


Designing Intelligent Machines 

Volume 2 

Concepts in Artificial 
intelligence 



The two volumes of this book were produced as the major components of 
the third-level undergraduate course Mechatronics: Designing Intelligent 
Machines, written by a Course Team at The Open University, UK. They are: 

Volume 1: Perception, Cognition and Execution 

Edited by George Rzevski 

Volume 2: Concepts in Artificial Intelligence 

By Jeffrey Johnson and Philip Picton 



Designing Intelligent Machines 

Volume 2 

Concepts in Artificial 
In telligence 
By Jeffrey Johnson and Philip Picton 

Butterworth-Heinemann in association with The Open University 

E I N E M A N N  iF-= u Theopen 
University 

OXFORD LONDON BOSTON MILTON KEYNES 

MUNICH NEW DELHl SINGAPORE SYDNEY 

TOKYO TORONTO WELLINGTON 



BUTTERWORTH-HEINEMANN LTD, Linacre House, Jordan Hill, Oxford OX2 8DP, 
England, UK 

-@A member oirhe Reed Elsevier plc group 

OXFORD LONDON BOSTON 
MUNICH NEW DELHI SINGAPORE SYDNEY 
TOKYO TORONTO WELLINGTON 

in association with 
THE OPEN UNIVERSITY, Walton Hall, Milton Keynes MK7 6AA, England, UK 

First published in the United Kingdom by the Open University in serial form for Open 
University students and staff 1994. 

This edition first published in the United Kingdom 1995, and reprinted with corrections 
1999. Reprinted 200 1. 

Copyright O 1994 and 1995 The Open University. 

Edited, designed and typeset by The Open University. 

Printed and bound in the United Kingdom by the Alden Press, Oxford, United Kingdom. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means without written permission from the 
publisher or without a licence from the Copyright Licensing Agency Limited. Details of such 
licences (for reprographic reproduction) may be obtained from the Copyright Licensing 
Agency Ltd, 90 Tottenham Court Road, London WIP OLP, United Kingdom. 

This text forms part of an Open University course. If you would like to know more about 
Open University courses, please write to the Course Reservations Centre, PO Box 724, The 
Open University, Walton Hall, Milton Keynes, MK7 6ZS, United Kingdom. 

British Library Cataloguing in Publication Data 
A record is available from the British Library 

ISBN 0-7506-2403-5 

Cover: Computer art created by Dr Paul Margerison using a Silicon Graphics IRIS 
workstation as part of his PhD research in the Design Discipline at the Open University. 
The images were created by random sampling of previously drawn images and subsequent 
interpolation. 



P R E F A C E  

George Rzevski 
This textbook is aimed at undergraduate and postgraduate students and those 
working in industry who wish to learn the fundamentals of a branch of engineer- 
ing called mecha t ron i c s .  

The name was coined in the 1970s to acknowledge an urgent need to integrate 
two engineering disciplines -mechan ics  and electronics  - with a view to 
developing and manufacturing mechanical machines controlled by means of 
electronic circuits. Since then the control and communication technologies have 
advanced beyond recognition and are now dominated by the software and 
hardware of digital computers and by embedded artificial intelligence. The name, 
therefore, may now be considered to be somewhat restrictive. It is, nevertheless, 
widely used. 

The second part of the title -designing in te l l igent  m a c h i n e s  - emphasizes that 
this book covers new aspects of mechatronics, that is, how to specify and design 
machines capable of smart sensing, planning, pattern recognition, navigation, 
learning and reasoning. 

The book consists of two independent volumes. Volume 1 covers the fundamen- 
tals of mechatronics and discusses the design of machine perception, cognition 
and execution. Volume 2 is concerned with the concepts of artificial intelligence 
needed for the design of machines with advanced intelligent behaviour. 

Each volume has an 'Overview' which provides the reader with the orientation 
needed when approaching the study of an unfamiliar and multidisciplinary 
subject, and provides the rationale for the inclusion and ordering of the topics. 

These two volumes were written as the major components of a package of 
distance learning material for the Open University undergraduate course 
Mechatron ics :  Des ign ing  Intel l igent  Machines .  The contributors to these two 
volumes were part of an interdisciplinary Course Team, brought together to 
integrate the disciplines and techniques underlying mechatronics. This Course 
Team has also generated complementary components of the course, which 
include video tapes, software, a home experiment kit, study guides and course 
assessments. More detailed information on the course is given overleaf. 
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O V E  R V I  E W  0 F V O  L U M E 2 

Jeffrey Johnson and Philip Picton 
Volume 2 provides the theoretical background for the implementation of con- 
cepts of artificial intelligence (AI) in engineering design and mechatronics. Our 
goal has been to explain the ideas to those who have no previous knowledge of the 
subject, but at the same time to give sufficient technical information to be useful 
at the operational level. But AI is a huge subject, and it is impossible to cover all 
the details in a single introductory book. This means that some subjects are 
discussed in depth, while others are raised to set the wider context and to guide 
readers to the more specialist literature. 

This book was written in the context of the development of the SmartLab 
software and home experiment kit which the Open University provides to all 
students on its Mechatronics course. Many of the examples given here come from 
our work on SmartLab, and hopefully this has kept us sufficiently close to our 
goal of presenting theoretical concepts in an applications-oriented way. We are 
both practising engineers, and we appreciate that the ultimate value of theoretical 
ideas is how well they can be applied to solving practical problems. In this we 
encourage our students to adopt the European connotation of 'engineer' of an 
ingenious and creative problem solver as implied by the Latin root of the word. It 
is our belief that engineering requires the highest levels of intellect, exploiting the 
new problem-solving paradigms enabled by new technologies of information 
processing. 

We do not adopt a purist approach to 'Artificial Intelligence' and we are not here 
involved in the fierce debates about the possibilities of creating artificial brains or 
human-like robots. Although we enjoy speculating on this as much as anyone 
else, the approach adopted in this book will follow that attributed to Edsgar 
Dijkstra: 'the question of whether a computer can think is no more interesting 
than the question of whether a submarine can swim'. Although we have concen- 
trated on the main ideas of AI in the context of solving practical engineering 
problems, AI raises some important philosophical, social and scientific issues. 
We hope that after reading this book you will be in a better position to make up 
your own mind on this. 

The book starts off in Chapter 1 with a general introduction to artificial intelli- 
gence. This is followed in Chapter 2 by quite a detailed discussion of pattern 
recognition within an engineering context. Chapter 3 introduces one of the most 
important topics in AI, namely search. Search is important because many 
problems can be construed as searching the universe of all possibilities for 
something that can be considered to be a solution to a problem. Many interesting 
problems do not have solutions in the sense that a mathematical equation has a 
solution, and deciding if a particular answer is acceptably good involves many 
theoretical subtleties. Artificial intelligence has given new insights into the nature 

xiv 



of search, and produced new approaches such as simulated annealing and genetic 
algorithms. The theme of search permeates the whole book. 

In Chapter 4 we explain the new computational paradigm of neural networks, 
which learn from data rather than being programmed. In Chapter 5 we consider 
the problems of scheduling which intelligent machines must solve in order to 
decide where they should be and when, and what they should be doing when they 
get there. Chapter 6 introduces machine reasoning, including traditional logical 
and non-deterministic approaches such as probability and fuzzy logic. Chapter 7 
shows how logical reasoning can be implemented in computers using rule-based 
systems. 

Chapter 8 introduces the idea of machine learning which is widely felt to lie at the 
heart of machine intelligence. Alan Turing, one of the founding fathers of AI, 
knew that if machines are to achieve the levels of intelligence to which we aspire, 
then they must be capable of learning for themselves. 

The remaining chapters are concerned with implementation. Chapter 9 considers 
the subject of intelligent control, in which the ideas developed in earlier chapters 
are applied to the benchmark problem of balancing an upside-down broom on a 
wheeled trolley. The ideas of the earlier chapters can also be applied to less well- 
defined problems with more uncertainty such as a robot negotiating a path 
through an unknown landscape. Chapter 10 discusses the problem of computer 
vision, which involves machines abstracting useful information from images. 
Chapter 11 shows how, of many possibilities, all the techniques discussed in the 
book can be implemented and integrated in a simple architecture called the 
blackboard system. 

After reading the book, readers should feel that they know the main issues in 
artificial intelligence as far as they apply to practical engineering design, and that 
they are sufficiently familiar with the basic techniques to use them in practice. 
However, there is no substitute for hands-on experience, and we hope that readers 
will try out some of these ideas for themselves, as our students do with SmartLab. 

This book is the outcome of many meetings and discussions with our colleagues 
on the Mechatronics course team. Their input has been invaluable. The book 
would not exist without the academic editor and course team chair, George 
Rzevski, who had the original idea. Also it would not exist without the efforts of 
Roger Dobson who, like all Open University course managers, had the imposs- 
ible task of interfacing academics to reality. We would especially like to thank the 
course editor, Garry Hammond, who often transformed our impenetrable English 
and mathematical formulae into the current much improved form. 

We would be pleased to receive constructive criticism from readers, but we hope 
that most will find the book a useful introduction to some profound and important 
ideas that will characterize the engineering of the future. 

X V  
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C H A P T E  R 1 
I N T R O D U C T I O N  

1.1 Artificial intelligence 
in engineering 

This book, Volume 2 in the series, sets out to explain how the fruits of fifty years' 
research into artificial intelligence (AI) can be applied to make intelligent and 
better machines. We have two objectives: the first is to explain the theory of the 
mainstream ideas in AI, and the second is to show how these ideas can be applied 
in practical engineering situations. 

Artificial intelligence is a young discipline which has had some spectacular 
successes, and some equally spectacular failures. The failures have mostly been 
due to underestimating the complexity of apparently simple problems combined 
with a belief that brute computer power ought to be able to solve any problem. 
The successes have been due to human ingenuity, scientific analysis, good 
engineering practice, and sometimes good luck. Out of all this experience, 
engineering principles are emerging which can be used to guide engineers who 
have to tackle problems of ever-increasing complexity in an increasingly compet- 
itive world. 

After reading this chapter you should: 

I~ be aware of the distinction between strong and weak AI; 

i~ be aware of the term cognitive science; 

be aware of the concepts of human-computer systems and human-computer 
interaction; 

I~ know the benefits of building more intelligence into machines; 

realize that there are currently limits to how much intelligence can be built 
into machines; 

i~ know the five critical features of AI and the ten enduring characteristics 
suggested by Schank; 

I~ be aware of how AI can be applied in the study of perception, cognition and 
execution. 

As in Volume 1, key terms are picked out in bold type when they are first 
introduced. 



VOLUME TWO 

AI has two main camps. The proponents of strong AI believe that it will be 
possible to build machines with human-like intelligence. By contrast, the propo- 
nents of weak A! believe that machines can exhibit what might be called 
intelligent behaviour, but that there are limits which mean that machines will 
always be intellectually inferior to humans. Within the weak AI camp there is an 
active research area called cognitive science which uses computers to model 
human behaviour with the intention of learning more about human beings. A very 
important aspect of this is the relationship between humans and computers. 
Whether or not it is possible to build human-like machines, we certainly build 
human-computer systems which involve both machines and people. For such 
systems to function properly it is just as important to engineer the human part of 
the system as it is to engineer the physical computing part of the system. It is also 
essential to understand how the human and physical subsystems interface to each 
other, and the last twenty years have seen a huge increase in research into 
human--computer interfaces (HCIs). 

In this book we will be mainly concerned with explaining the concepts of AI as 
they relate to physical systems. We are interested in engineering problems which 
either have no conventional solution, or which can be solved better by the 
application of information processing and computation. We will not attempt to 
give an absolute definition of 'intelligence'. Rather, we will explain some recent 
ideas and computational paradigms coming under the umbrella of AI. Readers 
can decide for themselves if machines which embody these are intelligent. 

The main reasons for building more machine intelligence into machines are that 
they may be cheaper to build, cheaper to maintain, more reliable, or able to 
overcome problems which other engineering approaches cannot. This question is 
discussed in some detail in Volume 1. We will summarize the conclusions as: 

i~ machine intelligence offers new possibilities; 

i~ machine intelligence can give better solutions to problems; 

i~ software is relatively inexpensive to mass produce; 

i~ software can often be changed more easily than hardware. 



1.4 How much intelligence can 
be built into machines? 

CHAPTER 1: INTRODUCTION 

The simple answer to this question is that no one knows. Engineering is the 
adaptation of general scientific knowledge to particular situations and problems. 
The engineer often has to fill in the details which the scientist has not provided, 
and in some cases the engineer has to become a scientist in order to fill in essential 
pieces of theoretical knowledge. Applied AI is like this. Often the engineer will 
have to do research to find how a general technique can be applied to the 
particular problem. Although research is by its nature unpredictable, there are 
some guidelines. 

The first guideline is that no machine works without some level of human 
supervision. In other words, all machines are part of a human-computer system. 
Suppose the intelligent part played by machines in any particular system can be 
quantified between 0% (no machine intelligence) and 100% (no human intelli- 
gence, which we claim is impossible). Then the cost of increasing the machine 
component of the system's intelligence can be sketched as shown in Figure 1.1. 

r 

E 
eD 

100% human 
0% machine 

0% human 
100% machine 

practical limit to 
mechanization 
(some%age human 
supervision inevitable) 

Figure 1.1 
The running costs of systems 
combining human and 
machine intelligence 
decrease with the 
introduction of greater 
machine intelligence, but the 
capital costs increase. 



VOLUME TWO 

The first principle that the engineer can infer from this is that it gets progressively 
more expensive to replace human intelligence with machine intelligence. In 
general, putting greater intelligence into machines gets increasingly expensive. 
The design engineer should therefore be aware that there will always be a cut-off 
where the investment in going just a bit further cannot be justified. 

The information technology revolution of the past thirty years has seen many 
mundane human tasks being taken over by computers. It has been cost effective to 
begin the process of introducing machine intelligence into systems which require 
data processing and the handling of large amounts of information. Yet although 
the check-out counters at supermarkets are now intelligent enough to recognize 
the groceries passed and do all the 'special offer' calculations on our bill, we still 
have human operators at the till at the time of writing. The human tasks require 
only a relatively low educational attainment, and yet the operators possess a level 
of intelligence which cannot be built into the check-out machines. This is the 
subtle human intelligence which, among other things, smiles engagingly at the 
kate customer, has a kind word for the lonely pensioner, and alerts security to deal 
with the shifty potential shoplifter. 

In giving an answer to the question 'What is AI, anyway?', Roger Schank writes: 

Artificial Intelligence is a subject that, due to the massive, often quite 
unintelligible, publicity it gets, is nearly completely misunderstood by 
people outside the field. Even AI's practitioners are somewhat confused with 
respect to what AI is really about. 

Schank suggests five critical features of AI: 

~" communication 

~" internal knowledge 

i~ world knowledge 

~" goals and plans 

i~ creativity. 

He also suggests ten 'enduring characteristics' of AI (we have added the 
comments in parentheses): 

1 representation 

2 decoding (real systems encoded into and from machine representations) 

3 inference 
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4 control of combinatorial explosion 

5 indexing (for recalling knowledge) 

6 prediction and recovery 

7 dynamic modification (including learning) 

8 generalization 

9 curiosity 

10 creativity. 

Most of these are of immediate importance in designing intelligent machines. A 
major theme throughout this book will be the problem of representing the 
machine and its environment. If we want to reason and make inferences we will 
have to encode these data in a symbolic language. The resultant knowledge base 
will have to be indexed in a way which allows information to be extracted quickly 
and efficiently. Alan Turing (1912-54), one of the founding fathers of machine 
intelligence, realized fight from the outset that for a machine to become 'intelli- 
gent' it would have to learn, and to generalize from specific information in order 
to acquire new knowledge. Prediction is an important requirement for intelligent 
machines since they must know what is possible and choose between the options. 
Similarly, it is highly desirable that a machine that has made a mistake should be 
able to detect that mistake and recover from it. 

The characteristics of curiosity and creativity are rare in contemporary machines. 
In one sense we expect intelligent machines to be 'curious' through the actions of 
their sensors, which are constantly seeking to know 'what's out there'. Higher 
levels of curiosity may appear in the next few generations of machines. A robot 
might muse along the lines of 'although I have been doing this job for years with 
my fight arm, I wonder if I could do it better with my left leg', and miglat thus 
spontaneously improve its performance. Whether we want our machines to be 
creative, and possibly unpredictable, remains an open question. 

Although there is a substantial body of applicable knowledge arising from AI, the 
subject remains young with many more questions than answers. One of the major 
failures of AI to date is the inability of machines to understand natural languages 
such as English, French, Hebrew, Arabic or German. Certainly we can feed the 
electrical signals from microphones into computers, but we cannot make 
machines which abstract the kind of information that humans do so effortlessly 
with our ears and brains. Vision is another area in which progress in AI has been 
slow despite many hundreds of man-years of research effort. So we can conclude 
that computers are rather poor at the cognitive functions which lie at the heart of 
much of our human intelligence. However, the story is not entirely negative, and 
in this book we will show how AI and information engineering can be applied in 
the practical design of intelligent machines. 
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AI can make major contributions to designing intelligent machines in the areas of 
perception and cognition, and also to actuators such as 'intelligent' grippers on 
robot arms. 

1.6.1 AI in perception 
As seen in Volume 1, effective perception is essential in the design of intelligent 
machines. In particular, these machines need to have sensors  which provide 
information on internal aspects and on the environment. Many sensors deliver 
information which is not useful in itself. Sometimes sensors produce 'noisy' data 
with uncertain interpretation. Sometimes information from many sensors must be 
combined in order to give useful information. And sometimes the cognition 
subsystem requires information in symbolic form. AI has developed many 
principles and techniques for processing noisy sensor information and synthesiz- 
ing it into useful symbolic forms of known reliability. Techniques which are 
particularly useful in perception include: 

I~ pattern classification 

I~ neural networks 

I~ image interpretation: computer vision, sonar, radar 

I~ data fusion 

i~ learning. 

1.6.2 AI in cognition 
Once a machine has reasonably reliable information about itself and its environ- 
ment it must constantly be making decisions as to what to do in the long and short 
terms. Thus a machine must be able to m o d e l  itself within its environment and 
predict the possible states of both itself and the environment. Techniques which 
are particularly useful in cognition include: 

I~ reasoning: 

representation 

logical reasoning 

knowledge-based systems 

fuzzy logic 

scheduling and planning: 

representation 

activity planning 
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critical-path analysis 

path planning 

emergency planning 

problem solving: 

heuristics 

I~ learning. 

1.6.3 AI in execution 
Assuming that a machine has established its goals and has a plan to enable it to 
achieve them, it must execute that plan. Execution usually involves the machine 
moving, either the whole machine as in the case of an autonomous vehicle, or 
parts of the machine as in the case of a robot gripper. 

Some intelligent machines use human beings in the execution stage. For example, 
machines to detect drugs and explosives use human customs inspectors to take 
the appropriate action once a contraband substance has been detected. The link 
between the cognition subsystem and the human being is often implemented 
through graphic user interfaces (GUIs). The sensing-cognition--execution loop is 
then closed using devices such as the keyboard, the mouse, and so on. The area of 
human-computer interfaces is becoming increasingly important as machines 
gain more intelligence and greater functionality. 

Sometimes intelligence is distributed throughout machines, with parts such as 
grippers having their own processing ability. Distributed systems may h.ave a 
central controller, or the overall behaviour may be allowed to emerge from the 
interacting subsystems. Often, distributed intelligence is limited and dedicated to 
specific tasks. This may allow subsystems to be controlled by relatively high- 
level commands such as 'pick up the block' or 'spray the panel'. The intelligent 
execution subsystem must interpret such commands and 'unpack' them in the 
context of the knowledge or model it has of its tasks or function. The final result of 
this will, in general, be to activate switches which power motors and other 
actuators. 

In this volume AI in execution appears mainly under the heading of 'intelligent 
control'. This involves decision-making using various kinds of reasoning, 
including rule-based systems, fuzzy logic, and even neural networks. 

From the viewpoint of this book, reasoning in execution differs from reasoning in 
cognition by its motivation. In cognition the goal is to find appropriate informa- 
tion. In execution the goal is to control actuators to make things happen. Thus the 
techniques used in cognition and execution may be similar to those listed in 
Section 1.6.2. 
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Apart from applying AI-derived solutions to engineering, AI has also given us 
methodological knowledge which can be applied in engineering design. 

One of the main lessons we learn from AI research is that it can be hard to find an 
appropriate way of representing things inside a computer. Often this means 
having to analyse things very carefully and abstract their parts and relationships. 
Also, we sometimes have choices in methods of representation, and we can look 
to AI for principles which help us choose between the possibilities. 

Another important lesson learnt from AI is that 'brute force' computer power 
cannot solve a large class of important problems. Our computers can store and 
process huge amounts of information, but for many problems the search for 
particular outcomes or solutions must be guided by heuristics, i.e. rules of thumb 
based on trial and error, which usually work, but don't always; i.e. they give 
reasonably good results most of the time. 

Machine reasoning is a major area of research in AI and has resulted in successes 
such as knowledge-based systems, fuzzy logic and non-monotonic reasoning. To 
build intelligent machines we must have a good understanding of what it means 
for a machine to reason. 

Learning is another major area of AI which we can exploit in designing 
intelligent machines. Building everything into machines once and for all makes 
them expensive and inflexible. Machines that can learn tend to be cheaper, more 
adaptable, and in principle able to improve their performance. 

The building of intelligent machines, especially robotics, is itself a mainstream 
research area in AI. From this the subject of intelligent control has evolved, which 
deals with situations in which conventional control theory is not applicable. These 
include open-loop control, where the machine has inadequate feedback infor- 
mation or lacks the reference information required to use conventional control 
techniques. These new approaches to control are often based on logic rather than 
more traditional continuous mathematical techniques such as calculus. 

In the rest of this book we will examine these topics in greater detail. Our goal is 
for you to understand the principles of AI sufficiently well to be able to apply 
them to real engineering problems. 

Schank, R. C. (1990) 'What is AI, anyway', in Partridge, D. and Wilks, Y. (eds) The 
Foundations of Artificial Intelligence, Cambridge University Press. 



C H A P T E  R 2 
P A T T E R N  R E C O G N I T I O N  

2.1 Introduction 

Pattem recognition is fundamental to perception and cognition in intelligent 
systems. A machine's sensors can generate a huge number of combinations of 
inputs over short periods of time. To be useful it is necessary to transform these 
data into one of a set of known classes by recognizing patterns in the data. In 
perception, for example, a microphone delivers a waveform corresponding to 
sound. Until parts of the wave which correspond to words such as 'yes' and 'no' 
are recognized, these data may have little or no value. Pattern recognition occurs 
also during cognition, for example, when a machine has to decide what to do next. 
Some patterns of data from the sensors combined with data in memory will 
require one action, other patterns will require other actions. 

Human beings are astoundingly good at pattern recognition; so good that the 
pioneers of machine intelligence severely underestimated how difficult it would 
be to represent patterns of any complexity. For example, can you see a pattern in 
the following configuration of dots? 

�9 �9 �9 0 0 0  0 0 0 0  0 0 0 0 0  O 0 0 0 0  �9 O 0  O 0 0 0 0  

You probably see a pattern of one dot, two dots, three dots, etc., and you probably 
see that the dots form a straight line. 

Human pattem recognition is used extensively in large and small systems. For 
example, security systems includehuman guards whose job includes looking at 
television monitors and recognizing unusual patterns (perception), deciding if 
this pattern is an emergency (cognition), and raising the alarm if it is (execution). 
In industrial systems human quality controllers have to look at assemblies and 
recognize unusual configurations (perception), decide if the configuration is 
outside the specification (cognition), and physically move rejected parts (execu- 
tion). In many similar cases the execution could be performed by machines if only 
one could automate the pattern recognition, In some systems this has already 
happened; for example, most large aircraft are controlled much of the time by an 
autopilot. 

Although human pattern recognition can be very good, it is unreliable. People get 
tired, lose concentration, miss things, and make mistakes. Also it is sometimes 

Figure2.1 
Is there a pattern in the 

dots? 
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not possible to use human pattern recognition, especially in environments in 
which the fragile human body cannot survive. For these reasons automating 
pattern recognition has been an active research area for many years. 

Figure 2.2 shows that human beings have the remarkable ability to recognize 
patterns which are not explicit in the sensory data. The 'sun illusion' shows how a 
circle can emerge from a set of straight lines. There is nothing in any individual 
line to suggest a circle, but together they produce what is called a subjective 
contour. 

Where does the circle come from? Something in our brains seems to allow it to 
recognize a circle in the lines, although this remains something of a mystery. As 
Figure 2.3 shows, the explanation that subjective contours are due to edge 
detectors in the brain is inadequate (edge detectors are defined in Chapter 4 of 
Volume 1). There the subjective contours are orthogonal to the edge segment data 
and in most places there is no explicit edge data for an edge detector to respond to. 

411 Figure 2.2 
A subjective contour in the 
sun illusion. 

~il Figure 2.3 
Subjective contours cannot 
be explained by simple edge 
detectors: here the edges are 
orthogonal to the lines and 
there is no explicit edge data 
in these directions. 

10 
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Figure 2.4 shows that just a few points can give the strong illusion of lines and 
geometric shapes, even when there are no explicit edge data at all. These 
phenomena are not well understood and they suggest that automating pattern 
recognition may be very hard: how can we get a machine to see patterns which are 
not explicit in the data? 

. 

Figure 2.5 shows shapes that can be perceived in patterns of dots. The first of 
these can be recognized as the letter A. When you see this shape it symbolizes the 
first letter of the Roman alphabet. You have a tremendous amount of implicit 
information about the symbol. You can equate it with the symbol A for some 
purposes, and sometimes you equate it with a. You know it can be a word by itself, 
and you can even make a sound which corresponds to the symbol: 'a' to rhyme 
with 'hay'. 

