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Preface

Nowadays, it is the trend to report production engineering as a combination of
manufacturing technology with applied management science. This book covers
design of experiments (DoE) applied in production engineering. DoE is a statistical
methodology used to establish statistical correlation between a set of input variables
with a chosen outcome of the system/process. DoE is a systematic approach to
investigation of a system/process. In general, DoE analysing and interpreting sets of
experiments without incurring a too high cost or taking too much time.

The purpose of this book is to present a collection of examples illustrating DoE
applied in production engineering. The first chapter is “Screening (Sieve) Design of
Experiments in Metal Cutting”. The second chapter is “Modelling and Optimisation
of Machining with the Use of Statistical Methods and Soft Computing”. The third
chapter is “Design of Experiments—Statistical and Artificial Intelligence Analysis
for the Improvement of Machining Processes: A Review”. The fourth chapter is “A
Systematic Approach to Design of Experiments in Waterjet Machining of High
Performance Ceramics”. The fifth chapter is “Response Surface Modeling of Fractal
Dimension in WEDM”. The sixth chapter is “Thrust Force and Torque Mathematical
Models in Drilling of Al7075 Using the Response Surface Methodology”. The
seventh chapter is “Design of Experiments in Titanium Metal Cutting Research”.
Finally, the eighth chapter is “Parametric Optimization of Submerged Arc Welding
Using Taguchi Method”.

This book can be used as a research book for a final undergraduate engineering
course or as a topic on DoE in production engineering at the postgraduate level.
Also, this book can serve as a valuable reference for academics, engineers,
researchers, professionals in production engineering and related subjects. The sci-
entific interest in this book is obvious for many important centres of research and
universities as well as industry. Therefore, it is expected that this book will motivate
others to undertake research in DoE in production engineering.
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Screening (Sieve) Design of Experiments
in Metal Cutting

Viktor P. Astakhov

This chapter discuses particularities of the use of DOE in experimental studies of
metal cutting. It argues that although the cost of testing in metal cutting is high,
there is no drive to improve or generalize the experimental results. It explains that
full factorial design of experiments and the most advanced group method of data
handling (known as GMDH) method allow accurate estimation of all factors
involved and their interactions. The cost and time needed for such tests increase
with the number of factors considered. To reduce these cost and time, two-stage
DOE procedure to be used in metal cutting experimental studies is suggested:
screening DOE in the first stage and full factorial DOE in the second stage. The
Plackett and Burman DOE is found to be very useful in screening tests in metal
cutting studies.

1 Introduction

Although machining is one of the oldest manufacturing processes, most essential
characteristics and outcomes of this process such as tool life, cutting forces,
integrity of the machined surface, and energy consumption can only be determined
experimentally. As a result, new improvements in the tool, machine and process
design/optimization, and implementation of improved cutting tool materials are
justified through a series of experimental studies. Unfortunately, experimental
studies in metal cutting are very costly and time-consuming requiring sophisticated
equipment and experienced personnel. Therefore, the proper test strategy, meth-
odology, data acquisition, statistical model construction, and verification are of
prime concern in such studies.

Metal cutting tests have been carried out in systematic fashion over at least
150 years, in tremendously increasing volume. However, most of the tests carried
out so far have been conducted using a vast variety of cutting conditions and test
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methods having little in common with each other. It is understood that test results
are meaningless if the test conditions have not been specified in such a way that the
different factors, which affect the test results, will be under a reasonable and
practical degree of control. Though this sounds simple and logical, the main
problem is to define and/or determine these essential factors.

Unfortunately, there is lack of information dealing with test methodology and
data evaluation in metal cutting tests. Some information about setup and test
conditions can be found in most of the reported experimental studies. On the
contrary, it is rather difficult to find corresponding information about test meth-
odology and answers to the questions of why the reported test conditions or design
parameters of the setup were selected at the reported levels, what method(s) was
(were) used for experimental data evaluation, etc.

Although the cost of testing in metal cutting is high, there is no drive to improve
or generalize the experimental results in the published experimental works and even
up to the level of national and international standards. For example, the standard
ANSI/ASME Tool Life Testing with Single-Point Turning Tools (B94.55M-1985)
suggests conducting the one-variable-at-a-time test. When it comes to acquisition of
test results, the only calculation of the confidence interval limits is required to carry
out and, thus report. As a result, only the influence of cutting speed on the tool life
can be distinguished for a given machine (static and dynamic stiffness, spindle
runout, accuracy of motions, etc.), workpiece parameters (metallurgical state,
dimensions, holding method, etc.), cutting tool material and cutting tool design, the
accuracy of the cutting tool setting in the tool holder, and in the machine spindle
(for round tools).

The design of experiments (DOEs) technique allows a significant improvement
in the methodology of machining tests. DOE is the process of planning of an
experiment so that appropriate data will be collected, which are suitable for further
statistical analyses resulting in valid and objective conclusions. Because there are a
number of different methodologies of DOE, one is always challenged to select the
appropriate methodology depending on the objective of the test and the resources
available.

Reading this, a logical question, “what seems to be the problem?” is frequently
asked. In other words, why does another chapter or even a book on DOE in
machining needed? Indeed, the theory of DOE is fully covered in many funda-
mental books, e.g. [1–3]; its application to machining studies is discussed by many
researches including the author [4–7]. Moreover, there are many commercial DOE
software packages as, for example, Minitab by Minitab, Inc., SAS by SAS Institute,
Inc., S-Plus by Mathsoft, Inc., Design-Expert by Stat-Ease, Inc., STATISTICA/
StatSoft by Dell Software, with detailed online manuals (e.g. http://www.statsoft.
com/textbook/experimental-design#general). A great body of the available litera-
ture and online sources combined are readily available as commercial software
packages that apparently make DOE almost effortless. In the author’s opinion,
however, the simplicity of DOE is really pseudo-simplicity or masked complexity.
That is, when it comes to machining, the available DOE sources represent only the
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tip of the iceberg, i.e., a much greater, in terms of size and complicity, part is often
hidden underwater in dark.

This chapter aims to discuss an important but rarely discussed issue of accounting
for factors’ numbers and their interactions in DOE machining tests. It argues that
including such interactions into the consideration in DOE in metal cutting makes
experimental studies not only effective but also efficient. In this context, the term
“effectiveness” is understood as doing the right things, i.e. the use of DOE, whereas
the term “efficiency” is understood as doing things right, i.e., accounting for the
relevant number of factors and their interactions. The latter allows optimization of not
only parameters of the machining regime but even intricate parameters of the cutting
tool including tool geometry, material, setting, etc.

2 Basic Terminology

DOE is one of the most powerful, and thus widely used statistical methods in
machining tests. The outcomes of machining are affected by many factors as shown
in Fig. 1a. In order to design a new process or to improve the existing machining
process, the relationship between the inputs and outputs should be established.
DOE is a statistical formal methodology allowing an experimentalist to establish
statistical correlation between a set of inputs (input variables) with chosen outcomes
of the system/process under certain uncertainties, called environmental influence.
An input factor in a process is determined as a source of variability in the output of
the process. Once the process input variables for a process are determined they are
often termed as the key process input variables (known as KIPV in the literature).
Thus, a statistically-based experiment can be designed so that optimal values for
each factor to achieve the desired output quality can be revealed. In this respect,
DOE is the process of determine the correlations of KPIVs with the output of the
process. A key point of the DOE process is that it changes several variables at once.
This allows the statistics behind the process to identify interactions between the
KPIVs in terms of their influence on the output.

The visualization of this definition as it used in DOE is shown in Fig. 1b, where
(x1, x2, … xn) are n KPIVs selected for the analysis; (y1, y2, … ym) are m possible
system/process outputs from which one should be selected for the analysis; and (z1,
z2, … zp) are p uncontrollable (the experimentalist has no influence) inputs (often
referred to as noise). The system/process is designated in Fig. 1b as a black box,1

i.e., it is a device, system, or object that can be viewed solely in terms of its input,

1The modern term “black box” seems to have entered the English language around 1945. The
process of network synthesis from the transfer functions of black boxes can be traced to Wilhelm
Cauer who published his ideas in their most developed form in 1941. Although Cauer did not
himself use the term, others who followed him certainly did describe the method as black-box
analysis.
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output, and transfer (correlation) characteristics without any knowledge of its
internal workings, that is, its implementation is “opaque” (black).

The first stage of DOE requires the formulation of clear objective(s) of the study.
The statistical model selection in DOE requires the quantitative formulation of the
objective(s). Such an objective is called the response, which is the result of the
process under study or its output as presented in Fig. 1. The process under study
may be characterized by several important output parameters but only one of them
should be selected as the response.

The response must satisfy certain requirements. First, the response should be the
effective output in terms of reaching the final aim of the study. Second, the response
should be easily measurable, preferably quantitatively. Third, the response should
be a single-valued function of the chosen parameters.

The proper selection of KPIVs cannot be overstated. In DOE, it is necessary to
take all the essential factors into consideration. Unconsidered factors change arbi-
trarily, and thus increase the error of the tests. Even when a factor does not change
arbitrarily but is fixed at a certain level, a false idea about the optimum can be
obtained because there is no guarantee that the fixed level is the optimum one.

The factors can be quantitative or qualitative but both should be controllable.
Practically, it means that the chosen level of any factor can be set up and maintained
during the tests with certain accuracy. The factors selected should affect the
response directly and should not be a function of other factors. For example, the
cutting temperature cannot be selected as a factor because it is not a controllable
parameter. Rather, it depends on other process parameters as the cutting speed,
feed, depth of cut, etc.

Fig. 1 Visualization of:
a DOE intent, and b formal
definition of DOE
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The factor combinations should be compatible, i.e., all the required combinations
of the factors should be physically realizable on the setup used in the study. For
example, if a combination of cutting speed and feed results in drill breakage, then
this combination cannot be included in the test. Often, chatter occurs at high cutting
regimes that limits the combinations of the regime parameters.

3 Factor Interactions

The famous UCLA Coach John Wooden used to say: “A player who makes a team
great is much more valuable than a great player.” When the Brazilian soccer team
led by Pele, reportedly the best player in the soccer history, came to the 1966 World
Cup final in England, almost no one had a doubt that this competition was only a
formality for this team. Brazil assembled a “dream team” from the ranks of the top
FIFA superstars. The expectation was that this high-powered assembly of top talent
would walk all over their competition. However, Brazil lost in the group matches to
Hungary and then to Portugal. Brazil returned home early, without getting past the
first stage of the cup. For the disorganization and for the bad results, this is con-
sidered the worst performance of Brazil in a World Cup.

How could this have happened, particular the devastating lost to Hungary?
Clearly the individual Brazilian players were superior to their Hungarian counter-
parts. But the Hungarian squad had trained together and was used to playing by the
slightly different rules of World Cup soccer. By contrast, the Brazilian team was
assembled shortly before the games and had not practiced very much. They had not
“jelled” as a team. Similarly, some of the parameters of metal cutting regime or tool
that one may be testing may be superstars individually, i.e., the tool cutting edge
angle and cutting feed. But one should be looking for the combination of variables
that performs best when presented together.

What is a variable interaction? Simply put, it is when the setting for one variable
in your test positively or negatively influences the setting of another variable. If
they have no effect on each other, they are said to be independent. In a positive
interaction, two (or more) variables create a synergistic effect (yielding results that
are greater than the sum of the parts). In a negative interaction, two (or more)
variables undercut each other and cancel out some of the individual effects.

In metal cutting, we want to know interactions. We want to use factors inter-
action to achieve the maximum effect, i.e., to optimize the process using the
selected criteria (criteria) of optimization. We want to detect any parts of the tool
geometry that are working at cross-purposes and undercutting the performance of
the machining regime. Our goal should be to find the best-performing group of
machining process elements.

Some DOEs (such as A-B split testing and many forms of fractional factorial
parametric testing widely used in metal cutting testing [2, 8]) assume that there are
absolutely no interactions among process variables and that these variables are
completely independent of each other.

Screening (Sieve) Design of Experiments in Metal Cutting 5



In the author’s opinion, this is an absurd assumption in metal cutting testing.
Very strong interaction effects (often involving more than two variables) definitely
exist although admitted rarely. This should not be a surprise to anyone, because the
optimization of metal cutting is intentionally trying to create a combination of the
process parameters that are greater than the sum of their parts. In doing such an
optimization, one should be looking for synergies among all of machining elements
and trying to eliminate combinations of variable values that undermine the desired
outcome.

Although one may be able to get some positive results by ignoring interactions,
he or she will not get the best results. So where can you look for interactions? In
general, there is no way to guarantee that any subset of your testing elements does
not interact. However, you should consider elements that are in physical proximity,
or that are otherwise confounded with each other. For example, if a new tool
material prone to chipping (e.g., CVD diamond) is used in face milling, extremely
sharp cutting edges should be honed to prevent their chipping due to shock loading.
To balance the negative effect of the edge radius, red, the uncut chip thickness (hD)
should be increased to keep the ratio hD/red > 6 to maximize the tool life [4]. In turn,
the uncut chip thickness depends on the cutting feed per tooth, fz and tool cutting
edge angle, κr. As follows, a strong correlation of three parameters of face milling,
namely the edge radius, red, the cutting feed per tooth, fz, and tool cutting edge
angle, κr are clearly established.

Therefore, possible variable interactions should not be ignored in metal cutting
tests because interactions exist and can be very strong.

4 Examples of Variable Interaction in Metal Cutting
Testing

The common statistical representation of the results of metal cutting test for tool life
and the cutting force are

T ¼ CTv
xT
c f yT azTp ð1Þ

F ¼ CFv
xT
c f yF azFp ; ð2Þ

where CT, CF, xT, yT, zT, xF, yF, zF are initially assumed as constants.
Therefore, even the initial structure of these statistical equations assumes that

there are no interactions among the included factors. One can argues, however, that
the possible interactions as hidden (distributed) in the corresponding constants and
the intervals of factors variation are chosen to avoid, or at least, to reduce the
possible interactions. In the author’s opinion, these arguments are not valid because
if the former is the case then the experimentalist deliberately decreases the range of
factors variation, and thus significantly reduces the value of the obtained results.
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Moreover, as the factors interactions are not known before testing, there is no way
to take some purposeful measures to reduce these integrating at the stage of test
planning.

This section provides some examples of factors interaction detected in the
proper-planned and statistically-evaluated metal cutting tests.

Example 1 This example relates to the experiments on longitudinal turning [9].
Test samples were carbon steel bars DIN Ck45 (steel ANSI 1045) 100 mm in
diameter and 380 mm in length. The cutting tool included a holder DDJNL
3225P15 with coated inserts DNMG 150608-PM4025. The tool geometry was with
rake angle 17°, clearance angle 5°, tool cutting edge angle 93°, and nose radius
0.8 mm. The experiments were carried out using the rotatable central composite
design with five levels (coded by: −1.6817; −1; 0; +1 and +1.6817) of three cutting
parameters (Table 1). The cutting force was chosen to be the response.

The required number of experimental points is N = 23 + 6 + 6 = 20 [2]. There are
eight factorial experiments (3 factors on two levels, 23) with added 6 star points and
center point (average level) repeated 6 times reduce test error. The test result is
represented as

Fc ¼ 187:937� 1970:77f þ 10:418ap þ 1598fap þ 40:6765f 2 þ 40:953a2p ð3Þ

As can be seen, the factors affecting Fc, are cutting feed f, depth of cut ap, square
of feed f 2 (which can be conditionally termed as ‘self-interaction’), square of depth
of cut, a2p (self-interaction), and the interaction of feed and depth of cut f � ap.
Therefore, two main and three interaction effects were revealed.

Example 2 As discussed by Astakhov [4], the cutting temperature θct, understood
as the mean integral temperature at the tool–chip and tool–workpiece interfaces as
measured by a tool-work thermocouple, is the most important parameter to correlate
the tribological conditions at the discussed interfaces with tool wear. Moreover, for
a given combination of the tool and work materials, there is the cutting temperature,
referred to as the optimal cutting temperature, at which the combination of mini-
mum tool wear rate, minimum stabilized cutting force, and highest quality of the
machined surface is achieved. This temperature is invariant to the way it has been
achieved (whether the workpiece was cooled, pre-heated, etc.).

Table 1 Physical and coded values of factors in Test 1

Factors/levels Lowest Low Center High Highest

Coding −1.6817 −1 0 +1 +1.6817

Cutting speed (m/min) X1 = vc 266 300 350 400 434

Cutting feed (mm/rev) X2 = f 0.23 0.30 0.40 0.50 0.57

Depth of cut (mm) X3 = ap 1.0 1.5 2.25 3.0 3.5

Screening (Sieve) Design of Experiments in Metal Cutting 7



The objective of the considered test is to establish the correlation of this tem-
perature with parameters of the cutting system. The following correlation equation
was used:

hct ¼ Chv
xh
c f

yhazhp ; ð4Þ

where Cθ is constant which depends on the properties of the work material, xθ, yθ,
and zθ are powers to be determined in DOE.

The longitudinal turning tests were carried out. Test samples were carbon steel
bars made of steel ANSI 1020 of 50 mm in diameter and 260 mm in length. The
cutting tool was made of T15 high speed steel. The tool geometry was: rake angle
10°, clearance angle 10°, tool cutting edge angle 45°, and nose radius 0.2 mm. The
experiments were carried out using the rotatable central composite design with five
levels (coded by: −1.6817; −1; 0; +1 and +1.6817) of three cutting parameters
(Table 2). The cutting temperature measured in millimeters of millivolt meter tape
was chosen to be the response.

Analogous to the previous example, the required number of experimental points
is N = 23 + 6 + 6 = 20. There are eight factorial experiments (3 factors on two
levels, 23) with added 6 star points and center point (average level) repeated 6 times
reduce test error. The result DOE is represented as

hct ¼ 26:8vð1:58�0:34 ln vcÞ
c f ð0:46�023 ln f Það0:44�0:15 ln apÞ

p ð5Þ

As follows from Eq. (5), the powers xθ, yθ and zθ are not constants as routinely
assumed in metal cutting experimental studies; rather, a complicated self-interaction
of each factor is revealed by DOE.

Example 3 The third example is the use of DOE in the experimental study of the
influence of three parameters: cutting speed, νc, feed f, and the cutting fluid flow
rate Q on the roughness Δsf and roundness ΔR of the machined hole in gundrilling
[4]. A 23 DOE, complete block is used.

The test conditions were as follows:

– Work material: hot rolled medium carbon steel AISI 1040 was used. The test
bars, after being cut to length (40 mm diameter, 700 mm length), were nor-
malized to a hardness of HB 200.

Table 2 Physical and coded values of factors in Test 2

Factors/levels Lowest Low Center High Highest

Coding −1.6817 −1 0 +1 +1.6817

Cutting speed (m/s) X1 = vc 0.072 0.115 0.229 0.454 0.725

Cutting feed (mm/rev) X2 = f 0.082 0.110 0.170 0.260 0.463

Depth of cut (mm) X3 = ap 0.25 0.36 0.61 1.04 1.49
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– Cutting tool: gundrills of 12.1 mm diameter were used. The material of their tips
was carbide M 30. The parameters of drill geometry were as discussed in [4].

The levels of the factors and intervals of factor variations are shown in Table 3.
At each point of the design matrix, the tests were replicated thrice. The sequence of
the tests was arranged using a generator of random numbers.

The results DOE are represented as
Surface roughness

Dsf ¼ 2:7446� 0:0198v� 33:9583f þ 0:2833vf ð6Þ

Roundness of drilled holes

DRðlmÞ ¼ �20:044þ 0:238vþ 396f þ 0:462Q

� 3:960vf � 0:005vQ� 6:600fQþ 0:066vfQ
ð7Þ

Equation (6) reveals that for the selected upper and lower limits of the factors,
the surface roughness in gundrilling depends not only on the cutting speed and feed
singly, but also on their interaction as follows from Eq. (7). Therefore, although the
cutting speed, feed, and cutting fluid flow rate have significant influence of
roundness, they cannot be judged individually due to their strong interactions.

Reading these examples, one can wonder what seems to be a problem with
factors’ interactions? The factors and their interaction are accounted for in the
models obtained by full factorial DOEs in the discussed examples. The problem,
however, is in the number of factors included in these DOE. For example, in
Example 3, the surface roughness and roundness in gundrilling strongly depend not
only on the considered factors but also on the many parameters of the gundrill
geometry (e.g., the point angles of the outer and inner cutting edges, backtaper,
margin width [10]) not included as factors in the test.

Full factorial DOE allows accurate estimation of all factors involved and their
interactions. However, the cost and time need for such a test increase with the
number of factors considered. Normally, any manufacturing test includes a great
number of independent variables. In the testing of drills, for example, there are a
number of tool geometry variables (the number of cutting edges, rake angles, flank

Table 3 The levels of factors and their intervals of variation

Level of factors Code vc (m/min) f (mm/rev) Q (l/min)

Basic 0 100 0.07 60

Interval of variation Δxi 15 0.02 20

Upper +1 115 0.09 80

Lower −1 85 0.05 40
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angles, cutting edge angles, inclination angles, side cutting edge back taper angle,
etc.) and design variables (web diameter, cutting fluid holes shape, their
cross-sectional area and location, profile angle of the chip removal flute, length of
the cutting tip, the shank length and diameter, etc.) that affect drill performance.

Table 4 shows the number of runs needed for the full factorial DOE where the
two levels of factors variation are considered (as that used in Example 3). If one
runs more accurate DOE discussed in Examples 1 and 2, i.e., using the rotatable
central composite design with five levels, the number of tests will be even greater.

The time and cost constraints on such DOE are definitely important in the DOE
planning stage. In metal cutting tests, however, other constraints should be con-
sidered as they can be decisive. The major problem is with a great number of
cutting tools and a significant amount of the work material needed to carry out the
tests. It is difficult to keep the parameters of these tools and properties of the work
material within limits needed to obtain statistically reliable results when the test
program is too large. If the variations of these parameters and properties are also
included in DOE, a virtually infinite number of runs would be needed to complete
the study.

One may further argue that omitting the influence of the interactions is the price
to pay to keep DOE within the reasonable number of runs, and thus within rea-
sonable cost. To understand what can be missed in the test results, let us consider a
comparison of the result of tool life DOEs.

The first test is a 23 DOE, complete block with the test conditions as in Example 3.
The following result, presented as a correlation equation was achieved:

T ¼ e9:55d0:19w

v1:37c f 0:14
ð8Þ

The second test used to carry out the tool life test in gundrilling is the Group
Method of Data Handling (hereafter, GMDH) [11]. This kind of DOE is more
complicated than the above-discussed DOEs, but it has a number of advantages in
terms of the number of variables included in the test and objectivity of statistical
evaluation of the test results [12].

Eleven input factors were selected for the test. They are: x1 is the approach angle
of the outer cutting edge (φ1); x2 is the approach angle of the inner cutting edge
(φ2); x3 is the normal clearance angle of the outer cutting edge (α1); x4 is the normal
clearance angle of the outer cutting edge (α2); x5 is the location distance of the outer
cutting edge (c1); x6 is the location distance of the outer cutting edge (c2); x7 is the
location distance of the drill point with respect to the drill axis (md); x8 is the
location distance of the two parts of the tool rake face with respect to drill axis (mk);
x9 is the clearance angle of the auxiliary flank surface (α3); x10 is the cutting speed
(vc); x11 is the cutting feed (f). The design matrix is shown in Table 5.

The following result was obtained with GDMT DOE
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T ¼ 6:7020� 0:6518
a1

u2c2
� 0:0354

a2 ln c2
md

� 0:0005
u2
1

c2

þ 0:0168
ln c2
u1

� 2:8350
vf
u1

� 0:5743
c2md

ln a1u1

ð9Þ

The statistical model of tool life (Eq. 9) indicates that tool life in gundrilling is a
complex function of not only design and process variables but also of their inter-
actions. The inclusion of these interactions in the model brings a new level of
understanding about their influence on tool life. For example, it is known that the
approach angle of the outer cutting edge (φ1) is considered as the most important
parameter of the tool geometry in gundrilling because it has controlling influence on
tool life and on other important output parameters [13]. Traditionally, this angle
along with approach angle of the inner cutting edge (φ2) is selected depending on

Table 4 Two-level designs: minimum number of runs as a function of number of factors for full
factorial DOE

Number of factors Number of runs Number of runs Number of
repetitions

3 5

1 2 2 6 10

2 4 = 22 4 = 22 12 20

3 8 = 23 8 = 23 24 40

4 16 = 24 16 = 24 48 80

5 32 = 25 32 = 25 96 160

6 64 = 26 64 = 26 192 320

7 128 = 27 128 = 27 384 640

8 256 = 28 256 = 28 768 1280

9 512 = 29 512 = 29 1536 2560

10 1024 = 210 1024 = 210 3072 5120

Table 5 The levels of factors and their intervals of variation used in GMDH DOE

Levels x1
(°)

x2
(°)

x3
(°)

x4
(°)

x5
(mm)

x6
(mm)

x7
(mm)

x8
(mm)

x9
(°)

x10
(mm)

x11
(mm)

+2 34 24 20 16 1.50 1.50 16.0 17.5 20 53.8 0.21

+1 30 22 17 14 0.75 0.75 14.0 11.5 15 49.4 0.17

0 25 18 14 12 0.00 0.00 11.0 8.75 10 34.6 0.15

−1 22 15 11 10 −0.75 −0.75 8.75 6.0 5 24.6 0.13

−2 18 12 8 8 −1.50 1.50 6.0 3.5 0 19.8 0.11
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the properties of the work material. Although the contradictive influence of these
angles has been observed in practice, none of the studies reveals their correlations
with the cutting regime as suggested by Eq. (9). Moreover, three- and four-factor
interaction terms are found to be significant.

5 Need for a Screening Test

It is discussed above that although a full factorial DOE and GMDH methods allow
accurate estimation of all factors involved and their interactions, the cost and time
needed for such tests increase with the number of factors considered. Therefore, the
pre-process stage in a full factoring DOE is considered to be of high importance in
metal cutting studies [4] because pre-process decisions to be made at this stage are
crucial to the test, whereas they are not nearly formalized. Among them, the proper
selection of KPIVs is probably the most important.

The major problem in pre-process decision is the selection of KPIVs justifying
two important rules:

1. The number of factors should be kept to a possible minimum defined by ade-
quate time, resources, or budget to carry out the study. This is an obvious rule.

2. The second rule pointed out explicitly in the classical paper by Box and Hunter
[14] includes the assumptions that the observations are uncorrelated and have
equal variance. Note that this is next to impossible to verify the latter in practice.

Often, pre-process decisions rely on experience, available information, and
expert opinions and thus they are highly subjective. Even a small inaccuracy in the
preprocess decisions may affect the output results dramatically. Therefore, the
pre-process stage of full factorial DOE should be more formalized.

As discussed above, any machining test includes a great number of independent
variables. However, when many factors are used in DOE, the experiment becomes
expensive and time-consuming. Therefore, there is always a dilemma. On one hand,
it is desirable to take into consideration only a limited number of KPIVs carefully
selected by the experts. On the other hand, even if one essential factor is missed, the
final statistical model may not be adequate to the process under study.

Unfortunately, there is no simple and feasible way to justify the decisions made
at the pre-process stage about the number of KPIVs prior to the tests. If a mistake is
made at this stage, it may show up only at the final stage of DOE when the
corresponding statistical criteria are examined. Obviously, it is too late then to
correct the test results by adding the missed factor or interaction. However, being of
great importance, this problem is not the principal one.

The principal ‘silent’ problem of all experimental studies in metal cutting
including DOE studies is that the results obtained in the test are valid only for the
set of conditions used in the test, i.e., DOE studies in metal cutting are not efficient
(see Sect. 1). To explain this statement consider the common statistical represen-
tation of the results of metal cutting test for tool life and for the cutting force defined
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by Eqs. (1) and (2). The use of these equations in a simple DOE-assisted turning
test implies that the cutting force and tool life depend only on the parameters of the
machining regime under the fixed work material (kind, grade, and mechanical
properties), dimensions of the workpiece (diameter and length) [15], tool geometry
parameters (the tool cutting edge angles of the major and minor cutting edges, the
rake, clearance, and inclination angles, nose and cutting edge radii, etc.), tool
material, particularities of the tool holder, system runout, test setup rigidity, etc. If
one or more of the listed parameters is changed, the test results may not be valid for
the new machining conditions.

Another dimension of the discussed problem is that a certain (out of the listed)
parameter can be not important for one test condition, while for others it is of chief
importance. For example, the radius of the cutting edge does not have a significant
influence on rough turning of carbon steel where great cutting feeds are used. It,
however, becomes important in finish turning with shallow feeds. Moreover, it is of
crucial importance in turning of titanium alloys. Another example is backtaper.
Backtaper applied to a drill might not be a significant factor in drilling soft materials
or cast irons, but it is highly significant in machining titanium and aluminum alloys
having low elasticity modulus [10].

The theory of DOE offers a few ways to deal with such a problem [2]. The first
relies on the collective experience of the experimentalist(s) and the research team in
the determination of KPIVs. However, the more experience such a team has, the
more factors they recommend to include in DOE.

A second way is to use screening DOE [16]. This method appears to be more
promising in terms of its objectivity. Various screening DOEs are used when a great
number of factors are to be investigated using a relatively small number of tests
[17]. This kind of test is conducted to identify the significant factors and factors’
interactions for further analysis. In other words, the whole project is divided into
two stages. In the first stage, the important factors and interaction are determined.
These are used in a full factorial DOE in the second stage. In the author’s opinion,
this is the only feasible way to deal with the above-discussed principal problem.

For the further discussion on the selection of the adequate screening DOE, the
notion of the DOE resolution should be briefly introduced.

6 Resolution Level

In general, a particular kind of the statistical model which correlates the factors and
factor interactions with the chosen output is initially unknown due to insufficient
knowledge of the considered phenomenon. Thus, a certain approximation for this
model is needed. Experience shows [18] that a power series or polynomial (Taylor
series approximations to the unknown true functional form of the response variable)
can be selected as an approximation
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j¼1

bijxixj
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i¼1
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i 6¼j6¼k

xixjxk þ � � � ; ð10Þ

where β0 is the overall mean response, βi is the main effect of the factor (i = 1,2, …,
p), βij is the two-way interaction effect between the ith and jth factors, and βijk is the
three-way interaction effect between the ith, jth, and kth factors.

Experimental designs can be categorized by their resolution level. A design with
a higher resolution level can fit higher-order terms in Eq. (10) than a design with a
lower resolution level. If a high enough resolution level design is not used, only the
linear combination of several terms can be estimated, not the terms separately. The
word “resolution” was borrowed from the term used in optics. Resolution levels are
usually denoted by Roman numerals, with III, IV, and V being the most commonly
used. To resolve all of the two-way interactions, the resolution level must be at least
V [19]. Four resolution levels and their meanings are given in Table 6.

7 Using Fractional Factorial DOEs for Factors Screening

A type of orthogonal array design which allows experimenters to study the main
effects and some desired interaction effects in a minimum number of trials or
experimental runs is called a fractional factorial design [2]. These fractional fac-
torial designs are the most widely and commonly used types of design in industry.

In the introduction of this type of DOE, the following rationale is provided. In
theory, it is possible that every variable that is tested has interactions with every
specific value of every other variable. In practice, this is usually not the case.

Table 6 Resolution levels and their meaning

Resolution
level

Meaning

II Main effects are confounded with others. In other words, main effects are
linearly combined with each other (βi + βj)

III Can estimate main effects, but they may be confounded by two variable
interactions. In other words, main effects are linearly combined with two-way
interactions (βi + βjk)

IV Can estimate main effects unconfounded by two variable interactions. Can
estimate two variable interactions, but they may be confounded by other two
variable interactions. It means that main effects are linearly combined with
three-way interactions (βi + βjkl) and two-way interactions with each other
(βij + βkl)

V Can estimate main effects unconfounded by three (or lower) variable
interactions. Main effects and two-way interactions are not linearly combined
except with higher-order interactions (βi + βjklm) and (βij + βklm)
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During tests, one may discover that many or even most of the elements that have
been decided to include do not impact performance at all. They simply do not affect
the output variable. It is also common that strong interactions between two variables
exist but that higher-order interactions (among three or more variables) are insig-
nificant. In such cases, the behavior of the output variable can be described by
looking at the main effects and a few low-order interactions (involving two vari-
ables). Unfortunately, not much attention is paid to the described limitation. In other
words, no effort is made to verify that these limitations are applicable in a particular
test.

The mentioned basic idea of the fractional factorial design arises as a conse-
quence of three empirical principles commonly accepted in the testing community:

1. Hierarchical Ordering Principle. Lower-order effects are more likely to be
important than higher-order effects. Effects of the same order are equally likely
to be important. This principle suggests that when resources are scarce (i.e., the
data collection rate low), priority should be given to estimating main effects and
lower-order interactions.

2. Effect Sparsity Principle. The numbers of relatively important effects in a fac-
torial experiment are small. This is another formulation of the 80/20 rule. Only a
few variables combine to produce the biggest effects, and all of the rest will not
matter nearly as much.

3. Effect Heredity Principle. In order for an interaction to be significant, at least
one of its parent factors should be significant. This is another application of
common sense. If a variable does not produce any big effects of its own (i.e., it is
benign or negligible), it is unlikely to do so when combined with something
else. It may be that a big interaction effect is produced by variables that do not
show the largest main effects, but at least one of the variables involved in an
interaction will usually show some main effect.

The underlying rationale behind fractional factorial design is that one can collect
data on a fraction of the recipes needed for an equivalent full factorial design and
still maximize the model’s predictive value.

Fractional factorial designs are expressed using the notation lk−p (l is the com-
mon branching factor for all variables (the number of levels of factors) in the test;
k is the number of variables (factors) investigated, and p describes the size of the
fraction of the full factorial search space used. 1/2p represents the fraction of the full
factorial 2 k [20]. For example, 2(5−2) is a 1/4th fraction of a 25 full factorial DOE.
This means that one may be able to study 5 factors at 2 levels in just 8 experimental
trials instead of 32 trials. In mathematical terms, p is the number of generators
(elements in your model that are confounded and cannot be estimated indepen-
dently of each other). In other words, when p is increased, some of the input
variables are not independent and can be explained by some combination of the
other input variables or their interactions.

Creating a proper fractional factorial design is beyond the scope of this chapter.
The basic steps are as follows:
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• Based on the generators (see above) of the chosen design, one can determine the
defining relation.

• The defining relation specifies the alias structure.
• A fractional factorial experiment is created from a full factorial experiment by

using the chosen alias structure.

One common constraint on fractional factorial tests is that the branching factor is
two for all variables (i.e. l = 2). The methods for creating custom test designs
outside of this constraint are complex. Many testers simply copy “standard” designs
from statistical texts or use standard DOE software packages, and thus restrict
themselves to a choice of variables and branching factors that fit the model.

