
LOW-ENERGY FPGAs - ARCHITECTURE
AND DESIGN

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

LOW-ENERGY FPGAs - ARCHITECTURE
ANDDESIGN

by

Varghese George

STMicroelectronics

and

Jan M. Rabaey

University of California, Berkeley

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

ISBN 978-1-4613-5545-8 ISBN 978-1-4615-1421-3 (eBook)
DOI 10.1007/978-1-4615-1421-3

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

Copyright © 2001 Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 2001
Softcover reprint of the hardcover 1 st edition 2001

AlI rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo­
copying, recording, or otherwise, without the prior written permission of the
publisher, Springer Science+Business Media, LLC.

Printed on acid-free pa per.

To our friends and family

TABLE OF CONTENTS

PREFACE 1

1. INTRODUCTION 5

1 INTRODUCTION 5

2FPGA 6

3 ThITERCONNECTARCHITECTURE 7

4 LOGIC BLOCK ARCHITECTURE 11

5 PROGRAMMING TECHNOLOGY 13

6 COMPUTATION MODEL 17

7 FPGA AS A PERFORMANCE ACCELERATOR 19

8 RESEARCH PROJECTS 20

9 FPGA AND ENERGY CONSUMPTION 24

10 CONCLUSION 25

2. POWER DISSIPATION IN FPGAS 27

1 INTRODUCTION 27

2 TECHNOLOGY AND POWER 27

3 IMPACT OF POWER DISSIPATION 32

4 COMPONENTS OF POWER 34

5 CLOCK ENERGY 38

6 CONCLUSION 40

Vll

V111 Low-Energy FPGAs - Architecture And Design

3. EXPLORATION ENVIRONMENT 43

1 INTRODUCTION 43

2 RELATED RESEARCH 43

3 EVALUATION FLOW 44

4 MAPPING 46

5 ARCHITECTURE REPRESENTATION 47

6 PLACEMENT 50

7 ROUTING 55

8 EXTRACTION 66

9 CONCLUSION 67

4. LOGIC AND INTERCONNECT ARCHITECTURE 69

1 INTRODUCTION 69

2 RELATED RESEARCH 69

3 ENERGY-DELAY COMPONENTS 71

4 ARCHITECTURAL COMPONENTS 74

5 LOGIC BLOCK 75

6 GOAL OF INTERCONNECT OPTIMIZATION 81

7 INTERCONNECT ARCHITECTURE 83

8 CONCLUSION 92

5. CIRCUIT TECHNIQUES 95

1 INTRODUCTION 95

2 RELATED WORK 95

3 ENERGY-DELAY DESIGN SPACE 96

4 LOW-SWING SIGNALING 98

5 LOW-SWING CIRCUIT 101

Table of Contents IX

6 CLOCK DISTRffiUTION 105

7 CONCLUSION 110

6. CONFIGURATION ENERGY 111

1 INTRODUCTION 111

2 CONFIGURATION COST 111

3 CONFIGURATION TECHNIQUES 112

4 SHIFT REGISTER VERSUS RANDOM ACCESS 115

5 CONFIGURATION ENERGY COMPONENTS 118

6 METHODS TO REDUCE CONFIGURATION ENERGY 119

7 CONCLUSION 124

7. HARDWARE IMPLEMENTATION 127

1 INTRODUCTION 127

2 LOGIC BLOCK 127

3 INTERCONNECT 131

4 TILE LAYOUT 137

5 CONFIGURATION ARCHITECTURE 139

6 FINAL LAYOUT 142

7 FPGAAS AN EMBEDDED UNIT 143

8 CONCLUSION 149

8. RESULTS 151

1 INTRODUCTION 151

2 MEASUREMENT SETUP 151

3 MEASUREMENT STRATEGY 153

4 MEASURED DATA 154

x Low-Energy FPGAs - Architecture And Design

5 CONCLUSION 161

9. CONCLUSION 163

1 FPGA: THE EVOLUTION 163

2 ENERGY EFFICIENCY 163

3 THIS WORK 164

4 LOOKING AHEAD 168

BIBLIOGRAPHY 171

INDEX 179

PREFACE

This books deals with the energy consumption of Field-Programmable Gate
Arrays (FPGAs). Field-Programmable Gate Arrays are becoming popular as
embedded components in computing platforms. The programmability of the
FPGA can be used to customize implementation of functions on an
application basis. This can lead to performance gains, and enable reuse of
expensive silicon real estate.

To exploit the FPGA completely, the drawback of poor energy efficiency
has to be addressed. This work analyzes the energy components of
commercial FPGA architectures, and the trend into future process
technologies. Based on this, modifications to the FPGA architecture and
circuit techniques are evaluated to improve the energy efficiency.

This book is based on the research work by the authors at the University of
California at Berkeley as part of the reconfigurable computing project, which
required the design of a low-energy FPGA. The different aspects of the
energy efficiency of the FPGA are analyzed in the course of designing a low­
energy FPGA, LP _PGAII. The presentation of the material follows the
design steps culminating in the final implementation.

The material presented will be of interest to designers working in the field
of FPGAs. It will also be useful to circuit designers to illustrate how specific
characteristics of the architecture can be exploited to improve the energy
efficiency.

The book assumes basic understanding of an FPGA and digital circuit
design. Chapter 1 will briefly touch on some of these subjects to bring the
reader up to speed. This chapter also introduces the new paradigm of
reconfigurable computing that has been made possible by FPGAs.

Chapter 2 looks at the implication of deep-submicron technology on FPGA
power dissipation. The commercial FPGA architecture will be evaluated to
isolate the effect of the different architectural components on the total energy
consumption. This will help in identifying blocks that have to be redesigned
to improve the energy efficiency of the FPGA architecture.

The logic and routing resources of an FPGA are limited. Increasing the
logic and routing capacity by providing more resources usually increases the
area, delay, and energy overhead. Hence, an environment is required to
evaluate the effect of architectural modifications on the performance costs.
Chapter 3 describes the exploration environment to guide and evaluate
design decisions. The flow covers all of the steps required for implementing
an application described as a logic netlist on the target FPGA architecture.

2 Low-Energy FPGAs - Architecture And Design

Chapter 4 looks at the architectural optimization process to evaluate the
trade-offs between the flexibility of the architecture, and the effect on the
performance metrics. It is also an effort to evaluate smarter ways of
distributing the routing switches to improve the performance metrics without
sacrificing flexibility.

An exhaustive evaluation of the entire architecture design space would be
difficult. In this work, a more practical approach is taken, using an existing
architecture as a starting point. The Symmetric Mesh architecture that has
been researched extensively and is the basic structure in the popular XC4000
series from Xilinx is used as the starting point. The logic block structure and
the interconnect architecture are modified to minimize the total energy in the
FPGA. The software environment described in Chapter 3 is used to
implement the benchmark suite on the target architecture, and extract the
performance data.

The optimization at the architectural level must be adequately supported at
the circuit level. Chapter 5 looks at different circuit techniques to reduce the
performance overhead of some of the dominant components. Distinctive
features of the FPGA environment have to be taken into account while
evaluating the feasibility of existing circuit techniques.

Different low-swing signaling techniques are evaluated to determine their
feasibility in an· FPGA environment. The effect of the sizing of the routing
switches on the delay and energy of the interconnect architecture is explored.
Characteristics of the clock distribution that are specific to the FPGA
environment are exploited to reduce the clocking energy.

One of the dominant application domains envisioned for the FPGA is as a
performance accelerator. This involves frequent reconfiguration as the FPGA
is used to implement different tasks. The delay and energy overhead due to
the configuration become important in such an environment. Chapter 6
looks at methods to configure the FPGA to minimize the programming
overhead.

A physical implementation is invaluable to verify the different low-energy
methods. Chapter 7 looks at the physical realization of some of the critical
components and the final implementation of a low-energy FPGA, LP _PGAII.

In Chapter 8, the prototype array is compared to an equivalent commercial
architecture. To do this comparison, different applications are implemented
on the architectures, and performance data is measured.

The authors wish to acknowledge the Electrical Engineering and Computer
Sciences department at the University of California at Berkeley, where the
research was conducted. We would like to express our thanks to DARPA for
funding this project under the Adaptive Computing Systems project. The

Preface 3

prototype chips could not have been made without the fabrication facilities
and assistance provided by STMicroelectronics. In particular, we are grateful
to Bhusan Gupta of the Central Research and Development Laboratory of
STMicroelectronics.

We thank the other members in the Pleiades group who contributed
considerably during the course of this project. These include Marlene Wan,
Hui Zhang, Vandana Prabhu, and Eric Kusse.

The authors acknowledge the discussions with many people in the field. In
particular we wish to thank Andre DeHon, John Wawrzynek, and Kurt
Keutzer from UC Berkeley. We would also like to thank Michael J.
Alexander and Gabriel Robins at University of Virginia for the help in
developing the FPGA routing tools.

We wish to acknowledge the help of Jennifer Evans and Anne Murray, of
Kluwer Academic Publishers, for the all the help rendered in getting this
book out in time.

Varghese George would like to thank Jen Achtert, who has been a constant
support throughout this time.

Varghese George
Jan M. Rabaey
Berkeley, CA.

Chapter 1

INTRODUCTION

1 INTRODUCTION

Integrated circuits in the form of Application Specific Integrated Circuits
(ASICs) and General-Purpose (GP) processors traditionally have been used
to meet the computational needs for processing information. ASICs can be
used to realize fixed applications that have to be executed with the minimum
amount of area, delay and energy costs. As the size of the application
becomes larger, it becomes practically impossible to implement it in silicon.
This is where the general-purpose processor steps in. By breaking the
application into smaller functions, it is possible to execute each function
sequentially. This makes it possible to reuse a single piece of silicon for a
variety of tasks. Applications using processors based on a set of general­
purpose instructions often results in inefficient implementation. One solution
is to enhance the instruction set to provide specialized complex instructions,
with dedicated functional units. As the problem space expands, this method
will also run out of steam.

The reconfigurable computing domain is aimed at this problem space
between ASICs and general-purpose processors. The Field-Programmable
Gate Array (FPGA) can be programmed to compute the problem at hand in a
spatial fashion. The goal of reconfigurable architectures is to achieve
implementation efficiency approaching that of specialized logic while
providing the silicon reusability of general-purpose processors. Field­
Programmable Gate Array belongs to this class of architectures and analysis
of this approach has shown higher functional density than general-purpose
processors [DeHonOO].

This chapter will introduce some of the basic FPGA concepts. The basic
idea behind using the FPGA as a performance accelerator will be introduced,
and some of the research projects in the area will be briefly discussed.

5

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001

6 Low-Energy FPGAs - Architecture And Design

2 FPGA

The FPGA can be visualized as programmable logic blocks embedded in
programmable interconnect, as shown in Fig. 1. Unlike ASICs, the logic and
interconnect resources are uncommitted, and can be configured to implement
different logic functions and connectivity.

The functional complexity of logic blocks can vary from simple two-input
Boolean operations to larger, complex, multi-bit arithmetic operations. The
choice of the logic block granularity is dependent on the target application
domain. The interconnect architecture provides the connectivity between
logic blocks and is often the bottleneck in FPGA structures.

Programmable
Interconnect

Figure 1. Field-Programmable Gate Array

Programma b le
Logic

The programming technology determines the method of storing the
configuration information, and comes in different flavors. It has a strong
impact on the area and performance of the array. The main programming
technologies are: Static Random Access Memory (SRAM), antifuse, and
non-volatile technologies using floating gates. The choice of the
programming technology is based on the computation environment in which
the FPGA is used.

Introduction 7

3 INTERCONNECT ARCHITECTURE

The interconnect architecture is realized using switches that can be
programmed to realize different connections. The method of providing the
connectivity between the logic blocks has a strong impact on the
characteristics of the FPGA architecture. The arrangement of the logic and
interconnect resources can be broadly classified into four groups: Island
style, row-based, sea-of-gates, and hierarchical.

3.1 Island Style Architecture

The island style architecture consists of an array of programmable logic
blocks with vertical and horizontal programmable routing channels. The
basic architecture is illustrated in Fig. 2.

x X
LOGIC LOGIC

X X
LOGIC LOGIC

~ X
Figure 2. Island Style Architecture

X Co nnection
Box

X
Sw itch

ox ~

~
outing
hannel

X

8 Low-Energy PPGAs - Architecture And Design

The number of segments in the channel determines the resources available
for routing. This is quantified in terms of the channel width, W. The pins of
the logic block can access the routing channel through the connection box.
The connectivity of each pin to the segments in the channel is determined by
the flexibility, Pc> of the connection box. The vertical and horizontal routing
channels are connected at the switch box. The flexibility, P" of the switch
box determines the connections available from each track in a routing
channel to the tracks in the other routing channels.

The XC4000 and XC3000 series from Xii in x [Xilinx2] are examples of this
kind of architecture.

3.2 Row-Based Architecture

As the name implies, this architecture has logic blocks arranged in rows
with horizontal routing channel between successive rows. The row-based
architecture is shown in Fig. 3.

Vertical
Tracks

LOGIC LOGIC LOGIC Segmented

~_~ ____ ~~J~~~ ______ ~ ______ ~~'b

Horizontal
Routing

LOGIC LOGIC LOGIC Channel

~-t--'--------'-------' /
~~-----------------­

I I

Figure 3. Row-Based Architecture

The routing tracks within the channel are divided into one or more
segments. The length of the segments can vary from the width of a module

Introduction 9

pair to the full length of the channel. The segments can be connected together
at the ends using programmable switches to increase their length. Other
tracks run vertically through the logic blocks. They provide connections
between the horizontal routing channels. The pins of the logic blocks can
connect to the horizontal routing channel and the vertical routing segments.
The length of the wiring segments in the channel is determined by tradeoffs
involving the number of tracks, the resistance of the routing switches, and the
capacitance of the segments.

The ACT3 family of FPGAs from Actel [ActeI2] is an example of this
architecture.

3.3 Sea-of-GatesArchitecture

The sea-of-gates architecture, unlike the previous architectures, is not an
array of logic blocks embedded in a general routing structure. The
architecture consists of fine-grain logic blocks covering the entire floor of the
device. Connectivity is realized using dedicated neighbor-to-neighbor routes
that are usually faster than general routing resources. Usually the architecture
also uses some general routes to realize longer connections. The SX family
of FPGAs from Actel [Acte13] is an example of this class of architecture.

Sea of Logic
Local

Figure 4. Sea-of-Gates Architecture

10 Low-Energy FPGAs - Architecture And Design

The Triptych [Borriell095] FPGA architecture has taken this concept
further by removing the distinction between logic and routing resources. The
logic blocks are replaced by structures that can perform both logic and
routing tasks. This permits a smooth trade-off between logic and routing
resource usage.

3.4 Hierarchical Architecture

Most logic designs exhibit locality of connections, which implies a
hierarchy in the placement and routing of the connections between the logic
blocks. The hierarchical FPGA architecture tries to exploit this feature to
provide smaller routing delays and a more predictable timing behavior. This
architecture is created by connecting logic blocks into clusters. These clusters
are recursively connected to form a hierarchical structure. Fig. 5 illustrates a
possible architecture.

r-

LOGIC LOGIC LOGIC

...

r-

LOGIC LOGIC LOGIC

...
~

Local Tracks

.. Global Tracks
~

Figure 5. Hierarchical FPGA Architecture

Introduction 11

The speed of a net is determined by the number of routing switches it has to
pass through. The hierarchical structure reduces the number of switches in
series for long connections and can hence potentially run at a higher speed.

The HSRA [Tsu99] and the HFPGA [Lai98] proposed by Yen-Tai, et al.
belongs to this class of architectures. The HSRA uses a binary tree structure
with pipe lined interconnect to achieve high data throughput. Experimental
results from the HFPGA recommends a 4-ary tree to obtain area
improvements by reducing the total switch count in the architecture.

4 LOGIC BLOCK ARCHITECTURE

The logic block is responsible for implementing the gate level functionality
required for each application. The functionality of the logic block can be
defined by the number of different functions it can implement. The
functionality of the logic block has a direct impact on the routing resources.
As the functional capability of the logic block increases, the amount of logic
that can be packed into it increases. This reduces the amount of external
routing resources. As the logic block size increases, it is also quite possible
that the block cannot be fully utilized, resulting in wastage. Based on this
tradeoff, there are numerous logic block structures trying to optimize the area
and speed of the FPGA.

The functionality of the logic blocks is obtained by controlling the
connectivity of some basic logic gates or by using lookup-tables (LUTs). Fig.
6(a) shows the logic block diagram of the macro cell used in Altera FPGAs
[Altera3]. Different combinational logic functions are obtained by
manipulating the connections in the programmable AND array. The product
terms are fed to an OR gate. The result of the combinatorial operation can be
registered.

Another approach to the implementation of the programmable logic block
is illustrated in Fig. 6(b). This is the block diagram of the Configurable Logic
Block (CLB), used in the XC4000 architecture [Xilinx2]. The functionality
of the block is determined by the contents of the LUT. This logic block can
implement any five-input logic function and selected functions of up to nine
variables. It is also possible to implement unrelated smaller functions in a
single logic block.

12

•••

CL .. C4

G4
G3
G2
Gl

F4
F3
F2
PI

K (Clock)

Low-Energy FPGAs - Architecture And Design

To Logic Array

Clear

(a) Altera Macro Cell [Altera3J

(3) XC4000 CLB [XilinxJ

Figure 6. Logic Block Structures

Introduction 13

There is also a wide range in the size of the logic block. The logic block
used in the ACT! architecture [Actell] represents the finer grain of the
spectrum. The MATRIX, with each logic block comparable to an 8-bit ALU,
[Mirsky96] represents the coarser granularity. This choice in the logic block
granularity is also influenced by the application space envisioned for these
FPGAs. The fine-grain programmability is more amenable to control
functions while the coarser grain blocks with arithmetic capability are more
useful for datapath operations.

MAlRIX
[Mirsky96]

XC4000
[Xilinx2]

XC3000

ACT!
[Actell]

8-Bit ALU

• • • •

Figure 7. FPGAs and Logic Block Granularity

Coarse Grain - Datapath
Algorithms

Fine Grain - Control
Logic

5 PROGRAMMING TECHNOLOGY

The logic and routing resources of the FPGA are uncommitted, and must be
programmed to realize the required behavior. The contents of the logic block
can be programmed to control the functionality of the logic block, while the

14 Low-Energy FPGAs - Architecture And Design

routing switches can be programmed to control the connections between the
logic blocks.

There are different methods to store this program information, ranging from
the volatile SRAM method to the irreversible antifuse technology. The area
of an FPGA is dominated by the area of the programmable components.
Hence, the choice of the programming technology can also affect the area of
the FPGA. Another factor that has to be considered is the number of times
the FPGA has to be programmed. The antifuse-based FPGA can be
programmed only once, while the SRAM-based FPGA does not limit the
number of times the array can be reprogrammed.

5.1SRAM

In this method of programming, the configuration is stored in SRAM cells.
Fig. 8 shows a five-transistor memory cell used in FPGAs to store the
configuration. When the interconnect is implemented using pass-transistors,
the SRAM cells control whether the transistor is on or off. In the case of the
lookup tables used in the logic block, the logic is stored in the SRAM cells.

Vdd

Select

Bit Line

Figure 8. Five-Transistor Configuration Memory Cell

Programma ble
Switch

Introduction 15

This method does suffer from the fact that the storage is volatile and the
configuration has to be written into the FPGA each time on power-up. For
systems using SRAM -based FPGAs, an external permanent storage device is
usually used.

This technology requires at least five transistors per cell. Due to the
relatively large size of the memory cells, the area of the FPGA is dominated
by configuration storage.

This method offers the convenience of reusing a single device for
implementing different applications by loading different configurations. This
characteristic has made SRAM-based FPGAs popular in reconfigurable
platforms, which strive to obtain performance gains by customizing the
implementation of functions to the specific application.

5.2 Antifuse

In the SRAM programming method, the information is stored by
controlling the state of the memory cell. The antifuse programming method
uses a programmable connection whose impedance changes on the
application of a high voltage. In the un-programmed state, the impedance of
the connection is of the order of a few giga-ohms, and can be treated as an
open circuit. By applying a high voltage, a physical change called fusing
occurs. This results in an impedance of a few ohms though the device,
establishing a connection.

The Programmable Low Impedance Circuit (PLICE) [Hamdy88] used in
Actel devices is an example of an antifuse. Fig. 9 shows the cross-section of
a PLICE antifuse. An anti fuse consists of a dielectric sandwiched between a
polysilicon layer and a diffusion layer. In the normal state, the dielectric
creates high impedance between the two layers. Application of a high voltage
results in melting of the dielectric and creation of a connection between the
two terminals.

This method has the advantage that the area of the programming element is
of the order of the size of a Via, and therefore can achieve a significant
reduction in area compared to the SRAM-programmed FPGA. The resistance
through the element is of the order of a few ohms and is much smaller than
the resistance of a pass-transistor that is used as the routing switch in the
SRAM method.

This method is non-volatile, and does not require external configuration
storage on power-down. Unlike the SRAM based technology, errors in the
design cannot be corrected, since the programming process is irreversible.

16 Low-Energy FPGAs - Architecture And Design

PLICE Diffusion

Figure 9. PLICE Cross Section

5.3 EPROM, EEPROM, and Flash

Sell Sel2

Floating Gate

Word

Figure 10. Floating Gate [ActeI4]

Switch
In

Switch Out

This class of non-volatile programming technology uses the same
techniques as EPROM, EEPROM, and Flash memory technologies. This

Introduction 17

method uses a special transistor with two gates: a floating gate and a select
gate. When a large current flows through the transistor, a charge is trapped in
the floating gate that increases the threshold voltage of the transistor. Under
normal operation, the programmed transistors will act as open circuits, while
the other transistors can be controlled using the select gates. The charge
under the floating gate will persist during power-down. The floating charge
can be removed by exposing the gate to ultraviolet light in the case of
EPROMs, and by electrical means in the case of EEPROMs and Flash.

These techniques straddle the middle ground between the SRAM and
antifuse techniques. They provide the non-volatility of antifuse with the
reprogrammability of SRAM. The resistance of the routing switches is larger
than that of antifuse, while the programming is more complex and time
consuming than that of the SRAM technique. The ProASIC family of FPGAs
from Actel [ActeI4] uses the Flash programming technology.

6 COMPUTATION MODEL

The specialized custom logic, the general-purpose processor, and the FPGA
operate in different regions. This can be explained better by looking at the
wayan application is implemented on the different platforms.

Fig. 11 illustrates how an application made up of sub-functions is realized
using an ASIC, FPGA, and a general-purpose processor. In an ASIC, silicon
is dedicated to each specific function. In a general-purpose processor, each
function is computed sequentially on the same piece of silicon. The memory
is used as an intermediate storage for the results of each compute cycle. In
the FPGA, the logic is programmed to compute each function. The flow of
data between the functions is controlled using the programmable
interconnect.

The FPGA is similar to the ASIC in the sense that the computation is done
spatially, and can be tailored to the specific application. It is also similar to
the general-purpose processor in the aspect of silicon reusability.

In an FPGA, the control of the logic and the interconnect is distributed over
the array. The fine grain programmability of the FPGA resources results in
higher programming overhead per instruction as compared to a general­
purpose processor. If the required functionality does not change, the FPGA
does not have to be reprogrammed. The general-purpose processor incurs the
instruction overhead on each clock cycle.

The domain of each of the platforms can be described as:

18 Low-Energy FPGAs - Architecture And Design

• ASIC - Fixed logic.

• FPGA - Implementation tailored to application, with low temporal
variation of required computations.

• General-purpose Processor - Implementation is broken down in
terms of available instruction-set, with high temporal variation in
required computations.

xO

(a) Application (b) Realization in ASIC

Programmable Control

(c) Realization in FPGA (d) Realization in GP Processor

Figure 11. Implementation of a Function in the Different Domains

Introduction

7 FPGA AS A PERFORMANCE
ACCELERATOR

19

An FPGA can provide the silicon reusability of a general-purpose processor
with performance approaching that of an ASIC. This section describes the
general principle of the field of reconfigurable computing that takes
advantage of the programmability of FPGAs to achieve performance
acceleration.

Fig. 12 shows the flow of computation of a sample application. It is made
up of functions fl- fg• There are two compute intensive loops: gl and g2.
Functions f2, f3, and f4 make up gl. Functions f6 and f7 make up g2' This
application can be implemented using an ASIC, GP processor, GP processor
with dedicated functional units, or GP processor with FPGA.

The implementations using an ASIC will provide the best performance.
However, this involves complex design effort, and dedicated silicon. This
will be expensive, especially if the application keeps changing.

This application can also implemented using a GP processor. The functions
have to be implemented using the instructions available in the processor. This
can often lead to performance degradation. The compute-intensive loops, gl
and g2 exhibit temporal locality. Unfortunately, the cycle-by-cycle operation
of the processor cannot take advantage of this fact.

The implementation of the compute-intensive loops can be accelerated by
using dedicated functional units in conjunction with the GP processor. This
assumes the knowledge of the functions gl and g2 at fabrication time, which
is not always possible. At the time of implementation of g2, gl is no longer
required. This results in the waste of silicon area.

The option explored in the reconfigurable computing paradigm is a
coupling of the GP processor and the FPGA. The compute intensive
functions can be implemented in the FPGA. The overhead of programming
the FPGA places restrictions on the functions that can be efficiently
implemented.

In the example, the function fl is executed only once. It is preferable to
implement this using the processor. However, for the functions g, and g2, the
configuration overhead is spread over a number of iterations, and can be
tolerated. Since the different functions are realized at run-time, area is not
wasted by dedicated silicon implementations.

20 Low-Energy FPGAs - Architecture And Design

Compute
Intensive Loops

Figure 12. Flow of Computation and Opportunities for Acceleration.

8 RESEARCH PROJECTS

With the advances in process technology, the logic capacity and speed
performance of FPGAs have increased significantly. This makes it possible
to implement significant datapath functions and algorithms on the FPGA.

Introduction 21

This has led to the development of platfonns integrating processors and
FPGAs, with the compute-intensive functions being off-loaded onto the
FPGAs. Some of the research projects that have exploited FPGAs to achieve
significant perfonnance improvements are discussed in this section.

8.1 Programmable Active Memories [Bertin93]

The Programmable Active Memories (PAM) project is one of the first
projects that proposed the use of an FPGA platfonn to accelerate software
applications running on a host computer. The FPGA platfonn is used as a
universal hardware co-processor closely coupled to a host computer. The host
computer is used to download the configuration bit-stream into PAM.
Conceptually in the architecture, the processor can access PAM like a RAM
using read/write commands. Between the read and write instructions, the data
is processed, hence the name Programmable Active Memories.

The DECPeRLe-l is a specific implementation of the PAM architecture.
The computational core is a 4 x 4 matrix of XC3090 FPGAs. Each FPGA in
the array has direct connections to each of its four Manhattan neighbors.
There are also common busses running in the vertical and horizontal
directions. The granularity of the programming block, a four-input LUT,
favors bit-level manipulation of the data.

This architecture has been used to implement RSA cryptosystems, DNA
matching algorithms, and multi-standard video compression. Reported data
show significant speedup over traditional processors.

8.2 Splash [Arnold93][Hoang93]

Splash is an attached parallel processor in which the computing elements
are user-programmable FPGAs. The compute elements are arranged as a
linear array. The Splash 2 implementation consists of a host computer, an
interface board, and from one to sixteen Splash array boards. Each array
board contains sixteen processing elements arranged in a linear array and
fully connected using a crossbar switch. The processing elements are made of
a XC4000 series FPGA and memory.

Single-instruction-multiple-data stream (SIMD) and systolic programming
models are supported by Splash 2. The architecture was designed to
accelerate computations that exhibit temporal and data parallelism. The

22 Low-Energy FPGAs - Architecture And Design

XC4000 series FPGA used in the processing element is programmable at the
level of logic gates and flip-flops. Hence, this architecture is good for
problems that require bit-level manipulation and lends well to systolic
implementations.

The Splash 2 architecture has been used to search genetic databases. The
problem of computing the edit distance between two genetic sequences was
mapped as a systolic computation. The Splash 2 architecture was shown to
outperform traditional computers by several orders of magnitude.

8.3 PRISM [Wazlowki93]

PRISM, which stands for Processor Reconfiguration through Instruction
Set Metamorphosis, is a computer architecture consisting of a general­
purpose processor and a reconfigurable platform. The PRISM -II
implementation uses an AMD Am29050 processor coupled with an FPGA
board made of three XC4010 devices. Compute-intensive functions are
realized in the reconfigurable platform to obtain performance acceleration.