: ' -  
". 

/ 
:- - _  . 

- . . . . .  :. ". 

. . . . . . . . . .  . ".. 
- . :  

. ."  
, .  
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�9 �9 .% " . .  . . . . . .  : 

,. ; ;  " . .  . . . . . . . . . . .  

"..iii?::::::::::i.." 

(a) (b) (c) 

The second shape can be perceived to be a heart shape. You have a tremendous 
amount of implicit information associated with this symbol. It symbolizes 
romantic love and 'affairs of the heart', and you have probably seen bumper 
stickers giving the message I ~ N Y which can easily be read as '! love New 
York'. The third shape is not a symbol that will be recognized by everyone. In fact 
it represents the River Thames between Tower Bridge in central London and the 
Thames Barrier in the east. This shape will easily be recognized by many 
Londoners as symbolic of the capital. 

Symbols form the link between explicitly sensed information, and a priori 
information stored in a different form within a machine. 

~ Figure 2.4 
A few dots are sufficient for 
us to perceive lines and 
geometric shapes in images. 

~ Figure 2.5 
Patterns of dots as shapes 
and symbols. 

11 
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What information is there in the following patterns of letters? 

MCARNC NFDIBUS POJDT 

EHTOIS 

Both of these patterns use symbols to represent information, but recognizing the 
symbols does not complete the information abstraction process. 

In the first pattern a word can be abstracted by applying the rule 'read the symbols 
from left to fight as top-bottom pairs'. Thus the first two letters are M and E, the 
second two letters are C and H, and so on. In this case the pattern has atomicparts 
(letters) with a spatial relation on them. 

The second pattem is also read from left to fight, but this time we have used the 
schoolboy code which replaces a letter by the letter that follows it in the alphabet: 
N replaces M, F replaces E, D replaces C, and so on. Here we have used the order 
relation on the letters of the alphabet to abstract the pattern, and this involved pre- 
existing knowledge. 

A m A m 

�9 �9 
(a) The reference pattem (b) The test pattem 

m A m "~~ 
�9 �9 

(c) The parts of the test pattern can be matched 
with the parts of the reference pattern 

,i, m 

(d) The relationships between the parts 
of the pattern can be matched 

Figure2.6 
Matching a test pattern 
against a reference pattern. 

12 
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Consider the patterns shown in Figure 2.6 (a) and (b). The first is a reference 
pattern, a standard against which others will be compared. The second is a test 
pattern. Is the test pattern the same as the reference pattern? Using our human 
pattern recognition system most of us would instantly say that the two patterns are 
the same. However, how might this be implemented on a computer? As shown in 
Figure 2.6, this pattern recognition problem can be split into two. First, we test to 
see if the test pattern has the same number of parts as the reference pattern, and try 
to match them. Here we can match the triangles, squares and circles, so the 
patterns are the same as far as the set of their parts is concerned, Figure 2.6(c). 
Second, we ask if those parts are assembled in the same way. In other words, do 
the patterns have the same relationships between their parts? In this case they do, 
as shown in Figure 2.6(d): the triangle is to the left of the square in both (shown 
by the solid line m) ,  the square is above the circle in both (shown by the dotted 
line ...... ), and the triangle is above and to the left of the circle in both (shown by 
the dashed line . . . .  ). Since the parts match and the relationships between the 
parts match, we could define the patterns to be the same. 

Other considerations have to be taken into account when matching patterns. For 
example, which of the patterns in Figure 2.7 can be matched with the reference 
pattern of Figure 2.6(a)? 

m A * m 

�9 m �9 + 
(a) (b) (c) 

The first of these, Figure 2.7(a), is the reference pattern rotated 90 ~ clockwise. 
The triangular, square and circular parts can be matched as before. If the reference 
pattern is rotated, the relationships between the parts can be matched. Whether or 
not rotating the reference pattern makes any difference depends on the applica- 
tion. Similarly, the second pattern (Figure 2.7b) is the same pattern as the 
reference pattern, but this time it is flipped about a vertical axis. In the third case 
the patterns are similar by having three parts, but they are different because the 
parts are different. In an application in which the precise nature of the parts 
matters, these patterns are different. On the other hand, if the precise nature of the 
parts is irrelevant, or if it is known that stars are equivalent to triangles, and 
crosses are equivalent to circles, then the patterns are the same. In Section 2.3 we 
will show how graph theory can make these concepts more precise, as a step 
towards implementing them on machines. 

Apart from matching patterns of objects in space, we often need to match patterns 
of numbers. For example, consider the following observation of sensor inputs 
corresponding to a machine's pressure and temperature taken under normal and 
abnormal running conditions: 

~l Figure 2.7 
Can these patterns be 
matched with the reference 
pattern, Figure 2.6(a) ? 

13 
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Normal Abnormal 

(0.812, 0.423) (0.714, 0.518) 

(0.823, 0.433) (0.622, 0.444) 

(0.720, 0.302) (0.719, 0.483) 

Given these data, could one conclude from a subsequent observation 
(0.721,0.310) whether the machine was operating normally or not? 
And what of the observation (0.705, 0.530)? 

Intuitively, (0.721,0.310) looks more similar to the last 'normal' value and so is 
likely to indicate normal running. On the other hand, (0.705, 0.530) looks more 
similar to the 'abnormal' values and so indicates abnormal running. Section 2.5 
will show how these data can be systematically analysed as the basis of auto- 
mated pattern recognition. 

Machine pattern recognition attempts to automate the process of finding patterns 
in both relational and numerical data. Invariably it does this by having a set of 
patterns of known type stored in its memory, and new pattems are compared with 
these. If the new pattem matches one of the known pattems it is classified as being 
of that type (or class). The known patterns may come from a variety of sources, 
but usually they come from models, or a process of training. 

In order to train a pattern recognition system it is necessary to start with a set of 
training data, which consists of input-output pairs. The input data in some way 
characterize an object type or class. The output is usually the code correspoiading 
to the object type or class. 

Once trained, the pattern recognition system will be expected to recognize 
objects from input data it has not encountered before. For example, it may have 
been trained on a number of handwritten characters: the input data consist of the 
pattern of black/white dots from an optical scanner and the output is a symbol 
such as the letter L (Figure 2.9 in the next section). The objective of such a system 
is to recognize other handwritten characters which are sufficiently similar to the 
trained L. We speak of the system generalizing from its training data. This means 
that, given particular examples during training, the system is expected to general- 
ize to other examples which it has not seen before. 

This chapter will develop the theoretical foundations of pattern recognition and 
illustrate these with some particular techniques, it will also consider in some 
depth how it is possible to train a pattern recognition system and, most impor- 
tantly, how one conducts rigorous tests to determine success rates. 

14 
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2.2.1 What is a pattern? 
A simple pattern is defined to be a set of atomic parts assembled by a relation. A 
pattern is a set of parts (possibly simple patterns and parts of patterns) assembled 
by a relation. A part of a pattern is an atom or atomic feature if it can be perceived 
independently of the rest of the pattern. 

In the case of the 'sun illusion' (Figure 2.2) there are 16 straight lines. Each can be 
sensed independently of the rest of the pattern, and so they are atomic features. 
These atomic features are assembled by a spatial configuration relation which 
arranges them as the spokes of a wheel. This relation can be expressed precisely 
by the angles between the lines and their positions relative to their neighbours. 

The circle in the sun illusion is an emergent feature which human perception 
abstracts from the pattern. It can be extremely difficult to program machines to 
recognize such subtle illusions. However, there are many emergent features 
which can be detected quite easily. For example the sides of a square do not 
possess the 'squareness' property, but it is easy to test if four lines satisfy the 
relational requirements for them to form a square. 

The circle illusion is an example of what psychologists call a Gestalt, which 
comes from the German word meaning 'form'. There are some patterns which 
can only be sensed as a whole and whose existence breaks down when one of the 
parts is removed. For example, the property of being the letter L is not possessed 
by either its vertical or horizontal strokes, I and _ respectively. Gestalt patterns 
are those in which the whole is more than the sum of its parts, i.e. their emergent 
features cannot be recognized in the absence of any of the supporting parts. 

2.2.2 Patterns and operators 
In his book on patterns and operators, Jean-Claude Simon (see References), a 
pioneer of pattern recognition, suggests that the subject is best understood in 
terms of: 

computational complexity 

the properties of representation spaces 

the properties of interpretation spaces. 

Computational complexity is discussed in some depth in Chapter 3 on search. 
Simon writes that 'pattern recognition is first and foremost a battle against 
complexity'. This means that the obvious approach to pattern recognition where 
the input pattern is compared with all possible matches is usually not feasible. In 
general, the computational demands are too great and they always will be. 

15 
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Therefore we have to try to find methods which are computationally feasible, in 
general this means devising heuristics (procedures which usually work but are 
not guaranteed to do so). 

Representation is one of the fundamental problems in designing intelligent 
machines: how is the information and knowledge that underlies intelligence to be 
stored in the machioe? In this chapter two major classes of representation will be 
considered. The first represents patterns as objects and their relationships. For 
example, a square is a set of four lines subject to a set of spatial relationships. The 
second representation uses numbers in multidimensional spaces to represent 
patterns. For example, coins can be classified by a two-dimensional space of their 
diameters and their weights as discussed in Chapter 4 of Volume 1. 

In general, it is more difficult to handle relational patterns and usually we try to 
find a representation in terms of numbers. This can mean finding transformations 
from one representation to another. 

As far as intelligent machines are concerned, Simon presents pattern recognition 
in terms of spaces and operators (Figure 2.8). 

real-world sensor .~ representation pattern ,,. interpretation 
r 

o b j e c t  information spaces recognition spaces 

For example, in Figure 2.9 the handwritten pattern which is to be interpreted as 
the character L could have a physical representation as dots in a rectangular array 
after being digitized by a document scanner. These data in the representation 
space form the input to the pattern recognition system. This is shown as an 
operator which takes the bit-mapped representation to a symbolic interpretation 
as the letter L. In fact, in the machine it is more likely to be represented by the 
ASCII code for the letter L, i.e. the binary number 01001100. 

real-world representation interpretation 
object space space 

data from scanner 

handwritten bit-mapped 
character character 

pattern recognition 

L symbol 
0 1 0 0 1  100 

A representation of an item observed by a machine's sensors is a string of 
elements in a finite alphabet representing (or coding) it. At the machine level the 
representation will usually be a string of bits written in the machine's memory; for 
example, the 0/1 bits representing black/white picture elements in the bit-mapped 
image of the handwritten character L. 

Figure 2.8 
The fundamental diagram of 
pattern recognition, after 
Simon (1986). 

Figure 2.9 
The representation and 
interpretation of a 
handwritten character. 
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The possibility of multiple interpretations is one reason for the difficulty of 
automating pattern recognition. For example, in Figure 2.10 the interpretation of 
the central shape can be either H as in THE, or A as in CAT. Here the 
interpretation depends on the context. 

C 

A single representation can have several different interpretations; these can be 
made either by a human being or by a machine, and it is important that the two 
make the same interpretation; e.g. the symbol L or its ASCII code 01001100. 

Identification is defined as the action of giving a particular interpretation to a rep- 
resentation. This is the objective of pattern recognition, e.g. interpreting the bit- 
mapped image of the handwritten character as the symbol L. 

A feature is defined to be the result of a partial identification, e.g. one stroke of a 
character, one phoneme in a spoken word, an edge or texture in a visual image. 
The term initial or primitive feature is sometimes used in connection with the 
initial description of a representation. This underlines the fact that there is always 
a lowest level of data in pattern recognition. In general, primitive features are 
identifications of the information represented by the sensor inputs. 

In many pattern recognition systems the first step is to identify primitive features 
which together form part of a higher level representation in a hierarchy of 
identification. For example, a system might first recognize strokes as image prim- 
itives, and then recognize configurations of strokes as characters. 

It is most important in pattern recognition that the primitives are robust and easy 
to recognize without confusion. Although subsequent reasoning can correct 
errors in pattern recognition, it is very hard to do so when the initial data are 
ambiguous. 

~il Figure 2.10 
The representation/-~ can be 
interpreted as H and A. 

2.2.3 Invariance 
In pattern recognition we want the identification to be invariant to some things but 
not to others. Figure 2.7 showed three patterns and asked if they were the same as 
the reference pattern in Figure 2.6(a). In the case of Figure 2.7(a), if the pattern 
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recognition allows the reference to be rotated the answer is yes. But if it is not 
invariant to rotation (i.e. rotation matters), then the patterns are not the same. 
Similarly, if the reference pattern can be flipped over then it can be matched with 
Figure 2.7(b). If the pattern recognition need not be invariant to the precise nature 
of the parts, then Figure 2.7(c) can be matched with the reference pattern of Fig- 
ure 2.7(a). 

Consider an optical character reading (OCR) machine. We would want it to work 
whatever the angle of the text, i.e. it should be invariant to rotation. However, 
complete rotational invariance would mean that, for example, the symbol + might 
get confused with the symbol x. Here it is required that the overall pattern 
recognition should have rotational invariance but that the system can decide the 
orientation of the text and treat each character in a rotation-dependent way. 

There are many invariances that are of interest in pattern recognition. They 
include: 

invariance to sensor errors and noise 

invariance to sensor position and orientation 

invariance to signal strengths received by sensors 

size invafiance 

colour invariance 

speed invariance 

distance invariance. 

When specifying a pattern recognition system it is important to specify the 
required invariances. 

Apattern is defined to be a set of parts assembled by a relation. The relation can 
be very complicated, and it is often made up of many subrelations. 

An n-ary relation, R, on the set of elements {a l, a2, ... an}, is defined by a 
proposition concerning these elements which can be judged true or false, and an 
operational procedure for making that judgement. The related set is written 

<a l , a  2 . . . .  ,an;R>. 

For example, in Figure 2.11 the set {block 1, block 2, block 3 } is assembled by 
the 'arch' relation defined as follows. Here n = 3 since there are three components 
being related, The proposition defining the 'arch' relation can be stated as a set of 
relationships ~uch as: 

(a) Block x and block y have equal length. 

18 
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This means there are two blocks which have the same length. For the arch in 
Figure 2.11 we can choose x = 1 and y = 2. Substituting these values, relationship 
(a) reads as: 'block 1 and block 2 have equal length', which can be operationally 
tested by measuring. 

(b) Block x must stand vertically and block y must stand vertically. 
) 

This requires that the blocks designated x and y must stand vertically. This can be 
tested by measuring their height against their base. Then we find that 'block 1 
stands vertically' is true, and that 'block 2 stands vertically' is true. 

(c) Block x stands to the left of block y with a gap between them not 
exceeding the length of block z. 

To test this we look to the left of block 2 to see ifblock 1 can be found there. It can. 
Then we measure the distance between blocks 1 and 2. In order to test the rules we 
try block 3 as block z. By measuring block 3 it can be found that the distance 
between block 1 and block 2 is less than the length of block 3. 

(d) Block z stands above block x and above block y, touching both. 

This means that block 3 must touch both block 1 and block 2. It does. It also 
means it must be on top of block 1 and block 2, which it is. 

In this way it has been shown that the pattern in Figure 2.11 satisfies the 
conditions of the 3-ary relation which defines the arch relation. So, by definition, 
the blocks form an arch. Any set which satisfies all the conditions (a) to (d) is 
defined to be of the 'arch' pattern. 

block 3 

block 1 block 2 

A Figure 2.11 
An arch pattern <block 1, block 2, block 3; arch relation> 
assembled from three blocks. 

The compound proposition which defines a relation can be hard to understand 
when it is written in words, and it is common for it to be represented by a graph 
such as Figure 2.12, if this is possible. In a graph the vertices represent objects 
and the links represent relationships between pairs of objects. 
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block z 

,es  ove 
t o u c h e s ~ ~  

..... ~ .... block y block x to left of, 
parallel and vertical, 

equal length 

Given a set of learnt patterns, pattern recognition can be considered to be the 
process of comparing new patterns with those in memory. If a pattern is identified 
with one in memory it is identified as being of that class. 

One method of establishing whether a test pattern is the same as a known pattern 
is to compare their graphs: if the graphs are the same then the patterns are the 
same. 

Consider the configuration in Figure 2.13. Should it be recognized as an arch? 
Let block x = block 4, block y = block 5, and block z = block 6. Then it has the 
same graph as that in Figure 2.11, and by the definition given it is an arch. But it is 
clearly not the same arch as that in Figure 2.11, even though it satisfies the 
definition. 

block 6 

41 Figure 2.12 
A relational pattern. 

block 4 block 5 

The difference between the two arches is that the second has an overhang on the 
fight. Is this what was required? The answer to this question depends on the 
purpose of the pattern recognition. If this is what is required, then the pattern 
recognition has worked. If it is not what was required, then the definitions of the 
relations are not precise enough. They might be made more precise by adding the 
conditions: 

(e) All the blocks x, y and z must have proportions between 3:1 and 10:1. 

(f) The ends of the top block, z, should be in line with the outsides of the side 
blocks x and y. 

~l Figure 2.13 
An arch with an overhang. 
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The second arch then fails to be an arch of the pattern of the first. This suggests the 
following definition. Two patterns are defined to be identified if: 

1 the elements of the first are identified with the elements of the second in a 
specified way, and 

2 the relations of the first are identified with the relations of the second in a 
specified way.' 

In practice this means that the engineer has to give rules for matching the vertices 
in the graphs and rules for matching the links in the graphs. 

A graph isomorphism is defined by two one-to-one mappings. The first maps 
each vertex of one graph to a unique vertex of the other. The second maps every 
link in the first graph to a unique link in the second. The mappings have to satisfy 
the requirement that if link L i is mapped to link L' i, then the ends of link L i are 
mapped to the ends of link L" i. Thus if the vertices of L i are a and b, and the 
vertices of L'i are a' and b', then a is mapped to a', and b is mapped to b'. 

Figure 2.6 illustrated a graph isomorphism. The mapping between the vertices 
was given in 2.6(c). The mapping between the links was given in Figure 2.6(d). 

One of the major ways of establishing pattern matches is to require that the graphs 
of the patterns are isomorphic. 

In principle the letters p, q, d and b could be considered to be isomorphic, as could 
the numbers 6 and 9. Indeed the symbols are sometimes written _6 and 9 to make 
sure they are not identified incorrectly. The underlining is a convention which 
establishes a relationship between the whole pattern and an external reference 
(in this case the horizon). This suggests that the definition for two patterns to be 
identified requires a third condition: 

Any relations of the first pattern with external reference objects must be 
identified with the relations of the second pattern with the external reference 
objects in a specified way. 

The vertices of the configuration in Figure 2.14 can be put into one-to-one 
correspondence with those of Figure 2.11. However, the blocks do not satisfy our 
rule (d); block 3 is under the other two so there are no links to express block 3 
being above block 1 and above block 2. No isomorphism can be established 
between the graphs, and this shape fails to be recognized as an arch. (Strictly 
speaking the relations 'above' and 'below' require an external reference, but this 
is not developed here for reasons of simplicity.) 
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block 1 

block 3 

block 2 

to left of, 
parallel and vertical, 

block 1 equal length block 2 
- ,  

~x~ches  t o u c h e s ~ ~  

a ~bove ~ ~  ~ ~ / ) ~ a b o v e  

block 3 

A Figure 2.14 An inverted arch. 

In pattern recognition we have to allow for the possibility that parts of the pattern 
are missing, or not quite fight. For example, the configuration in Figure 2.15 is 
almost the same as that in Figure 2.11, but it just fails to meet the requirement that 
block 3 touches block 2. In this respect it is a n e a r  miss .  

block 3 

block 1 
block 2 

The graphs for the arch in Figure 2.11 and that in Figure 2.15 are given in 
Figure 2.16. The 'near miss' is expressed by the absence of a link in the second 
graph. 

block 3 block 3 

a b o v e  a b o v e ~ / ~  

/ ~ t o u c h e s  t~ "x~ ~ ~ % h e s  

, . . . . . .  ~ . .  

block 1 r block 2 block 1 block 2 left of left of 

The graphs give a homogeneous way of representing the multitude of relations 
between elements of patterns. They allow heuristics to be expressed such as 
identifying patterns which are near misses by just one link. However, care is 

,~ Figure 2.15 
A 'near-miss' arch. 

,~ Figure 2.16 
The absence of a link in a 
'near-miss' pattern. 
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needed in this because some links are essential to the integrity of a pattern while 
others may be more expendable. 

When patterns get very complicated their graphs can have many vertices and 
links. Comparing graphs can be very expensive in terms of computation due to 
problems of complexity. (Using the notation developed in the next chapter, the 
complexity is usually of order O(n2).) 

Relational pattern representations might be considered to be models of the things 
they represent. In principle, one could build a pattern recognition based on 
general propositions. This kind of model-based pattern recognition is different 
from the training-based pattern recognition discussed in the next section. 

Pattern recognition is in general too complex to be performed in a single 
operation. Usually it begins with low-level pattern recognition of the primitive 
features. These primitives are selected by the criteria: 

they must be robust: easy and reliable to detect 

they should appear in a large class of patterns 

there should not be too many primitives. 

In the last two respects, we seek primitives which have properties similar to the 
alphabet: every English word can be made up from the alphabet, but there are 
only 26 primitives. 

Once primitive features are detected, another level of pattern recognition assem- 
bles them to form higher-level structures. For example, in an OCR system the 
primitives might be the strokes of the letters. Intermediate structures might be 
assemblies such as the configuration L which is found in the letters B, D, E and L. 

At the next level of assembly the system might recognize a letter such as E as the 
assembly of configurations, as in Figure 2.17. 

level 1 level 2 level 3 level 4 

L 
I- 

U I 
I L 

E 
Figure 2.17 

A pattern recognition 
hierarchy. 
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The great advantages of using hierarchies in classifications are: 

breaking down the process reduces the computational complexity; 

this approach can handle missing data. 

This last requirement is very important. In many pattern recognition applications 
one does not have all the data. For example, in computer vision pieces of one 
object may be occluded by parts of another. Within hierarchical classification we 
can accept that a configuration such as 

I_ 
I_ 

might be an E which has lost its top stroke. 

Hierarchical pattern recognition is illustrated by computer vision in Chapter 10. 

2.5 Data transformation in 
pattern recognition 

Sometimes the initial representation of a pattern does not lend itself to simple 
methods of automatic pattern recognition. For example, in Chapter 10 there is a 
discussion of the problem of recognizing insects in digital images. 

A digital colour image is effectively three arrays of numbers, one array represent- 
ing the intensity of red in the image, one array representing the intensity of green 
in the image, and one array representing the intensity of blue. In other words, each 
picture element (p/xe/) in a horizontal and vertical grid has three numbers 
assigned to it, one each for its red, green and blue intensifies. 

These data can be used to put coloured dots on a computer screen, and our eyes 
and brains can abstract structure from these mosaics to recognize shapes and 
configurations. It is difficult to program a computer to achieve the same degree of 
subtle pattern recognition which our biological vision system performs so 
effortlessly. 

Simply matching the pixels in an image of a reference insect with a test image 
would be hopeless because the test insect may be in a different position with a 
different orientation in a different pose. Abstracting the shape of the insects is a 
quite complex operation which gives poor results in such images. 

In Chapter 10 we suggest a very simple solution to the problem of recognizing 
insects in the images. First, the background is made a single blue colour which is 
easy to detect. Then six colours are defined* which can be determined from the 

* The details do not matter here. In fact the six colours are obtained by partitioning the two- 
dimensional red-green sub-space of three-dimensional RGB space using a rectangular box classifi- 
cation similar to that described later, in Section 2.6.4. 
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red-green-blue values of each pixel. In this way most of the pixels can be 
classified as being blue, red, green, yellow, ochre (a browny orange), black, and 
white. Blue pixels are background pixels and are ignored. The others are insect 
pixels and are counted to give a list of six numbers for each insect. For example, in 
Table 2.1 the ladybird has the most red pixels, the wasp has the most yellow 
pixels, the greenbottle has the most green pixels, and the blowfly has the most 
black pixels. 

This is an example ofadata-to-data transformation in which the original domain 
(digitized video image data, 768 • 576 pixels • 224 possible colours) has been 
transformed to another domain (lists of six numbers). For the four insects shown 
the pattern recognition then becomes very easy, based on the predominant pixel 
colour. 

TABLE 2.1 THE RESULT OF TRANSFORMING DATA FROM THE VIDEO IMAGE 
DOMAIN TO A NUMERICAL LIST DOMAIN 

Red Green Yellow Ochre Black White 

Ladybird 12872 554 423 291 9107 223 

Wasp 2314 3590 12 753 1686 8386 2846 

Greenbottle 842 7 931 3192 63 14 925 3 287 

Blowfly 1801 4033 432 231 24722 24 

The previous example illustrates a very important technique in pattern recogni- 
tion: if pattern recognition is difficult in one representation domain, then seek a 
transformation into another representation domain in which the desired pattern 
recognition may be easier. 

Finding appropriate domains and transformations is a creative activity, and is one 
point at which pattern recognition becomes as much an art as a science. However 
it is an art that requires the engineer to understand the science of data representa- 
tion, and the many possible ways of representing things and transforming them 
within machines. 

An important class of pattern recognition problems concerns the recognition of 
waveforms, since this is the way that many sensors deliver their data. Although 
these usually have characteristic forms, there may be considerable variation 
between them. This is illustrated in Figure 2.18 (over page) in which there are 
three examples of a waveform with a large peak at A, followed by a lesser peak at 
B, followed by a double peak at C and D, followed by a lesser peak at E. 

Although humans can see the similarities in this kind of waveform, it is very 
difficult to program computers to make the match. For example, although the 
concept of 'peak' seems fairly clear, the A-peak in (b) is actually a double peak, 
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something that happens quite often in sensor output waveforms. A similar obser- 
vation can be made for the B-peak in (c). In fact, recognizing peaks is itself a 
major pattem recognition problem. 