7.1 Short Overview of Common Fractional Factorial
Methods

Although there is some difference in common fractional factorial methods, their
basic predictive power, required data sample size, and underlying assumptions are
pretty similar. The main difference lies in the shape of the search spaces that each
can be used for. So if one is going to use any of the methods below, the final
decision should be based on one’s familiarity with each and the number and
branching factor of the variables included in the test.

In the following sections, the sparsest fractional factorial approaches are
described in detail:

• Plackett–Burman,
• Latin squares,
• Taguchi method.

There is no reason to prefer the Taguchi method over Plackett–Burman or Latin
squares. All three fractional factorial methods suffer from the same fundamental
issues. These problems are a direct consequence of their origins in manufacturing.
Let us take a look at some of the characteristics of this original environment:

1. Expensive prototypes. The underlying assumption is that creating alternative
recipes is difficult, time-consuming, or expensive. When applications involve
physical processes or manufacturing technology, this is indeed the case. So the
goal is to minimize the required number of recipes (also called “prototypes” or
“experimental treatments”) in the experiment.

2. Small test sizes. A direct consequence of the expensive prototypes is that one
needs to keep the number of elements that he or she tests to an absolute min-
imum, and focus only on the most critical variables.

3. No interactions. As another consequence of the expensive prototypes, one can
only measure the main effects created by the included variables. The small test
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size and expensive data collection force one to assume very sparse fractional
factorial models that cannot accurately estimate even two variable interactions.

4. High yields. In most cases, the process or outcome that one is measuring had a
high probability of success.

5. Continuous variables. Many of the input variables involved in the tests were
continuous (e.g., temperature, cutting force). Although one had to pick specific
levels of the variable for the test, he or she could often interpolate between them
to estimate what would happen at non-sampled settings of the variable.

These approaches were transplanted to the manufacturing tests (and machining
tests in particular) because of their relative simplicity and familiarity.
Unfortunately, the assumptions that accompanied them came along for the ride,
even though they were not applicable to the new environment where factors’
interactions may play a significant role.

All three listed fractional factorial methods are resolution III designs. It implies
that they can only estimate the main effects in the model. In other words, they
cannot capture all possible two-variable interactions (or any higher-order interac-
tions). Some of them explicitly assume that there are no interactions. They use this
radical assumption to dramatically lower the number of sampled recipes and the
amount of data required to estimate the main effects. An important additional
requirement for all of these approaches is that the data collection is balanced across
all possible values of a variable.

Let us assume that one wants to collect data for each of the variable main effects
in the examples that follow. He or she can construct a series of increasingly larger
tests and see how to achieve the desired results with only a few recipes. The
simplest case is an A-B split test containing two recipes, a and b [2, 8]. He or she
needs to split the traffic 50/50 between a and b. Therefore, two recipes are needed to
measure the two values of variable V1. These two recipes represent the entire search
space.

Now imagine that one has two variables, each with a branching factor of two.
This results in four possible recipes: aa, ab, ba, and bb. Assume further that one
chooses to sample only from recipes aa, and bb (still only two recipes as in the
previous example). Note that half the data collected involves V1a (from recipe aa),
while the other half involves V1b (from recipe bb). Similarly, half the data covers
V2a (from recipe aa), while the other half involves V2b (from recipe bb). As you
can see, equal amounts of data on each main effect are collected, which was done
by sampling only half of the total search space (two out of four recipes).

Let us extend the considered example to three variables, each with a branching
factor of two. This results in eight possible recipes: aaa, aab, aba, abb, baa, bab,
bba, and bbb. Assume that one chooses to sample only from recipes aaa and bbb
(still only two recipes). Note that half the data that one collects involves V1a (from
recipe aaa), while the other half involves V1b (from recipe bbb). Similarly, half the
data collected covers V2a (from recipe aaa), while the other half involves
V2b (from recipe bbb). A half of the collected data will also cover V3a (from recipe
aaa), while the other half will cover V3b (from recipe bbb). As can be seen, equal
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amounts of data have been collected again on each main effect, and have done it by
sampling only a quarter of the total search space (two out of eight recipes).

Of course one cannot continue to sample just two recipes and still cover all main
effects at larger test sizes. But by clever test construction, one can keep the number
of unique recipes surprisingly small (especially when considered as a proportion of
the total search space).

Underlying the use of fractional factorial methods is the assumption that creating
a test run is difficult or time-consuming. Therefore, one needs to keep the number of
recipes that he or she samples as low as possible. This may have been true in the
manufacturing setting. For practical data collection purposes, it does not matter how
many unique recipes one has in the test. When recipe construction is expensive and
time-consuming, a heavy price is paid during data gathering. By sampling very
limited recipes, one can significantly reduce the cost of testing. In doing so,
however, he or she destroys the ability to do a comprehensive analysis and find
variable interactions later.

7.1.1 Plackett–Burman DOE

The idea and principles of the DOE was published by R.L. Plackett and J.
P. Burman in their paper “The Design of Optimal Multifactorial Experiments” in
1946 [21]. In it, they describe a very efficient and economical method for con-
structing test designs. The requirements for a Plackett–Burman (PB) design are a
branching factor of two on all variables, and the number of recipes sampled must be
a multiple of four. PB designs exist for 12, 20, 24, 28, and larger sizes. Each PB
design can estimate the main effects of one fewer variable than the size of the
design (e.g., the PB design with 24 recipes may be used for an experiment con-
taining up to 23 two-value variables).

PB designs are all resolution III and are known as saturated main effect designs
because all degrees of freedom in the model are used to estimate the main effects.
PB designs are also known as nongeometric designs. Because of their construction,
they do not have a defining relationship (since interactions are not identically equal
to main effects). They are efficient at detecting large main effects (assuming that all
interactions are relatively small). It was discovered in the 1990s that PB designs
have an additional interesting property of being “3-projectible.” This means that
one can find important interactions involving any subset of three variables in the
design. The use of this remarkable property will be discussed further.

7.1.2 Latin Squares

Latin squares were first described by Euler in 1782 [22]. They are used for a
number of applications (including the popular Sudoku puzzles) and have extensive
mathematical literature describing them.
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Latin squares are square arrangements of numbers and can be of different sizes
(2 × 2, 3 × 3, etc.). Each position in the Latin square contains one of the numbers
(from 1 to n) arranged in such a way that no orthogonal (row or column) contains
the same number twice.

The two possible Latin squares of size 2 × 2 shown here are

1 2
2 1

� �
2 1
1 2

� �
ð11Þ

The 12 possible Latin squares of size 3 × 3 shown here are
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The number of possible Latin squares grows very quickly with the size (576 at
size 4 × 4, 161,280 at size 5 × 5, etc.)

Latin squares are used in experimental designs when input variables of interest
have a branching factor of greater than two, and there are assumed to be no
interactions among the input variables. The combination of the row and columns
labels with the cell contents in the Latin square defines a recipe in the experimental
design. For example, let us assume that one wants to understand the effect of four
different Co contents (%) in the carbide tool material on the radial accuracy (wear)
of a single-point cutter. If he or she has four tool holders and four operators
available, then a full factorial design (for a total of 64 recipes) can be employed.

However, if he or she is not really interested in which tool holder is better or
which operator is more productive, nor any minor interaction effects between tool
holders and operators and tool holders and machine tools, then other type of DOE
can be used. In other words, the major concern is to estimate the main effects. As
such, it is desirable to make sure that the main effects for tool holders and machine
tools do not bias the obtained estimates for the cobalt content. Hence, one can
randomize across all tool holders and operators by using the following 4 × 4 Latin
square design, illustrated in Table 7, where each letter represents one of the cobalt
contents being tested.

As can be seen, each operator will try cutting inserts of every cobalt content and
each machine tool will be run using inserts of every cobalt content. The assumption
that all variables are independent allows one to complete the study by sampling
only 16 recipes (instead of the full 64).
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7.1.3 Taguchi Method

Genichi Taguchi was a Japanese mathematician and a proponent of manufacturing
quality engineering. He focused on methods to improve the quality of manufactured
goods through both statistical process control and specific business management
techniques. Taguchi developed many of his key concepts outside of the traditional
Design of Experiments (DOE) framework and only learned of it later. His main
focus was on robustness—how to develop a system that performed reliably even in
the presence of significant noise or variation [23]. In traditional DOE, the goal is to
model the best-performing recipe. In other words, the higher the value of the output
variable (e.g., tool life), the better. So the goal is to find the highest mean. When
taking repeated samples, any variation is considered a problem or a nuisance.

Taguchi had a different perspective. He felt that manufacturing quality should be
measured by the amount of deviation from the desired value. In other words, he was
concerned not only with the mean, but also with the amount of variation or “noise”
produced by changing the input variables. Hence optimization from the Taguchi
perspective means finding the best settings for the input variables, defined as the
ones producing the highest signal-to-noise ratio (the highest mean with the least
amount of variation). An important consideration is how to keep the noise in the
output low even in the face of noisy inputs.

The numbers of variables (factors) and alternative values for each variable
(levels) is arbitrary in metal cutting optimization tests. One can easily find addi-
tional variables to test, or come up with alternative values for each variable.
Unfortunately, basic Taguchi arrays exist only for the following experimental
designs: L4: Three two-level factors; L8: Seven two-level factors; L9: Four
three-level factors; L12: Eleven two-level factors; L16: Fifteen two-level factors;
L16b: Five four-level factors; L18: One two-level and seven three-level factors;
L25: Six five-level factors; L27: Thirteen three-level factors; L32—Thirty-two
two-level factors; L32b: One two-level factor and nine four-level factors; L36:
Eleven two-level factors and twelve three-level factors; L36b: Three two-level and
twelve three-level factors; L50: One two-level factor and eleven five-level factors;
L54: One two-level factor and twenty-five three-level factors; L64: Twenty-one
four-level factors; L81: Forty three-level factors.

Orthogonal arrays are particularly popular in applications Taguchi methods in
technological experiments and manufacturing. An extensive discussion is given in
[24–26]. For simplest experiments, the Taguchi experiments are the same as the

Table 7 Design matrix Machine tool

Operator 1 2 3 4

1 A B C D

2 B A D C

3 C D A B

4 D C B A
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fractional factorial experiments in the classical DOE. Even for common experi-
ments used in the industry for problem solving and design improvements, the main
attractions of the Taguchi approach are standardized methods for experiment
designs and analyses of results. To use the Taguchi approach for modest experi-
mental studies, one does not need to be an expert in statistical science. This allows
working engineers on the design and production floor to confidently apply the
technique.

While there is not much difference between different types of fractional factorial
methods for simpler experiment designs, for mixed level factor designs and
building robustness in products and processes, the Taguchi approach offers some
revolutionary concepts that were not known even to the expert experimenters.
These include standard method for array modifications, experiment designs to
include noise factors in the outer array, signal-to-noise ratios for analysis of
results, loss function to quantify design improvements in terms of dollars, treatment
of systems with dynamic characteristics, etc. [23].

Although the Taguchi method was developed as a powerful statistical method
for shop floor quality improvement, a way too many researchers have been using
this method as a research and even optimization method in manufacturing, and thus
in metal cutting studies (for example, [27–31]).

Unfortunately, it became popular to consider the use of only a fraction of the
number of test combinations needed for a full factorial design. That interest spread
because many practitioners do not take the time to find out the “price” paid when
one uses fractional factorial DOEs including the Taguchi method: (1) Certain
interaction effects lose their contrast so knowledge of their existence is gone;
(2) Significant main effects and important interactions have aliases—other ‘con-
founding’ interaction names. Thus wrong answers can, and often do come from the
time, money, and effort of the experiment.

Books on DOE written by “statistical” specialists add confusion to the matter
claiming that interactions (three-factor or higher order) would be too difficult to
explain, nor could they be important. The author wishes to remind to many stat-
isticians that the ideal gas law (1834 by Emil Clapeyron), known from high-school
physics as

PV ¼ nRT ð13Þ

(where P is the pressure of the confined gas, V is the volume of the confined gas,
n is the number of moles of gas, R is gas constant, T is the temperature) plots as a
simple graph. It depicts a three-factor interaction affecting y (response) as pressure,
or as volume. The authors of these statistical books/papers may have forgotten their
course in high-school physics.

The problem is that the ability of the Taguchi method is greatly overstated by its
promoters, who described Taguchi orthogonal tables as Japan’s “secret super
weapon,” which is the real reason for developing an international reputation for
quality. The major claim is that a large number of variables could now be handled
with practical efficiency in a single DOE. As later details became available, many
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professionals realized that these arrays were fractional factorials, and that Taguchi
went to greater extremes that other statisticians in the degree of fractionating.
According to the Taguchi method, the design is often filled with as many single
factors for which it has room. The design becomes “saturated” so no degrees of
freedom are left for its proper statistical analysis. The growing interest in the
Taguchi method in the research and optimization studies in manufacturing attests to
the fact that manufacturing researches either are not aware of the above-mentioned
“price” paid for apparent simplicity or know of no other way to handle more and
more variables at one time.

7.2 Two-Stage DOE in Metal Cutting Tests

By now, readers have probably determined the author’s preference for full factorial
over fractional factorial data collection in metal cutting studies. There is no effi-
ciency disadvantage to full factorial designs during the data collection stage and
significant advantages during the analysis stage. As discussed above, the major
limitation is in the number of factors included as the cost, time, and test accuracy
depend on this number. This problem can, and in the author’s opinion, should be
resolved by using two-stage approach to testing. Ideally, the first, simple, and
relatively inexpensive stage of DOEs in metal cutting should provide a help in
determining the significant factors and interactions to be included in any kind of full
factorial DOE to be used in the second stage of the study. Therefore, a closer look at
various fractional factorial DOEs should be taken to find which one can justify the
above-mentioned requirements.

Most Taguchi method test arrays are resolution III design, and thus can only
estimate the main effects in the model. In other words, they cannot capture all
possible two-variable interactions (or any higher-order interactions). Some of them
explicitly assume that there are no interactions. They use this radical assumption to
dramatically lower the number of sampled recipes and amount of data required to
estimate the main effects. An important additional requirement for all of these
approaches is that data collection is balanced across all possible values of a variable
(i.e., you cannot use uneven data sampling, or it may complicate or throw off your
use of standard data analysis).

8 The Use of Plackett and Burman DOE as a Sieve DOE
in Metal Cutting

As discussed above, Plackett and Burman [21] developed a special class of fractional
factorial experiments that includes interactions.When PBDOE is conducted properly
using a completely randomized sequence, its distinctive feature is high resolution.
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Despite a number of disadvantages (for example, mixed estimation of regression
coefficients), this method utilizes high-contrast diagrams for the factors included in
the test as well as for their interactions of any order. This advantage of PB DOE is
useful in screening tests in metal cutting studies [32].

The method has its foundation in the Plackett–Burman design ideas, an over-
saturated design matrix and the method of random balance. PB DOE allows the
experimentalist to include as many factors (impute variables) as needed at the first
phase of the experimental study and then to sieve out the nonessential factors and
interactions by conducting a relatively small number of tests. It is understood that
no statistical model can be produced in this stage. Instead, this method allows the
experimentalist to determine the most essential factors and their interactions to be
used at the second stage of DOE (full factorial or RSM DOE).

PB DOE includes the method of random balance. This method utilizes over-
saturated design plans where the number of tests is fewer than the number of factors
and thus has a negative number of degrees of freedom [33]. It is postulated that if
the effects (factors and their interactions) taken into consideration are arranged as a
decaying sequence (in the order of their impact on the variance of the response),
this will approximate a ranged exponential-decay series. Using a limited number of
tests, the experimentalist determines the coefficients of this series and then, using
the regression analysis, estimates the significant effects and any of their interactions
that have a high contrast in the noise field formed by the insignificant effects.

The initial linear mathematical model, which includes k number of factors
(effects), has the following form:

y ¼ a0 þ a1x1 þ � � � þ akxk þ a12x1x2 þ � � � þ ak�1;kxk�1xk þ d; ð14Þ

where a0 is the absolute term often called the main effect, ai (i = 1, k) are the
coefficients of linear terms, aij (i = 1, …, k − 1; j = i + 1, …, k, i ≠ j) are the
coefficients of interaction terms, and δ is the residual error of the model.

The complete model represented by Eq. (14) can be rearranged as a split of a
linear form considering that some xi designate the iterations terms as

y ¼ a0 þ a1x1 þ � � � þ ak�l;kxk�l þ b1z1 þ b2z2 þ � � � blzl þ d

¼ a0 þ a1x1 þ � � � þ ak�l;kxk�l þ D
; ð15Þ

where

D ¼ b1z1 þ b2z2 þ � � � blzl þ d ð16Þ

and

r2fDg ¼ b21r
2fz1g þ b22r

2fz2g � � � þ b2l r
2fzlg þ r2fdg ð17Þ

In the construction of the split model represented by Eq. (15), (k − l) significant
effects were distinguished and l effects were assigned to the noise field. Naturally,
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the residual variance r2fDg is greater than the tests variance r2fdg so that the
regression coefficients in Eq. (15) will be estimated with greater errors and,
moreover, the estimates of the coefficients of this model are mixed. Therefore, the
sensitivity of the random balance method is low so that the resultant model has a
little significance, and thus should not be used as a valid statistical model. However,
this method is characterized by the great contrast of essential effects, which could
be distinguished easily on the noisy fields formed by other effects. The latter makes
this method the simplest yet highly reliable screening method that can be used at the
first stage of testing to distinguish the significant factors and interaction to be used
in the full factoring DOE including RSM.

The step-by-step methodology of the discussed test was presented by the author
earlier using a tool life test of the gundrill as an example [31]. The test was carried
out using eight parameters of the gundrill geometry as the input variables. The test
result shows two linear effects and one interaction having the strongest effects on
tool life. As was expected (well known from the practice of gundrilling [10]), the
strongest influence on tool life has the drill point offset md. The second strongest
effect was found to be the approach angle of the outer cutting edge, φ1. This result is
also expected. What was not expected is a strong influence of the interaction term
“shoulder dub-off location—the approach angle of the outer cutting edge.” This
distinguished interaction has never been considered before in any known studies of
gundrilling. Using this factor and results of the full factorial DOE, a new pioneering
geometry of gundrills has been developed (for example US Patent 7147411).

Another implementation of this DOE is considered in this chapter. It deals with
sieve test to reveal significant factors of the tool geometry of 5 mm drill that affect
tool life. The parameters chosen for the test and their levels are shown in Table 8.
The construction of this table is based on the manufacturing practice and pre-
liminary observations of the performance of this drill type in machining of a
medium-carbon steel of HB 149 hardness.

The design matrix was constructed as follows. All the selected factors were
separated into two groups. The first group contained factors x1; x2; x3; x4, form a
half-replica 24−1 with the defining relation I ¼ x1x2x3x4. In this half-replica, the
factors’ effects and the effects of their interactions are not mixed. The second
half-replica was constructed using the same criteria. A design matrix was con-
structed using the first half-replica of the complete matrix and adding to each row of
this replica a randomly selected row from the second half-replica. Three more rows
were added to this matrix to assure proper mixing and these rows were randomly
selected from the first and second half-replicas. Table 9 shows the constructed
design matrix.

As soon as the design matrix is completed, its suitability should be examined
using two simple rules. First, a design matrix is suitable if it does not contain two
identical columns having the same or alternate signs. Second, a design matrix
should not contain columns whose scalar products with any other column result in a
column of the same (“+” or “−”) signs. The design matrix shown in Table 9 was
found suitable as it meets the requirements set by these rules.
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The results of the first round of the tests are shown in Table 9 as the responses �yi
i … 11. They are the average tool life calculated over three independent tests
replicas (3 replicas were used) obtained under the indicated test conditions.
Analysis of these results begins with the construction of a correlation (scatter)
diagram shown in Fig. 2. Its structure is self-evident. Each factor is represented by a
vertical bar having on its left side values (as dots) of the response obtained when
this factor was positive (the upper value), while the values of the response corre-
sponding to lower lever of the considered factor (i.e., when this factor is negative)
are represented by dots on the right side of the bar. As such, the scale makes sense
only along the vertical axis.

Each factor included in the experiment is estimated independently. The simplest
way to do this is to calculate the distance between means on the left and right side
of each bar. These distances are shown on the correlation diagram in Fig. 2.
Another way is to take into account the number of points in the upper and lower
part of the scatter diagram. For example, there are three dots for factor x4 (Fig. 2) at
the (+) level that have resonances greater than the greatest response on the (−) level.
Similarly, there are four dots at the (−) level that have responses smaller than the
smallest response at the (+) level. The total number of distinguishing points for
factor x4 is seven. In Fig. 2, a large group of such dots is signified by braces. The
greater the number of distinguishing points, the stranger effect the corresponding
factor has.

As seen in Fig. 2, factors x1 and x4 can be easily distinguished after the first
sieve. Thus these two factors are selected for analysis. The effects of factors are
calculated using special correlation tables. A correlation table (Table 10) was
constructed to analyze the considered two factors. Using the correlation table, the
effect of each selected factor can be estimated as

Table 9 Design matrix

Run Factors Average tool life (min) Corrections

x1 x2 x3 x4 x5 x6 x7 x8 �y �yc1 �yc2
1 +1 +1 −1 −1 +1 −1 +1 −1 10.80 16.80 13.60

2 +1 +1 +1 +1 −1 +1 +1 −1 17.20 10.08 6.83

3 −1 +1 −1 −1 +1 +1 −1 +1 9.09 9.09 2.64

4 −1 −1 +1 +1 +1 −1 −1 +1 42.00 28.26 21.81

5 +1 −1 −1 +1 −1 −1 +1 −1 16.91 9.17 9.17

6 +1 −1 +1 −1 +1 +1 −1 −1 19.46 25.46 19.01

7 −1 −1 −1 −1 −1 +1 −1 +1 10.21 10.21 10.21

8 −1 +1 −1 +1 −1 −1 +1 +1 27.31 13.57 13.57

9 +1 −1 −1 −1 −1 +1 −1 +1 4.54 10.54 10.54

10 −1 +1 +1 +1 −1 +1 −1 −1 36.00 22.26 19.01

11 +1 −1 +1 −1 −1 −1 +1 −1 12.20 18.20 14.95
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Xi ¼ �y1 þ �y3 þ � � � þ �yn
m

� �y2 þ �y4 þ � � � þ �yn�1

m
; ð18Þ

where m is the number of �y in Table 10 for the considered factor assigned to the
same sign (“+” or “−”). It follows from Table 10 that m = 2.

The effects of the selected factors were estimated using data in Table 10 and
Eq. (18) as

X1 ¼ �y1�1 þ �y1�3

2
� �y1�2 þ �y1�4

2
¼ 17:37þ 11:75

2
� 31:5þ 9:65

2
¼ �6:00 ð19Þ

X4 ¼ �y1�1 þ �y1�2

2
� �y1�3 þ �y1�4

2
¼ 17:37þ 31:50

2
� 11:75þ 9:65

2
¼ 13:74 ð20Þ

The significance of the selected factors is examined using the Student’s t-cri-
terion, calculated as

t ¼ �y1�1 þ �y1�3 þ � � � þ �y1�nð Þ � �y1�2 þ �y1�4 þ � � � þ �y1�ðn�1Þ
� �
ffiffiffiffiffiffiffiffiffiP
i

s2i
ni

r ; ð21Þ

where si is the standard deviation of ith cell of the correlation table defined as

Fig. 2 Correlation diagram (original data)
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si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
y2i

ni � 1
�

P
i
yi

� �2

niðni � 1Þ

vuuut
; ð22Þ

where ni is the number of terms in the considered cell.
For the considered case, the Student’s criteria, calculated using Eqs. (21) and

(22), are tX1 ¼ �2:37 and tX4 ¼ 5:18. A factor is considered to be significant if
tXi [ tcr where the critical value, tcr for the Student’s criterion in found in a sta-
tistical table for the following number of degrees of freedom

fr ¼
X
i

ni � k ¼ 11� 4 ¼ 7; ð23Þ

where k is the number of cells in the correlation table.
For the considered case, t0.05 = 2.365 and t0.10 = 1.895 (Table 5.7 in [34]) so that

the considered factors are significant with a 95 % confidence level.
The discussed procedure is the first stage in the proposed sieve DOE. This first

stage allows the detection of the strongest factors, i.e., those factors that have the
strongest influence on the response. After these strong linear effects are detected,
the size of “the screen” to be used in the consecutive sieves is reduced to distinguish
less strong effects and their interactions. Such a correction is carried out by adding
the effects (with the reverse signs) of the selected factors (Eqs. 19 and 20) to column
�y of Table 9, namely by adding +6.00 to all results at level “þx1” and −13.74 to all
results at level “þx4.” The corrected results are shown in column �yc1 of Table 9.

Following the procedure presented by the author earlier [7] and using the results
shown in column �yc1 of Table 9, one can construct a new correlation diagram
shown in Fig. 3, where for simplicity, only a few interactions are shown although
all possible interactions have been analyzed through constructing a new correlation
table. Evaluation of the effects obtained and the subsequent corrections of the
results are carried out till the remaining effects are found insignificant as having less
than 10 % significance level. In the considered case, the sieve procedure was
stopped after the second sieve (the corrected results are shown in column �yc2 of
Table 9). Aftereffects X7 and X8 of the corresponding factors were found

Table 10 Correlation table (original data)

Estimated
factor

+x1 −x1 Estimated
factor

+x1 −x1

+x4 17.82
16.91
—————X

y1�1 ¼ 34:73

�y1�1 ¼ 17:37

36.00
42.00
27.31
—————X

y1�2 ¼ 105:31

�y1�2 ¼ 31:50

−x4 10.80
19.46
4.54
12.20
—————X

y1�3 ¼ 47:00

�y1�3 ¼ 11:75

9.09
10.21
—————X

y1�4 ¼ 19:30

�y1�4 ¼ 9:65
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insignificant because the calculated student’s coefficients for these factors are
t7 = 0.79 and t8 = 0.87, whereas the critical value, tcr(0.10) = 1.865.

A scatter diagram was constructed (Fig. 4) to visualize the screening effects. As
can be seen, the scatter of the factors reduces after each screening. The results of
factors screening are shown in Table 11. Figure 5 shows the significance of the
distinguished effects in terms of their influence on tool life. As seen, four linear
effects and one interaction were distinguished.

The analysis of the obtained results shows that the web diameter has the
strongest effect on tool life. This result was expected by the known experience [10].
What was not expected is the second strongest effect of the interaction of the
clearance angle with the point angle, particularly the negative sign of this inter-
action. The meaning of the negative sign of x2x3 and x1 is that tool life decreases
when these parameters increase. The obtained effect of factors x3, x1, and x5 are
known from drilling practice.

Consider another example of the use of PB DOE in face milling of a gray cast
iron pump cover with a face milling tool equipped with PCBN cartridges. Twelve
input factors, including machining regime and tool geometry parameters, were
included in DOE, namely x1 is the cutting speed (m/min); x2 is the cutting feed
(mm/rev); x3 is the depth of cut (mm); x4 is the length of the chamfer cutting edge
(mm); x5 is the normal rake angle (°); x6 is the normal clearance angle of the major
cutting edge (°); x7 is the normal clearance angle of the minor cutting edge (°); x8 is

Fig. 3 Correlation diagram (first sieve)
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Fig. 4 Scatter diagram

Table 11 Summary of the screening test

Stage of analysis Effects Value of effects Calculated t-criteria

Initial data X1 −6.00 2.37

First sieve X4 13.74 5.18

X3 6.36 2.38

X5 3.20 1.91

X2
a

– –

Second sieve X7 2.71 0.87

X8 2.03 0.79
aFactor is distinguished due to its interaction with factor x3 with effect −7.65 (t23 = 1.97)

Fig. 5 Significance of the
effects distinguished by the
sieve DOE (Pareto analysis)

30 V.P. Astakhov



the normal clearance angle of the chamfered part of the cutting edge (o); x9 is the
edge preparation parameter (mm); x10 is the tool cutting edge angle of the major
cutting edge (°); x11 is the tool cutting edge angle of the minor cutting edge (°); x12
is the inclination (in the tool-in-holder system [35]) angle of the major cutting edge
(°). The levels of factors are shown in Table 12. Experience shows that these
include parameters may affect tool life; some of them significantly whereas other
might have much less significant effect depending on the machining conditions,
setting level of factors, and other test particularities.

The tool life, T measured by the operating time over which the roughness of the
milled surface remains less than or equal to Ra = 1.25 microns was chosen as the
response (the test output). Pre-DOE experience shows that the flank wear is the
predominant wear mode under the test conditions. As such, the average flank wear
VBB = 0.3–0.5 mm was observed at the end of tool life. Moreover, it particular
value in this range depends on the test conditions (Table 12).

The design matrix was constructed by random mixing of four one-fourth replicas
the matrix of the full factorial DOE. All the selected factors were separated into two
groups. Factors x1, x2, x3, x4, x5, x6 are gathered in the first group used to contract a
one-fourth replica of the full factorial DOE 26−2 with defining contrast 1 = x1 x2 x3
x5. In this replica, the effects of the factors are not mixed. The same way is used to
construct replica for the other half of the factors. A design matrix was constructed
using the first half-replica of the complete matrix and adding to each row of this
replica a randomly selected row from the second replica. Table 13 shows the
constructed design matrix. As before, the suitability of the constructed design
matrix was analyzed and the constructed matrix is proven to be suitable.

In Table 13, the responses Ti i … 11 are the average tool life calculated over
three independent tests replicas obtained under the indicated test conditions.

Analysis of the result of sieve DOE begins with the construction of a correlation
(scatter) diagram shown in Fig. 6. Its structure is self-evident [4]. Each factor is
represented by a vertical bar having on its left side values (as dots) of the response
obtained when this factor was positive (the upper value), while the values of the
response corresponding to lower lever of the considered factor (i.e., when this factor
is negative) are represented by dots on the right side of the bar. As such, the scale
makes sense only along the vertical axis.

Each factor included in the experiment is estimated independently. The simplest
way to do this is to calculate the distance between the means on the left and right
side of each bar. These distances are shown on the correlation diagram in Fig. 6. As

Table 12 The levels of factors selected for the sieve DOE

Factors x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
+1 1580 0.25 0.50 2.0 +5 20 20 20 0.2 60 30 10

−1 700 0.05 0.05 0.5 −15 5 5 5 0 30 10 0

0 1180 0.75 0.275 1.25 −5 12.5 12.5 12.5 0.1 45 20 5
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Table 13 Design matrix

Number
of test

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Average
tool life,
T (min)

Correction,
Tc

1 + − − + − − + + − − + − 1163.5 1162.5

2 + – + – – + – – + – – + 106 26.0

3 – + – – – + + – – + + + 10 423.75

4 + + + + + + + + + + + + 0.05 423.80

5 + + – – + – – – – + – – 50 582.18

6 – + + + – – – + + + – – 0.0 542.18

7 + – + + + – – – – + – + 400 430.00

8 – – – – + + + + + + – – 645 510.67

9 – – + – + – + – + – + – 770 770.00

10 – – – + + + – + – – – + 1155 1020.57

11 – + + – – – + + – – – + 10 552.10

12 – – + – – + + – – + – – 5 134.40

13 – – – – – – – + + + + + 270 270.00

14 + + + – + – – + – – + – 25 433.75

15 + + – + – + – – + – + – 20 487.75

16 – + – + + – + – + – – + 88 924.18

17 0 0 0 0 0 0 0 0 0 0 0 0 245 924.18

Fig. 6 Correlation diagram (original data)
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can be seen, these are the greatest for factors x2 (the cutting feed) and x4 (the length
of the chamfer cutting edge), and thus these two factors are selected for analysis.

The effects of factors are calculated using a correlation table shown in Table 14.
As can be seen, the effects for the considered case are X2 = −524.18 and
X4 = 134.63.

The Student’s criteria for the selected factors were calculated to be t2 = 6.87 and
t4 = 5.24. The critical value of the Student’s criterion, tcr is found in a statistical
table for the following number of degrees of freedom:

fr ¼
X
i

ni � k ¼ 12; ð24Þ

where k is the number of cells in the correlation table.
For the considered case, t0.05 = 2.18 (Table 5.7 in [34]). Therefore, the con-

sidered factors are significant with a 95 % confidence level as t2 > t4 > t0.05, i.e.,
they have a significant influence on tool life.

The discussed procedure concludes the first stage of the sieve. The corrected
results of the first sieve results are presented in column Tc of Table 13. Using the
data of this table, a new correlation diagram is constructed as shown in Fig. 7. As
can be seen in this figure, the scatter of the analyzed data reduces significantly after
each sieve.

An analysis of Fig. 7 allowed to distinguish three factors, namely x3 (the depth of
cut), x8 (the normal clearance angle of the chamfered part of the cutting edge), and
x10 (the tool cutting edge angle of the major cutting edge) for further analysis.

A new correlation table (Table 15) was constructed to analyze the considered
factors. The effects of factors were calculated using this table: X3 = −127.50,
X8 = 105.40, and X10 = 110.1. The Student’s criteria for the selected factors were
calculated to be t3 = 5.01, t8 = 4.42, and t10 = 4.91. For the considered case,
t0.05 = 2.18 (Table 5.7 in [34]). Therefore, the considered factors are significant with
a 95 % confidence level as t2 > t4 > t0.05, i.e., they have a significant influence on
tool life. The critical value of the Student’s criterion, tcr is found in a statistical table

Table 14 Correlation table
(original data)

Estimated factor +x2 −x2
+x4 0.05

0.05
80
82
—————
T1 ¼ 40:1

1162.5
498
1155
0
—————
T2 ¼ 701:87

−x4 16
50
10
25
—————
T3 ¼ 25:25

108
645
770
270
—————
T4 ¼ 448:25
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for the number of degrees of freedom fr ¼
P
i
ni � k ¼ 16� 2 ¼ 8 at 95 % sig-

nificance level to be t0.05 = 2.306 (Table 5.7 in [34]).
The results of factors screening are shown in Table 16. Figure 8 shows the

significance of the distinguished effects in terms of their influence on tool life. The
analysis of the obtained results shows that five factors out of twelve included in the
test are found to be significant, and thus should be included in the full factorial test.

As expected, the cutting feed (factor x2) has the strongest effect on tool life under
the selected tool life criterion. The second strongest effect has the length of the
chamfer of the cutting edge (factor x4). This was not obvious before testing.