The compiler was built so that new operations can be synthesized
automatically to match the computational characteristics of the application.
The synthesized operations are then implemented on the reconfigurable
platform to augment the functionality of the core-processor.

The automatic synthesis approach makes it attractive for use in a wide
variety of applications. This approach was shown to yield significant speed­
up over just using the core-processor. The choice of the bit-level
reconfigurable platform helps it to perform better at applications requiring
fine-grain manipulations.

8.4 ANT -on-YARDS [Tsutsui98]

This architecture combines tightly coupled FPGAs and a microprocessor.
The implementation uses a 32-bit RISC processor (Hyperstone E-l) and an
FPGA card made of XC4010 and MAX-9000 devices. These boards are
coupled using an interconnection card that is programmable.

This architecture allows different styles of connections between the
reconfigurable part and the processor: a bus, a direct interrupt, and a two-port
SRAM channel. The bus style allows tight coupling between the two parts,
with the reconfigurable board acting like a coprocessor. The interrupt driven

Introduction 23

mechanism enables the FPGA to interrupt and control the behavior of the
processor. The third connection mechanism is aimed at scenarios where data
communication between the processor and the FPGA occurs asynchronously
and frequently. The first two schemes would result in local bus congestions
and performance degradation in such a scenario. The two-port SRAM
enables asynchronous data transfer between the two parts without one part
influencing the performance of the other.

This architecture was used for implementing telecommunication data
processing operations that require both high throughput and complex
algorithms.

8.5 RaPiD [Ebeling96]

RaPiD is a linear array of coarse-grained functional units configured to
form a mostly linear computational pipeline. The array of functional units is
made of identical cells replicated to form a complete array. In the RaPiD-l
implementation, each of the cells is made of an integer multiplier, three
integer ALUs, six general-purpose datapath and three small local memories.
The interconnect is made of 16-bit segmented busses. The computational
model proposed is a tightly coupled co-processor to a general-purpose
processor with its own special path to memory.

The RaPiD architecture is aimed at regular, computation-intensive tasks
like those found in digital signal processing. The logic block in RaPiD is
coarser than those employed in the architectures discussed in the previous
sections. Another interesting feature is the dynamic control available in
RaPiD. In the traditional systolic array processing, the datapath is statically
configured into a deep pipeline, and the data is streamed through it. RaPiD
allows dynamic control to schedule different operations of the computation
onto the datapath over time.

The coarse-grain programmability of the architecture favors arithmetic
computations at the byte level that can take advantage of the fast nearest­
neighbor connections available between the functional units. Preliminary
results show impressive gains on DSP computations like matrix multiply,
discrete cosine transforms, and motion estimation.

24 Low-Energy FPGAs - Architecture And Design

8.6 MATRIX [Mirsky96]

MATRIX is composed of an array of 8-bit functional units overlaid with a
configurable network. Each functional unit is made of an 8-bit ALU and
multiply unit, a 258 byte memory, and reduction control. The interconnection
is made of three levels: nearest neighbor connection, length four bypass
connection, and global lines.

MATRIX can be configured to operate in VLIW, SIMD, and MSIMD
fashion. This architecture allows construction of master control out of the
same pool of resources as array logic, avoiding the need for fixed control
logic on each chip. The array can also be broken into units operating on
different instructions. Mixed or varying granularities are handled by
composing functional units and deploying instruction control. This is made
possible because the datapath size and the assignment of control resources is
not fixed.

The 8-bit granularity of the architecture is aimed at arithmetic computations
that can utilize the ALU and the multiplier. Preliminary estimation shows a
peak performance of lOGops/second.

9 FPGA AND ENERGY CONSUMPTION

Most of the projects described in the previous section use FPGAs to
accelerate performance. A natural progression from these projects is the use
of FPGAs as a principal component in mainstream products. A major hurdle
is the high power consumption of existing FPGA architectures. The same
features that make an FPGA desirable are also responsible for making it
extremely expensive in terms of energy. For example, it will be shown in
Chapter 2 that the power consumption of an XC4085 chip running at a
system frequency of 50 MHz is approximately 6W. At present, the high
power dissipation is a limiting factor in energy sensitive domains.

The portable domain, with its numerous data sources, compute intensive
tasks, and rapidly changing standards, can definitely benefit from the unique
characteristics of the FPGA. The portable domain also places severe
constraints on the power consumption of the hardware. The use of available
FPGA architectures is not possible in these domains, where the current FPGA
architectures will easily exceed the power budget by a few orders of
magnitude.

Introduction 25

To meet the demand for larger logic capacities, the size of FPGAs has been
growing steadily over the past decade and is predicted to stay on this path.
This has been made possible by staying at the forefront in terms of the
process technology. The combined effect of smaller feature sizes and larger
die area is the quadrupling of transistor count on a die. The resulting increase
in power density and total power dissipation will have an adverse effect even
in the power insensitive domains, because of the advanced packaging and the
cooling techniques required.

10 CONCLUSION

Field-Programmable Gate Arrays have evolved considerably from their
initial usage as just glue logic. The spatial realization of applications and the
programmability of the architecture allow FPGAs to approach the efficiency
of ASICs with the silicon reusability of general-purpose processors.

FPGAs are available with different methods of programming, interconnect
architecture, and logic block functionality. Field-Programmable Gate Arrays
are becoming popular as embedded components in computing platforms. The
specific features will depend on the computing environment in which the
FPGA is going to be deployed.

Chapter 2

POWER DISSIPATION IN FPGAS

1 INTRODUCTION

Field-Programmable Gate Arrays traditionally have been used in
environments where their energy consumption was not critical. Present day
portable devices have become more complex, and can take advantage of the
programmability offered by the FPGA. This environment places stress on the
energy efficiency of FPGAs, which is lacking in existing commercial
architectures. Another factor that has gained importance is the power density
of integrated circuits. With the reduction in feature size, the transistor density
and transistor count per die have increased. This has resulted in an increase
of power density, and the overall power dissipation per chip. This trend will
continue, and has implications on the economics and technology of
packaging these devices.

This chapter looks at the effect of process advances on the power
dissipation of FPGAs. In the latter part of the chapter, the commercial FPGA
architecture will be evaluated to isolate the effects of the different
architectural components on the total energy consumption. This will help in
identifying blocks that must be redesigned to improve the energy efficiency
of the FPGA architecture.

2 TECHNOLOGY AND POWER

Improved speed performance, higher functional density, and the reduced
cost per function afforded by deep-submicron processes are compelling
reasons to design FPGAs using the most advanced process technology
available. The minimum feature size has been steadily decreasing over the
past decade.

The International Technology Roadmap for Semiconductors (ITRS)
provides guidance for the semiconductor industry. This document is a
collaborative effort of Semiconductor Industry Association, trade
organizations of Europe (EECA), Korea (KSIA), Japan (EW), and Taiwan

27

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001

28 Low-Energy FPGAs - Architecture And Design

(TSIA). The ITRS provides a 15-year outlook on the major trends in the
semiconductor industry. The most recent document, produced in 1999,
predicts a minimum feature size of 35nm by the year 2014 [ITRS99].

The semiconductor outlook for the gate length and supply voltage is
reproduced in Table 1 and Table 2. The predictions are broken into two
groups: near terms years spanning 1998 to 2005 and long term years
spanning 2008 to 2014. These data are based on ITRS1999, but there is an
indication that the technology nodes will be pulled in by a year.

Table 1 Process Generations - Near Term Years [ITRS99]

Year 1998 1999 2000 2001 2002 2003 2004 2005

Gate 250 180 165 150 130 120 110 100
Length

(nm)

Supply 2.5 1.8 1.8 1.5 1.5 1.5 1.2 1.2
Voltage

(V)

T. bl 2 P a e . rocess G eneratlOns - L T Years [ITRS99] ong erm

Year 2008 2011 2014

Gate 70 50 35
Length
(nm)

Supply 0.9 0.6 0.6
Voltage

(V)

Based on the technology roadmap from the ITRS [ITRS99] and FPGA
vendors [Xilinxl] [Alteral], it is possible to estimate the logic capacity,
speed performance, and power dissipation of the commercial FPGA
architecture in the different process generations.

The reduction in feature size increases the logic density, making it possible
to pack more computational power per unit area of silicon. The die area of
future chips is predicted to remain at least constant, which means that the
logic capacity of FPGAs will continue to increase. The improvement in
process technology is accompanied by a reduction in circuit delay, and hence
an increase in system clock frequency. Fig. 1 shows the trend in logic
capacity and system clock frequencies of commercial FPGAs as a function of
process technology to the year 2014. To estimate this trend, data from

Power Dissipation In FPGAs 29

existing FPGA architectures and the roadmap from ITRS for ASIC
generations are used.

8~.---~700

~ =

7~ --------------------

6000

~5~
.to
.~

~4000

2~

___ Logic Cell Capacity

-+- System Frequency

1~ -------------------------- ------------------

600

500

200

100

o---=~~~~~--~--~--~--~~~o
1997 1999 200 1 2003 2005 2007 2009 2011 2013

Technology Trend

Figure 1. Logic Capacity and System Frequency ofFPGAs

The estimation method can be explained using an example. Xilinx
[Xilinxl] gives the logic capacity of its largest FPGA as 100,000 logic cells
for the year 2000. Each logic cell is equivalent to a 4-input lookup table with
an associated flip-flop. The ITRS roadmap [ITRS99] predicts an increase in
transistor density for ASIC from 28Mtransistor/cm2 in the year 2000 to
133Mtransistors/cm2 in the year 2005. The size of the chip is predicted to
remain constant over the same time period. Using these data, the logic

30 Low-Energy FPGAs - Architecture And Design

capacity of the FPGAs can be estimated to increase to 475,000 logic cells by
the year 2005.

.. .. TransistorDensity2005 DieSize2005
LoglcCapaclty2005 = LoglcCapaClty2000 -. -. -"-""-"-

TranslstorDenslty2000 DleSlze2000

LogicCapacity2005 = 100000· ~.1 = 475000
28

A similar approach is used to estimate the system frequency. As the
minimum feature size scales from 350nm to 35nm, the logic capacity of
FPGAs is predicted to increase by more than two orders of magnitude, and
the system frequency is expected to increase by a factor of six.

The gate oxide is scaled along with the feature size, which necessitates a
corresponding scaling down of the supply voltage to prevent tunneling in the
gate. The supply voltage is predicted to scale from 3.3V to 0.6V as the
minimum feature size scales from 350nm to 35nm. The reduction in supply
voltage, and hence signal swing, means that the energy per transition will
reduce. System designers have been depending on this voltage scaling, and
the reduced parasitics accompanying advanced processes, to obtain low
power operation.

For a given function, the power dissipation will reduce with feature size.
But, as shown in Fig. 1, the logic capacity per chip will increase. The higher
integration, combined with the higher clock speed, will actually result in
higher overall chip power. Fig. 2 tracks the overall power dissipation of an
FPGA with process technology.

The power is estimated by assuming an array filled with 16-bit counters
with an 85% utilization of the array. This is a benchmark used by FPGA
vendors to estimate power dissipation [Altera97][Xilinx97]. The power
dissipated in an XC4085XL chip running at 100MHz is computed to be
12.5W. This FPGA is implemented in a 350nm process with a supply voltage
of 3.3Y. Using this as a starting point, the power consumption of future
generations is estimated based on the scaling of the voltage, logic capacity,
system frequency and capacitive parasitics. The scaling of the voltage is
obtained from Table 1 and Table 2. The change in the logic capacity and
frequency are obtained from Fig. 1. The capacitive parasitics are assumed to
scale linearly with the minimum feature size.

The change in power consumption from a 350nm technology to a 100nm
technology is computed below as an example.

Power Dissipation In FPGAs 31

Frequency 2005 LogicCapacity2005 CaP2005
Power2005 = Power1997 . . . -~::::.::..

2
SupplyVoltage2005

FrequencY1997 LogicCapacity1997 Cap 1 997
2

Supply Voltage1997

2
322 475,000 0.1 (1.2) Power2005 = 12.5W . - . . --. - = 72.2W
100 10,000 0.35 3.3

200~---------------------.

180 ---

160 --- -

140 ---

8 120 -.: -----------------------------------7---------

= .eo
~
Q 100

____________________________ /L _______ _

40

20

O+---~----~----~--~----~----r_--~----~~

1997 1999 2001 2003 2005 2007 2009 2011

Technology Trend

2013

Figure 2. Power Dissipation of FPGAs

32 Low-Energy FPGAs - Architecture And Design

In the short term, the power dissipation is seen to increase at least linearly,
despite scaling of the feature size and supply voltage.

3 IMPACT OF POWER DISSIPATION

As seen in the previous section, the power dissipation of the FPGA
architecture will not be solved by the scaling of technology. The main impact
of the increased power dissipation is in packaging and portability.

3.1 Packaging

There is a well-defined relationship between the junction temperature in an
integrated circuit, the performance, and the reliability of the circuit. For
example, the delay increases by 14% when the junction temperature
increases from 85°C to 125°C [Xilinx97]. The reliability of an integrated
circuit degrades as an exponential function of the junction temperature.

The main purpose of packaging and thermal control is to maintain the
junction temperature within the functional and maximum allowable limits
while maintaining acceptable circuit reliability. The functional limit defines
the temperature at which the performance specifications can be met. The
maximum limit is the temperature to which the device can be safely exposed
without causing irreversible changes in operating characteristics.

To highlight the limitation imposed by packages, Fig. 3 shows the power
dissipation of a commercial FPGA as a function of system clock frequency.
The power dissipation is of an XC4085XL [Xilinx2] FPGA running at 3.3V,
computed with an array utilization of 85%, and signal activity of 12.5%.
Power handling capabilities of the readily available packaging options are
also charted. As can be seen, the packages run out of cooling power well
before the achievable system frequency of over 80MHz, which necessitates
the use of more expensive ceramic packaging and thermal enhancements like
forced cooling, heat sinks, etc. The main repercussions are economics of
packaging, and poor form factor. The latter is important in mobile
applications like cellular telephones, where the appliance has to be small, and
worn on the body.
If the power dissipation of the chip follows the trend shown in Fig. 2, in the

near future the power dissipation will be beyond the capability of existing

Power Dissipation In FPGAs 33

packaging solutions. For example by the year 2005, the power dissipation
will be -70W, well beyond simple cooling techniques.

14---,----------------------'----,

12 - - - - - - - - - - - - , - - .. -

10

~
8 I 8 ----------------------------

·i
is

BG560

4 ' ---------- _________________________ B1l432 ____ _

10 20 30 40 50 60 70 80 90
System Clock Frequency (MHz)

Figure 3. Power Dissipation as a Function of Speed for XC4085XL

3.2 Energy Efficiency and Portability

100

The poor form factor resulting from advanced thermal control is a handicap
for portable applications. A more serious limitation is the energy efficiency of
FPGAs.

34 Low-Energy FPGAs - Architecture And Design

One of the developing fields in which reconfigurable devices like FPGAs
can be used is the cellular telephone market, or any portable environment
which uses different data sources such as audio, video, etc. Communication
devices, which must adhere to the different communication standards around
the world, can also take advantage of reconfigurable architectures. These
portable environments have stringent power constraints. In the case of
cellular telephones, the power budget is of the order of tens of milliwatts, to
maximize battery life.

As seen in Fig. 3, the FPGA dissipates power on the order of watts when
running at tens of megahertz. Energy delivery devices have hit a plateau in
their energy capacity, and a major breakthrough in this field is required if any
more energy is to be extracted from them. In the meantime, aggressive
energy saving techniques are needed in circuit design to make FPGAs a
viable component in the portable environment

4 COMPONENTS OF POWER

A dramatic improvement in energy efficiency of FPGAs is required. An
understanding of the energy breakdown in an FPGA is required to enable an
efficient redesign process. Fig. 4 gives the energy breakdown of an XC4003
FPGA over a set of benchmark netlists [Kusse97].

lnte rconnect
65%

Logic
5% IO

Figure 4. Power Breakdown in an XC4003 FPGA [Kusse97]

Clock
21%

Power Dissipation In FPGAs 35

The majority of the power is dissipated in the interconnect. The next major
component is the clock network. The logic block consumes only 5% of the
total energy. This breakdown is not specific to the Xilinx FPGA, but is
representative of most of the commercial FPGA architectures.

4.1 Interconnect Energy

The term "interconnect" includes all of the resources required to realize a
connection between two logic blocks. As an example, consider the
connection in a Symmetric Mesh architecture, illustrated in Fig. 5. The
physical realization of the connection involves metal traces and
programmable switches that have to be activated.

The interconnect architecture of the XC4000XL FPGA is similar to the
Symmetric Mesh architecture. To obtain more information about the
interconnect energy, a detailed power measurement of an XC4005XL FPGA
was done. The XC4005XL FPGA is implemented in a 0.35/lm process with a
power supply of 3.3V.

It is possible to measure the energy dissipated in each of the single segment
lines by selectively activating the switches in the connection box and the
switch box. Table 3 gives the measured values.

T. hi 3 M a e easure d I t n erconnect E nerg~o fXC4005XL

Power Supply 3.3V

One CLB driving 9 single segments (Energy per transition cycle) 320pJ

One CLB with no load (Energy per transition cycle) 39pJ

Capacitance per segment 2.9pF

The energy of a single segment line is 39pJ. Assuming a full voltage swing
on the line, this translates to a capacitance of 2.9pF. For this technology, the
load of 2.9pF is considerable, equivalent to a fan-out of approximately 300
logic gates in a standard cell design. Since almost all the connections from an
output pin have to go through at least one single segment line, the total
switched capacitance is extremely high. This gives an idea as to why the
interconnect structure dominates the total energy dissipation.

36 Low-Energy FPGAs - Architecture And Design

LOGIC LOGIC

LOGIC LOGIC

(a) Symmetric Mesh Architecture

LOGIC LOGIC

I

(b) Circuit Implementation

Figure 5. Routing in a Symmetric Mesh Architecture

Power Dissipation In FPGAs 37

Fig. 6 shows detailed infonnation about the connections possible to a track
of the single segment length interconnect in XC4000. The connections are
from the input/output pins of the logic blocks, the switch boxes, and the long
lines.

Switch Box

Long Line

-L..

GI
CI

..!<i
FI .9 ..!<i

Q:l -L.. g
.$.l G3 Q:i
I>()

C3 .$.l
0 ~ I>()
...l .5O 0

F3 ...l ...l

c:
~ XQ
I>()
~

CIl

.Sol
I>()

.5O
CIl

Switch Box

Figure 6. Single Segment Line in XC4000 Architecture

The capacitance on the line is from the metal track spanning one logic
block, and from the diffusion capacitances of the pass transistors connected
to this metal track. Using reported data on the logic block size [Wittig96],

38 Low-Energy FPGAs - Architecture And Design

and with scaling for technology, the length of a single segment line is
~300~ in a 0.35~ technology process. Using metal capacitance data, the
contribution from the metal line is -40tF. The rest of the load is from the
diffusion capacitance of the NMOS transistors connected to the single line.

This can be reduced by either decreasing the number of switches accessing
the line, or by making the transistors smaller. The number of switches can be
decreased by reducing the flexibility of the switch box and the connection
box, and by reducing the width of the routing channel. Doing so adversely
affects the routing efficiency of the interconnect architecture. Hence, any
modification of the flexibility has to be accompanied by an evaluation of the
routing efficiency of the entire architecture.

The interconnect path in an FPGA can be modeled as an RC chain. The
resistance of the series transistors contributes to the R, while the diffusion
capacitance of the NMOS transistors in the path contributes to the C. By
reducing the width of the switch, the R of the series path increases, and the
speed performance suffers. The commercial FPGA architecture typically uses
wide transistors to reduce the series resistance of the switches. If the
architecture can be modified so that the number of series transistors can be
reduced, then the width of the switches can be reduced while maintaining the
speed performance. The relationship is explored in Chapter 4.

5 CLOCK ENERGY

The next major contributor to the total energy is the clock. To get a better
idea of the clock energy, a simple H-tree clock distribution tree is designed
for a 16 x 16 array of logic blocks. Each of the logic blocks has two flip­
flops. The clock distribution is shown in Fig. 7. Each of the clock regions is
of size 4 x 4.

Typically in all FPGAs, flip-flops are provided in each logic block to
register the output. It has been shown that the availability of flip-flops in
each logic block improves the utilization of the array, and leads to a better
area efficiency [Rose90a]. A side effect of this architectural decision is that
the clock has to be distributed over the entire array to supply the sparse
distribution of flip-flops. This results in a relatively large cost for the clock
distribution network.

Table 4 gives the energy breakdown of the total clock distribution. The
distribution tree takes into account the capacitance of the H-tree, as well as
the overhead of the distributed buffers. The tile energy represents the clock

Power Dissipation In FPGAs 39

energy consumed in the leaf cells. This includes the clock distribution in the
tile, as well as the local clock buffer.

DDDDDDBuffer

DDDDDO

DODD

Figure 7. Clock Distribution Tree for a 16 x 16 Array

Table 4. Energy Components of Clock

Global Distribution Tile

All the tiles are active 40% 60%

30% of the flip-flops are active 70% 30%

40 Low-Energy FPGAs - Architecture And Design

When all of the tiles are active, the entire global distribution network, as
well as the local distribution, is active. In such a situation, the global
distribution accounts for 40% of the total clock energy. For typical
applications, not all of the tiles' outputs need to be registered. In such a
situation, when the clocked tiles are scattered sparsely over the array, the
entire global distribution is still active while only a fraction of the local
distribution networks are active. If a usage of 30% is assumed, the global
distribution now accounts for 70% of the total clock energy. This indicates
that reduction of the global energy will be rewarded with a significant
reduction in the total clock energy.

Another interesting factor is that the contribution of the flip-flops to the
clock energy is minimal. Consider the example of the 16 x 16 array. In this
array, 512 flip-flops are distributed over an area of 4.8mm x 4.8mm. The
clock network that has to be distributed over this entire area will certainly
dominate over the input capacitance of the flip-flops. What this means is that
the complexity of the flip-flops will not significantly affect the total clock
energy.

6 CONCLUSION

Advances in the process technology will aid in the quest for improved
speed performance and higher logic capacity. Even though the move into the
deep-submicron processes and the associated voltage reduction will reduce
the power dissipation per logic gate, the higher transistor densities and
frequencies will actually increase the overall chip power. The power
dissipation will increase in at least a linear fashion in the next decade. This
will affect the packaging requirements, and have adverse impact on the cost
performance. A dramatic improvement in the energy efficiency has to be
achieved to make FPGAs viable in the portable computing domain.

Detailed energy analysis based on existing FPGA architectures shows that
the dominant components which have to be redesigned are the interconnect
architecture and the clock distribution network ..

The dominant component in the interconnect is the diffusion capacitance of
switches used to provide the connectivity in the array. Since the number of
switches is a direct result of the design of the interconnect architecture, the
architecture has to be redesigned from an energy perspective. Since the
interconnect architecture has a direct impact on the routing resources
available for routing the nets, the redesigning effort has to be done without
adversely affecting the routability of the FPGA architecture.

Power Dissipation In FPGAs 41

It is shown that for the clock energy, the dominant component is actually
the distribution network, and not the load presented by the flip-flops. Hence,
the distribution network has to be targeted first to reduce the clock energy.

Chapter 3

EXPLORATION ENVIRONMENT

1 INTRODUCTION

The logic and routing resources in an FPGA are limited. The logic capacity
is determined by the number of logic blocks and the interconnect capacity is
determined by the interconnect architecture. It is not possible to implement a
function on a given array if the gate count required for the function exceeds
the logic capacity of the array, or if the required connections cannot be
completely supported by the available routing resources.

The logic capacity, quantified in terms of the gate count or k-input LOTs,
can be increased by increasing the number of logic blocks. Increasing the
routing capacity is more involved. The capacity of the interconnect
architecture is affected by the number of tracks in the routing channel, the
flexibility of the connection box, and the flexibility of the switch box.
Changing the flexibility of the connection box and the switch box, and
modifying the number of tracks has a direct impact on the number of routing
switches required. Increasing the number of routing switches per track
degrades the energy and speed performance of the interconnect due to the
increase in the parasitic capacitance from the switches. Since the switches
require configuration memory for programming, the increase in the number
of memory cells will increase the total area. Hence, the architecture
optimization is a tradeoff between architecture flexibility, area, speed, and
energy performance.

This chapter describes the flow that is used to implement benchmark
applications onto the target architectures. The exploration environment aids
in placing and routing a netlist of LOTs onto different architectures. This
makes it possible to obtain performance costs of different architectures.

2 RELATED RESEARCH

Considerable work has been done in the academia to develop placement
and routing tools to evaluate different FPGA architectures. The placement

43

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001

44 Low-Energy FPGAs - Architecture And Design

problem in the FPGA environment is similar to that in VLSI. Therefore, these
techniques [Sechen87] have been adapted for use in FPGA. Most of the work
has been done for developing the router.

The Coarse Graph Expansion (CGE) [Brown92] router has been developed
mainly for use in Symmetric Mesh architectures. Most routers are inherently
sequential, which means that when one net is being routed they are unable to
consider the effects on other nets. CGE attempts to bypass this limitation by
evaluating all the nets at the same time. This router accepts coarse graphs
from a global router and expands it into detailed routes. In the first step, all
the possible paths for each net are elaborated based on the coarse graph.
During the next step, all the paths are compared, and specific paths for each
net is chosen based on a cost function.

SEGA [Lemieux93] improves on CGE by not only focusing on achieving
full routability, but also addresses the allocation of wire segments to
connections to match the length of the segment to the length of the
connection. This tool takes into consideration the fact that the routing
switches result in performance degradation, and attempts to use longer wires
with fewer routing switches. SEGA supports segmented symmetrical
architectures.

The Versatile Placement and Route (VPR) [Betz97b] encapsulates the
entire placement and routing flow. VPR is targeted at Symmetric Mesh
architectures. The tool allows the specification of the size of the logic block,
pin accessibility, routing widths of the channel, and the distribution of the
channel widths. Simulated annealing is used for the placement step. The
router is based on the Pathfinder negotiated congestion algorithm
[Ebeling95]. Reported data show superior performance compared to other
FPGA placement and routing tools.

Alexander et al. propose an architecture-independent approach to FPGA
routing based on multi-weighted graphs [Alexander94] [Alexander96]. This
allows simultaneous optimization of multiple objectives under a smooth
designer controlled tradeoff. This method is based on a multi-weighted graph
formulation of the FPGA architecture. This allows the tool to be completely
independent of the specific architecture. The routing problem is posed as a
minimum spanning tree problem.

3 EVALUATION FLOW

The evaluation flow is shown in Fig. 1. It encapsulates a complete flow
from a logic netlist to the implementation on the target architecture.

Exploration Environment

APPLICATION SUITE

~~TLIST OF LOGIC CELLS

LOG IC & INTERCONNECT DATA

Figure 1. Evaluation Flow

TARGET
ARCHITECTlJRE

DESCRIPT.H)N

JJllil ono

45

46 Low-Energy FPGAs - Architecture And Design

The applications are mapped to a netlist of lookup tables (LUTs). The core
of the tool is a placement and routing tool, which is used to implement the
netlist in the target architecture. The target architecture description is treated
as another input to the tool, and can be changed to evaluate architectural
modifications. Mter successful implementation of the application, all
necessary data can be extracted to evaluate the architecture from an energy
and speed performance perspective.

The benchmark suite is a combination of data-path and random logic
circuits. They are drawn from the MCNC benchmark suite and from
functions encountered in the DSP domain.

4 MAPPING

Mapping is the process of translating the circuit description to a netlist of
LUTs. Fig. 2 illustrates the steps involved in a traditional automated mapping
flow.

The first step is the logic optimization phase, where the Boolean
expressions are optimized. The purpose of this step is to reduce the
complexity of the network based on a cost function. This is typically
achieved by removing redundancies and common sub-expressions. The don't
care conditions in the logic description are also exploited to reduce the
complexity of the network. Usually the cost function used to evaluate the
network is the number of literals for the local functions in each node. The
resulting network is logically equivalent to the initial logical description.
This step is referred to as "technology independent optimization", since it
does not consider the final architecture.

The next step is technology mapping. At this step, the optimized network is
mapped onto the target architecture. This step looks at the components
available in the target architecture, and tries to implement logic in the
optimized network using these components. The cost functions usually used
are area and delay. Typical FPGA synthesis programs use a cell library,
which is annotated with the cost functions. This does not take full advantage
of the lookup tables provided in the logic blocks.