. , . -~ 
rao 

(a) 

A 

C D 

E 

time 

(b) 

D 
C 

time 

(c) 

A 

C D 
B 

time 

Figure 2.18 
Three similar waveforms 

from a sensor. 
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Superimposing one waveform on another will not be very informative because 
the peaks are out of phase, e.g. the C-peak of (c) corresponds more or less to the 
D-peaks of (a) and (b). 

This waveform representation does not lend itself to methods of matching the 
waves which can be programmed easily on a computer. In such circumstances 
engineers attempt to transform the representation from one domain to another in 
which it is easier tcr detect the pattern of interest. 

An example of such a transformation, described in Volume 1, is the Fourier 
transform. The Fourier transform converts the data from the time domain to the 
frequency domain. Recall that periodic signals can be represented by coefficients 
in the series 

f(t) = a 0 + a 1 sin(2nfl + q~l) + azsin(2~f2 + ~ )  + a3sin(2~f3 + ~ )  + ..- 

from which we can draw a magnitude spectrum and a phase spectrum, with 
frequency as the horizontal axis, and the values of a i and ~i as the vertical axes, 
respectively. 

To illustrate this, consider the sampled waveforms of Figure 2.19 which show 
voltage varying through time. These waves are said to be in the time domain, and 
are typical of the data produced by many sensors. 

5.0 

4.0 

-6 3.0 
> 

2.0 

1.0 

0.0 
I I k _ I . I  I _ _  

0.25 0 . 5 0  0.75 1.0 1.25 1.5 1.75 2.0 
time/ms 

Although it is sometimes possible to analyse waveforms in the time domain, it 
can be difficult when the data are 'noisy', with erroneous spikes and other 
distortions. 

Using the Fourier transform, we can obtain a representation in the frequency 
domain as shown in Figure 2.20 (over page). In this case the comparison of the 
waves can be performed by comparing the five pairs of numbers (vertical bars) 
representing the magnitudes. In general, similar waves will have similar spectra, 
or parts of their spectra will be similar. 

Transforming the data from the original domain to the spectral coefficients of the 
Fourier domain can make it much easier to classify the waveforms. Because they 
offer a more tractable representation than the waveforms from which they are 
derived, Fourier transforms hold out the possibility of easier pattern recognition 
operators. 

Figure 2.19 
Waveforms such as those 
produced by sensors in the 
time domain. 
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Data transformations in pattern recognition frequently reduce the problem to that 
of comparing sequences of numbers. For example, the insect recognition prob- 
lem becomes that of comparing the counts of pixels with specified colours. Often 
the sequences of numbers are considered to be the coordinates of points in 
multidimensional space, and the pattern recognition problem is transformed into 
the problem of classifying points in multidimensional space, which we consider 
next. 

~l Figure 2.20 
The waveforms of Figure 
2.19 transformed from the 
time domain to the 
frequency domain. The left 
lines of each pair are the 
spectral components of (a), 
the right lines are the 
spectral components of (b) in 
Figure 2.19. 

2.6.1 Representing items in multidimensional data 
spaces 
It is very common for the representation of an item to be a set of numbers in 
multidimensional space. Sometimes this is a consequence of data coming as 
numbers from n sensors in the form (Xl,X 2 . . . .  ,x,), and sometimes data are 
transformed into this form in order to exploit the many classification techniques 
for such data. 

For example, as discussed in the previous section, computer images of insects can 
be represented by the numbers of pixels of various colours in the image. This 
results in each image of an insect being represented by six numbers, 

(nred, ngreen , nyellow, nochre, nblack, nwhite). Pattern recognition then occurs in the 
six-dimensional space of numbers of coloured pixels. 

To illustrate pattern recognition based on multidimensional data, consider a 
hypothetical machine to be used by customs officials to detect explosives of a 
certain kind. In general, such a machine would have many numerical inputs, but 
here it will be supposed that there are two, x 1 and x 2. Suppose that in ten trials it is 
found that suitcases containing explosives give the set of responses shown in 
Table 2.2. 
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TABLE 2.2 DATA FROM SUITCASES THAT CONTAIN EXPLOSIVES 

Suitcase number Measurement  of xl Measurement  of x2 

1 25 83 

2 29 94 

3 10 50 

4 15 75 

5 25 79 

6 23 85 

7 19 90 

8 27 56 

9 26 65 

10 17 77 

These data can be plotted as a two-dimensional  scatter diagram as shown in 

Figure 2.21, in which the points cluster together in the top-left corner. Suppose a 

new measurement  is taken with x 1 = 45 and x2 = 80; does this suitcase contain 

explosives or not? At first sight one might think that this point in the representa- 

tion space is close enough to the others to indicate the presence of  explosives. 

However,  more information is needed. 

x2 t 
100 

90 ,-.'~ 
E! 

80 D �9 

0 " 

O 
60 

50 [3 

!--1 

40 

30 

20 

10 

0 10 20 30 40 50 60 70 80 90 100 x~ 

~i~ Figure 2.21 
The representation points for 
suitcases containing 
explosives, plotted as a two- 
dimensional scatter diagram. 
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The pattern recognition problem here involves discriminating between two sets: 
suitcases which contain explosives and suitcases which do not contain explo- 
sives. These are the real-world objects the system is trying to recognize. All 
suitcases presented to the system are represented by a pair of numbers, (x 1, x2). 
The objective of the system is to give suitcases the identification 'explosives 
present' or 'explosives not present'. Let us suppose that the machine encodes 
these interpretations on a piece of wire attached to an alarm bell with 9 V (bell 
tings) meaning explosives are present and 0 V (bell silent) meaning explosives 
are not present. Should the sensor data (45, 80) make the bell ring? 

More data are required in order to complete the design of this machine, namely 
pairs of numbers which are typical of the class of suitcases which do not contain 
explosives. Suppose a series of trials gives the data in Table 2.3. 

TABLE 2.3 DATA FROM SUITCASES NOT CONTAINING EXPLOSIVES 

Trial number Measurement  of x l  Measurement  of X 2 

1 55 83 

2 29 30 

3 40 50 

4 55 75 

5 82 49 

6 23 45 

7 49 90 

8 87 56 

9 56 25 

10 57 63 

When these points are plotted in Figure 2.22, it can be seen that the point (45, 80) 
is actually closer to the samples which do not contain explosives. This suggests 
that the suitcase with values (45, 80) should be classified as not containing 
explosives. 

The main idea behind this approach to pattem classification is that a point in the 
representation space will be assigned to the class to whose samples it is 'closest'. 
This is equivalent to the assumption that the representation space can be classi- 
f ied so that every point in the representation space is associated with one of the 
classes of interpretation. This is illustrated in Figure 2.23, in which the partition 
of the representation space is based on a rather simple procedure which examines 
the closest pairs of samples between the classes. 
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This discussion illustrates a general approach to pattern recognition, which 

involves making the representation space well defined, and finding some criteria 

that partition it in a way which is consistent with the recognition classes. Then the 

representation of any new pattern can be located as a point in the partitioned 

representation space and its class determined. 

Figure 2.22 
The representation points for 
suitcases containing and not 
containing explosives, plotted 
as a two-dimensional scatter 
diagram (squares correspond 
to suitcases containing 
explosives, circles correspond 
to suitcases which do not 
contain explosives). 

Figure 2.23 
Partitioning the 
representation space to 
facilitate classifying data 
points and identification. 
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2.6.2 Multidimensional pattern classification 
The general idea behind classification using multidimensional spaces is as 
follows: 

(A) Partition the representation space into classes of points, with each class 
associated with one of the identifications. 

(B) This a priori classification allows any new data point to be mapped into the 
representation space and associated with an identification. 

(C) This establishes a pattern recognition. 

Although it is very useful to see pattern recognition in this way, it highlights two 
of the main problems of pattern recognition using multidimensional data: 

Problem 1: For some data a simple partition of the representation space may not 
exist. 

Problem 2: When a partition of the representation space does exist, in general 
there are many ways to partition the sample data in a representation space. 

The first of these is often overlooked by those using pattern recognition, but it is 
most important to test this fundamental property. In the extreme, the data 
collected may be irrelevant to the classes. For example, suppose the variable x 1 
had been the cost of the suitcase and the variable x 2 had been its size in cubic 
metres. Let data be collected such as that in Table 2.4. 

TABLE 2.4 

Suitcase number  Cost Volume / m 3 Explosives 
found? 

1 s 0.36 no 

2 s 0.39 yes 

3 s 0.36 no 

4 s 0.40 no 

5 s 0.36 no 

6 s 0.39 yes 

7 s 0.38 yes 

8 s 0.36 yes 

9 s 0.42 no 

10 s 0.39 no 

11 s 0.34 no 
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TABLE 2.4 - Continued 

Sui tcase  n u m b e r  Cost  V o l u m e  / m 3 Explos ives  

found?  

12 s 0.33 yes 

13 s 0.39 no 

14 s 0.40 no 

15 s 0.36 no 

16 s 0.34 yes 

17 s 0.37 no 

18 s 0.33 no 

19 s 0.32 no 

20 s 0.43 yes 

W h e n  these data are plotted as a graph (Figure 2.24), the representat ion space 

cannot  natural ly be part i t ioned into classes o f  suitcases which  do contain explo- 

sives versus those which do not. The two classes are all mixed  together  for these 

variables.  In fact things are worse  still: there are two points in the representat ion 

space which  correspond to both explosives  found and explosives  not found 

(labelled 'mult iple-class points ' ) .  This is a p rofound  weakness  in these data, and 

the engineer  is well advised to seek indicators which  better  discriminate the data. 
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"~ Figure 2.24 
The scatter diagram for cost 
and volume of suitcases 
shows that these variables 
give poor discrimination 
between suitcases which 
contain explosives and those 
which do not. 
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Problem 2 means that selecting one method of partitioning the representation 
space will give one set of results, while a different method may give different 
results. Since it is assumed that an item belongs to a single class, irrespective of 
the method used, the case of contradictory data cannot be resolved by a 'better' 
classifier; ideally, the source of contradiction should be found. 

Engineers sometimes overlook the necessity of testing to ensure that the assump- 
tions underlying a l~articular classifier are satisfied by the data, and sometimes 
they use inappropriate classifiers which give poor results for their system in its 
environment. Such problems could be detected by rigorous testing, as discussed 
in Section 2.9. 

2.6.3 Classifying multidimensional spaces by statistical 
methods 
Figure 2.25 shows a two-dimensional scatter of data points obtained from a 
remotely-sensed satellite image. The image is a grid of pixels. The dimensions 
are two spectral bands: x I = Band 3 (red, very strong vegetation absorbency) and 
x 2 = Band 4 (near infra-red, high land-water contrasts, very strong vegetation 
reflectance). The numbers on these scales are pixel  greyscales, and they vary 
between 0 (no light) and 255 (measurement instrument saturated). 
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Figure 2.25 
Pixel observations on a 
scatter diagram. 
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The classes are 

S Sand F Forest 

C Corn W Water 

H Hay U Urban 

To obtain this scatter diagram a number of pixels from each of the classes is 
sampled to give training points (x 1,x2) from which the system will 'learn' and 
generalize. 

As can be seen, a class such as 'Water' is quite distinct from the others. However 
some classes such as 'Hay' and 'Forest' are not so clearly separated. 

The objective in this application is to recognize the correct class for every pixel in 
the image (about half a million) on the basis of a few hundred samples taken on 
the ground (often called ground truth). Since ground truth samples are time- 
consuming and expensive to collect, this approach attempts to optimize the 
information they contain. This example and the subsequent discussion of various 
ways of partitioning the representation space are taken from Lillesand and 
Kiefer's standard textbook, Remote Sensing and Image Interpretation (see 
References list). 
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Figure 2.26 
Minimum distance to means 
strategy. 
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The minimum distance to means method of partitioning the data space is 
illustrated in Figure 2.26. The idea here, and in many other approaches, is to 
abstract statistical measures from all the pixels in a given class, and use these for 
classification. One of the simplest measures is the mean greyscale value in each 
of Band 3 and Band 4. The means of each class are shown by crosses in 
Figure 2.26. 

A test pixel, such as that labelled 1 in Figure 2.26, can then be compared with 
these means. In this case it is closest to the Corn mean, and so pixel 1 is identified 
as belonging to the Corn class. Similarly, pixel 2 is closest to the Sand mean, and 
is identified as a Sand pixel. 

This approach is simple and computationally undemanding. However it does not 
take into account the statistical properties of the distributions in each of the 
classes. In particular, some classes are much 'tighter' than others. For example, 
the class of Sand pixels is grouped much closer together than the class of Urban 
pixels. A second look at Figure 2.26 suggests that pixel 2 has been misclassified. 
Although it is further from the mean of the Urban pixels than it is from the mean of 
Sand pixels, the former spread much more than the latter and pixel 2 is actually 
closer to the sampled Urban pixels than it is to any particular Sand pixel. 

Other classification techniques attempt to overcome this by considering the 
variance of the distribution, which measures the spread of the distribution. For 
example, the maximum likelihood method of classification assumes that the data 
points are sampled from a normal distribution. One of the main features of a 
normal distribution is that it is symmetric about its mean. Another important 
feature is that a normal distribution can be modelled by two statistics, the mean 
and the variance. The details of this are beyond this text, but these assumptions 
mean that the ideal distributions of the classes appear as shown in Figure 2.27(a). 
These have equiprobability contours as shown in Figure 2.27(b). 

~[ Figure 2.27(a) 
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(b) 

Band 4 digital number 

The maximum likelihood method uses the training data to calculate the necessary 
statistics and 'calibrate' the probability model based on normal distributions. 
Once these statistics have been calculated, the method classifies a point (x 1,x 2) 
according to the greatest probability for each of the classes at this point. Thus in 
Figure 2.27(b), point 1 has the greatest probability of being a Corn pixel. This 
method assigns pixel 2 to the class Urban, which accords much better with 
intuition. 

The maximum likelihood method has the disadvantage that it is computationally 
expensive and too slow for all but the simplest real-time applications. It also has 
the disadvantage that it systematically misclassifies points and introduces error. 

There are other statistical techniques, such as Principal Component Analysis and 
Factor Analysis, which attempt to give summary information in the multidimen- 
sional data by projecting them onto axes in a way which accounts for the 
maximum variance. In general, they have demanding data requirements. They 
are also expensive and slow, and may be unsuitable for real-time applications. 

,~ Figure 2.27(b) 
Probability density functions 
(a), and equiprobability 
contours (b), defined by a 
maximum likelihood 
classifier. 

2.6.4 Rectangular box classification 
A very simple approach to classifying multidimensional spaces involves defining 
intervals for each dimension. In the case of two dimensions these intervals define 
a rectangular box, as shown in Figure 2.28(a). 
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Figure 2.28 
(a) Rectangular box 
(paraUelepiped) classification 
strategy; (b) strategy 
employing stepped decision 
boundaries. 
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The technique is very inexpensive computationally and suitable for pattern 
recognition in which the classes are widely separated, as in the case of Water, 
Urban, Sand, Corn and Forest. This technique becomes problematic when the 
classes intersect, as in the case of Hay and Corn, and Hay and Forest. Sometimes 
this can be overcome by a refinement which uses stepped decision boundaries, as 
in Figure 2.28(b). 

7 

Lillesand and Kiefer call this technique parallelepiped classification, but we 
prefer the term rectangular box. 

2.6.5 Non-metric classification for chalk-cheese 
systems 
One of the great dangers of representing pattern data by a sequence of numbers 
such as (Xl,X 2 .... x n) is that it is almost irresistible to assume that this is a point in 
a metric space, i.e. a space in which a meaningful distance can be attributed 
between every pair of points. 

Sometimes things are referred to as being 'as different as chalk and cheese'. For 
illustration, suppose one dimension of a representation is chalk and the other 
dimension is cheese, and that for the variables concerned there is no natural 
equality between the two. For example, density might be measured along the 
cheese axis and purity might be measured along the chalk axis. 

A 'distance' can be calculated between the points (1,2) and (4, 6) as 

~(1-4) 2+ (2-6) 2=~9+ 16=5 

But this is exactly the same as the distance between the points (1,2) and (6, 2). So, 
as far as this measure of distance is concerned, a difference of 5 along the chalk 
axis can be 'traded' against a difference of 3 along the chalk axis and a difference 
of 4 along the cheese axis. In fact the assumption that the distance metric exists is 
equivalent to assuming that one unit of cheese/density equates to one unit of 
chalk/purity. This could lead to some very odd results! 

When the dimensions of a multidimensional representation space have no natural 
trade-offs, it will be defined to be non-metric. How then can the points in non- 
metric space be classified? The answer to this question lies in understanding that 
the concept of distance is related to that of closeness, and that the required 
classification depends upon relative closeness. 

In the following, the symbol l al means the absolute value of a. It has the 
magnitude of a irrespective of whether the sign of a is positive or negative, so that 
lal is always positive. For example, 1 - 7 1 -  171-7 .  

In a non-metric representation, let a point p = (x, y, z , . . .  ) be defined to be closer to 

the point Pc = (Xc, Yc, Zc . . . .  ) than to the point Pd = (Xd, Yd, Zd . . . .  ) when 

Ixc-x l  ~<lxd-Xl, lYc-Yl ~< lYd--Yl, IZc--Zl ~< IZd--Zl, and so on. 
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In other  words ,  point  p is c loser  to Pc than it is to Pd if it is c loser  on every 
d imens ion  x, y, z , . . .  (Figure  2.29). 

Pd  

Pc 

L_ _ _ _  

Y 
l . q -  xl 

l y d - y l  

y 

x 

a) Point p is closer to Pc than Pd because Ix c - xl < I & -  xl and l y c - y I < ly d -  y I. 

P c  

\ 

lye- yl 

Ixd- xl 

P d  

...1 

tyd- yl 

x 

(b) The 'distances' between are non-comparable because Ix c - x l < Ix d - x l 
but ly c -  y I> ly d -  y I 

Figure 2.29 
Relative closeness and 
non-comparability in a 
non.metric classification 
space. 

This definit ion of  c loseness  means  that it is not  a lways  poss ible  to say that a g iven 

point  is c loser  to one of  two others.  Such pairs of  points  are said to be non- 

comparable. 

Let an identification point Pc be a point  which  is assoc ia ted  with identif icat ions 

for class C. Typically,  ident if icat ion points  c o m e  f rom training data, i.e. k n o w n  

examples  of  the pat terns  which  are used  t o  ' t ra in '  the system.  

Then every  point  p = (x, y, z , . . .  ) which  is ' c loser '  to the identif icat ion point  Pc = 

(Xc, Yc, Zc, ... ) than any other  identif icat ion point  will be identif ied with  class C. 
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This definition means that for any identification points Pc and pa the representa- 
tion space will be partitioned into three parts: those that are closest to Pc, those 
that are closest to po, and those that are not closest to either, as shown in 
Figure 2.30. 

For a set of identification points, pairwise comparison gives the points which are 
not closest to a given identification point, p. This is illustrated in Figure 2.31, in 
which the identification points around p establish which points are not closest to p 
and which points cannot be classified by examination of p. The remaining points 
are closest to p. 

This method establishes a partial classification of the multidimensional space, i.e. 
some points can be classified as being closest to one of the identification points, 
but some cannot. This classification does not require a distance function which 
trades off values on one dimension against another, and so it is appropriate for 
chalk-and-cheese representation spaces. Non-classification occurs when a test 
point is closest to an identification point on one dimension but closer to another 
identification point on another dimension. The more general problem of what to 
do with the areas of non-classification is discussed next. 

4[ Figure 2.30 
Points closest to Pc, closest 
to Pd, and closest  to neither 

in a two-dimensional  non- 

metric space. 
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To classify a test point we can proceed as follows. Given a set of identification 
points Pa, Pb, Pc, Pd . . . .  , it is required to know which, if any, is closest to the test 
point p. 

For each dimension we calculate the minimum distance between p and all of the 
identification points. We can then test each identification against these minimum 
distances. If a particular identification point is closest on all dimensions, it is the 
closest to p. If none of the identification points is closest on all dimensions, then p 
cannot be classified by them. 

The main problem with the non-metric approach is that it may systematically 
misclassify if the training data contain errors. It is therefore only suitable for 
applications in which there is a low cost of misclassification, or for which we can 
be certain that the training data are correct. However, the systematic nature of 
errors resulting from faulty training data is an advantage because their consis- 
tency makes them relatively easy to detect and remove. 

In practice, non-metric classification makes the analyst address some difficult 
questions. On what basis can the data points be assumed to be separable? 
Intuitively, sets of data points such as those of Figure 2.25 are considered to be 
separable if a line can be drawn between the set of their points. If the separating 
line is straight, then the data points are said to be linearly separable, as discussed 
in more detail in Chapter 4 on Neural networks. 

Figure 2.31 
The points closest to p in a 
2.D non-metn'c classification 
space.  U n s h a d e d  areas  are  

unclassified points. 
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The problem of separating a data set into two classes is illustrated by the 
pathological example shown in Figure 2.32(a). In this case the two classes spiral 
round each other in a way that makes standard classification techniques inappro- 
priate. This space can be partially classified by the non-metric classification 
discussed in this section. It can also be classified by the process of dilation. 
Classification by dilation involves, for example, defining a square of sides of one 
unit around each data point. Assuming none of the squares intersect, all the points 
in a square are assigned to the data class of the dilated point. The process is then 
repeated by defining a square of two units around each data point. Again all the 
points within these squares are assigned to the class of the 'dilated point'. 
Eventually the dilated squares from different classes meet and the dilation has to 
cease on that dimension. 
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(b) The non-Euclidian dilation solution 

,~ Figure 2.32 
(a) The double spiral 
problem. (b) Johnson's non- 
Euclidean dilation solution. 

Classification by dilation gives good results for the spiral data, as shown in Figure 
2.32(b). It is a variant of the rectangular box classification discussed in Section 
2.6.4. It has the disadvantage that dilating by the same amount on different 
dimensions requires justification for chalk-and-cheese systems. It is easier to take 
into account the need for dilations due to different distributions along the 
dimensions, but the problem of trading chalk and cheese still holds. 

Figure 2.32 highlights an interesting property of the separating data dimensions, 
namely that their importance is local. The separation of the points at the bottom 
and top of the spirals depends only on the vertical data dimension, while the 
points at the sides depend only on the horizontal dimension. Thus the data points 
are behaving differently, and treating them as a homogeneous population without 
taking into account the different roles played could lead to misleading results. For 
example, it may be possible to construct populations of black and white spiralled 
data points which are normally distributed and have the same means and 
variances, even though they are different classes! 

In this chapter we cannot resolve all the problems that have been raised, but they 
serve to show that classification can be very subjective and can sometimes 
depend on the method chosen and the nature of the data. 
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2.6.6 Neural networks as pattern classifiers 
All the methods of pattern recognition.discussed so far have drawbacks of one 
kind or another. A particular problem is that they do not filter out irrelevant data. 

In the example of suitcases which might contain explosives, variables such as the 
cost and size of the suitcase were not useful for the classification. In that example 

J 

these were chosen to make that point, but in general we do not know how much 
information there is in the data for any given dimension. 

The emerging technology of neural networks, discussed in detail in Chapter 4, 
automatically filters out irrelevant data by altering weights on connections which 
involve those data. For this and other reasons, neural networks are sometimes 
proving to be very powerful classifiers for multidimensional data. 

In all classifications there is the problem of those elements 'at the edges'. This is 
an artificial problem caused by insisting that the observed world can be conve- 
niently partitioned into non-intersecting classes. Traditional set theory requires 
that an element either belongs to a set or that it does not. Similarly, Boolean logic 
requires that a proposition is either true or false. 

But, as illustrated in the Escher engraving reproduced in Figure 2.33, there can be 
a gradation of set membership from 'very strong membership' to 'very weak 
membership'. For example, the first four rows of birds at the top of the picture are 

Figure2.33 
M. C. Escher's 'Sky and 
Water I' (1938). 

�9 1999 Cordon Art B . V . -  
Baarn - Holland. All rights 

reserved. 
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clearly bird shaped. The next row is less clearly bird shaped. The black shape at 
the centre of the picture could be said to be bird shaped, but then again it could be 
said that it is not bird shaped. How can one decide? Fuzzy set theory and fuzzy 
logic do not force this kind of decision. These are discussed in detail in Chapter 6 

on reasoning. 

Arguably, classifying things into mutually exclusive sets is a non-problem which 
has its roots in a scientific tradition which has obtained success from dividing 
things up into mutually exclusive parts. Indeed, methods based on partitions, 
such as the maximum likelihood, result in systematic misclassification, as shown 

in Figure 2.34. 

class A class B 

members of B are members of A are 
systematically systematically 
misclassified as A misclassified as B 

Usually, when classifying a representation space some of the classes are disjoint, 
while a few classes intersect. Sometimes it is better to record that an item belongs 
to class A or class B without attempting to decide between them. 

Pattern recognition occurs in perception when a machine has to transform raw 
data from its sensors into a form of information that it can operate on. In a simple 
machine the result of the classification is fed directly to an actuator. For example: 
inputs belonging to class A result in a control sequence 1; inputs belonging to 
class B result in a control sequence 2; inputs which belong to class C result in 
control sequence 3; and so on. In such a case it is necessary for the machine to 
decide which of the available control sequences to invoke. A decision must be 
made, even if it turns out that the classification was incorrect. 

In more sophisticated machines the classification information may be used during 
reasoning. For example: ifthe inputs currently belong to class A and the machine is 
in state B and the environment is in state C, then invoke control sequence 2. 