Fig. 7 Correlation diagram (first sieve)

Table 15 Correlation table (first sieve)

Estimated factor +x3 −x3
+x10 +x8 −x8 +x8 −x8

423.80
542.13
—————

430.00
−134.43
—————

510.57
270.00
—————

423.75
542.18
—————

−x10 552.18
432.75
—————

−26.00
770.00
—————

1162.50
1020.60
—————

487.75
624.18
—————

34 V.P. Astakhov



Influences of the depth of cut (factor x3) and the tool cutting edge angle of the major
cutting edge are common for metal machining in terms of their signs and effects.
The most interesting finding is the effect of the normal clearance angle of the
chamfered part of the cutting edge (factor x8). Using the result of the subsequent full
factorial DOE, and further optimization of this factor allowed an increase in tool life
by factor 5 while solving a long-standing problem in the automotive industry.
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Modelling and Optimization of Machining
with the Use of Statistical Methods
and Soft Computing

Angelos P. Markopoulos, Witold Habrat, Nikolaos I. Galanis
and Nikolaos E. Karkalos

Abstract This book chapter pertains to the use of statistical methods and soft
computing techniques that can be used in the modelling and optimization of
machining processes. More specifically, the factorial design method, Taguchi
method, response surface methodology (RSM), analysis of variance, grey relational
analysis (GRA), statistical regression methods, artificial neural networks (ANN),
fuzzy logic and genetic algorithms are thoroughly examined. As part of the design
of experiments (DOE) the aforementioned methods and techniques have proven to
be very powerful and reliable tools. Especially in machining, a plethora of works
have already been published indicating the importance of these methods.

1 Introduction

A model can be defined as an abstract system, equivalent to the real system it
represents in respect to its properties and characteristics. It can be used for calcu-
lations, analysis and predictions which would otherwise be expensive or in some
cases impossible to be carried out. The process of optimization is defined generally
as a process or methodology of making something as fully perfect, functional or
effective as possible.

Specifically, in common engineering practice, optimization involves a suitable
mathematical procedure which can provide through a well-ordered way the opti-
mum set of characteristics that is related to the optimum performance of a system.
More specifically, an optimization problem consists of a function, termed the
objective function that describes the goal of the process which needs to be
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minimized or maximized; a set of input variables termed the design variables,
whose optimum combination is required and a set of constraints that may be related
to the configuration of the problem and its physical characteristics. Then, by using
suitable heuristic algorithms, the area of possible solutions is searched in order to
determine the region when the optimum point lies in an ordered and efficient way.
Essentially using numerical optimization methods, the mathematical problem of
optimization, which consists of finding the extreme points of a function, is trans-
formed into a numerical procedure and considering the great amount of computa-
tional power available nowadays, a powerful tool for many applications is created.
It is worth noting that in real-life engineering problems, the evaluation of each set of
possible solutions is much more difficult than in cases of the optimization of
mathematical functions. Specifically, it can involve the numerical modelling and
simulation of a process and its duration can vary from seconds to hours in very
demanding problems. Thus, the optimization procedure has to be able to determine
the optimum with the less possible number of iterations in order to be efficient and
finish within a reasonable period of time.

Machining processes are examples of complicated systems in which modelling
and optimization have already found extended applications [1]. In the next para-
graphs the most commonly used statistical and soft computing methods used for the
modelling and optimization of machining processes are presented. For each method
discussed, the most important features are analysed. Furthermore, at the end of each
section, a list of references involving the application of the specific method in
machining is given. Finally, at the end of the book chapter, for the presentation of
an optimization procedure in a machining problem, a case study is examined.

2 Factorial Design Method

The factorial design method is a general family of statistical methods, employed for
the design of a scientific experiment. When an experiment is conducted using the
factorial design method, the effect of various factors on one or more response
variables can be successfully investigated. Each factor is generally considered as an
independent variable and is studied at various discrete subdivisions or levels,
namely discrete values that lie within a predefined range, appropriate for each
experiment. In early works, the importance and effectiveness of conducting com-
plex, multi-factor experiments were considered important and the basis for the
factorial design methods were set [2]. Fisher was the first to introduce the term
“factorial” in his work [3].

Commonly, the factorial design methods are categorized into full factorial and
fractional factorial designs. Using a full factorial design, the experiment is con-
ducted by assuming the combinations of each factor with all the other factors at all
levels. Thus, in these cases all the possible experiments are conducted. Usually, two
or three levels are considered for each factor and the factorial design is then named
after the number of factors according to the number of levels for each factor, e.g. a
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2 × 2 or a 22 factorial design. A similar notation is employed in cases with factors
with different number of levels, e.g. 352 denotes that there are 5 factors with 3 levels
each and one factor with 2 levels, i.e. total 35 × 2 = 486 experiments. It is evident,
however, that such a design can easily lead to an unfeasible amount of experiments
to be conducted, resulting in a considerably large amount of work or additional
cost.

On the contrary, fractional factorial design involves a certain subset or fraction
of the total number of experimental runs that would occur as a result of a full
factorial design. This subset is carefully chosen using proper statistical processes in
order to study a subset of the original problem which contains as much information
about the process as possible. When referring to fractional factorial design, a
notation relevant to the full factorial design is employed, e.g. a 24−2 design means
that only the ¼ of the 24 = 16 experiments originally required will be conducted. In
Fig. 1 a schematic of the trial points in a 22 design is presented.

Apart from the two main categories, other types of multi-factor designs are:
randomized block designs (RBD), Plankett–Burman designs, Taguchi designs and
designs related to the response surface methodology (RSM). The two latter methods
will be discussed separately in the following sections of this book chapter. As for all
families of DOE methods, there is a considerable amount of theoretic work con-
cerning the mathematic foundations of factorial design method. The reader, who is
interested in the mathematical foundations of DOE, should consider studying the
relevant literature; references [4–12] are proposed.

2.1 Description of Factorial Design Method

Factorial designs have common characteristics when they are applied to experi-
mental design. The first fundamental step consists of the choice of factors and their
levels. This step should not be underestimated in any case, as it depends both on
theoretical understanding of the problem parameters and experience on similar
problems. Afterwards, the selection of the suitable response variables, that can
provide adequate information about the process, is required. This selection, how-
ever, depends on the existing equipment of each lab and the level of difficulty for
the conduction of the measurements. When the fundamental choices for the

Fig. 1 Trial points of the 22

design
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experiment are performed, the choice of the details of the experimental design is
made. The number of runs required for each design scheme has to be taken seri-
ously into consideration as well as the actual levels of each factor. It is often
preferable to use a small number of levels, e.g. two, when a thorough study is not
required. After the choice of the experimental design scheme and details has been
completed, the array describing the parameters used in every run is produced. It is a
common practice to code the actual values of experimental factors to levels denoted
as −1 and 1, as it can be also seen in Fig. 1 or with the “+” and “−” signs. Examples
of factorial designs using both notations are presented in Tables 1 and 2 for the case
of a 23 full factorial design, i.e. 3 factors at 2 levels each.

The next step is the conduction of the experiment according to the defined set of
runs. It is important to monitor the process during all stages, as errors in this stage
produce irrelevant output and actually cancel the advantages offered by the
experimental design method concerning the scientific validity of the experiment. If
the experiment is carried out successfully, the statistical analysis of the results can
provide a solid way to determine the effect of each factor to the response or the
effect of the interaction between various factors and whether the results are affected
by experimental errors. Using the factorial design method, the first stage of analysis
comprises of response plots such as histograms, box plots, etc. and main effects and
interaction plots with a view to visualize the experimental outcome and evaluate the
characteristics of the basic findings. Then, regression models can be employed to
determine the relationship between the various experimental factors and statistical

Table 1 Factorial design 23

where the level values are
represented by −1 and 1

Trial Factor 1 Factor 2 Factor 3

1 1 −1 −1

2 1 −1 1

3 1 1 1

4 1 1 −1

5 −1 −1 −1

6 −1 −1 1

7 −1 1 1

8 −1 1 −1

Table 2 Factorial design 23

where the level values are
represented by − and +

Trial Factor 1 Factor 2 Factor 3

1 + − −

2 + − +

3 + + +

4 + + −

5 − − −

6 − − +

7 − + +

8 − + −
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analysis methods such as analysis of variance (ANOVA) can be applied for a more
detailed analysis of the results. In specific, the ANOVA method is discussed in the
following section.

Furthermore, after the analysis of results is performed, soft computing and
optimization methods can be applied to the experimental results in order to create
models that describe the behaviour of a studied system and investigate its perfor-
mance in various ranges of operating parameters. Usually, the experimental design
using factorial designs is carried out using suitable statistical and experimental
software such as Minitab, Design-Expert and SPSS. These software packages
provide users with sufficient guiding on the conduction of the whole process and are
highly reliable.

2.2 Applications of Factorial Design Method in Machining

There are numerous examples of applications of the factorial design method in
scientific experiments. Specifically in machining experiments, a wide range of
processes are designed using factorial design. Studies generally on machining
[13–18], milling [19–21], drilling [22], laser-assisted machining [23], electrodis-
charge machining (EDM) [24–26], ultrasonic machining [27] and abrasive waterjet
machining [28] have been conducted using these design schemes. The main
advantages of this method are proven to be its reliability in creating a
well-structured experimental process and its easiness to combine with various
statistical, soft computing and optimization methods and subsequently increase
their effectiveness and accuracy.

3 Taguchi Method

The Taguchi method is one of the most frequently employed DOE methods.
Essentially, this category of DOE methods can be considered as a special category
of fractional factorial designs. Although Taguchi methods derive from factorial
designs, their development introduced several new concepts on the design and
evaluation of experiments, which provide valuable help both to scientific and
industrial applications. As with the other fractional factorial designs, the Taguchi
method was developed in order to overcome the large number of experiments
associated with multi-factor, full factorial designs. The reduction of the number of
experiments required for a study is usually performed by ignoring some of the
interactions between the parameters of the problem, an assumption also employed
in Plackett–Burman designs. Taguchi method is often employed as first step of an
optimization process, in which the factors studied in the experiment are also used as
design variables for the optimization of a system or a process.
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Taguchi methods allow for a strict guideline and a well-defined methodology for
the determination of the choice of a sufficient subset of the total number of
experiments to be conducted using the full factorial method. Using Taguchi
method, orthogonal arrays are created and employed with a view to reduce sig-
nificantly the number of experiments even when a large number of variables are
studied. Taguchi designs can be performed at two or more levels for each factor and
it is even possible to choose mixed configurations. Once the appropriate Taguchi
orthogonal array is selected, the experiments are carried out using the predefined
values, in a random sequence.

3.1 Description of the Method

The Taguchi design method can be applied at certain distinct steps, similar to the
other experimental design methods. After the independent variables of the exper-
iment, i.e. factors, are carefully chosen, the selection of the appropriate number of
levels for each factor must be determined. This is a crucial part of the Taguchi
method, as it is related to the type of orthogonal array and determines the number of
experimental runs. Examples of two cases of different orthogonal arrays, namely the
L9 orthogonal array and the L27 orthogonal array, can be seen in Tables 3 and 4.
The next step consists of the encoding of the actual values of each factor level by
assigning to them a specific value such as: −1, 0 and 1 which represents the
minimum, centre and maximum level of a factor, respectively. When these steps are
completed, the experiment can take place.

After the experiments are conducted in the ordered way, data analysis for the
experimental results is performed. Traditionally, the Taguchi method employs the
calculation of the signal-to-noise ratio (S/N ratio) as a means to determine the effect
of each factor to the final output of the process. The S/N ratio is associated with one
of the basic goals of the Taguchi method, the reduction of variability by minimizing

Table 3 Taguchi L9
orthogonal array

No. of
experiment

Factor 1 Factor 2 Factor 3 Factor 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1
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the effect induced by noise factors in the experiment and it is generally defined as
follows:

SNR ¼ l
r

ð1Þ

where μ is the signal mean or the expected value and σ is the standard deviation of
the noise. In some cases, the S/N ratio can be defined as the square of the above
fraction.

More specifically, using the Taguchi method, optimization methods can be
categorized into two distinct groups: the static and the dynamic problems. The static
problems are related to the determination of the best control factor levels for a
process so that the output has a desired value, while the dynamic problems involve

Table 4 Taguchi L27 orthogonal array

No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 2 2 2 2 2 2 2 2 2

3 1 1 1 1 3 3 3 3 3 3 3 3 3

4 1 2 2 2 1 1 1 2 2 2 3 3 3

5 1 2 2 2 2 2 2 3 3 3 1 1 1

6 1 2 2 2 3 3 3 1 1 1 2 2 2

7 1 3 3 3 1 1 1 3 3 3 2 2 2

8 1 3 3 3 2 2 2 1 1 1 3 3 3

9 1 3 3 3 3 3 3 2 2 2 1 1 1

10 2 1 2 3 1 2 3 1 2 3 1 2 3

11 2 1 2 3 2 3 1 2 3 1 2 3 1

12 2 1 2 3 3 1 2 3 1 2 3 1 2

13 2 2 3 1 1 2 3 2 3 1 3 1 2

14 2 2 3 1 2 3 1 3 1 2 1 2 3

15 2 2 3 1 3 1 2 1 2 3 2 3 1

16 2 3 1 2 1 2 3 3 1 2 2 3 1

17 2 3 1 2 2 3 1 1 2 3 3 1 2

18 2 3 1 2 3 1 2 2 3 1 1 2 3

19 3 1 3 2 1 3 2 1 3 2 1 3 2

20 3 1 3 2 2 1 3 2 1 3 2 1 3

21 3 1 3 2 3 2 1 3 2 1 3 2 1

22 3 2 1 3 1 3 2 2 1 3 3 2 1

23 3 2 1 3 2 1 3 3 2 1 1 3 2

24 3 2 1 3 3 2 1 1 3 2 2 1 3

25 3 3 2 1 1 3 2 3 2 1 2 1 3

26 3 3 2 1 2 1 3 1 3 2 3 2 1

27 3 3 2 1 3 2 1 2 1 3 1 3 2
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the determination of the best control factor levels so that the ratio of an input signal
and its output is closest to a desired value. In static problems the signal (input)
factor has a fixed value, while in the dynamic problems a relationship between the
input and output signal is required.

In the case of static problems, the S/N ratio can be defined in three different ways
according to the optimization target of the process in the study. More specifically,
these ratios are defined as follows:

• Smaller-the-better (often abbreviated as STB or SNs):

g ¼ �10 log
1
n

Xn
i¼1

y2i

 !
ð2Þ

where the quantity inside the summation symbol represents the mean of sum of
squares of measured data. This ratio is usually employed when the value of the
“noisy” characteristic should ideally have a value of zero or when the desired
value is defined as a difference of the current value and the optimal one.

• Larger-the-better (often abbreviated as LTB):

g ¼ �10 log
1
n

Xn
i¼1

1
y2i

 !
ð3Þ

• Nominal-the-best (NTB):

g ¼ 10 log
l2

r

� �
ð4Þ

This ratio is often employed when the desired value does not appear in an
expression that requires minimization or maximization.

In the case of dynamic problems, a desired type of relationship between an input
and an output signal is required to be attained. Two ratios are generally considered,
namely the slope of the input/output characteristics and the linearity of the
input/output characteristics. The slope of the input/output characteristics should
have a certain value and has two alternative definitions, the one based on a LTB
ratio and the second one based on a STB ratio:

g ¼ 10 log b2
� � ð5Þ

g ¼ �10 log b2
� � ð6Þ

where β2 represents the square of slope of the input/output relationship.

46 A.P. Markopoulos et al.



The linearity is often considered as a LTB ratio and is related to deviations from
a purely linear relationship between input and output:

g ¼ 10 log
b2

r

� �
ð7Þ

Furthermore, other statistical analysis tools such as ANOVA are often employed
for the analysis of results. Using the analysis results and by determining the effects
between the factors of the experiments, the optimization process can be effectively
conducted.

3.2 Application of Taguchi Method in Machining

The Taguchi method was successfully applied in a wide range of machining pro-
cesses and experiments. Both conventional machining including turning [29–40],
milling [41–43], drilling [44, 45] and non-conventional machining processes such
as EDM [46–54], laser-assisted machining [55, 56], abrasive jet polishing [57],
ultrasonic machining [58], high-pressure jet machining [59] and micromachining
[60] are designed using Taguchi method with a view to optimize the parameters of
these processes and determine the effect of various parameters to their outcome.

4 Response Surface Methodology

RSM is a group of mathematical and statistical techniques, often employed in
engineering studies with regard to model problems, whose underlying structure is
unknown and also optimize the desired output of these problems. The term
Response Surface is employed to describe the surface that represents the output of a
process when input parameter values vary within specified ranges. This method is
of great importance specifically for machining problems, as it can be seen from the
considerable amount of scientific works employing this method in the literature
[61–88].

The first step for the RSM method is to determine a suitable function that
represents the relationship between input and output variable and is, in general,
unknown. If the response of the examined system can be sufficiently modelled
using a linear function of the input variables, a so-called first-order model can be
employed. If the response is more complex, a second-order model is usually
employed or even a combination of a first-order model and a second-order model.

The parameters in the approximation models are determined using the least
square method, as it also happens in the case of statistic regression models. The
goodness of fit of the response surfaces indicates the validity of the study of the
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modelled system. More accurate estimation of the model parameters is achieved
only if the corresponding experiment was conducted using a suitable DOE method.
For most RSM studies, a special case of factorial design, the central composite
design (CCD) method, is employed; however, Taguchi orthogonal arrays can also
be applied. In Sect. 11 an actual example of the application of RSM method to a
machining problem is presented as a case study in order to further clarify the
procedure.

4.1 Description of Response Surface Methodology

The optimization process using the RSM method is a sequential procedure. The
start point is often a point of the response surface, which is far from the optimum
point and corresponds to the existing operating conditions of a system.
Subsequently, the optimization procedure leads to the determination of the vicinity
of the optimum point and then a higher order model is applied in this area. After
further analysis the optimum point is determined. For simplicity reasons the initial
optimization procedure is conducted using a first-order model, as it is assumed that
the start point is far from the optimum point. A suitable method for the rapid
convergence to the optimum point is the method of steepest descent, in case of
minimization problems or steepest descent, in case of maximization problems. This
method consists of a numerical procedure of moving along the path of steepest
descent/ascent that leads to the area around the optimum point. The next step of the
optimization process is to fit a second-order model in the experimental results. The
experimenter may need to conduct additional experiments, in order to improve the
accuracy of the second-order model. The optimum point in a second-order surface
is called the stationary point; in this point all partial derivatives are zero. However,
it must be determined whether this point is actually a point of maximum, a point of
minimum response or a saddle point.

Using a DOE method for the experiment is necessary in order to apply the RSM
method. This leads to a better distribution of points, reduces the error and results to
a more accurate estimation of the coefficients of the regression function. Orthogonal
first-order designs are often used when first-order models are considered and CCD
method is used in the case of second-order design. The CCD method is a special
case of fractional factorial designs that includes also centre and axial points in the
design, as it can be seen in Fig. 2. More specifically, a CCD involves three sets of
experiments: a factorial design set, a set of centre points and a set of axial points.
The centre points have values equal to medians of value used in the factorial design
set and allow for an improvement of the precision of the experiment, while the axial
points set involve points outside the range of factorial design points for all factors.
An example of a CCD is presented in Table 5. Thus, using the CCD method two
parameters must be specified: the distance of the axial runs, i.e. the proposed
experiments, from the design centre and the number of centre points. These two
parameters should be selected in such a way that they ensure rotatability of the
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composite design. A rotatable design is defined as a design that provides the same
variance of predicted response for points that lie at the same distance from the
design centre. The Box–Behnken design can be employed as an alternative to the
CCD method. The difference of the Box–Behnken design is that corner points and
out-of-boundary points are omitted in the design. However, the mid-points of edges
of the experimental space are employed in the design, as it can be seen in Fig. 3.
Box–Behnken design involves fewer points than the CCD, but at least three factors

Fig. 2 A schematic of the
trial points used in a
two-factor central composite
design

Table 5 An example of
central composite design for a
two-factor experiment

Trial Factor 1 Factor 2

1 −1 −1

2 −1 1

3 1 −1

4 1 1

5 −1.4142 0

6 1.4142 0

7 0 −1.4142

8 0 1.4142

9 0 0

10 0 0

11 0 0

12 0 0

13 0 0

14 0 0
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should be used in this method. For example, for a three-factor experiment, CCD
would require 20 trial points, while Box–Behnken design would require 15 trial
points. The latter method has a smaller cost but should be employed only if the
experimental boundaries are supposed to be known. An example of the Box–
Benhken design is given in Table 6.

The RSM method can be also applied to multi-response problems. In this case,
the regions of optimum results are found by considering the optimum regions of
each response and then the area that contains together all these optimum points.
This problem is also considered as a constrained optimization problem or desir-
ability functions are employed in order to determine the optimum using a single
function.
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Fig. 3 A schematic of the
trial points in a three-factor
Box–Behnken design

Table 6 Box–Behnken
parameters for a three-factor
experiment

Trial Factor 1 Factor 2 Factor 3

1 −1 −1 0

2 −1 1 0

3 1 −1 0

4 1 1 0

5 −1 0 −1

6 −1 0 1

7 1 0 −1

8 1 0 1

9 0 −1 −1

10 0 −1 1

11 0 1 −1

12 0 1 1

13 0 0 0

14 0 0 0

15 0 0 0
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4.2 Application of RSM to Machining

As mentioned before, the RSM method has been applied to a wide range of
machining processes. In specific, RSM method has been applied to the following
processes: turning [61–71], milling [72–78], EDM [79–85], abrasive waterjet
turning [86], abrasive assisted electrochemical machining [87] and wire electro-
chemical micromachining [88]. In these investigations several parameters con-
cerning the machining processes have been successfully analysed and simulated
using the RSM method, such as surface roughness [61, 69, 73, 74, 79, 88], tool
geometry optimization [65, 75], tool performance [62], tool wear [66, 67] and tool
life prediction [72], optimal machining parameters selection [68, 71, 76, 86], energy
consumption in turning [71] and cutting forces prediction [67, 77].

5 Analysis of Variance

ANOVA is an important analysis tool for scientific experiments and it is also one of
the most widely used statistical analysis methods. It is often used as a supple-
mentary means of studying the variability of the means of experimental observa-
tions or to examine the significance of factors in a multi-factor experiment.

The simplest case of ANOVA test is called the one-way ANOVA test and is
related to one factor experiment, where multiple experiments are conducted for each
factor level. For a problem of one factor at various levels, the observations can be
expressed using a suitable model. Two of the most common methods are the means
model and the effects model. The means model considers each observation as the
sum of the mean of the corresponding factor level and a random error component
that includes all other sources of variability that appear in the experiment. The
effects model considers each experimental observation as the sum of the overall
mean of all observations and a parameter associated with effects due to each factor
level. In cases that it is desired to test hypotheses about the level means, concerning
only the factor levels that appear in the analysis, a fixed effects model is employed.
Thus, for a fixed effects model statistical tests for the equality of level means are
conducted.

In order to conduct the ANOVA test, at first, the total variance can be decom-
posed into terms: a term related to each factor level and a term related to errors. The
statistic test for the ANOVA is an F-test. F-test is a statistical test in which the test
statistic is considered to follow an F-distribution under the null hypothesis.
A schematic of the F-distribution is presented in Fig. 4. This test is usually used in
order to determine which model fits more accurately the population from which the
data from an experiment were sampled. In fact ANOVA is the best known case of
an F-test.

Beginning with the two terms of variance (sum-of-squares terms), the mean
squares of these terms according to the degrees of freedom are calculated and then
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the value for the F-test is obtained by the ratio between them to determine if the null
hypothesis is rejected or not. In case of rejection of the null hypothesis the mean
values for each level are found to differ significantly. An example for a problem
concerning two parameters is shown in Table 7. The ANOVA test can be gen-
eralized to a two-way test or an N-way test that involves N factors. In these cases,
the interaction effect between various factors can be examined. Furthermore,
ANOVA tests are widely employed as a means of identifying the significance of
parameters of a regression equation or other soft computing methods.

5.1 Application of ANOVA to Machining Problems

Although ANOVA is performed in almost every experimental results analysis and
numerous applications of this method can be found in the literature of this chapter, a
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Fig. 4 The F-distribution in various cases (v1 degrees of freedom of nominator, v2 degrees of
freedom of denominator)

Table 7 A typical table for analysis of variance results

Source of
variation

Sum of
squares

Degrees of
freedom

Mean
square

F0 P-value

A 20.52 2 10.26 41.58 0.00006

B 12.30 4 3.075 12.46 0.0016

Error 1.97 8 0.24675

Total 34.79 14
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brief selection of several notable cases was made. ANOVA method is applied to
analyse results from machining [89–95], milling [96], drilling [97], EDM [98–101],
high-pressure jet assisted turning [102], laser micro-turning [103] and water abra-
sive jet machining [104].

6 Grey Relational Analysis

The grey system theory has been applied successfully in many scientific fields, such
as finance, engineering and even social sciences. Grey relational analysis (GRA) is
derived from grey system theory and is proven to be an efficient statistic tool for the
analysis of experimental results and system optimization [105–108].
Although GRA is not a method for experimental design, it can be easily combined
with one of the available experimental design methods to form a powerful exper-
imental analysis tool.

Grey theory is related to the concept of information. A system for which no
available information exists is considered as a “black” system, while a system
whose parameters are completely known is considered as a “white” system. In fact,
as these two extreme conditions are almost unlikely to happen, the real-system
systems are classified according to the level that their properties are known and they
are assigned a value corresponding to a certain level of “grey” such as the values
assigned to pixels in greyscale images.

6.1 Presentation of the Method

GRA is performed at various steps. At first, a suitable pre-processing of the input
data is required in order to modify them according to the grey theory. For this
reason, several methods exist, such as: higher-the-better, lower-is-better and
transformation using a desired value, similar to those presented for S/N ratio.
However, sometimes a simple normalization process is applied. In fact, using the
grey analysis method, the input is at first transformed using relevant formulas so
that it can be more easily compared to other experimental results. This
pre-processing step is called grey relational generating and is conducted using one
of the three aforementioned methods:

• Higher-is-better:

x�ij ¼
xð0Þij �min xð0Þij

max xð0Þij �min xð0Þij

ð8Þ
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• Lower-is-better:

x�ij ¼
max xð0Þij � xð0Þij

max xð0Þij �min xð0Þij

ð9Þ

• Desired value x(0):

x�ij ¼ 1�
xð0Þij � xð0Þ
��� ���

max xð0Þij � xð0Þ
ð10Þ

where x�ij is the generated value of GRA and xij are in general experimental
results from a given set; i denotes a group of experimental results and j an
experiment.

In the next step, the grey relational coefficient is calculated using the
pre-processed values from the following formula:

dij ¼
mini minj x0i � x�ij

��� ���þ nmaxi maxj x0i � x�ij
��� ���

x0i � x�ij
��� ���þ nmaxi maxj x0i � x�ij

��� ��� ð11Þ

where ξ is the so-called distinguishing coefficient and is defined in the range of 0–1
and x0i is the ideal value for the ith performance characteristic.

Then, the grey relational grade is calculated as the average of the grey relational
coefficient. If this value is equal to 1, two sequences are considered identical. The
formula for the calculation of the grey relational grade for each experiment j is the
following:

aj ¼ 1
m

Xm
i¼1

dij ð12Þ

where m is the number of performance characteristics considered.
The grey relational grade also denotes the significance of the influence of a

sequence to another sequence. This is one of the most significant advantages of the
GRA method, as multiple responses are transformed in a single measure and the
optimization of multiple criteria is reduced to the optimization of a single quantity.
Moreover, by grouping the relational grades for each factor and experimental level,
grey relational grade graphs can easily be obtained and the correlations between the
studied variables, as well as the optimum parameters for a process can be
determined.
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6.2 Application of GRA to Machining Problems

The GRA is applied in various machining processes studies, usually as a part of a
general experimental design and optimization study. More specifically, GRA was
employed in studies pertaining to turning [109–115], milling [116–119], drilling
[120–124], EDM [125–131], laser machining and micro-machining [132–135] and
electrochemical machining and polishing [136, 137].

7 Statistical Regression Methods

Regression analysis is a general statistical process for the determination of rela-
tionships among various variables studied in a particular problem. Regression
analysis provides information about how the values of a dependent variable change
when the value of one or different independent variables change by estimating their
relationship by means of a function called generally the regression function. The
variation of the dependent variable around the computed regression function is
often estimated using a suitable probability distribution. Moreover regression
analysis can be employed as a predictive tool in order to predict the behaviour of a
system in conditions for which no experimental data are available. The most widely
employed method for data fitting into regression models is the method of least
squares.

Based on the kind of regression function employed, regression methods can be
categorized into linear regression methods and nonlinear regression methods. In
linear regression, it is required for the dependent variable to be a linear combination
of the parameters of the regression function. However, the dependent variables can
be a nonlinear combination of the independent variable; that means that
f(x) = b3x

3 + b2x
2 + b1x + b0 is still a linear regression function as the relationship

between f(x) and the parameters bi is linear. Linear regression in case of a single
independent variable is termed simple linear regression, whereas in case of multiple
independent variables, this process is termed as multiple linear regressions. In order
to fit experimental results into linear regression models, the least square or other
minimizing approaches are employed. Various linear regression models have been
developed with a view to extend the capabilities of the method, such as: general
linear models, where the response variable is generally considered as a vector,
generalized linear models, where the response variable is assumed to be bounded or
discrete and hierarchical linear models, where the regression model consists of
various levels.

Nonlinear regression models involve a modelling function which is a nonlinear
combination of the model parameters. Generally, this category of regression models
is more preferable in cases where there is physical evidence that dictates the use of a
function that describes a nonlinear relationship of unknown parameters. For
example, in biology, that is the case of the famous Michaelis–Menten model for
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enzyme kinetics. As it can be seen in the following formulas, this model can be
written in the form of a nonlinear function as the unknown parameters exist both in
the nominator and the denominator of the fraction:

v ¼ Vmax S½ �
Km þ S½ � ð13Þ

f x; að Þ ¼ a1x
a2 þ x

ð14Þ

where the parameters Vmax and Km have been substituted by α1 and α2 respectively.
Some types of nonlinear functions used in nonlinear regression are: exponential

functions, logarithmic functions, power functions, trigonometric functions. In some
cases, the Gaussian function, Lorenz curves or other probability distributions, e.g.
Weibull, can also be employed, as it can be seen in Fig. 5. It is noteworthy that
some of these functions can be properly linearized using different variables and then
the linear regression model can be employed on this transformed function. Iterative
methods are often employed for the fitting process such as Newton–Raphson or
Gauss methods. Moreover, the fit of models is assessed by similar statistical tests as
in the case of linear regression models but measures such as R2 are argued to be
inadequate in the case of nonlinear regression.

After the process of fitting has finished, the regression function should be tested
using various measures in order to determine the validity of the fitting process.
Some general measures usually employed in various applications are the multiple
correlation coefficient R, the coefficient of determination R2, the adjusted R2 and the
root-mean-squared error (RMSE). The coefficient of determination is defined from
the following formulas.

Fig. 5 Experimental data fitted into Weibull distribution
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If �y denotes the mean of the observed data in an experiment, then:

�y ¼ 1
n

Xn
i¼1

yi ð15Þ

Then, the total sum of squares, related to the variance of the experimental data, is
defined as:

SStot ¼
Xn
i¼1

yi � �yð Þ2 ð16Þ

And the sum of squares of residuals can be defined as:

SSres ¼
Xn
i¼1

yi � fið Þ2 ð17Þ

Based on the previous definitions, the coefficient of determination can be defined
as:

R2 ¼ 1� SSres
SStot

ð18Þ

The adjusted R2, denoted also as �R2, can then be defined as:

�R2 ¼ 1� 1� R2� � n� 1
n� p� 1

ð19Þ

where p is the total number of regressors in the model and n is the size of the
sample.

Furthermore, the RMSE can be defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ŷi � yið Þ2
n

s
ð20Þ

where ŷi denotes a predicted value, yi an experimental value and n is the size of the
sample.

Generally, a value of R indicates the correlation between the predicted and
observed values, R2 indicates the fraction of the variability of the results obtained
by the regression model, the adjusted R2 alters the R2 value when extra explanatory
variables are added to the model and the RMSE indicates the standard deviation of
data about the regression model. Regression methods can be easily coupled with
various statistical methods such as ANOVA in order to perform a more detailed
statistical analysis of the results and to check the validity of the regression model.
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7.1 Applications of Statistical Regression Methods
in Machining

Regression methods are among the first methods to be applied to the modelling of
machining processes [138]. Several machining processes, namely turning [139–
151], milling [152–155], boring [156] and EDM [157] are investigated with these
methods. Furthermore, various aspects such as tool wear and tool condition mon-
itoring [138, 140, 141, 145–147, 151, 156], machinability [139], surface roughness
[142, 144, 148–150, 153–155, 157] and process cost estimation [152] are analysed.
In several of these studies [140–144, 152], the efficiency of a regression model is
compared to that of soft computing methods, such as artificial neural networks
(ANN). From the aforementioned studies it was concluded that, although regression
methods exhibit their mathematical background and possess a clear explanatory
value, it is generally proven that regression models can perform well when the
relationships are almost linear [141], while the ANN give more accurate predictions
also in complex, nonlinear cases with a large number of variables [140, 141, 144].

8 Artificial Neural Networks

ANN are a group of machine learning algorithms, originating from the concept of
biological neural networks. Essentially, they constitute one of the most widely used
soft-computing algorithms, as they can easily be used in many scientific fields.
More specifically, this method is of particular interest in engineering simulations
and optimization problems as it involves the determination of outputs of an
unknown system without the need to have absolute knowledge of its physics or the
exact relations between different its parameters, but considers it only as a “black
box”. A system of layers of interconnected neurons that convey information from
inputs to outputs and adequate learning algorithms are employed for ANN simu-
lation, following the example of an information processing system, which involves
a number of interconnected processing elements, that are working combined to
solve a complex problem and gain knowledge by studying an adequate amount of
relevant examples.

8.1 Description of Artificial Neural Networks

As mentioned before, some of the basic characteristics of a simple ANN are the
layers, the neurons and the learning algorithms. When employing ANN as a means
of simulating a system using experimental data, the collection of a sufficient amount
of experimental data is needed at first. Then, the neural network is constructed using
a suitable architecture. The term architecture is employed to describe the
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configuration of neurons and layers and the interconnections between neurons of
different layers. In a multi-layer configuration usually an input layer, an output layer
and one or more middle layers, called hidden layers constitute the neural network.
In a feedforward ANN, as it will be discussed afterwards, the input layer is asso-
ciated directly to the information that is fed into the network, the behaviour of the
hidden layers is determined by the activities of the input neurons and the inter-
connections with them and finally the behaviour of the output layer is determined
by the activity in the hidden layer and the interconnection with it. Various
parameters concerning the components of the neural networks must be taken into
consideration from this early step, such as: the number of inputs, the number of
outputs, the number of hidden levels, the neurons in each hidden level and the
interconnections between neurons. In most cases these parameters are experimen-
tally calculated by conducting several runs with different values but there are also
specific rules that indicate a better choice of these parameters. However, this choice
depends on each problem and so it is difficult to create rules that apply to every
case. Often, when the inputs have not been obtained by measurements or calcu-
lation as in the case of pattern recognition, the inputs and the outputs need to be
normalized in the range 0–1.