MIS-FPGA [Murgai90] and FlowMap [Cong94] can be used to map the
optimized network to a netlist of lookup tables. These tools allow the size of
the LUT to be varied. This is useful in exploring the effect of the logic block
granularity. In this work, MIS-FPGA is used in the mapping step.

Exploration Environment

Figure 2. Logic Mapping

CIRCUIT DESCRIPTION

OPTIMIZED NETWORK

TECHNOLOGY
MAPPING

NETLIST OF LOGIC CELLS

47

Manual mapping to a netlist of LUTs is done for critical functions and
applications to take advantage of the specific characteristics of the logic
block structure.

5 ARCHITECTURE REPRESENTATION

Almost all of the available placement and routing tools are closely tied to
specific architectures with only limited access to architectural specifications.
This makes it possible to speed-up the placement and routing step, but is not
amenable to architectural exploration.

To redesign the FPGA architecture, the designer should have complete
flexibility in specifying the characteristics of the target architecture. This is

48 Low-Energy FPGAs - Architecture And Design

made possible by treating the target architecture description as an input to the
evaluation flow, rather than hard coding the target information in the
placement and routing tools. The main information the architecture
description has to convey are:

• Amount of logic and routing resources available.

• Connectivity available in the routing architecture.

• Cost (energy and delay) of the routing resources.

All of the above information can be encapsulated by representing the FPGA
architecture as a weighted graph. Fig. 3 shows how a simple logic block and
its associated routing channel is represented in the form of a graph.