When the machine is using the classification information for reasoning it may not 
be necessary to force a classification decision. This is especially the case when 
the machine is using fuzzy reasoning as explained in Chapter 6. A fuzzy 
classification is one which assigns a value between zero and one to the  set 
membership. Choosing one of the fuzzy options to make a particular action is 

sometimes called defuzzification, as explained in Section 6.3. As noted earlier, it 
may be better to allow that an outcome is A or B but not C or D. This kind of 
partial defuzzification may give better information when the data are fed into a 

knowledge-based system. 

Figure 2.34 
Forced classification may 
lead to systematic error. 
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As an example, in the case ofthe 'explosives in the suitcase' example developed at 
the beginning of this chapter, the machine may decide that a given suitcase 
belongs to the set of 'suitcases with explosives' with a weighting of 0.3 and that it 
belongs to the set of 'suitcases without explosives' with a weighting of 0.7. The 
decision as to what to do about this will depend on many things. For example, it 
may be that very few suitcases reach a value as high as even 0.1 for containing 
explosives. In such a~case it may be decided to adopt procedures which require that 
a suitcase with a weighting of 0.1 or more should be opened, even though the 
expectation of finding explosives in these suitcases may be one in a million or less. 

This discussion brings us to the important question of the costs of failure and 
success in pattern recognition. 

2.8 Errors" non-recognition versus 
misclassification 

In pattern recognition there are two related measures of failure. The first is the 
proportion of misclassification, i.e. the number of times the system assigns an 
item to the wrong class. The second is the proportion of non-classifications in 
which the system cannot assign an item to a class. 

Misclassification is usually a more serious error than non-classification since the 
former comes with no indication that something is wrong. 

In pattern recognition systems which require the match to exceed a threshold 
there is a trade-off between non-recognition and misclassification. In general, 
increasing the match threshold makes the recognition criterion more severe, and 
so reduces the number of misclassifications. On the other hand, it is likely to 
increase the number of non-classifications due to more borderline cases failing to 
meet the more rigorous criterion. 

In any pattern recognition application the engineer should take into account the 
cost of misclassification, and should design into the system procedures for 
handling misclassification or their consequences, and for handling non-classifi- 
cations. 

2.9 Rigorous procedures for 
training pattern recognizers 

Pattern recognizers which are trained from data present the engineer with the 
problem of deciding which of the available data to use for training, and which to 
use to test the trained system. 
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Training data consist of input-output pairs. Usually these are obtained by 
experiment and it is assumed that the given output is the correct pattern class for 
the inputs. When one is training it is very tempting to hold back for testing those 
pairs which seem to give the best results. To yield to such temptation is a grave 
error which invariably leads to poor system behaviour in the future. 

Suppose then that n training pairs are available to train a pattern recognition 
system. The engineer must find reasoned answers to the following questions: 

What is the smallest value of n which will give a reliable interpretation of 
the test results? 

How many of the n pairs should be used to train the system? 

How many of the n pairs should be held back to test the trained system? 

How should the test pairs be selected? 

How can we interpret the results of testing the system? 

Suppose that all the n training pairs were used to train a system. Suppose also that 
these pairs form an unbiased sample of all possible representation-identification 
pairs. Usually this means that they are selected at random. 

After training, if m of these were correctly classified, then the proportion of 
failures is (n-m)/n. This is likely to be the best performance this system will 
achieve, and it may perform much worse on unseen data. As discussed in the 
previous section, the engineer should know the cost of misclassifications and 
whether this upper limit on the recognition rate of m/n is sufficiently high for each 
identification class. 

In general, one would not want to use methods which did not have a ratio of m/n 
very close to unity, i.e. one would have to justify the use of pattern recognition 
techniques which significantly misclassified their training data. 

Assuming that a pattern recognition technique can train sufficiently well on its 
training set, how well does it generalize to other data? Usually this is an empirical 
question. The method to test this is to divide the training data into two sets: one to 
use for training and one to use for testing. In general, the more data used to train 
the system the better it will perform. This suggests that one wants to hold back as 
few input-output pairs as possible for testing. 

Statistical sampling theory tries to answer the question of generalization. Sup- 
pose you asked someone if they like champagne and they answered 'no'. Since 
100% of your sample answered 'no', could you deduce that 100% of the 
population do not like champagne? Obviously not. Suppose you asked a second 
person and they answered 'yes'. Could you deduce that 50% of the population 
like champagne and that 50% do not? What if you asked ten people and five said 
'yes' and five said 'no'? Intuitively, the more people you ask the more confidence 
you have that the proportion of their answers represents the proportions of the 
whole population. This kind of reasoning lies at the heart of the problem of how 
many training pairs should be held back for testing. 
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Statistical sampling theory is beyond the scope of this book. It is based on the idea 
that the result of any particular experiment is a sample from the whole population 
of all experimental outcomes. This theory has been used to prepare Table 2.5. 

The column headed 'Experimental results' shows the number of failures that 
occurred in a series of  trials. (For example, we might be testing the classification 
of a neural network and observe that it misclassifies one time in ten.) The second 
column headed 'Egtimated failure rate' is simply the observed proportion of 
failures. However, it is unlikely that this reflects quite precisely the true underly- 
ing failure rate, which might be somewhat lower than that observed or, more 
critically, rather higher. For instance, for an observed failure rate of once in ten 
trials, the actual underlying failure rate might be a little lower than 0.1, or possibly 
higher than that: 0.2 is certainly plausible, 0.4 too, ... 0.6? ... but 0.7 or higher 
seems scarcely credible. The next four columns quantify these notions: they give 

90%, 95%, 99% and 99.9% upper confidence limits for the underlying failure 
rate, based on the observed experimental results. 

TABLE 2.5 UPPER CONFIDENCE LIMITS FOR THE UNDERLYING FAILURE RATE 

Experimental Estimated 
results failure rate 

Upper confidence limits for underlying 
failure rate 

90% 95% 99% 99.9% 

1 in 10 0.1 0.34 0.39 0.50 0.62 

10 in 100 0.1 0.15 0.15 0.19 0.22 

100 in 1000 0.1 0.11 0.12 0.12 0.13 

1 in 100 0.01 0.038 0.047 0.065 0.089 

10 in 1000 0.01 0.015 0.017 0.020 0.024 

1 in 1000 0.001 0.0039 0.0047 0.0066 0.0092 

2 in 1000 0.002 0.0053 0.0063 0.0084 0.0112 

5 in 1000 0.005 0.0093 0.0105 0.0131 0.0164 

After one failure in 10 trials, while it might be tempting to interpret this as '10% 
failure', Table 2.5 shows how dangerously conservative such an extrapolation 
might b e -  one can 'only' be 99% confident that the true failure rate is less than 
one-half. In some contexts, even this level of confidence is unsatisfactorily low. 

If only ten failures are observed in 100 trials, the estimated underlying failure rate 
would be the same at 10%, and because the conclusions are based on a much more 
extended experiment, much more confidence can be attached to a low underlying 
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rate; but even then you can see that an underlying failure rate more than double 
this (22%) is still just credible. If only 100 failures are observed in 1000 trials 
(again, an estimated 10%), the 99.9% upper confidence limit (which by any 
standards must be deemed quite high!) for the underlying failure rate is just 13 %. 

Other rows in the table tell a similar story. But notice that when the estimated 
failure rate is very low (say, 0.001 after observing 1 failure in 1000 trials) then, 
despite the size of the experiment, 'reasonable' upper confidence limits for the 
underlying failure rate might still be as high as five or seven times the estimate. 

To illustrate the interpretation of Table 2.5, consider a machine which tests for 
explosives. Suppose that in ten trials of suitcases containing explosives the 
system failed once, giving an estimated failure rate of 0.1. The underlying failure 
rate is not as low as this, but these data can be interpreted as meaning that we can 
have 99% confidence that the underlying failure rate is less than 0.5. Put another 
way, a person contemplating trying to smuggle explosives could be 99% confi- 
dent that they would get caught at least half of the time, and this would probably 
be sufficient deterrence, making the machine viable from a detection viewpoint. 
However, this is only part of the story. After the machine has identified a suitcase 
as containing explosives, it can be assumed that a customs officer will open the 
case and conduct a more detailed search. This costs time and money. It is 
therefore important to know how many false alarms the system generates. 
Suppose 1000 suitcases not containing explosives are tested, and there are five 
failures. This means that we can be 95% confident that the rate of false alarms is 
0.0105 or less. At this level of confidence, opening about 1% of suitcases as a 
result of false alarms might be considered acceptable. 

These figures should be studied and understood by those who intend to build 
pattern recognition systems. It is perhaps surprising that just one or two observed 
errors can give rise to such large statistical ranges. 

For some pattern recognition purposes misclassifications can be very expensive, 
and the feasibility of the system depends on the proportion of misclassification 
being very low. 

In recent years there has been a great interest in classifiers such as the neural 
networks described in Chapter 4. Unfortunately, there has been a tendency to 
overlook rigorous statistical methods and to quote 'success' rates which are 
nonsense. For example, some engineers quote 99% success to mean that their 
system has correctly classified 99% of its training data. In fact this means that 
their system has misclassified 1% of the training data which suggests that it will 
fare worse on unseen data. How much worse? We cannot say unless the pattern 
recognition system is tested rigorously. 

Having to generate so much data for training and testing pattern recognition 
systems can be a daunting task. Some people optimize the use they get from the 
available data by adding 'noise'. This means that they add small random values to 
the inputs to obtain data points in the representation space which are close to the 
given sample, and which it is assumed will correctly have the same identification. 

49 



VOLUME TWO 

To test the generalization of pattern recognition from its training data, it is 
necessary that the training data and the test data be kept separate. As discussed in 
this section, some several hundred data points may be required to test a pattern 
recognition system. In an ideal world we would have a similar number of data 
points for each identification class. Smaller numbers of data points can of course 
be used and they may be found to give good generalization on testing. 

The designation ofan input-output pair as training or test data must of course be 
done at random. In general, one would make a random selection for each 
identification class. Randomness is essential, otherwise it is very easy to cheat 
'just a little' in order to get good laboratory results - and pay the price of machines 
which do not function well in the field. 

Engineers could be responsible for some very expensive mistakes if exaggerated 
performance figures were misguidedly quoted. However, if you are not familiar 
with statistical methods, you may find that all these figures can be very confusing. 
If so you should at least learn this" when it is important that a machine achieves a 
given rate of  performance you must ensure that the tests are properly designed 
from a statistical viewpoint. I f  you cannot do this yourself you shouM consult a 
qualified statistician.* 

This chapter has given an overview of pattern recognition as it relates to the 
design of intelligent machines. As a result you should understand: 

I~ that human abilities in perception may make pattern recognition appear more 
easy than it is; 

i~ that pattern recognition is fundamental in perception; 

I~ that pattern recognition is important in cognition; 

i~ that pattern recognition usually requires input-output pairs of training data; 

i~ that a pattern is a structured set of objects; 

i~ what a representation space is; 

I~ what an interpretation space is; 

i~ that an identification is the action of giving an interpretation to a representa- 
tion; 

i~ what features and primitive features are; 

Readers may be interested to learn that the authors took their own advice. We had this section 
checked by Dr Trevor Lambert and Dr Fergus Daly of the Open University's Statistical Advisory 
Service who supplied Table 2.5 and its commentary. We are very grateful for their advice and help. 
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I~ how relational patterns can be represented by graphs; 

i~ how relational patterns can be recognized using graph matching; 

I~ how graph matching can be modified for 'near misses'; 

i~ that transforming the representation can facilitate recognition; 

I~ that the Fourier transform is useful in pattern recognition of waveform data; 

i~ how patterns can be represented as points in multidimensional spaces; 

I~ how multidimensional spaces can be classified for pattern recognition; 

I~ that chalk-and-cheese spaces have no metric; 

i~ that spaces can be classified by order relations; 

I~ that there may be problems when classifying multidimensional spaces; 

i~ multiple classification with uncertainty is better than incorrect classification; 

I~ multiple classifications can be represented using fuzzy sets; 

i~ the important distinction between rejection (no classification) and error 
(using classification); 

I~ the importance of rigorous statistical sampling methods to find error rates for 
a classifier; 

I~ how complex pattern recognition is achieved by hierarchical pattern recogni- 
tion. 

Pattern recognition is a recurrent theme throughout this volume, and in later 
chapters we will build on the theory and methods developed in this chapter. 
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C H A P T E R  
S E A R C H  

3 

The meaning of the word search in an everyday context is well k n o w n -  it means 
to look for something, if you had to search for a key in your house, for example, 
you would decide (possibly subconsciously) on a strategy to adopt. You might 
decide to look everywhere in a systematic way, starting in one room and looking 
on the floor, in all the cupboards and under the furniture, then moving on to the 
next room and repeating. Alternatively, you could just look in selected places 
where you think there is a strong likelihood of finding a key - in pockets, drawers, 
etc. 

The two strategies just described are ways of searching a set, or 'space', of possi- 
bilities. They can be classified as: 

exhaustive search: where potentially the whole space is examined, and 

heuristic search: where some 'heuristics' or knowledge acquired through expe- 
rience is used to restrict the search to a smaller space. 

Intelligent machines must constantly monitor their status in terms of existing 
goals and plans in the context of new information provided by their sensors. At 
every moment they must review what they are doing, and when unexpected 
events make the current course of action inappropriate, they must find another. To 
do this they must determine the space of all possible actions, and search it for the 
most appropriate action. 

In the early days of AI it was thought that many problems would be solved by the 
ability of computers to examine many alternatives very quickly. For example, 
consider all the possible sequences of moves in the game of chess, in principle the 
problem of winning at chess could be considered to be that of searching the set, or 
search space, of all alternative moves to find one that does not lose. Methods 
which examine every alternative in the search space until it is exhausted are often 
said to work by brute force. 

It was soon found that exhaustive brute force methods are impractical for many 
problems: existing computers are just not powerful enough to search the space of 
all possibilities in a reasonable time. For example, a robot controller which took 
ten hours to predict an imminent collision would not be practical. 
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Throughout the relatively short history of electronic computers, there has been an 
amazing increase in the power of machines over time. This has meant that some 
problems can be solved by brute force on the new machines, and people 
sometimes think that every problem will be solvable by brute force when the fight 
generation of computers comes along. This is a profound error. 

Consider the problem of finding your key. Suppose the search was not restricted 
to your house, and your key could be in any house in the country. Suppose you 
could search ten houses per day. Then to search all the houses in Britain would 
take you over a thousand years. You could ask a friend to help, and so increase 
your search ability. But what if your key might be anywhere, in any country of the 
world? You could recruit more friends. But then, what if your key could be 
anywhere in the universe? No matter how you increased your army of key 
searchers, you would never be able to search the space of all possible places for 
your key. An infinity of possible hiding places cannot be exhaustively searched 
by a finite number of people. And an infinite search space cannot be exhaustively 
searched by a finite machine (which all computers are). 

This is the nub of the search problem in AI. For many interesting and important 
problems, exhaustive search is not an option and it never  will be. To understand 
why this is so, it is necessary to consider the issue of c o m p u t a t i o n a l  complexi ty .  

Some computer procedures are inherently more demanding than others. For 
example, a program that has to decide 'which of a set of characters is a vowel' will 
work in time proportional to the number of characters to be classified. On the 
other hand a program which has to calculate the distances between a set of n cities 
has to perform n • (n - 1) computations, i.e. n 2 - n. When n is large, say 100, the 
n - 100 term becomes insignificant compared with the n 2 = 100 • 100 = 10000 of 
the squared term. This leads to a rough and ready measure of computational com- 
plexity, called the 'B ig -O '  notat ion.  

Suppose the time a computation takes on a given machine is related to the size of 
the data set it acts on. Let n be the number of data items to be processed. If the time 
taken to process these data can be expressed as a polynomial such as 
an 4 + bn 3 + cn 2 + dn + e then the algorithm is said to h a v e p o l y n o m i a l  complexi ty .  

In general, the highest term is far more significant than the lower terms, and these 
are ignored, to give a complexity of an 4. The constant a reflects the power of the 
machine: for a machine with half the power the constant would be 2a. Since we 
are interested in the complexity of the algorithms and not the particular machines 
they are run on, these constants are ignored to make the measure of complexity 
machine-independent. So for this algorithm the run time is of the 'order' of n 4, 
which is written O ( n  4) in the Big-O notation. There are other measures of 
computational complexity, but this is one of the most widely used. 

Consider a machine that is planning its movements ahead in time. Suppose for 
any given state and time it can examine ten subsequent states for the next time. 
Then suppose that for each of these it can examine ten more. Then to plan ahead to 
time t= 1 takes 10 computations, to plan ahead for time t - 2  takes 10 • 10 
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computations, to plan ahead for time t = 3 takes 10 x 10 • 10 computations, and to 
plan ahead for t = n takes l0 n computations. Thus the order of complexity for this 
planning program is O(1 on), which is exponential. 

Since the 1950s, computers have become, very roughly, ten times more powerful 
(or faster) every five years (Figure 3.1). This spectacular increase in power over 
the last forty years has enabled many new applications of computing in many 
fields. It is tempting (o be euphoric and to suppose that this can go on forever. It 
cannot, because there are physical limits to computation determined by physical 
constants such as the speed of light. But, even if it could go on forever, there are 
problems whose inherent complexity makes them impossible to solve in any 
practical time scale. 
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Consider the machine above with exponential complexity. Suppose today that it 
can look n moves ahead. A machine with 10 times the power will allow us to look 
n + 1 moves ahead in the same time. With good fortune this extra computer power 
will take about five years to develop. What about n + 2 moves ahead? By the same 
argument it will take ten years for the necessary computer power to evolve. To 
look ten moves ahead will require waiting for fifty years, even assuming the 
spectacular rate of increase in computer power that has been seen in the last forty 
years. This is outside the time scales of most engineering projects. 

An exponential algorithm such as this is non-polynomial, and its complexity is of 
a different order to polynomial algorithms. There is a large class of problems 
which are not known to have algorithms of polynomial complexity to solve them. 
One of the best known of these is the travelling salesman problem which appears 
in Chapter 5 of this volume on scheduling. These problems are said to be non- 
polynomial indeterminate, and the algorithms in this class are often called NP- 
algorithms. 

The improvements in computer power seen to date make little impact on these 
NP-algorithms: the limitations on computer power relative to algorithms are 
absolute. Like the speed of light, they are a fact of life which will not change. 

Figure 3.1 
The relative increase in 
computer capabilities since 
1950 (schematic). 
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The triumph of artificial intelligence is to have developed methods for obtaining 
practical solutions to problems which do not yield to brute force. They do this by 
considering the nature of the spaces being searched and developing strategies 
which may not give the best result every time, but give acceptable sub-optimal 
results most of the time. This approach is said to be heuristic. 

For any search problem, the search space is the set of possible solutions. The 
subset of the search space which contains actual solutions is called the solution 
space. 

For example, the search space for the problem of finding two dominoes whose 
spots add up to twenty is all the possible pairs of dominoes. The solution space is 
the set of pairs: 

(4/4, 6/6), (4/5, 5/6), (4/6, 5/5). 

Note that here there is more than one solution, and they are all equally acceptable. 

�9 �9 

�9 �9 
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�9 �9 �9 �9 �9 �9 �9 �9 

�9 �9 

�9 �9 �9 �9 �9 �9 �9 �9 
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For another example, consider the problem of finding a path for a vehicle if we 
know that its power consumption depends on the load it carries and the landscape 
it encounters. In general, the path is non-linear with some discontinuities, as 
might happen, for example, when it leaves the road to take a short cut over rough 
ground, or when it has to cross a fiver. The optimum solution to this problem, 
it will be supposed, is that which uses the least fuel, subjects the vehicle to the 
least mechanical stress, and carries the greatest load in the least possible time. In 
general, with problems like this one does not know in advance whether such an 
optimal solution exists. Indeed we may not know whether or not a solution exists 
at all, i.e. it may be that it is impossible for the vehicle to find a path between its 
origin and its destination which can be traversed using the fuel that is available. 
The machine may run out of fuel, fail to find a solution, and be stranded. 

The difference between these two examples is that the first involves searching a 
finite set of combinations, and any particular combination is either a solution or 
not a solution. Sometimes domain knowledge can guide such a search. For 
example, we can reason that to make twenty spots on a pair of dominoes, the 
smallest number of spots on any one of a successful pair must be eight, since the 
largest number of spots available is twelve on the double six. Later in this chapter 
we will see how such heuristics can reduce the number of combinations which 
have to be examined, and so make the search space smaller or easier to search. 

In the second case theproblem is well defined, but we may have sparse or 
imprecise knowledge about the domain. In such a case one rarely aspires to 

Figure 3.2 
A solution space- pairs of 
dominoes with spots adding 
up to 20. 
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finding the 'best' solution, and is satisfied with sub-optimal solutions which have 
acceptable statistical properties in the long run. In general, we try to reduce the 
risk of failing on any given trial, accepting the consequence of smaller rewards 
and losses. This is a better strategy for both physical and financial survival. In this 
second case it may be impossible to find the optimal solution, even when it exists. 
So the strategy of taking the best that you can find given the time or resource 
available usually ensures the best long-term outcome. 

A major area of search addresses the question of how an infinite search space can 
best be searched by afinite machine in afinite time. To understand the difficulty 
of this, consider a spacecraft which is prospecting for minerals on an unexplored 
planet. Each point on the planet has a financial value associated with it according 
to the minerals there. For simplicity, consider a search restricted to just one 
dimension. Let us suppose that the machine can fly long distances, but cannot do 
ground surveys and analysis when flying. To do this it must land, collect samples, 
and analyse them. What is the best way for the machine to search this environ- 
ment in order to optimize the value of its findings? 

in order to do any surveying the spacecraft must land at least once. Since it knows 
nothing about the planet it may as well land anywhere. After taking some samples 
it will have an idea if this is a promising place to stay. Even if the results here are 
very good, they may be better elsewhere. This suggests that the spacecraft should 
try elsewhere, as illustrated in Figure 3.3. In the absence of prior knowledge, 
anywhere is as good as anywhere else. So the spaceship could take off and land 
somewhere else. A great many search techniques address the question of where 
that somewhere else should be. The underlying problem is that, by hypothesis, it 
is impossible to sample every place. This leads to the problem of selecting places 
to search which give a 'good enough' spread over the search space, and so 
improve the expectation of overall return in the long term. 

0 

(a) 

good optimum 

position 

T .=~ better optimum 
= area shown above "~  

U= 

O 

r 

(b) position 

Figure 3.3 
(a) The search surface for 
the surveyor spacecraft (in 
one dimension); (b) there is 
always more of the space 
which has not been 
searched, and may have a 
better optimum. 
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In this chapter we will elaborate on the technical ideas underlying search in the 
context of finding solutions to problems and optimization. In general, optimiza- 
tion involves mathematical functions, and these lead to calculus-based search, 
the concept of hill climbing, and special forms of hill climbing such as gradient 
descent. Other methods that are discussed relate to methods for 'getting around' 
the search space to sample it adequately, such as simulated annealing and genetic 
algorithms. 

The combinatorial nature of search is expressed through search trees, and the 
ideas of breadth-first search, depth-first search, and best-first search are dis- 
cussed, all of which are attempts to speed up the search. 

For a long time research in artificial intelligence has included work on game 
playing, particularly of chess. At each turn a player has to select the next move 
based on what possibilities lie ahead. The player is therefore searching through 
the space of all possible next moves looking for a favourable outcome. Part of the 
skill of the player lies in being able to look several moves ahead. Computers are 
quite good at this, and can evaluate moves in terms of the possible outcome 
several moves later. 

The method used by a chess-playing computer is called a tree search. The tree is 
constructed from a root node which represents the current state or position. A 
number of branches spring from the root node, themselves ending at nodes. Each 
branch represents a possible decision. The branches terminate when there are no 
further decisions to be made, either because a dead end has been reached or a 
solution has been found. 

To illustrate this, let's take an example of an autonomous vehicle (AV) again, 
which has the possibility of moving a fixed distance forwards, backwards, fight 
or left. These moves will be denoted as directions N, S, W or E respectively. Now 
imagine that the AV is in an environment, as shown in Figure 3.4. This environ- 
ment consists of objects (the squares), with paths in between the objects. The task 
set for the AV is to get out through the exit. Assume that the AV has some form of 
internal representation or map of its environment. 

o 0 0 

0 0 

0 0 0 0 

o 

0 = empty space 

<-- exit 0 = current position 

= object 

& Figure 3.4 Environment of the A V. 
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Wherever it starts, the AV has to make a decision about which way to travel. This 
can be represented by a tree structure with a root node and four branches, 
corresponding to N, E, S and W, as shown in Figure 3.5. 

root 

N W 

In this example, the paths are so limited that the AV can only ever choose to go 
either of two ways. In addition, one of those options is usually to go back in the 
opposite direction to the way that it has just travelled, which means that it could 
oscillate between two squares by executing the movements N, S, N, S etc. for 
ever. A simplified tree can therefore be drawn with branches showing only the 
moves that take the AV to a new position. This is shown in Figure 3.6 for this 
particular example. 

root 

N/" , .  S 

W /  W /  \ E  

dead end S / ~ E 

dead end \ N 

N /  \ E  

dead end goal 

The start is indicated at the top of the tree, and the goal is at the bottom. The figure 
shows the complete tree, with all of the moves that are possible from this one 
particular starting position. From this you should be able to see that this tree 
search is an exhaustive search. 

Now this is a relatively simple tree. It's not hard to appreciate that sometimes 
these trees are enormous, so methods have been developed to avoid searching the 
whole tree, and better s011 to avoid having to construct the whole tree. These 
include depth.Just, breadth-first and best-first searches that will be described in 
the following sections. However, it still may be the case that the solution lies at the 
very tip of the very last branch that is searched, so that the search can still be 
exhaustive. These methods speed up the search by trying to find the solution 
before the whole tree is searched, and require some heuristic knowledge about the 
tree. 