The most common network is a feedforward network. The architecture of a
feedforward network is depicted in Fig. 6. Each artificial neuron, according to its
position in the network receives some inputs and produces some outputs. A weight
is associated with each input into the neuron. This weight can be a real number and
it will be adjusted to a desirable value after the learning process. Each input is
multiplied by the weight of the relevant neuron before entering the neuron and all
input values are summed to compute the total activation value that enters the
neuron. Usually, an additional weight referred as bias is employed as a threshold
value and is added to the total output of the neuron. Then, a special function called
the activation function is used to transform the input values to the neuron’s output.
This function can be a linear, step or a sigmoid-like function. Various sigmoid-like

Fig. 6 The architecture of a
feedforward ANN
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functions can be employed as activation functions provided that they produce
output values in the range 0–1, in a way similar to the step or threshold function.
This is often done in most engineering applications in order to have a smoothed
response and allow for a continuous output variable, something that resembles
closely to the function of real neurons. In a feedforward network, as it is expected,
the neurons in each level feed their output forward to the next layers up to the
output layer; no loops, involving a backward movement, exist in the network.

The next step involves the initialization of the neural network using random
weights. Then, the training process can start. During this stage of the algorithm, the
network is fed with a series of inputs obtained by experiments, i.e. the training set.
Each training set represents a certain pattern or combination of inputs along with
the relevant outputs. Subsequently, by observing the output of the network, the
weights of each neuron should be accordingly altered in order to produce the
desired result; this is the so-called supervised learning. Thus, supervised learning is
a learning method that involves the use of an external means of learning that
indicates to the output units the desired output to specific inputs. On the other hand,
unsupervised learning involves no external supervision of the learning process, and
this process is entirely based on local information, so that the network is trained in a
self-organized way.

There are many ways of adjusting the weights and the most common is the
backpropagation method, which is related to the computation of the error derivative
of each weight. In every step or epoch a better approximation of the actual desired
value is obtained. A suitable method is used to monitor the error convergence
between the computed and desired output values, e.g. the least mean square
(LMS) method, the mean square error (MSE) method, etc. The MSE can be defined
as:

MSE ¼ 1
n

Xn
i¼1

ŷi � yið Þ2 ð21Þ

The backpropagation algorithm first computes the error between the actual and
the desired output in the output layers. Then, using the weights between the hidden
and the output level, the error of the output level is propagated back to the hidden
level. Accordingly, the error propagates back to the input level and subsequently the
error derivative for each neuron can be calculated.

A set of validation data, originating from experimental results is used to measure
the level of network generalization, which is one of the basic requirements for a
neural network in order to avoid the problem of overfitting; that is when the
network has great performance near well-known values but poor performance
otherwise. Often, these sets of results constitute a small percentage of the original
result set. When generalization stops improving the training process is stopped and
adjustments are made. An additional step is the testing step, in which another set of
results is used not to train the network but to provide another way to measure its
performance.
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After the network has been trained and its accuracy has been tested, the network
can be used in similar problems as a predictive tool or in conjunction to other soft
computing or optimization techniques. Nowadays numerous specialized software
packages for ANN are also incorporated into toolboxes of numerical analysis
software such as MATLAB, as they are applied in various scientific fields.

8.2 Applications of ANN in Machining

ANN have been extensively used in modelling of machining processes within the
last few decades. More specifically, a variety of machining processes, have been
investigated using ANN, such as turning [158–164], milling [165], drilling [166],
EDM [167–172], ultrasonic machining [173], abrasive flow machining [174–176]
and abrasive waterjet machining [177, 178]. Furthermore, ANN are combined with
several soft computing and optimization methods such as fuzzy logic [164], genetic
algorithms [170] and simulated annealing method [171, 178]. Finally, another
important application of ANN is online monitoring of machining processes [158].

9 Fuzzy Logic

Fuzzy logic is an alternative form of logic that involves not only two possible states,
i.e. true or false, but the logic variables can have a value that ranges between 0 and
1. While the traditional binary or bivalent logic deals with discrete logic states, in
fuzzy logic an approximate value for the logic state such as 0.65 or 0.1 can exist,
thus extending the concept of truth/falsity to the concept of partial truth/partial
falsity state. Fuzzy logic, as most soft computing methods, has a wide range of
applications, extending from artificial intelligence and robotics to machining.

Fuzzy logic originates from the fuzzy set theory developed by Zadeh [179]. In
mathematics, a “set” is defined as a collection of distinct objects which can be
considered as a single object. So, in the classical sense an object can belong or not
to a second set. On the contrary, using the concept of a “fuzzy set”, an object can
belong to a set partially, fully or not, according to its membership function, an
important element of the fuzzy set theory. Using the membership function, each
member of a fuzzy set is assigned to a membership degree that denotes how much
this member belongs to the specific set. The membership function can have various
shapes as long as its values range from 0 to 1. Another important aspect of fuzzy
logic is the fuzzy operators such as equality, subset, union, etc. which can be
defined in a similar way like operators on classical sets. These operators combine to
form complex events and sets of rules that describe various possible activities. The
fuzzy sets and fuzzy rules constitute finally the knowledge base of the fuzzy system.

After the fuzzy system is implemented, three others stages are observed in fuzzy
systems, namely fuzzification, inferencing and defuzzification. During the
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fuzzification stage, input values are transformed into objects of fuzzy sets, or they
are fuzzified as this procedure is usually called in the relevant terminology, using
membership functions. During the inference stage, the fuzzified inputs are trans-
formed into fuzzified outputs taking into consideration the fuzzy rules of the sys-
tem. The inference step is essentially the main step of this method. Defuzzification
constitutes the last stage of the process, where the fuzzified outputs of the inference
stage are converted into scalar or general non-fuzzy values. In Fig. 7, the config-
uration of a fuzzy logic system can be seen.

9.1 Description of Fuzzy Logic Method

When modelling a problem using the fuzzy logic method, the whole process can be
divided into discrete steps. The first step consists of the determination of the degree
of membership of each input to each of the defined fuzzy sets using the membership
function; various types of membership functions can be seen in Fig. 8. The input is
usually an actual numerical value and the output a value in the range 0–1 called
fuzzy degree of membership. The determination of this output depends on the
membership function and the fuzzification process is required to be conducted for
all the linguistic sets that appear in the fuzzy rules. The next stage of the process
involves the evaluation of fuzzy rules. If the input or antecedent for a rule involves
more than one part, a suitable fuzzy operator must be applied to the antecedent. The
implementation of the various fuzzy logic operators, such as AND and OR can be
conducted in various ways. For example, two simple methods for implementing
AND are minimum and product (of multiplication).

When this operation is performed, a single truth value is obtained for the
antecedents of each rule. Afterwards, an optional further step consists of applying a
specific weight in the range 0–1 to each rule, which is performed by applying that

Fig. 7 Configuration of a fuzzy logic system
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value to the output of the antecedent of each rule. Essentially, this is performed
when it is desired for certain rules to have more contribution to the result.
Thereafter, an implication method is applied to obtain the fuzzified output for each
rule, based on the result of the previous step. As with the fuzzy operators, there are
various operators for the implication process, such as min, which truncates the
output, product, which scales the output, etc. Subsequently, all the fuzzy outputs for
each rule are required to be summed, in order to obtain an aggregate final result and
thus make the appropriate decision. The aggregation process provides a fuzzy set
for each output variable. Various aggregation methods can be employed, such as
max or sum of the fuzzy outputs and then the results are placed together to form a
polygon shape. In the last step of the overall process, the fuzzy aggregated output is
defuzzified, with a view to obtain a single number representing the actual desired
output in a way that it can be easily understood. The defuzzification process is often
conducted using the centroid method; that means that the centroid of the polygon
obtained in the precedent step is calculated and this numerical value is actually the
defuzzified output.

9.2 Applications of Fuzzy Logic Method in Machining

The application of the fuzzy logic method in machining has proven to be very
important [180, 181] with applications in turning [182–193], milling [194–198],
grinding [199–202], EDM [203–205], abrasive waterjet machining [206] and

Fig. 8 Various types of membership functions
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assisted abrasive finishing [207]. As it can be deduced by examining the relevant
literature, the use of the fuzzy logic method can be invaluable for a wide range of
applications such as control of chip form [182], prediction and control of cutting
forces [187, 197], design of operation and selection of cutting parameters [183–186,
201, 206, 208–210], surface roughness prediction and improvement [193, 207],
residual stresses prediction [199], development of a tool breakage detection system
[194], decision-making tools for machining processes [211–213]. Furthermore, the
fuzzy logic method can be combined with other methods such as Taguchi method
[191, 198], genetic algorithms [201] or GRA [204] to compose a complex pre-
dictive and decision-making software.

10 Other Optimization Techniques

In general, optimization algorithms are divided into two categories: stochastic and
deterministic algorithms. More specifically, stochastic optimization algorithms
involve stochastic process in several parts of the process, not only in order to select
the initial solution and often can make a more extensive search of the area of
possible solutions. These algorithms are generally more suitable to determine the
global optimum for a given system, in spite of their relatively high computational
cost when the system is complex or has a great number of local minima/maxima.
Another important advantage of the stochastic optimization method is that no
knowledge of the exact mathematical description is required and closed-source
proprietary software can be used in the solution evaluation process without prob-
lems. So it is a process that considers the system as a “black box” and does not
require complex mathematical computations from the user, e.g. computation of
derivatives. On the other hand, algorithms such as the gradient descent or the
conjugate gradient method are considered non-stochastic methods in the sense that
they do not involve process related to randomized values. These algorithms require
the calculation of derivative of the objective function, are capable to determine the
optimum point with significantly smaller computational cost but they are more
prone to reach a locally optimum point rather than the globally optimum.

A common characteristic of many stochastic optimization algorithms is that their
creation was inspired by natural processes such as the evolution of species, the
behaviour of animals or the characteristics of insect colonies which are shown to
exhibit features that lead to the optimal design of a process. Although it may seem
to be quite irrelevant to engineering and machining processes, these algorithms
perform sufficiently well in a great variety of cases [214]. Some of these algorithms
are examined in the following part.
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10.1 Genetic Algorithms

The genetic algorithms are essentially a subcategory of evolutionary algorithms.
Using this method, the possible solutions are termed as individual atoms of a
general population, which are comprised of chromosomes. The first step is the
creation of the initial population, which are the initial candidate solutions. In this
step the various solutions are generated through a random number generator with
values within a predefined range. In the second step, a proportion of the initial
population is employed in order to create the next generation. The individual
solutions which will be employed in this step are chosen according to the value of
objective function associated to them. Several processes related to the improvement
of solution, which are termed operators, exist such as crossover and mutation,
which are employed in order to determine the next-generation atoms. The crossover
process consists of an exchange of chromosomes between two atoms, namely the
exchange of parameters values between two possible solutions. The mutation
process consists of the alteration of some chromosomes of atoms, namely a possible
change of value of some parameters for several solutions. Both processes are
performed with a certain degree of possibility, defined at the beginning of the
algorithm, e.g. there is 95 % possibility of conducting crossover between 2 atoms,
0.4 % possibility for a mutation to happen in an atom, etc. Sometimes, a selection of
several solutions that exhibit objective function values near to the optimum one are
kept unchangeable with a view to match with other similar atoms and produce
better offspring. This process is termed as “elitism” and the related solutions as
“elite” atoms.

It is important to note that all the parameters employed in the optimization
process need to be chosen carefully according to the characteristics of each prob-
lem. Accordingly, parametric studies need to be conducted in order to determine the
appropriate crossover and mutation possibilities that produce the optimum solution
at the lower computational cost. Finally, the optimization algorithm stops when a
termination criterion is reached. Some of these criteria are: a fixed total function of
generations, a certain number of iterations where no better results are produced, etc.
After the algorithm is stopped, several measures can be used to indicate the effi-
ciency of the optimization process, e.g. the convergence plot. In multi-objective
cases, the optimal value is determined from a Pareto chart.

10.2 Applications of Genetic Algorithms in Machining

In the last three decades, genetic algorithms have been employed in many cases of
machining experiments. A considerable amount of work concerning genetic algo-
rithms and machining processes has been conducted, some of which are studies on
turning [215–219],milling [220–225], drilling [226], grinding [227, 228], EDM [229,
230], electrochemical machining [231] and abrasive waterjet machining [232, 233].
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As it can be seen in the aforementioned literature, genetic algorithms can easily be
combined with other soft computing methods and DOE methods in order to form
general analysis tools. Specifically, genetic algorithms can be combined with
the Taguchi method [223], RSM method [223, 225, 228], ANN [222, 229, 230],
simulated annealing method [232] and fuzzy logic method [233].

10.3 Other Stochastic Algorithms

Apart from the well-established method of genetic algorithms, other stochastic
algorithms have been successfully employed for machining optimization problems,
namely artificial bee colony method [234, 235], artificial ant colony [236–238],
particle swarm optimization method [239–242] and simulated annealing method
[243–245]. Despite the fact that these algorithms seem exotic for a machining
process optimization problem, they are proven to be robust and efficient methods.
The increasing interest in the development and application of these methods is
observed also by the amount of scientific work carried out in these areas within the
last decade.

11 A Case Study

This case study presents an example of using the RSM method for the modelling of
end milling process of titanium alloy Ti6Al4V and the analysis of results with
ANOVA. For the presented implementation of DOE technique, Design-Expert
8.0.7 software was employed. Obtaining the appropriate functional equations
between the effects of the cutting process and adjustable parameters usually requires
a large number of tests for different tool–workpiece configurations. The large
number of experimental studies significantly increases the cost of the experiment
which is particularly important in relation to the difficult-to-cut alloys, such as
titanium alloys. A solution of this problem is mathematical and statistical tools for
DOE. Choosing the right tool remains at the knowledge of researcher, who must be
aware of the benefits and limitations that arise from each potential method of
approximation.

Among conventional DOE techniques RSM is widely used for machining pro-
cesses. Experiments based on RSM technique relate to the determination of
response surface based on the general equation:

y ¼ b0 þ b1 � x1 þ � � � þ bk � xk þ b12 � x1 � x2 þ b13 � x1 � x3 þ � � �
þ bk�1;k � xk�1 � xk þ b11 � x21 þ � � � þ bkk � x2k ð22Þ
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where b0, bi, bii, bij are regression coefficients for intercept, linear, quadratic and
interaction coefficients, respectively, and xi are independent input variables. RSM
requires a quantitative response affected by continuous factors. It works best with
only a handful of critical factors, namely those that survive the screening phases of
the experimental programme. RSM produces an empirical polynomial model which
gives an approximation of the true response surface over a factor region.

Many input variables may affect the measured response of the process; it is
practically impossible to identify and control a small contribution from each one.
Therefore, it is necessary to select those variables with major effects. Screening
designs should be carried out to determine which of the numerous experimental
variables and their interactions present statistically significant effects. Full or
fractional two-level factorial designs may be used for this objective.

11.1 Definition of the Input Variables and the Output
Responses

In the case study, the effects of three cutting parameters, namely cutting speed vc,
depth of cut ap and feed rate f have been experimentally sought upon three per-
formance responses: temperature in cutting zone T and two components of total
cutting force—tangential force Ft and radial force Fr. The levels for each factor are
tabulated in Table 8.

The temperature measurements were carried out with the use of a thermal
imaging camera. Tangent Ft and radial Fr components of cutting force were cal-
culated based on measurement results obtained from a dynamometer measuring FX,
FY, FZ force components and geometric relationship presented in Fig. 9.

11.2 DOE and Response Data Implementation

For the experiment design CCD-Rotatable was selected, in which standard error
remains the same at all the points which are equidistant from the centre of the
region. The upper and lower limits and their levels of the parameters are given in
Fig. 10, as they are entered to the software.

Table 8 Factors for response
surface study

Factor Unit Low level
(−1)

High level
(+1)

Cutting speed
vc

m/min 60 80

Depth of cut
ap

mm 1 2.5

Feed f mm/tooth 0.1 0.15
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CCD is composed of a core factorial that forms a cube with sides that are two
coded units in length, from −1 to +1. The distance out of the cube, designated as
distance “Alpha” and measured in terms of coded factor levels, is a matter for much
discussion between statisticians. Design-Expert software offers a variety of options
for Alpha, as it can be seen in Fig. 11.

Fig. 9 The relationships between the components of cutting forces

Fig. 10 Definition of cutting condition as numeric factors in Design-Expert

Fig. 11 The dialog box for
definition replication points
and “alpha” parameter
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The CCD-Rotatable matrix is given in Table 9.

11.3 Analysis of Results and Diagnostics of the Statistical
Properties of the Model

ANOVA is commonly used to summarize the test for significance of the regression
model and test for significance on individual model coefficients. The models
summary statistics are shown in Table 10. In this case, coefficient of determination,
“Adjusted R-Squared” and “Predicted R-squared” values are higher for “Quadratic”
model. This model is suggested for analysis.

The analysis of the experimental data was performed to identify statistical sig-
nificance of the parameters cutting speed vc, depth of cut ap and feed f on the
measured response temperature T. The model was developed for 95 % confidence
level and the results are summarized in Table 11.

Table 9 The CCD-Rotatable matrix with entered results of experiment

Std Run Factor 1
cutting
speed
vc (m/min)

Factor 2
depth of
cut ap (mm)

Factor 3
cutting
speed vc
(m/min)

Response 1
temp. T (°C)

Response 2
tangent
force Ft (N)

Response 3
radial force
Fr (N)

9 1 53.18 1.75 0.125 721 551.2 396

13 2 70 1.75 0.08 768 408.8 292.3

11 3 70 0.48 0.125 685 159.5 153.3

18 4 70 1.75 0.125 775 491.7 414.5

20 5 70 1.75 0.125 766 499 379.4

6 6 80 1 0.15 723 301.8 260.2

15 7 70 1.75 0.125 762 489.4 389.6

14 8 70 1.75 0.167 730 558.3 434.7

2 9 80 1 0.1 741 189.2 162.4

12 10 70 3.01 0.125 785 843.9 619.7

19 11 70 1.75 0.125 769 486 392.1

8 12 80 2.5 0.15 798 701.7 501.4

10 13 86.82 1.75 0.125 803 441.7 392.7

1 14 60 1 0.1 717 293.5 173.1

4 15 80 2.5 0.1 785 670.3 453.8

17 16 70 1.75 0.125 776 521.8 400.8

3 17 60 2.5 0.1 759 759.7 436.3

5 18 60 1 0.15 674 347.1 270.8

16 19 70 1.75 0.125 772 512.3 424.1

7 20 60 2.5 0.15 758 813.6 495.4
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Model “F-value” of 57.73 implies that the model is significant. There is only a
0.01 % chance that a model “F-value” this large could occur due to noise. Values of
“Prob > F” less than 0.05 indicate that model terms are significant; in this case A,
B, C, BC, B2, C2 are significant model terms. Values greater than 0.10 indicate the
model terms are not significant. If there are many insignificant model terms,
excluding those required to support hierarchy, model reduction may improve the
model. The “Lack of Fit” “F-value” of 2.04 implies the “Lack of Fit” is not
significant relative to the pure error. There is a 22.65 % chance that a “Lack of Fit”
“F-value” this large could occur due to noise; non-significant lack of fit is desired.
Next step is the reduction of the model to only significant terms by backward
selection, after the p-value of the model terms. The results are presented in
Table 12.

Table 10 Models summary statistics

Sequential Lack of fit Adjusted Predicted

Source p-value p-value R-Squared R-Squared

Linear <0.0001 0.0051 0.7753 0.7070

2FI 0.4064 0.0044 0.7771 0.5790

Quadratic <0.0001 0.2265 0.9641 0.8939 Suggested

Cubic 0.1721 0.3670 0.9765 0.7218 Aliased

Table 11 ANOVA for response surface quadratic model for temperature T

ANOVA for response surface quadratic model

Source Sum of
squares

df Mean
square

F-value p-value
prob > F

Model 23,050.87 9 2561.21 57.73 <0.0001 Significant

A-vc 5614.58 1 5614.58 126.55 <0.0001

B-ap 12,500.47 1 12,500.47 281.75 <0.0001

C-f 933.47 1 933.47 21.04 0.0010

AB 6.13 1 6.13 0.14 0.7180

AC 190.13 1 190.13 4.29 0.0653

BC 666.13 1 666.13 15.01 0.0031

A2 172.62 1 172.62 3.89 0.0768

B2 2438.11 1 2438.11 54.95 <0.0001

C2 935.56 1 935.56 21.09 0.0010

Residual 443.68 10 44.37

Lack of
fit

297.68 5 59.54 2.04 0.2265 Not
significant

Pure
error

146.00 5 29.20

Cor
total

23,494.55 19
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Table 13 shows the regression statistics. The coefficient of determination is high
and close to 1, namely R-Squared equals to 0.9654, which is desirable. “Pred R-
Squared” of 0.9045 is in reasonable agreement with the “Adj R-Squared” of 0.9495.
“Adeq Precision” measures the S/N ratio. A ratio greater than 4 is desirable. In this
case the ratio of 26.169 indicates an adequate signal. This model can be used to
navigate the design space.

The adequacy of the model should be checked by the examination of residuals.
Residual analysis is necessary to confirm that the assumptions for the ANOVA are
met. Other diagnostic plots may provide interesting information in some situations.
The residuals are examined using the normal probability plots of the residuals and
the plot of the residuals versus the predicted response. Normal plot of residuals,
shown in Fig. 12, should be in a straight line. The residuals generally fall on a
straight line implying that the errors are distributed normally. Nonlinear patterns,
such as an S-shaped curve, indicate non-normality in the error term, which may be
corrected by a transformation.

Residuals versus predicted response should be randomly scattered without pat-
tern or “megaphone” shape, as shown in Fig. 13.

Table 13 Regression
statistics for adopted reduced
quadratic model

Std. Dev. 7.91 R-Squared 0.9654

Mean 753.35 Adj R-Squared 0.9495

C.V. % 1.05 Pred R-Squared 0.9045

PRESS 2242.79 Adeq precision 26.169

Table 12 ANOVA for response surface reduced quadratic model for temperature T

ANOVA for response surface quadratic model

Source Sum of
squares

df Mean
square

F-value p-value
prob > F

Model 22,682.00 6 3780.33 60.48 <0.0001 Significant

A-vc 5614.58 1 5614.58 89.83 <0.0001

B-ap 12,500.47 1 12,500.47 199.99 <0.0001

C-f 933.47 1 933.47 14.93 0.0020

BC 666.13 1 666.13 10.66 0.0062

B2 2333.98 1 2333.98 37.34 <0.0001

C2 865.99 1 865.99 13.85 0.0026

Residual 812.55 13 62.50

Lack of
fit

666.55 8 83.32 2.85 0.1316 Not
significant

Pure
error

146.00 5 29.20

Cor
total

23,494.55 19
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Fig. 12 Normal probability plot of residuals for temperature T

Fig. 13 Residuals versus predicted response for temperature T
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Residuals versus run tests should be randomly scattered without trend, see
Fig. 14.

In order to determine the quality of the adopted model, it needs to be checked
whether points of predicted response versus actual values are randomly scattered
along the 45° line like in Fig. 15.

Fig. 14 Residuals versus run for temperature T

Fig. 15 Predicted response versus actual for temperature T
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This implies that the proposed model is adequate and there is no reason to
suspect any violation of the independence or constant variance assumptions.

11.4 Final Equations and Models Graphs

For the analysed example the final equation in terms of actual factors was deter-
mined, which determines the temperature T from the input factors, namely the
cutting parameters:

T ¼ 440:75þ 2:03 � vc þ 58:30 � ap þ 1903:04 � f þ 486:67 � ap � f
� 22:51 � a2p � 12341:64 � f 2 ð23Þ

Figures 16 and 17 show the response surfaces describing the temperature
T dependence on the depth of cut and cutting speed for this case study.

Next, the final equations and examples of response surfaces for the remaining
measured responses are shown. The analysis was performed in analogy to the
temperature T. To approximate the result for tangential force Ft, the linear model

Fig. 16 Response surface contour plot representing the temperature T dependence on the depth of
cut ap and cutting speed vc for feed f = 0.13 mm/tooth
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was chosen and an ANOVA followed. The final model of tangential force Ft is the
next function of adjustable parameters of the process:

> Ft ¼ 85:61� 3:92 � vc þ 289:44 � ap þ 1472:84 � f ð24Þ

Figure 18 contains the 3D response surface representing the effect of cutting
parameters on tangential force Ft.

Similarly, to approximate the result for radial force Fr, the reduced quadratic
model was chosen. The final model of radial force Fr is:

Fr ¼ �586:04� 176:20 � ap þ 9013:28 � f � 29; 706:86 � f 2 ð25Þ

Figure 19 depicts the 3D response surface representing the effect of cutting
parameters on radial force Fr.

Furthermore, based on the data from multifactor RSM it is possible to obtain the
numerical optimization of the process, i.e. the optimum cutting conditions.
Design-Expert allows setting criteria for all variables, including factors and prop-
agation of error. The programme restricts factor ranges to factorial levels, plus one
to minus one in coded values, the region for which this experimental design pro-
vides the most precise predictions.

Fig. 17 Response surface 3D representing the temperature T dependence on the depth of cut ap
and cutting speed vc for feed f = 0.13 mm/tooth
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Fig. 19 Response surface 3D representing the radial force Fr dependence on the depth of cut ap
and feed f

Fig. 18 Response surface 3D representing the tangential force Ft dependence on the depth of cut
ap and cutting speed vc for feed f = 0.13 mm/tooth
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Processes: A Review
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Abstract The modern industry needs that its manufacture process to be fast,
efficient, low cost, ecologic, and other. It occurs because many consumers require
that the products have great quality and a fair price. Furthermore, in sometimes, the
industry has the sale price imposes by client. Thus, the industry develops news
techniques, process, tools, and other to attain this goal. However, these new
developments require great studies to obtain the best condition and avoid that
become more a waste. The Statistical or Artificial Intelligence (AI) Analysis are
great ways to understand the new developments and obtain the best conditions. This
review chapter presents the techniques (Statistical and AI) that were applied to plan
and analyse the machining processes. Aim of this chapter is to argue the planning
and analysis importance in researches, as well as help researchers to choose a
technique and define their machining experiments, optimising the time, material and
other means.
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1 Introduction

Nowadays it is common to find many investigators using the statistical and/or
Artificial Intelligence (AI) analysis in their papers. These methods help to under-
stand the importance of parameter appointed or to define the ideal condition. To
obtain a controlled cutting process through the parameter optimisation, a manu-
facturer should find points in the process that offer the balance of cost and quality
[1]. Asiltürk and Akkuş [2] highlighted that a high number of the cutting variables
require a high numbers of experiments, besides, the variables should be studied
under controlled conditions.

The usage of these techniques in investigating machinability had the goal of
estimating the effects of feed rate, cutting velocity and depth of cut on power
consumption and surface finish [3]. According to Makadia and Nanavati [4], in
most publications the effect of cutting parameters on surface roughness applying
few number of tests was studied. However, they suggested also analyse effect of
cutting geometry on surface roughness.

To predict the surface quality, the AI methods (artificial neural network, genetic
algorithm (GA), and others) has been employed. Its main advantages are models
that present most realistic and accurate, a highest level of integration with com-
puters, and an approach that can be used with conventional methods [5].

Paiva et al. [6] used the multivariate robust parameter design (MRPD) approach
to optimise the turning of AISI 52100 using wiper tools due to the moderate to high
degree of correlation obtained by multiple responses. The authors observed that
MRPD approach showed better results that the individual optimisation routines and
minimal variance for each surface roughness profile. Subramanian et al. [7] applied
a second-order quadratic model to optimise the milling of Al7075-T6 aluminium
alloy with high-speed steel end mill cutting tool that the deviation is well within the
limit of 95 % confidence level.

Generally, modelling and monitoring with statistical methods employ
regression-based and time-domain techniques [8]. To understand the machinability
of tungsten-copper (WCu25) alloy with cemented carbide tool, Gaitonde et al. [9]
planned their experiments as per full factorial design (FFD). The adequacy of the
quadratic models was verified using the analysis of variance (ANOVA) and the
analyses used the Response Surface Methodology (RSM).

The trade-offs between energy, production rate and quality were weighed up in a
multi-objective optimisation problem by Yan and Li [10] using grey relational
analysis and RSM-based method. This approach allowed a reducing of the cutting
energy consumption by 18.1 % when compared with traditional objective optimi-
sation, satisfying the requirement for sustainable machining. Wang et al. [11] used
multi-objective (energy, cost and machining quality) to optimise the turning of AISI
1045 steel applying non-dominated sorting genetic algorithm II (NSGA-II).

The present work presents a review of the state of the art on statistical,
mathematical and computational techniques applied to machining process plan-
ning and analyse. First, statistical methods for design and analyse of experiments
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are addressed. Subsequently, AI approaches are referenced with focus on
machining parameters optimisation. Several papers were covered providing a
wide view of methodologies applied to achieve the best results on machining
processes.

2 Design of Experiments (DoE)

Design of experiments (DoE) comprises a set of statistical techniques to process
improvement and planning. Using DoE the experimenter can adjust the optimum
parameter levels to achieve the best output levels and a robust process, that is, a
process which has minimum variability.

The DoE strategies can be separated into classical DoE, RSM and Taguchi
approaches. These methods are commonly jointly applied or with another mathe-
matical and/or computational techniques. There are several statistical packages to
apply DoE in machining analysis and planning, facilitating the process improvement.

According to Montgomery [12] the first statistical concepts to design experi-
ments were based on factorial design and ANOVA. These techniques summarise
the classical DoE. Mandal et al. [13] affirmed that the RSM embraces mathematical
and statistical techniques to model and analyse the problems in which the objective
is to optimise a response that is influenced by the variables.

The Taguchi method is a DoE technique, which is useful to reduce the number of
experiments and to minimise effects of the not controlled factors, the time of
experiments, and costs, besides to present the significant factors in a shorter time.
This technique is focused on determining the parameter settings which produces the
best levels of a quality characteristic with minimum variation [2].

Abellan-Nebot and Subirón [14] affirmed that performing a correct DoE can
provide an adjustment of the regression model relatively fine for the machining
parameters. In their investigation on turning of AISI 304 stainless steel,
Mahdavinejad and Saeedy [15] used the DoE with full factorial method to analyse
the effects of all levels of the parameters.

Krimpenis et al. [16] mentioned that DoE is applied in the manufacturing field to
identify the significant parameters that affect the process or product and determine
the near-optimum parameter values that increase productivity and machine effi-
ciency. It defines the significant parameters and the ideal values based on the
quality characteristics. These authors [16] suggested a series of steps to improve
knowledge of the obtained results:

• Choice of parameter levels: each significant parameter has a value out of an
extensive field that should be well studied to define the value that is expressive;

• Orthogonal array (OA) issues: is represented by Latin L and number of the
array’s lines that can be two-level, three-level and mixed-level factors. In this
step is chosen the number of parameters and interactions, their levels and
desired experiment resolution between 1 (lowest) and 4 (highest);
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• Experiment conduction according to an OA and analysis of results: In this step
is applied the statistical analysis. ANOVA is used to define the high influence
parameters and draw generic conclusions.

Soshi et al. [17] applied DoE in their investigation to find the best combination
of parameters to achieve a smooth surface since there are several important
parameters to be considered to produce a high-quality surface in milling operations.
In the dry turning of Al 7075-O aluminium alloy study, Agustina et al. [18] used the
DoE (24 with 2 replications) to analyse the influence of the cutting parameters on
cutting forces in dry turning of an aluminium alloy.

In the investigation of turning of SS202 stainless steel applying cryogenic
cooling, Kumar and Choudhury [19] used the central rotatable composite DoE to
plan their experiments. This design type allows generating second-order models.
The total number of experiments using this design is defined by Eq. (1).

nexp ¼ 2k þ 2K þ nc ð1Þ

where
nexp numberofexperimentstoperform;
K number of input variables;
nc number of central runs.

Studying the turning of AISI 1045, Hwang and Lee [20] employed a fractional
factorial design with resolution V, widely used in the industry, to analyse the
significant effect and two-factor interactions. In this method, generally the signifi-
cant effects are disconcerted with four factor interactions, and two-factor interac-
tions are disconcerted with three-factor interactions, ignoring interactions higher
than three factor.

In the electrical discharge machining of AISI D2, Prabhu et al. [21] applied a
FFD using three parameters (pulse current, pulse duration and pulse voltage) with
three levels, amounting to 27 experiments that helped them to found a designed
model with 99.7 % accuracy.

To find the high influence parameters of the characteristic values in the begin-
ning of the experiment, Park et al. [22], used four factors defined by the FFD and,
posteriorly, used the central composite circumscribed design and RSM to optimise
the process. They observed that the spindle speed, feed rate, depth of cut and
interval of lubricating oil application presented strong influences in the machin-
ability in ultra-high-speed machining.

2.1 Classical DoE

The influence of some machining parameter can be determined by ANOVA from a
series of results of experiments by the design of experiment approach. ANOVA is
the predominant statistical method used to interpret the data [23].
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In the 1930s, Sir Ronald Fisher developed the ANOVA method to understand
the results of experiments in the agricultural. He used the sum of the squared
deviations from the total mean signal-to-noise ratio, separating its total variability
into contributions by each of the design parameters and the error. This method
shows the significance of all important factors and their interactions by comparing
the mean square against an estimate of the experimental errors at specific confi-
dence levels [24].

According to Muthukrishnan and Davim [25], ANOVA is a technique of por-
tioning variability into identifiable sources of variation and the associated degree of
freedom in an experiment. The quality characteristics from the significant effects of
the parameters is analysed by Fisher test (F-test). The influence on the result was
indicated by the “percent” contribution (P) of each factor.

For some machining processes, especially, when the experimenter do not know
the factors (controllable or not) affect the outputs, it is necessary to draw a set of
screening experiments using fractional factorial designs. Born and Goodman [26],
affirmed that the objective of screening experiments is to diminish a high number of
potentially parameters to those that are strong significant since it is not economi-
cally practical to perform every possible combination of machining parameters.
They studied the tool wear, which observed that the track length, chip size, tool rake
angle and cutting speed had significantly affected in the tested ranges.

In many studies, researchers commonly consider admissible a confidence of
95 %, i.e. they use a significance level (α) of 0.05. In Table 1 is exhibited some
studies that used ANOVA method and the significance level chosen. In the

Table 1 Significance values used in machining researches

Researcher Process Material Factors Significance
(%)

Muthukrishnan
and Davim [25]

Turning Composite Cutting speed, feed rate, depth of
cut

5

Gopalsamy
et al. [23]

Milling AISI P20
(55 HRC)

Cutting speed, feed, depth of cut,
width of cut

5

Babu and
Chetty [28]

Waterjet Al 6063-T6
aluminium
alloy

Depth of cut, top kerf width,
bottom kerf width, kerf taper,
surface roughness

10

Bagci and
Ozcelik [24]

Drilling Al
7075-T651
aluminium
alloy

Spindle speed, feed rate 5

Carvalho et al.
[29]

Tapping AM60
magnesium
alloy

Forming speed, hole diameter,
type of tool

5

Lin et al. [30] EDM AISI H13 Machining polarity, peak current,
auxiliary current with high voltage,
pulse duration, no-load voltage,
servo reference voltage

5

Design of Experiments—Statistical … 93



mathematical models developed in turning of AISI 1040, Neşeli et al. [27] applied
ANOVA and the prediction of surface roughness offered a 96 % confident interval.