2

3

LOGIC

ill

.--h

____ L.-J

Connection
Box

A r,
l

123
S

~

Switch
Box

witch

2

3

(a) Sub-block in a Symmetric Mesh
Array

~~------+-+-+-----~~u 1

2
~~~----+-+-+-----~~u3 

123 

(b) Graph representation 

Figure 3. Graph Representation of FPGA Architecture 

Fig. 3(a) shows a portion of an array, with a logic block accessing the 
vertical and horizontal routing channels through pins A and B. The shaded 
squares represent switches in the connection box, and hence the connectivity 
available. Pin A can only access tracks 1 and 3 in the vertical routing 



Exploration Environment 49 

channel, while pin B can access all the tracks in the horizontal routing 
channel. The switch box is similar to the Xilinx switch box, and each of the 
tracks can connect to the corresponding tracks on the other three sides. 

III III II III //lOP AD(O,O)II II III II III I 
IlLOGIC BLOCK 
O.O.LOGIC.O.O.09C O. O. WIRE. 1.0. 0 300C O. O.WlRE.1. 0.1 300c O.O.WlRE. 1.0.2 300C 
0.0.WlRE.1.0.3 300c O. O.WlRE. 1.0.4 300C 
O.O.LOGIC.O.O.l 9C 0.0.WIRE.1.0.0 300C O.O.WlRE. 1.0. 1 300c 0.0.WlRE.1.0.2 300C 
0.0.WlRE.l.0.3 300c O.O.WlRE.l.O.4 300C 
0.0.LOGIC.0.0.29C O. 0.WIRE.1.0. 0 300C O. O. WIRE. 1. 0.1 300c 0.0. WIRE. 1.0.2 300C 
0.0.WlRE.1.0.3 300c 0.0.WlRE.1.0.4 300C 

I/ROUTING CHANNEL 
0.0.WlRE.1.0.0 IOC O.O.LOGIC.O.O.l 300c 0.0.LOGIC.0.0.2 300C 0.0.LOGIC.0.0.3 
300C 1.0.EQVN.0.0.2 300c 1.0. EQVN.O.O. 6 300C O.l.WlRE.l.O.O IOC 
1.l.WlRE.0.1.0 IOC 1.0.WlRE.0.1.0 IOC 
0.0.WlRE.1.0.1 IOC O.O.LOGIC. O.O.1 300c 0.0.LOGIC.0.0.2 300C 0.0.LOGIC.0.0.3 
300C 1.0.EQVN.0.0.2 300c 1.0.EQVN.0.0.6 300C 0.1.WlRE.1.0.1 IOC. 

III IIIII III ImLE( I ,0)/1111 II III II I 
IlLOGIC BLOCK 
1.0.LOGIC.0.0.09C 1.0.EQVN.0.0.0 300C 1.0.EQVN.0.0.l 300c 1.0.EQVN.0.0.2 
300C 
1.0.LOGIC.0.0.19C 1.0.EQVN.0.0.0 300C 1.0.EQVN.0.0.I 300c 1.0.EQVN.0.0.2 
300C 
1.0.LOGIC.0.0.29C 1.0.EQVN.0.0.0 300C 1.0.EQVN.0.0.l 300c 1.0.EQVN.0.0.2 
300C 

IIPINS 
1.0.EQVN.0.0.0 OC 1.0.LOGIC.0.O.0 300C 1. O.LOGIC. O.O.1 300c 1.0.LOGIC.O.O.2 
300C 2.0.EQVN.O.O.S SOC I.I.EQVN.O.O.S SOC 2.1.EQVN.0.O.S SOC 1. I.WlRE.O. 1. 0 
300C 

IIGROUPING 
GROUP 0 1.0.WlRE.0.1.0 1.0.WlRE.0.l.l 1.0.WlRE.O.1.2 1.0.WlRE.0.1.3 
l.O.WlRE.0.1.4 

Figure 4. Sample Architecture Description 



50 Low-Energy FPGAs - Architecture And Design 

This structure is represented as a graph in Fig. 3(b). Nodes in the graph 
represent the pins and the routing tracks. Arcs connecting the corresponding 
nodes represent the possibility of a connection. For example, pin A can only 
connect to tracks 1 and 3 in the vertical routing channel. This is represented 
by arcs connecting the node representing the pin A to the nodes representing 
tracks 1 and 3; there is no arc between pin A and track 2. By using a 
weighted graph representation, it is possible to model the cost of the 
connecting resources with weights on the arcs. Fig. 4 is a sample architecture 
description file. 

The weighted graph representation has the advantage that the routing 
problem can be tackled with existing graph algorithms. However, this 
method of decoupling the placement and routing tool from the architecture 
incurs the penalty of slower execution of these steps. 

6 PLACEMENT 

In a traditional VLSI design flow, placement is the process of placing 
blocks so as to minimize total chip area while ensuring that the critical nets 
can be routed within their timing budget. In an FPGA, the total area is fixed, 
and the placement step reduces to the problem of assigning the LUTs in the 
netlist to the available logic blocks in the array while working within the 
utilization and performance constraints. An important characteristic of the 
FPGA architecture is that the speed and energy performance are dominated 
by the interconnect, making the placement and routing steps extremely 
important. 

One of the most common FPGA architectures is the Symmetric Mesh, and 
most of the tools developed [Betz97a] and architectural parameters studied, 
were based on this simple structure. For the Symmetric Mesh architecture, 
the cost of connecting pins is estimated using an approach similar to that 
used in VLSI system placement. The geometrical bounding box of the pins 
involved in the net is used as an indicator of the cost. This method of cost 
estimation becomes inaccurate when the interconnect architecture differs 
from the Symmetric Mesh structure. For example, for the Symmetric Mesh 
architecture in Fig. 5(a), the cost of connecting any two logic blocks is 
proportional to the geometric distance between the logic blocks. In Fig. 5(b), 
however, the regular single segments have been augmented with longer 
wires, which can provide low cost connections between logic blocks that are 
further apart. It was shown in the previous chapter that the cost of the 
connection is dominated by the resistance and the capacitance of the 



Exploration Environment 51 

switches, rather than by the metal traces. In this situation, the earlier 
assumption of cost as a function of the geometrical distance no longer holds 
true. In commercial tools, this has been taken care of by hard-coding the 
architecture-dependent costs to the placement tool. This does not lend itself 
well to architecture modifications and experimentation. In this flow, the cost 
of connecting blocks is extracted from the weighted graph representation of 
the target architecture and is used in the placement algorithm. 

(a) Symmetric Mesh Architecture 

(b) Modified Symmetric Mesh Architecture 

Figure 5. FPGA Architectures 

6.1 Placement Routine 

Fig. 6 shows the different steps involved in the placement routine. The 
target architecture is described in the form of a weighted graph as described 



52 Low-Energy FPGAs - Architecture And Design 

earlier. The circuit netlist is a conneCtIvIty graph, which describes the 
connections required between the different LUTs. The goal of the placement 
routine is to place the LUTs optimally from the netlist on the available logic 
blocks in the target architecture to minimize the interconnect cost. The 
optimization tool used is simulated annealing [Kirkpatrick83]. The cost of 
connections is described in the Distance Table. 

Target Architecture 
Description 

Figure 6. Placement Flow 

Placement of Logie 
Blocks on Target 

Architecture 

Netlist of LUIs 

! 
Simulated Annealing 



Exploration Environment 53 

6.1.1 DNance ThbIe 

The geometrical distance between logic blocks is a poor estimation of the 
cost of connecting the blocks. The connection cost is important since the 
optimization tool uses it to evaluate each placement option. The weighted 
graph architecture representation has the advantage that it encapsulates the 
cost of each of the routing resources. 

Using the weighted graph representation, it is possible to provide the cost 
information required for the optimization tool. The costs can be obtained by 
routing a path between the logic blocks involved using any shortest path 
algorithm [Dijkstra59] [Bellman58] [Ford62] [Cormen90]. The computational 
complexity of these algorithms is a function of the graph size. This, 
combined with the fact that the cost needs to be computed often at each 
temperature step of the simulated annealing algorithm, makes this approach 
computationally prohibitive. The implemented flow uses a lookup table 
approach. The distance between all pairs of logic blocks is computed once, 
and stored in the "Distance Table", as shown in Fig. 7. 

2 345 678 

9 6 6 6 4 4 4 4 2 I 
8 6 6 6 4 4 4 2 

7 6 6 6 4 4 4 

6 4 4 4 4 2 

5 4 4 4 2 

4 4 4 4 

3 4 2 

2 2 
'--

Weighted Graph Distance Table 

Figure 7. Distance Table of the Target Architecture 

During simulated annealing, this table is used to compute the cost of the 
interconnect. Dijkstra's single source shortest path algorithm [Dijkstra59] is 
used for generating this distance template. The complexity of this algorithm 



54 Low-Energy FPGAs - Architecture And Design 

is O~EI + Ivllglv!1, where Ivl is the number of nodes, and lEI is the number of 

edges in the graph, G(V,E). The size of the distance table is proportional to 
the square of the size of the array. For example, the table for a 16 x 16 array 
has 496 entries. 

6.1.2 Simulated Annealing 

Simulated annealing is a versatile optimization technique widely used in 
standard cell placement packages, as well as in numerous other applications 
with highly nonlinear functions and non-convex or unconnected solution 
spaces. Specifically, simulated annealing is able to process cost functions 
with arbitrary degrees of nonlinearities and discontinuities, and to 
statistically guarantee a solution as long as the system "temperature" is 
decreased sufficiently slowly [Ingber93]. 

These properties make simulated annealing a very appealing optimization 
engine for the FPGA cell placement problem. The general structure of the 
simulated annealing algorithm applied to cell placement problems falls 
within the general category of "probabilistic hill-climbing algorithms," 
outlined below [Sechen85]: 

T = To; 
X = generate (Xo) ; 
initial state */ 

/* Xo is typically a randomly chosen 

while("stopping criterion" is not satisfied) { 
while("inner loop criterion" is not satisfied) 

Xp = generate (X) ; 
if(accept(c(Xp), c(X), T)), X = Xp; 

T = update (T) ; 
} 

The functions generateO, acceptO and updateO represent the core features 
of the simulated annealing algorithm: the process of proposing a new circuit 
state based upon previous states and the current temperature of the system, 
the probabilistic acceptance test, and process by which the system 
temperature is decreased (annealed). 

The initial placement is randomly chosen. Then the contents of two logic 
locations are swapped, and the change in cost is computed. All moves that 
reduce the total cost are accepted. Moves that result in an increase of cost are 
accepted with a probability that is dependent on the system temperature, T . 



Exploration Environment 55 

-!JoG 

The acceptance probability is given by the Boltzman function, e T , where 
f:..C is the increase in cost. 
The rate at which the temperature is decreased is critical to the success of 

the algorithm. Simulated annealing will converge to the global local 
minimum with probability 1.0 only if the temperature is decreased 
sufficiently slowly. In practice, almost all cell placement packages violate 
this constraint by not generating enough states according to the inner loop 
criterion at a given temperature T, or by simply decreasing the temperature 
too rapidly. Although the resulting simulated quenching does not guarantee 
convergence, the results achieved in practice are usually quite good. T is 
decreased according to a{T)·T, where a{T) is less than but very close to 1, 
typically 0.96 to 0.97. 

As the system cools, the chances of accepting a move that results in a 
higher total cost reduce. Due to this, the percentage of swaps that are 
accepted reduces with temperature. Lam, et al. [Lam88] showed that the 
optimum acceptance rate of proposed new states is 44 percent. In the 
algorithm, the acceptance rate is controlled by controlling the window from 
which new swap locations are chosen. As the system cools, the size of the 
window grows smaller, to maintain this acceptance ratio. Swartz, et al. 
[Swartz90] improved on this algorithm so that it is possible to predict at the 
beginning of the run, when the algorithm will end. The theoretically derived 
annealing schedule uses an exponentially decreasing range window, while 
the temperature is controlled to maintain the acceptance ratio. 

In this work, the algorithm proposed in [Lam88] is employed. The range 
window is defined in terms of the cost of the connections. In the generateO 
function, the first location is selected randomly, while the second location is 
randomly chosen, so that the cost is within the window. These data are 
available directly from the distance table. 

7 ROUTING 

Routing is the process of realizing the connections between the logic blocks 
on the target architecture after the position of the logic blocks have been 
fixed. Routing on FPGAs differs from the VLSI routing problem in the sense 
that the resources are fixed. Since the number of tracks in a channel is fixed 
and the possible connections between tracks are fixed, routing is a critical 
step in FPGAs. 



56 Low-Energy FPGAs - Architecture And Design 

o 

o 
,/; 

""=/:::'0 o 
Target Architecture Place.ment Information Connect.ivity lnformation 

!~ 

ROUTES 

Figure 8. Routing Flow 



Exploration Environment 57 

One of the advantages of the graph-based approach is the availability of a 
number of routing algorithms that can operate on weighted graphs. In this 
work, the routing is treated as a Graph Steiner Minimal Tree (GSMT) 
problem. As long as the architecture is described as a weighted graph, the 
relevant graph algorithms can be employed irrespective of the irregularity or 
non-uniformity of the routing resources. The GSMT is a graph version of the 
Steiner Minimal Tree (SMT) problem. It is illustrated in Fig. 9. 

(a) Nodes to be Connected in a Weighted Graph 

(b) Minimum Spanning Tree Using Steiner Nodes 

Figure 9. GSMT Problem 



58 Low-Energy FPGAs - Architecture And Design 

The problem is defined as: 

Problem: Given a weighted graph G = (V,E) , and a set of 

nodes Nt;;;.V, find a minimum-cost tree T=(V',E') with 

N t;;;.V't;;;.V and E't;;;. E . 

Each graph edge eij has a weight wij, and the cost of a tree or any 

subgraph is the sum of the weights of its edges. Here, N is the set of demand 
points, and v - N are called the Steiner points. In the FPGA routing problem, 
the set of nodes, N , refer to the pins of the logic blocks that have to be 
connected together utilizing the Steiner nodes that represent the routing 
resources. Fig. 9 illustrates the GSMT problem. 

The flow is as shown in Fig. 8, and is similar to that given in 
[Alexander94] [Kahng95]. The target architecture description, placement of 
logic blocks, and connectivity of logic blocks are the inputs to the tool. Since 
the routing is sequential in nature, the nets are ordered to improve the 
chances of successful routing. The core of the tool is a GSMT algorithm 
[Alexander96], which attempts to route the net on the target graph. If not all 
of the nets can be routed, the nets are reordered, and another pass is made. 
Upon successful routing, the information regarding the routes for all of the 
nets is available for further analysis. 

7.1 Input 

The inputs to the router are the weighted graph representation of the target 
architecture, the location of the logic nodes on this graph, and the 
connections required between the logic nodes. The location of the logic 
nodes is obtained from the placement step. 

7.2 Net Ordering 

The GSMT algorithm attempts to route each net using available routing 
resources. Due to the sequential nature of routing the nets, the nets that have 
already been routed will affect the resources available for routing nets lower 
down in the order. This means that the ordering of the nets can have an 
impact on the final routing of the netlist. 



Exploration Environment 59 

A net with a smaller bounding box has fewer possible routes. The bounding 
box is defined by the location of the pins connected by the net. Based on this, 
a simple heuristic is used for ordering the nets. The nets are ordered in order 
of increasing bounding box size, so that nets with fewer choices are routed 
first. 

During an unsuccessful routing pass, the nets that cannot be routed are 
tagged. The nets are reordered with the tagged nets moved to the top of the 
order. This will ensure that the nets which could not be routed have access to 
more routing resources during a successive pass, and hence a higher chance 
of being routed. 

73 GSMT Algorithm 

The GSMT problem is known to be NP-complete [Hwang92]. There exist a 
number of heuristics to tackle this problem. The heuristic of Kou, 
Markowsky and Berman (KMB) [Kou81] solves the GSMT problem in 

polynomial time. This heuristic has a performance bound of 2· (1 -± ), where 

L is the maximum number of leaves in any optimal solution. The IKMB 
heuristic [Alexander96], which uses iterated heuristics, is used as the graph 
routing algorithm. 

7.3.1 KMB HeurNic [Kou81] 

The KMB algorithm is given below 

Input: A graph G=(V,E) with edge weights wi} and a set 

Nr;;;;Y 
Output: A low-cost tree T =(V',E') spanning N (i. e. N kV' 

and E'kE) 

G'=(N,NxN), with edge weights w'i}=distclnj,nj) 

Compute T = (N, E") = MST(G') 

G"= U _pathC k,n j) 
eijEE 

Compute T'= MST(G") 

Delete pendant edges from T' until leaf nodes are in N 



60 Low-Energy FPGAs - Architecture And Design 

Output T' 

The steps are illustrated in Fig. 10. 

B 

A 

A _f-'--{ 

C D 

(a) Nodes to be Connected on the Graph (b) Distance Graph 

B 

A 

A_ ........ ~ .................. . 

(c) Minimum Spanning Tree on the 
Distance Graph 

Figure 10. KMB Algorithm 

C D 

(d) Routing on the Graph 

• Step 1: Construct the distance graph G' over N. The weight of each 
edge e'ij is given by w'ij which is the cost of the shortest path in G 

between ni and n j . This shortest path is denoted by pathtni' n j ). 

• Step 2: Compute the minimum spanning tree of G', MST(G'). 



Exploration Environment 

• Step 3: Expand each edge e'i} into the corresponding path 

pathtnj, n j ), to yield C" that spans N . 

61 

• Step 4: Compute the minimum spanning tree of C", MST(C") , and 
delete pendant edges from MST(C") until all the leaves are members 
of N. 

732 Iteratro KMB (IKMB) [Alexander96] 

The iterated heuristic tries to improve the solution obtained using an 
existing Steiner algorithm by greedily selecting Steiner nodes which reduce 
the cost with respect to the original solution. The definition of IKMB is given 
by: 

Given a set of Steiner candidate nodes S ~ V - N , the cost savings of S with 
respect to KMB is defined as 
tlKMB(C,N,S)=cost(KMB(C,N))-cost(KMB(C,N uS)). 

The algorithm is described below: 

:Input: A graph C=(V,E) with edge weights wi} and a net 

OUtput: A low-cost tree T'=(V',E') spanning N (i.e. 

N ~V'~V and E'~ E ) 

S=O 
Do Forever 

T ={tE V - N ItlKMB(C,N,S U{t}» O} 
:If T=O Then Return KMB(C,NUS) 

Find tET with maximum tlKMB(C,N,SU{t}) 

S=SU{t} 

The heuristic starts with an empty set of candidate Steiner nodes, S = 0 . 

Then each node in V - {N US} is tried until a node t, which maximizes 
tlKMB(C, N, S U {t}), is found. This procedure is repeated with Sf- S U {t}. The 
cost of KMB to span NUS will decrease with each added t. The routine 
terminates when there is no tE (v - N)- S such that tlKMB(C,N, S U {t}» o. 



62 Low-Energy FPGAs - Architecture And Design 

The IKMB heuristic is illustrated in Fig. 11. For the problem in Fig. 11 (a), 
the solution using KMB is shown in Fig. 11 (b) with a cost of seven. But it is 
seen that following the IKMB heuristic, Steiner node S3 can be added to 
reduce the spanning cost to 6 as shown in Fig. 11 (c). The final solution is 
shown in Fig. 11 (d). 

(a) (b) 

B 

(c) (d) 

Figure 11. IKMB Heuristic 

The performance bound of the IKMB heuristic is no worse than that of the 
KMB heuristic it uses, since if no improving Steiner node is found, the 
output is identical to that of the KMB heuristic. The KMB heuristic is used 
inside the IKMB algorithm, and thus inherits the performance bound of g 
times optimal. 



Exploration Environment 63 

The time complexity of the algorithm in the worst case is O~VI' t(KMB)) per 

iteration, where t(KMB) is the time complexity of the KMB heuristic. This 
can be improved significantly by extracting the common one-time 
computations in the KMB heuristic. The shortest path computation, which is 
required in the KMB heuristic falls into this category. 

7.3.3 Congestion. Management 

The chance of a successful routing is improved if the routed nets are 
uniformly distributed over the routing resources, rather than crowded in 
certain locations. This is especially true of long nets, which traverse a 
significant fraction of the array. 

The possible reasons for this crowding are: 

• A particular path might be offering a lower cost. Usually the cost 
improvement is minimal over another route. 

• The order in which the interconnect resources are examined can 
result in tracks from a particular channel being selected over 
identical cost tracks occurring in other channels. 

One way to overcome the congestion problem is by artificially increasing 
the cost of routes through congested routing channels. This will force the 
router to seek alternate, cheaper routes. 

To implement this, tracks are grouped into specific routing groups based on 
proximity. For the example in Fig. 12, all tracks in one vertical channel can 
be grouped together, similarly for a horizontal channel. When a track in a 
particular routing group is used, the cost of all the other available tracks in 
the routing group is increased. As the number of available tracks in the 
channel reduces, the cost of the available tracks increases. This will ensure 
that the routes through congested routing channels become more expensive, 
and the routes will be distributed to other routing channels with lower 
congestion. This is illustrated in Fig. 12(b). The grouping information is 
included in the target architecture description, which is supplied to the router. 

This method does have the disadvantage that the grouping of the resources 
has to be done before routing by the designer. At present, the grouping is 
done based on the physical proximity of the resources that are 
interchangeable. 



64 Low-Energy FPGAs - Architecture And Design 

(a) Congested Routing 

(b) Distributed Routing 

Figure 12. Congestion Management 

7.3A Bounding Wmdow 

The time complexity of the KMB heuristic, and that of the IKMB wrapper, 
is dependent on the graph size. Reducing the size of the graph can reduce the 



Exploration Environment 65 

run time. The search space, and hence the size of the graph, can be reduced 
by using a bounding box. The bounding box limits the possible routes that 
are evaluated for routing a specific connection. The location of the pins 
belonging to the net is taken into account in defining the bounding box. 

Constraining the number of available routes can result in unsuccessful 
routing of the net. To solve this problem, an adaptive bounding box is used. 
If a routing pass is unsuccessful, during the next pass the size of bounding 
box is increased for the failed nets. This ensures that the nets have more 
routes to choose from, and increases the probability of a successful routing. 

Figure 13. Bounding Box to Limit Graph Size 

For this option in the router to work, the logic and routing resources have to 
be annotated with relative position information. In the flow implemented, the 
designer provides this information as part of the description of the graph. The 



66 Low-Energy FPGAs - Architecture And Design 

size of the bounding box with respect to the position of the pins is also user­
defined. 

8 EXTRACTION 

The output of the placement and routing flow is the route taken by each 
source-sink pair in each net. A sample output is shown in Fig. 14. The Steiner 
nodes used to route each source-sink pair correspond to the routing resources 
defined in the architectural description. 

02484 2492 2508 2457 2443 2435 
27167416821698164716331625 
20756764 7801215 1201 1193 
17 10281036 1051 14871473 1465 
15 28642872 2887 28372823 2815 
28 1136 1144 1159 1595 1581 1573 
31 16221630164512171203 1195 

Net ID 44 1568 1576 1591 20272013 2005 
~ 39 14601466 1482 19171903 1895 

:365'fl.2 548 564 999 985 977 
35-1192 1200120811867451155 11471139 
1432943303 3311 29052914288428762868 
23 12421250 1258 12391210 12021194 
10 2916 29242940 2889 2875 2867 

Sink Node 83240325032583292 2860283028222814 

~2754 276327712365277527672759 Source Node 
27002708 27242781 27672759 
i808~16 28322781 27672759 _____ 

9275-82766 27742745 2776 2~i27~ 
92701 2710 2718 274527762768-2760 
92811 28192834278227682760 

Figure 14. Sample Output of the Placement and Routing Flow 

The above information, along with the cost of each resource, is sufficient to 
extract the delay information of each source-sink path and the overall energy 



Exploration Environment 67 

cost of each electrical net. The delay is calculated using the Elmore delay 
model [Elmore48]. The energy cost is obtained from the total capacitance of 
each net. 

9 CONCLUSION 

The evaluation of FPGA architecture requires a complex flow involving 
logic synthesis, placement, routing, and extraction of the implementation on 
the target architecture. Most of the existing tools are tied tightly to specific 
architectures and are not amenable to large modifications to the architecture. 

In this work, a flexible implementation flow is developed to explore 
different architectural structures. The architecture is described as a weighted 
graph structure that encapsulates all of the required information. The nodes in 
the graph correspond to the logic blocks and the routing resources. The edges 
between the nodes represent the connectivity possible between the logic and 
routing resources. The weights on the edges correspond to the capacitive 
cost, and hence the energy of using the resources. 

Existing algorithms and tools are modified to operate on this description. 
MIS-FPGA is used to synthesize the applications onto a netlist of lookup 
tables. A traditional simulated annealing based algorithm is used for 
placement. Modifications are done during the candidate selection process to 
improve the quality of the placement. 

The routing is posed as a GSMT problem. There are numerous algorithms 
that can be used to solve the MST problem. The IKMB algorithm is chosen 

because of the well-defined performance bound of 2· (1-± ), where L is the 

number of leaves in the graph. The run time of the algorithm is improved by 
constraining the search space. The router also does congestion management 
based on grouping properties provided with the architecture description. 

One of the features of this router is that different GSMT algorithms can be 
used instead of the IKMB algorithm. For example, in this work, the cost 
function used is the capacitive cost. This requires minimizing the cost of the 
routing resources used to route the entire net, without consideration for any 
specific source-to-sink path. It is conceivable that for different applications, 
the dominant concern might be the timing path. In such a situation it will be 
appropriate to replace the IKMB algorithm with another algorithm more 
suited to solve the problem at hand. For example, the graph Steiner 
arborescence heuristic based on a path-folding strategy [Alexander96] can be 



68 Low-Energy FPGAs - Architecture And Design 

used to generate a shortest-paths tree to yield the greatest possible wirelength 
savings while maintaining the shortest-paths property. 

The flow described in this chapter is used in the rest of the work to evaluate 
the different architectural features. Note, however, that the flexibility of the 
flow is obtained at the cost of the run-time as compared to an architecture 
specific placement and routing flow. 



Chapter 4 

LOGIC AND INTERCONNECT 
ARCHITECTURE 

1 INTRODUCTION 

The energy and speed performance of the commercial FPGA architecture 
are dominated by resistance and capacitance contributions from the routing 
switches. Increasing the connectivity in the interconnect architecture usually 
involves an increase in the number of routing switches. Increasing the 
number of routing switches can improve the flexibility of the architecture at 
the price of area, speed, and energy. The architectural optimization process is 
to evaluate the trade-off between the flexibility of the architecture and the 
performance metrics. It is also an effort at evaluating smarter ways of 
distributing the routing switches to improve the performance metrics without 
sacrificing flexibility. The performance metric chosen for evaluating the 
architecture is Energy-Delay Product (EDP). This ensures that energy 
efficiency is not obtained at the cost of speed performance. 

An exhaustive evaluation of the entire architecture design space will be 
difficult. A more practical approach is to take a proven existing architecture 
as a starting point. The software environment described in Chapter 3 is used 
to implement the benchmark suite on the target architecture, and extract the 
performance data. 

2 RELATED RESEARCH 

There has been considerable work in the area of FPGA architecture. The 
work can be broadly divided into two categories: logic block structures and 
interconnect architectures. 

The studies on the structure of the logic block were targeted at 
understanding the relationship between the functionality of the logic block 
and the area of the FPGA. The work by Rose, et al. looked at the effect of the 
logic block functionality on area efficiency [Rose90a]. Results indicated that 

69 

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001



70 Low-Energy FPGAs - Architecture And Design 

the best number of inputs to use was between three and four. The study also 
indicated that a D-flip-flop should be included in the logic block. The study 
into multiple output LUTs [Kouloheris91][Kouloheris92] showed that a 4-
input LUT gives the minimum area. Looking at the relationship between 
logic block architecture and the speed of the FPGA [Singh92], it was shown 
that a 5 or 6-input LUT attained the lowest delays. This was attributed to the 
reduction in number of stages of slow programmable routing. 

Based on the above results, the use of heterogeneous logic blocks has been 
advocated to provide a better tradeoff between speed and density [He93]. For 
example, a combination of 6 and 4-input LUTs was predicted to have the 
same area as a homogenous 4-input LUT FPGA, while improving the speed 
by 25%. 

Chung, et al. studied the use of hierarchical logic blocks to improve the 
speed of FPGAs. In this topology, basic logic blocks are chained together 
using hard-wired connections rather than programmable connections 
[Chung9l]. The work looked at the tradeoff between the resulting area 
penalty, and the speed gain. It was shown that -26% reduction in delay can 
be obtained at the cost of a 5% increase in area. 

The work by Betz, et al. looked at the area efficiency of cluster-based logic 
blocks [Betz97a]. The logic block is realized using a cluster of 4-input LUTs. 
It was shown that a cluster size of four can achieve an area reduction of 5 to 
10% when compared to a logic block with one 4-input LUT. 

The Symmetric Mesh architecture has been one of the most popular 
interconnect structures. Most of the studies on logic block structures assumed 
a mesh interconnect structure. The work by Rose, et al. explored the 
relationship between the routability of an FPGA and the flexibility of its 
interconnect structure [Rose90]. It was shown that the minimum number of 
switches, and hence the minimum area, is obtained for a switch box 
flexibility between three and four, and a connection box flexibility between 
0.7 and 0.9. 

Variations in the interconnect structure in terms of segmented architectures 
were explored, and shown to improve the speed performance [Brown96]. 
Segmented routing has also been proposed to improve the predictability of 
routing [Ochotta98]. The study by Betz, et al. looked at the distribution of 
channel size over the array [Betz96]. 

While the above results were obtained using empirical methods, there has 
been work done to develop stochastic models to predict the routability of the 
Mesh architecture [Brown93]. By modeling the channel density with a 
Poisson distribution, an analytic expression was derived to predict the 



Logic And Interconnect Architecture 71 

routability of the cirCUIt In the FPGA. The predicted values matched 
experimental results. 

Aggarwal, et al. showed that hierarchical architectures obtain significant 
reduction in the switch count as compared to Symmetric Mesh architectures 
[AggarwaI94]. A study by Chan, et al. into the area-speed tradeoff for the 
hierarchical architecture [Chan96] shows up to a 64% improvement in speed. 

Lai, et al. developed an analytic model to evaluate minimum switch 
popUlations required for implementing different m-ary hierarchical structures 
[Lai98]. It is shown that a 4-ary tree is optimal from the perspective of switch 
count. An area reduction of 40% is predicted as compared to Mesh 
architecture. 

Hierarchical architectures have been used to push the performance of FPGA 
architectures. Tsu, et al. demonstrated an FPGA operating at 250MHz by 
using a 2-ary tree structure [Tsu99]. The architecture also uses pipelining at 
the interconnect level to achieve higher speed. 

These works look at the FPGA from an area and speed perspective. The 
issues involved in designing a low-energy FPGA have not been evaluated. 

3 ENERGY-DELAY COMPONENTS 

The energy and delay of the FPGA are dominated by the interconnect 
architecture, followed by the clock distribution network, as shown in Chapter 
2. Based on this observation, architectural modifications are aimed at 
reducing the overhead of interconnect and clock distribution structures to the 
total energy. 

Fig. l(a) shows a connection realized in an FPGA interconnect fabric, by 
enabling routing switches in the connection and switch boxes. The switch 
level realization of the connection and switch boxes is shown in Fig. l(b). 
The connection box is realized in the form of a pass-transistor structure to 
connect one pin from the logic block to the routing channel. The switch level 
circuit of the switch box shows the connections between corresponding 
tracks in the routing channels. 

The parasitic contribution from the switches and the metal trace constitute 
the total resistive and capacitive components of the interconnect. The 
switches are realized using NMOS pass transistors with the control signal 
applied to the gate terminal. 

The equivalent parasitic model of the switch is shown in Fig. 2. The main 
source of the capacitive component is from the reverse-biased source-bulk 



72 Low-Energy FPGAs - Architecture And Design 

and drain-bulk pn-junctions. Ron gives the equivalent resistance of the pass 
transistor when it is in the routing path. 

The parasitic model of the metal trace is a distributed RC network. The 
resistance is from the sheet resistance of the metal, and the capacitance is 
from the area and fringe capacitance. In the present deep sub-micron design 
regime the fringe capacitance is the dominant component for typical wire 
widths. 

Connection Box 

(a) Routing in the Interconnect 

Routing 
Channel 

Track 

LOGIC 

LOGIC 

Track 

-+--+-1f- Track 

Track 

Switch Box 

(b) Possible Realization of Connection Box and Switch Box 

Figure 1. Routing in a Mesh Fabric 



Logic And Interconnect Architecture 73 

C dilT = CBottom + CSideWaJl 

(a) Parasitics from the Routing Switch 

C wire = C p1ate + 2 *C liinge 

Capacitance 

(b) Parasitics of the Metal Trace 

Figure 2. Parasitic Components in the Interconnect 

Based on the switch and wire parasitic, the interconnect route in Fig. lea) 
can be represented with an RC network. For typical parasitic values, 
RWire«Ron, and can be neglected. Fig. 3 gives the equivalent RC network. 
The energy can be calculated from the capacitance of the route, while the 
delay is dependent on the resistance and capacitance. For example, the 
capacitance of a routing segment is be given by, 

C seg = lO· Cdijf + C wire 

This can be used to model the energy of the route as, 

Energy(E) oc 50· C dijf + 4 . C wire 

The delay of the route can be computed using the Elmore delay model 
[Elmore48], to give, 



74 Low-Energy FPGAs - Architecture And Design 

Delay( D) 0<; 10 . Ron . C wire + 125 . Ron . C diff 

This method of modeling the interconnect is used to compute the cost of the 
architectural modifications. 

Figure 3. Interconnect Routing and RC Equivalent 

4 ARCHITECTURAL COMPONENTS 

The Symmetric Mesh architecture is a common standard architecture, and 
variations of this basic structure exist in most of the commercial structures. 
This structure has been researched extensively. The Symmetric Mesh 
architecture is chosen as the starting point. The main architectural 
components are the logic block, interconnect architecture and the clock 
network. 

It was shown earlier that the logic block is not interesting from its inherent 
energy. The construction of the logic block is interesting from the effect it 
