (UNCONSTRAINED) SUPPORT

In this case, the beam has no restraint at the support, that is, the shear V and the bending moment M
at the support are zero as in Figure 9.4. Thus, if the free end is at x¼ ‘, we have the conditions:

V(a) ¼ 0 and M(a) ¼ 0 (9:12)

or in view of Equation 9.8 we have the conditions:

d3y

dx3
(a) ¼ 0 and

d2y

dx2
(a) ¼ 0 (9:13)

FIGURE 9.3 A simple (pin) support.

x=a

FIGURE 9.4 A free end at x¼ a.
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9.3.4 ELASTIC SUPPORT

In this case, the beam displacement (or rotation) is not fully constrained, but instead it is resisted by
a force (or moment) proportional to the displacement (or rotation) as suggested by spring models of
Figure 9.5. The shear force V and bending moment M are

V(a) ¼ kVy(a) and M(a) ¼ kM
dy

dx
(a) (9:14)

where, as before, x¼ 1 is the location of the support.

9.4 SUMMARY OF GOVERNING EQUATIONS

For convenience, we briefly summarize the pertinent equations:

Bending moment

Equation 9:3: M ¼ �EId2y=dx2 (9:15)

Shear

Equation 9:7: V ¼ �EId3y=dx3 (9:16)

Load

Equation 9:7: q ¼ EId4y=dx4 (9:17)

The support conditions are

Built-in (clamped)

Equation 9:9: y ¼ dy=dx ¼ 0 (9:18)

Simple (pin)

Equation 9:10: y ¼ d2y=dx2 ¼ 0 (9:19)

Free

Equation 9:13: d2y=dx2 ¼ d3y=dx3 ¼ 0 (9:20)

Elastic

Equation 9:14: V ¼ kVy, M ¼ kM dy=dx (9:21)

(a) (b)

FIGURE 9.5 Elastic force and moment supports.
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9.5 ILLUSTRATIONS

We can illustrate the application of the governing equations of the foregoing sections with a few
elementary examples: specifically, we will consider cantilever and simply supported beams under
uniform and concentrated loadings. The objective in each case is to determine the displacement,
shear, and bending moment along the beam axis.

9.5.1 UNIFORMLY LOADED CANTILEVER BEAM

Consider first a cantilever beam supported (that is, built-in or clamped) at its left end and loaded
with a uniform load along its span as in Figure 9.6, where ‘ is the beam length and w is the load per
unit length along the beam.

We can determine the reactions at the support by using a free-body diagram as in Figure 9.7
where VO and MO are the shear and bending moment applied to the beam by the support at x¼ 0.
To find VO and MO, it is useful to consider an equivalent free-body diagram as in Figure 9.8. From
this figure, it is obvious that VO and MO are

VO ¼ w‘ and MO ¼ �w‘2=2 (9:22)

We can now readily determine the bending moment, shear, and displacement along the beam axis
using Equations 9.15, 9.16, and 9.17, respectively. Specifically, in Equation 9.17, the load q(x)
along the beam is

q(x) ¼ w (9:23)

Thus, Equation 9.17 becomes

EI d4y=dx4 ¼ w (9:24)

By integrating Equation 9.24, we have

EI d3y=dx3 ¼ wxþ c1 ¼ �V (9:25)

W

ℓ

FIGURE 9.6 Uniformly loaded cantilever beam.

w
VO

MO

FIGURE 9.7 Free-body diagram of the uniformly loaded cantilever beam.
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where the last equality follows from Equation 9.16. Since the shear V is VO (¼w‘) when x¼ 0, we
find the integration constant c1 to be

c1 ¼ �VO ¼ �w‘ (9:26)

By substituting from Equation 9.26 in Equation 9.25 and integrating again, we have

EI d2y=dx2 ¼ wx2=2� w‘xþ c2 ¼ �M (9:27)

where the last equality follows from Equation 9.15. Since the bending momentM isMO (¼�w‘2=2)
where x¼ 0, we find the integration constant c2 to be

c2 ¼ �MO ¼ w‘2=2 (9:28)

By substituting from Equation 9.28 in Equation 9.27 and integrating again, we have

EI dy=dx ¼ wx3=6� w‘x2=2þ w‘2x=2þ c3 (9:29)

But from Equation 9.18, dy=dx is zero when x¼ 0, the integration constant c3 is

c3 ¼ 0 (9:30)

Finally, by substituting from Equation 9.30 in Equation 9.29 and integrating again, we find the
displacement y to be

EIy ¼ wx4=24� w‘x3=6þ w‘2x2=4þ c4 (9:31)

But from Equation 9.18, y is zero when x¼ 0, the integration constant c4 is

c4 ¼ 0 (9:32)

In summary, from Equations 9.25, 9.26, and 9.27 the shear, bending moment, and displacement are

V(x) ¼ (�wxþ w‘)=EI (9:33)

M(x) ¼ (�wx2=2þ w‘x� w‘2=2)=EI (9:34)

y(x) ¼ (wx4=24� w‘x3=6þ w‘2x2=4)=EI (9:35)

The maximum bending moment Mmax occurs at x¼ 0 as

Mmax ¼ �w‘2=2EI (9:36)

MO wℓ
VO

FIGURE 9.8 Equivalent free-body diagram of the uniformly loaded cantilever beam.
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The maximum displacement ymax occurs at x¼ ‘ as

ymax ¼ w‘4=8EI (9:37)

9.5.2 CANTILEVER BEAM WITH A CONCENTRATED END LOAD

Consider next a cantilever beam, built-in at its left end and loaded with a single vertical force on its
right end as in Figure 9.9. Let the beam length be ‘ and the load magnitude be P as indicated in the
figure. As before, our objective is to determine the displacement, bending moment, and shear along
the length of the beam.

To begin the analysis, consider a free-body diagram of the beam as in Figure 9.10, where VO and
MO are the shear and bending moment applied to the beam by the support.

Then for equilibrium, VO and MO are

VO ¼ 0 and MO ¼ �P‘ (9:38)

The beam loading may thus be represented as in Figure 9.11.
Next, consider a free-body diagram of a segment of the beam to the left of a cross section

which is a distance x from the left end support as in Figure 9.12. Then by considering the
equilibrium of the segment, we immediately see that the shear V and bending moment M on the
cross section at x are

V ¼ P and M ¼ �P(‘� x) (9:39)

The beam displacement y may now be determined using Equation 9.15:

EI d2y=dx2 ¼ �M ¼ P(‘� x) (9:40)

By integrating, we have

EI dy=dx ¼ P‘x� Px2=2þ c1 (9:41)

ℓ

P

FIGURE 9.9 Cantilever beam with a concentrated end load.

P

MO

VO

FIGURE 9.10 Free-body diagram of the beam of Figure 9.9.
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But since the beam is clamped at its left end, we have (at x¼ 0):

dy

dx
(0) ¼ 0 so that c1 ¼ 0 (9:42)

Then by integrating again, we have

EIy ¼ P‘x2=2� Px3=6þ c2 (9:43)

But since the beam is supported at its left end, we have (at x¼ 0):

y(0) ¼ 0 so that c2 ¼ 0 (9:44)

Therefore, the displacement y(x) is

y ¼ (P=EI)
‘x2

2
� x3

6

� �
(9:45)

These results show that the maximum beam displacement, ymax, occurs at the right end as

ymax ¼ P‘3=3EI (9:46)

Also, from Equation 9.39, the maximum bending momentMmax is seen to occur at the left end of the
beam as

Mmax ¼ �P‘ (9:47)

Finally, from Equation 9.39, the shear V is constant along the beam as

V ¼ P

PP

Pℓ

FIGURE 9.11 Beam loading.

P

Pℓ

x
M

V

FIGURE 9.12 Free-body diagram of a left side segment of the beam.
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9.5.3 SIMPLY SUPPORTED BEAM WITH A UNIFORM LOAD

Consider now a simply supported beam with a uniform load as in Figure 9.13. As before, let w be
the loading per unit beam length and ‘ be the length of the beam. Consider a free-body diagram of
the beam as in Figure 9.14 and a free-body diagram with equivalent loading as in Figure 9.15, where
VL and VR are the shear loadings on the beam at the supports, by the supports. From Figure 9.15,
these shear loadings are

VL ¼ w‘=2 and VR ¼ �w‘=2 (9:48)

(Observe that in Figures 9.14 and 9.15 the shear forces are shown in their positive direction using
our convention of Section 8.3.)

Consider next a free-body diagram of a segment, say a left segment, of the beam as in
Figure 9.16, where V and M are the shear and bending moment respectively on a cross section at
a distance x from the left support. Consider also a free-body diagram of the segment with equivalent
loading as in Figure 9.17. Then by enforcing equilibrium, by setting the sum of the vertical forces
equal to zero and also the sum of the moment of the forces about the left end equal to zero, we obtain

�w‘

2
þ wxþ V ¼ 0 (9:49)

and

M � wx(x=2)� Vx ¼ 0 (9:50)

Solving for V and M, we obtain

V ¼ w(‘=2� x) (9:51)

and

M ¼ (wx=2)(‘� x) (9:52)

In knowing the moment distribution along the beam, as in Equation 9.52, we may use Equation 9.15
to determine the displacements:

w

FIGURE 9.13 A uniformly loaded, simply supported beam.

VL

VR

FIGURE 9.14 Free-body diagram of the simply supported, uniformly loaded beam.
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EId2y=dx2 ¼ �M ¼ �(wx=2)(‘� x) (9:53)

Then by integrating, we have

EIdy=dx ¼ �w‘x2=4þ wx3=6þ c1 (9:54)

and

EIy ¼ �w‘x3=12þ wx4=24þ c1xþ c2 (9:55)

We can determine the integration constants by recalling that y is zero at the supports. That is,

y(0) ¼ 0 ¼ c2 and y(‘) ¼ 0 ¼ �w‘4=c2 þ w‘4=24þ c1‘ (9:56)

Then c1 and c2 are

c1 ¼ w‘3=24 and c2 ¼ 0 (9:57)

Therefore, the displacement y of the beam centerline is

y ¼ (w=12EI)[x4=2� x3‘þ x‘3=2] (9:58)

From Equations 9.52 and 9.58, the maximum bending moment and maximum displacement are seen
to occur at midspan as

Mmax ¼ w‘2=4 and ymax ¼ 5w‘4=384EI (9:59)

VL

VR

wℓ

FIGURE 9.15 Free-body diagram with equivalent beam loading.

V

Mwx

wℓ
2

FIGURE 9.16 Free-body diagram of a left-side segment of the beam.
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9.5.4 SIMPLY SUPPORTED BEAMS WITH A CONCENTRATED INTERIOR LOAD

As a final illustration of the procedure, consider a simply supported beam with an interior
concentrated load as in Figure 9.18, where, ‘ is the beam length, and a and b are the distances of
the point of loading from the left and right end supports as shown.

Consider a free-body diagram of the beam as in Figure 9.19, where the support reactions are
represented by shear forces VL and VR as shown. By setting the sum of the forces equal to zero and
by setting the sum of the moment of the forces about the right end equal to zero, we have

�VL þ Pþ VR ¼ 0 and �VL‘þ Pb ¼ 0 (9:60)

or

VL ¼ Pb=‘ and VR ¼ �Pa=‘ (9:61)

Consider next a free-body diagram of a segment of the beam to the left of the load as in Figure 9.20
where x is the segment length and where, as before, V and M are the shear and bending moment
respectively on the right end of the segment. By setting the sum of the forces equal to zero and by
setting the sum of the moment of the forces about the left end equal to zero, we have

V � Pb=‘ ¼ 0 and M � Vx ¼ 0 (9:62)

Thus, the bending moment M is

M ¼ Vx ¼ Pbx=‘ (9:63)

From Equation 9.15, the displacement of the beam segment may be determined from the expression

EId2y=dx2 ¼ �M ¼ �Pbx=‘ (9:64)

By integrating, we have

EIdy=dx ¼ �Pbx2=2‘þ c1 (9:65)

V

M
wx

wℓ
2

FIGURE 9.17 Free-body diagram of the segment with equivalent loading.

a b

P

ℓ

FIGURE 9.18 Simply supported beam with an internal concentrated load.
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and

EIy ¼ �Pbx3=6‘þ c1xþ c2 (9:66)

With the beam having a simple support at x¼ 0, we have y(0)¼ 0, and thus c2 is zero. Therefore, for
0 � x � a, the beam displacement is

EIy ¼ �Pbx3=6‘þ c1x (0 � x � a) (9:67)

Next, consider in a similar manner a free-body diagram of a segment of the beam to the right of the
load as in Figure 9.21, where j is the segment length and where now V and M are the (positively
directed) shear and bending moment on the left end of the segment. By enforcing the equilibrium
conditions, we have

V þ Pa=‘ ¼ 0 and M þ Vj ¼ 0 (9:68)

Thus the bending moment M is

M ¼ Paj=‘ (9:69)

We can again use Equation 9.15 to determine the beam displacement. To do this, however, it is
convenient to consider x as the distance of the left end of the segment from the left support. That is,
let j be

j ¼ ‘� x x � a (9:70)

Then the bending moment of Equation 9.69 is

M ¼ Pa(‘� x)=‘ (9:71)

P

VL VR

FIGURE 9.19 Free-body diagram of internally loaded, simply supported beam.

V

M
x

Pb/ℓ

FIGURE 9.20 Free-body diagram of the left segment of the beam.
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Equation 9.15 then becomes

EId2y=dx2 ¼ �M ¼ �Pa(‘� x)=‘ (9:72)

By integrating, we have

EIdy=dx ¼ �(Pa=‘)‘xþ (Pa=‘)x2=2þ c3 (9:73)

and

EIy ¼ �(Pa=‘)(‘x2=2)þ (Pa=‘)(x3=6)þ c3xþ c4 (9:74)

With the beam having a simple support at x¼ ‘, we have y(‘)¼ 0, or

0 ¼ �Pa‘2=2þ Pa‘2=6þ c3‘þ c4 (9:75)

or

c4 ¼ �c3‘þ Pa‘2=3 (9:76)

Thus by substituting for c4 in Equation 9.72, the beam displacement is given by

EIy ¼ �(Pa=‘)(‘x2=2)þ (Pa=‘)(x3=6)þ c3(x� ‘)þ Pa‘2=3 (9:77)

Equations 9.66 and 9.77 provide expressions for the beam displacement for 0 � x � a (Equation
9.66) and for a � x � ‘ (Equation 9.77). Observe that both equations have undetermined constants:
c1 in Equation 9.66 and c3 in Equation 9.77. These constants can now be evaluated by requiring that
the beam displacement and the beam slope have the same values at x¼ a as determined from each
equation. (That is, the beam displacement must be continuous and smooth at x¼ a.) Therefore, by
equating the results for the displacement at x¼ a from Equations 9.66 and 9.77, we have

�Pba3=6‘þ c1a ¼ �Pa3=2þ Pa4=6‘þ c3(a� ‘)þ Pa‘2=3 (9:78)

or since b is ‘� a, we have

c1aþ c3(‘� a) ¼ Pa‘2=3� Pa3=3 (9:79)

Similarly, by equating the expressions for the displacement derivatives at x¼ a from Equations 9.65
and 9.73, we have

�Pba2=2‘þ c1 ¼ �Pa2 þ Pa3=2‘þ c3 (9:80)

V

x
M

Pa/ℓ

FIGURE 9.21 Free-body diagram of the right segment of the beam.
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or since b is ‘� a, we have

c1 � c3 ¼ �Pa2=2 (9:81)

By solving Equations 9.79 and 9.81 for c1 and c3, we have

c1 ¼ Pa(‘=3þ a2=6‘� a=2) and c3 ¼ pa(‘=3þ a2=6‘) (9:82)

Finally, by substituting these results into Equations 9.66 and 9.77, we obtain the beam displace-
ment as

EIy ¼ �Pbx3=6‘þ Pax(‘=3þ a2=6‘� a=2) 0 � x � a (9:83)

and

EIy ¼ (Pa=‘)(x3=6� ‘x2=2þ ‘2x=3þ a2x=6� ‘a2=6) (a � x � ‘) (9:84)

In these results, if a¼ b¼ ‘=2 (that is, a centrally loaded beam), then the displacement under the
load is

y ¼ P‘3=48EI (9:85)

From equations 9.63 and 9.69, we can deduce for a centrally loaded beam (that is, a¼ b¼ ‘=2) the
maximum bending moment occurs under the load as

Mmax ¼ P‘=4 (9:86)

9.6 COMMENT

The illustrations in the above discussion show that by using free-body diagrams to determine beam
loading, bending, and shear and by integrating the governing equations of Section 9.4, we can
determine beam displacement along the centerline. The last illustration shows that this procedure
can be cumbersome with even relatively simple configurations. The difficulty arises primarily with
concentrated loading, which leads to singularities and discontinuities. In Chapter 10, we discuss
singularity functions, which enable us to overcome the difficulty with concentrated loads and to
greatly simplify the procedure.

SYMBOLS

A Length, value of x
B Beam depth (in Z-axis direction)
C Plane curve
ci (i¼ 1, 2, 3, 4) Integration constants
E Elastic modulus
I Second moment of area
kM Spring constant for bending
kV Spring constant for shear
‘ Beam length
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L, R Subscripts designating left and right
M Bending moment
O Origin of X- and Y-axes
P Load
q Loading
V Shear force
w Uniform load per unit length
x X-axis coordinate
X, Y, Z Cartesian (rectangular) coordinate axes
y Y-axis coordinate, displacement
j Segment length
r Radius of curvature
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10 Beam Analysis Using
Singularity Functions

10.1 USE OF SINGULARITY FUNCTIONS

The final example of Chapter 9 (a simply supported beam with an interior-concentrated load)
illustrates a difficulty in traditional beam analysis with concentrated loads. The solution procedure
requires separate analyses on both sides of the load, and the solution itself requires two expressions
depending upon the position of the independent variable relative to the load. We can avoid these
difficulties by using singularity functions.

In this chapter, we introduce these functions and illustrate their use with some examples as in
Chapter 9. We then discuss some less-trivial configurations. Singularity functions are developed
using the properties of the Heavyside unit step function and the Dirac delta function [1]. Typically,
these functions are defined as follows.

10.1.1 HEAVYSIDE UNIT STEP FUNCTION

The unit step function f(x� a) is defined as

f(x� a) ¼ 0 x < a
1 x � a

�
(10:1)

Graphically, f(x� a) may be represented as in Figure 10.1. Observe that f(x� a) appears as
a ‘‘step’’ at x¼ a. However, f(x� a) is not continuous at x¼ a and therefore the derivative
of f(x� a) does not exist at x¼ 1, in the context of elementary analysis. Nevertheless, if we regard
f(x� a) as a generalized function, we can define its derivative as the Dirac delta function: d(x� a).

10.1.2 DIRAC DELTA FUNCTION

This function, which is sometimes called the ‘‘impulse’’ function, is defined as

d(x� a) ¼ 0 x 6¼ a
1 x ¼ a

�
(10:2)

Graphically, d(x� a) may be represented as in Figure 10.2. If d(x� a) is to be the derivative of
f(x� a), we have the relation

f(x� a) ¼
ðx

6

d(j � a)dj (10:3)

where b is a constant. If b< a< c, we have

ðc

b

d(j � a)dj ¼ 1 (10:4)
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Finally, if f(x) is a continuous function, we have the relation

f (a) ¼
ðc

b

f (x)d(x� a)dx (10:5)

The Dirac delta function is a convenient mathematical model of a concentrated load. Indeed, if we
think of a concentrated load as a force exerted over a vanishingly small area, we have a stress
concentration or infinite stress. Since our objective here is beam displacement, as opposed to local
surface effects, we can eliminate the singularity by integrating as in Equation 10.3. This integration
is conveniently performed using the methodology and formalism of singularity functions as devel-
oped in the following paragraphs.

10.2 SINGULARITY FUNCTION DEFINITION

Singularity functions are designated using angular brackets: <�> with the following properties [2]:

<x� a>n¼

0 x < a for all n
0 x > a for n < 0
1 x ¼ a for n ¼ �1
�1 x ¼ a for n ¼ �2
1 x � a for n ¼ 0
(x� a)n x � a for n > 0

8
>>>>><

>>>>>:

10.3 SINGULARITY FUNCTION DESCRIPTION AND ADDITIONAL
PROPERTIES

Singularity functions are especially useful for modeling concentrated and discontinuous loadings on
structures (particularly beams). Specifically, for a concentrated load with magnitude P at x¼ 1, we

Y

O a X

f (x − a)
1

FIGURE 10.1 Unit step function.

Y

O a X

∞

d (x − a)

FIGURE 10.2 Unit impulse function (Dirac).
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can use the function P<x� a>�1. Figure 10.3 provides a pictorial representation of<x� a>�1.
Recall that the positive direction for beam loading is downward.

For a uniform load with intensity wO beginning at x¼ 1, we can use the function wo<x� a>o.
Figure 10.4 provides a pictorial representation of<x� a>o.

For a concentrated moment with intensity MO at x¼ a, we can use the function MO<x� a>�2.
Figure 10.5 provides a pictorial representation of<x� a>�2. (Recall again that the positive
direction for bending moment is in the negative Z-direction for a moment applied to a positive
beam face and in the positive Z-direction for a moment applied to a negative beam face.)

The derivatives and antiderivatives of<x� a>n are defined by the expressions [2]

d

dx
<x� a>nþ1 ¼<x� a>n n < 0

d

dx
<x� a>n ¼ n <x� a>n�1 n > 0

ðx

b

<j � a>n dj ¼<x� a>nþ1 n < 0

ðx

b

<j � a>n dj ¼<x� a>nþ1 =nþ 1 n � 0

(10:6)

where b< a.
Finally, upon integration, we often encounter the ‘‘ramp’’ and ‘‘parabola’’ functions<x� a>1

and<x� a>2. Figures 10.6 and 10.7 provide a pictorial representation of these functions.

Y

O a X

<x − a>−1

FIGURE 10.3 Representation of<x� a>�1 (Dirac delta function).

Y

O X

<x − a>O

1

FIGURE 10.4 Representation of<x� a>�1 (heavyside unit step function).
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10.4 ILLUSTRATION OF SINGULARITY FUNCTION USE

10.4.1 UNIFORMLY LOADED CANTILEVER BEAM

See Section 9.5.1 and consider again the cantilever beam supported at its left end and loaded with a
uniform load along its span as in Figure 10.8, where ‘ is the beam length and w is the load per unit
length.

Consider a free-body diagram of the beam to determine the support reactions as in Figure 10.9
where VO and MO are the shear and bending moment applied to the beam by the support. From the
diagram, VO and MO are readily seen to be (see Equation 9.22)

VO ¼ w‘ and MO ¼ �w‘2=2 (10:7)

From the results of Equation 10.7, the loading on the beam including that from the support reaction
is that shown in Figure 10.10. Using the singularity functions, the loading function q(x) may be
expressed as

q(x) ¼ �(w‘2=2) <x� 0>�2 �w‘ <x� 0>�1 þw <x� 0>0 (10:8)

where the origin of the X-axis is at the left end of the beam. Recall also that the positive direction is
down for loads and on the left end of the beam, the positive direction is clockwise for bending
moments.

Referring to Equation 9.17, the governing equation for the displacement is

EId4y=dx4 ¼ q(x) ¼ �(w‘2=2) <x� 0>�2 �w‘ <x� 0>�1 þw <x� 0>0 (10:9)

Y

O X

<x − a>−2

FIGURE 10.5 Representation of the function<x� a>�2.

Y

O X

<x − a >1

a

FIGURE 10.6 Ramp singularity function.
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Then by integrating, we have

EId3y=dx3 ¼ �V ¼ �(w‘2=2) <x� 0>�1 �w‘ <x� 0>0 þw <x� 0>1 þ c1 (10:10)

where V is the shear on the beam cross section. Since V is zero when x¼ ‘, we have

0 ¼ 0� w‘þ w‘þ c1 (10:11)

or

c1 ¼ 0 (10:12)

By integrating again, we have

EId2y=dx2 ¼ �M ¼ �(w‘2=2) <x� 0>0 �w‘ <x� 0>1 þw <x� 0>2 =2þ c2 (10:13)

where M is the bending moment on the cross section. Since M is zero when x¼ ‘, we have

0 ¼ �(w‘2=2)� w‘2 þ (w‘2=2)þ c2 (10:14)

or

c2 ¼ w‘2 (10:15)

By integrating again, we have

EIdy=dx ¼ �(w‘2=2) <x� 0>1 �w‘ <x� 0>2=2þ w <x� 0>3=6þ w‘2xþ c3 (10:16)

Y

O X

<x − a>2

a

FIGURE 10.7 Parabolic singularity function.

w

ℓ

FIGURE 10.8 Uniformly loaded cantilever beam.
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Since dy=dx¼ 0 when x¼ 0, we have

c3 ¼ 0 (10:17)

Finally, by integrating fourth time, we have

EIy ¼ �(w‘2=2) <x� 0>2=2� w‘ <x� 0>3=6þ w <x� 0>4=24þw‘2x2=2þ c4 (10:18)

Since y¼ 0 when x¼ 0, we have

c4 ¼ 0 (10:19)

Thus, the beam displacement is seen to be

y ¼ (w=EI) �(‘2=4) <x� 0>2 � (‘=6) <x� 0>3 þ <x� 0>4=24þ ‘2x2=2
� �

(10:20)

The maximum displacement ymax will occur at x¼ ‘ as

ymax ¼ (w‘4=EI) �(1=4)� (1=6)þ (1=24)þ (1=2)½ � ¼ w‘4=8EI (10:21)

Observe that the results of Equations 10.20 and 10.21 match those of Equations 9.35 and 9.38.

10.4.2 CANTILEVER BEAM WITH A CONCENTRATED END LOAD

Consider again the example of Section 9.5.2, the cantilever beam supported at its left end and loaded
with a concentrated force at its right end as in Figure 10.11. As before, let the beam length be ‘ and
the load magnitude be P. Figure 10.12 presents a free-body diagram of the beam and the support
reactions are seen to be

VO ¼ P and MO ¼ �P‘ (10:22)

w
VO

MO

FIGURE 10.9 Free-body diagram of the uniformly loaded cantilever beam.

w
wℓ

wℓ2

2

FIGURE 10.10 Loading on the beam.
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The loading experienced by the beam is shown in Figure 10.13. The loading function q(x),
expressed in terms of singularity functions, is then

q(x) ¼ �P <x� 0>�1 �P‘ <x� 0>�2 þP <x� ‘>�1 (10:23)

From Equation 9.17 the governing equation for the displacement is

EId4y=dx4 ¼ q(x) ¼ �P <x� 0>�1 �P‘ <x� 0>�2 þP <x� ‘>�1 (10:24)

By integrating, we have

EId3y=dx3 ¼ �V ¼ �P <x� 0>0 �P‘ <x� 0>�1 þP <x� ‘>0 þ c1 (10:25)

Since the shear is zero at x¼ ‘, we have

0 ¼ �P� 0þ Pþ c1 (10:26)

or

c1 ¼ 0 (10:27)

By integrating again, we have

EId2y=dx2 ¼ �M ¼ �P <x� 0>1 �P‘ <x� 0>0 þP <x� ‘>1 þ c2 (10:28)

Since the bending moment is zero at x¼ ‘, we have

0 ¼ �P‘� P‘þ c2 (10:29)

or

c2 ¼ 2P‘ (10:30)

P

FIGURE 10.11 Cantilever beam with a concentrated end load.

VO

MO

P

FIGURE 10.12 Free-body diagram of the beam of Figure 10.11.
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By integrating the equation a third time, we have

EIdy=dx ¼ �P <x� 0>2=2� P‘ <x� 0>1 þP <x� ‘>2=2þ 2P‘xþ c3 (10:31)

But with the fixed (cantilever) support at x¼ 0, we have dy=dx¼ 0 at x¼ 0 and thus

0 ¼ �0� 0þ 0þ 0þ c3 (10:32)

or

c3 ¼ 0 (10:32)

Finally, by integrating the equation a fourth time, we have

EIy ¼ �P <x� 0>3=6� P‘ <x� 0>2=2þ P <x� ‘>3=6þ P‘x2 þ c4 (10:33)

But with the fixed support at x¼ 0, we have y¼ 0 at x¼ 0 and thus

0 ¼ �0� 0þ 0þ 0þ c4 (10:34)

or

c4 ¼ 0 (10:35)

Therefore, the beam displacement is

y ¼ (P=EI)[�<x� 0>3=6�‘ <x� 0>2=2þ <x� ‘>3=6þ ‘x2] (10:36)

The maximum beam displacement ymax occurs at x¼ ‘ with the value

ymax ¼ P‘3=3EI (10:37)

Observe that the results of Equations 10.36 and 10.37 match those of Equations 9.45 and 9.46.

10.4.3 SIMPLY SUPPORTED BEAM WITH A UNIFORM LOAD

Next consider the example of Section 9.5.3 of a simply supported beam with a uniform load as in
Figure 10.14, where again w is the load per unit length and ‘ is the beam length. Consider a free-
body diagram of the beam as in Figure 10.15. From the figure, the reaction shearing forces VL and
VR are (see Equation 9.48)

VL ¼ w‘=2 and VR ¼ �w‘=2 (10:38)

PP

Pℓ

FIGURE 10.13 Beam loading.
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Figure 10.16 then illustrates the loading on the beam.
Using the singularity functions, the loading q(x) on the beam may be expressed as

q(x) ¼ �(w‘=2) <x� 0>�1 þw <x� 0>0 � (w‘=2) <x� ‘>�1 (10:39)

From Equation 9.17, the governing equation for the beam displacement is then

EId4y=dx4 ¼ q(x) ¼ �(w‘=2) <x� 0>�1 þw <x� 0>0 � (w‘=2) <x� ‘>�1 (10:40)

By integrating, we obtain

EId3y=dx3 ¼ �V ¼ �(w‘=2) <x� 0>0 þw <x� 0>1 � (w‘=2) <x� ‘>0 þ c1 (10:41)

By integrating again, we have

EId2y=dx2 ¼ �M ¼ �(w‘=2) <x� 0>1 þw <x� 0>2=2� (w‘=2) <x� ‘>1 þ c1xþ c2

(10:42)

In Equations 10.41 and 10.42, c1 and c2 are integration constants to be determined by the support
conditions. Recall that with simple supports the moment exerted by the support is zero. Therefore,
M¼ 0 at x¼ 0 and x¼ ‘. Thus from Equation 10.42, we have

0 ¼ �0þ 0� 0þ 0þ c2 (10:43)

and

0 ¼ �w‘2=2þ w‘2=2� 0þ c1‘ (10:44)

or

c1 ¼ 0 and c2 ¼ 0 (10:45)

w

ℓ

FIGURE 10.14 Uniformly loaded simply supported beam.

w

ℓ

VRVL

FIGURE 10.15 Free-body diagram of the simply supported, uniformly loaded beam.
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By integrating Equation 10.42 again, we obtain

EIdy=dx ¼ �(w‘=2) <x� 0>2=2þw <x� 0>3=6� (w‘=2) <x� ‘>2=2þ c3 (10:46)

And again

EIy ¼ �(w‘=2) <x� 0>3=6þ w <x� 0>4=24� (w‘=2) <x� ‘>3=6þ c3xþ c4 (10:47)

where the integration constants c3 and c4 may be evaluated by recalling that with simple supports the
displacements are zero at the supports. Thus, we have at x¼ 0

0 ¼ 0þ 0� 0þ 0þ c4 (10:48)

and at x¼ ‘

0 ¼ �(w‘=2)(‘3=6)þ w‘4=24� 0þ c3‘ (10:49)

Hence

c4 ¼ 0 and c3 ¼ w‘4=24 (10:50)

Therefore, the displacement y(x) becomes

y ¼ (w=24EI)[�2‘ <x� 0>3 þ <x� 0>4 � 2‘ <x� ‘>3 þ ‘3x] (10:51)

The maximum displacement ymax will occur at the midspan (x¼ ‘=2) as

ymax ¼ (w=24EI)‘4 (�2=8)þ (1=16)þ (1=2)½ � ¼ 5w‘4

384EI
(10:52)

Observe that the results of Equations 10.51 and 10.52 are the same as those of Equations 9.58
and 9.59.

10.4.4 SIMPLY SUPPORTED BEAM WITH A CONCENTRATED INTERIOR LOAD

Finally, consider the example of Section 9.5.4 of a simply supported beam with a concentrated
interior load as in Figure 10.17, where, as before, ‘ is the beam length and a and b are the distances
from the load to the left and right ends of the beam, as shown.

w

wℓ/2 wℓ/2

FIGURE 10.16 Loading on the beam.
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Figure 10.18 shows a free-body diagram of the beam with the support reactions represented by
the shear forces VL and VR. For beam equilibrium, we observe that (see Equation 9.61)

VL ¼ Pb=‘ and VR ¼ �Pa=‘ (10:53)

Using the singularity functions, the loading q(x) on the beam may then be expressed as

q(x) ¼ �(Pb=‘) <x� 0>�1 þP <x� a>�1 � (Pa=‘) <x� ‘>�1 (10:54)

From Equation 9.17, the governing equation for the beam displacement is then

EId4y=dx4 ¼ q(x) ¼ �(Pb=‘) <x� 0>�1 þP <x� a>�1 � (Pa=‘) <x� ‘>�1 (10:55)

Then by integrating, we have

EId3y=dx3 ¼ �V ¼ �(Pb=‘) <x� 0>0 þP <x� 0>0 � (Pa=‘) <x� ‘>0 þ c1 (10:56)

and

EId2y=dx2 ¼ �M ¼ (Pb=‘) <x� 0>1 þP <x� a>1 � (Pa=‘) <x� ‘>1 þ c1xþ c2 (10:57)

For a simply supported beam, M is zero at the supports, that is, M¼ 0 at x¼ 0 and x¼ ‘. Then at
x¼ 0, we have

0 ¼ 0þ 0� 0þ 0þ c2 or c2 ¼ 0 (10:58)

and at x¼ ‘, we have

0 ¼ �(Pb=‘)‘þ P(‘� a)� 0þ c1‘

ℓ

a b

P

FIGURE 10.17 Simply supported beam with an interior-concentrated load.

P

ba

VL VR

FIGURE 10.18 Free-body diagram of internally loaded, simply supported beam.
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or

0 ¼ �Pbþ Pbþ c1‘ or c1 ¼ 0 (10:59)

By integrating the equation a third and fourth time, we obtain

EIdy=dx ¼ �(Pb=‘) <x� 0>2=2þ P <x� a>2 2 =� (Pa=‘) <x� ‘>2=2þ c3 (10:60)

and

EIy ¼ �(Pb=‘) <x� 0>3=6þ P <x� a>3=6�(Pa=‘) <x� ‘>3=6þ c3xþ c4 (10:61)

But with the simple supports, y is zero at the beam ends. Therefore, at x¼ 0, we have

0 ¼ �0þ 0� 0þ 0þ c4 or c4 ¼ 0 (10:62)

and at x¼ ‘, we have

0 ¼ �(Pb=‘)(‘3=6)þ P(‘� a)3=6� 0þ c3‘ or c3 ¼ (Pb=6‘)(‘2 � b2) (10:63)

By substituting from Equations 10.62 and 10.63 in 10.61 the displacement y becomes

y ¼ (1=6EI) (�Pb=‘) <x� 0>3 þP <x� a>3 � (Pa=‘) <x� ‘>3 þ (Pb=‘)(‘2 � b2)x
� �

(10:64)

Observing the result of Equation 10.64 if 0� x� a, we have

EIy ¼ (�Pb=‘)(x3=6)þ (Pb=‘)(‘2 � b2)(x=6)

¼ �Pbx3=6‘þ Pax(‘=3þ a2=6‘� a=2) (10:65)

which is identical to the result of Equation 9.83. Similarly, in Equation 10.64 if a� x� ‘, we have

EIy ¼ �(Pb=6‘)x3 þ (P=6)(x� a)3 þ (Pb=6‘)(‘2 � b2)x

¼ (Pa=‘)(x3=6� ‘x2=2þ ‘2x=3þ a2x=6� ‘a2=6) (10:66)

which is identical to the result of Equation 9.84. (In Equations 9.69 and 9.70, the validation is
obtained by letting b¼ ‘� a and by performing routine analysis.)

Finally, in Equation 10.64 if x¼ a¼ b¼ ‘=2, we obtain the maximum displacement as

ymax ¼ P‘3=48EI (10:67)

This result matches that of Equation 9.85.

10.5 DISCUSSION AND RECOMMENDED PROCEDURE

The principal advantages of singularity functions are their simplicity in use and their broad range of
application. They are particularly useful in modeling concentrated loads and discontinuous loadings.
This utility is immediately seen in comparing the two analyses of the simply supported beam
with the interior-concentrated load (in Sections 9.5.4 and 10.4.4). With the traditional method in
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Section 9.5.4, we needed to use multiple free-body diagrams and separate equations for locations
such as to the left and right of the load. With singularity functions, however, we simply model the
load with the function P<x� a>�1 and then integrate, as we solve the governing equation.

Specifically, the steps in using singularity functions for beam bending analyses are as follows:

1. For a given beam loading q(x) and support conditions, construct a free-body diagram of the
beam to determine the support reactions.

2. Model the loading function a(x) and the support reactions by using the singularity
functions of Section 10.2. (M<x� x0>

�2 is a concentrated momentM at x0; P<x� x0>
�1

is a concentrated force P at x0; q<x� x0>
0 is a uniform load q beginning at x0; etc.)

3. Form the governing differential equation:

EId4y=dx4 ¼ q(x)

(see Equation 9.17.)
4. Determine the boundary conditions (auxiliary conditions) from the support conditions.
5. Integrate the governing equation and evaluate the integration constants by using the

auxiliary conditions.

10.6 COMMENTS ON THE EVALUATION OF INTEGRATION CONSTANTS

Observe that in the process of integrating the governing differential equation for the beam displace-
ment, we first obtain an expression for the transverse shear V in the beam, and then by integrating
again, an expression for the bending moment M in the beam. These expressions, together with the
support conditions, may be used to evaluate constants of integration. Thus if displacement condi-
tions are also used to evaluate the constants, we have a means of checking the values obtained.

To illustrate these ideas, consider again the simply supported beam with a concentrated interior
load as shown in Figures 10.17 and 10.19. Recall from Sections 9.5.3 and 10.4.4 that the left and
right support reactions are Pb=‘ and Pa=‘, and that the beam loading including the support reactions
may be modeled as in Figure 10.20.

Next, recall from Equation 10.54 that the loading function q(x) on the beam is

q(x) ¼ �(Pb=‘) <x� 0>�1 þP <x� a>�1 � (Pa=‘) <x� ‘>�1 (10:68)

and from Equation 10.55 that the governing equation for the beam displacement is

EId4y=dx4 ¼ q(x) ¼ �(Pb=‘) <x� 0>�1 þP <x� a>�1 � (Pa=‘) <x� ‘>�1 (10:69)

Finally, by integrating we have an expression for the shear V in the beam as (see Equation 10.56)

ℓ

a b

P

FIGURE 10.19 Simply supported beam with an interior-concentrated load.
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EId3y=dx3 ¼ �V ¼ �(Pb=‘) <x� 0>0 þP <x� a>0 � (Pa=‘) <x� ‘>0 þ c1 (10:70)

where c1 is an integration constant.
Recall that in the solution of this problem in Section 10.4.4, we discovered that the integration

constant c1 is zero as a result of the bending moments at the supports being zero. We can also see
that c1 is zero by examining the shear forces in the beam at the supports. Consider, for example, the
support at the left end of the beam as depicted in Figure 10.21. The reaction force of the support is
shown in Figure 10.22. Recall that the shear force V is positive when it is exerted on a positive face
(cross section) of the beam in the positive direction, or on a negative face in the negative direction.
Correspondingly, the shear is negative when exerted on a positive face in the negative direction, or
on a negative face in the positive direction.

Consider cross sections just to the left (x¼ 0�) and just to the right (x¼ 0þ) of the support as in
Figure 10.23a and b. In the first case (a), the shear is zero, whereas in the second case the shear is:
V¼þPb=‘ (positive because of a negatively directed force on a negative face). Similarly for beam
cross sections just to the left and to the right of the right-end support (where the reaction force
magnitude is Pa=‘), we have the shear zero on the face x¼ ‘þ and�Pa=‘ on the face x¼ ‘�

(negative since the force is negatively directed on a positive face), as represented in Figure 10.24.
Table 10.1 lists these results.

Referring now to Equation 10.69 (written again here), we see that each of the four conditions of
Table 10.1 leads to c1¼ 0.

V ¼ (Pb=‘) <x� 0>0 �P <x� a>0 þ (Pa=‘) <x� ‘>0 � c1 (10:71)

10.7 SHEAR AND BENDING MOMENT DIAGRAMS

Stresses in beams discussed in most books on strength and mechanics of materials give considerable
emphasis usually to the construction of shear and bending moment diagrams. These diagrams are
graphical representations of the shear force V and the bending moment M along the beam span. The

P

Pb/ℓ Pa/ℓ

a b

FIGURE 10.20 Equivalent loading on the beam of Figure 10.19.

O
X

FIGURE 10.21 Left-end support of the beam of Figure 10.19.
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X

Pb/ℓ

FIGURE 10.22 Left-end support reaction force.

X

Pb/ℓ

O

x = 0−
X

Pb/ℓ(b)(a)

O

x = 0+

FIGURE 10.23 Beam cross sections just to the left (a) and just to the right (b) of the left-end support.

X
O

x = ℓ−

Pa/ℓ

X
O

x = ℓ+

Pa/ℓ
(a) (b)

FIGURE 10.24 Beam cross section just to the left and just to the right of the right-end support.

TABLE 10.1
Shear on Cross Section Faces Near the Beam Supports

Face Shear V

x¼ 0� 0
a. Cross Section Just Left of the Support b. Cross Section Just Right of the Support

x¼ 0þ Pb=‘

x¼ ‘� �Pa=‘

x¼ ‘þ 0
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shear and bending moment are needed to determine the shear stress (in relatively thick beams) and
the flexural, or bending, stress as in the formula s¼Mc=I. Shear and bending moment diagrams are
thus convenient not only for determining the shear and bending stresses, but also for finding the
positions along the beam where the maximum values of these stresses occur.

Singularity functions are especially useful for constructing shear and bending moment dia-
grams. To illustrate this, consider again the simply supported beam with the interior-concentrated
load as in the foregoing sections and as shown again in Figure 10.25. From Equations 10.69 and
10.70, the shear V is

V ¼ (Pb=‘) <x� 0>0 �P <x� a>0 þ (Pa=‘) <x� ‘>0 (10:72)

Figure 10.26 shows a graph of this function, where the ordinate V is positive upward.
From Equation 10.57, the bending moment M is (note that c1 and c2 are zero)

M ¼ (Pb=‘) <x� 0>1 �P <x� a>1 þ (Pa=‘) <x� ‘>1 (10:73)

Figure 10.27 shows a graph of this function.
As a further illustration of the use of singularity functions to construct shear and bending

moment diagrams, consider the cantilever beam with a uniform load as in Figure 10.28. From Figure
10.10, the loading on the beam is as shown in Figure 10.29. From Equation 10.8, the loading q(x) on
the beam is

q(x) ¼ �(w‘2=2) <x� 0>�2 �w‘ <x� 0>�1 þw <x� 0>0 (10:74)

From Equations 10.10 and 10.12, the shear V along the beam axis is

V ¼ (w‘2=2) <x� 0>�1 þw‘ <x� 0>0 �w <x� 0>1 (10:75)

ℓ

a b

P

FIGURE 10.25 Simply supported beam with an interior-concentrated load.

V

X
ℓa0

Pb/ℓ

Pa/ℓ

FIGURE 10.26 Transverse shear diagram for a simply supported beam with an interior-concentrated load.
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Figure 10.30 shows a graph of this function, where the positive direction is upward.
From Equations 10.13 and 10.15, the bending moment M along the beam axis is

M ¼ (w‘2=2) <x� 0>0 þw‘ <x� 0>1 �w <x� 0>2=2� w‘2 (10:76)

Figure 10.31 shows a graph of this function.

10.8 ADDITIONAL ILLUSTRATION: CANTILEVER BEAM WITH UNIFORM
LOAD OVER HALF THE SPAN

To illustrate the use of singularity functions with a somewhat less simple example, consider the
cantilever beam with a right-end support but loaded with a uniform load over the first half of the
beam, starting at the free end as in Figure 10.32, where, as before, ‘ is the length of the beam and w
is the uniform load per unit length. Also, as before, let the objective of the analysis be to determine
the beam displacement g, together with expressions for the shear loading V (transverse or perpen-
dicular to the beam axis), and the bending moment M.

We can readily determine y, V, and M by following the procedure of Section 10.5: first, we can
determine the support reaction from the free-body diagram of Figure 10.33, where we represent the
built-in support reaction by the shear force V‘ and bending moment M‘, as shown. From this figure,
we immediately find V‘ and M‘ to be

V‘ ¼ �w‘=2 and M‘ ¼ �3W‘2=8 (10:77)

Next, from Figure 10.33, the loading function q(x) along the beam is

q(x) ¼ w <x� 0>0 �w <x� ‘=2>0 � (w‘=2) <x� ‘>�1 � (3w‘2=8) <x� ‘>�2 (10:78)

Third, from Equation 9.17, the governing differential equation is

EId4y=dx4 ¼ q(x)¼ w<x� 0>0 �w<x� ‘=2>0 � (w‘=2)<x� ‘>�1 � (3w‘2=8)<x� ‘>�2

(10:79)

M

0 a ℓ
X

Pa (b/ℓ)

FIGURE 10.27 Bending moment diagram for a simply supported beam with an interior-concentrated load.

w

FIGURE 10.28 Uniformly loaded cantilever beam.
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w
wℓ

wℓ2

2

FIGURE 10.29 Loading on the beam.

V

X0

wℓ

ℓ

FIGURE 10.30 Transverse shear diagram for the uniformly loaded cantilever beam.

ℓ

M

X

−wℓ2

2

FIGURE 10.31 Bending moment diagram for the uniformly loaded cantilever beam.

w

ℓ

ℓ/2

FIGURE 10.32 Cantilever beam with a half span uniform load.

w

0
Vℓ

Mℓ

X

FIGURE 10.33 Free-body diagram for the beam of Figure 10.32.
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Finally, since the beam has a free end at x¼ 0 and a fixed end at x¼ ‘, we have the auxiliary
condition:

at x ¼ 0: V ¼ M ¼ 0 or d3y=dx3 ¼ d2y=dx2 ¼ 0 (10:80)

at x ¼ ‘: y ¼ dy=dx ¼ 0 (10:81)

and also at x ¼ ‘: V ¼ �EId3y=dx3 ¼ �w‘=2 and M ¼ �EId2y=dx2 ¼ �3w‘2=8 (10:82)

By integrating Equation 10.79, we have

EId3y=dx3 ¼�V ¼w<x� 0>1 �w<x� ‘=2>1 � (w‘=2)<x� ‘>0 � (3w‘2=8)<x� ‘>�1 þ c1

(10:83)

Since V¼ 0 when x¼ 0, we have

c1 ¼ 0 (10:84)

Note also at x¼ ‘�, V¼�w‘=2, so that

w‘=2 ¼ w‘� w(‘=2)� 0þ c1

or

c1 ¼ 0 (10:85)

By integrating again, we have

EId2y=dx2 ¼ �M ¼ w <x� 0>2=2� w < x� ‘=2 >2=2�(w‘=2) <x� ‘>1

� (3w‘2=8) <x� ‘>0 þ c2 (10:86)

Since M¼ 0 when x¼ 0, we have

c2 ¼ 0 (10:87)

Note also at x¼ ‘�1, M¼�3w‘2=8, so that

3w‘2=8 ¼ w‘2=2�w(‘=2)2=2� 0� 0þ c2

or

c2 ¼ 0 (10:88)

By integrating the equation a third time, we have

EIdy=dx¼w<x� 0>3=6�w< x� ‘=2>3=6�(w‘=2)<x� ‘>2=2� (3w‘2=8)<x� ‘>1 þ c3

(10:89)

But dy=dx¼ 0 when x¼ ‘, so that

0 ¼ w‘3=6� w(‘=2)3=6� 0� 0þ c3
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or

c3 ¼ �7w‘3=48 (10:90)

Finally, by integrating a fourth time, we have

EIy ¼ w <x� 0>4=24�w < x� ‘=2 >4=24�(w‘=2) <x� ‘>3=6

� (3w‘2=8) <x� ‘>2=2� 7w‘3x=48þ c4 (10:91)

But y¼ 0 when x¼ ‘, so that

0 ¼ w‘4=24� w(‘=2)4=24� 0� 0� 7w‘4=48þ c4

or

c4 ¼ (41=384)w‘4 (10:92)

To summarize, from Equations 10.83, 10.84, 10.86, 10.87, 10.91, and 10.92, the shear V, bending
moment M, and displacement y are

V ¼ (w=EI) �<x� 0>1 þ <x� ‘=2>1 þ (‘=2) <x� ‘>0 þ (3‘2=8) <x� ‘>�1
� �

(10:93)

M ¼ (w=EI) �<x� 0>2=2þ <x� ‘=2>2=2þ (‘=2) <x� ‘>1 þ (3‘2=8) <x� ‘>0
� �

(10:94)

and

y ¼ (w=EI) <x� 0>4=24� <x� ‘=2>4=24�‘ <x� ‘>3=12�3‘2 <x� ‘>2=16
�

� 7‘3x=48þ 41‘4=384� (10:95)

SYMBOLS

a, b, c Values of x
ci (i¼ 1, 2, 3, 4) Integration constants
E Elastic modulus
I Second moment of area
‘ Beam length
‘�, ‘þ Values of x just to the left and just to the right of x¼ ‘
L, R Subscripts designating left and right
M Bending moment
MO Concentrated moment
n Integer
O Origin at X, Y, and Z-axes
P Concentrated load
q(x) Loading function
V Shear
w Uniform load per unit length
wO Uniform load per unit length
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x X-axis coordinate
<x� a>n Singularity function (see Section 10.2)
X, Y, Z Cartesian (rectangular) coordinate axes
y Displacement, Y-axis coordinate
0�, 0þ Values of x just to the left and just to the right of the origin O
d(x� a) Dirac delta function, impulse function
f(x� a) Heavyside unit step function
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11 Beam Bending Formulas for
Common Configurations

11.1 PROSPECTUS

Recall from Equation 9.17 that the governing differential equation for the beam displacement y is

EIDd4y=dx4 ¼ q(x) (11:1)

where
E is the elastic modulus
I is the second moment of area of the beam cross section
x is the axial dimension
q(x) is the loading function

This equation has been integrated and solved for a large number of diverse loading and support
conditions. References [1–3] provide a comprehensive list of results of these integrations.

In the following sections, we provide lists of a few of the more common and presumably, most
useful of these results. We tabulate these results in Section 11.6.

11.2 CANTILEVER BEAMS

11.2.1 LEFT-END SUPPORTED CANTILEVER BEAM

Figure 11.1a through c shows the positive directions for the loading, the support reactions, and the
displacements for a cantilever beam supported at its left end. Recall that at the built-in support,
the displacement y and the slope dy=dx of the beam are zero.

11.2.2 CANTILEVER BEAM, LEFT-END SUPPORT, AND CONCENTRATED END LOAD

Figure 11.1b and c shows loading, support reaction, and displacement results for the left-end
supported cantilever beam with a concentrated right-end load.

Analytically, the shear V, bending moment M, and displacement y, may be expressed as

V ¼ P <x� 0>0 þP‘ <x� 0>�1 �P <x� ‘>0 (11:2)

(See Equations 10.25 and 10.26.)

M ¼ P <x� 0>1 þP‘ <x� 0>0 �P <x� ‘>1 � 2P‘ (11:3)

(See Equations 10.28 and 10.30.)
and

y ¼ (P=EI)[�<x� 0>3=6�‘ <x� 0>2=2þ<x�‘>3=6þ ‘x2] (11:4)
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with

ymax ¼ P‘3=3EI at x ¼ ‘ (11:5)

Figure 11.3a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.2.3 CANTILEVER BEAM, LEFT-END SUPPORT, AND UNIFORM LOAD

Figure 11.4a through c shows loading, support reactions, and displacement results for the left-end
supported cantilever beam with a uniformly distributed load.

(a)
Y

O
ℓ

X

q(x)

(b)

VO

MO

Y

O ℓ
X

(c)

O
ℓ

X

Y

y

FIGURE 11.1 Positive loading, reaction, and displacement directions for a left-end supported cantilever
beam. (a) Positive loading direction (Y-direction), (b) positive direction for left-end support reactions, and
(c) positive transverse displacement direction (Y-direction).

(a)

ℓ

P

ℓ

P

Pℓ

(b)

(c)

Pℓ3/3EI

FIGURE 11.2 Concentrated end loading, support reactions, and end displacement for a left-end supported
cantilever beam. (a) Concentrated end loading (beam length ‘, load magnitude P), (b) support reactions
(VO¼P, MO¼�P‘), and (c) end displacement (elastic modulus E, second area moment I).
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Analytically, the shear V, bending moment M, and displacement y, may be expressed as

V ¼ (w‘2=2) <x� 0>�1 þw‘ <x� 0>0 �w <x� 0>1 (11:6)

(See Equations 10.10 and 10.12.)

O

P

V

ℓ
X

(a)
(b)

ℓ
X

M

O

−Pℓ

(c)

O ℓ
X

Pℓ3/3EI

Y

FIGURE 11.3 Shear, bending moment, and displacement of left-end supported cantilever beam with a
concentrated right-end load. (a) Transverse shear, (b) bending moment, and (c) displacement.

(a)

w

ℓ

(b)

wℓ

wℓ2

2
(c)

wℓ 4/8EI

FIGURE 11.4 Uniform loading, support reaction, and end displacement for a left-end supported cantilever
beam. (a) Uniform load (beam length ‘, load intensity w per unit length), (b) support reaction (VO¼w‘, MO¼
�w‘2=2), and (c) end displacement (elastic modulus E, second area moment I).
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M ¼ (w‘2=2) <x� 0>0 þw‘<x� 0>1 �w<x� 0>2=2� w‘2 (11:7)

(See Equations 10.13 and 10.15.)
and

y ¼ (w=EI)[�(‘2=4) <x� 0>2 � (‘=6) <x� 0>3 þ <x� 0>4=24þ ‘2x2=2] (11:8)

with

ymax ¼ w‘4=8EI at x ¼ ‘ (11:9)

Figure 11.5a through c provides graphical representations of these results. (Note that the positive
ordinate direction is downward.)

11.2.4 RIGHT-END SUPPORTED CANTILEVER BEAM

Figure 11.6a through c shows the positive directions for loading, support reactions, and displace-
ments for a cantilever beam supported at its right end. Recall that at the built-in support, the
displacement y, and the slope dy=dx, of the beam are zero.

11.2.5 CANTILEVER BEAM, RIGHT-END SUPPORT, AND CONCENTRATED END LOAD

Figure 11.7a through c shows loading, support reaction, and displacement results for the right-end
supported cantilever beam with a concentrated right-end load.

Analytically, the shear V, bending moment M, and displacement y may be expressed as

V ¼ �P <x� 0>0 þP <x�‘>0 þP‘ <x�‘>�1 (11:10)

(a)

ℓO

V

wℓ

(b)

___

ℓ

M

O

−wℓ2

2

O ℓ

wℓ4/8EI

Y
(c)

FIGURE 11.5 Shear, bending moment, and displacement of left-end supported cantilever beam with a
uniformly distributed load. (a) Transverse shear, (b) bending moment, and (c) displacement.
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M ¼ �P <x� 0>1 þP <x�‘>1 þP‘ <x�‘>0 (11:11)

y ¼ (P=EI)[<x� 0>3=6� <x�‘>3=6�P‘ <x�‘>2=2�P‘2x=2þ P‘3=3] (11:12)

with

ymax ¼ P‘3=3EI at x ¼ ‘ (11:13)

Figure 11.8a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward as before.)

Y
(a)

ℓ

X

q(x)

(b)
VℓY

O X

Mℓ

(c)

O X

Y

y

FIGURE 11.6 Positive loading, reaction, and displacement directions for a right-end supported cantilever
beam. (a) Positive loading (Y-direction), (b) positive direction for right-end support reactions, and (c) positive
transverse displacement direction (Y-direction).

(a)

P

ℓ

(b)

P

Pℓ

Pℓ3/3EI

(c)

FIGURE 11.7 Concentrated end loading, support reactions, and end displacement for a right-end supported
cantilever beam. (a) Concentrated end loading (beam length ‘, load magnitude P), (b) support reaction
(V‘¼�P, M‘¼�P‘), and (c) end displacement (elastic modulus E, second area moment I).
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11.2.6 CANTILEVER BEAM, RIGHT-END SUPPORT, AND UNIFORM LOAD

Figure 11.9a through c shows loading, support reactions, and displacement results for the right-end
supported cantilever beam with a uniformly distributed load.

Analytically, the shear V, bending moment M, and displacement y may be expressed as

V ¼ �w <x� 0>1 þw‘ <x�‘>0 þ (w‘2=2) <x�‘>�1 (11:14)

M ¼ �(w=2) <x� 0>2 þw‘ <x�‘>�1 þ (w‘2=2) <x�‘>0 (11:15)

(a)

−P

O

V
ℓ

X

(b)

−Pℓ

O

M
ℓ

X

O
ℓ

X

Y

Pℓ3/3EI

(c)

FIGURE 11.8 Shear, bending moment, and displacement of a right-end supported cantilever beam with a
concentrated left-end load. (a) Transverse shear, (b) bending moment, and (c) displacement.

(a)

w

ℓ

wℓ

wℓ2

2
(b)

O

(c)

wℓ/8EI

FIGURE 11.9 Uniform loading, support reactions, and end displacement for a right-end supported cantilever
beam. (a) Uniform load (beam length ‘, load intensity w per unit length), (b) support reaction (V‘¼�2‘,
M‘¼�w‘2=2), and (c) end displacement (elastic modulus E, second area moment I ).
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and

y ¼ (w=EI)[<x� 0>4=24�(‘=6) <x� ‘>3 � (‘2=4) <x� ‘>2 � ‘3x=6þ ‘4=8] (11:16)

Figure 11.10a through c provides graphical representations of these results. (Note that the position
ordinate direction is downward.)

11.3 SIMPLY SUPPORTED BEAMS

11.3.1 POSITIVE DIRECTIONS

Figure 11.11a through c shows the positive direction for loading, support reactions, and displace-
ment for simply supported beams. Recall that at the supports the displacement y, and the momentM
of beam are zero.

11.3.2 SIMPLY SUPPORTED BEAM AND CONCENTRATED CENTER LOAD

Figure 11.12a through c shows loading, support reactions, and displacement results for a simply
supported beam with a centrally placed concentrated load.

Analytically, the shear V, bending moment M, and displacement y may be expressed as

V ¼ (P=2) <x� 0>0 �P <x� ‘=2>0 þ (P=2) <x� ‘>0 (11:17)

(See Equation 10.56.)

M ¼ (P=2) <x� 0>1 �P <x� ‘=2>1 þ (P=2) <x� ‘>1 (11:18)

(See Equation 10.57.)

O ℓ

wℓ

(a)
M

O
ℓ

−wℓ2/3

(b)

O ℓ

Y

wℓ4/8EI

(c)

FIGURE 11.10 Shear, bending moment, and displacement of right-end supported cantilever beam with a
uniformly distributed load. (a) Transverse shear, (b) bending moment, and (c) displacement.
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and

y ¼ (P=12EI)[(3=4)‘2x� 2 <x� 0>3 þ <x� ‘=2>3 �<x� ‘>3] (11:19)

with

ymax ¼ P‘3=48EI at x ¼ ‘=2 (11:20)

(See Equation 10.59.)

(a)

ℓ
O X

Y

q(x)

(b)

VO

Vℓ

O ℓ X

(c)

ℓ
y

Y

O
X

FIGURE 11.11 Positive loading, reaction, and displacement direction for a simply supported beam.
(a) Positive loading direction (Y-direction), (b) positive direction for support reactions, and (c) positive
transverse displacement direction (Y-direction).

(a)

P

ℓ/2 ℓ/2

(b)

P/2 P/2

O ℓ

(c)

Pℓ3/48EI

FIGURE 11.12 Loading, support reactions, and displacement of a simply supported beam with a concen-
trated center load. (a) Concentrated center load (beam length ‘, load magnitude P), (b) support reactions
(VO¼P=2, V‘¼�P=2, MO¼M‘¼ 0), and (c) center beam displacement (elastic modulus E, second area
moment I).
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Figure 11.13a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.3.3 SIMPLY SUPPORTED BEAM AND CONCENTRATED OFF-CENTER LOAD

Figure 11.14a through c shows loading, support reactions, and displacement results for a simply
supported beam with an off-center concentrated load.

(a)
V

0

−P/2

P/2

ℓ/2 ℓ
X

(b)

0
ℓ/2 ℓ

P/4

M

X

(c)

ℓO

Y

Pℓ3/48EI

X

FIGURE 11.13 Shear, bending moment, and displacement of a simply supported beam with a concentrated
center load. (a) Transverse shear, (b) bending moment, and (c) displacement.

ℓ

a b

P

(a)

(b)

O ℓ

Pb/ℓ Pa/ℓ

(c)

y

FIGURE 11.14 Loading, support reactions, and displacement of a simply supported beam with an off-center
concentrated load. (a) Off-center, concentrated load (beam length ‘, load magnitude P), (b) support reactions
(VO¼ Pb=‘, V‘¼�Pa=‘, MO¼M‘¼ 0), and (c) beam displacement.
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Analytically, the shear V, bending moment M, and displacement y may be expressed as

V ¼ (Pb=‘) <x� 0>0 �P <x� a>0 þ (Pa=‘) <x� ‘>0 (11:21)

M ¼ (Pb=‘) <x� 0>�1 �P <x� a>1 þ (Pa=‘) <x� ‘>1 (11:22)

and

y ¼ (P=6EI)[(b=‘)(‘2 � b2)x�(b=‘) <x� 0>3 þ <x� a>3 � (a=‘) <x� ‘>3 ] (11:23)

In this case, the maximum displacement is not under the load but instead is between the load and the
center of the beam. Specifically, if the load is to the left of center, that is, if a<‘=2, ymax is [1]:

ymax ¼ (Pa=3EI‘)[(‘2 � a2)=3]3=2 (a< ‘=2) (11:24)

occurring at

x ¼ xm ¼ ‘� [(‘2 � a2)=3]1=2 (a< ‘=2) (11:25)

Similarly, if the load is to the right of center, that is, if a>‘=2, ymax is [2,3]:

ymax ¼ (Pb=3EI‘)[(‘2 � b2)=3]3=2 (a> ‘=2) (11:26)

occurring at

x ¼ xm ¼ [(‘2 � b2)=3]3=2 (a> ‘=2) (11:27)

Observe that Equations 11.24 through 11.27 are also valid if a¼ b¼ ‘=2. (See also
Equation 11.20.)

Figure 11.15a through c provides graphical representation of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.3.4 SIMPLY SUPPORTED BEAM AND UNIFORM LOAD

Figure 11.16a through c shows loading, support reactions, and displacement results for a simply
supported beam with a uniform load.

Analytically, the shear V, the bending moment M, and the displacement y may be expressed as

V ¼ (w‘=2) <x� 0>0 �w <x� 0>1 þ (w‘=2) <x� ‘>0 (11:28)

(See Equation 10.41.)

M ¼ (w‘=2) <x� 0>1 �w <x� 0>2=2þ (w‘=2) <x� ‘>1 (11:29)

(See Equation 10.42.)
and

y ¼ (w=24EI)[�2‘ <x� 0>3 þ <x� 0>4 � 2‘ <x� ‘>3 þ ‘3x] (11:30)
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(a)
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Pb/ℓ
a ℓ
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X

(b)

O
a ℓ

X

Pab/ℓ

M

(c)

[(ℓ2 − b2)/3]1/2

ymax =(Pb/3EIℓ)[(ℓ2 − b2)/3]3/2

ymax = (Pa/3EIℓ)[(ℓ2 − a2)/3]3/2

[(ℓ2 − a2)/3]1/2

a < ℓ/2

a > ℓ/2

FIGURE 11.15 Transverse shear, bending moment, and displacement results for a simply supported beam
with an off-center concentrated load. (a) Transverse shear, (b) bending moment, and (c) maximum displace-
ment (elastic moment E, second area moment I).

(a)

w

ℓ
(b)

ℓO

wℓ/2 wℓ/2

(c)

5wℓ4/384EI

FIGURE 11.16 Loading, support reactions, and displacement of a simply supported beamwith a uniform load.
(a) Uniform load (beam length ‘, load intensity w per unit length), (b) support reaction (VO¼w‘=2, V‘¼�w‘=2,
M‘¼O), and (c) center beam displacement (elastic modulus E, second area moment I).
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with

ymax ¼ 5w‘4=38EI at x ¼ ‘=2 (11:31)

(see Equations 10.51 and 10.52.)
Figure 11.17a through c provides graphical representations of these shear, bending moment, and

displacement results. (Note that the positive ordinate direction is downward.)

11.4 DOUBLE BUILT-IN BEAMS

11.4.1 POSITIVE DIRECTIONS

Figure 11.18a through c shows the positive direction for loading, support reactions, and displace-
ment for double built-in beams. Recall that at the supports the displacement y and the displacement
slope dy=dx are zero.

11.4.2 DOUBLE BUILT-IN SUPPORTED BEAM AND CONCENTRATED CENTER LOAD

Figure 11.19a through c shows loading, support reactions, and displacement results for a doubly
built-in supported beam with a centrally placed concentrated load.

Analytically, the shear V, bending moment M, and displacement y may be expressed as

V ¼ (P=2) <x� 0>0 � (P‘=8) <x� 0>�1 �P <x� ‘=2>2 þ (P=2) <x� ‘>0

þ (P‘=8) <x� ‘>�1 (11:32)

(a)

−wℓ/2

wℓ/2

O
ℓ/2

ℓ
X

O ℓ
X

M

wℓ2/8

(b)

O ℓ

y

5wℓ4/384EI

(c)

FIGURE 11.17 Transverse shear, bending moment, and displacement of a simply supported beam with a
uniform load. (a) Transverse shear, (b) bending moment, and (c) displacement.
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M ¼� (P‘=8) <x� 0>0 þ (P=2) <x� 0>1 �P <x� ‘=2>1 þ (P=2) <x� ‘>1

þ (P‘=2) <x� ‘>0 (11:33)

and

y ¼ (P=2EI)[‘ <x� 0>2=8� <x� 0>3=6 þ <x� ‘=2>3=3

� <x� ‘>3=6� ‘ <x� ‘>2=8] (11:34)
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ℓ X

q(x)

(b)

MO
VO

Y

X

Mℓ

Vℓ

(c)
Y

O
y ℓ

X

FIGURE 11.18 Positive loading, reaction, and displacement directions for double built-in beams. (a) Positive
loading direction (Y-direction), (b) positive direction for support reactions, and (c) positive transverse displace-
ment direction (Y-direction).

(a)

P

ℓ/2 ℓ/2
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P/2 P/2

(c)

Pℓ3/192EI

FIGURE 11.19 Loading, support reactions, and displacement of a doubly built-in beam with a concentrated
center load. (a) Concentrated center load (beam length ‘, load magnitude P), (b) support reactions (VO¼P=2,
V‘¼�P=2, MO¼�P‘=8, M‘¼�P‘=8), and (c) center beam displacement (elastic modulus E, second area
moment I).
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with

ymax ¼ P‘3=192EI at x ¼ ‘=2 (11:35)

Figure 11.20a through c provides positive graphical representations of these shear, bending
moment, and displacement results. (Note the positive ordinate direction is downward.)

11.4.3 DOUBLE BUILT-IN SUPPORTED BEAM AND CONCENTRATED OFF-CENTER LOAD

Figure 11.21a through c shows loading, support reactions, and displacement results for a doubly
built-in supported beam with an off-center concentrated load.

Analytically, the shear V, bending moment M, and displacement y may be expressed as

V ¼ P(b2=‘3)(3aþ b) <x� 0>0 �P(ab2=‘2) <x� 0>�1 �P <x� a>0

þ P(a2=‘3)(aþ 3b) <x� ‘>0 þP(a2b=‘2) <x� ‘>�1 (11:36)

M ¼ P(b2=‘3)(3aþ b) <x� 0>1 �P(ab2=‘2) <x� 0>0 �P <x� a>1

þ P(a2=‘3)(aþ 3b) <x� ‘>1 þPa2b=‘2 <x� ‘>0 (11:37)

and

y ¼ (P=EI‘3)[�b2(3aþ b) <x� 0>3=6þ ab2‘ <x� 0>2=2þ‘3<x� a>3=6

�a2(aþ 3b) <x� ‘>3=6�a2b‘ <x� ‘>2=2] (11:38)

In this case, the maximum displacement is not under the load but instead between the load
and the center of the beam (see Figure 11.21c). Specifically, if the load is to the left of center,
that is, if a<‘=2, ymax is

(a)

O

−P/2

P/2

V

ℓ/2 ℓ X

(b)

O
ℓ/2

ℓ
X

−Pℓ/8 −Pℓ/8

Pℓ/8

M

(c)

O
ℓ/2 ℓ

X

Pℓ3/192EI

y

FIGURE 11.20 Shear, bending moment, and displacement of a doubly built-in beam with a concentrated
center load. (a) Transverse shear, (b) bending moment, and (c) displacement.
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ymax ¼ 2Pa2b3=3(aþ 3b)2EI (a< ‘=2) (11:39)

occurring at

x ¼ xm ¼ ‘� 2b‘
aþ 3b

¼ ‘2=(aþ 3b) (11:40)

Similarly, if the load is to the right of center, that is, if a>‘=2, ymax is

ymax ¼ 2Pa3b2=3(3aþ b)2EI (a> ‘=2) (11:41)

occurring at

x ¼ xm ¼ 2a‘=(3aþ b) (11:42)

Observe that Equations 11.39 through 11.42 are also valid if a¼ b¼ ‘=2. (see also Equation 11.35.)
Figure 11.22a through c provides graphical representations of these shear, bending moment, and

displacement results. (Note that the positive ordinate direction is downward.)

11.4.4 DOUBLE BUILT-IN SUPPORTED BEAM AND UNIFORM LOAD

Figure 11.23a through c shows loading, support reactions, and displacement results for a double
built-in supported beam with a uniform load.

(a)

P

ba

ℓ

(b)

P(a2/ℓ3)(a + 3b)P(b2/ℓ3)(3a + b)

Pa2b/ℓ2Pab2/ℓ2

(c)

b

a

xm

xm

P
b

a
P ymax

ymax

a > ℓ/2 > b

a < ℓ/2 < b

FIGURE 11.21 Loading, support reactions, and displacement of a double built-in supported beam with
an off-center concentrated load. (a) Off-center, concentrated load (beam length ‘, load magnitude P),
(b) support reaction (VO ¼ P(b2=‘3)(3aþ b), MO ¼ �Pab2=‘2, V‘ ¼ �P(a2=‘3)(aþ 3b), M‘ ¼ �Pa2b=‘2),
and (c) beam displacement (see Equations 11.39 through 11.42 for values of ymax and xm.).
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Analytically, the shear V, the bending moment M, and the displacement y may be expressed as

V ¼ �w <x� 0>1 þ (w‘=2) <x� 0>0 � (w‘2=12) <x� 0>�1

þ (w‘2=12) <x� ‘>�1 þ (w‘=2) <x� ‘>0 (11:43)

0 a ℓ

V

−P(a2/ℓ3 )(a+3b)

P(a2/ℓ3 )(3a+b)

(a) (b)

0

a ℓ

M

−Pa2b/ℓ2

−Pab2/ℓ2

2Pa2b2/ℓ3

(c)

a

a

xm

xm

ℓ/2 ℓ

ℓ

ymax

ymax

y a < ℓ/2

xm =  ℓ − 2bℓ/(a + 3b) = ℓ2/(a+3b)

ymax = 2Pa2b3/3(a+3b)2Ei,

ymax = 2Pa3b2/3(3a + b)2EI,

ℓ/2

O

O

y
a > ℓ/2

xm = 2aℓ/(3a + b)

FIGURE 11.22 Shear, bending moment, and displacement results for a doubly built-in beam with an off-
center concentrated load. (a) Transverse shear, (b) bending moment, and (c) displacement.

(a)

w

ℓ

(b)

wℓ/2 wℓ/2

wℓ2/12wℓ2/12

wℓ4/384EI

(c)

FIGURE 11.23 Loading, support reactions, and displacement of a doubly built-in beam with a uniform load.
(a) Uniform load (beam length ‘, load intensity w per unit length), (b) support reactions (VO¼w‘ = 2, V‘¼
�w‘=2, MO¼M‘¼w‘2=2), and (c) center beam displacement (elastic modulus E, second area moment I).
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M ¼ �w <x� 0>2=2þ(w‘=2) <x� 0>1 � (w‘2=12) <x� 0>0

þ (w‘2=12) <x� ‘>0 þ (w‘=2) <x� ‘>1 (11:44)

y ¼ (w=24EI)[<x� 0>4 � 2‘) <x� 0>3 þ ‘2 <x� 0>2

� ‘2 <x� ‘>2 � ‘ <x� ‘>3 ] (11:45)

with

ymax ¼ w‘4=38EI at x ¼ ‘=2 (11:46)

Figure 11.24a through c provides graphical representations of these shear, bending moment, and
displacement results. (Note that the positive ordinate direction is downward.)

11.5 PRINCIPLE OF SUPERPOSITION

In most beam problems of practical importance, the loading is not as simple as those in the previous
sections or even as those in more comprehensive lists, as in Refs. [1–3]. By using the principle of
superposition, however, we can use the results listed for the simple loading cases to solve problems
with much more complex loadings. The procedure is to decompose the given complex loading into
simpler loadings of the kind listed above, or of those in the references. The principle of superpos-
ition then states that the shear, bending moment, and displacement for the beam with the complex
loading may be obtained by simply combining (that is, ‘‘superposing’’) the respective results of the
simpler cases making up the complex loading.

ℓ
X

ℓ/2
O

V

wℓ/2

−wℓ/2

(a) (b)

ℓ/2

ℓ
X

−wℓ2/12

wℓ2/24

M

ℓ/2
XO

y

wℓ4/384EI

(c)

FIGURE 11.24 Shear, bending moment, and displacement of a double supported beam with a uniform load.
(a) Transverse shear, (b) bending moment, and (c) displacement.
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The principle is a direct result of the linearity of the governing differential equation. To observe
this, suppose a loading function q(x) is expressed as

q(x) ¼ q1(x)þ q2(x) (11:47)

The governing differential equation is then

EId4y=dx4 ¼ q(x) ¼ q1(x)þ q2(x) (11:48)

The general solution of this equation may be expressed as [4]:

y ¼ yh þ yp (11:49)

where yh is the solution of the homogeneous equation

d4y=dx4 ¼ 0 (11:50)

and yp is any (‘‘particular’’) solution of Equation 11.48. Suppose that yp1 and yp2 are solutions of the
equations

EId4y=dx4 ¼ q1(x) and EId4y=dx4 ¼ q2(x) (11:51)

That is,

EId4yp1=dx
4 ¼ q1(x) and EId4yp2=dx

4 ¼ q2(x) (11:52)

Then by adding the respective sides of Equation 11.52, we have

EId4yp1=dx
4 þ EId4yp2=dx

4 ¼ q1(x)þ q2(x) (11:53)

or

EId4(yp1 þ yp2)=dx
4 ¼ q1(x)þ q2(x) ¼ q(x) (11:54)

or

yp ¼ yp1 þ yp2 (11:55)

Equation 11.55 shows that the linearity of the governing equation allows individual solutions to
equations with individual parts of the loading function to be added to obtain the solution to the
equation with the complete loading function. This establishes the superposition principle.

To illustrate the procedure, suppose a simply supported beam has a uniform load w and a
concentrated center load P as in Figure 11.25. Then by using the principle of superposition, we can

P

w

FIGURE 11.25 A simply supported beam with a uniform load w and a concentrated center load P.
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combine the results of Figures 11.16 and 11.17 to obtain representations of the support reactions and
displacement. Figure 11.26 shows the results.

Similarly, by combining Equations 11.17 through 11.20 with Equations 11.28 through 11.31,
respectively, we obtain analytical representations of the shear (V), bending moment (M), and
displacement (y) results. That is,

V ¼ (P=2)þ (w‘=2)½ � <x� 0>0 �P <x� ‘=2>0 �w <x� 0>1

þ (P=2)þ (w‘=2)½ �<x� ‘>0 (11:56)

M ¼ [(P=2)þ (w‘=2)] <x� 0>1 �P <x� ‘=2>1 �w <x� 0>2=2

þ [(P=2)þ (w‘=2)] <x� ‘>1 (11:57)

(a)

P/2 + wℓ/2 P/2 + wℓ/2

(b)

(Pℓ3/48EI) + (5wℓ4/384EI)

FIGURE 11.26 Support reactions and displacement of a simply supported beam with a uniform load and a
concentrated center load. (a) Support reactions (VO¼P=2¼w‘=2, V‘¼�P=2�w‘=2, MO¼M‘¼ 0) and
(b) center beam displacement (elastic modulus E, second area moment I).

(a)

Xℓℓ/2

−(P/2+wℓ/2)

−P/2

O

P/2

(P/2+wℓ/2)

(b)
M

X
ℓ

ℓ/2
O

(P/4)+ (wℓ2/8)

(c)

ℓℓ/2
O

y

X
  (Pℓ3/48EI)
+ (5wℓ4/384EI)

FIGURE 11.27 Shear, bending moment, and displacement of a simply supported beam with a uniform load
and a concentrated center load. (a) Transverse shear, (b) bending moment, and (c) displacement.
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and

y ¼ (1=12EI)[P(3=4)‘2x�2P <x� 0>3 þP <x� ‘=2>3 �P <x� ‘>3

� w‘ <x� 0>3 þw <x� 0>4=2� w‘ <x� ‘>3 þw‘3x=2] (11:58)

with

ymax ¼ (P‘3=48EI)þ (5w‘4=384EI) (11:59)

Finally by combining Figures 11.13 and 11.17, we have a graphical representation of these results as
shown in Figure 11.27a through c. (Note that, as before, the positive ordinate direction is down-
ward.)

Finally, observe that in the superposition process the location of the position of the maximum
displacement and maximum moment can shift away from the position with the elementary com-
ponent loading.

11.6 SUMMARY AND FORMULAS FOR DESIGN

Tables 11.1 through 11.3 provide a concise summary of the foregoing results together with
additional results for (1) cantilever, (2) simple support, and (3) double built-in support beams.*

* These tables were part of Alexander Blake’s second edition of Practical Stress Analysis in Engineering Design, Marcel
Dekker, New York, 1990.

TABLE 11.1
Cantilever Beams: Maximum Bending Moment and Maximum Displacement for Various
Loading Conditions

Loading
Maximum Bending

Moment Maximum Displacement

P

ℓ

Mmax ¼ P‘ ymax ¼ P‘3

3EI

ℓ

w

Mmax ¼ w‘2

2
ymax ¼ w‘4

8EI
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TABLE 11.1 (continued)
Cantilever Beams: Maximum Bending Moment and Maximum Displacement for Various
Loading Conditions

Loading
Maximum Bending

Moment Maximum Displacement

ℓ

w

a

Mmax ¼ w(‘2 � a2)

2
ymax ¼

w(‘� a) 6‘(‘þ a)2 � 3a(a2 þ 2‘2)
� �

48EI

ℓ

MO

Mmax ¼ MO ymax ¼ �MO‘
2

2EI

ℓ

a

e

qO

Mmax ¼ qO(‘� a)

2
ymax ¼ qO(‘� a)[14(‘� a)3 þ 405‘e2 � 135e3

1620EI

e ¼ 2aþ ‘

3

ℓ

qO

Mmax ¼ qO‘2

6
ymax ¼ qO‘4

30EI

ℓ

a

e

qO

Mmax ¼ qO(‘� a)

2
ymax ¼ qO(‘� a)[17(‘� a)3 þ 90e2(7‘� a)]

3240EI

e ¼ aþ 2‘
3

(continued)
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TABLE 11.1 (continued)
Cantilever Beams: Maximum Bending Moment and Maximum Displacement for Various
Loading Conditions

Loading
Maximum Bending

Moment Maximum Displacement

ℓ

qO

Mmax ¼ qO‘2

3
ymax ¼ 11qO‘4

120EI

TABLE 11.2
Simply Supported Beams: Maximum Bending Moment and Maximum Displacement
for Various Loading Conditions

Loading
Maximum Bending

Moment Maximum Displacement

ℓ/2 ℓ/2

P

Mmax ¼ P‘

4
ymax ¼ P‘3

48EI

P

a b
ℓ

x

Mmax ¼ Pab

‘

ymax ¼ Pab(aþ 2b)[3a(aþ 2b)]1=2

27EI‘
at x ¼ 0:58(a2 þ 2ab)1=2

when a > b

ℓ

w

Mmax ¼ w‘2

8
ymax ¼ 5w‘4

384EI
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TABLE 11.2 (continued)
Simply Supported Beams: Maximum Bending Moment and Maximum Displacement
for Various Loading Conditions

Loading
Maximum Bending

Moment Maximum Displacement

ℓ

qO

x

Mmax ¼ 0:064w‘2

at x ¼ 0:58‘

ymax ¼ 0:0065qO‘4

EI
x ¼ 0:52‘

qO

ℓ/2 ℓ/2

Mmax ¼ qO‘2

12
ymax ¼ qO‘4

120EI

qO

ℓ/2 ℓ/2

Mmax ¼ qO‘2

24
ymax ¼ 3qO‘4

640EI

ℓ

x

MO

M¼MO
ymax ¼ 0:064MO‘

2

EI
at x ¼ 0:42‘

ℓ

x

MO

a b

0< x< a

Mmax ¼ �MOx

‘

a< x<‘

M ¼ MO �MOx

‘

ymax ¼ MOx(3b2 � ‘2 þ x2)

6EI‘

ymax ¼ �MO(‘� x)(3a2 � 2‘x2 þ x2)

6EI‘
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TABLE 11.3
Doubly Built-In Beams: Maximum Pending Moment and Maximum Displacement
for Various Loading Conditions

Loading
Maximum

Bending Moment Maximum Displacement

P

A B

x

ba

ℓ

For a< b For a< b and x ¼ 2‘b
‘þ 2b

MA ¼ Pab2

‘2 ymax ¼ 2pa2b2

3EI(‘þ 2b)2

For a> b

For a> b and x ¼ 2‘
‘þ 2aMB ¼ Pa2b

‘2

ymax ¼ 2pa3b2

3EI(‘þ 2a)2

P

ℓ

ℓ/2 ℓ/2

Mmax ¼ PL

8
ymax ¼ P‘3

192EI

ℓ

d e
x

a b/2 b/2
c

w

ℓ2ℓ1

R1 ¼ wb

4‘3

� �
�

[4e2(‘þ 2d)� b2(c� a)]

For 0< x< a

M1 ¼ wb

24‘2

� �
�

{b2(‘þ 3(c� a)]� 24e2d}

ymax ¼ 3M1x2 þ R1x3

6EI

For a < x < (aþ b)

ymax ¼

12M1x2 þ 4R1x3 � q(x� a)4

24EI

ℓ

w

M ¼ w‘2

12
ymax ¼ w‘4

384EI
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SYMBOLS

a, b Length coordinates
E Elastic modulus
I Second moment of area
‘ Beam length
M Bending moment
M‘ Moment at end ‘
MO Moment at end O
O Coordinate system origin
P Concentrated load
q(x) Loading
V Shear force
VO Shear force at end O
W Uniform loading
X, Y,Z Cartesian (rectangular) coordinate axes
X X-axis coordinate
<x – a> Singularity function (see Section 10.2)
Y Y-axis coordinate; displacement
Y‘ Shear force at end ‘

TABLE 11.3 (continued)
Doubly Built-In Beams: Maximum Pending Moment and Maximum Displacement
for Various Loading Conditions

Loading
Maximum

Bending Moment Maximum Displacement

x

ba

ℓ

ℓ2ℓ1

MO R1 ¼ � 6MOab

‘3
For x ¼ � 2M1

R1
and a >

‘

3

M1 ¼ �MOb(‘� 3a)
‘2

ymax ¼ � 2M3
1

3EIR2
1

M2 ¼ �MOa(2‘� 3a)
‘2

For x ¼ ‘� 2M2

R2
and a <

‘

3

R2 ¼ �R1 ymax ¼ � 2M3
2

3EIR2
2

x
ℓ

ℓ2ℓ1

qO

R1 ¼ 3qO‘
20

ymax ¼ qO‘4

764EI
(maximum)

R2 ¼ 7qO‘
20

at x¼ 0.525‘

MB ¼ qO‘2

20
(maximum)
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12 Torsion and Twisting
of Rods

12.1 INTRODUCTION

Beams and rods often fail in shear due to excessive twisting or torsion. This frequently occurs
with overly tightened bolt=nut systems, with torsion bars, drive shafts, and beams with off-center
loads. In this chapter, we review the fundamentals of the torsion of rods with the corresponding
stress and displacement analyses. Since most rods subjected to torsion have circular cross sections,
we begin our discussion with round bars. After that, we briefly consider bars with noncircular cross
sections and hollow tubes.

12.2 BASIC ASSUMPTIONS IN THE TWISTING OF RODS OR ROUND BARS

When a rod (round bar) is subjected to a twisting moment, every cross section is in a state of pure
shear. The shear stresses across the cross section then produce a resultant moment over the cross
section, which is equal to the applied twisting moment but oppositely directed.

To study this behavior in greater detail, we make the following basic assumptions:

1. The rod material is homogeneous and isotropic
2. Hooke’s law is applicable so that the shear stress at a point is proportional to the shear

strain at that point
3. Plane circular cross sections remain plane during twisting (for round bars)
4. Radial lines of the cross section remain straight and radial during twisting (for round bars)

The last assumption has special meaning because it implies that the stresses and strains at a point are
directly proportional to the radial coordinates of the point. Hence, the maximum shear stress occurs
at the perimeter of the cross section. (This behavior is thus different from the case of transverse shear
of the beams due to bending, where the maximum shear stress is found at the neutral axis as
discussed in Chapter 13.)

12.3 STRESSES, STRAINS, AND DEFORMATION
(TWISTING) OF ROUND BARS

Assumptions 3 and 4 (cross sections remain plane and radial lines remain straight during twisting)
form the basis for our stress and strain analysis of twisting circular bars. The rationale for these
assumptions stems from the circular symmetry of the cross section (see Refs. [1–6]). These
assumptions have also been validated experimentally.

To develop the analysis, consider a circular cross sectional rod R subjected to a twisting moment
T as in Figure 12.1. Consider a segment AB of R as in Figure 12.2. Let the length of AB be ‘.

During the twisting of segment AB, let the cross section at A be regarded as fixed. Then consider
the rotation of the cross section at B relative to cross section at A. On the surface between A and B,
let PQ be a longitudinal line which is initially parallel to the rod axis as represented in Figure 12.3.
Next, suppose that section B is rotated relative to A through an angle u (due to the twisting moment)
as represented in Figure 12.4. During the twisting let Q be rotated to Q0 and let g be the angle
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between PQ and PQ0, measured at P, as shown. If the twist angle u is small and consequently g is
also small, we can identify g with the shear strain on the rod surface. Thus if the segment AB has
length ‘ and radius r, we see from Figure 12.4 that u and g are related by the simple expressions

ru ¼ ‘g or g ¼ (r=‘)u (12:1)

Next, imagine an interior cylindrical segment of AB having radius r as in Figure 12.5. By similar
reasoning we see that the shear strain g at an interior point P̂ at end A is

g ¼ (r=‘)u (12:2)

The shear stress t at P̂ is then (see Equation 3.12):

t ¼ Gg ¼ Gru=‘ (12:3)

where G is the shear modulus.
Observe that Equation 12.3 shows that the shear stress on a cross section varies linearly along a

radial line. It is zero on the axis and it reaches its maximum value on the perimeter. The same
remarks hold for the shear strain.

Observe further that the radial and axial (normal) stresses are zero. Finally, observe that these
characteristics of the stress distribution are direct consequences of the assumptions of Section 12.2.

We can use Equation 12.3 to obtain an expression for the twisting torque T in terms of the twist
angle u. Specifically, equilibrium requires that the twisting torque must be equal to the sum of the
moments of the shear stresses on the cross section about the axis of the cross section. To develop
this, consider the shear stress on a small element (e) of the cross section as represented in Figure
12.6, where r and f are the polar coordinates of (e). The twisting torque T is then

T ¼
ð2p

0

ðr

0

rtr dr df ¼
ð2p

0

ðr

0

r(Gru=‘)r dr df

¼ (Gu=‘)

ð2p

0

ðr

0

r3 dr df ¼ (Gu=‘)(pr4=2) (12:4)

T

T

R

FIGURE 12.1 A circular cross-sectional rod subjected to a twisting moment.

A B

ℓ

FIGURE 12.2 A segment AB of the twisted rod in Figure 12.1.
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P Q

A B

FIGURE 12.3 Rod segment AB with longitudinal line PQ.

P Q

A B

q
O

g
Q�

FIGURE 12.4 Twisting of segment AB through an angle u at B.

ℓ

P

A B

r
ρP̂

FIGURE 12.5 An interior cylindrical segment of AB.

Y

X
r

O
f

r dr

t
df

(e)

FIGURE 12.6 Shear stress (t) and element (e) of the cross section of a twisted cylindrical segment.
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or

T ¼ (Gu=‘)J (12:5)

where J, defined as pr4=2, is the second polar moment of area (or ‘‘polar moment of inertia’’) of the
cross section.

Equation 12.5 may be solved for the twist angle u as

u ¼ T‘=JG (12:6)

Finally, by substituting for u in Equation 12.3, we have

t ¼ Tr=J (12:7)

Equations 12.6 and 12.7 are the fundamental relations for the stress and twist angle for
twisted circular rods. Note the similarity between Equations 12.6 and 3.4 and between Equations
12.7 and 8.2.

12.4 TORSION OF NONCIRCULAR CROSS-SECTIONAL BARS

If a twisted bar has a noncircular cross section, the axial symmetry is lost and consequently the
simplifying assumptions of Section 12.2 are no longer valid. Indeed, if a twisted bar has a
noncircular cross section, as in Figure 12.7, it is unreasonable to expect that before twisting plane
cross sections normal to the axis will remain plane during and after twisting. Instead, in the absence
of applied axial forces, the asymmetry produces warping of the cross section as the bar is twisted.
Correspondingly, radial lines in the cross section, stemming from the axis, no longer remain straight
during twisting. The warped cross section and the curving of the radial lines make the stress and
deformation analysis significantly more difficult, although it is still mathematically tractable.
It simply involves solving a second-order linear partial differential equation.

From a design perspective, however, bars with circular cross sections are suitable for the vast
majority of torsion applications. Thus the rather complex analysis of twisted bars with noncircular
cross sections is relatively of minor importance from a design perspective. Therefore, we will omit it
here, but interested readers may see Ref. [7] and [8] for details of the analysis.

Nevertheless, there are occasions when twisting of a noncircular cross-sectional bar may be of
interest. In these cases, the most common cross section shapes are either square, rectangular, or
composite combinations of rectangular shapes.

For rectangular cross sections, the absence of symmetry (as opposed to that of circular cross
sections) means that the perimeter will be distorted during twisting. This in turn produces warping
of the cross section, and as noted earlier, radial lines going outward from the bar axis do not remain
straight. Consequently, simple expressions for the stress distribution across the cross section (such
as Equation 12.7) do not hold for rectangular cross sections.

T

T

FIGURE 12.7 A twisted bar with a noncircular cross section.
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From a practical stress analysis and design perspective what is of greatest interest is the
magnitude and location of the maximum stress, and the angle of twist of the bar. The theoretical
analyses show that the maximum stress occurs at the perimeter or boundary of the cross section
at those points which are closest to the bar axis [1,7,8]. Thus, for a rectangular cross-sectional bar
the maximum stress (shear stress) occurs at the midpoint of the long side (see Figure 12.8).
Interestingly, the corners of the rectangular cross section are found to be without stress.

For rectangular bars the magnitudes of the maximum shear stress tmax and the twist angle u can
conveniently be approximated from the expressions

u ¼ T‘=GK and tmax ¼ T=Ks (12:8)

where the factors K and Ks are listed in Table 12.1, and b and h are the dimensions of the rectangular
cross section as in Figure 12.8.

Observe the similarity of Equations 12.8 for a rectangular cross section, to Equations 12.6 and
12.7 for a circular cross section. In this regard, K and Ks of Table 12.1 may be interpreted as
‘‘section moduli.’’

12.5 ILLUSTRATION: TWISTING OF A RECTANGULAR STEEL BAR

Consider a rectangular steel bar B with length 16 in. and cross section dimensions 4.2 in. and 1.4 in.
Let B be subjected to a twisting moment of 4000 in. lb. Let the shear modulus G be 11.6� 106 psi.
Suppose we want to determine the angle of twist u and the maximum shear stress tmax. To do this, in
Table 12.1 let b¼ 4.2 in. and h¼ 1.4 in. For b=h¼ 3 K and Ks are given by

K=bh3 ¼ 0:263 and Ks=bh
2 ¼ 0:267 (12:9)

h

b

Maximum
shear stress

Maximum
shear stress

FIGURE 12.8 Points of maximum shear stress in the cross section of a twisted rectangular bar.

TABLE 12.1
Torsional Parameters for Rectangular Sections

b=h 1.0 1.2 1.5 2.0 2.5 3.0 4.0 5.0 10

K=bh3 0.141 0.166 0.196 0.229 0.249 0.263 0.281 0.291 0.312
Ks=bh

2 0.208 0.219 0.231 0.246 0.258 0.267 0.282 0.291 0.312
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Thus K and Ks are

K ¼ 3:031 and Ks ¼ 2:198 (12:10)

Then from Equation 12.8, we have

u ¼ (4000)(16)
(11:6)(106)(3:031)

¼ 0:00182 rad ¼ 0:104� (12:11)

and

tmax ¼ 4000=2:198 ¼ 1820 psi (12:12)

12.6 TORSION OF NONCIRCULAR, NONRECTANGULAR BARS

By solving the governing partial differential equation for the torsion of prismatic bars, it is possible
to obtain data for stress distribution and as well as moment=twist relations for a wide variety of cross
section shapes [7,8]. References [5] and [9] provide a summary of some of these results.

The solution of the partial differential equation involves the evaluation and the approximation of
infinite series or alternative numerical procedures. It happens that there are other approximate
procedures which are simpler and perhaps more intuitive but which can provide quite accurate
results for torsion problems, particularly for noncircular and nonrectangular cross sections.

Among the most popular of these alternative approximation procedures is the ‘‘soap-film’’ or
‘‘membrane’’ analogy. In this procedure, a tube or a duct is formed whose cross section has the same
shape as that of a given bar. The end of the duct is then covered with an elastic membrane. Finally,
the interior of the duct is pressurized, causing an outward bulging or deformation of the membrane.
Figure 12.9 illustrates the concept.

It happens that the slope of the deformed membrane satisfies the same partial differential
equation as that of the shear stress in the cross section of the twisted noncircular bar. That is, the
shear stress at any point of the bar cross section is proportional to the slope of the inflated
membrane. The direction of the shear stress is perpendicular to the direction for measuring the
membrane slope. Finally, the angle of twist of the bar is proportional to the volume created by the
deformed membrane.

If we can visualize an inflated membrane covering a duct with a cross section of interest, then by
focusing upon the slope of the membrane, we have a qualitative impression of the shear stress across
the cross section of the analogous twisted bar.

Membrane
Inflated

membrane

(c)(b)(a)

Pressure

FIGURE 12.9 Illustration of deformed membrane covering a pressurized duct (having a cross section same as
that of a given noncircular bar). (a) Cross section of a noncircular bar, (b) duct with the same cross section with
a membrane cover, and (c) pressurized duct and outward deformed membrane.
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Another useful procedure for torsional stress analysis of prismatic bars, with noncircular and
nonrectangular cross sections, is the ‘‘superposition method.’’ In this procedure, we simply approxi-
mate a given cross section shape by a combination of rectangles, as illustrated in Figure 12.10. The
torsional parameters K and Ks for the composite section, and hence also for the given original cross
section, are approximately equal to the sums of the K and Ks values, respectively, of the individual
rectangles as obtained from Table 12.1.

The accuracy of the superposition method depends upon the ‘‘goodness-of-fit’’ of the rectangles
approximating the given original cross section. The approximation is improved by increasing the
number of rectangles but then the computational effort is also increased.

12.7 TORSION OF THIN-WALLED DUCTS, TUBES, AND CHANNELS

Consider again a circular bar or a rod. This time, let the rod be hollow, having an annular cross
section as in Figure 12.11. Let the inner and outer radii be ri and ro. Then the polar moment of
inertia J is

J ¼ (p=2)(r4o � r4i ) (12:13)

From Equations 12.6 and 12.7 the shear stress t and the twist angle u are

t ¼ Tr=J and u ¼ T‘=JG (12:14)

where
T is the applied twisting moment
‘ is the rod length
G is the shear modulus

(a) (b)

FIGURE 12.10 Approximation of a cross-section shape by rectangular elements. (a) Given cross section and
(b) composite rectangular approximation.

ri

ro

FIGURE 12.11 Circular rod with an annular cross section.
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Suppose that the annular wall is thin with thickness t as in Figure 12.12. The inner and outer
radii are then related by the simple expression

ro ¼ ri þ t (12:15)

Then J becomes

J ¼ (p=2)(r4o � r4i )

¼ (p=2) (ri þ t)4 � r4i
� �

¼ (p=2)(4r3i t þ 6r2i t
2 þ 4rit

3 þ t4) (12:16)

If t is small compared with ri, J is approximately

J � 2pr3i t (12:17)

Consequently the shear stress t and the twist angle u are then approximately

t � T=2pr2i t and u � T‘=2pr3i tG (12:18)

or

t � T=2At and u � T‘=2AritG (12:19)

where A is the cross section area of the thin-walled cylinder or ‘‘tube.’’
We can generalize these results for application with thin-walled tubes with noncircular cross

section. Consider such a tube, with wall thickness t, subjected to a twisting moment T, as
represented in Figure 12.13. Consider an element (e) of the tube as in Figure 12.14 and as shown
in enlarged views in Figure 12.15.

ri

ro

t

FIGURE 12.12 A thin-walled annular cross section.

t
T

FIGURE 12.13 A noncircular cross-sectional tube subjected to twisting (torsion).
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Finally, consider a free-body diagram of (e) as in Figure 12.16 where q, called the ‘‘shear flow,’’
is the sum of the shear stress across the tube thickness. That is,

q ¼
ð
t dt (12:20)

By considering the equilibrium of the element, we see that the shear flow on the upper edge of the
element qu is equal to the shear flow on the lower edge of the element q‘. That is,

qu ¼ q‘ ¼ q (12:21)

This result means that the shear flow is constant around the perimeter of the tube.
We can relate the twist moment T to the shear flow around the perimeter by adding the moments

of the shear flow q on differential perimeter elements, about the centroid O of the tube cross section,
as represented in Figure 12.17. Specifically, T is given by

T ¼ v

ð
r� q dsj j ¼ q

ð
r� dsj j (12:22)

where
ds is a differential length vector
r is the position vector from the centroid O to the differential length element
the integral is a line integral along the perimeter of the tube

Observe that the vector product magnitude jr� dsj may be expressed as

r� dsj j ¼ rj j dsj j sin�j j (12:23)

where f is the angle between r and ds as represented in Figure 12.18. Observe further that jdsjsin f
may be visualized as the base of a very slender isosceles triangle whose height is jrj as suggested in
Figure 12.19. The area dA of the triangle is then simply

dA ¼ (1=2) rj j dsj j sin� (12:24)

t
T

(e)

FIGURE 12.14 Element (e) of thin-walled twisted tube.