In the turning AISI 4340 steel with Zirconia Toughened Alumina (ZTA) insert,
Mandal et al. [13] used the ANOVA to develop mathematical model that was
verified with excellent results. Yu et al. [31] applied ANOVA to find the ideal
values of cutting parameters and obtain the better machinability (accuracy and
efficiency).

In the Pareto ANOVA the sum of squares of differences (S) for each controlled
parameter is calculated as the percentage of sum of squares of differences for each
parameter to the total sum of the squares of differences and a Pareto diagram is
plotted using the contribution ratio and the cumulative contribution [32]. Hamdan
et al. [33] used Pareto ANOVA method, a very simple alternative to analyse the
optimisation exhibiting the influence (percentage) each parameter. This method
provided an improvement of cutting forces (25.5 %) and surface roughness (41.3 %).

2.1.1 Multiple Comparisons Methods

When the ANOVA indicates that the average levels of a source of variation differ, it
is necessary to identify which factor levels or combination of the factors levels are
specifically different. There are various procedures of multiple comparisons in the
literature, for example, Tukey, Fisher, Dunnett, Bonferroni, Scheffé, Dunnett, HSU,
Scott-Knott and others.

Pereira et al. [34] used the multiple comparison method of Scott-Knott to
identify which factor levels or combinations of the factors levels are specifically
different and this method which is a method of grouping means that categorises
results without ambiguity. The methodology proposed was effective and essential to
analyse of surface roughness and cutting force and to determine the best machining
conditions and chip breaker for the response factors in turning AISI 1045 steel with
grooved tools.

2.2 Response Surface Methodology (RSM)

The Response Surface Methodology (RSM) is method to optimise and model
(empirical approach) a problem to define the relationship between several param-
eters and the responses with the several desired criteria. For example, this method
conjugated with the factorial DoE can predict surface roughness using a small
number of experiments [35].

Mandal et al. [13] used RSM to model the surface roughness in turning of AISI
4340 and optimized it through desirability function. They optimised the perfor-
mance of the cutting tool in 92.3 % with a combination of cutting parameter, cutting
speed (high), feed rate (high) and depth of cut (low). Habib [36] applied the RSM in
the EDM process to determine the relations between the parameters (material

94 C.H. Lauro et al.



removal rate, electrode wear ratio, gap size and the surface finish) for developing
mathematical models, in a manner very simple, powerful and flexible.

In the study of turning on the AISI 410 steel, Makadia and Nanavati [4] applied
the RSM and found a quadratic model to analyse the influence of cutting parameters
in Ra that presented an error value of 6 %. They affirmed that 3D surface counter
plots allows in determining the ideal combination to optimise the surface roughness.
Neşeli et al. [27] mentioned that in RSM shall have at least three levels for each
factor to avoid uncertainties due to estimated values for the combinations of not
tested factor.

In the drilling of composites, Rajamurugan et al. [37] used RSM to find the
optimal parameters set (feed rate, spindle speed, drill diameter and fibre orientation
angle) to optimise thrust force. Valarmathi et al. [38] applied the RSM in drilling of
medium density fibreboards (MDF) and developed a mathematical model to opti-
mise the process for reducing thrust force.

2.3 Taguchi

Taguchi is a technique widely used in engineering design and take the DoE from
the exclusive world of the statistician and bring it more fully into the world of
manufacturing [3]. Hamdan et al. [33] cited that Taguchi has great success for
optimising industrial processes. They observed the efficiency of method for opti-
mising surface roughness in high-speed machining of stainless steel; and suggest
the following steps to prepare an experiment:

• Selecting the OA according to the numbers of controllable factors;
• Running experiments based on the OA;
• Analysing data;
• Identifying the optimum condition;
• Conducting confirmation runs with the optimal levels of all the parameters.

Tzeng and Chen [39] used Taguchi design on high-speed EDM process. The
authors assure that it separates the control factors from the noises, minimising the
noise effects. It can be minimised and generates unintended effects by using inner,
which assigns the control factors, and outer arrays, which arranges the noise factors
coupled with signal factors for exposing the process to varying noise conditions.

In the investigation of the effects of drilling on the Al 7075-T651 aluminium
alloy, Bagci and Ozcelik [24] observed that Taguchi method was useful to analyse
it using smaller number of tests than the FFD. Furthermore, it provides a systematic
and efficient methodology to optimise the process that would be required lower
effect than other techniques.

Bissey-Breton et al. [40] used two levels for eight factors (cutting speed, feed, tool
nose radii, depth of cut, tool holders, tool life and machine tools) and an orthogonal
plan designed according to the Taguchi’s method was considered to observe surface
and subsurface characteristics in the finishing turning of pure copper.
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In their study, Kirby et al. [41] presented an efficient method, applied using a
specific set of control and noise parameters, and a response variable of surface
roughness, for determining the optimal parameters for surface finish using Taguchi
design with L9 (34) OA.

According to Rao et al. [42], Taguchi method is generally used due to it be
powerful tool to analyse the machining parameters. They designed especially OA to
analyse the influence of the machining parameters using few number of tests that
require a smaller experimental time.

2.4 Other

The singular spectrum analysis (SSA) that consists a nonparametric technique of
time series analysis based on the principles of multivariate statistics was used by
Salgado et al. [43]. This technique projects the original time series onto a vector
basis obtained from the series itself, following the procedure of principal compo-
nent analysis. The set of series resulting from the decomposition may be interpreted
as a slowly.

Gopalsamy et al. [23] used the grey relational analysis that is an effective
technique to analyse many factors with few data, providing a solution to uncertainty
in multi-input and discrete data problems and to optimise the multi-response pro-
cesses through the setting of process parameters. They integrated Taguchi L18 OA
with grey relational to study the rough and finish machining individually by varying
of cutting parameters.

3 Artificial Intelligence Analysis (AI)

AI is to related intelligent machines, especially intelligent computer programs that use
similar to the human intelligence. It is more used in the engineering to resolve
problems normally requiring human intelligence due to a number of powerful tools,
such as Ant colony optimisation (ACO), Artificial Neural Network (ANN), Expert
System (ES), Fuzzy Logic (FL), Genetic Algorithm (GA), Particle Swarm
Optimisation (PSO), SimulatedAnnealing (SA), and various swarm intelligence [44].

Ramesh et al. [45] cited in their paper the usage of AI techniques to develop a
thermal error compensation module using temperature values at different locations of
the machine. They developed a positioning accuracy measured and surface finish
automatically controlled by adjusting the operating parameters using AI-based
regression techniques to build the prediction model between vibration and surface
finish.

According to Abellan-Nebot and Subirón [14], AI technique had been applied to
monitoring systems due to need for consistent models that can learn complex
non-linear relationships between variables and its adequate selection is crucial to
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develop reliable machining models. Several AI techniques, mainly ANN, FL sys-
tems and the Adaptive neuro-fuzzy inference system (ANFIS), have been widely
used for monitoring machining systems and modelling (surface roughness and tool
wear). These authors mentioned that although AI is gaining popularity in recent
works, it has been less widely used; and some drawbacks and advantages that may
facilitate the selection of a particular, as can be seen in Table 2.

3.1 Fuzzy Logic (FL)

The Fuzzy system is based on fuzzy set theory and associated techniques that
contain the ideas of modelling and controlling very complex cases. This technique
tries to reproduce two extraordinary human capabilities, capability to converse,
reason and make rational choices in an environment of imperfect data; developing
several tasks without the use of measurements or computations. This method also is
denominated of fuzzy-rule-based system, fuzzy ES, FL controller, fuzzy model,
fuzzy associative memory and simply (and ambiguously) fuzzy system [44]. FL is a

Table 2 Frequency of usage, drawbacks and advantages of AI in machining researches [14]

Usage Drawbacks Advantages

Neural
networks

59 % No clear guidelines on how to
design neural nets; lack of
physical meaning; low
extrapolation capability; trial and
error procedures to find neural
network parameters

Model can be obtained without
previous knowledge; ANN can
learn patterns in a noisy
environment or with incomplete
data; good generalisation
capability

Fuzzy
logic

15 % Do not have much learning
capability; generalisation
capability is poor compared with
ANN; no standard methods to
transform human knowledge into
fuzzy models; inputs limited

Tolerant of imprecise data; easy
to understand since it is based on
natural language; models can be
built on top of the experience of
experts; good extrapolation
capability

ANFIS 10 % Drawbacks: many parameters to
be learnt or defined by the user;
usual contradictory learnt rules;
inputs limited

Combines fuzzy systems and
ANN It can be applied with or
without previous process
knowledge; tolerant of imprecise
data; good extrapolation and
generalization capability

Bayesian
networks

4 % High quantity of experimental
data is required; high
computational cost; variable
discretisation is required and
depends on network reliability
and accuracy

Adequate for modelling
stochastic systems; the model
presents the causal relationships
between variables; let fuse prior
knowledge by fixing well-known
causal relationships

Frequency of usage of AI approaches in intelligent machining systems according to the references
found in the research platform ISI-Web of knowledge from 2002 to 2007. The remainder, 12 %,
corresponds to others methods
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set without a crisp, clearly defined boundary that may contain elements with a
partial degree of membership, commonly 0–1. To predict the machining perfor-
mance, this technique provides relevancy and importance [46].

In the study of turning on carbon fibre reinforced polymer using CBN cutting
tool, Rajasekaran et al. [47] used of fuzzy-rule modelling to predict the surface
roughness that when compared to results of experiments were highly satisfactory.
Zhang et al. [48] studied the adaptive fuzzy control system of servomechanism for
EDM combined with ultrasonic vibration that affirmed that an appropriate selection
of input and output variables and the establishment of the membership functions of
these variables meet the actual control requirements very well.

Liu et al. [49] used a method called grey-fuzzy logic that has been applied for
requests of several machining responses and can be modified to optimise a single
grey-fuzzy reasoning grade. It used OA to obtain the optimisation of multi-response
characteristics during the process. This technique can simplify the optimisation of
complex multiple response.

3.2 Artificial Neural Network (ANN)

The Artificial Neural Networks (ANN) imitates the human brain to implement the
functions of association, self-organisation and other. This technique has the
capacity to estimate functions accurately, thus it is useful to model highly
non-linear processes [50]. In study of end milling, Zain et al. [51] employed the
ANN to predict the surface roughness and present a table highlighting some
researchers that used this technique in machining researches (milling, turning and
drilling) for modelling Ra. They affirmed that the ANN may predict accurately
values using a small number of training samples that is not the significant issue in
obtaining a good prediction. However, it will be influenced by how the number of
layers and nodes is altered in the hidden.

The ANN models developed by Özel et al. [52] were useful in the prediction of
tool wear and surface roughness for a range of cutting parameters and develop an
intelligent hard turning. To predict in the surface roughness in the EDM of various
steel, Markopoulos et al. [53] used two discrete programs to develop the ANNs and
the modelling of EDM that were proven to perform well, providing reliable pre-
dictions and a possible way to avoid time-and money consuming experiments.

According to Korkut et al. [54], the back-propagation of ANN with
Levenberg-Marquardt has strong acceptance and has been used in different fields.
They proposed a variation of the standard back-propagation to train the ANN and
obtain model that was useful to predict the tool-chip interface temperature.
Furthermore, these models could be used for an efficient analysis of experiment that
can contribute for the optimisation of time and cost.
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3.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS is a technique to develop membership functions that can use neural
networks method to develop membership functions. This provides the advantages
of both fuzzy and neural networks modelling plus it do not need a mathematical
description, i.e. neuro-fuzzy modelling improves convergence rate and approxi-
mation accuracy [55]. The authors used Sugeno fuzzy system and hybrid algorithm
was employed to train neural networks and affirmed that ANFIS is a more accurate
modelling method in comparison with ANN and multiple linear regression.

In the dry wire electrical discharge machining (WEDM) study, Fard et al. [56]
used the ANFIS technique to correlate input variable (discharge current, gap
voltage, pulse on time and off time, wire tension and feed) and main outputs
(cutting velocity and surface roughness). They observed that obtained ANFIS
surfaces it could be found combination of input variable and the model could
predict the cutting velocity and surface roughness as well due to low values of root
mean squared error (RMSE) in testing.

Neto et al. [57] applied ANFIS in their investigation about drilling of composed
of Al 2024-T3 aluminium alloy and upper portion of Ti-6Al-4V titanium alloy,
which observed that ANFIS proved to produce very precise predictions. Studying
the wear in the turning of stainless steel 304L study using uncoated carbide inserts,
Liu et al. [58] applied ANFIS in the online measurements to detect the tool wear.
They concluded that ANFIS can predict the tool wear very accurately, finding a
success rate of 96.67 %.

To monitor the tool wear in the turning, Gajate et al. [59] applied the dynamic
evolving neural-fuzzy inference system (DENFIS) and of the transductive-weighted
neuro-fuzzy inference system (TWNFIS) to model the tool wear using four input
(acoustic emissions, cutting forces, time and vibrations) and one output (tool wear
rate). The TWNFIS was modified to normalise the data procedure and cluster the
algorithm, which shows results were better than DENFIS and ANFIS due to it
provides smaller errors.

Dynamic evolving neural-fuzzy Inference System (DENFIS) is suitable for
online adaptive systems. This model was developed depending on the position of
the input vector in the input space a fuzzy inference system for calculating the
output is formed dynamically bases on m fuzzy rules that had been created during
the past learning process [60]. According to Gajate et al. [59], the
transductive-weighted neuro-fuzzy inference system (TWNFIS) consists of a
dynamic neuro-fuzzy inference system with local generalisation that is elaborated
with three important characteristics:

• Fuzzy: semantic transparency, capacity to simulate the human thought pre-
senting a best result with uncertainty and imprecision.

• Neural: exhibit a high learning capability that is excellent to model non-linear
function.

• Transductive: estimate the model a single input/output set of the space, using
only data associated with the set.
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3.4 Bayesian Networks (BN)

The Bayesian Network (BN) is a probabilistic graphical model that has a directed
acyclic graph representing a set of variables (nodes) that can represent any kind of
variable and their probabilistic conditional independencies (encoded in its arcs).
The facility of the interpretation offers clear and extensive advantage to the oper-
ator, when compared with other AI technique [61].

Dey and Stori [8] cited that BN, which had been employed for monitoring and
diagnostic in the manufacturing, provides a flexible structure to model and evaluate
the uncertainty. They applied the Bayesian belief network in their study (which the
interest variables were the dimensional and hardness variation and tool wear) that
concluded that seems to be a great technique for explicitly addressing uncertainty
and using data from various bases.

Dong and Yang [62] developed a drilling model using dynamic bayesian net-
work (DBN) inference procedures and particle filtering algorithms that can be
established. In the study of the milling of AISI P20, Dong et al. [63] compared the
Bayesian multilayer perceptron (BMLP) and Bayesian support vector machines for
regression (BSVR) networks. The results show that the BSVR was more precise
than BMLP to predict the flank wear, although it required higher computational
efforts. The BMLP can be a useful to solution in online implementation when do
not have access to high-performance computer.

Correa et al. [61] compared BN with ANN that observed better results for the
BN to predict problem of quality in high-speed milling. Furthermore, the BN offers
better result than ANN in the computational time of models, requiring 0.08 and
12.69 CPU seconds, thus, the employed of BN can be easy and fast.

3.5 Genetic Algorithms (GA)

The Genetic Algorithm (GA) can be considered an optimisation technique, indiffer-
ently of physical substance, used to resolver a complex problem similar to Darwinian
theories of evolution. Its principle is optimising an objective function in complex
multi-modal space that occurs indifferently of the nature of the phenomenon [64].

According to Wang et al. [65], the GA is based in the theory of biological
evolution that includes the natural selection. The survival of the fittest uses the
parameters, rules, and switches of the problem that are represented by binary
combination. This combination is called chromosome that optimises an objective
function through the following step:

• Designing of the parents;
• Designing of the hereditary chromosome;
• Gene crossover;
• Gene mutation;
• Creation of the subsequent generation.
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In the temperature milling study of Al-6063 aluminium alloy, Sivasakthivel and
Sudhakaran [66] applied GA to optimise the machining parameters to obtain the
minimum temperature rise. They found a result that optimised the helix angle,
spindle speed, feed rate, axial and radial depth of cut. Rao et al. [67] studied a
relationship between the input parameters and surface roughness using GA, which
was observed a significant decrease in mean square error when GA is used to
optimise an ANN.

4 Modelling and Optimisation for Machining Process

In the literature, several paper employed models to understand, predict or optimise
the parameters or events that occur in the machining processes. Campos et al. [68]
affirmed that the modelling and optimisation are employed by researchers due to it
has an important influence in the total cost of the product. It is need due to increase
the number of cutting parameters that require high number of tests, consuming
several means. These authors [68] suggest the employ of the following methods to
model bellow:

• Taguchi and ANOVA: efficient techniques to control the effect on tool wear and
surface roughness.

• RMS: to optimise the relationship between the several inputs and outputs.
• ANFIS: to provide or optimise the cutting parameter and phenomenon such as

surface roughness and tool wear.
• Artificial neural networks (ANN): to predict the phenomenon such as the surface

roughness, tool wear.
• GA: to find the factors of a model and optimise the outputs.

Akkuş and Asilturk [69] affirmed that time, material and labour work may be
saved by predicting surface roughness without experimental testing for intermediate
values. They developed accurate models to predict the surface roughness in the
turning of AISI 4140 applying ANN, FL and statistically multi-regression methods
for the used input parameters, cutting speed, feed rate and depth of cut.

Hessainia et al. [35] classified the surface roughness (Ra) modelling techniques
into three groups: experimental; analytical; and AI models. They proposed a model
using the RSM for the hard turning of AISI 4140 (56 HRC), which found a qua-
dratic model of RMS with correlation coefficient of 99.9 and 96.4 % for models Ra

and Rt, respectively.
According to Upadhyay et al. [70], to predict the surface roughness using

machining parameters was useful only to define the parameters for finishing due to
the vibrations/cutting forces. They developed this model using multiple regression
method as a function of vibration in radial, axial and tangential directions. They
tested the prediction using an ANN model that was trained with the
Levenberg-Marquardt. These developed models can be effect to predict the surface
roughness with average error of 4.11 % and maximum error of 6.42 %.
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Lopes et al. [71] presented a model considering the multivariate uncertainty as
weighting matrix for the principal components. In the study of turning of AISI
52100 hardened steel with wiper tools was implemented a central composite design
using three factors, cutting parameters, for a set of five correlated metrics, different
surface roughness profile. The results showed that the developed technique pre-
sented an excellent predictability.

5 Conclusions

The objective of the manufacturers is obtaining a production that is economic,
ecological, efficient and reliable. Thus, in the machining sector, there are several
developments in tools (example the geometry, material and coatings) and machines
(example power, spindle speed and accuracy). However, the definition of the cut-
ting parameters is more important to obtain a condition that result in desired
objectives. The users can be several parameters as outputs, as the tool wear, chip
removal volume, cutting forces, vibration and others. After, the users should ana-
lyse the outputs and define the cutting parameters to obtain the desired objective, as
the maximum production, low time, or quality of product and others.

Meantime, the machining processes are composed of several operations, as
turning, milling, drilling, broaching and others, that have variables, as cutting
speed, feed rate, depth of cutting, cooling system and others. Sometimes, the users
ignore or forget that some variable can be influence the process, as the brands, room
temperature, material structure and others. Thus, the users should realise randomly
all tests at least twice (repeat and replications), to reduce the influence of the not
assigned variables and the randomness of responses. Furthermore, the analysis will
be more reliable and easily to comprehend the influence of the parameters.

The analysis of the outputs using Statistical and/or Artificial Intelligence
methods provides results about the cutting parameter and their interaction that
facilitate the comprehension of machining phenomena. These methods employed to
model the process can indicate the best cutting parameter combination to obtain a
product with maximum quality, minimum losses (time, material and others) among
the tested condition. The usage of the one or both methods will depend of the user’s
goal, i.e. if the user wants an analysis simplest, the statistical analysis using the
ANOVA can be the ideal method. However, if the research employs the several
factors, levels, and other or the previse results, the usage of the artificial intelligence
analysis, as the ANN, can be the ideal method. Furthermore, the planning of
experiments is more important in the research because it can reduce the cost and the
time need to execute the experimental.

Thus, although the machining processes are increasingly evolved, the planning
and the analysis (Statistical and/or Artificial Intelligence) always will be necessary
in the academic investigation or industrial application to optimise the means and
avoid error or waste. For example, an industry that desires to buy the tool machine.
Will the new technical characteristics be significant in the production to return the
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investment? Other example, this industry desires chance the tool supplier. Will the
cost variation between suppliers compensate the production variation?
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A Systematic Approach to Design
of Experiments in Waterjet Machining
of High Performance Ceramics

Flaviana Tagliaferri, Markus Dittrich and Biagio Palumbo

Abstract The main objective of this chapter is to highlight the strategic role that a
systematic and sequential approach of experimentation plays in order to achieve
competitive advantage and technological innovation. The efficacy of this approach
is demonstrated by describing an application where the appropriate use of statistical
knowledge, along with technological knowledge, has allowed to characterize
manufacturing processes, to catalyze the innovation process and to promote the
technological transfer. Moreover this approach, based on the use of customized
pre-design guide sheets, allows to put into action a virtuous cycle of sequential
learning and helps to overcome the gap between practitioners and statisticians in
effective application of Design of Experiments (DoE).

1 Statistics for Innovation: Design of Experiments

Today, the improvement of manufacturing processes and process innovations are
some of the strategic activities carried out in research and development departments
of manufacturing industry and in research centres.

Finding the best solution often requires extensive testing; in order to obtain these
results as efficiently as possible is fundamental to adopt adequate experimental
procedures and effective data analysis.
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According to Czitrom [1], many engineers and scientists typically perform
One-Factor-At-a-Time (OFAT) experiments, which vary only one factor or variable
at a time while keeping others fixed. They will continue to do so until they
understand the advantages of different approach over OFAT experiments, and until
they learn to recognize OFAT experiments so they can avoid them.

The Design of Experiments (DoE) is a methodology for systematically applying
statistics to the experimentation process; in many cases it is the best way to
establish which variables are important in a process and the conditions under which
these variables should work to optimize such process. It is the only tool to perform
efficient analysis of a process determined by numerous parameters.

The DoE was introduced in the 1920s by Sir Ronald A. Fisher in the field of
agricultural research [2]. Since then much has been published about the theoretical
aspect of DoE, such as Wu and Hamada [3], Montgomery [4], Box et al. [5] and
today there is sufficient awareness that OFAT experiments are always less useful
than statistically designed experiments.

Using some real examples Czitrom [1] illustrates the advantages of DoE and
shows that the experimental results cannot take into account the interactions between
factors when only one factor at a time varies while keeping all the other ones fixed.
Otherwise in DoE all factors are varied together and it is the only way to discover
interactions between variables. For these and many other reasons Montgomery [4]
says that DoE is a critically important tool for engineers to improve the performance
of manufacturing processes. He also says that the application of experimental design
techniques early in the process development can result in:

• Improved process yields;
• Reduced variability and closer conformance to nominal or target requirements;
• Minimized development time;
• Saved overall cost.

However, as Ilzarbe et al. [6] deduce, after a review of 77 articles about practical
DoE application in the field of engineering, the DoE is a methodology that has been
applied for many years in industry to improve quality, but it is still not used as it
should be.

These statistical techniques are commonly found in statistics and quality literature
but, as pointed out by Tanco et al. [7], they are hardly used in European industry;
there is still a significant gap between theoretical development of DoE and its
effective application in industry. Why? On the one hand Costa et al. [8] show that
DoE is not an easy technique to be applied due to limitations in technical knowledge
of the product and technologies involved. On the other hand Montgomery [9] refers
to the inadequate training in basic statistical concepts and methods by the engineers.
Therefore, there is the necessity to integrate statistical and technological knowledge.
In fact statistical approach catalyses the process innovation and, moreover, it allows
putting into action a virtuous cycle of sequential learning.
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1.1 Pre-design and Guidelines for Designing Experiments

In order to help the experimenters to plan all activities needed for a good testing,
Coleman and Montgomery [10] suggest a path which consists of the following
seven basic steps:

1. Recognition and statement of the problem;
2. Choice of factors and levels;
3. Selection of the response variable(s);
4. Choice of experimental design;
5. Conduction of the experiment;
6. Data analysis;
7. Conclusions and recommendations (followed by monitoring and/or confirma-

tory test).

Certainly an accurate pre-design (i.e. pre-experimental planning phase) is the
solid basis on which a statistical approach has to be built.

The pre-design is the pre-experimental planning phase, in other words it is
everything preceding the definition and execution of experiments, and corresponds
to the suggested steps 1–3.

The first step entails elaborating and writing clearly the statement of the prob-
lem; it is an obvious step but it is harder than it may appear. It is especially needed
in a working team so that everyone has a clear idea of the aim.

The selection of the response variable(s) and the choice of the factors, with their
levels, is really not a simple issue. It is a crucial task and requires adequate
knowledge.

The potential design factors are the parameters that considered to influence the
process in study; the range over which these factors will be varied must be chosen
too. Regarding the response variable(s), quoting Montgomery [4], the experimenter
should be certain that this variable really provides useful information about the
process under study.

Therefore, steps 2 and 3 represent the phases which especially require synthesis
of statistical and technological skills. In fact in order to choose a good selection of
factors and response variable(s) it is necessary not only to understand the statistical
thinking, but also to have good process knowledge.

Who has both statistical and process knowledge has a competitive tool to per-
form an innovative research.

1.2 Pre-experimental Planning

According to Coleman and Montgomery [10] and Ilzarbe et al. [6], pre-design guide
sheets, (split up into pre-design master guide sheets and supplementary sheets) to
direct the experimentation, are suggested to be conceived, customized and
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implemented (as done in the presented application). Previous edition of pre-design
guide sheets proposed in this chapter have been already successfully applied in
several technological context [11–13].

The use of the pre-design guide sheets provides a way to systematize the process
by which an experimentation team does the experimental plan. In fact these sheets
drive the experimenter to clearly define the objectives and scope of an experiment
and to gather information needed to design an experiment.

This document forces the experimenter to face up to fundamental questions from
the early phases of the experimental activity and, moreover, it facilitates and
catalyses the interaction between statistical and technological competences.

The master guide sheets contain information about the objective of the experi-
mentation, the relevant background, the response variables and the factors (i.e.
control, held-constant and noise factors). The factors are all the process input; they
can be controllable or not. Control factors are controllable factors being varied
during the experiment. Held-constant factors are controllable factors whose effects
are not considered during the test. The noise factors are not controllable factors.
Response variables are the variables of interest in an experiment (those that are
measured). The supplementary sheets detail the technological relationship between
the control factors and the response variables, in terms of the expected main effects
and interactions. Moreover, the normal level and range as well as the measurement
precision are specified for each quantitative control factor. Figure 1 shows the list of
contents in the proposed pre-design guide sheets.

Obviously, it is necessary to customize the guide sheets in order to make them
more appropriate and comprehensive in the specific technological and organiza-
tional context in which they are used.

According to Hahn [14] “The major contribution of the statistical plan was to
add discipline to the experiment and to help ensure that it would result in as valid
conclusion as possible, subject to the constraints imposed by the testing situation”.

If the pre-design is done correctly, it is not too hard to choose a good DoE. To
choose design involves the consideration of sample size (number of replicates), the
selection of a suitable run order for the experimental trials, and the determination
of whether or not blocking or other randomization restrictions are involved.

Fig. 1 List of contents in the
pre-design guide sheets
(master guide and
supplementary sheets)
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Generally, factorial designs (with all several special cases of the general factorial
design) are very efficient tools when an experiment involves several factors and it is
necessary to study the joint effect of the factors on a response.

It is good to remember that the experiments performed with the DoE are iter-
ative. It would be a mistake to schedule a single, large, exhaustive experiment,
because this methodology is based on progressive acquisition of knowledge. Two
main phases can be identified: screening and optimization.

Typically, screening or characterization experiments are used to determine
which process parameters affect the response. The next phase is the optimization,
which has the scope to determine the region in the important factors leading to the
best possible response.

After the definition of the experimentation objective and the study of the liter-
ature about the state of the art of technological contest, it is possible to draw up the
first draft list of factors. When the list is ready the research team could select the
control factors from it, as a first trial. The process is iterative until the final defi-
nition of the experimental plan.

Figure 2 shows an example of table where the list of factors has to be collected.
Following, a screening testing section about waterjet machining is presented in

detail.

2 Technological Context: Waterjet Machining

The development of novel high performance materials comes along with new
requirements for machining strategies. If the workpiece consist of harder material
than the tool, it is possible to use more wear-resistant but also cost-intensive cutting
materials and tool coatings or to use hybrid processes, e.g. the application of a short
time softening of the workpiece material by using heat treatment [15].

Fig. 2 List of control factors, held-constant factors, noise factors
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An alternative promising procedural principle is the use of an abrasive waterjet
as tool. Based on the machining character the abrasive waterjet machining can be
assigned to cutting processes with geometrically undefined cutting edge. According
to the beam character, the waterjet may cause several machining results, including:
cleaning, roughening, decoating, engraving, removal and cutting [16]. In compar-
ison to other machining strategies, the abrasive waterjet can be applied for different
machining procedures, e.g. two-and three-dimensional cutting, milling, turning,
drilling, structuring or polishing.

The main advantage of this principle is that machining takes place almost
without process forces. So it is suited especially for brittle materials [17]. In par-
ticular, water abrasive finejet machining enables the fabrication of most filigree
contours which could not or only at a limited extent be manufactured during the
main forming process of ceramics at adequate quality.

The material removal of difficult to machine materials, especially Aluminium
Oxide, by using an abrasive waterjet, will be described in detail below. The fol-
lowing practical example shows the necessity of DoE for understanding the newly
developed process of surface machining. The goal of the investigation is to receive
as much information as possible about the effects of parameter adaption with the
smallest possible amount of work to reduce cost and time.

As a consequence of the great variety of purity and the possibilities to manu-
facture high performance ceramics, it is not possible to make general statements
about the machining parameters and the consequential machining results. Equal to
this, the high quality machining of technical ceramics by using a water abrasive
finejet does require batchwise preliminary inspection of the material removal
behaviour. Based on such surveys appropriate machining parameters can be
determined.

2.1 Injection Principle

The formation of the abrasive waterjet can be separated in the injection principle
and the suspension principle. For the industrial use the injection principle became
accepted in a wide range of applications [16]. In this system, the cutting head is
built up of three main parts (cf. Figs. 3 and 4).

The water nozzle, mainly consisting of a metallic body material, contains a
nozzle brick made out of sapphire or diamond and is responsible for the formation
of a pure waterjet. The pure waterjet causes an underpressure in the mixing chamber
due to its high kinetic energy in consequence of the high water pressure. Thus, the
abrasive particles aspirate inside the mixing chamber and become entrained with the
waterjet through the focusing tube. This tube is responsible for the acceleration and
the moving direction of the particles. The abrasive material is the most important
element of the abrasion during the machining process, the water itself, with
velocities up to 840 m/s when using the experimental equipment, does only serve in
order to speed up the abrasive particles [16, 18].
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2.2 Water Abrasive Finejet Machining

In contrast to conventional waterjet machines, machining with the water abrasive
finejet is characterized by its higher machining accuracy due to better axis positioning
as a consequence of its modified machine kinematics as well as the reduced beam
diameter. While in conventional applications a waterjet diameter of 0.8–1.0 mm
is being used [18], a beam diameter of 0.3 mm is utilized for the described application

Fig. 3 Principles of the waterjet formation

Fig. 4 Cross section of a
waterjet cutting head based on
the injection principle
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by the selection of the right nozzle circumstances and an appropriate abrasive grain
size. However, the energy inside the waterjet is also being reduced as a consequence
of the reduction of the beam diameter. This results in the fact that several component
thicknesses and materials cannot be cut in adequate quality anymore [19]. Yet, for
surface structuring with a waterjet (cf. III of Fig. 5), the reduced beam energy at an
abrasive waterjet diameter of 0.3 mm is beneficial because the control of the material
removal is better during the process.

2.3 Field of Application

2.3.1 Cutting

Conventional waterjet cutting machines have been especially developed for cutting
mainly plane materials. Since about the middle of the 2000’s the machining trend
has first changed to the processing of three-dimensional workpieces by upgrading
machines with more motion axes as well as to precise machining with reduced
beam diameter.

Basically, every sort of material, except diamond, can be machined by the
abrasive waterjet. Smooth and thin materials can be machined by using a pure
waterjet. In contrast, for hard and difficult to cut materials, abrasive particles inside
the waterjet can become essential for an efficient cutting process [16, 20]. For
conventional applications, garnet sand is being widely used as abrasive material.

Fig. 5 Volume flow rates at different water pressures—Water Abrasive Finejet versus
conventional Abrasive Waterjet
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The high kinetic energy of the cutting jet, which also must not be underrated
after the exit below the cutting zone, requires a beam catcher mostly in terms of a
water basin. By the deviation of the water beam into the basin it can be guaranteed
that the kinetic energy of the waterjet decreases to a non-hazardous stage.

2.3.2 Surface Structuring

For surface structuring and material removal via abrasive waterjet, garnet sand has
proved to be the best kind of abrasive material. Indeed the material removal rate for
machining hard materials is low, but there is better controllability of the process
regarding the depth of penetration and the generation of certain surface
roughnesses.

Conventional waterjet machines are only of limited suitability for structuring
workpiece surfaces with a reflecting water beam. Because of the fact, that the water
beam does not pierce the semi-finished products, a water basin is not essential.

Yet, the developed water fog and the reflecting beam itself stress the guides and
axes of the machine as well as the cutting head very intensely. Besides the pollution
with water there is the influence of the highly abrasive particles, which does
especially cause abrasive wear at the machine axes. The cutting head receives
long-term damages by the high kinetic energy of the reflecting water beam.
Therefore, particular precautions such as splash guards and encapsulations have to
be arranged to avoid damages.

Once the systems engineering requirements are accomplished, a great variety of
surfaces can be fabricated by the use of the waterjet (Fig. 6). Besides constant
material removal for example for machining pockets, it is possible to manufacture
surface reliefs, functional surfaces or even engravings on the base material. The
controllability of this machining strategy on high performance materials opens the
market for new fields of application for different kinds of industrial sectors.

Fig. 6 Variety of application for machining Alumina with the Water Abrasive Finejet
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3 Experimental Equipment

3.1 Equipment

The abrasive waterjet machine used for the study has especially been developed at
Technische Universität Chemnitz for machining with a reduced beam diameter of
0.3 mm (Fig. 7). The motion in x- and y-direction takes place with the movement of
the clamping table. The motion in z-direction is being operated by the cutting head.
In addition to this, two rotational axes at the cutting head guarantee simultaneous
five-axes machining at setting angles of the waterjet in every variance.