has on the usage of interconnect resources. If the logic block is inefficient, 
then more logic blocks, and hence more interconnect, will be used to 
implement a given function. This will increase the contribution of the 
interconnect to the total energy. The logic block is defined by the granularity 
of the logic block and the internal connections in the block. 

The interconnect is defined by multiple parameters and realization options. 
It is practically impossible to do an exhaustive analysis of all the possible 



Logic And Interconnect Architecture 75 

options. One way of tackling this problem is to analyze existing structures to 
have a better understanding of the importance of different parameters. 

The clock network is the next major contributor to the total power. Since all 
the logic blocks in the array have flip-flops associated with them, the clock 
has to be distributed throughout the chip. Energy efficient methods to 
distribute the clock have to be investigated to exploit the regular and 
symmetric nature of the distribution. 

5 LOGIC BLOCK 

The logic block is defined by its internal structure and the granularity. The 
structure defines the different kinds of logic that can be implemented in the 
block, while the granularity defines the size of the function that can be 
implemented. 

5.1 Logic Block Structure 

The logic block is chosen to be lookup table based. The advantage of using 
a k-input LUT (k-LUT) is that it can realize any combinational logic with k 
inputs. Before exploring the granularity of the logic block, the internal 
structure has to be analyzed. Previous work that evaluated the effect of the 
logic block on the FPGA architecture [Rose90a] used a k-input LUT with a 
single output as the logic block. This structure is better for implementing 
random logic functions than for datapath-like bit-slice operations. This can 
be illustrated using examples shown in Fig. 4 and Fig. 5. 

Fig. 4 shows a random combinational logic. If a single output logic block 
structure were to be used, increase in the LUT size could easily be used to 
reduce the number of logic blocks required. Fig. 4 illustrates how two 5-input 
LUTs can be used to cover the same logic as four 3-input LUTs. 

Arithmetic operations cannot take advantage of the increased LUT size as 
easily as random logic. For example, consider the 2-bit adder shown in Fig. 
5. The smallest component is a 3-input operation. Increasing the block 
granularity will not improve the block count, since the increased 
functionality is useless without a corresponding change in the number of 
outputs. To perform an unbiased evaluation, the structure should be such that 
any increase in logic block granularity in terms of LUT size is equally useful 
for both random logic and datapath operations. 



76 Low-Energy FPGAs - Architecture And Design 

3-Input LUT 5-Input LUT 

Figure 4. Random Logic and LUT size 

cout 

0<1> 

Figure 5. Arithmetic Block 

Fig. 6 shows a possible logic block structure that can be used for 
implementing both random and arithmetic logic without any wastage of logic 
resources. The logic block is made up of a cluster of 3-input LUTs that can 



Logic And Interconnect Architecture 77 

be connected up to realize a larger function. The number of output pins is 
also increased along with the logic block size to facilitate its use as an 
arithmetic unit. 

ABC D 

LUT 

LUT 

=f}-li; 

:.'.* .•... :.;.: ... ;ox 

:W 

Multiplexer 
programmed at 

configuration time. 

(a) 4-Input LUT / I-Bit Arithmetic Operator 

ABC D E 

LUT ~ 
WII 

~ 

LUT +,' 
i--

.----
- V It-- - LUT -

r---

'. 

fI 

'-~ 
II I-- LUT 

Cint_~ '-

(b) 5-Input LUT / 2-Bit Arithmetic Operator 

Figure 6. Different Logic Blocks Realized Using Cluster of 3-Input LUTs 



78 Low-Energy FPGAs - Architecture And Design 

5.2 Optimal Logic Block Granularity 

The implementation flow described in Chapter 3 is used to evaluate the 
impact of the logic block granularity on the energy performance of the array. 
For each logic block granularity, MIS-FPGA is used to synthesize the 
application to a netlist of LUTs. The total capacitance of the routed nets is 
used as a measure of the cost of implementing a function. At the conclusion 
of the routing step, complete information of the routes taken by all the nets is 
available. This information, combined with the cost of each of the routing 
segments, can be used to compute the total cost of routing the nets. 

The granularity of the logic block is described in terms of the equivalent 
lookup table size. The logic blocks are made up of cluster of 3-input LUTs, 
with the structure described in the previous section. Symmetric Mesh 
architecture as described in Chapter 1 is used. The connection boxes have 
full connectivity, i.e. the pins connect to all the tracks in their respective 
routing channels. A disjoint switch box with a flexibility of three is used. 

As the granUlarity of the logic block is increased, the number of logic 
blocks required to realize each function reduces. This is accompanied by a 
reduction in the number of nets routed in the routing channels. The 
capacitance of the routing segment is dependent on the number of logic block 
pins accessing the track, and the contribution of the switch box. 

The switches in the connection box and the switch box are assumed to be of 
the same size. The pins of the logic block are uniformly distributed on all 
sides of the logic block. The capacitance of the routing segment is given by, 

(M +N) 
cseg = 2 . Cdijf + 2· Fs . Cdijf 

Where, 

M is the number of input pins per logic block 
N is the number of output pins per logic block 
C dijf is the capacitance contribution of one pass transistor 

Fs is the flexibility of the switch box 

As the granularity of the logic block increases, there is an increase in the 
number of input and output pins. This has a direct impact on the capacitance 
of the routing segments. The cost of the each routing segment as a function 
of the logic block granularity is given in Table 1. 



Logic And Interconnect Architecture 79 

T. hi 1 C a e apacltance 0 fR outmg egment as a Function 0 Logic Block Granu arity s f 

Granularity # Input Pins # Output Pins Capacitance 

(k-LUT) (Cseg) 

3 3 I 8 

4 4 2 9 

5 5 3 10 

6 9 5 13 

The experimental results over a set of benchmarks is given Table 2 and 
plotted in Fig. 7. As the size of the logic block is increased from a 3-input 
LUT to a 5-input LUT, the total cost of the interconnect reduces. This can be 
attributed to the fact that as the capacity of each block is increased, more 
logic can be packed into each logic block. This reduces the number of nets 
routed on the expensive programmable interconnect resource. Hence, even 
though the cost of each routing segment increases, the reduction in the usage 
of the resources results in a decrease of the total cost of the interconnect. 

However, as the granularity is increased beyond that of a 5-input LUT, the 
interconnect cost increases. This is the result of two factors: under-utilization 
of large granularity logic blocks and higher cost of the routing segments due 
to the larger number of pins per logic block. 

For the random logic functions, a 4-input or 5-input logic block gives the 
minimum energy. The datapath functions have a strong bias for a 5-input 
logic block. Therefore, granularity equivalent to that of a 5-input LUT is 
found to be optimal from an energy perspective. It should be noted that the 
logic block is comprised of a cluster of 3-input LUTs to facilitate efficient 
implementation of arithmetic operations. The final logic block can implement 
a 5-input random logic function or a 2-bit arithmetic function. All of the 
outputs can be registered. 

This experiment does not take into consideration the cost of the logic 
resource. The logic blocks used in this experiment are of small enough 
granularity that the cost of the interconnect dominates the total cost. So, the 
cost of the logic block can be ignored. If the experiment is repeated for larger 
granularities, this assumption will have to be analyzed. 



80 Low-Energy FPGAs - Architecture And Design 

1: hi 2 R a e . outmlr tatIstJcs or t e enc mar U1te S .. £ h B h kS' 

Benchmark Logic # Logic #Routing Total Normalized 
Block Size Blocks Segments Capacitance Capacitance 

s526 3 133 734 5872 1.31 

4 93 595 5355 1.19 

5 69 449 4490 1.00 

6 64 460 5980 1.33 

term I 3 475 3070 24560 1.43 

4 310 2270 20430 1.19 

5 245 1826 18260 1.06 

6 180 1323 17199 1.00 

ACS 3 148 959 7672 1.13 

4 116 754 6786 1.00 

5 60 702 7020 1.03 

6 31 557 7241 1.07 

correlator 3 166 760 6080 1.44 

4 89 470 4230 1.00 

5 61 473 4730 1.12 

6 38 466 6058 1.43 

BMA 3 400 2219 17752 1.54 

4 210 1375 12375 1.08 

5 130 1151 11510 1.00 

6 65 980 12740 l.ll 

FIR 3 III 660 5280 1.73 

4 65 401 3609 1.18 

5 33 306 3060 1.00 

6 17 315 4095 1.34 

IIR 3 315 1888 15104 1.54 

4 172 1093 9837 1.00 

5 91 1005 10050 1.02 

6 48 898 11674 1.19 



Logic And Interconnect Architecture 

1.8 
~Datapath 

1.7 
___ Random Logic 

1.6 

~ 1.5 
1$ 
S 
.~ 1.4 

~ 
U 
'i 1.3 

\ 
~\ 
~ 

!oil 

~ 
~ 1.2 
Z 

\~ / 
\~ / 
------~ 

1.1 

0.9 

0.8 

2 3 4 5 

Logic Block Size 

Figure 7. Interconnect Capacitance as a Function of Logic Block Size 

6 GOAL OF INTERCONNECT 
OPTIMIZATION 

6 

81 

7 

The cost of the interconnect can be reduced by reducing the number of 
switches or by reducing the size of the switches. The number of routing 
switches is determined by the connectivity in the architecture. The size of the 
switches is dependent on the average length of the routes, and the speed 
performance that has to be supported. 



82 Low-Energy FPGAs - Architecture And Design 

6.1 Flexibility and Energy 

Reducing the flexibility of the comiection and switch boxes is equivalent to 
reducing the number of switches connected to the routing segments. This will 
reduce the capacitive load on the routing segments, and reduce the total 
energy. Reducing the flexibility can result in more routing segments being 
required to realize a given connection. Hence, this method can be 
counterproductive if the total capacitance of the route is greater than the 
capacitance before the modifications to the architecture. In the extreme case, 
reduction in flexibility can result in unsuccessful routing of the application. 
Hence, any flexibility modification has to be accompanied by an architecture 
evaluation to ensure that applications can still be efficiently implemented. 

6.2 Average Path Length and Energy 

The delay of a route in the FPGA interconnect has a direct dependence on 
the size of the routing switches. Increase in switch size reduces the series 
resistance, but will increase the diffusion capacitances. The size of the switch 
is determined by the system frequency that needs to be supported, and the 
average path length. The average path length is a rough estimation of the 
length of most of the routes. In the Symmetric Mesh architecture, this will be 
in terms of the number of single segments, while in a hierarchical structure 
the path length is in terms of the number of levels in the tree structure. The 
switches have to be designed so that the system frequency could be 
supported if all the routes are of average path length. 

One of the disadvantages of designing for the average path length is that the 
routes which are shorter than the average path length are penalized because 
of the wider switches. To illustrate this, an interconnect structure as shown in 
Fig. 1 is assumed. For a path length, i, the switch sizes are optimized to 
obtain a 1.5nS delay in a 0.25f.1m process technology. The optimal switch size 
for each of the path length, i, is Wi. Obviously, the longer paths require wider 

switches to meet the delay specifications. A switch of size Wi cannot meet 

the delay specification for any path length j > i, but it can meet the 

specification for any path length j ~ i. Fig. 8 shows the energy 
consumptions of the different switch sizes for different path lengths. 

It is seen that the penalty paid for using a switch size intended for another 
path length is quite high. For example, if the switch size is optimized for a 



Logic And Interconnect Architecture 83 

path length of seven, then the penalty paid for routing a path length of three 
is approximately five times. This underlines the interdependence between 
path length, speed performance and energy dissipation in the interconnect 
architecture. This is exploited in the next section during the exploration of 
the interconnect structure. 

20 

18 

16 

14 

~ 12 

~10 ... 
IloI = ~ 

8 

6 

4 

2 

0 

2 3 4 5 6 7 

Path Length (# Segments) 

Figure 8. Path Length, Switch Size, and Energy 

7 INTERCONNECT ARCHITECTURE 

Using only the Mesh structure results in a simple interconnect architecture, 
where the same routing structure is used independent of the length of the 
routes. The analysis of the relationship between the width of the switch, path 



84 Low-Energy FPGAs - Architecture And Design 

length, delay and energy discussed in the previous section indicates that this 
simplicity is achieved at the cost of energy. The results from the previous 
section indicate that energy improvements can be obtained by having 
different levels of interconnect to realize different classes of path lengths. 

In this work the routes have been broadly classified into three regions: 

• Short nets that realize connections between adjacent logic blocks. 

• Intermediate length nets. 

• Long nets that span a significant fraction of the array. 

The interconnect architecture is divided into three levels, with each level 
targeted at a specific class of nets. The Mesh architecture is used as the 
backbone, and used to provide connections for intermediate length wires. The 
other two levels are used to complement the Mesh architecture, and provide 
connections for short nets and long nets. 

7.1 Mesh Architecture 

The Symmetric Mesh architecture is used as the primary routing structure. 
It consists of a two-dimensional array of logic blocks interconnected by 
routing channels in the vertical and horizontal directions. The width, W, is a 
measure of the number of tracks in the routing channel. This represents the 
number of simultaneous independent connections that can be supported by 
the channel. The structure is as shown in Fig. 9. The connection box controls 
the connection between the input/output terminals of the logic block and the 
routing channels. The switch box determines the connections possible 
between the different routing channels. 

Previous work evaluating the effect of the connection box and the switch 
box on the routability [Rose90b] indicates switch box flexibility, Fs, of three, 
and a high connection box flexibility, Fe, of 0.8. If Fe is less than 1.0, then the 
distribution of the switches in the connection box is important, and can affect 
the routability of the architecture. 

The savings in energy when Fe is decreased from 1.0 to 0.8 is not 
considerable. Hence, a connection box with a flexibility of 1.0 is 
implemented. The pins of the logic block can connect to all the tracks in the 
corresponding routing channel. 



Logic And Interconnect Architecture 85 

The switch box is implemented with a flexibility of 3, using a disjoint 
switch box. This permits connection from each track to the corresponding 
tracks on the other three sides. This is similar to the switch box used in the 
XC4000 FPGAs. 

- - r--- - r--- - r--- - r--

1111 I I IIII 
- t-- t--

LOGIC 
BLOCK - t-- t--

IIII I I IIII 
- - r--- - r--- - r--
,...- - r--

IIII I I 111 I 
r-- t-- t--

LOGIC 
BLOCK 

t-- t-- t--

IIII I I IIII 
r-- c-- r--
r-- i-- r--
r-- - r--
r-- :--- r---

Logic Block Pins 

Figure 9. Level-I: Mesh Architecture 

- r-- -- r-- -- r-- -- r-- -
I J IIII I I IIII 

r-- t-- I--
LOGIC LOGIC 
BLOCK BLOCK 

I--- t--

I I IUJ I I IIII 
- r-- -- r-- -- r-- -- r-- -

I I 1111 I I IIII 
t-- t-- -

LOGIC LOGIC 
BLOCK BLOCK 

I I 

t--

---
,...-

, 

, , , , , , 

IIII 
t--

J 
r--
r--
r--
r----"'-- ... _­

'-

-
1 IIII 

r----
i---r----

-"'-- ... - ... -
Switch Box ...... _-_ 

Track 3 __ .j,.o=~~~:+-~~1--_3 ~ 
c:: 

Track 2 2 jg --~~-+~:+-~~I--- U 

Track 1 --.rf-+:....:-+~+~Lf7lI--_1 .?f :; 
Track 0 0 ~ 

--k~~~~~--

o 2 3 



86 Low-Energy FPGAs - Architecture And Design 

7.2 Nearest Neighbor Connection 

For realizing local one-to-one connection between adjacent blocks, the 
Mesh structure is augmented with a level of nearest neighbor connections 
(NNC). This layer provides dedicated, low energy connections between 
adjacent logic blocks without having to go through the mesh routing 
structure. For example, Fig. 10 illustrates a neighborhood of eight, and 
twenty-four for the logic block x. Each of the output and input pins of the 
logic block can connect directly to the input and output pins, respectively, of 
the other blocks in the region. 

DD DDD 
D 

D 
D 
DDDDDD 

Figure 10. Level-O: Nearest Neighbor Connection 

Neighborhood 
of 

Neighborhood 
of twenty-four 

Each of these connections goes through only the two switches in the 
connection boxes at the output pin and the input pin at the two ends of the 



Logic And Interconnect Architecture 87 

route, independent of the size of the neighborhood. The diffusion capacitance 
at each of the connection boxes, is proportional to the size of the 
neighborhood, and is the factor that limits the size of the region. For 
example, the connections illustrated in Fig. 10 will see a fan-out of eight and 
twenty-four for the regions of eight and twenty-four respectively. Hence, it 
can be seen that an arbitrarily large neighborhood can tum out to be more 
expensive than the mesh structure because of the higher fan-out. 

The size of the neighborhood can be determined by comparing the cost of 
the mesh structure and the NNe as a function of the size of the 
neighborhood. For this comparison, the logic block used is the 5-input, 3-
output structure that has been found to be optimal. This results in a 
capacitance of 1O,Cdijf for each of the single segments. The capacitive cost of 
each of the connection boxes is WCdijf , where W is the width of the channel. 
The cost of the connection boxes for the NNe is (W+Nx)'Cdijf, where Nx is the 
size of the neighborhood. The average energy-delay product for the different 
regions in terms of Ron and CdijJ is given in Table 3. 

T. bl 3 A a e verage E nergy-Delay Product of ConnectIOns in Mes h d NNC S an tructures 

Neighborhood Size (Nx) Mesh Structure NNC 

2 2 
I OOORon C diff 

2 
392Ron C diff 

4 2 lOOORonCdiff 
2 

648Ron C diff 

8 2 1750Ron Cdiff 
2 

1352Ron C diff 

24 2 
4650Ron C diff 

2 
6728Ron C diff 

The aim is to maximize the size of the neighborhood as long as the Level-O 
connections are cheaper than the Mesh structure. It can be seen that as the 
size is increased past eight to twenty-four, the NNe is more expensive than 
the Mesh. Therefore a neighborhood of eight is chosen. 

7.3 Inverse Clustering 

The energy and delay of a route in a Mesh structure can be computed in 
terms of the number of segments, n, and is given by, 



88 Low-Energy FPGAs - Architecture And Design 

Energy(E) oc n . C seg 

n· (n + 1) 
Delay(t) oc 2 Ron C seg 

In a Mesh structure, the number of segments in series increases linearly 
with the Manhattan distance, d, between the logic blocks to be connected. 
This means that the delay of the interconnect has a square dependency on the 
Manhattan distance, and the energy-delay product degrades as a cube 
function of the distance, as illustrated in Fig.ll. 

-0 
d 

(a) Number of Series Switches in a Mesh Structure 

d 

(b) Number of Series Switches in a Binary Tree Structure 

Figure 11. Mesh vs. Binary Structure 

Different interconnect structures have been proposed to overcome this 
linear dependency of the number of switches to Manhattan distance. A 
hierarchical binary tree structure has been proposed in other works as a 
solution to this problem [Tsu99][Lai98]. An advantage of a binary tree 



Logic And Interconnect Architecture 89 

connectivity is that the number of switches in series in a route connecting 
two logic blocks increases as a logarithmic function of the Manhattan 
distance. This is illustrated in Fig. 11. 

Fig. 12 compares the Energy-Delay product of the Mesh structure and the 
Binary tree connectivity as a function of the Manhattan distance, for an array 
size of 16 x 16 logic blocks. For the Mesh architecture, a full connectivity in 
the connection box is assumed and the flexibility of three is used for the 
switch box. The parasitic contribution of the switches and the metal traces is 
based on a O.25Jlm CMOS process. 

3 
-+--Mesh 
~RinaryTree 

25 
.... 
CJ 

= '1:1 
0 

'"' 2 ~ .... 
~ 

1) 
Q 

b L5 '"' ~ 
= ~ 

'1:1 
~ 

.!:l -; 
S 
'"' 0 
Z 

0,5 

2 4 6 g ]0 12 14 16 18 20 22 24 26 28 30 

Manhattan Distance (d) 

Figure 12. Energy-Delay Product as a Function of Manhattan Distance 

For the Binary structure, the analytical model developed in [Lai97] is used. 
This model can be used to compute the flexibility of the switch boxes used in 
each node of the hierarchical tree. For a given m-ary tree structure, the 



90 Low-Energy FPGAs - Architecture And Design 

number of switches and the flexibility of the switch box are functions of the 
required routability. The switch population is computed based on a Rent's 
coefficient of 0.67. 

For the 16x16 array studied, for Manhattan distances up to -13, the Mesh 
architecture can route connections that are cheaper than the Binary tree-like 
interconnect structure. This crossover point is a function of the size of the 
array and the specific process technology used to compute the cost of the 
interconnect. 

The Mesh structure is more efficient for routing short wires, while the 
Binary tree-like interconnection structure is better for routing long wires. To 
exploit this characteristic, a combination of Mesh and a Tree structure is best 
suited to route all of the wires. The Mesh can be used to route the short wires, 
while the Tree structure can be used to route the long wires that span a 
significant fraction of the array. 

t 
Figure 13. Connections in a Mesh + Binary Hybrid Architecture 

Further refinement in the tree structure can be made by observing the 
clustering employed in a typical binary tree architecture. As can be seen in 
Fig. 13, the logic blocks close to each other are connected at the lowest levels 
of the tree, while a connection between logic blocks further apart has to 
traverse multiple levels of the tree structure. The routes that have to traverse 
fewer levels of the tree are cheaper in terms of the Energy-Delay product, 
since they encounter fewer switches. In a simple hybrid structure as shown in 
Fig. 13, the cheaper connections in the Binary tree will never be used since 
the Mesh is cheaper for realizing the short connections. 



Logic And Interconnect Architecture 91 

By modifying the clustering of the logic blocks, a better match can be 
obtained in the hybrid structure, as illustrated in Fig. 14. The clustering is 
such that the logic blocks further apart can be connected by going through 
fewer switches. 

(a) Inverse Clustering 

I 
-------------------------------~ 

(b) Hybrid Architecture Using Inverse Clustering 

Figure 14. Level-2 Inverse Clustering 

This structure complements the Mesh structure in the hybrid architecture. 
The close connections can be routed in the Mesh structure, while the longer 
connections can be routed in the lower levels of the Inverse Clustered tree 
structure. This ensures that all of the cheap connections in the hybrid 
architecture are fully utilized. Fig. 15 shows the Energy-Delay product of 
connections routed in the hybrid architecture using inverse clustering 
structure. The Energy-Delay performance is contrasted with that of a hybrid 



92 Low-Energy FPGAs - Architecture And Design 

architecture employing a traditional clustering. It can be seen that the inverse 
clustering mechanism attains a significant improvement over traditional 
binary clustering. 

3 

--.- Mesh+Binary 
I 

--- Mesh+lnverse Cluster 
-+ 

I 
I 

2.5 

I 
I 

I 
I 

I 

I 
I 

/ 
/ 

/ 
I 

I 

I 
I 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

0.5 / 

/ 
/ 

/ 
/ 

/ _. ,,-..-.--- .-

---II . . _ ... - _. -... - -.- - - - - - - --;;,;;. - - - - -- - -o 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

Manhattan Distance (d) 

Figure 15. Energy-Delay Product of Hybrid Architecture 

8 CONCLUSION 

The architectural modifications have been mainly targeted at reducing the 
performance overhead of the interconnect. Optimization of the logic block 
helps to improve the interconnect utilization. The optimal logic block was 
found to be a 5-input, 3-output structure capable of implementing a 5-input 
random logic, or a 2-bit arithmetic operation. 



Logic And Interconnect Architecture 93 

J [ J [ J [ 

D [ J [ J D [ 
JD[JD[J 
J D [ J J 

J D [ J 

JD[JD[J 
Level-O - NNC Level-l - Mesh 

Figure 16. Interconnect Levels 

Level-2 - Inverse 
Clustering 

[ 

[ 

[ 

The interconnect architecture is composed of three different structures, each 
of them targeted to a specific class of connection length. This is illustrated in 
Fig. 16. 

• Level-O: Connects adjacent blocks using Nearest Neighbor connects. 

• Level-I: Supports intermediate length wires on the Mesh structure. 

• Level-2: Routes long nets spanning a significant fraction of the array 
using the inverse clustering structure. 



94 Low-Energy FPGAs - Architecture And Design 

For larger arrays it is quite possible that the three-level architecture 
discussed in this chapter will no longer be optimal. In such a scenario, further 
levels of hierarchy have to be considered. 



Chapter 5 

CIRCUIT TECHNIQUES 

1 INTRODUCTION 

Optimizations at the architectural level must be adequately supported at the 
circuit level. The interconnect is the dominant component of the total energy 
consumption, with the clock distribution coming in second. Since the routing 
switches dominate the energy and delay performance of the interconnect, the 
design of the switches is crucial. Low-swing signaling is another technique 
which can reduce the interconnect energy. Most of the low-swing techniques 
are targeted at busses and similar structures, where the capacitance of the 
interconnect is known. The applicability of these techniques in an FPGA 
environment has to be explored. 

The energy contribution from the clock is significant. The distribution of 
flip-flops in an FPGA is sparse, and quite regular compared to an ASIC 
design. Energy reduction techniques can be used to exploit these 
characteristics. 

2 RELATED WORK 

Published material on the circuit and implementation issues related to 
FPGAs is quite limited. Most of the original work on FPGA design has been 
in the commercial sector, and as a result the information is proprietary. Some 
recent work has looked at the effect of circuit design on the performance of 
FPGAs. 

Chow, et al. looked at the circuit design aspects of an SRAM -based FPGA 
[Chow99aHChow99b]. Recognizing the capacitive load of the interconnect 
switches, work was done on restructuring the C box to reduce its effect on 
the routing channel. No major modifications were done on the interconnect. 
The threshold drop across the pass transistors in the routing fabric introduces 
the problem of leakage current in the gates following the switches. This 
problem was addressed by adjusting the switching voltage of the gates. This 
solution is technology dependent, and cannot be effectively carried on to 

95 

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001



96 Low-Energy FPGAs - Architecture And Design 

future processes. Simulated data showed speed and area comparable to 
commercial structures. 

Betz, et al. examined the transistor sizing and wire layout of FPGA 
interconnects from a speed performance perspective [Betz99a][Betz99b]. The 
gate-boosting· method used in commercial architectures was adopted to 
address the threshold drop problem. This method of using a higher voltage on 
the gate of the transistors often requires additional circuitry. It was shown 
that the spacing of the routing wires has a significant impact on the speed 
performance of the routing. This can be attributed to the fringe capacitance of 
the wires that is becoming dominant in each successive process generation. 
The concept of electrically heterogeneous routing is introduced. This method 
advocates optimizing some of the routing for speed and the rest for density. 

3 ENERGY-DELAY DESIGN SPACE 

The connections in an FPGA are controlled by the connection box and 
switch box. In a typical SRAM programmable FPGA, the connections are 
realized using NMOS pass transistors that are controlled by SRAM cells 
connected to the gate terminal as shown in Fig. 1. By writing a logic one or a 
logic zero into the SRAM cells, the pass transistors can be switched ON or 
OFF to control the connections. 

It was shown in Chapter 4 that the energy and delay of an interconnect 
route can be modeled in terms of the capacitance and resistance of the 
switches and the metal traces. Since the series resistance in the network is 
dominated by that of the pass transistors, one way to improve the speed is by 
making the transistors wider and reducing the resistance. The drawback with 
this approach is that the increase in transistor width is accompanied by an 
increase in the diffusion capacitance. It was shown earlier that the capacitive 
load in the interconnect is dominated by the diffusion capacitance of the 
switches accessing the tracks. The improvement in speed has to be paid for 
with increased interconnect capacitance, and hence increased energy. 

Fig. 2 gives the energy and delay of a typical route in an FPGA as a 
function of the transistor width in a O.25f.U11 CMOS process. It is seen that the 
energy consumption of the route increases linearly with the transistor width. 
The improvement in the delay flattens out as the transistor width becomes 
very large. For the design of the low-energy FPGA, the sizing of the 
transistors is based on the energy-delay product. This ensures that the delay 
of the interconnect is not sacrificed to obtain the minimum energy. 



Circuit Techniques 

. Box ConnectIOn 

Switch Box 

. Switches . h Box usmg . Box and SWltc . f ConnectIon (a) ConstructIOn 0 

--- > 
. NMOS Pass Transistors . of Switches usmg (b) RealizatIOn 

d Switch Box . Box an . f ConnectIOn . 1 ConstructIOn 0 Figure. 

97 



98 Low-Energy FPGAs - Architecture And Design 

3.5 4 
-III- Ene rgy 

-+-Delay 3.5 3 

3 
2.5 

2.5 
;::; 

2 8 
;... 
OIl 2 
'"' <l.l 
I: 
~ 1.5 

1.5 

0.5 +-------------------------i 0.5 

O+--.--.--r-.---.--.---r--,---r--.---r--,---+O 
0.5 1.5 2.5 3.5 4.5 5.5 6.5 

Transitor Width (lOe-6) 

Figure 2. Energy and Delay of a Route in an FPGA as a Function of Transistor Width 

4 LOW-SWING SIGNALING 

The dynamic energy dissipated when driving a load is given by, 

Where, 
C 

Vdd 

Vswing 

is the capacitive load being charged 
is the supply voltage from where the current is drawn 

is the voltage swing on the load 

Pil 
I: 
'-' 
;... 
= 4l 
~ 



Circuit Techniques 99 

By reducing the supply voltage and the voltage swing on the interconnect, a 
significant reduction in the total energy consumption can be achieved. 

Considerable research has been done in the field of low-swing signaling, 
and a compilation of the different methods can be found in [ZhangOOb). 
These methods employ different circuit techniques and technology features 
to maintain signal swings in the sub-one volt region. The techniques have 
been targeted at the general ASIC environment. The viability of these 
techniques in an FPGA environment has to be evaluated. 

4.1 Existing Low Swing Techniques and the FPGA 

The basic principle of some of the existing low swing techniques can be 
broadly classified based on their voltage sensing schemes. 

4.1.1 Low1bre;bold Devm 

It is easier to produce a low-swing signal, than to detect the signal. Hence, 
it is always the limitations of the receiver that constrains the minimum 
voltage swing possible. If a complementary static circuit is to be used as the 
receiver, the threshold voltage of the devices is the limiting factor. One way 
of improving the sensitivity is by using low-threshold devices in the receiver 
circuit [Nakagome93]. 

The problem with this method is the use of special low-threshold devices 
used in conjunction with standard threshold devices. This requires additional 
steps during device fabrication tuned just for the FPGA. 

4.1.2 Differential Interconnect 

Apart from the sensitivity of the receiver circuit, the required noise margin 
places a lower bound on the minimum voltage swing. This is required to 
avoid erroneous switching due to noise injected into the system. The 
immunity of the receiver circuit to common-mode noise can be improved by 
using a differential sensing scheme. Since the common mode noise affects 
both the signals equally, they can be cancelled out. This method has been 
proposed by [Liu94] to achieve low voltage swings. 

The problem with this approach is that a single signal requires two wires. 
This can add considerable area overhead in a system like an FPGA, where 



100 Low-Energy FPGAs - Architecture And Design 

the dominant area component is the interconnect. This would further reduce 
the logic density of the FPGA, making it a poor choice for most applications. 

4.1.3 Thning SignaJs 

Another method to detect low signal swings is by using a sense amplifier. 
The drawback of traditional sense amplifiers is the constant tail current of the 
circuit. One way of reducing this constant current is by enabling the sense 
amplifier only when required. This can be done if the load being driven is 
known exactly. In such an environment, the time taken to drive the load is 
known, and the sense amplifier can be activated using a timing signal. This 
method has been used to control the swing and the receiver circuit 
[Colshan94]. 

The main drawback to this method is the assumption that the load is 
known. In an FPGA, the capacitance being driven is dependent upon the 
route taken to realize a connection. Different nets will have different lengths, 
and hence different capacitances. This rules out the use of a single timing 
signal to activate the receivers on the different nets. 

4.1A Charge Recycling 

Charge recycling or charge sharing methods of achieving low swing and 
quadratic energy saving is a novel method [Hiraki95] [Yamauchi95]. As the 
name implies, the methods employ charge sharing between the multiple data­
lines of a bus to reduce the voltage swing by a factor of n, where n is the 
number of data-lines in the bus. The energy dissipation is always constant, 
independent of the signal activity on the bus. One of the main requirements 
for this method is that the capacitive load on all the data-lines in the bus must 
be closely matched. 

The interconnect in an FPGA does not normally use bus-based data 
transfer. Even if bus-based transfer is possible, for special architectures using 
coarse granularity logic blocks, like datapath units, it will be difficult to 
satisfy the condition of capacitive matching. 



Circuit Techniques 101 

5 LOW-SWING CIRCUIT 

The low-swing signaling circuit proposed for use in the FPGA is shown in 
Fig. 3. The driver translates the voltage from VOOH to VOOL' The interconnect 
is made up of the NMOS pass-transistor switches with the control voltage, 
VODC, on the gate. The receiver translates the low voltage signal back to 
V OOH. 

VOOHNoOL 

IN 

DRIVER 

Configuration Signal 
(Vooc) 

I I I I 

VOOHNoOL 

INTERCONNECT RECEIVER 

Figure 3. Low-Swing Circuit 

5.1 Driver 

The main purpose of the driver circuit is to drive the capacitive load at the 
reduced swing of O-VOOL• Fig. 4 shows the two basic driver configurations 
that can be employed. 

In the first configuration, the output voltage swing will be from 0 to V DOL> 

which is the required high voltage. If the voltages are such that 
V DDH ~ V DDL + vTn' where vTn is the threshold voltage of the NMOS device 

with body effect, then the second configuration can also support a voltage 
swing between 0 and V DDL . 



102 Low-Energy FPGAs - Architecture And Design 

If the voltage relationship between V DOH and V DOL can be ensured, then the 
second configuration is preferred. For the same gate voltage, an NMOS 