Outside view Inside view

FIGURE 12.15 Views of tube element.
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q

q

FIGURE 12.16 Free body diagram of tube element.

O
r

ds

q ds

FIGURE 12.17 Shear flow at an element of the twisted tube. (Note that a differential length element does not
have a finite length, but it is shown as finite in the figure simply to illustrate the differential shear flow force.)

O

ds

r

f

FIGURE 12.18 Angle f between r and ds.

O

|ds| sin f

|r|

FIGURE 12.19 Differential isosceles triangle forming a differential cross-section area dA.

Huston/Practical Stress Analysis in Engineering Design DK4291_C012 Final Proof page 184 7.11.2008 10:18pm Compositor Name: MSubramanian

184 Practical Stress Analysis in Engineering Design



Then by substituting Equation 12.24 into Equations 12.23 and 12.22, we see that the twist moment
T is simply

T ¼ 2Aq (12:25)

where A is the cross section area of the tube.
Finally, observe that the shear stress t is approximately equal to q=t, where t is the tube wall

thickness. Thus t is approximately

t ¼ T=2At (12:26)

(See Equation 12.14.)
A review of the analysis shows that the results of Equations 12.25 and 12.26 are valid even if the

tube wall thickness t is not uniform. Also, note that these equations are not valid if the tube is split
(i.e., without a continuous perimeter).

SYMBOLS

A Cross-section leader
A, B Cross sections of rod R
b, h Dimensions of a rectangular cross-sectional bar
G Shear modulus
I Second polar moment of area
K, Ks Torsion factors (see Table 12.1)
‘ Rod length
P, Q Points on the surface of R
q Shear flow
R Rod
r Radial coordinate; rod radius
s Arc length
T Twisting moment
t Thickness of cylindrical shell
g Shear strain
u Twisting angle, angular coordinate
r Radial coordinate
t Shear stress
f Angular coordinate
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Part III

Special Beam Geometries:
Thick Beams, Curved Beams,
Stability, and Shear Center

In this part, we consider deviations from the classical beam and loading conditions of Part I. Even
though these deviations take us away from the simple flexural and torsional loading of straight
beams, the deviations and changes are not uncommon in their occurrence and use in structural
designs. Indeed, most structural members, which resemble beams are in reality, not long straight
members with simple and=or fixed end supports.

To determine the effects of geometrical changes on beam stresses and deformations, we initially
consider thick (or short) beams where transverse shear stress maybe important. We then look at
curved beams and the effects of curvature on beam stresses (Chapter 14). We consider application
with hooks and clamps.

In Chapter 15, we examine the conditions where beams and columns can buckle and fail under
axial compression loading. This failure usually occurs before yield stress is reached. We consider
the effects of various support conditions and the length of the members. We also briefly consider
buckling resistance of plates and panels.

Finally, in Chapter 16, we consider the effects of load placement within a cross section and how
changes in the line of action of a load can affect the stresses and stability of a beam.
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13 Thick Beams: Shear Stress
in Beams

13.1 DEVELOPMENT OF SHEAR STRESS IN A BEAM

Consider a layeredmedium, such as a deck of cards, in the shape of a beam as suggested in Figure 13.1.
Let the layered structure be subjected to both pure bending and to transverse loading as represented in
Figures 13.2 and 13.3. Let the pure bending be simulated by rigid plates attached to the ends of the
beam as represented in Figure 13.4, where an exaggerated representation of the resulting beam
deformation is also given. Observe that the plates create tension in the lower layers of the beam and
compression in the upper layers so that adjacent layers do not slide relative to one another.

Next, consider the case of bending via transverse loading as in Figure 13.3. If there is no friction
between the layers, the layers will slide relative to one another producing a deformation pattern as in
Figure 13.5. If, however, there is friction between the layers or if the layers are bonded, tangential
forces (shear forces) will prevent the layers from sliding relative to one another. These shear forces
will in turn create shear stresses on the surfaces of the layers. We will quantify these stresses in the
following paragraphs.

13.2 SHEAR LOADING ANALYSIS

Consider again the beams subjected to pure bending and to concentrated force transverse loading as
in Figures 13.2 and 13.3 and as shown again in Figures 13.6 and 13.7. In case of pure bending, the
bending momentM is constant along the beam length. Consequently the flexural stress s is the same
for all cross sections along the beam length. In case of the concentrated transverse load, however,
the bending moment is not constant along the beam length and thus in this case the flexural stress
varies from cross section to cross section.

Recall from Section 11.3.2 that for a simply supported, center-loaded beam, the bending
moment M is (see Equations 10.57 and 11.18):

M ¼ (P=2) <x� 0>1 �P <x� ‘=2>1 þ (P=2) <x� ‘>1 (13:1)

where, as before, the bracket notation <�> designates the singularity function (see Section 10.2),
‘ is the beam length, and x is the coordinate along the beam axis with the origin at the left end. This
expression is best represented graphically as in Figure 13.8 (Figure 11.13b).

If the bending moment M varies along the beam length, causing a variation in flexural or axial
force from cross section to cross section, then a longitudinal fiber element will not be in equilibrium
in the absence of shear stress on the element. That is, with varying bending moment, shear stress is
needed to maintain equilibrium of the longitudinal element. To see this, consider a longitudinal
element (e) of a narrow rectangular cross-sectional beam as in Figure 13.9, where the cross section
dimensions are b and h as shown, and the element dimension are Dx (length), Dy (height), and b
(depth), also as shown. (As before, the positive X-axis is to the right along the neutral axis of the
beam and the positive Y-axis is downward.)

Suppose that the loading on the beam produces a bending moment M, which varies along the
beam span. Then in Figure 13.9, the bending moment at cross section A will be different from that at
cross section B. This means that the stress on (e) at end A is different from that at end B.
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FIGURE 13.1 Layered media in the shape of a beam.

M M

FIGURE 13.2 Pure bending of a layered beam.

FIGURE 13.3 Transverse loading of a layered beam.

FIGURE 13.4 Simulation of pure bending of a layered beam.

P

FIGURE 13.5 Simple support simulation of bending via transverse loading.
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M M

FIGURE 13.6 Pure bending of a beam.

P

FIGURE 13.7 Bending via transverse load.

0
ℓ/2 ℓ

M

X

Pℓ/4

FIGURE 13.8 Bending moment for simply supported center-loaded beam.

ΔxA B

(e)

(e)

b

h

Δy

Y

X

FIGURE 13.9 Longitudinal element (e) of a rectangular cross-sectional beam.
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To quantify this difference, recall the fundamental flexural stress expression (see Equations 8.2
and 8.13):

s ¼ My=I (13:2)

where I is the second moment of area of the cross section (I¼ bh3=12 for a rectangular cross
section). Thus the stresses at sections A and B are

sA ¼ MAy=I and sB ¼ MBy=I (13:3)

We may relate the moments at A and B relative to each other, using a Taylor series as

MB ¼ MA þ dM

dx

����
A

Dxþ � � � (13:4)

If the element length Dx is small, the unwritten terms of Equation 13.4 can be neglected so that the
moments on the beam cross sections at A and B can be represented as in Figure 13.10.

MA þ dM

dx

����
A

Dx

Observe now from Equation 13.1 that with the moments differing from cross section A to B by the
amount (dM=dx)Dx, the stresses at the ends of element (e) differ by (dM=dx)(Dx)(y=I). This stress
difference in turn will produce a difference in end loadings on (e) by the amount (dM=dx)(Dx)(y=I)bDy.
Then to maintain equilibrium of (e), the shear stresses on the upper and lower surfaces of (e) need
to produce a counterbalancing shear force on (e) equal to (dM=dx)(Dx)(y=I)bDy.

To further quantify the shear forces consider a free-body diagram of that portion of the beam
segment between A and B and beneath (e) as in Figure 13.11 where FA and FB are the axial force
resultants on the beam segment at ends A and B, and S is the resultant of the shearing forces due to
the shear stresses on the segment at the interface with (e). Then by setting forces in the axial
direction equal to zero (to maintain equilibrium), we have

�FA � Sþ FB ¼ 0 or S ¼ FB � FA (13:5)

A BΔx

MA

(e)

MA + dM Δx
Adx

FIGURE 13.10 Moments on beam cross sections A and B.
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For a rectangular cross-sectional beam with width b and depth h, FA, FB, and S may be expressed as

FA ¼
ðh=2

y

sAb dy ¼
ðh=2

y

MA( y=I)b dy (13:6)

FB ¼
ðh=2

y

sBb dy ¼
ðh=2

y

MBb dy ¼
ðh=2

y

MA þ dMA

dx
Dx

� �
( y=I)b dy (13:7)

and

S ¼ txybDx (13:8)

By substituting these expressions into Equation 13.5, we have

txybDx ¼
ðh=2

y

MA þ dMA

dx
Dx

� �
( y=I)b dy�

ðh=2

y

MA( y=I)b dy

¼
ðh=2

y

dMA

dx
Dx( y=I)b dy

txy ¼
ðh=2

y

(dMA=dx)( y=I)dy

(13:9)

From Equation 8.6 dMA=dx is the transverse shear V at A. Hence, the shear stress (for the rectangular
cross section) is

txy ¼ (V=I)

ðh=2

y

y dy ¼ (V=I)( y2=2) j
h=2

y
¼ (V=I)

h2

8
� y2

2

� �
(13:10)

In general, for a nonrectangular cross section, the shear stress is

txy ¼ (V=Ib)

ðh=2

y

y dA¼D VQ=Ib (13:11)

S (shear force)

A Δx B

FA FB (axial force)

FIGURE 13.11 Free-body diagram of lower portion of beam segment.
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where by inspection Q is defined as
Ð h=2
h y dA, where dA is the cross section area element and b is the

cross section width at elevation y. Q is the moment of area of the cross section, beneath y, about
the line in the cross section parallel to the Z-axis, and at elevation y.

13.3 MAXIMUM TRANSVERSE SHEAR STRESS

As an illustration of the use of Equation 13.11, consider the special case of a rectangular cross
section, governed by Equation 13.10. In this case, Q is

Q ¼
ðh=2

y

y dA ¼
ðh=2

y

y b dA ¼ by2=2 j
h=2

y
¼ b

h2

8
� y2

2

� �
(13:12)

By substituting into Equation 13.11 the shear stress has the form

txy ¼ VQ=Ib ¼ (V=I)
h2

8
� y2

2

� �
(13:13)

Recalling now that for a rectangular cross section the second moment of area I is

I ¼ bh3=12 (13:14)

Therefore, the shear stress becomes

txy ¼ 6V
6h3

h2

A
� y2

� �
(13:15)

Equation 13.15 shows that the shear stress distribution across the cross section is parabolic, having
values zero on the upper and lower surfaces and maximum value at the center, as represented in
Figure 13.12.

From Equation 13.15, the maximum shear stress (occurring a y¼ 0) is

tmax ¼ (3=2)(V=A) (13:16)

Y

X

FIGURE 13.12 Shear stress distribution on a rectangular beam cross section.
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Equation 13.16 shows that for a rectangular cross section, the maximum shear stress is 1.5 times as
large as the average shear stress (V=A) across the cross section or 50% larger than the average shear
stress. In Section 13.4, we present analogous results for commonly used nonrectangular cross
section shapes.

Finally, observe that the maximum shear stress occurs at the neutral axis where the normal
(flexural) stress is minimum (zero), whereas the maximum flexural stress occurs at the upper and
lower surfaces where the shear stress is minimum (zero).

13.4 NONRECTANGULAR CROSS SECTIONS

Consider a beam with a circular cross section. An analysis similar to that in Section 13.3 shows that
the shear stress distribution across the cross section is parabolic. Here, however, the maximum shear
stress is found to be 4=3 times the average shear stress. That is

tmax ¼ (4=3)(V=A) (circular cross section) (13:17)

Other beam cross sections of interest include hollow circular cross sections, I-beam sections, and
open-channel cross sections. Table 13.1 shows the shear stress distribution together with a listing of
maximum values for these cross sections.

Beams with open cross sections, such as I-beams or T-type beams transmit the shear loads
primarily through the webs, and the maximum stress closely approximates that obtained by dividing
the shear load by the area of the web. The effect of a flange on the shear stress distribution is small
and can usually be neglected. In rapidly changing cross section geometry, however, some judgment
is required to determine which portions of the cross section are likely to behave as flanges and which
should be treated as webs.

It should be noted that the foregoing analyses and maximum shear stress values are valid only
when the shear loading is equivalent to a single force acting through the centroid of the cross section
(‘‘centroidal loading’’). When this occurs, no torsional moments are created. The condition of
centroidal loading is usually satisfied when the beam cross section is symmetric about the Y-axis.

Finally, consider the case of the tubular cross section (hollow cylinder beam). The result listed
in Table 13.1 for the maximum shear stress is obtained by assuming that the wall thickness t is small
compared with the radius R. There can be occasions, however, when an annular cross-sectional
beam has a thick wall. To address this, R. C. Stephens [1] has developed an expression for the
maximum shear stress as a function of the inner and outer radii r and R as

tmax ¼ tav
4(R2 þ Rr þ r2)

3(R2 þ r2)
(13:18)

where, as before, tav is the average shear stress across the cross section (V=A).
Table 13.2 provides a tabular listing of computation results using Equation 13.17 for various

r=R ratios.

13.5 SIGNIFICANCE OF BEAM SHEAR STRESS

A question arises from a design perspective: how significant is the shear stress in beams? To answer
this question, consider a simply supported beam with a concentrated central load as in Figure 13.13.

In this case, at the center of the beam, we have a relatively large shear load with a relatively
small bending moment. Specifically, recall from Section 11.3.2 that the shear and bending moment
diagrams for the beam are as in Figures 13.14 and 13.15.

Huston/Practical Stress Analysis in Engineering Design DK4291_C013 Final Proof page 195 1.11.2008 4:28am Compositor Name: JGanesan

Thick Beams: Shear Stress in Beams 195



TABLE 13.1
Shear Stress Distribution and Maximum Shear Stress for Various Beam
Cross Sections

Type of Cross
Section

Shear Stress
Distribution

Maximum
Shear Stress

Rectangular

tav

tmax

tmax¼ (3=2)tav
(tav¼V=A)

Circular

tav

tmax

tmax¼ (4=3)(V=A)

(tav¼V=A)

R

t

Hollow (thin-walled tube)a

tav

tmax

tmax¼ 2(V=A)
(tav¼V=A)

h

b

I and channel

b

tmax ¼ Vbh

2I
t þ h

4b

� �

a See Table 13.2 for additional data for tubes.
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TABLE 13.2
Maximum Shear Stresses for Tubular Cross-Section Beams
with Various Wall Thicknesses

r=R 0 0.2 0.4 0.6 0.8 1.0

tmax=tav 1.333 1.590 1.793 1.922 1.984 2.000

ℓ

P

FIGURE 13.13 A simple support beam with a concentrated center load.

−P/2

P/2

O
ℓ/2

ℓ
X

V

FIGURE 13.14 Shear diagram for simply supported center-loaded beam.

ℓ/2O

P/A

ℓ
X

M

FIGURE 13.15 Bending moment diagram for simply supported center-loaded beam.
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From these figures we see that at the center of the beam, the shear and bending moment are

V ¼ P=2 and M ¼ P‘=4 (13:19)

For a rectangular cross section, the maximum shear stress tmax is (see Table 13.1):

tmax ¼ (3=2)(V=A) ¼ (3=2)(P=2bh) (13:20)

where, as before, b and h are the cross section width and depth. Correspondingly, the maximum
flexural stress smax is

smax ¼ Mmaxc=I ¼ (P‘=4)(h=2)=bh3=12)

or

smax ¼ 3P‘=2bh2 (13:21)

The ratio of maximum shear to flexural stress is then

tmax=smax ¼ 3P=4bh
3P‘=2bh2

¼ h=2‘ (13:22)

Equation 13.22 shows that in this relatively common loading and support configuration, for long
thin beams, the shear stress is small and unimportant. For thick beams (say h>‘=5), the shear stress
is as large as one tenth or more of the flexural stress.

SYMBOLS

A Area
A, B Beam sections
b Beam depth
FA, FB Axial force resultants on sections A and B
h Beam thickness
I Second moment of area of the beam
‘ Beam length
M Bending moment
P Concentrated force
Q Defined by Equation 13.11
r, R Tube radii
S Shear force
t Wall thickness
V Shear force
X X-axis coordinate
<x� a>n Singularity functions (see Section 10.2)
X, Y, Z Cartesian (rectangular) coordinate axes
y Y-axis coordinate
Dx,Dy Element (e) dimensions
s Normal stress
txy Shear stress

REFERENCE

1. R. C. Stephens, Strength of Materials—Theory and Examples, Edward Arnold, London, 1970.
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14 Curved Beams

14.1 HISTORICAL PERSPECTIVE

Curved beams and other relatively thin curved members are commonly found in machines and
structures such as hooks, chain links, rings, and coils. The design and analysis of curved members
has interested structural engineers for over 150 years. Early developments are attributed to Winkler
[1,2] in 1867. However, experimental verification of the theory did not occur until 1906 when tests
were conducted on chain links, at the University of Illinois [3]. These tests were later expanded to
circular rings providing good agreement with Winkler’s work.

Winkler’s analysis (later to be known as the Winkler-Bach formula) expressed the maximum
flexural stress smax for a curved beam as

smax ¼ M

AR
1þ c

l(Rþ c)

� �
(14:1)

where
M is the applied bending moment
A is the beam cross section area
R is the distance from the area centroid to the center of curvature of the unstressed beam
c is the distance from the centroid to the inner perimeter of the beam
l is a geometric parameter defined as

l ¼ 1=A
ð

h

Rþ h
dA (14:2)

where the integration is over the cross section and h is the distance of a differential area element
from the centroid C as in Figure 14.1.

Observe in Equation 14.1 that unlike the flexural stress expression for straight beams (s¼Mc=I,
Equation 8.15), the stress is nonlinearly related to the distance c from the centroid axis to the outer
fibers of the cross section. Also observe that the use of Equation 14.1 requires knowledge of the
geometric parameter l of Equation 14.2. Table 14.1 provides series expressions for l for a variety of
cross section shapes.

Even though Winkler’s results appeared as early as 1867, English and American practices did
not adopt his analysis until 1914 when Morley published a discussion about curved beam design [4],
giving support to the Winkler-Bach theory. The adequacy of the theory was later (1926) supported
by tests conducted by Winslow and Edmonds [5].

Although the stress represented by Equations 14.1 and 14.2 has been demonstrated to provide
reasonable results, it needs to be remembered that it is nevertheless approximate. More exact and
more useful expressions may be obtained by accounting for a shift in the neutral axis position, as
discussed in the following section.

14.2 NEUTRAL AXIS SHIFT

Consider a segment of a curved beam, subjected to bending as in Figure 14.2. Recall that for straight
beams we assumed that plane sections normal to the beam axis, prior to bending, remain plane
during and after bending. Interestingly, it happens that the same assumption is reasonable for curved

Huston/Practical Stress Analysis in Engineering Design DK4291_C014 Final Proof page 199 3.11.2008 2:44pm Compositor Name: BMani

199



beams. Indeed, experiments have shown that for a reasonable range of loading and beam
deformation, there is very little distortion of sections normal to the beam axis during bending.

With straight beams the preservation of planeness of the normal cross sections leads to the linear
stress distribution across the cross section, that is, s¼Mc=I (see Equation 8.13). With curved beams,
however, the preservation of planeness of normal cross sections leads to a nonlinear stress distribution,
and consequently a shaft in the neutral axis toward the center of curvature of the beam.

TABLE 14.1
Values of l of Equation 14.2

h

R
c

l ¼ 1
4

c

R

� �2
þ 1
8

c

R

� �4
þ 5
64

c

R

� �6
þ 7
128

c

R

� �8
þ � � �

h

c

R

l ¼ 1
3

c

R

� �2
þ 1
5

c

R

� �4
þ 1
7

c

R

� �6
þ � � �

h

bb1

c1
c2

R

l ¼ �1þ R

Ah
[b1hþ (Rþ c1)(b� b1)] loge

Rþ c1
R� c1

� �
� (b� b1)h

� 	

where A is the area of cross section

h

R

c l ¼ 1
4

c

R

� �2
þ 1
8

c

R

� �4
þ 5
64

c

R

� �6
þ 7
128

c

R

� �8
þ � � �

h

R

c1

c2

l ¼ �1þ 2R

c22 � c21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � c21

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � c22

q� �

C

R

dA

Axis of
curvature

h

FIGURE 14.1 Cross-section geometry of a curved beam.
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To understand the reason for the nonlinear stress distribution and the neutral axis shaft, consider
an enlarged view of the bending of a beam segment as in Figure 14.3. Specifically, consider the
rotation of section BiBO and the stretching and compression of circular arc fibers PQ and P0Q0. If
section BiBO is to remain plane during bending, fibers near the outside of the segment, such as PQ,

TABLE 14.1 (continued)
Values of l of Equation 14.2

c1 c2

R
c4

b1
t

c3

b
l ¼ �1þ R

A
[b1 loge (Rþ c1)þ (t � b1) loge (Rþ c4)

þ (b� t) loge (R� c3)� b loge (R� c2)]

where A is the area of cross section

R
c1

b

c2c3

t
In the expression for the unequal I given above

make c4 ¼ c1 and b1 ¼ t, so that

l ¼ �1þ R

A
[t loge (Rþ c1)þ (b� t) loge (R� c3)� b loge (R� c2)]

R
c1 c2

t
2

bc3
t
2

Area ¼ A ¼ tc1 � (b � t)c3 þ bc2 (applies to U and T sections)

TABLE 14.2
Stress Concentration Factors for Curved Beams

fo

R=c Inner Face Outer Face d=R

c

d

R

h

1.2 3.41 0.54 0.224
1.4 2.40 0.60 0.151

1.6 1.96 0.65 0.108
1.8 1.75 0.68 0.084
2.0 1.62 0.71 0.069

3.0 1.33 0.79 0.030
4.0 1.23 0.84 0.016
6.0 1.14 0.89 0.0070
8.0 1.10 0.91 0.0039

10.0 1.08 0.93 0.0025

R

c

d

1.2 2.89 0.57 0.305
1.4 2.13 0.63 0.204
1.6 1.79 0.67 0.149

1.8 1.63 0.70 0.112
2.0 1.52 0.73 0.090
3.0 1.30 0.81 0.041

4.0 1.20 0.85 0.021
6.0 1.12 0.90 0.0093
8.0 1.09 0.92 0.0052

10.0 1.07 0.94 0.0033

(continued)
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TABLE 14.2 (continued)
Stress Concentration Factors for Curved Beams

fo

R=c Inner Face Outer Face d=R

b

R

b 2b
d

1.2 3.01 0.54 0.336
1.4 2.18 0.60 0.229
1.6 1.87 0.65 0.168

1.8 1.69 0.68 0.128
2.0 1.58 0.71 0.102
3.0 1.33 0.80 0.046

4.0 1.23 0.84 0.024
6.0 1.13 0.88 0.011
8.0 1.10 0.91 0.0060

10.0 1.08 0.93 0.0039

3b

R

b 2bd
c

1.2 3.09 0.56 0.336
1.4 2.25 0.62 0.229
1.6 1.91 0.66 0.168

1.8 1.73 0.70 0.128
2.0 1.61 0.73 0.102
3.0 1.37 0.81 0.046
4.0 1.26 0.86 0.024

6.0 1.17 0.91 0.011
8.0 1.13 0.94 0.0060
10.0 1.11 0.95 0.0039

5b

R
c

b 4bd

1.2 3.14 0.52 0.352

1.4 2.29 0.54 0.243
1.6 1.93 0.62 0.179
1.8 1.74 0.65 0.138

2.0 1.61 0.68 0.110
3.0 1.34 0.76 0.050
4.0 1.24 0.82 0.028

6.0 1.15 0.87 0.012
8.0 1.12 0.91 0.0060
10.0 1.10 0.93 0.0039

3b/5

b

R
c

d

1.2 3.26 0.44 0.361
1.4 2.39 0.50 0.251

1.6 1.99 0.54 0.186
1.8 1.78 0.57 0.144
2.0 1.66 0.60 0.116

3.0 1.37 0.70 0.052
4.0 1.27 0.75 0.029
6.0 1.16 0.82 0.013

8.0 1.12 0.86 0.0060
10.0 1.09 0.88 0.0039

9t/2 3t/2

c

d

4t

R

t

1.2 3.63 0.58 0.418
1.4 2.54 0.63 0.299

1.6 2.14 0.67 0.229
1.8 1.89 0.70 0.183
2.0 1.73 0.72 0.149
3.0 1.41 0.79 0.069

4.0 1.29 0.83 0.040
6.0 1.18 0.88 0.018
8.0 1.13 0.91 0.010

10.0 1.10 0.92 0.0065
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are lengthened, whereas fibers near the inside of the segment, such as P0Q0, are shortened. Then at
some point N in the interior of section BiBO, the circular arc fibers will neither be lengthened nor
shortened during the bending. Indeed an entire surface of such points will occur thus defining a
‘‘neutral surface’’ composed of zero length-change fibers. Suppose that fibers PQ and P0Q0 are at

TABLE 14.2 (continued)
Stress Concentration Factors for Curved Beams

fo

R=c Inner Face Outer Face d=R

3t

t
d

t 2t

6t4t

R

c

1.2 3.55 0.67 0.409
1.4 2.48 0.72 0.292
1.6 2.07 0.76 0.224

1.8 1.83 0.78 0.178
2.0 1.69 0.80 0.144
3.0 1.38 0.86 0.067

4.0 1.26 0.89 0.038
6.0 1.15 0.92 0.018
8.0 1.10 0.94 0.010

10.0 1.08 0.95 0.065

4t t

c
R

t

3tt d

1.2 2.52 0.67 0.408
1.4 1.90 0.71 0.285
1.6 1.63 0.75 0.208

1.8 1.50 0.77 0.160
2.0 1.41 0.79 0.127
3.0 1.23 0.86 0.058
4.0 1.16 0.89 0.030

6.0 1.10 0.92 0.013
8.0 1.07 0.94 0.0076
10.0 1.05 0.95 0.0048

d

2dd

c
R

1.2 3.28 0.58 0.269

1.4 2.31 0.64 0.182
1.6 1.89 0.68 0.134
1.8 1.70 0.71 0.104

2.0 1.57 0.73 0.083
3.0 1.31 0.81 0.038
4.0 1.21 0.85 0.020

6.0 1.13 0.90 0.0087
8.0 1.10 0.92 0.0049
10.0 1.07 0.93 0.0031

d

c
R

2t

4tt/2
t/2

t t 1.2 2.63 0.68 0.339
1.4 2.97 0.73 0.280

1.6 1.66 0.76 0.205
1.8 1.51 0.78 0.159
2.0 1.43 0.80 0.127

3.0 1.23 0.86 0.058
4.0 1.15 0.89 0.031
6.0 1.09 0.92 0.014

8.0 1.07 0.94 0.0076
10.0 1.06 0.95 0.0048

Source: Wilson, B. J. and Quereau, J. F., A simple method of determining stress in curved flexural
members, Circular 16, Engineering Experiment Station, University of Illinois, 1927.
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equal distances from the neutral surface on the outer and inner sides of the surface. Then with the
cross section remaining plane, the amount dPQ that PQ is lengthened is equal to the amount dP0Q0

that P0Q0 is shortened during the segment bending, as illustrated in Figure 14.4, where the
postbending orientation of section BiBO is superposed upon the prebending orientation of BiBO.
Due to the curvature of the beam, the length of fiber PQ is greater than that of P0Q0 (see Figure 14.3).
Therefore, the magnitude of the strain in PQ is less than that in P0Q0. That is,

dPQ
�� �� ¼ dP0Q0

�� �� but PQj j > P0Q0j j (14:3)

In this notation, the strains are

«PQ
�� �� ¼ dPQ

�� ��= PQj j and «P0Q0
�� �� ¼ dP0Q0

�� ��= P0Q0j j (14:4)

and thus in view of Equation 14.3, we have

«PQ
�� �� < «P0Q0

�� �� (14:5)

With the stress being proportional to the strain, we then have

sPQ

�� �� < sP0Q0
�� �� (14:6)

Equation 14.6 demonstrates the nonlinear stress distribution along the cross section. That is, stresses
at equal distances from the neutral surface do not have equal magnitudes. Instead, the stresses
are larger in magnitude at those points closer to the inner portion of the beam, as represented in
Figure 14.5.

O  +M M

FIGURE 14.2 Bending of a beam segment.

(a)

Centerline

Outside

Inside

AO

P Q

P ′ Q′

Bi

O

BO

Ai

AO

P Q

P ′
Ai Neutral surface

(b) O

N
BO

Bi

Q′

FIGURE 14.3 Deformation of a beam segment. (a) Before bending. (b) After bending.
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The nonlinear stress distribution over the cross section causes a shift in the neutral axis toward
the inner surface of the beam. To see this, observe that in pure bending the resultant normal force on
the cross section is zero. Then with larger stresses near the inner surface, the neutral axis must be
shifted toward the inner surface to reduce the area where these larger stresses occur so that the
resultant normal force on the cross section will be zero.

We can quantify the neutral axis shift by evaluating the normal cross section forces and then
setting their resultant equal to zero. To this end, consider further the displacement, rotation, and
strain of a cross section. Specifically, consider a circumferential fiber parallel to the central axis of
the beam and at a distance y outwardly beyond or ‘‘above’’ the neutral axis as in Figure 14.6. In this
figure the inner and outer radii of the beam are Ri and RO, measured as before, from the center of
curvature O of the beam. R is the radius of the centroidal axis and r is the radius of the neutral axis.
The difference d between the centroidal and neutral axes radii (R� r) is a measure of the shift in the
neutral axis (to be determined).

Let r be the distance from O to the circumferential fiber as shown in Figure 14.6. Let the fiber
subtend an angle Du as shown. The length ‘ of the fiber is then

‘ ¼ r�u (14:7)

Finally, let y be the radial distance from the fiber to the neutral axis.

Q

N

O

After bending

Bi

Q′

Orientation before bending

dPQ BO

dP�Q�

FIGURE 14.4 Rotation of section BiBO during bending.

BO

Bi

FIGURE 14.5 The form of the stress distribution across the cross section of a curved beam.
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Let the beam be subjected to a bending moment M, which tends to increase the curvature (thus
decreasing the radius of curvature) of the beam. Then if the circumferential fiber is above or beyond
the neutral axis, it will be lengthened by the deforming beam. Let uu represent this increase in
length. Then the circumferential strain «u (normal strain) at the radial location r of the fiber is

«u ¼ uu=‘ ¼ uu=r�u (14:8)

Next, observe that if the cross section remains plane during bending, the circumferential displace-
ment uu will be linearly related (proportional) to y. That is,

uu ¼ ky (14:9)

where k is a constant. Also observe from Figure 14.6 that the radial distance r from the curvature
center O to the circumferential fiber may be expressed as

r ¼ R� dþ y (14:10)

Hence the normal strain becomes

«u ¼ ky=(R� dþ y) (14:11)

The corresponding circumferential stress (normal stress) su is then

su ¼ E«u ¼ Eky=(R� dþ y) (14:12)

In this analysis, we have assumed that the beam deformation and consequently the cross section
rotation are due to pure bending through an applied bending moment M. That is, there was no
applied circumferential loading. Thus the resultant of the circumferential (or normal) loading due to
the normal stress must be zero. That is,

ð

A

sudA ¼ 0 (14:13)

where A is the cross section area. By substituting from Equation 14.12 we have

ð

A

Eky dA

(R� dþ y)
¼ 0 or

ð

A

y dA

(R� dþ y)
¼ 0 (14:14)

d
r y

R

O
M M

r

Δq Ri

RO

Circumferential
fiber

Neutral
axis

Centroidal
axis

FIGURE 14.6 Curved beam geometry=notation.
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Again, from Figure 14.6 we see that y may be expressed in terms of the neutral axis radius r as

y ¼ r � r ¼ r � (R� d) and r ¼ yþ R� d (14:15)

Then Equation 14.14 yields

ð

A

y dA

(R� dþ y)
¼

ð

A

r � Rþ d

r
dA ¼

ð

A

1þ d� R

r

� �� �
dA

¼ Aþ (d� R)

ð

A

dA

r
¼ 0 (14:16)

Hence, the neutral axis shift d and the neutral axis radius of curvature r are

d ¼ R� A

�ð

A

(dA=r) and r ¼ A

�ð

A

(dA=r) (14:17)

Observe that the neutral axis shift d away from the centroidal axis is a function of the curved beam
geometry and not the loading on the beam.

14.3 STRESSES IN CURVED BEAMS

Consider again a segment of a curved beam subjected to bending moments as in Figure 14.2 and as
shown again in Figure 14.7. Recall from Equation 14.12 that the stress su at a point y above the
neutral axis is

su ¼ Eky=(R� dþ y) (14:18)

where
k is a constant introduced in Equation 14.9, to describe the preservation of the planeness of the

cross section during bending
d is the amount of inward shift of the neutral axis away from the centroidal axis (given by

Equation 14.17)
E is the modulus of elasticity

As noted earlier and as seen in Equation 14.18, su is not linear in y but instead su has a nonlinear
distribution across the cross section, as represented in Figure 14.5 and as represented again in
Figure 14.7.

Although Equation 14.18 provides an expression for the stress distribution across the cross
section, it is of limited utility without knowledge of k. To determine k, observe that we can express k

OM M

Neutral
axis

Centroidal
axis

n

r

y

d

r

FIGURE 14.7 Stress distribution on a cross section of a beam element.
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in terms of the applied bending moment M by evaluating the sum of the moments of the
stress-induced elemental forces (sudA) about the neutral axis. That is,

M ¼
ð

A

ysudA ¼
ð

A

Eky2dA

R� dþ y
(14:19)

We can simplify the evaluation of this integral by following an analysis used by Singer [6].
Specifically, in the numerator of the integrand let one of the y factors be replaced by the identity

y � yþ (R� d)� (R� d) ¼ (R� dþ y)� (R� d) (14:20)

Then Equation 14.19 becomes

M ¼ Ek

ð
y2dA

R� dþ y

� �
¼ Ek

ð
y[R� dþ y)� (R� d)]dA

(R� dþ y)

or

M ¼ Ek

ð
y dA� (R� d)

ð
y dA

R� dþ y)

� �
(14:21)

The first integral of Equation 14.21 is simply the area moment about the neutral axis, or Ad. That is,
ð
y dA ¼ Ad (14:22)

To see this, let h be the distance from the centroidal axis to a typical fiber as in Figure 14.7. Then by
the definition of a centroid [7], we have

ð
h dA ¼ 0 (14:23)

But from Figure 14.7 we see that h is

h ¼ y� d (14:24)

By substituting this expression for h into Equation 14.23, we immediately obtain Equation 14.22.
Next, in view of Equation 14.14, we see that the second integral in Equation 14.21 is zero.

Therefore, using Equation 14.22 the bending moment M of Equation 14.21 is

M ¼ EkAd (14:25)

Then k is

k ¼ M=EAd (14:26)

Finally, by substituting for k into Equation 14.18, we have

su ¼ My=Ad(R� dþ y) ¼ My=Adr (14:27)

where, from Figure 14.7, r takes the value R� dþ y.
Although Equation 14.27 provides the bending stress distribution across the cross section, it

may be practical nor convenient to use due to the need to know the neutral axis shift d which neither
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may not be easily evaluated for a given cross section. (See Equation 14.17 for an analytical
expression of d.)

In practical design problems, however, we are generally interested in knowing the maximum
bending stress in the beam, that is, the stress at the inner radius. To simplify the procedure for
finding this stress, Wilson and Quereau [8] conducted an extensive series of tests on curved beams
with various cross sections, measuring the strain and then evaluating the stress. Using the results
of these tests, they determined that the maximum bending stress in a curved beam (at the inner
radius Ri) may be estimated by the simple formula:

su ¼ kMc=I (14:28)

where
k is a stress concentration factor
c is the distance from the centroid axis to the inner surface (or ‘‘face’’)

The same formula may be used to determine the stress at the outer surface. Table 14.2 provides
values of k as well as neutral axis shift expressions, for a variety of common cross section shapes.

Finally, it should be noted that Equations 14.27 and 14.28 provide the value of normal stress
over the cross section due to bending. The total (or resultant) stress on the cross section is the
superposition of the bending stress and other normal (axial) and shear stresses on the cross section,
arising from the applied loads.

14.4 APPROXIMATION OF STRESS CONCENTRATION FACTORS

When we examine the values of the stress concentration factors (k) in Table 14.2, we see that in
spite of rather large differences in cross section geometry, the factors themselves do not vary much
over a wide range of R=c or R=(R�Ri) ratios. Figure 14.8 provides a general graphical description of
the variation of k with R=(R�Ri). [Recall that R is the radius of the centroidal axis and Ri is the
inner radius of the beam (see Figure 14.6).]

In curved beam and hook design, it is usually a common practice to incorporate generous factors
of safety. Therefore, the use of approximate stress concentration factors based upon Figure 14.8 may
be quite acceptable. This approximation becomes increasingly accurate as the cross section becomes
more compact and as the beam radii become larger.
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FIGURE 14.8 Approximate stress concentration factor as a function of geometric parameter R=(R –Ri).
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14.5 APPLICATION: STRESSES IN HOOKS

The common lifting hook is an example of a curved beam. We can use the foregoing concepts to
obtain the insight and data for the stresses in these important structural components. To this end,
consider the model of a hook shown in Figure 14.9. From our foregoing analysis, we know that the
maximum tension and compression stresses occur at the inner and outer extremes of section A1A2.
Using the Winkler-Bach analysis (see Equation 14.1), Gough et al. [9] developed expressions for
the tensile stress st (at the inner surface) and the compressive stress sc (at the outer surface) as

st ¼ P

A
cos u� Ho

R

� �
c

l(R� c)
þ Ho

R

� �
(14:29)

and

sc ¼ �P

A
cos u� Ho

R

� �
d � c

l(Rþ d � c)
� Ho

R

� �
(14:30)

where
P is the load on the hook
A is the cross section area
u is the angular coordinate (measured relative to the horizontal, see Figure 14.9)
R is the centroidal axis radius of curvature
Ho is the horizontal distance between the centers of curvature of the inner and outer surfaces
d and c are cross section width and distance from the centroidal axis to the inner surface (see

Figure 14.9)
l is the geometric parameter of Equation 14.2 and as listed in Table 14.1

In many cases Ho is small or zero so that Equations 14.29 and 14.30 reduce to

st ¼ Pc cos u

Al(R� c)
(14:31)

and

sc ¼ � P(d � c) cos u

Al(Rþ d � c)
(14:32)

Finally, if the hook cross section is reasonably uniform, the maximum stresses occur, where u is zero, as

st ¼ Pc

Al(R� c)
(14:33)

Ho =(d − c)

A2x

d

y

y

p
q = Arbitrary angle

       measured from a
       horizontal axis

R
A1

c

x

Projected distance
between the centers

of curvature

FIGURE 14.9 Notation for a working portion of a machine hook.
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and

sc ¼ � P(d � c)

Al(Rþ d � c)
(14:34)

Observe that although lifting hooks are examples of curved beam, they have features which
complicate the analysis: (1) their cross section is generally not uniform; (2) the cross section
shape is usually neither circular nor rectangular; (3) there is a significant axial load creating normal
stresses on the cross section, which need to be superimposed upon the bending stresses; and (4) at
the point of application of the load, there will be contact stresses which could be as harmful as the
bending stresses. Nevertheless, the foregoing analysis is believed to be useful for providing
reasonably accurate estimates of the hook stresses as such the analysis is likely to be more
convenient than numerical methods (e.g., finite element analyses) and experimental analyses.

14.6 EXAMPLE OF CURVED BEAM COMPUTATIONS

14.6.1 FLEXURE OF A CURVED MACHINE BRACKET

Consider a curved machine bracket as in Figure 14.10. Let the bracket form a semicircle and let the
cross section have a T-shape with dimensions as shown. For the 10,000 lb (45,480 N) load, the
objective is to estimate the maximum stress in the bracket.

From the foregoing analysis, we know that the maximum stress occurs at point B. From the
cross section geometry, we have (in the notation of Section 14.3)

A ¼ 2:625 in:2, c ¼ 1:0 in:, R ¼ 6:0 in:, I ¼ 2 in:4 (14:35)

From Table 14.2, the stress concentration factor k is 1.18. Then using Equation 14.28, the stress sb

due to bending is kMc=I. Also, the load geometry creates axial loading at the support end. The axial
stress sa from this loading is kP=A. Hence, the resultant stress sB at B is

sB ¼ k(P=AþMc=I)

¼ (1:18)
10,000
2:625

þ (10,000)(12:0)(1:0)
(2:0)

� �

B
P = 10,000 lb

0.75 in.

0.5 in.

3 i
n.

2 in.

R = 6 in.C = 1 in.

5 in.

8 i
n.

FIGURE 14.10 Machine bracket geometry.
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or

sB ¼ 75,300 lb=in:2 (519N=min
2
) (14:36)

Observe that the contribution of the axial loading (P=A) is relatively small compared with that of the
bending (Mc=I).

14.6.2 EXPANSION OF A MACHINE CLAMP

Consider next a semicircular machine clamp as in Figure 14.11. Let the cross section be the same as
that in the previous example. Let a load magnitude P of 12,000 lb be applied to the interior ends of
the clamp as shown. The objective, as before, is to determine the maximum stress in the clamp.

From the foregoing analysis, we see that the maximum stress will occur at point B on the inner
surface of the bracket.

As before, from the cross section geometry, we have

A ¼ 2:625 in:2, c ¼ 1:0 in:, R ¼ 6:0 in:, I ¼ 2 in:4 (14:37)

From Table 14.2, the stress concentration factor k is again 1.18. Thus from Equation 14.28, by
including the axial loading (P=A), the stress sB at B is

sB ¼ k(P=AþMc=I)

¼ (1:18)
12,000
2:625

þ (12,000)(7:5)(1:0)
(2:0)

� �

or

sB ¼ 58,490 lb=in:2 (403N=min
2
) (14:38)

0.5
 in

. 0.75
in.
3 in.

2 i
n.

c R P

P
1.5
in.

5 in.

8 in.

FIGURE 14.11 Half-circle clamp.
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If we envision the clamp as a hook we can use Equation 14.33 to compute the stress, where l may
be obtained from Table 14.1 (the next to the last entry) as 0.0163. That is,

sB ¼ Pc

Al(R� c)

¼ (12,000)(1:0)
(2:625)(0:0163)(6:0� 1:0)

or

sB ¼ 56,090 lb=in:2 (387N=min2) (14:39)

The results of Equation 14.38 and 14.39 differ by approximately 4%. In the majority of practical
designs such differences should be well within the customary factors of safety.

14.7 FURTHER COMMENTS ON THE STRESSES IN CURVED
BEAMS AND HOOKS

Our focus, in this chapter, has been on the stress in curved beams, with application in brackets and
hooks. We have not similarly discussed displacements. The reason is that curved members are used
primarily for strength. The curvature causes the loads to be supported both axially and in the
transverse directions. With straight members, the loading is generally supported either only axially
or only in flexure. Thus curved members can support considerably higher loads than their straight
counterparts.

With the focus on strength or the ability to support loads, the displacements are usually of less
concern. If, for example, a lifting hook is sufficiently strong to support its load, its displacement and
deformation is of little or no concern.

Regarding hooks, the stresses on the inner and outer surfaces can be quite different from that on
the inner surface being largest. Thus for material and weight efficiency, it is reasonable to design the
cross section with greater thickness at the inner surface. From a manufacturing perspective, it is
convenient to use a trapezoidal (‘‘bull-head’’) shaped cross section or an ‘‘I’’ or a ‘‘T’’ cross section.

Once the basic cross section shape is determined, the parameter of greatest interest is the ratio of
the depth of the cross section to the inner radius of curvature for a given stress. From a practical
design perspective, Gough et al. [9] suggest using the following expressions for the depth D of
circular and trapezoidal cross section shapes.

CIRCULAR SECTION

D ¼ 0:023P1=2 þ 0:18Ri (14:40)

TRAPEZOIDAL OR BULL-HEAD SECTION

D ¼ 0:026P1=2 þ 0:20Ri (14:41)

where D is in inches and P is the hook load in pounds.
We may also use finite element methods to obtain insights into the stresses in curved members

and hooks. Some caution is encouraged, however, when estimating maximum stresses. If the stresses
exceed the yield stress of the material, plastic deformation can occur changing the geometry and
redistributing the loading and thus altering the stress values and the stress distribution.
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SYMBOLS

A Beam cross section area
A, B Beam sections
C Centroid
c Distance from neutral axis to beam surface in straight beams; distance from centroid

to inner surface
D Depth of circular and trapezoidal cross section shapes
d Cross-section width
E Elastic modulus
Ho Horizontal distance between centers of curvature
I Second moment of area
k Constant
‘ Arch length
M Bending moment
N Neutral surface
P Hook load
PQ, P0Q0 Curved fibers
R Distance from area cross section to center of curvature of curved beam
Ri, RO Inner and outer radii
uu Tangential displacement
X, Y, Z Cartesian (rectangular) coordinate system
y Y-axis coordinate
g Radial coordinate
d Increment
dPQ Lengthening of fiber PQ
dP0Q0 Shortening of fiber P0Q0

« Normal strain
«u Circumferential strain
h Length measure within a cross section as in Equation 14.2
u Angular coordinate
k Stress concentration faction
l Geometric parameter of Equation 14.2
r Radius of curvature
s Normal stress
sc Compressive stress
st Tensile stress
su Tangential stress
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15 Stability: Buckling of Beams,
Rods, Columns, and Panels

15.1 INTRODUCTION

In testing the material strength, the focus is generally directed toward determining material response
to tension.Most strength tests are performed by simplymeasuring the elongation of a rod as a function
of an axial tensile load. Homogeneous and isotropic materials (particularly metals) are then assumed
to have similar strength properties when compressed. Compression tests are thus often not conducted.
Even though Hooke’s law (with a linear stress–strain relation) is generally found to be valid for both
tension and compression, compression loading often produces changes in structural geometry, which
can then lead to buckling even before a yield stress is reached. In this chapter, we look at the
phenomenon of buckling and the associated concepts of stability of beams, rods, columns, and panels.

15.2 LONG BARS SUBJECTED TO COMPRESSION LOADING

Consider a long, slender rod or bar subjected to an axial compressive loading as in Figure 15.1. If
the geometry is ideal and the loads are centered on the bar axis, the bar will simply shorten due to
the loading. If, however, the geometry is not perfect, the bar may bend and buckle as represented in
Figure 15.2. As the bar buckles, the greatest deflection will occur at midspan as indicated.

As the bar is buckling, it will experience a bending moment along its length due to the lateral
displacement. By inspection, in Figure 15.2 we see that the bending moment M at a cross section at
distance x along the bar is simply

M ¼ Py (15:1)

Recall from Equation 9.3 that the bending moment is related to the displacement by the moment–
curvature relation:

M ¼ EId2y=dx2 (15:2)

Then by substituting from Equation 15.1 into Equation 15.2, we have the governing differential
equation:

d2y=dx2 þ (P=EI)y ¼ 0 (15:3)

The general solution of Equation 15.3 may be written as

y ¼ A cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
xþ B sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
x (15:4)

where the integration constants A and B may be determined from the boundary conditions. The bar
of Figure 15.1 may be regarded as having simple or pinned supports. This means that the
displacements at the ends are zero. That is,

y(0) ¼ y(‘) ¼ 0 (15:5)
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By imposing these conditions, we have

A ¼ 0 and B sin
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘ ¼ 0 (15:6)

where the second condition is satisfied if either B is zero or if
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘ is zero. If B is zero, the bar is

straight without buckling. If
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘ is zero, we have

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘ ¼ np (15:7)

where n is an integer.
Therefore, the smallest load Pcr satisfying this expression is

Pcr ¼ EIp2=‘2 (15:8)

This load is called ‘‘the Euler critical buckling load.’’
Observe in Equation 15.8 that Pcr is independent of the strength of the bar material, instead it

depends only upon the elastic modulus (the stiffness) of the bar and upon the bar geometry. Observe
further that Pcr decreases as the square of the length. Finally, observe that if the bar has a rectangular
but not a square cross section, as in Figure 15.3, then the lowest buckling load will occur with
bending about the short side axis (or the Y-axis) in the figure.

15.3 BUCKLING WITH VARIOUS END-SUPPORT CONDITIONS

15.3.1 CLAMPED (NONROTATING) ENDS

Consider a bar being compressed axially, whose ends are restrained from rotation as represented in
Figure 15.4. Although in reality there are no supports which are completely rigid or without rotation,
we know that bolted, welded, and bonded end supports can greatly restrict rotation. With such
supports, the compressed bar being kept from rotating at its ends, is less likely to buckle than a
similar bar with pinned ends. Nevertheless, as the compression load is increased, the bar will buckle.
It will deform into a shape shown with exaggerated displacement as in Figure 15.5.

The symmetry of the bar supports and the loading, and the assumed rigidity of the supports
require that the bar have zero slope at its ends (x¼ 0 and x¼ ‘). and at its middle (x¼ ‘=2). Also the
symmetry requires that there be inflection points at quarter spans: x¼ ‘=4 and x¼ 3‘=4. Since an
inflection point has no curvature (i.e., d2y=dx2¼ 0), the bending moment at such points is zero.

ℓ
P P

FIGURE 15.1 Long bar subjected to axial compressive load.

P P

ymax
x

FIGURE 15.2 Buckled bar under axial compressive loading.
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From a buckling perspective, these observations indicate that the bar will behave as a pinned-end
bar (a simply supported bar) with end supports at x¼ ‘=4 and x¼ 3‘=4. Thus for buckling, the bar is
equivalent to a pinned-end bar with length ‘=2. Therefore, from Equation 15.8 we see that the
critical buckling load Pcr is

Pcr ¼ EIp2=(‘=2)2 (15:9)

15.3.2 A CLAMPED (NONROTATING) AND A FREE END

Consider next a bar with one end clamped or fixed (nonrotating) and the other end free, as a
cantilever beam. Let the bar be loaded at its free end by an axial load P as represented in
Figure 15.6. As P is increased, the bar will buckle as represented (with exaggerated displacement)
in Figure 15.7.

The bar displacement as in Figure 15.7 may be viewed as being of the same shape as the right
half of the buckled bar with free ends of Figure 15.2 and as shown again in Figure 15.8.

That is, due to symmetry, the center of the bar has no rotation and is thus equivalent to clamped
support at that point. Therefore, the clamped-free end support bar with length ‘ behaves as an
unsupported end bar with length 2‘. Therefore, from Equation 15.8, the buckling load Pcr is

Pcr ¼ EIp2=(2‘)2 ¼ EIp2=4‘2 (15:10)

15.3.3 A CLAMPED (NONROTATING) AND A PINNED END

Finally, consider an axially compressed bar with clamped and pinned ends as represented in its
buckled state in Figure 15.9. As before, let the origin O be at the left end of the bar, which in this
case is the pinned (roller supported) end.

As the beam is buckled with the left end constrained from vertical displacement, there will occur
a reaction moment at the right end (the clamped end). This in turn means that except at the left end
(at the pin support), there will be a bending moment throughout the bar.

Z

Y

b

a

FIGURE 15.3 Rectangular cross section.

P P

FIGURE 15.4 Axially compressed bar with clamped (nonrotating) ends.
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P P − X
O ℓ/4 3ℓ/4 ℓ

FIGURE 15.5 Buckled bar with clamped (nonrotating) ends.

P
ℓ

FIGURE 15.6 Axially loaded bar with fixed and free supports.

ℓ

P

FIGURE 15.7 Buckled bar with clamped and free-end supports.

Pcr
O ℓℓ/2

Pcr

FIGURE 15.8 Buckled bar with axial loading on unsupported ends.

X
O

Pcr

FIGURE 15.9 Pinned=clamped axially loaded compressed rod.
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To qualify the bending moment, consider a free-body diagram of a segment of the left end of the
bar as in Figure 15.10 where x is the segment length, R is the reaction force at the pin support andM
and V are the bending moment and shear on the right end. By setting moments about the right end
equal to zero, we have

M ¼ Rxþ Pcry (15:11)

where, as before, y is the displacement of the bar due to buckling.
Recall again from Equation 9.3 that the bending momentM is related to the curvature d2y=dx2 as

EId2y=dx2 ¼ �M (15:12)

Thus the governing differential equation for the bar displacement is

EId2y=dx2 ¼ �(Rxþ Pcry)

or

d2y=dx2 þ (Pcr=EI)y ¼ �R=EI (15:13)

The general solution of this equation is seen to be (homogeneous and particular solutions)

y ¼ A sin kxþ B cos kx�(R=EI)x (15:14)

where k is given by

k2 ¼ Pcr=EI or k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcr=EI

p
(15:15)

The auxiliary (boundary) conditions are

y ¼ 0 at x ¼ 0 and y ¼ dy=dx ¼ 0 at x ¼ ‘ (15:16)

The first of these leads to

B ¼ 0 (15:17)

Then at x¼ ‘, we have

0 ¼ A sin k‘� (R=EI)‘ and dy=dx ¼ 0 ¼ kA cos k‘� R=EI (15:18)

M
y

VR

xPcr

FIGURE 15.10 Free-body diagram of a left end segment of the buckled, pinned=clamped bar.
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By eliminating R=EI between the last two expressions, we have

0 ¼ A sin k‘� k‘A cos k‘ or tan k‘ ¼ k‘ (15:19)

Equation 15.19 is a transcendental equation whose solution (roots) may be obtained numerically and
are listed in various mathematical tables (see e.g., [1]). The smallest root is

k‘ ¼ 4:49341 (15:20)

Then from Equation 15.15, the critical buckling load Pcr is

Pcr ¼ (4:49341)2EI=‘2 (15:21)

15.4 SUMMARY OF RESULTS FOR LONG BAR BUCKLING
WITH COMMONLY OCCURRING END CONDITIONS

Table 15.1 provides a listing of the foregoing results for buckling loads and Figures 15.11 through
15.14 provide a pictorial representation of the results.

TABLE 15.1
Axial Buckling Load for Long Bars

End-Supports Buckling Load, Pcr

1. Pinned–pinned Pcr¼p2EI=‘2¼ 9.87EI=‘2

2. Clamped–clamped Pcr¼ 4p2EI=‘2¼ 39.48EI=‘2

3. Clamped–free Pcr¼p2EI=4‘2¼ 2.47EI=‘2

4. Clamped–pinned Pcr¼ (4.4934)2EI=‘2¼ 20.19EI=‘2

Pcr

Pcr = kEI/ℓ2 k = 9.87

Pcr
ℓ

FIGURE 15.11 Pinned–pinned buckled bar.

P P

Pcr = kEI/ℓ2 k = 39.48

FIGURE 15.12 Clamped–clamped buckled bar.

Pcr

Pcr = kEI/ℓ2 k = 2.47

FIGURE 15.13 Clamped–free buckled bar.
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In the table and figures, ‘ is the distance between the supports. Recall again that these results are
valid for long, slender bars, that is, ‘=k> 0 where k is the minimum radius of gyration of the cross
section.

If the bars are not so slender, they may fail in compression before buckling. In these cases,
minor changes in support conditions are important. We will discuss these concepts in the following
sections.

15.5 INTERMEDIATE LENGTH BARS AND COLUMNS—JOHNSON FORMULA

Consider again the foregoing results: Specifically, for a long axially loaded bar, the critical load Pcr

leading to buckling is (see Equation 15.8)

Pcr ¼ p2EI=‘2 (15:22)

Observe again that although Pcr is proportional to the elastic modulus (or stiffness) of the bar
material, Pcr does not depend upon the strength of the bar material. That is, a long bar could buckle
and lead to structural failure before the bar reaches the yield stress.

For short bars buckling is not usually an issue, but as axial loads are increased, high compres-
sive stresses can occur. For intermediate length bars, however, as axial loads become large, the bar
may fail either by buckling or by yielding to compressive stress. The transition between failure
modes, that is, between buckling and compressive yielding, is of particular interest.

To explore this, consider the compression stress scr on a bar as it is about to buckle.
Specifically, let scr be defined as

scr ¼ Pcr=A (15:23)

where, as before, A is the cross section area of the bar. Then for the pin–pin supported bar we have

scr ¼ p2E(I=A)=‘2 ¼ p2E=(‘=k)2 (15:24)

where we have replaced the second moment of area I by Ak2, with k being the ‘‘radius of gyration’’
of the cross section. The ratio ‘=k is called the ‘‘slenderness ratio’’ of the bar.

Figure 15.15 provides a graphical representation of Equation 15.24 where scr (the ‘‘critical
stress’’) is expressed in terms of the slenderness ratio (‘=k). Observe that for short bars, where the
slenderness ratio is small, Equation 15.24 shows that a large load is required to buckle the bars.
However, for large loads the unbuckled bar will attain large compressive stresses, ultimately
yielding due to the stress.

For design purposes, engineers have suggested that axial loading for nonbuckled bars should be
bounded so that the stress is no more than half the yield stress Sy [2–4]. Thus for design, Figure
15.15 is replaced by Figure 15.16.

Pcr

Pcr = kEI/ℓ2 k = 20.19

FIGURE 15.14 Clamped–pinned buckled bar.
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For a refinement in practical design considerations, J.B. Johnson [3,5] proposed that the curve of
Figure 15.16 be replaced by a smoother curve as in Figure 15.17, where the left end of the curve is
based upon Johnson’s formula for critical stress, scr:

scr ¼ Sy � S2y=4p
2E

� �
(‘=k)2 (15:25)

where, as before, Sy is the compressive yield stress.
In Figure 15.17, the transition point between the curves of Equations 15.24 and 15.25 is found

by simply equating the stress values. That is,

p2E=(‘=k)2 ¼ Sy � S2y=4p
2E

� �
(‘=k)2 (15:26)

Solving for ‘=k, we obtain the slenderness ratio at the transition point to be

‘=k ¼ (2p2E=Sy)
1=2 (15:27)

Buckling

Slenderness ratio (ℓ/m)

Cr
iti

ca
l s

tre
ss

 s
cr

FIGURE 15.15 Critical stress as a function of the slenderness ratio.

Buckling

Stress

Yield
0.5Sy

Safe
design

Slenderness ratio (ℓ/k)

FIGURE 15.16 Design curve for axially loaded bars.
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15.6 INTERMEDIATE LENGTH BARS AND COLUMNS—ECCENTRIC
LOADING AND THE SECANT FORMULA

Consider again an axially loaded bar in compression as in Figure 15.18. Recall that Saint Venant’s
principle states that equivalent force systems (see Section 1.5.3) exerted on a body produce the same
stress state at locations away from the loading site, but different stress states at locations near the
loading site [6–8]. Therefore, if an axially loaded bar is long the stress state away from the ends is
insignificantly affected by the method of application of the loads at the ends. However, if the bar
is short the means of loading can make a measurable difference along the bar in the stress state.

To explore this, consider the end loading of a relatively short axially loaded bar as represented
in Figure 15.19. In an actual bar, however, the loading geometry is not perfect and insofar as the
loading can be represented by a single axial force P as in Figure 15.19, P will not be precisely on
the axis but instead it will be displaced away from the axis by a small distance e as in Figure 15.20.
This load displacement or eccentricity gives rise to a bending moment with magnitude Pe in the bar,
which in turn can affect the stresses and buckling tendency of the bar.

St
re

ss
Safe

design

Slenderness ratio (ℓ/k)

Transition
point

Yielding/buckling

FIGURE 15.17 Johnson curve for axially loaded bars.

P P

FIGURE 15.18 An axially loaded bar.

P

FIGURE 15.19 End loading of a short bar.

P

e

FIGURE 15.20 Off-axis axial load.
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To quantify the effect of the eccentric loading, recall again the bending moment=curvature
relation of Equation 9.3:

EId2y=dx2 ¼ �M (15:28)

As the loading is increased and the beam begins to deflect and buckle, the bending moment M at a
typical cross section will be

M ¼ P(yþ e) (15:29)

Then by substituting into Equation 15.28, we have

d2y=dx2 þ (P=EI)y ¼ �Pe=EI (15:30)

If we regard the bar as having pinned–pinned end supports, the auxiliary boundary conditions of
Equation 15.30 are

y ¼ 0 at x ¼ 0 and x ¼ ‘ (15:31)

The general solution of Equation 15.30 is

y ¼ yh þ yp (15:32)

where
yh is the general solution of the homogeneous equation (right side zero)
yp is a particular solution

It is readily seen that yh and yp may be written as

yh ¼ A cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
xþ B sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
x (15:33)

and

Yp ¼ �e (15:34)

Therefore, the general solution of Equation 15.30 is

y ¼ A cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
xþ B sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
x� e (15:35)

By enforcing the end conditions of Equation 15.31 we have at x¼ 0,

0 ¼ A� e or A ¼ e (15:36)

and then at x¼ ‘,

0 ¼ e cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘þ B sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘� e
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or

B ¼ e[1� cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘]= sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘ (15:37)

Therefore, from Equation 15.35 the displacement is

y ¼ e cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
xþ ½(1� cos

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘) sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
x= sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘� � 1

n o
(15:38)

By symmetry, we see that the maximum displacement ymax occurs at midspan (x¼ ‘=2). Thus ymax is

ymax ¼ e �1þ cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2
þ (1� cos

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘) sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2

� ��
sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘

� 	

¼ e �1þ cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2
sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘þ sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2
� cos

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘ sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2

� ��
sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘

� 	

¼ e �1þ sin
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2
þ sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2

� ��
sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘

� 	

¼ e �1þ 2sin
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2
cos

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2

�
sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘ cos

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2

� �� 	

¼ e �1þ sin
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘

�
sin

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p
‘ cos

ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2

� 	

¼ e �1þ1=cos
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2

� 	

or

ymax ¼ e �1þ sec
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2


 �
(15:39)

From Equation 15.29, the maximum bending moment is then

Mmax ¼ P(ymax þ e) ¼ Pe sec
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2


 �
(15:40)

The maximum compressive stress smax due to the combination of axial loading, buckling, and
bending is then

smax ¼ (P=A)þ (Mmax c=I) ¼ (P=A)þ Pce sec
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2


 ��
I

¼ (P=A) 1þ (ceA=I) sec
ffiffiffiffiffiffiffiffiffiffiffi
P=EI

p ‘

2

� �

or

smax ¼ (P=A) 1þ (ce=k2) sec
ffiffiffiffiffiffiffiffiffiffiffiffi
P=EA

p ‘

2k


 �� �
(15:41)

where as before
c is the distance from the neutral axis to the most distant perimeter
k is the radius of gyration of the cross section area moment
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From a design perspective, if we restrict the maximum stress to say S (perhaps a fraction of the
compressive yield stress), we then have from Equation 15.41,

S ¼ (P=A) 1þ (ce=k2) sec
ffiffiffiffiffiffiffiffiffiffiffiffi
P=EA

p ‘

2k


 �� �

or

P ¼ SA

�
1þ (ce=k2) sec

ffiffiffiffiffiffiffiffiffiffiffiffi
P=EA

p ‘

2k


 �� �
(15:42)

Equation 15.42 is the so-called ‘‘secant column formula.’’ It is applicable for intermediate length
bars (10<‘=k< 100). It provides a design guide for the applied load P. The formula, however, has
the obvious problem of being rather cumbersome as P appears nonlinearly (in the square root of the
secant argument). Thus for a given geometry and bar material, an iterative procedure is probably the
most practical procedure for finding P.

15.7 BUCKLING OF PLATES

Plate and panel buckling form another class of problems in elastic structure design. Local
instabilities can occur during compressive loading which may or may not lead to global buckling.
Figure 15.21 illustrates a plate subjected to a typical compressive load where ‘ and b are the plate
dimensions, in its plane, t is the thickness, and S is the compressive loading (force per area: bt).

As noted, buckling resistance of a plate is necessarily not lost when local distortion occurs.
Indeed, significant residual strength can remain even with local distortions. Therefore, a design
analysis may take a twofold approach: (1) we may opt to have no buckling deformation at all or
alternatively (2) we may allow local buckling as long as the structural integrity of the overall
structural design is not compromised.

The general form of the stress expression for buckling in a plate as in Figure 15.21 is

scr ¼ kpE(t=b)
2 (15:43)

ℓ

SbS

t

FIGURE 15.21 Plate subjected to compressive in-plane loading.
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where
scr is the stress where buckling occurs (the ‘‘critical stress’’)
kp is a buckling stress coefficient
E is the elastic modulus

The buckling coefficient kp is analogous to the column factor k of Figures 15.11 through 15.14. As
with the column factor, the buckling coefficient depends upon the edge constraint. The buckling
coefficient is a nondimensional quantity and it is sometimes called the ‘‘plate coefficient.’’

When the critical stress scr calculated from Equation 15.43 is less than the yield strength of the
material, the buckling is considered to be ‘‘elastic.’’ The design value of scr obtained from Equation
15.43 should be regarded as an upper limit as stresses that actually occur are usually smaller. The
difference is mainly due to geometric irregularities, which inevitably occur in actual designs. Such
occurrences and stress differences increase as the plate thickness t decreases.

When the critical stress exceeds the yield strength of the plate material, the buckling is
‘‘inelastic.’’ The yield stress is thus a natural limit for the critical stress.

In many practical problems of plate buckling, the ratio of plate length to width, ‘=b, is greater than
5. In such cases the buckling coefficient, kp is virtually independent of the length. For lower length to
width ratios, the buckling coefficient increases somewhat but it is a common conservative practice
to ignore this change and to consider the edge supports as the primary controlling factor. The choice
of the value for kp, however, depends to a large extent upon engineering judgment. Table 15.2
presents usual accepted values of kp for a variety of common supports. These values are intended for
materials characterized by a Poisson’s ratio of 0.3. Again, as in the case of structural columns,
the fixed supports of condition 5 are practically never realized. Unless the weight requirements are
such that the fixed-end condition must be satisfied, the most practical design solution is to assume
either simple supports (condition 3) or the simple support-free support (condition 1).

When a long plate of width b is supported along the two long sides and is loaded in
compression, condition 3 of Table 15.2 provides a good model for estimating the buckling load.

If the nonloaded edges of the plate are free of support (unlike the conditions of Table 15.2), they
are no longer compelled to remain straight. The plate then behaves like a column or an axially
compressed bar.

Since all the condition illustrated in Table 15.2 provide some degree of edge restraint, plates
with those support conditions will not buckle as a compressed rod. Instead, upon buckling there will

TABLE 15.2
Buckling Stress Coefficients for Edge-Loaded Flat Plates
(Poisson’s Ratio n¼ 0.3)

Simple support
1.

2.

3.

4.

5.

Free Kp¼ 0.38

Fixed support Free Kp¼ 1.15

Simple support Simple support Kp¼ 3.62

Simple support Fixed support Kp¼ 4.90

Fixed support Fixed support Kp¼ 6.30

Note: All loaded edges are simply supported and plates are considered to be relatively long.
Loading is perpendicular to the plane of the paper.
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be interval twisting and bending. This is why the buckling loads of plates and panels are consid-
erably higher than those of bars and columns.

15.8 BUCKLING DUE TO BENDING

When the cross section of a beam is narrow and rectangular, as for example in Figure 15.22, the
beam will have a tendency to buckle due to lateral bending and twisting. This bending=twisting
failure occurence depends upon the magnitude of the loading, the end support conditions and the
cross section geometry. While the mathematical analysis of this problem is somewhat detailed (see
[8,9]), it is possible to provide some design guidelines as outlined in the following paragraphs.

Consider a beam with a tall=narrow rectangular cross section as that in Figure 15.22. Let h be
the height of the cross section and let b be the base width, and let ‘ be the beam length as shown.
Consider four loading and end support cases as represented in Figure 15.23.

Depending upon the supports and load positions, the critical load leading to lateral bending and
twisting has the form [9,10]:

Pcr ¼ k(b3h=‘2) 1� 0:63(b=h)EG½ �1=2 (15:44)

where as before
E and G are the moduli of elasticity and rigidity (shear modulus)
k is a numerical coefficient as listed in Table 15.3

In the first case (ends-free), Pcr in Equation 15.44 is to be replaced by Mcr=‘. In the third case
(simple-support), the ends are held vertical but still allowed to rotate in the vertical plane.

ℓ

P

h

b

FIGURE 15.22 A cantilever beam with a narrow rectangular cross section.

1. Ends free

2. Cantilever

3. Simple support

4. Built-in supports

Mcr Mcr

Pcr

Pcr

Pcr

FIGURE 15.23 Loading and end supports for lateral buckling of a narrow rectangular cross-section beam.
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Several comments may be useful for design considerations: First, observe the product EG in
Equation 15.44. This arises from the combined bending and twisting as a beam buckles.

Next, note that I-beams are used in many structural applications, whereas Equation 15.44 and
Table 15.3 are applicable only for beams with rectangular cross sections. I-beams, which can have
various cross section dimensions, are thus more difficult to study than beams with a rectangular
profile. Nevertheless data for lateral bending=buckling are provided as Refs. [9,10].

Further in Equation 15.44 and Table 15.3 we have considered only concentrated point loads.
Many applications have uniform loading or combined loadings. Here again Refs. [9,10] provide
useful data for critical loading. From a structural design perspective, however, concentrated loading
is more harmful than uniform loading. Thus for conservative design the data of Table 15.3 provide a
safer design.

Finally, care should be taken when using any such data as in actual design exact ideal geometry
will not occur. The actual critical buckling loads may thus be lower than those predicted by using
the tabular data. Therefore, generous factors of safety should be used.

15.9 BUCKLING OF COLUMNS LOADED BY THEIR OWN WEIGHT

Tall heavy columns commonly occur as chimneys, towers, and poles. The buckling analysis is
similar to the previous analyses although more detailed [9]. Nevertheless we can still obtain
estimates of critical weight density gCR. Most column structures do not have a uniform diameter,
but instead they are larger at the base. A conservative (safer) analysis is then to simply consider a
structure with uniform diameter as represented in Figure 15.24, where q is the load per unit length.

TABLE 15.3
Critical Loading Coefficient k of Equation 15.44
for Loading Cases of Figure 15.23

Loading Case Coefficient k

1. Free ends, end moment 0.524
2. Cantilever, end force 0.669
3. Simple support, midspan force 2.82
4. Built-in supports, midspan force 26.6

q

FIGURE 15.24 Heavy uniform cross-section column.
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Using a standard flexural analysis [9] and an energy analysis [11], the critical load per unit
length qCR is approximately

qCR ¼ 7:89EI=‘3 (15:45)

We can illustrate the use of this expression with an elementary design problem: suppose we want to
determine the maximum length ‘max of a hollow, thin-walled aluminum column with an average
radius r of 2.0 in. and a wall thickness t of 0.2 in. Let the elastic modulus E be 10� 106 psi and the
weight density g be 0.098 lb=in.3.

For a relatively thin pipe with radius r and wall thickness t, the weight q per unit length is
approximately

q ¼ 2prtg (15:46)

Also, the second moment of area I is approximately

I ¼ pr3t (15:47)

Then by substituting these expressions into Equation 15.45, we have

2prtg ¼ 7:89p Er3t=‘3

or

‘ ¼ ‘max ¼ 1:58(Er2=g)1=3 (15:48)

Hence for the given data, ‘max is

‘max ¼ 97:7 ft ¼ 29:77 m (15:49)

This is a relatively tall column. Interestingly, the maximum stress is small. Indeed, the stress s at the
base is only

s ¼ W=A ¼ 2prtg‘max=2prt ¼ g‘max (15:50)

or

s ¼ (0:098)(97:7)(12) ¼ 114:9 psi (15:51)

Observe that in this example the design is governed by stability rather than stress limitations. Also
note that the stability calculations assume ideal geometry. An eccentricity or other geometric
irregularity will make the structure less stable. Therefore, factors of safety should be incorporated
into stability computations for the design of actual structures.

15.10 OTHER BUCKLING PROBLEMS: RINGS AND ARCHES

The buckling of circular rings and arches is a classical problem, which has been studied extensively.
Reference [9] provides an analysis of the phenomenon and Figure 15.25 provides a summary of the
more important common cases, where the notation is the same as in the foregoing section. Case 3 for
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a fixed ends arch, involves a parameter b (the ‘‘arch buckling factor’’) which satisfies the transcen-
dental equation

b tan ao cot (aob) ¼ 1 (15:52)

Figure 15.26 provides a graphical representation of the relationship between b and aO.

15.11 SUMMARY REMARKS

In this chapter, we have attempted to simply document and list the most important and most widely
used buckling and stability formulas. The references, particularly Refs. [9,10,12], provide additional
information for more specialized cases.

In structural design, when compressive loading occurs, stability (as opposed to material failure)
is often the controlling factor in the integrity of the structure. The analyses and resulting formulas of
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qCR = 3EI/R3

qCR =
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FIGURE 15.25 Buckling loads for rings and arches.
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FIGURE 15.26 Arch buckling factor b as a function of the half arch angle ao.
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this chapter have, for the most part, assumed ideal geometry and centralized loading condition. In
actual design, however, this is a rare case. Thus the critical load values may be too high. Therefore
as noted earlier, caution and generous factors of safety need to be employed in the design of those
structures and components which may be subjected to high compressive loads.

SYMBOLS

A Cross-section area
A, B Integration constants
A, b Length, width measurements
E Elastic modulus
E Load offset (see Figure 15.20)
G Shear modulus
H Depth measurement
I Second moment of area
k Constant (see Equation 15.15)
Kp Buckling coefficient; plate coefficient
‘ Length
M Bending moment
Mcr Critical bending moment
P Applied load
Pcr Euler buckling load
q Distributed loading
R Reaction force; radius
r Radius
Sy Compressive yield stress
t Pipe thickness
V Shear
W Weight
X,Y,Z Cartesian (rectangular) coordinate axes
x X-axis coordinate
y Y-axis coordinate
yh General solution of homogeneous differential equation
yp Particular solution of differential equation
ao Angle (see Figure 15.25)
b Buckling arch factor
g Weight density
k Cross-section ‘‘radius of gyration’’
scr Stress at buckling
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16 Shear Center

16.1 INTRODUCTORY COMMENTS

Recall in Chapter 15, on stability, we saw that for the buckling of tall, thin cross section beams, the
cross section may rotate and warp at loads well below the yield stress loads (see Figures 16.1 and
16.2). If the geometry is ideal and the line of action of the loading is centered in the cross section,
the warping is less likely to occur. If a thin-web cross section geometry is less simple, as is usually
the case, warping is likely unless the load is carefully placed.

To illustrate this further, consider a cantilever beam with a cross section in the shape of a
U-section or channel, as in Figure 16.3. (This is a classic problem discussed in a number of texts
[1–3].) Suppose the cross section is oriented that the open side is up as in Figure 16.4. Thus with
ideal geometry a carefully placed and centered load will not produce warping. If, however, the cross
section is rotated through say 908, as in Figure 16.5, it is not immediately clear where the load
should be placed to avoid warping.

Surprisingly, it happens that if the line of action of the load is placed through the centroid of the
cross section, the beam will still tend to warp. But there is a point, called the ‘‘shear center,’’ through
which the load can be placed where warping will not occur. Our objective in this chapter is to
establish the existence and location of the shear center.

16.2 SHEAR FLOW

The warping, twisting, and buckling of beam cross sections is most pronounced when the cross
section has webs, flanges, or other thin-walled components. With webs or flanges, the strength is
primarily in the plane of the web or flange. That is, a web, a flange, a panel, or a plate has most of its
strength in directions parallel to the plane of the member (so-called ‘‘membrane strength’’). Webs,
panels, flanges, and plates have far less resistance to forces directed normal to their planes than to
in-plane loading.

For beams with cross sections composed of thin-walled members, such as an I-beam or a
channel beam, external loads are then largely supported by in-plane forces in the thin-walled
sections. These forces in turn give rise to shear stresses in these thin-walled sections. To evaluate
these stresses, it is helpful to reintroduce the concept of ‘‘shear flow,’’ which we discussed briefly in
Section 12.7.

Consider a web or thin-walled portion of a beam cross section, which is subjected to a shear
force as in Figure 16.6. Consider an element e of the web as in Figures 16.7 and 16.8. Let the web
thickness be t and the shear stress on the shear-loaded face of the web be t.

Then from Equation 12.20, we define the shear flow q on the web simply as the integral of the
shear stress across the web. That is

q ¼D
ð
t dz (16:1)

Specifically from Figure 16.8, q is

q ¼
ðt

0

txy dz (16:2)
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FIGURE 16.1 Tall, thin cross section cantilever beam with end loading.

P

FIGURE 16.2 Warping of tall, thin cross section cantilever beam with end loading.

FIGURE 16.3 Channel shape cross section.

P

FIGURE 16.4 Cantilever, channel cross section, beam with end side up.

FIGURE 16.5 Cantilever, channel cross section, beam with open side to the right.
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V

FIGURE 16.6 A thin-walled beam cross section web subjected to a shear force.

V

e

FIGURE 16.7 Element e of a shear-loaded web.

Y

t

X

Z

FIGURE 16.8 Element e of the shear-loaded web.
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Shear flow is often interpreted as being analogous to the flow of a liquid in a narrow channel as
represented in Figure 16.9. We will develop this analogy in the following section showing how the
‘‘flow’’ can go around a corner.

Finally, shear flow is useful for determining the shear force on a web. For example, in a right-
angle web as in Figure 16.9 and as shown again in Figure 16.10, we can obtain the horizontal and
vertical shear forces (H and V) on the web by simply integrating the shear flow in the horizontal
and vertical directions. That is,

H ¼
ðC

B

q dx and V ¼
ðB

A

q dy (16:3)

16.3 APPLICATION WITH NARROW WEB BEAM CROSS SECTION

Recall from Section 4.3 that in the interior of bodies subjected to loading, equilibrium or rectangular
elements requires that shear stresses on abutting perpendicular faces have equal magnitude. Con-
sider for example, the element shown in Figure 16.11 with faces perpendicular to the coordinate
axes. Then moment equilibrium requires that the shear stresses shown satisfy the relations

tyx ¼ txy, tzy ¼ tyz, txz ¼ tzx (16:4)

(See Section 4.3.)

q q

q

q

q

FIGURE 16.9 Shear flow in a narrow web.

B

A

H
C

Y

X

FIGURE 16.10 Horizontal and vertical shear forces on a right-angle web.
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In more general index notation, Equations 16.4 are contained within the expression

sij ¼ sji (16:5)

where sij represents the stress on the ‘‘i-face’’ in the j direction.
The interpretation and application of Equation 16.4 with shear flow is that the shear flows at

perpendicular mating surfaces are of equal magnitude but with opposing directions as illustrated in
Figure 16.12.

Remarkably these opposing shear flows on perpendicular abutting surfaces cause the uniformly
directed shear flow around corners in a plane, as in Figure 16.9. To see this, consider a right-angle
cross section of a web as in Figure 16.13 where there is a vertical shear force V, causing a shear flow
q as shown.

Next, consider three portions, or subsections, of the right-angle section as shown in Figure
16.14, where we have named points A, B, C, and D to aid in the identification. Consider first
subsection � as shown in Figure 16.15: from the shear flow pattern shown in Figure 16.12, we
obtain the resulting shear on the top face of subsection �. Observe that this face is in contact with
the bottom face of the long square subsection �.

Consider next subsection � as shown in enlarged view in Figure 16.16. From the action–
reaction principle, the shear on the bottom face of the subsection � has the same magnitude but
opposite direction to that on the top face of subsection �. From Figures 16.13 and 16.14, we see
that the top and left side faces of subsection � are free surfaces and thus free of shear stresses.
Therefore, to maintain equilibrium of the subsection the back face of the subsection must have a
balancing shear to that on the bottom face. Figure 16.17 presents a representation of this back
face shear.

Z

Y

X

txz

tzx
tyz

tzy

tyxtxy

FIGURE 16.11 Element in the interior of a body under loading

q q

qq

FIGURE 16.12 Shear flow at abutting perpendicular surfaces.
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V

FIGURE 16.13 Shear at a right-angle web.

2

1

3

CD

A B

FIGURE 16.14 Subsections of a right-angle web.

C

q

q

D

1

FIGURE 16.15 Shear flow on subsection �.

A B

CD

q

2

FIGURE 16.16 Shear flow on the bottom face of subsection �.
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Finally, consider the equilibrium of subsection �: Figure 16.18 shows an enlarged view of the
subsection and the shear flow in the interior abutting face with subsection � and on the web. Again
by the principle of action–reaction with the shear directed toward edge BC on � it is directed away
from BC on �. Then referring again to Figure 16.12 we see that the shear flow in the web of
subsection � is directed away from edge BC as shown.

Considering the result of Figure 16.18 it is obvious that the shear flow in the right-angle web of
Figure 16.13 is directed around the corner as in Figure 16.9 and as shown again in Figure 16.19.

16.4 TWISTING OF BEAMS=SHEAR CENTER

The foregoing results provide a basis for understanding the shear distribution on a webbed
beam cross section. To develop this, consider again the channel cross section cantilever beam
of Figure 16.4 as shown again in Figures 16.20 and 16.21. Let the beam has an end load P as in
Figure 16.22.

Consider now a free-body diagram of a beam segment at the loaded end as in Figure 16.23. The
figure shows the shear flow distribution over the interior cross section of the segment. Observe
that the shear flow creates a counterclockwise axial moment (from the perspective of the figure).
The extent of the resulting axial rotation (or twist) is dependent on the lateral placement of the end
load P.

If there is to be no rotation, the load P must create an equal magnitude but oppositely directed
moment to that of the shear flow. Specifically, in view of Figure 16.23, if there is to be no twist
of the beam, the load must be applied outside the closed end of the cross section as represented
in Figure 16.24. The point C* where the line of action of P intersects the neutral axis is called
the ‘‘shear center.’’ In the following sections, we illustrate the procedure for locating the
shear center.

A B

CD

q

2

q

FIGURE 16.17 Equilibrium of shear forces on the bottom and back faces of subsection �.

B

C

q

q

3

FIGURE 16.18 Equilibrium of shear forces on subsection �.
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q

q

FIGURE 16.19 Shear flow around a corner in a right-angle web.

FIGURE 16.20 Cantilever, channel cross section, beam with open side to the right.

FIGURE 16.21 Right side view of cantilever, channel cross section, beam.

P

FIGURE 16.22 Right side view of end-loaded cantilever beam with a channel cross section.
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16.5 EXAMPLE: SHEAR CENTER OF A CHANNEL BEAM

The concepts discussed above can be illustrated and quantified by continuing our consideration
of the end-loaded cantilever channel beam example, as represented in Figure 16.25. As noted earlier,
this problem is often cited in texts on strength and mechanics of materials (see ‘‘References’’).

From the discussion of Section 16.4, it is clear that the shear center will be located on the left
side, or outside of the channel as in Figure 16.24 as well as in Figure 16.26.

To determine the precise location of the shear center C* (dimension d in Figure 16.26) let the
dimensions of the cross section be as shown in Figure 16.27 where b and h are the nominal base and
height of the cross section respectively with the web thickness t being small compared to b and h.

Recall from Chapter 13 that for thick beams a varying bending moment along the beam
produces a shear force V on the cross sections, which in turn leads to horizontal shear stresses in
the beam. Specifically, Equation 13.11 states that the horizontal shear stress t is

t ¼ VQ=Ib (16:6)

where Q is the moment of the area above (or beneath) the site where the shear stress is to be
calculated, with the moment taken about the neutral axis; I is the second moment of area of the cross
section about the neutral axis; and b is the width of the cross section at the site where the shear stress
is to be calculated.

We can conveniently use Equation 16.6 to obtain an expression for the shear flow q in a web. To
deduce this, recall from Section 16.3 that shear flows at perpendicular mating surfaces are of equal
magnitude but with opposite directions as illustrated in Figure 16.12. Thus the shear flow in a web
has the same magnitude with opposite direction to the horizontal shear flow obtained from the
horizontal shear stress. The horizontal shear stress in turn is immediately obtained from Equation
16.1 by integrating through the web thickness.

P

q

FIGURE 16.23 Rear view of the free-body diagram of the right beam segment.

Neutral axisC∗

FIGURE 16.24 Load placement to counteract the shear flow moment and to produce zero twist.
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In Equation 16.6, the base width b becomes the web thickness t. Then with the thickness being
small the shear flow q is simply

q ¼
ðb

O

t dt � bt ¼ VQ=I (16:7)

By using Equation 16.7, we can determine the shear flow at all points of a webbed cross section.
To illustrate and develop this, let a coordinate axis system (j, h) be placed upon the channel cross
section with origin A, as shown in Figure 16.28. Let A, B, C, D, and E be selected points in the cross
section. Let qA be the shear flow at the origin A. Then from Equation 16.7, qA is simply

qA ¼ VQA=I (16:8)

where QA is the moment of the cross section area above A about the neutral axis. That is,

QA ¼ (h=2)(t)(h=4)þ (bt)(h=2) ¼ (th2=8)þ (bth=2) (16:9)

where again the web thickness t is assumed to be small compared to the base and height dimensions
b and h. Therefore, qA is

qA ¼ (V=I)[(th2=8)þ (bth=2)] (16:10)

P

FIGURE 16.25 End-loaded cantilever beam with a channel cross section.

Neutral axisC*

d

FIGURE 16.26 Shear center location.
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Next, for point B we have

qB ¼ (V=I)QB

where from Figure 16.28, QB is seen to be

QB ¼ t[h=2)� �]{� þ [(h=2)� �]=2}þ (bt)(h=2)

¼ (t=2)[(h2=4)� �2]þ bth=2 (16:11)

where h is the vertical coordinate of B above the origin A. Therefore, qB is

qB ¼ (V=I){(t=2)[(h2=4)� �2]þ (bth=2)} (16:12)

For point C, we have

qC ¼ (V=I)QC (16:13)

where from Figure 16.28, QC is seen to be

QC ¼ (bt)(h=2) (16:14)

h

b

t

FIGURE 16.27 Channel cross section dimensions.

Neutral axis

b

h/2

A

B

C

h

x

D
E

t

FIGURE 16.28 Coordinate axes and selected points of the channel cross section.
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Therefore, qC is

qC ¼ (V=I)(bt)(h=2) (16:15)

For point D, we have

qD ¼ (V=I)QD (16:16)

where from Figure 16.28, QD is seen to be

QD ¼ (b� j)t(h=2) (16:17)

where j is the horizontal coordinate of D. Therefore, QD is

QD ¼ (V=I)[(bth=2)� (jth=2)] (16:18)

Finally, for point E, at the end of the flange QE is seen to be zero. Therefore, qE is

qE ¼ 0 (16:19)

By summarizing the foregoing results, we can see the pattern of the shear flow throughout the web:

qA ¼ (V=I)[(th2=8)þ (bth)=2)]

qB ¼ (V=I){(t=2)[(h2=4)� �2]þ (bth=2)}

qC ¼ (V=I)(bt)(h=2)

qD ¼ (V=I)[(bth=2)� (jth=2)]

qE ¼ 0

(16:20)

Observe that the shear flow has a quadratic distribution in the vertical web and a linear distribution
in the horizontal flanges.

We can now obtain the resulting shear forces on the flanges and the vertical web by simply
integrating the shear flow along the length of the flanges and web: specifically, let the shear forces in
the flanges and web be H and V̂ , as in Figure 16.29, where notationally we use V̂ to distinguish from
the applied shear force V over the cross section. Then from Equations 16.3 and 16.18 H is seen to be

H ¼
ðb

0

qDdj ¼
ðb

0

(V=I)[(bth=2)� (jth=2)]dj

¼ (V=I)[(bth=2)j � (th=2)(j2=2)] j
b

0

or

H ¼ (V=I)b2th=4 (16:21)
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Similarly, from Equations 16.3 and 16.22, the vertical force V̂ is

V̂ ¼
ðh=2

h=2

qBd� ¼
ðh=2

�h=2

(V=I){(t=2)[h2=4)� �2]þ (bth=2)}d�

¼ (V=I)[(t=2)(h24)� � (t=2)(�3=3)þ (bth=2)�] j
h=2

�h=2

or

V̂ ¼ (V=I)[(th3=12)þ (tbh2=2)] (16:22)

Remembering that I is the second moment of area of the beam cross section about the neutral axis,
we see by inspection of Figure 16.28 that for small t, I is approximately

I ¼ (th3=12)þ (tbh2=2) (16:23)

Then by comparing Equations 16.22 and 16.23, it is clear that the computed shear force V̂ on the
vertical web is approximately the same as the applied shear over the cross section. That is, for small
t, we have

V̂ ¼ V (16:24)

Finally, to locate the shear center we simply need to place the line of action of the given load P
outside (or to the left in the end view) of the beam cross section so that the axial moment created by
the shear forces H and V̂ , on the flanges and web, is counteracted by the moment created by P.
Specifically, in Figure 16.30 the line of action of Pmust be placed a distance d to the left of the cross
section so that the system of forces shown is a zero system (see Section 1.5.1), that is, in both force
and moment equilibrium.

From Figure 16.30 it is clear that force equilibrium occurs if

P ¼ V̂ (16:25)

Moment equilibrium will occur if

Pd ¼ hH (16:26)

H

H

V̂

FIGURE 16.29 Resultant shear forces on the flanges and web of the channel beam cross section.
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Hence, from Equation 16.21 and Equations 16.23, 16.24, and 16.25, d is

d ¼ hH=P ¼ h(V=I)b2th=4P

¼ b2th2=4I ¼ (b2th2=4)[(th3=12)þ (tbh2=2)]

¼ b2=[(h=3)þ 2b]

or

d ¼ 3b=[6þ (h=b)] (16:27)

This analysis and the results are of course specific to an end-loaded cantilever beam with an open-
channel cross section. The procedures, however, are directly applicable for other web=flange cross
section beams.

16.6 A NUMERICAL EXAMPLE

The expressions in the foregoing section are immediately applicable in locating the shear center, in
determining the twisting moment if the line of action of a load is not through the shear center, and in
determining the resulting distortion, for an end-loaded, open channel, cantilever beam. To illustrate
the magnitude of the effects, consider a 25 ft. long beam with cross section dimensions as in Figure
16.31. As before, let C* be the shear center and G be the centroid as represented in Figure 16.32.

With this configuration, the load will induce a shear flow through the flanges and web of the
cross sections as illustrated in Figure 16.33. Figure 16.34 illustrates the resultant shear forces H and
V in the flanges and web.

From the given data and Equations 16.21 and 16.24 it is obvious that H and V̂ are

Ĥ ¼ (V=I)(thb2=4) ¼ (3000=126)[(0:25)(12)(5)2=4] ¼ 446:4 lb (16:28)

and

V̂ ¼ V ¼ 3000 lb (16:29)

where, from Equation 16.23, I is seen to be

I ¼ (th3=12)þ (tbh2=2) ¼ [(0:25)(12)3=12]þ [(0:25)(5)(12)2=2] ¼ 126 in:4 (16:30)

h

H

H

d

AC∗

P
V̂

FIGURE 16.30 Placement of beam end load P to counteract the shear forces on the beam cross section.
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t

h

5 in.

12 in.

0.25 in.

FIGURE 16.31 Channel beam cross section dimensions.

3000 lb

G
d

C ∗

x

• •

FIGURE 16.32 Shear center and centroid locations.

3000 lb

25 ft.

FIGURE 16.33 Beam support and loading.

•
•

H

V̂

H

GC∗

FIGURE 16.34 Resultant shear forces in the flanges and web of the cross section.
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Equation 16.27 shows that the shear center C* is located a distance d outside the web given by

d ¼ 3b=[6þ h=b] ¼ (3)(5)=[6þ (12=5)] ¼ 1:786 in: (16:31)

A question arising is: to what extent is a twisting moment induced if the line of action of the end
load is placed through the centroid G of the cross section? To answer this question, consider that G
is located inside the channel cross section a distance �j from the web as illustrated in Figure 16.32.
An elementary analysis shows that for thin flanges and web �j is

�j ¼ b2=(2bþ h) ¼ (5)2=[(2)(5)þ 12] ¼ 1:136 in: (16:32)

The induced twisting moment T is then

T ¼ P(d þ �j) ¼ 3000(1:786þ 1:136) ¼ 8766 in:=lb (16:33)

To put this in perspective, the rotation u, or distorting twist, of the beam due to a misplaced load
through the centroid is (see Equation 12.6):

u ¼ T‘=JG (16:34)

where J is the second polar moment of area of the cross section relative to the shear center, ‘ is the
beam length, and G is the shear modulus. For the cross section dimensions of Figure 16.31, J is seen
to be

J ¼ Jweb þ Jflange þ Jflange (16:35)

where Jweb and Jflange are

Jweb ¼ (th3=12)þ (th)d2 ¼ [(0:25)(12)3=12]þ [(0:25)(12)(1:786)2] ¼ 45:57 in:4 (16:36)

and

Jflange ¼ (tb3=12)þ (th)[(h=2)2 þ (d þ b=2)2]

¼ [(0:25)(5)3=12]þ (0:25)(12)[(12=2)2 þ (1:786þ 5=2)2]

¼ 165:7 in:4 (16:37)

Then J is

J ¼ 45:57þ (2)(165:7) ¼ 376:98 in:4 (16:38)

If the beam is made of steel with G being approximately 11.5� 106 psi, and its length ‘ is 25 ft., the
twist is

u ¼ (8766)(25)(12)=(376:98)(11:5)(10)6 ¼ 6:066� 10�1 rad

¼ 3:476� 10�2 degrees (16:39)

For many cases of practical importance, this would seem to be a relatively small and unimportant
distortion. Thus for many webbed sections, where the shear center would seem to be important, the
resulting distortion from randomly placed loading may not be harmful.
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SYMBOLS

B Beam width
C* Shear center
E Web element
G Shear modulus
H Horizontal force
h Beam height
I Second moment of area
J Second polar moment of area
‘ Beam length
P Loading
q Shear flow (see Equations 16.1 and 16.3)
Q Moment of the area above (or beneath) a point where shear stress is to be calculated
t Web thickness
T Applied torque
V Shear force on a cross section
V̂ Computed shear force from the shear flow
X, Y, Z Rectangular (Cartesian) coordinate axes
x, y, z Point coordinates relative to X, Y, Z
u Twist angle
j, h Coordinate axes
sij (i, j¼ 1, 2, 3) Stress matrix components
t Shear stress
tij (i, j¼ x, y, z) Shear stress on the I-face in the J-direction
txz Shear stress on the X-face in the Z-direction
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Part IV

Plates, Panels, Flanges, and Brackets

Second only to beams, plates are the most widely used of all structural components. In buildings,
plates and panels are used for floors, walls, roofs, doors, and windows. In vehicles, they also form
flooring, windows, and door components. In addition, curved plates and panels make up the external
structures of cars, trucks, boats, ships, and aircraft. In machines, these thin members form virtually
all the structural components and many of the moving parts.

The design and analysis of plates, panels, flanges, and brackets is considerably more complex
than that for beams, rods, or bars. The loading on plate structures, however, is usually simpler, and
often consists of only a uniform pressure. Also, the behavior of beams provides insight into the
behavior of plates, particularly in response to flexural-type loadings.

In this fourth part, we review the fundamental equations governing the structural behavior of
plates and other associated thin-walled members. We consider various modelings and approxima-
tion methods that simplify the analysis without compromising the accuracy of the stress and
displacement evaluations.

We begin with the flexural response of simple plates and then go on to more complex
geometries and loadings in applications with panels, flanges, and brackets.
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17 Plates: Bending Theory

17.1 HISTORICAL PERSPECTIVE AND INTRODUCTORY REMARKS

Plate theory and the behavior of plates as structural components, have been fascinating and popular
subjects for analysts and structural engineers for hundreds of years. The study of plates dates back to
the eighteenth century, long before the development of elasticity theory. Well known theorists
associated with plate theory include Euler, Bernoulli, Lagrange, Poisson, Navier, Fourier, Kirchoff,
Kelvin, Tait, Boussinesque, Levy, Love, VonKarman, and Reissner. The most important develop-
ments occurred during the nineteenth century in France, stimulated in part by Napoleon.

Plates are regarded as two-dimensional, thin, flat structures. Of particular interest is their
response to loadings directed normal to their plane. The analytical focus is thus upon flexure (or
bending) as opposed to in-plane loading.

At times, plates have been thought of as two-dimensional beams, particularly when they are
bent in only one direction. More rigorous analyses require the solution of partial differential
equations with various kinds of boundary conditions. As such, the number of simplifying assump-
tions needed to obtain closed-form solutions is staggering. As a consequence, analysts have been
continually searching for approximation methods providing insight into plate behavior, enabling
efficient structural design.

Plates may be divided into four general categories:

1. Thick plates or slabs (shear is the predominant consideration)
2. Plates with average thickness (flexure is the predominant consideration)
3. Thin plates (both flexural stress and in-plane tension are important considerations)
4. Membranes (in-plane tension and stretching are the most important considerations)

In this chapter, we focus on the second category, that is, plates sufficiently thin that shear effects can
be neglected but also thick enough that in-plane forces are negligible.

17.2 MODELING AND SIMPLIFYING ASSUMPTIONS

A plate is modeled as a thin, initially flat, uniformly thick structural component supported on its
edges and loaded in the direction normal to its plane. Figure 17.1 shows a portion of a plate together
with coordinate axes directions.

Most modern theories of plate behavior such as those of Vinson et al. [1–4] are developed using
the three-dimensional equations of linear elasticity and then reducing them to a two-dimensional
form by integrating through the thickness of the plate. A number of simplifying assumptions enable
this development. These are

1. The plate is initially flat with uniform thickness.
2. The plate thickness is small compared with the edge dimensions (rectangular plates) or the

diameter (circular plates).
3. The plate is composed of a homogeneous, isotropic, and linear elastic material.
4. Loading is applied normal to the plane of the plate.
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5. The plate supports the loading by its resistance to flexure (bending). Equivalently in-plane
(‘‘membrane’’) forces are negligible in their support of loadings normal to the plate.

6. The maximum displacement of the plate is less than the thickness of the plate.
7. Line elements normal to the middle surface before loading remain straight and normal to

the middle surface during and after loading.
8. Line elements normal to the middle surface undergo neither lengthening nor shortening

during loading.
9. Stresses normal to the plane of the plate are small compared with the flexural stresses.
10. Slopes of the plate surfaces, due to bending, are small.

Analytically, these assumptions imply that the displacement components (u, v, w), in Cartesian
coordinates as in Figure 17.1, have the following forms:

u(x, y, z) ¼ za (x, y) (17:1)

v(x, y, z) ¼ zb (x, y) (17:2)

w(x, y, z) ¼ w (x, y) (17:3)

17.3 STRESS RESULTANTS

As noted earlier, we can obtain governing equations for plate flexure by integrating the equations of
elasticity through the plate thickness. The resulting plate equations are then simpler and fewer in
number than the elasticity equations.

In the process, as we integrate the stresses through the thickness, we obtain ‘‘stress resultants,’’
and in a similar manner as we integrate the moments of the stresses about coordinate axes, we obtain
bending and twisting moments.