The water nozzle, consisting of a sapphire stone, has an inner diameter of
0.1 mm while the focus nozzle, which corresponds to the effective beam diameter,
has a size of 0.3 mm in diameter.

3.2 Challenges of Data Recording

As a result of the high kinetic energy of the water during machining inside the
cutting head, the abrasive effects of the abrasive particles and the adverse conditions
inside the workspace (as a consequence of water fog development, splash water, the
reflecting water beam during surface machining itself and the pollution by abrasive
particles), reliable online-measurement of the material removal is not possible by
using sensor systems. Additionally, every kind of material and the variety of
mechanical properties of each material load does cause different material removal
behaviour. Even the change of the surface quality of the semi-finished product has
an influence on the machining result. In addition, size and form of the workpieces

Fig. 7 Experimental equipment
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play a role in data acquisition, for example during structure-borne sound measure-
ment. Further, unchangeable effects on the machining result are: the nozzle diameter
proportion, the length of the focus nozzle, geometric characteristics inside the cut-
ting head, the accuracy of nozzle orientation, wear of the nozzles, characteristics of
the high water pressure and abrasive particle supply, quality of abrasive particles and
more. For these reasons, a stable and widely applicable online-monitoring cannot
give information about the material removal, neither with optical nor via noise or
structure-borne sound.

The huge variety of determining factors requires practical tests for each machine
setting in every case of application.

To reduce costs and time and nevertheless to obtain meaningful information, the
method of DoE is being applied.

4 Set-up, Design and Testing Phase

4.1 Machine Set-up

During the first step of the examinations, both the control and the held constant factors
have been determined. It is important to have good knowledge about the observed
machine, its characteristics and the possible influences on themachining process itself
as the disregard of particular parameters can have major implications for the
machining result. For this reason, it is advisable to always involve technical personal
and experts for each application. The adjustable parameters, as shown in Table 1, can
be categorized into cutting factors, abrasive factors and hydraulic factors.

Cutting factors are the parameters adjustable by the CNC control unit. They
define the exact motion-sequences the cutting head performs during machining.
Arising from the use of preliminary examinations on different types of material it
became apparent, that the ideal distance between the focus nozzle tip and the
workpiece surface is 0.6 mm when a beam diameter of 0.3 mm is being used.

If the cutting head is being placed closer to the workpiece surface, the machining
quality does not increase. Quite the contrary, the risk of a collision between the
focus nozzle and the workpiece arises when the workpiece material is uneven.

Table 1 Changeable machining parameters

Cutting factors Abrasive factors Hydraulic factors

Stand-off distance, d Abrasive flow rate, ṁ Water pressure, p

Traverse path strategy Abrasive material Orifice diameters, dw/df
Offset distance, l Particle size Focus nozzle length, lf
Traverse speed, vf
Impact angle along feed, α

Impact angle vertical to feed, β
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As a quintessence of surface structuring, it is possible that the process gets
interrupted due to the reflection of the water beam back inside the cutting head. In
this case, the cutting head could even be damaged. In addition to that, due the focus
nozzle geometry it is necessary to increase the distance between the focus nozzle
and the surface of the ceramic workpiece for realizing a defined angle adjustment.
For this reason the stand-off distance (d) has been increased to the minimum
possible distance of 1.0 mm. The distance has been set as a held constant factor as
further increasing of the gap would only cause a reduction of the kinetic energy
inside the water beam as a consequence of fanning-out.

The traverse path strategy has an essential influence on the manufactured surface
character. There are versatile possibilities to vary this parameter and according to
this the machining result, so, for example crosswise, line by line or helical
movements of the cutting head do cause varying surfaces of the pockets ground.
During the first step of a crosswise movement, which is equal to line by line
machining, material is being removed with a defined standoff-distance. During the
second crossing step the machining takes place on the already machined surface.
This means that the standoff-distance is not defined anymore if there had not been
some pre-experimental studies before. So, during crosswise machining, no constant
conditions are available. For machining a homogenous surface via spiral move-
ment, it is necessary to adjust the nozzle traverse speed continuously to reach a
constant effective velocity. That is why this type of movement is also not appro-
priate for fundamental studies. Finally the machining strategy has been set constant
as line by line, because impairments are not expected as a result of the machining
position.

The impact angle on the surface along the feed direction (α) has been set to be
perpendicular to the workpiece surface as a held constant factor. The reason for this
is the initially unknown material removal behaviour. Similar to cutting with the
abrasive waterjet, there is a lag of the water beam due to the reduction of the kinetic
energy with an increasing depth of penetration. This means that the waterjet is being
pushed away in the opposite direction of the feed direction as a function of the feed
velocity, the hydraulic factors, properties of the abrasive material supply and the
workpiece material. Because of the fact that the lag is unknown during the use of
different parameter settings, the angle has been set constant perpendicular to the
feed direction.

It is known that an angle adaption vertical to the feed direction does change the
contour of the machined gap. This means that the surface quality of the pocket
ground does also change crucially. For evaluating this influence, the angle (β) has
been set as a control factor. The cutting head is being positioned between 0° and
15°.

Another factor, that must have an influence on the surface quality in theory, is
the distance between every single movement direction line, the so-called offset
distance (l) (Fig. 8). Due to the knowledge that the stock removal is being reduced
at the outwards region of the water beam, it can be assumed that different offset
distances do cause different surface roughnesses. Since it is the objective to man-
ufacture pockets inside the workpiece material, it is inevitably required to overlap
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the single gaps. Preliminary tests have shown that offset distances between 0.15 and
0.20 mm are suitable. This means that the offset distance has been set to be a control
factor.

The nozzle traverse speed (vf) also belongs to the group of the cutting factors. It
is expected that a higher traverse speed does cause a reduced depth of penetration of
the waterjet inside the workpiece material. Randomized tests have shown that
velocities between 2 and 3 mm/s are the best configuration for surface machining of
this kind of material.

Abrasive factors are all variables that are linked with the particles being added to
the water beam, including the kind of abrasive particles, the grain size and the
amount of abrasive material per time unit.

For industrial use, garnet sand is generally being used as abrasive material. The
advantage of this material is that it is relatively low priced but nevertheless well
suited for machining conventional workpiece materials. Especially for hard, diffi-
cult to cut material, it is possible to use harder abrasive particles, such as ceramic
materials like Silicon Carbide, Boron Carbide or Aluminium Oxide. Though the
cutting performance is much higher, hard abrasive particles are not appropriate for
selective surface structuring. This fact comes along with strong increasing of wear
mechanisms inside the cutting head and the focus nozzle. Wear as a disturbance
variable affects the machining result.

So, as a noise factor, wear has to be avoided as far as possible. For this reasons,
only garnet sand (Bengal Bay Garnet®) has been used as abrasive material.

According to experience, grain sizes between 90 and 125 microns are suitable
for reliable machining with a waterjet having a diameter of 0.3 mm. So the abrasive
particles have been sieved to this range size and set as held constant factor. As the
abrasive particles are responsible for the material removal, the abrasive flow rate
does play a major role during surface structuring. The abrasive flow rate (ṁ) has
been set as a control factor. It has been varied in a range between 6.38 and
13.62 g/min to observe the effect of the change of particle quantity on the surface
quality and the depth of penetration. This range has in preliminary tests been
identified as useful for material removal with adequate surface quality.

Fig. 8 Schematic diagram of
the machining zone
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Hydraulic factors describe the parameters which are responsible for the char-
acteristic of the waterjet. A change of those parameters will have an influence on the
jet velocity, in other words the kinetic energy of the water beam after leaving the
water nozzle, as well as on the effective waterjet diameter. The nozzle proportions
have been held constant. The diameter ratio between water nozzle and focusing
tube (dw/df) has to be approx. 1:3 for optimized fluidic conditions inside the water
beam [21–23]. Thus, 0.3 mm as beam diameter is the minimum possible diameter to
work reliably with a waterjet based on the injection principle. By using the water
abrasive finejet it is possible to manufacture pockets and even surface structures at
smallest dimensions.

The focus nozzle length (lf) has also been set as a held constant factor. It was set
to be 23.8 mm in length.

The only hydraulic parameter that has been varied during the examination was
the water pressure (p). For conventional waterjet cutting pressures between 3000
and 4000 bar are being used in industrial applications. When the waterjet is used for
surface structuring, the beam is totally reflected. The reflecting water beam still
contains residual kinetic energy, so there is the risk of impairing the cutting head
itself or other components of the machine. Moreover, water fog that is loaded with
abrasive particles develops inside the workspace. This mixture can damage tracks
and drives. A reduction of the water pressure does contain the stressing of the
machine. Besides that, pre-experimental investigations have shown that a reduction
of the water pressure causes a better controllability of material removal from the
workpiece. For this reason, the pressure has been examined in a range between
1300 and 1800 bar during the experimental study.

In addition to the constant and varied parameters also noise factors have an
influence on the result, although they are not capable of being actively influenced.

One part of this is the nozzle wear. To prevent nuisances under this effect, it is
necessary either to replace the nozzles frequently or to check them in definite time
steps with regard to damage or wear. Moreover, the clamping of the workpiece as
well as the constitution of the workpiece material itself can have undesired effects
on the result of the machining process. In addition, there are deviations during water
pressurization and in the quality of the abrasive material. To exclude such influ-
ences, repetitions under the same parameter adjustments will be absolutely
necessary.

In order to evaluate the machining results response variables are being used to
achieve definite information about the quality as well as the economy of the
machining. A quality criterion is the surface quality of the bottom of the manu-
factured pocket. Here, the arithmetic roughness Ra is being used as characteristic
value. To receive information about the economy, the depth of penetration is being
evaluated, linked with the material removal rate per time unit.
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4.2 Design of Experiments

Basic statistical methods applied, as factorial design and ANalysis Of VAriance
(ANOVA), are extensively described in literature [4]. Therefore, they have been
applied in this paper without any explicit introduction or analytical formulation.

As extensively discussed before, the use and the implementation of pre-design
guide sheets allowed the team to carry out the best design of experiment.

In this screening experimental stage a fractional factorial design 25−1 was
adopted, after the evaluation of every choice taken into account from the research
team and listed in the pre-design guide sheets (Fig. 9). No main effect or two-factor
interaction is aliased with other main effects or two-factor interactions, because the
fractional factorial design 25−1 is a resolution V design (with a defining relation of
I = ABCDE and design generator E = ABCD). However, each main effect is aliased
with a four-factor interaction, and each two-factor interaction is aliased with a
three-factor interaction [4].

The adopted control factors are: water pressure p(A), nozzle traverse speed vf
(B) abrasive flow rate ṁ(C), offset distance l(D) and impact angle β(E).

The offset is the distance between every single motion line of the waterjet and
has an important effect on the surface conditions. A proper range for the offset
distance could be determined by preliminary tests.

The angle β vertical to the feed direction was chosen as control factor because of
the knowledge that this factor changes the geometry of the gap and thus has an
influence on the overlapping zones of parallel manufactured lines.

With the exception of the control factors, each test was performed under the
same experimental conditions.

Fig. 9 Definition of factors in the pre-design guide sheet
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The testing phase should result in the parameter field to be investigated during
the main experiments, as shown in Table 2. Tables 3 and 4 show the adopted design
matrix and the test matrix listed in run order, respectively. The coded levels of the
control factors in Table 3 are adopted from Table 2.

Table 2 Values of control factors and held-constant factors as a result of the testing phase

Control factors Label MIN (−) MAX (+) Unit

Water pressure, p A 1300 1800 bar

Traverse speed, vf B 2 3 mm/s

Abrasive flow rate, ṁ C 6.38 13.63 g/min

Offset distance, l D 0.15 0.20 mm

Impact angle vertical to feed, β E 0 15 °

Held-constant
factors

Value Unit

Stand-off
distance, d

1 mm

Traverse path
strategy

line by line –

Abrasive
material

garnet sand –

Particle size 90–125 µm

Orifice
diameters, dw/df

0.1/0.3 mm

Focus nozzle
length, lf

23.8 mm

Impact angle
along feed, α

0 °

Table 3 Matrix for the 25−1 design

Treatment A B C D E = ABCD

I + − + − +

II − + − − −

III + − − − −

IV + + − − +

V + − + + −

VI − + + − +

VII − − + − −

VIII + + − + −

IX − − − + −

X + + + − −

XI + − − + +

XII − − + + +

XIII − + + + −

XIV − − − − +

XV − + − + +

XVI + + + + +
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Table 4 Test matrix listed in run order

Treatment Std
order

Run
order

Pressure
(bar)

Tr. speed
(mm/s)

Abr. flow
rate (g/min)

Offset
(mm)

Angle
(°)

I 6 1 1800 2 16.95 0.15 15

II 3 2 1300 3 8.13 0.15 0

III 2 3 1800 2 8.13 0.15 0

IV 4 4 1800 3 8.13 0.15 15

V 14 5 1800 2 16.95 0.2 0

I 38 6 1800 2 16.95 0.15 15

II 19 7 1300 3 8.13 0.15 0

VI 23 8 1300 3 16.95 0.15 15

VII 21 9 1300 2 16.95 0.15 0

VIII 12 10 1800 3 8.13 0.2 0

VIIII 41 11 1300 2 8.13 0.2 0

VIIII 9 12 1300 2 8.13 0.2 0

VII 5 13 1300 2 16.95 0.15 0

X 8 14 1800 3 16.95 0.15 0

III 18 15 1800 2 8.13 0.15 0

VI 7 16 1300 3 16.95 0.15 15

XI 26 17 1800 2 8.13 0.2 15

XII 13 18 1300 2 16.95 0.2 15

XIII 15 19 1300 3 16.95 0.2 0

IV 20 20 1800 3 8.13 0.15 15

XI 10 21 1800 2 8.13 0.2 15

XIII 47 22 1300 3 16.95 0.2 0

XIV 33 23 1300 2 8.13 0.15 15

XIII 31 24 1300 3 16.95 0.2 0

XV 11 25 1300 3 8.13 0.2 15

VIII 44 26 1800 3 8.13 0.2 0

I 22 27 1800 2 16.95 0.15 15

V 30 28 1800 2 16.95 0.2 0

VIII 28 29 1800 3 8.13 0.2 0

XII 45 30 1300 2 16.95 0.2 15

X 40 31 1800 3 16.95 0.15 0

IV 36 32 1800 3 8.13 0.15 15

XII 29 33 1300 2 16.95 0.2 15

VIIII 25 34 1300 2 8.13 0.2 0

XIV 17 35 1300 2 8.13 0.15 15

XVI 48 36 1800 3 16.95 0.2 15

XVI 16 37 1800 3 16.95 0.2 15

XI 42 38 1800 2 8.13 0.2 15

VII 37 39 1300 2 16.95 0.15 0
(continued)
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5 Analysis of Results and Technological Interpretation

5.1 Analysis of Variance

As three-factor (and higher) interactions can be attributed to be insignificant for the
process, a fractional factorial design of 25−1 has been used to provide reliable data
of the main effects as well as two-factor interactions. In order to receive information
about the background of the experimental results, the ANOVA was applied. By
using this method it was possible to investigate the statistical significance of the
main effects and two-factor interactions on the following response variables:
arithmetical mean deviation of the roughness profile and the depth of cut. The
analysis has been executed at a 95 % confidence level, which means that at least
95 of 100 confidence intervals, calculated based on the practical measurements,
include the true value of the result. Diagnostic checking was successfully performed
via graphical analysis of residuals.

Figures 10 and 11, respectively, show the influences of the determined control
factors on the response variables roughness Ra and the average machining depth,
using Pareto charts of standardized effects (α = 0.05).

5.2 Statistical Results

The main effect of one single factor is calculated by the mean of every parameter
combination at the individually adjusted level of the examined factor.
Consequently, the main effects plot shows the change in response occurring by
means of a change in the level of the observed factor. If the difference of the
response between the levels of one factor is not the same at all levels of the other
factors of the investigation, then factors do interact, that means the level of one

Table 4 (continued)

Treatment Std
order

Run
order

Pressure
(bar)

Tr. speed
(mm/s)

Abr. flow
rate (g/min)

Offset
(mm)

Angle
(°)

XVI 32 40 1800 3 16.95 0.2 15

V 46 41 1800 2 16.95 0.2 0

XV 27 42 1300 3 8.13 0.2 15

II 35 43 1300 3 8.13 0.15 0

III 34 44 1800 2 8.13 0.15 0

XIV 1 45 1300 2 8.13 0.15 15

VI 39 46 1300 3 16.95 0.15 15

XV 43 47 1300 3 8.13 0.2 15

X 24 48 1800 3 16.95 0.15 0
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factor has an influence on the result being achieved during a change of another
factor’s level.

Figures 12 and 13 show the main effects and interaction effects of the control
factors of the response variable roughness. For this response variable, all control
factors are significant terms in a confidence level of 95 %.

In the interaction plots of the significant two-factor interactions between impact
angle and offset (DE), impact angle and traverse speed (BE) and impact angle and

Fig. 10 Pareto chart of standardized effects (α = 0.05) for roughness Ra

Fig. 11 Pareto chart of standardized effects (α = 0.05) for depth of cut
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pressure (AE), it is evident that the influence of particular levels of the offset (D),
the traverse speed (B) and the water pressure (A) is generally smaller at the
investigated lower level of the impact angle (E).

The influences on the depth of cut are shown in the main effects plot in Fig. 14
and in the two factor interactions in Fig. 15. The significant terms, also illustrated in
the Pareto-chart of the standardized effects (α = 0.05) for the response variable
average depth of penetration (Fig. 11), are the main effects of pressure (A), traverse
speed (B), abrasive flow rate (C), offset (D) and the interaction between traverse
speed and abrasive flow rate (BC) as well as the water pressure and the impact angle
across the feed direction (AE).

5.3 Technological Interpretation

As already known from versatile publications and experiences, the main effects plot
shows that high water pressure causes a large machining depth. This fact is directly
linked with a higher roughness of the surface (cf. Figs. 14 and 12, respectively). As
it is known from abrasive waterjet cutting, the kinetic energy of the waterbeam is
being reduced with increasing machining depth. During cutting, the thesis can be
verified by the feed marks in the lower areas of the cutting line. When structuring
surfaces, the reduction of the abrasive water beam energy as a consequence of
increasing depth of penetration can be observed via the roughness value of the
machined ground level. Regarding the interconnection between the water pressure
and the impact angle diagonally to the feed lines [β (cf. Fig. 8), Label E] in the
interaction plot for the roughness, it becomes evident that the angle (E) has only a
negligible effect on the surface roughness when using a water pressure (A) of
1300 bar (Fig. 13c). When setting the water pressure (A) to the maximum value of
the observed pressure range (1800 bar), the surface roughness decreases in quality
at an impact angle (E) of 15°. This behaviour can be attributed to the different flow
conditions at a change of the impact angle. When setting the angle (E) to 0°, the
waterbeam strikes the workpiece surface perpendicularly. As a result, there is a total

Fig. 12 Main effect plots for roughness Ra

128 F. Tagliaferri et al.



(a)

(b)

(c)

Fig. 13 Interaction plots for
roughness Ra: a DE, b BE
and c AE
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reflection of the water impeding the arriving waterjet. Consequently, the effective
kinetic energy of the abrasive waterjet being responsible for the material removal is
reduced at an impact angle of 0°. When using an impact angle of 15°, the value of
the reflected water having an influence on the energy of the arriving waterjet is

Fig. 14 Main effect plots for depth of cut

(a)

(b)

Fig. 15 Interaction plots for
depth of cut: a BC and b AE
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significantly lower. This means that the machining depth is higher and the surface
quality becomes worse in contrast to the angle set-up of 0°, due to the reason named
before.

Considering the plots, the kinetic energy of the reflecting waterbeam at the low
modulation of pressure (1300 bar) must be unimportant for the effect of the waterjet
impact, as the results of the different machining angles on the surface quality are
almost equal.

Another explanation for the machining result is the secondary effect of the
reflecting water on the surface quality. Using the maximum value of water pressure
(A) causes a reflecting waterjet with high kinetic energy, which has an influence on
the already manufactured surface, especially when setting the impact angle (E) to
0°. An angle adjustment of 15° results in the fact that the reflecting water takes
course towards the unmanufactured offset-direction. This means that there is
probably no surface softening on the already manufactured surface.

As expected, the cutting depth is strongly dependent from the motion velocity of
the abrasive waterjet (B). A small feed velocity provokes a higher cutting depth as a
consequence of a higher application of the waterbeam energy on one point of the
workpiece. However, this is accompanied by a simultaneously higher surface
roughness (cf. Figs. 14 and 12, respectively). As shown in the interaction plot
Fig. 13b, the highest material removal takes place at a low feed rate (B) and an
impact angle (E) of 15° due to the factors mentioned above.

The Pareto chart in Fig. 10 figures out that the offset distance (D) is the most
influencing parameter on the arithmetical mean deviation of the roughness profile.
In general, a low offset distance (D) has a positive effect on the roughness. The
reason for this is the fact that the material removal during line by line machining is
not constant across the machining width due to the circular cross section of the
abrasive waterjet. Using the wrong offset distance will consequently cause a
comb-shaped surface. So for this application, an offset distance (D) of 0.15 mm has
proved to be the beneficial value concerning the roughness Ra.

Depending on the field of application, it has to be deliberated whether the
combination between material removal and surface condition is acceptable. In the
case of the conducted investigations the goal was to manufacture pockets in a short
time at acceptable quality. The ANOVA has shown that treatment VII, whose levels
of factors are water pressure (A) 1300 bar, traverse speed (B) 2 mm/s, abrasive flow
rate (C) 13.62 g/min, offset distance (D) 0.15 mm and impact angle vertical to the
feed direction (E) 0°, is the best parameter combination in order to achieve a high
material removal rate (MRR = 7.6 mm3/min; depth = 0.44 mm) at an adequate
surface quality (Ra = 14.2 µm). For further improving of the machining result, more
experimental studies could be possible with a variation of the machining strategy or
other control factors on the basis of this experimental stage. Further machining
steps are conceivable as well after a raw stock removal with investigated machining
parameters for finishing the surface by structuring the workpiece over again.
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6 Conclusion and Remarks

The results obtained in the presented applications have shown the strategic role that
a systematic approach to plan a DoE plays in technological process innovation.

To improve the use of this technique, it is necessary to find the means of
bringing together statistical concepts and practical knowledge in technical areas
such as material science or mechanical engineering. The pre-design guide sheets
proposed in this chapter and successfully adopted by the authors in other techno-
logical context are useful for this purpose.

The investigations have shown that a statistical approach on structuring surfaces
of Aluminium Oxide by using abrasive waterjet is a good way to examine the
influences of the different adjustable working parameters on the response variables.
It was also shown that abrasive fine waterjet machining is a good way to reproduce
several surface conditions of filigree and brittle workpieces with notable process
stability. Based on the analysis of the results it is possible to predict the machining
results of 96 % Aluminium Oxide, such as depth of cut and surface quality with
appropriate systems engineering in a reasonable tolerance zone. Thus, the applied
method of trial and error will not be necessary, which causes better cost efficiency.
This method of finishing high performance ceramics may open a new range of
applications such as medical appliances, bearing technologies and more.

Overall, the research activities are the introduction for a new manufacturing
process. For further investigations it will be useful to focus on the parameter range
round treatment VII. To enhance the process, it will also be necessary to establish
more control factors in future investigations, e.g. the variation of abrasive particle
size and material, or to switch the parallel offset motion to different machining
patterns.
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Response Surface Modeling of Fractal
Dimension in WEDM

Prasanta Sahoo and Tapan Kr. Barman

Abstract This chapter presents the application of fractal dimension in describing
surface roughness in wire electrical discharge machining (WEDM). Conventional
surface roughness parameters (center line average roughness, root mean square
roughness, etc.) strongly depend on the resolution of the measuring instrument. But
fractal dimension is scale invariant. As a case study, experiments are conducted on
EN31 steel specimens in WEDM varying four process parameters, viz., current,
voltage, pulse on time, and pulse off time. The effects of process parameters on
fractal dimension are evaluated and a second order relationship between process
parameters and fractal dimension is developed using response surface methodology
(RSM). Also, the parameters having significant influences on fractal dimension are
identified.

1 Introduction

Surface roughness is an important parameter to describe the quality of any surface.
Generally, to describe surface roughness, some statistical parameters, grouped into
amplitude parameters (center line average, Ra, root mean square roughness, Rq, etc.)
spacing parameters (mean line peak spacing, Rsm), and hybrid parameters (root
mean square slope of the profile, root mean square wavelength, peak area, valley
area, etc.) are used. But the main problem associated with these parameters is that
theses parameters are scale dependent. When the resolution of the measuring
instrument is increased or decreased, surface roughness values also change. If the
sampling length for the measurement is varied, the same values for the surface
roughness parameters may not be expected. To overcome this problem, it is
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required to describe surface roughness with a parameter which is scale independent
and would not depend on the measuring instrument. This essentially leads to the use
of fractal dimension as roughness parameter.

In this chapter, fractal dimension is used to describe surface roughness.
Experiments are conducted in wire electrical discharge machining (WEDM) of
EN31 steel workpieces. The experimental results for fractal dimension are analyzed
to develop a second order response model using response surface methodology
(RSM). The variations of fractal dimension with the selected process parameters are
also studied here.

2 Fractal Dimension as Surface Roughness Parameter

Fractal dimension is derived from fractal geometry. Fractal geometry was coined by
Mandelbrot [36]. As we know from Euclidean geometry that point has 0 dimension,
line has 1, surface has 2 and cube has 3 dimensions and these dimensions are
integers. But Mandelbrot presented an example of a coastline where he showed that
the length of the natural coastline does not converge for decreasing unit of mea-
surement. He plotted the length (L) with the unit of measurement (2) using loga-
rithmic scale and developed a relationship between L and 2. The relation is in the
form of L * 21−D. Here, D is a real number representing the dimension of the
coastline. Moreover, dimension of an object may be of noninteger values.

There are two terms, self-similarity and self-affinity, connected to a dimension. An
object will be called self-similar when a part of the object requires equal magnifi-
cation in all directions for the developed part to represent the replica of the original
object. For many objects, exact self-similarity is not possible and then statistical
self-similarity is defined. For statistical self-similarity, if a small part of the object is
magnified the probability distribution of the part will be same as the original object.
For self-similarity objects, the fractal dimension may be calculated as

D ¼ logN= logm; ð1Þ

where N is the number of equal segments and m is the size of each segment.
But the fact is that all fractals do not have self-similarity property. That brings in

the concept of self-affinity for the fractal. For self-affinity, magnification is done
with unequal scaling in different directions. For self-affine fractals, dimension
cannot be derived from the above equation but can be obtained from power spectra
of the object. Rough surface profiles fall into this category of fractals. For a profile,
fractal dimension varies between 1 and 2 and for a surface, fractal dimension varies
between 2 and 3.

The concept of fractal geometry has been popularly applied in many applications
like engineering fields, medical sciences, and astronomy. To describe rough
machined surfaces, the concept of fractal has successfully been used in electric
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discharge machining [19, 45], milling [3, 11, 46, 54], cutting or grinding [2, 5, 6,
18, 20, 24, 26, 27, 44, 55], and worn surfaces [14].

It has already been established that machining surfaces have self-affinity prop-
erties. If a rough surface is magnified properly, similar appearance may be seen as
shown in Fig. 1. As the resolution of the measuring instrument varies, the variances
of slope and curvature change. This makes the conventional roughness parameters
(Ra, Rq, Rsm, skewness, kurtosis, etc.) scale dependent. On the other hand, if the
surface profiles are magnified appropriately, more details are revealed. Thus, it may
be assumed that the profile is continuous at any length scale but cannot be differ-
entiated at all points. The Weierstrass–Mandelbrot (W–M) fractal function [4] is
used to characterize rough profiles since this function satisfies both the conditions;
continuity and non-differentiability at all locations. The W−M function has a fractal
dimension D, between 1 and 2, and is given by

zðxÞ ¼ GðD�1Þ X
a

n¼n1

cos 2pcnx
cð2�DÞn 1\D\2; c[ 1; ð2Þ

where G is a scaling constant. The parameter n1 corresponds to the low cut-off
frequency of the profile. Since surfaces are nonstationary random process, the
lowest cut-off frequency depends on the length L of the sample and is given by
γn1 = 1/L.

The power spectrum of W–M function can be expressed by a continuous
function as

SðxÞ ¼ G2ðD�1Þ

2 ln c
1

x5�2D ð3Þ

Dimension D relates to the slope of the power spectrum of a surface against
frequency ω in a logarithmic scale. G, the roughness parameter of a surface, does
not vary with respect to frequencies of roughness and locates the spectrum on the
power axis. Here, both G and D are independent of the roughness scales of the
surface and thus considered as intrinsic properties. G, D, and n1 form a complete set
of scale-independent parameters to describe a rough profile. D signifies the extent of
space occupied by the rough surface. In other words, surface with larger D values
will have denser profile leading to a smoother topography [47, 53].

X

Z

Fig. 1 Qualitative description of statistical self-affinity for a surface profile
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In practice, there are many ways to calculate fractal dimension (D), viz., yard-
stick method, box counting method, variation method, power spectrum method,
structure function method, etc. The detailed procedure to calculate fractal dimen-
sion may be found in the book “Fractal analysis in machining” [43].

3 Roughness Study in WEDM

WEDM is a popular nonconventional machining process particularly used in die
making industry. The quality of the machined surface plays an important role for its
appropriate function. So, researchers have always paid attention to study the effects
of process parameters or controllable factors on the surface quality. Many
researchers have attempted to study surface roughness in WEDM considering
different machining parameters. In addition to surface roughness, some researchers
have also included other machining responses like material removal rate (MRR),
kerf, cutting rate, dimensional deviations, etc. An extensive literature survey shows
that for surface roughness modeling, mainly conventional roughness parameters are
considered. To set a scene for the present study, a brief review of literatures is
presented here. For modeling and optimization of surface roughness and other
response parameters, different statistical and optimization tools have been used.
These include RSM [16, 21, 51], Taguchi analysis [23, 31, 35], gray Taguchi
analysis for multi-response optimization [7, 9, 22, 25], artificial neural network
(ANN) [12, 41, 42, 48, 51, 52], genetic algorithm (GA) [34, 35, 40], weighted
principal component analysis (WPCA) [13], artificial bee colony (ABC) technique
[8, 40]. Researchers also have considered different types of materials for conducting
the experiments, e.g., different types of steels [8, 12, 17, 23, 28, 50–52], ceramics
[32], titanium alloy [1, 16, 29, 30], magnesium alloy [31], Al/SiC composite [37],
tungsten [49], Inconel material [21, 40, 41], etc. There are a few available literatures
which deal with fractal dimension characterization in WEDM [10, 15, 33]. It is
clear that limited attention have been paid toward fractal dimension characterization
in WEDM.

4 Design of Experiments

Design of experiments (DOE) provides a systematic approach to carry out the
experiments and to obtain a relationship between input process parameters with
output responses. Using DOE, number of experiments for a particular problem may
be minimized but the influences or the dependencies of the input parameters on the
output can be established satisfactorily. DOE considers statistical approach to carry
out the experiments and provides a design matrix showing at which combinations
of process or input parameters experiments should be carried out. To avoid any
bias, generally, experiments are conducted on a random basis. For validation and to
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check the repeatability of the data, experiments are repeated. Sometimes, blocking
is done to arrange the experimental data into groups or blocks to make homoge-
neous data. There are several methodologies for DOE, viz., factorial design (full
factorial design, Plackett-Burman design, etc.), central composite design (CCD),
Box-Behnken design, orthogonal array (OA), etc. In the current study, CCD is
selected to carry out the experiments.

A full factorial design considers all combinations of input parameters to make
the design matrix, but a Box-Wilson Central Composite Design or CCD considers
only factorial points, central points, and axial points. Generally, number of
experiments required for CCD is lower than the same using full factorial design.
Factorial points are vertices of the n-dimensional cube which are coming from the
full or fractional factorial design. Central point is the point at the center of the
design space. Axial points are located on the axes of the coordinate system sym-
metrically with respect to the central point at a distance α from the design center.
CCD is used to establish relationship between input process parameter and output
response parameter using RSM.

There exist two main varieties of CCD: Rotatable central composite and face
centered CCD. In rotatable CCD, the variance of the predicted response at any point
depends only on the distance of the point from the center point of the design. For
rotatable CCD, there are factorial points, axial points, and center points. Center
points may vary from three to seven. Choosing suitable numbers of center points, a
design may be made orthogonal design or design of uniform precision. Considering
uniform precision, for four process parameters, the rotatable CCD requires 24

(16) factorial points, 2 × 4 = 8 axial points, and seven center points. The positions
of axial points will depend on the value of α. For four factor design, α is (16)1/4, i.e.,
2. Thus for four factor design, it requires 31 numbers of experiments. In a face
centered cubic design (FCC), for four factors experiment, 16 (24) factorial or cube
points, eight axial points (2 × 4) and seven central points, a total of 31 experimental
runs need to be considered. During the analysis, the process parameters are always
coded between +1 and −1. In the present study, Eq. (4) is used to code the factors.

xi ¼ ½2x� ðxmax þ xminÞ�
ðxmax � xminÞ ; ð4Þ

where xi is the coded value of a variable x while xmax and xmin refer to maximum
and minimum values of the factor, respectively.

5 Response Surface Methodology

RSM is used to establish a relationship between design/input/process parameters
with output responses. For this, it uses both mathematical and statistical techniques
[39]. The influences of the process parameters on the response parameter can be
also studied using this method. Also, the developed model may be used to optimize
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the process parameter for optimum response value. Since the relationship between
the process parameter and output parameter is unknown, it is required to predict or
estimate the relationship whether it is linear, quadratic or any other higher order
polynomial. Generally, for these types of problems, a second order model is tried
[39] in the form

y ¼ b0 þ
Xn

i¼1

bixi þ
Xn

i¼1

biix
2
i þ

XX

i\j

bijxixj þ e; ð5Þ

where e represents the noise or error observed in the response y such that the
expected response is (y� e) and b’s are the regression coefficients to be estimated.

The least square technique is used to fit a model equation that contains the input
variables and minimizes the residual error measured by the sum of square devia-
tions between the actual and estimated responses. There are statistical tools to check
the adequacy of the model and its coefficients to predict the output response.

By performing analysis of variance (ANOVA), the adequacy of the model and
significant factors that affect the response may be evaluated. There are two ways to
check the significance of the model: F-ratio calculation and P-value. F-ratio is the
ratio of variance due to the effect of a factor (the model) and variance due to the
error term. F-ratio is also called the variance ratio. For a particular study, if the
calculated F-ratio is greater than the tabulated value, then the selected parameter is
significant at that confidence level. For a model, if the calculated F-ratio is greater
than the tabulated one, then the model will be considered as an adequate model. P-
value defines the probability of significance for each independent variable in the
model. For a particular study, if the confidence level is set at 95 %, then the selected
a-level is 0.05 (i.e., 1.0 – 0.95). A parameter is judged significantly if the calculated
P-value is less or equal to the selected a-level. The present study is carried out at
95 % confidence level with the help of the commercial software Minitab (Minitab
user manual) [38].