Figure 3.5 
Initial search tree for 
the AV. 

~[ Figure 3.6 
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3.2.1 Depth-first search 
Consider the tree shown in Figure 3.7, where the nodes are labelled A to G. The 
search starts at node A and finishes when node G, the goal, is found. 

A 

D E 

A depth-first search follows the rules: 

(a) If there is a branch, take the left one first. (This could equally well be the fight 
one. One must decide which and then stick to it.) 

(b) If a left branch turns out to be a terminal node, go back to its parent node and 
take the fight branch. 

Now let's use these rules. A depth-first search would proceed as follows: 

1 Starting from A, examine the left branch (or child) from the parent node. This 
leads to B. 

2 If B is the goal, stop. It's not. 

3 As the branch terminates at B, go back to its parent node, A, and take the fight 
branch which leads to C. 

4 If C is the goal, stop. It's not. 

5 As C has branches, examine the left branch which leads to D. 

6 If D is the goal, stop. It's not. 

7 As the branch terminates at D, go back to its parent node, C, and examine the 
fight branch which leads to E. 

8 If E is the goal, stop. It's not. 

9 As E has branches, examine the left branch which leads to E 

10 If F is the goal, stop. It's not. 

11 As the branch terminates at F, go back to its parent node, E, and examine the 
fight branch which leads to G. 

12 If G is the goal, stop. It is. 

Figure3.7 
Example of a search tree. 
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In this example, a depth-first search has not managed to speed up the search at all 
- it is still exhaustive. However, a simple re-ordering could make all the 
difference, as shown in Figure 3.8. 

A 

E D 

G F 

If we go through the same steps again, the result is quite different. 

1 Starting from A, examine the left branch (or child) from the parent node 
which leads to C. 

2 If C is the goal, stop. It's not. 

3 As C has branches, examine the left branch which leads to E. 

4 If E is the goal, stop. It's not. 

5 As E has branches, examine the left branch which leads to G. 

6 If G is the goal, stop. It is. 

Half the number Of steps! The number of steps is very sensitive to the ordering, 
which can often lead to dramatic savings. Unfortunately it is almost impossible to 
predict in advance the ordering that will produce the most efficient search. On 
average the search time will be close to half the number of steps compared to an 
exhaustive search, particularly for large trees. 

Figure 3.8 
Re-ordered search tree. 

3.2.2 Breadth-first search 
A 

B / c  
D E 

F G 

Consider the tree in Figure 3.7, shown again here as Figure 3.9. In a breadth-first 
search the tree is searched in horizontal layers. All of the nodes in each layer are 
examined before moving to the next layer. 

Figure 3.9 

61 



VOLUME TWO 

Starting from node A, and assuming that the goal is G, a breadth-first search 
would proceed as follows: 

1 Starting from A, examine the left branch (or child) from the parent node 
which leads to B. 

2 If B is the goal, stop. It's not. 

3 Now examine (he fight branch which leads to C. 

4 If C is the goal, stop. It's not. This layer is done. 

5 Go back to B. As the branch terminates at B, go back to C. 

6 As C has branches, examine the left branch which leads to D. 

7 If D is the goal, stop. It's not. 

8 Examine the fight branch of C which leads to E. 

9 If E is the goal, stop. It's not. This layer is done. 

10 Go back to D. As the branch terminates at D go back to E. 

11 As E has branches, examine the left branch which leads to E 

12 If F is the goal, stop. It's not. 

13 Examine the fight branch that leads to G. 

14 If G is the goal, stop. It is. 

If the goal is at a relatively high level, it will be found more quickly than if it is at a 
lower level. Again, the search time is approximately half on average compared to 
an exhaustive search. 

3.2.3 Best-first search 
In this method looking for a termination is not enough. An evaluation at each 
node is required so that a decision can be made about which node should be 
explored next. The value at each node is calculated using a static evaluation 
function, which will vary from one situation to another. 

The hill-climbing and gradient-descent methods described later in the chapter 
come under the heading of best-first search, and could be represented using a 
search tree. Each node would represent points in the search space with branches 
from each node to all the possible points in the space that the search could try next. 
The branch with the best evaluation would be chosen. It is unusual to see these 
methods shown as a tree search, however. Mostly one sees search trees being used 
to find goals and the methods employed aim to reduce the time needed to find the 
goals. In the gradient-descent methods the goal is to find the optimal solution, but 
there is no way of telling when that solution has been found, so it is difficult to use 
the tree search techniques described here. 

The best-first method can be illustrated using an autonomous vehicle (AV) 
guidance system, where one example of  an evaluation that can be made is the 
distance from the goal. Various schemes exist, several of which have been 
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developed by Jarvis (1985). The methods are described as distance transforms, 
and involve assigning a distance value to each square in the grid by scanning the 
grid first forwards then back, and repeating until the values no longer change. 
Figure 3.10 shows an example of an environment with a single object and a goal 
position. 

0 0 0 0 0 0 0 = empty grid 

o ~ [1 i o 0 0 [ 1" : object 

o ri l  o o o 0- oa, 
L _ I  I I 

0 0 0 0 0 0 

Figure 3.10 AV environment. 

The distance transform has several steps: 

Step 1: Initialization 
Initialize all the squares with a maximum value equal to the number of squares in 
the grid, in this example 6 x 4 = 24, except for the goal which should be set to 0. 

24 24 24 24 24 24 24 = empty grid 

24 2~ ~ 24 0 24 [24] : object 

24 2~[ ~ 24 24 24 0 = goal 

24 24 24 24 24 24 

Figure 3.11 Initialization. 

Step 2: Forward scanning 
Starting in the top-left corner, forward propagate to assign new values to the 
squares. This is done by scanning each square in the first column, then moving to 
the top of the second column and scanning down, and so on until the bottom of the 
fight-hand column is reached. 

At each square forward propagation is carried out as follows. For any particular 
square, look at the four neighbours which consist of the three in the row below 
and the one to the left, as shown in Figure 3.12. 

c u r r e n t  
1 

s q u a r e  

2 3 4 

A Figure 3.12 Squares examined during forward scanning. 
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(When the square being examined is at the edge of the grid, such as in the left- 
hand column or at the bottom, just ignore the neighbours which are outside the 
grid.) 

For each of the neighbouring squares marked 1 to 4 calculate the distance 
transform: 

distance transform = (neighbour value + distance) x factor 

where the factor in this equation is either 1 for current empty squares or a number 
greater than 1 for current squares containing objects, typically 3. The distance is 
the number of moves needed to get from the current square to the neighbouring 
square. If we use the AV where only N, S, E or W directions can be travelled, the 
distances to each of the neighboufing squares are shown in the following figure: 

2 1 2 

current 
1 I square 

2 1 2 

A Figure 3.13 Distances to each neighbouring square. 

That is, only one step is needed to get to a neighbouring square if it is directly 
above, below, to the fight or to the left. Two steps are needed to get to squares 
which are diagonally adjacent. 

After calculating the distance transform for the four neighbours shown in 
Figure 3.12, the minimum value from those four distance transforms is found. If 
it is less than the value in the current square then it replaces it, otherwise the value 
in the current square doesn't  change. 

Applying this to every square in the grid, we get: 

24 24 24 2 1 2 

24 

24 0 1 

24 24 24 

24 24 24 24 24 24 

& Figure 3.14 Grid after forward scanning. 

24 = empty grid 

~2~= object 

0 = goal 

Let's look at this in more detail, for example the 2 at the top of the fourth column 
from the left. After initialization it was 24, and the forward scan looked like this: 
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current square 

+ 

24 24 

24 0 

Figure 3.15 Initial values of grid. 

Using the equation for the distance transform 

distance transform = (neighbour value + distance) x factor 

the distance transforms of the four neighbours are: 

1 (24+  1)•  1 = 2 5  

2 ( 2 4 + 2 ) •  1 = 2 6  

3 (24+ 1)•  1 = 2 5  

4 ( 0 + 2 )  x 1 = 2  

The smallest value of the four is 2. Since 2 is smaller than 24, the new value for the 
square is 2. 

Step 3: Backward scanning 
This is essentially the same as forward scanning except that you start at the 
bottom fight-hand comer of the grid and look at the three neighbours above and 
one to the fight of the current square. Figure 3.16 shows the squares to be 
examined. Again, if any of the squares are off the grid then they are ignored. 

1 2 3 

current 
square 

A Figure3.16 Squares used in backward scanning. 

As will be explained, the result of backward scanning on the entire grid is: 

5 4 3 2 1 2 24 = empty grid 

6 ~ ~6-~ 1 0 1 ~ = object 

17 ~ ~ 2 1 2 0 = goal 

6 5 4 3 4 24 

& Figure 3.17 Grid after backward scanning. 
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Let's look at one of the squares in the object-  the one that ends up with a value of 
9 say. When the scan reaches this square, the grid looks like this: 

24 24 24 2 1 2 24 = empty grid 

24 ~-~ ~ 1 0 1 ~ = object 

24 ~-~ ~ 2 1 2 0 = goal 

24 24 4 3 4 3 

A Figure 3.18 The grid mid-way through backward scanning. 

The four neighbours therefore look like this: 

2 

& Figure 3.19 Initial values of neighbouring squares. 

The distance transforms are: 

1 (24 + 2) x 3 = 78 

2 (24+ 1) x 3 = 7 5  

3 ( 1 + 2 )  x 3 = 9  

4 ( 2 +  1) x 3 = 9  

The minimum is 9, which is less than the present value of the square, so it is 
replaced. 

Step 4: Repeat 
Repeat steps 2 and 3 until there is no further change in the values. In this example, 
only one more forward and backward scan are needed, resulting in the following 
grid: 

5 4 3 2 1 2 24 = empty grid 

6 ~ ~6-~ 1 0 1 ~-~ = object 

1 0- oa, 
I 1 l 1 

6 5 4 3 2 3 

A Figure 3.20 The final grid. 
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Now we can construct a search tree from any point on the grid, where each branch 
will have an evaluation equal to the distance to the goal. Searching the tree 
consists of only selecting the branch with the lowest value, so it is a best-first 
search. This means that at any point during the search, if there are two (or more) 
branches that can be selected, the best one, which is the one with the lowest score, 
is chosen. If the score on two branches is the same, one of them is arbitrarily 
chosen. 

For example, start from the top-left comer. The first branch gives two possibilities 
- to travel S with a value of 6 or travel E with a value of 4. The choice would be to 
go E, so the S branch is effectively pruned since no more searching will take place 
along it. Figure 3.21 shows the search tree, where each node shows the score 
associated with the position of the AV. 

start 
5 

4 

15 3 

6 2 

1 

2 0 
goal 

This method effectively 'prunes' large sections of the tree. It doesn't necessarily 
give the optimal solution, but it usually gives a good solution in a short time. 

~l Figure 3.21 
Best.first search tree. 

3.2.4 The A* search algorithm 
In the previous example only one branch was selected at each node, the other 
branch or branches being pruned, so that large parts of the tree were left 
unexplored. When there are many paths to the same goal it may be desirable to 
select the best path. In order to do this, the search algorithm has to be able to go 
back to unexplored parts of the tree if its current exploration proves to be more 
difficult than first anticipated. The A* algorithm developed by Winston does just 
this. 

To illustrate the A* algorithm, let's assume that an autonomous vehicle (AV) has 
to travel from A to G in Figure 3.22, and that it can take several routes which go 
via sites B, C, D, E and E The distances between sites are known, and the whole 
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environment can be described with a diagram as in Figure 3.22(a). At each stage 
of the algorithm all of the existing paths that have been found so far are evaluated 
and the shortest one is taken up and advanced. 

A 10 B 

D ~ E  

F ~ G "  

(a) (b) 

B 

2 

E 

A 

/ 
C D 

3 

E 

3 

G 

Step 1: Starting with A, all the paths from A are set out as branches in a tree 
structure shown in Figure 3.22(b) and the shortest path to another site is found. 
A to D (A-D) is the shortest path, with a length of 3. 

Step 2: From A-D,  the next path is A - D - E  which has a length of 6. The three 
existing paths so far are A - D - E  (6), A-B (10) and A-C (5), so A-C is chosen. 

Step 3: From A-C,  the next path is A - C - F  which has a length of 10. The existing 
paths at this stage are A - C - F  (10), A - D - E  (6) and A-B (10), so A - D - E  is 
chosen. 

Step 4: From A - D - E  the next path is A - D - E - G  which has a length of 9. The 
existing paths are A - D - E - G  (9), A-B (10), A - C - F  (10), so A - D - E - G  is chosen. 
As no shorter path can be found the algorithm terminates. 

In this way some of the tree never gets explored, and so the search time is reduced. 
Also, because many alternative paths are explored and are never totally aban- 
doned the solution will always be the optimum. This is therefore a very powerful 
breadth-first tree-search method which is useful when some evaluation is avail- 
able at each node. 

3.3 Calculus-based search 

Figure 3.22 
(a) Diagram showing the 
distances between all the 
sites; (b) search tree for the 
A* algorithm. 

3.3.1 Mathematical models 
In this section some of the basic mathematical tools that are often used in 
mechatronics will be discussed. It is assumed that basic calculus, namely differ- 
entiation and integration, doesn't have to be explained, and various formulae will 
be derived based on that assumption. 
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In many applications a well-defined mathematical model of a solution space 
exists as a function or formula. An answer can be found by 'solving' the 
mathematical function. In general, solving a mathematical  formula  means find- 

ing values for the variables in the formula such that the equation is satisfied. 

For example, a mechatronic system such as an autonomous vehicle (AV) can 
move about a factory floor without any external guidance. One of its goals is to 
travel in a straight line from A to B, which is a short distance, x, in a time, t. 
Assuming that initially the AV is stationary, one way of doing this would be to 
accelerate at a constant rate up to a particular velocity, stay at that velocity for a 
certain length of time, and then slow down at a constant rate to a halt, having 
covered the distance, x. Figure 3.23 shows this motion as a graph of v against t. 
The distance travelled is found as the area under the graph. 

This is a very simple model, and clearly in a practical situation you couldn't  
expect a vehicle to travel in such a perfect way. However, the model can still be 
used to calculate the 'ideal'  values for the acceleration, velocity and deceleration. 
When these values are tried on the actual system, the performance will almost 
certainly be worse than that predicted from the model, but should still be 
sufficiently close to the desired performance. So a model, even a simplified ideal 

one, can still be useful. 

The formula for the distance travelled is 

2 
x = 0.5air  1 + v2t 2 + 0.5a2t32 (3.1) 

where a 1 is the acceleration and a 2 is the deceleration. 

If we assume that the acceleration and deceleration are both equal to a (for no 
other reason than to make the problem less complicated) then t I = t 3 and the 
formula can be simplified to 

x = 0.5at12 + v2t 2 + 0.5at12 = at l  2 + v2t 2 (3.2) 

Equation (3.2) describes the motion of the vehicle. The details of how this is 
derived do not concern us here. What  is important is that it is possible to find a 

relationship between v 2 (which in the subsequent discussion we will call simply 
v), and a, which turns out to be 

v 2 - a v t  + ax  = 0 (3.3) 

where t = t 1 + t 2 + t3, and at  l = at  3 = v. 

4[  F igure  3.23 

Graph of velocity against 
time for the autonomous 
vehicle. 
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This equation can be solved by finding values for v and a which satisfy the 
equation; that is, values which make the whole expression equal to zero. It is clear 
that there is not one solution but a whole family of solutions which satisfy this 
problem. If we assume that we are interested in the specific problem where, say, 
x = 10 m and t = 5 seconds, then the solution space of a = ve/(vt- x) can be drawn 
with axes as a and v, as shown in Figure 3.24. All the solutions lie on this curve. 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 ..... Y . . . . . .  i r i , 

2 3 4 5 6 7 
i | . . . . . . . . .  v 

8 9 v 

Faced with this problem the vehicle could search the solution space until it found 
a point which was on the curve, which would give suitable values for a and v. 
These values would be selected, and the vehicle could start to accelerate up to the 
required velocity. 

In this example, the solution space had to be searched to find suitable values for 
the acceleration and velocity so that the vehicle travels the correct distance in the 
correct time. Sometimes solutions exist which can be calculated exactly given 
some additional data. For example, suppose one of the system objectives was to 
conserve power in the AV. This could be done by selecting the solution with the 

lowest value for the acceleration, ami n. This, as we shall see in the next section, 
turns out to be 

4x 
ami n = t-- ~- (3.4) 

Since the solution can be found by calculation alone, there would be no need to 
search the solution space in any other way. 

The lesson to be learned from all this is that if a mathematical model exists, it may 
be possible simply to calculate the solution, which will almost certainly be 
quicker than searching the solution space using the methods developed later in 
this chapter. 

If the problem is more complex there may be no known methods of finding the 
solution directly. However, if the problem can still be expressed as a mathemati- 

Figure 3.24 
Graph of  a against v, 
showing all the solutions, 
a = vZ/(vt - x). 
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cal formula, methods may exist for approximating to the solution and maybe even 
finding the exact solution. 

For example, suppose a problem can be defined by a polynomial equation in x, 
P(x). if  the polynomial is up to fourth order (has terms in x, x 2, x 3 and x 4) then it 
can be solved directly. Surprisingly, if there are higher order terms such as x 5, no 
method exists for solving the equation exactly. Even so, there are methods such as 
that in the next sectibn which successfully search for good approximations. 

3.3.2 Newton-Raphson method 
The N e w t o n - R a p h s o n  method  is a popular algorithmic method for finding the 
solution to polynomial expressions. For illustration, we'll take the example of the 
autonomous vehicle again, so that the solution is known in advance. Let's 
assume, as before, that the required distance to be travelled is 10 m in a time of 
5 seconds. The minimum acceleration solution given in equation (3.4) is 

4x s- 2 
ami n = -~-= 1.6 m 

Substituting a = 1.6, x = 10 and t = 5 into equation (3.3) for the vehicle gives 

v 2 - 8 v  + 1 6 = 0  

This equation is satisfied when the value of v is 4. Now let's assume that we don't 
know this solution. Figure 3.25 shows a plot of the equation 

f ( v )  = v 2 -  8v + 16 

Notice that it crosses (or in this case just touches) the v-axis when v= 4. 

f(v) 

2o 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 ! i . . . . . . . . .  i i l ' i 

0 1 2 3 4 5 6 7 8 Figure 3.25 
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Recall that the derivative off(v) is an expression for the value of the slope off(v)  
at any point. In Figure 3.26, the slope is shown at the point v = 6, and it can be 

measured by drawing a tangent to the curve at v = 6 and measuring the sides of the 
fight-angled triangle formed with the v-axis. 

The Newton-Raphson  method uses the fact that the slope of the curve gives an 
indication of the direction in which you have to travel to get closer to the point 
where the curve crosses the v-axis. It is at this point that one of the solutions to the 
expression v 2 - 8v + 16 = 0 exists. So the tangent at v = 6 could be extended and 

the value of v noted where the tangent crosses the v-axis, as in Figure 3.26, where 
the value is found to be v = 5. Now if v = 6 had been our first guess at the solution 
to the equation, we could say that 5 is our second guess. This could be continued, 
so that the slope at v = 5 could be found, and the tangent drawn and the point 
where it intercepts the v-axis would be our third guess. 

This method can be expressed as follows: 

Let our first guess be v 1. From this we' l l  make a new guess, v 2. 

The slope at v 1 i s f ' (v l ) ,  wheref ' (v )  is the derivative off(v)  with respect to time. 
The slope equals the height of the vertical side of the shaded triangle divided by 
the width of the base of the triangle. The height of the vertical side is equal to the 
value off(v1). The value of the width of the base is the first guess vl minus the new 

second guess v 2. So, 

f(Vl) 
f ' ( v l )  = (vl-v2) 

f (v l )  
v 1 - v 2 f ' ( v l )  

f (v l )  
V 2 = V 1 f ' (v l )  

~1 Figure 3.26 
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In general, the new guess is obtained from the old guess using the formula 

f ( vk )  
Vk+l = Vk f , ( vk )  (3.5) 

Now, instead of measuring the slope at each point, the derivative can be obtained 
directly from the equation of the problem: 

f (v) = v2 - 8v + 16 

So, 

f ' ( v )  = 2 v -  8 

(v 2 - 8Vk + 16) 
vk+ l = vk-  (2vk- 8) 

To show how this works, let's continue with this example, starting with v l = 6. 

Step 1: 

f ( v l )  = 4 

f ' ( v l )  = 4 

4 
v 2 = 6 - ~ = 5  

Step 2: 

f(v2) = 1 

f ' ( v 2 ) -  2 

1 
v 3 = 5 -  ~ = 4.5 

Step 3: 

f(v3) = 0.25 

f '(v3) = 1 

0.25 
V 4 = 4 . 5 -  - - Y  

and so on. 

= 4.25 

The iterations continue while the value of v continues to get closer and closer to 4. 
The iterations stop if the value of f ( v ) =  0; that is, when the v-axis is reached. 
However, it is more usually the case that the point where f ( v ) =  0 is never quite 
reached. Eventually the method stops when the value off(v) is so close to 0 that 
the error can be neglected. 

Thus, the Newton-Raphson method allows us to find a solution to a problem 
which can be expressed mathematically. This can be considered to be a search 
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method: the solution exists in some search space, and the Newton-Raphson 
method searches that space by moving in a direction towards the solution. It can 
be used when the derivative is known. Later we shall look at a gradient descent 
method which can be applied when the mathematical form of the gradient is not 
known. 

3.3.3 Minimization 
The previous section showed how a polynomial expression of the form 

P(x) = 0 

could be solved using the Newton-Raphson method. 

Many problems exist where the desired solution is the minimum or maximum 
value of a function. If the problem can be expressed as an equation, this can be 
translated into a problem of the sort just described by making use of the 
derivative. 

In the example in the previous section the equation relating the velocity to the 
acceleration of the vehicle was given in equation (3.3) as 

v 2 - a r t +  a x =  0 

The graph in Figure 3.24 showed that there is a minimum value of a. This 
minimum is a turn ing  point ,  so called because the curve changes direction at that 
point. The value of the derivative at that point is 0, so we can calculate the value of 
v where the minimum occurs by finding the derivative and equating it to 0. In the 
above example, the derivative of a = v2 / ( v t - x )  with respect to v is 

da a t -  2v 

dv x -  vt 

Equating to 0 gives 

a t - 2 v  = 0 

2v at 
a =  o r v = m  

t 2 

Substituting this expression for v into equation (3.3) gives the value of v and 
hence a in terms of x and t alone as 

2x 
v = ~ (3.6) 

t 

4x 
a ~ m 

t 2 

The equation for a is the same as that used earlier in equation (3.4). Given a more 
complicated function, it may not be so easy to find the minimum, in which case 
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the Newton-Raphson method can be employed again. Identical arguments apply 
to finding the maximum of a function where the derivative is also 0. 

For example, if an object is thrown straight up into the air, it slows down to a halt, 
and then falls back to the ground. A graph of its height against time is shown in 
Figure 3.27. Notice that when it is at its maximum height the velocity, i.e. the 
derivative of the cu~e,  is zero. 

at maximum height 
~ the velocity is zero 

time 

Care must always be taken to ensure that when finding a minimum or a maximum 
the correct turning point is found. This can be done by looking at the value of the 
derivative either side of the solution that has been found. Figure 3.28 shows three 
types of turning point and the sign of the slope either side of the turning point. 
Notice that a curve is also shown which has a point where the derivative is zero 
but it doesn't change direction. This is called a point o f  inflexion. 

inflexion maximum 

Given a differentiable mathematical formula you can therefore find a minimum 
by searching the space defined by the derivative of the expression for the point 
where it has a value of zero. 

,~ Figure 3.27 
Trajectory of an object 
thrown into the air. 

Figure 3.28 
The three possible turning 
points. 

3.3.4 Gradient descent 
The Newton-Raphson method can sometimes become very complex. In exam- 
ples such as the autonomous vehicle we have been considering, the process can 
be simplified. The expression for the Newton-Raphson algorithm derived earlier 
as equation (3.5) was 

Vk+ 1 = v k -  
f(vk) 

minimum 
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and for the specific case where x--- 10 m and t = 5 seconds, 

(vk 2 - 8v~ + 16) 
vk+l = v~-  (2v~- 8) 

This can be rationalized as follows: 

('dk-- 4) 2 
Vk+ 1 = v k -  2(vk_4) 

(vk--4) 
vk+ l = Vk-- 2 

The term (v k -  4) is proportional to the derivative of the function. So in general, 

the algorithm can be expressed as 

vk+ 1 = v ~ -  a f ' ( v k )  (3.7) 

where a is a constant. 

This is the equation for a g r a d i e n t - d e s c e n t  m e t h o d .  It is called gradient descent 

because the change to the variable, v in this case, is proportional to the size of the 

gradient, f ' ( v ) .  It approximates the Newton-Raphson  method in this example 

because the minimum of the function 

f ( v )  = v Z - 8 v  + 16 

lies on the v-axis. It applies more generally to any function, but instead of 

terminating when it reaches the v-axis, it terminates when it reaches a minimum 

where f ' ( v )  = O. 

For the particular problem that we 've  been considering, the formula for the 

gradient descent is 

vk+l = v k -  a ( v k -  4) 

If we let its value of a be 0.1, the formula becomes 

Vk+l = vk -  0.1 v k + 0.4 = 0.9v k + 0.4 

Let v 1 = 6. 

v 2 = 0 . 9 x 6 + 0 . 4 = 5 . 8  

v 3 = 0.9 • 5.8 + 0.4 = 5.62 

v 4 = 0.9 • 5.62 + 0.4 = 5.458 

v 5 = 0.9 • 5.458 + 0.4 = 5.3122 

and so on. We find that when n is very large, 

v n = 4  
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So the method converges to the solution, which means that it gets closer and 
closer to the correct value with each iteration. The number of iterations is selected 
to give the appropriate accuracy for the finally selected value. 