To develop this, it is helpful to first recall the sign conventions of elasticity as discussed in
Chapter 4 (see Section 4.2). Specifically, positive directions are in the positive (increasing value)
coordinate axis directions. A ‘‘positive face’’ of an element is a surface normal to a coordinate axis
such that when crossing the surface, from inside the element to the outside, a point moves in the
positive axis direction. Negative directions and negative faces are similarly defined. Stresses are

O

Z

Y

X

h

FIGURE 17.1 Coordinate axes for a plate segment.
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then positive or negative as follows: a stress is positive if it is exerted on a positive face in a positive
direction or on a negative face in a negative direction. A stress is negative if it is exerted on a
positive face in a negative direction or on a negative face in a positive direction.

Consider a rectangular element (e) of a plate as in Figure 17.2. For convenience, let the X-, Y-,
Z-axes be oriented and placed relative to the element as shown, with origin O at the center of the
element.

As before, let the stresses on the faces of (e) be designated by sij where i and j can be x, y, or z,
with the first subscript pertaining to the face and the second to the direction.

Consider the stresses on the positive X-face of (e): sxx, sxy, and sxz. First, for sxx, by integration
through the thickness h we have

ðh=2

�h=2

sxxdz ¼D Nxx (17:4)

where Nxx is a force per unit edge length and directed normal to the X-face, as represented in Figure
17.3. Let the line of action of Nxx be placed through the center of the X-face. Nxx is thus along the
midplane of (e) and is a ‘‘membrane’’ force.

Next, for sxy, we have

ðh=2

�h=2

sxydz ¼D Sxy (17:5)

where Sxy is a shear force per unit edge length and, like Nxx, let its line of action be placed through
the center of the X-face. Sxy is directed along the Y-axis and it is also in the midplane of (e).
Therefore Sxy is also a membrane force.

Finally, for sxz, we have

ðh=2

�h=2

sxzdz ¼D Qxz (17:6)

Z

Y

X

O

(e)

h

FIGURE 17.2 Plate element with coordinate axes.
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where Qxz is also a shear force per unit length and, like Nxx and Sxy, let its line of action be placed
through the center of the X-face. Qxz is directed along the Z-axis and is therefore perpendicular to the
midplane of (e). Thus, unlike Nxx and Sxy, Qxz is not a membrane force.

Figure 17.4 provides a representation of Nxx, Sxy, and Qxz.
Consider now the stresses on the positive Y-face of (e): syx, syy, and syz. By an analysis similar

to that on the X-face we have

ðh=2

�h=2

syxdz¼D Syx,
ðh=2

�h=2

syydz¼D Nyy,
ðh=2

�h=2

syzdz¼D Qyz (17:7)

where the stress resultants Syx, Nyy, and Qyz are forces per unit edge length and are directed parallel
to the X-, Y-, and Z-axes, respectively. If we let the lines of action of Syx, Nyy, and Qyz pass through
the center of the Y-face, we see that Syx and Nyy are membrane forces and that Qyz is perpendicular to
the midplane of (e). Figure 17.5 provides a representation of these resultants.

Z

Y

X

(e)

Nxx

FIGURE 17.3 Stress resultant normal to the X-face.

X

Nxx

Qxz

Sxy

O

Z

(e)

Y

FIGURE 17.4 Stress resultants on the X-face of a plate element.
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Observe that since sxy¼syx we have

Sxy ¼ Syx (17:8)

Observe further that the stress resultants are not actual forces but instead they are entities of
equivalent force systems (see Section 1.5.3). As such, the lines of action of the resultants can be
placed through arbitrary points (in this case, the centers of the element faces) and then equivalency
is ensured by calculating the moments about those points. The following section documents
these moments.

17.4 BENDING AND TWISTING (WARPING) MOMENTS

Consider the modeling of the stress systems on the faces of a plate element by equivalent force
systems consisting of stress resultants passing through the face centers together with stress couples.
Consider now the moments of these stress couples: specifically, consider the moments of the
stresses sxx, sxy, and sxz, acting on the X-face of a plate element, about the X- and Y-axes (see
Figure 17.6). First, for sxx, from our experience with beam analysis (see Chapter 8), and with our
assumptions of line elements normal to the undeformed midplate plane remaining straight and
normal to the plane during bending, we expect sxx to vary linearly in the Z-direction, through the
thickness of the plate. As such sxx will create a moment (a flexural moment) about the Y-axis.
Following the notation of Ref. [1], we call this moment Mx and define it as

Mx ¼
ðh=2

�h=2

zsxxdz (17:9)

Observe that with the sxx stresses being directed along the X-axis, they will have no moment about
the X-axis.

Next, for the shear stresses sxy we will have a ‘‘twisting’’ or ‘‘warping’’ moment about the
X-axis which we call Txy, defined as

Txy ¼
ðh=2

�h=2

zsxydz (17:10)

(e)

Y

Z

X

O

Syx

Nyy

Qyz

FIGURE 17.5 Stress resultants on the Y-face of a plate element.
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Observe that with the sxy being directed along the Y-axis, they will have no moment about the
Y-axis.

Finally, for the vertical shear stresses sxz, we expect, from our experience in beam analysis, that
the sxz will have a symmetric distribution across the face and then will not produce a moment about
either the X- or Y-axes.

In a similar analysis for the stresses on the Y-face, we see that the normal stresses syy produce
a flexural moment My about the X-axis defined as

My ¼
ðh=2

�h=2

zsyydz (17:11)

syy, being parallel to the Y-axis, do not have any moment about the Y-axis.
The shear stresses syx will produce a warping moment Tyx about the X-axis as

Tyx ¼
ðh=2

�h=2

zsyxdz (17:12)

syx, being parallel to the X-axis, will have no moment about the X-axis.
Observe that with sxy being equal to syx we have

Txy ¼ Tyx (17:13)

Finally, the vertical shear stresses syz being symmetrically distributed across the Y-face, will have
no moments about either the X- or Y-axes.

Z

Y

X

O

(e)

h

sxx

sxy

sxz

FIGURE 17.6 Plate element.
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17.5 EQUILIBRIUM FOR A PLATE ELEMENT

Recall from Equations 4.30 through 4.32 that for a body under loading, the equilibrium of a
rectangular ‘‘brick’’ element within the body requires that the stresses satisfy the equilibrium
equations

@sxx

@x
þ @sxy

@y
þ @sxz

@z
¼ 0 (17:14)

@syx

@x
þ @syy

@y
þ @syz

@z
¼ 0 (17:15)

@szx

@x
þ @szy

@y
þ @szz

@z
¼ 0 (17:16)

where the edges of the element are parallel to the coordinate axes.
We can use these equilibrium equations to obtain equilibrium equations for plate elements by

integrating the equations through the plate thickness. To this end, consider again the rectangular
plate element of Figure 17.2 and as shown in Figure 17.7. Recall that the simplifying assumptions of
plate theory require the plate support loading to be perpendicular to its plane by flexure, that is, by
forces and moments on the plate element faces normal to the X- and Y-axes. The first two
equilibrium equations (Equations 17.14 and 17.15) involve stresses on these faces. Therefore, we
will initially consider integration of these equations and reserve analysis of the third equation
(Equation 17.16) until later.

First consider Equation 17.14: by integrating through the plate thickness, we have

ðh=2

�h=2

@sxx

@x
dzþ

ðh=2

�h=2

@sxy

@y
dzþ

ðh=2

�h=2

@sxz

@z
dz ¼ 0 (17:17)
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X

O

(e)

h

FIGURE 17.7 Plate element.
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Since x, y, and z are independent variables, we have

@

@x

ðh=2

�h=2

sxxdzþ @

@y

ðh=2

�h=2

sxydzþ
ðh=2

�h=2

@sxz

@z
dz ¼ 0 (17:18)

In view of the definitions of Equations 17.4 and 17.5 we have

@Nxx

@x
þ @Sxy

@y
þ sxz j

h=2

�h=2
¼ 0 (17:19)

Regarding the last term, observe that with the elements of the stress matrix being symmetric, that is
sij¼sji, we have sxz¼szx. But szx is zero on the plate surface since the loading is assumed to be
directed perpendicular to the plane of the plate. Therefore, the third term of Equation 17.18 is zero.
That is,

sxz j
h=2

�h=2
¼ szx j

h=2

�h=2
¼ szx(h=2)� szx(�h=2) ¼ 0 (17:20)

Thus Equation 17.19 takes the simple form

@Nxx

@x
þ @Sxy

@y
¼ 0 (17:21)

Similarly, by integrating Equation 17.15 through the thickness we obtain

@Syx
@x

þ @Nyy

@y
¼ 0 (17:22)

Next, consider the moments of the stresses on the X- and Y-faces about the X- and Y-axes: If we
multiply Equation 17.14 by z and integrate through the plate thickness we have

ðh=2

�h=2

z
@sxx

@x
dzþ

ðh=2

�h=2

z
@sxy

@y
dzþ

ðh=2

�h=2

z
@sxz

@z
¼ 0 (17:23)

In the first two terms with x, y, and z being independent, we can move the derivatives outside the
integrals and in the third term we can integrate by parts, obtaining

@

@x

ðh=2

�h=2

zsxxdzþ @

@y

ðh=2

�h=2

zsxydzþ zsxz

ðh=2

�h=2

�
ðh=2

�h=2

sxzdz ¼ 0 (17:24)

In the third term (the integrated term) with the symmetry of the stress matrix and with the plate being
loaded only in the direction normal to the plate, we see that the term is zero. Finally, by using the
definitions of Equations 17.9, 17.10, and 17.6, Equations 17.23 and 17.24 become

@Mx

@x
þ @Txy

@y
� Qxz ¼ 0 (17:25)
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By a similar analysis in integrating Equation 17.15 we obtain

@Tyx

@x
þ @My

@y
� Qyz ¼ 0 (17:26)

Then consider the third equilibrium equation (Equation 17.16): if we integrate through the plate
thickness we have

ðh=2

�h=2

@szx

@x
dzþ

ðh=2

�h=2

@szy

@y
dzþ

ðh=2

�h=2

@szz

@z
dz ¼ 0 (17:27)

Then by the independence of x, y, and z, the symmetry of the stress matrix, and in view of the
definition of Equations 17.6 and 17.7, we have

@Qxz

@x
þ @Qyz

@y
þ szz j

h=2

�h=2
¼ 0 (17:28)

Recall that a simplifying assumption of plate theory is that the external loading is normal to the
plane of the plate (assumption 4), and also in the interior of the plate, the stresses normal to the plane
of the plate (sxx) are relatively small and can be neglected (assumption 9). Let the positive Z-axis
designate the direction of positive loading. Then as a consequence of these assumptions we may
regard the loading as being applied to either the upper or the lower plate surfaces, or equivalently to
the mid plane. Let p(x, y) be the loading. Then if we consider the loading in terms of the surface
stresses, p(x, y) may be expressed as

p(x, y) ¼ szz j
h=2

�szz j
�h=2

(17:29)

Therefore Equation 17.28 becomes

@Qxz

@x
þ @Qyz

@y
þ p(x,y) ¼ 0 (17:30)

Finally, consider integrating the moments of the stress derivatives in Equation 17.16

ðh=2

�h=2

z
@szx

@x
dzþ

ðh=2

�h=2

z
@szy

@y
dzþ

ðh=2

�h=2

z
@szz

@z
dz ¼ 0 (17:31)

It happens in view of the simplifying assumptions of plate theory, that each of these terms is either
zero or negligible. Consider the first term: again due to the independence of x, y, and z, we have

ðh=2

�h=2

z
@szx

@x
dz ¼ @

@x

ðh=2

�h=2

zszxdz (17:32)

Observe that, as in the theory of beam bending, the shear stress distribution across the plate
thickness is expected to be parabolic or at least symmetric, that is, an even function symmetric
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about the midplane. Then with z being an odd function, the antiderivative will be even and with
equal limits, the integral is zero.

A similar reasoning provides the same result for the second term.
In the third term, by integrating by parts, we have

ðh=2

�h=2

z
@szz

@z
dz ¼ zszz j

h=2

�h=2
�

ðh=2

�h=2

szzdz

¼ (h=2)szz j
h=2

�(�h=2) j
�h=2

szz �
ðh=2

�h=2

szzdz (17:33)

Due to the assumption on the loading on the plate we have

szz j
h=2

¼ �szz j
�h=2

(17:34)

Thus the first two terms of Equation 17.33 cancel and the third term is insignificant in view of
assumption 9 which states that the normal stresses szz are small in the interior of the plate.

17.6 SUMMARY OF TERMS AND EQUATIONS

For reference purposes, it is helpful to summarize the foregoing results. The coordinate directions
for a plate element are shown again in Figure 17.8. The plate thickness h is small compared with
the in-plane dimensions of the plate but still sufficiently large that membrane forces, if they exist,
do not affect the flexural (bending) forces. That is, loads applied normal to the plane of the
plate are supported by flexural forces as opposed to membrane (or midplane) forces. Finally, in
Figure 17.8 the Z-axis is normal to the plane of the plate and the X- and Y-axes are in the midplane
of the plate.

Z

Y

X

O

(e)

h

FIGURE 17.8 Plate element and coordinate directions.
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17.6.1 IN-PLANE NORMAL (MEMBRANE) FORCES

Nxx ¼
(17:4)

ðh=2

�h=2

sxxdz Nyy ¼
(17:7)

ðh=2

�h=2

syydz (17:35)

(Numbers under the equal sign refer to the original defining equation numbers.)

17.6.2 IN-PLANE SHEAR FORCES

Sxy ¼ Syx ¼
(17:5)

ðh=2

�h=2

sxydz ¼
(17:7)

ðh=2

�h=2

syxdz (17:36)

17.6.3 VERTICAL (Z-DIRECTION) SHEAR FORCES

Qxz ¼
(17:6)

ðh=2

�h=2

sxzdz Qyz ¼
(17:7)

ðh=2

�h=2

syzdz (17:37)

17.6.4 BENDING MOMENTS

Mx ¼
(17:9)

ðh=2

�h=2

zsxzdz My ¼
(17:11)

ðh=2

�h=2

zsyydz (17:38)

17.6.5 TWISTING MOMENTS

Txy ¼
(17:10)

ðh=2

�h=2

zsxydz ¼ Tyx ¼
(17:12)

ðh=2

�h=2

zsyxdz (17:39)

17.6.6 LOADING CONDITIONS

Loads are applied in the direction normal to the plane of the plate. With the plate being thin, these
loads may be regarded as equivalent to equally divided forces on the upper and lower surfaces of the
plate as

p(x, y) ¼
(17:29)

szz j
h=2

�szz j
�h=2

(17:40)

Alternatively, the loading may be regarded as being applied at the midplane.
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17.6.7 EQUILIBRIUM EQUATIONS

(i) In-plane (membrane) forces:

@Nxx

@x
þ @Sxy

@y
¼

(17:21)
0,

@Syx
@x

þ @Syy
@y

¼
(17:22)

0 (17:41)

(ii) Vertical (Z-direction) forces:

@Qxz

@x
þ @Qyz

@y
þ p(x, y) ¼

(17:20)
0 (17:42)

(iii) Moment equations:

@Mx

@x
þ @Txy

@y
� Qxz ¼ 0,

@Tyx
@x

þ @My

@y
� Qyz ¼ 0 (17:43)

17.6.8 COMMENT

The normal stress szz is assumed to be small in the interior of the plate, but on the surface the normal
stress may be interpreted as the loading p(x, y), as in Equation 17.40. Next, on the surface, the
loading is assumed to be normal to the surface. Consequently the shear stresses on the surface are
zero. This in turn means that the shear forces Qxz and Qyz are zero at the surface. Finally, as in beam
theory, the shear forces are assumed to be quadratic across the plate thickness and the normal
stresses szz and syy are assumed to be linear across the thickness.

17.7 STRESS–STRAIN–DISPLACEMENT RELATIONS

In Chapter 7, we developed stress–strain equations in Cartesian coordinates which, from Equations
7.49 through 7.54, can be expressed as

«xx ¼ (1=E) sxx � �(syy þ szz)
� �

(17:44)

«yy ¼ (1=E) syy � �(szz þ sxx)
� �

(17:45)

«zz ¼ (1=E) szz � �(sxx þ syy)
� �

(17:46)

«xy ¼ (1=2G)sxy (17:47)

«yz ¼ (1=2G)syz (17:48)

«zx ¼ (1=2G)szx (17:49)

where «ij (i, j¼ x, y, z) are elements of the strain tensor, E is the elastic constant, G is the shear
modulus and n is Poisson’s ratio. Earlier, in Chapter 5, we developed the strain–displacement
relations:

«xx ¼ @u=@x, «yy ¼ @v=@y, «zz ¼ @w=@z (17:50)

«xy ¼ (1=2)(@u=@yþ @v=@x), «yz ¼ (1=2)(@v=@zþ @w=@x), «zx ¼ 1=2(@w=@xþ @u=@z)

(17:51)

(See Equations 5.10, 5.11, 5.12, 5.15, 5.16, 5.17, and 5.32.)
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From our simplifying assumptions based upon the thinness of the plate, we have the displace-
ments u, v, and w of the form

u ¼ za(x, y), v ¼ zb(x, y), w ¼ w(x, y) (17:52)

wherea andb are constants (see Equations 17.1 through 17.3). Also, the normal stressszz in the interior
of the plate is small and negligible (assumption 9), so that for the purpose of analysis we have

szz ¼ 0 (17:53)

By substituting Equations 17.52 and 17.53 into 17.50 and 17.51, we obtain:

«xx ¼ @u=@x ¼ z@a=@x ¼ (1=E)(sxx � �syy) (17:54)

«yy ¼ @v=@y ¼ z@b=@y ¼ (1=E)(syy � �sxx) (17:55)

«zz ¼ @w=@z ¼ 0 ¼ �(�=E)(sxx þ syy) (17:56)

2«xy ¼ @u=@yþ @v=@x ¼ z@a=@yþ z@b=@x ¼ (1=G)sxy (17:57)

2«yz ¼ @v=@zþ @w=@y ¼ bþ @w=@y ¼ (1=G)syz (17:58)

2«zx ¼ @w=@xþ @u=@z ¼ @w=@xþ a ¼ (1=G)szx (17:59)

By integrating these equations through the thickness of the plate, we can obtain the constitutive
equations (or reduced stress-displacement) equations for a plate.

17.8 INTEGRATION OF STRESS–STRAIN–DISPLACEMENT EQUATIONS
THROUGH THE THICKNESS OF THE PLATE

Consider first Equation 17.54:

z@a=@x ¼ (1=E)(sxx � nsyy) (17:60)

Multiplying by z and integrating we have

ðh=2

�h=2

z2@a=@x dz ¼ (1=E)
ðh=2

�h=2

zsxxdz� (n=E)

ðh=2

�h=2

zsyydz (17:61)

Then in view of Equation 17.38, we have

ðh3=12Þ @a=@x ¼ (1=E) ðMx � nMy) (17:62)

Next, recall the basic assumption of plate theory that line elements normal to the middle surface
before loading remain straight and normal to the middle surface during and after loading (assump-
tion 7). This means that locally the plate is not distorted during bending, which in turn means that
the shear strains on surfaces normal to the Z-axis are zero. That is,

«zx ¼ 0 and «zy ¼ 0 (17:63)
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or

@u=@zþ @w=@x ¼ 0 and @v=@zþ @w=@y ¼ 0 (17:64)

or in view of Equations 17.1 and 17.2, we have

@w=@x ¼ �a and @w=@y ¼ �b (17:65)

Then by substituting the first of these results into Equation 17.64 we obtain

(1=E)(Mx � nMy) ¼ �(@2w=@x2) (h3=12) (17:66)

Next consider Equation 17.55:

z@b=@y ¼ (1=E)(syy � nsxx) (17:67)

By an analysis similar to the foregoing we obtain

(1=E)(My � nMx) ¼ �(@2w=@y2) (h3=12) (17:68)

Thirdly, consider Equation 17.56:

@w=@z ¼ 0� (n=E)(sxx þ syy) (17:69)

Since this equation represents Z-displacement derivatives in the Z-direction, which are small, the
terms do not contribute to flexural moments. Therefore, we can ignore the moment of this equation.

Consider Equation 17.57:

z (@a=@y)þ z (@b=@x) ¼ (1=G)sxy (17:70)

Multiplying by z and integrating, we have

ðh=2

�h=2

z2(@a=@y) dzþ
ðh=2

�h=2

z2(@b=@x) dz ¼ (1=G)
ðh=2

�h=2

zsxydz (17:71)

or in view of Equation 17.39 we have

(h3=12)(@a=@yþ @b=@x) ¼ (1=G)Txy (17:72)

By using Equation 17.65 we can express @a=@y and @b=@x in terms of second mixed derivatives of
w so that Equation 17.72 takes the simplified form

(1þ n)

E
Txy ¼ �(h3=12)

@2w

@x @y
(17:73)

where we have replaced G by E=2(1þ n) (see Equation 7.48).
Finally, regarding Equations 17.58 and 17.59, we have already incorporated them into our

analysis through the use of Equation 17.65.
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Consider next the direct integration of the stress–displacement relations of Equations 17.54
through 17.59, which will involve the in-plane, or membrane force effects. For Equation 17.54,
we have

ðh=2

�h=2

z@a=@x dz ¼ (1=E)
ðh=2

�h=2

(sxx � nsyy) dz (17:74)

or in view of Equation 17.35 we have

(@a=@x)(z2=2) j
h=2

�h=2
¼ 0 ¼ (1=E)Nxx � (n=E)Nyy

or

Nxx � nNyy ¼ 0 (17:75)

Similarly, for Equation 17.55, we obtain

Nyy � nNxx ¼ 0 (17:76)

Next, for Equation 17.56 we have

ðh=2

�h=2

sxxdzþ
ðh=2

�h=2

syydz ¼ 0 (17:77)

or

Nxx þ Nyy ¼ 0 (17:78)

For Equation 17.57, we have

ðh=2

�h=2

z
@a

@y
dzþ

ðh=2

�h=2

z
@b

@x
dz ¼ (1=G)

ðh=2

�h=2

sxydz (17:79)

or

(@a=@y)z2=2 j
h=2

�h=2
þ (@b=@x)z2=2 j

h=2

�h=2
¼ (1=G) Sxy

Since the integrated terms cancel to zero, we have

Sxy ¼ 0 (17:80)
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Finally, for Equations 17.58 and 17.59, recall that the assumptions of plate theory require that there
be no distortion within the plate during bending (assumption 7). This means that the shear strains «xz
and «yz are zero (see Equations 17.63, 17.58, and 17.59) leading to

(1=G)syz ¼ 0 and (1=G)sxz ¼ 0 (17:81)

By integrating through the thickness we have

(1=G)
ðh=2

�h=2

syzdz ¼ (1=G)Qyz ¼ 0 and (1=G)
ðh=2

�h=2

sxzdz ¼ (1=G)Qxz ¼ 0 (17:82)

These expressions appear to present a contradiction in view of Equation 17.30, which states that
the shear forces Qxz and Qyz must support the surface normal loading and thus cannot be zero. The
explanation, or resolution, is that Equations 17.30 and 17.82 are both within the range of the
approximations of plate theory. Specifically, no distortion implies an infinite shear modulus G,
which satisfies Equation 17.82. An infinite value of G, however, implies an infinite elastic modulus
E, which creates difficulties in other equations.

A better interpretation is that in the flexure of a plate the material near the surface provides the
flexural strength. Also, since the external loading is normal to the plate surface, the shear stresses on
the surface and consequently in the regions close to the surface are zero. In the midplane regions,
however, the flexural support is minimal. But here the shear is not zero. Therefore Equation 17.82
may be viewed as approximately satisfying the flexural response for a plate, particularly in the
surface regions of the plate. Alternatively, Equation 17.30 may be viewed as approximately satisfying
the loading equilibrium of the plate, particularly in the interior, midplane region.

17.9 GOVERNING DIFFERENTIAL EQUATIONS

We can now obtain the governing differential equation for plate flexure by combining the equilib-
rium equations and the stress–strain (moment–slope) equations. To this end, it is helpful to list some
principal relations from the foregoing sections:

17.9.1 EQUILIBRIUM EQUATIONS (SEE SECTION 17.5)

(1) Moment–shear relations:

@Mx

@x
þ @Txy

@y
� Qxz ¼

(17:25)
0 (17:83)

@Tyx

@x
þ @My

@y
� Qyz ¼

(17:26)
0 (17:84)

(2) Shear–loading relation:

@Qxy

@x
þ @Qyz

@y
þ p(x, y) ¼

(17:30)
0 (17:85)

(3) In-plane (membrane) forces:

@Nxx

@x
þ @Sxy

@y
¼

(17:21)
0 (17:86)
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@Syx
@x

þ @Nyy

@y
¼

(17:22)
0 (17:87)

17.9.2 DISPLACEMENT=SHEAR ASSUMPTIONS

(1) Displacements:

u ¼
(17:1)

za(a, y) v ¼
(17:2)

zb(x, y) w ¼
(17:3)

w(x, y) (17:88)

(2) Shear strains (in surface regions):

«zx ¼
(17:63)

0, «zy ¼
(17:63)

0 (17:89)

(3) Surface slopes:

@w

@x
¼

(17:65)
�a,

@w

@y
¼

(17:65)
�b (17:90)

17.9.3 MOMENT–CURVATURE AND IN-PLANE FORCE RELATIONS

(1) Moment–curvature:

(1=E)(Mx � nMy) ¼
(17:66)

� h3

12

� �
@2w

@x2
¼

(17:66)

h3

12

� �
@a

@x
(17:91)

(1=E)(My � nMx) ¼
(17:68)

� h3

12

� �
@2w

@y2
¼

(17:65)

h3

12

� �
@b

@y
(17:92)

1þ n

E

� �
Txy ¼

(17:73)
� h3

12

� �
@2w

@x@y
¼

(17:62)

h3

24

� �
@a

@y
þ @b

@x

� �
(17:93)

(2) In-plane force relations:

Nxx � nNyy ¼
(17:75)

0 (17:94)

Nyy � nNxx ¼
(17:76)

0 (17:95)

Nxx þ Nyy ¼
(17:78)

0 (17:96)

Sxy ¼
(17:80)

0 (17:97)

17.9.4 GOVERNING EQUATION

We can solve Equations 17.91 through 17.93 for Mx, My, and Txy as

Mx ¼ �D
@2w

@x2
þ n

@2w

@y2

� �
(17:98)
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My ¼ �D
@2w

@y2
þ n

@2w

@x2

� �
(17:99)

Txy ¼ �(1� n)D
@2w

@x@y
(17:100)

where D is defined as

D¼D Eh3=12(1� n2) (17:101)

Then by substituting these results into the equilibrium equations (Equations 17.83 and 17.84) we
obtain

�D
@

@x

@2w

@x2
þ @2w

@y2

� �
¼ Qxz (17:102)

and

�D
@

@x

@2w

@x2
þ @2w

@y2

� �
¼ Qxz (17:103)

Let the operator r2 be defined as

r2( )¼D @2( )

@x2
þ @2( )

@y2
(17:104)

Then Equations 17.102 and 17.103 have the simplified forms:

�D
@

@x
r2w ¼ Qxz (17:105)

and

�D
@

@x
r2w ¼ Qyz (17:106)

Finally by substituting for Qxz and Qyz in Equation 17.85, we have

Dr4w ¼ p(x, y) (17:107)

or more explicitly

@4w

@x4
þ 2

@4w

@x2@y2
þ @4w

@y2
¼ p=D (17:108)

An advantage of the form of Equation 17.107, in addition to its simplicity is that we can readily
express it in polar coordinates and then apply it with circular plates.

By solving Equations 17.94 through 17.97 for Nxx, Nyy, and Sxy, we immediately obtain

Nxx ¼ 0, Nyy ¼ 0; Sxy ¼ 0 (17:109)
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These results are consistent with the loading being directed normal to the plane of the plate, and with
the small displacement so that in-plane (membrane) effects are independent of flexural effects.
Vinson [1] shows that it is possible to have in-plane forces without violating the assumptions of
plate theory. That is, with small displacements a plate can independently support loading normal to
the plate surface and in-plane (membrane) forces. In other words, the flexural and membrane effects
are decoupled (see Ref. [1] for additional details).

17.10 BOUNDARY CONDITIONS

Consider a rectangular plate and an edge perpendicular to the X-axis: the common support and end
conditions are (1) simple support (zero displacement and zero moment, along the edge); (2) clamped
(zero displacement and zero rotation); (3) free; and (4) elastic. The following paragraphs list the
resulting conditions on the displacements for these conditions.

17.10.1 SIMPLE (HINGE) SUPPORT

In this case, the plate edge has restricted (zero) displacement, but it is free to rotate (about an axis
parallel to the edge, the Y-axis). That is

w ¼ 0 and Mx ¼ 0 (17:110)

From Equation 17.98, Mx is expressed in terms of the displacement v as

Mx ¼ �D
@2w

@x2
þ n

@2w

@y2

� �
¼ 0 (17:111)

17.10.2 CLAMPED (FIXED OR BUILT-IN) SUPPORT

In this case, the edge displacement and rotation are zero. That is

w ¼ 0 and @w=@y ¼ 0 (17:112)

17.10.3 FREE EDGE

In this case, there are no external restrictions on the movement of the edge. That is, there are no
forces nor moments applied to the edge. Analytically, this means

Qxz ¼ 0, Mx ¼ 0, Txy ¼ 0 (17:113)

A difficulty with these equations, however, is that we now have three boundary conditions whereas
the biharmonic operator r4 of the governing equation (Equation 17.107) requires only two
conditions per edge.* Therefore, to be consistent with the assumptions of plate theory, we need to
combine the conditions of Equation 17.113, reducing the number from three to two. This can be
accomplished using an ingenious analysis, attributed to Kirchoff: Recall that the stresses on the edge
normal to the X-axis are sxx, sxy, and sxz. The shear stresses are the sources of the twisting moment
Txy and the shear force Qxz. By examining the equilibrium of an element of the edge, we can
approximately combine Txy and Qxz into an ‘‘effective’’ shear force Vxz defined as

Vxz ¼ Qxz þ @Txy=@y (17:114)

*A fourth order equation in two dimensions requires eight auxiliary conditions, or two per edge for a rectangular plate.
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To see this consider a representation of Txy by a pair of equal magnitude but oppositely directed
vertical forces as in Figure 17.9. As such Txy is represented by a simple couple (see Section 1.5.2)
and the directions of the two forces are irrelevant as long as they are parallel (that is, they may be
vertical, as well as horizontal). Next, consider a representation of the twisting moment at a small
distance Dy along the edge as in Figure 17.9. Using the first term of a Taylor series, the twisting
moment at this location is approximately Txyþ (@Txy=@y)Dy. Then by superposing adjoining forces
we have an upward force of (@Txyþ @y)Dy on an element of length Dy (see Figure 17.9). Hence
there is a net vertical force Vxz on the element given by Qxzþ @Txy=@y as in Equation 17.114. By
substituting from Equations 17.100 and 17.102 we see that Vxz may be expressed in terms of the
displacement v as

Vxz ¼ Qxz þ @Txy=@y ¼ �D
@3w

@x3
þ (2� n)

@3w

@x@y2

� �
(17:115)

Then for a free edge the boundary conditions of Equation 17.113 are replaced by the conditions

Mx ¼ 0 and Vxz ¼ 0 (17:116)

or in view of Equations 17.98 and 17.115

@2w

@x2
þ n

@2w

@y2
¼ 0 and

@3w

@x3
þ (2� n)

@3w

@x@y2
¼ 0 (17:117)

17.10.4 ELASTIC EDGE SUPPORT

An ‘‘elastic edge’’ provides support proportional to the displacement and=or rotation. If, for
example, an X-face is an elastic edge, the shear provided by the support is proportional to the
Z-direction displacement w and=or the rotation, or slope, is proportional to the flexural moment.
That is

Vxz ¼ �kdw and=or Mx ¼ �kr@w=@x (17:118)

Then by substituting from Equations 17.98 and 17.115 we have

@3w

@x3
þ (2� n)

@3w

@x@y2
¼ kdw=D and

@2w

@x2
þ @2w

@y2
¼ kr=D (17:119)

X

Δy

Txy

Txy  + (∂Txy/∂y) Δy

FIGURE 17.9 Representation of twisting moment along an edge normal to the X-axis.
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17.11 INTERNAL STRESSES

Using Equations 17.98 through 17.103 we can immediately obtain expressions for the bending
moments, the twist, and the shearing forces in terms of the displacement:

Mx ¼
(17:98)

�D
@2w

@x2
þ n

@2w

@y2

� �
(17:120)

My ¼
(17:99)

�D
@2w

@y2
þ n

@2w

@x2

� �
(17:121)

Txy ¼
(17:102)

�(1� n)D
@2w

@x@y
(17:122)

Qxz ¼
(17:102)

�D
@

@x

@2w

@x2
þ @2w

@y2

� �
(17:123)

Qyz ¼
(17:103)

�D
@

@y

@2w

@x2
þ @2w

@y2

� �
(17:124)

where D is defined as

D ¼D Eh3=12(1� n2) (17:125)

Recall from beam theory that in the interior of the beam the axial stresses due to bending (the
flexure) increase linearly across the cross section away from the neutral axis. That is, the stress is
proportional to the distance, above or below, the neutral axis. Recall also in a beam that the shear
stress has a quadratic (parabolic) distribution across the cross section. Since the assumptions of plate
theory are analogous to those of beam theory, the stress distributions across the plate cross sections,
about the midplane, are consequently analogous to those of beam theory. Specifically, for the
stresses on the cross sections normal to the X- and Y-axes, we have

sxx ¼ Mxz=(h
3=12), sxy ¼ Txyz=(h

3=12), syy ¼ Myz=(h
3=12) (17:126)

and

sxz ¼ (3Qxz=2h) 1� (2z=h)2
� �

, syz ¼ (3Qyz=2h) 1� (2z=h)2
� �

(17:127)

The procedure for determining these stresses is straight-forward: we solve the governing equation
r4v¼ p=D, Equation 17.107, for a given loading p(x, y), subject to the boundary conditions (see
Section 17.10) appropriate for a given plate support. Next, knowing the displacement, we can use
Equations 17.120 through 17.124 to determine the bending moments, twist, and shear forces.
Finally, Equations 17.126 and 17.127 provide the stresses.

17.12 COMMENTS

When compared with elementary beam theory, the assumptions of classical plate theory as in
Sections 17.1 and 17.2 are considerably numerous and restrictive. The complexity of the geometry
with bending in two directions, necessitates the simplifications provided by the assumptions. Even
so, the resulting analysis is still not simple. Ultimately we need to solve a fourth-order partial
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differential equation (Equation 17.107) with varying degrees of boundary conditions. Closed form
solutions are thus elusive or intractable except for the simplest of loading and boundary conditions.

In the following chapters, we will look at some of these elementary solutions. We will then
consider problems of more practical importance in structural design and the ways of obtaining stress
analyses for those cases.

SYMBOLS

D Eh3=12(1� n2) (see Equation 17.101)
E Elastic constant
(e) Plate element
G Shear modulus
h Plate thickness
kd, kr Shear and moment coefficients (see Equation 17.118)
Mx Bending moment per unit edge length on the X-face (see Equation 17.9)
MY Bending moment per unit edge length on the Y-face (see Equation 17.11)
Nxx Membrane force per unit edge length in the X-direction (see Equation 17.4)
Nyy Shear farce per unit edge length on the Y-face in the Y-direction (see Equation

17.7)
O Origin of X,Y, Z coordinate axes
p(x, y) Surface pressure; loading
Qxz Shear force per unit edge length on the X-face in the Z-direction (see Equa-

tion 17.6)
Qyz Shear force per unit edge length on the Y-face in the Z-direction (see Equa-

tion 17.7)
Sxy Shear force per unit edge length, on the X-face in the Y-direction (see Equa-

tion 17.5)
Syx Shear force per unit edge length, on the Y-face in the X-direction (see Equa-

tion 17.7)
Txy Twisting moment per unit edge length on the X-face, about the X-face (see

Equation 17.10)
Tyx Twisting moment per unit edge length on the Y-face about the Y-face (see

Equation 17.12)
u, v,w Displacements in the X, Y,Z direction
Vxz Effective shear (see Equation 17.114)
X,Y,Z Rectangular (Cartesian axes)
x, y, z Coordinates relative to X,Y,Z
a, b Rotations of plate X-face, Y-face cross sections
«ij (i, j¼ x, y, z) Strain matrix components
n Poisson’s ratio
sij (i, j¼ x, y, z) Stress matrix components; stresses on the i-face in the j-direction
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18 Plates: Fundamental
Bending Configurations
and Applications

18.1 REVIEW

In Chapter 17, we established the governing partial differential equation for plate deformation due to
bending as a result of loading normal to the plate (Equation 17.107):

r4w ¼ p=D (18:1)

where
w is the displacement normal to the plate
p is the loading function
D is (Equation 17.91)

D ¼ Eh3=12(1� n2) (18:2)

where
h is the plate thickness
E and n are the elastic modulus and Poisson’s ratio

In Cartesian coordinates the r4 operator has the form

r4( ) ¼ @4( )

@x4
þ 2

@4( )

@x2@y2
þ @4( )

@y4
(18:3)

In cylindrical coordinates the r2 operator has the form [1]

r2( ) ¼ @2( )

@r2
þ 1

r

@( )

@r
þ 1
r2

@2( )

@u2

¼ 1
r

@

@r
r
@( )

@r

� �
þ 1
r2

@2( )

@u2
(18:4)

so that r4( ) is then

r4( ) ¼ r2r2( ) (18:5)

In Cartesian coordinates, p is a function of x and y. In cylindrical coordinates, p is a function of r and u,
although for most circular plate problems of practical importance the loading is axisymmetric,
that is p¼ p(r).
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For rectangular plates the boundary conditions are

1. Simple (hinge) support (parallel to Y-axis):

w ¼ 0 and
@2w

@x2
þ n

@2w

@y2
¼ 0 (Mx ¼ 0) (18:6)

(See Equation 17.112.)
2. Clamped (fixed) support (parallel to Y-axis):

w ¼ 0 and @w=@x ¼ 0 (18:7)

(See Equation 17.112.)
3. Free edge (parallel to Y-axis):

@2w

@x2
þ n

@2w

@y2
¼ 0 and

@3w

@x3
þ (2� 0)

@3w

@x@y2
¼ 0 (18:8)

(See Equation 17.117.)

For circular plates the most common supports are simple support and clamped (built-in) support.
For axisymmetric loading these may be expressed as [2]:

1. Simple support:

w ¼ 0 and
@2w

@r2
þ n

r

@w

@r
¼ 0 (18:9)

2. Clamped support:

w ¼ 0 and @w=@r ¼ 0 (18:10)

The procedure for a given problem is to solve Equation 18.1 for w subject to the appropriate
boundary conditions. Then knowing w, the bending moments and shears may be computed and
from these the stresses may be evaluated. For rectangular plates, the moments, shears and stresses
are given by Equations 17.120 through 17.127. For axisymmetrically loaded circular plates, the
radial bending moment, shear, and stresses are [2]

Mr ¼ �D
d2w

dr2
þ n

r

dw

dr

� �
(18:11)

Qr ¼ �D
d

dr

1
r

d

dr
þ r

dw

dr

� �� �
(18:12)

�r ¼ Mrz=(h
3=12) (18:13)

�rz ¼ 3Qr

2h
1� z

h=2

� �2
" #

(18:14)

In the following sections, we will review some elementary and fundamental plate loading problems
and their solutions.
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18.2 SIMPLE BENDING OF RECTANGULAR PLATES [3]

Consider first a rectangular plate subjected to pure bending as represented in Figure 18.1.
Specifically let there be uniform moments applied along the edges as shown and let the twisting

moment Txy be zero. That is,

Mx ¼ Mx0, My ¼ My0, Txy ¼ 0 (18:15)

Then from Equations 17.120, 17.121, and 17.122 the plate curvatures are

@2w

@x2
¼ �Mx0 � nMy0

D(1� n2)
(18:16)

@2w

@y2
¼ �My0 � nMx0

D(1� n2)
(18:17)

@2w

@x@y
¼ 0 (18:18)

From the third of these expressions, we immediately see that the displacement w has the form

w ¼ f (x)þ g(y) (18:19)

Then

@2w

@x2
¼ d2f

dx2
¼ �Mx0 � nMy0

D(1� n2)
(18:20)

and

@2w

@y2
¼ d2g

dy2
¼ �My0 � nMx0

D(1� n2)
(18:21)

By integration we obtain

f (x) ¼ �Mx0 � nMy0

2d(1� n2)
x2 þ c1xþ c2 (18:22)

Z

Y

X

Mx

My

FIGURE 18.1 Pure bending of a rectangular plate.
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and

g(y) ¼ �My0 � nMx0

2D(1� n2)
y2 � c3yþ c4 (18:23)

where c1, . . . , c4 are constants. Therefore the displacement is

w ¼ �Mx0 � nMy0

2D(1� n2)
x2 �My0 � nMx0

2D(1� n2)
y2 þ c1xþ c3yþ c2 þ c4 (18:24)

To uniquely specify the displacement, we can eliminate rigid body movement by the conditions:

w(0, 0) ¼ 0,
@w

@x
(0, 0) ¼ 0,

@w

@y
(0, 0) ¼ 0 (18:25)

The displacement then becomes

w(x, y) ¼ �Mx0 � nMy0

2D(1� n2)
x2 �My0 � nMx0

2D(1� n2)
y2 (18:26)

The plate surface then has the form of an elliptical paraboloid.
Finally, if the moments Mx0 and My0 are equal w has the simplified form:

w ¼ �Mx0
x2 þ y2

2D(1þ n)
(18:27)

18.3 SIMPLY SUPPORTED RECTANGULAR PLATE

Consider a rectangular plate with dimensions a and b (along the X- and Y-axes) with hinged (pinned)
edge supports. Let the origin of the axis system be placed at a corner, as in Figure 18.2. Let the
loading on the plate be p(x, y). The governing equation is then (see Equations 17.107 and 17.108)

r4w ¼ @4w

@x4
þ 2

@4w

@x2@y2
þ @4w

@y2
¼ p(x, y)=D (18:28)

where the boundary conditions are

w(0, y) ¼ w(x, 0) ¼ w(a, y) ¼ w(x, b) ¼ 0 (18:29)

h

b

a

Z

Y

X

O

FIGURE 18.2 Rectangular plate and axis system.
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@2w

@x2
(0, y) ¼ @2w

@y2
(x, 0) ¼ @2w

@x2
(a, y) ¼ @2w

@y2
(x, b) ¼ 0

The boundary conditions of Equations 18.29 will be satisfied if we can express the displacement w
in terms of series of sine functions mpx/a and npy/b. This is feasible since these functions form a
‘‘complete’’ and ‘‘orthogonal’’ system, with their sum forming a Fourier series [4,5]. Therefore we
seek a solution, w(x, y) of Equation 18.28 in the form

w(x, y) ¼
X1

m¼1

X1

n¼1

Amm sin
mpx

a

� �
sin

npx

b

� �
(18:30)

By substituting into Equations 18.28 we obtain:

X1

m¼1

X1

n¼1

Amn
mp

a

� �4
þ 2

mp

a

� �2 np

b

� �
þ np

b

� �4
� �

sin
mpx

a

� �
sin

npy

b

� �
¼ p(x, y)=D (18:31)

We can also express p(x, y) in a double sine series as

p(x, y) ¼
X1

m¼1

X1

n¼1

Bmn sin
mpx

a

� �
sin

npy

b

� �
(18:32)

where by Fourier expansion [4] the coefficients Bmn may be expressed as

Bmn ¼ 4
ab

� �ða

0

ðb

0

p(x, y) sin
mpx

a

� �
sin

npy

b

� �
dxdy (18:33)

By substituting from Equation 18.32 into Equation 18.31, we have

X1

m¼1

X1

n¼1

Amn
mp

a

� �4
þ 2

mp

a

� � np

b

� �
þ np

b

� �4
� �

sin
mpx

a

� �
sin

npy

b

� �

¼ (1=D)
X1

m¼1

X1

n¼1

Bmn sin
mpx

a

� �
sin

npx

b

� �

or

X1

m¼1

X1

n¼1

Amn
mp

a

� �2
þ np

b

� �2
� �2

� (1=D)Bmn

( )
sin

mpx

a

� �
sin

npy

b

� �
¼ 0 (18:34)

This expression is identically satisfied by setting the coefficients of sin(mpx=a) sin(npy=b) equal to
zero. Then we have

Amn ¼ (1=D)
Bmn

mp

a

� �2
þ np

b

� �2
� �2 (18:35)
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Finally, by substituting Amn in Equation 18.30 with Equation 18.37, the displacement w is seen to be

w ¼ (1=D)
X1

m¼1

X1

n¼1

Bmn

mp

a

� �2
þ np

b

� �2
� �2 sin

mpx

a

� �
sin

npy

b

� �
(18:36)

where Bmn are given by Equation 18.33.

18.4 SIMPLY SUPPORTED RECTANGULAR PLATE WITH A UNIFORM LOAD

As an immediate application of the foregoing result, consider a simply supported rectangular plate
with a uniform load p0. Then from Equation 18.33, the coefficients Bmn are

Bmn ¼ 4
ab

ða

0

ðb

0

p0 sin
mpx

a

� �
sin

npy

b

� �
dx dy

or

Bmn ¼ 4p0
mnp2

( cosmp� 1)( cos np� 1) (18:37)

Then from Equation 18.35, Amn are seen to be

Amn ¼ 4p0
p6D

( cosmp� 1)( cos np� 1)

mn
m

a

� �2
þ n

b

� �2
� � (18:38)

Consequently the displacement w may be written as

w ¼ 16p0
p6D

X1

m¼1

X1

n¼1

sin
mpx

a

� �
sin

npy

b

� �

mn
m2

a2
þ n2

b2

� �2 (18:39)

where only the odd terms are used in the summations.
The presence ofmultiplied integers in the denominator of the expression forAmn in Equation 18.38

provides for rapid convergence. To see this, consider a square plate (a¼ b): the first four Amn are

A11 ¼ 4p0a4

p6D
, A13 ¼ A31 ¼ 4p0a4

75p6D
, A33 ¼ 16p0a4

729p6D
(18:40)

Observe that A33=A11 is then only 5.48� 10�3.

18.5 SIMPLY SUPPORTED RECTANGULAR PLATE
WITH A CONCENTRATED LOAD

Next consider a simply supported rectangular plate with a concentrated load, with magnitude p, at a
point P, having coordinates (j,h) as represented in Figure 18.3. Timoshenko and Woinosky-Kreiger
solve this problem in their treatise on plate theory [6]. Their procedure is to apply a uniform load
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over a rectangular region of the plate and then reduce the region to a point while simultaneously
increasing the load. The resulting displacement w is

w ¼ 4P
p4abD

X1

m¼1

X1

n¼1

sin
mpj

a

� �
sin

np�

b

� �

m2

a2
þ n2

b2

� � sin
mpx

a

� �
sin

npy

b

� �
(18:41)

Observe that this result could have been obtained by an analysis of Equations 18.33 and 18.36 by
using a two-dimensional singularity (or impulse) function (see Chapter 10).

18.6 COMMENTS

The solutions presented in Equations 18.36, 18.39, and 18.41 are the most elementary of the many
possible solutions of rectangular plate problems. References [6–8] provide many other solutions and
the listings in Roark and Young [9] and Pilkey [10] provide additional solutions.

Although the solutions of Equations 18.36, 18.39, and 18.41 are relatively simple in their forms
and formulation, they nevertheless have double infinite series. Even though convergence is rela-
tively rapid, as seen in Section 18.4, for computational purposes it is sometimes helpful to look for
simpler forms of solutions. By insightful analysis [2,6], it is seen that these solutions may be
expressed in a single series. This in turn has produced a number of results of practical importance
[6,9,10].

Finally, a feature of the solution of simply supported rectangular plates is that the surface
may become anticlastic. This may be simulated by forces concentrated at the corners. At one
time, this feature was used in experiments to verify the basic theory of plate bending. For
example, the corners of a uniformly downward loaded, simply supported square plate have a
tendency to rise.

18.7 CIRCULAR PLATES

Circular plates are used in virtually all kinds of structural applications. For the most part, the loading
and support are axisymmetric.

We can obtain the governing equations for circular plates by following the same procedures as
in Chapter 17. Alternatively, we can simply make a coordinate transformation from rectangular

b
Y

X

a

O

Z
P

p(x, h)

FIGURE 18.3 Concentrated point load on a simply supported rectangular plate.
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coordinates (x, y, z) to cylindrical coordinates (r, u, z). Recall from Equations 17.107 and 18.1 that
the governing equation for the plate deformation w is

r4w ¼ p=D (18:42)

The operator r4( ) may be expressed as r2r2( ). In cylindrical coordinates r2( ) is [1]

r2( ) ¼ @2( )

@r2
þ 1

r

@( )

@r
þ @2( )

@u2
(18:43)

Correspondingly, the equilibrium equations are [2,6]

@Qr

@r
þ 1

r

@Qu

@u
þ 1

r
Qr þ p(r, u) ¼ 0 (18:44)

@Mr

@r
þ 1

r

Tru
@u

þMr �Mu

r
� Qr ¼ 0 (18:45)

@Tru
@r

þ 1
r

@Mu

@u
þ 2

r
Mru � Qu ¼ 0 (18:46)

where
Qr and Qu are the shear forces per unit length on the radial and circumferential faces of an
interior element

Mr and Mu are the bending moments per unit length on the radial and circumferential faces
Tru is the twisting moment

In terms of the displacement w, the moments and twist are [2]

Mr ¼ �D
@2w

@r2
þ n

r

@w

@r
þ n

r2
@2w

@u2

� �
(18:47)

Mu ¼ �D
1
r2

@2w

@u2
þ 1

r

@w

@r
þ n

@2w

@u2

� �
(18:48)

Tru ¼ �D(1� n)
1
r

@2w

@r@u
� 1
r2

@w

@u

� �
(18:49)

As with rectangular plates we assume that the in-plane (membrane) forces are either zero or
sufficiently small that they do not affect the shears, moments, or displacements due to bending.

When the loading and support are axisymmetric, the foregoing equations simplify considerably:
r2( ) and r4( ) are

r2( ) ¼ d2( )

dr2
þ 1

r

d( )

dr
¼ 1

r

d

dr
r
d( )

dr

� �
(18:50)

and

r4( ) ¼ r2r2( ) ¼ 1
r

d

dr
r
d

dr

1
r

d

dr
r
d( )

dr

� �� �� 	
(18:51)
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The equilibrium equations (Equations 18.44, 18.45, and 18.46) then become

dQr

dr
þ 1

r
Qr þ p(r) ¼ 0 (18:52)

dMr

dr
þMr �Mu

r
� Qr ¼ 0 (18:53)

where Equation 18.46 is identically satisfied.
Similarly, the moment–displacement equations (Equations 18.47, 18.48, and 18.49) become

Mr ¼ �D
d2w

dr2
þ n

r

dw

dr

� �
(18:54)

Mu ¼ �D
1
r

dw

dr
þ n

d2w

dr2

� �
(18:55)

Tru ¼ 0 (18:56)

Finally, by solving Equations 18.45 and 18.46 for Qr and Qu and using Equations 18.54, 18.55, and
18.56 we have

Qr ¼ �D
d3w

dr3
þ 1

r

d2w

dr2
� 1
r2

dw

dr

� �
(18:57)

and

Qu ¼ 0 (18:58)

18.8 SOLUTION OF THE GOVERNING EQUATION FOR CIRCULAR PLATES

From Equations 18.42 and 18.51, the governing equation for an axisymmetrically loaded and
axisymmetrically supported circular plate is

1
r

d

dr
r
d

dr

1
r

d

dr
r
dw

dr

� �� �� 	
¼ p(r)=D (18:59)

Thus if we know p(r), we can integrate four times to obtain w(r) and then we can compute the
bending moments and shear forces using Equations 18.54 through 18.58. The radial and circum-
ferential flexural stresses are then simply [2]

srr ¼ Mrz

h3=12
and suu ¼ Muz

h3=12
(18:60)

Similarly the shear stresses are [2]

sru ¼ 0, suz ¼ 0, srz ¼ 3Qr

2h
1� z

h=2

� �2
" #

(18:61)
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Upon integrating Equation 18.59 four times, we obtain four constants of integration, which may be
evaluated from the support and symmetry conditions. As an illustration, suppose p(r) is a uniform
load P0: then the four integrations of Equation 18.59 leads to

w ¼ P0r4

64D
þ c1r

2‘nr þ c2r
2 þ c3‘nr þ c4 (18:62)

where c1, . . . , c4 are the integration constants. From Equations 18.54 through 18.58, the bending
moment and shear forces are then seen to be

Mr ¼ �D[(3þ n)
P0r2

16D
þ 2c1(1þ n)‘nr þ (3þ n)c1

þ 2c2(1þ n)þ c3(n � 1)=r2] (18:63)

Mu ¼ �D[(1þ 3n)
P0r2

16D
þ (1þ n)2c1‘nr þ (1þ 3n)c1

þ 2(1þ n)c2 þ (1� n)c3=r
2] (18:64)

Tru ¼ 0 (18:65)

Qr ¼ �D
P0r

2D
þ 4

cI
r

� �
(18:66)

Qu ¼ 0 (18:67)

For finite displacement, finite shear, and finite bending moment at the origin (plate center), we
must have

c1 ¼ 0 and c3 ¼ 0 (18:68)

We can use the support conditions to evaluate c2 and c4. Consider the two common support cases:
(1) simple support and (2) clamped (or fixed) support.

18.8.1 SIMPLY SUPPORTED, UNIFORMLY LOADED, CIRCULAR PLATE

In this case the support conditions are
When r¼ a

w ¼ 0 and Mr ¼ 0 (18:69)

where a is the plate radius. From Equations 18.62 and 18.68, the second boundary conditions
lead to

Mr(a) ¼ 0 ¼ (3þ n)
P0a2

16D
þ 2c2(1þ n)

or

c2 ¼ � (3þ n)

2(1þ n)

P0a2

16D
(18:70)
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From Equations 18.62 and 18.68 the first condition of Equation 18.69 then becomes

w(a) ¼ 0 ¼ P0a4

64D
� 3þ n

2(1þ n)

P0a4

16D
þ c4

or

c4 ¼ P0a4

64D
5þ 0
1þ n

� �
(18:71)

Therefore the displacement w of Equation 18.62 becomes

w ¼ P0

64D
r4 � 2(3þ n)

1þ n
a2r2 þ 5þ n

1þ D
a4

� �
(18:72)

18.8.2 CLAMPED UNIFORMLY LOADED CIRCULAR PLATE

In this case the support conditions are
when r¼ 1

w ¼ 0 and
dw

dr
¼ 0 (18:73)

From Equations 18.62 and 18.68 dw=dr is seen to be

dw

dr
¼ P0r3

16D
þ 2c2r (18:74)

Then the second boundary condition becomes

dw

dr
(a) ¼ 0 ¼ P0a3

16D
þ 2c2a

or

c2 ¼ �P0a2

32D
(18:75)

From Equations 18.62 and 18.68, the first condition of Equation 18.73 then becomes

w(a) ¼ 0 ¼ P0a4

64D
� P0a4

32D
þ c4

or

c4 ¼ P0a4

64D
(18:76)

Therefore the displacement w of Equation 18.62 becomes

w ¼ P0

64D
(r4 � 2a2r2 þ a4) (18:77)
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18.9 CIRCULAR PLATE WITH CONCENTRATED CENTER LOAD

Centrally loaded circular plates are common structural components.We can study them in the sameway
as we did for rectangular plates with concentrated loads. We can apply a uniform load over a central
circular region of the plate with radius b (b< a), with a being the plate radius. Then as b is reduced to
zero with the overall load remaining the same, we have the concentrated load configuration.
Timoshenko and Woinowsky-Krieger [6] present the details of this analysis. The results for a simple
supported and clamped plate are summarized in the following sections.

18.9.1 SIMPLY SUPPORTED CIRCULAR PLATE WITH A CONCENTRATED CENTER LOAD

The deflection w at any point of a distance r from the plate center is [6]

w ¼ P

16pD
3þ n

1þ n

� �
(a2 � r2)þ 2r2‘n(r=a)

� �
(18:78)

where P is the magnitude of the concentrated center load. The maximum deflection, occurring at
r¼ 0, is then

wmax ¼ Pa2

16pD
3þ n

1þ n

� �
(18:79)

18.9.2 CLAMPED CIRCULAR PLATE WITH A CONCENTRATED CENTER LOAD

The deflection w at any point of a distance r from the plate center is [6]

w ¼ P

16pD
[(a2 � r2)þ 2r2‘n(r=a)] (18:80)

where again P is the magnitude of the concentrated center load. The maximum deflection, occurring
at r¼ 0, is then

wmax ¼ Pa2

16pD
(18:81)

18.10 EXAMPLE DESIGN PROBLEM

Consider a clamped circular plate with radius a with a uniform load as in Figure 18.4. Suppose the
center deflection d is equal to the thickness h of the plate. Determine the flexural stresses on the
surface at the center and at the rim support.

w = hh

p0

FIGURE 18.4 Uniformly loaded clamped circular plate.
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SOLUTION

From Equation 18.77, the displacement is

w ¼ P0
64D

(r4 � 2a2r2 þ a4) (18:82)

The deflection d at the center (r¼ 0) is

d ¼ P0a4

64D
(18:83)

From Equation 18.60 the upper surface flexural stresses are

srr ¼ Mr(h=2)
(h3=12)

¼ 6Mr=h2 and suu ¼ Mu(h=2)
(h3=12)

¼ 6Mu=h2 (18:84)

From Equations 18.63, 18.64, 18.68, 18.75, and 18.76 Mr and Mu are seen to be

Mr ¼ � (3þ n)p0r2

16
þ (1þ n)p0a2

16
(18:85)

and

Mu ¼ � (1þ 3n)p0r2

16
þ (1þ n)p0a2

16
(18:86)

Then at the center, with r¼ 0, the stresses are

srr ¼ 3(1þ n)
8

p0(a2=h2) and suu ¼ 3(1þ n)
8

p0(a2=h2) (18:87)

Suppose now, that according to the example statement d, as given by Equation 18.83, is equal to
the thickness, h of plate, then the corresponding loading p0 is

p0 ¼ 64Dh
a4

¼ 16Eh4

3(1� n2)a4
(18:88)

The stresses at the center are then

srr ¼ suu ¼ 2Eh2

a2(1� n)
(18:89)

Similarly, from Equations 18.63 at the plate rim where r¼ a, the bending moments are

Mr ¼ �p0a2=8 and Mu ¼ �p0na2=8 (18:90)

From Equation 18.60 the upper surface flexural stresses are

srr ¼ �3p0a2=4h2 and suu ¼ �3p0na2=4h2 (18:91)
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Then with p0 given by Equation 18.88, srr and suu become

srr ¼ � 4Eh2

(1� n2)a2
and suu ¼ � 4nEh2

(1� n2)a2
(18:92)

Observe that the stresses on the upper plate surface are positive in the center of the plate (tension)
and negative at the rim (compression).

18.11 A FEW USEFUL RESULTS FOR AXISYMMETRICALLY
LOADED CIRCULAR PLATES

By similar analyses we can obtain results for other problems of practical importance. Table 18.1
provides a listing of a few of these for the case where Poisson’s ratio is 0.3. Specifically, the
maximum displacement wmax and the maximum stress smax and their locations are given.

TABLE 18.1
A Few Useful Formulas for Axisymmetrically
Loaded Circular Plates

1. Simple rim support, central uniform load

smax ¼ px2

h2
1:5þ 1:95‘n(r0=x)� 0:263(x=r0)

2

 �

(at the center)

wmax ¼ px2

Eh2
1:733r20 � 0:683x2‘n(r0=x)� 1:037x2

 �

p
h

x

r0

2. Simple rim support, central ring load

smax ¼ p

h2
0:167þ 0:621‘n(r0=x)� 0:167(x=r0)

2

 �

(at the center)

wmax ¼ p

Eh3
0:551(r20 � x2)� 0:434x2‘n(r0=x)

 �

p
h

x

r0
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18.12 COMMENTS

All the foregoing analyses and examples have simple loadings (uniform load or concentrated load)
and simple (pinned) or clamped (fixed or built-in) supports. Nevertheless, they represent many
structural applications, particularly when plates are used as closures or covers.

If the loadings or support are more complex we have several options:

1. We can attempt to approximately solve the governing partial differential equation. After
all, the governing equation is itself an approximation based upon numerous simplifying
assumptions (see Chapter 17).

2. We can consult the several fine handbooks of solutions and approximate solutions to
various plate loading and support configurations [9,10].

3. We can seek a finite element solution. This is a useful approach if software and computer
hardware are available.

4. We can approximate a given structure or loading with simpler models.

In Chapter 19, we examine modeling and approximations for flanges, brackets, and panels.

TABLE 18.1 (continued)
A Few Useful Formulas for Axisymmetrically
Loaded Circular Plates

3. Clamped rim support, central uniform load

smax ¼ px2

h2
1:5� 0:75(x=x0)

2

 �

at the rim for x > 0:58r0

smax ¼ px2

h2
1:95‘n(r0=x)þ 0:488(x=r0)

2

 �

at the rim for x < 0:58r0

wmax ¼ px2

Eh3
0:683r20 � 0:683x2‘n

 �

(r0=x)� 0:512x2

p
h

x

r0

4. Clamped rim support, central ring load

smax ¼ 0:477p
h2

1� (x=r0)
2


 �
at the rim for x > 0:31r0

smax ¼ 0:31p
h2

2‘n(r0=x)þ (x=r0)
2 � 1


 �
at the center for x < 0:31r0

wmax ¼ p

Eh3
0:217(r20 � x2)� 0:434x2‘n(r0=x)

 �

p h

x

r0
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SYMBOLS

A Circular plate radius
a, b Plate edge dimensions
Amn, Bmn Fourier coefficients (see Equations 18.30, 18.32, 18.33, and 18.35)
D Eh3=12(1� n2) (see Equation 18.2)
E Elastic modulus
h Plate thickness
Mr Radial bending moment
Mx, My Edge bending moments
Mxo, Myo Uniform values of Mx, My

Mu Tangential bending moment
p Loading normal to the plate surface
pO Uniform loading
Qr Radial shear force
Qu Tangential shear force
r Radial (polar) coordinate
Txy, Tru Twisting moments
w Plate displacement, normal to the plane
X, Y, Z Rectangular (Cartesian) coordinate axes
x, y, z Coordinates relative to X, Y, Z
u Angular (polar) coordinate
d Center displacement of a circular plate
n Poisson’s ratio
sr, srr Radial stress
srz Shear stress
sru Shear stress
suz Shear stress
suu Tangential stress
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19 Panels and Annular Plate
Closures

19.1 PROBLEM DEFINITION

Some of the fundamentals outlined in the previous chapters point to the degree of complexity of the
various plate solutions. When plate applications arise, a good deal of specialization is required,
backed up by experimental work. This type of information is not easy to obtain and the designer has
to fall back on the classical solutions and the conservative assumptions of elasticity. In this chapter
on panels, we will attempt to summarize some of the more basic practical data related to those plate
configurations that occur most frequently and which can be used as approximate models for more
complex solutions.

A typical structural panel may be defined as a flat material, usually rectangular, elliptical, or
similar in shape, which forms a part of the surface of a wall, door, cabinet, duct, machine
component, fuselage window, floor, or similar component. The panel boundaries illustrated in
Figure 19.1 may involve some degree of fixity or freedom when a given panel is subjected to
uniform loading. A difficult consideration in estimating the panel strength and rigidity is the choice
of the correct boundary condition. This process depends entirely on a knowledge of loading and
support, which varies from problem to problem. The boundary conditions can vary from being
completely built-in to having a simple roller-type support, allowing full freedom of rotation. In the
majority of practical configurations, some intermediate conditions exist, requiring engineering
judgment in selecting the most realistic model for panel support. The design criteria for uniform
transverse loading can be governed by either the maximum bending strength or the allowable
maximum deflection. Our purpose is to provide a set of working equations and charts suitable
for design.

19.2 DESIGN CHARTS FOR PANELS

Simple rectangular panels are often supported by structural shapes whose bending stiffness is
relatively high compared with that of the panels themselves. Under these conditions, fixed edges
can be assumed in the calculations. However, when the supporting shapes are such that a finite slope
can develop in the plane perpendicular to the panel, the design should be based on a simple support
criterion. Table 19.1 provides a summary of some of the more commonly used design equations for
the rectangular and the elliptical panels.

In Figures 19.2 and 19.3, we graph the design factors A1 through A8 against the panel length
ratio a=b. For a rectangular panel, a and b denote the smaller and larger sides, respectively. For an
elliptical geometry, a and b are the minor and major axes, respectively. While the maximum
bending stress is found at the center for the simply supported rectangular and elliptical panels,
built-in panels are stressed more at the supports. For a rectangular built-in panel, this point is at the
midpoint of the longer edge. In the built-in elliptical panel, the maximum bending stress is at the
ends of the minor axis a. The example problem of Section 19.4 shows that the maximum deflection
is a function of the a=b ratio. By taking b¼ 2a, we find A8 to be: 3(1� n2)=118. This compares well
with the value obtained from the graph of Figure 19.3.
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19.3 SIMILARITIES OF RECTANGULAR AND ELLIPTICAL PANELS

The charts given in Figures 19.2 and 19.3 indicate a definite correlation between rectangular and
elliptical panels in their structural behavior. For this reason, a great number of panel shapes that fall
between the rectangular and elliptical boundaries can be designed with the help of the charts given
in Figures 19.2 and 19.3. For example, the arbitrary profile shown in Figure 19.4 should
display strength and rigidity characteristics, which might be termed as intermediate between those
of the elliptical and rectangular configurations, provided that the overall a and b dimensions
remain the same.

The design engineer concerned with such a problem can develop an individual method of
interpolation between the relevant results. For instance, the ratio of the unused corner area F to the
total area difference between the rectangular and elliptical geometries can be used as a parameter. In
terms of the dimensions indicated in Figure 19.4, this parameter may be defined as 16F=ab(4�p).

Panel edge

Completely fixed
support

Fixed
condition

Panel edge

Roller

Panel edge

Panel edge

Flexible link

Simple
support

condition
Pin

FIGURE 19.1 Examples of edge conditions for panel design.

TABLE 19.1
Design Equations for Simple Panels under Uniform Loading

Type of Panel Maximum Stress Maximum Deflection

Rectangular simply supported S ¼ qa2A1

t2
d ¼ qa4A2

Et3

Rectangular built-in S ¼ qa2A3

t2
d ¼ qa4A4

Et3

Elliptical simply supported S ¼ qa2A5

t2
d ¼ qa4A6

Et3

Elliptical built-in S ¼ qa2A7

t2
d ¼ qa4A8

Et3
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FIGURE 19.2 Stress chart for simple panels.
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FIGURE 19.3 Deflection chart for simple panels.
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It should be emphasized, however, that such a linear interpolation can be justified only because of
the inherent similarities in the structural behavior of the rectangular and elliptical configurations. The
error introduced by this procedure is expected to be relatively small and certainly acceptable within
the scope of the preliminary design, which under normal conditions, involves ample margins of safety.

19.4 EXAMPLE DESIGN PROBLEM

Figure 19.5 depicts a pressure plate of rectangular geometry with rounded-off corners. It is simply
supported and carries a uniform transverse loading of 200 psi. Assuming the dimensions shown in
the figure and steel as the material, calculate the maximum stresses and deflections using the
interpolation method described in Section 19.3.

SOLUTION

From Figure 19.5 the unused corner area A is

A ¼ 1� p

4
¼ 0:215 in:2 (19:1)

b F

a

Rectangular panel

Elliptical
panel

Arbitrary
profile

FIGURE 19.4 Comparable plate configurations.

F

1 in
.

4 i
n.

8 in.

0.2
5 i

n.

P = 200 psi

FIGURE 19.5 Panel of arbitrary profile.
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The total unused corner area between the rectangular and elliptical boundaries is

ab
(4� p)
16

¼ 8� 4 (4� p)
16

¼ 1:717 in:2 (19:2)

The dimensionless ratio is then

0:215
1:717

¼ 0:125 (19:3)

For a=b¼ 4=8¼ 0.5, Figure 19.2 gives approximately

A1 ¼ 0:61, A5 ¼ 0:53 (19:4)

The equation for interpolating the required stress factor can now be set up as follows:

A1 � (A1 � A5)16A
ab(4� p)

(19:5)

Hence,

0:61� (0:61� 0:53)� 0:125 ¼ 0:600

and using the formula for a rectangular plate from Table 19.1 gives

S ¼ 200� 16� 0:600
09:25� 0:25

¼ 30,720 psi (212N=mm2) (19:6)

From Figure 19.3

A2 ¼ 0:11, A6 ¼ 0:096 (19:7)

Again, the interpolation formula for this case is

A2 � (A2 � A6)16A
ab(4� p)

(19:8)

and since the parameter 16A=ab(4�p)¼ 0.125, as before, we get

0:110� (0:110� 0:096)0:125 ¼ 0:1083

Hence, using the plate deflection formula from Table 19.1 yields

d ¼ 200� 256� 0:1083
30� 106 � 0:253

¼ 0:012 in: (0:30mm) (19:9)

19.5 ANNULAR MEMBERS

Circular plates with centered round holes form a large class of problems related to flanges, rings, and
circular closures, with numerous structural applications. For axisymmetric loading and support, the
governing equations for the displacement, bending moments, twisting moments, and shear forces
are given by Equations 18.62 through 18.67 as

w ¼ por4

64D
þ c1r

2‘nr þ c2r
2 þ c3‘nr þ c4 (19:10)
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Mr ¼ �D

�
(3þ n)

p0r2

16D
þ 2c1(1þ n)‘nr þ (3þ n)c1

þ 2c2(1þ n)þ c3(n � 1)=r2
�

(19:11)

Mu ¼ �D

�
(1þ 3n)

p0r2

16D
þ (1þ n)2c1‘nr þ (1þ 3n)c1

þ 2(1þ n)c2 þ (1� n)c3=r
2

�
(19:12)

Tru ¼ 0 (19:13)

Qr ¼ �D
por

2D
þ 4

c1
r

� �
(19:14)

Qu ¼ 0 (19:15)

where, c1, . . . , c4 are integration constants arising in the integration of Equation 18.59, and where
the notation is the same as that in Chapter 18. As before, the constants c1, . . . , c4 are to be evaluated
using the support conditions.

To illustrate the procedure, consider a plate with a central opening and uniformly distributed
edge moments as in Figure 19.6. If there is no transverse loading, the pressure po and the shear Qr

are zero. That is

po ¼ 0 and Qr ¼ 0 (19:16)

Then from Equation 19.14 we see that c1 is zero.

c1 ¼ 0 (19:17)

Then from Equation 19.12 Mr is

Mr ¼ �D 2c2(1þ n)þ (c3=r
2)(n � 1)

� �
(19:18)

From the loading depicted by Figure 19.6 the edge (rim) conditions are

At r ¼ ri: Mr ¼ Mi and at r ¼ ro: Mr ¼ Mo (19:19)

or

Mi ¼ �D 2c2(1þ n)þ (c3=r
2
i )(n � 1)

� �
(19:20)

h

MiMo

ri

r
ro

MoMi

FIGURE 19.6 Annular plate with uniform edge moments.
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and

Mo ¼ �D 2c2(1þ n)þ (c3=r
2
o)(n � 1)

� �
(19:21)

By solving c2 and c3, we obtain

c2 ¼ Mir2i �Mor2o
2D(1þ n)(r2o � r2i )

and c3 ¼ Mo �Mi

D(n � 1)(r2o � r2i )
(19:22)

If the plate is supported at its outer rim such that

w ¼ 0 when r ¼ ro (19:23)

Then from Equations 19.10, 19.16, and 19.17 we have

0 ¼ c2r
2
o þ c3‘nro þ c4 (19:24)

From Equation 19.22 it is obvious that, c4 is

c4 ¼ (Mor2o �Mir2i )r
2
o

2D(1þ n)(r2o � r2i )
þ (Mi �Mo)r2i r

2
o‘nro

D(n � 1)(r2o � r2i )
(19:25)

Finally, by substituting for c1, . . . , c4 in Equations 19.10 and 19.11, the displacement and radial
bending moment are

w ¼ 1

D(r2o � r2i )

(Mor2o �Mir2i )(r
2
o � r2)

2(1þ n)
þ (Mo �Mi)r2or

2
i (‘nro � ‘nr)

1� n

� �
(19:26)

and

Mr ¼ 1
(r2o � r2i )

roM
2
o � r2i M

2
i � (Mo �Mi)r

2
i r

2
o=r

2
� �

(19:27)

As a second illustration, suppose the inner rim of the plate is restricted from displacement and
rotation as represented in Figure 19.7. Then with a radial momentM0 at the outer rim and an absence
of loading on the surface, the edge (rim) conditions are

At r ¼ ri: w ¼ 0 and dw=dr ¼ 0 (19:28)

h

ri

r

ro

MoMo

FIGURE 19.7 Annular plate with fixed inner rim and movement at the outer rim.
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and

At r ¼ ro: Mr ¼ Mt (19:29)

Using a similar analysis, the displacement and radial bending moment become

w ¼ Mor2o r2i � r2 þ 2r2i ‘n(r=ri)
� �

2D r2o(1þ n)þ r2i (1� n)
� � (19:30)

and

Mr ¼
Mor2o 1þ n þ (1� n)(r2i =r

2)
� �

r2o(1þ n)þ r2i (1� n)
(19:31)

19.6 SELECTED FORMULAS FOR ANNULAR PLATES

Table 19.2 provides a listing for the maximum stress smax and the maximum displacement wmax for
several support and loading conditions of axisymmetrically loaded annular plates. Figures 19.8
through 19.11 provide values of the parameters F1, . . . , F8 and B1, . . . , B8 for Poisson ratio n: 0.3.
As before, h is the plate thickness.

TABLE 19.2
Maximum Stress and Displacement Values for Axisymmetrically Loaded Circular Plates
for Various Support Conditions

Simple support at the outer rim and ring
loaded at the inner rim

h

ri

ro

P

PF1

Eh3h2
wmax =smax =

Pr2
o B1

Simple support at the inner rim and uniform
load on the plate

h

wmax =smax =

p p

ri

Eh3h2
proF2

ro

pr4
o B2
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TABLE 19.2 (continued)
Maximum Stress and Displacement Values for Axisymmetrically Loaded Circular Plates
for Various Support Conditions

Clamped inner rim and uniform load on the plate h

<

p p

smax =
h2

pr2
o F3 wmax =

Eh3

pr4
o B3

ri
ro

Simple support at the outer rim, horizontal slope
at the inner rim, and uniform load on the plate

h p p

smax =
h2

pr2
o F4 wmax =

Eh3

pr4
o B4

ri
ro

Clamped outer rim, horizontal slope at the inner

rim, ring load at the inner rim
h p p

ri
ro

smax =
h2

Pr2
o F5 wmax =

Eh3

Pr4
o B5 

Clamped outer rim, horizontal slope at the inner
rim, ring load at the inner rim

h p

ri
ro

smax =
h2

PF6 wmax =
Eh3

Pr2
o B6

(continued)
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TABLE 19.2 (continued)
Maximum Stress and Displacement Values for Axisymmetrically Loaded Circular Plates
for Various Support Conditions

Simple support at the outer rim and uniform load

on the plate
h p p

ri

ro

smax =
h2

pr2
o F7 wmax =

Eh3

pr4
o B7

Simple support at the outer rim, horizontal slope at
the inner rim, and ring load at the inner rim

h p

ri
ro

smax =
h2

PF8 wmax =
Eh3

Pr2
o B8

Note: Figures 19.8 through 19.11 provide values of Fi and Bi (i¼ 1, . . . , 8) for Poisson ratio n¼ 0.3.
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FIGURE 19.8 Stress factors F1 through F4 for the annular plates of Table 19.2.
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FIGURE 19.9 Stress factors F5 through F8 for the annular plates of Table 19.2.
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FIGURE 19.10 Plate displacement factors B3, B4, B5, B6, and B8 for the annular plates of Table 19.2.
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SYMBOLS

A Corner area
A1 through A8 Factors for panels
a Smaller side or minor axis
B1 through B8 Plate deflection factors
b Larger side or major axis
c1, c2, c3 Integration constants
D Plate flexural rigidity; Eh3=12(1� n2) (see Equation 18.2)
E Modulus of elasticity
F Corner area
F1 through F8 Plate stress factors
h Plate thickness
M1, Mi, Mo Bending moments
Mi, Mo Inner and outer bending moments
Mr, Mu Radial and transverse bending moment
pO Uniform load
q Uniform load
Qr, Qu Radial and transverse shear
Ri Inner radius of plate
Ro Outer radius of plate
r Radial coordinate
ri, ro Inner and outer radii
S Stress
Sy Yield strength
t Thickness of plate
Tru Twisting moment
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FIGURE 19.11 Plate displacement factors B1, B2, and B7 for the annular plates of Table 19.2.
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w Transverse displacement
W Total load on plate
x Arbitrary distance
d Maximum deflection
n Poisson’s ratio
f Slope, rad

Huston/Practical Stress Analysis in Engineering Design DK4291_C019 Final Proof page 307 3.11.2008 1:06pm Compositor Name: JGanesan

Panels and Annular Plate Closures 307



Huston/Practical Stress Analysis in Engineering Design DK4291_C019 Final Proof page 308 3.11.2008 1:06pm Compositor Name: JGanesan



20 Flanges

20.1 INTRODUCTORY REMARKS

Flanges and support rings have various configurations. They present an extensive variety of analysis
and design problems. Forces acting on these members can arise from any direction. Those acting out
of plane are the most difficult to describe analytically.

As a result of these difficulties and complexities, problems involving circular flanges with
reinforced gussets are seldom found in the open literature. The configurations and loadings on these
structural components necessitate a detailed three-dimensional analysis. Even with the help of finite
element methods (FEM), the design of these components represents a tedious and costly procedure.
Thus a design engineer may have to make difficult decisions in practical cases because of the lack of
a well-established design methodology and a lack of readily available published results.

These issues can lead to gross overdesign and excessive cost, especially where large-diameter
pipes with great pipe lengths and large flanges are involved. In conventional conservative design
applications, the trend appears to be toward greater depth and larger overall sizes of the components.
A review of flange design theory and practice is therefore useful. In this chapter, we present such
a review.

As evidenced by recent theoretical and experimental work, flange analysis can be very time-
consuming even in the case of simpler flange configurations and simple loadings. It is helpful,
therefore, not only to suggest a simplified approach to the problems at hand but also to review some
of the more commonly accepted theoretical concepts and formulas.

The objective of our review is to develop usable procedures for practical applications. In this
regard, the theoretical information concerned with generic flange design is useful for developing a
simplified approach and philosophy for designing rib-stiffened configurations. We base our review
upon selected references and flange design standards of the United States, the United Kingdom, and
Germany [1–18].

20.2 STRESS CRITERIA

One of the key messages included in this section concerns the idea of elastic versus plastic stresses.
Since the great majority of practising engineers have been taught in the tradition of the theory of
elasticity and the concept of the elastic strength of materials, it is relatively easy to misinterpret the
true meaning of computed stresses. In fact, it is often presumed that the calculated values exceeding
the elastic limit must necessarily be dangerous. This seems to be particularly misleading where the
design formulas give the sum of the bending and membrane stresses without due allowance for
material ductility and stress redistribution.

In a typical integral-type flange, that is, where the flange is butt-welded to the wall of the pipe,
the adjacent portion of the wall is considered to act as a hub. The accepted design practice calls for
calculation of the three major stresses: maximum axial stress in the hub, radial stress in the flange
ring at its inside diameter, and the corresponding tangential stress at the same point. The theoretical
and experimental evidence indicates that the axial stress in the hub is frequently by far the highest
and it is often used as the basic design criterion for sizing the wall thickness. Some applications
of this general rule are considered here in evaluating the maximum theoretical stress in the hub of a
rib-stiffened flange.
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The selection of a suitable design criterion and the corresponding calculation procedure depends
in general upon the flange geometry and the materials involved. Various theories and design
methods in the past utilized straight beam, cantilever, circular ring, and plate model approaches
for the purpose of checking the flange stresses. The method of rib sizing, proposed in this section, is
based on the theory of beams on elastic foundation.

20.3 EARLY DESIGN METHODS

The development of pressure vessels having increasingly higher pressures and temperatures has
been a stimulus of increased interest in flange stress formulas in the West [2–4]. Early flange design
involved hubs of approximately uniform thickness and the designs were checked by calculating the
tangential stress at the inner diameter of the flange, ignoring entirely the possibility of the hub
stresses. Further limitations of the early methods involved their narrow range of applicability, as
they were developed for specific types and proportions of the flanges. This predicament persisted
until publication of the Waters-Taylor formulas [9], which were based on theoretical and experi-
mental results. This classical paper marked the start of extensive deliberations of various approaches
to flange design.

20.4 THIN HUB THEORY

When the hub is relatively thin and a critical section is assumed to exist along one of the flange
diameters, the maximum stress can be calculated from a simple beam formula. This approach, which
is probably one of the earliest and best known, is illustrated in Figure 20.1, where we assume that
the flange is clamped along this radial cross section. The design is based on bending due to the
external moment obtained by lumping together all bolt loads and utilizing the concept of a moment

Bf

db

2a/π 

W/2 

W/2 

H

a

Moment arm

Radial cross section

Thin pipe

Flange ring

M = Wa/π

Equivalent
beam model

FIGURE 20.1 Flange fixed along radial cross section.
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arm. In effect, a simple beam model is postulated where the net cross section is found by subtracting
the projected areas of bolt holes. Using the notation indicated in Figure 20.1, the available section
modulus for the flange ring becomes

Z ¼ (Bf � db)H2

3
(20:1)

Utilizing the moment arm shown in Figure 20.1, the available section modulus for the Figure 20.1
we obtain the maximum bending stress sb from the elementary beam formula. Note that the
term 2a=p follows from a consideration of the centers of gravity for the two concentric, semicircular
arcs. Hence

sb ¼ 0:95
Wa

(Bf � db)H2
(20:2)

Obviously, Equation 20.2 is only approximate since the curvature of the flange ring and the effect of
the pipe wall have been ignored. Nevertheless, the method is a rather ingenious use of the theory of
straight beams and it gives surprisingly good results when applied to loose flanges or flanges welded
to thin pipes. The effect of radial stresses in such flanges can, of course, be neglected.

20.5 FLANGES WITH THICK HUBS

When a pipe is relatively thick and the circumferential stresses are ignored by assuming a number of
radial slots, a cantilever beam method is sometimes employed. The corresponding notation and
configurational details for this analytical model are given in Figure 20.2. This method of calculation

H

W  =  Total bolt load

Ri + T

T

Thick pipe

Hypothetical slot

Developed flange cross section
2p (Ri + T )

a

FIGURE 20.2 Flange with a thick hub.
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yields only radial stresses and it is expected to have a rather limited field of application. In reality, it
can be used only in the case of a relatively thin flange made integral with the thick pipe of a large
diameter. Under these conditions the maximum radial stress sr becomes

sr ¼ 0:95
Wa

(Ri þ T)H2
(20:3)

When radial stresses are expected to be relatively small, a significant refinement is achieved by
utilizing the theory of rings [6]. The corresponding mode of deformation and the basic notation are
given in Figure 20.3, where the cross section of the flange ring is assumed to rotate through angle u,
shown in an exaggerated manner. The cross-sectional dimensions of the flange ring are relatively
small compared to the ring diameter and it is assumed the rectangular shape of the cross section does
not change under stress. The latter assumption is consistent with the idea of neglecting radial
stresses, which suggests that this theory applies to flanges attached to relatively thin pipes.

20.6 CRITERION OF FLANGE ROTATION

In establishing the equations for calculating the bending moment and the shearing force per unit
length of the inner circumference of the pipe, where the flange ring and the pipe are joined, radial
deflection is assumed to be zero and the angle of rotation of the edge of the pipe is made equal to the
angle of rotation of the flange cross section. In Figure 20.3, this angle is denoted by u and has been
the theory of local bending and discontinuity stresses in thin shells [11] used, together with the
theory of a circular ring subjected to toroidal deformation.

Following the formulation and analysis of Timoshenko [6], the maximum bending stress sb in
the pipe using this theory and the notation of Figure 20.3 is

sb ¼ 6M0=T
2 (20:4)

Assumed mode
of deformation

T

Qo

Qo

Mo

Mo

Ri

Ro

Wi

R

Wi(Ri/Ro)

q

H

FIGURE 20.3 Flange treated as a circular ring.
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whereM0 is the bending moment per unit length of the inner circumference of the flange with radius
Ri, and is given by

M0 ¼ Wi(Ro � Ri)

(1þ (bsH=2))þ (1� n22bsRi)(H=T)3 loge (R0=Ri)
(20:5)

and the corresponding shear force is

Q0 ¼ bsM0 (20:6)

where bs is

bs ¼
1:285

(RiT)
1=2

(20:7)

The parameter bs is useful in the analysis of beams on an elastic foundation indicating the extent of
stress-affected zones in the vicinity of edge or local loading.

In Equation 20.5, Wi denotes the force per unit length of the inner circumference of the flange
corresponding to radius Ri. The external bending moment applied to the flange involves the moment
arm, which in Timoshenko’s case is defined as Ro�Ri. A brief comparison with other methods
indicates that the assumption of different moment arms is bound to significantly affect the calculated
results. It is quite likely that Equation 20.5 will always overestimate the bending moment M0

because of the maximum moment arm used. Under the actual conditions, the loading may be found
to be significantly removed from the inner and outer edges of the flange. Nevertheless, integral
flanges with relatively thick pipes have been used successfully with and form the basis of some of
the existing design standards in industry.

20.7 USE OF PLATE THEORY WITH FLANGES

Further refinement of and insight into flange analysis may be obtained by applying plate theory,
where radial and circumferential stresses are taken into account. Radial stresses may be of import-
ance in flanges integral with thick pipes, which can resist the angle of tilt much better. This angle is
shown in Figure 20.4.

Flange

Meridional surface
of the flange

Inner surface
of the flange

Hub

T

H

r
R

Ri

Wi

Ro

m

m

q

Wo = Wi(Ri/R)

FIGURE 20.4 Flange treated as a circular plate.
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In applying plate theory to the solution of a flange problem or to the stresses in a cylinder with
rigidly attached flat heads [8–10], a strip may be cut out of the cylinder and treated as a beam on an
elastic foundation while the flange is regarded as a flat plate with a central hole. The slopes and
deflections at the end of the cylinder can be expressed in terms of the unknown moments and shear
forces. These displacements are then equated to the slopes and deflections similarly determined for
the plate. In this manner, we establish a sufficient number of equations, which are solved simul-
taneously to yield the unknown reactions and displacements.

The classical approach to the flange problem can be based on the premise that the bending
moment existing at the root of the hub acts at the meridian plane of the flange instead of at its inner
plane. When the flange portion is deformed, these planes become curved, as shown in Figure 20.4.
Furthermore, it can be assumed that the cylindrical surface containing points m�m does not alter its
original curvature and that the expansion of the hub due to the internal pressure can be ignored.

The solutions for flange problems using plate theory assume the flange to be a circular plate with
a central hole either loaded at the edge or loaded uniformly over the whole surface [9,10]. When a
circular plate is loaded and supported in the manner shown in Figure 20.5, the maximum hoop stress
is developed at the inside corners of the plate. According to the flat ring theory of Waters [9], the
corner stress sh becomes

sh ¼ W(R� R0)
(Ro � Ri)t2

1:242R2
o loge (Ro=Ri)

(R2
o � R2

i )
þ 0:335

� �
(20:8)

The corresponding Holmberg-Axelson formula for this stress is

sh ¼ W

(R2
o � R2

i )
0:35(R2 � R02)þ 1:195R2

o loge
R

R0

� �� �
(20:9)

Examination of Equation 20.8 shows certain natural limitations when the Ro=Ri ratio is large, since
such a case would correspond to the theory of plates rather than that for flat rings on which Equation
20.8 is based. It appears that Equation 20.9 is correct for all values of Ro=Ri. The results of the study
also indicate that a plate pierced by a small hole in the center has the maximum circumferential
stress twice as large as if the plate had been solid. This finding may be of special importance in those
cases where the plate is not made of fracture-tough material.

It appears that in treating certain plate configurations, which resemble machine and pipe flanges
rather than circular closures, the analyst has the choice of following either the treatment of flat rings
or flat plates. Probably the best method demonstrated in industry so far involves breaking down the
flange or plate structures into a series of concentric rings, each of which has a simple loading [10].
The boundary conditions are solved by making the slope and radial moments continuous. Since, in
this type of treatment, the number of constants is always equal to twice the number of rings, a large
number of simultaneous equations may be involved. This, however, will not pose special problems
where large electronic computers and finite element methods are available.
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R
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FIGURE 20.5 Simply supported plate under concentric loading.
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20.8 FORMULA FOR HUB STRESS

Hub stress arising from bolt loading is a major concern in flange analyses. In this section, we present
a simplified formula for the hub stress. The formula is based upon analyses of compressor casing
flanges in jet engines.

Figure 20.6 defines the notation. The maximum bending stress smax is then approximately

sb max ¼ 0:48WbsT(Ro þ Ri)

f0BsRiT3(2þ bsH)þ H3
(20:10)

where as before bs is (see Equation 20.7)

bs ¼
1:285

(RiT)
1=2

(20:11)

and where for a typical Poisson ratio n of 0.3, Figure 20.7 provides values of the flange ratio fo as a
function of the ring ratio Ro=Ri. As noted in the figure, fo may also be calculated using the
expression

fo ¼
0:77þ 1:43k2

k2 � 1
(20:12)

where k denotes the ring ratio Ro=Ri.
By substituting from Equations 20.11 and 20.12 into Equation 20.10, we obtain the

approximation

sbmaxT2

W
¼ 0:614(k þ 1)(k2 � 1)(m)1=2

(0:77þ 1:43k2)[2:57m1=2 þ 1:65n]þ n3(k2 � 1)
(20:13)

where m and n are the dimensionless parameters:

m ¼ Ri=T and n ¼ H=T (20:14)

Equation 20.13 provides an ‘‘apparent’’ instead of an ‘‘actual’’ stress, but it is conservative particularly
for ductile materials. That is, the calculated stresses will be higher than those actually occurring.

T

H

Ri

Ro

R

FIGURE 20.6 Simplified notation for the analysis of straight flanges.
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20.9 GERMAN AND AMERICAN FLANGE DESIGN PRACTICE

According to machine design practice in Germany [4], the calculation of maximum bending stresses
in the pipe wall adjacent to the flange ring can be accomplished in a straightforward manner. This
procedure recognizes the two basic modes of failure depending on the relative thickness of the
flange ring and the pipe, and it can be applied to tapered as well as to straight hubs. When the flange
ring is thicker than the pipe, failure is expected in the hub. The reverse is true for heavy pipe walls.
In both instances, the flange ring surface under strain is assumed to conform to a spherical shape.

Figure 20.8 shows the notation and overall proportions of a flanged section used in German and
American flange standards. The pipe section typically fails (fractures) at the inclination a as shown
where a ranges between 208 and 308. The depth s1 of the fractured surface can be related to the
nominal thickness s0 of the pipe as

s0 ¼ s1 cosa (20:15)
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FIGURE 20.7 Flange factor fo.
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FIGURE 20.8 Flange section notation.
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In terms of the notation of Figure 20.8 we have the following approximate relations:

d1 ¼ 2Ri þ T (20:16)

s1 ¼ T=cosa (20:17)

‘1 ¼ (Ro � Ri)=2 (20:18)

where the radii Ri and Ro are the half-diameters di=2, and T is the nominal hub or pipe thickness (see
Figure 20.4). Using a mean value of a as 258, the maximum bending stress sbmax in the pipe,
adjacent to the flange, is (German standard)

sbmax ¼ W(k � 1)[0:228þ 0:035n sin2 (�=n)]
nT2

(20:19)

where, as before, we employ the dimensionless parameters k, m, and n as

k ¼ Ro=Ri, m ¼ Ri=T , n ¼ H=T (20:20)

The derivation of this equation involves a number of simplified steps and symbols consistent with
other formulas given in this chapter [16].

If the flange design is made according to American practice, the maximum bending stress sbmax

is (Waters-Taylor formula):

sbmax ¼ W

T2

0:25(m)1=2[k2(1þ 8:55 log k)� 1]

(1:05þ 1:94k2)[(m)1=2 þ 0:64n]þ 0:53n3(k2 � 1)

� �
(20:21)

where the logarithmic term is calculated to base 10. The formula consistent with the German code
should be applicable to all cases for which n 6¼ 0 and k< 1.8. Parametric studies also indicate that
Equations 20.13 and 20.19 yield lower numerical values of hub stresses than those which can be
predicted on the basis of Equation 20.21.

20.10 CIRCUMFERENTIAL STRESS

It may be of interest to note a simplifiedmethod of predicting the circumferential stresses in a standard
flange ring in terms of the maximum bending hub stress [3]. In this type of analysis, we assume that
the radial expansion of the flange ring due to the discontinuity shear force and the bulging of the
pipe due to any internal pressure can be ignored. Because of the flange rotation, one can expect to find
the maximum tensile stress on the outside of the pipe wall, and pipe bulging due to internal pressure.
Hence, the estimate should be conservative. Also, we assume that the pipe in the vicinity of the flange
ring can be stressed to the yield point of the material. Under these conditions, the circumferential
flange stress sf may be expressed in terms of the maximum hub bending stress sb as

�f ¼ n(2mþ 1)

3:64mnþ 4m(2mþ 1)1=2
�b (20:22)

where as before m is the radius=thickness ratio Ri=T and n is the flange=hub thickness ratio H=T (see,
for example, Figure 20.6).

In Equation 20.22, sf denotes the flange-ring circumferential stress produced by the deformation
due to the bolt loading and sb is set equal to the yield stress. For large values of the radius=thickness
ratio m, Equation 20.22 has the graphical form shown in Figure 20.9.
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The theoretical limits for the stress ratio sf=sb are 0.55 and 0.0 for zero and infinite values of the
radius=thickness ratio m. The intermediate range of values show that the maximum circumferential
stresses in the flange ring are always considerably smaller than the hub stresses. Conversely, the
theory indicates that if yielding of the pipe in the vicinity of the flange is to be avoided, the flange
ring would have to be extremely thick and therefore unacceptable for all practical purposes. The
major conclusion drawn from this finding is that, for truly economic design in ductile materials,
plastic deformation of the pipe in the vicinity of the flange ring can be permitted. The reserve of
strength beyond the onset of yield can be quite significant. For example, the theoretical collapse load
of a beam of rectangular cross section is 1.5 times the load causing yield in the outer fibers,
assuming a rigid-plastic, stress–strain characteristic for the material.

20.11 APPARENT STRESS CRITERIA—A DISCUSSION

A principal issue in mechanical design is establishing the maximum allowable stress level.
Section 20.10 shows that if we simply restrict the maximum stress to be less than the yield stress,
we will not obtain the optimal design. For ductile materials, the yield stress is considerably less than
the rupture (or fracture) stress.

Generally speaking, the hoop stress in a flange ring, or the radial stress across the junction of a
hub and ring, may have moderate values. However, the longitudinal bending stress in the hub is
usually much larger than either of these.

In a standard flange application, the distributed loading consists of bolt load, gasket pressure,
hydrostatic pressure of the flange leakage area, and the hydrostatic end force. All the loading is
represented by an equivalent bending couple consisting of two equal and opposite loads. When the
internal pressure is absent and a flange gasket is relatively close to the bolt circle, these loads can be
appreciably removed from the inner and outer edges of the flange. Equation 20.13 corresponds to
the loads, which are placed sufficiently far from the flange edges.

The theoretical hub stresses calculated from Equation 20.13, 20.19, or 20.21 are based on the
elastic behavior and should be considered as ‘‘apparent’’ rather than actual stresses. Generally, this
situation persists in many areas of engineering analysis and should be reviewed continually with
reference to practical design requirements. The numerical values of apparent stresses, interpreted as
strains multiplied by the relevant moduli of elasticity, often bear little relation to the actual material
stresses and can be evaluated only with special regard to the stress–strain curve. The concept of
apparent stresses is a very real one and is fully supported by practical experience. It is generally
recognized that in many actual flange designs, the calculated hub stresses are extremely high and yet
the flanges are satisfactory. In such circumstances, of course, the classical elastic formulas show
limited validity and flange design by test is recommended [12]. Such formulas are basically correct,
but the relevant interpretation of the numerical results is misleading if the yield strength and the
reserve of plastic strength in a flange, or other machine part, are ignored.

s f
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Radius to thickness ratio, m = Ri/T
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FIGURE 20.9 Ratio of flange to hub stress.
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The fact that calculated apparent stress exceeds the proportional limit of a material does not
necessarily mean that failure is imminent. Engineers and designers have often been inclined to think
in terms of the vertical axis of a stress–strain diagram and have paid less attention to the problem of
strain. It may be fitting in many areas of design analysis to think in terms of the maximum allowable
strain rather than in terms of maximum allowable stress.

Therefore, in flange design, regarding the level of hub stresses, it is advisable to recognize the
existence of local yielding as long as there is sufficient reserve of strength in the adjacent section of
the flange, to take care of the increased loading placed upon these sections by the region of local
yielding.

Finally, in the vast majority of flange applications significant dynamic loading is usually absent.
that is, the static loading due to bolt loading and pipe pressure has little, if any, fluctuation. Thus
fatigue from multiple stress cycling does not occur. This also allows for an optimal design where the
maximum stress may exceed the yield stress.

20.12 PLASTIC CORRECTION

Consider the stress–strain graphic of Figure 20.10. This figure is useful for obtaining insight into the
problem of apparent stress and to suggest an approximate plastic correction for interpreting
calculated stresses higher than the yield strength of the material. The stress–strain curve shown in
Figure 20.10 is typical of a low-strength ductile material, although the strain at yield «y, has been
exaggerated for the purpose of clarity. Hence, the slope of the curve below the proportional limit
should not be used for direct numerical evaluation of the modulus of elasticity. The values of
stresses and strains are merely to indicate that the material characteristics discussed are close to
those found in low-carbon steel, aluminum alloy, or other materials that may behave similarly.

Let us first assume that the stress–strain diagram has been established experimentally and that
the curve obtained can be approximated by the two straight lines from zero to the yield point and
from the yield region to the highest point on the curve, as shown by the line x�x. Let the
corresponding elastic moduli be E and E0, respectively. In the study of plasticity of materials, a
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FIGURE 20.10 Typical stress–strain curve for a low-strength ductile material.
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bilinear approximation of this kind is well known and indicates that the material in question
conforms to the law of linear strain hardening [13].

In terms of the calculated stress S, shown as 70,000 psi in Figure 20.10, Hooke’s law gives

« ¼ S

E
(20:23)

The corresponding strain at yield stress Sy is

«y ¼ Sy
E

(20:24)

By the definition of the elastic modulus

tan d ¼ E0 ¼ DS

«� «y
(20:25)

Denoting the actual stress by Sp, we have

DS ¼ Sp � Sy (20:26)

Hence, substituting Equation 20.26 into Equation 20.25, the elastic modulus for the x�x portion of
the curve becomes

E0 ¼ Sp � Sy
«� «y

(20:27)

Solving for Sp and eliminating strains with the aid of Equations 20.23 and 20.24 gives

Sp ¼ S
E0

E
þ Sy 1� E0

E

� �
(20:28)

It is evident that when E0 tends to zero, a stress–strain curve representing ideal plastic material is
obtained, and Sp¼ Sy for all values of strain. Alternatively, when E0¼E, there is only elastic
behavior, and the stress–strain curve represents purely elastic action up to the point of failure. The
concept of ideal plastic material is often employed in the theory of plasticity because a typical mild
steel stress–strain diagram is close to that of a perfect plastic material. With various alloying elements,
the material still exhibits desirable ductility, but, in addition, there may be some strain hardening.