6 Experimental Details

6.1 Machine Used

For experiments, a five axis CNC WEDM (ELEKTRA, MAXICUT 434) of
Electronica Machine Tools Ltd is used. Specifications of the WEDM machine are
presented in Table 1. The workpiece and zinc coated brass wire electrode (diameter:
0.25 mm) are separated by dielectric medium (deionized water). The traveling of
the wire in a closely controlled manner, through the workpiece, generates spark
discharges and then erodes the workpiece to produce the desired shape.
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6.2 Selection of Process Parameters

Four controllable factors, viz., discharge current (X1), voltage (X2), pulse on time (x3),
and pulse off time (X4) are used as process parameters in this study. Process
parameters with their levels are given in Table 2. Few other factors, which can be
expected to have an effect on the measures of performance, are also given in Table 3.
In order to minimize their effects, these factors are held constant as far as practicable.

6.3 Workpiece Material

EN 31 tool steel is selected as workpiece material in the form of a rectangular block
(20 mm × 20 mm × 15 mm). It is a high carbon−steel with high degree of hardness
with high compressive strength and abrasion resistance.

Table 1 Specifications of die sinking EDM machine

Maximum working dimension 400 mm × 500 mm × 150 mm

Maximum workpiece weight 235 kg

Main table traverse (X, Y) 300, 400 mm

Auxiliary table traverse (U, V) 15, 15 mm

Max. taper cutting angle ±5°/100 mm

Max. wire spool capacity 6 kg

Wire electrode diameter 0.25 mm (std.), 0.15, 0.2, 0.3 mm (option)

Wire feed rate 10 m/min (max)

Table displacement per step 0.001 mm

Outside dimension of machine 1250 mm × 945 mm × 1730 mm

Net weight of machine 1300 kg. (approx)

Dielectric fluid Deionized water

Filtration Mineral bed

Cooling system 1700 K Cal

Input power supply 3 phase, AC 415 V, 50 Hz

Connected load 10 KVA

Average power consumption 6–7 KVA

Table 2 Machining parameters with their levels for process

Design factors Unit Notation Levels

−2 −1 0 1 2

Discharge current Amp X1 2 4 6 8 10

Voltage Volt X2 40 45 50 55 60

Pulse on time µs X3 1 2 3 4 5

Pulse off time µs X4 1 2 3 4 5
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6.4 Selection of Design of Experiments

In this study, a rotatable CCD is selected. For four process parameters with three
levels, total 31 experiments are conducted based on the matrix shown in Table 4.
Out of 31 experiments, there are sixteen (24) factorial or cube points, eight axial
points (2 × 4), and seven center points.

6.5 Fractal Dimension Measurement

A stylus-type profilometer, Talysurf (Taylor Hobson, UK) is used for measuring the
roughness profile. A cut-off length of 0.8 mm with Gaussian filter and traverse
speed 1 mm/s along with 4 mm traverse length is used. Measurements are taken in
the transverse direction on the workpieces for four times and average of four
measurements is considered. The measured profile is then processed using the
software Talyprofile. Finally, fractal dimension is evaluated following the structure
function method.

7 Results and Discussion

In this section, the experimental results for fractal dimension (D) are analyzed using
RSM. Using rotatable CCD, total 31 numbers of experiments are carried out
varying four process parameters and the results are presented in Table 4.

With the help of Minitab statistical software, a second order response surface
model for D is developed in terms of four independent process parameters in their
coded forms. The developed model is presented in Eq. (6).

Table 3 Fixed parameters of the setting

Wire Zinc coated copper wire, stratified, copper, diameter
0.25 mm

Shape Rectangular

Location of workpiece on working
table

At the center of the table

Angle of cut Vertical

Dimension of workpiece Thickness 6 mm
Width 7 mm

Stability Servo control

Wire speed 8 m/min

Wire tension 1000 g

Dielectric flow pressure 1.30 bar
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D ¼ 1:42800� 0:02842� X1 þ 0:02158� X2 � 0:02092� X3 � 0:01958

� X4 � 0:04912� X2
1 � 0:03062 � X2

2 � 0:11162� X2
3 � 0:06512

� X2
4 þ 0:09975� X1 � X2 þ 0:09125� X1 � X3 � 0:15125� X1

� X4 � 0:09725� X2 � X3 þ 0:13525� X2 � X4 þ 0:12375� X3 � X4

ð6Þ

To check the adequacy of the developed model, ANOVA is carried out for the
model and results for ANOVA test are presented in Table 5. It is seen from the table

Table 4 Experimental design matrix and results

Sl. No. Current (A) Voltage (V) Pulse on time (µs) Pulse off time (µs) D

1 6 50 3 3 1.428

2 6 50 3 3 1.428

3 6 50 3 3 1.428

4 6 40 3 3 1.415

5 4 45 2 4 1.408

6 8 55 2 4 1.360

7 8 55 4 4 1.403

8 4 45 4 2 1.363

9 6 50 3 3 1.428

10 6 50 3 3 1.428

11 6 50 3 3 1.428

12 8 55 2 2 1.390

13 6 50 5 3 1.270

14 8 45 4 2 1.383

15 4 55 4 4 1.373

16 6 60 3 3 1.440

17 6 50 3 1 1.403

18 4 55 4 2 1.263

19 4 55 2 4 1.398

20 6 50 3 5 1.383

21 6 50 3 3 1.428

22 8 55 4 2 1.325

23 8 45 2 2 1.428

24 4 45 2 2 1.353

25 8 45 2 4 1.043

26 6 50 1 3 1.423

27 10 50 3 3 1.393

28 8 45 4 4 1.320

29 4 55 2 2 1.383

30 4 45 4 4 1.388

31 2 50 3 3 1.425
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that the regression model has a P-value of 0.024, which means the model is sig-
nificant at 95 % confidence level. It is also seen from the table that the calculated
value of the F-ratio (Fcalculated = 2.84) is more than the tabulated value of F-ratio

Table 5 Full ANOVA results of model coefficients for D

Source DF Seq SS Adj SS Adj MS F P

Regression 14 0.126277 0.126277 0.009020 2.84 0.024

Linear 4 0.012566 0.012566 0.003142 0.99 0.441

Current (A) 1 0.004845 0.004845 0.004845 1.53 0.234

Voltage (V) 1 0.002795 0.002795 0.002795 0.88 0.362

Pulse on time (µs) 1 0.002625 0.002625 0.002625 0.83 0.376

Pulse off time (µs) 1 0.002301 0.002301 0.002301 0.73 0.407

Square 4 0.029493 0.029493 0.007373 2.32 0.101

Current × Current 1 0.001760 0.004313 0.004313 1.36 0.261

Voltage × Voltage 1 0.000339 0.001676 0.001676 0.53 0.478

Pulse on × Pulse on 1 0.019815 0.022269 0.022269 7.02 0.017

Pulse off × Pulse off 1 0.007580 0.007580 0.007580 2.39 0.142

Interaction 6 0.084217 0.084217 0.014036 4.43 0.008

Current × Voltage 1 0.009950 0.009950 0.009950 3.14 0.096

Current × Pulse on 1 0.008327 0.008327 0.008327 2.63 0.125

Current × Pulse off 1 0.022877 0.022877 0.022877 7.21 0.016

Voltage × Pulse on 1 0.009458 0.009458 0.009458 2.98 0.103

Voltage × Pulse off 1 0.018293 0.018293 0.018293 5.77 0.029

Pulse on × Pulse off 1 0.015314 0.015314 0.015314 4.83 0.043

Residual error 16 0.050746 0.050746 0.003172

Lack-of-fit 10 0.050746 0.050746 0.005075

Pure error 6 0.000000 0.000000 0.000000

Total 30 0.177023

Fig. 2 Normal probability plot of the residuals for D
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(F0.05,14,30 = 2.04). That implies that the model is adequate at 95 % confidence
level. Normal distribution of residuals is plotted and presented in Fig. 2. It is seen
that residuals follow a straight line and it follows a normal distribution. So, it can be
said that the regression analysis is valid.

ANOVA results for individual parameters are also presented in Table 5. It is
seen that no linear parameter is significant at 95 % confidence level in controlling
fractal dimension, but some of the square and interaction terms are significant.

Three dimensional surface and contour plots are generated using the regression
equation developed in the study to see the variations of fractal dimension with the
process parameters. To generate the plots, two process parameters are varied while

Fig. 3 Surface and contour plots for D a current with voltage, b current with pulse on time,
c current with pulse off time, d voltage with pulse on time and e voltage with pulse off time
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other two parameters are held constant at their mid-levels. Figure 3a shows the
variation of fractal dimension with voltage and current. In this plot, pulse on time
and pulse off time are held constant at 3 µs. It is seen from the graph that surface
will be smoother (i.e., higher value of D) with a combination of higher current and
higher voltage. Figure 3b depicts the variation of D with pulse on time and current
and it is seen that higher current and pulse on time combination will provide
smoother surface. Figure 3c plots the variation of D with pulse off time and current.
From Fig. 3d it is seen that at higher values of pulse off time and voltage D value
decreases that means the surface is getting rough. If the discharging energy is very
high then there is a chance of getting violent sparks which may cause a rougher
surface. Figure 3e shows that at higher pulse off time the surface is getting
smoother.

8 Conclusion

In this chapter, to describe surface roughness, fractal dimension is used. To generate
machined surfaces, experiments are conducted in WEDM on EN31 steel work-
pieces using rotatable CCD. Machined surfaces are measured for fractal dimension.
A second order equation is developed for predicting fractal dimension in terms of
four process parameters using RSM. It is seen that the developed model is adequate
enough to predict fractal dimension with 95 % confidence level. From ANOVA
results, it is seen that no individual parameter is significant in predicting fractal
dimension but some of their interaction terms are significant at 95 % confidence
level. Finally, the variations of fractal dimension with process parameters are
demonstrated.
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Thrust Force and Torque Mathematical
Models in Drilling of Al7075 Using
the Response Surface Methodology

Panagiotis Kyratsis, Cesar Garcia-Hernandez, Dimitrios Vakondios
and Aristomenis Antoniadis

Abstract Drilling is the most commonly used manufacturing processes for hole-
making. Researchers are dealing with the development of mathematical models for
a series of phenomena related to drilling i.e. burr size, surface roughness, cutting
forces. The present research investigates the relationships and parametric interaction
of the three input variables (tool diameter, cutting velocity, feed rate) on the thrust
force and torque developed during drilling of an Al7075 workpiece with solid
carbide tools. A complete set of experiments was performed and the response
surface methodology (RSM) was used in order to acquire the mathematical models
for both the thrust force and the torque required. The analysis of variance
(ANOVA) was used to verify the adequacy of the mathematical models. The most
significant factors were recognized. The main and interaction effects plots were
studied and the 3D response surfaces are presented.

1 Introduction

Drilling operation can be described as a process where a multipoint tool is used for
unwanted materials removal to produce a desired hole. It is an important metal
cutting operation with which holes are produced in components made of metallic or
non-metallic materials. The manufacturing process of drilling is considered the
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most efficient and economical method for opening holes. It has a considerable cost
importance because it is widely used in the component manufacturing industry.
Nearly 40 % of the metal removal operations in the automotive and aerospace
industry are based on drilling [1]. It is used in aeronautical and automotive
industries for assembling a variety of components. Drilling usually is one of the last
production stages before the assembly step. Especially nowadays, that composites
are selected and drilling becomes even more important due to manufacturability
issues, studies that support the selection of the best cutting parameters for delivering
the best quality is extremely crucial.

Researchers have followed a number of different approaches, when creating
mathematical models in order to describe the size of the thrust force developed
during drilling and the torque required. Response surface methodology (RSM) is a
very popular tool and provides an excellent basis for extracting high level of
engineering results when examining manufacturing processes.

The RSM is a collection of statistical and mathematical techniques used for
developing, improving, and optimizing processes. It is also applied in the design,
development, and formulation of new products, as well as in the improvement of
existing product designs. The most extensive applications of RSM are in the
industrial world, particularly in situations where several input variables potentially
influence some performance measure or quality characteristic of the
product/process. This performance measure or quality characteristic is called
response. The input variables are sometimes called independent variables, and they
are controlled during the experiments [2].

Researchers have been applying RSM with great success in a variety of phe-
nomena dealing with drilling i.e. burr formation, surface roughness, thrust force,
torque. The outcome of these studies has a significant value for industry and pro-
vides a solid basis for improving the quality of drilling as a manufacturing process.

2 Review of Literature

Kilickap investigated the influence of cutting parameters (cutting speed, feed rate
and point angle) on burr height and surface roughness produced when drilling
Al7075. A combination of RSM and a plan based on L27 Taguchi design method
was used. The optimization results showed that the combination of low cutting
speed, low feed rate and high point angle is necessary to minimize burr height [3].

Asilturk presented mathematical models for predicting the surface roughness of
AISI 1040 steel material using both artificial neural network (ANN) and multiple
regression methodology. The cutting parameters included were cutting speed, feed
rate, depth of cut and nose radius. Ra and Rt were measured in 81 experiments with
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different cutting parameters. The calculations were based on a full factorial
experimentation design and although both the aforementioned methods were used
for modeling, ANN performed better than multiple regressions [4].

Gaitonde et al. described the development of mathematical models in order to
investigate the effects of cutting speed, feed, drill diameter, point angle and lip
clearance angle on burr height and burr thickness when drilling AISI 316L stainless
steel. The analysis reveals that feed rate, drill diameter, point angle and lip clearance
angles have significant effect on burr size [5].

Davim et al. investigated the relationships and parametric interactions between
two controllable variables (feed rate and cutting speed) on the delamination factor at
entry and exit of the holes in drilling medium density fibreboard (MDF). The
experiments were based on the Taguchi’s L18 mixed orthogonal array and the
responses (delamination factor at entry and exit of the holes) have been modeled
using the RSM. The analysis of variance (ANOVA) was performed in order to
verify the adequacy of the mathematical models and the RSM was used to examine
the main and the interaction effects of the machining parameters [6].

Yoon et al. analyzed micro drill-bits for halogen-free printed circuit boards
(PCB) using Taguchi method and RSM. The first was used as an optimizing method
(micro drills have many shape factors), while the later was used as a tool for
building a regression surface. Optimal shapes of the micro drills were determined
and it was suggested that RSM combined with other methodologies should be used
in order to further analyze the performance of micro drill-bits with an increase
number of shape factors [7].

Badan et al. proposed a mathematical model which calculates the drilling cutting
forces based on experimental results. The research aimed in determining the
influence of the cutting parameters (cutting speed, cutting depth, and feed rate) on
the drilling thrust force. The material used was 40CrMnMoS8-6 steel and the tools
were HAM 280 Super drill solid carbide drills. Regression analysis was success-
fully implemented for the acquisition of the mathematical model [8].

Cicek et al. studied the effects of cutting parameters i.e. cutting speed, feed rate
and deep cryogenic treatment, on thrust force when drilling AISI 316 stainless steel.
M35 HSS twist drills were cryogenically treated at −196 °C for 24 h and tempered
at 200 °C for 2 h after conventional heat treatment. The experimental results proved
that the lowest thrust forces were measured with cryogenically treated and tempered
drills. Both ANNs and multiple regression analysis were implemented to model the
thrust force [9].

Jayabal and Natarajan discussed the influence of parameters on drilling char-
acteristics of natural fibre reinforced composites by Box-Behnken design, analysis
of variance and RSM techniques. The experiments were performed in order to study
the effect of drill bit diameter, spindle speed and feed rate on thrust force, torque
and tool wearing HSS twist drills. The mathematical models developed are
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generally used to predict the responses with a reasonable accuracy over a wide
range of conditions [10].

Jayabal et al. investigated the mechanical and machinability characteristics of
hybrid composites, e-glass and natural coir fiber. A regression model was devel-
oped for correlating the interactions of some drilling parameters (drill bit diameter,
spindle speed and feed rate) and their effects on responses such as thrust force,
torque and tool wear during drilling of glass-coir fiber reinforced hybrid compos-
ites. The outcome of the research proved that feed rate is playing a major role on the
responses, compared to the other two variables [11].

Kumar and Baskar performed an integration of fuzzy logic (FL) with RSM in
order to reduce the cost and the time consumption needed for research. Different
levels of values for the spindle speed and the feed rate were examined on cutting
force and surface finishing in a systematic way. Both the proposed FL-RSM and FL
models were validated experimentally, but the first one performs more effectively
and accurately, compare to the later [12].

Valarmathi et al. measured and analyzed the cutting conditions that influence the
thrust force in drilling of particle board panels used in wood working. Spindle
speed, feed rate and point angle were considered and experiments were performed
based on Taguchi’s methodology. The mathematical model provided by the RSM
predicted with accuracy the influence of the cutting parameters on thrust force. The
results showed that high spindle speed with low feed rate minimizes the thrust force
in drilling of pre-laminated particle board panels [13].

The objectives of the present study were to determine the effects of the cutting
parameters on the thrust force and the torque when drilling an Al7075 workpiece
with solid carbide drill tools (KC7325 made by Kennametal) and to calculate
mathematical models for both outputs using the RSM. Al7075 was selected due to
its high performance for the industry manufacturers. The ANOVA was used to
verify the adequacy of the mathematical models. The most significant input vari-
ables were recognized; and the main and interaction effects were studied. Finally,
the 3D response surfaces for both the thrust force and the torque were plotted.

3 Experimental Work

A series of experiments were performed on a HAAS VF1 CNC machining center
with continuous speed and feed control within their boundaries. The specimen used
was an Al7075 plate, because it is one of the most widely used materials in a variety
of industrial applications and it potentially enables the widespread adoption of the
proposed models.

The plate was 150 mm × 150 mm × 10 mm in size. A Kistler type 9123 four
components dynamometer was used and the signal was processed by a type 5223
multichannel signal conditioner and type 5697 data acquisition unit (Fig. 1).

The five drill tools used were made by Kennametal and commercially available.
They were solid carbide drills (KC7325) with diameters of 6, 8, 10, 12 and 14 mm.
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The feed rates of 0.20, 0.40 and 0.60 mm/rev were used together with cutting
velocity values of 10, 40 and 70 m/min. In each experiment, both the thrust force
and the torque required were measured. The process parameters with their symbols,
levels and units are presented in Table 1. A total of 45 experiments were performed
at all combinations of cutting speed, feed rates and tool diameters.

Figure 2 presents the thrust force and the torque measured when all the five tools
were used with the different feed rates and a cutting speed of 10 m/min. When the
tool diameter increases the same result is true for both the thrust force and torque
required. The increase of the feed rate used, results in increasing the values of both
the measured parameters.

Similar results were acquired when the cutting speed was increased to 40 m/min
and to 70 m/min (Figs. 3 and 4). When comparing the values of each tool, while
increasing the cutting speed, there is a tendency for limited value change in almost
all cases. This means that the tools are able to keep relative constant thrust force and
torque within the boundary of the cutting speeds used.

Fig. 1 Activities flow chart

Table 1 Process parameters and their levels

Factor Notation Unit Levels

I II III IV V

Tool diameter D mm 6 8 10 12 14

Feed rate f mm/rev 0.2 0.4 0.6

Cutting speed V m/min 10 40 70
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Fig. 2 Thrust force and torque required when drilling with V = 10 m/min

Fig. 3 Thrust force and torque required when drilling with V = 40 m/min
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4 Proposed Mathematical Models for Thrust Force
and Torque

The RSM is an extremely versatile tool when used for modeling problems in which
response (output) is influenced by several input variables. The aim is to find the
correlation between the response and the input variables. The mathematical models
use the least square fitting in order to finalize the model [14]. In the present study, a
full factorial approach was followed and 45 experiments were conducted as
described earlier. This provides a comparatively accurate prediction of both the
thrust force and torque. A polynomial mathematical model was used in order the
thrust force and the torque to be calculated. These models follow the form given in
the equation below.

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b11X
2
1 þ b22X

2
2 þ b33X

2
3 þ b44X

2
4

þ b12X1X2 þ b13X1X3 þ b14X1X4 þ b23X2X3 þ b24X2X4 þ b34X3X4

where

• Y is the response i.e. thrust force and torque,
• Xi stands for the coded values for i = D, V, f, and
• b0,…,b34 represent the regression coefficients

Fig. 4 Thrust force and torque required when drilling with V = 70 m/min
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Using the data illustrated in Figs. 2, 3 and 4 as well as the aforementioned
mathematical model, the following equations form the final mathematical model
proposed for the calculation of the thrust forces (in N) and the torque (in Nm)
required respectively:

Fz ¼ �183þ 59:3Dþ 0:160V þ 962f þ 1:02D2 þ 0:0133V2 þ 161f 2

�0:117D� V þ 83:4D� f þ 0:692V � f

and

Mz ¼ 2:98�0:697D�0:00381V�5:91f þ 0:0478D2�0:000047V2�0:98f 2

þ 0:000353D� V þ 1:59D� f þ 0:0183V � f

where

• D is the tool diameter in mm,
• f is the feed rate in mm/rev,
• V is the cutting speed used in m/min and
• the tool/workpiece materials are solid carbide/Al7075.

The adequacy of the models is provided at a 95 % confidence level (level of
significance of 5 %). The ANOVA has been performed to justify the validity of the
models developed. The ANOVA table consists of a sum of squares (SS) and
degrees of freedom (DF). The sum of squares is usually contributed from the
regression model and residual error, in other words, it is decomposed into the sum
of squared deviations due to each factor and the sum of squares due to error. Mean
square (MS) is the ratio of sum square to the degree of freedom and the F-ratio is
the ratio of mean square of regression model to the mean square of residual error.

According to the methodology, the calculated values of the F-ratio of the
developed models (Tables 2 and 3), are significantly increased compared to the
tabulated value of the F-table for 95 % confidence level (2407.84 for the thrust
force and 3084.78 for the torque). The P values are 0.000, which proves the highest
correlation, hence both the developed response function (mathematical models) are
adequate at a 95 % confidence level.

The validity of the fit of the models can also be proved, by the adjusted cor-
relation coefficient [R-sq (adj)], which provides a measure of variability in observed
output and can be explained by the factors along with the two factor interactions.
This coefficient in both cases is 99.8 % and as a result the models appear to have
adequate predictive ability.

In addition, the significant terms of the models, when a level of significance of
5 % is used, are those with a P-value less than 0.05. In the case of the thrust force,
these factors are: D (P = 0.000), f (P = 0.000), D2 (P = 0.030), D × V (P = 0.011)
and D × f (P = 0.000), while for the torque, the significant terms are: D (P = 0.000),
f (P = 0.000), D2 (P = 0.000), D × f (P = 0.000), V × f (P = 0.000).
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Similar results can be depicted when examining the main effects and interaction
plots. Figure 5 depicts the significance of the tool diameter (D) and the feed rate
used (f) from the main effect plot for the thrust force, while the interaction between
tool diameter/cutting speed and tool diameter/feed rate is presented from the
interaction plot.

Table 2 ANOVA table for the thrust force mathematical model (Fz)

Source of variation for Fz DF SS MS F P

Regression 9 8,877,831 986,426 2407.84 0.000

Residual error 35 14,339 410

Total 44 8,892,170

R-sq (adj) 99.8 %

Predictor Coef. SE Coef. T P

Constant −183.35 59.660 −3.07 0.004

D 59.31 9.606 6.17 0.000

V 0.16 0.787 0.20 0.840

f 961.80 148.000 6.50 0.000

D2 1.02 0.451 2.26 0.030

V2 0.01 0.007 1.86 0.071

f2 160.80 160.000 1.01 0.322

D × V −0.12 0.044 −2.68 0.011

D × f 83.38 6.533 12.76 0.000

V × f 0.69 0.754 0.92 0.365

Table 3 ANOVA table for the torque mathematical model (Mz)

Source of variation for Mz DF SS MS F P

Regression 9 447.468 49.719 3084.78 0.000

Residual error 35 0.564 0.016

Total 44 448.032

R-sq (adj) 99.8 %

Predictor Coef. SE Coef. T P

Constant 2.98230 0.37420 7.97 0.000

D −0.69669 0.06026 −11.56 0.000

V −0.00381 0.00494 −0.77 0.446

f −5.91170 0.92830 −6.37 0.000

D2 0.04784 0.00283 16.92 0.000

V2 −0.00005 0.00004 −1.05 0.303

f2 −0.97900 1.00400 −0.98 0.336

D × V 0.00035 0.00027 1.29 0.204

D × f 1.59229 0.04097 38.86 0.000

V × f 0.01831 0.00473 3.87 0.000
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Figure 6 depicts the significance of the tool diameter (D) and the feed rate used
(f) from the main effect plot for the torque, while the interaction between tool
diameter/feed rate and cutting speed/feed rate is presented from the interaction plot.

The accuracy of the models has been checked by the residual analysis, and it is
essential that the residuals are normally distributed in order for the regression

Fig. 6 Main effects and interaction plots for the torque

Fig. 5 Main effects and interaction plots for the thrust force
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analysis to be valid. The normal probability plots of the residuals for both the thrust
force and the torque calculated are depicted in Fig. 7. The graphs show that:

• The residuals closely follow straight lines (approximately linear patterns),
denoting that the errors are normally distributed.

• Both the scatter diagrams of the thrust force and torque residuals versus the
fitted values depict that the residuals are evenly distributed on both sides of the
reference line.

• The residuals versus the order of the data, depict that the residuals are evenly
distributed on both sides of the reference line.

The analyses proved that the prediction models sufficiently explain the rela-
tionship between the thrust force and torque with the independent variables
respectively. These mathematical models could be used with high level of

Fig. 7 Residuals analyses for the thrust force and torque
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confidence from researchers and industry engineers in order to predict the thrust
force and torque expected within the limitations presented in the current research.

The mathematical models developed are used to predict the thrust force and
torque by substituting the values of the tool diameter, feed rate and cutting speed
within the ranges selected in the experimental investigation. The response surface
plots of Fz and Mz are depicted in Fig. 8. They are analyzed through the RSM
prediction models by generating 3D response surface plots and it is observed that:

• At higher values of tool diameter both the thrust force and torque increase
significantly.

• At increased values of feed rate they similarly increase.
• When the cutting speed increases they have a limited amount of change.

Fig. 8 3D plots of the thrust force and the torque required
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5 Conclusions

The application of RSM for investigating the effects of cutting conditions (diameter,
feed rate and cutting speed) on the development of thrust forces and torques are
presented in the current research. A complete set of experiments (full factorial) was
performed under different conditions of tool diameter, feed rate and cutting speed
using a workpiece made of Al7075 and a set of KC7325 solid carbide tools made
by Kennametal. The RSM was used to develop the mathematical models for the
thrust force and torque.

Through ANOVA, the adequacy of the developed models was verified. Based on
the analysis performed, the following conclusions are drawn:

• Increase in tool diameter and feed rate results in increased thrust force and
torque.

• Different cutting speeds do not result in high differences in thrust force and
torque.

• The statistically significant terms, in the case of the thrust force, are: D, f, D2,
D × V, and D × f.

• In the case of the torque, the statistically significant terms are: D, f, D2, D × f,
V × f.

The developed mathematical models were thoroughly statistically validated and
can be used as a valuable tool for academics, researchers and industry engineers.
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Design of Experiments in Titanium Metal
Cutting Research

Navneet Khanna

Abstract This industry supported study outlines the usage of DoE in titanium
metal cutting research. Taguchi optimization methodology is applied to optimize
heat treatment condition and cutting parameters in orthogonal metal cutting when
machining newly developed titanium alloy Ti-54M with carbide insert tool. The
control parameters evaluated are heat treatment (Annealed, Beta Annealed and
STA, i.e. Solution treated and aged) cutting speed and feed rate. An orthogonal
array (OA), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are
employed to investigate the effect of these three control parameters on cutting tool
temperature and two force components. Using Taguchi method for design of
experiment (DoE), experimenters significantly reduced the time and hence cost for
the experimental investigation. The results of ANOVA showed that majority of the
input parameters had significant effect on the cutting tool temperature and force
components. Thereafter, optimal cutting parameters and heat treatment conditions
were obtained using Taguchi’s analysis. The results have been transferred to the
respective industry. The industry is expected to gain from this research in terms of
producing titanium alloys with better machinability.

1 Introduction

Among the structural materials developed in the twentieth century, titanium and its
alloys played a leading role. The high consumption of titanium alloys has increased
its demand in the past few years in the aerospace sector. The excellent
strength-to-weight ratio of titanium alloys decreases aircraft weight, leading to
reduction in fuel consumption and emissions. The other typical aerospace material,
aluminium, is electrochemically incompatible with the increasingly applied com-
posite materials, forming a galvanic couple. Titanium does not pose this problem
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and thus is replacing aluminium in many applications [1–3]. Titanium alloys are
having outstanding mechanical and physical properties but they are difficult-to-cut
alloys, leading to increased tool wear and lower production rates. It is well-known
fact that cost is always an important consideration in the competitive business
environment. The titanium raw material may cost anywhere from three to ten times
as much as steel or aluminium and the machining costs for titanium alloys are
usually considerably greater than for the other materials (no less than ten times that
to machine aluminium). Thus the profits of using titanium must compensate the
added cost for its successful application [2, 3]. The cost of titanium use may be
minimized by decreasing its machining cost. Despite the ample research on the poor
machinability of titanium alloys, very few studies in the literature discussed the
relationship between the microstructure and machinability parameters. The micro-
structure holds important keys to identify the root causes of tool wear, cutting forces
and segmented chips in titanium machining and to predict the performance of a
component [4–12]. By developing understanding of this interrelationship, it will be
possible to reduce the production cost of machining titanium alloys.

One of the key objectives of modern industry giants is to minimize energy
consumption and maximize efficiency in its machining process due to stricter
environmental legislation, global competition and demands for satisfying sustain-
ability initiatives [13]. A strategy of energy saving and increasing productivity is to
adapt new material variants or advanced processes. One of those latest variants is
TIMETAL® 54M (Ti54M), developed by TIMET (Largest sponge producer in the
United States), an α + β alloy that offers cost benefits with higher machinability.
The strength is comparable to similarly processed Ti6Al4V alloy. References [7–
10] reported succinct studies on Ti-54M titanium alloy and showed that heat
treatment affects machinability. Therefore, more studies need to be carried out to
notice the influence of heat treatment on performance characteristics. It is essential
to model a relationship between the cutting parameters and the process performance
mainly due to the high cost involved in the experimentation of titanium machining.
This study is an attempt to fill this gap in the research by using design of experi-
ments (DOE) technique in place of one-factor-at-a-time experimental approach.

It is widely considered that DoE forms an essential part of the pursuit for
effective improvement in process performance or product quality for metal cutting
industry. Experiments are often conducted in a series of tests which produce
countable outcomes in machining processes. For constant improvement in process
performance or product quality, it is essential to understand the process behaviour;
the amount of changeability and its influence on processes. The DoE is a technique
used to define what data, in what quantity and settings must be collected during an
experimentation, to satisfy two foremost goals: the statistical accuracy of the
response parameters accompanied by lesser cost [14–18]. Natarajan et al. [19]
successfully employed DoE technique to access the machinability of metal matrix
composites. Quiza et al. [20] planned a full factorial design for carrying out finite
element simulations in order to obtain the corresponding forging forces as per the
industry requirement.
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This chapter presents a real industry supported study. The study illustrated in this
chapter is well-thought-out experiments and not simply a few experimental tests to
discover the effects of changing one or more parameters at a time. The study will
deliver a good base for young scholars and practitioners on how to go about
executing an experiment in real industrial settings. The study will cover the
experimental details, experimental design using Taguchi techniques, analysis using
Minitab software, analysis of results and significance of the study. This study will
increase the awareness of the application of DOE techniques in industries and its
potential in tackling process optimization difficulties related to improvement in
titanium machinability.

It is worthwhile to mention that the commercial availability of titanium alloys
(Ti-54M) used in this research is limited and titanium producer provided limited
material to carry out this study. By applying DOE technique experimenters sig-
nificantly reduced the time and cost for the experimental investigation, as it is
effective in investigating the effects of multiple factors on performance as well as to
study the influence of separate factors to determine which factor has more impact,
which has less [17].

2 Experimental Details

2.1 Material Details

Chemical composition and mechanical properties of Ti-54M titanium alloy are
summarized in Table 1. The details of as-received heat treatment conditions are
shown in Fig. 1.

2.2 Experimental Setup Details

Orthogonal dry machining of 5 s duration was conducted on a Lagun vertical CNC
milling machine. The infrared camera system is adapted into the Vertical CNC
Milling Center, as seen in Fig. 2. The workpiece was carefully integrated into the
tool holder on the spindle. Workpiece is rotated and fed into the stationary tool
attached to the dynamometer. During the temperature measurements in the CNC
machine, in order to isolate the thermal imaging camera and the objective from the
chips and any flying particles that are present in the environment of CNC machine,
protection is provided. The tubular workpiece, the dynamometer, and the cutting
insert are placed in order to perform orthogonal cutting tests. The experiments are
carried out with thin tubes of 2 mm wall thickness with three variants of Ti54M
titanium alloy. The cutting inserts were Sandvik tungsten carbide inserts (Model:
TNMG 160408-23 H13A) at three feed rates (0.1, 0.15 and 0.25 mm rev−1) and two
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cutting speeds (40 and 80 m min−1), without any coating or chip breakers. The
dynamometer was firmly connected to the base plate of the machining centre. The
cutting force produced by the turning process was resolved by the multi-component
dynamometer directly into the orthogonal components: main cutting force (Fc) and
feed force (Fk). The force components were measured practically without dis-
placement. The dynamometer was connected to multichannel charge amplifier,
which converts the dynamometer charge signals into output voltages proportional to

Table 1 Chemical composition and mechanical properties of Ti-54M

Chemical composition (by weight %)

Al V Mo Fe O

5 4 0.8 0.5 0.18

Yield strength (MPa) 860

Ultimate tensile
strength (MPa)

935

Elongation (%) 23

Reduction in area
(%)

49

Density (g/cm3) 4.44

Ti-54M 
titanium alloy

Heated the alloy to 
a hold temperature 

at 7500C

Maintained the hold 
temperature 

Air cooled the alloy

No reheating of the 
alloy

Ti-54M titanium 
alloy

Heated the alloy to a hold 
temperature at 9900C

Maintained the hold 
temperature for 1 hours

Quenched the alloy using 
water

Reheat the alloy to a 
temperature of 7300C

Maintained the hold 
temperature for 2 hours

Air cooled the alloy

Ti-54M titanium 
alloy

Heated the alloy to a 
hold temperature at 

9200C

Maintained the hold 
temperature for 1 hours

Quenched the alloy using 
water

Heated the alloy to an 
aging temperature of 

5000C

Maintained the aging 
temperature for 4 hours

Air cooled the alloy

Fig. 1 Details of heat treatment conditions. a Annealed, b STA, and c β Annealed for Ti-54M
titanium alloy
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the forces. The dynamometer was calibrated by the manufacturer in Switzerland.
A simple test was conducted to see whether the output from dynamometer is still
reliable or not. A metallic plate of 5 kg weight was put on the tool holder of the
dynamometer. A force of 49.5 N was measured reflecting an error of −0.25 %. This
small deviation may have happened because the metallic plate could not be placed
at the exact place for which dynamometer was calibrated. A left hand 25 mm by
25 mm tool holder of 150 mm length with a rigid clamping system was used to hold
the tool insert. To ensure edge sharpness, a new tool insert was used for each test.
All the applied inserts were examined by an Sensofar optical profiler in order to
verify the cutting edge radius is within 34 ± 2 µm. The Medatek and Altair soft-
wares are used to capture force and thermal sequences respectively. The acquisition
procedure is as follows:

i. Ready the Medatek and Altair softwares to capture force and thermal
sequences.

ii. When the dynamometer and camera are ready, the vertical machining centre
program is commenced and the dynamometer and camera are triggered
simultaneously.

iii. When the data acquisition is completed, the sequences automatically loaded
itself within the Medatek and Altair softwares and the files are saved. The
frames are examined for pixel saturation and image quality. Integration time of
200 μs provided acceptable image quality. If the image quality is poor, the test
is repeated following slight adjustments to the setup.