Gradient descent, therefore, gives a useful means of finding minima when the 
actual derivative is not known exactly, but the slope can be estimated from local 
information. This is particularly true when the solution space is not a smooth 
continuous differentiable space but a discrete one, which is discussed in the next 
section. 

An extension of gradient descent is steepest descent. In a multidimensional 
search space there will be gradients in many different directions, and the choice is 
made to follow the steepest gradient. This will also be discussed in the next 
section in the context of discrete search spaces. 

3.3.5 Discrete search spaces and hill climbing 
So far the mathematical models described have assumed a continuous differentia- 
ble search space. Very often the search space is not continuous but discrete, i.e. 
made up of individual points. Sometimes the discrete search space arises from 
sampling a continuous space, or sometimes the search space is discrete by nature, 
and sometimes just a set. An example of the latter is the set of pairs of dominoes 
that add up to 20. The search space consists of all possible pairs of dominoes 
which can be thought of as points in a space with nothing in between. Searching 
consists of 'hopping' from one point to another. 

In order to perform an equivalent of gradient descent in a discrete space the 
nature of a gradient has to be considered in a different way from a continuous 
space. Let there be a measure associated with each point x, written f (x) .  If the 
current position in the space is x k and a neighbouring position is Xk+ 1, then the 
gradient is approximated by (f(xk+ ~) - f ( x  k)). Secondly, since the step size has to 
be fixed so that it is the distance between points in the space, there cannot be a 
constant like a which would produce variable step sizes. So, a mechanism is 
needed to jump from the currently examined point to another. For example, the 
points could be arbitrarily laid out on a grid (e.g. Table 3.1), and all the 
neighbours examined to see if any were better. This illustrates hill climbing, 
which simply ensures that the value selected at each iteration is less than (or 
greater than) the previous value. 

Let the best solution so far be at the point x = x k and the measure associated with it 
be f(xk). A neighbouring point in the solution space is xk+ 1 and has a measure 
f(xk+l). The search moves to xk+ 1 according to the following criterion: 

I f  f(xk+l) <f(xk) then x = Xk+ 1 (3.8) 

else if  f(xk+ l) >i f (xk) then x = xk 
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In this way, a solution is finally found which has a measure that cannot be reduced 
by any further moves. Just like gradient descent, it moves down the slope to a 
minimum. What hasn't been mentioned is what happens when a point has several 
neighbours, as would be the case in a multidimensional search space. The 
distinction is made that in hill climbing, an arbitrary neighbour can be selected 
and examined, and if its value is less than the present value the search moves to 
that neighbouring point. The alternative is that all the neighbours are examined 
and the one chosen is the one which has the lowest value and therefore makes the 
biggest change. This method is called steepest descent. 

In the following section we discuss some of the limitations of these gradient 
descent methods and also some attempts to overcome those limitations. 

3.4.1 Limitations of gradient descent 
To illustrate the concept of local optimum, consider the following one-dimen- 
sional space of numbers: 

6 5 5 4 4 2 3 3 4 5 6 7 8 6 3 1 3 4 4 5 7 8 9 8 7 6 5 6 6 6 7  

Here the numbers 2, 1_ and 5_ are local minima, and of these _1 is the global 
minimum. The numbers 6, 8, 9 and 7 are local maxima, and of these 9 is the 
global maximum. 

1 How do you avoid ending up at a local minimum? 

2 How do you know when the minimum that you have found is just a local 
minimum or the global minimum? 

If you use gradient descent, the point at which the search starts is crucial in 
determining which minimum is found. The problem of finding the global 
minimum is that the search can get stuck in one of the local minima. In order to 
overcome this problem, the idea of aprobabilistic search has been developed in 
which the search in general is still a descent, but occasionally the search is 
allowed to jump to a higher value. This allows the possibility of a search 'jumping 
out' of a local minimum. 

This helps to overcome one difficulty, but in general whatever search method is 
used (except exhaustive search) there is no way of knowing with complete 
certainty that the minimum which is found is the global minimum. All we can do 
is to improve the probability of it being the global minimum using the techniques 
described in this section. 
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3.4.2 A two-dimensional problem 
Table 3.1 shows part of a two-dimensional discrete solution space for a particular 
problem. This sort of space could arise as part of a perception subsystem which 
uses a neural network such as the Hopfield network discussed in the next chapter. 
It is a network that stores data at the minima of the search space. This gives it the 
ability to reconstruct ~data from partial or corrupted input patterns. 

TABLE 3.1 

4 5 7 6 4 4 

4 3 6 5 5 4 

5 4 6 4 4 3 

5 5 5 4 3 3 

5 6 5 4 2 3 

4 5 5 5 4 4 

4 4 3 4 5 5 

5 4 1 3 4 5 

6 6 4 4 6 5 

6 6 5 6 5 5 

By looking at the numbers you should be able to see that there are three minima 
(the bold numbers): that is, points where the values are smaller than all of their 
neighbours. The global minimum is the point with the smallest value, which in 
this example is the point with a value of 1. The two local minima have values of 2 
and 3 respectively. 

To find the global minimum you have to search the whole space, if there are N 
points in the space then you have to look at all N points to be absolutely certain 
that you have found the global minimum. This is an exhaustive search, and i fN is 
very large this could be very time-consuming and therefore impractical. It is also 
possible that the search space is not finite, in which case an exhaustive search 
is impossible. This is why methods have been developed for searching the 
space more efficiently. To measure the efficiency, the probability of finding the 
global minimum will be used (probability is explained in detail in Chapter 6). If 
the probability of finding the global minimum is 1, then you can be totally 
confident that it can be found. If the probability is 0, then the global minimum 
cannot be found. The probability will always lie somewhere between 0 and 1 
inclusively. 

In an exhaustive search the probability of finding the global minimum increases 
linearly with the number of points examined. So initially the probability is 0, and 
after looking at all of the points the probability is 1. When half the points have 
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been examined, the probability is 0.5. If the number of points examined is n, the 
probability of finding the global minimum, p(g), can be expressed as 

H 
p(g) = ~ (3.9) 

Now let's see if other methods exist that can do better than this, starting with 
random search. Hel-e, points are selected at random, and the value at that point is 
examined. If the value is the smallest value that has been seen so far it will be 
stored as the minimum value. What is the probability that after selecting n points 
the global minimum has been found? 

The probability of not finding the global minimum in one trial is ( N -  1)/N. The 
probability of not finding the global minimum in n trials is ( (N-  1)/N) n, so the 
probability of finding the global minimum in n trials is: 

p ( g ) = l -  ( N - ~ )  n 
(3.10) 

For the space in Table 3.1, N = 60. Figure 3.29 shows the graphs of this probabil- 
ity and of the previous exhaustive search. 
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The graph shows that random search performs worse than exhaustive search. 
This is because the assumption has been made that points in the solution space can 
be visited more than once. If this is changed so that a record is kept of which 
points have been seen, then the probability becomes the same as the exhaustive 
search because you would know for certain when all the points had been visited. 

Figure 3.29 
Probability of exhaustive and 
random search finding the 
global minimum. 
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3.4.3 Hill climbing 
As you've seen, hill climbing is a sort of gradient descent (or ascent) which can be 
used when a gradient cannot be defined, such as in a discrete search space. The 
method simply ensures that the value selected at each iteration is less than (or 
greater than) the previous value. 

) 

In the problem of finding a minimum in Table 3.1, hill climbing is applied by 
choosing a point at random, and then selecting a neighbouring point also at 
random. If the neighbouring point has a value which is less than or equal to the 
value at the current position, move to the neighbouring point. This was tried, and 
the results are shown in Figure 3.30, which also shows the exhaustive and 
random search. 
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"~ Figure 3.30 
Probability of hill climbing 
finding the global minimum. 

From this graph it is clear that hill climbing gives a better probability of finding 
the global minimum in fewer steps, but that it never gets better than a probability 
of about 0.5. This is because hill climbing finds local minima. In this example, the 
search gets stuck in the two other local minima about half of the time. 

Next, a steepest descent algorithm is tried, where a point is selected at random and 
the eight neighbours examined. The search moves to the neighbour with the 
lowest value. The results of an experiment with the same data as before are shown 
in Figure 3.3 i. 
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This figure shows that the steepest descent method gets to the minimum very 
quickly, but suffers from the same handicap as hill climbing which is the problem 
of ending up at a local minimum. However, this does show that within five steps 
the search will arrive at a minimum, and that about 50% of the time this will be the 
global minimum for this example. 

~il Figure 3.31 
Probability of  gradient 
descent finding the global 
minimum. 

3.4.4 Simulated annealing 
A popular method of probabilistic search has been developed by physicists based 
on their understanding of some of the processes that take place when substances 
c o o l -  in particular, the method of annealing a metal, where it is heated up and 
then cooled very slowly. The molecules of the metal form crystals which are in 
the minimum energy state for the metal. The metal has therefore settled at a global 
minimum for this example. 

Simulated annealing, as the name suggests, mimics this process. The energy of a 
system, E, has to be defined, and this becomes the search space for the problem, 
which is to find a point of minimum energy. 

It is similar to the hill-climbing method except that the decision about whether to 
keep the new solution or throw it away is probabilistic. This means that some- 
times the new solution will be kept even though the measure associated with it is 
worse than the best solution so far. This allows the search to jump out of a local 
minimum. 

The probabilities are such that if the new solution, at xk+ i, has a measure of 
energy, E~§ 1, that is less than the best solution so far at x k, then there is a high 
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probability (between 0.5 and 1) that the new solution becomes the best solution. 
Similarly, if Ek+ 1 is greater than E k, there is a low probability (between 0 and 0.5) 
that the new solution becomes the current best solution. 

Let's say that in a particular example the probability of accepting a new solution 
turns out to be 0.8. This means that in eight cases out of ten the new solution 
becomes the best solution so far, but in two cases out of ten it doesn't. The values 
of probability always lie between 0 and 1. 

The probabilities, Pk, are calculated as follows: 

I f  Ek+l < Ek x = Xk+l with a 1 i> Pk > 0.5 
probability of Pk 

else Ek+l >i E~ x = Xk+ 1 with a 0.5 i> Pk > 0 
probability of Pk 

rearranging: 

if (Ek-Ek§ > 0 x = X k §  1 with a 1 i> Pk > 0.5 
probability of Pk 

else (Ek-Ek§ <<. 0 x = Xk§ with a 0.5 i> Pk > 0 
probability of Pk 

What is needed therefore is a function that produces a value for the probability 
between 0.5 and 1 when (Ek-Ek§ > 0, and a value between 0 and 0.5 when 
(Ek-Ek+l) < 0. A function which has this property is the sigmoid function,  
described by the equation 

1 
y =  

1 + e  - x  

When x = 0, y = 0.5. 

W h e n x > 0 ,  1 > y > 0 . 5 .  

When x < 0, 0.5 > y > 0 

As this method simulates annealing, a factor equivalent to temperature has to be 
included in the model. This is done by dividing (Ek-Ek+l) by a notional 
'temperature' T, and then substituting for x in the equation of the sigmoid. The 
probability is therefore 

1 
Pk = (3 11) 

1 + e -(Ek-Ek+I)/T 

When T is very large, Pk approaches 0.5, which means that the decision about 
keeping the new solution or throwing it away is purely random. When T= 0, 
Pk = 1 and the decision is not probabilistic but is equivalent to the hill-climbing 
method described earlier. So if the 'temperature' starts out high, the decisions 
seem arbitrary. As the temperature drops, the decision to make the new solution 
the current best solution or not becomes more deterministic. The effect is that the 
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search can jump out of local minima, and should end up when T = 0 at the global 
minimum or a relatively good minimum. 

This method can be understood in terms of jumping around in an 'energy 
landscape'. Hill climbing gets the search to a lower energy but can be caught in a 
local minimum, and simulated annealing allows jumps to higher energies, so 
escape from local minima becomes possible. Inevitably, there is more to this 
method when it comes to practical implementation. Firstly, cooling has to follow 
a schedule, and secondly decisions have to be made about the limits of the 
notional temperature. 

For simulated annealing to work, a cooling schedule has to be constructed. This 
means that the 'temperature' has to be set to an initial value, and held at this value 
for a length of time while the search continues. How long is a difficult question to 
answer. The originators of this method say that the system has to reach thermal 
equilibrium before the temperature can be lowered. However, no way is given to 
determine when thermal equilibrium is reached. 

To understand the importance of thermal equilibrium, you have to know about the 
probability of finding yourself at a particular point in the search space. The way 
that the problem has been configured, this probability is proportional to the 
energy at that point. In other words, the search will spend more time at a point if it 
is lower than any other point. This means that the search will spend more time at 
the global minimum than at any other point. However, these probabilities apply 
only when the system is in thermal equilibrium. 

Imagine starting the search at a particular point. Shortly afterwards the search is 
halted and the statistics about which part of the space have been searched are 
obtained. Inevitably, the area immediately around the starting point will have 
been visited, and points remote from the starting point will not have been visited. 
It is important, therefore, to ensure that the search will have had enough time to 
cross the entire search space. This needs to be estimated for any given problem. 

Returning to the problem defined earlier in Table 3.1, simulated annealing can be 
applied. The numbers in the table are interpreted as the values of the energy at any 
point in the space. The following cooling schedule was chosen: 

For 10 steps: T = 1.0 

For 10 steps: T = 0.8 

For 10 steps: T = 0.6 

For 10 steps: T = 0.4 

For 10 steps: T = 0.2 

For 10 steps: T = 0.1 

In this particular problem, the maximum valueofEk-Ek+ l = 7 - 1 = 6, so with 
T = 1.0 the probability is about 0.1, so that 10% of the time the search will be able 
to jump out of any minimum, which seems reasonable. With this cooling 
schedule, statistics were gathered and are presented in Figure 3.32. 
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The curve shows that annealing performs about as well as hill climbing. In fact, if 
the data are examined in detail, the performance is just slightly better than hill 
climbing since the global minimum is eventually reached a few times more often. 
The choice of a cooling schedule is critical to the performance. Several cooling 
schedules were tried and the result given here was the best that was obtained. 

The very simple nature of the search space in Table 3.1 does not demonstrate the 
power of simulated annealing very well. In other experiments in which hill 
climbing was compared with simulated annealing in a 50-city travelling salesman 
problem, hill climbing was consistently out-performed by simulated annealing. 

All of the gradient-descent methods described so far are limited to searching local 
regions of the search space. This means that the solution found is highly 
dependent on the starting point, since the gradient descent will move from this 
solution to the nearest minimum. Simulated annealing attempts to overcome this 
by allowing the search to reach 'thermal equilibrium', which means that when 
simulated annealing starts the temperature is high, so that the search can move 
about freely. This ensures that a large area of the search space is covered before 
cooling takes place, and so frees the search from the constraint of finding only 
solutions near the initial solution. In the next section another method is intro- 
duced which tries to combine the power of local gradient descent searching with 
the ability to cover large parts of the search space. 

~ll Figure 3.32 
Probability of simulated 
annealing finding the global 
minimum. 

3.4.5 Genetic algorithms 
Genetic algorithms were invented specifically to avoid getting stuck in local 
minima and to cover as much of the solution space as possible. They are a very 
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efficient means of searching a solution space. Their inspiration came from nature, 
where it is believed that evolution has provided solutions to the difficult task of 
adapting life forms to suit particular niches. 

The essential features of a genetic algorithm are the chromosomes that contain 
the genetic information. These are strings of data that define a particular solution. 
For example, a chromosome representing six genes might be specified as a six- 
digit binary number, say 110011. A population of these chromosomes, corre- 
sponding to a number of individual solutions to the problem, is created. The 
population of chromosomes at any one time will represent only a small number of 
the possible 'good' solutions. The population is initially created randomly, 
although it is possible to 'seed' the initial population with individuals which are 
known to be good solutions. 

Next we need some way of measuring thefitness of the chromosomes so that the 
good solutions are selected to be parents more often than the not-so-good 
solutions. This is analogous to natural selection, where 'survival of the fittest' is 
said to occur. The fitness function selected is specific to the particular applica- 
tion, but generally it has a positive value which is large when a solution is good, 
and small when the solution is bad. 

The mechanism for producing a new population from the current one is called 
breeding. Parents are chosen in proportion to their fitness using a mechanism 
called roulette-wheel selection. Each chromosome has a fitness, which can be 
regarded as a portion of the total fitness of the population. If this is drawn as a pie 
chart where the total area of the pie corresponds to the total fitness of the 
population, then an individual has a slice of the pie with a size that is proportional 
to its own fitness. This is shown in Figure 3.33. 

total fitness = 100% individual with a fitness of 14% 

25 

point 

Imagine that the pie is spun like a roulette wheel with a pointer at a fixed position. 
When the wheel stops spinning, the pointer indicates which individual is selected 

Figure 3.33 
The fitness of a population 
of nine individuals. 
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to be a parent. The probability of the pointer pointing at any individual is 
proportional to the size of the slice allocated to that individual. In other words, the 
number of times that an individual will be selected to be a parent is proportional to 
its fitness. If there are N individuals in the population, then the wheel is spun N 
times to select new parents. 

Let's look at a simple example. Suppose there are 6 individuals in a population. 
Initially they are randomly generated and their fitness calculated, as in Table 3.2. 

TABLE 3.2 

Individual Fitness Running total 

A 12 12 

B 5 12 + 5 = 17 

C 23 17 + 23 = 40 

D 13 40 + 13 - 53 

E 1 53+ 1 = 5 4  

F 16 54 + 16 - 70 

The total fitness is 70, so the fitness of A as a proportion is 12/70, which is about 
17%. Figure 3.34 shows the roulette wheel. 

E F 

D 

C 

poi y 
Figure 3.34 

Roulette wheel of the six 
members of the population. 

The roulette wheel is a good way of imagining what is going on in selection. What 
actually happens is that a random number is generated between 0 and the total 
fitness, in this example 70. The number generated is compared with the running 
total, shown in Table 3.2. The first individual with a running total greater than 
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the random number is then selected. For example, if the random number 
generated is 45, D would be chosen because D is the first individual found when 
scanning down the table which has a running total, 53, which is greater than the 
random number. 

In this example there is a population of 6, so a random number is generated six 
times. Let's assume that the six numbers generated are 45, 23, 31, 57, 4 and 55. 
The corresponding individuals would be D, C, C, F, A and E These are the parents 
of the new population. 

Offspring are produced by selecting pairs of parent chromosomes and crossing 
over some of the genetic material. In the example just given, the parents would be 
paired D and C, C and F, and finally A and E Each pair of parents then produces 
two offspring. It is permissible for two parents to be the same, such as A and A, 
even though the offspring are also A and A. 

Figure 3.35 illustrates a crossover for two binary-valued, six-digit parent chro- 
mosomes. The result is two offspring chromosomes, combining the digits of the 
parents according to the crossover point chosen. 

parent 1 1 1 0 

parent 2 1 0 1 

0 1 1 offspring 1 1 1 0 

0 1 0 offspring 2 1 0 1 

0 1 0 

0 1 1 

crossover point 

A Figure 3.35 Breeding using single-point crossover. 

This form of crossover is called single-point crossover. The actual point at which 
crossover takes place is randomly chosen. Other forms of crossover exist such as 
two-point crossovers, but we will only use single-point in this book. 

Again, let's take our six chromosomes, and let's assume that they have the 
following binary structure: 

A 1 1 0 0 1 1 

B 1 0 1 0 1 1 

C 0 1 0 1 0 1 

D 1 1 1 0 1 0 

E 0 0 0 0 0 1 

F 0 1 0 0 1 0 

Crossover takes place by generating a random number that corresponds to the 
position along the chromosome. The genetic material is then swapped over 
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between the parents at that point to create two new individuals. The random 
numbers generated for these examples would be in the range 0 to 5, correspond- 
ing to the six points along each chromosome where there is a 0 or a 1, starting 
from the fight. If the random numbers are 3, 1 and 2, then crossover takes place 
after bit 3 in the first pair of parents, after bit 1 in the second pair and after bit 2 in 
the third pair. Crossover would then look like this (one parent in each pair is 
shown in bold to show where the genetic material comes from): 

parents offspring 

5 4 3 2 1 0 5 4 3 2 1 0 

D 1 1 

C 0 1 

1 0 1 0 1 1 0 1 0 1 

0 1 0 1 0 1 1 0 1 0 

C 0 1 0 1 

F 0 1 0 0 

0 1 0 1 0 1 1 0 

1 0 0 1 0 0 0 1 

A 1 1 0 

F 0 1 0 

0 1 1 1 1 0 0 1 0 

0 1 0 0 1 0 0 1 1 

before crossover after crossover 

A Figure 3.36 Breeding using single-point crossover. 

In addition to crossover, mutation is allowed. This happens when some of the 

genetic material changes randomly, as shown in Figure 3.37. 

chromosome 11 1 0 0 1 0 1 0 1 0 1 0  

$ 

mutation 

+ 

chromosome 1 l l 0 0 1 1 1 0 1 0 1 0  

A Figure 3.37 Mutation. 

Mutation is usually defined by the mutation rate, which is normally set to quite a 

low value, 0.001 say. This corresponds to one change in a thousand bits of data. 
The bits that are actually mutated are randomly selected. After a bit has been 
selected for mutation it is inverted, so a 0 becomes a 1 and vice versa. 
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In our simple example, the new population, after mutation, might look something 
like Figure 3.38, where two bits have been mutated (shown in bold): 

A' 1 1 0 1 0 1 

B' 0 1 0 0 1 0 

C' 0 1 0 1 1 0 

D' 0 1 0 0 0 1 

E' 1 1 0 0 1 1 

F" 0 1 0 0 1 1 

Figure 3.38 Example of  population after mutation. 

When a genetic algorithm is applied to a problem an initial population is created 
with randomly generated chromosomes. Each chromosome is tested and an 
evaluation of its fitness is made. Having evaluated the whole population, breed- 
ing can take place. Breeding continues until a new population is created, at which 
point the old population is replaced by the new one. (In the elitist strategy, a 

proportion of the fittest parents would also be carried over into the next genera- 
tion, so there would be correspondingly fewer offspring in the next generation.) 

This breeding and evaluation process continues, with the average fitness of the 
population being monitored together with the fitness of the fittest individuals. In a 
typical situation the maximum individual fitness will rise quickly and then at 
some point it will 'flatten off'. The average fitness of the population will rise 
more slowly, and if left to run for a long time would equal the value of the fittest 
individual. This latter fact arises because, if left for a long time, the population 
would eventually consist of replicas of the fittest individual and no others. 
Usually the search is terminated when the maximum individual fitness flattens off 
but the average fitness of the population is still rising. 

It is not immediately obvious why genetic algorithms should be so good at 
searching for solutions. The answer is that the mutation operation tends to move 
the chromosome to a neighbouring position in the search space, and so could be 
considered as a local search. If the mutated offspring is fitter than its parent then 
its chances of breeding are improved. This is rather like the hill-climbing methods 
that have already been described. In addition, the crossover operation allows 
large jumps to be made in the solution space. This ensures that large areas of the 
space are searched and that solutions do not get stuck in local minima. 

Genetic algorithms were also tried on the example problem that has been used 
throughout this section, originally given in Table 3.1. To try to get some sort of 
comparison with the other methods described, a population of 10 was selected 
and the algorithms used to obtain six generations. Each chromosome contained a 
binary representation of the x and y coordinates of the two-dimensional surface - 
four bits for the y-coordinate and three bits for the x-coordinate. In order that all of 
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the codes that could be generated by the chromosomes would be meaningful, the 
two-dimensional surface was extended so that the whole pattern was a grid of 
8 points by 16 points - the additional points being given a high value of 10. 
Single-point crossover was used and the mutation rate was set at 0.28. 

The values given in Table 3.1 were used to calculate the fitness. The actual fitness 
function used was 

60 
fitness = - -  - 6 

x 

where x is one of the values given in Table 3.1. This fitness function ensures that 
when the value of x is 10, the fitness is 0, and that the largest values of fitness 
occur at the minima. 

After running the algorithm for 2000 trials, the statistics for the number of times 
the local and global minima were found for each generation were as shown in 
Table 3.3. 

TABLE 3.3 

Generation Found global Found local Failed to find 

minimum minima any minimum 

1 10% 20% 70% 

2 15% 30% 55% 

3 17% 31% 52% 

4 21% 31% 48% 

5 21% 35% 44% 

6 21% 35% 44% 

Since each generation contains 10 individuals, roughly speaking the genetic 
algorithm found the global optimum 21% of the time after 6 generations or about 
60 iterations. More often it found one of the other local minima, and just under 
half of the time it failed to find any of the minima. 

Just as with simulated annealing, the example of Table 3.1 is too simple to 
demonstrate the power of genetic algorithms properly. On more complex prob- 
lems they have been found to give good results, and there are many examples in 
the literature. 

91 



VOLUME TWO 

3.4.6 Summary of the optimization techniques described 
The techniques described in this chapter all try to follow some kind of gradient to 
continually improve some measure of performance, with the aim of finding the 
solution that gives the best performance. Most of the techniques only ever search 
the immediate neighbourhood, and so can never break away from the locality in 
the search space in which the search is started. Simulated annealing tries to 
overcome this by allowing jumps to intermediate solutions that may perform 
worse than the present solution so that more of the search space can be examined. 
Genetic algorithms also use crossover to create new solutions in unexplored areas 
of the space. 