Considering the strain-hardening characteristic to be the one illustrated in Figure 20.10, the
following appraisal of the apparent versus actual stress can be made. Assume that the calculated hub
stress in a flange is 70,000 psi, as shown in Figure 20.10. If material knowledge gives the yield
strength Sy¼ 31,000 psi, and the ultimate strength Su¼ 50,000 psi, but the shape of the stress–strain
curve is unknown, then on the basis of our calculation we may conclude that the pipe section will
fail. Specifically, the safety factors 0.44 and 0.71 are based on the given values of yield and ultimate
strength, respectively. To increase these factors, it would appear that either a better material is
needed or that the nominal wall thickness of the pipe should be increased. Either approach would
not be in the interest of economy and could lead to gross overdesign.

Assume now some knowledge of the actual stress–strain curve, and take E0=E¼ 0.25, not an
unusual ratio for a material with linear strain hardening, so that using Equation 20.27 yields

Sp ¼ 0:25� 70,000þ 31,000(1� 0:25) ¼ 40,700 psi (20:29)

Huston/Practical Stress Analysis in Engineering Design DK4291_C020 Final Proof page 320 7.11.2008 10:20pm Compositor Name: MSubramanian

320 Practical Stress Analysis in Engineering Design



The corresponding safety factors are then changed to 0.76 and 1.23, respectively. If the flange in
question is not subject to fatigue, as is normally the case with many flanged configurations, the pipe
failure becomes less likely.

If the material assumed in the above numerical illustration can be considered perfectly plastic,
then E0=E¼ 0 and the maximum factor of safety becomes unity, because the actual hub stress cannot
exceed the value of yield. The results of this discussion point clearly to the need for a realistic
approach to the interpretation of calculated elastic stresses in conjunction with the stress–strain
characteristics of the materials involved. Hence if the maximum bending stress in the hub is
restricted to the pipe surface any higher stress than the yield strength of the material at that point
will cause stress redistribution.

Figure 20.11 shows several examples of flanges used to connect piping and tubular structural
members [14,15] with the features of progressive complexity and the regions of more significant
stress components. The correction for plastic action described by Equation 20.28 can be applied to
any of the stress components, provided their elastic values can be estimated. The most difficult
problem, however, is the first estimate of the elastic response. This situation has not changed
markedly despite the significant progress in numerical techniques.

20.13 HEAVY-DUTY FLANGES

In the development of heavy-duty pipe flanges and similar hardware components, it has been
customary to utilize the concept of a compound flanging where the two concentric flanged rings on
a pipe are joined by external ribs parallel to the pipe axis. Although this is not an unusual conceptwhere
the overall flange rigidity against the toroidal deformation is required, a rigorous analytical approach
to the design of such a three-dimensional structure must be highly involved. A typical approach to
the theoretical problem would be through finite-element techniques and rather lengthy experimental
verification of the stress picture using strain gages, photostress, or three-dimensional photoelasticity.
If, for economic or scheduling reasons, a more fundamental approach to this problem is not feasible, a
relatively simple approximate solution can be developed utilizing the existing knowledge of structural
mechanics. Such solutions appear to be on the conservative side and are not far removed from reality as
shown by theoretical and experimental investigations conducted by Werne [17].

To reach a rational compromise as to the selection of flange thickness in the case of double-ring
ribbed design, consider Figure 20.12. The action of a double-flanged ring may be simulated by a
twist of a circular ring loaded by couples M0, which are uniformly distributed along the center line
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Local flange stress

Gusset stress

Probable failure sites

FIGURE 20.11 Typical flanges and reinforcements.
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of the ring. To simplify the calculation, it is assumed that the cross-sectional dimensions of the ring
are relatively small when compared with the mean radius R. Timoshenko [6] shows that the angle of
rotation of flange cross section u and the normal stress are inversely proportional to the moment of
inertia about the ring axis x�x.

20.14 EQUIVALENT DEPTH FORMULA

The assumption of the cumulative value H, sometimes used in the calculations, cannot be accurate
because the material, indicated as the dotted areas of Figure 20.12 is really nonexistent except in the
regions of the ribs. However, to deal with this characteristic dimension, the equivalent depth He may
have to be calculated with reference to Figure 20.13 to provide a solid rectangular cross section that
would yield the same angle of rotation as the original channel section of depth H. The possibility of
some local distortion of the channel section in between the ribs exists; however, in the simplified
approach, this feature will be excluded.

Although the composite channel section indicated in Figure 20.13 is not symmetrical about the
axis x�x, the moment of area can be found directly without calculating the position of the center of
gravity of the section [5]. For this purpose, a convenient baseline, m�m, is selected as shown in
Figure 20.13, leading to the equation

Ix ¼ Ib þ Ig � J2

At

(20:30)
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FIGURE 20.12 Model of a twisted flange ring.
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FIGURE 20.13 Section details for equivalent depth calculation.
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where
J and Ib denote the first and second moments of area with respect to the baseline m�m
Ig stands for the sum of the moments of all component areas about their own centroids
At defines the total cross-sectional area

The problem is handled in the usual way by breaking the whole area into geometrically convenient
component areas and applying Equation 20.30. Invoking this rule and adhering to the notation
shown in Figure 20.13 gives

Ix ¼ H4T2 þ 36BrHTT3
0 � 30BrH2TT2

0 þ 12BrH3TT0 þ 81B2
rT

4
0

12(HT þ 3BrT0)

þ 2B2
rH

2T2
0 � 6B2

rHT
3
0

HT þ 3BrT0
(20:31)

Hence, the equivalent depth of the ribbed flange consisting of the flange and backup rings is
seen to be

He ¼ 2:29
Ix

Br þ T

� �1=3

(20:32)

Figure 20.14 provides a view of the compound flange with the main flange ring, backup ring,
rectangular ribs, and the triangular gussets. Appropriate size and location of the flange reinforce-
ment should be determined on the basis of hub, gusset, and flange stresses. The equivalent depth of
the ribbed flange He can be used in conjunction with such formulas as those given by Equations
20.13, 20.19, or 20.21. When the backup ring is not used and 2T0¼ h, the formula for calculating
the equivalent depth of the ribbed flange becomes

He ¼ HT3(HT þ 4hBr)� 3HTh2Br(2H � h)

(Br þ T)(HT þ hBr)

� �1=3
(20:33)

Flange ribs

Backup ringMain flange rings

FIGURE 20.14 Pipe flange geometry with rectangular and triangular ribs.
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20.15 LOAD SHARING IN RIBBED FLANGES

Figure 20.15 illustrates a partial view of a rib-stiffened main flange ring. In evaluating the moment
carrying capacity of a stiffening rib in relation to that of the main flange ring, we can use the theory
of beams on elastic foundations and toroidal deformation of a circular ring. If the moment arm is
taken as R� r, the total external moment due to the bolt load, referring to unit length along the bolt
circle, may be defined as

M ¼ W(R� r)

2pR
(20:34)

If N denotes the total number of ribs supporting the flange ring, the external bending moment per
length of the circumference corresponding to one rib spacing is

Mc ¼ 2pRM
N

(20:35)

Substituting from Equation 20.34 into Equation 20.35 gives

Mc ¼ W(R� r)

N
(20:36)
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FIGURE 20.15 Partial view of a rib-stiffened flange ring.
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Denoting the bending moments MF and MR carried by the main flange ring and rib, respectively,
gives

Mc ¼ 2pRMF

N
þMR (20:37)

Hence Equations 20.36 and 20.37 yield

W(R� r) ¼ 2pRMF þ NMR (20:38)

Although the foregoing algebraic operations are rather elementary, it is advisable to follow the basic
derivations to assure correct dimensional identities before developing subsequent working formulas.
We note, therefore, thatMF is expressed in lb-in.=in. andMR is given in lb-in., in the English system.

The angle of twist of an elastic ring undergoing a toroidal deformation under the action of a
twisting moment MF may be expressed by the classical formula as

uF ¼ MFR2

EI0
(20:39)

The bending slope of the stiffening rib at the rib–flange junction, treated as a beam of finite length
resting on the elastic foundation and acted upon by a concentrated end moment MR, can be
calculated from the following relations: let Y denote the deflection of a beam on an elastic
foundation with hinged ends that is bent by a couple MR, applied at the end as shown in Figure
20.16. Then the general expression for the deflection line is

Y ¼ 2MRb
2[cosh bL sinbx sinh b(L� x)� cosbL sinh bx sinb(L� x)]

K( cos2bL� cos2bL)
(20:40)

The required slope is found by calculating dy=dx from Equation 20.40 and making x¼ 0. This gives

uR ¼ 2MRb
3( cosbL sinbL� cosbL sinbL)

K(cosh2bL� cos2 bL)
(20:41)
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FIGURE 20.16 Mode of rib deformation as a beam on an elastic foundation.
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where

b ¼ K

4EIn

� �1=4

(20:42)

Eliminating K with the aid of Equation 20.42 and introducing an auxiliary dimensional function
characterizing the above beam on elastic foundation yields

uR ¼ MRf(b, L)
EIn

(20:43)

where f(b, L) is

f(b,L) ¼ cosh bL sinh bL� cosbL sinbL

2b(cosh2bL� cos2 bL)
(20:44)

To compute this value, it is first necessary to calculate the parameter b from Equation 20.42, which
contains term K, defined as the modulus of the elastic foundation. As the ribs are supported by the
pipe wall, we can consider a slice of the pipe wall together with the rib as shown in Figure 20.15. A
partial view of the slice is shown in the figure as a dotted area for the sake of clarity. The complete
circumferential slice can then be represented by a mathematical model of a radially loaded circular
ring as illustrated in Figure 20.17. Radial load intensity q is shown in Figures 20.15 and 20.17. For a
slice of unit width load intensity, q is numerically equal to the load per linear inch of the rib acting
upon the ring at N equidistant points. The modulus of the foundation then can be interpreted directly
as a spring constant K, since the load–deflection relation for a particular ring loading [7] may be
given as

y ¼ qr3(u2p þ up sin up cos up � 2 sin2 up)

4EImup sin
2 up

(20:45)
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FIGURE 20.17 Circular ring model for modulus of foundation.
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Since by definition K¼ q=y and up¼p=N, substituting for the modulus of the foundation in
Equation 20.45 yields

b ¼ 2pNIm sin2 (p=N)

r3In[2p2 þ pN sin (2p=N)� 4N2 sin2 (p=N)]

� �1=4

(20:46)

A parametric investigation of Equation 20.46 within the range 8<N< 100 leads to the simplification

b ¼ 0:69
N

r

� �
r
Im
In

� �1=4

(20:47)

Assuming next that the angle of twist of the main flange ring is equal to the bending slope of the rib
at x¼ 0, Equations 20.39 and 20.43 give

v ¼ MR

MF

¼ InR2

I0f (b,L)
(20:48)

Hence, solving Equations 20.38 and 20.48 simultaneously yields

MR ¼ W(R� r)v

2pRþ vN
(20:49)

and

MF ¼ W(R� r)

2pRþ vN
(20:50)

The main flange ring can now be viewed as consisting of N equal sectors in which the load
distribution between the ribs and the corresponding sectors of the flange can be calculated from a
load ratio that follows directly from Equation 20.38 and Figure 20.15

f ¼ 0:16N RTrB3
r

(Br þ T)h3f(b,L)
(20:51)

Since the auxiliary function given by Equation 20.44 is a dimensional quantity expressed in
inches, the load-sharing equation above is nondimensional, in contrast with the ratio v defined by
Equation 20.48.

20.16 STRENGTH OF FLANGE RIBS

The analysis of load sharing between the stiffening ribs and the main flange ring must necessarily be
considered as conservative because of the assumed pin-jointed supports (Figure 20.16) and because
the shearing stresses between the pipe wall and the rib have been neglected. Indeed, the analysis
appears to indicate that the weld between the rib and the wall might possibly be omitted in the
double flange ring design for several manufacturing reasons. Some of these reasons include cost
reduction, metallurgical control of welding procedure, reliability of weld inspection, and residual
stress effects due to welding.

While sizing a new compound flange, Equation 20.51 may be useful in establishing the first
criterion for sharing of the bending moment between the rib and the corresponding sector of the
main flange. Combining Equations 20.51 and 20.38 yields
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MR ¼ fW(R� r)

N(1þ f )
(20:52)

Hence, the corresponding bending stress in the rib becomes

sbR ¼ 6fW(R� r)

NTr(1þ f )(Br þ T)2
(20:53)

Equation 20.53 is applicable to the stiffening ribs sharing the external load with the main flange ring
on the premise that the weld between the rib and the pipe wall is sufficiently strong. Here again, our
criterion should be conservative because the additional cross-sectional area Tr� T included in
Equation 20.53 does not truly represent the effect of the pipe wall at the welded junction. However,
for the purpose of the preliminary design, Equation 20.35 is satisfactory, provided the maximum
computed stress is elastic. Further interpretation of the maximum stress value may be made utilizing
the concept of plastic correction.

Although the load-sharing capacity for a typical stiffening rib has been established only on
the basis of flange ring rotation and beam bending due to a couple applied at its end, the effect of
direct tension on the maximum stress can be included. The maximum bending stress and the tensile
stress in the rib may be added directly. Hence, the total stress is as follows: in direct tension,
load sharing between the rib and the pipe wall will be established in direct proportion to the
working areas. The portion of the tensile load carried by the rib, denoted by Wr, as illustrated in
Figure 20.18 gives

WR ¼ WBrTr
NBrTr þ 2prT

(20:54)

Since the simple tensile stress is WR=BrTr, combining Equations 20.53 and 20.54 yields

sTR ¼ 6fW(R� r)

NTr(1þ f )(Br þ T)2
þ W

NBrTr þ 2prT
(20:55)

(W/N −Wr)W/N
T

Wr
Br

BrTr

Tr

Rib

2prT/N

Pipe

r

FIGURE 20.18 Tensile load-sharing diagram for a rib and pipe sector.
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The estimate of load-sharing capability based on Equation 20.41 indicates that in the majority of
design situations involving rib-stiffened flanges of the usual proportions, only a limited toroidal
moment will be expected to be carried by the main flange ring, and in many such cases the
corresponding stresses can be ignored. However, in those instances where the calculated number f
from Equation 20.51 is found to be rather small (of the order of 5 or less), the maximum flange stress
due to the twist may be calculated from the simplified expression

st ¼ 0:96W(R� r)R

h2r2(1þ f ) loge k
(20:56)

where the flange ring notation is shown in Figure 20.19.

20.17 LOCAL BENDING OF FLANGE RINGS

When the rib system is relatively rigid and the resulting toroidal deformation of the main flange ring
is limited, it is recommended for design purposes that the order of the local stresses likely to exist in
the flange ring under the individual bolt loads be evaluated. Due to the symmetry, only one portion
of the flange, held by the two consecutive ribs and the corresponding portion of the pipe wall, needs
to be examined. Basically, this is a three-dimensional problem where an experimental analysis can
provide a reliable answer. As such, test data appear to be very scarce, and since a formal three-
dimensional solution to this problem would be very lengthy, a compromise is suggested here, based
on the elastic theory of plates. This method may be used in preliminary design and data reduction in
support of experimental work.

Utilizing as far as practicable the notation already employed, Figure 20.20 illustrates the
proposed mathematical model. Some theoretical solutions are available [8], which involve a
rectangular plate having one long edge free, and both short edges simply supported. The boundary
conditions along the shorter edges are likely to be closer to those of a built-in character, and
therefore the stresses calculated according to the model illustrated in Figure 20.20 should be
considered as approximate at best.

MF

St

RiRo R

k = Ro/Ri

h

Pipe wall

r

FIGURE 20.19 Flange ring notation for a stress check under toroidal moment.
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This analysis is based on the deflection of the free edge of a relatively long plate under the action
of a concentrated force P. From Figure 20.20, the edge force may be taken as proportional to
Wt=NBr. Hence, the edge deflection Yp becomes

Yp ¼ 1:83
WtBr

ENh3
(20:57)

The edge deflection Yq for a uniformly loaded plate for the same boundary conditions is

Yq ¼ 1:37
WB3

r

a0ENh3
(20:58)

The maximum bending stress in the flange ring (Figure 20.21) should be at the middle of the built-in
edge (i.e., where x¼ y¼ 0), as shown in the sketch. If the bolt loadW=N is first assumed to be uniformly
distributed, the maximum bending moment at the midpoint of the built-in edge in a classical solution
varies as a function of Br=a0, as shown in Figure 20.21. Here My denotes the moment acting about
the built-in edge and it is expressed in lb-in. per inch of circumference. Hence, the parameter
V¼ a0NMy=WBr must be nondimensional. The dimensional quantity a0 is defined in Figure 20.21.

The bending stress due to the equivalent uniform load W=Na0Br may be given as

sb ¼ 6VWBr

Na0h2
(20:59)

To make a conservative correction for the effect of a concentrated loading W=N, the bending stress
can be assumed to be roughly proportional to Yp=Yq as determined by Equations 20.52 and 20.53.
The criterion for the flange stress, located at the midpoint between the two adjoining ribs and very
close to the outer surface of the pipe, can now be defined as

R

Assumed mode of
deformation

Flange

Y
Edge simply
supported

Edge free

h

Pipe

Edge built in

W/N

Rib

X

P

t

Tr

Br

a o ~
 (2πR/N − T r)

=

FIGURE 20.20 Approximate plate model for main flange ring analysis.
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sb ¼ 8VWt

NBrh2
(20:60)

When the outer radius Ro of the flange is relatively large compared with the mean radius of the pipe,
the approximate stress in the flange ring becomes

sb ¼ 0:95Wt

NBrh2
(20:61)

The above stresses are shown to decrease with an increase in the number of gussets.

20.18 CORRECTION FOR TAPERED GUSSETS

When gussets have a linear change in depth from Br to Ar as shown in Figure 20.22, the equations
derived so far for the rectangular gussets can also be applied to the tapered geometry by determining
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FIGURE 20.21 Maximum moment for a rectangular plate simulating ribbed flange.
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FIGURE 20.22 Tapered gusset.
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an equivalent length L for a gusset of total length Lg. This equivalent length L can be found from
Figure 20.23 for a given value of the ratio Ar=Br. Once L is known, the overall depth H can be taken
as Lþ h. Then He and the stresses can be estimated in the same way in which they were calculated
for rectangular gussets. The calculation can now proceed with Equations 20.32 and 20.33 using the
parameter n¼He=T.

The development of the equivalent gusset length, Figure 20.23, is based on the resolution of the
external forces acting on the gusset. The assumption is also made that the average shearing stresses,
applied along the gusset and perpendicular to it, were numerically equal. The derivation involved
the summation of the external moments for the tapered and ‘‘equivalent’’ rectangular ribs.

The foregoing analysis of a compound circular flange suggests bending rather than shear as the
basic mechanism of potential structural failure. The approach then seems to be particularly sensitive
with regard to the application of the principles of fracture-safe design.

SYMBOLS

A Area of cross section
Ar Depth of tapered rib
At Total cross-sectional area
a Moment arm; depth of tapered plate
a0 Mean length of flange sector
B Width of bracket
Br Depth of rib
c Tapered plate parameter
d Distance to loaded point
d1 Mean pipe diameter
db Bolt hole diameter
E Elastic modulus
E0 Reduced modulus of elasticity
Et Tangent modulus
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FIGURE 20.23 Design chart for length of tapered gussets.

Huston/Practical Stress Analysis in Engineering Design DK4291_C020 Final Proof page 332 7.11.2008 10:20pm Compositor Name: MSubramanian

332 Practical Stress Analysis in Engineering Design



e Eccentricity of load application
F Load on weld seam
Ff Width of flange cross-section
Fn Normal force component
Fs Shear force component
f Load-sharing ratio
FEM Finite element method
H Depth of standard flange; maximum depth of bracket
He Equivalent depth of flange
h Thickness of flange ring; size of weld leg
Ib Second moment of area
Ig Moment of inertia of a component section
Im Moment of inertia of wall element of unit width
In Moment of inertia of a rib cross section
I0 Moment of inertia of main flange section
Ix Moment of inertia about central axis
J First moment of area
K Modulus of elastic foundation
Kb Buckling coefficient
k¼Ro=Ri Flange ring ratio
L Length of rib of constant depth; length of bracket
Lg Length of tapered rib
‘1 Moment arm
M General symbol for bending moment
M1, M2 Bending moment components
Mc Bending moment per one rib spacing
Mf Toroidal moment on flange ring
M0 Discontinuity bending moment
MR Bending moment on rib
My Bending moment about longer edge of plate
m¼Ri=T Ratio of inner radius to wall thickness
N Number of ribs
n¼H=T Ratio of flange to pipe thickness
P Tensile load on bracket; edge force on plate
Q0 Discontinuity shearing force
q Radial load intensity
R Radius to bolt circle; mean flange radius
Ri Inner radius of pipe
Ro Outer radius of flange
r Mean radius of pipe
S General symbol for stress
S1, S2 Weld stress components
SbR Rib bending stress
Sc Compressive stress
SCr Critical compressive stress
SF Flange dishing stress
SN Normal stress
Sp Plastic stress
SR Radial stress in flange ring
Ss Shear stress
St Tensile stress; toroidal stress in flange

Huston/Practical Stress Analysis in Engineering Design DK4291_C020 Final Proof page 333 7.11.2008 10:20pm Compositor Name: MSubramanian

Flanges 333



STR Total stress in rib
Su Ultimate strength
Sy Yield strength
Smax Maximum principal stress
s0 Wall thickness
s1 Depth of section at failure
T Thickness of pipe; thickness of plate
t Distance from bold circle to outer pipe surface; thickness of fillet weld
Tr Thickness of rib
T0 Thickness of backup ring
V Moment factor in plate analysis
W Total bolt load; external load on bracket
Wi Load per inch of pipe circumference
W0 Load per inch of bolt circle
WR Tensile load on rib
Wp1 Plastic load on bracket
x Arbitrary distance
Y Deflection of beam on elastic foundation
Yp Plate edge deflection under concentrated load
Yq Plate edge deflection under uniform load
y Coordinate; ring deflection
Z Section modulus
a Angle of fractured part; bracket angle, rad
b Elastic foundation parameter
bs Shell parameter
d Slope of stress–strain curve, rad
« Strain
«y Uniaxial strain at yield
h Modulus ratio
u Angle of twist; angle in weld analysis, rad
uF Angle of twist of main flange ring, rad
uP Rib half-angle, rad
uR Bending slope at end of rib, rad
m Poisson’s ratio
s,S Stress
sb, Sb Bending stress
t Shear stress component
tmax Principal shear stress
f Plate angle (rad)
f0 Flange factor
f(b, L) Auxiliary function for a beam on elastic foundation
v Ratio of rib to flange moment
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21 Brackets

21.1 INTRODUCTION

Brackets have manifold applications in structures and machinery. They serve as pipe supports,
motor mounts, connecting joints, fasteners, and seats of various types. [They involve rolled shapes,
plate components, and prefabricated structural elements to meet requirements like strength, rigidity,
appearance, and low manufacturing cost.]

Due to their many applications, brackets have a wide variety of geometry and loading config-
urations. The loads may be dynamic with changing directions. Optimal design is thus elusive.
Nevertheless, in this chapter, we offer a methodology and design philosophy for safe, reliable, and
economical designs.

As with the design of all structural components, bracket design criteria must also be based upon
the fundamentals of strength of materials, elasticity theory, and elastic stability. For brackets, the
designation of critical dimensions may also be governed by the elastoplastic response and the local
buckling resistance. Thus, experimental stress analysis results may be useful. All these consider-
ations may be important in evaluating brackets and in predicting their structural safety and
performance. There is, however, relatively little information available on bracket design in the
open literature. One of the reasons for this, as noted earlier, is the inherent diversity of configur-
ations, loading conditions, and safety of individual bracket applications.

21.2 TYPES OF COMMON BRACKET DESIGN

We focus upon generic designs that are commonly employed in structural systems. Specialized
brackets for a given application are expected to be similar to those described here.

Brackets in general have a bearing plate to distribute a load together with an edge-loaded plate,
or plates, to act as a stiffener or gusset. The bearing and stiffening plates are usually attached or
bonded by welding.

Figures 21.1 through 21.7 show a number of typical bracket designs, as previously documented
by Blake [1]. These designs do not exhaust all possibilities but they illustrate some of the more
important structural features that affect the design choice and methods of stress analysis. The
examples selected indicate welded configurations, which, with modern fabricating techniques are
likely to be reliable and economic. However, this statement is not intended to imply that welding
processes never cause problems. Despite significant progress during the past years, strict quality
control of welding should be maintained at all times. Fracture-safe design, for instance, can easily be
compromised by a change in material properties in the head-affected zone due to welding, flame
cutting, or other operation.

The mechanical characteristics of the various support brackets can be summarized as follows.
The short bracket shown in Figure 21.1 is made of a standard angle with equal legs. This component
can be designed on the basis of bending and transverse shear. When loading arm d is relatively
short, the structural element is rigid and the effect of bending may be neglected.

A box-type support bracket (Figure 21.2) can be made out of two channels using butt-welding
techniques. The strength check here is performed using a simple beam model under bending
and shear.

Rugged bracket construction is illustrated in Figure 21.3, where heavy loads have to be supported.
Because of the frame-type appearance andmechanics of this type of a support, external loading can be
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FIGURE 21.2 Box-type support bracket.
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FIGURE 21.3 Heavy-duty plate bracket.

T H

W
e

a

x

L

FIGURE 21.4 Tapered-plate bracket.
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resolved into tensile and compressive forces for design purposes. In this design, the cross sections of
the tensile and compression members are large enough to carry substantial loads.

A simple and light construction is illustrated in Figure 21.4. When the plate is relatively long,
the bracket must be designed to resist bending, shear, and local buckling loads.

A more conventional type of bracket design is shown in Figure 21.5. This bracket can be made
either by flame cutting and welding separate plate members or by cutting standard rolled shapes
such as I or T beams.

For larger loads, a double-T configuration bracket design, shown in Figure 21.6, may be
recommended. The design should be checked, however, for bending effects, shear strength, and
stability of the free edges due to the compressive stresses.

Yet another version, shown in Figure 21.7, can be flame-cut from a standard channel and
welded to the base plate to form a solid unit. The design analysis in this case is similar to that
employed for the configuration given in Figure 21.6.

21.3 WELD STRESSES

With welding being a bonding agent between the plates forming brackets, it is essential that stresses
in the welds be considered in overall stress analyses of brackets. In this section, we present a review
of formulas for calculating welding stresses. The major findings are documented by the American
Welding Society. For additional details, refer to welding handbooks, publications of the Welding
Research Council, and of texts on materials science (see, for example, Ref. [2]).

T

B
W = Resultant load

Top
plate

Loaded
edgeL

Vertical
support

edgeFree edge of 
triangular plate

H
a

FIGURE 21.5 T-section bracket.

B B
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W

FIGURE 21.6 Double-T section bracket.
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In reviewing the designs illustrated by Figures 21.1 through 21.7, we see that we have to
consider both transverse and parallel welds subjected to bending moments. To examine the
principles involved, consider the case shown in Figure 21.8: for the fillet weld shown, the size of
the weld leg is h. The overall linear dimensions of the weld are B and H for the transverse and
longitudinal welds respectively. The bending moment M1 on the transverse welds can be imagined
to be a couple consisting of two equal forces F acting at the center of the weld legs, as shown. Since
it is standard practice to calculate the stresses on the basis of a weld-throat section, the area on which
the component force F is acting must be approximately equal to Bh=

ffiffiffi
2

p
. This is somewhat

conservative because of the additional weld material found at the corner, which is not accounted
for in calculating the weld area. Thus, we have

M1 ¼ F(H þ h) (21:1)

and the tensile stress across the throat section is

s1 ¼ F
ffiffiffi
2

p

Bh
(21:2)

Combining these expressions gives

s1 ¼
ffiffiffi
2

p
M1

Bh(H þ h)
(21:3)
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FIGURE 21.7 Channel-type heavy-duty bracket.
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FIGURE 21.8 Example of fillet weld in bending.
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The effect of the external load W on the parallel welds can be treated with the help of simple beam
theory. The section modulus z of the parallel weld throat is approximately equal to

z ¼ bH2

6
ffiffiffi
2

p (21:4)

Since both longitudinal sections are involved in resisting M2, we have

s2 ¼ 3
ffiffiffi
2

p
M2

hH2 (21:5)

As noted earlier, the stress at a common point must be the same for both the transverse and
longitudinal welds. That is,

s1 ¼ s2 (21:6)

Then, from Equations 21.1 and 21.5, we obtain a relation between the bending moments as

M1 ¼ 3B(H þ h)M2

H2
(21:7)

Since M is M1þM2, this equation provides an expression for M as

M ¼ M2 1þ 3B(H þ h)

H2

� �
(21:8)

Finally, from Equations 21.5 and 21.7 and by observing further in Figure 21.8 that M is Wd, we
obtain the bending stress s in terms of the load W as

s ¼ 3
ffiffiffi
2

p
Wd

h H2 þ 3B(H þ h)½ � (21:9)

Correspondingly, the average shear stress t due to the load W is

t ¼
ffiffiffi
2

p
W

2h(H þ h)
(21:10)

Consider the bracket loaded in tension as in Figure 21.9. At the plate junction (or ‘‘throat’’), the
nominal stress S on the fillet weld is simply

S ¼ P=2Bh (21:11)

where B is the weld length. For design purposes, it is customary to use the more conservative stress
estimate:

S ¼
ffiffiffi
2

p
P=2Bh (21:12)

where the
ffiffiffi
2

p
factor is included since in actual welding practice, the effective weld area is generally

smaller than 2Bh.
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To look into this further, consider the double fillet weld represented in Figure 21.10 where a
sketch of the probable outline of an actual weld is given. Thus, if the effective area is reduced due to
the welding, the thickness of the weld is probably greater than that used in the mathematical model.
To explore the theoretical model in more detail, consider an arbitrary section of the weld designated
by the angle u as in Figure 21.10. Let Fn and Fs be the normal and shear forces on the section
respectively and let t be the thickness of the section as shown. From Figure 21.10, we see that t may
be expressed in terms of the weld height h and angle u as

t ¼ h=(sin uþ cos u) (21:13)

To see this, consider an enlarged view of, say, the upper weld profile of Figure 21.10 as shown in
Figure 21.11. By focusing upon triangle ABC and by using the law of sines we have

t

sinp=4
¼ h

sinf
(21:14)

By noting that angle f is (p=4þ u) we see that sin f is

sinf ¼ sin p � (p=4þ u)½ � ¼ sin (p=4þ u)
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FIGURE 21.9 Symmetrical fillet weld in tension.
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FIGURE 21.10 Free-body diagram of fillet weld.

Huston/Practical Stress Analysis in Engineering Design DK4291_C021 Final Proof page 342 3.11.2008 1:12pm Compositor Name: JGanesan

342 Practical Stress Analysis in Engineering Design



or

sinf ¼ sinp=4 cos uþ cosp=4 sin u ¼
ffiffiffi
2

p
=2

� �
(cos uþ sin u) (21:15)

Then, by substituting into Equation 21.14 we have the result of Equation 21.13. That is,

t ¼ h sin (p=4)= sinf ¼ h=(sin uþ cos u) (21:16)

Next, referring again to Figure 21.10, consider a free-body diagram of the shaded portion of the
lower weld of the bracket as in Figure 21.12.

By adding forces horizontally and vertically we have

P=2� Fs sin u� Fn cos u ¼ 0 (21:17)

and

Fs cos u� Fn sin u ¼ 0 (21:18)

Then, by solving these expressions for Fs and Fn, we have

Fs ¼ (P=2) sin u and Fn ¼ (P=2) cos u (21:19)
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FIGURE 21.11 Bracket weld profile.
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FIGURE 21.12 Free-body diagram of a weld segment.
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Finally, for a weld length B, the shear and normal stresses on the cutting plane surface of Figure
21.12 are

ss ¼ Fs=2Bt and sn ¼ Fn=2Bt (21:20)

By substituting for t, Fs, and Fn from Equations 21.16 and 21.19, the stresses become

ss ¼ (P sin u)(sin uþ cos u)

2Bh
(21:21)

and

sn ¼ (P cos u)(sin uþ cos u)

2Bh
(21:22)

An examination of Equations 21.21 and 21.22 shows that at no point of the weld do these theoretical
stress values exceed the value estimated by Equation 21.12. Therefore, Equation 21.12 may
be viewed as a safe upper bound on the stresses, and that the actual weld stresses are likely to be
considerably smaller.

21.4 STRESS FORMULAS FOR VARIOUS SIMPLE BRACKET DESIGNS

Consider the simple shear bracket of Figure 21.1 and shown again in Figure 21.13. This bracket is
simple both in design and manufacture. If the line of action of the load is a distance d from the main
plate, the bending (sb) and shear (ss) stresses on the bracket plate may be computed as

sb ¼ 6W(d � T)=BT2 (21:23)

and

ss ¼ W=BT (21:24)

The corresponding weld stresses are

sb ¼ 4:24Wd

h(H2 þ 3BH þ 3Bh)
(21:25)

W
d

T

T

B

H

FIGURE 21.13 Shear-type bracket.
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and

ss ¼ 0:7071W
h(H þ h)

(21:26)

Next, consider the box-type bracket of Figure 21.2 and shown again in Figure 21.14. Here, the
bending shear stresses are

sb ¼ 3Wd

HT(H þ 2Bþ 4T)
(21:27)

and

ss ¼ W

2(H þ 2T)
(21:28)

The corresponding weld stresses are

sb ¼ 4:24Wd

h H(H þ 4T)þ 3(Bþ 2T)(H þ h)½ � (21:29)

and

ss ¼ 0:7071W
h(H þ 2T þ h)

(21:30)

For the heavy-duty plate bracket of Figure 21.3 and shown again in Figure 21.15, we can perform a
stress analysis by assuming that the load W may be resolved into two components acting along the
central planes of the plates. The stress is then tensile in the horizontal member and compressive in
the inclined member. These stresses are

st ¼ W sinf

BT cosf
(21:31)

and

sc ¼ W

BT cosf
(21:32)

T H

B

T

W

d

FIGURE 21.14 Box-type support bracket.
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The corresponding weld stresses are approximately

sb ¼ 0:7071W tanf

Bh
(21:33)

and

ss ¼ 0:5W tanf

Bh
(21:34)

It is not practical to use large angles f because the corresponding plate forces become relatively
high, as can be seen from the foregoing expressions. In addition, the bracket having high f loses its
frame character of structural behavior and tends to become a cantilevered member for which even
small transverse loads can cause substantial bending stresses.

A bracket angle f of 458 is often selected in practical design. With the typical proportions of
plate members in use, Equations 21.31 and 21.32 suffice for sizing calculations. However, it
should be appreciated that the compressive member of the bracket can become elastically unstable
if its thickness is drastically reduced. Since in the angle brace of Figure 21.4, the two edges of
the plate are free to deform, we have the case of buckling of a relatively wide beam subjected
to axial compression. Denoting the width and length of this beam by B and H, respectively,
and assuming end fixity due to welding, the following expression for the critical buckling stress
can be used

Scr ¼
3:62ET2

H2
(21:35)

This formula is limited to elastic behavior, and therefore the yield strength of the material Sy can be
used to determine the maximum allowable value of H=T to avoid failure by buckling. The
corresponding critical ratio is

H

T
¼ 1:9

E

Sy

� �1=2

(21:36)

The term E=Sy may be called the inverse strain parameter because it follows directly from Hooke’s
law. For the conventional metallic materials, the ratio E=Sy varies between 100 and 1000 for high-
strength and low-strength materials, respectively.

B

T

H

T
f

W

FIGURE 21.15 Heavy-duty plate bracket.
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21.5 STRESS AND STABILITY ANALYSES FOR WEB-BRACKET DESIGNS

Consider the tapered plate bracket of Figure 21.4 shown again in Figure 21.16. This design, in
effect, is a cantilever plate loaded on edge. The normal stresses on a section, say at x, must vary from
tension to compression. The maximum bending stress sb depends upon the taper. It can be
calculated using the expression

sb ¼ 6WL2(x� e)

T aLþ x(H � a)½ �2 (21:37)

The distance x at which the highest bending stresses develop can be found form the condition
dsb=dx¼ 0, calculated from Equation 21.37. This yields

x ¼ eþ (e2 þ c)1=2 (21:38)

where c is

c ¼ aL 23(H � a)þ aL½ �
(H � a)2

(21:39)

The procedure is to compute x from Equations 21.38 and 21.39, and to substitute this value into
Equation 21.37 to obtain the maximum stress value. With the usual proportion of brackets found in
practice, the aspect ratio H=L can be used to make a rough estimate of the relevant buckling
coefficient Kb from Figure 21.17. This coefficient is then used in calculating the critical elastic
stress of the free edge of the bracket using the expression

sCr ¼ KbE
T

H

� �2

(21:40)

The plate buckling coefficient Kb given in Figure 21.17 can be determined experimentally for
each case of plate proportions, boundary conditions, and type of stress distribution. It represents
the tendency of a free edge of the plate element to move toward local instability when the

T H

W
e

a

x

L

FIGURE 21.16 Tapered-plate bracket.
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compressive stresses reach a certain critical value. The consequence of local buckling may then be
interpreted in two ways:

1. Overall collapse by rendering the plate element less effective in the postbuckling region of
structural response

2. Detrimental stress redistribution influencing the load-carrying capacity of the system

The design values given in Figure 21.17 depend largely on the type of stress distribution in
compression. Although Kb values are sensitive to the type of stress distribution and vary in a
nonlinear fashion, their dependence on the aspect ratio H=L is only moderate.

When the actual compressive stress given by Equation 21.37 exceeds that given by Equation
21.40, it is customary to assume that the free edge of the bracket is susceptible to local elastic
buckling. To make a conservative allowance for the critical buckling stress in the plastic range, the
following set of design formulas may be used

SCr ¼ KbEh
T

H

� �2

(21:41)

where h is

h ¼ Et

E

� �1=2

(21:42)

and Et is

Et ¼ dS

d«
(21:43)
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FIGURE 21.17 Buckling coefficients for simply supported plates under nonuniform longitudinal stresses.
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In Equation 21.43, the terms S and « denote the normal stress and uniaxial strain, respectively.
Therefore, Equation 21.43 defines the tangent modulus of the stress–strain characteristics of the
material at a specified level of stress.

The strength of the weld in bending is estimated as follows:

sb ¼ 4:24W(L� e)

h(H2 þ 3HT þ 3hT)
(21:44)

The numerical value of shear stress for this case can be obtained from Equation 21.26.
Figures 21.5 through 21.7 reproduced here as Figures 21.18 through 21.20 show various

common designs of tapered plate brackets. In spite of their common use, comparatively few stress
formulas for these brackets are available.

The design shown in Figure 21.18 contains two basic elements of structural support: the top
support plate which helps to distribute the load; and the triangular plate loaded on edge and designed
to carry the major portion of the load. The two plates acting together form a relatively rigid ‘‘tee’’
configuration.

Experience indicates that the free edge carries the maximum compressive stress Xmax, which
depends on the aspect ratio L=H. Practical design situations give aspect ratios somewhere between

B

T

Free edge of
triangular plate 

Vertical
support

edge

W = Resultant
    load Top

plate

Loaded
edge

H
L

a

FIGURE 21.18 T-section bracket.

W

a

BB

FIGURE 21.19 Double-T section bracket.
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0.5 and 2.0 [3]. For this particular case, the maximum allowable total load W near the center of the
upper plate can be estimated as

W ¼ Smax(0:60H � 0:21L)
TL

H
(21:45)

When the working load W is specified, the maximum corresponding stress Smax can be calculated
from Equation 21.45. It is then customary to make Smax< Sy, where Sy denotes the yield compres-
sive strength of the material. The design condition for the critical values of L=T can be represented
by the following criteria.

For 0.5 � L=H � 1.0,

L

T
� 180

S1=2y

(21:46)

For 1.0 � L=H � 2.0,

L

T
� 60þ 120 L

H

	 


S1=2y

(21:47)

Equations 21.45 through 21.47 are valid when the resultant load W is located reasonably close to
the center of the top plate and when the yield strength Sy is expressed in ksi. However, when this
load moves out toward the edge of the plate, the analytical method described above loses its
degree of conservatism and an alternative approach based on the concept of increased eccentricity
should be designed. The strength of a welded connection in this design may be checked from
Equations 21.33 and 21.34.

Some of the specific features of the triangular-plate bracket can be analyzed with reference to
Figure 21.21. The maximum stress at the free edge of the triangular part may be calculated on the
basis of elementary beam theory, by combining the stresses due to the bending moment W� e and
the compressive load equal to W=cos a. This gives

Smax ¼ W(Lþ 6e)
TL2 cos2 a

(21:48)

A conservative check on free-edge stability can be made by assuming that the shaded portion of the
plate acts as a column with a cross section equal to (TL cosa)=4 and length equal to H=cos a.

W

a

B

FIGURE 21.20 Channel-type heavy-duty bracket.
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When a relatively small value of L=T must be used, there is little danger of elastic instability and
the bracket can be designed to undergo a certain amount of local yielding. For 0.5 � L=H � 2.0, the
recommended L=T ratio is

L

T
� 48þ 24 L

H

	 


S1=2y

(21:49)

Here, the yield strength Sy is expressed in ksi [3].
The maximum permissible load on the bracket under fully plastic conditions can be calculated

from the expression:

Wpl ¼ TSy cos
2 a (L2 þ 4e2)1=2 � 2e

h i
(21:50)

The cross-sectional area of the top plate should be designed for the horizontal component of the
external load

A ¼ Wpl

tana

Sy
(21:51)

The design formulas given by Equations 21.23 through 21.51 are applicable to various practical
situations wherever a particular structure can be modeled as a support bracket similar to one of the
configurations illustrated in Figure 21.13 through 21.20. By checking the weld strength, beam
strength, and stability the structural integrity of a bracket can be assured, provided that material and
fabrication controls are not compromised.

SYMBOLS

A Area of cross section
Ar Depth of tapered rib
At Total cross-sectional area
a Moment arm; depth of tapered plate

W tan a

W/cos a
WL/2 e

L cos a/4

Top plate

H

L

a

Centrally
located

triangular
platea

FIGURE 21.21 Approximate model for a triangular plate bracket.
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a0 Mean length of flange section
B Width of bracket
Br Depth of rib
c Tapered plate parameter
d Distance to loaded point
d1 Mean pipe diameter
db Bolt hole diameter
E Elastic modulus
E0 Reduced modulus of elasticity
Et Tangent modulus
e Eccentricity of load application
F Load on weld seam
Fn Normal force component
Fs Shear force component
Ft Width of flange cross section
f Load-sharing ratio
H Depth of standard flange; maximum depth of bracket
He Equivalent depth of flange
h Thickness of flange ring; size of weld leg
Ib Second moment of area
Ig Moment of area of a component section
Im Moment of area of wall element of unit width
In Moment of area of a rib cross section
I0 Moment of area of main flange section
Ix Moment of area about central axis
J First moment of area
K Modulus of elastic foundation
Kb Buckling coefficient
k¼Ro=Ri Flange ring ratio
L Length of rib of constant depth; length of bracket
Lg Length of tapered rib
‘1 Moment arm
M General symbol for bending moment
M1, M2 Bending moment components
Mc Bending moment per one rib spacing
MF Toroidal moment on flange ring
M0 Discontinuity bending moment
MR Bending moment on rib
My Bending moment about longer edge of plate
m¼Ri=T Ratio of inner radius to wall thickness
N Number of ribs
n¼H=T Ratio of flange to pipe thickness
P Tensile load on bracket; edge force on plate
Q0 Discontinuity shearing force
q Radial load intensity
R Radius to bolt circle; mean flange radius
Ri Inner radius of pipe
Ro Outer radius of flange
r Mean radius of pipe
S General symbol for stress
S1, S2 Weld stress components
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SbR Rib bending stress
Sc Compressive stress
SCr Critical compressive stress
SF Flange dishing stress
Sn Normal stress
Sp Plastic stress
SR Radial stress in flange ring
Ss Shear stress
St Tensile stress; toroidal stress in flange
STR Total stress in rib
Su Ultimate strength
Sy Yield strength
Smax Maximum principal stress
s0 Wall thickness
s1 Depth of section at failure
T Thickness of pipe; thickness of plate
t Distance from bolt circle to outer pipe surface; thickness of fillet weld
Tr Thickness of rib
T0 Thickness of backup ring
V Moment factor in plate analysis
W Total bolt load; external load on bracket
Wi Load per inch of pipe circumference
W0 Load per inch of bolt circle
WR Tensile load on rib
Wpl Plastic load on bracket
x Arbitrary distance
Y Deflection of beam on elastic foundation
Yp Plate edge deflection under concentrated load
Yq Plate edge deflection under uniform load
y Coordinate; ring deflection
Z Section modulus
a Angle of fractured part; bracket angle, rad
b Elastic foundation parameter
bs Shell parameter
d Slope of stress–strain curve, rad
« Strain
«y Uniaxial strain at yield
h Modulus ratio
u Angle of twist; angle in weld analysis, rad
uF Angle of twist of main flange ring, rad
up Rib half-angle, rad
uR Bending slope at end of rib, rad
m Poisson’s ratio
s, S Stress
sb, Sb Bending stress
t Shear stress component
tmax Principal shear stress
f Plate angle, rad
f0 Flange factor
f (b, L) Auxiliary function for a beam on elastic foundation
v Ratio of rib to flange moment
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22 Special Plate Problems
and Applications

22.1 INTRODUCTION

The many applications of plates in structures and machines, and the consequent varied geometries
and loadings lead to diverse and special problems which are seldom listed or discussed in textbooks
and handbooks. In this chapter, we look at some of these special configurations which may be of
interest and use to analysts and designers. Specifically, we consider plates with large deflections,
perforated plates, reinforced plates, pin loaded plates, and washers.

22.2 LARGE DISPLACEMENT OF AXISYMMETRICALLY LOADED
AND SUPPORTED CIRCULAR PLATES

The fundamentals of plate theory of Chapter 18, and the application with panels, flanges, and
brackets of Chapters 19 through 21 assume that the plate components have relatively small
thicknesses whose deflections do not exceed the magnitude of the thicknesses. If, however, the
deflections are large exceeding the plate thickness, the analysis should include the effect of the strain
in the middle plane of the plate [1,2]. But this leads to a set of nonlinear differential equations that
are difficult to solve even numerically. Nevertheless an approximate solution for circular plates with
axisymmetric loading and support may be obtained using Nadai’s equations as recorded by
Timoshenko and Woinowsky-Kreiger [1]:

d2u

dr2
þ du

dr

�
4� u=r2 ¼ �(1� v)

dw

dr

� �2�
2r � dw

dr

� �
d2w

dr2

� �
(22:1)

and

d3w

dr3
þ d2w

dr2

�
r � dw

dr

�
r2 ¼ (12=h2)

dw

dr

� �
du

dr
þ nu=r þ dw

dr

� �2�
2

" #

þ (1=Dr)
ðr

0

q(r)rdr (22:2)

where
r is the radial coordinate
u is the radial displacement
w is the midplane displacement normal to the plate
D is Eh3=12(1� n2)
h is the plate thickness
E is Young’s modulus of elasticity
n is Poisson’s ratio
q(r) is the axisymmetric loading.
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An approximate iterative solution to Equations 22.1 and 22.2 may be obtained by assuming a
reasonable first solution w(r). Then by substituting into the right-hand side of Equation 22.1 we
obtain a linear equation for u, which can be integrated to obtain a first solution for u.

Next, by substituting for u and w in the right-hand side of Equation 22.2 we obtain a linear
equation for w, which after integration gives a second approximation for w(r). This in turn, may be
substituted into Equation 22.1 to obtain further refined values for u and w.

This procedure may be used to obtain the maximum (center) displacement wmax of a circular
membrane with fixed edges and Poisson’s ratio n¼ 0.25, as

(wmax=h)þ 0:583(wmax=h)
3 ¼ 0:176(q=E)(r0=h)

4 (22:3)

For large displacement, the first term is relatively small compared with the second, and thus wmax is
approximately

wmax ¼ 0:671r0(qr0=Eh)
1=3 (22:4)

The corresponding tensile membrane stresses at the center and boundary of the membrane are then
approximately

Scenter ¼ 0:423(Eq2r20=h
2)1=3 (22:5)

and

Sboundary ¼ 0:328(Eq2r20=h
2)1=3 (22:6)

It may be of interest to note that the deflection of Equation 22.4 is not directly proportional to the
load intensity q but instead varies with the cube root of q. To make the deflection proportional to q,
it would be necessary to have a corrugated membrane as is frequently done in the field of
instrumentation.

22.3 DESIGN CHARTS FOR LARGE DEFLECTION OF CIRCULAR PLATES

The approach of the foregoing section where an iterative procedure is used to predict a large plate
displacement, has led to a number of practical formulas and rules for design. Many of these
involve procedures where the beginning value of normal displacement w is assumed using the
small-deflection theory. Since many large-deflection formulas [3] are expressed in terms of w=h
ratios of values somewhat smaller than that which is compatible with the elastic deformation, a more
accurate value of w=h can be obtained using relatively few successive approximations.

It should be pointed out that when the deflection of a plate becomes comparatively large, the
middle surface is additionally strained due to the membrane plate support. The total stress will be
equal to the sum of the maximum stress due to flexure and membrane tension. The load–deflection
and load–stress relations, in this particular case, become nonlinear.

The majority of practical design applications involve circular plates and diaphragms under
uniform pressure. The relevant deflection criterion can be expressed in dimensionless form as

qr40
Eh4

¼ H(w, t) (22:7)
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Figure 22.1 provides a graphical representation of H for three usual support conditions:

1. H1: Simple support
2. H2: Edge restrained but no membrane (midplane) tension
3. H3: Fixed support with full membrane tension

Figure 22.2 provides a graphical representation of a dimensionless stress parameter F as a function
of the deflection to thickness ratio w=h, where F is defined as

F ¼ Sr40=Eh
2 (22:8)

where S is the estimated actual stress.
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FIGURE 22.1 Design chart for large deflections of circular plates.
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FIGURE 22.2 Design chart for large deflections of circular plates.
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Figure 22.2 represents five curves depending upon the stress location (center or edge) and the
edge support. These are

1. F1: Center stress—simple support
2. F2: Edge stress—edge support but no membrane (midplane) tension
3. F3: Center stress—edge support but no membrane (midplane) tension
4. F4: Edge stress—fixed support
5. F5: Center stress—fixed support

The design problem is thus reduced to a simple procedure: given the loading, support conditions,
and the geometrical and physical parameters, Figure 22.1 provides the displacement. Then knowing
the displacement, Figure 22.2 provides the stress. Alternatively, given a stress limit, Figure 22.2
provides the displacement and then Figure 22.1 provides the loading limit. Still more, for given
stress or displacement limits, the figures provide design criteria for the geometric and physical
parameters.

The following example illustrates the procedure.

22.4 DESIGN EXAMPLE FOR A LARGE DISPLACEMENT OF CIRCULAR PLATE

Consider an aluminum plate with thickness h of 0.375 in. and radius r0 of 24 in. Let the plate have a
fixed (built-in) rim. Suppose the plate is loaded by a pressure q of 6 psi. Calculate the maximum
displacement and stress.

SOLUTION

The elastic modulus E for aluminum is approximately 10� 106 psi. Then, from the given data the
dimensionless loading H is

H ¼ H3 ¼ qr40
Eh4

¼ (6)(24)4

(10)7(0:375)4
¼ 10:066 (22:9)

From Figure 22.1, the displacement=thickness ratio w=h is then approximately

w=h ¼ 1:075 (22:10)

Hence, the center displacement wmax is

wmax ¼ 1:075h ¼ 0:403 in: ¼ 0:0102 m (22:11)

From Figure 22.2, the dimensionless stress F for w=h of 1.075 is approximately

F ¼ F4 ¼ Sr40
Eh4

¼ 5:3 (22:12)

Hence, the maximum stress Smax (occurring at the plate edge) is

Smax ¼ 5:3
Eh2

r20
¼ 5:3

(10)7(0:375)2

(24)2
¼ 12:939 psi ¼ 89:2 Pa (22:13)

Huston/Practical Stress Analysis in Engineering Design DK4291_C022 Final Proof page 358 7.11.2008 10:21pm Compositor Name: MSubramanian

358 Practical Stress Analysis in Engineering Design



22.5 LARGE DISPLACEMENT OF RECTANGULAR PLATES

The theoretical problem of large deflection of a rectangular plate has been the subject of numerous
investigations. Various solutions obtained have been expressed in terms of dimensionless parameters
similar to those used in conjunction with circular plates. Many solutions have also been compared
with experimental data during the various phases of research sponsored by the National Advisory
Committee for Aeronautics. A convenient summary of deflections and stresses for rectangular plates
under uniform load is given by Roark [4]. The boundaries for these plates include simple supports,
riveting constraints, and completely fixed conditions. The plate-loading parameter qa4=Eh4 covers
the range 0–250, where a is the long dimension. The maximum ratio of displacement to thickness
in Roark’s summary is 2.2.

22.6 PERFORATED PLATES

A perforated plate is a plate with numerous small holes. We can easily extend our plate analysis to
perforated plates provided the perforated plates satisfy certain conditions. These are as follows:

1. The holes are numerous (20 or more) and circular
2. The holes are regularly positioned into either square or equilateral-triangular arrays (see

Figure 22.3)
3. The plate thickness is more than twice the hold pitch (center to center distance, p0)
4. The ‘‘ligament efficiency,’’ h0=p0 is greater than 5%
5. Local reinforcement effects are included in the ligament efficiency

The ‘‘ligament efficiency’’ is a principal parameter in the analysis of perforated plates. It is a
dimensionless parameter defining the geometric spacing of the holes as (see Figure 22.3):

Ligament efficiency ¼ h0=p0 (22:14)

Square penetration
pattern

p0

h0

Triangular penetration
pattern

p0

h0

FIGURE 22.3 Typical hole patterns for perforated plates.
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The concept of ligament efficiency and its importance have been the subjects of various theoretical
and experimental investigations [5]. In principle, we can design and analyze perforated plates by
simply replacing the elastic constants E and n by modified constants E* and n* which are dependent
upon the ligament efficiency.

The modified constants are considered to be functions of the ligament efficiency within the
range 0.05–1.0, and specific detailed design charts that feature stress multipliers as functions of hole
orientation angle in relation to the direction of loading are available. The actual plate stresses are
obtained by multiplying the design factors by the nominal stresses calculated for the equivalent solid
plate. All conditions treated by the codes are axisymmetric. The effects of temperature are included
in consideration of structural interaction with the adjacent members. Where thin or irregular
ligament patterns are involved, the code recommends using the average stress intensities.

In practice, triangular patterns appear to be more widely used, particularly in the construction of
boiler feedwater heaters, steam generators, heat exchangers, and similar systems. In some of these
systems, a perforated plate may house tubes which in turn could increase the plate rigidity. In such
cases, the concept of virtual ligament efficiency can be defined as the actual ligament plus an
effective portion of the tube wall divided by the tube hold pitch [7].

Figure 22.4 provides an example of how elastic constants should be modified for plates with
triangular pattern holes, according to the American Society of Mechanical Engineers (ASME) code
[6], where t is the plate thickness. The graph of Figure 22.4 has been developed for a Poisson’s ratio
of 0.3 and plate-thickness=hole-pitch ratios (t=p0) greater than 2. Design curves for other values of
Poisson’s ratio are also available [5]. The ASME code provides various stress formulas for use with
the modified elastic constants E* and n*.

Some analysts suggest that ligament efficiency might better be estimated using the hole
area A as

Ligament efficiency ¼ ( p20 � A)=p20 (22:15)

Furthermore, this and other formulas for ligament efficiency appear to be equally applicable to
square and triangular hole patterns. The advantage of Equation 22.15 is that the relevant magnitudes
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FIGURE 22.4 Modified elastic constants for triangular patterns (n¼ 0.3). (From ASME Boiler and Pressure
Vessel Code, Section VIII, American Society of Mechanical Engineers, New York, 1971.)
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of efficiency fall closer between 0.5 and 0.8, which seems to be more realistic than the smaller
values resulting from h0=p0. A preliminary estimate of the maximum stress in the perforated plate
can be obtained by dividing the maximum stress in the homogeneous plate by the ligament
efficiency. Similarly, the deflections of the perforated plate can be calculated if the flexural rigidity
of the homogeneous plate D is multiplied by the ligament efficiency. Since the deflection is
inversely proportional to D, ligament correction tends to increase the magnitude of the deflection
for a perforated plate compared to that of a solid plate.

22.7 REINFORCED CIRCULAR PLATES

We can reinforce circular plates by attaching ribs to the plate. In practice, these ribs being radial
and=or concentric, are usually attached axisymmetrically. They may or may not be symmetric
relative to the middle plane of the plate.

We may approximately model a stiffened plate by increasing the value of the flexural rigidity D.
For a symmetric rib system, we may express the rigidity as

D ¼ Eh3

12(1� n2)
þ EI

d
(22:16)

where
I is the second moment of area of the rib with respect to the middle axis of the plate
d is the average rib spacing

For a nonsymmetric rib system such as a T-shaped rib and plate combination (rib on one side of
the plate only), the plate rigidity D may also be expressed as in Equation 22.16, but here I is the
average second moment of area of the T-section about its centroid.

Grillage-type plates are used in the nuclear core reactor vessels and other applications where
support and cover plate size requirements are such that these members cannot be procured as solid
plates. The fabrication is accomplished by welding together a complex web system.

In some cases, the plates can be reinforced by the use of a concentric stiffening ring which
reduced the stresses and deflection due to its toroidal stiffness. Such a concentric ring has the
tendency to turn inside out as the plate deflects under the load. Working design charts have been
developed for the effect of such a reinforcing ring on the maximum deflection and radial stress for a
circular plate with a built-in edge and the transverse uniform load [8]. The most effective location of
a ring of a specified size, is not the same for the stress and deflection criteria, and a design
compromise may be needed. Generally, placing the ring at about 0.6 value of the radius measured
from the plate center, represents a satisfactory compromise.

Where the major design criterion is deflection rather than stress, an alternative to a thick cover
plate would be a relatively thin plate heavily reinforced. One such design, for instance, involves a
system of straight radial ribs radiating to the outer edge of the plate as shown in Figure 22.5. While a
relatively exact mathematical model can be applied to the bending of plate with orthogonal ribs, no
flexural theory has yet been established for accurate calculation of the deflection of a plate with radial
reinforcement [9]. Radial ribs may be of constant depth or tapered geometry with gradually dimin-
ishing depth toward the outer edge of the plate. Because of this, such a reinforcement can only be
analyzed with the aid of the three-dimensional theory of elasticity, presenting almost unmanageable
boundary conditions. Experimental evaluation of the stresses and deflections can be made but many
models have to be tested prior to determining the optimum criteria of strength and rigidity. In such
cases, however, where the rib system is relatively stiff compared with the plate to which these ribs are
attached, the approximate solutions may be possible on the basis of flexible sectorial plates.

In the case of a cover plate shown in Figure 22.5, individual radial rib can be regarded as a
simple beam subjected to a bending moment at the junction with the circular stiffener, a supporting
reaction at the other end, and a distributed load along the rib length according to a linear function.
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The basic difficulty in the analysis, however, is the fact that ribs behave as T-beams of variable
stiffness and that the portions of the adjacent plate act as flanges. Because of these constraints the
only tractable approach has been so far, through experimental techniques [9]. Ribbed configurations
in this type of an experiment are machined from a solid flat plate, and in the sequence of tests, the
depth of the webs is progressively reduced providing the test samples with different combinations of
web shape and size. All plates in a quoted experiment had eight ribs, and the deflections under
uniform load were measured by optical means involving an interferometer. The plate models were
about 8 in. in diameter, and the measured deflections were assessed in relation to the theoretical
deflections of solid plates of equal weight calculated for a simply supported boundary. The results of
this research indicated that the most effective use of material could be achieved with deep and
slender ribs in such a way as to make the cumulative mass of the rib system equal to about 40% of
the total mass of the plate. An empirical formula for the central deflection of the eight-ribbed design
shown in Figure 22.5 was established as follows:

Y ¼ 21:6qa10l3

EW3
(22:17)

where the Poisson’s ratio was assumed to be equal to 0.3, which is good for a majority of metallic
materials. For the more heavily reinforced ribs, 40% may not be possible to achieve. This type of
reinforcement, as well as the elimination of any potential waviness of the plate boundary could be
achieved by increasing the number of ribs. Although further experimental analysis is required for
finding the precise effect of the number of ribs on the deflection and local stresses, the eight-rib
system analyzed so far can be used as a rough guide for establishing the deflection criteria for other
designs. For instance, a plate of 12 ribs of the same size relative to the basic plate and one of the
eight-rib type are expected to have similar deflection ratios.

22.8 PIN-LOADED PLATES

In a riveted and bolted connection, a plate can be loaded through a pin in the hole which causes a
complex stress distribution [10]. Such a stress pattern may be of special interest in the determination

FIGURE 22.5 Cover plate with radial stiffeners.
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of the fatigue strength of a joint made of high-strength alloy steels or lightweight alloys. For these
materials, the endurance limits are well within the elastic range, in contrast to mild steel which has
the endurance limit close to the yield strength of the material.

In the study quoted here [10], strain gage and photoelastic measurements were made to
determine the stress concentration factor for various ratios of hole diameter to the width of plate,
ranging from 0.086 to 0.76.

Figure 22.6 shows the configuration and notation for the problem. Let S designate the maximum
tensile stress at the edge of the plate hole and let s designate the average bearing stress on the pin.
Let Kb be the ratio of these stresses defined as

Kb ¼ S=s (22:18)

Then Kb represents a stress concentration factor.
From Figure 22.6 we see that Kb is

Kb ¼ 2rtS=F (22:19)

Figure 22.7 provides an experimentally determined graphical representation of Kb in terms of the
ratio of hole diameter to plate width. A problem with the empirical data, however, is that an
extrapolation of the data may be in error. For example, we should not expect the representation
for Kb in Figure 22.7, to be accurate beyond 2r=B¼ 0.8. Nevertheless, the greater the ratio of the
hole diameter to the plate width, the more the stress concentration.

Clearance between the pin and the plate also increases stress concentration. Moreover, clearance
effects increase with larger pin size. For example, smaller the ratio H=B of Figure 22.6, greater the
effect of clearance. Clearance increases the stress by promoting changes in curvature. Experiments
show that for neat-fitting pins, the maximum stresses occur at the ends of the horizontal diameter.
These stresses move away from there as the clearance increases.

Finally, it should be noted that stress concentrations are highest when there is only a single pin
in the plate. That is, if the load is divided between, say, two pins having individual diameters equal
to one-half of the single pin diameter, the stress concentration is reduced by about 20%.
Pin lubrication also produces a small decrease in Kb values.

F

t

F

B

F

2r

F2F2H

FIGURE 22.6 Notation for a pin-loaded plate.
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22.9 BELLEVILLE WASHERS

A Belleville washer is an annular conical disk which is commonly used as a spring. Figure 22.8
provides a sketch of the device together with notation, which we can use in our stress and
displacement analyses. A Belleville washer is not a flat plate. Instead it is more like a plate ring
or pipe flange in its response to loadings. As such it is often called a ‘‘Belleville spring.’’

The Belleville spring is an important machine element where, among other features,
space limitation, high load, and relatively small deflections are required. Although in practice,
calculations of load–deflection characteristics by a majority of available methods generally
show satisfactory correlation, the problems of stress still remain speculative in various design
applications.

A rigorous analytical or mathematical analysis of Belleville springs is elusive as in practice, the
loading and consequent displacement create in effect a large, elastic–plastic displacement of a

K b
 =

 2r
tS
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FIGURE 22.7 Stress concentration factor for a pin-loaded plate. (From Frocht, M. M. and Hill, H. N., J. Appl.
Mech., 7, 1940.)
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FIGURE 22.8 A Belleville washer.
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conical shell. Nevertheless, in 1936, Almen and Laszlo [11] developed useful design formulas for
maximum stresses at the inner edges of the washer, and their method has been widely accepted in
industrial applications. Their derivation is based upon an elastic analysis assuming that radial
stresses are negligible. The disk cross section is assumed to rotate about the neutral point O
shown in Figure 22.8.

In 1946, Ashworth [12] conducted further analysis of the springs, resulting in expressions for
tensile and compressive stresses which agreed well with the results of Almen and Laszlo. Ashworth
also reported on tests conducted in Germany, according to which there was a good correlation
between the theory and the experiment with regard to the maximum compressive stresses. The same
experiments confirmed that the radial strains measured at various points of the disk spring, were
rather small in comparison with the circumferential strains. A more recent investigation by
Wempner [13] resulted in a proposed refinement of the Almen and Laszlo solution. In Wempner’s
work, the effect of radial strains was included. The relevant stresses, however, appeared to be only
some 10% higher. Hence, for all practical purposes and despite some of the limitations, the Almen
and Laszlo theory remained essentially unchanged. Their key representation for stress S and the rim
displacement Y is

S ¼ YE

2(1� n2)a2C1
[C2(2h� Y)þ 2tC3] (22:20)

where, as before, E and n are the elastic constants and Poisson ratio and where Y may be determined
from the load formula:

Q ¼ YE

(1� n2)a2C1
(h� Y) h� Y

2

� �
t þ t3

� �
(22:21)

where Q is the load as illustrated in Figure 22.8 and where C1, C2, and C3 are dimensionless
geometric parameters given by

C1 ¼
6

a

b
� 1

� �2

p loge
a

b

� � (22:22)

C2 ¼ 6

p loge
a

b

� �
a

b
� 1

loge
a

b

� �� 1

2
64

3
75 (22:23)

and

C3 ¼
3

a

b

� �
� 1

h i

p loge
a

b

� � (22:24)

Figure 22.8 also illustrates the values of a, b, h, and t, where t, is the washer thickness.
It happens that for metals with Poisson ratio n being approximately 0.3, there is relatively little

error by replacing the stress=displacement and load=displacement equations (Equations 22.20 and
22.21) by the simpler expressions:

S ¼ CYE(2hþ 2t � Y)

a2
(22:25)
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and

Q ¼ GYE (h� Y) h� Y
2

	 

t þ t3

� �

a2
(22:26)

where C and G are dimensionless parameters called the ‘‘stress factor’’ and the ‘‘displacement
factor,’’ respectively. Figures 22.9 and 22.10 provide graphical representations of C and G in terms
of the outer=inner rim radius ratio a=b.

Observe the nonlinear relation between the stress S and displacement Y in Equations 22.20 and
22.21 and even also in the simplified expressions of Equations 22.25 and 22.26. For example, if we
know the physical and geometrical parameters and the load Q, we need to solve either Equation
22.27 or Equation 22.26 for the displacement Y, and then by substituting into either Equation 22.20
or Equation 22.25 to obtain the stress S.

In many applications where a metal (typically steel) spring is used, the spring is completely
flattened out so that Y¼ h. On these occasions, the stress and load equations (Equations 22.25 and
22.26) simply become

Sþ Sflat ¼ CEh(hþ 2t)
a2

(22:27)

and

Q ¼ Qflat ¼ GEht2

a2
(22:28)

We can develop a useful design equation by dividing the load Q of Equation 22.26 by the flattening
load Qflat of Equation 22.28, yielding

Q=Qflat ¼ (hm2=2)(1� h)(2� h)þ h (22:29)
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FIGURE 22.9 Stress factor=radius ratio chart.
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where h and m are the dimensionless displacement and free height=thickness ratio given by

h ¼ Y=h and m ¼ h=t (22:30)

Equation 22.29 represents a family of curves known as the load–deflection characteristics of
conical-disk springs of various proportions. Such curves are given in engineering handbooks and
spring design manuals for direct design applications. When 0<m< 1.4, the spring rate is always
positive. For the interval 0.6<h< 1.2 with 1.4<m< 2.8, the spring rate is negative and the actual
load decreases as the deflection increases. The Belleville washer becomes unstable for m> 2.8;
that is, at a particular compressive load Q the conical disk shape snaps into a new position. Also for
m ffi 1.6, a zero spring rate can be achieved for an appreciable range of h.

Similarly, we can obtain a dimensionless stress ratio by dividing stress at flattening Sflat of
Equation 22.27 by the stress S at a less-than-flattening load, of Equation 22.25. That is,

Sflat=S ¼ mþ 2
h(2þ 2m� hm)

(22:31)

Figure 22.11 displays this stress ratio for a few typical values of the free height=thickness ratio m.
The curves show that the stress ratio is sensitive to changes in the displacement as we would expect.

In practice, many Belleville springs operate at deflections smaller than those corresponding to the
load at solid. The amount of permanent set that can be tolerated is about 2% of the maximumworking
deflection. If it is expected that permanent set can exceed 2%, manufacturers specify a setting-out
operation. This consists of loading the washer to solid and noting the amount of decrease in the free
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height after unloading. The experiment shows that the first loading cycle causes the maximum amount
of permanent deformation and it considerably stabilizes the washer geometry (see Ref. [13]).

Finally we cite Fortini [14] who has developed simplified tables for single washer and nests of
washer designs. These tables may help reduce the trial-and-error procedures in using Equations
22.20 and 22.21.

SYMBOLS

A Area
a Plate radius
B Width of rectangular plate
b Inner radius
C Approximate stress factor
C1, C2, C3 Almen and Laszlo factors (see Equation 22.20)
D Eh3=12(1� n2)
d Rib spacing dimension
E Modulus of elasticity
F Force on pin
F1, . . . ,F5 Stress function for design (see Figure 22.2)
G Deflection factor
h Plate thickness; free height of Belleville spring (see Figure 22.8)
h0 Hole separation dimension (see Figure 22.3)
H Load=displacement function for large deflection of circular plates (see Figure 22.1);

head distance from edge of hole
I Second moment of area
Kb Stress concentration factor (see Equation 22.18)
m¼ h=t Free height to thickness ratio (see Equation 22.30)
p0 Hole separation dimension (see Figure 22.3)
Q Load on Belleville spring (see Figure 22.7)
q(r) Loading function
r Radial coordinate
S Stress
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FIGURE 22.11 Stress=displacement relations.
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t Plate thickness
u Radial displacement of a circular plate
W Weight of ribbed plate
w Normal displacement
Y Plate deflection
h¼ Y=h Dimensionless displacement (see Equation 22.30)
l Weight density
n Poisson’s ratio
s Stress
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PART V

Dynamic Loadings, Fatigue,
and Fracture

The vast majority of structural engineering designs are based on static analyses. This is usually
satisfactory since most structures and structural components experience primarily static loads, or if
there are dynamic loads, the static loads greatly dominate them. Moreover, for many structures if
dynamic loads exist, they are often small, short-lived, and only occasional. Therefore, for most
structural component designs based on static analyses, a safety factor of 2 generally ensures that
stress limits will not be approached.

There are nevertheless many occasions where dynamic loadings are not small, where they are
frequent, unexpected, and=or sudden. In these instances, failure can be sudden and dramatic. But
failure can also gradually occur through fatigue, leading to fracture. Alternatively, dynamic loadings
can produce large unintended displacements destroying the efficacy of a structure. This can occur,
for example, during resonance, during earthquakes, and during blast (explosion) loadings.

In this part, we consider structural designs for accommodating dynamic loadings, fatigue, and
seismic effects. We investigate both short-term and long-term phenomena and we propose designs
and design methodology to accommodate them and to prevent failure.

We begin with a review of simple dynamic loadings and the corresponding structural responses.
We then consider seismic loadings and design countermeasures. Finally, we investigate fatigue,
fracture and we present preventative designs.
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23 Dynamic Behavior of
Structures: A Conceptual
Review

23.1 INTRODUCTION

In this chapter we review a few elementary dynamics concepts which are pertinent in the analysis
and design of structures with dynamic loadings. These concepts include sudden loadings, natural
frequency, and free-fall=impact. We attempt to illustrate the concepts with a few simple examples.

23.2 VIBRATION AND NATURAL FREQUENCY

Consider the elementary mass–spring system of Figure 23.1, where a body B with mass m can move
left and right over a smooth horizontal surface. The movement of B is restricted by a linear spring
with stiffness modulus k. The displacement (or distance) of B away from a neutral (static equilib-
rium) position is x. An elementary dynamic analysis shows that the differential equation describing
the movement of B is [1]:

md2x=dt2 þ kx ¼ 0 (23:1)

The general solution of Equation 23.1 is

x ¼ A1 cosvt þ A2 sinvt (23:2)

where
A1 and A2 are constants
v called the ‘‘circular frequency’’ is given by

v2 ¼ k=m (23:3)

The integration constraints A1 and A2 are determined by initial conditions. For example, suppose
that at time t¼ 0, B is displaced to the right by an amount x(0)¼ d, with an initial speed x(0)¼ d.
Then A1 and A2 are

A1 ¼ d and A2 ¼ d=v (23:4)

Then by back substitution from Equation 23.4 into 23.2, we obtain the displacement x as

x ¼ d cosvt þ (d=v) sinvt (23:5)

Sometimes it is helpful to use trigonometric identities to express Equation 23.2 in the alternative
form:

x ¼ C cos (vt þ f) (23:6)
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where by comparing Equations 23.2 and 23.6 we see that C and f are

C ¼ A2
1 þ A2

2

� �1=2
and f ¼ � tan�1 (A2=A1) (23:7)

Similarly, in terms of C and f, A1 and A2 are

A1 ¼ C cosf and A2 ¼ �C sinf (23:8)

(Equations 23.7 and 23.8 are immediately obtained by using the identity cos(aþ b) � cosa
cosb� sina sinb:)

Consider the special case in the above example, when d is zero. That is, body B of Figure 23.1 is
displaced to the right by an amount d and released from rest. Then from Equation 23.5 we see that
the subsequent displacement of B is simply

x ¼ d cosvt (23:9)

Equations 23.2 through 23.9 provide insights into the behavior of body B:

1. The movement of B is oscillatory. That is, B vibrates with the phenomenon called
‘‘vibration.’’

2. C (or d of Equation 23.9) is called the ‘‘amplitude’’ of the vibration.
3. f is called the ‘‘phase’’ of the vibration.
4. As noted earlier, v is called the ‘‘circular frequency.’’
5. Since the trigonometric functions are periodic with period 2p, the ‘‘frequency’’ f of the

oscillation (the number of cycles per unit time) is then

f ¼ v=2p ¼ (1=2p)
ffiffiffiffiffiffiffiffiffi
k=m

p
(23:10)

6. The ‘‘period’’ T or the time to complete a cycle is then

T ¼ 1=f ¼ 2p=v ¼ 2p
ffiffiffiffiffiffiffiffiffi
m=k

p
(23:11)

7. f is sometimes called the ‘‘natural frequency’’ of the system. It is perhaps the single best
parameter describing the nature of the motion of the system. For stiff systems (large k), f is
large and the movement is rapid. For heavy or massive systems (large m), f is small and the
movement is slow.

m

k

x

B

FIGURE 23.1 A simple mass–spring system.
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23.3 DYNAMIC STRUCTURAL RESPONSE—INTUITIVE DESIGN CRITERIA

Before looking at the details of dynamic structural analysis, it may be helpful to consider a few
guidelines or ‘‘rules of thumb.’’ First, suppose we know the natural frequency f and consequently the
period T (¼ 1=f) of a structure or a structural component, and assuming we can estimate the time of
load application and if the load is slowly applied so that the application time significantly exceeds
the period, then we can essentially consider the load as ‘‘static.’’

Specifically, the loading may be regarded as static if

Time of load application

Period
> 3 (essentially static loading) (23:12)

Second, suppose the time of loading is somewhat quicker but still greater than the vibration period,
then a static analysis may still be applicable but the material properties may need to be adjusted
upward. An approximate guide to this condition is

1:5 � Time of load application

Period
< 3 (static loading with increased elastic modulus) (23:13)

Third, if the time of loading is rapid so that it is only a fraction of the period, a static analysis
is usually not very helpful and it could lead to grossly erroneous results. This condition
occurs when

Time of load application

Period
< 0:5 (static loading is not applicable) (23:14)

Finally, it should be remembered that an analysis of structural response to sudden loading is
different from a fatigue analysis. Fatigue occurs with slow loadings applied and released numerous
times. We consider fatigue in Chapter 26.

23.4 DYNAMIC STRENGTH

As far as steels and other metals are concerned, those with lower yield strength are usually more
ductile than higher strength materials. That is, high yield strength materials tend to be brittle. Ductile
(low yield strength) materials are better able to withstand rapid dynamic loading than brittle (high
yield strength) materials. Interestingly, during repeated dynamic loadings low yield strength ductile
materials tend to increase their yield strength, whereas high yield strength brittle materials tend to
fracture and shatter under rapid loading. Figure 23.2 illustrates the strengthening (and lack of
strengthening) of steel.

The behavior illustrated in Figure 23.2 is characteristic of other metals as well. Table 23.1
provides some typical data [2–5]. Reference [2] also provides similar data for concrete and brittle
materials under compressive loadings.

It should be noted that the behavior of Figure 23.2 and the data listed in Table 23.1 are primarily
developed in uniaxial testing, as opposed to combined stress conditions.

23.5 SUDDENLY APPLIED WEIGHT LOADING

Consider a rod R with length ‘, cross-section area A, and elastic modulus E. Let R be suspended
vertically and supported at its upper end as in Figure 23.3. Let there be a small flange at the lower
end of R.
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Next, let W be a relatively heavy plate or weight W with a slot so that it can be placed around R
and supported by the end flange of R as in Figures 23.4 and 23.5. In Figure 23.5, deq is the
elongation of R due to the weight W. If W is also the weight of the plate, then deq is

deq ¼ W‘=AE (23:15)

Alternatively, Equation 23.15 may be written as

W ¼ kdeq (23:16)

where by inspection k is simply AE=‘. Also if seq is the equilibrium stress in R, then seq is

seq ¼ W=A (23:17)

Next, consider the same rod and weight but let the weight be suddenly applied or dropped onto the
rod flange. To visualize this, imagine the weight to be placed just above the flange, resting on
removable supports as in Figure 23.6. In this configuration let the supports be removed so that the
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FIGURE 23.2 Effect of rapid loading on yield strength.

TABLE 23.1
Dynamic Strengthening of Metals

Material
Static Strength

(psi)
Dynamic Strength

(psi)
Impact Speed

(ft=s)

2024 Al (annealed) 65,200 68,600 >200
Magnesium alloy 43,800 51,400 >200

Annealed copper 29,900 36,700 >200
302 Stainless steel 93,300 110,800 >200
SAE 4140 steel 134,800 151,000 175
SAE 4130 steel 80,000 440,000 235

Brass 39,000 310,000 216
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ℓ

End flange

FIGURE 23.3 Suspended rod.

W

FIGURE 23.4 Plate weight.

ℓ + deq

FIGURE 23.5 Rod supporting weight in equilibrium.

W
Removable

weight
support

FIGURE 23.6 Weight resting upon removable supports.
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weight is suddenly resting upon the flange. This creates a sudden loading and stretching of the rod
so that in the extreme downward position the rod is elongated by dmax as represented in Figure 23.7.

We can determine dmax by using the work–energy principle of elementary mechanics. Recall
that the principle states that for two states, say 1 and 2, of a mechanical system the work done on the
system, 1W2 is equal to the change in kinetic energy between the states K2�K1. That is,

1W2 ¼ DK ¼ K2 � K1 (23:18)

For the rod=weight system of Figures 23.6 and 23.7, let 1 refer to the initial state just as the weight is
being released onto the rod as in Figure 23.6, and let 2 refer to the state where the weight has fallen
through its greatest drop, dmax or equivalently greatest rod stretch as in Figure 23.7. Interestingly, in
each of these states the kinetic energy is zero. Therefore, from Equation 23.18 the work 1W2 is zero.

The work done on the weight is due to two sources: (1) gravity and (2) the ‘‘spring’’ force
created by the stretching rod. The work by gravity is simply the weight W multiplied by the drop
distance dmax. That is,

1W
gravity
2 ¼ Wdmax (23:19)

The spring force created by the stretched rod is proportional to the stretch d. The spring force resists
the movement of W and acts opposite to the direction of movement. Thus, the work on W due to the
rod elasticity is

1W
spring
2 ¼ �

ðdmax

0

kd dd ¼ �(k=2)d2max ¼ �(AE=2‘)d2max (23:20)

(The negative sign is due to the force acting opposite to the movement direction.)
Since the total work is zero, we have

0 ¼ 1W2 ¼ 1W
gravity
2 þ 1W

spring
2 ¼ Wdmax � (AE=2‘)d2max (23:21)

By solving for dmax, we have

dmax ¼ 0 and dmax ¼ 2W‘=AE (23:22)

ℓ+dmax

FIGURE 23.7 Maximum elongation of a rod due to suddenly applied weight loading.
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The first solution of Equation 23.22 is trivial and simply represents the nonapplication or loading of
the weight on the rod. The second solution, however, shows that the maximum rod stretch is twice
that obtained in static equilibrium as documented by Equation 23.15. That is,

dmax ¼ 2deq (23:23)

Consequently, the maximum rod stress due to the dynamic loading is twice that found in static
equilibrium:

smax ¼ 2seq (23:24)

Equation 23.24 represents a well-known principle of suddenly applied weight loading. Specifically,
a suddenly applied loading produces at least twice the static equilibrium stress.

23.6 STRAIN ENERGY—AN ELEMENTARY REVIEW

Consider again the simple example of the foregoing section. Specifically, consider the condition of
maximum downward displacement of the weightW as in Figure 23.8, where the level at 0 represents
the unloaded position of the end of the rod, and where the elongation deq and dmax are the rod
extensions under static equilibrium (deq) and in the maximum extension due to the suddenly
released weight.

From Equations 23.15 and 23.22, deq and dmax are

deq ¼ W‘=AE and dmax ¼ 2W‘=AE (23:25)

where, as before,
W is also the weight of W
‘ is the undeformed rod length
A is the rod cross-section area
E is the elastic modulus

Since the rod is a linearly elastic body, it may be viewed as being a linear spring with modulus k
given by

k ¼ AE=‘ (23:26)

When the rod is stretched with its maximum elongation dmax, the rod (viewed as a spring) will have
an elastic potential energy (or ‘‘strain energy’’) U given by [1,6]

ℓ

dmax

0
W

deq

FIGURE 23.8 Dynamically loaded rod by a suddenly applied weight.
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U ¼ (1=2)kd2max (23:27)

or by Equation 23.26,

U ¼ (1=2)(AE=‘)d2max (23:28)

Observe that by comparing Equations 23.20 and 23.28, we see that the strain energy of the rod is
exactly the negative of the work done by the rod on the weight as the weight drops. Equivalently,
the strain energy of the rod is equal to the work done on the rod by the weight as it drops.

For an arbitrarily shaped and loaded elastic body the strain energy U is defined as [6–8]:

U ¼
ð

V

g dV ¼
ð

V

(1=2)sij«ij dV (23:29)

where g, defined by inspection as 1=2sij «ij (sums on i and j), is known as the ‘‘strain energy
density,’’ with sij and «ij being the stress and strain matrix elements as before; and V is the volume
of the elastic body.

If we apply Equation 23.29 to stretched hanging rod, with one-dimensional (uniaxial) stress and
strain, we have

U ¼
ð

V

(1=2)s« dV ¼ (1=2)(W=A)(dmax=‘)

ð

V

dV ¼ (1=2)(W=A)(dmax=‘)A‘

¼ (1=2)Wdmax ¼ (1=2)kd2max ¼ (1=2)(AE=‘)d2max (23:30)

This result is identical to the expressions of Equations 23.27 and 23.28.

23.7 LOADING FROM A FALLING WEIGHT

On many occasions, a weight may fall onto a structure from a height, say h, above the structure as
represented symbolically in Figure 23.9. By the time the weight reaches the structure, it would have
acquired a kinetic energy from the fall. During impact this energy will be transmitted to the
structure, creating stress and deformation in the structure. We can study this problem using
the work–energy principle as in the hanging rod example of Section 23.5.

h

Weight

Structure

FIGURE 23.9 Weight falling onto a structure.
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To illustrate the procedure, consider a body W with weight W dropped onto a simply supported
beam as depicted in Figure 23.10, where h is the drop height, ‘ is the beam length, dmax is the
maximum beam deflection, and dst is the static deflection under load W.

The work done onW consists of positive work by gravity (the movement ofW in the direction of
gravity) and negative work by the beam as W deflects the beam (the force of the beam on W is
upward and thus opposite the downward direction of the movement of W).

The work done by gravity is simply

Wgravity ¼ W(hþ dmax) (23:31)

The work done by the beam on W is

Wbeam ¼ �(1=2)kd2max (23:32)

where k is the beam stiffness under transverse loading by a concentrated center load.
Specifically, recall that if a simply supported beam has a central load as in Figure 23.11 (see

Figure 11.12a), then the maximum displacement dmax occurring under the load is P‘3=48EI as in
Figure 23.12 (see Figure 11.12c), where, as before, E is the elastic modulus and I is the second
moment of area of the beam cross section. Thus if the beam force–displacement relationship is
expressed as

P ¼ kd (23:33)

Then from Figure 23.12 and from Equation 11.20, k is seen to be

k ¼ 48EI=‘3 (23:34)

W

h

dmax ℓ dst

FIGURE 23.10 A weight dropped from a height h onto a simply supported beam.

ℓ/2 ℓ/2

P

FIGURE 23.11 A centrally loaded, simply supported beam.
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Therefore, from Equation 23.32 the work done by the beam on the falling weight W is

Wbeam ¼ �24EId2max=‘
3 (23:35)

(Observe that from the discussion of the foregoing section, 24EId2max=‘
3 is the strain energy of the

beam.)
The kinetic energy of weight W is zero at both the beginning of the fall and at the instant of

maximum beam deflection. The change in kinetic energy is thus zero, and therefore total work done
on W is zero. That is,

Wgravity þWbeam ¼ 0 (23:36)

or from Equations 23.31 and 23.35,

W(hþ dmax)� 24EId2max=‘
3 ¼ 0 (23:37)

or

d2max � (W‘3=24EI)dmax � (W‘3h=24EI) ¼ 0 (23:38)

From Figure 23.12 and Equations 23.33 and 23.34, we see that the static displacement dst under a
load W is

dst ¼ W‘3=48EI (23:39)

Then Equation 23.38 may be written in the simple form:

d2max � 2dstdmax � 2hdst ¼ 0 (23:40)

By solving this quadratic equation for dmax, we obtain

dmax ¼ dst þ d2st þ 2dsth
� �1=2

(23:41)

or

dmax=dst ¼ 1þ [1þ 2(h=dst)]
1=2 (23:42)

Since the stresses are proportional to the displacements, we can use Equation 24.42 to relate the
dynamic stress sdyn (or smax) to the static stress sst (or seq) as

sdyn ¼ sst[1þ (1þ 2h=dst)
1=2] (23:43)

Observe in Equation 24.43 that if the drop height h is zero (as with a suddenly applied load), the
dynamic stress is twice the static stress as in Equation 23.24.

Pℓ3/48EI

FIGURE 23.12 Displacement of a simply supported beam under a concentrated center load.
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23.8 IMPACT FROM A HORIZONTALLY MOVING MASS

Imagine a projectile striking the side of a structure as suggested by Figure 23.13. Since projectiles
have constant horizontal velocity, we can study the problem by modeling it as a horizontally moving
mass colliding with a structure. We can then use the work–energy principle to estimate the dynamic
stress in the structure during the impact. The procedure is similar to that used for the falling mass
problem of the foregoing section.

To illustrate the procedure, consider a horizontally moving mass striking the center of a simply
supported vertical beam as in Figure 23.14. Let W be the projectile with mass m and let the impact
speed be V. Then the kinetic energy Ki of W as it strikes the beam, is

Ki ¼ (1=2)mV2 (23:44)

This energy is absorbed by the beam during deformation. Let dmax be the maximum deflection of the
beam. Then the work done by the beam on W is

Wbeam ¼ �(1=2)kd2max (23:45)

where, as before, k is the beam stiffness given by (see Equation 23.34):

k ¼ 48EI=‘3 (23:46)

where
E is the elastic modulus
I is the second moment of area of the beam cross section
‘ is the beam length

Structure

Projectile

FIGURE 23.13 A projectile directed toward the side of a structure.

VV

W W

FIGURE 23.14 A horizontally moving mass striking a simply supported vertical beam.
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When the beam is deformed to its maximum deflection dmax, the kinetic energy of W is reduced to
zero. The work–energy principle applied to W during impact is then

Work ¼ DK (23:47)

or

�(1=2)kd2max ¼ 0� (1=2)mV2 (23:48)

Hence, dmax is

dmax ¼ V
ffiffiffiffiffiffiffiffiffi
m=k

p
(23:49)

Thus by knowing the mass and speed of the projectile, we can use Equation 23.46 to determine the
maximum beam deformation and consequently, the maximum dynamic stress.

To put the dynamic effects into perspective, let dst be the equilibrium state deflection of a
horizontal beam supporting an object with mass m as in Figure 23.15. Then from Equations 23.33
and 23.34, dst is

dst ¼ mg=k ¼ mg‘3=48EI (23:50)

Then by substituting into Equation 23.49, we have

dmax ¼ V
ffiffiffiffiffiffiffiffiffiffi
dst=g

p
¼ Vdst=

ffiffiffiffiffiffiffiffi
gdst

p
(23:51)

Finally, since the stress is proportional to the displacement, we have

sdyn ¼ Vsst=
ffiffiffiffiffiffiffiffi
gdst

p
(23:52)

23.9 ILLUSTRATIVE DESIGN PROBLEMS AND SOLUTIONS

In this section, we briefly consider a few simple examples to illustrate the procedures of the
foregoing sections.

23.9.1 CANTILEVER SUBJECTED TO FREE-END-SUDDEN LOADING

A 10 ft long steel cantilever beam has a cross section area I with a second moment of 600 in.4.
Suppose the beam is designed to carry an end load of 500 lb in a static configuration with a stress
factor of safety of 8. Suppose now that the end load is suddenly dropped onto the end of the beam.
At what height h above the beam end can the load be dropped so that the stress factor of safety is at
least 1.8?

m

W
dst

FIGURE 23.15 Simply supported beam deformed by a centrally placed weight.
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SOLUTION

The end displacement dst is

dst ¼ W‘3

3EI
¼ (500)(120)3

(3)(30)(106)(600)
¼ 0:016 in: (23:53)

For a factor of safety of 1.8 for the dynamic loading, and of 8 for the static loading, we have

sdyn=sst ¼ 8=1:8 ¼ 4:44 (23:54)

From Equation 23.43, we have

sdyn=sst ¼ 1þ (1þ 2h=dst)1=2 (23:55)

Therefore we have

4:44� 1 ¼ (1þ 2h=0:016)1=2

or

h ¼ 0:0869 in: ¼ 2:2 mm (23:56)

23.9.2 VEHICLE–BARRIER IMPACT

Vehicle crashworthiness is a principal focus of safety engineers, and the principal measure of crash-
worthiness is a vehicle’s response upon colliding with a ‘‘fixed barrier.’’ In reality, the barriers are not
rigid. Instead, they deform as any other structure. Thus to estimate the stress on a barrier, it is necessary
to know the forces on the barrier during the impact and during the time of maximum deformation.

To explore this, consider an elementary model of a vehicle–barrier impact as in Figure 23.16,
where the vehicle having mass m collides with the barrier with speed V. The barrier is modeled as a
thick plate supported by a linear spring with modulus k. Assuming that the vehicle deforms plastically
upon striking the barrier, develop an expression for the maximum spring force exerted upon
the barrier.

SOLUTION

From the work–energy principle, the kinetic energy of the vehicle will be absorbed by the spring
deformation and the vehicle deformation. If we assume that the energy absorbed by the vehicle
deformation is small compared with the spring deformation energy, we will obtain an upper
bound estimation of the spring force. The work–energy principle then leads to the expression

(1=2)kd2max ¼ (1=2)mV2 (23:57)

where dmax is the maximum spring deformation.

Vehicle

V

Barrier

Linear spring

FIGURE 23.16 Vehicle-barrier impact model.
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By solving Equation 23.57 for dmax, we obtain

dmax ¼ (
ffiffiffiffiffiffiffiffiffi
m=k

p
)V (23:58)

The maximum force Fmax is then

Fmax ¼ kdmax ¼ (
ffiffiffiffiffiffiffi
km

p
)V (23:59)

Observe in the result of Equation 23.59 that the force is reduced by decreasing the spring constant
k. From Equation 23.58, however, such reduction leads to increased maximum displacement dmax

and thus greater ‘‘ride-down.’’ But this defeats the purpose of the ‘‘fixed’’ barrier concept. A
solution which reduces dmax without increasing the force, is to use a massive thick plate for the
barrier. We will explore this in Section 23.12.

23.10 ENERGY LOSS DURING IMPACT

It should be stated in all fairness that the stresses due to impact cannot be determined accurately. The
materials involved are never perfectly elastic. Furthermore, when a body strikes another object,
simultaneous contact is not realized at all points and the distribution of stresses and strains under impact
loading is not the same as that under static loading, particularly at higher velocities of impact. Last but
not the least, some kinetic energy of the moving body is dissipated during impact. This loss can be
approximated with the aid of Table 23.2 for a number of elementary design cases [9]. The procedure
here is to multiply the theoretically calculated energy by the dissipation factor Ce from Table 23.2.

23.11 IMPACT OF FALLING STRUCTURAL COMPONENTS

In Section 23.7, we considered the effect of an object falling onto a structure. Here we consider
the reverse problem: a falling structural component. Such an event is usually unintended but

TABLE 23.2
Energy-Loss Factors for Impact Loading

M1
M2

M
Moving

part
Stationary part

1. Ce ¼ 4(M1 þ 3M2 þ 3M)M

3(M1 þ 2M2 þ 2M)2

M1
M2

M

2. Ce ¼ 64M(17M1 þ 35M2 þ 35M)

35(5M1 þ 8M2 þ 8M)2

M1 M2

M

3. Ce ¼ 16M(33M1 þ 140M2 þ 140M)

35(3M1 þ 8M2 þ 8M)2

M1
M2

M

4.
Ce ¼ 4M(13M1 þ 35M2 þ 35M)

35(M1 þ 2M2 þ 2M)2
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unfortunately, it is not uncommon. Moreover, the damage to the falling=impacting component is
often unrepairable.

Companion type problems occur with moving structural components striking fixed surfaces or
other structural components. Motor vehicle accidents are a principal source of such collisions. But
they can also occur during machine failure with parts breaking off, or during environmental
disturbances such as storms and earthquakes.

Knowing that unintended structural collisions can and will occur, the issue for designers is: how
should a structural component be designed to minimize the damage from the underlying stress?

To answer this question, it is helpful to understand the mechanism of stress occurrence during
impact, and to be able to estimate the magnitude of the stress enhancement. To this end, consider
the common problem of a structural component falling onto a fixed surface as represented in
Figure 23.17.

Specifically, consider a falling body B with mass m falling onto a fixed surface S from a height h
above the surface. Upon impact, B will experience stresses arising from inertia forces due to the
immediate deceleration of B. Although these forces are usually quite large, they act for only a
relatively short time. Therefore, we can simplify the analysis by using the principles of impulse–
momentum analysis [1].

It is well known that when a body falls, its speed upon impact with a fixed surface increases with
the square root of the fall height. Specifically, upon falling through a distance h the speed V of a
body B is [1]:

V ¼
ffiffiffiffiffiffiffiffi
2gh

p
(23:60)

where g is the gravity acceleration (32.2 ft=s2 or 9.8 m=s2).
When B impacts the fixed surface, it immediately begins to decelerate generating an inertia force

proportional to its mass and the deceleration. That is, the force F on B is (Newton’s second law)

F ¼ ma (23:61)

where
m is the mass of B
a is the deceleration

Let T be the time during which an impact force F acts. Then the impulse Imp of F is

Imp ¼
ðT

0

Fdt (23:62)

B

h

S

FIGURE 23.17 A falling structural component.
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Typically, F will have a triangular or sinusoidal form during time T as in Figure 23.18. By carrying
out the indicated integration of Equation 23.62, we have

Imp ¼
ðT

0

F dt ¼
ðT

0

F̂ sin (pt=T)dt ¼ F̂(2T=p) (23:63)

where F̂ is the peak value of F as in Figure 23.18.
The impulse–momentum principle [1] states that the impulse is equal to the change of

momentum as

Imp ¼ DmV ¼ mDV (23:64)

where DV is the sudden velocity change. Since B comes to a sudden stop upon striking the surface,
we see from Equation 23.60 that DV is

DV ¼
ffiffiffiffiffiffiffiffi
2gh

p
(23:65)

Therefore from Equations 23.63 and 23.64, we have

F̂(2T=p) ¼ mDV ¼ m
ffiffiffiffiffiffiffiffi
2gh

p
(23:66)

Consequently from Equation 23.61, the maximum or peak deceleration â experienced by B is

â ¼ F̂=m ¼ (p=2T)
ffiffiffiffiffiffiffiffi
2gh

p
(23:67)

In such analyses, it is helpful to express â in terms of multiples of the gravity of acceleration g.
That is,

â=g ¼ (p=T)
ffiffiffiffiffiffiffiffiffiffi
h=2g

p
(23:68)

Equation 23.68 shows that the deceleration of B depends inversely upon the impact time T and upon
the square root of the fall height h. Usually h will be expressed in feet, inches, or meters, and T will
be expressed in seconds or milliseconds. When T is expressed in seconds, â=g is

â=g ¼ 0:391
ffiffiffiffiffi
h=

p
T (h in ft) (23:69)

â=g ¼ 0:113
ffiffiffiffiffi
h=

p
T (h in in:) (23:70)

â=g ¼ 0:709
ffiffiffiffiffi
h=

p
T (h in m) (23:71)

O T t

F

FIGURE 23.18 Sinusoidal forces.
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In Equations 23.69 through 23.71, h is likely to be known but the impact time T will probably
be less apparent. For relatively hard surfaces, T is often approximated as 1=4f, where f is the
natural frequency of the falling body. We evaluate and estimate natural frequencies in Sections
23.15 and 23.16.

23.12 EXAMPLE—VEHICLE–BARRIER IMPACT

Consider again the vehicle–barrier impact problem and the example discussed in Section 23.9.2.
Figure 23.16 (shown again in Figure 23.19) provides a model of the configuration: a vehicle with
mass m and speed V collides with a barrier which is supported by a linear spring system as indicated
in the figure. In Section 23.9.2, we neglected the mass of the barrier. Here, however, we let the
barrier have mass M. The objective, as before, is to develop an expression for the maximum spring
force exerted on the barrier.