transistor has a higher current driver per unit width than a PMOS transistor. 
Hence, the second configuration will have a smaller area than the first 
configuration for the same delay specification. The overhead of the extra 
inverter is negligible compared to the size of the output devices. 

VODL VDDL 

V DDH 

m{ OUT IN C OUT 

PMOS PuU-Up NMOS Pull-Up 

Figure 4. Driver Configurations 

5.2 Receiver 

In a low-swing circuit, the receiver is the critical component. The circuit 
has to be able to sense the low voltage at the input. In the absence of low­
threshold devices, timing signals, and differential signaling, one method is to 
use a pseudo-differential sensing scheme. The input low-voltage signal can 
be compared to a reference signal using a differential amplifier configuration. 
The drawback of this method is the constant tail current. Since all of the logic 
blocks have five inputs, the static current from receiver blocks in the entire 
array will be unacceptable. 

The receiver circuit used in the proposed scheme is shown in Fig 5. This 
circuit is completely static, and does not require timing signals. When the 
input to the receiver is low, Node 1 is charged to V DOH. During a low to high 
transition, MNI is switched ON, pulling Node 2 low. This triggers the 
discharge of Node 1 through MN2, which acts as a cascode amplifier. The 



Circuit Techniques 103 

transition at Node 1 activates MP2 that pulls the output node high. During a 
high to low transition, MN3 pulls the output low enough to trigger MPI. 
During both transitions, MPI and MP2 form a differential pair to obtain 
faster transitions between the stable states. This helps to reduce the short­
circuit currents in the receiver circuit. 

IN 

o/VooL 

Figure 5. Low-Swing Receiver 

5.3 Configuration Voltage 

VOOH 

V DOC represents the control voltage applied to the gate of the NMOS 
transistors used as routing switches in the interconnect network. The power 
supply voltage of the SRAM cells used to store the configuration determines 
this voltage. V DOC has the same constraints as imposed on V DOH, to avoid the 
threshold voltage drop across the routing switch. 

The Ron of the switches is dependent on the gate voltage. By keeping the 
gate voltage high, Ron, and hence the interconnect delay, can be reduced. 
Since the control voltage is steady during normal execution, there is no 
penalty in terms of energy due to higher V DOC. The delay of a typical 
interconnect route as a function of the control voltage is given in Fig. 6. For 



104 Low-Energy FPGAs - Architecture And Design 

an interconnect swing of O-O.8V, the delay can be improved by almost a 
factor of two by boosting the control voltage from 1.SV to 2.Sy' 

The disadvantage of having an independent V DOC is the requirement of 
another power supply. For this work V DOC is kept the same as V DDH. The 
advantages of having a higher V DOC can be exploited if required. 

1.3 

\ 
\ 

1.2 

1.1 

~ 0.9 

~ 
Q 0.8 

0.7 

0.6 

0.5 

0.4 

1.4 

" 

1.7 

~ 
~ 
~ 

2.1 

Configuration Voltage (V) 

~Delay 

-... 

2.5 

Figure 6. Interconnect Delay as a Function of Configuration Voltage with V DDL =0.8V 

5.4 Perfonnance 

The circuit shown in Fig. 3 is simulated with a typical interconnect route. 
For the given process technology, V DDH and V DDL were chosen to be 1.SV 
and O.8V, respectively. The circuit is compared against a full-swing circuit 



Circuit Techniques 105 

running at 1.Sy' The comparison shown in Table 1 includes the overhead of 
the driver and receiver circuits. There is a significant improvement in energy, 
and the energy-delay product is smaller by almost a factor of two. 

To bl 1 C a e ompanson B etween F ull-Swing and Low-Swing Circuits 

Full-Swing Circuit Low-Swing Circuit 

VDD = 1.5V V DDH=V Doc=I.5V. 
VDDL=O.8V 

Delay (nS) 1.9 2.3 

Energy (pJ) 72.3 31.4 

ED Product 137 72 

The overhead incurred in this method is an additional supply rail for the 
low voltage. DC-DC converters are quite common in most of the current 
digital systems to supply multiple voltages. Hence, the additional supply rail 
will not pose a big problem. In the extreme case of having to generate a 
separate supply for just the FPGA, it is possible with minimal overhead 
[BurdOO]. 

6 CLOCK DISTRIBUTION 

The clock distribution network is the next major component of energy 
consumption after the interconnect. The distribution energy can be reduced 
by evaluating the different components involved, and taking advantage of the 
characteristics of the FPGA environment. 

6.1 Components of Clock Distribution Energy 

The capacitance switched during the distribution of the clock can be 
divided into three major components: global distribution network, local 
distribution network, and the flip-flop load. 



106 Low-Energy FPGAs - Architecture And Design 

6.1.1 Global DNribution N~ork 

The global clock network distributes the clock to the periphery of the logic 
blocks. For a given technology, Cglobal is a function of the area of the chip, 
and for a given array, Cglobal is dependent on the size of the logic block. For 
most applications, the global energy is fixed. For some applications that use a 
small fraction of the available flip-flops, it is possible to gate the clock to the 
branches of the distribution tree to reduce the energy. 

DDDD 

D 
DDDD Global 

Distribution 

Figure 7. Components of Clock Distribution 

6.1.2 Local Distribution Network 

Logic Block 

---- ...... 
'-----t---J, 

\ 

• , 
~/ 

---" 

Local Distribution 

The local clock network distributes the clock from the global network to the 
flip-flops in the network. For a given technology, Clocal is a function of the 
physical dimension of the logic block. If the flip-flops in a logic block are not 
used, the local distribution can be gated. 



Circuit Techniques 107 

6.1.3 Flip-Flop Load 

Cff is the capacitive load added to the local clock distribution network by 
the flip-flops. This capacitance is dependent on the complexity of the flip­
flops. 

6.2 Clock Distribution in an FPGA 

Each of the logic blocks has flip-flops associated with it. This necessitates 
distributing the clock over the entire array. Since the flip-flops are distributed 
sparsely over the entire array, the contribution of the distribution network 
dominates the total clock energy. 

The contribution of the different components can be evaluated by designing 
a simple clock distribution network. The clock distribution is designed for a 
16 x 16 logic block array in a O.251lm CMOS technology. The area of each 
logic block is determined from actual layout information to be 250llm x 
250llm. The global clock distribution is done as a balanced H-tree, with 
distributed drivers. The local clock distribution is approximated with a metal 
trace the length of the logic block side. The flip-flop used is a D-flip-flop 
from the standard cell library. The capacitive contributions of the 
components are given in Table 2. 

~ hi 2 C t·b· f h CI k C a e on n utlOn 0 t e oc omponents 

Clock Component Equivalent Switched Capacitance 

Global Distribution. Includes the cost of 10.3 pF 
the distributed drivers. 

Local Distribution per logic block. 42 fF 
Includes the cost of the driver. 

D Flip-Flop per logic block. 18.3 fF 

It can be seen that for a 16 x 16 array of logic blocks with all the flip-flops 
being utilized, the capacitance from the flip-flops is only 20% of the total. 
The rest of the energy contribution is from the clock distribution network. As 
the utilization of the flip-flops reduces, the percentage contribution of the 
distribution network increases. 



108 Low-Energy FPGAs - Architecture And Design 

6.3 Clock Energy Reduction Methods 

Reducing the number of flip-flops would appear to be a reasonable step in 
the reduction of clock energy. However, previous research in the 
depopulation of flip-flops [Rose90a] has shown this method to be 
counterproductive, because of the overhead incurred when data needs to be 
registered. 

Based on the characteristics of the FPGA environment, and the preliminary 
capacitance data, it is clear that the distribution network has to be targeted for 
maximum energy reduction. Since the area of the logic blocks determines the 
distribution network, the absolute capacitance of the network cannot be 
reduced. In view of the fixed capacitance, the energy can be reduced only by 
reducing the voltage swing and the transition activity on the distribution 
network. 

6.4 Low-Swing Signaling 

The low-swing signaling technique presented in section 5 can be used to 
distribute the clock signal on the global distribution network. Since the logic 
blocks operate at the high voltage, the swing on the clock net is restored at 
the boundary of the logic block. This method will reduce the energy of the 
global distribution by approximately a factor of two. 

6.5 Double-Edge-Triggering 

Conventional single-edge-triggered flip-flops are used traditionally in 
designs. The data are sampled at only one clock edge, and the output data 
change only once per clock cycle. The implementation of a simple single­
edge triggered flip-flop using transmission gates is shown in Fig. 8(a). 

In a double-edge-triggered flip-flop, the input data are triggered at both 
edges of the clock, and the output changes twice in each clock cycle. This 
method allows halving the clock frequency while maintaining the same data­
throughput. Since the energy consumed by the clock distribution network is 
directly proportional to the clock frequency, this flip-flop will result in 
halving the clock distribution energy. The implementation of the double­
edge-triggered flip-flop is shown in Fig. 8(b) [Llopis96][Dally98]. 



Circuit Techniques 109 

The clock signal is loaded by eight and twelve transistor gates in the single­
edge-triggered and double-edge-triggered implementations, respectively. 
Even though the clock load is higher, since the clock activity is halved, the 
double-edge-triggered flip-flop actually consumes less energy in the clock. 

The energy dissipated due to the data is higher in the double-edge-triggered 
flip-flop due to the increased complexity. The total energy consumed in the 
double-edge-triggered flip-flop varies from 45% to almost the same as that of 
a single-edge-triggered flip-flop, as the data activity is varied from zero to 
one [Llopis96]. 

D 
Rst 

D 
Rst 

Figure 8. Flip-Flop Styles 

Q 

(a) Single-Eeige-Triggered FF 

Q 

(b) Double-Edge-Triggered FF 



110 Low-Energy FPGAs - Architecture And Design 

The single-edge-triggered implementation requires twenty-six transistors, 
while the double-edge-triggered implementation requires thirty-two 
transistors. This includes the two inverters used to buffer the clock signal and 
generate the complement. The increased area due to the increased number of 
transistors is one of the reasons why the double-edge-triggered flip-flop is 
not heavily used in traditional designs. In an FPGA, the area is dominated by 
the interconnect resources. The contribution of the flip-flops to the total area 
is approximately one percent, and negligible. Hence, the increased area of the 
double-edge-triggered flip-flop will not affect the total area. 

The single-edge-triggered flip-flop is insensitive to the duty cycle of the 
clock to a large degree. This is not the case with the double-edge-triggered 
version, where the duty cycle has a direct effect on the data-throughput. 
Hence, the duty-cycle has to be maintained at 50%. The set-up time and the 
hold time of the double-edge-triggered flip-flop is comparable to the 
conventional flip-flop designs. 

7 CONCLUSION 

The architectural modifications described in Chapter 4 can be supported 
with circuit level optimizations to reduce the total energy consumption of the 
FPGA architecture. The modifications were aimed at the routing structure 
and the clock distribution network. Low swing signaling suitable for 
deployment in an FPGA environment is demonstrated with - 2x improvement 
in energy. The clock distribution structure incorporates the same low-swing 
technique to reduce the clock energy. A double-edge-triggered clocking 
strategy is employed to halve the transition activity on the distribution 
network with corresponding energy gains. 

The proposed circuit techniques do not require special processing steps, and 
can be implemented using a typical digital process technology. 



Chapter 6 

CONFIG URA TION ENERG Y 

1 INTRODUCTION 

The realization of an application in the FPGA has two steps, configuration 
and execution. During the configuration step, the memory cells that control 
the behavior of the logic and routing resources are loaded with the 
programming bits required to implement the required application. In the 
execution step, data are processed by the function implemented in the FPGA. 
The impact of the configuration step on the total energy and speed is 
dependent on how frequently the FPGA is programmed. When the FPGA is 
used as a performance accelerator, the array is reconfigured often enough for 
the configuration step to be considered as a significant component. 

This chapter will look into the effect of the configuration technique on the 
energy and speed. The shift register technique and the random access 
technique represent two contrasting methods of programming the FPGA. The 
characteristics of the methods will be explored to evaluate their impact on the 
usage model of the FPGA. Based on results from a preliminary 
implementation of the random access technique, different modifications are 
explored to improve the energy performance of the configuration step. 

2 CONFIGURATION COST 

Each programmable component in an FPGA is controlled using data stored 
in SRAM cells. These memory cells, in tum, have to be loaded with valid 
data before the FPGA can be used. If the FPGA is to be used as a 
performance accelerator where rapid re-configuration is required, then the 
overhead associated with the configuration step has to be considered. The 
FPGA can be used as an accelerator unit only if the total cost of using the 
FPGA is less than a software implementation: 

Cost HW + Cost Config < Cost sw 

Where, 

111 

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001



112 Low-Energy FPGAs - Architecture And Design 

CostHW Cost of implementing function in hardware (FPGA) 

Cost Con jig Cost of programming the FPGA 

Costsw Cost of implementing the function in software (GP) 

In the above equation, Cost is used to represent the delay or the energy 
consumed when the function is implemented. 

As an example, consider the configuration overhead for the popular 
XC4000 architecture [Xilinx2J. For the XC4000XL series, the number of bits 
needed to program the FPGA ranges from 151,910 for the XC4005XL with a 
logic capacity of 466 4-input LUTs to 1,924,940 bits for the XC4085 with a 
logic capacity of 7,448 4-input LUTs. Even in the fast parallel programming 
mode, this overhead translates to approximately 19,000-240,000 write cycles. 
This is exacerbated by the fact that the write speed for programming the 
FPGA is slower than the system operation speed by a factor of approximately 
ten. 

The high overhead of programming the FPGA limits the computation 
functions that can be efficiently implemented in the FPGA. Only those 
functions that have to process long streams of data can be considered as 
viable candidates for implementation in the FPGA. 

3 CONFIGURATION TECHNIQUES 

A better understanding of the cost of programming the FPGA can be 
obtained by comparing the two basic methods of loading the configuration: 
the shift register and the random access memory technique. Almost all 
commercial FPGA architectures use the shift register technique. This can be 
attributed to the fact that early FPGAs were not operated in an environment 
where the configuration overhead in terms of speed and energy was a major 
factor. The random access programming method offers a reduction on the 
speed and energy penalty. To get a complete picture, these methods have to 
be evaluated in terms of the area, pin-count, delay, and energy overhead. 

3.1 Shift Register Technique 

The shift register method of programming is the simplest. The 
configuration is fed in as a single bit-stream. The configuration storage cells 
are connected as a long chain, and the bit -stream is shifted into the array one 



Configuration Energy 113 

bit at a time. This method is illustrated in Fig. 1. When the entire bit-stream 
is loaded into the array, each configuration cell will contain the correct data 
to program the switch to which it is connected. Hence, independent of the 
utilization of the array, the entire bit-stream has to be loaded in each time. 

Q 

Configuration Storage CeIl 

Figure 1. Shift Register Method of Programming 

This method also has an impact on the cell that can be used to store the 
configuration. Each memory cell is used to not only store the configuration, 
but also to drive the next memory cell in the chain. This requires the use of at 
least a flip-flop as the configuration storage cell. The configuration storage 
cell is shown in Fig. 1. Almost all of the commercial architectures use this 
method to program the FPGA. 



114 Low-Energy FPGAs - Architecture And Design 

3.2 Random Access Programming 

The random access technique is quite different from the shift register 
technique. This method is similar to writing data into a random access 
memory (RAM), and is illustrated in Fig. 2. 

Tile 

/ 

D 

Figure 2. Random Access Programming 

Strobe 
I 

Strobe' 

I 

Configuration Storage Ce II 

Q 



Configuration Energy 115 

The configuration bits are grouped as words and can be selectively 
programmed. This allows programming of only the resources that are being 
utilized. However selective addressing requires additional circuitry for 
decoding, and necessitates the routing of configuration data and address 
busses through the entire array. 

This method allows the use of a very simple cell for storing the 
configuration information. The functionality required of the cell is to hold the 
data to program the switch it is controlling. This can be achieved by using a 
simple latch as the configuration storage device. This is considerably simpler 
than the flip-flop used in the shift-register method. The programming method 
and the configuration storage cell are shown in Fig. 2. 

4 SHIFT REGISTER VERSUS RANDOM 
ACCESS 

The parameters that can be used to compare and contrast the two methods 
are pin count, partial programming, area, delay overhead, and energy 
overhead. 

4.1 Pin Count 

In the shift register method of loading configuration, only two pins are 
required, independent of the size of the array. One pin is for the configuration 
data, and the other pin is for moving the data through the register chain. 

In the random access method of programming, the number of pins required 
for configuration is dependent on the size of the array. The number of pins 
for loading the configuration data is fixed and determined by the grouping of 
the bits. The number of pins for addressing the memory space is dependent 
on the number of configuration words in the array. 

In a stand-alone FPGA, the number of pins dedicated to configuration 
loading is important since it has a large impact on the packaging. For an 
embedded FPGA, the number of pins dedicated for the configuration is not 
critical. 



116 Low-Energy FPGAs - Architecture And Design 

4.2 Selective Programmability 

Selective programmability of the array is desirable for a number of reasons, 

• The function being implemented utilizes only a fraction of the total 
array. 

• All the logic and interconnect resources in a tile need not be 
programmed each time. 

• Successive tasks are similar enough that only a fraction of the logic 
and interconnect needs to be reprogrammed. 

The shift register method of programming is an all-or-nothing approach. 
The entire array has to be reprogrammed each time, independent of the size 
of the application. As the name indicates, the random access programming 
method facilitates programming random configuration words using 
configuration addresses, making selective programmability feasible. 

4.3Area 

The main component of the total area of an FPGA is the configuration. The 
number of configuration bits is independent of the programming technique, 
but the method of programming can affect the total area. 

The shift register programming technique requires the use of a master-slave 
flip-flop to store the configuration. The routing overhead is minimal since 
each flip-flop has to communicate only to the next flip-flop in the chain. 

In the random access programming technique only the storage of the 
configuration is needed. A simple latch can be used for this purpose. 
Compared to a master-slave configuration, the area complexity of the latch is 
considerably lower. However, this programming technique requires an 
address decoder to select the configuration words, and the configuration data 
bus has to be routed through the entire array. 

4.4 Delay and Energy Overhead 

It is envisioned that using the FPGA as an accelerator can boost the 
performance of the system. In such an environment, the FPGA will be 



Configuration Energy 117 

reprogrammed quite often. As the frequency of switching tasks increases, the 
overhead of the configuration step cannot be ignored. 

The delay overhead of the shift register method is always fixed, and is 
dependent only on the size of the array, since the entire array has to be 
programmed each time. The energy overhead is dependent on the number of 
times each register is programmed. The energy overhead is seen to be 
proportional to N2, where N is the configuration size of the array. Due to the 
serial propagation of configuration bits, N bits propagate through the first 
register in the chain, (N-]) bits propagate through the second register, and so 
on. 

To the first order, delay overhead of the random access programming 
technique is proportional to the number of configuration words that have to 
be loaded into the array. The energy overhead is also proportional to the 
number of words that have to be loaded into the configuration space. 

4.5 Comparison of Techniques 

Table 1 compares the two programming techniques. N is the configuration 
size of the array, W is the word size in the random access programming 
technique, and T is the configuration size of each task. 

The optimal method of programming is dependent on the environment in 
which the FPGA is going to be employed. A stand-alone FPGA used as glue 
logic where rapid reprogramming is not an issue will benefit from the shift 
register method. An embedded FPGA used as a performance accelerator, 
requiring rapid and frequent reprogrammability, is better programmed using 
the random access technique. 

T. bl 1 C a e ompanson 0 fP T h . rogrammmg ec mques 

Overhead Shift Register Random Access 
Programming Programming 

Pin Count 2 Log2(NIW) + W 

Area ocN ocN 

Partial Programmability No Yes 

Delay ocN ocT 

Energy oc N2 ocT 



118 Low-Energy FPGAs - Architecture And Design 

5 CONFIGURATION ENERGY 
COMPONENTS 

From the viewpoint of partial and selective programmability, the random 
access technique is the desirable choice. To get a better understanding of the 
costs involved, a simple implementation of the array is made. The 
configuration circuitry for an 8 x 8 array is designed as shown in Fig. 3. The 
configuration is grouped as 8-bit words and can be selectively programmed 
at this granularity. A hierarchical decoding structure is used to minimize the 
select lines traversing the array. In the first level of decoding, the row and 
column are selected to identify the tile being programmed. The location of 
the word is decoded inside the tile. 

Figure 3. Configuration Energy Breakdown 

Total Energy 
BreakdO\vn 

03 
..5 47% 

] 
o 
6 

By using the physical implementation, accurate performance data can be 
obtained. This method accurately accounts for physical parasitics. The 



Configuration Energy 119 

parasitics include the capacitance of the metal wires and the capacitive load 
of the configuration storage cells. 

The energy dissipated for each write can be divided into three components: 
global, local, and storage energy. The global energy takes into account the 
address decoders and the configuration bus drivers. The global energy 
includes not only the energy dissipated in the logic circuitry, but also the 
energy required to drive the control and data signals for the configuration 
across the entire array. This component is a function of the physical size of 
the array. Hence, it is dependent on the number of tiles in the array and the 
physical size of each tile. 

The local energy is the energy dissipated in the tiles. This includes the 
energy dissipated for local decoding of the address and distributing the 
configuration data in the tile. The energy dissipation in the tile is dominated 
by the energy required to distribute the configuration data. The main 
components of this load are the interconnect capacitance and the capacitive 
load of the memory cells. Hence, this energy is a function of the number of 
configuration words per tile and the physical size of the tile. 

The storage energy is the energy dissipated in the actual storage cells 
during each write. This is a function of the complexity of the memory cells, 
and the load presented by the switch that is being programmed. 

The breakdown of the energy is shown in Fig. 3. The total energy is evenly 
distributed between the global and local components. The global energy 
accounts for -53% and the local energy accounts for -47% of the total 
energy. The interesting fact is that the storage energy is negligible and can be 
ignored. It accounts for barely 0.5% of the total energy. 

6 METHODS TO REDUCE 
CONFIGURATION ENERGY 

The dynamic energy associated with programming the FPGA can be 
reduced by reducing the capacitive load and by reducing the number of 
writes required to program the FPGA. The total capacitive load is determined 
by the parasitic capacitance from the metal wires. This is determined by the 
physical size of the array and is fixed. It is possible to hierarchically isolate 
the tiles to reduce the switched capacitance. The number of writes is 
dependent on the number of configuration storage cells that have to be 
programmed, and can be reduced by reducing the number of storage cells. 
Since dynamic energy is a function of the number of times a capacitor is 



120 Low-Energy FPGAs - Architecture And Design 

charged and discharged, controlling the transition activity can reduce the 
dynamic energy. 

6.1 Selective Tile Activation 

In the preliminary implementation shown in Fig. 3, the configuration data 
were distributed over the entire array. This can result in unnecessary 
switching of capacitance. Using methods similar to memory design, selective 
activation of blocks can be used to reduce energy. In the case of the FPGA, 
only the configuration distribution circuitry of the target tile needs to be 
activated as shown in Fig. 4. This has a dramatic impact on the local energy. 

COLUMN DECODER 

Figure 4. Selective Tile Activation 



Configuration Energy 121 

6.2 Configuration Compression 

The number of cycles that are required to program an FPGA is dependent 
on the number of memory cells used to store the configuration. In traditional 
FPGAs, there is a one-to-one correspondence between the programming 
switches and the memory cells used to control them. In some cases, it is 
possible to reduce the number of memory cells required to store the 
configuration. 

As an example, the connection boxes are implemented using pass 
transistors with one configuration bit per transistor, as shown in Fig. 5. This 
provides precise control over each switch, and is the way connection boxes 
are commonly implemented in FPGAs. The control of each switch 
independent of the other switches is required in the connection boxes of 
output pins to facilitate fan-out at these nodes. This is not necessary for the 
connection boxes of the input pins where only one source will be driving the 
input pin at any given time. 

Configuration Storage 

0 

.... 
u C 
0) 0: c 

2 c :; 0 
u .5' .... 
0) 

.s 

7 

Figure 5. Conventional Implementation of Connection Box 



122 Low-Energy FPGAs - Architecture And Design 

This property of the input connection box can be taken advantage of to 
reduce the number of memory cells. One method would be to implement the 
connection boxes using multiplexers as shown in Fig. 6(a). Even though the 
number of memory cells is reduced, the input signal will see a chain of pass 
transistors. This will adversely affect the performance of the FPGA, and is 
undesirable. 

Configuration Storage 

I 
I 
I 

: = : c: 
I_~ 

I I ::l 
I I C. 
'I = 

I -

(a) Multiplexer Realization 

Figure 6. Configuration Compression 

Configuration Storage 

(b) Compressed Configuration 

The second method is to binary-encode the configuration for storage as 
shown in Fig. 6(b). The reduction in the number of memory cells used to 
store the configuration bits necessitates the use of a decoder to expand the 
configuration. The area impact of using an encoder has to be evaluated, since 
configuration storage dominates the area of the array. In Section 5 it was 
pointed out that the energy contribution of the memory cell being 
programmed is less than 0.5% of the total energy. Hence, the energy 
consumption of the decoder can be ignored unless it increases the energy of 
storage by a few orders of magnitude. During the configuration step, the 



Configuration Energy 123 

delay in the critical path is just the time required to latch the data in the 
storage cells. Hence, the delay overhead of the decoder can be ignored. 

The overhead of using the encoding technique is shown in Fig. 7. The plots 
are of the ratio between the area (energy) of the encoded method and the area 
(energy) of the un-encoded configuration storage. The x-axis is the number 
of number of memory cells that are being grouped for binary encoding. 

18.---------------------------------------------.2 

16 

14 

~ 12 ... 

t ... 10 ~ 

= f;I;l 
'C 
~ 
!ol 8 :; 
e ... 
0 
Z 6 

4 

2 

0 

__ Energy 

-+-Area _____________________________ 1.8 

1.6 

1.4 

1.2 ~ 
< 
1 
l 

0.8 ~ 

0.6 

0.4 

---------------------------------------------- Q2 

+-----_r----~------r_----~----_r----~----__+O 

4 8 12 16 20 24 28 32 
Number of Encoded Configuration Bits 

Figure 7. Effect of Encoding Configuration Bits 

It is seen that the area overhead is minimal if the cells are combined 
properly. Although the energy overhead looks prohibitive, 7 to 17 times more 
expensive, this affects only the storage energy. This component was shown to 



124 Low-Energy FPGAs - Architecture And Design 

be barely 0.5% of the total energy. The rest of the configuration energy 
(99.5%) reduces proportionally with the reduction in the configuration space. 

By using this method of compression, the configuration space can be 
reduced by -20% for the low-energy FPGA architecture. Judicious 
arrangement of the routing architecture can also make more bits available for 
this encoding technique. 

6.3 Software Technique 

Dynamic energy in a given static CMOS circuit is dependent on the 
transition activity. In most cases, this activity is dependent on the sequence of 
data being processed, and is beyond the control of the designer. In the case of 
the FPGA, the statistics of the bits to be loaded onto the configuration space 
of the FPGA are available prior to the configuration step. 

In the random access technique, each configuration data word has an 
address associated with it, pointing to the resource being programmed. 
Therefore, the ordering of the words in the configuration step will not affect 
the implementation of the application. This characteristic is exploited by the 
software technique to order the write cycles to minimize the transitions on 
the configuration bus. The effect of this software method will be shown in 
Chapter 8. This technique cannot be employed in the shift register method, 
where the configuration bits cannot be rearranged. 

7 CONCLUSION 

U sing the FPGA as a true embedded performance accelerator block 
demands frequent programming of the array. In this usage model, the 
configuration overhead of the FPGA can easily become a significant 
component of the total energy. The overhead can be reduced by adopting 
different programming architectures, and through software techniques. 

The shift register method employed in commercial FPGA architectures is 
not suitable in the new role of the FPGA. The random access technique is 
advantageous from a delay and energy perspective if the FPGA is going to be 
programmed frequently. 

Based on a preliminary implementation of the random access method, the 
different components of energy are isolated. Based on this, different 
modifications are advocated to further improve the basic implementation. 



Configuration Energy 125 

Hierarchical decoding of the address space is done to mlDlIruze the 
capacitance switched during each write cycle. The capacitive load and the 
configuration space are reduced by encoding the configuration. The 
configuration space is reduced by almost 20% using this technique. 

Software methods can be used to minimize the transition on the address and 
configuration data busses. This is made possible by the fact that in the 
random access method, the ordering of the configuration word does not have 
any effect on the final implementation. 



Chapter 7 

HARDWARE IMPLEMENTATION 

1 INTRODUCTION 

A physical implementation is invaluable to completely verify the proposed 
architectural and circuit level techniques. A stand-alone FPGA of 256 logic 
blocks with an equivalent logic capacity of 512 4-input lookup table is 
implemented. This prototype, LP _PGAII, is useful for exhaustively testing 
the different architectural and circuit features. One of the principal functions 
envisioned for the low-energy FPGA is as a performance accelerator used in 
conjunction with dedicated functional units for low energy applications. A 
smaller version of the prototype array is embedded in a heterogeneous 
processor for base-band coding applications. 

This chapter describes the hardware implementation details of the different 
components that make up the FPGA. The implementation of the logic block, 
connection boxes, interconnect levels, and the configuration architecture are 
discussed. The design takes into consideration the effect it has on the energy 
and the programming overhead. 

The physical implementation is in a O.25!lfll CMOS process, from 
STMicroelectronics. The process provides a poly and six metal layers for a 
standard digital process. 

2 LOGIC BLOCK 

A logic block structure capable of implementing a 5-input random logic 
function or a 2-bit arithmetic function ·was shown to be optimal for energy 
efficiency in Chapter 4. This functionality is made possible by implementing 
the logic block as a cluster of 3-input lookup tables. This clustering technique 
makes it possible to combine the results of the four 3-input LUTs in various 
ways to simultaneously realize up to three different functions in a logic 
block. The combination of the results of the 3-input LUTs is realized using 
mUltiplexers that can be programmed at time of configuration. 

127 

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001



128 Low-Energy FPGAs - Architecture And Design 

A 1~ _____ -----l 

CI 

B 1-+--+-,-+_ 

B"-_-f--~ 

\ 
Programmable 

Multiplexer 

Figure 1. Logic Block Implementation 

Input LUT 

LUTO-r-,----;,+ 

LUTI 

LUT2 

LUT3 

01 

Double-Edge 
C1L Triggered FF 

Lf C6 

CLK 

All three outputs of the logic block can be registered if required. The flip­
flops use double-edge-triggered clocks to reduce the clock activity on the 
clock distribution network for a given data-throughput. The block diagram of 
the logic block is given in Fig. 1. The multiplexers that can be programmed 
at the time of configuration are shown as shaded. 



Hardware Implementation 129 

2.1 Lookup table 

The 3-input lookup table that is used in the logic block is implemented 
using a multiplexer as shown in Fig. 2. 

IN IN 

L1 

L2 

L3 

L4 

L5 

L6 

L7 

Figure 2. Lookup Table 

The control signals of the multiplexer are the inputs to the LUT. The inputs 
to the multiplexer are stored in memory cells. The functionality of the LUT is 