Fig. 2 Machining setup
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It is also required to synchronize the measurement of cutting forces, temperature
measurement with the machining process (it will take more than one person to
handle all equipment). The acquisition process was continued by repeating the
above steps for all the desired feeds and speeds. Each test was carried out three
times to check uncertainty in the result.

2.3 Experimental Design

This work makes use of Taguchi’s method of experimental design. Taguchi’s
concept provides an efficient, simple and systematic approach of using orthogonal
arrays (OAs) for laying out the experiments to determine optimal parameters. The
optimal conditions are recognized by studying the main effects of each of
the parameters. The general trend to influence by each parameter is specified by the
main effects. In deciding the nature of control to be established on a production
process, the knowledge of contribution of individual parameters plays a crucial role
[18]. In nutshell, Taguchi method is a robust design procedure extensively used in
industries for making the process/product insensitive to any uncontrollable elements
such as environmental variables. The major steps required for the experimental
design using Taguchi concept are (1) comprehending objective function,
(2) ordering of the cutting parameters and their levels, (3) choice of a suitable OA,
(4) carrying out experiments and data analysis for determination of the optimal
levels.

2.3.1 Comprehending Objective Function

Taguchi strongly endorses for multiple runs, is to use signal-to-noise (S/N) ratio.
This approach is to be used to measure the performance characteristics deviating
from the desired values. The S/N ratio is a simultaneous quality metric linked to the
loss function [13]. The loss associated can be minimized by maximizing the S/N
ratio. The S/N ratio determines the most vigorous set of operating settings from
variation within the results. The objective function in this work is minimization, and
hence the ratio of S/N is defined according to the Taguchi method as:

S=N ¼ �10 log10 1 n

, Xn
1

Y2
i

" #
ð1Þ

where S/N denotes the observed value (unit: dB), and Yi is the value of the char-
acteristic and n is the number of observations or number of replications in a test.

In the current research work, both analyses, i.e. the S/N data analysis and mean
data analysis have been accomplished. The effects of the designated process
parameters on the selected performance characteristics have been scrutinized
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through the plots of the main effects based on S/N data, mean data and their
respective response tables. The optimum condition for each of the performance
characteristics has been established through S/N data analysis assisted by the mean
data analysis.

2.3.2 Ordering of the Cutting Parameters and Their Levels

In the present investigation, three different control parameters had been selected;
viz., feed rate, cutting speed, and the heat treatment of the workpiece. Two levels
for cutting speed and three levels for both feed rate and heat treated workpiece
conditions were selected as shown in Table 2.

2.3.3 Choice of a Suitable Orthogonal Array (OA)

The total degrees of freedom must to be computed to select a suitable OA for
experimentation. OA layout stipulates the way of conducting the nominal number
of experiments which may produce complete information of all the parameters that
affect the performance characteristics [15, 17]. Based on the previous subsection,
L18 array is selected for the present investigation. L18 array has an exceptional
property that the two way interactions between the several factors are partially
confounded with various columns and hence their effect on the estimation of the
main effects of the various parameters is minimalized. It is impossible to evaluate
the possible two factor interactions in L18 array but the main effects of different
process parameters can be evaluated with realistic accuracy. Experiments have been
repeated three times at each experimental condition instead of using outer array.

2.3.4 Carrying Out Experiments and Data Analysis for Determination
of the Optimal Levels

Each trial is imitated three times, hence three experiments are made for each of the
18 experimental runs. To reduce the effect of experimental noise to the maximum
possible extent, all the 54 trial runs altogether are performed in completely hap-
hazard fashion. Every test, with a specific experimental condition, is conceded by
using a fresh edge of the cutting insert. The experimental results as well as their

Table 2 Control factors and their levels

Control parameters Level 1 Level 2 Level 3

Cutting speed (m/min) 40 80 –

Feed rate (mm/rev) 0.1 0.15 0.25

Workpiece heat
treatment

Annealed (A) β Annealed (β A) Solution treated and aged (STA)
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calculated S/N ratios are abridged in Table 3 for cutting tool temperature and force
components as the response variables. Decisions must be made regarding which
parameters affect the performance of a process; analysis of variance (ANOVA) is
the statistical treatment applied to the results of the experiments in predicting the
contribution of each parameter against a stated level of confidence. The study of
ANOVA Table for a given analysis helps to determine which of the parameters
need control and which do not [15]. Minitab 16 Software has been used to deter-
mine ANOVA and mean effect plot. ANOVA was carried out after gathering all the
data for all combinations, the contribution of each factor was predicted and the best
parametric level along with confidence intervals (C.I.) is determined. The next
section presents results and discussion on the present work.

3 Results and Discussion

3.1 ANOVA

The results obtained through experimentation are analysed using ANOVA for
detecting the important factors affecting the performance measures. The cutting tool
temperature results obtained through the application of ANOVA is shown in
Table 4. The results of ANOVA for the cutting force (Fc) and feed force (Fk) are
shown in Tables 5 and 6, respectively. A significance level of α = 0.05 (confidence
level of 95 %) is used to carry out this crucial analysis. Tables 4, 5 and 6 show the
comprehended significance levels, associated with the F-tests for each source of
variation. The P-values of ANOVA is shown in the second from last columns of the
tables. When P-values are less than 0.05, the source effect on response is considered
to be statistically significant at 95 % confidence level. The F-test is based on the
principle which states that the larger the F-value for a particular parameter, the
greater the effect on the performance characteristic due to the change in that process
parameter [3]. In Table 4, the ANOVA result shows that the F-value for the cutting
speed parameter is larger than that of the other two parameters, i.e. the cutting speed
has the largest contribution to the cutting tool temperature. The percentage con-
tribution in the last column of the tables reflects the portion of the total variation
observed in the experiment attributed to each parameter. The effect of heat treat-
ment condition on cutting tool temperature is found to be statistically insignificant
(P-value > 0.05). Cutting speed and feed rate contributed 69.13 and 26.46 %,
respectively (Fig. 3a).

In Tables 5 and 6, the ANOVA result shows that the feed rate parameter is
having larger F value than that of the other two parameters, i.e. the largest con-
tribution to the cutting force and feed force is due to the feed rate. The effect of all
the input parameters on cutting force is found to be statistically significant (P-
value < 0.05). Cutting speed, feed rate and heat treatment contributed 0.99, 97.20
and 0.72 %, respectively (Fig. 3b). The effect of cutting speed factor on feed force is

Design of Experiments in Titanium Metal Cutting Research 173



found to be statistically insignificant (P-value > 0.05). Feed rate and heat treatment
contributed 44.42 and 26.84 %, respectively (Fig. 3c).

In Tables 4 and 5 the ANOVA result shows that the F value for the factor heat
treatment is smaller than that of the other two parameters, i.e. the least contribution
to the cutting tool temperature and cutting force is due to the heat treatment.
However, regardless of statistically insignificant results, the heat treatment contri-
bution is found to be noteworthy. For instance; with change of heat treatment
condition, change in the chips’ morphology is observed. The observable difference
in the shear localized bands in the chips of the analysed alloys can be seen more
clearly by using Leica Z16 APO optical magnifier at cutting speed of 80 m/min and

Table 4 Analysis of variance for cutting tool temperature (means)

Source DF Seq SS Adj SS Adj MS F P Contribution (%)

Cutting speed 1 338,665 338,665 338,665 378.40 0.000 69.13

Feed rate 2 129,631 129,631 64,816 72.42 0.000 26.46

Heat treatment 2 6317 6317 3159 3.53 0.080 1.29

Feed rate × heat
treatment

4 8120 8120 2030 2.27 0.151 1.66

Residual error 8 7160 7160 895 1.46

Total 17 489,893

Table 5 Analysis of variance for cutting forces (means)

Source DF Seq SS Adj SS Adj MS F P Contribution (%)

Cutting speed 1 4418 4418 4418 13.60 0.006 0.99

Feed rate 2 432,172 432,172 216,086 665.39 0.000 97.20

Heat treatment 2 3214 3214 1607 4.95 0.040 0.72

Feed rate × heat
treatment

4 2198 2198 549 1.69 0.244 0.49

Residual error 8 2598 2598 325 0.58

Total 17 444,600

Table 6 Analysis of variance for feed forces (means)

Source DF Seq SS Adj SS Adj MS F P Contribution (%)

Cutting speed 1 2289.4 2289.4 2289.39 4.75 0.061 10.37

Feed rate 2 9808.8 9808.8 4904.39 10.17 0.006 44.42

Heat treatment 2 5927.4 5927.4 2963.72 6.14 0.024 26.84

Feed rate × heat
treatment

4 197.6 197.6 49.39 0.10 0.979 0.89

Residual error 8 3859.1 3859.1 482.39 17.48

Total 17 22,082.3
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feed rate of 0.25 mm/rev. The reason is that machining of the stronger form of the
alloy resulted in generation of higher feed forces and cutting tool temperatures even
at relatively higher cutting speeds and feed rates because larger amount of power is
required to deform the material plastically.

69%

27%

1% 2% 1%

Cutting Speed

Feed Rate

HT

Feed Rate * HT

Error

10%

44%27%

1%
18%

Cutting Speed Feed Rate HT Feed Rate * HT Error

(a)

(b)

(c)

Fig. 3 Pie chart of factor % contribution for a cutting tool temperature, b cutting force, c feed
force (ANOVA mean data)
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3.2 S/N Ratios and Means Evaluation for Optimal Design

The average values of the performance characteristics for each parameter at dif-
ferent levels are represented by the mean response. The average values of Mean
data and S/N data for cutting speed, feed rate and heat treatment are obtained
separately, and are given in Tables 7, 8, and 9. These values are plotted in Figs. 4
and 5. In the Taguchi method, the higher the levels for S/N ratio, the better the
overall performance, meaning that the parameter levels with the highest S/N ratio
value should always be selected. Regardless of the lower-the-better/higher-
the-better quality characteristic, the greater S/N ratio corresponds to the smaller
variance of the response characteristics around the target value [21].

Based on the S/N ratio and ANOVA, the optimal input parameters for cutting
tool temperature are the cutting speed at level 1 and the feed rate at level 1
(Table 7). It is clear from Table 9 that the cutting speed at level 2, the feed rate at
level 1 and heat treatment condition at level 2 are best choice, in terms of the cutting
force. The optimal input parameters for feed force are the feed rate at level 1 and
heat treatment condition at level 1.

Table 7 Response table for means and S/N ratios (smaller is better) for temperature

Level S/N data Mean data

Vc f Heat treatment Vc f Heat treatment

1 −56.20 −56.72 −57.97 652.9 701.2 810.7

2 −59.31 −57.49 −57.83 927.2 764.7 794.2

3 −59.05 −57.46 904.3 765.3

Rank 1 2 3 1 2 3

Table 8 Response table for means and S/N ratios (smaller is better) for cutting forces

Level S/N data Mean data

Vc f Heat treatment Vc f Heat treatment

1 −55.05 −52.13 −54.88 588.0 404.0 576.8

2 −54.62 −54.56 −54.60 556.7 535.0 554.5

3 −57.81 −55.02 778.0 586.7

Rank 2 1 3 2 1 3

Table 9 Response table for means and S/N ratios (smaller is better) for feed forces

Level S/N data Mean data

Vc f Heat treatment Vc f Heat treatment

1 −50.74 −49.87 −49.99 346.9 311.8 316.5

2 −50.21 −50.28 −51.08 324.3 327.7 360.0

3 −51.27 −50.35 367.3 330.3

Rank 3 1 2 3 1 2
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Fig. 4 Main effect plots (means) for a cutting force (Fc), b feed force (Fk), and c cutting tool
temperature (oC)
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Fig. 5 Main effect plots (S/N ratio) for a cutting force (Fc), b feed force (Fk), and c cutting tool
temperature (oC)
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The Tables 7, 8 and 9 include ranks based on Delta statistics, which compare the
relative magnitude of effects. The Delta statistic is calculated by subtracting the
lowest from the highest average for each parameter. Ranks are assigned based on
Delta values; the highest Delta value is assigned rank 1, rank 2 to the second
highest, and so on. The descending order of ranks is given as Vc > f > heat treat-
ment; f > Vc > heat treatment and f > heat treatment > Vc for cutting tool tem-
perature, cutting and feed forces, respectively.

From these results, it can be observed that (a) as cutting speed increases, the
forces decrease and the cutting temperature increases; (b) as feed rate increases, the
cutting force and the cutting temperature increases and the feed force decreases; and
(c) as the hardness of the workpiece increases due to heat treatment, both the forces
and the cutting temperature increases.

In addition to the above observations, the optimal parameters for the forces and
the cutting temperature can also be deduced.

3.3 Optimum Quality Characteristics Approximation

To determine the near optimum or the range of process parameter levels where
global optimum exists is an utmost advantage of conducting Taguchi’s methodol-
ogy [15]. The level of a parameter that gives the minimum value of cutting tool
temperature, cutting and feed forces symbolizes the optimum level for that
parameter. The significant parameter selected for the cutting tool temperature are
�Vc1 and �f1. The optimal value of the cutting force can be computed as

lCTT ¼ �Vc1 þ �f1 � �TCTT ð2Þ

where μCTT is mean value of the cutting tool temperature, �TCTTðOverall
average of cutting tool temperatureÞ ¼ 790 �C (Table 3) and are �Vc1 and �f1 are
average values of the cutting force and feed force, respectively (Table 5), i.e.
lCTT ¼ 564:1 �C.

CI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa 1; feð ÞVe=neff

p
ð3Þ

where Fa 1; feð Þ = the F-ratio at a confidence level of 95 % against DOF 1 and error
DOF fe, Ve = error variance, neff is the effective number of replications:

neff ¼ N=f1þ ðTotal DOF in the estimation of meanÞg ð4Þ

where N = total number of results. The C.I. at 95 % is ±18.78 °C. Thus, the
predicted optimum cutting tool temperature is at 545.32 < μCTT < 582.88 °C.

The significant parameters selected for the cutting force are �Vc2, �f1 and HT2

(Table 6). The optimal value of the cutting force can be computed as
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lFc
¼ �Vc2 þ �f1 þ HT2 � 2�TFc ð5Þ

i.e. lFc
¼ 371:2N.

By using Eqs. (3) and (4), the C.I. at 95 % is ±13.86 N. Thus the predicted
optimum feed force is 357.34 < lFc

< 385.06 N.
The significant factors selected for the feed forces are �f1 and HT1 (Table 7). The

optimal value of the feed force can be computed as

lFk
¼ �f1 þ HT1 � �TFk ð6Þ

i.e. lFk
¼ 292:3N.

By using Eqs. (3) and (4), the C.I. at 95 % is ±15.41 N. Thus, the predicted
optimum feed force is 276.89 < μHT < 307.71 N.

4 Significance of the Study

An exhaustive experimental study was conducted to assess the influence of control
variables such as cutting speed, feed rate, and the heat treatment of the workpiece
on the machinability of the Ti-54M titanium alloy in terms of response variables
such as cutting force, feed force, and cutting temperature using Taguchi techniques.
The following conclusions can be drawn from the research:

• It is found that the Taguchi techniques for parameter design provide a systematic
methodology for the optimization of the cutting parameters and heat treatment
conditions.

• The optimum levels of the cutting speed, the feed rate and the heat treatment
condition have been established for getting minimum cutting tool temperature,
cutting and feed forces of orthogonally machined Ti-54M titanium alloy.

• The minimum cutting tool temperature is found with cutting speed of
40 m min−1 and feed rate of 0.1 mm rev−1. The heat treatment condition has no
statistically significant effect on the cutting tool temperature and thus should be
set at a level which provides superior strength.

• The minimum cutting force is found with cutting speed of 80 m min−1, feed rate
of 0.1 mm rev−1 and STA heat treatment condition. The minimum feed force is
found with feed rate of 0.1 mm rev−1 and annealed heat treatment condition. The
cutting speed was found to have statistically insignificant effect on feed force
and thus must be set at a level which is most suitable and cost-effective to
industry.

This gain in knowledge can be leveraged to develop varieties of these alloys by
changing their chemical composition and/or heat treatment for different applica-
tions. The existing scarce database on machinability of these alloys is supplemented
with the experimental studies performed in this work for the industry need. This
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original contribution to the existing database will help the academicians and
practitioners in this area to develop numerical models in future for commercial
research. Khanna and Bajpai [22] have initiated developing numerical models for
this newly developed titanium alloy and showed that use of FEM can lead to
reduced machining time and manufacturing cost as well. The results of this work
have been transferred to the respective industry. The industry is expected to gain
from this research in terms of improved productivity and reduced cost.
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Parametric Optimization of Submerged
Arc Welding Using Taguchi Method

S. Vinodh, S. Karthik Bharathi and N. Gopi

Abstract Submerged Arc Welding (SAW) process has tremendous applications in
industrial sectors. The quality of weld joint depends on optimal process parameters.
This chapter presents the optimization study for materials with application in
valves. Input parameters are voltage, current, and speed of welding; output
parameters are penetration and bead width. Taguchi L9 orthogonal array has been
constructed. Signal-to-noise ratio and ANOVA have been used to analyze welding
characteristics so as to generate optimal welding parameters. Also, confirmation
analyzis has been done.

1 Introduction

Welding is one of the significant metal fabrication processes. Submerged Arc
Welding (SAW) has tremendous applications in valves manufacturing [1]. The
quality of welded joint typically depends on the input parameters, namely welding
current, welding voltage, and welding speed [2]. In order to attain optimum results,
the influence of parameters on welding process as well the varying conditions must
be understood. The influence of welding input parameters on output parameters,
namely penetration depth and bead width are essential and are analyzed [3].
Experimental design approach proposed by Taguchi has been used in this study.
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Orthogonal Array and ANOVA are used to analyze the welding characteristics as
well as to perform the welding parameters optimization. Also, confirmation tests
have been conducted to compare the experimental and predicted values.

2 Literature Review

The literature has been analyzed from the viewpoint of Taguchi methods and
welding processes. Sapakal1 and Telsang [4] applied Taguchi method to determine
the optimal process parameters for penetration in MIG welding. In this investiga-
tion, they considered welding current, welding voltage, and welding speed as
parameters. In order to optimize welding parameters, Taguchi orthogonal array,
signal-to-noise ratio, and ANOVA were used. Kumanan et al. [5] applied Taguchi
technique and regression analyzis to determine the optimal process parameters of
SAW process. The experiment was conducted by varying voltage, welding current,
welding speed, and electrode stick-out. Eshwar and Kumar [6] found the most
significant parameters that affect mechanical properties of TIG weldments of Al
65032 alloy using S/N analyzis and mean response analyzis. The parametric design
is carried out with weld condition and control parameters such as gas pressure,
current, groove angle, and preheats. Three levels are considered for the control
parameters based on the preliminary tests and analyzis carried out with L9
orthogonal array. Juang and Tarng [7] proposed modified Taguchi approach for
selection of TIG welding process parameters of stainless steel with optimal weld
pool geometry and four ‘smaller-the-better’ quality characteristics. Pasupathy and
Ravishankar [8] performed welding using AA1050 material and studied the influ-
ence of welding parameters namely welding current and welding speed on strength
of low-carbon steel. The experiments were planned based on Taguchi technique.
The welding characteristics of dissimilar joints were investigated using S/N ratio
and ANOVA and the welding parameters were optimized. Chauhan and Jadaun [9]
optimized process parameters of MIG welding process for dissimilar metal joint for
stainless steel (SS-304) and low-carbon steel using Taguchi design method.
ANOVA was applied to determine the significance level of parameter. Sarkar et al.
[10] reported a new procedure using analytic hierarchy process (AHP)-based
Taguchi method for the selection of best welding parameters with reference to
fabrication of SAW of plain carbon steel. In the investigation, three process
parameters, namely wire-feed rate, stick out, and traverse speed and three response
parameters, namely penetration, bead width, and bead reinforcement were con-
sidered. Also, ANOVA was applied to investigate the influence of process
parameters on penetration, bead width, and reinforcement. Datta et al. [11] applied
Taguchi method to obtain optimal parametric combinations to attain desired weld
bead geometry and dimensions of Heat Affected Zone (HAZ) in SAW process.
Taguchi L9 orthogonal array design was adopted and experiments were conducted
using three different levels of traditional process parameters to obtain bead-on-plate
weld on mild steel plates. Saha and Mondal [12] presented a different method to
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optimize SAW process parameters with multi-response characteristics by applying
Taguchi’s robust design approach. Experiments were performed using welding
current, arc voltage, welding speed, and electrode stick-out as input process
parameters to assess weld bead width and bead hardness. The optimum values were
analyzed using multiobjective Taguchi method to obtain total normalized quality
loss and multi-response signal-to-noise ratio. Tarng and Yang [13] applied Taguchi
method to optimize welding parameters in SAW process. The factors considered for
optimization include arc current, arc voltage, welding speed, electrode protrusion,
and preheat temperature. Yousefieh et al. [14] presented Design of Experiment
(DOE) technique, Taguchi method, to optimize pulsed current gas tungsten arc
welding (PCGTAW) parameters for analyzis of corrosion resistance in the case of
super duplex stainless steel (UNS S32760) welds. L9 orthogonal array of Taguchi
design was used which involves nine experiments for four parameters (pulse cur-
rent, background current, % on time, and pulse frequency) with three levels.
ANOVA was performed on the measured data and S/N ratio was computed. Tarng
and Yang [15] determined welding process parameters to obtain optimum weld
bead geometry in gas tungsten arc welding (GTAW) process using Taguchi method
of DOEs. They proved through ANOVA that welding speed, welding current, and
polarity ratio are the significant parameters to evaluate weld bead geometry.

3 Submerged Arc Welding

SAW involves the concealment of arc using blanket of granular and fusible flux.
Heat source is an arc between a bare, solid-metal (or cored) consumable wire, or
strip electrode and the work piece. The arc is retained in a cavity of molten flux or
slag, which refines weld metal and protects from atmospheric contamination.

Since thick steel sections can be easily joined using SAW, it is primarily used for
shipbuilding, pipe fabrication, and pressure vessels [16]. In addition to joining
application, it is used to build up parts and overlay with stainless or wear-resistant
steel. Procedural variations in SAW include current, voltage, electrical stick-out
(distance from last electrical contact to plate), travel speed, and flux depth.
Variation in any of these parameters will affect the shape and penetration of weld,
as well as the integrity of weld deposit.

4 Taguchi’s Design Method

Taguchi approach is a designed experiment that enables the selection of a product
or process that provides consistent performance. Taguchi design focus on identi-
fication of controllable factors that minimizes the effect of noise factors. During
experimentation, noise factors to force variability can be manipulated and determine
optimal control factor settings to develop robust process or product. A process
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designed with this objective will generate more consistent output regardless of the
environment in which it is used. Taguchi designs use orthogonal arrays, which
determine the effects of factors on the response mean and variation. An orthogonal
array emphasizes balanced design with equal weightage to all factors. This enables
independent assessment of factors. Time and cost associated with experimentation
could be reduced during which fractionated designs are used [3].

5 Process Parameter Levels

The operating variables of SAW considered in this study include welding current,
welding voltage, and welding speed. Arc voltage lengthens the arc so that the weld
bead width, reinforcement, and flux consumption are increased. For the given wire
diameter, on increasing weld current, the deposition rate and depth of penetration
both increase. Higher speeds reduce bead width and increase the likelihood of
porosity. Bead size is inversely proportional to welding speed at the same current.
Though many direct and indirect parameters affect the quality of weld in SAW, the
key process parameters influencing bead geometry include welding current, weld-
ing voltage, and welding speed. In this study, three levels of process parameters are
considered (Table 1).

Work material:

Electrode diameter: 4 mm.
Base material: Carbon steel.
Maximum stick out: 25 mm.
Polarity: Constant current, electrode positive.
Electrode: EG.
Plate size: 300 × 110 × 16 mm.

6 L9 Orthogonal Array

Taguchi conceptualized a new approach of conducting the DOEs which are based
on well-defined guidelines. This approach deploys a special set of arrays termed
orthogonal arrays. These standard arrays emphasize the way of conducting reduced
number of experiments which could generate complete information of all the factors
that affect performance parameters. The core aspect of orthogonal arrays rests with

Table 1 Welding parameters Welding parameters Level 1 Level 2 Level 3

Welding current 450 550 650

Welding voltage 28 30 32

Welding speed 300 450 600
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selecting the level combinations of the input design variables for each experiment.
In this chapter, an experiment has been conducted to understand the influence of
three different independent variables (each variable has three level values). In this
case, L9 orthogonal array forms appropriate choice. This array assumes that there is
no interaction between any two factors (Table 2).

7 Signal-to-Noise Ratio

The product of ideal quality should reciprocate appropriately in the same way to the
signals provided by the control factors. According to Taguchi, variability in product
performance with reference to noise factors should be minimized while variability
with reference to signal factors must be maximized. Signal factors include those
factors that are controlled by operator of the product to obtain final response. Noise
factors are those which the operator does not have control over. The goal of
Taguchi’s DOEs is to determine the best settings of control factors that are involved
in the production process, in order to maximize S/N ratio.

There are three Signal-to-Noise ratios of common interest for optimization

(1) Smaller-the-Better:
In cases where the occurrence of some undesirable product characteristics
should be minimized

n ¼ �10 Log10½mean of sum of squares pertaining tomeasured data� ð1Þ
(2) Larger-the-Better:

In cases where the occurrence of certain product characteristics should be
maximized.

n ¼ �10 Log10½mean of sum squares of reciprocal pertaining tomeasured data]

ð2Þ

Table 2 L9 orthogonal array

Expt. No. Process parameters

Welding current Welding Voltage Welding speed

1 1 1 1

2 1 2 2

3 1 3 3

4 2 1 2

5 2 2 3

6 2 3 1

7 3 1 3

8 3 2 1

9 3 3 2
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(3) Nominal-the-Best:
There is a fixed signal value and the variance around this value can be rec-
ognized as the result of noise factors

n ¼ 10 Log10
square of mean

variance
ð3Þ

In any welding process, the amount of penetration of the weld bead is directly
related to the quality of weld bead. Hence, to calculate S/N ratio, it is considered to
be ‘larger-the-better’. The S/N ratios corresponding to penetration is presented in
Table 3.

Similarly, to obtain optimum welding characteristics, smaller-the-better char-
acteristics for bead width should be considered. The calculated S/N ratio for bead
width is presented in Table 4.

The main objective of Taguchi’s process is to maximize S/N ratio irrespective of
the category of quality whether it is higher-the-better or lower-the-better. The mean

Table 3 Results of experimentation for penetration and S/N ratio

Expt.
No.

Welding
current

Welding
voltage

Welding
speed

Penetration
mm

S/N
ratio

1 450 28 300 3.416 10.6704

2 450 30 450 2.923 9.3166

3 450 32 600 3.485 10.8441

4 550 28 450 4.614 13.2816

5 550 30 600 4.304 12.6774

6 550 32 300 7.800 17.8419

7 650 28 600 5.945 15.4830

8 650 30 300 7.694 17.7230

9 650 32 450 4.747 13.5284

Table 4 Results of experimentation for bead width and S/N ratio

Expt.
No.

Welding
current

Welding
voltage

Welding
speed

Bead
width

S/N ratio

1 450 28 300 22.560 −27.0668

2 450 30 450 17.122 −24.6711

3 450 32 600 14.992 −23.5172

4 550 28 450 17.439 −24.8304

5 550 30 600 16.297 −24.2422

6 550 32 300 29.500 −29.3964

7 650 28 600 15.128 −23.5956

8 650 30 300 20.735 −26.3341

9 650 32 450 26.162 −28.3534
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of multi-response signal-to-noise ratio for each level of welding parameters for
penetration is consolidated and shown in Table 5.

Similarly, the multi-response S/N ratio for bead width is shown in Table 6.
Figures 1 and 2 show the multi-response signal-to-noise graph for penetration

and bead width, respectively, and dashed line represented in Figs. 1 and 2 indicate

Table 5 Table depicting
response for signal-to-noise
ratios for penetration

Level Welding
current

Welding
voltage

Welding
speed

1 10.28 13.14 15.41

2 14.60 13.24 12.04

3 15.58 14.07 13.00

Delta 5.30 0.93 3.37

Rank 1 3 2

Table 6 Table depicting
response for signal-to-noise
ratios for bead width

Level Welding
current

Welding
voltage

Welding
speed

1 −25.09 −25.16 −27.60

2 −26.16 −25.08 −25.95

3 −26.09 −27.09 −23.78

Delta 1.07 2.01 3.81

Rank 3 2 1

Fig. 1 Main effect plot for S/N ratio of penetration
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the value of total mean of the multi-response signal-to-noise ratio. Multi-response
signal-to-noise ratio is inversely proportional to the variance of quality character-
istics around desired value.

8 ANOVA

ANOVA is used to depict the importance of all process parameters on weld pen-
etration and bead width. ANOVA is a statistics-oriented objective decision making
tool used to detect any differences in mean performance of the group of items
analyzed taking variation into account rather than using pure judgment. In ANOVA
table, sum of squares represents total variability in S/N ratios, which is computed by
the sum of squared deviations from total mean S/N ratio. It is given as

SSD ¼
X

ðxi�xnÞ2 ð4Þ

The Degrees of Freedom (DF) refer to terms in sum of squares (SS), which can
be assigned arbitrarily. For instance, the sum of deviations from mean in a sample
of n observations

ðx1 � xÞ2 þ ðx2 � xÞ2 þ ðx3 � xÞ2 þ � � � þ ðxn � xÞ2

has (n − 1) degree of freedom because when (n − 1) deviations are known, the nth
deviation can be computed from the identity

Fig. 2 Main effect plot for S/N ratio of bead width
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ðx1 � xÞ þ ðx2 � xÞ þ ðx3 � xÞ þ � � � þ ðxn � xÞ ¼ 0

The mean sum of squares can be calculated as

Mean sum of squares ðMSÞ ¼ Sumof square
Degrees of freedom ðDFÞ ð5Þ

F is called variance ratio.

F ¼ MS
MS ðerrorÞ ð6Þ

F, thus obtained, is to be compared with F0.05 and F0.01 (from standard
F tables) to analyze whether the term (main effect or interactive effect) enforces a
significant effect on selected response with 95 % confidence level. A factor is said
to have significant effect on a response if F value obtained from table is found to be
less than the computed or calculated F value. ANOVA is done using statistical
package MINITAB.

The results of ANOVA pertaining to penetration and bead width are presented in
Tables 7 and 8, respectively.

From Table 7, it can be seen that welding current possess the highest influence
over penetration as it has the highest F value at 95 % confidence level.

From Table 8, it can be seen that welding speed possess the highest influence
over bead width as it has the highest F value at 95 % confidence level.

Table 7 Analyzs of variance for S/N ratios for penetration

Source Degrees of
freedom

Sum of
squares

Mean sum of
squares

F P

Welding
current

2 47.749 23.8747 7.33 0.120

Welding
voltage

2 1.560 0.7801 0.24 0.807

Welding
speed

2 18.084 9.0419 2.78 0.265

Residual error 2 6.510 3.2552

Total 8 73.904

Table 8 Analyzis of variance for S/N ratios for bead width

Source Degrees of
freedom

Sum of
squares

Mean sum of
squares

F P

Welding
current

2 2.170 1.085 0.52 0.659

Welding
voltage

2 7.738 3.869 1.85 0.351

Welding
speed

2 21.956 10.978 5.24 0.160

Residual error 2 4.188 2.094

Total 8 36.052
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9 Confirmation Test

This is the last step in Taguchi’s design method. From the main effects plot of S/N
ratio shown in Figs. 1 and 2, optimum values of welding parameters corresponding
to maximum S/N ratio are predicted. In this study for maximum penetration, the
optimum level of welding parameters for penetration is predicted to be

Welding current 650
Welding voltage 32
Welding speed 300

Similarly, the optimum values for the least bead width is predicted to be

Welding current 550
Welding voltage 32
Welding speed 300

Now, experiments are conducted having the above values for welding parame-
ters and value of penetration and bead width are noted. The predicted values of
penetration and bead width are compared with reference to actual values and a good
agreement is attained between predicted and experimented values as shown in
Table 9.

10 Conclusion

This chapter reports the study on optimization of process parameters of SAW using
Taguchi method. Material used in valves has been considered. Appropriate input
and output parameters have been considered. L9 orthogonal array has been devised.
Signal-to-noise (S/N) ratio and ANOVA are used for welding process parameters
optimization. From the study, the optimal penetration is found to be 8.027 mm and
S/N ratio is 18.0911.

Table 9 Results of the confirmation experiment

Initial welding parameters Optimal welding parameters

Prediction Experiment

Level A1B1C1 A3B3C1 A3B3C1

Penetration 3.416 8.027 7.852

S/N ratio 10.6704 18.0911 17.899

Level A1B1C1 A2B3C1 A2B3C1

Bead width 22.560 13.175 14.54

S/N ratio −27.0668 −22.3953 −23.251
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Generally, the results are similar to those obtained by Karaoglu and Secgin [17].
Bead width is more sensitive to voltage and speed variations when compared to
bead height and penetration. Current is the most significant parameter with refer-
ence to penetration. Penetration is almost nonsensitive to voltage and speed [17].
Karaoglu concluded that at maximum heat input level (maximum current and
voltage levels and minimum level of welding speed), current sensitivity of pene-
tration, and speed sensitivity of bead width attain maximum values. Sarkar et al.
[10] concluded that the effect of wire-feed rate on weld geometry is more significant
than other welding parameters in SAW process. However, in the present study, it
has been inferred that welding current has significant effect on weld bead charac-
teristics than other parameters.
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