SOLUTION

As before, we assume that upon impact the vehicle deforms plastically, and subsequent to impact
the vehicle and barrier move together deforming the spring. The vehicle–barrier combination has
a mass Mþm. Let V̂ be its speed. By the conservation of linear momentum principle [1], we see
that V̂ is given by

(Mþm)V̂ ¼ mV or V̂ ¼ mV=(Mþm) (23:72)

Just after impact the kinetic energy K of the vehicle–barrier combination is

K ¼ (1=2)(Mþm)V̂2 ¼ (1=2)m2V2=(Mþm) (23:73)

Since the kinetic energy is dissipated by the spring upon maximum deformation dmax,

1=2kd2max ¼ (1=2)m2V2=(Mþm) (23:74)

Thus dmax is

dmax ¼ mV=[k(Mþm)]1=2 (23:75)

Hence the maximum spring force Fmax is

Fmax ¼ kdmax ¼ mV[k=(Mþm)]1=2 (23:76)

Vehicle
(mass m)

V

Barrier
(mass M)

Linear spring

FIGURE 23.19 Vehicle–barrier impact model.
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Observe in this result that if the barrier massM is neglected Fmax reduces to
ffiffiffiffiffiffiffiffiffiffi
kmV

p
, which is identical

to the result of Equation 23.59.Observe further that if the barriermassM is large themagnitude of Fmax

is reduced. Also ifM is large, Equation 23.75 shows that dmax is small thus reducing the ‘‘ride down,’’
and the barrier is more like the desired ‘‘rigid barrier’’ intended for crash testing.

23.13 IMPACT MITIGATION

A review of the results of the examples of Sections 23.9.2 and 23.12 shows that the force on the
barrier structure is reduced by reducing the stiffness k of the structure. This in turn increases the
displacement and consequently, also the ‘‘ride-down’’ distance and time. Similarly, a review of
Equations 23.69, 23.70, and 23.71 shows that the peak acceleration upon impact of a falling body, is
reduced by increasing the impact time T.

The impact time and ‘‘ride-down’’ may be increased by padding or cushioning upon the impact
surfaces as suggested by Figure 23.20. The cushioning medium may be a soft polymer as in an
automobile dashboard, or a sand=gravel ramp as for runaway trucks on a steep downhill, or a thick
floor carpet.

We illustrate the design concepts by continuing our study of bodies falling onto a surface. The
illustrated procedure may also be used with colliding systems as in motor vehicle accidents.

The characteristics of cushioning media depend upon the material of the cushion but generally
the cushion exerts a force on the impacting body, proportional to the deformation as represented in
Figure 23.21. If k is the proportional coefficient, then the maximum force Fmax exerted on the body
will be proportional to the maximum deformation dmax of the cushioning medium. That is,

Fmax ¼ kdmax (23:77)

Again, by using the work–energy principle we see that as the falling body or falling structure falls to
its deepest penetration as in Figure 23.21, the net work is zero. That is, the kinetic energy K is zero
both at the beginning of the fall and during the maximum penetration of the cushion. The work W
done on the falling structure is due to (1) gravity and (2) the deforming cushion. That is,

DK ¼ 0 ¼ W ¼ mg(hþ dmax)� (1=2)kd2max (23:78)

By solving Equation 23.78 for kdmax, we obtain

kdmax ¼ 2mg(hþ dmax)

dmax

¼ Fmax ¼ mamax (23:79)

B

h

S

Padding or
cushioning

medium

FIGURE 23.20 Cushioning medium for impact.
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Then the maximum acceleration normalized by gravity is

(amax=g) ¼ 2(hþ dmax)=dmax ¼D �amax (23:80)

where �amax is defined by inspection.
Equation 23.80 may be used to obtain the maximum dynamic force Fmax on the falling structure

by simply multiplying the weight of the structure by �amax. Observe that if h is zero, �amax is 2 as in
Equation 23.23. Observe further if dmax is large, the effect of the falling height h is diminished, thus
demonstrating the effect of the cushioning.

Another way of thinking about cushioning is that the cushioning produces ‘‘ride-down time’’
and ‘‘ride-down distance,’’ thus decreasing the forces.

23.14 DESIGN PROBLEM EXAMPLE

A section of steel casing with mean radius r, wall thickness t, and length ‘ falls from a height h into
a thick layer of sand. The orientation of the casing is such that the fall is axial as represented in
Figure 23.22. If the depth of penetration is d, determine the approximate axial stress caused by the
impact and penetration.

SOLUTION

The weight W of the casing is

W ¼ 2prt‘g (23:81)

where g is the weight density. The inertia force F* is then

dmax

FIGURE 23.21 Deformed cushioning by an impacting body.

Casing

Sand

FIGURE 23.22 A casing falling into sand.
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F* ¼ �(W=g)a (23:82)

and axial stress (compressive) is

sdyn ¼ (2prt‘g=2prt)(a=g)

or

sdyn ¼ ‘g(a=g) (23:83)

Finally, by substituting from Equation 23.80, we have

sdyn ¼ 2‘g(hþ d)=d (23:84)

Observe surprisingly that the stress is independent of the casing cross-section area.

23.15 NATURAL FREQUENCY OF SELECTED STRUCTURAL COMPONENTS

As noted earlier, the natural frequency of a structure or structural component is a good indicator of
dynamic response. Thus knowledge of the natural frequency is an aid to design decision when
dynamic loading is likely to occur.

The term ‘‘natural frequency’’ may be ambiguous as for structural components there are
theoretically an infinite number of natural frequencies. To avoid confusion, we will use the term
the ‘‘natural frequency’’ to refer to the lowest or ‘‘fundamental’’ frequency. When a structural
component is vibrating at the fundamental frequency, the shape of the deformation (the ‘‘mode
shape’’) is the same as the static deformation profile under gravity.

Since beams and plates are the most common structural components, it may be helpful to list the
fundamental frequencies of a few common support conditions. Tables 23.3 through 23.6 provide
such listings.

TABLE 23.3
Fundamental Natural Frequencies for Longitudinal (Axial)
Beam Vibration

Configuration Frequency

1. Fixed–free ends

f ¼ (1=4‘)
ffiffiffiffiffiffiffiffi
E=r

p

2. Free–free ends
f ¼ (1=2‘)

ffiffiffiffiffiffiffiffi
E=r

p

3. Fixed–fixed ends

f ¼ (1=2‘)
ffiffiffiffiffiffiffiffi
E=r

p

E, elastic modulus; r, mass density; ‘, beam length.
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TABLE 23.4
Fundamental Natural Frequency for Torsional Vibration
of Circular Shafts

Configuration Frequency

1. Fixed–free ends

f ¼ (1=4‘)
ffiffiffiffiffiffiffiffiffi
G=r

p

2. Free–free ends

f ¼ (1=2‘)
ffiffiffiffiffiffiffiffiffi
G=r

p

3. Fixed–fixed ends

f ¼ (1=2‘)
ffiffiffiffiffiffiffiffiffi
G=r

p

G, shear modulus; r, mass density; ‘, beam length.

TABLE 23.5
Fundamental Natural Frequency for Lateral (Flexural)
Beam Vibration

Configuration Frequency

1. Simple-supports

f ¼ (p=2‘2)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p

2. Fixed–fixed ends

f ¼ (3:565=‘2)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p

3. Fixed–free ends (cantilever)

f ¼ (0:559=‘2)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p

(continued)

Huston/Practical Stress Analysis in Engineering Design DK4291_C023 Final Proof page 393 7.11.2008 10:24pm Compositor Name: MSubramanian

Dynamic Behavior of Structures: A Conceptual Review 393



23.16 ESTIMATING NATURAL FREQUENCY

Consider again a light rod supporting a weight W as in Sections 23.5 and 23.6, and as represented
again with exaggerated displacement in Figure 23.23, where ‘ is the unextended length of the rod
and dst is the static elongation due to the weight W. Then from elementary analysis dst is

dst ¼ W‘=AE (23:85)

where, as before,
W is also the weight of W
A is the rod cross-section area
E is the elastic modulus

Alternatively, Equation 23.85 may be written as

W ¼ kdst where k ¼ AE=‘ (23:86)

More generally the light rod may be viewed as a linear spring. That is, if a force with magnitude F is
applied to the end of the rod with the other end supported as in Figure 23.24, then F and the
elongation d of the rod are related as

TABLE 23.5 (continued)
Fundamental Natural Frequency for Lateral (Flexural)
Beam Vibration

Configuration Frequency

4. Free–free ends

f ¼ (3:565=‘2)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p

E, elastic modulus; I, second moment of area of the cross-section; A, cross-section area;
r, mass density; ‘, beam length.

TABLE 23.6
Fundamental Natural Frequency for Circular
Plates

Configuration Frequency

1. Simply supported edge f ¼ (0:794=r2)
ffiffiffiffiffiffiffiffiffi
D=r

p

2. Fixed-edge f ¼ (1:623=r2)
ffiffiffiffiffiffiffiffiffi
D=r

p

3. Free-edge f ¼ (0:836=r2)
ffiffiffiffiffiffiffiffiffi
D=r

p

D¼Et3=12(1� n2); E, elastic modulus; n, Poisson ratio;
t, plate thickness; r, plate radius; r, mass density.
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F ¼ kd (23:87)

Next, refer again to the rod supporting the weight W as in Figure 23.23. Let the weight oscillate
vertically as represented in Figure 23.25, where y locates W relative to a reference level. If, as
before, d is the elongation or shortening of the rod, then y is simply

y ¼ ‘þ d (23:88)

Consider a free-body diagram of the weight W as in Figure 23.26, where m is the mass of W
(m¼W=g) and mÿ is the d’Alembert inertia force [1]. Thus by inspection of Figure 23.26, we have

m€yþ kd ¼ W (23:89)

or by using Equations 23.88 and 23.86

m€dþ kd ¼ W ¼ kdst (23:90)

If in Equation 23.90, we introduce a new dependent variable h as

h¼D d� dst (23:91)

then Equation 23.90 becomes

m€hþ kh ¼ 0 (23:92)

ℓ+dst
ℓ

W

FIGURE 23.23 A rod supporting a weight W.

ℓ d

F

FIGURE 23.24 Rod with applied end loading.
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Equation 23.92 is of the same form as Equation 23.1. Thus W will oscillate in the same way as the
mass–spring system of Figure 23.1 with the oscillation about the static equilibrium position. The
frequency f of the oscillation is then

f ¼ (1=2p)
ffiffiffiffiffiffiffiffiffi
k=m

p
¼ (1=2p)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AE=‘m

p
(23:93)

Consider again the configuration of the system where the weight is supported in its undeformed state
as in Figure 23.6 and as shown again in Figure 23.27a. If, as before, the supports are removed, W
will fall to its maximum low position as in Figure 23.27b. Then from the work–energy principle [1],
the total work done onW between the positions of Figure 23.27 is zero (the kinetic energy is zero in
both positions). That is,

mgdmax � (1=2)kd2max ¼ 0 (23:94)

or

kdmax ¼ 2mg ¼ 2W (23:95)

ℓ

W

y

d

FIGURE 23.25 An oscillating end weight.

kd

mÿ

W

w

FIGURE 23.26 Free-body diagram of oscillating weight W.
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Then from Equation 23.86 dmax is

dmax ¼ 2dst (23:96)

Thus when the weight W is released it falls through twice the static deformation. Hence, by
substituting from Equation 23.94 into Equation 23.95, we have

mgdst ¼ kd2st or k=m ¼ gdst=d
2
st (23:97)

Observe that the behavior of this rod=weight system is the same as the classical spring–mass system
of Figure 23.28. Interestingly, the same is the case for a beam oscillating in its fundamental mode as
represented for a simple support beam in Figure 23.29. For the oscillating beam in the fundamental
mode, the shape of the deformation is the same as the statically deformed beam due to its weight.
The behavior is the same for a suddenly applied uniform load. That is, if the beam is held in its
undeformed position and then suddenly released in the gravity field, the beam will fall to a
maximum displacement which is twice as large as the static equilibrium displacement. The beam
will then oscillate about the static equilibrium configuration.

In each of these three cases described above: (1) the vertical rod with the weight; (2) the mass–
spring system; and (3) the simply supported horizontal beam, when the systems are at rest in their

ℓ

W

(a) (b)

Removable
weight support

ℓ

W
dmax

FIGURE 23.27 Undeformed and maxially deformed rod. (a) Undeformed rod with pending weight W.
(b) Maximum elongation.

FIGURE 23.28 Spring–mass system.
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uppermost (undeformed) configurations, their kinetic energies are zero. Their potential energies in
their uppermost configurations, with the static equilibrium configuration as a reference, are at a
maximum. Also, the deformation energies (the ‘‘spring energy’’) in these uppermost undeformed
configurations are zero.

a. Undeformed beam
b. Static deformation from gravity
c. Oscillating beam (fundamental mode)

When these systems are released and drop to their lowermost configurations, their kinetic energies are
each also zero, their potential energies, due to gravity, are at a minimum, and their deformation
energies (spring energies) are at a maximum. The deformation energy at its maximum is twice the
potential energy of the equilibrium state. During the oscillation, there is a continuing transfer of energy
between the kinetic energy, the potential energy (due to gravity), and the deformation energy. At all
times, the sum of the kinetic energy, the potential energy, and the deformation energy is constant.

When the behavior of the systems are viewed from the perspective of the work–energy
principle, we see that with the kinetic energies being zero at both the uppermost and lowermost
position, the net work done on the systems between these positions is zero. That is, in the movement
from the uppermost position to the lowermost position the net work is zero, so that the work by
gravity is negative the work due to deformation. For the vertical light rod with the end weight of
Figure 23.25 and for the spring–mass system of Figure 23.28, this zero network leads to the
expression (see Equations 23.21 and 23.97):

Work ¼ 0 ¼ mgdmax � (1=2)kd2max (23:98)

or

mgdst ¼ kd2st (23:99)

For the oscillating beam of Figure 23.29, the computation of zero work between the uppermost and
lowermost positions leads to the approximate analog of Equation 23.99:

(a)

(b)

(c)

FIGURE 23.29 Simply supported, deformed, and oscillating beam. (a) Undeformed beam. (b) Static deform-
ation from gravity. (c) Oscillating beam (fundamental mode).
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mg

ð‘

0

y dx ¼ k

ð‘

0

y2dx (23:100)

where
m is the beam mass
k is the stiffness as in Equation 23.46

The stiffness=mass ratio for the beam is then

k=m ¼ g

ð‘

0

y dx

0

@

1

A
, ð‘

0

y2dx

0

@

1

A ¼ v2 (23:101)

where as before omega is the circular frequency and the last equality follows from Equation 23.3.
Equation 23.101 is a useful expression for estimating the fundamental natural frequency of a

beam. By generalization, it may be applied with more complex structures.
Equation 23.91 may be interpreted as follows. The circular frequency squared is well estab-

lished as the stiffness=mass ratio. This ratio in turn is obtained through a balance between the work
of gravity (mass effect) and the work due to deformation (stiffness effect). Next observe that for the
beam, viewed as a continuum, the works done by gravity and by deformation are obtained by
integration along the beam. Such integration must occur before the ratio is computed. For a
concentrated mass as with the light-rod=weight system of Figure 23.23, and as with the spring–
mass system of Figure 23.28, we may simply use Equation 23.97 to calculate the stiffness=mass
ratio as g=dst. But for the continuum of the beam, the division k=m for individual particles, or
elements, of the beam is premature and inaccurate since those particles (or elements) are not isolated
but instead are connected and thus their movements are affected by one another.

To illustrate the use of Equation 23.101, consider estimating the fundamental frequency of a
cantilever beam as in Figure 23.30. From Equation 11.8, we see that the downward displacement y
of a cantilever beam due to its own weight is

y ¼ (w=24EI)(x4 � 4‘x3 þ 6‘2x2) (23:102)

where w is the beam weight per unit length.
By substituting from Equation 23.102 into Equation 23.101 we have the expressions:

ð‘

0

y dx ¼ w‘5=20EI and

ð‘

0

y2dx ¼ (13=3240)(w2‘9=E2I2) (23:103)

X

Y

FIGURE 23.30 Vibrating cantilever beam.
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so that the circular frequency squared (v2) is

v2 ¼ g

ð‘

0

y2dx

0
@

1
A
, ð‘

0

y2dx

0
@

1
A ¼ (162=13)gEI=w‘4) (23:104)

Then the circular frequency and fundamental natural frequency f are

v ¼ 3:53
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gEI=w‘4)

p
and f ¼ v=2p ¼ 0:561

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gEI=w‘4

p
(23:105)

(From Table 23.5, the theoretical value of f is 0:559
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gEI=w‘4

p
.)

SYMBOLS

A Cross-section area
A Acceleration
A1, A2 Integration constants
B Body
C Amplitude
D Et3=12(1� n2)
E Modulus of elasticity
F Force
f Frequency (see Equation 23.10)
G Shear modulus
g Gravity acceleration
h Displacement
I Second moment of area
Imp Impulse
K Kinetic energy
k Spring constant
l Length
M Mass
m Mass
P Concentrated load
r Plate radius
S Surface
T Period (see Equation 23.11)
t Time; thickness
U Potential energy; strain energy
V Speed
W Weight; work
w Weight per unit length
Wbeam Work done by a beam
Wgravity Work done by gravity
1W2 Work done from position 1 to position 2
x Coordinate; displacement
y Coordinate
g Strain energy density; weight density
DV Velocity change
d Initial displacement
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_d Initial speed
deq Displacement of equilibrium
dmax Maximum displacement
dst Static displacement
« Strain
n Poisson’s ratio
r Mass density
s Stress
sdyn Dynamic stress
sst Static stress
f Phase angle
v Circular frequency (see Equation 23.3)
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24 Elements of Seismic Design

24.1 INTRODUCTION

Earthquakes have stimulated considerable research in the development of shock resistance struc-
tures, the so-called ‘‘seismic design.’’ Many papers and books document the accomplishments.
Seismic design is a rather specialized field and is of considerable importance due to the devastating
effect of earthquakes upon the societies and the economies of the regions where they occur.

In this chapter, we present in brief a review of the fundamentals of seismic design. References
[1–8] provide the basis for our review. They also provide a starting point for a more in-depth study.

24.2 EARTHQUAKE DESIGN PHILOSOPHIES

In general, there appear to be two schools of thought among engineers concerned with the theory of
earthquake-resistant design. One thesis is that a building should be perfectly rigid, so that in the
event of seismic motion, the top and bottom positions of this building would move an identical
amount during the same time interval. Such a response would, of course, tend to induce rather large
stresses in the building structure. The other thesis also goes to an extreme by maintaining that a
building should be as flexible as possible in order to literally sway during an earthquake. Then, in an
extreme case, one would have to construct a building from vulcanized rubber, which would
certainly be resistant to seismic shock. However, such a building would not protect the contents
very well because of the possibility of large displacements.

In practice, builders are limited by the availability and cost of construction materials, design
codes, and soil conditions that neither of the extreme design criteria outlined above are actually
utilized. Good earthquake-resistant design is a compromise in which both stresses and deflections
should be evaluated. Furthermore, the criterion of flexibility should not imply flimsy construction.
Some designers also suggest that a reasonable compromise could be reached if we were to construct
rigid buildings on soft ground and flexible buildings on rock.

Over the years, a rule of thumb developed, which states that a well-designed earthquake-
resistant building should be able, at any level, to withstand a horizontal force equal to one-tenth
of its weight above that level. However, to the surprise of all concerned, more recent seismological
data indicated a maximum acceleration at times exceeding three-tenths of gravity. It also became
clear that the damage was not always proportional to the maximum acceleration, and that a more
detailed knowledge of the vibrational modes of a structure was important in determining a realistic
seismic response.

The general problem of earthquake design has not yet been solved to the satisfaction of
seismologists, geologists, and engineers. The principal reason is that it is difficult to predict the
character and intensity of an expected earthquake for design purposes. Hence, calculations are
necessarily based upon rather crude approximations. These philosophies and insights have led to the
development of various design methods discussed in the following sections.

24.3 BUILDING CODE METHOD

A particular difficulty in earthquake design is in predicting structural response to irregular ground
motion. Theoretical analyses are difficult and generally impractical. An alternative approach is to
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use regulatory codes based upon past observations of structural behavior in earthquakes. This
experience is coupled with some established concepts of dynamic response and vibratory motion
using the assumption that only the first vibration mode is important. Thus, the characteristic shape of
the deflection curve is taken to be that of the first fundamental vibration mode of a given structure.
Equivalent static forces and displacements may then be calculated.

To illustrate the method, consider the simple structural model consisting of a concentrated mass
atop a light flexible column as in Figure 24.1. From a commonly accepted California code, the
following formulas are used [1]:

Qb ¼ WCKd (24:1)

C ¼ 0:05=T1=3 (24:2)

and

dmax ¼ 0:49=f 5=3 (24:3)

where
Qb is the horizontal shear load at the base of the model
W is the total weight of the structure
C is an inertia force multiplier, as given by Equation 24.2
Kd has values between 0.7 and 1.5, with lower values for ductile (or pliable) materials and

higher values for brittle materials (such as concrete)
T is the fundamental period of vibration of the structure (in s)
f is the natural frequency of the fundamental mode (in Hz)
dmax is the maximum horizontal displacement of the structure

Figure 24.2 illustrates these parameters.

24.4 SPECTRAL VELOCITY METHOD

In this method, the structure is assumed to be flexible and to respond in a fundamental vibration
model. Then by having seismic data for a geometric region of interest, we can predict the probable

FIGURE 24.1 A simplified seismic structural model.
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acceleration levels (in multiples of gravity) which will impact a structure. This information in
turn can be used to calculate stresses. Analogous to the building code method, we can use the
concept of an equivalent static force to calculate the stresses. Before illustrating the procedure in
more detail, it is helpful to first review the concept of the Richter scale and how it can characterize a
seismic event.

24.5 RICHTER SCALE

In most news reports of earthquakes, the Richter scale is mentioned as a measure of the intensity of
an earthquake. While the concept of a Richter measure is quite familiar, many readers may not be
familiar with its definition. Essentially, the measure of the Richter scale is a correlation between
seismic ground motion and the possible energy of the source causing the motion. Thus, the Richter
scale represents an attempt to describe the strength of an earthquake by allotting a number Q to it, on
a scale from 1 to 10. In mathematical terms, Q is defined as the logarithm (to the base of 10) of the
maximum amplitude measured in microns (mm� 10�3) and traced on a standard seismograph at a
distance of 100 km from the epicenter. Here, the epicenter is defined as the point on the earth’s
surface directly above the focus of the earthquake. Recent determinations also indicate that a 1-unit
increase in Richter scale Q is equivalent to a 32-fold increase in the energy of the earthquake source.
However, the exact calculations of the absolute amount of energy involved remain rather uncertain
and can vary by as much as a factor of 10. Practical experience also shows that based on this scale
earthquakes of magnitude 5 or greater are potentially destructive to buildings.

Richter scale is useful in classifying the extent of seismic disturbances. However, it should be
realized that Q is a magnitude derived from the response of a seismic instrument and, as such, it
must be influenced by the sensitivity of the available instrument. Furthermore, because of the
nonuniformity of the earth’s crust and random orientations of the geological faults, Q cannot be a
precise measure of the energy released by an earthquake.

24.6 ILLUSTRATION—SPECTRAL VELOCITY METHOD

For an illustrative procedure, we use spectral velocity data from California for earthquakes near San
Fernando, Parkview, and El Centro. These cases have been selected due to the superior quality of
the recorded data. The 1940 El Centro movement is indicative of an acceleration of 0.33g, which
was one of the larger values known at that times [8].

dmax

WCKd

W

Qb

FIGURE 24.2 Seismic model displacement.
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We illustrate the procedure by considering a structural model consisting of a mass with weight
W suspended by a series of light rods as represented in Figure 24.3.

1. We select two structural modes: a single and double cantilever, as in Figure 24.4: (a) single
cantilever mode and (b) double cantilever mode.

2. Let the spring constants for the two modes be evaluated separately and have values
(a) 60,000 lb=in. and (b) 6600 lb=in.

3. Let the seismic loading for the single and double modes be as represented in Figures 24.5
and 24.6, where nd is the damping factor.

4. For single degree of freedom spring mass models, the static displacement d is

d ¼ W=k (24:4)

where k is the spring constant. For the two extreme modes of movement for an assumed
weight W of 7200 lb, we have

dsingle ¼ 0:12 in: and ddouble ¼ 1:09 in: (24:5)

W

FIGURE 24.3 Structural model.

W

(a) (b)

W

FIGURE 24.4 Structural movement modes. (a) Single movement modes. (b) Double cantilever mode.
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FIGURE 24.5 Seismic loading on the support in the single cantilever mode.
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FIGURE 24.6 Seismic loading on the support in the double cantilever mode.
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5. The fundamental period T of the movement is (see Equation 23.2.11):

T ¼ 2p
ffiffiffiffiffiffiffiffiffi
m=k

p
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffi
w=gk

p
¼ 2p

ffiffiffiffiffiffiffiffi
d=g

p
(24:6)

where as before m is the mass of the structural model (w=g). We then have

Tsingle ¼ 0:11 s and Tdouble ¼ 0:33 s (24:7)

6. We can use a spectral velocity chart such as that of Figure 24.7 to obtain spectral velocities.
Specifically for the periods of Equation 24.7 we obtain

Sv ¼ 15 in:=s (single) and Sv ¼ 25 in:=s (double) (24:8)

Comment: The spectral velocity chart of Figure 24.7 is a rough sketch of the data given
here simply for our illustration. In actual design, computations analysts should use more
precise seismological data [8].

7. We can now proceed to compute the seismic loading on the models as follows. Let a be an
acceleration due to a seismic event evaluated as

a ¼ vSv (24:9)

where as before v is the circular frequency given by

v ¼ 2p=T ¼ 2pf (24:10)

Then by substituting for T from Equation 24.6 we have from Equation 24.9:

a ¼ 2pSv=T ¼ Sv
ffiffiffiffiffiffiffiffi
g=d

p
(24:11)

In g units (multiples of gravity acceleration), the acceleration �a is

�a ¼ a=g ¼ Sv=
ffiffiffiffiffi
gd

p
(24:12)

T = period (s)0.2
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FIGURE 24.7 Spectral velocity chart (El Centro data).
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Finally, by substituting the results of Equations 24.5 and 24.6 for d and SV, we obtain the
seismic accelerations as

�asingle ¼ 2:2 and �adouble ¼ 1:22 (24:13)

or

asingle ¼ 2:2g and adouble ¼ 1:22g (24:14)

These results are based upon the El Centro spectrum where the maximum ground accel-
eration is known to be 0.33g. Assuming that the El Centro earthquake measured about 7.2
on the Richter scale, we see from Figures 24.5 and 24.6 that the seismic results of Equation
24.14 correspond to the points at 7.2 on the zero damping (nd¼ 0) lines. Thus, by linear
extrapolation, we have the entire characteristics of structural loading as a function of the
Richter scale measure.

8. To further illustrate the application, consider the graph of Figure 24.8 where the design
curves are marked by solid curves. Based upon the San Fernando and Parkville experi-
ences, we can extrapolate the design curves with dashed curves.

The structural seismic loadings may now be developed using Figure 24.5 as follows.
Suppose that the distance to the fault is about 25 miles. For single damping in a single-
cantilever mode, the level of 2.2g (Figure 24.5) corresponds to seismic loading on the
structure for a 0.33g ground acceleration. For an intermediate ground acceleration such as
0.17g at the 25-mile distance, and a Richter scale of 6, the structural loading is (0.17=0.33)
(2.2) or 1.13g. (These illustrations are indicated by small circles in Figure 24.5.)

9. The allowable g loading on a structure may be determined on the basis of either strength or
stability. In the illustration, the maximum bending stress in a double-cantilever mode was
used as a criterion for the design chart of Figure 24.6. The dashed line corresponds to the
maximum g loading on the structure.
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10. Interpretation of the design charts may be conducted as follows: Consider, for example, the
critical double-cantilever mode shown in Figure 24.6. [The point of intersection between
the dashed line and the line denoted by nd¼ 0.01 yields the maximum allowable earth-
quake intensity of 5.25 on the Richter scale, assuming the El Centro type of spectral
response and about 25 miles distance to the major fault line.] Interpolating in Figure 24.8,
we get a corresponding maximum ground acceleration of about 0.075g.

The procedure described above contains only the elementary concepts of stress analysis. Yet,
from a practical point of view, this approach will be found useful because it reduces the nonsteady
response of a structure to a statics problem, which can then be handled with ease. Because of the
assumptions involving linear elasticity, the results obtained should be sufficiently conservative for
most practical needs.

When the seismic input is such that the engineering structure is plastically deformed, it is not
particularly appropriate to determine a design stress, because it will always be at the yield level. In
such a case the maximum displacement rather than the maximum stress should be taken as a
criterion. The practice also indicates that the potential for producing a failure in a ductile structure is
relatively low for the majority of seismic spectra available.

24.7 STRUCTURAL DAMPING

Even a small amount of damping can significantly decrease the dynamic response of a structure. For
example, as indicated in Figure 24.7, the peak response for a damping factor nd¼ 0.01 is approxi-
mately half that for zero damping. This attenuation exists in all structures and its magnitude varies
with the material used and the type of construction. It also depends upon how close to yield are the
induced stresses. Table 24.1 provides some representative damping values for various structural
components and induced stresses [9,10].

SYMBOLS

a Acceleration
�a Normalized acceleration (acceleration expressed in multiples of g)
C Inertia force multiplier
f Natural frequency

TABLE 24.1
Representative Damping Values for Various Types of Structural
Components and Induced Stresses

No More Than One-Half
Stress (%)

At or Just Below
Yield (%)

Piping 1–2 2–3

Welded steel 2–3 5–7
Prestressed concrete 2–3 5–7a

Well-reinforced concrete 2–3b 7–10

Bolted or riveted steel 5–7 10–15
Bolted wood 5–7 10–15
Nailed wood 5–7 15–20

a Without complete loss of prestress.
b Only slight cracking.
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g Gravity acceleration
Kd Ductile to brittle multiplier (0.7–1.5) (see Equation 24.1)
k Spring constant
m Mass
nd Damping factor
Q Richter scale number
Qb Horizontal shear load
Sv Spectral velocity
T Fundamental vibration period
W Total weight of a structure
d Displacement
ddouble Double cantilever displacement
dmax Maximum displacement
dsingle Single cantilever displacement
v Circular frequency
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25 Impact Stress Propagation

25.1 INTRODUCTION

Stress propagation is becoming increasingly important in structural design due to increasing
occurrences of high-speed impacts with structures. Stress propagation phenomenon has been
studied for many years, but due to mathematical complexities, the phenomenon is still not com-
pletely understood nor readily accessible to engineers and designers.

In this chapter, we review some elementary concepts of stress propagation as well as a few
simple relations and formulas that may be of use. We focus upon simple structures and events where
time of load application is less than half the fundamental natural period. In these instances, the
propagation phenomenon is greatly dependent upon the properties of the structural materials.

A starting point for stress propagation analyses is often the one-dimensional wave equation
describing the displacement of a taut, vibrating string [2–5]:

a2
@2u

@x2
¼ @2u

@t2
(25:1)

where
u is the transverse displacement
x is the geometric position along the string
t is time
a2 is a physical constant (string tension divided by mass density per unit length)

In the solution of this equation, a is identified with the speed of wave propagation along the string.

25.2 A SIMPLE CONCEPTUAL ILLUSTRATION

The elementary illustration of wave propagation phenomenon can be based on the analogy of a
locomotive starting to pull a long string of stationary freight cars, or a similar train running into a
barrier of fixed buffers. In the first case, each car starts up the one behind it, while the last car is, so
to speak, ‘‘unaware’’ of the load applied to the front sections of the train. This analogy applies also
to a rod to which an axial force is suddenly applied, sending a tensile stress wave along its axis. Any
section of the rod, other than that experiencing a wave propagation phenomenon, remains
unstressed. By analogy to a freight train, the particles of the rod at the impacted end are displaced
and create a wave, which begins to travel from one end of the rod to the other.

By reference again to the train analogy, we note that each car resists the motion by the inertia of
the car behind it, except the last car in the string, which will run after the train faster than the cars in
front of it, initiating a compressive type of wave. This wave is expected to proceed until the front of
the train is reached. On the other hand, when a freight train runs into a barrier of fixed buffers, each
car is brought to rest in turn. However, the last car rebounds and initiates a tensile wave, which
begins to travel up to the locomotive.

The foregoing simplified illustration of mechanics of wave propagation leads to the following
basic conclusions:

1. A compression wave reaching a free end transforms into a tensile wave and vice versa
2. A wave is reflected from a fixed end without a stress reversal
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25.3 STRESS PROPAGATION THEORY

In a one-dimensional impact (such as a rod struck on its end), the stress in the rod begins at the end
and propagates along the rod. Viewed as a whole, the stress (in the rod) will be a function of both,
the position (x along the rod) and time t. That is,

s ¼ s(x, t) (25:2)

Wasley [1] shows that the stress may be expressed as

s ¼ rcV(x, t) (25:3)

where
r is the mass density
V is the speed of a particle at a point along the rod
c is the material propagation speed, known as ‘‘sonic speed,’’ given by

c ¼
ffiffiffiffiffiffiffiffi
E=r

p
(25:4)

where, as before, E is the modulus of elasticity.
If the stress becomes sufficiently large, the material may experience plastic deformation. With

plastic deformation, the wave propagation speed Cp is smaller, or slower, than with elastic
deformation. Analogous to Equation 25.3, for plastic deformation, the stress may be expressed as

s ¼ rCpV(x, t) (25:5)

where Cp is

Cp ¼ [(ds=d«)=r]1=2 (25:6)

where ds=d« is the slope of the stress–strain curve in the elastic region with « being the strain (see
Figure 25.1).

Observe that when ds=d« approaches zero, as the stress–strain curve becomes horizontal, the
stress is near the ultimate strength of the material. At this point, the stress propagation speed
approaches zero and the material begins to rapidly fail.
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FIGURE 25.1 Graphical interpretation of critical impact velocity.
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If we imagine a rod being struck axially on an end, the end speed at impact, which will produce
the ultimate stress and material failure, is called the ‘‘critical velocity,’’ Vcr. We can estimate the
critical velocity by using the work–energy principle [6] as follows. Let sult be the ultimate strength
of the material. Then the work done on the bar, per unit volume, by the impact force through the
strain at failure «f is approximately

Work � (1=2)
ð«f

0

sultd« ¼ (1=2)
ð«f

0

rCpVcrd« ¼ (1=2)r
ð«f

0

Cpd«

0
@

1
AVcr (25:7)

where we have used Equation 25.5. (Recall that in the elastic region, the work done by a force P in
elongating a rod by an amount d is (1=2)Pd2.)

The kinetic energy per unit volume of a rod struck with the critical velocity is approximately

KE � (1=2)rV2
cr (25:8)

By equating the work and kinetic energy of Equations 25.7 and 25.8 we have

(1=2)r
ð«f

0

Cpd«

0
@

1
AVcr ¼ (1=2)rV2

cr

or

Vcr ¼
ð«f

0

Cpd« ¼
ð«f

0

[(ds=d«)=r]1=2d« (25:9)

The critical velocity may be interpreted as the area under the Cp curve as in Figure 25.1.

25.4 ELASTIC IMPACT

Consider further the phenomena of elastic impact. To develop the concepts, consider a rod with
uniform cross section being subjected to a tensile impact as represented in Figure 25.2. Let the left
end of the rod suddenly have a speed VO to the left as represented in the figure. Then as the rod is
strained, a tensile stress wave will move along the rod as in the figure. The stress wave moves with
acoustic speed C.

Let t be the time it takes for the wave front to move a distance L. Then L is simply

L ¼ Ct (25:10)

Impact velocity Strained 
portion

Stress-free portionx
L

VO

FIGURE 25.2 Model of a uniform rod under tensile impact.

Huston/Practical Stress Analysis in Engineering Design DK4291_C025 Final Proof page 415 7.11.2008 10:25pm Compositor Name: MSubramanian

Impact Stress Propagation 415



Let d be the displacement, or elongation, of the left end of the rod. Then in time t, d is

d ¼ «L ¼ VOt (25:11)

where as before, « is the strain in the rod. Therefore, from Hooke’s law (see Equation 5.1.3), the
stress s is

s ¼ «E ¼ EVOt=L ¼ EVO=C (25:12)

where the final equality follows from Equation 25.10.
If the acoustic speed C is

ffiffiffiffiffiffiffiffi
E=r

p
as in Equation 25.4 then the elastic modulus E is

E ¼ rC2 (25:13)

Consequently from Equation 25.12 the stress s is

s ¼ rCVO (25:14)

Observe that Equation 25.12 is the same as Equation 25.3.

25.5 ACOUSTIC (SONIC) SPEED AND CRITICAL SPEED

In Equation 25.14, we see that the stress is proportional to the impact speed VO. Thus, for very large
impact speeds, the stress could well exceed the yield stress of the material. As noted in Section 25.3,
the speed at which this occurs is called the ‘‘critical speed.’’ Equation 25.14 also shows that the
stress depends upon the physical properties of the material and specifically upon the sonic speed C.
The sonic speed depends upon the geometry of the structure. Table 25.1 provides a listing of sonic
speed formulas for a number of common structural components.

As an illustration of the source of the formulas of Table 25.1, consider the last entry, for an
elastic continuum. Recall from Equation 7.67 the equilibrium equations for an elastic continuum
may be written in index notation as

sij, j þ rai ¼ 0 (25:15)

where ai is the acceleration of a point within an element of the continuum.
From Equation 7.67 the stress–strain equations may be written as

sij ¼ ldij«kk þ 2G«ij (25:16)

TABLE 25.1
Formulas for Sonic Velocity

Uniform bar of infinite length C ¼ E

r

� �1=2

Infinite slab or plate C ¼ E

(1� n2)r

� �1=2

Cylinder C ¼ E

(1� n2)r

� �1=2

Elastic continuum C ¼ E(1� n)

(1þ n)(1� 2n)r

� �1=2
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where as before
«ij are the elements of the strain tensor
dij is Kronecker’s delta symbol
l and G are Lame coefficients given by (see Equations 7.68 and 7.48)

l ¼ En

(1þ n)(1� 2n)
and G ¼ E

2(1þ n)
(25:17)

where n is Poisson’s ratio. G will be recognized as the shear modulus.
From Equation 5.20, the strain–displacement equations are

«ij ¼ (1=2)(ui, j þ uj,i) (25:18)

By substituting from Equations 25.16, 25.17, and 25.18 into Equation 25.15 we obtain

Gui,jj þ (lþ G)uk,ki þ r€ui,i (25:19)

where we have replaced the acceleration ai by üi.
Now, if we differentiate with respect to xi we have

Gui,ijj þ (lþ G)uk, kii þ r€ui,i ¼ 0 (25:20)

Observe that with repeated indices there is no difference between uk,k and ui,i. This quantity is often
called the ‘‘dilatation’’ and represented by the symbol D. That is,

D ¼ uk,k ¼ ui,i (25:21)

Equation 25.20 may now be written as

(lþ 2G)D, jjþ r€D ¼ 0

or as

[(lþ 2G=r]r2Dþ @2D=@t2 ¼ 0 (25:22)

where r( ) is the vector differentiation operator:

r( ) ¼ n1@( )=@x1 þ n2@( )=@x2 þ n3@( )=x3 (25:23)

with the ni (i¼ 1, 2, 3) being mutually perpendicular unit vectors parallel to the coordinate axes.
Equation 25.23 will be recognized as the three-dimensional wave equation:

C2r2Dþ @2D=@t2 ¼ 0 (25:24)

with C being the acoustic speed. Then C2 is

C2 ¼ (lþ 2G)=r (25:25)

By substituting for l and G from Equations 25.17 we have

C2 ¼ E(1� n)

(1þ n)(1� 2n)r
(25:26)

(See the final entry in Table 25.1.)
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Observe the prominent role of Poisson’s ratio n in Equation 25.26. For a typical metallic value
of 0.3, C increases approximately 16% over the value for a uniform bar.

25.6 ILLUSTRATION

Equation 25.14 is useful for estimating the critical speed at which the material will fail due to the
stress wave. To illustrate this, consider a straight steel rod with elastic modulus: E¼ 30� 106 psi;
weight density: g¼ 0.289 lb=in.3; and yield strength: Sy¼ 80,000 psi. The objective is to determine
the critical speed.

SOLUTION

The mass density r may be obtained from the weight density by simply dividing by the gravity
acceleration g (32.2 ft=s2)

r ¼ g=g ¼ (0:289)(1728)
32:2

¼ 15:5 slug=ft3 (25:27)

where 1728 converts in.3 to ft3.
In these units, the elastic modulus is

E ¼ 30� 106 � 144 ¼ 43:2� 108 lb=ft2

From Table 25.1 the sonic speed C is then

C ¼
ffiffiffiffiffiffiffiffi
E=r

p
¼ [(43:2=15:5)� 108]1=2 ¼ 16,910 ft=s (25:28)

Similarly, the yield strength Sy is

Sy ¼ (80,000)� (144) ¼ 11:5� 106 lb=ft2 (25:29)

From Equation 25.14 the critical speed VO is then

VO ¼ Sy=rC ¼ 11:5� 106

(15:5)(16,910)
¼ 43:9 ft=s ¼ 30 mph (25:30)

25.7 AXIAL IMPACT ON A STRAIGHT BAR

Consider a rigid body M, with mass M, moving with speed V and colliding with the end of a fixed
rod as represented in Figure 25.3.

When the mass M strikes the end of the rod, speed will be V. Upon striking the end of the rod,
the mass M will be resisted and slowed by the rod. Thus the speed v of M after impact will be less
than V. The equation of motion for M is then given as

sA ¼ �M dv=dt (25:31)

whereas before
s is the stress in the rod
A is the cross-section area of the rod

From Equation 25.14, we see that the stress in the rod is

s ¼ rCv (25:32)
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But, from Table 25.1, the sonic speed C is
ffiffiffiffiffiffiffiffi
E=r

p
. Thus the speed v of a point within the rod is

v ¼ s=
ffiffiffiffiffiffi
rE

p
(25:33)

In Equation 25.33 if rE is assumed to be constant, we see that the rate of change of v, (dv=dt),
is simply

dv=dt ¼ (ds=dt)=
ffiffiffiffiffiffi
rE

p
(25:34)

By eliminating dv=dt between Equations 25.31 and 25.34, we have

M(ds=dt)=
ffiffiffiffiffiffi
rE

p
þ sA ¼ 0 (25:35)

By solving for s, we obtain

s ¼ sO exp �(A
ffiffiffiffiffiffi
rE

p
=M)

h i
t (25:36)

where sO is the end stress of the rod when t¼ 0.
Equation 25.36 shows that the stress decreases exponentially in time while the stress wave

travels toward the fixed end (x¼ L). At this point, the compression is suddenly reflected and
doubled. This in turn sends a wave back along the rod. The complete analysis of the impact may
thus require several stress wave reflections.

25.8 CONDITIONS OF SPALL

The phenomenon of spall is a direct result of a high-amplitude compressive wave encountering a
free surface. The basic features of spall, for instance, may be observed at the ground surface
disturbed by an underground explosion or at the ruptured surface opposite the point of impact of
a projectile striking a thick plate. A compressive wave reaching a free surface generates a reflected
tensile wave of the same amplitude. If this stress amplitude happens to exceed the tensile strength of
the material, a layer near the free boundary will spall off. The corresponding plane of failure must be
below the surface since the peak tensile stress can occur only after the reflected wave starts to travel
back toward the original point of impact. The thickness of the spalled layer is known to depend on
the wave amplitude, wave shape, and tensile strength of the material.

x
L

V

M

M C

V

Rigid body on a collision
course with cantilever

FIGURE 25.3 Uniform rod subjected to compressive impact.

Huston/Practical Stress Analysis in Engineering Design DK4291_C025 Final Proof page 419 7.11.2008 10:25pm Compositor Name: MSubramanian

Impact Stress Propagation 419



The mechanical model of spall is complex and it requires a rather sophisticated analysis of the
various phases of stress propagation where the impinging compressive wave interacts with the
reflected tensile wave throughout the thickness of the particular medium. The reader interested in
theoretical ramifications of the spall problem is advised to consult the specialized literature on the
subject [1]. From the practical point of view, it will suffice here to state that spall can occur
in materials whose tensile strength is numerically smaller than the compressive strength, or
when the amplitude of the impinging stress wave is significantly higher than the tensile strength
of the material.

25.9 EXAMPLE DESIGN PROBLEMS

25.9.1 OBJECT FALLING ONTO A COLUMN

A rigid object falls a distance of 10 ft onto the top of a steel column built in at the base. Assuming
that the impact produces a purely axial response in the column, calculate the maximum compressive
stress at the base if the sonic speed for the column material is 16,820 ft=s, with the weight density g
of steel being 0.289 lb=in.3.

SOLUTION

If the falling object has sufficient mass, the speed of the end of the column at the time of the impact
is the same as the speed VO of the object after it has fallen 10 ft. Specifically, this speed is

VO ¼
ffiffiffiffiffiffiffiffi
2gh

p
¼ [(2)(32:2)(10)]1=2 ¼ 25:3 ft=s (25:37)

where as before
g is the gravity acceleration
h is the fall

From Equation 25.14, the propagated compressive stress s is then

s ¼ rCVO (25:38)

where
r is the mass density of the column material
C is the sonic speed

With the weight density g being 0.289 lb=in.3, r is

r ¼ g=g ¼ (0:289)(1728)=(32:2) ¼ 15:5 slug=ft3 (25:39)

Then the propagated stress is

s ¼ (15:5)(16,820)(25:3) ¼ 6:6� 106 lb=ft3 ¼ 45,832 psi (25:40)

At the fixed end, the stress wave is reflected with no change in sign so that the maximum stress
value smax is double that of the propagated wave. That is,

smax ¼ (2)(45,832) ¼ 91,664 psi (25:41)

25.9.2 OBJECT IMPACTING A LONG CYLINDER

A rigid object weighing 5000 lb collides with the free end of a long cantilevered metal rod, or
cylinder, as in Figure 25.4. Let the rod be 28 ft long with a cross-section area of 8 in.2, the specific
weight g of the rod material be 0.283 lb=in.3 and the elastic modulus E be 28� 106 psi.
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Suppose the impact produces a stress wave with amplitude of 6000 psi. Estimate the compres-
sive stress at the struck end of the rod 0.001 s after impact and determine where the wave front is at
that time.

SOLUTION

Equation 25.36 provides an expression for the requested stress and the stress wave will propagate
at the sonic speed C given by (Equation 25.4)

C ¼
ffiffiffiffiffiffiffiffi
E=r

p
(25:42)

where, as before, r is the mass density.
Equation 25.36 is

s ¼ so exp [�(A
ffiffiffiffiffi
rE

p
=M)]t (25:43)

where
so is the initial and stress (6000 psi)
A is the rod cross section (8 in.2)
M is the mass of the striking object

From the given data r and M are

r ¼ g=g ¼ (0:283)(1728)=(32:2) ¼ 15:19 slug=ft3 (25:44)

and

M ¼ Weight=g ¼ 5000=32:2 ¼ 155:28 slug (25:45)

By substituting the data into Equation 25.43 for t¼ 0.001 we have

s ¼ 6000 exp {�(8=144)[(15:19)(28)(106)(144)]1=2=(155:28)}(0:001)

¼ 6000 exp {�90:1}(0:001)

or

s ¼ 5483 psi (25:46)

From Equation 25.42 the sonic speed C is

C ¼ [(29)(106)(144)=(15:19)]1=2 ¼ 16,580 ft=s (25:47)

Then at t¼ 0.001 s the distance d traveled by the wave front is

d ¼ Ct ¼ (16580)(0:001) ¼ 16:5 ft (25:48)

5000 lb
28 ft

FIGURE 25.4 Object about to collide with end of a long rod.
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25.10 AXIAL AND RADIAL MODES OF ELEMENTARY STRUCTURES

We can obtain approximate dynamic analyses of structures by modeling them as lumped masses
supported by springs. The mass represents the structural inertia and the springs represent the
elasticity of the structure. This is often called ‘‘mass–spring modeling.’’ It enables a simplified
analysis of structural response to impacts and also to continually applied forces and=or enforced
displacements.

A lumped-mass model is especially useful for calculating the fundamental frequency of a
structure: recall that the fundamental frequency is proportional to the square root of the ratio of
stiffness to mass

ffiffiffiffiffiffiffiffiffi
k=m

p
(see Equation 23.3). From Equation 25.4, we see that this is of the same

form as the sonic speed. This analogy is independent of the type of structural response, be it
longitudinal or radial. For example, for simple shells we can describe the fundamental vibration as a
‘‘breathing mode,’’ a radial expansion=contraction.

Table 25.2 provides expressions for the fundamental frequencies in terms of sonic speeds. The
formulas for the cylinder and sphere define the breathing modes [7,8].

TABLE 25.2
Fundamental Frequency Data as a Function of Sonic Velocity
(Axial and Radial Modes)

Direction of impulse

r
Thin sphere f  = 0.27C

t

r Thin ring
  or cylinder f  = C

2pt

a0

h Simply 
  supported plate

0.3Ch
a2

0
f  ≅

a0

h
Fixed plate 0.49Ch

a2
0

f  ≅

a b
Simply 
   supported
  h=thickness

f = pCh/a2

4[3(1- v2)]1/2 1 + a
b

2

a b Fixed 
  h=thickness

3Ch
pa2f = + 1a

b
2a

b
4
7

4

6(1- v2)
7 1/2 1/2

+

L
Free/free f = C

2L

L
Fixed/free f = C

4L
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The expressions of Table 25.2 may be useful in the following configurations:

1. Where an oscillating loading has a frequency nearly coinciding with the fundamental natural
frequency of a structural component. Such a loading can lead to increasing vibration
amplitudes and, consequently, increasing stresses. A simple check of the fundamental
frequency can reveal at a glance if a component should be redesigned to avoid the resonance.

2. Where knowledge of the fundamental natural period of vibration could help select the
method of dynamic analysis. This is important if the time of external loading nearly
coincides with the fundamental period.

3. In experiments where observance of the fundamental natural frequency can provide
information about the sonic speed.

25.11 RESPONSE OF BURIED STRUCTURES

In underground nuclear weapons testing and on other occasions, it is of interest to evaluate the
response of an underground structure in the vicinity of the explosion. A detailed study of such
configurations requires knowledge of soil material properties and ground motion parameters.
However, the inhomogeneity and anisotropy of soil makes a characterization of soil properties
difficult. Nevertheless, if a structure is near the point of detonation, the surrounding medium
behaves as a fluid subjected to intense stress and velocity fields. The structure then experiences
rigid-body displacements.

We can estimate the magnitude of the ground shock if we know the duration of the stress wave
and the fundamental natural vibration period. Although a spherical stress wave is generated from the
detonation point, the analysis is simplified without losing much accuracy by considering the wave as
one-dimensional, that is, neglecting the effect of lateral inertia. With this assumption we can use a
one-directional structural frequency response as in Table 25.2.

For example, suppose that a ground shock envelops a buried steel pipe and let the explo-
sion duration be 30 ms. Let the pipe have radius r of 24 in, weight density g of 0.284 lb=in.3,
elasticmodulusE of 30� 106 psi, and Poisson ratio n of 0.3. Then, fromTable 25.1, the sonic speedC is

C ¼ [E=(1� n2)r]1=2 (25:49)

Using the given data C is seen to be

C ¼ (30)(10)6(144)(32:2)

[1� (0:3)2](0:284)(1728)

� �1=2
¼ 17649 ft=s (25:50)

From Table 25.2 the fundamental natural period T is

T ¼ 1=f ¼ 2pr=C (25:51)

Using the given and calculated data T is

T ¼ (2p)(24=12)=(17649) ¼ 0:71 ms (25:52)

The time of load application (30 ms) is thus seen to be considerably longer than the natural period of
the breathing mode (0.71 ms). Hence, in view of the rule of Chapter 23, with the ratio being much
greater than 3, with only minor error the loading of the explosion can be represented by a step pulse
of infinite duration. That is, the pipe can be analyzed statically.
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25.12 STRESS PROPAGATION IN GRANULAR MEDIA

The radial and tangential stresses in a surrounding medium, such as soil, rock, or stemming
materials, must be determined before a buried structure such as a pipe, canister, or underground
room can be designed. The fundamentals of stress wave propagation for these media are essentially
the same as those utilized in the study of the homogeneous materials such as metals. Unfortunately,
the nature of granular, soil-like materials or rock formations represents a multitude of boundaries
affecting the propagation and reflections of sonic stress waves. Consequently, only the approximate,
gross values of ground motion parameters such as sonic velocity, particle velocity, and density can
reasonably be estimated.

The mechanical model for predicting particle motions for ground motion due to underground
explosions can be based on the following three assumptions [9,10]:

1. Particle velocity decreases as 1=R3 in the inelastic region and as 1=R2 in the elastic region,
where R is the scaled range, defined as R0=W

1=3. In this relation, R0 denotes the distance
from the point of explosion in feet and W is the yield in kilotons.

2. Peak particle velocity depends on the square of the sonic velocity of the media in which the
explosion takes place.

3. Propagation velocity of the peak stress depends linearly on the sonic velocity.

Knowledge of wave initiation, propagation, and reflection is closely tied to seismic studies. Out of
these three features, the initiation process is probably least understood despite a number of empirical
observations and long field experience.

When a stress wave produces impulsive external pressure all around a cylindrical shell, complex
vibration modes can be excited involving ‘‘breathing’’ and flexural response [9,10]. The interaction
between the purely extensional and flexural modes is found to precipitate permanent wrinkles. The
subject of this response is too lengthy for inclusion in this brief review of wave propagation. It may
be observed, however, that under dynamic conditions, the buckling modes depend not only on the
structure but also on the magnitude of the applied loads. The dynamic buckling often occurs where
the impulsive loads are sufficiently high to cause an appreciable plastic flow.

25.13 APPLICATIONS IN MACHINE DESIGN

In many instances in routine machine design, a theoretical analysis of dynamic response may be
intractable, too time-consuming, or too costly. Alternative approaches are to use numerical analyses
or empirical procedures. Numerical analyses, particularly finite element methods, are especially
popular but they are not always available or accessible. Moreover, the analyses are very sensitive to
support, loading, and modeling assumptions. Empirical, or experimental, procedures also present
difficulties in that they require testing equipment and modeling.

For moderately high speed impact, however, testing machines can provide useful information
about sonic speeds for various materials and common structural components. Many high-speed
impact machines have been developed using weight and pneumatic forces. The speeds of impact
generally vary between 100 and 200 ft=s. Some impact machines have energy capacities exceeding
15,000 ft lb. Force–time and force–speed relations can be obtained for correlating with classical
theoretical results. Also, critical impact speeds for proposed structural materials can be obtained.

SYMBOLS

A Cross-section area
a, b Dimensions (see Table 25.2)
c Sonic speed
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Cp Plastic wave propagation
d Distance
E Modulus of elasticity
G Shear modulus (see Equation 25.17)
h Height; thickness
KE Kinetic energy per unit volume
L Length; distance
P Force
r Radius
R Sealed range
Sy Yield strength
t Time
u Transverse displacement
ui Displacement components
V Speed
Vcr Critical velocity
VO Impact velocity
v Speed
x Axial coordinate
g Weight density
D Dilatation
d Elongation
dij Kronecker’s delta function
l Lame coefficient (see Equation 25.17)
n Poisson’s ratio
r Mass density
« Strain
«f Strain at failure
s Stress
sO End stress
sult Ultimate material strength
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26 Fatigue

26.1 INTRODUCTION

As the name implies, ‘‘fatigue’’ is a description of a material getting ‘‘tired’’ or ‘‘worn-out.’’
Technically, fatigue refers to material degradation due to repeated loading and unloading. When
fatigue becomes excessive, the material will fracture and fail. The familiar example of repeatedly
bending and unbending a paper clip until it breaks provides an illustration of fatigue failure.

Various theories and design methods have been proposed concerning fatigue and its induced
structural failure [1–8]. For cyclic loading and unloading, it is convenient and also reasonably
accurate to model the loading by a sinusoidal function as in Figure 26.1. The figure also shows the
maximum, minimum, and mean stress.

Intuitively, the larger the maximum stress the fewer the number of cycles needed for failure to
occur. Conversely, for low levels of stress the material may last indefinitely without failure. Figure
26.2 illustrates these concepts. It is of interest to note that when the stress is plotted against the
number of cycles, there is a rapid change in the shape of the curve at about 106 to 107 cycles beyond
which a constant stress value is approached. This value is known as the ‘‘endurance limit.’’ That is,
materials surviving 107 cycles are expected to last indefinitely.

Finally, it happens that the endurance limit depends upon the type of loading experienced by a
material. Specifically, in tension–compression testing (i.e., ‘‘push–pull’’ tests), the endurance limit is
only about 75% of that obtained in bending. Also, there is often a significant scatter in fatigue testing.
Therefore for designs with anticipated loads near the elastic limit, a statistical analysis is recommended.

26.2 CUMULATIVE DAMAGE CRITERIA

On occasion, a structural or machine component will experience several different stress amplitudes
and periods of operation during the lifetime. When this occurs, the concept of ‘‘cumulative damage’’
may be of use [7]. Although this method should be used with caution (no allowance is made for
other variables), a fairly satisfactory approximation can be made using the following criterion:

X
n=N ¼ 1 (26:1)

where
n is the number of cycles at a particular working stress
N is the number of cycles to failure at the same stress level

The term n=N represents the cycle ratio. The value of N may be obtained from a fatigue diagram as
in Figure 26.2.

Illustration: To illustrate the method, consider the following example problem: Suppose that we
want to perform a safety check for a structure undergoing stress fatigue. Suppose further that s�N
of Figure 26.2 is applicable and that we have the following data:

80,000 cycles at smax ¼ 42,000 psi

50,000 cycles at smax ¼ 30,000 psi

100,000 cycles at smax ¼ 21,000 psi

(26:2)

The objective is to use Equation 26.1 to evaluate the safety of the structure.
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SOLUTION

The required values of the N in Equation 26.1 may be obtained from Figure 26.2 for the assigned
stress levels. We have

smax ¼ 42,000 psi, N ¼ 100,000

For smax ¼ 30,000 psi, N ¼ 1,000,000

smax ¼ 21,000 psi, N ¼ 10,000,000

(26:3)

Then by using Equation 26.1 we have

X
n=N ¼ 80,000

100,000
þ 50,000
1,000,000

þ 100,000
10,000,000

¼ 0:8þ 0:05þ 0:01 ¼ 0:86 (26:4)

Since the sum of the cycle ratios is less than 1, the structure is presumed to be safe. In practice,
however, a limiting value smaller than unity is generally used to have a factor of safety. For
example,

P
n=N < 0:8 may be taken as a suitable design criterion.

Stress cycle

Stress amplitude = sa

Stress range

smin = Minimum
              stress 

St
re

ss

s m
 =

 M
ea

n 
str

es
s

s m
ax

 =
 M

ax
im

um
 st

re
ss

FIGURE 26.1 Cyclic stress notation.
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FIGURE 26.2 Illustration of a fatigue=failure (‘‘s�N’’) diagram.
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26.3 NEUBER EFFECT

It is known that with ductile materials, stress concentrations may be relieved by plastic yielding. With
cyclic loading, however, the full value of theoretical stress concentration factors K must be used in
structural design. Numerous fatigue experiments conducted with notched bars and sharp radii led to
the establishment of the Neuber effect [9]. The concept is that there is a small limiting value of the
notch radius below which no additional stress increase in fatigue is expected.

The ratio between the anticipated stress increase due to the cyclic loading and that predicted by
elasticity theory is called the notch sensitivity factor, q, [10,11], given by

q ¼ Kf � 1
K � 1

(26:5)

where Kf denotes a fatigue stress concentration factor derived from tests.
A structural member is considered to have no notch effect when q¼ 0. Alternatively, q¼ 1

defines maximum theoretical notch sensitivity. Design tables [11] show how q varies with the notch
or hole radius. Fatigue theory suggests, however, that the actual size of the hole or the depth of the
notch is more influential than geometric parameter ratios.

26.4 ELEMENTS OF DESIGN FOR FATIGUE

Design for fatigue is relatively straightforward when a s�N diagram as in Figure 26.2 for the
material is known. If such data is not available, however, various theoretical estimates can still be
made [6]. For example, Soderberg’s law [12] provides a conservative prediction for maximum and
minimum for uniaxial loading as

smax ¼ se þ sm 1� se

sy

� �
(26:6)

and

smin ¼ �se þ sm 1þ se

sy

� �
(26:7)

where as before
se is the endurance limit as in Figure 26.2
sy is the yield stress
smax, smin, and sm are the maximum, minimum, and mean stresses as in Figure 26.1

A difficulty with Equations 26.6 and 26.7 is that the endurance limit still needs to be known.
Experiments can help: Table 26.1 provides an estimate of the endurance limit in terms of the
ultimate tensile strength su.

A difficulty with material property data as in Table 26.1 is that a given structural material may
have more internal flaws than ideal materials.

26.5 EFFECT OF SURFACE FINISH

Even though applied stress is the most important single factor in fatigue phenomenon, surface finish
effects are also important. Stress risers due to roughness, residual stresses, and nonuniformity of the
material properties between the surfaces and the core influence fatigue life.
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In the usual procedures of surface finishing, highly polished surfaces have fatigue life, which is
at least 10% longer than that of relatively rough surfaces [13]. The effect of finish on the endurance
limit for shorter fatigue appears to be less pronounced [14]. There are also indications that surface
sensitivity increases with tensile strength [15]. Indeed, the magnitude of residual stresses in high-
strength steels, produced by milling and grinding, can be very high.

In design of machine shafts and other structural components where bending and torsion can
combine to create high-stress gradients, hardening of the surface by carburizing, flame hardening, or
nitriding produces beneficial effects. In this way, a surface stronger than the core can be created. If,
through this treatment, we can obtain a surface state such that the mean stress in fatigue is reduced,
we can expect longer component life. Shot peening provides a simple way of reducing surface
tensile stresses [16]. With shot peening, a compressive residual stress is induced on the surface, thus
increasing the tensile strength on the surface.

The quality of a machined surface can be affected by a number of finishing processes. The
surface quality may be characterized by ‘‘surface roughness.’’ A definition of roughness alone,
however, does not convey the entire picture. The process of material removal is an extremely
complex process, which can result in detrimental surface layer alterations. This, in turn, can lead to
such problems as grinding burns, stress corrosion, cracks, distortion, and thus increased residual
stresses. These features influence the fatigue resistance in a deleterious way. Abrasive grinding can
be especially harmful. These kinds of surface degradations can decrease the endurance limit by 10%

TABLE 26.1
Preliminary Fatigue Strength Ratios (se=su)
for Various Structural Materials

Recommended Fatigue Strength (se=su) Ratios
for Preliminary Design

Cast aluminum, 220-T4 0.17

Cast aluminum, 108 0.52
Cast aluminum, F132,-T5 0.38
Cast aluminum, 360-T6 0.40

Wrought aluminum, 2014-T6 0.29
Wrought aluminum, 6061-T6 0.45
Beryllium copper, HT 0.21
Beryllium copper, H 0.34

Beryllium copper, A 0.47
Naval brass 0.35
Phosphor bronze 0.32

Gray cast iron (No. 40) 0.48
Malleable cast iron 0.56
Magnesium, AZ80A-T5 0.29

Titanium alloy, 5A1, 2.5Sn 0.60
Steel, A7-61T 0.50
Steel, A242-63T 0.50
Spring steel, SAE 1095 0.36

Steel, SAE 52100 0.44
Steel, SAE 4140 0.42
Steel, SAE 4340 0.43

Stainless steel, Type 301 0.30
Tool steel, H.11 0.43
Maraging steel, 18 Ni 0.45

Note: T, heat-treated; H, hard; HT, hardened; A, annealed.

Huston/Practical Stress Analysis in Engineering Design DK4291_C026 Final Proof page 430 3.11.2008 5:15pm Compositor Name: VBalamugundan

430 Practical Stress Analysis in Engineering Design



or much more. Where high-temperature nickel-base and titanium alloys are involved, the loss in
fatigue resistance can become as high as 30%. This is especially noticeable in high-cycle fatigue.

In addition to the purely mechanical means of surface finishing electrical discharge machining
(EDM) can seriously affect the fatigue strength, particularly in the case of highly stressed compon-
ents. In the event of EDM roughing, the outer layer of metal can undergo microstructural changes,
local overheating, and cracking, which may extend further into the adjacent layers of the material.
Other methods of chemical and electrochemical machining appear to have a relatively smaller effect
on the endurance limit. The surface finish can, of course, be improved by mitigating heat-affected
zones, cracks, and other detrimental layers in critically stressed components [17].

26.6 EFFECT OF CREEP

For temperatures below 6508F, there is virtually no thermal effect on the endurance limit of a
conventional structural material. At higher temperatures, however, creep can affect the endurance
limit. Figure 26.3 provides a simple relation between fatigue and creep [18]. In this figure, the
fatigue strength at a completely reversed cycle and the static creep strength are represented on the
two axes for a given design temperature. Two points provide a straight line approximation, which is
considered to be relatively conservative.

26.7 EFFECT OF CORROSION

Corrosion can significantly lower the endurance limit. The combination of fatigue and corrosion,
called corrosion fatigue, is a serious problem because the corrosion products can act as a wedge,
opening a crack. This can result in as much as a 20% reduction of the endurance limit for a
conventional carbon steel. In salt water and other corrosive media, the reduction can be even more
pronounced. To counter this effect, alloying elements, as well as protective coatings are used. The
rate of cycling can also lower the fatigue life, but it is seldom considered in normal design
procedures because such data are poorly defined ahead of time.

26.8 EFFECT OF SIZE

Fatigue failure generally occurs by fracture, which begins as a small or microscopic crack within
the material. Such cracks arise due to microscopic defects, dislocations, or irregularities within the
material. These irregularities occur randomly, but generally uniformly during material fabrication
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FIGURE 26.3 A simplified method for combining creep and fatigue.
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processes. Therefore, if a structure has several components with similar shapes, the smaller
components are likely to have longer life, simply because they have fewer material defects owing
to their smaller size.

Figure 26.4 provides an illustration of the concept where it is seen that a bar with smaller
diameter has a better resistance to fatigue failure due to the fewer sites in the material with
excessively high stress.

This size concept can be useful in design where there are similarly shaped members with
various thicknesses. Specifically, if the endurance limit is known for at least some of the
thicknesses, then predictions of the endurance limit for other thicknesses can be obtained. For
example, Figure 26.5 shows the endurance limit as a function of thickness for steel bars as given
in Figure 26.4.

26.9 LOW-CYCLE FATIGUE

In applications where fatigue life is an issue, the designer is usually concerned with configurations
where there are millions of cycles. On occasion, a component may be loaded to failure at a much
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lower number of cycles. It is customary to refer to ‘‘low-cycle fatigue’’ as the occasion when the
total number of cycles to failure is less than 10,000.

Faupel and Fisher [12] have established an empirical relation predicting low-cycle fatigue as

sa ¼ se þ CE

2N1=2
(26:8)

where as before
sa and se are the stress amplitude and endurance limit
E is the elastic modulus
N is the number of cycles to failure
C is given by

C ¼ (1=2)‘n
100�%AR

100

� �
(26:9)

where %AR is the percentage reduction of area in a conventional tensile test. [Observe that C is
negative except for the ideally brittle case where C is zero (zero %AR).] Equations 26.8 and 26.9
agree well with experimental data for most structural metals.

26.10 LOW-CYCLE FATIGUE EXAMPLE

To illustrate the foregoing concepts and procedures, consider the following problem.

Problem: Calculate the mean and maximum fatigue stresses in uniaxial loading for a machine part
made of steel with an endurance limit se of 35,000 psi expected to be used for 20,000 cycles. Let the
yield strength sy be 80,000 psi and the ultimate strength su be 100,000 psi with an area reduction
AR of 30%.

SOLUTION

From Figure 26.1 the maximum stress, smax, the stress amplitude, sa, and the mean stress sm are
related as

smax ¼ sm þ sa (26:10)

Then from Equation 26.6 we have

sm þ sa ¼ smax ¼ se þ sm 1� se

sy

� �

or

sm ¼ sy 1� sa

se

� �
(26:11)

From Equation 26.9 the parameter C is

C ¼ (1=2)‘n
100� 30

100

� �
¼ �0:1783 (26:12)

Then, from Equation 26.8 we find sa to be

sa ¼ 35,000� (0:1783)(30)(10)6

(2)(20,000)1=2
¼ 16,000 psi (110:3 N=mm2) (26:13)
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Hence, from Equation 26.11, the mean stress sm is

sm ¼ 80,000 1� 16,000
35,000

� �
¼ 43,400 psi (299:2 N=mm2) (26:14)

Finally, from Equation 26.10, the requested maximum stress smax is

smax ¼ 43,400þ 16,000 ¼ 59,400 psi (409:6 N=mm2) (26:15)

The maximum stress of Equation 26.15 is sometimes called the ‘‘pseudoelastic limit,’’ since low-
cycle fatigue is expected to extend beyond the elastic limit. When the stress amplitude sa is zero,
the mean stress sm and the yield stress sy are equal (see Equation 26.11). Then from Equation
26.8, the number N of cycles to failure is

N ¼ C2E2

4s2
y

(26:16)

For the numerical data of this problem, the lowest number of cycles to failure at a mean stress of
80,000 psi is 1120. Thus, the lowest number of cycles to failure at yield depends only upon the
strain at yield and the area reduction in the standard tensile test.

Equations 26.9 and 26.16 indicate that as the brittleness of the material increases, the number
of cycles to failure falls off rather rapidly. The ideally brittle material, based upon Equation 26.9 is
that at which C tends to zero.

SYMBOLS

C Coefficient defined by Equation 26.9
E Elastic modulus
K Static stress concentration factor
Kf Fatigue stress concentration factor
N Number of cycles to failure
n Number of cycles
q Notch sensitivity factor (see Equation 26.5)
s Stress
sa Stress amplitude
se Endurance stress
sm Mean stress
smax Maximum stress
smin Minimum stress
sy Yield stress
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27 Fracture Mechanics:
Design Considerations

27.1 INTRODUCTION

A principal objective of fracture mechanics is the stress analysis of components, which are sensitive
to crack propagation and brittle failure. To this end, it may be useful to briefly review concepts of
ductile and brittle behavior.

Unfortunately, the distinction between ductile and brittle behavior is not precise. At normal
working temperatures, steel is generally considered to be ductile whereas cast iron is considered to
be a brittle material. A dividing boundary between the two is often defined as the amount of
elongation during a tensile test. If a rod elongates more than 5% under tension, the rod material is
said to be ‘‘ductile.’’ If the rod fractures before elongating 5%, the material is said to be ‘‘brittle.’’

The 5% limit, however, may be a bit low and it may even be challenged in terms of strength
theories. It is generally regarded that brittle failure may be related to maximum principal stresses,
whereas ductile failure is often interpreted with the aid of traditional plastic failure criterion [1].

But these rules cannot be applied rigidly since in component design, the component strength
involves both geometric and material parameters. A designer is thus often forced to make a final
decision with incomplete information. Under these conditions, the margin between failure and
success is expanded only by using a high factor of safety.

The complexity of the design process is also increased due to requirements of fracture control. It
is generally recognized that the metallurgical phenomenon of a fracture toughness transition with
temperature is exhibited by a number of low- and medium-yield-strength steels. This transition
results from the interactions among temperature, strain rate, microstructure, and the state of stress.
One of the more perplexing aspects of this behavior is that the customary elongation property of the
material appears to have virtually no relation to the degree of fracture toughness. For example, a
well-known mild steel such as the ASTM Grade A36, having an elongation greater than 20%,
exhibits brittle behavior not only at lower, but also at room temperatures.

It appears, therefore, that it may be advisable to characterize the materials with respect to their
brittle tendencies before selecting the method of stress analysis. Traditional mechanical properties,
in the form of yield point, ultimate strength, elongation, and elastic constants, must be supplemented
with the thermomechanical data. The response of a stressed component, particularly at lower
working temperatures, may be impossible to predict without a knowledge of fracture mechanics
and the material’s toughness.

The application aspects of fracture mechanics given in this chapter are treated in an elementary
fashion. The aim of the presentation is simply to alert designers to some potential problem areas and
to indicate the nature of modern trends in stress analysis and fracture control. It points to the
necessity of characterizing the material’s behavior under stress in terms of new parameters.

27.2 PRACTICAL ASPECTS OF FRACTURE MECHANICS

Fracture mechanics has been studied and documented as early as 1920 [2]. Since then, it has
received considerable attention from many analysts with a focus on high-strength metals. A fracture
is seen to occur even due to a low nominal stress setting off a brittle behavior phenomenon. Once
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initiated, such a brittle process can propagate at a high velocity to the point of complete failure.
Thus, failure can occur even if the yield strength is not reached.

As a general guide, steels with yield strength above 180 ksi, titanium alloys above 120 ksi, and
aluminum alloys above 60 ksi are in this high-strength but brittle category. They should thus be
evaluated on the basis of fracture toughness rather than pure yield strength.

Extensive experimentation and some recent developments in continuum mechanics have been
aimed at defining a quantitative relationship between stress, the size of a crack, and the mechanical
properties. It is relevant to point out that the advent of fracture mechanics does not negate the
traditional concepts of stress analysis, which allow us to design for stresses exceeding the yield
strength in the vicinity of such structural discontinuities as holes, threads, or bosses, provided that
the material deforms plastically and redistributes the stresses. This concept is still valid unless the
material contains critical flaws that produce unstable crack propagation below the design value of
the yield strength.

The difficulty with introducing the correction for flaws in design is that, in many cases, flaws
cannot be easily detected. It becomes necessary, therefore, to develop a procedure that would define
the maximum crack length permissible at a particular level of stress. According to the theory of
fracture mechanics, this stress level is inversely proportional to the flaw size. The stress s at which
crack propagation is expected to occur is given by the relation

s ¼ K1C

(pa)1=2
(27:1)

where
K1C is called the ‘‘plane-stress fracture toughness’’
a is the half crack length

Fracture toughness K1C, with units psi (in.)
1=2 or [N(mm)�3=2], is a mechanical property, approaching a

limitingminimum value as the specimen thickness increases. Its magnitude in Equation 27.1 constitutes
an absolute minimum corresponding to a plane strain condition at which the fractured surface has a
brittle appearance. This type of failure is associated with very limited plastic deformation and is typical
of fractures in heavy sections.

Equation 27.1 can be utilized in calculations involving through cracks in relatively large containers
and pressure vessels. If the calculated stress of fracture is found to be higher than the operating stress
based on a minimum acceptable factor of safety, the component should be satisfactory for service.

The stress calculated in Equation 27.1 will be tensile. The expression may be used for both static
and dynamic loading conditions. For conventional structural steels having a static yield strength sy

up to 100,000 psi, the corresponding dynamic yield syd can be estimated as

syd ¼ sy þ 30,000 (27:2)

According to Lange [3], the upper limit for this prediction can be as high as 140,000 psi while at the
same time the numerical term in Equation 27.2 is gradually reduced from 30,000 to zero.

The concept of K1C refers to brittle fracture and plane strain conditions. In mathematical
terms, plane strain is defined as the state of zero plastic flow parallel to a crack front. Thick materials
normally develop plane strain fracture characteristics and the broken surface is essentially flat. As
the material’s thickness decreases, the degree of constraint decreases, creating a plane stress
condition and a maximum amount of plastic flow associated with the fracture.

Figures 27.1 and 27.2 show the effect of temperature on conventional strength and crack
resistance for two high-strength steels. These examples indicate poor resistance to brittle fracture
within the specific temperature ranges associated with either a tempering process or testing. It is seen
that the conventional tensile property gives little insight into the brittle behavior of the materials.
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27.3 DESIGN IMPLICATIONS OF THE CRACK SIZE PARAMETERS

Typically in material fabrication, there will be surface defects involving cracks. In such cases, it is
prudent to use the principles of fracture mechanics to estimate the maximum stress s associated with
component imperfection. Specifically, s is estimated as

s ¼ K1C(c)
1=2

3:77bþ 0:21K2
1C=s

2
y

� �h i1=2 (27:3)

where as before
K1C is the plane strain fracture toughness number
sy is the yield strength
c is the ‘‘crack shape parameter,’’which is a function of depth b and half length a of a crack [4]

Figure 27.3 provides a typical representation of the fracture toughness parameter as a function of
tensile strength and Figure 27.4 shows the relation between the crack shape parameter c and the
crack aspect ratio b=a.
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FIGURE 27.1 Effect of tempering temperature on high-strength steel (12Mo-V stainless).
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FIGURE 27.2 Effect of test temperature on high-strength steel.
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27.4 ILLUSTRATIVE DESIGN PROBLEMS AND SOLUTIONS

In the following sections, we present a few example problems intended to illustrate design
procedures to guard against fracture failure.

27.4.1 EXAMPLE PROBLEM 1

Calculate the maximum stress at failure for a large structural component made of a 4340 steel plate
having an ultimate tensile strength of 220,000 psi. The surface flaw discovered is 0.2 in. deep and
2 in. long.
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FIGURE 27.3 Fracture toughness for 4340 steel.
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FIGURE 27.4 Crack shape parameter.
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SOLUTION

For the specified strength of 220,000 psi, the fracture toughness parameter K1C is seen from
Figure 27.3 as

K1C ¼ 73,000 psi (in:)1=2 (27:4)

Since a is 1 in. and b is 0.2 in., the ratio b=a is 0.2. Then Figure 27.4 gives the shape parameter c as

c ¼ 1:09 (27:5)

Assuming the critical fracture stress to be equal to the yield strength, Equation 27.3 may be
written as

s ¼ K1Cc
1=2

3:77bþ 0:21 K2
1C=s

2
� �1=2 (27:6)

By squaring and solving for s2 and s, we have

s2 ¼ K2
1Cc

3:77bþ 0:21 K2
1C=s

2
� �

or

3:77bs2 þ 0:21 K2
1C ¼ K2

1Cc

or

s ¼ K1C(c� 0:21)1=2

(3:77b)1=2
(27:7)

Finally, by substituting from Equations 27.4 and 27.5, we find the failure stress to be

s ¼ 73,000(1:09� 0:21)1=2

(3:77)(0:21)½ �1=2
¼ 78,860 psi (544 N=mm2) (27:8)

27.4.2 EXAMPLE PROBLEM 2

Select structural material to tolerate the following flaw dimensions: Total crack length: 1 in. and
crack depth: 0.1 in.. The maximum applied stress is expected to be equal to the yield strength of the
material, approaching 220,000 psi for 4340 grade steel. Assume the ratio of ultimate to yield
strength is 1.13.

SOLUTION

With the stress expected to be equal to the yield stress, Equation 27.7 states that

s ¼ sy ¼ K1C(c� 0:21)1=2

(3:77b)1=2
(27:9)
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By solving for the fracture toughness parameter K1C, we have

K1C ¼ 1:92sy
b

c� 0:21

� �1=2

(27:10)

Using the specified crack dimensions, we obtain the geometric ratio b=a as

b=a ¼ 0:2 (27:11)

(Note the crack length is 2a.)
From Figure 27.4, the crack shape parameter c is approximately

c ¼ 1:09 (27:12)

Therefore, with b¼ 0.1 in. and sy being 220,000 psi, Equation 27.10 produces the fracture
toughness K1C as

K1C ¼ (1:92)(220,000)
0:1

1:09� 0:21

� 	1=2
¼ 142,390 psi (in)1=2 [4948 N(mm)�3=2] (27:13)

From Figure 27.3, the plane strain fracture toughness is only approximately 73,000 psi (in.)1=2. The
conclusion, therefore, is that we either have to select material with a higher fracture toughness or
decrease the corresponding working stress.

27.4.3 EXAMPLE PROBLEM 3

Provide an estimate of the leak-before-break internal pressure for a high-strength alloy steel cylinder
with mean radius r of 36 in. and wall thickness t of 2.5 in. Assume that the minimum plane strain
fracture toughness is 93 psi (in.)1=2. Neglect end effects and assume that the conventional membrane
theory of stress analysis applies.

SOLUTION

Recall from Equation 27.1, from the theory of fracture mechanics, that the stress s at which
fracture leading to crack propagation is likely to occur is

s ¼ K1C

(pa)1=2
(27:14)

where a is the half length of the crack.
For a through-thickness crack for a wall thickness t, Equation 27.14 becomes

s ¼ K1C

(pt)1=2
(27:15)

Recall further that hoop stress sh is given by the simple expression [5,6]

sh ¼ pr=t (27:16)

where p is the internal pressure, r is the hoop radius, and t is the hoop thickness.
By identifying s with sh between Equations 27.15 and 27.16 and solving for the pressure p,

we obtain

p ¼ tK1C

r(pt)1=2
(27:17)

Huston/Practical Stress Analysis in Engineering Design DK4291_C027 Final Proof page 442 3.11.2008 6:14pm Compositor Name: VBalamugundan

442 Practical Stress Analysis in Engineering Design



Then by substituting the given numerical values, the desired leak-before-break pressure is

p ¼ (2:5)(93)(1000)

(36)(2:5p)1=2
¼ 2300 psi (27:18)

27.5 COMMENT

The examples presented in Section 27.4 illustrate the quantitative approach to the prediction of
stresses for a given maximum size of flaw. Since the fracture toughness parameter K1C is a
compound quantity involving stress and the crack size, it becomes necessary to rely on empirically
obtained curves of K1C before calculating the strength of a component for a given size of defect.

When a structural element of a brittle nature is subjected to a combined loading with the lack of
symmetry, it is difficult to rely on the size and orientation of the flaw. For example, in the case of
glass, it may be necessary to describe the fracture mechanics property in terms of the strain energy
release rate GC. This may be described as the quantity of energy released per unit area of crack
surface as the crack extends [7]. The release rate parameter GC is then

GC ¼ s2pa

E
(27:19)

where as before
a is the half crack length
E is the elastic modulus

On the premise that a denotes one-half crack length for a through-thickness flaw in a semiinfinite
plate in tension and s is the nominal prefracture stress, Equation 27.1 gives

K1C ¼ s(pa)1=2 (27:20)

By eliminating pa between Equations 27.19 and 27.20, we have

K2
1C ¼ EGC (27:21)

The parameter GC may be defined as a measure of the force driving the crack. Once this quantity is
established, it should be possible to obtain a preliminary estimate of the critical crack size.

27.5.1 EXAMPLE PROBLEM

Calculate the approximate critical length of a crack on a glass panel subjected to tension on the
premise that the modulus of elasticity E is 10� 106 psi, the ultimate strength su is 40,000 psi, and
the strain energy release rate GC is 0.08 (in lb=in.2).

SOLUTIONS

From Equation 27.21, the equivalent fracture toughness is

K1C ¼ [10� 106 � 0:08]1=2 ¼ 894 psi (in:)1=2 (27:22)

Next, from Equation 27.20, the half crack length a is

a ¼ K2
1C

ps2 ¼ (894)2

p(40,000)2
¼ 0:00016 in: (27:23)
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27.6 IMPLICATIONS OF FRACTURE TOUGHNESS

The plane strain fracture toughness parameter KIC has received rather wide attention because of its
role in fracture mechanics and fracture-safe design. As a distinct mechanical property, K1C depends
on the temperature and the rate of strain. Experience also shows that in the case of higher-strength
materials, which tend to be relatively brittle, the determination of K1C does not present any special
problems. However, when using a medium or a lower material strength combined with high
toughness, the testing procedure becomes more complex and requires a higher loading capacity
for the test equipment. In some situations, the required high specimen thickness for the test becomes
almost impractical. This is because, to assure a valid K1C number in a tough material, the test
specimen must satisfy the plane strain conditions as noted previously in the section dealing with
practical aspects of mechanics.

The characterization of fracture properties for intermediate and lower strength steels is not as
precise or convenient as we often need in structural design. We do not have a simple reliable test
leading to values of the toughness parameter K1C.

A good approximation, however, may often be obtained by using the popular and relatively
simple Charpy V-notch test. It may be recalled that this test is conducted on a specimen containing a
centrally placed sharp notch. The specimen is broken by impact in a beamlike configuration with a
three-point loading. The amount of impact energy at the temperature of interest, sometimes denoted
by ‘‘CVN,’’ is usually expressed in ft-lb. Since a K1C value is involved in the fracture mechanics
concept described by Equation 27.1, numerous attempts have been made to develop simple
correlations between CVN and K1C. These correlations have generally been of the type

K1C ¼ A(CVN)n (27:24)

where A and n denote the specific numerical constants for a selected material and design conditions.
Although this correlation may be suitable for design analysis in the elastic range, a continuous
debate of the merits and limitations of CVN created an impasse in the various committees that deal
with specifications and test standards. In the meantime, other test methods have evolved with the
specific charter of plane strain fracture characterization, resulting in a standard document known as
ASTM-E399 [8]. Whatever means the designer plans to adopt for the decision regarding the value of
K1C, the designer would be well advised to remember that no sweeping generalizations are available
within the bounds of the current state of the art in this field and that each design case should be
treated individually.

Table 27.1 provides a listing of minimum values of the toughness parameter K1C for a few
common materials. On average, the maximum values of the K1C are approximately 1.1 to 1.3 times
the minimum values quoted in the table. Hence the use of these minimum values should lead to
conservative predictions.

The information given in Table 27.1 is intended to provide an illustration of the order of
magnitude of K1C values. Precision cannot be implied because of the unavoidable variations in
chemical composition, heat treatment, mechanical working of structural materials, as well as
fabrication temperatures. Nevertheless, the K1C values are relatively versatile since, when used in
design, they will produce a conservative, or relatively safe component geometry.

Knowledge of K1C data should help in material selection and in judging the performance of a
component when the extent of a defect can be defined. Minute cracks are inherently present in any
structural component and their actual size is often below the limit of the sensitivity of nondestructive
test equipment. Clearly, the higher the value of K1C, the greater will be the resistance of the material
to brittle failure and the greater stress required to produce such a failure.
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27.7 PLANE STRESS PARAMETER

The concept of plane strain fracture toughness, K1C, briefly outlined in the previous sections can be
viewed as a measure of a material’s ability to arrest a crack. But, when a crack begins to propagate, a
brittle fracture can occur. Moreover, the speed of propagation can be several thousand feet
per second. The amount of plastic energy consumed in the propagation of a crack is assumed to
be rather small, so that the process of crack extension is primarily governed by the release of elastic
strain energy.

As a material’s thickness decreases, lateral constraint relaxes and the size of the plastic zone
around the crack tip grows suddenly. This phenomenon is known as ‘‘crack-tip blunting,’’ indicating
that a relatively large volume of material has deformed. This process may be compared to the
behavior of the neck region in a tensile test specimen. The velocities of crack propagation in this
instance drop drastically and the crack is arrested.

If, after a crack has been arrested, the loading on the structure is increased so that the stress again
exceeds the yield stress of the material, the crack may propagate again. We are then in a state of
what might be called ‘‘arrestable instability.’’ In this state, the fracture toughness parameter no
longer applies.

TABLE 27.1
Yield and Toughness of Engineering Materials

Material Condition Form
Minimum
Yield (ksi)

Minimum K1C

[ksi(in.)1=2]

Alloy steel

18 Ni maraging (200) Aged 9008F, 6 h Plate 210 100
18 Ni maraging (250) Aged 9008F, 6 h Plate 259 78
18 Ni maraging (300) Aged 9008F Plate 276 44
4330 V Tempered at 5258F Forging 203 77

4330 V Tempered at 8008F Forging 191 93
4340 Tempered at 4008F Forging 229 40
4340 Tempered at 8008F Forging 197 71

Stainless steel

PH13-8 Mo H1000 Plate 210 78
PH13-8 Mo H950 Forging 210 70

Titanium alloys

Ti-6A1-4V Annealed — 120 81

Ti-6A1-6V-2Sn Annealed — 144 45
Ti-6A1-6V-2Sn Solution treated and aged — 179 29

Aluminum alloys

2014 T651 Plate 57 22

2021 T81 Plate 61 26
2024 T851 Plate 59 19
2124 T851 Plate 64 22

7049 T73 Forging 61 29
7049 T73 Extrusion 73 28
7075 T651 Plate 70 25
7075 T7351 Plate 53 31

Source: Blake, A. (Ed.), Handbook of Mechanics, Materials, and Structures, Wiley, New York, 1985.
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In the state of arrestable instability, it is helpful to introduce a new parameter KC called the
‘‘plane stress parameter.’’ KC may be correlated with the fracture toughness parameter K1C, the yield
strength sy, and the material thickness B, by the expression

KC ¼ K1C 1þ 1:4
B2

K1C

sy

� �4
" #1=2

(27:25)

Since the energy required to propagate the fracture under plane stress conditions must be high
because of the arrestable crack characteristics, it follows that the critical flaw size under plane stress
should be higher than that under plane strain conditions. According to the science of fracture
mechanics, the relation between the two crack lengths may be stated as follows:

aC ¼ aC1 1þ 1:4
B2

K1C

sy

� �4
" #

(27:26)

where aC and aC1 are the critical lengths of the cracks in plane stress and plane strain, respectively.
Equation 27.26 may be obtained directly from Equation 27.25 by making the crack ratio directly

proportional to the square of the ratio of the respective stress intensity factors KC and K1C.
Although the concept of a plane stress arrestable instability factor (or ‘‘plane stress fracture

toughness parameter’’) KC is easy to adapt to the analysis of thin-walled components, the task of
experimental determination of the KC values is not without some serious limitations. The fracture
corresponding to the KC parameter is a mixed-mode type involving large amounts of crack-tip
plastic flow. Also, the critical length of the crack is difficult to establish because of the limitations of
the instrumentation. Nevertheless, approximate values of KC can be derived experimentally in such
cases as, for example, wide panels and sheets. Such a process may be based on the initial crack
lengths and the stresses to failure. In the case of heavier sections in low-strength materials, however,
more complex correlation techniques are needed before the results can be considered applicable to
design.

27.8 PLANE STRESS CRITERION FOR PRESSURE VESSEL DESIGN

The concept of plane stress fracture toughness KC, as discussed in Section 27.7, is well suited for
application in pressure vessel design. We may wish to predict the burst pressure of the vessel for a
given surface defect such as a part-through, longitudinal flaw. The choice of the longitudinal
orientation of the flaw relates well to the nature of loading in a pressurized cylinder where the
critical membrane stress is likely to be in the hoop direction. The task then is to estimate the internal
pressure to failure when the dimensions of the flaw and a specific value of the plane stress parameter
KC are known. The basic question in this type of analysis is concerned with the essential design
criterion of leak-before-break. This situation has, over the years, provoked a number of scientific
investigations and has always had an important issue of industrial safety attached to it. Ideally,
given a through-the-wall crack, we prefer that the vessel would leak rather than fail suddenly due to
unstable crack propagation through the plate proper or in the weld region of the vessel. The designer
should also know what kind of a specific relation exists between the critical crack length and the
stress for a given material characterization and the material’s thickness intended in pressure vessel
applications.

Assuming that plane stress conditions exist in the wall of the vessel, the relevant fracture
toughness parameter for a longitudinal through-the-wall crack in a cylindrical geometry can be
expressed by the equation

K2
C ¼ p(1þ 5n)as2

m

2(1þ n) cos (psm=2su)
1þ 1:7a2

Rt
(1� n2)1=2

� 	
(27:27)
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where, as before, n is Poisson’s ratio and a is the half length of the crack, or imperfection. The
parameter sm denotes the nominal circumferential stress in the pressure vessel given by the familiar
formula: pR=t where p is the internal pressure, R is the vessel radius, and t is the wall thickness. su

denotes the ultimate strength of the material.
Equation 27.27 is based upon classical plate theory and it involves a number of corrections to

conform to pressure vessel geometry and the nature of critical stress [10]. The corrections include
the effect of curvature in going from a flat plate to a cylinder, the influence of the plastic zone at the
tip of the defect, and the allowance for the effect of the biaxial state of stress.

The plane stress parameter KC is given in psi(in.)1=2 when sm and su are expressed in psi, and a,
R, and t are measured in inches.

Suppose that we have a cylindrical vessel of thickness t, which contains a part-through
longitudinal flaw having a maximum depth d. The flaw is assumed to be symmetrical and in the
form of a hacksaw slot. The presence of this flaw reduces the wall thickness locally and without full
penetration. Hence, by this definition, t=d must be greater than unity. If we denote the actual area
of the part-through flaw by Af, its corresponding equivalent length can be defined as Af=d. The
original half-length of the crack entering Equation 27.27 under conditions of full penetration is, of
course, a. Hence, the approximate nominal stress sm for the part-through flaw can be estimated from
Equation 27.27, provided that we introduce a¼Af=2d. On substituting this equivalent quantity
into Equation 27.27, we obtain

K2
C ¼ p(1þ 5n)Afs

2
m

4d(1þ n) cos (psm=2su)
1þ 0:425A2

f

Rtd2
(1� n2)1=2

� 	
(27:28)

The membrane stress to failure sf in a cylindrical vessel containing a part-through flaw can be
expressed empirically [10] as

sf ¼ (t � d)s2
u

tsu � dsm

(27:29)

Equations 27.28 and 27.29 may be used to predict the failure stress for a thin vessel with a part-
through, longitudinal flaw. If we know the area Af of the part-through flaw and the maximum depth
d, we can iteratively calculate sm from Equation 27.28. To do this, we need to know KC, n, su, R,
and t. If necessary, KC may be approximated using Equation 27.25 provided that the plane strain
fracture toughness K1C, material thickness B, and yield strength sy, are known.

In summary, the leak-before-break criterion can be verified analytically by comparing the two
critical stress levels, sf and sm. If the stress to failure sf, obtained from Equation 27.29 and intended
for a given surface defect exceeds sm, calculated from Equation 27.28 for an equivalent length of
through-the-wall crack, we can expect the flaw to propagate, leading to a structural failure of
the vessel. However, if the failure stress sf, calculated for the surface defect such as a part-through
flaw proves to be lower than sm, the corresponding vessel may be expected to leak before a
catastrophic break.

27.9 REMARKS

It should be emphasized that although quite useful, the presented method of fracture mechanics
does not provide complete answers for all design situations. For instance, the effect of nonapplied
loads such as residual stresses induced by welding is very difficult to interpret. The design
parameters, such as KC or K1C, have to be determined with reference to the direction of the working
stresses during the manufacture as well as service. Other special considerations, such as neutron
radiation, may also enter the picture. Fracture toughness of ferritic steels is known to be reduced by
such a process. Furthermore, the design criteria may be based on the choice of the flaw size, its
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geometry, and its orientation with respect to a working stress field different from that required for a
particular design case. Highly stressed regions such as nozzle junctions and similar transitions pose
separate problems of interpretations of test results, inspection techniques, stress analysis methods,
and fracture mechanics criteria, which are certainly beyond the scope of this introductory treatment
of fracture analysis. Last, but not least, the design factors of safety will be affected by all the
technical issues noted above, together with considerations of production economics and the
potential consequences of failure.

SYMBOLS

A Numerical constant
A Half crack length
aC, aC1 Critical crack lengths
B Material thickness
B Depth of crack
b=a Aspect ratio
CVN Impact energy of Charpy V-notch test
E Modulus of elasticity
GC Release rate parameter
KC Plane stress parameter
K1C Plane stress fracture toughness
N Numerical constant
p Pressure
R Vessel radius
R Hoop radius
T Wall thickness
n Poisson’s ratio
s Stress
sf Membrane stress
sh Hoop stress
sm Nominal circumferential stress
su Ultimate strength of material
sy Yield stress
syd Dynamic yield stress
c Crack shape parameter
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28 Fracture Control

28.1 INTRODUCTION

The recognition of the basic problem of ‘‘ductile-to-brittle transition’’ in metallic materials dates
back to the time when the welded fabrication of World War II ships was plagued by catastrophic
failures. The incidents were characterized by almost instantaneous fractures of entire ships.
Although Navy records indicate that World War II ship steel exhibited some 40% elongation,
there was obviously no beneficial effect of this property on the structural integrity of the ship plate in
the particular environment. This experience has not been limited to the Navy materials and
structures. At times, other costly failures were observed, such as a sudden burst of a multimillion-
gallon storage tank or unexpected break of a main aircraft spar in flight. The problems were very
serious, of course, and, over the years, many large-scale investigations have been sponsored by the
U.S. government and private industry to develop remedial measures. In particular, the Naval
Research Laboratory has been very active in the studies of fracture phenomena. This work has
provided an excellent theoretical and experimental background for fracture-safe design [1–4], with
special regard to low- and medium-strength materials. Normally, this implies ‘‘fracture control’’ in
design utilizing steels with the yield strength lower than about 120,000 psi. In this category, we
encounter the majority of quenched and tempered steels used in modern applications involving
rolling stock, shipping, bridges, lifting gear, storage tanks, and automotive components.

High-alloy steels having high resistance to fracture at room temperature include HY-80, HY-
100, HY-130, and A-543 ASTM grades and may be acceptable up to thicknesses of about 3 in. In
the low-alloy class, A-514 and A-517 ASTM grades serve as examples. For thicker sections, in
the range of 6–12 in., the alloying elements have to be increased. However, experience with thick
pressure vessels indicates that even good-quality quenched and tempered steels may become highly
brittle. One of the best fracture-tough materials has been HY-80 steel, specified by the Navy, which
even in welded regions performed successfully in hull structures of both surface ships and
submarines since the mid-1950s.

Current manufacturing specifications are designed to give full assurance that the HY-80
weldment system is a well-proven structural material. However, even in this and similar cases,
special attention must be paid to any changes in the fabrication processes that may significantly
affect the quality of the material, as well as the meaning of a standard test procedure such as
Charpy V notch. This is especially important during the process of quality control and the
correlation of fracture-tough parameters for design purposes.

28.2 BASIC CONCEPTS AND DEFINITIONS

Fracture control is based upon the basic concepts of fracture mechanics as outlined in Chapter 27.
Fracture control utilizes the plane stress fracture toughness parameter K1C, which is a measure of
the fracture resistance in the brittle state of a material. The parameter, however, does not represent
the full range of fracture toughness between brittle and plastic behavior. Thus it is helpful to have
correlation between K1C values and other test parameters.

The dynamic tear (DT) test can provide such correlations. In DT testing, a specimen with a deep
sharp crack is broken by a pendulum machine. The upswing of the pendulum following the break is
a measure of the energy needed for the fracture. References [2–4] detail methods for relating DT
data to K1C values.
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The DT test is a relatively inexpensive method for determining fracture toughness as a function
of temperature. Figure 28.1 illustrates the kind of information that can be obtained. In this figure
(adapted from Ref. [2]), the solid line is known as the crack arrest temperature (CAT) curve or DT
curve. The point on the curve denoted by NDT is known as the nil ductility transition temperature.
As the temperature is decreased to the NDT point, brittle fracture will occur from a dynamically
loaded small crack. As the temperature is increased above the NDT point, we reach a point called
the fracture transition elastic (FTE) point. At the FTE point, we have the highest temperature where
unstable crack propagation will be driven by elastic stress.

The shaded portion of the diagram of Figure 28.1 thus represents unstable fracture conditions.
To the right of the CAT (or DT) curve, the material is stable and will not propagate a crack. To the
left of the dashed vertical line, the material produces highly brittle flat fracture. The diagram of
Figure 28.1 also shows a superimposed yield stress curve, indicating a small downward trend with
an increase in temperature.

The CAT or DT curves have a distinct S-shape. The horizontal branches of the curves care
called the lower and upper shelves of fracture toughness. Brittle failure is manifested by a flat
fracture, indicating a condition of plane strain. Alternatively, a plastic shear-type failure is charac-
teristic of plane stress. With plane strain (brittle), the elastic portion of the structure envelopes a
smaller volume of plastic flow than with plane stress (ductile). That is, with plane strain the elastic
past constrains the plastic flow.

This can also be explained in terms of the degree of through-toughness lateral contraction
developed during testing of a DT sample. For brittle materials, this contraction is very small. But
with ductile materials, the plastic flow is less restricted and considerable notch blunting occurs.
Ductile fracture, therefore, is associated with high-energy absorption due to a relatively large plastic
zone continuously being formed ahead of the propagating crack.