controlled by programming the contents of the memory cells, LO-L7, based 
on the truth table of the required function. 



130 Low-Energy FPGAs - Architecture And Design 

2.2 Logic Block Programming 

The functionality of the logic block can be controlled by programming the 
multiplexers, and the contents of the lookup table. 

x<O> 

Cl 

C6 CO 

1 I o I 0 I o I 0 I 1 I 0 

Internal Multiplexers 

II 

I 

LUTO 
(Sum) 

LUTl 
(Cry) 

LUT2 
(Sum) 

LUT3 
(Cry) 

L7 

I 0 I 0 I 

1 11 11 I 

Figure 3. Logic Block Programmed for 2-Bit Addition 

C*C6 

CLK 

LO 

1 I 0 I 1 I 1 I o I LUTOILUT2 

o I 1 I o I o I o I LUTlILUT3 



Hardware Implementation 131 

Configuration bits CO and C 1 control the data being fed into the LOTs. 
Configuration bits C3, C4, and C5 are used to control whether the outputs are 
registered. C6 is used to enable the clock distribution inside the logic block. 
If the flip-flops are not active, disabling the internal distribution of the clock 
can reduce the clock energy considerably. 

Fig. 3 shows how the logic block can be programmed to implement an 
addition operation with operands X<1:0>, Y<I:O> and a carry in bit (C). The 
outputs are Z<I:O> and the carry-out bit (Cout). 

2.3 Logic Block Delay 

The critical path exercised in the logic block is dependent on the function 
being realized. The delay for implementing a clocked 5-input random 
function is 4.5nS. The delay for implementing a two bit, clocked arithmetic 
function is 5nS. 

3 INTERCONNECT 

All three levels of the interconnect hierarchy are implemented in the low­
energy FPGA. The realization of the interconnect primitives is dependent on 
the exact implementation of the interconnect architecture. 

3.1 htterconnect Levels 

3.1.1 NeaNSt Neighbor Connection (Leve)-O) 

The Level-O connections provide connections between adjacent logic 
blocks. Each output pin connects to one input pin of the eight immediate 
neighbors. The output-input connectivity pairs are 01-AI, 02-Bl and 03-
A3. This means that the output pins 01, 02, and 03 can connect to the input 
pins AI, BI, and A2, respectively, of each of the neighboring eight logic 
blocks. 



132 Low-Energy FPGAs - Architecture And Design 

Figure 4. Nearest Neighbor Connections 

A 

A 

Figure 5. Level-O Implementation 

The routing overhead of having eight separate lines to each input pin from 
the output pins of the neighbors is quite high. The overhead can be reduced if 



Hardware Implementation 133 

multiple pins share the same interconnect line. Fig. 5 illustrates this concept 
for the OI-AI connection. There are two global lines per input pin. Each of 
the output pins of the adjacent logic blocks is connected to these global lines 
through switches. To realize a connection between an output pin and an input 
pin, the two switches connecting the two pins to the global line must be 
enabled. 

3.1.2 MeihArchitfcture (Level-I) 

The Mesh Architecture is realized with a channel width of five. The pins of 
the logic block are uniformly distributed on all sides of the logic block. The 
pins of the logic block can access all tracks in the corresponding routing 
channel. The switch box allows connections between each routing segment in 
a given channel and the corresponding segments in the other three routing 
channels. The block diagram is as shown in Fig. 6. 

I I I I 

- A3 
B2 Al 

~. 
t- B2 Al 

Al A3 Al 
I 

_02 01 I 02 01 j-
BI 03 ...... .. .1 BI 03 

r-L ~L, rj-·---Ll , 
I : 
; ; 
j , 

. I iT .1:j 

B2 Al ; ····-1 B2 Al 
- A3 Al r- A3 Al 

~ _02 01 02 01 
BI 03 BI 03 

~ .... 

, I , , , , 

L_~IJ Lr-_-TJ 

B2 Al n-- - l B2 Al - A3 Al A3 Al I 
I 

_02 01 ! 
H .1- 02 01 

BI 03 .-
BI 03 

I I I I 

Figure 6. Level-l Connections 

l 

H 
H 

K 
I 

Ii _. -

I I 

l- B2 Al -I A3 Al 

L 02 01 
- Switch B , 

BI 03 
ox 

,~'". ...... -
. ·Ir' Logic B lock 

L B2 Al / : A3 Al 
I 

~02 01_ C 
j BI 03 on:; 

It ......... 1: 
ection 
ox 

, '. 
Lr-----rJ 

··l B2 Al 
A3 Al r-

I 
~ 02 01 -

.j 

BI 03 
I I 



134 Low-Energy FPGAs - Architecture And Design 

3.1.3 Inverse Clustered 'free (Level-2) 

The Level-2 network provides connection between logic blocks that are 
farther apart on the array. The long connection can be accessed through the 
Mesh structure. Two tracks in each routing channel are connected using the 
Level-2 network. This is illustrated in Fig. 7. The routing through the 
different levels of the Level-2 network is realized using the 3-transistor 
routing switch shown. 

During the physical implementation, the Level-2 network contributes a 
significant amount to the area. Area minimization can be achieved by 
recognizing that the higher levels of the network can be discarded without 
any significant penalty to the routability. 

~"-
Routing Swit~ '" 

--...,,/_--

---:---

- -
Figure 7. Level-2 Connections 

3.2 Interconnect Primitives 

The connectivity of the routing architecture is achieved using connection 
boxes and switch boxes. The connection box architecture determines the 
connectivity of the input and output pins of the logic block to the general 
purpose routing. The switch box provides the connections between the 
routing channels. 



Hardware Implementation 135 

3.21 Connection Box 

The connection box controls connectivity between the pins of the logic 
block, the tracks in the routing channel, and the Level-O connections. The 
connectivity of the channel is one, while the size of the neighborhood for the 
Level-O connections is eight. The connection box for the pins is realized 
using pass transistors. Fig. 8 shows the input connection box for the pins that 
connect only to the routing channel. 
If an input pin is unused, the input to the receiver is floating. Energy 

dissipation in the form of short circuit current in the receiver can occur in 
such situations. This is prevented using the NMOS transistor connected to the 
ground. The transistor is activated if the programming of the connection box 
indicates that the input pin is unused. This does not require another 
configuration bit 

TrackO 

Trackl 

Track2 

Track3 

Track4 

Figure 8. Type-A Connection Box 

Low Swing 
Receiver 

Out 

Different implementations are possible for the connection boxes for the 
pins that can access both the Level-l routing channel and the Level-O 
network. Fig. 9 illustrates two implementations of the input and output 
connection boxes for a channel width of five and a neighborhood size of 
eight. Both implementations are comparable from an energy and delay 
perspective. 



136 

Output C Box 

Output C Box 

Low-Energy FPGAs - Architecture And Design 

Input C Box 

(a) Level-O Control At The Output C Box 

- [ 0

4 ~ 
~ 

o 

7 

I 
I 
I 
I 

i -L 

I 
I 
I 
I 
I 
I 

! -L 

Low Swing 
Receiver 

Input C Box 

(a) Level-O Control At The Input C Box 

Input 
Pin 

Figure 9. Connection Box for Input Pins 

The implementations shown in Fig. 9 differ in the configuration overhead. 
If no encoding of the configuration is done, both implementations require 



Hardware Implementation 137 

twenty bits to program them completely. It was discussed in Chapter 7 that 
the configuration bits for the input connection box can be encoded since at 
any given time only one connection is possible. If the encoding technique is 
used, the first implementation requires sixteen bits for programming. By 
moving the control of the Level-O connections to the input connections box, 
more configuration bits are available for encoding. For the second 
implementation, only eleven bits are required. 

This represents a 45% reduction of configuration size over the traditional 
programming. This illustrates how seemingly equivalent implementations 
can be exploited to improve the configuration size. 

3.2.2 Switch Box 

The switch box used in the low energy FPGA has a flexibility of three. 
Each track can connect to the corresponding tracks on the other three sides. 
The switch box connectivity is shown in Fig. 10. The connectivity in the 
switch box is realized using 6-transistor structures for each track. 

4 

3 

2 

o 

o 2 3 4 

Figure 10. Switch Box 

4 TILE LAYOUT 

~#-4------------ Track 

3 

2 Track --+---+-f- Track 

Track 

The logic block, connection boxes, and the switch box have been combined 
to form a single tile. The tiles can be used to create arrays of different sizes 



138 Low-Energy FPGAs - Architecture And Design 

by abutting the tiles. The layout of a single tile is shown in Fig. 11. The 
dimensions of the tile are 241 Jl x 219 Jl in a 0.25 Jl process. 

The contribution of the different components to the total area is given in 
Table 1. The routing resources account for approximately 49% of the total 
area. As the size of the array increases, the fraction of the total area used by 
the routing will also increase. This is because the increase in the array size 
necessitates an increase in the routing resources required for each tile to 
ensure successful routing. The logic block contributes only 9% to the total 
tile area even for such a small array. 

Figure J 1. Layout of a Tile 



Hardware Implementation 139 

T. hi 1 C t'b ti f D'ff< t C a e onn u ono 1 eren omponents to t e ot h TalA rea 

Component Percentage of Total Area 

Logic Block 9 

Connection Box 18 

Switch Box 10 

Hierarchical Routing 21 

Local Configuration Distribution and Address Decode 5 

Global Configuration Distribution 13 

Miscellaneous Routing 24 

5 CONFIGURATION ARCHITECTURE 

The configuration method used in the low-energy FPGA is that of a random 
access technique. This makes it possible to selectively program the resources 
in the FPGA, without having to program the entire array each time. The 
configuration architecture discussed in Chapter 7 is repeated in Fig. 12. 

The configuration bits in each tile are grouped as 8-bit words. Related bits 
are grouped to form a word. For example, all the bits required to program the 
connection box of a specific logic pin are grouped together. This helps to 
minimize the number of writes required to program each specific resource. 
Internally to each tile, a 5-bit address is used to select the configuration 
words. Global row and column decoders are used to select the tile that is 
being programmed. 

The physical layout of the tiles is such that each column presents an 8-bit 
configuration data bus. At the global level, these busses can be combined to 
form an n-Byte configuration data bus. This can reduce the number of writes 
required to program the entire array. For example, if the busses are combined 
to form a 32-bit bus, then during each write, the same resource in each of 
four tiles can be programmed. This can potentially reduce the number of 
writes by a factor of four. Often the reduction in the number of writes is less 
than this best-case scenario. 

The configuration cells can only be written into, the contents cannot be read 
back. In this scheme, it is sufficient to have a simple latch to store the 
configuration. If traditional serial programming is used, a master-slave flip­
flop has to be used. In terms of area, a master-slave flip-flop is more 
expensive than a simple latch. The circuit of the latch is as shown in Fig. 13. 



140 Low-Energy FPGAs - Architecture And Design 

Tile Select 

Tile 

COLUMN DECODER 

Figure 12. Random Access Programming 

The storage cells are provided with a reset mechanism to disable the routing 
switch to which it is connected. During start-up, the reset is enabled to bring 
all the configuration bits to a known state. This prevents the short-circuit 
currents that can occur when multiple output pins are connected together. 

Another advantage of initializing the configuration bits is the reduction of 
programming required. Consider the switch box; the connections in the 
switch box will not affect the short-circuit current. However, when an 
application is mapped into the array, it has to be ensured that there are no 
unwanted connections in the switch-box. This requires additional writes. If 
the bits in the switch box are initialized to a known state using the global 
reset mechanism, these extra writes can be avoided. 

The programming speed is determined by the delay of the address decoder. 
For the prototype chip of size 16 x 16, Fig. 14 illustrates the delay 



Hardware Implementation 141 

components. The worst-case delay of the global decoder is obtained by 
loading the global decoder with a metal trace running the entire length of the 
array. For the local decoder, the load used is that of a line running the length 
of the logic block. If each resource in the array needs to be programmed, 
-5700 configuration write cycles are required. For most applications, the 
number of cycles is significantly lower. 

SELB 
I Routing 

Switch 

Data 

RST -1 
Configuration 

'---___ ~~!!_. ___________ J 

Figure 13. Configuration Storage 

5nS 

.... 
<1.l 

-g Mem 

'lirSL 
5nS 

Column Decoder 

Figure 14. Delay Component of the Configuration Step 



142 Low-Energy FPGAs - Architecture And Design 

6 FINAL LAYOUT 

The final layout of the low-energy FPGA, LP _PGAII, is given in Fig. 15. 

Figure 15. Chip Micrograph of LP ]GAlI 

The chip is an array of size 16 x 16, with an equivalent logic capacity of 
512 4-input lookup tables. Three separate power supplies are routed to the 
chip. A 1.5V supply is used for the input/output pads, and 1.5V/O.8V for the 
FPGA core. The lower voltage is for the low-swing circuit. The chip 



Hardware Implementation 143 

measures 4.7mm x 4.7mm in a O.25J.Ull process. The contribution of the array 
is 4mm x 4mm. The rest of the area is from the pad ring. Table 2 summarizes 
the details of the chip. 

Ta hi 2 h' e . C IP Specifications 

Array Size 16 x 16 

Power Supply 1.5V and O.8V 

Chip Size 4.7mm x 4.7mm 

Core Array Size 4mmx 4mm 

Process O.251lm CMOS 

7 FPGA AS AN EMBEDDED UNIT 

One of the main applications envisioned for the FPGA is that of an 
embedded performance accelerator block. The Pleiades heterogeneous 
architecture [Abnous98] is an ideal environment to use an embedded FPGA. 

7.1 Pleiades: An Introduction 

The key to achieving power and performance efficiency is to match 
algorithmic constructs with the appropriate architectures. In wireless 
embedded systems, the algorithms of interest include high level control-flow 
and dataflow-intensive operations. While control-flow constructs are best 
implemented in programmable processors, dataflow computation benefits 
greatly from application-specific datapaths. The Pleiades reconfigurable 
architecture achieves low energy consumption by providing a computational 
platform comprising of heterogeneous functional blocks (i.e. microprocessor, 
ASIC modules, FPGA). In addition, since many of the dataflows perform 
computations using basic computational modules (MAC, MEM access), 
providing custom ASIC for each dataflow computation is not necessary. 
Providing reconfigurability based on the basic computational modules gives 
flexibility and energy efficiency. 

The Pleiades architecture is composed of a programmable microprocessor 
and heterogeneous computing elements (referred to as satellites) connected 
via a reconfigurable interconnect network. The architecture template is 



144 Low-Energy FPGAs - Architecture And Design 

shown in Fig. 16. In addition, the architecture template fixes the 
communication primitives between the microprocessor and satellites and 
between each satellite. The template allows domain specific architecture 
instantiation. For each algorithm domain (e.g. communication, speech 
coding, image and video coding), an architecture instance can be derived 
with the required type and number of satellites. 

Within the Pleiades architecture, the embedded microprocessor does the 
high-level control and spawns off intensive computations to the satellite 
processors. 

A Satellite Processor 

Configuration Bus 

Reconfigurable Interconnect Network 

Figure 16. Heterogeneous Architecture Template [Abnous98] 

Architectural optimization for satellites is important since a high percentage 
(70-90%) of the entire application computation power needs to be 
accelerated by satellites. To reduce overhead in terms of instruction fetch and 
global control, the satellite architecture utilizes distributed control and 
configuration. The programmer can specify basic satellite configurations and 
configurations for the reconfigurable interconnect to build a cluster of 
satellites. To achieve distributed control, each satellite is equipped with an 



Hardware Implementation 145 

interface that enables it to exchange data streams with other satellites 
efficiently, without the need for a global controller. The communication 
mechanism between each satellite is data driven. 

7:2 FPGA Satellite 

One of the satellites used in the Pleiades architecture is an FPGA. The 
FPGA design described in this book fits the Pleiades target of low energy 
consumption. 

The FPGA satellite embedded in Pleiades is a 4 x 9 array of logic blocks. 
This fits the requirements in terms of the logic capacity. The logic block 
array used employs the architectural and circuit level features discussed in 
the previous chapters. The inputs and outputs of the array are arranged as two 
16-bit input ports, and one 16-bit output port. The configuration loading is 
via a 32-bit configuration bus. Data transfer between ports of different 
satellites is achieved using a two-phase handshake protocol. 

INPORTl 
DATA 

DATA 
FPGACORE 

ril (4 x 8) OUTPORT 
~ 

ail U DATA 
:; 
~ 

INPORT2 
~ 
~ 

DATA Z .... 
~ 
~ 4xl 

ri2 < = ~ 

ai2 
Q 
Z 
< ~ S;} ~ ~ = u u e' '" '" U 

ao 

ro 

Figure 17. Satellite Block Diagram 



146 Low-Energy FPGAs - Architecture And Design 

7.3 Handshake Control 

The FPGA satellite communicates with the other satellites using a two­
phase asynchronous protocol. To enable this, each data bus is bundled with 
two handshake signals. An output port signals the availability of data by 
activating the request token, roo When an input port detects the availability of 
new data, it latches the data, and acknowledges receipt using the signals ai. 
This protocol at the periphery of the FPGA core is realized using the 
handshake interface. The functionality and implementation of the handshake 
interface is described in [Benes99]. 

For a satellite unit with a specific functionality, the handshake signals can 
be generated using fixed logic. This is because the type of data 
(vector/scalar) and the pipeline depth of the functional block are fixed. In an 
FPGA satellite, the data type and the pipeline depth are dependent on the 
function being implemented. Hence, the generation of the handshake signals 
has to be programmable. One of the options is to design an interface block so 
that it can be programmed to generate the handshake signals. In this work, it 
was decided to utilize the programmability of the FPGA to implement the 
handshake signals. In the FPGA satellite, a row of logic blocks is made 
available for generating the handshake control. 

7.4 Programmable Clock 

The Pleiades environment uses a Globally Asynchronous Locally 
Synchronous (GALS) methodology. Each satellite unit has its own internal 
clock, and is a synchronous island. The local clock is activated only when a 
new data-token arrives, and the period is dependent on the logic depth. 

For a satellite with fixed functionality, the clock frequency is fixed. If a 
fixed clock is used in the FPGA satellite, the logic implementation in the 
FPGA has to conform to the fixed clock. This can be quite inefficient. Rather 
than constraining the implementation of the functions to conform to a fixed 
clock period, a programmable delay element is incorporated to generate 
different clock periods. 

The delay element can be programmed to obtain a delay of one to eight 
times the unit delay. At the time of implementation, the delay element can be 
programmed to achieve the clock frequency dictated by the logic depth and 
the critical path. This allows the fine-tuning of the local clock to extract the 
maximum speed out of the FPGA. 



Hardware Implementation 147 

Delay<2:0> 

( 4x Delay ) 

( 2x Delay ) 
In 

Out 

( Ix Delay ) 

( Ix Delay ) 

Figure 18. Programmable Delay Element 

7.5 Layout 

The final layout of the heterogeneous architecture, Maia, for voice band 
processing is shown in Fig 19. This processor combines an ARM8 processor 
[BurdOO], dedicated functional units, and an embedded FPGA. The ARM 
processor spawns off compute-intensive tasks onto the dedicated functional 
units and the FPGA to realize speed and energy improvements. The MAIA 
architecture demonstrated more than an order of magnitude improvement in 
energy savings compared to a low-power DSP for voice coding applications 
[ZhangOOa]. 



148 Low-Energy FPGAs - Architecture And Design 

Figure 19. MAlA - Chip Micrograph 



Hardware Implementation 149 

8 CONCLUSION 

Physical implementation is one of the final steps in the validation of the 
design techniques and innovative architectures. This chapter describes the 
implementation details of two prototypes. 

The first prototype, LP _PGAll, is a stand-alone array of 256 logic blocks 
with an equivalent logic capacity of 512 4-input LUTs. The specific 
implementation details of the critical components are described. The energy 
and perfonnance impact of different implementations are evaluated. 

The second prototype is a smaller array embedded in a heterogeneous 
reconfigurable architecture. In this version, the FPGA is used as an 
accelerator for implementing communication algorithms. 



Chapter 8 

RESULTS 

1 INTRODUCTION 

The verification of the architectural and circuit modifications is only 
complete after data are measured from a physical implementation. This 
chapter describes the measured data obtained from LP _PGAII. For 
comparison purposes, data from a commercial architecture are also reported. 

The energy and speed performance of the FPGA is reported. This includes 
the configuration and execution steps of the implementation. 

Measured data show a significant improvement in the energy efficiency of 
LP _PGAII when compared to commercial architectures. 

2 MEASUREMENT SETUP 

The basic measurement setup is shown in Fig. 1. The configuration and test 
data are loaded into the FPGA using the logic analyzer. The prototype board 
allows complete access to the different energy components. 

2.1 Logic Analysis System 

The HP 16702A logic analysis system is used for testing the prototype 
FPGA. The system is capable of generating test patterns at 100MHz and 
acquiring data at 200MHz. This is suitable for testing the prototype. 

2.2 Prototype Board 

The FPGA under test and the associated components are mounted on a 
prototype board. The output signal of the logic analysis system is TTL­
compatible, and provides a 0-5V signal. The prototype has been designed to 

151 

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001



152 Low-Energy FPGAs - Architecture And Design 

operate at 1.5Y. Hence, a voltage level shifter is required to interface the 
logic analysis system to the FPGA. The chip used is a logic level down 
converter [74ALVCI64245]. The down converter provides buffers that 
operate at the lower supply while being able to support input voltages that 
exceed the power supply. 

Data Input 

HP 16702A 
Logic Analysis Sytem 

.§ 
Configuration ~ Control 

.!<Il 
§ 

Data Output 

,--- ----------- ----------------~- ------------------- ---------- ---, , , , , , , , 

, , , , 
1--- ___ ----------------------------------------------- _________________ ~ 

Prototype Board 

Figure 1. Block Diagram of the Test Setup 

Separate power supplies are routed so that the power of the level 
converters, the lOs, and the core can be measured separately. This is required 
for a fair comparison. The prototype board is shown in Fig. 2. 



Results 153 

Figure 2. Prototype Board 

3 MEASUREMENT STRATEGY 

A final comparison between FPGAs can be done only with measured 
performance data. The XC4000XL series from Xilinx is used as the 
representative commercial architecture. The XC4000XL is the low power 
series of the popular XC4000 architecture. To do a fair comparison of the 
architectures, the arrays have to be of similar logic capacity. This is to ensure 



154 Low-Energy FPGAs - Architecture And Design 

that the larger arrays are not penalized due to the higher cost of the global 
signals. The XC4005XL is an array of 196 logic blocks with an equivalent 
logic capacity of 466 4-input LUTs. This is slightly smaller than LP _PGAII 
with an equivalent capacity of 512 4-input LUTs. The measurements are 
done using the XS40 prototyping board [XESS]. 

The XC4005XL is implemented in a 0.35~m process. The prototype chip is 
in a 0.25~m process. To do a fair comparison, the performance data measured 
from the XC4000XL FPGA have to be scaled for the 0.25~ process. Xilinx 
offers a new series of low-power FPGAs, XC4000XV, which has the same 
architecture as the XC4000XL, but is implemented in a 0.25~m process. This 
FPGA has a claimed power consumption that is lower than the XC4000XL 
by a factor of three, with a 30% improvement in speed performance. This 
factor for the energy and speed is used to scale the data obtained from the 
XC4005XL. 

To compare the performance, benchmark circuits are implemented on 
LP _PGAII and XC4000XL. Identical data streams are input to the FPGAs to 
remove any data dependencies in the measurements. The energy of the 
architectures is compared for the same data throughput, rather than the same 
clock frequency. This is because LP _PGAII uses double-edge-triggering, and 
can support the same data throughput at half the clock frequency of the 
Xilinx architecture. 

In a stand-alone FPGA, as is the case here, the energy dissipated by the 10 
pads cannot be ignored. The input pads are used to drive signals internal to 
the chip and their energy is relevant for comparison purposes. The output 
pads drive the metal traces on the printed circuit board and their energy 
consumption need to be considered to compare the architectures. Hence, the 
energy consumed in the output pads is subtracted out in all of the reported 
data. 

4 MEASURED DATA 

Measured data are reported in this section for LP _PGAII and XC4000XV. 
The speed performance of the FPGA is reported in terms of the toggle 
frequency. The energy of the FPGA is reported in two ways: the energy 
consumed in the interconnect as a function of length and the energy for 
implementing different applications. To get an idea of the cost of using these 
FPGAs in an environment where reconfiguration is important, both the 
energy and time for loading the configuration onto the FPGA are measured. 



Results 155 

4.1 Toggle Frequency 

One of the methods of specifying the speed perfonnance of the FPGA is by 
the toggle frequency. The method is as shown in Fig. 3. A single output of the 
logic block is connected back to the input, and the delay of this loop is used 
as a measure of the FPGA perfonnance. This delay includes the delays of the 
combinational logic, the flip-flop inside the programmable logic block, and 
that of the general-purpose routing. 

The XC4000XV architecture is reported at a toggle frequency of 200MHz, 
giving a delay of 5nS. The LP _PGAII has a delay of 8nS, giving an 
equivalent frequency of 125MHz. 

LUT 

Clock 

Figure 3. Set Up For Measuring Toggle Frequency 

General Purpose 
Routing 

Programmable Logic 
Block 

The toggle frequency is the maximum frequency that can be achieved. For 
most practical purposes, the frequency is much lower. 

4.2 Path Length vs. Energy 

Fig. 4 compares the energy dissipated in the interconnect for different path 
lengths. Since the logic blocks of XC4000XV and LP _PGAII are of similar 
logic capacity, the path lengths can be measured in tenns of the Manhattan 



156 Low-Energy FPGAs - Architecture And Design 

distance between the logic blocks. For comparison purposes, the best 
interconnect resource in each of the architectures is used to realize the path. 
For example, for the long paths, the Level-2 network in LP _PGAII and the 
long lines in XC4000XV are used. The energy contribution of the logic 
blocks is subtracted in the reported data. 

The complete redesign of the interconnect architecture in LP _PGAII is 
reflected in the energy savings. LP _PGAII demonstrates energy reductions 
between ten to fifty times as compared to the Xilinx architecture. 

l00~----------------------------------------------~ 
___ LP _PGAII 

-+-XC4000 

10 -------------------------------------------------

0.1+--------r--------r-------~------~--------~--~ 

2 6 10 14 18 22 

Path Length (Manhattan Distance) 

Figure 4. Energy as a Function of Path Length 



Results 157 

In applications where the interconnect usage is substantial, the total energy 
will benefit considerably from the low-energy interconnect. 

4.3 Execution Energy 

To get a better idea of the overall energy consumption in the FPGA, 
applications are mapped onto the array and the energy is measured. The 
applications are described at the Register Transfer Level (RTL). The mapping 
to each FPGA is done based on the component library for the architecture. 
This helps to eliminate the energy variations that can occur if the two FPGAs 
use different RTL descriptions of the application. 

The applications are executed with the same data throughput and input data 
streams. Since identical data streams are used, the dependency on the 
transition activity is taken into consideration. The energy is reported for 
processing one data token, and is given in Table 1. 

1', hi 1 E xecutlOn a e . nergy er ata oken in pJ. E PDT 

Application XC4000XV LP_PGAII 

Single FF driving 9 107 3.8 
segments 

1 KArray of l6-bit 16667 750 
counters 

Theta Function 183 20 

Barrel Shifter 992 199 

Accumulator 156 10 

Viterbi Accelerator 1380 131 

One of the common benchmarks used for comparing the power dissipation 
of FPGAs is the array of counters [Xilinx98][Altera97]. For this comparison, 
the energy dissipation of one flip-flop driving a 9 segment long interconnect 
is measured. A 1024 logic block array is filled with these elements 
configured as 16-bit counters. This gives a 12.5% activity factor on the 
interconnect. 

This benchmark is interconnect-intensive due to the 9-segment load on each 
output pin. The low-energy interconnect in LP _PGAII exploits this 
advantage, and the energy is twenty-two times lower than the XC4000XV. 



158 Low-Energy FPGAs - Architecture And Design 

The other applications are typical functions that would be implemented in 
the FPGA to obtain performance acceleration. Reported energy is five to 
sixteen times lower than that of the commercial architecture. Larger 
improvements are obtained for functions that uses more interconnect 
resources. 

4.4 Configuration Energy 

The importance of the configuration energywas described in Chapter 6. 
When the FPGA is used as a performance accelerator, the cost of configuring 
the FPGA will have a strong influence on the functions that can be efficiently 
mapped onto the array. This section reports the energy for different 
applications with varying utilization of the array. 

Table 2 compares the configuration overhead for programming the Xilinx 
FPGA and LP _PGAII. The configurations used cover a wide range of array 
utilizations. The "Route-2" function needs only two logic blocks to be 
programmed, while the "Viterbi Accelerator" uses -70% of the array. 

The speed overhead is reported in terms of cycles. For the Xilinx chip, the 
number of cycles is constant and independent of the application. This 
overhead does not consider the fact that while the Xilinx chip is programmed 
at 10MHz, LP _PGAII can be programmed at - 30MHz. 

The difference in the configuration energy between the two FPGAs is 
dramatic, a reduction by three to six orders of magnitude. It can be seen that 
in LP _PGAII, the energy is a function of the utilization of the array, while the 
energy is constant for the Xilinx FPGA. The low configuration cost of 
LP _PGAII makes it a more attractive choice as a performance accelerator. 

b fi Ta Ie 2. Con Iguration Overhead 

Application Cycles Energy (nl) 

XC4000XV LP_PGAII XC4000XV LP_PGAII 

Route-2 14 3.2 

Theta 191 46.1 

Barrel Shifter 
151910 726 

8.6E6 
166 

Accumulator 99 24.6 

Viterbi 1450 330 
Accelerator 



Results 159 

4.5 Configuration Reordering 

The programming control provided by the random access technique can be 
used to control the transition activity during configuration. Before the 
configuration is written out, the order of the configuration address and data 
pair is arranged using a simple two-pass heuristic. 

On the first pass, the configuration address-data pairs are ordered to exploit 
the locality of the configuration words. This means that the addresses to the 
same tile are grouped together. This ensures that the transition activity on the 
global row/column select lines is minimized. During the second pass, the 
writes within each address zone are ordered to minimize the transitions on 
the configuration data bus. 

The improvement in configuration energy obtained by reordering the 
configuration writes is given in Table 3. The reduction in configuration 
energy is between 32% and 63%. 

b Ta Ie 3. Deoendency of Configuration Energy on Ordering 

Application Random Ordered 

Theta 46.1 31.3 

Barrel Shifter 166 61 

Accumulator 24.6 9.9 

Viterbi Accelerator 330 143 

This heuristic is dependent on the configuration architecture and the 
process technology. This measurement is intended to illustrate the 
dependence of the configuration energy on the transition activity, and how 
the transition activity can be controlled in software to improve the energy 
performance. 

4.6 Energy - Delay Tradeoff 

One of the main goals of this low-energy FPGA project was to minimize 
the energy while maintaining acceptable speed performance. This resulted in 
using a 1.5V/O.8V power supply to achieve a maximum toggle frequency of 
125MHz. It is possible to run this design at a higher voltage to improve the 



160 Low-Energy FPGAs - Architecture And Design 

speed performance. Obviously, the improved speed can only be obtained at 
the cost of higher energy consumption. 

Fig. 5 gives the relationship between the energy and speed for the 
accumulator application. The higher voltage supply was varied between I.4V 
and 2.0V while the low voltage, which controls the swing on the 
interconnect, was varied between 0.8V and 1.1 V. For each delay point, the 
high and low voltages were adjusted to obtain the lowest energy 
consumption. The speed performance of LP _PGAII can be improved by -4x 
for an energy increase of -80%. 

18.----------------------------------------------. 

16 -------------------------------------------------
(2.0V, 1. IV) 

14 - -----------------------------------------------

1.8V,1.1V) 

- - - (1.7Y,.LOV} - - - - - - - - - - - - - - - - - - - - - - - - - -­
(1.7V,O.9V) 

10 -----------------------------
(l.5V,O.8V) 

(1.4V,O. V) 

8 -------------------------------------------------

6+-----------.-----------.------------r-----------; 
20 40 

Figure 5. Energy - Delay Tradeoff 

60 

Delay (oS) 

80 100 



Results 161 

This exercise illustrates the robustness of the low-swing interconnect over a 
wide range of supply voltage. More importantly, this illustrates a method of 
dynamically balancing the energy consumption and speed performance. This 
can be exploited in systems that use dynamic voltage scaling to obtain the 
minimum energy while delivering the required performance [BurdOl]. 

5 CONCLUSION 

The final step in the validation process is the measurement of actual data 
from the physical implementation. Measured data are used to compare 
LP _PGAII with a commercial FPGA, XC4000XV. The effort in the redesign 
of the interconnect architecture pays off with ten to fifty times lower energy 
as compared to the commercial architecture. The execution energy is lower in 
the low-energy FPGA by a factor of five to sixteen. 

The difference in the configuration overhead between the two FPGAs is 
quite significant, approximately four orders of magnitude. This is partly due 
to the different configuration techniques and partly due to the low energy 
techniques incorporated in the prototype. By reducing the transition activity 
during configuration, the energy associated with this step is reduced further 
by almost a factor of two. 

To demonstrate the robustness of the low swing circuitry and to explore 
energy-delay tradeoff, measurements are taken over a wide voltage range. 