Different methods suit different search spaces. The example problem was a 
relatively simple space, with the result that simple gradient-descent algorithms 
worked well. If the space was more complex - for example, if it was much bigger 
with much more diversi ty-  then the gradient-descent methods would usually 
perform less well than simulated annealing and genetic algorithms. There exist 
some search spaces for which, until simulated annealing and genetic algorithms 
came along, there was no way of finding a solution apart from random or 
exhaustive search. These new tools at least allow machines to find solutions, 
possibly sub-optimal, faster than before. They do not find solutions easily, but 
they are a first step in overcoming the barrier of finding solutions to problems 
with a computational complexity which is NP-indeterminate. They will be 
demonstrated later in the book: simulated annealing will be shown applied to the 
travelling salesman problem in Chapter 5 on Scheduling, and genetic algorithms 
will be shown being applied to neural networks in control applications in 
Chapter 9 on Intelligent control. 

The principles of applying a search method can be abstracted from this chapter. 
They can be found by posing the following questions: 

1~ What sort of search problem is this? 

combinatorial search of finitely-generated set, e.g. the domino problem 

quantified optimization problem, e.g. the calculus-based methods. 

I~ How big is the search space? 

sma l l -  a few thousand to a million points 

l a rge -  many millions 

infinite. 
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i~ What is known about the search space? 

is it continuous? 

is it differentiable? 

is there a formula(e) to represent it? 

i~ What are the information sources? 

databases 

generative calculations, e.g. deduced knowledge (see Chapter 6 on 
Reasoning) 

sensors (continuous and discrete). 

i~ What methods are available for this kind of search? 

exhaustive search 

random search 

breadth-first, depth-first, best-first 

hill climbing 

gradient or steepest descent 

simulated annealing 

genetic algorithms. 

i~ How well do each of these methods work for each kind of problem? 

use exhaustive search for small finite spaces when it is essential that the 
global minimum is found; 

use random search for large evenly distributed homogeneous spaces; 

use hill climbing for discrete spaces where a sub-optimal solution is 
acceptable; 

use gradient descent for continuous or discrete spaces when a fast but 
probably sub-optimal solution is acceptable; 

use simulated annealing for large continuous or discrete spaces where a 
better solution than gradient descent is required, possibly the optimum 
solution, but with the cost of longer times needed for calculation; 

use genetic algorithms for large or infinite search spaces with sparse and 
diverse data; 

use tree search when a lot is known about the search space which is 
usually discrete, when a decision can be made at each step as to which 
direction to search and when there is a distinct goal. Sometimes this can 
be exhaustive, and therefore not fast except when the space is relatively 
small. Depth-first, breadth-first and best-first can speed up the search, 
each method being appropriate to different problems. 

I~ Can the search problem be converted to another search problem ? 

using a different representation 

using new information (data fusion). 
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Answering these questions would help to pin down which search methods are 
applicable. However, it is not such a simple task and there are no absolutely clear 
guidelines to help. We hope this chapter has provided you with a set of tools that 
can be applied to specific problems, and an insight into how they work and when 
they work best. 

Search lies at the heart of artificial intelligence, since almost all problems require 
a search to find a solution. Conventional mathematics can be used to find 
solutions to problems which have a mathematical representation, such as a 
formula or set of equations. Searching for solutions to the many other problems 
which do not have such a representation requires some understanding of the 
nature of the search space and how it is structured. This knowledge then guides 
the selection of an appropriate search technique and becomes the basis of 
heuristics aimed at giving acceptable solutions most of the time within acceptable 
costs. 

Many of the techniques described in this book involve search in one guise or 
another. In pattern recognition we search for an interpretation of a given represen- 
tation. In neural networks we have to search for a set of network weights which 
minimize the error of the system. In scheduling, we search for the best schedule of 
activities and places in time. In reasoning, rule-based systems and learning, we 
search for relevant new knowledge, given a knowledge base and new informa- 
tion. In intelligent control we search for a control strategy that will keep ill- 
defined and complex systems within specifications, and in computer vision we 
seek an interpretation of images. For these reasons the concepts appearing in this 
chapter will recur throughout the book. 

Davis, L. (ed.) (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold. 
Jarvis, R.A. (1985) 'Collision free trajectory planning using distance transforms', Mech. 

Eng. Trans. of the I. E. Aust., ME 10, 3, pp. 187-191. 
Winston, E H. (1984) Artificial Intelligence, Addison-Wesley. 
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C H A P T E  R 4 
N E U R A L  N E T W O R K S  

4.1 Introduction 

Artificial neural networks are emerging as an exciting new information-process- 
ing paradigm for intelligent systems. They differ in many respects from conven- 
tional sequential computers, and it is claimed that neural networks have the 
following advantages. 

Potential advantages of neural networks 
I~ They do not need to be programmed, as they can learn from examples. 

I~ They can generalize from their training data to other data. 

I~ They are fault tolerant: they can produce correct outputs from noisy and 
incomplete data, whereas conventional computers usually require correct 
data. 

I~ On being damaged, they degrade 'gracefully' (that is, in a progressive 
manner), unlike sequential computers which can fail catastrophically after 
isolated failures. 

I~ They are fast: their many interconnected processing units work in parallel. 

i~ They are relatively inexpensive to build and to train. 

These potential advantages have created considerable interest in the possibilities 
for applying neural networks in engineering, and have resulted in a great deal of 
research over the last ten years. Some of the claimed advantages are exaggerated, 
but others are certainly proven, and neural networks are becoming a standard 
technology for engineers. 

Some of the many applications of neural networks include: 

systems which detect explosives at airport gates; 

character recognition and document reading systems; 

robot vision systems; 

speech understanding systems, e.g. telephone systems which can recog- 
nize and distinguish between words such as yes, no, one, two, three, etc.; 

financial investment systems. 

The fundamental feature of any neural network is that it is composed of a large 
number of interconnected processing units. These units are often relatively 
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simple, and the network gets its computational power from the many units being 
connected, with outputs from the units being inputs to others. The way the units 
are connected is called the network topology (Figure 4.1). 

outputs 
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inputs 
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Neural networks excel at classification; they are pattern recognizers par excel- 
lence. When used in this way they are presented with information about objects or 
cases to be recognized, and their output signifies the class to which the object 
belongs. For example, later in the chapter we will see how a neural network can 
recognize characters on the basis of black and white information. We train the 
network by showing it examples of 'ideal' characters. On seeing new cases the 
network can tell us which class or character it best fits. The network generalizes 
from the characters it has seen to be able to recognize other characters in that class. 

In this book we will present neural networks as powerful black-box classifiers. 
By this we mean that they take input data, process them, and give output data. In 
general, we do not know precisely what is going on inside the network, which is 
why we say it is a black-box system. In general, the output is of the yes/no binary 
type: 'yes' the object belongs to this class, or 'no' the object does not belong to 
this class (Figure 4.2). This is why we call them classifiers. 

Figure 4.1 
General architecture of  a 
neural network. 

Figure 4.2 
Character classification. 
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To understand why classifiers are such powerful information processors, con- 
sider the following questions that an intelligent machine might have to resolve: 

What should I do next? 

Which way should I go? 

Is there an obstacle in my way? 

Are explosives present in this suitcase? 

Is this atmosphere poisonous? 

Should I invest in this currency? 

Is the system I am monitoring in a 'normal' state? 

Is this character a 1 or a 2? 

Is the camera aperture correct for this light level? 

These can all be considered to be classification problems. If we assume that each 
question has a finite number of answers, and we can find appropriate training 
data, then answering these questions amounts to classifying the outputs as 
'correct' or 'incorrect'. 

Defining appropriate inputs and outputs, and finding appropriate training data, lie 
at the heart of successful engineering applications of neural networks. This can 
require considerable knowledge and ingenuity on the part of the engineer. In 
particular, it is essential that the input data are in the fight form for a network to 
operate on, and they must contain sufficient information for the classification to 
be made. It is also essential, of course, that the outputs are relevant. 

There are many examples in the literature of networks that can do wonderful 
things, such as the applications listed above. Almost all of them work because the 
system designers understood the overall nature of the problem they were trying to 
solve, and created appropriate pre-processing andpost-processing subsystems, 
as illustrated in Figure 4.3. 

For example, neural networks are commonly used for classifying objects in 
image data. A very simple example of this is shown in Figure 4.4, where the 
characters 0, 1, + and • are formed on a 3 • 3 square grid. For consistency with 
generally accepted terminology, the squares will be called pixels (picture ele- 
ments). 

How can such graphic data be input into a neural network? 
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information, typically symbolic, such as a classification 

post-processor 

t ..... 

i 

J~ 

neural 
network 

pre-processor 

l ' I t t I  
information, typically numeric or binary from sensors 

Figure4.3 
A typical neural network 
architecture sandwiches the 

network between a pre- 

processor and a post- 
processor. 

0 1 + x 
Figure4.4 

Characters in a 3 x 3 image. 

The answer to this question is that the graphical data must be transformed into a 
sequence of numbers in order to be input into a neural network. In other words, a 

pre-processor is required. For a given application, satisfactory pre-processing 

may be achieved in a number of different ways. In some cases the design of the 

pre-processor is an essential feature in building a useful neural system. 
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Let  us construct  a p re -processor  as fol lows.  First,  let us n u m b e r  the pixels  f rom 

0 to 8 as shown in F igure  4.5(a).  (In comput ing  it is usual  to begin  count ing  f rom 0 

rather  than 1.) 

0 1 2 

3 4 5 

6 7 8 

(a) Assigning numbers to each pixel of the 3 x 3 grid 

1 1 1 0 1 0 

0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  
1 0 1 = 1 1 1 

1 1 1 1 0 1  1 1 1  0 1 0 1 1 1 0 1 0  
1 1 1 0 1 0 

0 1 0 

0 1 0 

1 0 1 

0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  0 1 0 = 
0 1 0 0 1 0 0 1 0  1 0 1 0 1 0 1 0 1  

0 1 0 1 0 1 

(b) Converting the grid of pixels (1 = black pixel, 0 = white pixel) 
into a sequence of numbers 

The  pre -processor  specifies the inputs for the networks .  Let  the outputs  be 

def ined as follows: 

1 0 0 0 0 

0 1 0 0 1 

0 0 1 0 + 

0 0 0 1 x 

The characters  ass igned to each  class give the in format ion  required  by the post-  

p rocessor  to m a k e  a classification. 

The training data for the ne twork  are therefore:  

~1 Figure4.5 
The action of the image- 
to.numbers pre-processor. 

I n p u t s  O u t p u t s  C l a s s  

1 1 1 1 0 1  1 1 1 1 0 0 0  0 

0 1 0 0 1 0 0 1 0  0 1 0 0  1 

0 1  0 1 1 1 0 1 0 O0 1 0 + 

1 0 1 0 1 0 1 0 1  0 0 0 1  x 
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The pre-processor converts the raw data available to the system into a form that 
can be input to a neural network, i.e. it encodes the input data as a list of numbers. 
The network then does the essential classification work to give one of the desired 
outputs. However, the outputs are presented as a list of numbers which may 
require decoding by the post-processor. 

In this case the post-processor might be a module of a computer program which 
accepts outputs of the network such as (0.01, 0.04, 0.98, 0.11) and thresholds 
these numbers to obtain the binary string (0, 0, 1, 0), matches this binary string 
against data in memory and passes the symbol + to the cognition/execution 
subsystems. For example, it could give a message on a computer screen such as 
'the character + was recognized'. 

Thus the pre-processor converts image data into a sequence of nine numbers 
which can be input to a network, while the post-processor interprets as a character 
the four output numbers which come out of the network. 

We began this section by listing some of the attributes of neural computers which 
people think are advantageous. We will end it by listing some of the features that 
are sometimes considered less advantageous. As always, when choosing between 
different alternatives such as information-processing paradigms, the engineer 
must be aware of the pros and cons. 

Potential disadvantages of neural networks 
I~ Neural networks have no model of the universe in which they work. 

I~ Whereas neural networks work well for inputs reasonably similar to their 
training data, they may give completely unpredictable outputs outside this 
region. 

I~ Although they require no programming, a considerable effort may go into the 
pre-processing and post-processing subsystems for a neural network. 

I~ Much of the knowledge about neural networks is empirical. 

Most of the remainder of this chapter will be devoted to explaining the technicali- 
ties of neural networks. Our objective is to give you sufficient information on this 
subject for you to be able to design and build your own neural processing systems. 

The fundamental feature of any neural network is that it is composed of many 
interconnected units, each of which performs a weighted sum of its inputs. 
Figure 4.6 shows an example of one of these units. 
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Yl 

Xo 

Xl x 3 
x2 

X n 
~11 Figure4.6 
A unit in a neural network. 

The unit has n + 1 inputs, x 0 to x n, and a single output, y. Associated with each 
input is a weight,  which is a real number. The value of each weight, w 0 to w n, can 
be either positive or negative (or zero), very large or very small. When a particular 
set of input values arrives at the unit, each of the inputs is multiplied by its 
associated weight value and the sum of all the weighted inputs is found. 
Mathematically, this can be summarized by the following expression: 

t/ 

S = w Ox 0 + W l X l  + .." + WnXn = ~ wix i  

i = 0  

This is the weighted sum of the inputs, S. The value of this weighted sum 
determines the output of the unit, y. Exactly what that output is depends on the 
output  f u n c t i o n ,  which in turn depends on the particular type of neural network. 
A typical output function would produce either an output of 1 if the weighted sum 
is positive, or an output of 0 if the weighted sum is negative. What happens when 
the weighted sum is zero? Again this can vary but typically this is treated the same 
as a positive weighted sum, so the output would be 1. This sort of output function 
is shown graphically in Figure 4.7, and is described as hard-l imit ing.  

v 

S -~ ~ wixi  
i = 0  

"91 Figure4 .7  
Hard.limiting output 
function. 
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You will notice that the expression for the weighted sum shows that the sum is 

taken for all the inputs x 1 to x n, which are variable, but that it also includes a term 

x 0 with a corresponding weight w 0. This extra input x 0 has a constant value of 1 

and provides an offset of w 0 to the weighted sum. This is essential for the correct 
working of the unit, as we shall see later. 

The way that the units in an artificial neural network function has often been 

compared to the way that biological neurons work. It is known that neurons are 
connected together via synapses, as shown in Figure 4.8. 

~il Figure 4.8 
Typical biological neuron. 

A synapse produces a chemical response to an input. The size of the response can 
vary, and the mechanism is analogous to the weights in the units of an artificial 

neural network. The biological neuron 'fires' if the sum of all the reactions from 

the synapses is sufficiently large, so there is a similarity in their behaviour to the 

'units' that have been described. In fact, the units were originally invented as an 
attempt at modelling biological neurons, hence the use of the term 'neural 

networks' .  However, an element of caution is needed. Although there are some 

102 



CHAPTER 4: NEURAL NETWORKS 

similarities between the functioning of these units and biological neurons, it 

would be untrue to say that an artificial neural network is like a brain. Biological 

neurons are far more complex than these simple models. 

Artificial neural networks are composed of large numbers of these units con- 

nected together. However, it is worth looking at the properties of just one of these 

units to start with. First of all we want to show that a single unit is capable of 

performing the Boolean logic functions AND, OR and NOT when the inputs are 

binary with the values of either 0 or 1. 

Figure 4.9 shows a single unit with two inputs xland x 2. For technical reasons 

explained in Section 4.3, there is a another fixed input, x 0, called the offset, which 

has a fixed value of 1.0. The weights are set to w 0 = -1.5,  w 1 = 1.0 and w 2 = 1.0. It 

is assumed that the unit is hard-limited as explained previously, so that the output 

y is 0.0 if the sum, S, of the input times the weights is less than zero, and y - 1.0 
otherwise. 

When both the inputs x I and x 2 are 0.0, 

S = -1 .5  x 1.0 + 1.0 x 0.0 + 1.0 x 0.0 = -1 .5  

and the output of the unit is 0.0. When xl is 0.0 and x 2 is 1.0, 

S = -1 .5  x 1.0 + 1.0 x 0.0 + 1.0 • 1.0 = -0 .5  

and the output of the unit is 0.0. When x 1 is 1.0 and x 2 is 0.0 

S = -1 .5  x 1.0 + 1.0 x 1.0 + 1.0 x 0.0 = -0 .5  

and the output y is again 0.0. Finally, when xl is 1.0 and Y2 is 1.0, 

S = -1 .5  x 1.0 + 1.0 • 1.0 + 1.0 x 1.0 = +0.5 

and in this case, after hard-limiting, the output of the unit is y = 1.0. Table 4.1 

summarizes these results. 

TABLE 4.1 THE AND FUNCTION 

Xo Xl x2 
(fixed) 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

-1.5 

-0.5 

-0.5 

+0.5 

AND 

Y 

l - 0  
Xl 

The output in Table 4.1 is only 1 when both inputs xl AND X 2 are 1, and therefore 

the unit performs the logical AND function. 

~[ Figure 4.9 
The AND function. 
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Figure 4.10 shows a unit with two inputs which is capable of performing the 
logical OR function. The output response is summarized in Table 4.2. You can see 
that the output is 1 when either xl is 1 OR x 2 is 1. 

TABLE 4.2 THE O R  FUNCTION 

Xo Xl x2 
(fixed) 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0.~ 

0.~ 

0.~ 

1.~ 

O R  
Yl 

2 
Xl 

~q[ Figure 4.10 
The OR function. 

Finally, Figure 4.11 shows a unit that can perform the logical NOT function. If the 
input x 1 is 0 then the output is 1, and vice versa. This is summarized in Table 4.3. 

TABLE 4.3 THE N O T  FUNCTION 

Xo Xl 
(fixed) 

1 0 

1 1 

S 

+0.5 

-0.5 

NOT y l 

Y 

1 

0 
x 0 Xl 

Figure 4.11 
The NOT function. 

We have therefore demonstrated how these simple units can perform the logical 
functions AND and OR for the case where the number of inputs is two (not 
counting the constant input x 0) and NOT where there is one input and x0. It was 
stated in Chapter 3 of Volume 1 of this book that any logic function can be con- 
structed from gates that perform these three basic logical functions. This means 
that conventional computers could be built using these artificial neural units 
alone instead of the usual transistor-based logic circuits. 

We are not suggesting that computers can or ever will be built using neural 
networks, but their potential was the reason for the initial excitement over neural 
networks. Researchers felt that they had shown that, since brains are made of 
neurons, and neurons behave like logic gates, and computers are made from logic 
gates, it follows that the brain is like a computer. Therefore it should be possible to 
mimic or simulate the functions of the brain on a computer. Unfortunately this 
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was too optimistic, because neurons are much more complex than this simple 
model. The quest for producing an artificial brain is still highly elusive and is 
likely to remain so for many years to come. 

In engineering terms, on the other hand, these units provide a medium in which 
certain operations can be carried out with more success than conventional 
algorithmic methods. In particular, pattern classification, which was introduced 
earlier in the book, can be implemented relatively successfully using neural 
networks. 

Objects are said to belong to a particular class if they have properties which are 
similar to other objects in that class. If we wanted to make a two-way classifica- 
tion of fruit into either apples or bananas, for example, we could select a set of 
measurements such as size and weight. When presented with an unknown 
example of a fruit at a later stage we could classify it as either belonging to the 
class 'apple' or the class 'banana' according to which class has the most features 
in common with the previously learnt examples. 

What makes the 'apples and bananas' example difficult for machines to carry out 
is that the objects to be classified don't  match up exactly with any of the 
previously recorded examples. One way to resolve this is to store some 'ideal' 
object that is representative of each class - the perfect apple and the perfect 
banana. This ideal object is then the model or template against which we compare 
new objects. In a similar way, new discoveries of fossils are classified by 
comparing them with the large collection of previously identified fossil speci- 
mens in the British Museum and elsewhere. 

Neural networks provide an alternative approach in which there is no model. 
Somehow the general characteristics of the class have to be inferred from the 
examples that have been seen. It is sometimes said that the neural network has a 
distributed model, which means that the model is not stored in one place but is 
distributed throughout the network in the values of the weights. 

A single unit can sometimes be enough to be able to carry out a pattern 
classification. As an example, we will carry out a two-way classification into 
classes A and B, using only two measurements x 1 and x 2. Table 4.4 lists the data 
that we collected from ten samples. Notice that the data here are not binary 
numbers: the values are decimals. In this example we are going to leave the data in 
this form. 
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TABLE 4.4 MEASUREMENTS OF TEN SAMPLES, 
CLASSIFIED AS OBJECTS A AND B 

S a m p l e  X 1 X2 Class i f i ca t ion  

l 2 .0 3.5 A 

2 3.0 1.5 B 

3 4.5 1.5 B 

4 1.5 2.0 B 

5 3.0 4.5 A 

6 2.0 5.0 A 

7 4.0 3.0 B 

8 3.0 3.0 B 

9 3.0 5.5 A 

10 4.0 4.5 A 

It would not be too difficult to carry out the classification of any new sample given 

the two measurements. For example, what class does the object with the follow- 

ing measurements belong to? 

x I = 2.0, x 2 = 4.5 

It isn't immediately obvious, but yes, it's A. Don ' t  worry if you can' t  see why - it 

will become clearer as we go along. 

We could display the same data on a graph using x~ and x 2 as the two axes, and 

mark the position of each sample on the graph with a symbol representing either 

'A' or 'B' .  This is shown in Figure 4.12. Chapter 2 gave various methods for 

separating the clusters of points, and neural networks provide another method 

with the great advantage of learning from examples. 

�9 class A data point 

�9 class B data point 

X2~ 

6 

2 

f 
--4 -3 -2 -1 0 

Q 

0 x 2 = m x  1 + c  

o 

C �9 �9 

i 2 3 4 5 6 x I 

Figure 4.12 
Graph of the two-object 
data, for the samples of 
Table 4. 4. 
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The graph, called thepattern space, shows that the two types of object lie in quite 

distinct clumps. We can separate the clumps quite easily by drawing a line 

between them, as shown in Figure 4.12. Given data for some new object, we 
would only have to test to see if the data correspond to a point in the pattern space 

which lies on one side of the line or the other in order to classify the object. These 

two classes can therefore be described as linearly separable. 

How do we test whether a point is on one side of a line or the other? A line has the 

general form 

y = m x + c  

where m is the slope or gradient of the line and c is the point on the y-axis where 

the line intersects. 

On our graph, y corresponds to x 2 and x corresponds to x 1 , so the equation for a 
general line in our pattern space is 

X 2 = m x  1 + c (4.1) 

This can be rearranged to give 

x 2 - m x l - c  = 0 (4.2) 

We can find the value of c for the straight line in Figure 4.12 by noting where the 

line passes through the x 2 axis, i.e. at x 2 = 2.0. So, when x I = 0, x2 = 2.0. Substitut- 
ing into equation (4.2), we get 

2 . 0 - m  • O - c  = 0 

c =  2.0 

Similarly, by looking at the point where the line goes through the x 1 axis we can 

find m. In this instance, the line crosses the x 1 axis at x 1 = - 4 . 0 ,  so when x 2 = O, 

x 1 = - 4 . 0 .  Substituting again, we get 

O -  m(-4.0)  - 2.0 = 0 

m = 0.5 

So the equation for the straight line in Figure 4.12 is 

x 2 - 0 . 5 x  1 - 2.0 - 0 (4.3) 

When a pair of coordinates x 1 andx 2 are substituted into this equation, if the result 
is 0 then the coordinates correspond to a point that lies on the line. 

It turns out that if x 1 and x 2 are substituted into this equation and the result is 

greater than 0, the point lies above the line. Similarly if the result is less than 0 the 
point lies below the line. So for classification, when the two measurements are 

substituted into equation (4.3) for the line separating the two classes, if the result 
is greater than 0 the object is of type A. Alternatively, if the result is less than 0 the 

object is of type B. 
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For example, consider x 1 = 2.0 and x 2 = 4.5. Substituting into the left-hand side of 
equation (4.3) we get 

4.5 - (0.5 X 2 .0 ) -  2.0 = 1.5 

The result is greater than 0, so the object is of type A, confirming our earlier 
intuitive conclusion. 

Now, let's return to neural networks. Recall that a single unit gives an output of 1 
if the weighted sum is greater than or equal to 0, and an output of 0 if the weighted 
sum is less than 0. If we code the objects such that 1 corresponds to A and 0 
corresponds to B then we have to find a set of weights that will produce 0 and 1 
when appropriate. The equation for the weighted sum of a two-input unit is 

2 

Z WiXi = WoX 0 + W IX 1 W2X2 + 

i = 0  

The output of the unit, y, is 1 when the weighted sum is greater than 0, i.e. 

y = i when WoX o + w l x  1 + w 2 x  2 > 0 

Similarly, the output is 0 when the weighted sum is less than 0, i.e. 

y = 0 when WoX o + w l x l  + w 2 x  2 < 0 

The dividing line between them corresponds to the weighted sum being equal to 
0" 

WoX 0 + W l X l  + w2x2  = 0 (4.4) 

This can be rearranged to give 

W2X 2 = --W l x  l - W O x  0 (4.5) 

W1 WO 
X 2 = -  - -  X 1 --  )C o (4.6) 

w2 ~ 

Comparing equation (4.6) with equation (4.1) and putting x 0 = 1 gives 

w 1  w 0  
m -  , c -  

w 2  w 2  

There is no unique solution to these two equations. Just as an example, let us start 
by assuming that w 2 = 1.0. Then equation (4.3) is obtained from the values 

w 0 = - 2 . 0  and w l = - 0 . 5  

With these weights the unit can discriminate between the two classes of objects. A 
single unit with the weights shown in Figure 4.13 could classify objects A and B 
on the basis of the data in Table 4.4. 