28.3 CORRELATION OF FRACTURE PROPERTIES

Fracture control involves specification and procurement decisions regarding material toughness.
Since specifications, codes, and fabrication techniques frequently change, it is advantageous to
obtain the most reliable and current information.
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FIGURE 28.1 Transition characteristics for low-strength steel with high shelf fracture toughness. (Adapted
from Pellini, W.S., Evolution of engineering principles for fracture-safe design of steel structures, NRL Report
6957, Naval Research Laboratory, 1969.)
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Figure 28.1 shows transition characteristics for a low-strength steel derived from measured
values of DT energy. In a similar manner, a transition curve may be constructed from Charpy
V-notch (CVN) energy tests. Both these methods are popular in industry despite the finding that the
two approaches can produce different results along the energy and temperature axes [5]. The
primary intent in developing the DT tests is to obtain a sensitive fracture resistance criterion for
the elastic–plastic regions for a broad range of materials.

The use of these tests has led to the development of correlation techniques. In the case of a high-
strength steel casing used in oil field explorations, the correlation along the energy axis between the
DT and CVN data is

CVN ¼ 0:12DTþ 15 (28:1)

The discrepancy along the temperature axis for the casing material is approximately 608F with the
CVN results being less conservative.

Similarly, with conventional bridge and other steels, the shift in the DT energy curve is toward
the higher temperature. Barsom [6] suggests the expression

TS ¼ 215� 1:5Sy (28:2)

where
TS is expressed in 8F
the yield strength at room temperature is expressed in ksi (kilopounds per square inch)

This equation should be valid for yield strength values between 36 and 140 ksi.
There is evidence that CVN energy increases with tensile strength of steels for various

components such as plates, forgings, and welded parts [7]. The correlation between the plane strain
fracture toughness parameter K1C and the CVN values has been empirically established as

K1C

Sy

� �2

¼ 5
CVN

Sy

� �
� 0:05

� �
(28:3)

where
K1C is expressed in ksi (in.)1=2

Sy is the 2% yield strength in ksi
CVN is the Charpy V-notch energy in ft lb

28.4 PRACTICAL USE OF CRACK ARREST DIAGRAMS

We can reduce the analysis of fracture safety to examination of a single curve, relating the stress at
crack arrest and the temperature of the material. This relationship is known as the CAT curve (see
Figure 28.1). The curve represents a practical, conservative criterion upon which a design may be
based. In the literature, the CAT curve is generally shown as part of a more complex picture of
material behavior known as a generalized fracture analysis diagram [1].

A complete fracture analysis diagram has three basic variables: (1) nominal stress, (2) crack
size, and (3) temperature. By adopting a conservative view, only stress and temperature need to be
considered. We assume that our particular structure is flaw-free and we further stipulate that it is not
necessary to know the actual fracture property of the material, such as the plain strain fracture
toughness, K1C. This is a very convenient assumption for the entire process of fracture-safe design.

Figure 28.2 illustrates the principal features of the design procedure. The curve FABC represents a
portion of the CAT curve designated as CAT, and it is the most important element of the fracture
analysis diagram compatible with our conservative philosophy. This line divides the twomain regions
of the material’s behavior. The shaded area under the curve represents, so to speak, a ‘‘safe’’ region
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with respect to fracture initiation and propagation. Suppose that DTW will denote the temperature
increment above the NDT at which we expect our structure to be.We assume that the FABC curve has
been developed experimentally for the selected material and the temperature range containing the
NDT. The limiting stress corresponding to DTW is SCA. Point B denotes this in Figure 28.2.

We also assume that the working stress is SW. Hence, we have a positive margin of safety when
SCA> SW. When the actual working temperature is lower than (NDTþDTW), such as that corre-
sponding to, for example, B0, a fracture may or may not propagate at a working stress level of SCA.
The region above the curve FABC is always difficult to analyze without knowledge of the actual
crack size. It can only be stated in general that for a given temperature of NDTþDT, the crack
propagation stress should increase with the decrease in crack size. Figure 28.2 also suggests that any
increase in DTW at a constant stress level shifts our working point to B00, progressing further into the
‘‘safe’’ operational region FABCDE. From the point of view of fracture safety, however, the upper
region FGCBA should be considered as more ‘‘uncertain’’ for most applications.

The fracture arrest relationship, expressed in the form of the FABC curve, relates to the brittle
behavior of the material for various levels of the applied stress. The FA portion of this curve
represents the lower stress limit in fracture propagation criteria. Numerically, it corresponds to a
level of 5 to 8 ksi fracture extension stress in the plane strain region.

A combination of crack-tip blunting and low nominal stresses should prevent rapid crack
propagation above NDT, regardless of crack size. Experience with ship structures, involving weld
residual stresses, indicates that when the crack moves out of the welded region into a stress field of
about 5 to 8 ksi, there is insufficient elastic energy to propagate brittle fracture.

In 1953, Robertson [8] introduces the concept of a lower-bound stress, as seen in Figure 28.2.
This concept provides a practical and conservative approach to fracture-safe design particularly in
those areas of material control where the existing structures cannot be certified as fracture-resistant.
This area then includes off-the-shelf items without prior history of satisfactory fracture toughness as
well as new designs in structural steel, which exhibits K1C values of not more than about 25 ksi
(in.)1=2. This level of plane strain fracture toughness represents a practical lower limit of K1C for
what may be termed as ‘‘garden variety steel.’’ The corresponding limit for aluminum is taken here
as 15 ksi(in.)1=2.

When edge-notch criteria of linear elastic fracture mechanics are used, the lower-bound nominal
stress becomes a function of the material’s thickness and fracture toughness. This observation
enables the development of useful design charts. Figure 28.3 illustrates such a chart for steel and
aluminum. If a designer limits a working stress to the area below the appropriate curve, any existing
crack should not propagate catastrophically under usual conditions of loading and geometry.
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FIGURE 28.2 Crack arrest diagram (CAT).
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The lower-bound regions of toughness for steel and aluminum, which form the basis of design
limits of Figure 28.3, are consistent with fracture control studies of load-carrying members includ-
ing welds and heat-affected zones [9]. For other materials, the lower-bound fracture toughness
should be obtained from empirical sources.

As we progress along the CAT curve through points A, B, and C in Figure 28.2, the highest
temperature of fracture propagation for purely elastic stresses is reached at point C. In the literature
of fracture-safe design, this point is referred to as ‘‘fracture transition elastic.’’ The corresponding
stress level reaches the yield strength of the material. The generalized fracture analysis diagram
developed over the years indicates that point C coincides with NDTþ 608F, which is the more
frequently quoted temperature consistent with the last, purely elastic point on the CAT curve. This
correlation has been developed primarily for use with steels. If we restrict our use to temperatures
above, NDTþ 608F, the problems of crack size becomes unimportant, provided that the level of
stress does not exceed the yield strength of the selected steel. Under these conditions the fractures
can neither initiate nor propagate.

28.5 THICKNESS CRITERIA

The plane strain fracture toughness K1C is perhaps the most important parameter in fracture
mechanics. However, K1C determines only the degree of brittleness. The complete range of fracture
toughness between plane strain and plane stress conditions may be characterized by also considering
the DT parameter. The yield strength Sy is yet another important parameter, particularly, its
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FIGURE 28.3 Lower-bound design curves for steel and aluminum structures.
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magnitude relative to K1C. The ratio K1C=Sy and its relation to the component thickness B is a useful
design criterion [10].

The temperature, flaw size, and geometry are also important design parameters. But if we
consider only the fracture toughness K1C, yield strength Sy, and thickness B, we can develop
relatively simple key recommendations for fracture-safe design,

B � (K1C=Sy)
2 and B � 2:5(K1C=Sy)

2 (28:4)

Design thickness B, meeting or exceeding these recommendations, provides an assurance that
through-thickness flaws are unlikely to propagate unless the nominal stresses exceed the yield
strength Sy of the material.

The first equation of Equations 28.4 defines the yield criterion and the second corresponds to the
theoretical plane strain limit. In general, high K1C=Sy ratios require large section size and large flaws
for plane strain fracture initiation. Alternatively, low K1C=Sy ratios correspond to small section size
and small cracks for plane strain fracture.

Theoretically, K1C=Sy ratios can vary between 0.5 and 2. Values exceeding 2 are generally
unattainable irrespective of flaw size because ductility becomes too high to allow the state of
plane strain.

In thicker sections, the level of the mechanical constraint is indicated by the extent of through-
thickness contraction adjoining the fracture surface. In thinner sections, the imposed mechanical
constraint must be small. These considerations have been explored and reported extensively [4].

For practical design needs, Equations 28.4 provide a satisfactory guide for the development of
safe fracture control plans. The only difficulty encountered throughout the various phases of
application of fracture mechanics and fracture-safe design principles lies in the basic stress analysis
used to determine the nominal stresses. It is important to emphasize that a fracture critical
component is defined as a tension-loaded member, which in the presence of geometrical discon-
tinuities, may have significant stress gradients. The accuracy of the analysis of such gradients and
local stress concentrations should determine the final factors of safety based on the thickness criteria
given by Equation 28.4.

28.6 SIGNIFICANCE OF STRESS AND STRENGTH

Consider a structural component with a flaw or crack. If the components are loaded so that there
is stress in the interior of the component, and at the crack, then it is the component of the stress
normal to the crack, which tends to open and propagate the crack. Therefore, it is this ‘‘normal to the
crack’’ stress, which should be used in fracture control analyses and with design charts such as in
Figure 28.2.

According to the basic criteria involving the transition temperature, the designer can aim at
either fracture-tough or fracture-safe design. From the stress point of view, both approaches
constitute the major elements of the fracture control process. The object of fracture-tough design
would be to select a material that could prove to be insensitive to crack propagation and brittle
failure throughout the working range of temperatures, material thicknesses, and design stresses.

In fracture-safe design with a known CAT curve, as in Figure 28.2, the working stress SW
should be less than the limiting stress SCA at a selected temperature. For example, at temperature
NDTþDTW (nil ductility transition temperature plus temperature margins above NDT correspond-
ing to the working stress) corresponding to point B, the maximum stress that can be arrested is
approximately 37.5% of the yield strength Sy of the material, on the vertical axis in Figure 28.2.
When the operating temperature is less than NDT, the rate of 5000 to 8000 psi applies.

The problem with such a low shelf value is that a weight penalty may occur in developing
the low-stress system. Also, unless the stress is low in the design region, left of the dashed vertical
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line in Figure 28.2, the material is essentially brittle and plane strain failure can be initiated in the
presence of a very small flaw.

In many cases, structural members are designed to perform in an as-welded but not stress-
relieved condition. The residual stresses in this instance can be as high as the yield strength, and
they are oriented in the direction parallel to the weld. Such stresses result from the longitudinal
shrinkage during cooling of the weld area, which is restrained by the adjacent colder metal. In
practice, these peak stresses extend to about one to two weld widths and therefore they can contain
only relatively small cracks. We therefore have a highly localized residual stress region in the weld
or heat-affected zone, which may initiate fracture due to a small crack for a wide range of stresses
and when the service temperature falls below the NDT.

The brittle condition in the heat-affected zone is further aggravated by the formation of a coarse
grain structure, which is inherently more brittle than the finer grain size of the parent metal.
Additional aggravation is encountered if the rapid cooling of the weld results in the formation of
martensite, a hard, brittle microconstituent. However, at temperatures above the NDT, such a
fracture will not occur because of the requirement for extensive plastic deformation. This theory
has been verified experimentally [11].

When the transition curve corresponds to a low-strength steel, it normally exhibits a high shelf
fracture toughness. On the other hand, a flat S curve, indicating no significant transition temperature,
is characteristic of high-strength steels. This is an important practical consideration, because
increasing service temperature for a high-strength material may not necessarily assure that the
new system will become much more fracture-safe.

28.7 CONCLUDING REMARKS

In this chapter, we have only presented some basics of fracture control. For composites, nonhomo-
geneous materials and geometrically complex components, the designer may want to consult the
ever growing literature on fracture mechanics and also employ the increasingly sophisticated
numerical procedures which are becoming available.

We list here a few basic concepts for reference:

1. Yield strength alone is not an indicator of fracture resistance.
2. Ductile materials can fail in a brittle manner when they are below the NDT.
3. Fracture mechanics and fracture-safe design relate only to failure in tension.
4. When small flaws are present, the flaw and not the section size control the initiation and

progress of the fracture.
5. For large flaws, the section size is important. It shifts the CAT-DT curve toward higher

temperature.
6. Cracks will not propagate under normal conditions when the stress is less than lower bound

design values as in Figure 28.3.
7. A crack will be arrested when the crack enters either a lower-stressed region, a region of

higher fracture toughness, or both.
8. A safe metal thickness can be determined when both the plane strain fracture toughness

parameter K1C and the yield strength Sy are known.
9. Increasing the section thickness may not provide additional safety margin unless the

K1C=Sy ratio indicates an improvement.
10. Design modification lowering the NDT parameter is not likely to be cost-effective.

Whatever method is adopted for the development of a fracture control plan, it is safe to assume that
real engineering materials must contain some manufacturing imperfections. We have, therefore,
the task of designing around a potential problem area using both linear elastic fracture mechanics
and experimental data on crack arrest characteristics.
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SYMBOLS

A Cross-section area
B Material thickness
CAT Crack arrest temperature
CVN Charpy V-notch energy
DT Dynamic tear
FTE Fracture transition elastic=plastic
K Stress concentration factor
K1C Plane stress fracture toughness
NDT Nil ductility transition temperature
P Nominal axial force
SCA Limiting stress
SW Working stress
Sy Yield strength
Ts Temperature shift
DT Temperature margin above NDT
DTW Temperature margin above NDT, corresponding to working stress
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Part VI

Piping and Pressure Vessels

Pipes and pressure vessels have been used extensively for hundreds of years to transport and store
liquids and gasses. When viewed as structural components, pipes and vessels present unique and
special problems for designers and engineers. Undoubtedly, the most important consideration is
safety: preventing leaks and explosions.

In Part IV, we considered plates and panels and their structural characteristics. Plate theory is
considerably more complex than beam theory. Plates, however, with plane surfaces are considerably
simpler than shells with their curved surfaces. Nevertheless, shells are ideally suited for modeling
pipes and pressure vessels.

The theory and analysis of shells is an extensive field of study. Shells with simple geometry
have been investigated for many years and the literature on shell theory is extensive. No single book
part or even an entire book can comprehensively document the many advances. Here, we will
simply summarize the results and procedures useful in pipe and vessel design.

The simplest loading of pipes and pressure vessels is via internal pressure. External pressure and
other loadings may also be of interest to structural analysts and designers. Accordingly, we devote a
rather lengthy chapter to externally pressurized cylindrical structures and another short chapter to
externally pressurized spherical structures.

We begin this part with a study of internally pressured structures. Then, following a chapter on
externally loaded members, we look at axial and bending response and some special problems in
cylinder structures.
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29 Vessels with Internal Pressure

29.1 INTRODUCTION

The more common forms of pressure vessels involve spheres, cylinders, and ellipsoids, although
conical and toroidal configurations are also found. When such components have small thick-
ness compared with the other dimensions and offer a limited resistance to bending, the stress can be
calculated with the aid of the membrane theory. Such stresses, taken as average tension or compres-
sion over the thickness of the vessel wall, act in the direction tangential to the surface. Since themiddle
surface of the wall extends in two dimensions, the analysis can become complicated where more than
one expression for the curvature is required to describe the displacement of a particular point. In a
more rigorous sense, it would be necessary to define a normal force, two transverse shearing forces,
two bending moments, and a torque in order to describe the entire state of stress. Fortunately,
membrane theory allows us to neglect the bending, shearing, and twisting effects. In a number of
elementary but practical cases, the simple equations of equilibrium of forces are sufficient for deriving
the necessary design formulas.

29.2 THIN CYLINDERS

Consider a thin-walled circular cylinder as in Figure 29.1. Let the cylinder have end caps as shown
and let there be an internal pressure P. This pressure induces both, longitudinal and circumferential
stresses.

Analogous to a circular ring under internal pressure, the resultant membrane force Ft, shown in
Figure 29.2, may be obtained by adding force components along the X-axis: That is

2Ft ¼
ðp=2

0

PRi sin u du or Ft ¼ PRi (29:1)

where Ri is the inner radius of the cylinder.
In the development of Equation 29.1, the longitudinal length cancels and thus Ft may be

assumed to act on a unit length. By dividing by the cylinder thickness T in Equation 29.1, we
obtain the familiar pressure vessel formula:

St ¼ PRi

T
(29:2)

In spite of its simplicity, Equation 29.2 has wide application with many structures of practical
importance such as boiler drums, accumulators, piping, casing, chemical processing vessels, and
nuclear pressure vessels.

Equation 29.2 is often referred to as the ‘‘hoop stress formula.’’ It provides the maximum hoop
(tangential) stress in a vessel wall assuming that the end closures provide no support as in long
cylinders. It is also evident that the inner radius Ri may be replaced by the mean radius R without
any significant error if the cylinder wall is sufficiently thin.
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Since the ratio R=T appears consistently in the analysis, it is convenient to denote it by the
parameter m. Equation 29.2 then becomes

St ¼ mP (m ¼ R=T) (29:3)

By considering equilibrium in the longitudinal direction we see that the longitudinal membrane
force F‘ (see Figure 29.1) is simply

F‘ ¼ PpR2 (29:4)

The corresponding axial stress S‘ is then:

S‘ ¼ mP=2 (29:5)

In the analysis of a general shell of revolution, the term ‘‘meridional’’ is sometimes used instead of
‘‘axial’’ or ‘‘longitudinal.’’ It is now evident from Equations 29.3 and 29.5 that the efficiency of the
circumferential joints need only be half that of the longitudinal joints. It is also clear from the
equilibrium of forces in a spherical shell that the relevant maximum stress in the shell is represented
by Equation 29.5. This simple deduction is of great importance in the design of pressure vessels
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FIGURE 29.1 A thin-walled cylinder with sealed ends and internal pressure.
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FIGURE 29.2 Ellipsoidal geometry.
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because the thickness requirement for a spherical vessel, for the same material strength and
parameter m, is only one half of that necessary for a cylinder. Hence, the sphere is the most efficient
configuration for a pressure vessel.

29.3 RADIAL GROWTH (DILATION)

An important criterion in pipe and vessel analysis is ‘‘radial growth,’’ or dilation, under internal
pressure. For a long cylindrical vessel this dimensional change is given by

d ¼ (2� n)PR2

2ET
(29:6)

where, as before,
n is Poisson’s ratio
E is the modulus of elasticity

The corresponding dilation of a spherical vessel is

d ¼ (1� n)PR2

2ETs
(29:7)

where Ts is the thickness of the spherical shell.
When a vessel is made out of a cylindrical portion and hemispherical heads, we can equate

Equations 29.6 and 29.7 to find a relation between the thicknesses so that there is no displacement
difference at the seam. The result is

Ts ¼ T(1� n)

2� n
(29:8)

When n¼ 0.3, Equation 29.8 gives Ts¼ 0.41T. For the complete range of n between 0.0 and 0.5, the
thickness ratio Ts=T is between 0.5 and 0.33.

The analysis of a general shell of revolution leads to other formulas, such as those required in
the calculation of the conical and ellipsoidal vessels. For the cone configurations subtending angle
2a, the hoop and meridional stresses are

St ¼ mP

cosa
(29:9)

and

S‘ ¼ mP

2 cosa
(29:10)

As a approaches zero, the hoop stress for a conical shell approaches that for a cylinder. However,
when the cone begins to flatten and a approaches 908, the stress becomes unreasonably large,
indicating that a flat membrane cannot support loads perpendicular to its plane. Similar reasoning
can be applied to Equation 29.10.

Analogous to a cylindrical vessel, the radial growth delta of a conical vessel is

d ¼ (2� n)PR2

2ET cosa
(29:11)
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29.4 ELLIPSOIDAL SHELLS

Ellipsoidal shells are frequently used as closures for pressure vessels and storage tanks. Stress
analyses of ellipsoid shells are complicated because the curvature varies from point to point. Figure
29.2 illustrates the geometry.

In Figure 29.2, the portion ABC is frequently used as a vessel head with its axis of revolution
coinciding with the cylinder axis. The meridional stress Sm is then the same as the longitudinal
stress, S‘, in the adjoining cylinder. That is (see Equation 29.5)

S‘ ¼ Pa

2T
¼ PR

2T
(29:12)

The hoop stress, acting in a plane perpendicular to the plane of the figure, is

St ¼ Pa(2b2 � a2)

2Tb2
(29:13)

It is of some interest to note that the hoop stress can change its sign and become compressive with
a=b >

ffiffiffi
2

p
, despite the fact that the vessel is loaded internally. For this condition also, the maximum

shear stress t found at the equator (plane AC) becomes

t ¼ Pa(a2 � b2)

4Tb2
(29:14)

The stress of Equation 29.14 is important for vessels made of ductile materials. Experiments
indicate that a buckle case envelops in the knuckle region under internal pressure due to the change
from tensile to compressive hoop stress for certain values of a=b [1].

The equatorial dilation of an ellipsoidal head is not always positive and may be expressed by the
formula

d ¼ PR2

ET
1� a2

2b2
� n

2

� �
(29:15)

When n¼ 0.3 and a=b> 1.3, the equatorial dilation can become negative, and it can cause an
increase in the discontinuity stresses when a purely ellipsoidal head is used with a cylindrical shell
of the same thickness.

29.5 TOROIDAL VESSELS

In many cases, a torus or a doughnut-shaped pressure vessel is used in construction. This could be a
steam generator, a bent tube, or a containment vessel in a nuclear reactor system. The stress analysis
formulas can be developed from the equilibrium of forces with reference to the sketch shown in
Figure 29.3. For instance, the vertical load on a shaded portion of the torus is

V ¼ p(x2 � z2)P (29:16)

Also, from the component of hoop stress, this load is

V ¼ 2pxT cos u St (29:17)
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Equating Equations 29.16 and 29.17 yields

St ¼ P(x2 � z2)

2xT cos u
(29:18)

where, from Figure 29.3, x is

x ¼ z þ R cos u (29:19)

Then, the general design formula for hoop stress is

St ¼ PR

2T
2z þ R cos u

z þ R cos u

� �
(29:20)

When u is zero, Equation 29.20 gives the minimum possible value of St as

St ¼ PR

2T
2z þ R

z þ R

� �
(29:21)

For the case of the torus centerline, that is, u¼p=2, we obtain the standard hoop formula of
Equation 29.3. However, when the u line rotates in such a manner that u¼p and x¼ z�R, the hoop
stress in the torus becomes

St ¼ PR

2T
2z � R

z � R

� �
(29:22)

The meridional stress is given by Equation 29.5 as

S‘ ¼ mP=2 m ¼ R=T (29:23)

The meridional stress value is independent of location on the torus.
The same formulas can also be obtained from the Laplace equation for a thin axisymmetric

shell [2] given by

S‘
R1

þ St
R2

¼ P

T
(29:24)

where R1 and R2 are the relevant radii of curvature.

P R

T

x

q
z

Max. hoop stress Min. hoop stress

S t

FIGURE 29.3 Circular torus geometry and notation.
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Figure 29.4 provides a variation of the maximum hoop stress with the ratio of the bend radius z
to the cross-section radius R. The vertical axis is a dimensionless parameter obtained by dividing the
stress in torus by the hoop stress in the corresponding straight pipe. Theoretically, hoop stress
becomes infinitely large for very small bend radii, that is, when the doughnut hole is essentially
closed. Experience indicates that caution must be exercised when applying torus theory to the
process of tube bending to a small radius. Strain hardening of the material and wall thickening on
the inside of the sharp bend may cause the pipe to fail on the centerline of the bend instead of the
place where the stress is essentially the same as that in a straight cylinder. In such a case, Equation
29.22 would not be recommended.

The majority of pipe and vessel configurations currently used can be classified as relatively thin,
and the dividing line between the thin and thick vessels may be set at an m value of about 10.
The lower practical limit of m is about 2.5 for cylinders and 3.5 for spheres. With these types of m
ranges, it is customary to use the membrane stress criteria for thin shells and Lamé theory for thick
shells. Use of these theories, however, rests entirely on the application of the elastic principles,
neglecting the criteria of materials failure.

29.6 THICK CYLINDER THEORY

Although it is beyond our scope to discuss details of the mathematical theory of elasticity, it may be
helpful to review some concepts of strain in cylindrical coordinates and in spherical coordinates (see
Section 6.9). This will enable us to develop expressions for stresses and displacements in thick-
walled vessels.

Figure 29.5 shows an element undergoing displacement and deformation in a polar, or cylin-
drical, coordinate system. From the figure and also from Equations 6.133, 6.134, and 6.136, we see
that the radial, tangential, and shear strains are

«r ¼ @u

@r
(29:25)

«t ¼ (1=r)
@n

@u
þ u=r (29:26)
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FIGURE 29.4 Variation of maximum hoop stress with torus geometry.
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«rt ¼ (1=2) (1=r)
@u

@u
þ @n

@r
� (1=r)n

� �
(29:27)

For axisymmetric problems, the tangential displacement n and the shear strain «rt are zero so that the
above strains reduce to

«r ¼ du

dr
, «t ¼ u

r
, and «rt ¼ 0 (29:28)

Thick cylinder theory is applicable in gun barrels, hydraulic ram cylinders, heavy piping, and
similar configurations. Figure 29.6 provides a view of stresses on an element. In a general case,
the wall can be subjected to an internal pressure Pi and external pressure Po, corresponding to the
radii, Ri and Ro, respectively. Furthermore, because of the symmetry of loading, it is sufficient
to analyze one element of the cylinder subtended by a small angle du and a small radial thickness
dr. Summing up all the forces in the direction of the bisector of the angle du and making
sin du ¼ du gives

∂v

r∂q
∂u

∂q

∂v
∂r

dq

dq

dr

∂u
∂ru +v + drv

u

FIGURE 29.5 Displacement and deformation of a two-dimensional element in cylindrical polar coordinates.
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St

St

Sr dr

PiR i

r

Sr  + dSr
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FIGURE 29.6 Stresses on an element of a thick cylinder.
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Srr duþ St dr du� Sr þ dSr
dr

dr

� �
(r þ dr) du ¼ 0 (29:29)

Neglecting small quantities in Equation 29.29 leads to the equation

St � Sr � r
dSr
dr

¼ 0 (29:30)

Using Hooke’s law (see Section 7.7, Equations 7.55 through 7.60), we can express Sr and St in terms
of «r and «t as

Sr ¼ E
n«t þ (1� n)«r
(1þ n)(1� 2n)

(29:31)

and

St ¼ E
n«r þ (1� n)«t
(1þ n)(1� 2n)

(29:32)

Using Equations 29.28, we can express the stresses in terms of the displacement u as

Sr ¼ E
n u

r þ (1� n) du
dr

(1þ n)(1� 2n)
(29:33)

and

St ¼ E
n du

dr þ (1� n) ur
(1þ n)(1� 2n)

(29:34)

Finally, by substituting from Equations 29.33 and 29.34 into Equation 29.30 and simplifying we
obtain

d2u

dr2
þ 1

r

du

dr
� u

r2
¼ 0 (29:35)

The general solution of this equation is

u ¼ C1r þ C2=r (29:36)

where C1 and C2 are integration constants to be evaluated by the boundary condition. Thus, du=dr is

du

dr
¼ C1 � C2=r

2 (29:37)

The radial and tangential stresses are then (see Equations 29.33 and 29.34)

Sr ¼ E
n(C1 þ C2=r2)þ (1� n)(C1 � C2=r2)

(1þ n)(1� 2n)
(29:38)
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St ¼ E
n(C1 � C2=r2)þ (1� n)(C1 þ C2=r2)

(1þ n)(1� 2n)
(29:39)

Equations 29.38 and 29.39 form a pair of simultaneous linear equations for C1 and C2, which
may be obtained by enforcing the conditions that Sr is Pi when r¼Ri and Po when r¼Ro. Then,
by substituting these values for C1 and C2 back into Equations 29.38 and 29.39, we obtain the
stresses as

Sr ¼ R2
i Pi � R2

oPo

R2
o � R2

i

� R2
i R

2
o(Pi � Po)

r2 R2
o � R2

i

� � (29:40)

and

St ¼ R2
i Pi � R2

oPo

R2
o � R2

i

þ R2
i R

2
o(Pi � Po)

r2 R2
o � R2

i

� � (29:41)

Equations 29.40 and 29.41 are known as Lamé formulas, named after a French engineer who
obtained this solution in 1833. This theory has withstood the test of time, advancing technology, and
modern trends of numerical analysis in a remarkable manner. The maximum shearing stress at any
point of a thick cylinder follows from Equations 29.40 and 29.41 and is equal to

t ¼ (Pi � Po)R2
oR

2
i

R2
o � R2

i

� �
r2

(29:42)

Finally, from Equation 29.36, the radial displacement u is

u ¼ 1� n

E

R2
i Pi � R2

oPo

R2
o � R2

i

r þ 1þ n

E

R2
i R

2
o(Pi � Po)

R2
o � R2

i

� �
r

(29:43)

When the cylinder is subjected only to internal pressure, we have

Sr ¼ R2
i Pi

R2
o � R2

i

� � r2 � R2
o

r2

� �
(29:44)

St ¼ R2
i Pi

R2
o � R2

i

� � r2 � R2
o

r2

� �
(29:45)

t ¼ PiR2
oR

2
i

R2
o � R2

i

� �
r2

(29:46)

and

u ¼ 1� n

E

R2
i Pir

R2
o � R2

i

þ 1þ n

E

� �
R2
i R

2
oPi

R2
o � R2

i

� �
r

(29:47)

It follows from the Lamé theory that the sum of the two stresses given by Equations 29.40 and 29.41
remains constant, suggesting that the deformation of all the elements in the axial direction is the
same and the cylinder cross sections remain plane after the deformation. Equations 29.44 and 29.45
also indicate that both stresses reach maximum values at r¼Ri and that Sr is always compressive
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and smaller than St. The minimum value of the tangential stress is found at r¼Ro, which is smaller
than that at the inner surface.

So far, the equations considered have been applicable to an infinitely long cylinder, in which no
axial stress was present. However, when the cylinder contains rigid closures and no change in length
is possible, the axial stress under internal pressure is

S‘ ¼ 2nPiR2
i

R2
o � R2

i

(29:48)

When the vessel contains closures but is free to change its length under strain, the axial stress is

S‘ ¼ PiR2
i

R2
o � R2

i

(29:49)

The corresponding axial strain is

«‘ ¼ (1� 2n)PiR2
i

E R2
o � R2

i

� � (29:50)

Finally, when the pressure is maintained by a piston-type closure at each end of the cylinder and
there is no connection between the cylinder and the piston, the axial stress is zero and the strain is

«‘ ¼ � 2nPiR2
i

E R2
o � R2

i

� � (29:51)

29.7 THICK-WALLED SPHERE

We can develop governing equations for a thick-walled spherical container by considering an
element of the sphere as in Figure 29.7. Due to the symmetry, there are no shearing stresses on
the faces of the element. Adding forces on a radial plane through the center of the element produces
the expression [3]

Sr þ dSr
dr

dr

� �
(r þ dr)2(du)2 � Srr

2(du)2 � 4Strdr du sin
du

2

� �
¼ 0 (29:52)

St

St

S t

Sr

S t

R o

R i

dr

r

Sr +
dSr dr
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dq

dq

FIGURE 29.7 Equilibrium of an element of a spherical shell.
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Simplifying this expression and neglecting higher-order terms yields

dSr
dr

þ 2
r
(Sr � St) ¼ 0 (29:53)

Since the transverse stress St is the same in all directions, as indicated in Figure 29.7, the radial and
tangential strains can be expressed as

«r ¼ Sr
E
� 2nSt

D
(29:54)

and

«t ¼ (1� n)St
E

� nSr
E

(29:55)

Due to the symmetry, the radial and transverse strains may be expressed in terms of the radial
displacement u as

«r ¼ du=dr and «t ¼ u=r (29:56)

By using Hooke’s law and substituting these expressions into the equilibrium expression of
Equation 29.53 and simplifying, we obtain

d2u

dr2
þ 2du

rdr
� 2u

r2
¼ 0 (29:57)

The general solution of Equation 29.57 may be written in the form

u ¼ (1� 2n)Ar
E

þ (1þ n)B

Er2
(29:58)

where A and B are integration constants. If we solve Equations 29.54 and 29.55 for the stresses and
use the strain–displacement relations of Equations 29.56 we obtain

Sr ¼ E
2n u

r þ (1� n) du
dr

1� n � 2n2
(29:59)

and

St ¼ E
u
r þ n du

dr

1� n � 2n2
(29:60)

By substituting the displacement u given by Equation 29.58 into Equations 29.59 and 29.60 and by
imposing the boundary pressures Pi and Po on the interior and exterior of the vessel, we can solve
for A and B. The results are

A ¼ PiR3
i � PoR3

o

R3
o � R3

i

(29:61)

and

B ¼ R3
i R

3
o(Pi � Po)

2 R3
o � R3

i

� � (29:62)
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Finally, by substituting back into Equation 29.59 and 29.60, the radial and transverse stresses
take the form

Sr ¼ PiR3
i � PoR3

P

R3
o � R3

i

� R3
i R

3
o(Pi � Po)

r3 R3
o � R3

i

� � (29:63)

and

St ¼ PiR3
i � PoR3

o

R3
o � R3

i

þ R3
i R

3
o(Pi � Po)

2r3 R3
o � R3

i

� � (29:64)

The corresponding expression for the radial displacement is

u ¼ (1� 2n)r PiR3
i � PoR3

o

� �

E R3
o � R3

i

� � þ (1þ n)R3
i R

3
o(Pi � Po)

2Er2 R3
o � R3

i

� � (29:65)

For the case of internal pressure alone the stresses and displacement of Equations 29.63, 29.64, and
29.65, become

Sr ¼ PiR3
i

R3
o � R3

i

1� R3
o

r3

� �
(29:66)

St ¼ PiR3
i

R3
o � R3

i

1þ R3
o

2r3

� �
(29:67)

and

u ¼ PiR3
i

E R3
o � R3

i

� � (1� 2n)r þ (1þ n)R3
o

2r2

� �
(29:68)

29.8 DESIGN CHARTS FOR THICK CYLINDERS

A common design problem is to estimate stresses and displacements at the surfaces of thick
cylinders under internal pressure. The maximum tangential stress St at the inner surface is

St ¼ K1Pi (29:69)

where as before
Pi is the internal pressure
K1 is a dimensionless design factor which depends upon the thickness of the cylinder or

specifically the radius=thickness ratio

Figure 29.8 provides a representation of K1 for various ratios. Observe that K1 is always larger than
1, indicating that the tangential stress exceeds the applied internal pressure.

Correspondingly, the displacements ui and uo at the inner and outer surfaces, respectively are

ui ¼ K2Pi(Ro � Ri)=E and uo ¼ K3Pi(Ro � Ri)=E (29:70)

where the factors K2 and K3 are also given by Figure 29.8.
The factors given by Figure 29.8 have been calculated for metals, such as steel, with a Poisson’s

ratio n of 0.3. It happens, however, that n has a relatively small effect on the magnitude of the
displacement, therefore, the values of Figure 29.8 should be reasonable for nonmetallic elastic
materials as well.
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29.9 ULTIMATE STRENGTH CRITERIA [4]

So far, various formulas have been discussed that allow reasonably accurate design estimates of the
elastic stresses and deflections in thin and thick pressure vessels or piping. The complete problem,
however, may also require the prediction of the ultimate pressures in cylinders and spheres at which
these components can fail by bursting.

The general criteria of shell failure under internal pressure have been developed from the
classical theory of plasticity, which has been shown to be suitable to explain burst characteristics
of thick-walled vessels made of ductile materials. The essential difference between the elastic and
plastic response of a thick shell can be illustrated as follows. In a purely elastic response of a thick
shell, the maximum stress under internal pressure develops at the bore. On further load increase at
this point, the material reaches the yield but, contrary to what one might expect, failure of ductile
fibers does not start at the bore. The reason for this is that the strain at the inner zone of the wall is
held at a constant level by the restraint of the outer fibers until the region of plastic flow moves
radially outward. The motion of the elastic–plastic interface causes the tangential stresses in the
outer fibers to increase until a complete state of plastic strain is established throughout the wall and
the fibers along the outer surface of the shell begin to fail. Researchers in the field of plasticity have
defined the bursting pressure as the internal pressure required to move the elastic–plastic interface
into the outer radius of the vessel.

The state of plastic stress defined above as a criterion of bursting pressure has several important
implications. First of all, a vessel made of a ductile material has a considerable amount of strength
beyond the onset of yielding at the inner fiber and should retain its usefulness up to the very point of
fracture. This reserve of strength, however, must be dependent on the entire history of stress and
temperature at a particular critical location. It is therefore necessary to assign a correct level of
design stress in predicting the relevant bursting pressures. The formulas for this purpose contain
either yield or ultimate strength terms of the material involved. In the case of the majority of vessel
applications, work-hardening materials are used, which require knowledge of the stress–strain
curves. This condition introduces additional functional relationships in the development of
pressure–deformation equations for cylinders and spheres. It has been customary to employ a Ludwik
type of a stress–strain curve in which the stress is represented by an exponential function of strain.
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FIGURE 29.8 Stress and displacement factors for thick cylinders under internal pressure.
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The work-hardening capacity of the material is said to increase when the exponent of the
stress–strain curve increases. The bursting pressure, in turn, decreases with the increase in work-
hardening.

The technical literature contains a multitude of design formulas for the calculation of bursting
strength of thick- and thin-walled vessels, derived from the assumed theories of failure and contain-
ing various limitations. One development in this area comes from England [5]. This approach is
based on the pressure–deformation response of a vessel and on an idealized stress–strain curve of
the Ludwik type. The formulas resulting from this work are intended for work-hardening materials,
provided that the strain-hardening exponent for the particular material can be established. In the
case of commonly employed low- and intermediate-strength low-alloy and carbon steels, a simple
relation can be obtained between the strain-hardening exponents and the materials strength ratio b.
This ratio is calculated by dividing the yield strength of the material by its ultimate strength. It is
useful to recall here that the definition of the yield point on a particular stress–strain plot can lead to
some difficulties. To circumvent this problem, it has been a custom in industry to accept a 0.20%
offset yield strength for most engineering calculations. This offset strength value is usually higher
than the elastic limit of the material by about 10%, but the exact spread between the two values will
depend on the type of material involved.

29.10 BURST PRESSURE OF CYLINDERS AND SPHERES

As before, let b be the material strength ratio: Sy=Su where Sy is the yield stress and Su is the ultimate
strength. Also let m be the radius=thickness ratio Ri=T. Then we can estimate burst pressure PC and
PS for a cylinder and a sphere by using Svennson’s equations [5] and a geometry factor X as

PC ¼ SycB1 (cylinder) (29:71)

and

PS ¼ SycB2 (sphere) (29:72)

where B1 and B2 are burst factors that depend upon the strength ratio b as in Figure 29.9, and 29.10
provides the geometry factor.

Equations 29.71 and 29.72 are convenient in design due to the usual availability of material
properties necessary for calculating the dimensionless ratio b. The formula selection in this chapter
is essentially based on the assumption that the burst pressure=strength ratio relation is more likely
to be nonlinear over the major part of the b range. As reported by various investigators, both
Svensson’s and Faupel’s formulas have been found to be useful in correlating experimental data.

When the cylindrical and spherical vessels can be classed as relatively thin, Svensson’s theory
leads to the working equations

PC ¼ Sy
m
B3 (cylinder) (29:73)

and

PS ¼ Sy
m
B4 (sphere) (29:74)

where Figure 29.11 provides values for the burst factors B3 and B4 in terms of the strength ratio b.
The formulas given by Equations 29.73 and 29.74 are intended for all values of m greater than 10.
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29.11 SHRINK-FIT DESIGN

The fundamental objective of a shrink-fit construction is to introduce residual or initial stresses into
the material in order to control the critical features of the stress field. This process can, for instance,
increase the elastic resistance of a multiwall pressure vessel, strengthen the extrusion die, or enhance
the fatigue life of a wheel mounted on the shaft. Such a shaft can be either hollow or solid. Also a
shrunk-on shell, applied to the liner of a pressure vessel, should help to retard crack propagation.
The shrink-fit design then can mitigate the peak stresses and enhance utilization of the materials.

In this section, we consider a two-shell shrink-fit construction as illustrated in Figure 29.12.
In this configuration, the inner cylinder with radii Rs and Ri may represent a pressure vessel or a
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hollow shaft. The outer cylinder bounded by Ri and Ro may act as a pressure vessel liner or a
component in a double-wall cylinder construction. In either case, the system is characterized by the
amount of radial interference. When the inner radius of the outer cylinder is made smaller than the
outer radius of the inner part, the system can be assembled either by heating the outer cylinder or
cooling the inner component. This process results in a contact pressure P often described as the
interference or shrink-fit pressure. The amount of radial interference (or lack of it) d at the common
boundary defined by Ri is equal to the sum of the decrease of the outer radius of the inner part and
the increase of the inner radius of the outer cylinder.

Although this is somewhat complex and detailed, the two cylinder surfaces simply seek a
common boundary depending upon their individual radii and stiffnesses. The resulting design
formula is [6]

P ¼ Ed

2R3
i

R2
i � R2

s

� �
R2
o � R2

i

� �

R2
o � R2

s

� � (29:75)
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The previous expression applies to same materials. When the inner radius Rs is reduced to zero, we
obtain the case of a solid shaft held by a hub. The relevant formula is

P ¼ Ed R2
o � R2

i

� �

2RiR2
o

(29:76)

When the two shrink-fitted cylinders have different mechanical properties such as Eo and no for the
outer cylinder and Ei and ni for the inner member, the interference pressure can be calculated as

P ¼ d

Ri

Eo

R2
i
þ R2

o

R2
o � R2

i

þ no

	 

þ Ri

Ei

Rs þ R2
i

R2
i
� R2

s
� ni

	 
 (29:77)

When Rs tends to zero, we have the case of a solid shaft defined by a simpler formula:

P ¼ d

Ri
1
Eo

R2
o þ R2

i

R2
o � R2

i

þ no

	 

þ 1 � ni

Ei

h i (29:78)

SYMBOLS

A Constant of integration
a Major half-axis
B Constant of integration
B1 through B4 Burst factors
b Minor half-axis
C1, C2 Integration constants
E Modulus of elasticity
Eo Modulus of elasticity of sleeve
Ei Modulus of elasticity of shaft
Fl Longitudinal force
Ft Tangential force
K1, K2, K3 Thick-cylinder factors
m¼R=T Radius-to-thickness ratio
P General symbol for pressure
Pc Burst pressure of cylinders
Pi Internal pressure
Po External pressure
R Mean radius
Ri Inner radius
Ro Outer radius
Rs Inner radius of shaft
R1, R2 Radii of curvature
r Arbitrary radius
Sl Longitudinal or axial stress
Sr Radial stress
St Hoop or tangential stress
Su Ultimate strength
Sy Yield strength
T Thickness of cylinder wall
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Ts Thickness of spherical wall
u Radial displacement
ui Radial displacement of inner surface
uo Radial displacement of outer surface
V Vertical load
v Tangential displacement
x Arbitrary distance
X,Y,Z Rectangular (Cartesian) axis system
x, y, z Coordinates relative to X,Y, Z axes
a Cone half-angle
b¼ Sy=Su Strength ratio
d Dilation, also radial interference
«1 Longitudinal strain
«r Radial strain
«t Tangential strain
z Major radius of torus
u Arbitrary angle
lrt Shear strain
n Poisson’s ratio
ni Poisson’s ratio of shaft
no Poisson’s ratio of sleeve
t Shear stress, psi
c Geometry factor
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30 Externally Pressured
Cylindrical Vessels
and Structures

30.1 INTRODUCTION

Vessels subjected to external pressure occur in many applications (for example, naval and
marine vessels). Nevertheless, many texts and treatises devote relatively limited attention to this
important topic.

Unfortunately, design errors can occur when stress criteria intended for internally pressured
vessels are extended for use with externally pressured containers and structures. Such errors are due
to the fact that the externally pressurized vessels can fail by elastic instability long before the
relevant compressive stresses can reach a critical magnitude. In addition, the effect of shape
imperfections on the externally loaded vessels results in a number of analytical and computational
difficulties. Often the problem is accentuated by the presence of manufacturing imperfections and
the variations in material properties. These constraints make it mandatory to pursue the development
of idealized models and the approximate design formulas based on the empirical data.

We devote this chapter to simplified design solutions and practical considerations of cylindrical
vessel sizing criteria. We consider spherical vessels in Chapter 31.

30.2 THINNESS FACTOR

Intuitively, we expect a different response between a short, thick-walled vessel and a long, thin-
walled vessel when both are subjected to external pressure. Attempts to quantify shell response to
external pressure dates back to over 100 years. Montague [1] provides a review of the question of
relating vessel geometry to failure under external pressure. The ‘‘thinness ratio’’ [2] provides a key
measure determining vessel response.

The thinness ratio or ‘‘thinness factor’’ is defined as

l ¼ 1:2(m)1=4=(kf)1=2 (30:1)

where m, k, and f are dimensionless parameters defined as

m ¼ R=T , k ¼ T=L, f ¼ E=Sy (30:2)

where
R is the mean radius of the vessel
T is the wall thickness
L is the vessel length
E is the elastic modulus
Sy is the yield strength of the material

The collapse mechanism under external pressure appears to fall into two distinct patterns. In one
type of response, we can observe circumferential lobes and localized buckles as soon as the material
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begins to yield. In other cases, the mechanical response may be characterized by the development of
an hourglass shape, sometimes described as a waisted configuration.

30.3 STRESS RESPONSE

The thinness parameter l may also be used as a boundary parameter between the lobing (local
buckling) and nonlobing (global buckling). A typical boundary value of l is 0.35.

Low values of l occur when the radius=thickness ratio m is small and kf (product of
thickness=length and elastic modulus=strength) is large. The value of l, at 0.35, is characteristic
of a short, thick cylinder made of low-strength material. Hence for l values smaller than 0.35, single
hoop stress should govern the design, and it is not necessary to calculate collapse pressures by
the stability formulas. The compressive stress reaches the yield point midway between discontinu-
ities such as vessel heads or stiffening rings. Local yielding is also possible in the vicinity of the
stiffness and similar transitions. But, high longitudinal discontinuity effects in these areas are not
expected to precipitate overall collapse.

In 1920, von Sanden and Günther [3] developed a simple design formula, based upon the
concept of midbay collapse, as

Py ¼ 0:9Sy=m (30:3)

where
Py is the external pressure of yield
Sy is the yield strength of the material
m is the radius=thickness ratio (R=T)

The formula indicates that the collapse pressure corresponding to the yield strength is only about
10% different than that obtained from elementary membrane analyses.

Equation 30.3 is useful in preliminary design for ring-stiffened cylindrical vessels having
m values 10 or higher. The parameter m is based upon the mean cylinder radius but the pressure
is applied at the outer surface. In most practical cases, this difference is likely to be negligible.

30.4 STABILITY RESPONSE

When the response of a cylindrical vessel under external pressure is purely in a stability mode,
preferential yielding at some region of the wall away from stiffeners is initiated, which in turn leads
to unstable geometry and sudden formation of a lobe. Such a pattern of deformation is nonaxisym-
metric and the parameter l corresponding to this condition should exceed 2.5. It may be said then
that above the limit l¼ 2.5, elastic stability should govern the design. In this category of calcula-
tions, the classic long cylinder formula is often used. For a Poisson’s ratio of 0.3, the long cylinder
formula becomes

PC ¼ 0:275E=m3 (30:4)

where
PC is the critical buckling pressure
E is the elastic modulus
m is the mean radius to thickness ratio (R=T)

Equation 30.4 is intended for round cylinders in which collapse occurs at stresses significantly lower
than the elastic limit of the material. Such a mode of failure is due to the insufficient flexural rigidity
of the cylinder, and the critical buckling pressure PC is defined as the pressure at which the circular
form becomes unstable.
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The circular cylinder is assumed to buckle into an elliptical shape. When the theory of a buckled
ring is extended to a long vessel, by considering a ring element of the cylinder, Equation 30.4 is
obtained.

Equation 30.4 can be modified for use with materials having a pronounced yield point as [4]

PC ¼ fSy=m(fþ 3:64 m2) (30:5)

where f is the inverse strain parameter E=Sy with Sy being the material yield strength. As the
thickness ratio m increases, Equation 30.5 approaches the form of Equation 30.4. For other values
of m, the critical pressure calculated from Equation 30.5 is less than that calculated
from Equation 30.4.

30.5 ILLUSTRATIVE DESIGN PROBLEM

Evaluate the extent of the error involved in estimating the external collapse pressure by means of a
membrane stress criterion instead of the stability formulas on the assumption that the material’s ratio
f corresponds to that of a mild steel known as A-36, having a yield strength of Sy¼ 36,000 psi.
Assume the minimum and maximum m values to be 10 and 50, respectively.

SOLUTION

By the definition of the inverse strain parameter f as E=Sy, we have

f ¼ 30� 106

36� 103
¼ 833 (30:6)

The membrane stress criterion is:

Sy ¼ PmR=T ¼ Pmm or Pm ¼ Sy=m (30:7)

By dividing Equation 30.7 by Equation 30.4 and using the result of Equation 30.6 we obtain

Pm=PC ¼ 3:64m2=f ¼ 0:00436m2 (30:8)

Table 30.1 provides values of the Pm=PC ratio for m ranging from 10 to 50.

Comment
The results of this design problem show that the use of the elementary membrane stress criterion for
predicting collapse pressures can be misleading, particularly for relatively thin vessels or piping.
Alternatively, when the thinness parameter l (see Section 30.2) is 0.35 or less, the use of the
membrane stress criterion appears to be appropriate.

TABLE 30.1
Membrane=Critical Pressure Ratio as a
Function of the Radius=Thickness Ratio m

m 10 20 30 40 50

Pm=PC 0.436 1.744 3.924 6.976 10.900
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30.6 MIXED MODE RESPONSE

The thinness factor l, defined by Equation 30.1, provides a good predictor of vessel response. With
l values below 0.35, unstable collapse is unlikely. With l values above 2.5, stability is the principal
design consideration. The l values of 0.35 and 2.5, however, are not exact, and in either event, there
is a large ‘‘gray’’ area between these limits requiring careful design considerations.

Experience indicates that for values of l up to 1.0, the stress criterion is still reasonably
accurate. The hoop stress criteria in general should give conservative results even without due
corrections for small initial imperfections and manufacturing tolerances. The reader should be
cautioned, however, that gross initial imperfections can be very detrimental and may precipitate
the overall cylinder collapse. This aspect of the analysis therefore requires engineering judgment,
since the precise definitions of what may be considered as ‘‘small’’ or ‘‘gross’’ imperfections have
not been fully established.

The intermediate region bracketed by the values of l equal to 1.0 and 2.5 represents a
complicated picture of cylinder behavior under external pressure where some combination of stress
and stability effects is involved. Relevant tests show that under these conditions, some local yielding
may take place before the critical elastic instability load is reached, precipitating the onset of
ultimate collapse. Furthermore, with the simultaneous involvement of stress and stability response,
the stresses arising from the imperfections may prove to be rather significant.

The material parameter f numerically representing the inverse of the elastic strain varies
normally between about 100 and 1000 for the great majority of metallic engineering materials.
The medium range of yield strength is about 60,000 to 150,000 psi, with the corresponding f values
of 500 and 200, respectively. In this range, we may find such steels as A537, HY80, or 4330
series, which are recognized for their superior fracture toughness characteristics. The practical
ranges of the dimensionless parameters k and m can be assumed to be as follows:

10 � m � 100 and 0:001 � k � 0:200 (30:9)

30.7 CLASSICAL FORMULA FOR SHORT CYLINDERS

Design considerations based upon elastic behavior may be regarded as upper-bound estimates [4].
A well-known example of this type of solution is based on the short-cylinder theory describing the
buckling response of the cylinder wall midway between the stiffeners. A simplified version of
the relevant formula is

PC ¼ 0:87 Ek

m3=2
(30:10)

where
E is the elastic modulus
k is the thickness=length ratio
m is the radius thickness ratio

Equation 30.10 applies to vessel material that has a Poisson’s ratio equal to about 0.3. This theory
does not include the effect of the circumferential stiffener on the strength of the shell, and it is
assumed that the initial out-of-roundness of the shell is zero. In general, the design of hardware for
the various applications of cylindrical vessels and piping, involving external pressure loading, is
complicated despite the availability of a variety of design formulas and their respective ranges of
practical use. This situation is not surprising when one considers the modes of failure in the elastic
or elastoplastic range, in addition to the geometrical and manufacturing features of pressure vessels.

For all values of l> 1.0, stability-oriented design formulas should be used. Here the length of
the cylinder in relation to the cylinder radius determines the type of design model that is likely to be
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applicable. Because of the stability criteria affecting the design, the analysis should consider
possible effects of manufacturing out-of-roundness on the collapse resistance of a particular
cylindrical vessel.

30.8 MODIFIED FORMULA FOR SHORT CYLINDERS

The short cylinder formula of Equation 30.10 may be modified to provide an expression for
calculating the ultimate collapse pressure Pu. Specifically, Pu may be expressed as

Pu ¼ SyFi(k)F2(m) (30:11)

where
Sy is the yield strength
F1(k) and F2(m) are

F1(k) ¼ K=
1 � K=2

1 � K=
2

� �1=2
(30:12)

and

F2(m) ¼ 1=2m3=2 (30:13)

where K=
1 and K=

2 in turn are

K=
1 ¼ m1=2 þ 0:87kf(1þ 6n) and K=

2 ¼ 3:48kfm1=2 (30:14)

where
k is the thickness=length ratio T=L
m is the mean radius=thickness ratio R=T
f is the inverse strain parameter E=Sy
n is the out-of-roundness parameter defined as the ratio of the radial deviation e from the

perfect circular shape to the thickness of the vessel e=T

Equation 30.11 is based upon Timoshenko’s theory of ellipticity [4] applicable in an intermediate
region of a cylindrical vessel where the thinness ratio l (see Equation 30.1) has values between 1.0
and 2.5. Recall that this is a region of mixed mode possible failure, that is, from excessive stress
and=or instability.

The range of applicability of Equation 30.11 may be approximated using the following general
criteria, which gives the appropriate ratios of cylinder length to radius. The length can be measured
between the stiffeners or cylinder heads

L

R

� �

min

¼ 0:63(m)�1=2 1:44f
m

þ 1

� �
(30:15)

and

L

R

� �

max

¼ 3:1(m)1=2 (30:16)

When the L=R ratio is between the values computed from Equations 30.15 and 30.16, the modified
formula of Equation 30.11 is deemed to apply. The designer should be cautioned, however, that in
some circumstances Equations 30.15 and 30.16 may indicate that the range of applicability of
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Equation 30.11 is nonexistent. This should not be surprising when we consider the complex nature
of the functions and the number of parameters involved.

The range of applicability of the formula of Equation 30.11 decreases substantially with the
simultaneous decrease in the R=T ratio and the yield strength Sy of the material. In the majority of
design configurations, however, R=T ratios are generally higher than 20 and f values are lower than
500. This allows for a relatively large range of applicability of Equation 30.11.

30.9 SIMPLIFIED CRITERION FOR OUT-OF-ROUNDNESS

The out-of-roundness parameter n can be defined in terms of the extreme diametral measurements
Dmax and Dmin and the wall thickness T as

n ¼ Dmax � Dmin

4T
¼ e

T
(30:17)

where e is the radial deviation from an exact circle.
It should be noted that Equation 30.17 applies only to cases where radial deviation can be

related to the even number of circumferential lobes of the out-of-roundness pattern. For a conser-
vative estimate based on Equations 30.11 and 30.17, a purely elliptical mode of cylinder collapse
may be recommended for design calculations. Unfortunately, the actual out-of-roundness parameter
n will seldom be known before manufacture. Nevertheless, as the first rational step in design, the
extent of the anticipated maximum out-of-roundness can be deduced from knowledge of the
customary manufacturing tolerances. For instance, when the tolerance on the diameter of a particu-
lar cylindrical canister is given, say, as �0.05 in., the corresponding value of n can be taken as
n¼ 0.025=T.

For a long time now, the effect of out-of-roundness on the collapse strength of vessels and
piping under external pressure has been duly recognized by the ASME code. For the purpose of
eliminating the potential of any gross out-of-roundness, the ASME code recommends that the
ratio e=2R not exceed 1%, where R is the nominal radius. This conservative rule is at times used as
the upper limit in establishing the design criteria. The actual manufacturing and field experience
tends to indicate, however, that 1% grossly overestimates the extent or radial deviation from the
perfect circularity found by the measurements. Advances in mechanical technology result in
relatively small increases in values or n, even for large-diameter vessels.

30.10 LONG CYLINDER WITH OUT-OF-ROUNDNESS

When a pressure vessel is relatively long and its characteristics fall outside the range of short-
cylinder geometry, as required for use of Equation 30.11, we can use the following conservative
formula for the collapse strength under external pressure:

Pu‘ ¼ SyAmAn (30:18)

where Pu‘ is the long cylinder collapse pressure and Sy is the yield strength. The parameters Am and
An are

Am ¼ 1=2m3 and An ¼ A1 � (A2
1 � A2)

1=2 (30:19)

where A1 and A2 in turn are

A1 ¼ m2 þ 0:275f(1þ 6n) and A2 ¼ 1:1 m2f (30:20)
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where
m is the mean radius=thickness ratio
f is the elastic modulus=strength ratio, E=Sy, also known as the ‘‘inverse strain parameter’’

When the effect of out-of-roundness is neglected, by setting n¼ 0, Equation 30.18 is to be replaced
by the classical formula for elastic buckling of a long cylinder given by Equation 30.4.

30.11 EFFECTIVE OUT-OF-ROUNDNESS

Defects in materials are virtually impossible to eliminate and difficult to define or identify ahead of
time. Nevertheless it is still possible to make reasonable assumptions about out-of-roundness of a
cylindrical vessel for design purposes. It is important to consider this feature because it can become
significant in relation to other effects, such as variation in wall thickness or the residual stress
patterns. It should be added here that in the case of well-known structural members such as columns,
the collapse is essentially of the bending type, leading to the formation of a plastic hinge.
Unfortunately, as far as the vessels and piping subjected to external pressures are concerned, the
collapse mechanism is much more sensitive because even small local deformations can give rise to
significant bending moments, because of the presence of large compressive forces. For example,
when conducting a typical structural test of a pressure vessel, it is easy to note that the relevant load–
deflection curve develops smoothly almost up to the level of external collapse pressure, at which
point a rather violent failure suddenly occurs. This type of structural behavior is known as an
‘‘implosion,’’ in contrast to the ‘‘explosion’’ caused by internal pressure.

Comprehensive theoretical analyses, which can account for all factors leading to vessel collapse,
are difficult to obtain even incorporating numerical and computer analyses. Therefore it is prudent to
include out-of-roundness corrections in prototype design and then to test the integrity of the pressure
vessel by experiment.

To date, correlations of measured and calculated collapse pressures appear to indicate a trend of
improved agreement with decreasing radius to thickness m, or R=T ratio. Differences in measured
and calculated collapse pressures for thick-walled piping and vessels may be caused mainly by the
variation in material properties and the initial imperfections. It is less severe for thick-walled
tubes and many test results for thick-walled piping should indicate collapse pressures that exceed
the calculated values. While thick-walled vessels and tubes need perhaps less restrictive criteria, the
results on thin-walled tubes may still require somewhat larger factors of safety.

The foregoing discussion indicates that the collapse of thick-walled and thin-walled vessels is
based on different criteria, and it is often difficult to determine the exact boundary between the
response of thick and thin vessels. Short- and thick-walled vessels fail at the yield point of the
material, while long and thin-walled vessels tend to become elastically unstable at wall stresses far
below the yield strength.

The thinness factor (see Section 30.2) is useful in developing a method for assessing out-of-
roundness. This is motivated by the fact that the effect of out-of-roundness on the collapse of long,
thin-walled vessels is more significant than for short, thick-walled vessels.

Recall in Section 30.8 that the out-of-roundness parameter n was defined as the ratio of radial
deviation to thickness, e=T. Extensive analyses and experiments suggest that for design purposes an
effective out-of-roundness parameter ne may be defined as

ne ¼ n sin2 (36l) (30:21)

Assuming an elliptical shape of a vessel as the most likely mode of failure under external pressure,
the procedure is to estimate the out-of-roundness n by Equation 30.17:

n ¼ Dmax � Dmin

4T
¼ e

T
(30:22)
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Next, the thinness factor l may be calculated using Equation 30.1 as

l ¼ 1:2(m)1=4=(kf)1=2 (30:23)

Then the ratio ne=n follows directly from Equation 30.21. Figure 30.1 provides a graphical
representation of Equation 30.21.

30.12 ILLUSTRATIVE DESIGN EXAMPLE

To illustrate the foregoing procedures, consider the following design problem: determine the
maximum allowable out-of-roundness for a large cylindrical canister at a design pressure of 750 psi,
assuming a clearance distance between the stiffeners equal to 60 in., a mean radius of 35 in., and a wall
thickness of 0.875 in. The material is HY80 with a minimum expected yield strength of 80,000 psi and
the modulus of elasticity of 30� 106 psi. Plot the variation of the collapse pressure with radial deviation
from a perfect circular shape, and calculate the corrected design pressure based on the theory of effective
out-of-roundness.

SOLUTION

The relevant dimensionless ratios k (thickness=length, T=L), m (mean radius=thickness, R=T), and
f (inverse strain parameter E=Sy) are

k ¼ 0:875
60

¼ 0:0146, m ¼ 35
0:875

¼ 40, and f ¼ 30� 106

80� 103
¼ 375 (30:24)

By performing a ‘‘l check’’ using Equation 30.1 we have

l ¼ 1:2m1=4=(kf)1=2 ¼ 1:2(40)1=4=(0:0146� 375) ¼ 1:29 (30:25)

This result indicates that the canister is likely to behave as a short cylinder where a mixed mode of
failure involving stress and stability occurs. Then from Equation 30.15, we can determine the
minimum critical length:

L
R

� �

min
¼ 0:63(m)�1=2 1:44f

m
þ 1

� �
¼ 0:63(40)�1=2 1:44� 375

40
þ 1

� �
¼ 1:44 (30:26)

Thinness factor, l
0.5

0.8

0.6

0.4

0.2

Ef
fe

ct
ive

 o
ut

-o
f-r

ou
nd

ne
ss

 ra
tio

, n
e/n

1.0 1.5 2.0

FIGURE 30.1 Graph for effective out-of-roundness.

Huston/Practical Stress Analysis in Engineering Design DK4291_C030 Final Proof page 484 3.11.2008 6:49pm Compositor Name: VBalamugundan

484 Practical Stress Analysis in Engineering Design



That is, the minimum length Lmin is

Lmin ¼ 1:44� 35 ¼ 50:4 in: (30:27)

Since Lmin is less than 60, the theoretical short-cylinder formula of Equation 30.11 is applicable.
Specifically, the collapse pressure Pu is

Pu ¼ SyF1(k)F2(m) (30:28)

A glance at Equation 30.16 shows that the critical maximum length will be considerably higher
than 60 in. That is,

L
R

� �

max
¼ 3:1m1=2 ¼ 3:1� (4D)1=2 ¼ 19:6 (30:29)

or

Lmax ¼ 19:6� 35 ¼ 686 in: (30:30)

Therefore, we can compute the K=
1 and K=

2 parameters from Equation 30.14. That is

K=
1 ¼ m1=2 þ 0:87kf(1þ 6n) ¼ (40)1=2 þ (0:87)(0:0146)(375) 1þ 6e

0:875

� �

¼ 11:09þ 32:66e (30:31)

and

K=
2 ¼ 3:48kfm1=2 ¼ (3:48)(0:0146)(375)(40)1=2 ¼ 120:5 (30:32)

Using these results in Equation 30.12, F1(k) becomes

F1(k) ¼ K=
1 � K=2

1 � K=
1

� �1=2
¼ 11:09eþ 32:66e� 1:58(1þ 291eþ 429:8e2)1=2 (30:33)

Similarly, from Equation 30.13 F2(m) becomes

F2(m) ¼ 1=2m3=2 ¼ 1=(2)(40)3=2 ¼ 0:00198 (30:34)

Finally, using these results in Equation 30.11, we obtain the expression for the collapse pressure as

Pu ¼ SyF1(k)F2(m) ¼ 1756:7þ 5173:3e� 250:3(1þ 291eþ 429:8e2)1=2 (30:35)

Figure 30.2 provides a graphical representation of Equation 30.35. From the figure, we see
that the maximum allowable deviation from a perfect radius for the design pressure of 750 psi
is 0.123 in. At l¼ 1.29, however, we see from Equation 30.21 that the effective out-of-
roundness ne is

ne ¼ 0:52n ¼ (0:52)(0:123)=T ¼ 0:064=T (30:36)

The corrected design pressure of Figure 30.1 depends upon the assumed value of cylinder
thickness T¼ 0.875 in.
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Comment
The method illustrated by this example is relatively simple, especially in view of the complexity of
pressure vessel technology. The procedure effectively relaxes the conservatism inherent in Equation
30.11. This is due to the assumption of an elliptical mode of failure. This is manifested in the
example through an increase in the estimated design pressure above 750 psi.

The formulas of this chapter for critical pressure, together with the design example, are offered
as an illustration of the process of application of relatively simple solid mechanics principle to
complex design problems.

The formulas given by Equations 30.11, 30.18, and 30.21 may be used in preliminary design,
development, and testing, but only within the limits defined by Equations 30.1, 30.15, and 30.16.
The method offered here is an alternative but not a substitute for established and proven code
practices such as those recommended by the ASME Boiler and Pressure Vessel Code.

30.13 EMPIRICAL DEVELOPMENTS

There are considerable theoretical difficulties in obtaining a comprehensive analysis of ring-
stiffened cylinders subjected to external pressure. As an alternative considerable effort has been
expended by pressure vessel specialists to gather well-documented experimental data [5]. Figure
30.3 provides a summary of these results using dimensionless values for ordinate and abscissa.
Specifically, the parameter (1.05mPe=Sy) is shown as a function of (0.92kf=m1=2) where Pe denotes
the experimentally determined interstiffener collapse pressures for data having m(R=T) values
between 6 and 250 and the wide range of L=R ratios between 0.04 and 50. (As before, k is T=L,
Sy is the yield strength, and f is the inverse strain parameter E=Sy.)

In the majority of test cylinders reported in the literature, the out-of-roundness was much less
than 1% of the radius. In some cases, however, the values of out-of-roundness were found to be in
the order of 1%, representing what can be judged to be relatively poor manufacturing practices.
Because of this series of relatively low experimental collapse pressure, however, a lower-bound
curve was selected here for illustration.

It should be recognized that the lower-bound curve represents a wide range of geometrical
proportions and that the correlation must break down for cylinders with oversized and very closely
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FIGURE 30.2 Deviation from perfect radius (in.).
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spaced stiffeners. Naturally, the critical buckling pressures for such structures would become much
higher than those with the simple hoop stress criterion at midbay would tend to indicate.

Figure 30.3 is representative of the maximum hoop stress at the midpoint between the stiffeners.
It represents the ratio of the critical pressure sought and that expressed by Equation 30.3.

The parameter on the abscissa of Figure 30.3 (0.92kf=m1=2) is obtained by Equations 30.10
and 30.3, and by simplifying the expression in the usual range of the geometries where m is much
larger than 1. For example, in many practical design applications, the numerical value of m is
seldom found to be lower than 20. Under such circumstances, the error introduced by the foregoing
simplification should be less than 3%.

The advantage of referring to an empirical curve is that the results cover a relatively wide range
of L=R ratios without drawing any particular distinction among short, intermediate, or long
cylinders. The disadvantages of the empirical curve, however, are (1) lack of exact details of the
out-of-roundness corresponding to the chart and (2) the practical necessity of relying on the lower-
bound curve, resulting in a conservative prediction of the ultimate collapse pressure.

Nevertheless, we can make computational use of the empirical data for externally pressurized
cylindrical vessels using the following approximate formula for the critical buckling pressure:

PCR ¼ SyZ1(Z2 � nZ3) (30:37)

where Z1, Z2, and Z3 are

Z1 ¼ exp [�0:815m1=2=kf] (30:38)

Z2 ¼ 1=[(m)0:95(kf)0:10] (30:39)

Z3 ¼ [50=(m)1:95(kf)0:10]� 33=m2 (30:40)

where the essential variables such as Sy, k, m, n, and f quoted here make the comparison with other
existing formulas relatively straightforward. However, the main reason for developing a general
formula of the type given by Equation 30.37 is to have a continuous mathematical model, which
could be used with short, intermediate, and long cylinders alike, thereby eliminating the problems
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FIGURE 30.3 Lower-bound empirical curve for ring-stiffened cylinders under external pressure.
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associated with the transitions and gray areas. The formula represented by Equation 30.37 is
intended for the following ranges of the parameters:

0 � n � m=100, 10 � m � 100, 0:001 � k � 0:200, 100 � f � 1000 (30:41)

To obtain a brief comparison between theoretical and experimental results, various data have been
randomly selected for the comparison. The data include both typical and some extreme configur-
ations, providing a general assessment of the potential differences. Table 30.2 presents the results.
The last three columns of the table indicate reasonable agreement among the various estimates
despite the marked variations in cylinder proportions. The actual discrepancies often appear to be on
the conservative side, and in general the differences are not too serious when one considers the
inherent complexity of the collapse problem.

The approximate formula (Equation 30.37) is easy to use but requires further refinements. It is
hoped that its practical use will provide, in due course, the necessary background for improving the
proposed model. It is offered here as an example of a plausible starting point in the search for a
general formula applicable to all proportions of cylindrical vessels.

In the region of relatively low values of k and m, the minimum collapse pressure of casing,
tubing, or drill piping can be estimated on the basis of specifications recommended by the American
Petroleum Institute [6]. The formulas suggested by the institute include experimental corrections
and apply to yield strengths between 40,000 and 150,000 psi. They are basically of the Lamé [7] or
Stewart [2] type.

The classical buckling response of a thin and long cylinder depends primarily on the modulus
of elasticity of the material and the cube of the ratio of mean radius to thickness, as shown by
Equation 30.4. In other cases, the pressure vessels, well casing, or piping may fall into the
category of intermediate or short cylinders. In this range, governed by Equation 30.4, the collapse
strength may increase or decrease as a function of raising or lowering the yield strength of the
material. Also, when an externally pressurized and relatively thick pipe is subjected to axial
tension, such as may be the case with a long string of casing emplaced vertically in the ground, the
question may be raised as to the effect of tension on collapse. This effect is briefly analyzed in the
next section.

TABLE 30.2
Examples of Collapse Pressures Calculated for Cylindrical Vessels

Type of Vessel R (in.) T (in.) L (in.) e (in.) Sy (ksi) E (psi) Pu (psi)
a PCR (psi)b Pe (psi)

c

Experimental canister 35.88 1.125 82.5 0.0625 80 30� 106 1260 1000 1000
Experimental canister 35.75 0.500 72 0.0625 36 30� 106 180 152 160
Line-of-sight pipe 8.81 0.375 96 0.0450 35 30� 106 500 430 470
Well casing 24.38 0.750 96 0.1220 36 30� 106 410 490 530

Well casing 27.00 0.625 28 0.0400 100 30� 106 1190 1010 1060
Experimental canister 40.50 1.500 272 0.1000 36 30� 106 340 510 540
Experimental canister 27.75 0.750 48 0.1425 36 30� 106 600 570 690

Experimental canister 3.1 0.4 42 0.0050 152 26� 106 8550 4980 5230
Concrete room 91 27 240 0.4550 12 4� 106 2920 2640d 3120

a See Equation 36.6.
b See Equation 36.20.
c See Figure 36.3.
d See Equation 36.2.
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30.14 EFFECT OF AXIAL STRESSES ON COLLAPSE

From a simple geometric prospective, we can obtain insight regarding the effect of axial loading on
collapse. Specifically to the extent that axial compression of a cylinder tends to increase wall
thickness through the Poisson’s ratio effect, axial tension does the opposite. Hence, ‘‘wall thinning’’
should contribute to lowering of the classical buckling pressure, which is directly proportional to the
cube of thickness. Naturally, such geometrical effects must be relatively small, and one has to
examine additional aspects of the problem such as the role of wall thinning in accentuating
manufacturing imperfections as well as the influence of biaxial loading on the yield strength of
the material.

Unfortunately, theoretical work on externally pressurized cylinders has not been fully successful
in providing rigorous solutions to stability problems in the presence of manufacturing imperfections,
superimposed axial stresses, or local plastic deformations. However, the need for practical solutions
to some of these problems has prompted extensive experimental studies of the effect of the
combined longitudinal loading and the external pressure [8]. This particular work was conducted
in support of the requirements of the oil-drilling industry. It involved more than 200 tests on
seamless tubing loaded simultaneously by external pressure and longitudinal tension. The ratios of
tube radius to wall thickness for this experiment ranged from 5 to 11. The yield strength of the tube
material varied from about 30,000 to 80,000 psi. Unlike some earlier speculations, this study has
clearly established that the effect of combined loading can substantially reduce both the collapse
strength and the tensile strength of the tubing. The results of this study have since been utilized in
the development of practical handbook data for the soil drilling industry [9].

Conventional theories of the strength of materials indicate that in a biaxial state of stress, where
tension and compression act at right angles to each other, the effective yield strength of the material
appears to be lowered. The particular case of the maximum strain–energy theory gives a good
approximation to the experimental data where ductile materials are involved. This strength theory is
based on the assumption that the quantity of strain energy stored in a unit volume of an elastic
material attains a maximum value at the instant of the material’s failure. Therefore, knowing the
energy required to case the failure in a simple tensile test specimen, the approximate limiting
stresses for the combined loading can probably be estimated.

Figure 30.4 presents an ellipse of biaxial yield stress based upon the concept of maximum
strain energy. The effect of biaxial loading in the case under consideration corresponds, therefore, to

Ratio =
Axial tension
Simple yield

Tension−tension

0.2 0.80.60.4

0.2
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0.4

Compression−
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Compression−
compression

Ratio = Circumferential compression
Simple yield

FIGURE 30.4 Diagram for maximum strain energy theory.
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the functional relationship depicted by the right lower quadrant of the ellipse. In this region, the
longitudinal tensile stress is represented by the horizontal axis set out to the right of the zero point,
and the compressive hoop stress, resulting from the external pressure, conforms to the lower portion
of the vertical line. The ellipse diagram shown in Figure 30.4 is expressed in terms of the
nondimensional ratios to ensure its generality. The experimental points derived from tests on steel
tubing were found to correlate quite well with the elliptical curve drawn in the compression–tension
quadrant [8,9]. This rather remarkable agreement between the maximum strain energy formulation
and experimental evidence provides a firm basis for design of well casing employed in the oil
industry and in similar engineering ventures.

While investigations involving piping are likely to be successful, the problem of sizing a large-
diameter vessel may present a different task because the intermediate range of mean radius to
thickness ratio is higher and varies between about 10 and 40. There seems to be no available
experimental data in this range of the geometry, which could be directly used in evaluating the effect
of the tensile stresses on collapse, although it is known that the yield strength in circumferential
compression is definitely one of the principal factors in controlling the collapse resistance of oil well
casing, characterized by relatively low radius to thickness ratios. Our intuition and experience may
suggest that thin-walled, high-strength casing should be less affected by changes in the yield
strength due to the biaxiality of low-strength casing. However, the response of a large-diameter
casing, characterized by an intermediate ratio of radius to thickness and the average yield strength,
can only be inferred from the oil industry experimental data discussed above and a suitable
theoretical model, such as that defined by the theory of the maximum strain energy.

It may be instructive at this point to briefly analyze the combined effect of thickness and
material strength parameters, which should have a finite influence on the susceptibility of the
externally loaded pressure vessels to biaxial effects. This can be approximated with the aid of the
thinness factor l, expressed in terms of the geometry and materials parameters k, m, and f, as
before.

Equation 30.1 is useful in determining the failure characteristics for a cylindrical vessel or
piping subjected to external pressure. Recall that when the thinness factor l exceeds 2.5, stability
criteria are predominant and the effect of biaxial loading is less important. Alternatively, when l is
small, say less than 0.35, the circumferential stress is likely to govern the collapse. In this case, the
vessel is more susceptible to biaxial effects.

A relatively long cylinder is one whose length equals or exceeds the lengths obtained from
Equation 30.16. That is

(L=R)max ¼ 3:1m1=2 or L ¼ 3:1Rm1=2 (30:42)

where as before
R is the mean radius
m is the radius=thickness ratio R=T

Combining Equations 30.1 and 30.42 yields the thinness factor for a relatively long pipe or
casing as

l ¼ 2:11m=f1=2 (30:43)

Equation 30.43 provides limiting values of m for the limiting l values of 0.35 and 2.5. Figure 30.5
provides a chart showing the relative sensitivity of the collapse pressure to superimposed axial
tensile stresses.

Consider, for example, two pressure vessel designs using (1) a high-strength steel, thin-walled
cylinder and (2) a low-yield-strength vessel with a thicker wall. Specifically, let f and m be
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1. f¼ 100 and m¼ 35 (Point A, Figure 30.5)
and

2. f¼ 833 and m¼ 4 (Point B, Figure 30.5)

In the first case, the effect of the tensile stresses is likely to be small whereas in the second case the
tension is likely to be important.

This example and the chart given in Figure 30.5 are intended only as a general guide for
designing relatively long cylindrical components. Similar interpretation of the sensitivity of
the collapse resistance to tension can be developed for intermediate and short cylinders using the
relevant limits of applicability of specific formulas.

The theoretical correction factor for the effect of tension can be derived from analytical
expressions for the maximum strain energy. The work done on the elastic material in the state of
biaxial tension may be described as

U ¼ S21 þ S22
2E

� nS1S2
E

(30:44)

where
U is the strain energy
S1 and S2 are principal stresses
E and n are the elastic modulus and Poisson’s ratio

The maximum amount of the elastic work that can be done in direct tension is obtained when the
corresponding stress approaches the yield strength for a given material. The formula representing
this amount of work is

U ¼ S2y
2E

(30:45)
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FIGURE 30.5 Limiting values for the effect of tension on collapse pressure.
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The state of midbay hoop stress and axial wall stress in a casing subjected to external pressure and
longitudinal tension simultaneously can be defined by S2¼�Sc and S1¼ St, respectively. Here Sc
denotes hoop compressive stress due to external pressure and St is the average axial tensile stress.
Substituting these terms and combining Equations 30.44 and 30.45 gives

S2y ¼ S2c þ S2t þ 2nScSt (30:46)

For the majority of metallic materials, we have n¼ 0.3. Using this value and putting a¼ St=Sy,
Equation 30.46 yields

Sc
Sy

¼ Fa (30:47)

where Fa is

Fa ¼ (1� 0:91a2)1=2 � 0:3a (30:48)

Since the absolute value of the compressive wall stress is proportional to Sy and Fa, as given by
Equation 30.47, the correction for tension may be obtained by multiplying the conventionally
calculated collapse pressure by Fa. Figure 30.6 provides a design chart based upon Equation 30.48.

In field applications involving piping or casing emplaced vertically underground and backfilled,
the ratio a is expected to be relatively small, so that the correction factor Fa does not differ
significantly from unity. However, the chart given in Figure 30.6 indicates that the influence of
tension can be significant. This effect manifests itself as that which would pertain if the pipe or
tubing were made of a lower-strength material. We can make a comparison between values obtained
using Equation 30.48 and available experimental data [8]. Table 30.3 provides the comparison.

30.15 STRENGTH OF THICK CYLINDERS

For thick and moderately thick vessels and piping, the stability criteria of the previous sections may
not be important or applicable. In this case, Lamé’s theory provides a convenient approach for
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FIGURE 30.6 Design chart for the effect of tension on collapse.
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design. For example, the maximum tangential stress St at the inner surface of the cylinder may be
expressed as

St ¼ PoK4 (30:49)

where Po is the external pressure and K4 is a design factor depending upon the ratio of the inner
radius to thickness, as provided by Figure 30.7. This stress is compressive. It may be of interest to
note that when the cylinder is very thick to the point of becoming a solid shaft, the stress tends to a
value equal to twice the externally applied pressure.

The displacement ui of the inner surface of the cylinder toward the central axis may be
calculated from the expression:
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FIGURE 30.7 Stress factor for a thick cylinder under external pressure (see Equation 30.49).

TABLE 30.3
Effect of Axial Stress on Collapse by Test and by Theory

m a
Yield

strength

Experimental
Collapse
Pressure

Calculated
Collapse
Pressure

9.1 0.138 500 44.4 45.2
9.1 0.276 500 43.1 41.9

9.1 0.404 500 35.8 38.1
6.6 0.107 290 43.4 43.8
6.6 0.317 290 35.8 37.0

10.9 0.135 560 28.9 29.1
10.9 0.385 560 29.3 24.9
5.6 0.289 565 96.5 96.4
5.6 0.474 565 75.8 82.7

Note: All values in megapascals: 1 megapascal¼ 1 N=mm2¼ 145 psi¼ 1 MPa.
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ui ¼ PoT

E
K3 (30:50)

where
T is the cylinder thickness
E is the elastic modulus

where K3 is a displacement factor depending upon the ratio of the inner radius to thickness, as
provided by Figure 30.8.

Similarly, the radial displacement uo of the outer surface of the cylinder is given by

uo ¼ PoT

E
K5 (30:51)

where K5 is a displacement factor depending upon the ratio of the inner radius to thickness, as
provided by Figure 30.8.

Observe in Figure 30.8 that the factor K5 does not vanish when the inner radius tends to zero.
Then for a solid shaft, the displacement of the outer surface uosolid is

uosolid ¼ 0:7PoT=E (30:52)

30.16 ILLUSTRATIVE DESIGN PROBLEM

Figure 30.9 depicts a straight cylindrical hub and a solid shaft assembly. Assuming that both
components are made of steel, calculate the shrinkage allowance d to develop a shrink-fit pressure
P of 10,000 psi.
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FIGURE 30.8 Displacement factors for a thick cylinder under external pressure (see Equations 30.50 and 30.51).

Huston/Practical Stress Analysis in Engineering Design DK4291_C030 Final Proof page 494 3.11.2008 6:49pm Compositor Name: VBalamugundan

494 Practical Stress Analysis in Engineering Design



SOLUTION

The hub is subjected to internal pressure whereas the shaft experiences external pressure. Equation
29.12 provides the radial deformation ui of the hub as

ui ¼ PThK2

E
(30:53)

where Th is the hub thickness: Ro�Ri.
Correspondingly, Equation 30.51 provides the radial compression uo of the shaft as

uo ¼ PTsK5

E
(30:54)

The sum of the displacements of Equations 30.53 and 30.54 must be the interference d. That is

d ¼ ui þ uo ¼ (P=E)(ThK2 þ TsK5) (30:55)

For the hub Ri=Th¼ 1 and for the shaft Ri=Ts¼ 0. Then Figures 29.8 and 30.8 give K2 and K5 as

K2 ¼ 1:97 and K5 ¼ 0:7 (30:56)

Therefore d is

d ¼ 104(2� 1:97þ 2� 0:7)
30� 106

¼ 0:00178 in: ¼ 0:045 mm (30:57)

30.17 OUT-OF-ROUNDNESS CORRECTION FOR STRESS

The maximum wall stress in an out-of-round cylinder can be obtained through superposition of the
tangential stress calculated for a perfectly circular cylinder and the offset bending stress caused by
the out-of-roundness. The offset stress follows from the bending moment, which may be determined
by multiplying the average hoop load times the amount of radial deviation. For a relatively thin
cylinder where m is greater than 10, we have

S ¼ Pm(1þ 6n) (30:58)

where
S is the stress
m is the radius=thickness ratio (R=T)
n is the deviation to thickness (out-of-roundness) ratio (e=T)
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FIGURE 30.9 Shrink-fit assembly.
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Usually, the magnitude of n defining the particular out-of-roundness is markedly less than unity.
Nevertheless, Equation 30.58 shows how quickly the total stress can increase as a function of n. It
is also relevant to note that in the case of internal pressure, the hoop load tends to make the cylinder
more circular. The actual amount of this straightening effect, however, is not easy to estimate
because of the nonlinear relation between the hoop load and radial deformation. Hence, Equation
30.58 in its present form is likely to be conservative. Also, the model implied by Equation 30.58
may be related to the stress theory of oval tubes subjected to internal pressure [10], with the relevant
agreement appearing to be good for values of n smaller than 1. This bracketing condition
should certainly cover the range of radial deviations most likely to be encountered in pressure
vessel design.

Since Equation 30.58 is based on the membrane stress theory, there is no need to differentiate
between the internal and external loading on a cylindrical shell. When the cylinder ratio m is less
than 10, thick-shell theory dictates the choice of the design formulas. In such a case, the total
tangential stress should be calculated as the sum of the maximum Lamé stress and the offset bending
stress. The latter may be obtained from the hoop load, which can be taken as the product of the
average stress and the longitudinal cross-sectional area of the cylinder. In this manner, the corrected
stress for the case of internal pressure can be described as

S ¼ P
4m2 þ 1

4m
þ 3n(4m2 � 2mþ 1)

2m

� �
(30:59)

Similarly, for the condition of the external pressure, we obtain

S ¼ P
(2mþ 1)2

4m
þ 6n(m2 þ 0:5mþ 0:25)

m

� �
(30:60)

Observe in these last two expressions that when m is large (as with a thin cylinder), both expressions
reduce to the thin-cylinder formula of Equation 30.58.

30.18 DESIGN CRITERION FOR THICK CYLINDERS

In Section 30.17, we considered various formulas for calculating and estimating collapse pressures
for cylindrical containers subjected to uniform external loading. The formulas are developed using
the concepts of elastic stability and an elliptical mode of cylinder failure.

This implies that the majority of containers found in industry can be characterized by relatively
thin walls and predominantly elastic response. Although this statement is largely true, there are
exceptions where the vessels may have thicker walls made of a lower-strength material and where
stress rather than buckling may govern the design. Hence, substituting l ffi 0.35 in Equation 30.1
results in the following approximate criterion:

100m

k0f2 � 0:75 (30:61)

where
m is the radius=thickness ratio (R=T)
k is the thickness=length ratio
f is the modulus=strength ratio (E=Sy)

For example, if we take values like m¼ 10, k¼ 0.1, and f¼ 1,000, Equation 30.61 gives 0.1, which
is less than 0.75. According to this rule, the selected cylindrical geometry and the material are such
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that stress criteria should govern the design. Hence, any combination of k, m, and f, which gives a
numerical quantity smaller than 0.75, determines the condition of the governing stress for the
cylinders loaded externally. However, when the vessels are loaded internally, the design is always
governed by stress. The only differentiation needed in the latter type of loading concerns the relative
thickness of the vessel wall, which determines the choice of the analytical approach.

SYMBOLS

A1, A2 Long cylinder factors
Am, An Long cylinder parameters
An Long cylinder parameter
a ¼ St

Sy
Stress ratio

a0 Projected radius of spherical cap
E Elastic modulus
Es Secant modulus
Et Tangent modulus
e Deviation from perfect radius
Fa Axial load correction factor
F(k), F(m) Short cylinder parameters
F(m) Short cylinder parameter
H Depth of shallow cap
h Reduced thickness of shell
K Buckling coefficient
K=
1 ,K

=
2 ,K

=
3 Short cylinder factors

K1 through K5 Thick cylinder design factors
k¼ T=L Dimensionless ratio
L Length of cylinder
Lc Critical arc length
m¼R=T Ratio of mean radius to thickness
mi¼Ri=h Ratio of mean radius to local thickness
n¼ e=T Ratio of radial deviation to thickness (out-of-roundness)
ne Effective out-of-roundness
n0¼ a0=T Shallow cap ratio
Pc Classical buckling pressure
PCR General symbol for buckling pressure
Pe Experimental collapse pressure
Pm Pressure to cause membrane yield stress
Pu Short cylinder collapse pressure
Pul Long cylinder collapse pressure
Py External pressure at yield
P0 External pressure
R Mean radius
Ri Inner radius
Ro Outer radius
S General symbol for stress
S1, S2 Principal stresses
Sc Compressive stress
St Tensile stress
Sy Yield strength
T Thickness of wall
Th Thickness of hub
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Ts Thickness of hollow shaft
U Elastic strain energy
ui Displacement of inner surface
uo Displacement of outer surface
Z1, Z2, Z3 Collapse pressure formula parameters
D Shrinkage allowance
u Central half-angle of spherical cap
l Thinness factor
l0 Shallow cap parameter
n Poisson’s ratio
f¼E=Sy Inverse strain parameter
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31 Buckling of Spherical Shells

31.1 INTRODUCTION

By ‘‘spherical shell,’’ we mean complete spherical configurations, hemispherical heads (such as
pressure vessel heads), and shallow spherical caps. In analyses, a spherical cap may be used to
model the behavior of a complete spherical vessel with thickness discontinuities, reinforcements,
and penetrations.

Although the response of a spherical shell to external pressure has received considerable
attention from analysts, the calculation of collapse pressure still presents substantial difficulties in
the presence of geometrical discontinuities and manufacturing imperfections. The bulk of the
theoretical work carried out so far has had a rather limited effect on the method of engineering
design, and therefore much experimental support is still needed. At the same time, the application of
spherical geometry to the optimum vessel design has continued to be attractive in many branches
of industry dealing with submersibles, satellite probes, storage tanks, pressure domes, diaphragms,
and similar systems. This chapter deals with the mechanical response and working formulas
for spherical shell design in the elastic and plastic ranges of collapse, which could be used for
underground and aboveground applications. The material presented is based on state-of-the-art
knowledge in pressure vessel design and analysis.

31.2 ZOELLY–VAN DER NEUT FORMULA

R. Zoelly and A. Van der Neut conducted significant original theoretical work on the buckling of
spherical shells [1]. They used the classical theory of small deflections and the solution of linear
differential equations. Based upon this work, the elastic buckling pressure PCR for complete, thin
spherical shell was found to be

PCR ¼ 2E=m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(1� n2)

p
(31:1)

where
E is the elastic modulus
n is Poisson’s ratio
m is the radius=thickness ratio (R=T)

For a typical Poisson’s ratio n of 0.3, Equation 31.1 becomes simply

PCR ¼ 1:21E=m2 (31:2)

31.3 CORRECTED FORMULA FOR SPHERICAL SHELLS

At the time of the development of the classical theory, which led to Equation 31.1, no systematic
experimental work was done. Several years later, however, some tests reported at the California
Institute of Technology [2] showed that the experimental buckling pressure could be as low as 25%
of the theoretical value given by Equation 31.1. The value derived by means of Equation 31.1 was
then considered as the upper limit of the classical elastic buckling, while several investigators
embarked on special studies with the aim of explaining these rather drastic differences between the
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theory and experiment. There was no reason to doubt the classical theory of elasticity, which
worked well for flat plates, and it was soon suspected that the effect of curvature and spherical shape
imperfections could have been responsible for the discrepancies.

This thesis led to the realization that the classical theory must have failed to reveal the fact that
for a vessel configuration, not far away but somewhat different from the perfect geometry, lower
total potential energy was involved, and therefore a lower value of buckling load could be expected,
such as that indicated by tests. The theoretical challenge then became to formulate a solution
compatible with such a lower boundary of collapse pressure at which the spherical shell could
undergo the ‘‘oil canning’’ or ‘‘Durchschlag’’ process.

After making a number of necessary simplifying assumptions, von Kármán and Tsien [2]
developed a formula for the lower elastic buckling limit for collapse pressure, which for n¼ 0.3
was found to be

PCR ¼ 0:37E=m2 (31:3)

This level of collapse pressure may be said to correspond to the minimum theoretical load necessary
to keep the buckled shape of the shell with finite deformations in equilibrium. The lower limit
defined by Equation 31.3 appeared to compare favorably with experimental results, also given in
the literature [2]. On the other hand, the upper buckling pressure given by Equation 31.1 could be
approached only if extreme manufacturing and experimental precautions were taken. In practice, the
buckling pressure is found to be closer to the value obtained from Equation 31.3 and therefore this
formula is often recommended for design.

The exact calculation of the load–deflection curve for a spherical segment subjected to uniform
external pressure is known to involve nonlinear terms in the equations of equilibrium, which cause
substantial mathematical difficulties [3].

31.4 PLASTIC STRENGTH OF SPHERICAL SHELLS

Equations 31.2 and 31.3 may be regarded as design formulas based upon results using elasticity
theory. Bijlaard [4], Gerard [5], and Krenzke [6] conducted subsequent studies to determine
the effect of including plasticity upon the classical linear theory. To this end, Krenzke [6] conducted
a series of experiments on 26 hemispheres bounded by stiffened cylinders. The materials were
6061-T6 and 7075-T6 aluminum alloys, and all the test pieces were machined with great care at the
inside and outside contours. The junctions between the hemispherical shells and the cylindrical
portions of the model provided good natural boundaries for the problem. The relevant physical
properties for the study were obtained experimentally. The best correlation was arrived at with the
aid of the following expression:

PCR ¼ 0:84(EsEt)
1=2

m2
(31:4)

where Es and Et are the secant and tangent moduli, respectively, at the specific stress levels. These
values can be determined from the experimental stress–strain curves in standard tension tests. The
relevant test ratios of radius to thickness in Krenzke’s work varied between 10 and 100 with a
Poisson’s ratio of 0.3. The correlation based on Equation 36.4 gave the agreement between
experimental data and the predictions within þ2% and �12%.

The extension of the Krenzke results to other hemispherical vessels should be qualified.
Although his test models were prepared under controlled laboratory conditions, the following
detrimental effects should be considered in a real environment:
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Local and=or overall out-of-roundness
Thickness variation
Residual stresses
Penetration and edge boundaries

These effects are likely to be more significant when spherical shells are formed by spinning
or pressing rather than by careful machining.

31.5 EFFECT OF INITIAL IMPERFECTIONS

In a subsequent series of collapse tests, Krenzke and Charles [7] aimed at evaluating the potential
applications of manufactured spherical glass shells for deep submersibles. Because of the antici-
pated elastic behavior of glass vessels, the emphasis was placed on verifying the linear theory that
resulted in Equation 31.2. Prior to this series of tests, very limited experimental data existed, which
could be used to support a rational, elastic design with special regard to the influence of initial
imperfections.

The formula for the collapse pressure of an imperfect spherical shell can be expressed in terms
of a buckling coefficient K and a modified ratio mi as

PCR ¼ KE

m2
i

(K � 0:84) (31:5)

where, based upon the work of Krenzke and Charles [7], the modified radius=thickness ratio mi may
be approximated as

mi ¼ Ri=h (31:6)

where Figure 31.1 illustrates the modified radius Ri and thickness h.
According to the results obtained by Krenzke and Charles on glass spheres, the buckling

coefficient K in Equation 31.5 was about 0.84. Their study showed that the elastic buckling
strength of initially imperfect spherical shells must depend on the local curvature and the thickness
of a segment of a critical arc length, Lc. For a Poisson’s ratio of 0.3, this critical length can be
estimated as

Lc ¼ 2:42h(mi)
1=2 (31:7)

R

T

h

R i

Lc

FIGURE 31.1 Notation for defining a local change in wall thickness.
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In a related study conducted at the David Taylor Model Basin Laboratory, for the Department of
Navy, the effect of clamped edges on the response of a hemispherical shell was evaluated. The
relevant collapse pressure was found to be about 20% lower than that for a complete spherical shell
having the same value of the parameter m and the elastic modulus E. Although these tests on
accurately made glass spheres tended to support the validity of the small-deflection theory of
buckling, there appeared to be little hope that metallic shells would yield a similar degree of
correlation even under controlled conditions.

The investigations reviewed above may be of particular interest to designers dealing with
complete spherical vessels as well as domed-end configurations. From a practical point of view,
the most satisfactory method of predicting the collapse pressure would be to use a plot of
experimental data as a function of the following well-defined dimensional quantities:

Experimental collapse pressure, Pe

Pressure to cause membrane yield stress, Pm

Classical linear buckling pressure, PCR

31.6 EXPERIMENTS WITH HEMISPHERICAL VESSELS

Using experimental data for collapse of hemispherical vessels subjected to external pressure, Gill [8]
provides information for a nondimensional plot suitable for preliminary design purposes. Figure 31.2
shows this plot for the following dimensionless ratios:

0:83Pem2

E
¼ Pe

PCR

and
0:61E
mSy

¼ PCR

Pm

(31:8)

where
Pe is the experimental collapse pressure
PCR is the classical linear buckling pressure

0.6

0.5

0.4

0.30.8
3P

em
2 /E

0.2

0.1

0.61E/mSy

1 2 3 4

FIGURE 31.2 Lower-bound curve for hemispherical vessels under external pressure.
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m is the radius=thickness ratio (R=T)
E is the elastic modulus
Sy is the yield stress

The accuracy with which the collapse pressure can be predicted on the basis of experimental data
must be influenced by the maximum scatter band involved. Since this scatter is sensitive to material
and geometry imperfections, their probable extent should be known before a more reliable, lower-
bound curve can be developed. The results given in Figure 31.2 include hemispherical vessels in the
stress-relieved and as-welded condition without, however, specifying the extent of geometrical
imperfections, which, in this particular case, were known to be less pronounced. It follows that
Figure 31.2 is applicable only to the design of hemispherical vessels, where good manufacturing
practice can be assured. Further research work is recommended to narrow the scatter band to assure
better correlation for the lower bound.

The dimensionless plot given in Figure 31.2 is sufficiently general for practical design purposes.
For example, consider a titanium alloy hemisphere with m¼ 60, E¼ 117,200 N=mm2, and the
compressive yield strength, Sy¼ 760 N=mm2. From Equation 31.8, we get 0.61E=mSy¼ 1.57.
Hence, Figure 31.2 yields 0.83Pem

2=E¼ 0.36, from which Pe¼ 14.1 N=mm2.
It may now be instructive to look briefly at the empirical result in relation to the theoretical

limits defined by Equations 31.2 and 31.3 for the complete spherical vessels.
Making Pe¼PCR¼ 14.1 N=mm2 and solving Equation 31.5 for the magnitude of the buckling

coefficient gives K¼ 0.43. This value is close to the theoretical lower limit of 0.37 given by
Equation 31.3 for a complete spherical vessel, and it appears to suggest that certain portions of
such a vessel under uniform external pressure may behave in a manner similar to that of a complete
vessel. This observation may be of special importance in dealing with the spherical shells containing
local reinforcements and penetrations. It is also generally consistent with the elastic theory of shells,
according to which the influence of geometrical discontinuities is local and does not extend
significantly beyond the range determined by the value of the parameter T(m)1=2.