The speed performance of the design can be increased by almost four times 
while consuming 80% more energy. 



Chapter9 

CONCLUSION 

1 FPGA: THE EVOLUTION 

The domain of FPGAs has undergone a dramatic revolution in the past 
decade. What started as a cheap alternative to Mask Programmable Gate 
Arrays (MPGA) in the mid-eighties has now progressed into a new model of 
computation. The first step in the process was the recognition of the re­
programmability of the architecture. This made it possible to delay the 
programming of the FPGA to the last minute, and even change the 
programming if an error was detected in the implemented circuit. The next 
step was the adoption of the FPGA by the prototyping community. The fact 
that the architecture can be programmed over and over again to try out actual 
hardware implementations of the design ideas was a desired capability. 

The next step has been the recognition of the limits of general-purpose 
processors. The "generality" of the processor constrains it to a fixed set of 
predefined instructions. Even though present day processors are bolstered 
with an array of accelerator units, the problem of a fixed instruction depth 
exists. In such a scenario, the reconfigurability of the FPGA, and the bit-level 
control offered by the architecture, open up the possibility of an accelerator 
unit that can be customized on an application basis. This aspect has generated 
interest in the research community, and among commercial ventures. 

2 ENERGY EFFICIENCY 

The FPGA industry kept pace with demand, and fueled new applications by 
providing larger and faster architectures. This was made possible in part by 
catching up with the rest of the Ie industry in process technology, and in 
recent years even leading the industry in adopting cutting-edge processes. By 
virtue of the dominant market for FPGAs, the main performance criteria 
were logic capacity and speed performance. Power dissipation was a 
secondary concern. The industry depended on the reduced feature sizes and 

163 

V. George et al., Low-Energy FPGAs — Architecture and Design
© Kluwer Academic Publishers 2001



164 Low-Energy FPGAs - Architecture And Design 

lower supply voltage accompanying each process generation to keep the 
power manageable. 

Designers unfortunately accepted the high power dissipation as an 
unavoidable side effect of the programmability of the architecture. One 
domain where the characteristics of the FPGA can be utilized effectively is 
the portable computing domain. This domain has to deal with a number of 
different data streams with associated standards and computation. The 
configurable computing platforms can be quite effective in these portable 
devices. The main problem is that the prohibitive energy consumption of the 
present commercial FPGA will limit its use. 

The reduction of feature size to the sub-O.1!ffi1 region will also force the 
power dissipation issue. Although the reduction in feature size, accompanied 
by reduced parasitic capacitance and reduced voltage, will lower the power 
dissipation per logic gate, the overall power dissipation will increase, 
because of the larger logic density and the higher operation frequencies of 
future integrated circuits. 

3 THIS WORK 

The main focus of this low-energy FPGA design work was to determine 
whether the large energy consumption of the FPGA was an unavoidable 
characteristic of the architecture. The circuit overhead that makes it possible 
to reconfigure the FPGA also increases the total energy. The only way to 
reduce the energy was by evaluating the existing FPGA architectures from an 
energy perspective, and to devise optimizations at the architecture and circuit 
level. This section summarizes this research work, and highlights new areas 
pertaining to energy efficiency that should be explored further. 

3.1 Interconnect Architecture and FPGA Energy 

The first part of the work looked at commercial FPGA architectures to 
analyze the energy components. Preliminary data showed that the dominant 
component was the interconnect, accounting for -65% of the total energy. 
Measured data indicate that the diffusion capacitance of the routing switches 
was responsible for almost all of the interconnect energy, which in tum is due 
to the large size of the transistors used to realize the routing switches. This 
design decision was probably aimed at reducing the series resistance of the 



Conclusion 165 

routing switches, to improve the delay of long routes. This indicated that the 
interconnect architecture has to redesigned to effect any significant 
improvement in the energy efficiency. 

3.2 ArdJitectural Exploration 

The second part of the work looked at possible architectural solutions to 
improve the energy efficiency. This involved the development of a software 
environment to explore the impact of architectural decisions on the energy 
efficiency of the FPGA. The exploration environment spans the complete 
implementation flow from the synthesis of the function to the 
implementation of the function on the target architecture. Based on this flow, 
the logic block and the interconnect were redesigned from an energy 
perspective. 

A logic block capable of implementing a 5-input random logic or a 2-bit 
arithmetic function without wasting logic resources results in minimizing the 
energy dissipated in the interconnect resources. The routes were broadly 
classified into three classes: neighbor-to-neighbor, intermediate length routes, 
and routes that span a significant fraction of the array. The interconnect 
architecture that was chosen consists of three distinct structures, with each 
level aimed at each specific class of connections. 

One weakness is the quality of the implementation tools. The generality of 
the exploration tool makes it less efficient than architecture-specific tools. A 
preliminary comparison was done with VPR [Betz97b). For a Symmetric 
Mesh structure, the cost of the implementations using the exploration tool 
was 5%-10% higher than VPR. This is acceptable considering the flexibility 
of the exploration environment. 

Another factor that has to be considered is the possibility of bias in the 
exploration tools. The different aspects of the logic and interconnect 
structures were guided by empirical data gathered using the placement and 
routing tool. Bias can exist in the exploration environment that leads to 
specific architectural features. Sufficient care was taken to minimize this. 

Routing resources contribute heavily to the total area, delay, and energy of 
the FPGA. In such a situation, it makes sense to have routing that is just 
sufficient for the purpose. The routing resources required are a function of 
the size of the array, while the array size is dependent on the application. The 
cost of the FPGA should be abstracted early in the development process, so 



166 Low-Energy FPGAs - Architecture And Design 

that the designer can make decisions on the required FPGA resources. This 
flexibility can quite possibly improve the energy efficiency. 

3.3 Circuit Techniques 

The third part of the work implemented circuit-level improvisations based 
on the architectural redesign and the characteristics of the FPGA 
environment. The improvements in the interconnect architecture made it 
possible to reduce contribution of the routing fabric to the interconnect 
energy. Low-swing signaling circuits were evaluated to detennine their 
viability in an FPGA environment. The implemented low-swing technique 
reduced the interconnect energy by a factor of two, as compared to 
conventional full-swing signaling. Double-edge triggering combined with 
low-swing distribution was used to reduce the clock distribution energy by a 
factor of three. 

One factor that was not considered is the leakage current. In LP _PGAII, the 
leakage current was of the order of tens of microamperes at a power supply 
of 1.5V. As the process generations move into the sub-O.l/-lm regime, 
accompanied by lower threshold voltages, the sub-threshold leakage currents 
will become more important. One immediate technique is the use of multiple 
threshold processes. This can be employed to realize the critical path using 
the low-threshold devices, while implementing the rest of the design using 
high-threshold devices to reduce the leakage current. This method can 
already be seen in the advanced processes offered by most semiconductor 
fabrication facilities. 

3.4 Configuration Energy 

The fourth part of the work looked at the implication of the configuration 
technique on the configuration energy. This becomes important as the FPGA 
is used in an embedded environment as a performance accelerator. The 
implementation of the configuration step in the current commercial 
architectures leaves much room for improvement. As a first step in this 
direction, a random access technique of programming was used to facilitate 
fast and energy-efficient programming. The configuration was encoded to 
reduce the number of bits required to program the FPGA. This helped tp 
reduce the energy for programming the FPGA. It was demonstrated how 



Conclusion 167 

software methods can be used to order the sequence of programming to 
minimize transition activity, and therefore energy. These methods resulted in 
the reduction of the programming energy by a few orders of magnitude. 

Another important component of the configuration energy is the transfer of 
configuration bits from the storage device to the FPGA. Other configuration 
loading techniques like time-multiplexing and run-length encoding of the 
configuration have to be explored to solve this problem. 

The basic concept of time-multiplexing is that each programmable point in 
the FPGA has multiple memory storage elements. By switching the memory 
bit that controls the programmable element, it is possible to switch the 
function implemented on the FPGA on a cycle basis [Trimberger97]. The 
FPGA can be visualized as having multiple programming planes. Even 
though programming each plane can be potentially more expensive than 
programming a single-context FPGA, if there is temporal locality among the 
functions implemented, the cost of transferring the configuration can be 
minimized. 

Configuration compression has been used in this work to eliminate 
redundant configuration bits. Another level of reduction can be obtained by 
recognizing that in datapath functions, the different bit-slices have identical 
configurations. This makes it possible to program mUltiple locations using a 
single write operation. This has been exploited to program the XC6200 
FPGA [Hauck99a]. Another method is to use compression techniques such as 
run-length encoding to reduce the data transfers on the bus [Hauck99b]. 
These methods have to be explored while taking into consideration the 
increased complexity involved. 

3.5 Implementation 

In the final part of the work, the energy reduction techniques were 
implemented in actual silicon. Three prototype FPGAs were built. The first 
prototype, LP _PGAII, was an array of sixty-four logic blocks. The purpose 
of this chip was to verify the architectural and circuit techniques aimed at 
reducing the execution energy. The second prototype was an embedded 
version of LP _PGAII. The array was used as an accelerator in a digital signal 
processor for voice band processing. Data obtained from the embedded 
FPGA verified the applicability of an FPGA in an energy-sensitive platform. 
This implementation also brought into focus the overhead associated with 
frequent reconfiguration of the FPGA. The last prototype, LP _PGAII 



168 Low-Energy FPGAs - Architecture And Design 

incorporated the improvements to reduce the configuration energy. Measured 
data from the prototypes demonstrate five times to twenty-two times 
improvement in execution energy over comparable commercial architectures. 

4 LOOKING AHEAD 

Prior academic research projects are slowly showing their presence in the 
commercial world. Considerable work must be done before FPGAs will be 
accepted completely by the design community in the new role. 

4.1 Programmable Systems 

The model of computation based on the programmability of FPGAs has 
taken off in the commercial world. This is reflected in the different flavors of 
FPGAs or programmability offered by different vendors. The approach in 
this area can be broadly divided into two camps: programmability in ASICs 
and dedicated functionality in FPGAs. This is illustrated in Fig. 1. 

Dedicated 
Logic 

Figure 1. Programmable Systems 

• AREA _ 

FLEXIBILITY 

ALU MAC 

I I I I I I I I 

-----~~~ -----... ~~ 



Conclusion 169 

4.1.1 ASIC + FPGA 

One approach is to use embedded FPGAs in a system dominated by 
dedicated logic. The purpose of the FPGA is to implement the functionality 
that is dyn'amic. This domain is very sensitive to the area of the 
implementation. The logic capacity of the embedded FPGA will most 
probably be constrained to tens of thousands of logic gates to control the area 
overhead. 

Actel, with its Varicore series of FPGAs, is one of the commercial groups 
that supports this approach by supplying embedded FPGAs [Varicore]. 

4.1.2 FPGA + Dedicated Logic 

The second approach is aimed at the traditional FPGA user who wants to 
pack more functionality in a given area. By embedding dedicated logic like 
multipliers and general-purpose processors, these functions can be 
instantiated in an application without paying the high area penalty if these 
were to be mapped to regular programmable blocks. Even though the area of 
the functional units is small, the bottleneck will be the routing resources 
required to connect to these complex blocks. 

Almost all the major FPGA vendors now provide dedicated functional units 
embedded in their latest offerings. For example, the Virtex II [XilinxOO] 
devices from Xilinx will have PowerPC cores embedded in the array. 

4.2 Design Flow 

The dominant market for FPGA has been the stand-alone segment, and the 
software support has been tailored towards such a use of FPGAs. The design 
flow used in FPGAs has to keep up to support use of the FPGA in a wider 
range of applications as they become popular. 

One of the main issues that has to be dealt with is a design flow that makes 
the use of these programmable systems efficient. Even though all the 
different architectures boast impressive performance gains, the deciding 
factor will be the software flow that can extract the claimed performance. 

Consider the embedded FPGA in an ASIC system. One of the critical 
requirements is a seamless integration of the FPGA in an ASIC flow. The 
designer should be able to evaluate the cost of the FPGA and balance it with 
the achievable performance gains. This requires the abstraction of the FPGA 



170 Low-Energy FPGAs - Architecture And Design 

at a high level so that the designer can accurately compare an FPGA 
implementation with other options. This is required before committing 
expensive silicon space to a specific array size of the FPGA. The compiler 
for the system should be able to efficiently schedule operations on the FPGA 
to justify the area cost. 

4.3 Conclusion 

FPGAs have traditionally been associated with poor energy and delay 
performance, with the blame being placed on the overhead of 
programmability. Preliminary analysis of existing FPGA architectures shows 
that the power consumption of the chips will only become worse as the 
process technology moves below the 0.1 urn region. This will severely limit 
the use of FPGAs in several energy-sensitive environments. The main 
purpose of this work had been to evaluate the FPGA architecture from an 
energy perspective, and decide if the high energy consumption is a penalty 
that has to be paid for the programmability. This work on the design of a low­
energy FPGA has shown that with architectural and circuit design 
improvements the energy can be improved considerably. 

The authors believe that this work is just a beginning in the direction of 
low-energy FPGA design. Depending on the application domain, 
specialization of the architecture will help in further reducing the energy. 



BIBLIOGRAPHY 

[74ALVCI64245] 
16-Bit Dual Supply Translating Transceiver, Philips Semiconductors. 

[Abnous98] 

[Actell] 

[ActeI2] 

[Acte13] 

[ActeI4] 

A. Abnous, K. Seno, Y. Ichikawa, M. Wan, and J. Rabaey, "Evaluation of a Low­
Power Reconfigurable DSP Architecture," Proceedings Parallel and Distributed 
Processing. SPDP '98 Workshops, Springer-Verlag, March 1998, pp. 55-60. 

ACT] Series FPGAs, Actel Corporation, 1996. 

Accelerator Series FPGAs - ACT3 Family, Actel Corporation, 1997. 

SX Family of High Performance FPGAs, Actel Corporation, 2001. 

ProAsic 500K Family, Actel Corporation, 2000. 
[Aggarwal94] 

A. A. Aggarwal and D. M. Lewis, "Routing Architectures for Hierarchical Field 
Programmable Gate Arrays," Proceedings IEEE International Conference on 
Computer Design: VLSI in Computers and Processors, Cambridge, Massachusetts, 
1994, pp. 475-478. 

[ Alexander94] 
M. J. Alexander, 1. P. Cohoon, J. L. Ganley, and G Robins, "An Architecture­
Independent Approach to FPGA Routing Based on Multi-weighted Graphs," 
Proceedings EURO-DAC with EURO-VHDL, New York, ACM, 1994, pp. 259-264. 

[Alexander96] 

[Alteral] 

M. J. Alexander and G Robins, "New performance-driven FPGA routing 
algorithms," IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, vo1.15, no.12, December 1996, pp. 1505-1517. 

Private Communication. 
[Altera2] 

FLEX10K Embedded Programmable Logic Family Data Sheet, Altera, 2000. 
[Altera3] 

Classic EPLD Family Data Sheet, Altera, 2000. 
[Altera97] 

Flex 10K Power Consumption, Altera, Technical Brief 23, June 1997. 
[Amold93] 

1. M. Arnold, D. A. Buell, D. T. Hoang, D. V. Pryor, N. Shirazi, and M. R. Thistle, 
''The Splash 2 Processor and Applications," Proceedings IEEE International 
Conference on Computer Design: VLSI in Computers and Processors, 
Massachusetts, October 1993, pp. 3-6. 

[Bellman58] 
R. Bellman, "On a Routing Problem," Quarterly of Applied Mathematics, 1958, pp. 
87-90. 

[Benes99] 
M. Benes, Design and Implementation of Communication and Switching Techniques 
for the Pleiades Family of Processors, M.S. Thesis, University of California, 
Berkeley, December 1999. 

171 



172 Low-Energy FPGAs - Architecture And Design 

[Bertin93] 

[Betz96] 

[Betz97a] 

[Betz97b] 

[Betz99a] 

P. Bertin, D. Roncin, and J. Vuillemin, "Programmable Active Memories: A 
Perfonnance Assessment," PRL Research Report #24, 1993. Available online at 
http://research.compaq.comlPRU publicationsIPRL-PriReport.html. 

V. Betz and J. Rose, "Directional Bias and Non-Unifonnity in FPGA Global Routing 
Architectures," IEEF/ACM International Conference on Computer-Aided Design, 
San Jose, California, 1996, pp. 652-659. 

V. Betz and J. Rose, "Cluster-Based Logic Blocks for FPGAs: Area-Efficiency vs. 
Input Sharing and Size," IEEE Custom Integrated Circuits Conference, Santa Clara, 
California, 1997, pp. 551-554. 

V. Betz and J. Rose, "VPR: A New Packing, Placement and Routing Tool for FPGA 
Research," Proceedings 7'h International Workshop on Field-programmable Logic 
and Applications, Berlin, Gennany, 1997, pp. 213-22. 

V. Betz and J. Rose, "FPGA Routing Architecture: Segmentation and Buffering to 
Optimize Speed and Density," ACMISIGDA International Symposium on Field 
Programmable Gate Arrays, New York, 1999, pp. 59-68. 

[Betz99b] 
V. Betz and J. Rose, "Circuit Design, Transistor Sizing and Wire Layout of FPGA 
Interconnect," Proceedings of the IEEE 1999 Custom Integrated Circuits 
Conference, Piscataway, New Jersey, 1999, pp. 171-174. 

[Borriello] 
G Borriello, S. Hauck, and S Burns, "The Triptych FPGA Architecture," IEEE 
Transactions on Very Large Scale Integration Systems, vol. 3, no. 4, December, pp. 
491-501. 

[Brown92] 
S. D. Brown, R. J. Francis, J. Rose and Z. G Vranesic, Field-Programmable Gate 
Arrays, Kluwer Academic Publishers, The Netherlands, 1992. 

[Brown93] 
S. D. Brown, J. Rose, and Z. G Vranesic, "A Stochastic Model to Predict the 
Routability of Field-Programmable Gate Arrays," IEEE Transactions on Computer­
Aided Design of Integrated Circuits and Systems, vol. 12, no. 12, December 1993, 
pp. 1827-1838. 

[Brown96] 

[BurdOO] 

[Chan96] 

S. Brown, G Lemieux, and M. Khellah, "Segmented Routing for Speed­
Perfonnance and Routability in Field-Programmable Gate Arrays," Journal of VLSI 
Design, 4(4), 1996, pp. 275-291. 

T. Burd, T. Pering, A. Stratakos, and R. Brodersen, "A Dynamic Voltage-scaled 
Microprocessor System," IEEE Journal of Solid-State Circuits, vol. 35, no. 11, 
November 2000, pp. 1571-1580. 

V. C. Chan and D. M. Lewis, "Area-Speed Tradeoffs for Hierarchical Field­
Programmable Gate Arrays," ACM Fourth International Symposium on Field­
Programmable Gate Arrays, New York, 1996, pp.51-57. 



Bibliography 173 

[Chow99a] 
P. Chow, O. S. Soon, 1. Rose, K. Chung, G Paez-Monzon, and I. Rahardja, "The 
Design of an SRAM-Based Field-Programmable Gate Array Architecture," IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, June 
1999, pp. 191-197. 

[Chow99b] 
P. Chow, O. S. Soon, 1. Rose, K. Chung, G Paez-Monzon, and I. Rahardja, 'The 
Design of an SRAM-Based Field-Programmable Gate Array-Part II: Circuit Design 
and Layout," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 
vol. 7, no. 3, September 1999, pp. 321-330. 

[Chung9l] 
K. Chung, S. Singh, J. Rose, and P. Chow, "Using Hierarchical Logic Blocks to 
Improve the Speed of FPGAs," International Workshop on Field Programmable 
Logic and Applications, Oxford, UK, EE&CS Books, 1991, pp. 103-113. 

[Colshan94] 

[Cong94] 

R. Colshan and B. Jaroun, "A Novel Reduced Swing CMOS Bus Interface Circuit 
for High Speed Low Power VLSI Systems," Proceedings of IEEE International 
Symposium on Circuits and Systems, vol. 4, 1994, pp. 351-354. 

J. Cong and Y. Ding, "FlowMap: An Optimal Technology Mapping Algorithm for 
Delay Optimization in Lookup-Table Based FPGA Designs," IEEE Transactions on 
CAD, vol. 13, no. 1, Jan 1994,pp.I-12. 

[Cormen98] 

[Dally98] 

T. H. Cormen, C. E. Leisserson, and R. L. Rivest, Introduction to Algorithms, The 
MIT Press, Cambridge, Massachusetts, 1990. 

w. J. Dally and 1. W. Poulton, Digital Systems Engineering, Cambridge University 
Press, 1998. 

[DeHonOO] 
A. DeHon, 'The Density Advantage of Configurable Computing," Computer, vol. 
33, no. 4, ApriI2000, pp. 41-49. 

[Dijkstra59] 
E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerische 
Mathematik, 1959, pp. 269-271. 

[Ebeling95] 
C. Ebeling, L. McMurchie, S. A. Hauck, and S. Bums. "Placement and Routing 
Tools for the Triptych FPGA," IEEE Trnasactions on VLSI, December 1995, pp. 
473-482. 

[Ebeling96] 
C. Ebeling, D. C. Cronquist, and P. Franklin. "RaPiD - Reconfigurable Pipelined 
Datapath," The 6th International Workshop on Field-Programmable Logic and 
Applications, 1996, pp. 126-135. 

[Elmore48] 

[Ford62] 

E. Elmore, 'The Transient Response of Damped Linear Networks with Particular 
Regard to Wideband Amplifiers," Journal of Applied Physics, January 1948, pp. 55-
63. 

L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, 
1962. 



174 Low-Energy FPGAs - Architecture And Design 

[Hamdy88] 
E. Hamdy, 1. McCollum, S. Chen, S. Chiang, S. Eltoukhy, 1. Chang, T. Speers, and 
A. Mohsen, "Dielectric Based Antifuse for Logic and Memory ICs," International 
Electron Devices Meeting, Technical Digest, 1988, pp. 786-789. 

[Hauck99a] 
S. Hauck and W. D. Wilson, "Runlength Compression Techniques for FPGA 
Configurations," Seventh Annual IEEE Symposium on Field-Programmable Custom 
Computing Machines, Los Alamitos, California, 1999, pp. 286-287. 

[Hauck99b] 

[He93] 

S. Hauck, L. Zhiyuan, and E. Schwabe, "Configuration Compression for the Xilinx 
XC6200 FPGA," IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, vol. 18, no. 8, IEEE, August 1999, pp. 1107-1113. 

J. He and J. Rose, "Advantages of Heterogeneous Logic Block Architecture for 
FPGAs," Proceedings of the IEEE Custom Integrated Circuits Conference, San 
Diego, California, 1993, pp. 7.4.1-7.4.5. 

[Hiraki95] 
M. Hiraki, H. Kojima, H. Misawa, T. Akazawa, and Y. Hatano, "Data-Dependent 
Logic Swing Internal Bus Architecture for U1tra1ow-Power LSI's," IEEE Journal of 
Solid-State Circuits, vol. 30, no. 4, April1995, pp. 397-402. 

[Hoang93] 
D. T. Hoang, "Searching Genetic Databases on Splash 2," Proceedings IEEE 
Workshop on FPGAs for Custom Computing Machines, Napa, California, April 
1993, pp. 5-7. 

[Hwang92] 
F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem, North­
Holland, 1992. 

[Ingber93] 

[ITRS99] 

L. Ingber, "Simulated Annealing: Practice Versus Theory," Journal of Mathematical 
Computer Modeling, vol. 18, no. 11, December 1993, pp. 29-57. 

International Technology Roadmap for Semiconductors, Semiconductor Industry 
Association, 1999. 

[Kahng95] 
A. B. Kahng and G Robins, On Optimal Interconnections for VLSI, Kluwer 
Academic Publishers, The Netherlands, 1995. 

[Kirkpatrick83] 

[Kou81] 

S. Kirkpatrick, C. Gelatt Jr., and M. P. Vecchi, "Optimization by Simulated 
Annealing," Science, vol. 220,1983, pp. 671-680. 

L. Kou, G Markowsky, and L. Berman, "A Fast Algorithm for Steiner Trees," Acta 
Informatica, 15(1981), pp. 141-145. 

[Kouloheris91 ] 
J. L. Kouloheris and A. EI Gamal, "FPGA Performance Versus Cell Granularity," 
Proceedings of the IEEE Custom Integrated Circuits Conference, San Diego, 
California, 1991, pp. 6.2.1-6.2.4. 



Bibliography 175 

[Kouloheris92] 
J. L. Kouloheris and A. EI Gamal, "PLA-Based FPGA Area Versus Cell 
Granularity," Proceedings of the IEEE Custom Integrated Circuits Conference, 
Boston, Massachusetts, 1992, pp. 4.3.1-4.3.4. 

[Kusse97] 

[Lai97] 

[Lai98] 

[Lam88] 

E. Kusse, Analysis and Circuit Design for Low Power Programmable Logic 
Modules, M.S. Thesis, University of California, Berkeley, December 1997. 

Y. Lai and P. Wang, "Hierarchical Interconnection Structures for Field 
Programmable Gate Arrays," IEEE Transactions on Very Large Scale Integration 
Systems, vol.5, no.2, June 1997, pp.186-196. 

Y. Lai, C. Kao, T. Chang, and K. Chen, "A Field Programmable Gate Array Chip 
with Hierarchical Interconnection Structure," Proceedings of the 1998 IEEE 
International Symposium on Circuits and Systems, Monterey, California, 1998, pp. 
402-405. 

J. Lam and J. M. Delosme, "Performance of a New Annealing Schedule," 
Proceedings 25th ACMIIEEE Design Automation Conference, New York, 1988, pp. 
306-311. 

[Lemieux93] 

[Liu94] 

G Lemieux and S. Brown, "A Detailed Router for Allocating Wire Segments in 
FPGAs," ACM Physical Design Workshop, Lake Arrowhead, California, April 1993, 
pp.215-226. 

D. D. Liu and C. Svensson, "Power Consumption Estimation in CMOS VLSI 
Chips," IEEE Journal of Solid-State Circuits, vol. 29, no. 6, June 1994, pp. 663-670. 

[Llopis96] 
R. P. Llopis and M. Sachdev, "Low Power, Testable Dual Edge Triggered Flip­
Flops," Proceedings 1996, International Symposium on Low Power Electronics and 
Design, Monterey, California, August 1996, pp.341-345. 

[Mirsky96] 
E. Mirsky and A. DeHon, "MATRIX: A Reconfigurable Computing Architecture 
with Configurable Instruction Distribution and Deployable Resources," Proceedings 
IEEE Symposium on FPGAs for Custom Computing Machines, Napa, California, 
Apri11996, pp. 17-19. 

[Murgai90] 
R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, 
"Logic Synthesis for Programmable Gate Arrays," Proceedings ACMIIEEE Design 
Automation Conference, Orlando, Florida, June 1990, pp. 24-28. 

[Nakagome93] 
Y. Nakagome, K. Itoh, M. Isoda, K. Takeuchi, and M. Aoki, "Sub-l-V Swing 
Internal Bus Architecture for Future Low-Power ULSIs," IEEE Journal of Solid­
State Circuits, vol. 28, no. 4, April 1993, pp. 414-419. 

[Ochotta98] 
E. S. Ochotta, P. J. Crotty, C. R. Erickson, C. T. Huang, R. Jayaraman, R. C. Li, 1. D. 
Linoff, L. Ngo, H. V. Nguyen, K. M. Pierce, D. P. Wieland, 1. Zhuang, and S. S. 
Nance, "A Novel Predictable Segmented FPGA Routing Architecture," ACMISlGDA 



176 Low-Energy FPGAs - Architecture And Design 

International Symposium on Field Programmable Gate Arrays, New York, 1998, pp. 
3-11. 

[Rose90a] 
J. Rose, R. J. Francis, D. Lewis, and P. Chow, "Architecture of Field-Programmable 
Array: The Effect of Logic Block Functionality on Area Efficiency," IEEE Journal 
of Solid State Circuits, vol. 25, no. 5, October 1990, pp. 1217-1225. 

[Rose90b] 

[Rose97] 

J. Rose and S. Brown, ''The Effect of Switch Box Flexibility on Routability of Field­
Programmable Gate Arrays," Procedings 1990 Custom Integrated Circuits 
Conference, May 1990, pp. 27.5.1-27.5.4. 

J. Rose and S. Brown, "Flexibility of Interconnection Structures for Field 
Programmable Gate Array," IEEE Journal of Solid State Circuits, vol. 26, no. 3, 
March 1997, pp. 277-282. 

[Sechen85] 

[Singh92] 

C. Sechen and A. Sangiovanni-Vincentelli, ''The TImberwolf Placement and Routing 
Package," Journal of Solid-State Circuits, vol. SC-20, no. 2, April 1985, pp. 510-
522. 

S. Singh, J. Rose, P. Chow, and D. Lewis, ''The Effect of Logic Block Architecture 
on FPGA Performance," IEEE Journal of Solid-State Circuits, vol. 27, no. 3, March 
1992, pp. 281-287. 

[Swartz90] 
w. Swartz and C. Sechen, "New Algorithms for the Placement and Routing of 
Macro Cells," IEEE International Conference on Computer-Aided Design, IEEE 
Computer Society Press, Washington, 1990, pp. 336-339. 

[Trimberger94 ] 
S. M. Trimberger, Field-Programmable Gate Array Technology, Kluwer Academic 
Publishers, The Netherlands, 1994. 

[Trimberger97] 

[Tsu99] 

S. Trimberger, D. Carberry, A. Johnson, and J. Wong, "A TIme-Multiplexed FPGA," 
Proceedings The 5th Annual IEEE Symposium on Field-Programmable Custom 
Computing Machines, Los Alamitos, California, 1997, pp. 22-28. 

W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George, J. 
Wawrzynek, and A. DeHon, "HSRA: High-Speed, Hierarchical Synchronous 
Reconfigurab1e Array," ACMISIGDA International Symposium on Field 
Programmable Gate Arrays, New York, 1999, pp.125-134. 

[Tsutsui98] 
A. Tsutsui and T. Miyazaki, "ANT-on-YARDS: FPGAIMPU Hybrid Architecture for 
Telecommunication Data Processing," IEEE Transactions on Very Large Scale 
Integration (VLSl) Systems, vol.6, June 1998, pp. 199-211. 

[Varicore] 
VariCore, Actel, 2001. 

[Wazlowki93] 
M. Wazlowski, "PRISM -II Compiler and Architecture," Proceedings IEEE 
Workshop on FPGAs for Custom Computing Machines, Napa, California, April 
1993, pp. 5-7. 



Bibliography 177 

[Wittig96] 
R. D. Wittig and P. Chow, "OneChip: An FPGA Processor with Reconfigurable 
Logic," Proceedings IEEE Symposium on FPGAs for Custom Computing Machines, 
April 1996, pp.126-135. 

[XC4000XV] 

[XESS] 

XC4000XV FPGAs, Xilinx. Online at http://www.xilinx.coml 
products/xc4000xv.htm. 

Xilinx Student Edition with Foundation 2.1 Software and XS40-005XL FPGA 
Prototyping Board, XESS Corporation, North Carolina. 

[XilinxOO] 

[Xilinxl] 

Platform FPGA- The Future of Logic Design, Xcell-The Quarterly Journal for 
Xilinx Programmable Logic Users, Fourth Quarter, 2000. 

Private Communication. 
[Xilinx2] 

The Programmable Logic Data Book, Xilinx, San Jose, 1998. 
[Xilinx97] 

B. Fawcett, "FPGAs, Power and Packages," Xcell-The Quarterly Journalfor Xilinx 
Programmable Logic Users, Second Quarter, 1997, pp. 2-4. 

[Xilinx98] 
XC4000XL Power Calculation, Xcell-The Quarterly Journal for Xilinx 
Programmable Logic Users, First Quarter, 1998. 

[Yamauchi95] 
H. Yamauchi, H. Akamatsu, and T. Fujita, "An Asymptotically Zero Power Charge­
Recycling Bus Architecture for Battery-Operated Ultrahigh Data Rate ULSI's," 
IEEE Journal of Solid-State Circuits, vol. 30, no. 4, April 1995, pp. 423-431. 

[Zhang98] 
H. Zhang and J. Rabaey, "Low-Swing Interconnect Interface Circuits," Proceedings 
1998 International Symposium on Low Power Electronics and Design, Monterey, 
California, August 1998, pp. 161-166. 

[ZhangOOa] 
H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J. Rabaey, "A 1 
V Heterogeneous Reconfigurable Processor IC for Baseband Wireless Applications," 
International Solid State Circuits Conference, February 2000, pp. 68-69. 

[ZhangOOb) 
H. Zhang, V. George, and 1. Rabaey, "Low-swing On-chip Signaling Techniques: 
Effectiveness and Robustness," IEEE Transactions on VLSI Systems, vol. 8, no. 3, 
June 2000, pp. 264-27. 



A 

antifuse, 15 
ANT-on-Y ARDS, 22 
architecture 

hierarchical, 10 
island style, 7 
logic block, 11 
row based, 8 
sea-of-gates, 9 

area breakdown, 138 

B 

binary tree structure, 88 

C 

CGE,44 
clock distribution energy 

components, 105 
double-edge-triggering, 108 
flip-flop load, 107 
FPGA,107 
global distribution network, 106 
local distribution network, 106 
low-swing signaling, 108 
reduction methods, 108 

clock energy, 38, 105 
computation model, 17 
configuration architecture, 139 
configuration compression, 121, 

136 
configuration cost, 111 
configuration energy 

activity control, 124, 159 
components, 118 
configuration compression, 121 
encoding overhead, 123 

179 

INDEX 

energy reduction methods, 119 
measured, 158 
selective tile activation, 120 

configuration techniques 
area, 116 
comparison, 115 
delay, 116 
energy, 116 
pin count, 115 
random access, 114 
selective programmability, 116 
shift register, 112 

configuration voltage and delay 
performance, 103 

connection box, 8, 84, 135 

D 

distance table, 53 
double-edge-triggered flip-flops, 

108 

E 

embedded FPGA, 145 
handshake control, 146 
layout, 147 
Pleiades, 143 

energy-delay design space, 96 
exploration environment, 44 

architecture representation, 47 
bounding box, 65 
congestion management, 63 
distance table, 53 
evaluation flow, 44 
GSMT,57 
IKMB,61 
KMB,59 
mapping, 46 



180 Low-Energy FPGAs - Architecture And Design 

F 

net ordering, 58 
placement, 50 
routing, 55 
simulated annealing, 54 

flip-flops, 108 
FPGA,6 

ASIC + FPGA, 169 
Design Flow, 169 
FPGA + dedicated logic, 169 
looking ahead, 168 
programmable systems, 168 
the evolution, 163 

FPGA placement, 50 
FPGA routing, 55 

G 

graph representation, 48 
graph steiner minimal tree, 57 
GSMT,57 

H 

hardware implementation, 2, 127 
configuration, 139 
configuration storage, 140 
connection box, 84, 135 
final layout, 142 
inteconnect, 131 
interconnect primitives, 134 
inverse clustering, 134 
logic block, 127 
logic block programming, 130 
LUT,129 
mesh,133 
nearest neighbor connection, 

131 

switch box, 137 
tile layout, 137 

hierarchical architecture, 10 

I 

IKMB,61 
interconnect architecture 

average path length and energy, 
82 

binary tree structure, 88 
delay model, 73 
energy-delay Components, 71 
flexibility and energy, 82 
hardware implementation, 131 
hierarchical, 10 
inverse clustering, 91 
mesh,7 
mesh architecture, 84 
parasitics, 73 
segmented, 8 

interconnect energy, 35 
inverse clustering, 91, 134 
island style architecture, 7 
ITRS, 27 

K 

KMB,59 

L 

logic block 
architecture, 11 
clustering, 70, 76 
hardware implementation, 127 
hierarchical, 70 
optimal granularity, 69, 78 
programming, 130 
strucure,75 



Index 

low-swing circuit, 101 
configuration voltage, 103 
driver, 101 
perfonnance, 104 
receiver, 102 

low-swing signalling, 98 
charge sharing, 100 
differential interconnect, 99 
low threshold devices, 99 
techniques, 99 
timing signals, 100 

M 

MATRIX, 24 
measured data, 154 

configuration energy, 158 
configuration reordering, 159 
energy - delay tradeoff, 159 
execution energy, 157 
toggle frequency, 155 

mesh architecture, 84, 133 
MIS-FPGA, 46 

N 

nearest neighbor connection, 131 

p 

packaging, 32 
PAM, 21 
perfonnance accelerator, 19 
Pleiades, 143 

handshake control, 146 
layout, 147 

PLICE,15 
portability, 33 
power dissipation 

clock, 38 

components, 34 
interconnect, 35 
trend, 31 
XC4000,34 

PRISM, 22 
programming technology, 13 

antifuse, 15 

181 

EPROM, EEPROM and Flash, 
16 

floating gate, 16 
SRAM,14 

prototype board, 151 

R 

random access programming, 114 
RaPid, 23 
reconfigurable projects 

ANT -on-YARDS, 22 
MATRIX, 24 
PAM, 21 
PRISM, 22 
RaPid, 23 
Splash, 21 

row-based architecture, 8 

s 

sea-of-gates architecture, 9 
SEGA,44 
selective tile activation, 120 
shift register programming, 112 
simulated annealing, 54 
Splash, 21 
switch box, 85, 137 
symmetric mesh architecture, 74 

T 

technology trend 



182 

logic capacity, 29 
power dissipation, 31 
system frequency, 29 

technology trend:, 27 
toggle frequency, 155 

Low-Energy FPGAs - Architecture And Design 

v 

voltage scaling, 159 
VPR,44 