31.7 RESPONSE OF SHALLOW SPHERICAL CAPS

Consider a relatively thin and shallow spherical cap fully clamped at its edge and subjected to
uniform external pressure as represented in Figure 31.3 [9]. A key parameter characterizing a
spherical cap is lo, defined as

lo ¼ 1,82ao
T(m)1=2

or lo ¼ 2:57(H=T)1=2 (31:9)

Pcr

H

R
q

T

ao ao

q

FIGURE 31.3 A spherical cap and notation.
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where
ao is the support radius
T is the shell thickness
m is the radius=thickness ratio (R=T)
R is the shell radius
H is the shell height above its support (see Figure 31.3)

The structural response of the cap for a typical Poisson ratio n of 0.3 may be described as

lo < 2:08 continuous deformation with buckling

lo > 2:08 axisymmetric snap-through

4lo > 6 local buckling

From Figure 31.3, the half-central angle u is related to ao, R, and H as

ao ¼ R sin u and H ¼ R(1� cos u) (31:10)

By squaring and adding these expressions we obtain, after simplification,

H2 � 2HRþ a2o ¼ 0 (31:11)

Assuming that H is small, H2 is considerably smaller than 2HR. Then by neglecting H2 in Equation
31.11, the equation may be written as

H ¼ a2o
2R

(31:12)

By substituting this expression for H into the second expression of Equation 31.9, we obtain the first
expression of Equation 31.9. Thus the two expressions of Equation 31.9 are equivalent for shallow
caps (that is, H considerably smaller than R).

As a guide, a spherical cap may be regarded as thin when m> 10. Shallow geometry is then
approximately defined as ao=H � 8. Once the spherical cap parameter lo is calculated by either of
the equations in (Equation 31.9), we can estimate the critical buckling pressure by using the curve of
Figure 31.4. This curve is based upon numerical data quoted by Flügge [9].
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FIGURE 31.4 Design chart for a shallow spherical cap under external pressure.
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The curve of Figure 31.4 is smoothed out somewhat in the midregion of the parameter lo, which
involves a transition between the theoretical and experimental data in simplifying the curve fitting
process. By using the curve of Figure 31.4, the following expression for the critical buckling
pressure can be developed:

PCR ¼ 0:075 En�4
0 l4:150 e�0:095l0 (31:13)

where n0 is the dimensionless ratio ao=T.
As an example application of Equation 31.13 let R¼ 127 mm, ao¼ 31.8 mm, T¼ 2.1 mm, and

E¼ 117,200 N=mm2. From this data, we obtain

m ¼ R=T ¼ 60:5 and n0 ¼ ao=T ¼ 15:1 (31:14)

Then from the first equation of Equation 31.9 we obtain lo as

lo ¼ 3:53 (31:15)

Finally, by substituting the data and results into Equation 31.13, we obtain

PCR ¼ 22:7 N=mm
2

(31:16)

In a special situation where a spherical cap is very thin, with a range of m values between 400 and
2000, the following empirical formula has been suggested for the relevant buckling pressure [10]:

PCR ¼ (0:25� 0:0026u)(1� 0:000175m)E
m2

(31:17)

where u is the half central angle of Figure 31.3 in degrees. In Equation 31.17, u is intended to have
values between 208 and 508.

Although Equation 31.17 is useful within the indicated brackets of m, it may not be quite
suitable for bridging the boundaries between the shallow caps and hemispherical shells without a
careful study. Ideally, the formula for the collapse pressure of a spherical shell should be reduced to
the form of Equation 31.5 with the K value representing a continuous function of the shell geometry
and manufacturing imperfections. For inelastic behavior, the parameter (EsEt)

1=2 appears to have the
best chance of success for a meaningful correlation of theory and experiment. In the interim,
however, the formulas given in this chapter are recommended for the preliminary design and
experimentation.

31.8 STRENGTH OF THICK SPHERES

When a thick-walled spherical vessel is subjected to an external pressure P0, the maximum stress S
occurs at the inner surface as

S ¼ 3P0R3
o

2 R3
o � R3

i

� � (31:17)

where Ri and Ro are the inner and outer sphere radii.
The displacement of the inner surface toward the center of the vessel is

ui ¼ 3P0RiR3
o(1� n)

2E R3
o � R3

i

� � (31:18)
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where
E is the elastic modulus
n is Poisson’s ratio

The corresponding displacement of the outer surface is

uo ¼ P0Ro

2E R3
o � R3

i

� � (1� n) 2R3
o � R3

i

� �� 2n R3
o � R3

i

� �� �
(31:19)

For a solid sphere subjected to external pressure, the amount of radial compression in the elastic
range becomes

uo ¼ P0Ro(1� 2n)
E

(31:20)

SYMBOLS

ao Support radius
E Elastic modulus
Es Secant modulus of elasticity
Et Tangent modulus of elasticity
H Depth of spherical cap
h Reduced thickness of shell (see Figure 31.1)
K Buckling coefficient
Lc Critical arc length (see Figure 31.1)
m Radius=thickness (R=T) ratio
mi Mean radius=local thickness ratio
PCR Elastic buckling pressure
Pe Experimental collapse pressure
Pm Membrane yield stress
Po External pressure
R Shell radius
Ri Inner radius
Ro Outer radius
S Stress
Sy Yield strength
T Shell thickness
ui Inner surface displacement
uo Outer surface displacement
lo Shallow cap parameter
n Poisson’s ratio
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32 Axial and Bending Response

32.1 INTRODUCTION

In Chapter 15, we considered the general problem of stability and buckling resistance of various
structural components subjected to axial and compressive loads. In this chapter, we extend these
concepts to axial loading of piping and pressure vessels. Specifically, we examine a number of
theories and formulas related to the axial response of cylindrical components. We also consider
some special topics such as the axial response of a pipe constrained in the transverse direction and a
rolling diaphragm theory. These topics involve some mathematical models useful in many practical
applications.

32.2 APPROXIMATION OF CROSS-SECTION PROPERTIES

Recall that in beam theory the maximum bending stress smax in the beam cross section occurs at a
distance c away from the neutral axis expressed as (see Equation 8.2)

smax ¼ Mc=I (32:1)

where
M is the bending moment at the cross section
I is the second moment of area about the neutral axis

For a rectangular cross section with base b and height h, as in Figure 32.1, I is (see Section 8.6;
Equation 8.12):

I ¼ bh3=12 (32:2)

For a circular cross section with radius R as in Figure 32.2, I is

I ¼ (p=4)R4 (32:3)

Finally, for a hollow circular cross section, as with a pipe, as in Figure 32.3, I is

I ¼ (p=4)(R4
o � R4

i ) (32:4)

Let T be the pipe thickness defined as

T ¼ Ro � Ri (32:5)

Then

Ro ¼ Ri þ T (32:6)

By substituting for Ro in Equation 32.4 we obtain

I ¼ (p=4) (Ri þ T)4 � R4
i

� � � pR3
i T (32:7)
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where the last term is obtained through the binomial expansion of (Riþ T)4 and assuming T is small.
Referring to Equation 32.1, the section modulus Z is often defined as

Z ¼D I=C (32:8)

Then for a thin, hollow pipe Z is approximately

Z ¼ pR2
i T (32:9)

32.3 COLUMN BEHAVIOR OF PIPE

When a relatively long and flexible pipe, of uniform cross section, is loaded as a column with pinned
ends, the buckling load PCR and the corresponding critical buckling stress SCR are seen to be (see
Equation 15.8)

PCR ¼ p3ER3T

L2
(32:10)

and

SCR ¼ p2ER2

2L2
(32:11)

where we assume the pipe is hollow and thin with thickness T, and as before, L is the length, R is the
inner radius, and E is the elastic modulus.

h

b

Neutral axis

FIGURE 32.1 A rectangular cross section.

Neutral axis

R

FIGURE 32.2 A circular cross section.
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The results of Equations 32.10 and 32.11 correspond to the first fundamental mode of buckling
requiring the smallest value of axial load to produce instability. However, where transverse
constraint is present preventing development of the fundamental buckling mode, the issue of
higher-order buckling modes arises [1]. In this case, the general expression for the buckling load
P becomes

P ¼ p3ER3T(1þ 2a)2

L2
(32:12)

where a is the number of buckling mode shapes.
Figure 32.4 provides illustrations of higher-order buckling of a long pin-jointed column.

Observe how rapidly the buckling load P increases with a. (The modes are assumed to be
symmetrical about the midpoint of the pipe.) The response of the pipe corresponding to a¼ 0
leads to Equation 32.10, which also represents the condition of minimum elastic energy.

Equation 32.12 leads to an interesting statement concerning higher-mode equilibrium consistent
with the yield strength of the pipe. Specifically, the yield load Py may be expressed in terms of the
yield strength Sy as

Py ¼ ASy ¼ 2pRTSy (32:13)

RiRo

FIGURE 32.3 A hollow circular cross section (as with a pipe).
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FIGURE 32.4 Higher-mode buckling of a long compressed simple pipe.
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where A is the pipe cross section area. By equating the expressions of Equations 32.12 and 32.13
and solving for a, we obtain

a ¼ 0:225
L

R

� �
Sy
E

� �1=2

� 0:5 (32:14)

For example, if L=R¼ 100 and E=Sy¼ 300, Equation 32.14 yields a¼ 0.8. The nearest integer is 1,
which according to Figure 32.4, corresponds to

P ¼ 9PCR (32:15)

where PCR is given by Equation 32.10.

32.4 PIPE ON AN ELASTIC FOUNDATION

When a pipe is continuously supported along its length, we can model the pipe as a bar on an elastic
foundation [1]. The energy method provides a convenient method of analysis and solution. In this
method, the lateral bar deflection is represented by a trigonometric series. Then the work done in
compressing the bar axially is made equal to the strain energy of bending the bar and that of deformation
of the medium, supporting the bar. The critical (buckling) value of the compressive axial force PCR

is then found by solving the energy balance equation by minimizing the energy of deformation.
The result of this analysis in terms of the usual parameters is

PCR ¼ p3ER3T

L2e
(32:16)

where Le is an ‘‘equivalent length’’ of an axially loaded bar without lateral support (see Equation
32.10). That is, Equation 32.16 is the same as Equation 32.12 with L replaced by Le.

The selection of the reduced length Le depends on a parameter Z0 given by

Z0 ¼ 0:02
bL4

ER3T
(32:17)

where
L denotes the actual length of the pipe resting against the elastic foundation
the parameter b defines the modulus of the foundation in psi

The dimensional check of Equation 32.17 shows that the result is compatible with the definition of
b. The ratio of Le=L depends on the parameter Z0, and this relation can be conveniently represented
in a graphical form or in algebraic terms. For example, when the parameter Z0 varies between 0 and
30, the relevant magnitudes of the ratio Le=L follow directly as in Figure 32.5.

For the higher values of Z0, the required length ratios can be calculated from the following
approximate relations:

When 30 � Z0 � 1000,
Le
L

¼ 0:6675� 0:1575 log Z0

and

When 1000 � Z0 � 10,000,
Le
L

¼ 0:450� 0:085 log Z0 (32:18)
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The theory of column buckling at higher modes may be related to the theory of a column of finite
length supported by an elastic medium. The maximum axial stress at the point of instability must
increase with the increase in the number of half waves into which the originally straight column
transforms. Similarly, the axial stress in a finite-length column, supported by a continuous elastic
medium, must increase with the increase in the spring constant of the elastic foundation. Hence, a
definite correlation exists between the buckling mode and the foundation modulus.

Assuming the end support conditions to be the same for both cases and combining Equations
32.22 and 32.16 leads to the simple expression:

a ¼ L� Le
2Le

(32:19)

When L¼ Le, elastic parameter Z0 is zero. For a finite pipe geometry this can be true only if b¼ 0,
or in other words, when the surrounding medium offers no resistance to the transverse pipe bending.
Equation 32.19 shows that the mode factor a must also be zero, which corresponds to the
fundamental buckling mode of a column with pin-jointed ends as shown in Figure 32.4.

Alternatively, when Le tends to a very small value, the column offers progressively more
resistance to the buckling deformation and, at least theoretically, the number of half-waves should
become very high. This process has, of course, a natural boundary condition depending on the yield
strength of the material or some other mode of failure, such as that of a cylinder in axial
compression. Before the latter boundary is reached, however, Equation 32.19 may be used to
approximate the buckling characteristics of the pipe by calculating the mode factor a for a given
ratio of Le=L.

32.5 ONE-WAY BUCKLING

In majority of the problems involving concepts of elastic stability and buckling of axially loaded
members, the assumption is made that the bar is perfectly straight before the end load is applied.
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FIGURE 32.5 Elastic foundation parameter Z0 as a function of the length ratio Le=L.
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The equilibriumbased on a direct axial compression is considered stable until the critical load is reached,
at which time even the slightest lateral force can immediately produce a lateral deflection, which will
not vanish on the removal of the lateral force. In other words, a new state of equilibrium is attained
in a slightly bent configuration, and the critical load is just sufficient to maintain such equilibrium.

Since in various practical situations we may have to consider pipe sections that are not perfectly
straight to start with, and since such components as the utility pipe or a well casing can be supported
by the surrounding medium in the transverse direction, the mathematical model of the pipe
equilibrium should include the effects of eccentricity and the transverse resistance to buckling.

Standard solutions to column problems seldom include all such effects simultaneously. For
example, the analysis of buckling of a bar on an elastic foundation usually does not account for any
initial curvature of the bar before the axial load is applied. In another instance, the effect of the initial
curvature on the transverse deflection of the column may be calculated without any allowance of the
transverse loading distributed along the axis of the column. Such effects from the two separate
solutions are not directly additive, and therefore the problem of a buckling column, with some
residual curvature and transverse loading occurring simultaneously, should be formulated and
developed from first principles. This form of the pipe behavior will be referred to in this discussion
as ‘‘one-way buckling.’’

Allen [2] discussed the problem of buckling of this type. His analysis is based on the assumption
that the transverse resistance of medium is constant along the pipe length and that the pipe behaves
as a beam with built-in ends at which the deflection and the slope are zero. Furthermore, in addition
to the shear reaction and axial forces, the fixing moments are considered at the supports.

Specifically, the assumptions are

1. The bending moment equation includes the change of the lever arm of the axial compres-
sive load.

2. The tangential slope is relatively small, so that the pipe curvature may be represented by
the strength-of-materials formula involving second derivative of the displacement.

To relate this analysis to a standard treatment of a beam-column problem, it will be noted that the
equilibrium of forces in a one-way buckling type of solution includes the transverse loading and the
original shape of the bar simultaneously. The procedure of setting up the differential equation of
equilibrium for the portion of the pipe behaving as a pre-bent beam with the transverse restraint
follows the general rule of the second-order theory of structural analysis. This rule simply states that
the equations of equilibrium are written for the geometry of the deformed structure [3].

Figure 32.6 shows a simplified sketch of the pipe, where LO defines the half-length of a
symmetrically deformed portion of the pipe. There are thus three locations of zero slope with two
of these shown in the figure.

Zero slope

Uniform
transverse resistance, Q 

Zero slope

QL0

L0

x

P

yd
P

M0 = QL2
0/12

FIGURE 32.6 Half-length of pipe for analysis of one-way buckling.
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Let Q represent the uniform resistance of the surrounding medium. End-fixing moment and
shear reactions are denoted by M0 and QL0, respectively. The compressive forces P are shown to be
offset by the amount d. The deformed pipe is considered to remain in equilibrium under the assumed
system of forces as long as the value of P is unchanged. Hence, the basic analytical problem in
this instance is to develop a working formula for the limiting compressive force in terms of the
transverse resistance of the medium, flexural rigidity of the pipe, and the maximum eccentricity d.
No stipulation is made here as to how this value of d was originally established, and the
basic reason for including this parameter is to indicate the extent of the existing eccentricity for
the end load. Hence, from the practical point of view, d may be looked upon as the manufacturing
tolerance, the original bending deflection due to the lack of straightness, or a combination of
these effects.

Considering bending moment equilibrium at a typical point x, measured from the right-hand
side support as in Figure 32.6, leads to the expression

EI
d2y

dx2
¼ QL0x� Qx2

2
þ QL20

12
� Py (32:20)

or simply

d2y

dx2
þ K2yþ F(x) ¼ 0 (32:21)

where by inspection of Equation 32.20 K2 and F(x) are

K2 ¼ P=EI and F(x) ¼ QK2

12P
6x2 � 12L0x� L20
� �

(32:22)

When F(x) is a polynomial of not more than fifth degree, the general solution of Equation 32.21 may
be obtained directly with the aid of the relation

y ¼ A sinKxþ B cosKx� F(x)

K2
þ d2F(x)

K4dx2
� d4F(x)

K6dx4
(32:23)

From Equation 32.21, we have

d4F(x)

K6dx4
¼ 0 and

d2F(x)

K4dx2
¼ Q

PK2
(32:24)

Finally, by substituting from Equations 32.22 and 32.24 in Equation 32.23, we obtain

y ¼ A sinKxþ B cosKx� Q 6x2 � 12L0x� L20
� �

12P
þ Q

PK2
(32:25)

The constants of integration A and B in Equation 32.25 can be determined from the support
conditions. Figure 32.6, shows that the displacement y and its slope dy=dx are zero at x¼ 0. This
leads to

A ¼ �QL0
PK

and B ¼ �Q
L20
12

� 1
K2

� �
(32:26)
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By substituting these results into Equation 32.25, we have

y ¼ QEI

P2
1� KL0 sinKxþ�K2L20 � 12

12
cosKx� K2

12
6x2 � 12L0x� L20
� �� 	

(32:27)

By knowing this displacement, we can proceed to evaluate stresses and critical loads. For example,
for the model of Figure 32.6, Blake, in his second edition of this book [4], using this procedure,
develops the expression for the critical column stress SCR as

SCR ¼ 1:27
QER

dT

� �1=2

(32:28)

where
Q is the transverse resistance (lb=in.)
d is the maximum initial offset

32.6 AXIAL RESPONSE OF CYLINDERS

Instability of thin pipes and containers subjected to end compression is still one of the most
challenging problems in stress analysis for design. Wide disparity between theoretical and experi-
mental results often occur. This is due to the complexity of the mathematical formalism and the
modeling assumptions. Also, experimental techniques intended to test the theory involve difficulties
and practical limitations. Finally, the influence of manufacturing imperfections on a design is
difficult to estimate. In this section, therefore, we consider a few proven rules and formulas directly
applicable in design.

Essentially all typical responses of cylindrical components under axial compression due to static
and pseudostatic loading can be put into three categories:

1. Diamond-shaped buckles of local character
2. Bellows-type wall deformation
3. Direct yield stress criterion

Experiments indicate that thin pipes, vessels, and cans develop isolated buckles of the diamond
pattern. This is largely due to the fact that the local bending rigidity of a shell is proportional to T3,
while the resistance to membrane tension depends on the first power of thickness. The thinner the
cylindrical surface, therefore, the higher the tendency to develop a diamond-shaped pattern. Also a
random appearance of diamond buckles suggests that initial imperfections must be responsible for
this type of local buckling. Such defects may not be visible, yet they can cause sufficient variation in
the compressive stress distribution around the cylinder to trigger the onset of instability. Further-
more, experiments show that diamond-shaped buckles can proceed with great rapidity, resulting
often in a ‘‘snap-through’’ type of response.

The classical theory of elastic stability for a cylindrical component predicts a buckling stress
equal to [1]

SCR ¼ 0:605E
m

(32:29)

where
E is the elastic modulus
m is the mean radius to thickness ratio (R=T)
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The corresponding critical load PCR is

PCR ¼ 3:8ET2 (32:30)

Wide discrepancies between theory and experiments have led to an empirical formula attributed to
Donnell [1]:

SCR ¼ E
0:605� 10�7m2

m(1þ 0:004f)
(32:31)

where f is the inverse strain parameter E=Sy with Sy being the yield stress. This expression appears
to correlate well with experimental data, particularly in the range of higher values of m.

The classical theory of symmetrical buckling of a cylindrical shell under the action of uniform
axial compression applies essentially to perfect thin shells of revolution, for which the critical
buckling stress does not exceed the proportional limit of the material. In this regard, a cylindrical
component may be regarded to be thin when its ratio of mean radius to thickness exceeds 20. The
theoretical response in axial compression also indicates that the critical buckling load is independent
of the pipe length. However, the number of half-ways into which the cylinder may buckle can be
expressed as

ne ¼ 0:58L

(RT)1=2
(32:32)

The corresponding elastic buckling stress is still given by Equation 32.29.
Equations 32.29 and 32.32 are both intended for isotropic materials with Poisson’s ratio 0.3 and

only for the case of a purely elastic response.

32.7 PLASTIC BUCKLING IN AN AXIAL MODE

When the pipe ratio R=T is decreased, axial buckling stress can approach and exceed the propor-
tional limit of the material. Under these conditions, the length of the half waves into which the pipe
buckles becomes shorter. When short pieces of pipe are joined by means of couplings thicker than
the pipe itself, lateral expansion of the pipe at the joints becomes restricted. This restriction causes
local bending of the pipe wall which, when combined with the direct axial compression, gives rise to
the formation of the first axisymmetric half-way buckle. With further increase in axial compression
of the pipe, the buckle splits open. Tests also confirm that the formation of the buckle and the onset
of split is likely to be accentuated by the degree of load eccentricity.

For the type of deformation experienced with relatively thicker piping such as that found in the
field, the theory indicates that buckling should occur beyond the proportional limit of the material.
The relevant calculation of the number of the half waves and the corresponding plastic buckling
load require the introduction of a reduced modulus concept [5]. This leads to the expressions

np ¼ 0:58L(E)1=4

(RT)1=2(Er)
1=4

and Sp ¼ 0:605ErT

R
(32:33)

where
np is the number of plastic waves
Sp is the plastic stress
L is the pipe length
R is the mean radius
T is the thickness
E is the elastic modulus
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Er is the reduced modulus given by

Er ¼ 4EEt

E1=2 þ E1=2
t


 �2 (32:34)

where Et is the tangent modulus of elasticity. (Recall that the tangent modulus of elasticity is the
slope of the stress–strain curve at any working stress, beyond the yield stress.)

It should be noted that, depending on the shape of the actual stress–strain curve of the material,
the reduced modulus Er can be either constant or variable. It follows that for a constant value of Et

and fixed pipe dimensions R and T, the length of a half-wave remains constant for all the strains
beyond the proportional limit of the material. The corresponding critical buckling stress also
remains constant. These features are evident from a review of Equations 32.33 and 32.34.

32.8 ANALYSIS OF BELLOWS-TYPE BUCKLE

Based on the analysis of experimental data and the concept of the reduced modulus of elasticity, the
design estimate of the ultimate pipe capacity for a bellows type of buckling may be accomplished
according to the following four-point procedure:

1. Create a bilinear approximation to the stress–strain curve of the pipe material
2. Obtain the tangent modulus of elasticity from the slope of the upper bilinear stress–strain

approximation
3. Calculate the reduced modulus Er

4. Calculate the ultimate axial load W and the corresponding length LW of a half-wave buckle
using the following expressions:

W ¼ 3:80ErT
2 and LW ¼ 1:72(RT)1=2

Er

E

� �1=4

(32:35)

The minimum value of Er(Er min) for which Equation 32.35 is applicable may be determined by
expressing the load W in terms of the compressive yield stress Sy. That is,

W ¼ 2pRTSy ¼ 3:80ErminT
2 (32:36)

Solving for Er min, we obtain

Ermin ¼ 1:65RSy=T (32:37)

The maximum value of Er(Er max) for which Equation 32.35 is applicable may be taken as

Ermax ¼ Er min (32:38)

on the assumption that the ultimate stress is twice the yield stress (that is, Su¼ 2Sy). The above four-
step procedure is not recommended outside the range limited by Er min and Er max.

It should be noted that the absolute size and strength of the standard pipe coupling or a similar
local reinforcement does not appear to enter the calculations. Its presence in the pipe string,
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subjected to axial compression, only serves as the local constraint and the origin of the first
perturbation in the continuous process of bellows-type buckling.

Finally, the simplest estimate of the yield force Py is determined from the yield stress Sy as

Py ¼ 2pRTSy (32:39)

32.9 EXAMPLE OF LOAD ECCENTRICITY

Under special conditions of underground explorations and tests, a long string of piping can be
subjected to the effect of load eccentricity. Figure 32.7 illustrates this concept where we assume a
superposition of tensile and bending stresses in the wall.

Let e be the lateral misalignment of the centerlines as shown in Figure 32.7. Let the eccentricity
ratio n be defined as e=T and let m be the mean radius to thickness ratio R=T. That is,

n ¼ e=T and m ¼ R=T (32:40)

The combined stress criterion is then

S ¼ W

T2

0:16
m

þ 0:32
n

m2

� �
(32:41)

The variation of the stress given by Equation 32.41 indicates that the effect of load eccentricity
on the combined stress in the pipe wall decreases rather rapidly with an increase in the radius to
thickness ratio. This is not surprising when we consider the effect of the increase of pipe radius on
the numerical values of the wall bending stress. It is noted that the maximum combined stress is
assumed to be tensile. For a relatively high eccentricity, however, it is possible to visualize another
condition under which the resultant stresses are changed to compressive. When this happens, an
additional bending criterion and its effect on the possibility of a local pipe buckling should be
examined.

Me = We

Element of 
pipe wall

Tension

Bending W

W
T

T
e

W

W

R
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FIGURE 32.7 Combined stress in an offset pipe.
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We provide a brief description of this type of analysis here for a general illustration. It is
unlikely, however, that this mode of failure will commonly occur. But there may be special
applications where this consideration could be of value.

The eccentricity of axial loading at which local buckling of pipe is likely to develop may be
estimated from the expression:

e ¼ 1:1
E

W
mT3 þ mT

2
� 1:57

Pe

W
m3T3 (32:42)

where
W is the applied axial load
Pe is the external pressure on the pipe

In deriving Equation 32.42, the assumptions were made that the theoretical local bending stress in
the pipe wall producing elastic instability is equal to the algebraic sum of the following stresses:

1. Membrane compressive stress due to external pressure
2. Compressive bending stress due to eccentric loading
3. Tensile stress due to axial loading

Since the external pressure Pe is often relatively low, the last term of Equation 32.42 is generally
negligible. Equation 32.42 then becomes

e ¼ 1:1
E

W
mT3 þ mT

2
(32:43)

Equations 32.42 and 32.43 show that the extent of eccentricity and the proportions of the canisters
or emplacement piping may be such that the elastic instability due to bending would not take place.
This may be due to the effect of the direct tension on the stress distribution across the pipe wall, as
well as the influence of a relatively high ratio of E=W.

32.10 THEORY OF A ROLLING DIAPHRAGM

One of the more interesting phenomena of axial response of a cylindrical component is concerned
with the formation of a convolution. Such a mechanism is found in rolling cylindrical diaphragms,
inverted tube shock absorbers, and positive expulsion devices, to mention a few. A simplified model
of this mechanism can be established on the assumption that the neutral axis of the sheet material
coincides with its centerline and that the strain energy due to axial and shear forces can be neglected
as being small in relation to bending and hoop extension energy. Furthermore, it is assumed that the
strain energy of bending and unbending during the process of diaphragm inversion is the same and
that the material is bent continuously through a full angle of 1808. The strain energy of bending with
a constant bending moment is obtained as the product of the plastic moment and the full angle of
bend are expressed in radians. The unit energy due to circumferential strain is taken as the product
of the plastic hoop stress and the corresponding total hoop strain.

Figure 32.8 illustrates the basic geometry of the cylindrical diaphragm. The diaphragm is
considered to be held rigidly in the plane of circumference A-A. The mean radii of diaphragm and
bend are R and r, respectively. Assuming a continuous plastic deformation under pressure differ-
ential DP, the diaphragm end moves from plane B–B to C–C, as shown. During this process, each
element of the diaphragm undergoes longitudinal strains due to pure bending and hoop strains as the
result of the overall increase in radius as seen in Figure 32.9. At the same time the plane O0 00

O00G00G0 00 rotates through the angle u¼p into a new position O0OGG0.
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For a small bend element of unit width cut out of the diaphragm, the cross-sectional geometry is
approximately rectangular and the corresponding section modulus for a fully developed plastic
condition is given by the elementary theory of plasticity as

Zp ¼ t2

4
(32:44)

By the rules of strength-of-materials theory, the ultimate bending moment for a relatively wide
beam is

Mp ¼ SyZp
1� n2

(32:45)
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FIGURE 32.8 Notation for a cylindrical diaphragm.
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FIGURE 32.9 Geometry of a bent element.
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where n is Poisson’s ratio. By substituting from Equation 32.44 into 32.45 and setting n equal to 0.3
we obtain

Mp ¼ 0:275Syt
2 (32:46)

The longitudinal strain «b for pure bending may be expressed in terms of the mean radius of
curvature r of the bend and the wall thickness t as

«b ¼ t=2r (32:47)

From the illustration of Figure 32.10, we see that the length Lb of the bend, which undergoes
complete plastic deformation, is

Lb ¼ pr (32:48)

The energy Ub due to the bending deformation for length Lb is pMp. Then by substituting from
Equation 32.46, we obtain

Ub ¼ 0:87 Syt
2 (32:49)

The tensile hoop strain Eh developed during the straightening of the bend element may be developed
and expressed as

«h ¼ Final circumference less original circumference

Original circumference

¼ 2p R� t
2 þ 2r þ t

� �� 2p R� t
2

� �

2p R� t
2

� � (32:50)
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FIGURE 32.10 Annular rolling diaphragm.
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or

«h ¼ 4r þ 2t
2R� t

(32:51)

Since the unit energy due to hoop strain is Sy«h, the corresponding strain energy per unit width of the
diaphragm becomes

Uh ¼ Sy«hLbt (32:52)

Combining Equations 32.47, 32.48, and 32.52, Uh may be expressed as

Uh ¼ 1:57Syt
2 «h

«b

� �
(32:53)

By introducing nondimensional parameters k and m as

k ¼ R=t and m ¼ r=t (32:54)

and by substituting into Equations 32.47 and 32.51, and in turn into Equation 32.53, we see that the
hoop energy per unit width of the diaphragm is

Uh ¼ pm(4mþ 2)
2K � 1

Syt
2 (32:55)

From Equations 32.49 and 32.55, we see that the total deformation energy U for a bend element per
unit width is

U ¼ 0:87þ pm(4mþ 2)
2k � 1

� 	
Syt

2 (32:56)

The external work We done on the diaphragm by the actuating pressure DP for one length of bend is
simply the total actuating force multiplied by the distance traveled. This gives

We ¼ pR2DPLb (32:57)

(The pressure acting on the side of the diaphragm is omitted since it acts perpendicular to the
direction of the actuating pressure.)

By substituting from Equation 32.48 into Equation 32.57, we have

We ¼ p2DPR2r (32:58)

By multiplying the unit width deformation energy U for a bend element, in Equation 32.56, by the
average length of the circumference involved, gives

Ut ¼ 2p(Rþ r)U (32:59)
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Finally, by setting the external work done We to the total internal energy of deformation UT, we
obtain (from Equations 32.58 and 32.59):

DP ¼ 2(Rþ r)U

pR2r
(32:60)

Then by substituting for U from Equation 32.56, we have an approximate design formula for
actuating on the cylindrical diaphragm as

DP ¼ (k þ m)(0:55k þ 4m2 þ 2m)Sy
mk3

(32:61)

In many practical cases, m is small compared with k. Thus Equation 32.61 may be expressed in the
reduced form:

DP ¼ (0:55k þ 4m2 þ 2m)Sy
mk2

(32:62)

To increase the capacity of the diaphragm we can form an annular geometry, as represented in
Figure 32.10. Using the same type of analysis as above, the approximate design formula for the
actuating pressure DPa becomes

DPa ¼ 2Sy
pm k20 � n20

� � k0 þ m

2k0 � 1
0:87(2k0 � 1)þ pm(4mþ 2)½ �

�

þ n0 þ m

(2n0 � 1)
0:87(2n0 � 1)þ pm(4mþ 2)½ �



(32:63)

When parameter m is relatively small and when (2k0� 1) and (2n0� 1) are approximated by 2k0 and
2n0, respectively, Equation 32.63 can be simplified to

DPa ¼ 0:55(k0 þ n0)þ 8m2 þ 4m½ �Sy
m k20 � n20
� � (32:64)

Although the inherent complexity of the mechanics of a convolution presents a limited opportunity
for a more detailed and fully representative theoretical analysis, the study indicates at least that the
materials selected for the rolling diaphragms should exhibit good elongation and ductility. However,
since the characteristics of uniform elongation in a metallic material are closely associated with the
work-hardening properties and are subject to local variations resulting from heat treatment and alloy
content, it is desirable, whenever possible, to select nonheat-treatable alloys. On this basis, alumi-
num alloys with the limited alloy content appear to be most promising, provided that they are
compatible with other metals in the systems.

The equations derived indicate that the actuating pressure depend on geometric parameters and
are directly proportional to the yield strength of the material. Hence, for the same thickness of a
diaphragm wall, the higher the yield strength, the higher the pressure required to produce the rolling
action. This simple relation was deduced on the assumption of the idealized stress–strain charac-
teristics of material undergoing continuous plastic deformation. Under such conditions, the working
plastic stress remains sensibly constant while the material is subjected to gradually increasing
strains. To fulfill such stress–strain requirements, the relevant material must have good ductility
and must be able to sustain appreciable elongation without rupture. From the point of view of
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practical design, it is better to keep in mind the fact that because of large strains associated with the
process of atoroidal inversion of the cylinder wall, thin-gage materials and large diameters may be
required for minimizing the working stresses. However, large ratios of diaphragm radius to wall
thickness imply a decrease in the resistance of the wall to local buckling. Hence, a suitable design
compromise may well be required.

SYMBOLS

A Constant of integration
B Constant of integration
b Rectangular beam width (see Figure 32.1)
c Half beam depth
E Modulus of elasticity
Er Reduced modulus
Er min Minimum reduced modulus
Er max Maximum reduced modulus
Et Tangent modulus
E Load eccentricity
F(k) Auxiliary function
H Rectangular beam height (see Figure 32.2)
I Second moment of area
K Curvature parameter
k¼R=t Cylindrical diaphragm ratio
k0¼Ro=t Annular diaphragm ratio
L Length
Lb Length of half-wave buckle
Le Reduced column length
L0 Half-length of pipe
Lw Length of half-wave buckle
Mb Bending moment to cause buckling
Me Moment due to load offset
M0 End moment
Mp Plastic moment
m Mean radius to thickness ratio
n¼ e=T Eccentricity ratio
n0¼Ri=T Annular diaphragm ratio
np Number of plastic half-waves
P Axial load on pipe
PCR Critical axial load
Pe External pressure
Py Axial load at yield
DP Pressure difference across cylindrical diaphragm
DPa Pressure difference across annular diaphragm
Q Transverse resistance
R Mean radius of cylindrical component; cylinder radius
Ri Inner radius
Ro Outer radius
r Mean radius of convolution
S General symbol for stress
Sc Stress in direct compression
SCR Critical column stress

Huston/Practical Stress Analysis in Engineering Design DK4291_C032 Final Proof page 525 3.11.2008 6:51pm Compositor Name: VBalamugundan

Axial and Bending Response 525



Sp Plastic stress
Su Ultimate stress
Sy Yield stress
T Thickness of pipe or vessel
t Thickness of diaphragm wall
U Total elastic energy per inch of convolution
Ub Unit energy due to bending
Uh Unit energy due to hoop strain
Ut Total elastic energy
W Ultimate axial load
We External work done
x Arbitrary distance
y Initial offset at any point
z Elastic section modulus
Z0 Elastic foundation parameter
Zp Plastic section modulus
a Buckling mode number
b Modulus of foundation
d Maximum initial offset
«b Bending strain
«h Hoop strain
n Poisson’s ratio
smax Maximum bending stress
f¼E=Sy Inverse strain parameter
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Part VII

Advanced and Specialized Problems

In this final part of our treatise we consider some advanced and specialized problems.
We begin with a brief chapter on stress concentration. We then consider thermal stresses. In the

next three chapters we consider axial loadings on bars; rings and arches; and links and eyebars. We
conclude with a couple of chapters on mechanical springs.

There is, of course, no limit to the number of special problems we could consider. The above
problems were selected due to their general interest and utility.
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33 Special Cylinder Problems

33.1 INTRODUCTION

In addition to issues involving stresses in pressurized components, there are a few specialized topics
of related interest. These include such matters as dilation of cylinders, nested cylinder effects, and the
effectiveness of circumferential stiffeners. In some of these cases, even well-established formulas and
practices have speculative features despite the continuing progress in design technology. In this
chapter, we briefly consider these problems, beginning with the dilation of closed cylinders.

33.2 DILATION OF CLOSED CYLINDERS

Dilation is the radial growth of a closed vessel (in this case a cylinder) subjected to internal pressure.
The magnitude of the dimensional change may be of interest to designers concerned with the limited
assembly tolerances in a given mechanical system. Additionally, one of the more important
applications in this area involves the development of pressure transducers in the field of instrumen-
tation. Transducer manufacturers are concerned with the optimum use of the strain gages to assure an
electrical signal proportional to the internal pressure in a closed-end tube. It is clear, therefore, that
some detailed knowledge of the dilation characteristics as a function of tube geometry is essential.
Unfortunately, only limited information on this topic is available in the open literature [1].

If the outer and inner tube diameters are denoted by D and d, respectively, the amount of radial
growth d for a thin closed-end tube is

d ¼ PD(2� n)(1þ k)2

16E(1� k)
(33:1)

where
P is the pressure
D is the outer diameter
k is the ratio of the outer diameter to the inner diameter D=d
n and E are Poisson’s ratio and the elastic constant, respectively

Equation 33.1 is useful in the region of the cylinder not affected by the end closures. Figure 33.1
shows a transition region marked by a perturbation observed during tests [1].

The region of uniform radial growth, defined by x in Figure 33.1, depends on two dimensionless
parameters: L=D and d=D, with L being the cylinder length. Figure 33.2 is a design chart providing
the variation of the dimensionless span coordinate x=L in terms of the parameters d=D and L=D.

Experimental evidence also suggests that the ratio of the maximum dilation to the dilatation d
predicted by Equation 33.1 should not exceed 1.10. This ratio, however, will depend upon the basic
shell parameters and the accuracy of manufacture. The effects of geometric irregularities such as
out-of-roundness, bore eccentricity, and thickness variation has not yet been fully accounted for in
experimental and theoretical studies.

33.3 NESTED CYLINDERS

In most design situations, the calculation of wall thickness for a cylindrical canister subjected to
external pressure is performed well ahead of hardware development and manufacture. There may be
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special cases, however, where an existing canister has to be modified to meet particular load
specifications of increased safety considerations. Under these conditions, the following options
are available:

1. Providing a new canister design
2. Providing circumferential stiffeners
3. Providing a continuous structural sleeve

If the time is limited, solution (1) may not be acceptable. If manufacturing and metallurgical
problems arise, solution (2) may have to be excluded. This leaves the alternative (3).

We have to assume here that sleeve reinforcement can be provided without undue fabrication
difficulties. For the purpose of this analysis, we assume that the composite canister, consisting of the
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FIGURE 33.1 Partial representation of a closed-end cylinder under dilatation.
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FIGURE 33.2 Design chart for the region of uniform dilation.
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main shell and the reinforcing sleeve, can be assembled with zero or minimal initial interference.
Thus, the practical question to be answered is: What degree of pressure attenuation can one
reasonably expect in a reinforced system? Although the elastic theory suitable for defining the
attenuation factor is rather elementary, few practical design formulas are readily available in
engineering handbooks.

Let us consider, for example, a double-wall system such as that sketched in Figure 33.3. The
displacement of the inner surface of the reinforcing cylindrical sleeve, in terms of a given external
pressure Po and the unknown contact pressure P, follows directly from Equation 29.33:

Uio ¼
(1� n) PoR2

o � PR2
� �

Rþ (1þ n)(Po � P)R2
oR

E R2
o � R2

� � (33:2)

where n and E are Poisson’s ratio and the elastic modulus, respectively. Figure 33.3 illustrates the
other symbols and parameters.

The displacement of the outer surface of the canister may be expressed as

Uoi ¼
(1� n) PR2 � PiR2

i

� �
Rþ (1þ n)(P� Pi)RR2

i

E R2 � R2
i

� � (33:3)

For the assumed condition of zero radial interference between the sleeve and the canister, we have

Uio ¼ Uoi (33:4)

By substituting from Equations 33.2 and 33.3 in 33.4 and by setting n¼ 0 and Pi¼ 0, we obtain the
following expression for the attenuation ratio c as

c ¼ P=Po ¼
2 1� k21
� �

1:3þ 0:7k22
� �

1� k21
� �þ 0:7þ 1:3k21

� �
1� k22
� � (33:5)

where k1 and k2 are defined as

k1 ¼ Ri=R and k2 ¼ R=R0 (33:6)

Reinforcing
cylinder

Po

P

P Initial assembly at
zero interference

Main canister wall

Pi = O

RoRR1

Displacement
convention

Displacement
of inner surface

External
pressure= Displacement

of outer surfaceUo  =

Ui  =

Po

FIGURE 33.3 Notation for reinforcement analysis.
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When k1¼ 1, the thickness of the canister wall vanishes and the interference pressure becomes zero.
When k2¼ 1, that is, the sleeve is assumed to be infinitely thin, Equation 33.5 yields c¼ 1,
indicating no pressure attenuation. When k1¼ 0 or k2¼ 0, real solutions can still be obtained
from Equation 33.5, although practical applications in cases reflecting such bracketing values are
not very likely to exist. Figure 33.4 provides a series of curves yielding the attenuation ratio for
various values of k1 and k2.

33.4 DESIGN OF RING STIFFENERS

We can reinforce cylindrical vessels and large pipes using circumferential stiffeners. The issues with
this procedure are the determination of the spacing and the cross section dimensions of the stiffeners
to prevent collapse of the vessel under external pressure. Figure 33.5 shows the relevant notation for
our analysis.

Figure 15.25 provides a formula for the unit external load qCR sufficient to elastically buckle a
ring. Specifically, qCR is
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FIGURE 33.4 Pressure attenuation chart for nested cylinders.
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FIGURE 33.5 Notation for a ring stiffener.
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qCR ¼ 3EI=R2 (33:7)

where
E is the elastic modulus
I is the second moment of area of the ring
R is the ring radius

Let the length of the cylinder per stiffener be L. Then the external load qCR per unit circumferential
length is

qCR ¼ PL (33:8)

From Equation 33.7, the second moment of area I for the onset of elastic buckling is

I ¼ PLR3

3E
(33:9)

In Figure 33.5, the effective length Le of the stiffener may be approximated by the rule [2]:

Le ¼ bþ 1:57(RT)1=2 (33:10)

Consider now the following expression for finding the second moment of area:

I ¼ Ib þ Ig � J2

A
(33:11)

where Ib, Ig, J, and A are

Ib ¼ b(hþ T)3

4
þ 1:57T2(m)1=2(2hþ T)2

4
(33:12)

Ig ffi b(hþ T)3

12
(33:13)

J ¼ b(hþ T)2

2
þ 1:57T2(m)1=2(2hþ T)

2
(33:14)

and

A ¼ (hþ T)bþ 1:57T2(m)1=2 (33:15)

Let l and « be defined as

l ¼ b=T and « ¼ h=T (33:16)

Then by combining Equations 33.10 through 33.16, we can develop an approximate design formula
for ring stiffener sizing as

PL

ET
¼ h ¼ 0:24l2(«þ 1)4 þ 0:39l(m)1=2(«þ 1)(4e2 þ 2«þ 1)

m3 l(«þ 1)þ 1:57(m)1=2
� � (33:17)
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Ring-stiffened vessels are generally most efficient. Although the behavior of stiffened cylinders has
been studied by numerous investigators, the question of Le given by Equation 33.10 has not yet been
fully resolved, and it remains an interesting area for research.

As indicated previously in connection with the concept of the effective out-of-roundness, this
influence becomes less important as the spacing of ring stiffeners decreases. Hence, the stiffening
rings not only make a lighter design but also allow some relaxation of the fabrication tolerances. The
experiments on ring-stiffened vessels show that the entire shell and stiffeners work together until
local buckling of the panel takes place. Such buckling is often followed by a tear at the junction of
the shell and the stiffener. The stiffener, however, seldom fails unless the panels on both sides of the
ring become unstable and buckle prior to shell tear.

SYMBOLS

A Cross-sectional area
b Width of stiffener cross section
D Outer diameter of cylinder
d Inner cylinder diameter; bolt diameter
E Modulus of elasticity
h Depth of ring stiffener
I Second moment of area
Ib, Ig Second moments of area
J Static moment
k¼ d=D Diameter ratio
k1, k2 Radius ratios (see Equation 33.6)
L Length of cylinder
Le Effective length
m¼R=T Radius-to-thickness ratio
P Symbol for uniform pressure
Po External pressure
Pi Internal pressure
qCR Critical buckling load
R Interface or average radius
Ro Outer radius
Ri Inner radius
T Thickness of wall
Uio (or Ui) Displacement of inner surface
Uoi (or Uo) Displacement of outer surface
x Arbitrary distance
d Dilation
«¼ h=T Depth ratio
h Dimensionless parameter
l¼ b=T Width ratio
n Poisson’s ratio
c¼P=Po Attenuation ratio
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34 Stress Concentration

34.1 INTRODUCTION

‘‘Stress concentration,’’ as it is commonly used in design, refers to a high local stress relative to
the overall macroscopic stress. Stress concentration has unique meaning for plane problems in terms
of average stress. If, for example, a small hole is drilled in an end-loaded plate as in Figure 34.1,
the stress is essentially unchanged in regions away from the hole. But at the edge of the hole, the
tangential stress is increased dramatically.

By the concept of a macroscopic stress, we understand the average calculated stress related to
the material’s volume, characterized by a very fine structure. In terms of the practical requirements,
this assumption is sufficiently accurate for the great majority of design situations.

The notion of a stress concentration factor K is that it is the multiple of the average stress, S00,
which produces the high, or maximum, state of stress, Smax. That is,

Smax ¼ KS00 (34:1)

34.2 ELASTIC STRESS FACTORS

As a rule, stress concentrations arise due to the various local changes in shape, such as sharp
corners, screw threads, abrupt changes in thickness, and even curved members of sharp curvature.
This phenomenon is characteristic of elastic behavior. On the other hand, plastic yielding accom-
panies high stresses and tends to mitigate stress concentrations even in relatively brittle materials.
This is a very important practical rule to keep in mind in developing rational designs. Particularly in
the case of ductile response under static conditions, such as rivet holes in structural steel members,
high local stresses based on the elastic theory can, indeed, be tolerated.

Under the conditions of static loading applied to the parts made of brittle materials, stress raisers
cannot be ignored. This is also true in the case of some inherently ductile materials, which, at lower
temperatures, fail due to the acquired brittle characteristics.

Stress concentrations of any kind of cyclic loading should be avoided or at least mitigated.
Furthermore, tests show that a single isolated hole or a notch appears to have a worse effect than that
due to a number of similar stress raisers placed relatively close together.

We can obtain elastic stress concentration factors either analytically or experimentally. The
published literature contains extensive design tables for stress concentration factors as well as
design procedures for guarding against fatigue failure in the presence of stress raisers [1–13].

34.3 COMMON TYPES OF STRESS RAISERS

Design experience indicates that there are at least two groups of questions which frequently come up
during structural reviews. One concerns the effect of holes in plate and shell members. The other
involves stress concentration due to the fillets and grooves under various conditions of loading.

We can illustrate the first group by results listed in Table 34.1 for plates and rectangular bars.
These results are based upon long-established rules [13–16]. The results are also applicable with
curved surfaces, provided the local curvature is not too sharp.
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In the second group of stress raiser problems, a question frequently encountered concerns the
difference in the type of loading on shafts and bars with transversely drilled circular holes. Figure
34.2 illustrates stress concentrations in round and square bars with holes. The upper curve of the
figure is based on the case of uniaxial tension from Table 34.1, using however a more exact
empirical formula [17,18]. Observe that both curves start at K¼ 3. Thus, as a conservative guide,
a factor of 3 can be used in many circumstances.

In the case of a hole drilled near the free edge, however, as shown in Table 34.1, good practice is
to make the dimension e equal to at least two hole diameters. Figure 34.3 shows another comparison
between rectangular and round bars in this case with surface grooves. Round bars, with the dashed
curves, are seen to be less susceptible to the effect of stress raisers. Again the ultimate values of the
concentration factor K is less than 3, that is, K � 3 [19]. Figure 34.4 provides a comparison of stress
concentration in bending and torsion.

Where sharp grooves and notches are involved, the theoretical values of stress concentration can
be very high, and for this reason, the theory should be corrected for small radii of curvature. Under

W

S = Average stress on
section away from hole

S�S
Smax = KS�

S� = Average stress on
net section

d
x

W

FIGURE 34.1 Example of stress concentration.

TABLE 34.1
Effect of Circular Hole on Direct Stress for Flat Plates
and Rectangular Bars

S S
bd

Uniaxial tension of central hole K ¼ 3b
bþ d

(approximate formula)

S Se
d Uniaxial tension of center hole

e=d

K

0:67 0:77 0:91 1:07 1:39 1:56
4:37 3:93 3:61 3:40 3:25 3:16

S
S S

S
d

Biaxial tension (d=b small) K¼ 2

S S
S

S
d

Biaxial tension and compression
(d=b small)

K¼ 4
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repeated loading, sharp notches can be especially detrimental. The highest stress concentration will
develop when the notch depth is large while the notch radius and the angle are small.

Stress concentration in the presence of a groove produces the effect of a combined stress pattern,
decreasing the shear stress, for instance, in the middle of a grooved cylindrical specimen. This effect
results in a cup-and-cone type of failure of a tensile specimen, so that the ductile material appears to
have the characteristics of brittle failure on the inside.
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FIGURE 34.2 Stress concentration in round and square bars.
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FIGURE 34.3 Stress concentrations for round and rectangular bars with grooves.
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In the design of steel structures [20], it should be noted that, in addition to problems of grooves
and sharp corners, nonuniform stress distributions can occur in welded joints as illustrated in
Figure 34.5. An elongated transverse weld, as in Figure 34.5a, produces a more uniform stress
gradient than a shorter transverse weld, as in Figure 34.5b.

34.4 STRESS DISTRIBUTION

When the structural geometry of sharp transitions, worms, notches, or holes creates a stress concen-
tration, a question which often arises is: What is the stress distribution around the concentration?

To discuss this, consider for example, the stretched plate of Figure 34.1, illustrating stress
concentration in tension. Theoretical and experimental studies suggest that in this case the stress
distribution can be represented as

Bending
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FIGURE 34.4 Comparison of stress concentration between bending and torsion.

(a)

(b)

FIGURE 34.5 Approximate stress transfer in a welded joint.
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Smax ¼ S00 1þ 1
8

d

x

� �2

þ 3
32

d

x

� �4
" #

(34:2)

where S00 is the general, overall, or average stress, and Smax represents the stress enhancement as a
result of the hole, as a function of distance x from the hole center. When x is d=2, at the edge of the
hole, Smax¼ 3S00. That is, the maximum theoretical stress occurs at the hole edge and is three times
the average stress S00. Alternatively, when x becomes large in comparison with the hole diameter,
Smax approaches the average stress S00.

Equation 34.2 shows that stress disturbance is highly localized. Practical rules often state that
the maximum theoretical stress concentration for a plate in tension is encountered when the width of
the plate is more than about four times the diameter of the hole. Putting b¼ 4d into an approximate
formula, given in Table 34.1, we get K¼ 2.4. Only when d becomes very small, the theoretical value
of 3 attained.

In general, the effect of open holes in beams is not easy to evaluate despite the various
theoretical and experimental tools available. For example, when holes are present in the
flange, the problem of location of the neutral axis can lead to many interesting speculations.
Furthermore, the effect of a hole in the tension flange of a beam is difficult to assess if the beam
does not fracture and the compression flange carries the significant share of the load. On this basis, it
would seem that the effect of holes in flanges can often be ignored, particularly when rivets are used.
Under these circumstances, the American Institute of Steel Construction allows us to neglect the
reduction of beam area and girder flanges of up to 15% of the gross area.

34.5 PLASTIC REDUCTION OF STRESS FACTORS

So far in this chapter, we have considered stress concentration from an elastic perspective. While
this approach has been adopted by designers for many years, economic and environmental consid-
erations require a closer look at the stress concentration factors to see if they can be reduced. More
practical models are continually being sought.

In 1913, Inglis [21] proposed a simple formula for estimating the increase in stress due to a finite
discontinuity such as an elliptical opening in a plate, porthole, or hatchway. Figure 34.6 shows the
Inglis model. The proposed design formula for this model is

Smax ¼ S 1þ 2
L

r

� �1=2
" #

(34:3)

2 L

r

FIGURE 34.6 Inglis model. (From Inglis, C.E., Proc. Inst. Naval Architec., 60, 1913.)
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The application of this expression can be extended to the geometry of cracks, notches, scratches, and
similar stress raisers as the L=R ratio is increased. The corresponding Smax=S ratio becomes the
conventional stress concentration factor where the symbol S denotes the nominal stress existing at a
point away from the discontinuity. Observe in Figure 34.6 that when L¼ r, the hole becomes
circular, and the structure reduces to that of a symmetrically placed hole in a plate in uniaxial tension
with K¼ 3.

While the Inglis formula planted some interesting ideas in the minds of engineers, it became
necessary to invoke the principles of ductile response in the face of disturbing theoretical results
derived from purely elastic considerations. This process has led to the development of a plastic
reduction procedure [22,23] for the elastic stress factors. It became obvious that in the case of a truly
ductile material under static loading, the conventional elastic factor should be modified with the aid
of the appropriate stress–strain diagram of the material [24]. One of the simplest approaches to the
correction of any type of elastic stress concentration factor [25] is

Kp ¼ 1þ (K � 1)
Es

E

� �
(34:4)

where Es is the secant modulus (the slope of the stress–strain curve beyond the yield point) and E is
the elastic modulus.

For the case of a circular hole in a wide plate, Equation 34.4 becomes

Kp ¼ 1þ 2
Es

E

� �
(34:5)

This method provides the opportunity for rounding off the calculated higher peaks of the elastic
stresses and in this manner assuring a more reasonable value of the design stress factor. The
magnitude of the plastic stress concentration factor depends then on the shape of the stress–strain
curve while the conventional K factor is a function of the geometry of the part alone.

It should be stated in closing that stress concentrations in general are virtually inevitable in real
structures and machines due to the presence of grooves, fillets, holes, threads, and similar discon-
tinuities. The worst situations, of course, include machine errors, gravel nicks, nonmetallic inclu-
sions, and microvoids, which may be difficult or even impossible to detect.

Stress intensities due to cracks in inherently brittle materials and in some ductile materials
displaying brittle behavior under specific environmental conditions may lead to fracture. We dealt
with the concepts and methods of fracture control in Chapters 27 and 28.

SYMBOLS

b Width of rectangular bar and diameter of round bar
d Diameter of bolt or rivet hole
e Hole-to-edge distance, groove-to-bar center distance
E Modulus of elasticity
Es Secant modulus
K Stress concentration factor
Kp Plastic stress concentration factor
L Length
r Radius
S Average tensile stress
S00 Average stress on net cross section
Smax Maximum stress
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tg Depth of groove
ts Depth of shoulder
W Concentrated load
x Distance from bar center
r0 Fillet or groove radius
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35 Thermal Considerations

35.1 INTRODUCTION

The response of a structural member subjected to heating (or cooling) is an expansion (or contrac-
tion). The expansion, or contraction, can in turn produce stresses if

1. External forces constrain the expansion, or contraction
2. The shape of the structural member is incompatible with the tendency to expand or contract

The thermal behavior under the first condition may be represented, for example, by a uniform,
straight bar held at the ends and subjected to a constant temperature gradient. The case correspond-
ing to the second condition can be best illustrated with reference to a cylinder having a temperature
gradient across its wall. Although in this case no external forces of constraint are applied, thermal
stresses are produced because the strains are incompatible with the free thermal deformation. The
two cases outlined above can also be characterized as those structural systems, which are governed
by external or internal constraints.

35.2 BASIC STRESS FORMULA

The simplest expression for calculating the thermal stresses is based on the treatment of an elastic,
uniformly heated or cooled bar, restrained firmly at the ends. That is,

s ¼ EaDT (35:1)

where
s is the thermal stress
E is the elastic modulus
a is the coefficient of lines thermal expansion
DT is the temperature change

When the temperature of the bar is decreased, the bar develops tension. Compressive stress, on the
other hand, is caused by an increase in temperature. Since only the elastic stresses are considered,
the total strain is the sum of the stress- and temperature-dependent strains [1].

In Equation 35.1, a denotes the coefficient of linear, one-directional, thermal expansion. For the
majority of structural materials, a varies between 5 and 15� 10�6 per 8F. The corresponding
volumetric strain due to the temperature change is

DV

V

� �

T

¼ 3aDT (35:2)

Table 35.1 provides values of thermal constants that are useful in stress calculations [2,3].
In planning the design of equipment for low-temperature use, one is confronted with the basic

material decision influenced by various compilations of properties available in industrial literature.
Where the thermal and mechanical properties are not readily available, their preliminary estimates
can be made using simplified analytical methods [2].
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35.3 THERMAL EFFECT ON STRENGTH

It should be recalled that in majority of the cases of solid materials, which do not undergo transitions,
their strength in tension, hardness, and resistance to fatigue increase with a decrease in service
temperature. This rule applies without reservation to such metals as aluminum, copper, nickel alloys,
and austenitic stainless steels. In the case of ordinary carbon steels, however, the advantages of
improved properties are seriously compromised by the materials’ tendency to become brittle.

Figure 35.1 shows how the ultimate strength of several common metals is dependent upon
temperature. The curves represent upper and lower boundaries corresponding to the cold-worked
and annealed test specimens [4].

Compared with metals there is relatively little data available for the low-temperature properties
of polymers (or plastics). It is known, however, that when a large piece of unreinforced plastic is
suddenly cooled, the resulting thermal shock can cause cracking. Many polymers with the exception
of Teflon can become relatively brittle at lower temperatures, although these materials tend to resist
thermal shock better than glass.

It may be of interest to note that there is a certain similarity between the effects of low
temperature and high strain rate. Experiments indicate that both effects tend to increase the yield
and ultimate strength of steel while reducing the ductility. The observed influence is greater on the
yield than on the ultimate strength, so that the relevant margin between the two properties is
reduced. The usual stress–strain curve of the material under a high strain rate degenerates into a
stress line parallel to the strain axis as if the material suddenly became completely plastic [5], with
the ultimate strength markedly higher than that under static conditions.

TABLE 35.1
Typical Thermal Constants at Moderate Temperatures

Material a (8F�1� 10�6) C (Btu=lb 8F) k (Btu=h ft 8F) l (ft2=h)

Pure aluminum 14.0 0.22 128.0 3.50
Aluminum alloy 13.0 0.22 91.0 2.30
Pure copper 9.5 0.09 228.0 4.50
Brass (60=40) 10.5 0.09 54.0 1.10

Bronze (90=10) 10.0 0.09 24.0 0.49
Gold 7.8 0.03 180.0 5.10
Silver 11.0 0.06 240.0 6.10

Carbon steel 6.7 0.11 26.4 0.49
Alloy steel 6.7 0.11 13.2 0.25
Lead 16.0 0.03 20.4 0.94

Magnesium alloy 14.0 0.25 47.0 1.73
Pure nickel 7.2 0.11 33.6 0.56
Iron–nickel (64=36) 1.1 0.11 7.2 0.12

Platinum 5.0 0.03 41.0 1.00
Tin 15.0 0.05 37.0 1.60
Zinc 14.5 0.09 67.0 1.67
Ceramics 1.7 0.20 0.72 0.021

Concrete 6.7 0.21 0.60 0.020
Typical glass 4.5 0.18 0.48 0.017
Ice 0.50 0.13 0.045

Typical plastics 11.0 0.37 0.24 0.006
Sandstone 4.5 0.19 0.96 0.029
Granite 4.5 0.19 0.30 0.057

Note: These values are good up to 4008F. Symbols: a, thermal coefficient of linear
expansion; C, specific heat; k, thermal conductivity; l, thermal diffusion.
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35.4 MATERIALS FOR SPECIAL APPLICATIONS

In special applications involving nuclear propulsion systems, very high-temperature strength is
often required. These may include structural components for fission reactors used as direct heat
exchangers, nuclear propulsion systems, and aerospace reentry vehicles, to mention a few. Because
of the extreme temperature environment, the choice of materials is very limited. In this class,
graphite, tungsten, and rhenium can be considered, although some of the carbides are also most
valuable. Table 35.2 provides examples of properties for refractory alloys.

Table 35.3 lists some unusual properties for selected carbides at room temperature. Although
these compounds are intended for highly specialized applications [6], it may be of interest to compare
their mechanical properties with the typical data known for structural materials in general use.

Figure 35.2 shows the effect of elevated temperatures on the percentage of retained strength
for a variety of engineering materials. The diagram illustrates knowledge of materials for high-
temperature applications [7].
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FIGURE 35.1 Low-temperature ultimate strength of metals: (1) 304 stainless; (2) 347 stainless; (3) 2024
aluminum; and (4) 6061 aluminum. Solid curves, cold-worked; dashed curves, annealed.

TABLE 35.2
Selected Properties of Refractory Metals

Metal
Melting
Point (8F)

Density
(lb=in.3 at 758F)

Modulus of
Elasticity (psi) NDT (8F)

Tensile
Strength

at 22008F (psi)

Chromium 3450 0.76 42� 106 625 8,000
Columbium (niobium) 4470 0.31 16� 106 �185 10,000
Molybdenum 4730 0.37 47� 106 85 22,000

Tantalum 5430 0.60 27� 106 �320 15,000
Rhenium 5460 0.76 68� 106 75 60,000
Tungsten 6170 0.70 58� 106 645 32,000
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35.5 THERMAL STRESS INDEX

The thermal stress index (TSI) is a measure of a material’s ability to resist thermal gradients and
consequently thermally induced stresses. The index is defined as

TSI ¼ suk

aE
(35:3)

where
su is the ultimate tensile strength of the material
E is the elastic modulus
k is the thermal conductivity
a is the coefficient of linear expansion

TABLE 35.3
Room-Temperature Properties for Selected Carbides

Compound
Density
(g=cm3)

Coefficient
of Thermal
Expansion
(10�6=8C)

Modulus of
Elasticity
(10�6 psi)

Compressive
Strength
(103 psi)

Hafnium carbide (HfC) 12.7 6.0 61 —

Tantalum carbide (TaC) 14.5 6.5 55 —

Zirconium carbide (ZrC) 6.7 6.7 69 235

Niobium carbide (NbC) 7.8 6.5 49 —

Titanium carbide (TiC) 4.9 7.7 65 196
Tungsten carbide (WC) 15.8 5.0 102 900

Silicon carbide (SiC) 3.2 3.9 69 200
Boron carbide (B4C) 2.5 4.5 42 420
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FIGURE 35.2 Strength retention for special materials: (1) Nylon; (2) ‘‘E’’ glass; (3) boron; (4) super alloys;
and (5) refractory metal alloys.
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In the English system, TSI has the units BTU=ft h. The higher the value of TSI the greater the
material’s ability to resist thermal gradients. Table 35.4 provides a list of TSI values for a few
common structural materials.

35.6 THERMAL SHOCK

The index, given by Equation 35.3, is particularly useful in correlating the material properties with
reference to the resistance to fracture by thermal shock [7]. The maximum temperature, Tmax, that
the material can withstand under the thermal shock conditions is dependent on the mechanical
properties of the material but independent of thermal conductivity. That is

Tmax ¼ su(1� n)

aE
(35:4)

The TSI and maximum thermal shock temperature, Tmax, provide useful parameters for determining
thermal shock resistance of a given material. In this context, ‘‘thermal shock’’ is the maximum
sudden change in temperature that can be withstood by an infinite plate without fracture.

35.7 THERMAL CONDITIONS IN PIPING

In many practical cases of a long tube carrying a hot liquid and being cooled at the outer periphery,
the temperature distribution can be established by evaluating heat balance across all the elemental
rings of the cylinder.

When the heat flow is specified, the temperature differential DT across the tube wall is

DT ¼ Q ln (Ro=Ri)

2pk
(35:5)

where
Ro and Ri denote the outer and inner tube radii, respectively
Q is the quantity of heat that must be conducted per unit length of tube

In terms of the stress parameters applicable to tubular members, the TSI can be stated as follows:

TSI ¼ Q

4p(1� n)
1� 2R2

i

R2
o � R2

i

ln
Ro

Ri

� �
(35:6)

TABLE 35.4
Comparative Values of Thermal Stress Index for Typical Materials

Material

Ultimate
Tensile

Strength (psi)

Coefficient
of Thermal
Expansion
(in.=in. 8F)

Thermal
Conductivity
(Btu=h ft 8F)

Modulus of
Elasticity (psi)

Thermal
Stress Index
(Btu=ft h)

Aluminum alloy, 24 ST 68,000 13� 10�6 75 10.4� 10�6 37,800
Magnesium alloy 34,000 15� 10�6 45 6.5� 10 15,300
Structural steel 60,000 7� 10�6 22 29� 10�6 6,500

Nickel steel, A8 100,000 8� 10�6 15 30� 10�6 6,250
Titanium 80,000 5.5� 10�6 10 16� 10�6 9,100
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Equation 35.6 is useful in comparing brittle materials. It shows that the material with the highest
value of the TSI will be able to withstand the highest amount of heat flow.

35.8 THERMAL STRESS FATIGUE

Fatigue from changes in thermal stresses is similar to mechanical fatigue. But there are several
differences:

1. Plastic thermal strains tend to concentrate in the warmest regions of the body.
2. Accumulation of strain from thermal stress fatigue is localized.
3. Temperature cycling can adversely affect a material even in the absence of fatigue loading.
4. Thermal and mechanical strains, occurring together, have superimposed effects. This

makes it difficult to use low-cycle mechanical fatigue tests to interpret thermal stress
fatigue.

5. Tests indicate that for the same magnitude of total strain the life of a material is consid-
erably shorter for thermal fatigue than for mechanical fatigue.

35.9 PRELIMINARY THERMAL DESIGN

To design for thermal stresses, we need to know the expected temperature distribution of a proposed
structural component. This in turn requires knowledge of the fundamentals of heat transfer in
conduction, convection, and radiation [8,9]. It is usually assumed that the elastic constant E, and
the coefficient of thermal expansion a are approximately constant within a reasonable temperature
range. Tables 35.5 and 35.6 [10–12] illustrate and provide solutions for thermally stressed
components with external and internal constraints.

TABLE 35.5
Thermal Stresses due to External Constraint

1. Uniform bar, both ends fixed s¼aEDT

2. Uniform plate, edges fixed s ¼ aEDT

(1� n)

3.

T + ΔT

TR
h

Bar of rectangular cross section

When ends are free: radius of curvature R¼ h=aDT.

When ends are fixed, the end couples M0¼aDTEI=h.
The maximum bending stress s¼a EDT=2.

4. When instead of a bar of a rectangular cross section, a plate of thickness h is used, the radius of curvature is the same
as that for case 3. The plate adopts a spherical curvature. The maximum bending stress s¼aEDT=2(1� n).

5.

T+ ΔT

T

hat

Equilateral triangle, plate fixed at the edges

Temperature: T þ DT on hot side;

T on cool side

Uniform edge pressure against hot edge: q¼aEDTh2=8at.

Concentrated pressure at corners against cool face:
q¼ 0.14aEDTh2.

The maximum bending stress at corners: s¼ 0.75aEDT.

6. Square plated fixed at the edges.
Thermal gradient as above.

Bending stress at the edge: s¼aEDT=2 (approx.).

Huston/Practical Stress Analysis in Engineering Design DK4291_C035 Final Proof page 548 3.11.2008 5:45pm Compositor Name: VAmoudavally

548 Practical Stress Analysis in Engineering Design



These tables show that only relatively simple structures and configurations are considered. For
more complex geometry, the reader is referred to specialized literature and the use of numerical
methods (finite element and boundary element methods). Nevertheless, in many practical situations,
the formulas given in Tables 35.5 and 35.6 are sufficient for obtaining results to bracket a proposed
design. It is useful to have bracketing values for a problem before embarking on a more complex
and time consuming investigation.

SYMBOLS

a Inner radius of sphere
a0 Radius of heated area
at Height of triangular plate
b Outer radius of sphere

TABLE 35.6
Thermal Stresses due to Internal Constraint

1. Solid body of arbitrary shape

ΔT

Local gradient applied suddenly to a surface

Compressive stress in surface layer:

s¼aE DT=(1� n).

2.

r

ΔT

2a0

Thin circular disk with heated central
portion of radius a0

Maximum stress within heated zone: s¼aEDT=2.
Radial stress outside heated zone:
sr ¼ aEDT a20=Sr

2 (compression).

Tangential stress outside heated zone:
sb¼�sr (tension).

Maximum shear stress at r¼ a0: ss¼aEDT=2.

3.

T0
T1

T Tx

Uniform heating across thickness and width at x¼ 0

Tension along the edges at x: sx¼Ea(T�T0).
Maximum tensile stress: s¼Ea(T1�T0).

Maximum compression stress at half-width
of the plate: sc¼�Ea(T1� T0).

4. The plate is heated as above, except that hotter
surface has temp. T2 and lower surface has
temp. T1. Min. temp. T0.

Maximum tensile stress at the edges, where x¼ 0:

sx ¼ aE

2
T1 þ T2 � 2T0000

(1� n)

(3þ n)
(T1 � T2)

� �

5.

T + ΔT

T

Thin-walled tube linear gradient

Maximum hoop stress: s¼aEDT=2(1� n)
(inner surface in compression, tension outside).

Maximum longitudinal stress: s¼aED T=2

(1� n) (compression inside, tension outside).

6.

b
a

r

Rate of surface temp. increase, m in deg=hour

Hollow sphere

sr ¼ amE

15l(1� n)
f� c� r2 � 5a3

r

� �

st ¼ amE

15l(1� n)
f� 0:5c� 2r2 � 5a3

2r

� �

f ¼ b5 þ 5b2a3 � 6a5

b3 � a3

c ¼ b5a3 � 6b3a5 þ 5b2a6

t3(b3 � a3)
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C Specific heat
E Modulus of elasticity
h Thickness of plate or bar
I Second moment of area
k Thermal conductivity
m Temperature increase
M0 Fixing couple
Q Heat transfer per unit length of tube
q Edge pressure; corner load
R Radius of curvature
Ri Inner radius of tube
Ro Outer radius of tube
r Arbitrary radius
T0, T1, T2 Temperatures
Tmax Maximum temperature under thermal shock
TSI Thermal stress index
DT Temperature gradient
V Volume
DV Volume change
x Arbitrary distance
a Linear coefficient of thermal expansion
l Thermal diffusivity
n Poisson’s ratio
s General symbol for stress
sc Compressive stress
sr Radial stress
ss Shear stress
st Tangential stress
su Ultimate strength
sx Stress at any distance x
f

0
Auxiliary constant for sphere

c Auxiliary constant for sphere
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36 Axial Response of Straight
and Tapered Bars

36.1 INTRODUCTION

The simplest components of structural systems are straight rods or bars, with uniform cross section.
Typically, these components are subjected to collinear loads along the axis of the bar, producing
tension or compression in the bar.

To review the mechanics of axially loaded bars, consider a bar with a round cross section (a rod)
with length L and load W as in Figure 36.1.

Recall from Chapters 2 and 3 that the stress S, strain «, and elongation DL of the rod are then

S ¼ W=A, « ¼ DL=L, DL ¼ WL=AE (36:1)

where, as before,
E is the elastic modulus of the rod material
A is the cross-section area of the rod

If we define the resilience or elastic strain energy, U of the rod as

U ¼ (1=2)S« (36:2)

then from Equation 36.1 we see that the elongation DL, the stress S, and the load W may be
expressed in terms of U as

DL ¼ L
2U
E

� �1=2

, S ¼ (2UE)1=2, W ¼ A(2UE)1=2 (36:3)

The energy U of Equation 36.3 may be used as a measure for comparing the material properties. For
example, U for a typical structural steel can be 30 times larger than that of soft copper.

36.2 TAPERED AND STEPPED BARS

Figure 36.2 shows a tapered bar supporting an end loadW. In the following paragraphs, we develop
an expression for the elongation of the bar. For simplicity, we neglect the weight of the bar and we
let the cross section be circular.

Let d(DL) represent the elongation of the disk like element having thickness dy. The mean
radius for this element follows from the considerations of similar triangles CFH and ABH, so that

CF

y
¼ AB

L
(36:4)

Also, as CF¼ r� d=2, and AB¼ (D� d)=2, solving the foregoing proportion for the mean radius r
gives

r ¼ d

2
þ y(D� d)

2L
(36:5)
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For average cross sectional area pr2, the elongation of the single element becomes

d(DL) ¼ Wdy

p
d

2
þ y(D� d)

2L

� �2
E

(36:6)

Integrating this expression between the limits of zero and L with respect to the only variable y, gives
the general formula

W
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2

FIGURE 36.1 A rod in tension.
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FIGURE 36.2 Tapered round bar (rod) with end load.
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DL ¼ 4WL

pDdE
(36:7)

Observe in Equation 36.7 that when the bar has a uniform cross section (i.e., D¼ d), the expression
reduces to the third of Equation 36.1.

36.3 EXAMPLE PROBLEM FOR A STEPPED BAR

Figure 36.3 illustrates a stepped steel bar subjected to a 100,000 lb axial load. The bar segments
have circular cross sections with diameters as shown. The segment lengths are also shown.
Neglecting the weight of the bar, the objective is to determine the elastic strain energy created in
the bar by the load.

SOLUTION

Let S1 and S2 be the stresses in the upper and lower segments. Then S1 and S2 are

S1 ¼ 100,000= p(3)2=4
� � ¼ 14,150 psi (97:6 N=mm2) (36:8)

S2 ¼ 100,000= p(1)2=4
� � ¼ 127,350 psi (878:3 N=mm2) (36:9)

The total strain energy of the stepped bar Ut is the sum of the strain energies U1 and U2 of the
segments. That is

Ut ¼ U1 þU2 ¼ S21L1A1

2E
þ S22L2A2

2E
(36:10)

where L1, L2 and A1, A2 are the segment lengths and cross-section areas, and as before, E is the
elastic modulus (approximately 10� 106 psi for steel). For the given data, Ut then becomes

Ut ¼ 1227 in lb ¼ 102:25 ft lb (138 Nm) (36:11)

From Equations 36.8 and 36.9 we see that the step down in diameter shown in Figure 36.3 causes
a ninefold increase in the tensile stress. If the bar has a uniform diameter of 3 in., the strain
energy would be 282 in. lb. For a bar with 1 in. diameter and the same load, the strain energy is
2547 in. lb.

3� DIA

1� DIA

W = 100,000 lb

7″
5″

FIGURE 36.3 An axially loaded stepped bar.

Huston/Practical Stress Analysis in Engineering Design DK4291_C036 Final Proof page 553 3.11.2008 6:53pm Compositor Name: VBalamugundan

Axial Response of Straight and Tapered Bars 553



36.4 TAPERED BAR UNDER ITS OWN WEIGHT

Figure 36.4 shows a tapered conical bar supported from above and hanging under its own weight.
The figure provides the geometric notations for the structure. The objective is to determine the
elongation of the bar.

Utilizing the standard expression for the volume of a truncated cone, we see that the weight Qy

of the cone under an elevation y is

Qy ¼ pgy

3
Ld þ y(D� d)

2L

� �2
þ d

2
Ld þ y(D� d)

2L

� �
þ d2

4

( )
(36:12)

where g is the weight density.
The tensile stress S at any elevation y is

S ¼ Qy

pr2
(36:13)

By substituting from Equation 36.12 into 36.13, we can obtain the stress. For example, if r¼D=2
we see that the stress at the upper support (y¼ L) is

S ¼ gL

3D2
(Dd þ D2 þ d2) (36:14)

When d¼D, the conical bar becomes a bar with a uniform cross section. In this case, the expression
of Equation 36.14 for the stress at the support reduces to

S ¼ gL (36:15)

When d becomes negligibly small (i.e., d ! 0) Equation 36.14 yields the support stress as

S ¼ gL

3
(36:16)

Hence, we find another important practical result: the stress for the cone is equal to one third of that
in a circular bar, which is evident from Equations 36.13 and 36.14. The same comments also apply
to a pyramid configuration.

D

L

dyr

ΔL

d

y

FIGURE 36.4 Conical bar hanging under its own weight.
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If the disk like element shown in Figure 36.4 has the thickness dy and average cross-sectional
area of pr2, the elongation of a single element becomes

d(DL) ¼ g

3
3yL2d2 þ 3y2Ld(D� d)þ y3(D� d)2

[Ld þ y(D� d)]2E

� 	
dy (36:17)

We can add all the elementary elongations by integrating with respect to y from 0 to L. The result is

DL ¼ gL2

6D(D� d)2E
(D3 þ 2d3 � 3Dd2) (36:18)

This expression is sometimes known as the ‘‘tapered bar formula.’’

36.5 DISCUSSION ABOUT THE TAPERED BAR FORMULA

It is often helpful and reassuring to check if complex expressions such as Equation 36.18 are
consistent with simpler and better known results [1]. For example, by letting d¼ 0 in Equation
36.18, we have the standard formula for the elongation of a sharp-pointed conical bar:

DL ¼ gL2

6E
(36:19)

Next, consider a bar with uniform cross section (with d¼D). If we equate d and D in Equation
36.18, however, we obtain an indeterminant form: 0=0. But by using L’Hospital’s rule [2], we
readily obtain

DL ¼ gL2

2E
(36:20)

This result is the same as that of an elastic bar with the entire weight replaced by a load at the
mass center.

36.6 EXAMPLE PROBLEM FOR A LONG HANGING CABLE

Figure 36.5 depicts (not to scale) steel piping consisting of a 200 ft long lower section with a 4.5 in.
mean radius and a 0.45 in. wall thickness, and a 400 ft long upper section with a 5.7 in. mean radius
and a 0.60 in. wall thickness. The piping is supported at its upper end (ground level) and it in turn
supports a 100,000 lb load at its lower end. The objective is to calculate the total elongation of the
structure and the maximum stresses in the lower and upper sections.

SOLUTION

A formula for the weight of piping with a uniform cross section is

W ¼ 2pRTLg (36:21)

where
R is the mean radius of the pipe
T is the wall thickness
L is the length
g is the weight density

For steel, g is approximately 0.283 lb=in.3.
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Using Equation 36.21, the weight W1 of the lower section of the piping is

W1 ¼ (2p)(4:5)(0:45)(200)(12)(0:283) ¼ 8640 lb (36:22)

Similarly, the weight W2 of the upper section is

W2 ¼ (2p)(5:7)(0:6)(400)(12)(0:283) ¼ 29,190 lb (36:23)

Hence, the total weight W of the structure (piping and load) is

W ¼ W1 þW2 þ 100,000 ¼ 137,830 lb (36:24)

The area A1 and A2 of the lower and upper sections of the pipe are

A1 ¼ (2p)(4:5)(0:45) ¼ 12:7 in:2 and A2 ¼ (2p)(5:7)(0:60) ¼ 21:4 in:2 (36:25)

The stress S1 at the top of the lower section is then

S1 ¼ (W1 þ 100,000)=A1 ¼ 8538 psi (36:26)

Similarly, the stress S2 at the top of the upper section is

S2 ¼ (W1 þW2 þ 100,000)=A2 ¼ 6414 psi (36:27)

By superposition the total elongation DL of the structure may be computed from the expression

DL ¼ PL1
A1E

þ PL2
A2E

þW1L2
A2E

þW1(L1=2)
A1E

þW2(L2=2)
A2E

(36:28)

where P is the load at the bottom (100,000 lb), L1 and L2 are lengths of the lower and upper sections
(200 and 400 ft) and, as before, E is the elastic modulus (for steel E¼ 30� 106 psi). By substituting
the appropriate values into Equation 36.28, we obtain the structural elongation as

Ground level

5.7�
0.60�

12�OD

40
0�

20
0�

9.45�OD

W = 100,00 lb 

4.5�
0.45�

y

FIGURE 36.5 A downhole piping structure.
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DL ¼ 1:58 in: (40:13 mm) (36:29)

The foregoing method of analysis can be extended to any number of steps. Hence, in the more
general case where we have to deal with a rod of variable cross section for which a proper
variation of the cross section with the length is difficult to define, the rod shape may be
approximated by a finite number of elements. The elongation can then be computed for all the
individual elements and added directly to obtain the complete elongation.

36.7 HEAVY HANGING CABLE WITH UNIFORM STRESS ALONG THE LENGTH

Consider the classical case of a cable hanging under its own weight but with a varying cross-section
area so that the stress at each elevation is constant. Specifically, let a long hanging cable be designed
with an increasing cross-section area, from bottom to top so that even though the weight load
increases, the stress remains constant along the length. Figure 36.6 illustrates the concept. In the
figure, Y is the vertical coordinate with origin at the bottom of the cable; A(y) is the variable cross-
section area, with the bottom end area A(O)¼AO; and P is a load at the lower end.

Given P and AO, the stress sO at the bottom and hence uniform along the length, is

sO ¼ P=AO (36:30)

The design objective is to determine A(y).
To this end, consider a small element, or disk of the cable, with thickness Dy as in Figure 36.7.

As in the figure, the areas of the bottom and top faces are A(y) and A(yþDy). We can relate these
areas using Taylor’s series [2] as

A(y)

A

Y

P

FIGURE 36.6 A long, heavy hanging cable with uniform stress along the length.

A(y)

A(y + Δy)Δy

FIGURE 36.7 A disk element of the cable.
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A(yþ Dy) ¼ A(y)þ dA

dy
Dyþ � � � (36:31)

where the unwritten terms in the series are of the orders (Dy)2 and higher.
Figure 36.8 shows a free-body diagram of the disk element, where g is the weight density of the

cable material and DV is the volume of the disk element.
From Figure 36.8, we see that the equilibrium of forces leads to the expression

sOA(yþ Dy) ¼ sOA(y)þ gDV (36:32)

For a relatively slowly varying area, we see from Figure 36.7 that DV is approximately

DV ¼ A(yþ Dy)þ A(y)

2

� �
Dy (36:33)

By using Equation 36.31 and by neglecting terms of order (Dy)2 and higher, DV becomes

DV ¼ Aþ 1
2
dA

dy
Dy

� �
Dy ¼ ADy (36:34)

Finally, by substituting from Equations 36.31 and 36.34 into the equilibrium expression of Equation
36.32 and by neglecting higher order small terms we obtain

sO Aþ dA

dy
Dy

� �
¼ sOAþ gADy

or

sO
dA

dy
¼ gA (36:35)

Equation 36.35 is a linear first-order ordinary differential equation whose solution is

A ¼ AOe
(g=sO)y (36:36)

Equation 36.36 provides the desired design area. A similar result is obtained for the problem of
constructing a tall tower with uniform stress at each elevation.

sO A(y + Δy)

sO A(y)

gΔV

FIGURE 36.8 Free-body diagram of the disk element.
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36.8 EXAMPLE PROBLEM OF AN AXIALLY COMPRESSED TUBE

Figure 36.9 depicts an aluminum tube with a 1 in. mean radius and a 0.25 in. wall thickness
compressed between two rigid blocks by a steel bolt with a 0.75 in. outer diameter. The tensile stress
in the tightened bolt is 10,000 psi. The objective is to determine the stress and shortening of the
aluminum tube.

SOLUTION

The cross-section areas of the bolt and tube are

Ab ¼ p(0:75)2=4 ¼ 0:44 in:2 and At ¼ 2p(1)(0:25) ¼ 1:57 in:2 (36:37)

The bolt load P is

P ¼ SbAb ¼ (10,000)(0:44) ¼ 4400 lb (36:38)

The tube stress is then

St ¼ P=At ¼ 4400=1:57 ¼ 2802:5 psi (36:39)

The tube shortening DLt is

DLt ¼ PLt=AtEt ¼ (4400)(16)=(1:57)(10)(10)6 ¼ 0:0045 in: (36:40)

36.9 KERN LIMIT

The structures discussed in the foregoing sections of this chapter were relatively short and rigid.
Thus an applied axial compressive loading is unlikely to produce buckling. Therefore if a loading is
applied eccentrically, the resulting stresses may be obtained by superposition of direct compression
and flexural stresses.

In this section, we briefly consider the concept of kern sometimes referred to as ‘‘kernel’’ or
‘‘core of the cross section.’’ Kern can be defined as the area in the plane of the section through which
the line of action of the external force should pass to assure the same kind of normal stress at all
points of the cross section. Consequently, the kern limit may be defined as a characteristic
dimension of the central portion of the cross section, or the locus of points within which the line
of action of the external force should fall. The kern limit concept is useful in designing short

Rigid blocks Mean radius

1�

16�

20�

Aluminum tubeSteel bolt

0.7
5�

0.2
5�

FIGURE 36.9 A tube compressed between rigid blocks.
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prisms, columns, and piers subjected to eccentric thrust. Such a thrust causes a direct axial stress
and a bending stress, which can be superimposed as long as the response is purely elastic. As a
rule, such stresses are not critical in the customary design of machine elements and steel members of
various cross-sectional geometry, provided that local buckling is not a problem. However, if a
structural member is made of a material that is good in compression but poor in tension, as such is
the case with masonry columns, the analysis based on the concept of kern limit should be made [3].

Figure 36.10 demonstrates the principle of kern limit design. Suppose that the external force
P is applied at a distance a measured from the centroid of the prism having a symmetrical cross-
section, as indicated in Figure 36.10. For simplicity of the derivation, the thrust loading is offset
with respect to one axis of the cross section only. The uniform compressive stress is

Sc ¼ P

bh
(36:41)

The tensile stress component due to offset bending is

St ¼ 6Pa
bh2

(36:42)

In general, the actual stress distribution can be of the type shown in Figure 36.10. It means that for a
certain value of a, a portion of the cross section can be in a state of tension when the direct and
bending stresses are superimposed. However, to assure that the combined stress is compressive at all
points of the cross section, such as the one indicated in Figure 36.10 as ‘‘desired stress distribution,’’
it is necessary to satisfy the following condition

St � Sc ¼ 0 (36:43)

h

Desired
stress

distribution

Actual
stress

distribution

a
p p

b

b/2

P
bh

Sc = 

6Pa
bh2

St = 

FIGURE 36.10 Kern limit concept.
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Then by setting a equal to e, we have

6Pe
bh2

¼ P

bh
(36:44)

Thus e is

e ¼ h

6
(36:45)

Table 36.1 shows this value in the first case, as one of the dimensions defining a diamond-shaped
area characteristic of kern for a rectangular cross section of the structural member. If the line of

TABLE 36.1
Kern Limits for Compression Members

e

h
f

b Solid rectangular e ¼ h

6
f ¼ b

6

e

h1
h

f bb1 Hollow rectangular e ¼ bh3 � b1h31
6h(bh� b1h1)

f ¼ hb3 � h1b31
6b(bh� b1h1)

e

T

t h

f

b

b−2t

Thin-wall rectangular e ¼ h(ht þ 3bT)
6(ht þ bT)

f ¼ b(bT þ 3ht)
6(htt þ bT)

e

r
Solid circular e ¼ r

4

e

r1

r
Hollow circular e ¼ r2 þ r21

4r

e

r
t

Thin-wall circular e ¼ r

2
(independent of t)

Note: Kern limit areas are defined by shaded portions of sections.
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thrust of the force P is offset with respect to both axes of symmetry of the cross section, the
theoretical basis for the calculation follows directly from the previous derivation. The geometries
selected for Table 36.1 cover many a great practical applications, giving relatively simple expres-
sions for defining kern limits. For the case of a prism or a column of arbitrary cross section, the
analysis of kern limits is much more involved and requires a semigraphical procedure with
successive approximations.

SYMBOLS

A, A1, A2 Cross-sectional areas
Ab Bolt cross-sectional area
Ao End area
At Tube cross-sectional area
a Offset of end load
b, b1 Widths of rectangular cross sections
D Maximum diameter of bar
d Minimum diameter of bar
E, E1, E2 Elastic moduli
e Kern limit
F Bolt load
Fi Initial bolt load
F== Load on rigid block
f Kern limit
h, h1 Depths of rectangular cross sections
k Spring constant of assembly
kb Spring constant of bolt
kt Spring constant of tube
L, L1, L2 Length dimensions
DL Extension
P Axial thrust
Qy Partial weight of conical bar
R Mean radius of tube
r, r1 Tube radii
S General symbol for stress
S1, S2 Tensile stresses
Sc Compressive stress
St Tensile stress due to bending
T, t Wall thicknesses
U Resilience; strain energy
Ut Total strain energy
DV Volume of disk element
W, W1, W2 Downward loads
y Arbitrary distance
Dy Disk element thickness
Z Auxiliary parameter
g Specific weight
d, d= Deflections
so Uniform stress
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37 Thin Rings and Arches

37.1 INTRODUCTION

There are numerous references discussing various problems of circular rings and arches [1–14].
These relate to both in-plane and out-of-plane loadings. In this chapter, we review some of these
results. For simplicity, we restrict our analysis to in-plane loadings on structures with uniform cross-
sections having large radii of curvature compared to cross-section thicknesses.

In evaluating the deflection, it is convenient to use the concept of elastic strain energy and
Castigliano’s theorem. The deflections are taken to be relatively small, and the strain energy due to
bending alone is used in the analysis.

37.2 REVIEW OF STRAIN ENERGY AND CASTIGLIANO’S THEOREM

Consider an elastic body B subjected to various forces as represented in Figure 37.1, where P is
a typical force load. These forces cause stresses and strains within B. Let sij and «ij be
the elements of the stress and strain tensors (see Chapters 4 and 5). Then the strain energy U is
defined as

U ¼
ð

V

1
2
sij«ijdV (37:1)

where V is the volume of B and as before, the repeated index designates a sum.
Consider the typical force P of Figure 37.1. As with all the forces acting on B, P contributes to

the stress and strain and also to the strain energy U. That is, U is a function of P as

U ¼ U(P) (37:2)

Castigliano’s theorem [14] states that the deflection d of B where P is applied, and in the direction
of P is

d ¼ @U=@P (37:3)

Analogously, if a moment or torqueM is applied at a point of an elastic body, the resulting rotation u
in the direction of the applied moment, is

u ¼ @U=@M (37:4)

For most cases in component design, the geometry is relatively simple. In these cases, the form
of the strain energy is also relatively simple. For example, consider an axially loaded rod as in
Figure 37.2. If P is the load, E the elastic constant, A the cross-section area, ‘ the bar length, s the
stress, « the strain, and d the elongation, we have the familiar relations

s ¼ P=A, « ¼ d=‘, s ¼ E«, d ¼ P‘=A« (37:5)
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For a uniform bar, the stress and strain are constant along the length. The strain energy U is then

U ¼
ð‘

0

(1=2)s«dV ¼
ð‘

0

(1=2)(P=A)(d=‘)Adx

¼
ð‘

0

(1=2)(P2=AE)dx ¼ P2‘=2AE (37:6)

where x is a coordinate along the length. By substitution into Equation 37.3, we have

d ¼ @U=@P ¼ P‘=AE (37:7)

which is consistent with the last expression of Equation 37.4.
For bending, U is [14,15]

U ¼
ð‘

0

(M2=2EI)dx (37:8)

where, as before,
M is the moment along the beam
E is the elastic modulus
I is the second moment of area of the beam cross section
‘ is the beam length

To illustrate the use of Equation 37.8, consider first an elastic cantilever beam with a concentrated
end moment MO at the unsupported end as in Figure 37.3. With this simple geometry, the bending
moment M along the beam is constant. That is

M ¼ MO (37:9)

B

P

FIGURE 37.1 An elastic body subjected to a set of forces.

P P
ℓ

FIGURE 37.2 An axially loaded bar.
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From Equation 37.8, the strain energy U is

U ¼
ð‘

0

M2
O=2EI

� �
dx ¼ M2

O‘=2EI (37:10)

Consequently, from Equation 37.4 the rotation u at the left end of the beam is

u ¼ @U

@MO

¼ MO‘=EI (37:11)

Next, consider the same beam but with a force P applied at the unsupported end as in Figure 37.4.
Here the bending moment M along the beam is simply

M ¼ Px (37:12)

Hence M2 and the strain energy U are

M2 ¼ P2x2 (37:13)

and

U ¼
ð‘

0

(M2=2EI)dx ¼
ð‘

0

(P2x2=2EI)dx

or

U ¼ P2‘3=6EI (37:14)

Therefore, the end deflection d due to the load P is

d ¼ @U=@P ¼ P‘3=3EI (37:15)

ℓ

O

x

MO

FIGURE 37.3 Cantilever beam with an end moment at the unsupported end.

ℓ
x

P

FIGURE 37.4 Cantilever beam with a concentrated force at the unsupported end.
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Finally, consider the same beam but with both a force P and a concentrated moment MO applied at
the unsupported end as in Figure 37.5.

In this case, the bending moment M along the beam is

M ¼ MO þ Px (37:16)

Hence M2 is

M2 ¼ M2
O þ 2MOPxþ P2x2 (37:17)

and the strain energy U becomes

U ¼
ð‘

0

(M2=2EI)dx ¼ (1=2EI)
ð‘

0

M2
O þ 2MOPxþ P2x2

� �
dx

or

U ¼ (1=2EI) M2
O‘þMOP‘

2 þ P2‘3=3
� �

(37:18)

From this expression, we see that the deflection d at the left, unsupported end of the beam is

d ¼ @U

@P
¼ (1=2EI) MO‘

2 þ @P‘3=3
� �

(37:19)

Similarly, the rotation u at the end is

u ¼ @U

@MO

¼ (1=2EI) (2MO‘þ P‘2) (37:20)

Observe that in the result of Equation 37.19, if we set P¼ 0 we have the deflection due to the
moment MO alone. Similarly in Equation 37.20, if we set MO¼ 0 we have the end rotation due to P
alone. In these instances, P and MO are sometimes regarded as ‘‘dummy variables’’ which vanish at
the end of the analysis.

Finally, it is seen that the results of Equations 37.7, 37.11, 37.15, 37.19, and 37.20 are consistent
with those of Table 11.1 and with those in handbooks [2,8].

37.3 DIAMETRICALLY LOADED ELASTIC RING

The classical case of a thin elastic ring diametrically loaded in the plane of curvature, is a statically
indeterminant problem with accompanying difficulties in analysis. This is somewhat surprising
given the geometric symmetry and the usual loading symmetry.

ℓ

O
x

MO

P

FIGURE 37.5 Cantilever beam with an end moment and concentrated force at the unsupported end.

Huston/Practical Stress Analysis in Engineering Design DK4291_C037 Final Proof page 568 3.11.2008 1:18pm Compositor Name: JGanesan

568 Practical Stress Analysis in Engineering Design



Figure 37.6 shows the simple case of a ring subjected to diametral loading. Due to the
symmetry, we can simplify the analysis by considering a single quadrant. Figure 37.7 depicts a
free-body diagram of the upper right quadrant, 0 � u � p=2, where u is the angular coordinate, R is
the ring radius, P is the load, and MO and Mp=2 are the cross-section moments at u¼ 0 and u¼p=2.
Due to the symmetry, there are no rotations of the cross section at u¼ 0 and u¼p=2.

Consider the bending moment M at an interior point of the ring quadrant as in Figure 37.8.
From equilibrium considerations we see that M is

M ¼ Mp=2 � (PR=2) cos u (37:21)

From Equation 37.8, the strain energy U for bending is

U ¼ 4
ðp=2

0

(M2=2EI)R du (37:22)

where the factor 4 is due to our integration (from 0 to p=2) over only one of the four similar
quadrants. By substituting from Equation 37.21, we have

R

θ

P

P

FIGURE 37.6 Diametral loading on a thin elastic ring.

R

q

P/2P/2

MO

Mp/2

FIGURE 37.7 Free-body diagram of a quadrant of the loaded ring of Figure 37.6.
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U ¼ (2R=EI)
ðp=2

0

M2
p=2 � 2Mp=2(PR=2) cos uþ (PR=2)2 cos2 u

h i
du (37:23)

By completing the indicated integration, U becomes

U ¼ (2R=EI) M2
p=2(p=2)� PRMp=2 þ (PR=2)2(p=4)

h i
(37:24)

The cross-section rotation f at u¼p=2 is then

f ¼ @U=@Mp=2 ¼ 0 (37:25)

By substituting from Equation 37.24, we obtain

Mp=2 ¼ PR=p (37:26)

Thus from Equation 37.21, the bending moment M at any angle u of the quadrant is

M ¼ PR

2p
(2� p cos u) (37:27)

Observe in Equation 37.27 that when u¼p=2, M is

M ¼ Mp=2 ¼ PR=p (37:28)

and when u¼ 0, M is

M ¼ MO ¼ PR

2p
(2� p) (37:29)

Thus MO and Mp=2 are different both in magnitude and sign. Also note that

MO þ PR

2
¼ Mp=2 (37:30)

which is consistent with Figure. 37.7.

R

q

P/2
M

Mp/2

q

FIGURE 37.8 Bending moment M at an interior location of the ring quadrant of Figure 37.7.
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Next, by substituting for Mp=2 from Equation 37.28 into the strain energy result of Equation
37.24, we obtain the strain energy U as a function of the load P. The result is

U ¼ P2R3

8pEI
(p2 � 8) (37:31)

Using Costigliano’s theorem (see Section 37.2), the deflection Y under the load P is simply

Y ¼ @U=@P ¼ PR3(p2 � 8)
4pEI

(37:32)

By a similar analysis, the corresponding increase X in the horizontal diameter is

X ¼ PR3(4� p)

2pEI
(37:33)

By setting the moment M of Equation 37.27 equal to zero yields the angle

u ¼ 50:5� (37:34)

At this location the bending moment changes its sign. It may be of interest to note that the ratio Y=X
of the vertical to horizontal deflection is

Y=X ¼ 1:089 (37:35)

37.4 MORE EXACT RESULTS FOR THE DIAMETRICALLY
LOADED ELASTIC RING

The results of Equations 37.32, 37.33, and 37.34 are based upon the assumption of a thin ring,
neglecting the effects of shear and direct stresses. That is, only bending is considered. The error
introduced by ignoring shear and direct stress, is likely to be small in most cases.

For a ring of rectangular cross section, more exact formulas for the deflections are

Y ¼ Px

bE
(1:7856x2 þ 0:7854þ 2:0453) (37:36)

and

X ¼ Px

bE
(1:6392x2 � 0:5000þ 1:3020) (37:37)

where b is the width of the cross section and x is the ratio of the radius of curvature R to the depth h
of the cross section.

To illustrate the magnitudes of the bending, direct, and shear stresses on the ring deflections, let
x (¼R=h) have the value 10. Then the terms of Equations 37.36 and 37.37 provide the various
contributions. Table 37.1 provides the results.

37.5 DESIGN CHARTS FOR CIRCULAR RINGS

It is evident from Table 37.1 that the simplified analysis of rings, involving bending stresses
alone, is acceptable in most design situations. A considerable amount of mathematical work
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associated with the derivation of formulas including the effects of direct and shear stresses can,
therefore, be avoided.

Usually, a designer is interested in the radial deflection, slope, and bending moment as a
function of the angular position u. The references at the end of the chapter provide the results of
numerous closed-form solutions [1,2,8]. Table 37.2 lists the results for common loading configur-
ations. The factors Ku, Kc, and KM are for the deflection, slope, and moment, respectively.

37.6 ESTIMATES VIA SUPERPOSITION

Several important cases summarized in Table 37.2 can be used to answer the majority of practical
design questions related to the response of closed thin rings. Should a question regarding a more
complex type of ring loading that is not covered specifically by Table 37.2 arise, the designer may
wish to solve the problem using the principle of superposition. It is recalled that this principle
allows us to add algebraically the stresses or deflections at a point of a structure, caused by two or
more independent loads. This principle is applicable as long as the resultant stresses and strains
remain elastic.

To illustrate some basic steps in applying the principle of superposition to ring design,
consider the response of a thin elastic ring subjected to a four-way tension as shown at the left in
Figure 37.9. Symbolically, the principle of superposition is illustrated in Figure 37.9 in terms of a
diagrammatic summary of the two effects. The basic component, in this study, is the ring subjected
to diametral tension as shown at the top of Table 37.2. In its vertical orientation, it represents a
twoway tension along the vertical axis indicated in Figure 37.9, as the first component. The same
ring oriented horizontally represents the effect of a two-way tension along the horizontal axis as
shown symbolically in Figure 37.9.

It is assumed that in a vertical orientation the angle u is measured from the vertical axis
counterclockwise. For the case of u¼ 0, sin u¼ 0, and cos u¼ 1, so that the deflection factor
from Table 37.2 is

KU ¼ 0:3927� 0:3183 ¼ 0:0744 (37:38)

The effect of the vertically oriented loading on the horizontal displacement is obtained when
u¼p=2. Since sin (p=2)¼ 1 and cos (p=2)¼ 0, we get

KU ¼ 0:2500� 0:3183 ¼ �0:0683 (37:39)

The sign here is negative because the ring attains an oval shape, with the vertical diameter increasing
and the horizontal diameter decreasing.

Next, if we consider the basic ring to be oriented horizontally as shown in Figure 37.9, and if
we still use the same expression for Ku, the question arises as to the appropriate angle convention.
Clearly, using the same convention for the two orientations is not satisfactory if we wish to derive

TABLE 37.1
Percentage Stress Contribution to Maximum
Deflection for Thin Rings (x¼R=h¼ 10)

Bending
Stress

Direct
Stress

Shear
Stress

Vertical deflection þ98.44 þ0.43 þ1.13

Horizontal deflection þ99.51 �0.30 þ0.79
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a general formula. Let us see what kind of a substitution we would have to make in order to have
the two Ku factors consistent with the two orientations of loading. Suppose that in a vertical
orientation, angle u defines a point on the ring at which the displacement is considered. The

TABLE 37.2
Deflections, Slopes, and Bending Moments for Circular Rings Loaded in a Plane

Symbol Function
Range of

Application
P

P

q

R

u ¼ PR3

EI
Ku

c ¼ PR2

EI
Kc

Ku 0.2500 sin uþ (0.3927� 0.2500 u)
cos u� 0.3183

0�p

M¼PRKM

Kc (0.2500 u� 0.3927) sin u 0�p

KM (0.5000 sin u� 0.3183) 0�p

MoMo

R

q

u ¼ MoR2

EI
Ku

Ku 0.5000� 0.3183 u sin u� 0.4775 cos u 0�p=2

c ¼ MoR

EI
Kc

Kc 0.1592 sin u� 0.3183 u cos u 0�p=2

M¼Mo KM KM
0.5000� 0.6366 cos u 0�p=2

�0.5000� 0.6366 cos u p=2�p
P

Qm=

Q = Qmcos q

2P
pR

R

q

u ¼ PR3

EI
Ku Ku 0.1989 u sin uþ (0.4081� 0.0796 u2)

cos u� 0.3618

0�p=2

(0.3750� 0.0398 u) sin uþ (0.3658� 0.2500 u)
cos u� 0.3618

p=2�pc ¼ PR2

EI
Kc

Kc

(0.0796 u2� 0.2092) sin uþ 0.0398 u cos u 0�p=2
(0.2500 u� 0.4055) sin uþ (0.1250� 0.0398 u) cos u p=2�p

M¼PRKM KM 0.3183 u sin uþ 0.2387 cos u� 0.3618 0�p=2
0.5000 sin u� 0.0796 cos u� 0.3618 p=2�p

Qm=
Q =Qmcos q

4P
pR

P

q

P

R

u ¼ PR3

EI
Ku Ku 0.5570 u sin uþ (0.9382� 0.1592 u2)

cos u� 0.9053
0�p=2

(0.0796 u� 0.2500) sin uþ 0.0681
cos uþ 0.0947

p=2�pc ¼ PR2

EI
Kc

Kc

(0.1592 u2� 0.3812) sin uþ 0.2387 u cos u 0�p=2
0.0115 sin uþ (0.0796 u� 0.2500) cos u p=2�pM¼PRKM KM

0.6366 u sin uþ 0.7958 cos u� 0.9053

0.1592 cos uþ 0.0947

0�p=2

p=2�p

P

PP

P

P

P

= + P P

q
[p/2] − q

FIGURE 37.9 Symbolic representation of superposition of ring deflection.
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same point on the ring when viewed from the horizontal line of loading, can be reached at an angle
that is complementary to 908, resulting in (p=2)� u. This assumption implies, for instance, that with
u¼p=2 the vertically oriented ring load (center of Figure 37.9) produces a horizontal displacement.
For the horizontally oriented load, u¼p=2 gives the angle equal to zero and the displacement along
the horizontal line of action. This statement follows from the symbolic diagram in Figure 37.9.

For a vertically oriented ring loading, Table 37.2 gives

Ku ¼ 0:2500 sin uþ (0:3927� 0:2500 u) cos u� 0:3183 (37:40)

For a horizontally oriented pair of forces P, angle u must be replaced by (p=2)� u, which gives

Ku ¼ 0:2500 cos uþ 0:3927� 0:2500
p

2
� u

� �h i
sin u� 0:3183 (37:41)

Adding the preceding two expressions, yields

K=

u ¼ 0:2500(1þ u) sin uþ (0:6427� 0:2500u) cos u� 0:6366 (37:42)

Hence, the radial deflection for four-way tension becomes

u ¼ PR3

EI
K=

u (37:43)

Note that for u¼ 0 and u¼ (p=2), the expression for the deflection factor K=

u in a four-way tension
gives two identical results, indicating that the deformation pattern of this ring is radially symmetric.
In other words, radial displacement under each of the four loads is

u ¼ 0:0061
PR3

EI
(37:44)

The same result can be obtained if the deflection factor K=

u is calculated using previously quoted
numerical values for u¼ 0 and u¼ (p=2). That is

K=

u ¼ 0:0744� 0:0683 ¼ 0:0061 (37:45)

37.7 RING WITH CONSTRAINT

Consider again the diametrically loaded ring of Figure 37.6 and as shown again in Figure 37.10.
We observed in our analysis that this poses a statistically indeterminant problem. As such, the
analysis requires knowledge of the deformation to determine the bending moment around the ring.
Indeterminacy arises due to the continuity of the ring. That is, the ring may be viewed as a closed
curved beam.

The complexity of ring analysis increases rapidly when additional constraints are imposed.
Consider for example, a thin elastic ring with a rigid diametral constraint as in Figure 37.11. The
equilibrium of one quadrant of the ring can be maintained if we add two statically indeterminate
forces, H and Mf. Because of the symmetry of loading and support, all quadrants of the ring must
deform in an identical manner. The bending moment M at an arbitrary section defined by u is

M ¼ HR sin u� PR

2
(1� cos u)�Mf (37:46)
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where H is a horizontal restraining force and Mf is the restraining moment at u¼ 0. As before, P is
the magnitude of the applied load and R is the ring radius.

Since the horizontal displacement and slope at u¼ 0 must be equal to zero, because of the rigid
connection between the ring and the bar, the following conditions apply:

ðp=2

0

M
@M

@H
du ¼ 0 and

ðp=2

0

M
@M

@Mf

du ¼ 0 (37:47)

By substituting from Equation 37.46 into 37.47 and integrating, we can solve the resulting
expressions for H and Mf

H ¼ P
4� p

p2 � 8

� 	
and Mf ¼ PR

4þ 2p � p2

2(p2 � 8)

� 	
(37:48)

Finally, by substituting these results into Equation 37.46, we obtain

P

P

FIGURE 37.10 Diametrically loaded elastic ring.

P

q

P

P/2

Mf
H

R

FIGURE 37.11 A thin elastic ring with a rigid restraining bar.
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M ¼ PR(0:4591 sin uþ 0:5000 cos u� 0:6106) (37:49)

It may be insightful to observe the effect of the diametral constraint of Figure 37.11. When u is p=2
or 908, Equation 37.49 provides the bending moment M as

M ¼ 0:1515PR (37:50)

This value is about half or 48% of that obtained from Equation 37.27, for an unconstrained ring.
When u is 0, Equation 37.50 yields

M ¼ 0:1106PR (37:51)

which is about 61% of the moment for a ring without horizontal restraint.
Hence, as far as the preliminary design is concerned, we have established the important

bracketing values of the bending moment. Assuming that the horizontal bar shown in Figure
37.11 is not perfectly rigid, the values of the bending moment for u¼ 0 and u¼p=2 should
increase. The maximum bending stresses are found at the two points of load application. Therefore,
when a certain amount of horizontal constraint is present the stresses at the critical locations
are reduced.

37.8 A ROTATING RING

Consider a ring rotating in its plane as represented in Figure 37.12. Such a system could simulate the
rim of a flywheel.

Let q be the uniform loading per unit length due to the centrifugal inertia forces, and let P be the
resulting internal hoop force. Then from equilibrium considerations, P is

P ¼
ðp=2

0

qR sin u du (37:52)

where, as before, R is the ring radius.

R

P

Pdq

q

q

P

x x

y

y

P

FIGURE 37.12 A ring rotating in its plane of curvature.
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If V is the peripheral (tangential) speed of the ring, then the hoop stress s in the ring is

s ¼ rV2 (37:53)

where r is the mass density of the ring material.
The development of Equation 37.53 follows immediately from the elementary hoop stress

formula from the strength of materials [16]:

s ¼ pR

t
(37:54)

where
p is the pressure on the ring
t is the thickness

Consider a small element (e) of the ring as in Figure 37.13, where b is the ring depth (axial length)
and du is an incremental angle as in Figure 37.12.

Let F* be the inertia force on element (e) due to the ring rotation. Then from Newton’s second
law [17], F* is

F� ¼ �ma (37:55)

where
m is the element mass
a is its acceleration

If dv is the element volume (bþR du), then m is

m ¼ rbtR du (37:56)

The acceleration a due to the rotation is simply [17]

a ¼ V2=R (37:57)

From Equations 37.54 and 37.55 F* is then

F� ¼ �rbtR du(V2=R) (37:58)

From Figure 37.13 the pressure p at the base of (e) is

P ¼ �F�=(Rdu)b ¼ rbtduV2=(Rdu)b ¼ rtV2=R (37:59)

(e)

b

t

R dq

FIGURE 37.13 A ring element.
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Finally, by substituting this result into Equation 37.54 we have the result of Equation 37.53,

s ¼ rV2 (37:60)

We can also obtain this result using Equation 37.52. By integrating we have

P ¼ qR (37:61)

But q is pb. The hoop stress s is then

s ¼ P=bt ¼ rbR=bt

¼ rt(V2=R)bR=bt

or

s ¼ rV2 (37:62)

The foregoing analysis assumed that the hoop stress is distributed uniformly over the ring
cross section. This approximation is likely to be accurate for many practical applications with
thin rings.

37.9 SIMPLY SUPPORTED ARCH

In arch analysis, as with ring analysis, it is convenient to use Castigliano’s theorem (see Section
37.2). Perhaps the simplest arch problem is that of a simply supported circular arch under a central
load P as in Figure 37.14. If we postulate that there is no friction at the supports and no constraint of
any kind, the reactions can be obtained from a simple equation of statics. The bending moment at a
section defined by u is written as follows:

M ¼ VR( cosa� cos u) (37:63)

From Equation 37.8, the strain energy in the right side of the arch is

U ¼
ðp=2

a

M2

2EI
R du (37:64)

P

q

aa
VV

R

FIGURE 37.14 A simply supported circular arch under a central load.
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If the arch at its apex (u¼p=2) is assumed to be fixed, then the displacement Y at the
support V is

Y ¼ @U

@V
¼

ðp=2

a

M@M=@u

EI
R du (37:65)

By substituting from Equation 37.63, we find Y to be

Y ¼ VR3

EI

ðp=2

a

( cosa� cos u)2du (37:66)

By integrating, Y becomes

Y ¼ PR3

EI
G1 (37:67)

where G1 is

G1 ¼ 0:125[(p � 2a)(1þ 2 cos2 a)� 8 cosaþ 3 sin 2a] (37:68)

and where V is replaced by P=2 as seen by equilibrium conditions of Figure 37.14. Figure 37.15
provides a graphical representation of G1 as a function of angle a.

P

R

PR3

a

a (deg)

Fa
ct

or
, G

1

a

EI G1Y=

20

0.14

0.16

0.10

0.12

0.08

0.06

0.04

0.02

40 60 80

FIGURE 37.15 Deflection factor for a simply supported arch.
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37.10 PIN-SUPPORTED ARCH

Figure 37.16 shows a pin-supported arch with a central concentrated load. This is a statically
indeterminant system. Static equilibrium shows that the horizontal reactions must be equal and
opposite in direction.

The bending moment at a section defined by u is then

M ¼ VR( cosa� cos u)� HpR(sin u� sina) (37:69)

where Figure 37.16 defines the notation.
As before, we can use Castigliano’s theorem to determine Hp. Since the displacement of the arch

support is zero, the condition determining Hp is

ðp=2

a

M
@M

@Hp

du ¼ 0 (37:70)

From Equation 37.69 @M=@Hp is

@M

@Hp

¼ �R( sin u� sina) (37:71)

By substituting from Equations 37.69 and 37.71 into Equation 37.70 and integrating, we obtain

Hp ¼ PG2 (37:72)

where G2 is

G2 ¼ 4 sinaþ 3 cos 2a� (p � 2a) sin 2a� 1

2(p � 2a)(1þ 2 sin2 a)� 6 sin 2a
(37:73)

When a is zero, Equations 37.72 and 37.73 show that Hp is

Hp ¼ 0:318P (37:74)

which is a standard result. When a is increased, however, G2 increases dramatically until the arch
begins to yield in compression. It is well to keep in mind that relatively flat arches may be subjected
to appreciable horizontal forces if the supports are kept apart at a fixed distance.

V V
a a

q
R

P

Hp Hp

FIGURE 37.16 Pin-supported circular arch under central load.
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The maximum bending moment Mmax occurs when u is p=2. From Equation 37.69, Mmax is

Mmax ¼ PR
cosa

2
� (1� sina)G2

h i
(37:75)

The deflection under load P can be found by Castigliano’s theorem, considering one-half of the arch
as an arched cantilever subjected to a vertical force V and horizontal thrust Hp acting as two
statistically independent forces. The concept of static independence is justified here, as the external
work done by Hp in the direction of V is zero. Following the usual procedure, we obtain

Y ¼ PR3

EI
G3 (37:76)

where G3 is

G3 ¼ G1 � 4 sinaþ 3 cos 2a� (p � 2a) sin 2a� 1½ �2
8(p � 2a)(1þ 2 sin2 a)� 24 sin 2a

(37:77)

For a¼ 0, Equations 37.76 and 37.77 reduce the well-known formula for a semicircular arch with a
horizontal constraint:

Y ¼ 0:0189PR3

EI
(37:78)

Figure 37.17 provides an illustration of the G2 and G3 functions.

P

R

a

a (deg)

a
Hp Hp

Hp = PG2
PR3

EI G3
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0.008
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0.016

20 40 60 80
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FIGURE 37.17 Force and deflection factors for a pin-supported arch.
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37.11 BUILT-IN ARCH

A circular arch built-in at the supports presents a much more difficult analysis, even for the case of
a concentrated central load. Figure 37.18 provides a sketch of the configuration. The reason for
the complication is that the arch represents a doubly redundant structure with regard to the horizontal
thrustHb and the fixing coupleMf. In terms of these two unknown quantities and the vertical reactionV,
which follow from statics, the bending moment at any section defined by u can be stated as

M ¼ VR( cosa� cos u)� HbR( sin u� sina)�Mf (37:79)

The boundary conditions for the calculation of Hb and Mf can be obtained with the aid of the
theorem of Castigliano:

ðp=2

a

M
@M

@Hb

du ¼ 0 and

ðp=2

a

M
@M

@Hf

du ¼ 0 (37:80)

By substituting for M from Equation 37.79 and then integrating, we obtain

2HbRA2 � PRA1 � 8MfA3 ¼ 0 (37:81)

and

2HbRA3 � PRA4 � (p � 2a)Mf ¼ 0 (37:82)

By solving for Hb and Mf, we have

Hb ¼ P[(p � 2a)A1 � 8A3A4]

2(p � 2a)A2 � 16A2
3

(37:83)

and

Mf ¼ PR(A1A3 � A2A4)

(p � 2a)A2 � 8A2
3

(37:84)

where A1, A2, A3, and A4 are as follows:

A1 ¼ 4 sinaþ 3 cos 2a� (p � 2a) sin 2a� 1 (37:85)

P

MfMf

HbHb

q

aa VV

R

FIGURE 37.18 Built-in circular arch with a central load.
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A2 ¼ (p � 2a)(1þ 2 sin2 a)� 3 sin 2a (37:86)

A3 ¼ 0:5(p � 2a) sina� cosa (37:87)

A4 ¼ 1� 0:5(p � 2a) cosa� sina (37:88)

The derivation of the design formula for the central deflection follows the same rules as those used
in conjunction with other arches, although the amount of algebraic work is substantially increased.
The final result in this case is

Y ¼ PR3

EI
G1 � 4A2A2

4 � 8A1A3A4 þ 0:5(p � 2a)A2
1

4 (p � 2a)A2 � 8A2
3

� �
( )

(37:89)

All the results for the fixed-end arch can be simplified by introducing additional symbols for the
combined trigonometric functions as follows:

Mf ¼ PRG4, Hb ¼ PG5, and Y ¼ PR3

EI
G6 (37:90)

Figure 37.19 provides curves for the force and deflection factors.
The general equation for the bending moment is

M ¼ PR[0:5 cosa� G5(1� sina)� G4] (37:91)

The foregoing results are simplified by letting a be zero. Specifically, for a¼ 0 we have

Hb ¼ P(4� p)

p2 � 8
(37:92)
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FIGURE 37.19 Force and deflection factors for a built-in circular arch.
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Mf ¼ PR(p2 � 2p � 4)
2(p2 � 8)

(37:93)

M ¼ PR(2p � 6)
p2 � 8

(37:94)

and

Y ¼ PR3

EI

p3 � 20p þ 32
8(p2 � 8)


 �
(37:95)

37.12 PINNED ARCH UNDER A UNIFORM LOAD

Figure 37.20 shows a pin-supported circular arch subjected to a uniform vertical loading. This type
of loading and support is feasible, for instance, in large cylindrical containers or the casing of a
compressor of a jet engine subjected to inertia load under a sudden change in the direction of flight.
Another possible application is that of a buried, thin-walled cylinder responding to a seismic ground
motion or a soil compression wave caused by an underground explosion. Since a long pipe or a
cylindrical container can be treated as a number of rings connected together, the model of a pin-
jointed arch can be used in the analysis. In the case of a compressor casing, we can have a
longitudinal joint holding the two casing halves together, so that the model illustrated in Figure
37.20 is appropriate. When an analysis of the deformation pertains to any point on the arch, such as
that defined by u, the derivation can be rather involved. The relevant statically indeterminate
quantity is qR=2, where q denotes weight of the arch per inch of circumference.

Accordingly, the bending moment at any section u is

M ¼ 0:5qR2(p � p cos u� 3 sin uþ 2u cos u) (37:96)

or

M ¼ qR2B (37:97)

where B is a ‘‘bending moment factor.’’ Figure 37.21 provides values of B in terms of the locating
angle u.

The maximum deflection Ymax of the arch, occurring at u¼p=2 is

Y ¼ 0:0135qR4

EI
(37:98)

For small angles of u, on the order of 308, vertical deflection can undergo a change in sign. At these
values, however, the deflection is relatively small.

2
qR qR
2

22
pqR pqR

R

q

q

FIGURE 37.20 Pin-supported arch subjected to uniform vertical loading.
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SYMBOLS

A Acceleration
A1,A2,A3,A4 Load factors for built-in arch
B Bending moment factor; body
b Width of rectangular section
d Mean diameter of piston ring before cut
E Modulus of elasticity
e Element
F Pin-joint reaction
F* Inertia force
G1 through G6 Arch factors
g Acceleration due to gravity
H Horizontal load
Hb Horizontal thrust in built-in arch
Hp Horizontal thrust in pin-jointed arch
h Depth of cross section
I Second moment of area
K1 Arched cantilever factor
KM Factor for bending moment
Ku, K=

u Factors for radial deflection
Kc Factor for slope
‘ Bar or beam length
M Bending moment
Mf Fixing moment
M0 External bending couple
Mq Bending moment under uniform load
M1, M2 Bending moments for various portions
m Mass
P Concentrated load
�P Fictitious load
q Uniform load
qm Maximum load per unit length
R Mean radius of curvature
S Stress
Sb Bending stress
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FIGURE 37.21 Chart for bending moment factor B of Equation 37.97.
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t Thickness
U Strain energy
u Radial displacement
v Peripheral velocity
V Vertical reaction; volume; velocity
X Horizontal deflection
x Axial coordinate
Y Vertical deflection
a Ring or arch angle
g Specific weight
d Deflection; elongation or shortening
« Auxiliary angle; strain
«ij Strain matrix elements
u Angle at which forces are considered
r Mass density
s Stress
sij Stress matrix elements
f Angle subtended by arched cantilever
x¼R=h Ratio of radius of curvature to depth of section
c Slope
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38 Links and Eyebars

38.1 INTRODUCTION

Rings, coupling links, chains, and eyebars commonly occur in structures and machines. These are
closed, multiply connected structural components. In spite of their geometric simplicity, analysis of
these members is complicated due to static indeterminacy. Even strain energy methods are tedious
and difficult. In many cases, analyses can be simplified by neglecting direct and shear stresses in
comparison with those due to bending.

Many of these ringlike components and their loadings may be modeled as thick rings under
diametral loading. Therefore, it may be helpful and of interest to briefly review the response of a
thick ring under diametral loading. Results should be applicable not only to chain links but also to
such machine components as bearing rings and rims of heavy gears. We will base our analysis upon
elastic strain energy [1–4]. Timoshenko [5,6] provides more rigorous analyses.

38.2 THICK-RING THEORY

Figure 38.1 depicts a thick ring being compressed along its vertical diameter by a load P. In the
figure, H is a fictitious force introduced to enable evaluation of the change in the horizontal diameter
due to load P. As before, M, Q, and N are the bending moment, shear force, and normal force at a
cross section located at the angular coordinate u. Mf is the restraining moment at u¼ 0. R is the
midring radius as shown.

Due to the symmetry, we can focus upon a quarter of the ring. Equilibrium considerations
produce the following relations:

M ¼ PR(1� cos u)

2
þ HR sin u

2
�Mf (38:1)

N ¼ H sin u

2
� P cos u

2
(38:2)

and

Q ¼ P sin u

2
þ H cos u

2
(38:3)

From Castigliano’s theorem (see Section 37.2), we can determine the statically indeterminant fixing
moment Mf from the expression:

ðp=2

0

(M � Nd)
@M

@Mf

du ¼ 0 (38:4)
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where d is the displacement of the neutral axis. By substituting from Equations 38.1 and 38.2 into
Equation 38.4 and integrating, we can determine Mf as

Mf ¼ P(pR� 2Rþ 2d)
2p

(38:5)

Then from Equation 38.1 with H¼ 0, M becomes

M ¼ P(2R� 2d� pR cos u)

2p
(38:6)

In this manner, using Castigliano’s theorem, the vertical and horizontal displacements are
found to be

Y ¼ P

4AE
p2R(R� 2d)� 8(R� d)2

pd
þ pR(1þ 2:5j)

� �
(38:7)

and

X ¼ P

2AE
(4R� pR� 4d)(R� d)

pd
þ 2:5Rj

� �
(38:8)

where j is a shear distribution factor (multiple of maximum shear stress to mean normal stress on a
cross section).

38.3 THEORY OF CHAIN LINKS

Figure 38.2 presents a theoretical model of a chain link where a central support stud may or may not
be present. Since we are usually interested in knowing the maximum stress under a given load W, it
is necessary to calculate the bending moment MO under load W. Since the link is statically

M
Q

H/2

H/2

P

P

H

P/2

R

θ

M1
N

FIGURE 38.1 Thick ring in diametral compression.
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indeterminant we can use Castigliano’s theorem to determine MO, assuming that due to symmetry
there is no rotation at u¼ 0. This procedure leads to the expression:

ðp=2

0

M1
@M1

@M0
R duþ

ðL=2

0

M2
@M2

@M0
dx ¼ 0 (38:9)

where M1 and M2 are the bending moments in the curved and straight portions of upper right
quadrant of the link (see Figure 38.2).

For the model shown, M1 and M2 are

M1 ¼ M0 � PR sin u and M2 ¼ M0 � PR (38:10)

Observe that @M1=@M0¼ @M2=@M0¼ 1. Then by substituting from Equation 38.10 into 38.9 and
integrating, we obtain

M0p

2
� PR

� �
Rþ (M0 � PR)

L

2
¼ 0 (38:11)

By solving for M0 we have

M0 ¼ WR(2Rþ L)

2(pRþ L)
(38:12)

Knowing the bending moment M0 together with the link geometry, we can calculate the bending
stress. In addition, for design purposes we should evaluate the contact stresses as chains often fail
due to wear at the contact between two links.

Finally, for the model of Figure 38.2 if r is the radius of a circular cross section, then for most
chains the ratio r=R is between 0.2 and 0.5. The ratio L=R may vary between 0 and 4.

W

Position for a
central stud

R
W

L

L/2

P
Mo

dq

q

FIGURE 38.2 Model of a chain link.
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38.4 LINK REINFORCEMENT

When the strength of a typical open link such as that shown in Figure 38.2, is found to be
insufficient, the insertion of a central stud shown by dashed lines, is known to increase the strength
significantly. Figure 38.3 provides a free-body (equilibrium) diagram for studying this special case.

As before, this case is also statically indeterminant. Here there are two redundant quantities: M0

and H. From Figure 38.3, the moments M1 and M2 in the curved and straight portions are

M1 ¼ M0 �WR

2
sin uþ HR(1� cos u) (38:13)

and

M2 ¼ M0 �WR

2
þ H(Rþ x) (38:14)

Due to symmetry, there is no change in slope at the ends of the quadrant. Also, we can reasonably
assume that there is virtually no deflection in the direction of the stud. Using Castigliano’s theorem,
the first of these conditions is satisfied by Equation 38.9 as

ðp=2

0

M1
@M1

@M0
R duþ

ðL=2

0

M2
@M2

@M0
dx ¼ 0 (38:15)

Similarly, the condition of zero deflection leads to the expression:

ðp=2

0

M1
@M1

@H
R duþ

ðL=2

0

M2
@M2

@H
dx ¼ 0 (38:16)

From Equations 38.13 and 38.14 we have

@M1

@M0
¼ @M2

@M0
¼ 1 (38:17)

@M1

@H
¼ R(1� cos u) (38:18)

and

@M2

@H
¼ Rþ x (38:19)

x

H

R

W/2

W/2

H

q

Mo

L/2

FIGURE 38.3 Equilibrium model for a quarter of a studded link.
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By substituting from Equations 38.13, 38.14, 38.17, 38.18, and 38.19 into Equations 38.15 and
38.16 yields

M0 ¼ WRC1

2
and H ¼ WC2

2
(38:20)

where C1 and C2 are

C1 ¼ (k þ 2) k3 þ 6k2 þ 12k(4� p)þ 48(p � 3)½ �
k4 þ 4pk3 þ 48K2 þ 24pk þ 24(p2 � 8)

(38:21)

and

C2 ¼ 12(k þ 2) (p � 2)k þ 2(4� p)½ �
k4 þ 4pk3 þ 48K2 þ 24pk þ 24(p2 � 8)

(38:22)

where k is L=R.
Previous investigations indicate [7,8] that the provision of a link study could decrease the

maximum tensile stress by about 20%. The relevant maximum compressive stress can be reduced by
as much as 50%, although this type of stress is generally less important in link design.

38.5 PROOF RING FORMULAS

In the past, whenever steel rings with circular cross section were used as lifting components, it was
customary to use the following simplified expression for determining the maximum safe or ‘‘proof’’
load W as [8]:

W ¼ 33, 000d3

Di þ 0:3d
(38:23)

where as before
Di is the inner diameter of the ring (in.)
d is the cross section diameter (in.)

In the development of this formula, the maximum material strength was taken to be of the order
of 54,000 psi.

The analysis of circular links provides an introduction to the study of eyebars and similar
mechanical joints [9,10], which despite their apparent simplicity, often become a point of contention
as to the design criteria and the potential modes of failure. There is surprisingly little information on
the effect of basic variables on the critical stresses in eyebars. In particular, local areas of themaximum
tensile stresses may be of concern because of the modern requirements of fracture-safe design.

38.6 KNUCKLE JOINT

Figure 38.4 shows the typical knuckle joint geometry. In this design, the pin strength is of primary
importance. The remaining two components, however, behave essentially as eyebars which theor-
etically can fail in various ways. Figure 38.5 illustrates three common failure modes: (1) local
compression due to pin contact; (2) primary tension; and (3) tear-out shear.

The average compressive stress for the eyebar given in stress calculations can be obtained from
the projected area. This procedure is probably satisfactory provided the pin fits the eyebar with zero
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clearance. However, even under these assembly conditions, the pressure around the pin is expected
to vary according to a definite pattern.

A reasonable approach for calculating compressive stresses is based upon the ‘‘cosine load
distribution.’’ Figure 38.6 illustrates the concept, where q is the load per unit pin length. Due to
symmetry, the horizontal components of q balance out. The vertical components are then related to
the external load W by integrating around a quarter of the pin as

W ¼ 2r
ðp=2

0

q cos u du (38:24)

From Figure 38.6, we see that q may be expressed in terms of qmax as

q ¼ qmax cos u (38:25)

W

B

aa

W

p

W

D

W

FIGURE 38.4 Typical knuckle joint geometry.
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FIGURE 38.5 Typical eyebar failure. Local compression, primary tension, and tear-out shear.
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By substituting from Equation 38.25 into Equation 38.24, we obtain

qmax ¼ 2W=pr (38:26)

By dividing qmax by the width of the eyebar cross section, we have the compressive stress.

38.7 EYEBAR WITH ZERO CLEARANCE

The approach described so far provides a quick answer to the question of contact stresses if the
clearance between the pin and the eyebar is not excessive. However, the magnitude of the acceptable
clearance in a pin joint appears to be rather poorly defined in engineering literature because of
the theoretical complexity of the problem where the elastic theory breaks down. All that can be stated
for certain is that the cosine load distribution is probably a reasonable approximation to the manner of
loading under zero clearance, while a concentrated load model should correspond to a relatively large
clearance between the pin and the eyebar.

When the clearance is found to be relatively small and the pin can be assumed to be rigid, the
analysis of the maximum stresses in the eyebar portion of the joint can be performed with the aid of
the following simple expression [11]:

S ¼ Ww

BR
(38:27)

where w is a design factor depending upon the angular position u and the nominal radii R and r, as in
Figure 38.7. Figure 38.8 provides numerical values of w as a function of u and R=r.

According to this model, the maximum tensile stress is found at the inner surface of the eyebar,
where u is p=2. The graph of Figure 38.8 is intended for a typical range of R=r and it shows that the
effect of this ratio on the maximum stress in the eye is relatively small in the critical regions of u¼ 0
and u¼p=2.

As far as the theory of fracture-safe criteria is concerned, only the maximum tensile stress is of
an immediate interest to the designer. Accordingly, in line with the eyebar theory discussed above,
the tensile stress S becomes

S ¼ 3:52W
BR

(38:28)

2r

r

qa

q max

q

dq

q

W

FIGURE 38.6 Cosine loading on an eyebar.
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where Figure 38.7 illustrates W, B, and R. Equation 38.28 should be applicable for typical eyebar
geometry for all ratios of R=r between 2 and 4.

The primary tensile stress St corresponding to the simplified mode of failure depicted in
Figure 38.5 is

St ¼ W

2B(R� r)
(38:29)

B
R - r

r

R

W

q

W

R + r
2

Critical stress
area

Ring boundary for
comparative study

FIGURE 38.7 Eyebar geometry by Faupel. (From Faupel, J.H., Engineering Design, Wiley, New York,
1964.)
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FIGURE 38.8 Design factor based on Faupel. (From Faupel, J.H., Engineering Design, Wiley, New York,
1964.)
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In comparing the two models based on Equations 38.28 and 38.29, we can conveniently introduce a
dimensionless ratio l simply defined as

l ¼ R=r (38:30)

This in turn leads to the expression:

S

St
¼ 7:04(l� 1)

l
(38:31)

In conventional machine design practice, l typically has a value of 2. Equation 38.31 then produces
a stress ratio value of 3.52. The nominal tensile stress of the type given by Equation 38.29 is the
most damaging from the point of view of fracture propagation because of the relatively large amount
of elastic energy stored and available to develop the crack. Furthermore, as the crack develops, the
net area is being progressively lost, thereby increasing the nominal stress. Since the elastic energy
stored is proportional to the square of the stress per unit volume of the stressed material, it is easy to
see the role of the nominal stress. Hence, the local tensile stress of the type described by Equation
38.28 is most likely to be responsible for crack initiation. By the application of relatively high
factors of safety, the nominal stresses can be kept at a low level and the corresponding calculations
should not present undue difficulties. Unfortunately, the more rigorous analysis of a local stress
concentration can be very complicated and requires advanced knowledge of material behavior
supported by a well-conceived experimental program.

The characteristics of eyebar geometry reported by Faupel [11] can also be investigated on the
basis of a thick-ring model. The hypothetical boundary for such a ring is illustrated in Figure 38.7.

38.8 THICK-RING METHOD OF EYEBAR DESIGN

In general, when performing the analysis of a curved member of a relatively sharp curvature, it is
customary to assume that plane sections remain plane during bending while the neutral axis is
displaced toward the center of curvature, which in this particular case coincides with the center of
the eyebar. For a circular ring of a rectangular cross section, such a displacement can be obtained in
a closed-form solution and then approximated using the theorem of Maclaurin. Denoting the
relevant displacement of the neutral axis by d, the following simplified relation may be obtained

d ¼ rF(l) (38:32)

where F(l) is a geometric factor given by

F(l) ¼ (l� 1)2(lþ 1)

8(l2 þ lþ 1)
(38:33)

where l is the eyebar ratio defined as

l ¼ R=r (38:34)

where
R is the outer radius
r is the inner radius

When we compare the geometry factor F(l) of Equation 38.33 with more exact factors [1], we
find the difference is 15%–20% for l¼ 2 and l¼ 4, respectively. But since the neutral axis shift d
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has only a limited effect on the magnitude of the bending moment, the use of Equation 38.33 may be
justified within the range of l considered.

From Figure 38.7, we see that the bending moment M may be expressed as

M ¼ W

2p
Rþ r � 2d� p(Rþ r)

2
sin u

� �
(38:35)

Since the maximum tension develops at the inner radius where u¼p=2, putting l¼R=r and
d¼ (R� r)2 (Rþ r)=8 (R2þRrþ r2), Equation 38.35 gives

M ¼ WrG(l) (38:36)

where G(l) is a bending moment factor defined as

G(l) ¼ lþ 1
4p

p � 2þ (lþ 1)2

2(l2 þ lþ 1)

� �
(38:37)

Figure 38.9 provides graphical values of the geometry and bending moment factors F(l) and G(l).
From Figure 38.7, we see that the section modulus Z for the eyebar is

Z ¼ Br2(l� 1)2=6 (38:38)

Thus the bending stress Sb becomes

Sb ¼ 6WG(l)

Br(l� 1)2
(38:39)
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FIGURE 38.9 Moment [G(l)] and geometry [F(l)] factors in thick-ring theory.
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The total stress at the extreme fiber on the inner eyebar diameter is the sum of bending and tension.
According to the original Winkler-Bach theory, the general expression for the maximum stress Smax

may be expressed as

Smax ¼ w0(St þ Sb) (38:40)

where w0 is a correction factor allowing for a hyperbolic distribution instead of linear distribution of
the normal stress over the depth of the cross section (see Figure 14.5). Consequently, the stress
developed at the inner face of the curved beam may be assumed to be substantially higher than that
predicted by the theory of straight members.

So far the calculations of maximum stresses using the curved-beam model were made for a
single concentrated load. This discussion has been included here because many engineering
estimates are based on a single-load assumption, which often proves to be highly conservative.

Alternatively, the expression reported by Faupel [11] in Equation 38.27 is for a rigid pin with
zero clearance, with a loading distribution similar but not necessarily identical to that shown in
Figure 38.6.

38.9 EYEBAR WITH FINITE PIN CLEARANCE

When an eyebar has a finite clearance with its pin, the load distribution is affected and this in turn
will affect the stress levels. With finite clearance, the geometry is more complex and thus exact
analyses are elusive. From a design perspective, however, with typical eyebar geometry (say, R=r
approximately equal to 2), we can interpolate between the results for a rigid pin and those for a thick
ring, under the assumption that those two cases represent extreme loading conditions for most
practical purposes.

To provide some guidelines, recall from Equation 38.27 that the maximum stress S in an eyebar
with very small clearance is approximately

S ¼ Ww=BR (38:41)

where w is a stress (or design) factor given by Figure 38.8.
For an eyebar with a finite clearance, we can estimate the maximum tensile stress Stmax in the

eyebar by an expression analogous to Equation 38.41 as

St max ¼ Wc=BR ¼ Wc=lrB (38:42)

where c is a stress factor depending upon the clearance ratio e=r, where e is the clearance.
Figure 38.10 provides a graphical representation for c in terms of the clearance ratio.

It may also be convenient to express the maximum stress Stmax of Equation 38.42 in terms of the
nominal tension St of Equation 38.29 corresponding to the failure mode of Figure 38.6. Specifically,
from Equation 38.29 St is

St ¼ W

2B(R� r)
(38:43)

Then the ratio Stmax=St is

St max

St
¼ 2c(l� 1)

l
(38:44)

where, as before, l is the radius ratio R=r.
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38.10 MODES OF EYEBAR FAILURE, FACTORS OF SAFETY

Figure 38.6 shows various modes of eyebar failure. The question of a tear-out mode can be resolved
rather simply. Since this failure requires a double-shear equilibrium, and as the shear areas are
assumed to be rectangular, the theoretical values of the maximum shear stress Ssmax becomes

Ssmax ¼ 3W

4Br(l2 � 1)1=2
(38:45)

For the purpose of the calculations involving shear, the ratio of the allowable shear strength to yield
strength in tension should be taken as 1=

ffiffiffi
3

p
. Hence, the factor of safety based on shear is

Fss ¼ Syffiffiffi
3

p
Ssmax

(38:46)

To correlate this with tension, using Equation 38.42 the corresponding factor of safety may be
defined as

Fst ¼ Sy
Stmax

(38:47)

Then by utilizing Equation 38.42 and Equations 38.45 through 38.47 yields

Fst

Fss

¼ 3
ffiffiffiffiffiffi
3l

p

4c(l2 � 1)1=2
(38:48)

For the case of zero clearance and the practical range of values of l equal between 2 and 4, Equation
38.48 gives safety factor ratios of 0.426 and 0.331, respectively. Therefore, one of the primary
considerations in eyebar joint design is to evaluate the factor of safety related to the critical tensile
stress criteria rather than shear. This is particularly important in fracture-safe design.
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FIGURE 38.10 Stress factor for typical eyebar design.
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SYMBOLS

A Area of bar cross section
Ac Core area of shank
A Width of knuckle joint
B Width of eyebar
B= Width of contact area
C Correction factor for eyebars
C1, C2 Force factors in studded link
D Maximum eyebar diameter
Di Inner diameter of link
Ds Nominal diameter of shank
d Bar diameter
ds Core diameter of shank
E Modulus of elasticity
e Clearance
F(l) Auxiliary factor
Fss Factor of safety for shear
Fst Factor of safety for tension
G Shank diameter factor
G(l) Auxiliary factor
H Fictitious ring load
Ky, Kx Ring deflection factors
K¼ L=R Length-to-radius ratio
L Length of straight portion
M, M1, M2 Total bending moments
Mf Redundant moment in thick ring
M0 Redundant moment in link
N Direct force
n Proportionality constant
P Concentrated load
Q Shear load
q Unit load
qa Average unit load
qmax Maximum unit load
R Mean radius; major radius of eyebar
r Radius of bar; radius of eye
r0 Radius of pin
S General symbol for stress
Sb Bending stress
Smax Maximum stress
Ss Shear stress
Ssmax Maximum shear stress
St Tensile stress
Stmax Maximum tensile stress
Sy Yield stress
W Link or eyebar load
X Horizontal deflection
x Length along straight portion
Y Vertical deflection
Z Section modulus
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a Angle of inclined load
b Angle subtending contact arc
d Displacement of neutral axis
h¼ e=r Clearance ratio
u Angle at which forces are considered
l¼R=r Eyebar ratio
j Shear distribution factor
w Eyebar design factor
w0 Curved-beam stress factor
c Pin clearance correction factor
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39 Springs

39.1 INTRODUCTION

The technology of conventional mechanical springs has been developed over the past 100 years.
Sufficient data are currently available on materials, design, and manufacture so that a designer can
size a spring for a particular application. An excellent summary of the mechanical properties of
spring materials, working formulas, and fabrication variables has been compiled by Carlson [1]. In
addition, a number of excellent textbooks on mechanical design provide useful discussions on
spring design [2–4].

Basic derivation of spring formulas and some of the more complicated equations can be found
in a classical text on mechanical springs by Wahl [6]. This chapter is limited to conventional
formulas and the elementary principles of stress analysis.

Principal variables of importance to spring design are force, deflection, and stress. Once the
preliminary design for a given material and environment is accomplished, the appropriate produc-
tion techniques are best selected with the help of the established companies specializing in spring
manufacture.

The methodology of spring calculation has evolved through the use of special slide rules, charts,
tables, and finally electronic computers, which have considerably reduced the laborious process of
repetitive trial and error computations. The principal design relationships, however, remained the
same since they evolved from the theoretical concepts of stress and strain.

Design, manufacture, and application of mechanical springs result in a customary subdivision of
this topic into compression, extension, and torsion categories. The basic stress and deflection
formulas are essentially the same for the compression and extension springs. The only difference
between these two categories lies in the fact that in most applications extension springs have initial
tension wound into them. In the case of extension springs, the errors in both stress and deflection
calculations result when the helix angle exceeds 12.58. Furthermore, if the extension spring was
pulled out far enough, the tensile and not the torsional component of stress would become more
significant.

39.2 COMPRESSION SPRINGS

Compression springs in general are open-coil, helically wound springs which may be cylindrical,
conical, barrel-shaped, or concave in form. Since the solid height and end conditions are important
factors in design, it is necessary to know whether a compression spring under consideration is
expected to have plain or squared ends with or without ground end coils. These conditions
determine the appropriate corrections developed by the industry for the total number of coils,
load tolerances, operational characteristics, and other features affecting the performance and cost.
The compression springs are the most popular and represent 80%–90% of all springs produced by
the industry.

Basic design parameters in the case of a round wire cylindrical spring include the number of
active coils N, wire diameter d, mean coil diameter D, and the applied force P, which can be either
compressive or tensile. Figure 39.1 shows the various symbols used for helical springs.

From the point of view of stress analysis, helical ‘‘compression’’ spring is somewhat of a
misnomer because the compressive force produces torsional stress. When using a round wire, the
basic design formula for a helical compression spring is
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t ¼ 2:55PD
d3

(39:1)

where
t is the torsion (shear) stress (psi)
P is the applied (axial) load

This formula is based on the assumption that the spring wire responds as a straight bar of circular
cross section when acted upon by a torsional moment. The simplified model cannot yield the correct
value for the fiber stress because the coiled wire behaves as a curved member loaded out of the
plane of curvature. The actual stresses should vary in a hyperbolic fashion, with the higher stress
level existing on the inner surface of the spring.

Equation 39.1 is an approximate expression which is sufficiently accurate for most practical
purposes where static or slowly applied loads are involved. When helical springs operate under
severe dynamical conditions, however, additional stresses caused by the curvature of the spring and
shear loads need to be included.

A stress correction factor K0 for dynamic loading, proposed by Wahl [6], varies with the ratio of
mean to wire diameter. Specifically, Wahl’s formula is

tmax ¼ PDK0=d
3 (39:2)

where Figure 39.2 shows the variation of K0 with D=d.

D D D
h b

h h

h1

d

FIGURE 39.1 Typical symbols for helical springs.
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FIGURE 39.2 Stress correction factor. (From Wahl, A.M., Mechanical Springs, McGraw-Hill, New York,
1963.)
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For square wire cross sections, Wahl’s formula is

tmax ¼ 0:94PDK0

h3
(39:3)

where h is the side of the square cross section (see Figure 39.1) and where d is replaced by h in
Figure 39.2.

The initial step in spring sizing is to estimate the proper wire diameter for a given external load
P, the approximate mean diameter D, and the allowable torsional stress t. The convenient formula
for starting the calculation procedure is given by Equation 39.1. The number of coils can be
obtained from the standard spring formula

Y ¼ 8PD3 N

Gd4
(39:4)

where
Y is the spring compression
P, D, and d have the same meaning as before
N is the number of active coils
G is the shear modulus

Depending upon the geometry of the ends of the spring, there may be one or two ‘‘dead’’ or
noncontributing coils. The solid height of the spring is taken as the total number of coils times the
wire diameter. A compression spring, however, should never be designed to deflect in its working
travel until the coils actually contact each other. Therefore in selecting the working range Y, certain
allowance should be made so that the spring can carry the load above the solid height.

For a spring with a square wire cross section (rarely used), the expression analogous to
Equation 39.4 is

Y ¼ 5:58PD3 N

Gh4
(39:5)

39.3 EXTENSION SPRINGS

Extension springs are closely coiled helixes that offer a finite resistance to a pulling force. The load
buildup obtained by the coiling process is defined as the initial tension. Extension springs are
normally made out of round wire, although in special cases, square or shaped wires can also be
found. From the design point of view, initial tension means the presence of a definite stress in
the spring wire in the original undeflected condition. The initial tensile stress should be added to the
subsequent working stress of the spring. When there is no initial tension, the compression spring
formulas, quoted in this chapter, are directly applicable to extension spring design.

Studies show that extension springs represent about 10% of all springs produced by the various
manufacturers. The design lead time for these springs is longer because of the additional require-
ments for the control of initial tension, special coiling methodology, and stress analysis of end
hooks. There is quite a variety of standard and special extension spring ends, designed according to
the military and industrial applications, to which the designer is referred during the process of
selecting the appropriate configurations. This is not a mundane problem because of the end
curvature and the stress concentration phenomena involved.

Figure 39.3 depicts a typical end hook geometry of an extension spring. Due to the transition
from the plane of the end hook to the coil geometry, there are four different radii of curvature
between the hook and the coil. Figure 39.3 shows these radii.
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It appears that, in general, the maximum bending and torsional moments can be taken equal to
PR. The exact solution of the maximum bending and torsional stresses may require certain design
corrections due to the sharp curvature. However, the relevant industrial practice suggests that in a
well-proportioned spring end, the probability of a structural failure due to the torsional moment is
rather low. Hence the following simplified formula for bending is all that might be needed [1]:

Sb ¼ 5PD2

(D� d)d3
(39:6)

where
Sb is the bending stress
P is the axial load
D is the mean coil diameter
d is the wire diameter (see Figure 39.3)

Another approximate equation for the bending stress uses the radii of curvature R1 and R3 [7]:

Sb ¼ 10:19 PRR1

R3d3
(39:7)

where, as before, R is the mean coil radius as in Figure 39.3.
Equations 39.6 and 39.7 provide useful approximations for the wire bending stress applicable

for the majority of spring configurations including regular and hooks over center, crossover center
hooks, as well as machine or double hooks. Exceptions may involve half and side hooks subjected
to additional stresses.

When R1 is equal to R2, and the wire diameter d is small compared with the mean coil diameter D
(see Figure 39.3), Equations 39.6 and 39.7 give approximately the same numerical results.

In the region of A0 shown in Figure 39.3, where the bend joins the helical portion of the spring
wire, the stress is caused by twisting. The corresponding torsional shear stress can be obtained by
multiplying the result from Equation 39.1 by the ratio R2=R4. This approximation should be
sufficiently conservative for most practical needs.

The amount of stretch in an extension spring has no well-defined limit similar to the solid-height
limit found in a compression spring. Hence the amount of extension has to be governed by the

d

R1
R
3

R

P

R4

R2

P

A�

R

FIGURE 39.3 Typical end hook geometry for an extension spring.
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maximum fiber stress dependent on the wire size and the diameter ratio. From the point of view of
production, the extension springs can be manufactured with a definite space between coils, with zero
space and zero initial tension, or close-wound with a given initial tension. In the latter case, after the
initial tension has been broken to create a space between the coils, the extension has the same rate as
that which can be calculated from the deflection formula for the compression spring. The specific
extension spring which requires a uniform rate of load from zero to the maximum allowable
deflection, must be wound with zero initial tension.

39.4 TORSION SPRINGS

Torsion springs used in the industry relates to a helical coil spring that exerts a torque or moment,
hence the term ‘‘torsion.’’ From another perspective, however, the term ‘‘torsion’’ may be a
misnomer in that torsion springs operate via bending stresses, whereas compression and extension
springs operate via torsion stresses.

Torsion springs have commonly been used in clocks, doors, toy motors, and measuring devices.
In their design, the spring usually winds up from the free position, causing reduction in the coil
diameter. Although many torsion springs are made from round wire, a more efficient cross-section
shape is rectangular, the so-called ‘‘flat coil.’’

Figure 39.4 shows the basic principle of a torsion spring. The torque produced depends upon the
winding geometry. That is, in referring to the figure, the torque is not P� Lr but instead P� L0.

There are numerous working tables, formulas, and recommended design steps for the analysis of
torsion-type springs [1–7]. The underlying principles follow the conventional beam theory on the
premise that a constant moment acts on the entire wire cross section.

The bending stress Sb for the round wire spring is

Sb ¼ 10:2M
d3

(39:8)

where
M is the applied moment (in.-lb)
d is the wire diameter (in.)

For a rectangular cross section with width b and depth h, the bending stress Sb is

Sb ¼ 6M
bh2

(39:9)

L0

P
P

L r

Support
  point

Rod

FIGURE 39.4 A torsion spring.
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The relationship for a round wire, between the applied torsional momentM and the number of turns T is

M ¼ 0:093 ETd4

ND
(39:10)

where
N is the number of active coils
D is the mean coil diameter
E is the modulus of elasticity

Similarly the relation between the applied torsional moment M and the number of turns for a
rectangular wire is

M ¼ 0:152EbTh3

ND
(39:11)

where
h is the cross-section thickness (measured in the radial direction)
b is the cross-section dimension parallel to the axis of the coil

From the point of view of practical stress analysis, the coiling procedure and the degree of
springback of a torsion spring depend on the D=d ratio. In the case of smaller D=d ratios, the tensile
stresses induced by the coiling process can be in excess of the proportional limit of the material so
that the calculations can only indicate the apparent rather than real stresses.

39.5 BUCKLING COLUMN SPRING

When a flat and initially straight thin strip (or band) is subjected to a compressive end load, large
deflections can develop. The spring formed in this way is essentially a special curved member
characterized by what is known as a ‘‘zero rate response.’’

Figure 39.5 illustrates the concept. The desired spring effect is provided by the large displacement
of the flat steel band.

P

P

x

L/2

L/2

Y/
2

Y/
2

Free length
of zero load

Approximate
centerline
of buckled
member

FIGURE 39.5 Buckling column spring.
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Analysis of the band structure leads to the following nonlinear differential equation:

EI
dc

ds

� �
¼ �Px (39:12)

where
x is the horizontal displacement
c is the slope of the band
s is the distance along the band
E, I, and P are the elastic modulus, second moment of area, and axial load

The nonlinearity in Equation 39.12 arises upon differentiation with respect to s, yielding

EI
d2c

ds2
¼ �P sinc (39:13)

where dx=ds is identified as sin c [8].
Solution of Equation 39.13 involves elliptic integrals which can be simplified to provide design

formulas and charts suitable for practical use [9].
Relevant working formulas are

P ¼ h2 AEF1

L2
(39:14)

Sb ¼ hEF2

L
(39:15)

and

A ¼ PEF2
2

F1S2b
(39:16)

where
Sb is the bending stress
h is the thickness of the band
L is the length of the band
A is the band cross-section area
F1 and F2 are design factors, provided graphically in Figure 39.6

From Equation 39.14 and Figure 39.6, we can determine the vertical displacement Y and then also
the lateral displacement x. By iteratively using Equations 39.15 and 39.16, we can adjust the cross-
section area A so as not to exceed a given bending stress Sb.

Since relatively thin strips in axial compression cannot support substantial loads, parallel
arrangement of a number of strips may be required for a particular design. The controlling factor
is the stress given by Equation 39.14 and the type of load–deflection characteristics required.

For best approximation to zero rate spring response, the Y=L ratio should be kept between 0.1
and 0.3, while L=h should not be appreciably smaller than about 200.
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SYMBOLS

A Area of cross section
a Length of vertical drop
D Mean coil diameter
d Wire diameter
E Modulus of elasticity
e Spring pitch
F1, F2 Design factors
G Shear modulus
g Acceleration of gravity
h, h1 Depths of sections
I Second moment of area
K0 Stress correction factor
k Spring constant
L Length of spring or flat stock
L0 Arbitrary length
Lr Radial distance
M Applied torque
Ma Moment per one turn of torsion spring
N Number of active coils
n Frequency (cycles=s)
P Spring force
R Mean radius of coil
R1, . . . , R4 Radii of curvature
Sb Bending stress
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FIGURE 39.6 Design factors for a buckling column spring.
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s Length of deflection curve
T Number of turns
V Impact velocity
Ws Weight of spring
x Horizontal deflection
Y Deflection
g Weight density
D Diameter increase
t Torsional stress
tmax Maximum torsional stress
c Slope
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40 Irregular Shape Springs

40.1 INTRODUCTION

By varying the geometry of long flexible members, we can construct springs with shapes appropriate
for special application. Since there is theoretically no limit to the number of shapes we can envision,
there is no limit to the different shaped springs we can design. An exhaustive discussion of this is
therefore beyond our scope. Instead, we limit our discussion to a few typical shapes useful in design
and also helpful for development of similar components [1].

Predicting deflections and stresses of complex shaped springs has obvious advantages, as with
the help of the calculations fewer test samples need be built in the shop before any final design is
firmed up and mass production established.

In developing various analytical expressions, we assume that the external forces applied to a
spring are delivered without shock. The cross-section areas are constant and only small deflections
will be considered so that the principle of superposition remains valid.

40.2 SNAP RING

Figure 40.1 shows a snap-ring spring. It consists of flat strip of thickness h and width b shaped into a
portion of a circle with radius R.

Due to symmetry, it is sufficient to analyze one half of the spring. At a typical point B, at an
angle u of the ring as in Figure 40.1, the bending moment M is

M ¼ PR(cosa� cos u) (40:1)

where
P is the applied load
a is the half-angle of the spring opening as shown

From Equation 40.1, and also from Figure 40.1, we see that the maximum bending moment
Mmax occurs at C (u¼p). That is,

Mmax ¼ PR(1þ cosa) (40:2)

The maximum bending stress Sbmax is then

Sbmax ¼ Mmax(h=2)=I ¼ 6PR(1þ cosa)

bh2
(40:3)

where, as before, I is the second moment of area bh3=12.
When a increases, arc AC decreases until a¼p and cos a¼�1. The bending effect then

disappears. Alternately, when a approaches 0, the maximum bending stress Sbmax approaches that of
a split ring:

Sbmax ¼ 12PR
bh2

(40:4)

Using Castigliano’s theorem (see Section 3.7), the total deflection Y between A and D is
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Y ¼ 2
EI

ðp

a

M
@M

@P
R du

By substituting from Equation 40.1, we obtain

Y ¼ PR3

EI
[(p � a)(1þ 2 cos2 a)þ 1:5 sin 2a] (40:5)

Note that the foregoing expressions are also valid when the direction of the loading is reversed.
When a is zero, that is, for a snap-ring spring with a minute gap between points A and D, the

deflection becomes

Y ¼ 3pPR3

EI
(40:6)

where, as before, E is the elastic modulus.
Figure 40.2 shows a split ring subjected to pull along the vertical diameter AB. This configuration

applies to the design of piston rings, and the gap at the split end is regarded to be rather small
compared with the radius of curvature R. The design equations can be developed on the assumption

B

A

D

R

C

h

P

P
q

a

a

FIGURE 40.1 Snap-ring spring.

P

B

DC

FIGURE 40.2 Snap-ring spring under diametral load.
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that the stresses are essentially those for a conventional straight member and the deflection is caused
by the bending stresses alone.

The increase in opening at D is equal to twice the displacement of the free end D relative to C, as
shown by the arched cantilever model in Figure 40.3. Since there is no force at point D, a fictitious
force �P is applied at the point and in the direction of the required deflection. The bending moment
for the portion AD is then

M1 ¼ �PR(1� cos u) (40:7)

Similarly, for the second quadrant we have

M2 ¼ PR cos (p � u)þ �PR[1þ cos (p � u)] (40:8)

Using Castigliano’s theorem, the general expression for the deflection Y is

Y ¼ 2
EI

ðp=2

0

M1 @M1

@�P
R duþ 2

EI

ðp

p=2

M2
@M2

@�P
R du (40:9)

where @M1=@�P is

@M1

@�P
¼ R(1� cos u) (40:10)

and @M2=@�P is

@M2

@�P
¼ R(1þ cos (p � u)) (40:11)

Finally, by substituting into Equation 40.9 and setting �P equal to zero, we find the displacement
to be

Y ¼ PR3(4þ p)

2EI
(40:12)

40.3 SPRING AS A CURVED CANTILEVER

In some applications, we can use a curved cantilever spring as a loading or a support member.
Figure 40.4 shows such a spring. One end of the spring can be considered fixed while the loaded end

P

A

C D

R

P

q

FIGURE 40.3 Arched cantilever model for split-ring analysis.
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may be either free or constrained. For the case of the constrained end A, the bending moment M at
any section is

M ¼ PR sin u (40:13)

The maximum bending stress Sbmax for this spring is then

Sbmax ¼ Mmax(h=2)
I

(40:14)

where
Mmax is the maximum bending moment
h is the spring thickness (see Figure 40.4)
I is the second moment of area bh2=12

From Equation 40.13 we see that Mmax is PR. Therefore, Sbmax is

Sbmax ¼ 6PR
bh2

(40:15)

Using Castigliano’s theorem (see Section 3.7), the displacement Y at the free end is determined as

Y ¼
ð3p=2

0

M

EI

@M

@P
R du ¼ 3pPR3

4EI
(40:16)

If the unsupported end AB of the spring is constrained by guides, to move in a vertical direction only
as shown in Figure 40.4, the bending moment equation, Equation 40.13 must be modified by
introducing a constraining moment Mf as a redundant and unknown quantity:

M ¼ PR sin u�Mf (40:17)

D B

AA

B

P
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q

R

h

b

Horizontal
constraint

FIGURE 40.4 Three-quarter circular cantilever spring.
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Due to the constraint, the rotation at end A is zero. Then by again using Castigliano’s principle, we
can obtain the constraining moment Mf from the expression

ð3p=2

0

M
@M

@Mf

du ¼ 0 (40:18)

By substituting from Equation 40.17 into Equation 40.18 and integrating, we obtain Mf as

Mf ¼ 2PR=3p (40:19)

Hence, for the end constrained spring the bending moment of Equation 40.17 becomes

M ¼ PR sin u� 2
3p

� �
(40:20)

By again using Castigliano’s theorem as in Equation 40.16, we obtain

Y ¼ PR3

EI

9p2 � 8
12p

� �
(40:21)

The constraint reduces downward deflection by about 9%. However, this effect is not constant and
depends on the angle subtending the spring arc. It may be of interest to note that the maximum
bending stress in the spring is still given by Equation 40.15. The deflection can also be expressed as
a function of stress for the free-end and the guided-end design conditions, giving

Y ¼ 3pR2Sbmax

2Eh
(free end) (40:22)

Similarly, by eliminating P between Equations 40.15 and 40.21, we have

Y ¼ (9p2 � 8)R2Sbmax

6pEH
(guided end) (40:23)

40.4 HALF-CIRCLE S-SPRING

Figure 40.5 shows a half-circle S-spring supporting a horizontal load P. Let the device have a
rectangular cross section with width b and depth h.

P P

R

R

h

FIGURE 40.5 Half-circle S-spring.
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Due to the symmetry, we can consider the spring to be an assemblage of four arched cantilevers.
Therefore, the analyses of the foregoing section are directly applicable. Using these procedures, we
find that the spring deflection Y in the direction of the applied load P is

Y ¼ 12pPR3

bEh3
(40:24)

where, as before,
E is the elastic modulus
R is the half-circle radius, as in Figure 40.5

Similarly, the maximum bending stress Sbmax is

Sbmax ¼ 6PR
bh2

(40:25)

By eliminating P between Equations 40.24 and 40.25, we have

Y ¼ 2pR2Sbmax

Eh
(40:26)

40.5 THREE-QUARTER WAVE SPRING

Consider a three-quarter circular wave spring as shown by Figure 40.6. We can analyze portions AC
and CF separately by writing the bending moment equations for points B and D, respectively. For
point B, we see from Equation 40.24 that

M ¼ PR sin u (40:27)

For point D, however, the bending moment equations should be modified to

M ¼ PR(2� cos u) (40:28)

Observe that at u¼ 0 for the CDF portion of the spring, M¼PR; and at u¼p, M¼ 3PR.
The maximum bending stress Sbmax is

Sbmax ¼ 18PR
bh2

(40:29)

Using Castigliano’s theorem (see Section 37.2), we see that the displacement Y under load P can be
obtained from the sum of the two component values for portions ABC and CDF as

C

D

F

R

q

q

B

A

P

R

FIGURE 40.6 Three-quarter circular wave spring.
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Y ¼ PR3

EI

ðp=2

0

sin2 u duþ PR3

EI

ðp

0

(2� cos u)2du (40:30)

where, as before,
E is the elastic modulus
I is the second moment of area bh3=12

By carrying out the indicated integrations in Equation 40.30, we find Y to be

Y ¼ 19pPR3

4EI
(40:31)

If a straight portion of length L is added as shown in Figure 40.7, the maximum bending stress
remains unchanged because the extension FG acts as a cantilever beam, built-in at G and loaded by
a couple (ePR) at F provided that the direct stresses are ignored. The total deflection (or resilience)
of the spring, however, is increased by the effect of the end couple on the cantilever so that the
modified deflection formula becomes

Y ¼ PR3

EI
9k þ 19p

r

� �
(40:32)

where k¼ L=R, as before, so that for k¼ 0, Equation 40.32 reduces to Equation 40.31. The direct
extension of the portion FG under load P is ignored as being small relative to the deflection at point A.

The term ‘‘resilience’’ implies the elastic strain energy stored in the spring, which can be totally
recovered upon the release of load P.

40.6 CLIP SPRING

Figure 40.8 shows the geometry and loading of a typical clip ring. We can use the result of Equation
40.32 to calculate the spread of a clip ring under loads P as in Figure 40.8. Specifically,

Y ¼ 2PR3

EI
9k þ 19p

4

� �
(40:33)

where the notation is the same as that of Section 40.5.
Recall from Equation 40.29 that the maximum bending stress Sbmax is

Sbmax ¼ 18PR
bh2

(40:34)

G

L

F

D

Cq

qB
A

P

R

R

FIGURE 40.7 Three-quarter circular wave spring with extension.
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By combining Equations 40.33 and 40.34, we can express the maximum bending stress Sbmax in
terms of the spring deflection Y and the spring dimensions as

Sbmax ¼ hYE

R2(12K þ 19:9)
(40:35)

where, as before,
E is the elastic constant
k is the dimension ratio L=R

40.7 GENERAL U-SPRING

Figure 40.9 shows the geometry and loading of a general U-spring.We can develop design formulas for
this component by treating it as a joined, curved cantilever beams as discussed extensively by Blake [2].

Specifically, in Figure 40.9 the component force P1 acting perpendicular to the straight leg is

P1 ¼ P cos n (40:36)

where n is the angle shown in Figure 40.9 (not Poisson’s ratio, as often designated by n).
If Y1 is the displacement of the loaded end A in the direction of P1 and Y, the total change in the

distance AB due to P, then Y1 and Y are related as

Y1 ¼ 0:5Y cos n (40:37)

2L

PPR

RR

h

R

FIGURE 40.8 A clip ring.

R L

L

A�

h

P

P

n

n

A

B

P 1

P1

f

f

FIGURE 40.9 A general U-spring.
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From previous results documented by Blake [2], we have

Y1 ¼ P1R3

EI
F(k,f) (40:38)

where, as before, k is the ratio L=R; f is the angle shown in Figure 40.9; and from Blake [2] F(k, f) is

F(k,f) ¼ 0:33k3 þ k2fþ 2k(1� cos u)þ 0:5f� 0:25 sin 2f (40:39)

Thus from Equations 40.37, 40.38, and 40.39, Y is

Y ¼ 2PR3

EI
F(k,f)=cos n (40:40)

The maximum bending stress Sbmax at the arch point A0 is found to be

Sbmax ¼ 6PR
bh2

1þ sin n þ k

cos n

� �
(f � p=2) (40:41)

and

Sbmax ¼ 6PR
bh2

(1� cosfþ k cos n) (f < p=2) (40:42)

For the special case of n¼ 0 (and thus f¼p=2) Equations 40.41 and 40.42 both reduce to

Sbmax ¼ 6PR(1þ k)

bh2
(40:43)

40.8 INSTRUMENT TYPE U-SPRING

Designers use U-springs in many applications and especially, in instruments and precision
equipment. We can manufacture U-springs with relatively simple machinery, and assembly is
easy. U-springs are generally loaded in the plane. They can be used as both tension and compression
devices.

Figures 40.10 through 40.12 depict the three most common types of U-springs.
Table 40.1 provides formulas for the maximum moment and deflection of these three

spring types.

L

P

h

b
P

R

FIGURE 40.10 Flat U-beam=spring.
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h

R

L

L

b

P

P

FIGURE 40.11 U-beam=spring with ends fixed as to slope.

L L

P

P

R

R

FIGURE 40.12 Double U-beam=spring.

TABLE 40.1
Moment and Deflection Formulas for Three
Common U-Springs

Type of Spring Moment Deflection

Single U-spring

without constraint

M ¼ PRC3 Y ¼ PR3

EI
C1

Single U-beam
with constraint

M ¼ PRC4 Y ¼ PR3

EI
C2

Double U-beam M ¼ 0.5 PRC4 Y ¼ PR3

2EI
C2
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These formulas contain design factors C1, . . . , C4, which in turn are provided by Figures 40.13
through 40.16.

40.9 SYMMETRICAL WAVE SPRING

We conclude with a brief discussion about the symmetrical wave spring which has a variety of
applications in machine design. Figure 40.17 depicts the device and its loading. Due to the
symmetry, we can analyze the structure by considering the cantilever portion ABC as fixed at C
and loaded by P=2 at end A.

Assuming that contact friction between the supporting surface and the end of the spring at A is
negligible, the bending moment equations can be stated in customary terms:

M1 ¼ PR sin u

2
and M2 ¼ PR

2
(2 sinf� sin u) (40:44)

where Figure 40.17 shows the notation. In the figure,M1 is the bending moment from the load (P=2)
at A in the spring section from A to B. Correspondingly, M2 is the bending moment from the load at
A in the section from B to C.

By again using Castigliano’s theorem (see Section 37.2), the displacement Y at A relative to C
may be computed from the expression:

Y ¼
ðf

0

M1
@M1

@P
R duþ

ðf

0

M2
@M2

@P
R du (40:45)
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FIGURE 40.13 Deflection factor for U-springs without constraint.
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FIGURE 40.14 Deflection factor for U-springs with constraint.
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FIGURE 40.15 Bending factors for U-springs.
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where from Equation 40.44, @M1=@P and @M2=@P are

@M1

@P
¼ R sin u

2
and

@M2

@P
¼ 2( sinf� sin u)

2
(40:46)

By introducing Equations 40.44 and 40.46 into Equation 40.45 and integrating, we find the
displacement Y to be

Y ¼ PR3

EI
(0:25fþ f sin2 f� sinfþ 0:375 sin 2f) (40:47)

By varying f, we can obtain a number of interesting spring configurations. Equation 40.47 then
provides the spring constants.

R = 1 i
n. 

L = 3 in. 

P = 5 lb

h = 0.125 in. 

b = 0.5 in.

P

FIGURE 40.16 Flat U-spring (Design problem 26.2).
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FIGURE 40.17 Symmetrical wave spring.
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SYMBOLS

a Length
b Width of rectangular section
c Length
C1, C2, C3, C4 Moment and deflection factors for U-springs
d Length
E Modulus of elasticity
F(k, f) Function of K and f (see Equation 40.39)
H Horizontal load
h Depth of cross section
I Second moment of area
K1 Deflection factor for arched cantilever
k¼ L=R Straight length-to-radius ratio
L Straight portion of spring
M, M1, M2 Bending moments
Mf Fixing moment
Mmax Maximum bending moment
P Vertical load
�P Fictitious vertical load
P1 Component of vertical load
R Mean radius of curvature
Sb Bending stress
Sbmax Maximum bending stress
x Arbitrary distance
X Horizontal deflection
Y Vertical deflection
Y1 Component of vertical deflection
a Half-angle of snap spring
b Angle at which load is applied
u Angle at which forces are considered
n Auxiliary angle in U-springs
f Angle subtended by curved portion

REFERENCES

1. A. Blake, Complete flat springs, Product Engineering, 1961.
2. A. Blake, Practical Stress Analysis in Engineering Design, 2nd ed., Marcel Dekker, New York, 1990

(Chap. 25).
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Index
A
Annular plates

displacement and radial bending moment, 301–302
selected formulas

displacement factors, 305–306
maximum stress and displacement values, 302–304
stress factors, 304–305

with uniform edge moments, 300
Arch buckling factor, 233
Arches

built-in type
with central load, 582
force and deflection factors, 583

under central load, 578
deflection factor, 579
pin-supported type

bending moment factor, 585
under central load, 580
force and deflection factors, 581
uniform vertical loading, 584

strain energy and Castigliano’s theorem
axially loaded rod, 565–566
bending moment, 567
cantilever beam, 566–568
forces, 565–566

Arrays
stress components, 26
symmetric, 27

Axial and bending properties
cross-section property approximation, 509–510
cylinders

elastic buckling stress, 517
elastic stability, 516
loading, 516
mathematical formalism complexity, 516

elastic foundation
compressive axial force, 512
elastic foundation parameter, 513

load eccentricity
axial loading, 520
eccentricity ratio, 519

one-way buckling
beam-column problem, 514
compressive force, 515
eccentricity and transverse resistance, 514
fixing moments, 514
pipe half-length, 514

pipe column behavior
buckling load stress, 510
yield strength, 511

plastic buckling
bellows-type buckle

four-point procedure, 518
ultimate pipe capacity, 518
yield force, 519

elasticity tangent modulus, 518

rolling diaphragm
basic geometry, 520
deformation energy, 523
elongation and ductility, 524
plastic deformation, 522
simplified model, 520
strain energy, 520
tensile hoop strain, 522

stress, 519
Axial loading, in trusses, 103
Axial responses, bars, see Rods

B
Bars, see Rods
Base vectors, 72–74

contravariant, 78
covariant, 78
differentiation of, 78–81
noncoplanar, 76
reciprocal, 76–78

Beam bending formulas
cantilever beams

left-end support and concentrated
end load, 149–150

left-end support and uniform load, 150–152
left-end supported type, 149
maximum bending moment and maximum

displacement, 167–170
right-end support and concentrated end load,

152–154
right-end support and uniform load, 154–155
right-end supported, 152

double built-in supported beams
and concentrated center load, 160–162
and concentrated off-center load, 162–163
maximum bending moment and maximum

displacement, 172–173
positive directions, 160
and uniform load, 163–165

simply supported beams
and concentrated center load, 155–157
and concentrated off-center load, 157–158
maximum bending moment and maximum

displacement, 170–171
positive directions, 155
and uniform load, 158–160

superposition principle, complex
loadings, 165–168

Beams; see also Cantilever beams
analysis using singularity functions

dirac delta function, 127–128
heavyside unit step function, 127

axis displacement=axis curvature, 111
bending moment and axial stress, 109
deflection due to bending, 107–108
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displacement
and bending moment, 111
transverse shear and loading on beam, 111–112

free-body diagram of left-side segment of, 120
loading methods, 104
neutral surface of, 107
positive-directed transverse forces on, 105
principles for loading, 103
stresses due to bending, 109–110
structural analysis, 104
supported with

concentrated interior load, 121–124
uniform load, 119–121

supports, support reactions, and boundary conditions
built-in (clamped=cantilever) support, 112–113
elastic support, 114
free (unconstrained) support, 113–114
simple (pin=roller) support, 113

Belleville washer
deflection factor vs. radius ratio chart, 367
disk cross section, 365
spring, 364
stress factor vs. radius ratio chart, 366
stress vs. displacement relations, 368

Bending moments, construction of diagrams for, 140–143
Bending theory, plates

bending and twisting moments, 261–262
boundary conditions

clamped (fixed or built-in) support, 275
elastic edge support, 276
free edge, 275–276
simple (hinge) support, 275

differential equations
displacement=shear assumptions, 273
equilibrium equations, 272
governing equation, 273–275
moment–curvature and in-plane force relations, 273

four general categories, 257
internal stresses, 277
modeling and simplifying assumptions, 257–258
rectangular brick element equilibrium, 263–266
stress resultants, 258–261
stress–strain–displacement equations, 268–272
terms and equations, 266–268

Box-type support brackets, 337–338
Brackets

design types
box-type support, 337–338
channel-type heavy-duty, 339–340
double-T section, 339
heavy-duty plate, 337–339
shear-type, 337–338
tapered-plate, 338–339

stress and stability analysis
channel-type heavy-duty, 350
free-edge stability, 350
plate buckling coefficient, 347–348
structural support elements, 349
tapered-plate, 347
triangular-plate, 350–351
T-section bracket, 349

stress formulas
box-type support, 345

bracket angle, 346
heavy-duty plate, 345–346
inverse strain parameter, 346
shear-type, 344

weld stresses
bending moment, 340
fillet weld in bending, 340
free-body diagram of fillet weld, 342
free-body diagram of weld segment, 343
shear stress, 341
symmetrical fillet weld in tension, 342
weld profile, 343

Brittle material, Poisson’s ratio, 91
Buckling

arch buckling factor, 233
axially loaded bar, 225
bending

critical loading coefficient, 231
loading and end supports, 230

columns
critical load per unit length, 232
heavy uniform cross-section, 231

critical stress vs. slenderness ratio, 224
design curve, 224
end-support conditions

clamped (nonrotating) and free end, 219
clamped (nonrotating) and pinned end, 219
clamped (nonrotating) ends, 218–219

free-body diagram, 221
I-beams, 231
intermediate length bars and columns

eccentric loading and secant formula, 225–228
Johnson formula, 223–225

Johnson curve, 224
long bars

axial compressive loading, 217–218
clamped–clamped, 222
clamped–free, 222
clamped–pinned, 223
pinned–pinned, 222

off-axis axial load, 225
plates

buckling stress coefficients, 229
compressive in-plane loading, 228

rectangular cross section, 219
rings and arches, 232–233
short bar end loading, 225

Buckling column springs
band structure, 607
concept, 606
design factors, 608
nonlinearity, 607
zero rate response, 606

Building code method, 403–404
Bulk modulus, 99
Burst factor, 472–473

C
Cantilever beams

with concentrated end load, 117–119, 132–134
left-end support and concentrated end load, 149–150
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left-end support and uniform load, 150–152
left-end supported type, 149
maximum bending moment and maximum

displacement, 167–170
right-end support and concentrated end load, 152–154
right-end support and uniform load, 154–155
right-end supported, 152
with uniform load over half span, 143–146
uniformly loaded, 115–117

Cartesian axis system, 55
Cartesian coordinates, 67
Castigliano’s theorem

axially loaded rod, 565–566
bending moment, 567
cantilever beam, 566–568
chain links, 589
forces, 565–566
snap-ring spring, 613
symmetrical wave spring, 621
three-quarter circular wave spring, 616

Chain links, see Links
Channel-type heavy-duty brackets, 339–340
Christoffel symbols, 79, 84–85
Circular plates

axisymmetrically loaded, 292–293
with concentrated center load, 290
design problem, 290–292
governing equation solution

bending moment and shear forces, 288
clamped uniformly loaded, 289
simply supported, uniformly loaded, 288–289

moment–displacement equations, 287
Clip springs, 617–618
Compatibility equations, 63
Compression springs

design parameters, 601
sizing, 603
standard formula, 603
stress correction factor, 602
symbols for helical type, 601–602

Concentrated end loading, support reactions and end
displacement

left-end supported cantilever beam, 150
right-end supported cantilever beam, 153

Continuum mechanics, 63
Contravariant components, 78
Coordinate systems and sign conventions, 103–106
Covariant components, 78
Covariant differentiation, 81–83
Crack arrest diagrams

fracture-safe design, 452
fracture transition elastic, 453
garden variety steel, 452
lower-bound design curves, 453
three basic variables, 451

Crack shape parameter, 439440
Curved beams

application, 210–211
approximate stress concentration factor, 209
computation

curved machine bracket flexure, 211–212
machine clamp expansion, 212–213

cross-section geometry, 199

neutral axis shift
bending, 204
deformation, 204
geometry=notation, 206
l values, 200–201
normal strain, 206
segment bending, 205
stress concentration factors, 201–203
stress distribution, 205

stress analysis
bending moments, 207
bull-head cross section, 213
circular cross section, 213
hooks, 210–211
stress distribution, 207
stress-induced elemental forces, 208
trapezoidal cross section, 213

Winkler’s analysis, 199
Curved cantilever springs

Castigliano’s theorem, 614–615
maximum bending stress, 614
three-quarter type, 614

Curvilinear coordinate systems
cylindrical coordinates, 67–70
equilibrium equations and strain–displacement

relations, 83–85
other coordinate systems, 71–72
spherical coordinates, 70–71
uses of, 67

Cylindrical vessels and structures
axial stress

biaxial loading effect, 489
biaxial tension, 491
elastic work, 491
failure characteristics, 490
limiting values, 491
low-strength casing, 490
Poisson’s ratio effect, 489
strain–energy theory, 489
tensile stress correction parameter, 492
yield strength, 489

classical and modified formula, 480–482
design criterion, 496–497
empirical developments

critical buckling pressure, 487
interstiffener collapse pressures, 486
tension effect, 488

membrane stress criterion, 479
mixed mode response, 480
out-of-roundness

canister, 484
collapse strength, 482
critical length, 484
definition, 482
implosion, 483
inverse strain parameter, 483
midbay collapse pressure, 485–486
prototype design and radial deviation, 483
stress correction, 495–496

shrink-fit pressure
radial deformation, 495
shrinkage allowance, 494

stability response, 478–479
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strength
displacement factors, 494
Lamé’s theory, 492
stress factor, 493

stress properties, 478
thinness factor, 477–478

D
Design charts, panels

bending stress, 295
design factors, 295
edge conditions, 296
maximum deflection, 295

Dilation, 461
Dirac delta function, 127, 129
Displacement

deformation and rotation, 58–59
gradients, 63
two-dimensional analyses, 55–57

Double built-in supported beams
and concentrated center load, 160–162
and concentrated off-center load, 162–163
maximum bending moment and maximum

displacement, 172–173
positive directions, 160
and uniform load, 163–165

Double-T section brackets, 339
Durchschlag process, 500
Dyadic product of vectors, 32–33
Dyadics, 33
Dynamic behavior

design problems and solutions
cantilever, 384–385
example, 391–392
vehicle–barrier impact, 385–386

energy loss factors during impact, 386
falling structural component

companion type problems, 387
impulse–momentum principle, 388
reverse problem, 386
sinnsoidal forces, 388

horizontally moving mass, 383–384
impact mitigation

cushioning medium, 390
deformed cushioning, 391
ride-down distance and time, 390

intuitive design criteria, 375
loading from falling weight

centrally loaded simply supported beam, 381
displacement of simply supported beam, 382
kinetic energy, 382
projectile directed towards structure side, 383
weight dropped onto simply supported beam, 381
weight falling onto structure, 380
work–energy principle, 380

natural frequency
circular plates, 394
lateral (flexural) beam vibration, 393–394
longitudinal (axial) beam vibration, 392
mass–spring system, 373–375
torsional vibration of circular shafts, 393

strain energy, 379–380
strength

high yield strength materials vs. ductile
materials, 375

metals, 376
rapid loading on yield strength, 376

suddenly applied weight loading
maximum rod elongation, 378
plate weight, 376–377
rod stress, 379
rod supporting weight in equilibrium, 376–377
suspended rod, 375, 377
weight resting upon removable supports, 376–378

vehicle–barrier impact, 389–390

E
Earthquake design philosophies, 403
Eigenvalues and eigenvectors

Hamilton–Cayley equation, 39–40
maximum and minimum normal stresses, 39
mutually perpendicular unit eigenvectors, 40–41

Eigenvectors
definition of, 34
mutually perpendicular unit, 40–41

Elastic body, state of stress=strain of, 91
Elastic constants, 93–97
Elastic element, tension loading, 92
Elastic modulus, see Modulus of elasticity
Elastic rings, see Rings
Equivalent force systems, 7–9
Euler critical buckling load, 218
Extension springs

bending stress, 604
end hook geometry, 603–604
extension amount, 604–605
Wahl’s formula, 603

Eyebars
failure modes, 598
finite pin clearance, 597–598
knuckle joint

cosine load distribution, 592–593
failure modes, 591–592
geometry, 592

proof ring formulas, 591
safety factors, 598
thick-ring method

eyebar ratio, 595
moment and geometry factors, 596
Winkler-Bach theory, 597

thick-ring theory, 587–588
zero clearance

crack initiation, 595
design factor, 594
geometry, 594
maximum tensile stress, 593

F
Fatigue

corrosion effect, 431
creep effect, 431
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cumulative damage criteria, 427–428
design elements, 429
endurance limit, 427
low-cycle

empirical relation, 433
example, 433–434

material degradation, 427
Neuber effect, 429
sinusoidal function, 427
size effect, 431–432
surface finish effect, 429–431

Finite element method (FEM), 103
Flanges

circumferential stress, 317–318
equivalent depth formula, 322–323
German and American design practice, 316–317
heavy-duty pipe, 321–322
hub stress formula, 315–316
hub theory

analytical model, 311
circular ring, 312
moment arm, 310
simple beam model, 311
thin, 310–311

load sharing
angle of twist, 325
auxiliary function, 327
bending moment, 324–325
deflection line, 325
elastic foundation modulus, 326
load–deflection relation, 326

local bending
edge deflection, 330
mathematical model, 329

plastic correction, 319–321
plate theory, 313–314
rotation criterion, 312–313
strength

tensile load, 328
toroidal moment, 329

stress criteria
apparent, 318–319
butt-welded, 309
elastic vs. plastic, 309

tapered gusset correction, 331–332
Force system

acting along a line, 3–4
couple, 7
equivalent, 7–9
moment of, 4
and points, 6
resultant of, 4
zero, 7

Fracture control
basic concepts and definitions

crack arrest temperature (CAT) curve, 450
dynamic tear (DT) test, 449–450
fracture transition elastic (FTE) point, 450
plane stress fracture toughness parameter, 449

crack arrest diagrams
fracture-safe design, 452
fracture transition elastic, 453
garden variety steel, 452

lower-bound design curves, 453
three basic variables, 451

property correlation, 450–451
stress and strength significance, 454–455
thickness criteria, 453–454

Fracture mechanics
brittle, 437
crack size parameter design implications

4340 steel, fracture toughness, 439–440
stress, 439

design problems and solutions, 440–443
ductile, 437
plane stress criterion, 445–447
practical aspects

brittle process, 437–438
plane strain, 438
stress, 438
temperature effect, 437–438
yield strength, 438

rate parameter, 443
Fracture toughness, 444

G
General U-springs, 618–619
Geometry factor, 472–473
Governing equation solution, circular plates

bending moment and shear forces, 288
clamped uniformly loaded, 289
simply supported, uniformly loaded, 288–289

H
Half-circle S-springs, 615–616
Hamilton–Cayley equation

multiple (repeated) roots of, 42–44
real solutions of, 39–40
roots of, 38

Heavy-duty plate brackets, 337–339
Heavyside unit step function, 127, 129
Hooke’s law

other forms of, 97–98
for simple stress and strain, 19–21
statement of, 17
in two and three dimensions, 91–93

Hydrostatic pressure, 46, 98–99

I
Impact stress propagation

acoustic (sonic) speed and critical speed
dilatation, 417
formulas for sonic velocity, 416
illustration, 418
stress–strain equations, 416–417

application, 424
axial and radial modes, 422–423
axial impact on straight bar, 418–419
breathing mode, 422
buried structures, 423
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conceptual illustration, 413
design problems

object falling onto column, 420
object impacting long cylinder, 420–421

elastic impact, 415–416
elementary structures, 422–423
fundamental frequency of sonic velocity, 422
granular media, 424
machine design, 424
mass–spring modeling, 422
spall phenomenon, 419–420
stress propagation theory

critical impact velocity, 414–415
standard stress–strain diagram, 414
work and kinetic energy, 415

Inglis model, 539
Instrument U-springs

bending factors, 622
with constraint, 620
deflection factor, 621–622
double U-beam, 620
flat type, 623
moment and deflection formulas, 620
without constraint, 619

Integration constants, evaluation process, 139–140
Irregular shaped springs; see also Springs

clip type, 617–618
curved cantilever

Castigliano’s theorem, 614–615
maximum bending stress, 614
three-quarter type, 614

general U-type, 618–619
half-circle S-type, 615–616
instrument U-type

bending factors, 622
with constraint, 620
deflection factor, 621–622
double U-beam, 620
flat type, 623
moment and deflection formulas, 620
without constraint, 619

snap-ring type
Castigliano’s theorem, 613
under diametrical load, 612–613
maximum bending stress, 611

symmetrical wave type
Castigliano’s theorem, 621
loading, 623

three-quarter circular wave type
Castigliano’s theorem, 616
with extension, 617

K
Kronecker’s delta function, 77

L
Lagrange multiplier, 39, 46
Lamé formula, 467
Linear elastic materials, 93
Linear stress–strain equations, 91

Links
chain type

Castigliano’s theorem, 589
theoretical model, 588–589

reinforcement
equilibrium model, 590
tensile and compressive stresses, 591

thick-ring theory, 587–588
Loading, support reactions, and displacement

doubly built-in beam
and concentrated center load, 161
and off-center concentrated load, 163
and uniform load, 164

simply supported beam
and concentrated center load, 156
and off-center concentrated load, 157
and uniform load, 159

superposition principle, 91
Load sharing, flanges

angle of twist, 325
auxiliary function, 327
bending moment, 324–325
deflection line, 325
elastic foundation modulus, 326
load–deflection relation, 326

M
Material strength

of commonly used materials, 20
rod stretched by axial forces, 18, 20

Metric coefficient, 74–76
Metric tensors, 74–76

elements, 80
Modulus of elasticity, 92
Modulus of rigidity, see Shear modulus
Mohr’s circle, two-dimensional analysis of, 47–52
Moment

concept of, 3
of force about line, 4

Moment of inertia, 109

N
Natural frequency

circular plates, 394
estimation

free-body diagram of oscillating
weight, 395

oscillating end weight, 396
rod supporting weight, 394–395
rod with applied end loading, 395
simply supported, deformed, and oscillating

beam, 398
spring–mass system, 397
stiffness=mass ratio, 399
undeformed and axially deformed rod, 397
vibrating cantilever beam, 399–400

lateral (flexural) beam vibration, 393–394
longitudinal (axial) beam vibration, 392
mass–spring system, 373–375
torsional vibration of circular shafts, 393
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Neuber effect, 429
Normal strain, 13
Normal stress, 13

O
Out-of-roundness

canister, 484
collapse strength, 482
critical length, 484
definition, 482
implosion, 483
inverse strain parameter, 483
midbay collapse pressure, 485–486
prototype design and radial deviation, 483
stress correction, 495–496

P
Panels

definition, 295
design charts

bending stress, 295
edge conditions, 296
maximum deflection, 295

design problem
arbitrary profile, 298
plate defection formula, 299

rectangular and elliptical
strength and rigidity characteristics, 296, 298
stress and deflection factors, 296–297

Plane stress criterion
arrestable instability, 445–446
crack length, 446
crack-tip blunting, 445
pressure vessel design, 446–447

Plastic deformation, 18
Plate problems

applications, 361
Belleville washer

deflection factor vs. radius ratio chart, 367
disk cross section, 365
spring, 364
stress factor vs. radius ratio chart, 366
stress vs. displacement relations, 368

circular type
design example, 358
large deflection, 356–358
large displacement, 355–356
reinforced, 361–362

cover type with radial stiffeners, 362
design problem, 358
grillage-type, 361
perforated type

conditions, 359
elastic constants, 360–361
hole patterns, 359–360
ligament efficiency, 359
triangular patterns, 360

pin-loaded type
notation, 362–363
stress concentration factor, 363–364

rectangular type, 358
stress location and edge support, 357–358

Plates, bending theory
bending and twisting moments

flexural moment, 261
symmetric distribution, 262

boundary conditions
clamped (fixed or built-in) support, 275
elastic edge support, 276
free edge, 275–276
simple (hinge) support, 275

differential equations
displacement=shear assumptions, 273
in-plane force relations, 273
moment–curvature, 273
moment-shear relations, 272
shear–loading relation, 272

four general categories, 257
in-plane normal (membrane) forces, 267, 272
in-plane shear forces, 267
internal stresses, 277
modeling and simplifying assumptions,

257–258
rectangular brick element equilibrium

equations, 263
loading, 265
plate thickness, 264–265

stress resultants
membrane force, 259
positive face, 258

stress–strain–displacement equations
Cartesian coordinates, 268
integration, 269–272

vertical shear forces, 267
Point stress vector, 11
Poisson’s ratio

of brittle material, 91
definition of, 87, 94
and principle of superposition, 92
typical values of, 89

Positive loading, reaction, and displacement
directions

double built-in beams, 161
left-end supported cantilever beam, 150
right-end supported cantilever beam, 153
simply supported beam, 156

Pressure vessels
cylinders and spheres burst pressure

geometry and burst factor, 472–473
Svensson’s theory, 472

dilation, 461
ellipsoidal shells, 462
shrink-fit design, 473
thick cylinder theory

design charts, 470–471
displacement and deformation, 464–465
Lamé formulas, 467
stress, 465–468

thick-walled spherical container, 468–470
thin-walled circular cylinders

hoop stress formula, 459
meridional, 460
resultant membrane force, 459
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toroidal
hoop stress, 462–464
vertical load, 462

ultimate strength criteria, 471–472
Principal stresses

calculating values of, 36–38
definition of, 34

R
Radial growth, see Dilation
Radius of curvature, 111
Rectangular and elliptical panels; see also Panels

strength and rigidity characteristics, 296, 298
stress and deflection factors, 296–297

Rectangular plates
boundary conditions, 280
simple bending

displacement, 281–282
plate curvatures, 281

simply supported
with concentrated load, 284–285
displacement, 284
governing equation, 282
sine function series, 283
with uniform load, 284

Rings
bending moment, 570–573
with constraint, 574–576
deflections, 572–573
design charts, 571–572
diametral loading, 568–569
estimates via superposition, 572–574
formulas, 571
free-body diagram, 569
rotating type

hoop stress, 579
plane of curvature, 576
ring element, 577

slopes, 572–573
strain energy and Castigliano’s theorem

axially loaded rod, 565–566
bending moment, 567
cantilever beam, 566–568
forces, 565–566

stress contribution, 572
Rods

cable disk element, 557
compressed tube, 559
conical bar, 554
downhole piping structure, 556
free-body diagram of disk element, 558
heavy hanging cable, 557–558
kern limit

compression members, 561–562
definition, 559
design principle, 560
stress distribution, 560
tensile stress component, 560

long hanging cable, 555–557
mechanics, 551
rod in tension, 552

stepped bar problem, 553
tapered bar

end load, 551–552
formula, 555
under its own weight, 554–555

torsion
noncircular, nonrectangular bars, 180–181
noncircular cross-sectional bars, 178–179
thin-walled ducts, tubes, and channels, 181–185

twisting
assumptions, 175
rectangular steel bar, 179–180
stresses, strains, and deformation, 175–178

Rotation dyadics, 62–63

S
Second moment of area, 109
Seismic design

building code method, 403–404
earthquake design philosophies, 403
Richter scale, 405
spectral velocity method

acceleration levels, 404–405
design charts, 410
El Centro data chart, 408
maximum ground acceleration, 409
movement modes, 406
seismic loading, 407
structural model, 406

structural damping, 410
Shear, bending moment, and displacement

cantilever beams
left-end support, and concentrated end load, 151
left-end support, and uniform load, 152
right-end support, and concentrated

end load, 154
right-end support, and uniform load, 155

double built-in supported beam
and concentrated center load, 162
and concentrated off-center load, 164
and uniform load, 165

simply supported beam
and concentrated center load, 157
and concentrated off-center load, 159
and uniform load, 160

Shear center
beam twisting

channel cross section cantilever beam, 243–244
counterclockwise axial moment, 243
free-body diagram, 243

end-loaded cantilever channel beam
cross section area moment, 246
horizontal shear stress, 245
load placement, 245
shear force, 248–249

narrow web beam cross section
abutting perpendicular surfaces, 241
action–reaction principle, 241
right-angle web, 242
shear force equilibrium, 243
shear stress, 240
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numerical example
beam support and loading, 251
centroid locations, 251–252
channel beam cross section dimensions, 251
induced twisting moment, 252
shear force, 250

Shear flow
definition, 237
membrane strength, 237
shear force, 240
thin-walled beam cross section web, 237, 239

Shearing forces, 13–14
Shear loading, rectangular elastic element subjected

to, 93
Shear modulus, 21, 92
Shear moments, construction of diagrams

for, 140–143
Shear strain, 57–58

definition of, 14
distortion angle, 15

Shear stress, thick beams
development, 189
maximum shear stress

cross sections, 196
with various wall thickness, 197

maximum transverse shear stress, 194–195
nonrectangular cross sections, 195
shear loading analysis

beam pure bending, 191
bending moment, 191
bending via transverse load, 191
flexural stress expression, 192
free-body diagram, 192–193
layered media, 190
longitudinal element, 191
moments, 192
pure bending and simulation, layered beam, 190
simple support bending simulation, 190
transverse loading, 190

Shear stress–strain equation, 96
Shear-type brackets, 337–338
Simple strain, see Normal strain; Normal stress
Simply supported beams

bending moment diagram, 197
and concentrated center load, 155–157, 197
and concentrated off-center load, 157–158
maximum bending moment and maximum

displacement, 170–171
positive directions, 155
shear diagram, 197
and uniform load, 158–160

Simply supported rectangular plates
with concentrated load, 284–285
displacement, 284
governing equation, 282
sine function series, 283
with uniform load, 284

Singularity function
advantages

in cantilever beam with concentrated end
load, 132–134

in simply supported beam with a concentrated
interior load, 136–138

in simply supported beam with a uniform load,
134–136

in uniformly loaded cantilever beam, 130–132
beam analysis, 127–128
definition of, 128
description and additional properties, 128–130

Small rectangular element, 23
with dimensions, 27
of loaded elastic body, 26, 30
X-direction

force components, 30
forces of free-body diagram, 31
shear stresses, 31

Z-direction view, 27
Snap-ring springs

Castigliano’s theorem, 613
under diametral load, 612–613
maximum bending stress, 611

Special cylinder problems
dilation, 529
nested cylinders

attenuation ratio, 531–532
canister displacement, 531
double-wall system, 531
sleeve reinforcement, 530

ring stiffeners design
design formula, 533
external load, 533
panel buckling, 534

Spherical coordinates, position vectors and unit vectors, 71
Spherical shell buckling

corrected formula, 499–500
hemispherical vessels, 502–503

lower-bound curve, 502
scatter band, 503

initial imperfection effect
collapse pressure, 501
critical length, 501

plastic strength, 500–501
shallow spherical cap response

collapse pressure, 505
load parameter, 504
structural response, 504

strength, 505–506
Zoelly–Van der Neut formula, 499

Springs
buckling column type

band structure, 607
concept, 606
design factors, 608
nonlinearity, 607
zero rate response, 606

compression type
design parameters, 601
sizing, 603
standard formula, 603
stress correction factor, 602
symbols for helical type, 601–602

extension type
bending stress, 604
end hook geometry, 603–604
extension amount, 604–605
Wahl’s formula, 603
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torsion type
application, 605
flat-coil, 605
torsional moment, 606

Strain, 13
Strain–displacement equations, 67
Strain dyadics, 62–63
Stress

apparent, 318–319
butt-welded, 309
circumferential, 317–318
concept of, 11
elastic vs. plastic, 309
within loaded elastic body, 23–27

Stress analysis, features of, 103
Stress concentration

distribution
open holes, 539
stretched plate, 538

elastic behavior, 535
plastic reduction

circular hole, 540
design formula, 539
ductile response, 540
Inglis model, 539

raisers common types
bending and torsion, 536
elongated transverse weld, 538
round and square bars, 536–537
uniaxial tension, 536

Stress dyadics
definition of, 33
principal directions of, 34
scalar components of, 62
set of mutually perpendicular unit vectors, 34

Stress ellipsoid, 44–46
Stress matrix

dyadic product of vectors, 32–33
elements, 62
numerical index notation, 32

Stress propagation, see Impact stress propagation
Stress raisers common types

bending and torsion, 536
elongated transverse weld, 538
round and square bars, 536–537
uniaxial tension, 536

Stress–strain diagram, 20
Stress tensors, 34
Stress vector, 23
Structural damping, 410
Superposition principle, complex loadings, 165–168
Symmetrical wave springs

Castigliano’s theorem, 621
loading, 623

T
Tapered bar formula, 555
Tapered-plate brackets, 338–339
Taylor series expansion, 55, 106

Tensile stress, 11
Thermal properties

carbides, 545–546
materials for special applications, 545
piping, 547–548
preliminary thermal design, 548–549
refractory alloys, 545
shock, 547
strength effect, 544
stresses

external constraint, 548
fatigue, 548
internal constraint, 549

stress formula, 543
thermal constants, 544

Thermal stress index (TSI), 546–547
Thick cylinder theory, pressure vessels

design charts, 470–471
displacement and deformation, 464–465
Lamé formulas, 467
stress, 465–468

Thin rings, see Rings
Thin-walled circular cylinders, pressure vessels

hoop stress formula, 459
meridional, 460
resultant membrane force, 459

Three-quarter circular wave springs
Castigliano’s theorem, 616
with extension, 617

Torsion springs
application, 605
flat-coil, 605
torsional moment, 606

Transverse contraction ratio, see Poisson’s ratio
Transverse loading, 104
T-section brackets, 339

U
Uniform loading, support reaction, and end displacement

left-end supported cantilever beam, 151
right-end supported cantilever beam, 154

Unit eigenvectors, see Eigenvectors
Unit impulse function, 128
Unit vector sets, 33

V
Vector-vectors, see Dyadics

Y
Yield point, 18
Young’s modulus, see Modulus of elasticity

Z
Zoelly–Van der Neut formula, 499
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