108 



CHAPTER 4: NEURAL NETWORKS 

Xo x2 
Xl 

We can test this by presenting the unit with the two values shown earlier, and see if 
the output corresponds to the correct classification. The values used were 

x 1 = 2 . 0 ,  x 2 = 4 . 5  

When these values are presented to the unit the weighted sum is 

WoX 0 + W lX 1 + WzX 2 = (--2.0 X 1) + (-0.5 X 2.0) + (4.5 X 1.0) = 1.5 

The weighted sum is greater than 0 so the output is 1, which, by our design, 
corresponds to object A. What has been achieved is described as generalization, 
which means that although the weights were selected on the basis of a set of 
known input-output data, the unit can correctly classify new data that it has not 
seen before. 

This shows some of the capabilities of a single unit, but clearly it would be far 
better if the weights could be determined automatically. In this example it was not 
difficult to find values for the weights because the pattern space was two- 
dimensional. Problems with more inputs would produce a pattern space with 
more than two dimensions, which is difficult to visualize, and so it is more 
difficult to find simple lines or equations that separate the data. 

A further problem is the fact that it is not always possible to separate data using 
straight lines. Figure 4.14 shows two examples of a pattern space with two 
classes of data. Neither of these sets of data could be separated using just a straight 
line, and they are therefore described as non- l inear ly  separable.  Fortunately this 
can be overcome if you use several units rather than just one. 

~[ Figure 4.13 
Two-way classifying unit. 
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n @ @ 

i @ 
�9 m 

m m m o 

[] �9 mo o 

[] 

0 0 
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m �9 0 

�9 �9 m O0 0 

0 0 

Figure 4.14 
Examples of non-linearly 
separable problems. 
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The way that the units are connected determines whether a network is a feed- 
forward or a feedback network. In the following sections these two types of 
network will be examined. Also, you will be shown how the weights can be deter- 
mined by the network itself. 

The single unit in the previous section was found to have the ability to perform a 
pattern classification only when the data are linearly separable. For our simple 
example of a two-input problem the line can be drawn in the pattern space, and the 
weights calculated by hand. Even so, the unit we considered had the ability to 
generalize from the initial set of data, and therefore provides a very powerful 
method for pattern classification. 

Two problems remain: 

1 How can these units be used to classify non-linearly separable data? 

2 How can the weights be determined in cases where there are more than two 
inputs? 

The first problem can be overcome by connecting several units together to form a 
feedforward network, as shown in Figure 4.15. In a feedforward network the 
units are grouped into layers. The reason that this type of network is called a 
feedforward network is that the outputs of units in one layer are only ever 

output 
layer 

hidden ( 
layer 

input 
layer C) 

x1 

T 

I T 
x 2 x3 

) 

l 
X4 

Figure 4.15 
A three-layer feedforward 
network. 
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connected to the inputs of units in a later layer, usually the next layer. The 
information in the network is therefore always flowing from the inputs to the 
outputs. 

The first layer is called the input layer, and is usually a fan-out layer. This means 
that a unit in this layer has one input and several outputs which all have a value 
equal to the input so that no actual processing takes place. 

The next layer is called a hidden layer because its inputs and outputs are not 
connected to the outside world, so there is no direct access to the units in this 
layer. The example shown in Figure 4.15 has only one hidden layer, but in general 
there could be many hidden layers. 

The final layer is called the output layer. It has several inputs from the units in the 
previous hidden layer, and its outputs are the outputs of the network. 

Units in the hidden layers and the output layer are of the type that was discussed in 
the previous section, with one difference. This difference is that the output isn't 
necessarily hard-limited. The exact nature of the output function is concerned 
with learning, and will be described in the next section. 

The network in Figure 4.15 is a special case called afuUy connected multilayer 
network, in which all of the units in one layer are connected to all of the units in 
the next layer and only the next layer. Thus outputs from units in the input layer 
are connected to the inputs of units in the first hidden layer. Outputs from units in 
the first hidden layer are connected to the inputs of units in the second hidden 
layer, and so on, until finally the outputs from units in the last hidden layer are 
connected to the inputs of the units in the output layer. 

We are not going to prove that a feedforward network is capable of classifying 
non-linearly separable data. We will, however, describe one classic problem and 
show how it can be implemented. This problem is called the EXCLUSIVE-OR, and 
has become a sort of test problem over the years to show the limitations of the 
single unit. Table 4.5 shows the EXCLUSIVE-OR function, which has two binary 
inputs. Figure 4.16 shows the same function in pattern space. 

TABLE 4.5 THE E X C L U S I V E - O R  FUNCTION x 2 

�9 desired output is l 

o desired output is 0 

Xl X2 

0 0 

0 1 

1 0 

1 1 

y 

r 

Xl 

Figure 4.16 
The EXCLUSIVE-OR function 
in pattern space. 
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It should be apparent from the pattern space that it is impossible to draw a single 
straight line that would separate the 0s from the ls. A single unit would therefore 
be unable to solve this problem. The network in Figure 4.17, on the other hand, 
can implement the EXCLUSIVE-OR problem. 

The network in Figure 4.17 can use hard-limiters because the solution can be 
found using the three types of logic gate (AND, OR and NOT) that were described at 
the start of this chapter rather than letting the network find the values for the 

weights itself. Later in this section we will describe the method for automatically 
finding a solution in which hal-d-limiting cannot be used. 

Yl 
unit 3 

Y2 

unit 1 unit 2 

/ 
Xo 

( ) 
T T 
Xl x2 

The EXCLUSIVE-OR problem can be stated in words as: 

the output is 1 when either x 1 is 1 AND x 2 is NOT 1 

OR x 1 is NOT 1 AND x 2 is 1 

otherwise the output is 0. 

The hard-limited units in Figure 4.17 are carrying out these logical functions: 

Unit l : y  1 = 1 when x 1 is 1 AND x 2 is NOT 1 

Unit 2:Y2 = 1 when x 1 is NOT 1 AND x 2 is 1 

Unit 3: y = 1 when Y l is 1 OR Y2 is 1 but not both 

Note that the unnumbered units in the first (or input) layer do no more than 
receive the inputs and fan them out to the next l a y e r -  they do not have any 
weights and do no processing; they simply make each output the same as the 
input. 

4[ Figure4.17 
Feedforward solution to tt~ 
EXCLUSIVE-OR problem. 
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The processing can be summarized as follows: 

Xo XI X2 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

yl y2 y 

Thus the inputs shown in Table 4.5, if applied to the inputs of this network, would 
give the correct output in each case. This shows that a feedforward network is 
capable of classifying non-linearly separable data. 

4.5 Learning in neural networks 

The next problem is that of finding the values for the weights automatically. 
Given a particular classification problem, if we assume that we have chosen a 
feedforward network with a sufficient number of layers and number of units in 
each layer, then there exists a set (or many sets) of weights which produce the 
correct responses. Finding a set of weights therefore requires us to search for an 
acceptable solution. When the values of the output are known, they can be used to 
find values for the weights by a process described as supervised learning. (We 
will look more closely at what we mean by 'learning' in Chapter 8.) 

4.5.1 Delta rule 
Of the search techniques described in Chapter 3, the calculus-based search 
showed how a derivative could be used as an indication of the direction to the 
solution if the solution exists at a minimum (or maximum). The gradient-descent 
method, described in Section 3.3.4, is also referred to as the delta rule when 
applied in feedforward networks. A feedforward network using the delta rule is 
called a multilayer perceptron. 

The search space is multidimensional, with the number of dimensions corre- 
sponding to the number of weights. The value used to measure the candidate solu- 
tion is the mean squared error, E. The error is the difference between the desired 
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output, d, and the actual output, y. This value, e, is squared and the average value 
found for all the examples in a training set. The training set consists of all the 
known input-output pairs. If there are P examples in the training set, then for a 
single processing unit the mean squared error is 

P 
- -  1 2 

p = l  

(4.7) 

where ep = dp-yp  for each example, p. 

It is possible to picture what is required for learning in problems with only two 
inputs (including the constant input x0). An example of such a problem is the 
NOT function described earlier. The weighted sum is 

s--Z 
i = 0  

W i X  i = W o X  0 + W l X  1 

and, since x 0 = 1, 

S = w 0 + w 1 y  I 

The mean squared error for this case is 

2 
- 1 

p = l  

In order to show how E changes with the values of w 0 and w~, we are going to use 
a small 'sleight of hand'. We are going to remove the hard-limiting from the 
output and compare the desired value with the weighted sum, just for the moment. 
Since there are only two possible binary inputs (0 and 1), and the output in each 
case is the inverse (1 and 0), the mean squared error can be calculated as 

2 
- 1 

p = l  

1 ) 2  2 
= ~ [ (d~ -  S~ + ( d 2 -  S2) ] 

When X l = 0  , the desired output is d l=  1, and the actual output is Sl=W0. 
Similarly, when xl = 1, the desired output is d 2 - 0 ,  and the actual output is 
$2 = w0 + w l. The total error is 

- (1 - w0) 2 + ( 0 -  w 0 -  wl)2 
E =  

2 
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When this function is plotted as in Figure 4.18 it can be seen that a surface is 
created called the error surface. A valley or minimum exists at the point where 
w0= 1 and wl = - 1 ,  at which point the mean squared error is zero. So in this 
example, it turns out that the hard-limiter is not needed since the unit can produce 
the correct output without it. This is not generally the case, but serves to illustrate 
the error surface in this particular example. 

Figure 4.18 
Error surface for the 
inverter problem.  

In gradient descent, the aim is to move down a surface to a minimum. This is 
achieved by changing each of the variables (the weights in this case) by an 
amount that is proportional to the negative of the slope. That is, 

bE 
Awi = - a  OWl (4.8) 

where a is a constant, and E is the mean squared error. The symbol A is a delta, 
and the notation Aw i means 'the change to wi'. The derivative of the mean squared 
error with respect to a weight w i is 

~)/~ 2 e Oy 

bwi p ~ e OWl 
p =  1 

This is derived as follows. The mean squared error is defined as 

P 
- 1 2 Ze 

p = l  

where e = d -  y for each example, and P is the number of examples. 
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Using gradient descent, the change to each weight w i is proportional to the 
negative of the slope. That is, 

m 

~E 
Awi - - a  ~W i 

where o~ is a constant. The derivative of the mean squared error with respect to a 
weight is 

~E 
aWl 

1 P 
1 e ~ e2 =1  0-~~(d y)2 

By the chain rule of calculus, 

3E 1 3 ~y 1 3y _ 2 Oy 
~)w/. - P ~  ~yy(d - y)2 • ~wi _ e - 2 (d  - Y)ff-ww~ p e a w  i 

p = l  p = l  

This shows that in order to find the derivative of the mean squared error with 
respect to the weights, the derivative of the output y with respect to the weights is 
needed. This is why the hard-limiter function used earlier in this chapter won't do, 
as it is not a differentiable function. 

In order to overcome this problem a different output function is applied to the 
summed weights. This has to be differentiable and monotonic, which means 
that for every value of the weighted sum, there is only one value of output, and 
vice versa. A commonly used function is the s i g m o i d  f u n c t i o n ,  shown in 
Figure 4.19. 

Y 
1.0 

0.5 

/ 

The equation for this sigmoid output function is 

1 
Y= l + e - S  

n 

where S = ~ WiX i and e is the base of natural logarithms. 
i=0 

(4.9) 

Figure 4.19 
Sigmoid  func t ion .  
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As you can see, when the weighted sum is greater than 0 the value of the output 
rises to 1 as the value of the weighted sum increases, and similarly when the 

weighted sum is less than 0 the output falls to 0 as the value of the weighted sum 
decreases. When the weighted sum is 0 the output is 0.5. 

The derivative of the sigmoid function with respect to the weighted sum, S, is: 

dy e -s 

dS = (1 + e-S) 2 = y (1 - y) 

This gives us enough information to be able to evaluate the changes that have to 
be made to the weights to reduce the error and consequently to find the solution. 

Suppose a sigmoid function is applied to give the output 

1 
y =  

1 + e  -s 

The derivative of the output with respect to a weight can be found using the chain 
rule ,  

ay dy bS 
= X 

~wi dS 3wi 

/7 

w h e r e S -  ~ wixi . 
i = 0  

For a sigmoid function, y - 
1 

1 + e - s '  we have 

Also 

-s dy e 

dS (1 + e-S) 2 
= y(1 - y) 

~S 
awi 

n 

a ~ w j @ -  
OWi j = 0 

Substituting these, we get 

i 

aE 
~wi 

ay 
p e Owi 

p = l  

which can be written as 

~ awj 
j = o  a-~w* xj - x, 

- 2  v ,  P dy aS 
p 2_, e-d- ~ X aW i 

p =  1 

2 P 

~_, ey(1 - y ) x i  
P 

p = l  

aE 
~w; 

P 
2 pZ 

p = l  

&;  

where ~ = ey(1 - y) = y(1 - y)(d - y ) .  

117 



VOLUME TWO 

Therefore, from (4.8), 

aE 2 a  p 
A W  i -- - - a  OW i = p ~_~ axi 

p = l  

which can be written using the Greek symbol 7"/(eta) as 

P 

A w i  = 17 s ~x i  
p = l  

2 a  
where 7/ - -fi- is a constant, or 

A w  i - 

P 

Z rl~xi 
p =  l 

This states that the adjustment to the weight w i is the sum of 77 (~X i taken over all of 
the examples in the training set. it is common practice to simplify this procedure 
by simply changing the value of w i by an amount 77 5 x  i after each example in the 
training set. 

The result is the delta rule formula: 

A w  i = 1" I (~x i (4.10) 

where 

S =  y ( 1 -  y ) ( d -  y)  (4.11) 

and r/is a small positive constant, usually between 0 and 1, called the l e a r n i n g  

rate.  

This formula shows us that the change to a weight is positive when 5 and x i are 

both positive or both negative. For example, if x i is 0.3 and y is 0.2 when the 
desired output is 1, then 

= 0 .2 (1 -0 .2 ) (1 -0 .2 )  = 0.128 

A w i  = 17 X 0.128 X 0.3 = 0.03847"/ 

Let us assume that r/= 0.5 and that w i is initially -0.8. The value of Awi  is added to 
the old value of the weight, w i, to produce the new value. The new value for w i 

will be 

wi(new) = wi(old) + Aw i 

= - 0 . 8  + (0.0384 x 0.5) 

= -0.7808 

Here the value of the weight gets more positive so that the value of the weighted 
sum increases, and consequently the output will be closer to the desired value. 
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This gives us the formula for changing the weights for a single unit when the 
value of the error between the desired output and the actual output is available. In 
multilayer networks this formula has to be modified for the units in the hidden 

layer. 

4.5.2 Back-propagation 
In a multilayer perceptron, the value of the output of a unit in one of the hidden 
layers can be found, but in the first instance there is no 'desired' value, so an error 
cannot be formed. The error only exists at the output layer where we know what 

value we want the output to be. 

The derivation of the formula for the weight changes in the hidden layers 

proceeds as follows. 

Assume that the network is a three-layer network with a single perceptron in the 

output layer, as shown in Figure 4.20. 

Xo 

YT 
Y0 ._ ' ~ output 

"- W o ... ] layer 
w 1 w 3  

) /  
~ - ~ / u n i t  1 ~ - ~  unit 2 ~ ~ m t 3  

~ /' ~ x0 I | x0 I_.. I hidden 
w 0 ~ ,, W o W2 ] ItWo _.. ] ~w,o ] layer 

input 
layer 

T t 
x 1 x 2  

~l Figure 4.20 
T h r e e - l a y e r ,  s i n g l e - o u t p u t  

p e r c e p t r o n .  

Consider a weight in the hidden layer. If we want to change w 1 in unit 2 in the 
hidden layer, we need to know the effect that it has on the final output, y. To do this 
we need the derivative of the error with respect to w l. 

The squared error at the output of the network is E = ( d -  y)2. 
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We are making the assumption from the start that we are going to adjust the 
weight after every example in the training set, so the squared error is used and not 
the mean squared error; i.e. we assume 

~E 
Aw~ - - a O w  ~ 

where E is the current error. Then 

y - f  
;3) 

Z wiYi 
= 0  

for the unit in the output layer 

Y2 - f i2 / WiXi 
= 0  

for unit 2 in the hidden layer 

where f( ) is the output function, which we can assume is a sigmoid. 

By the chain rule, 

Owt = dy x ~wl 

dE dy ay2 
~y •  • 

N o w ,  

dE 

dy 

Furthermore 

~y 

@2 

and 

2 

~)wl 

So 

~E 

~W 1 

d d y2 
~yy (d - y)2 _ dyy (d 2 _ 2dy  + ) - - 2 ( d  - y) 

~ t 1 ) _ w2e-2W'Y' 
~)Y2 1 + e -xw' y' (1 + e -2w' y')2 = w2y(1 - y)  

0 t 1 ) _ xle-XW;X' 
bWl 1 + e -xw' ' '  - (1 + e-XW;X;) 2 = xly2(1 - y2) 

= -2Xl Y2(1 - y2)wzy(1 - y ) ( d  - y)  
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3E 
and since, by (4.8), AWl - -oc OWl 

Awl = r/xiy2(1 - y2)wzy(1 - y)(d - y) 

or  

Awl  - / /x lY2( l  - y2)w2~ 

where S = y (1 - y)(d - y), and in this case the constant, r/, is r /=  2a. 

And then 

zXwl = r/xla2 

where ~ = y2(1 - y2)w28. 

So the change Awl for the intermediate layer has been found from the parameter 
calculated for the output layer. 

If there were more output neurons, the error E would be the sum 

E = [d 1 - y  l] 2 + [d 2 - y 2 ]  2 + . . .  + [dm - y m ]  2 

So the derivative of the error with respect to the outputs is 

~E 
~"  3Yi = - 2  ~_, [di - Yi] 

Consequently, the general form of the equation for 6 i for unit i in hidden layer k is 

m 

~/ - y(1 - y) ~ w i ( j ~  s 
j = l  

where y is the output of the hidden unit, m is the number of units in layer k + 1 that 
unit i is connected to via weight Wi(j) , and ~j is the value of ~ for each of the m 
units in layer k + 1. 

The result is the same as equation (4.10), repeated here as equation (4.12)" 

Awi = 7"1 ,Sxi (4.12) 

The expression for 8, however, is quite different in this case: 

m 

~. = y ( l - y )  ~ wi(j~ ~ 
j - ' l  

(4.13) 

This is a rather fierce-looking formula but is actually not too difficult to interpret. 
Instead of the error ( d - y ) ,  the weighted sum of the S values from the units one 
layer ahead are used. Layer k + 1 could be the output layer or another hidden layer. 
It is assumed that the unit in layer k is connected to m units in layer k + 1. The 

121 



VOLUME TWO 

subscript i indicates which unit in the current layer, k, is being adjusted, and the 
subscriptj indicates the unit in the next layer, k + 1. The weight, wi(j), is therefore 
the weight in unit j of layer k + 1 that is associated with the input from unit i in 
layer k. 

In back-propagation, the calculations start at the output layer, where the first 
values of 3are calculated using equation (4.11) and the weights adjusted. Next the 
values of 3 in the hidden layer immediately preceding the output layer are 
calculated and the weights adjusted. This time equation (4.13) is used to calculate 
the ~3values. This continues back through the network until all of the weights have 
been adjusted. 

Figure 4.21 shows a specific case of a unit in a hidden layer, k, connected to two 
units in the next layer, k+ 1. In this case m = 2. 

81 82 

unit 1 unit 2 layer k + l 

unit i layer k 

To make life easier, let us assume that layer k+ 1 is the output layer. The two 
values, ~1 and 62 are calculated using equation (4.11) and all the weights in units 1 
and 2 in layer k + 1 are adjusted according to the formula in equation (4.10). Next, 
the weighted sum of these 6values is found. The weights used are those in units 1 
and 2 in layer k + 1 that receive an input from unit i in layer k. Thus the weighted 
sum is 

wi(1)61 + Wi(2)r 2 

This is then used to calculate the value of ~i so that the weights in unit i can be 
adjusted. 

Figure 4.21 
Calculating ~ for a unit in a 
hidden layer. 
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The main difference between feedback networks and feedforward networks is 
that the connections in feedback networks allow information to flow in either 
direction, including from the output to the input. As a result, back-propagation 
cannot be used as a means of learning. Solutions are therefore found not by 
minimizing the error function but by minimizing a function that is analogous to 
the 'energy' in the network. In the feedforward case the error was seen to form a 
surface, and gradient descent was used to move down the surface to the lowest 
point, called a minimum. In feedback networks the 'energy' also forms a surface. 

In one example, the Hopf ie ld  ne twork  shown in Figure 4.22, a set of inputs and 
corresponding outputs are used to calculate weights which position the network 
at minima in the energy surface. Training is therefore much simpler than in back- 
propagation as it is achieved in one calculation. When the network is operating as 
a pattern recognizer, it is initialized by holding the inputs, x i, at their desired 
values. Since the x inputs are connected to the outputs of the units, the values o f x  i 

become the initial outputs of the network. The x inputs are then removed and the 
network is allowed to iterate until it settles to a stable solution. During the 
iterations, a unit is arbitrarily selected and the weighted sum of its inputs is 
calculated. If the weighted sum is greater than 0 the output is 1, otherwise the 
output is 0. The network is performing gradient descent, with the result that the 
network is directed towards the nearest local minimum, which hopefully corre- 
sponds to the correct output value. 

Problems arise in the Hopfield network because the creation of the many local 
minima corresponding to input-output pairs also creates other spurious minima. 
Thus it is possible for one of the original input values taken from the training set to 
drive the network to one of these spurious local minima and produce the wrong 

output. 

( 

1 1 ,  

X3 X 2 Xl 

Figure 4.22 
The Hopfield network. 
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One way of overcoming this problem is to ensure that the desired input-output 
relationship is placed at the global minimum in the energy surface while the 
system is learning. An example of such a network is the Boltzmann machine, 
shown in Figure 4.23. It uses simulated annealing (Section 3.2.4) to set the values 
of the weights when learning input-output relationships so that the network is at a 
global minimum. Then when an input arrives at the network, simulated annealing 
again allows the network to settle into a global minimum, producing the correct 
output response. 

bidirectional 
link 

outputs 

t T 

T c T 
inputs 

,~ Figure 4.23 
The Boltzmann machine. 

Although feedback networks have very important properties, due to limitations 
on space we will focus exclusively on feedforward networks in the remainder of 
this chapter. At the time of writing, feedback networks were being used much less 
than feedforward networks partly due to the limits of the available technology to 
construct these networks and partly because of the length of time that these 
networks take to arrive at solutions. Interested readers can find more detailed 
descriptions of the Hopfield network and Boltzmann machine in other books, for 
example Rumelhart and McClelland (1986) and Picton (1994). 

The multilayer perceptron consists of units which have a sigmoid as the output 
function and the weights are adjusted using back-propagation. Any problem that 
requires a particular input-output relationship which is known in advance, or 
where examples exist of correct input and output values, can be implemented 
using a multilayer perceptron. 
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In a mechatronic system, multilayer perceptrons can be used in all of the three 
subsystems that were identified in Volume 1 of this book. 

(a) Perception 
Multilayer perceptrons can be used to classify visual or other sensory inputs - an 
important function in pattern recognition. 

(11) Execution 
Multilayer perceptrons can be used to transform the desired target coordinates to, 
say, appropriate joint angles in a robot arm. They can also be used to control linear 
systems, but have found an important role in controlling complex non-linear 
systems where models are difficult to obtain. 

(c) Cognition 
Finally, the functions of the cognition subsystem are: 

pattern recognition 

searching 

reasoning 

learning. 

It is clear that neural networks can recognize patterns and that they learn, but what 
about searching and reasoning? The way that neural networks learn makes use of 
search techniques such as gradient descent or simulated annealing, for example. 
Learning is equivalent to finding a solution in a multidimensional space, so a 
neural network can be thought of as a physical embodiment of a search technique. 
If a problem can be set out in such a way that it can be defined by a set of input and 
output pairs, then a neural network should be able to find a solution. A suitable 
choice of those pairs ensures that generalization is meaningful. 

Although this sounds easy, it is in fact the most difficult aspect of any neural 
network implementation. If we can assume that when a problem is defined by a 
set of input-output pairs the neural network can find the solution, just how the 
network does it is no longer of interest. Getting a problem into that form, 
however, is usually non-trivial and may even be impossible. 

Exact reasoning uses deductive logic to produce an output that can be used to 
make a decision from a set of inputs. At the beginning of this chapter you were 
shown how the neural units could behave like logical elements. It follows that a 
neural network is capable of logical reasoning. However, because of the net- 
work's ability to produce outputs other than just 0 or 1 when using sigmoid output 
functions, it is possible to have some form of inexact reasoning. 
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The ability of the network to generalize means that missing input data or noisy 
data can still sometimes produce an output which has a value other than 0 or 1, but 
which is still distinguishable from other outputs. For example, Figure 4.24 shows 

a network in which unit 1 has been set up to perform the AND function of three 

inputs, x 1ANDx 2 AND x3, while unit 2 performs the function x 1 AND NOT x 2 AND x 3. 

yl y2 

unit 1 

Xo l l X 3 X 0 X3 
Xl X2 X 1 X2 

unit 2 

~1 Figure 4.24 
Two different logic 
functions. 

The value of Sl is calculated as the weighted sum of the inputs when the weights 

w 0 to w 3 are -5 ,  2, 2, 2, and the value of S 2 is the weighted sum of the inputs when 
the weights a r e - 3 ,  2 , -2 ,  2. The outputs (Table 4.6) are calculated by substituting 
the weighted sum into the sigmoid function. 

TABLE 4.6 INPUTS, OUTPUTS AND WEIGHTED SUMS FOR THE UNITS IN 
FIGURE 4.21 

Xo Xl x2 x3 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

S1 

-5 

-3 

-3 

+1 

Yl 

0.01 

0.05 

0.05 

0.27 

0.05 

0.27 

0.27 

0.73 

$2 

-3 

-1 

-5 

-3 

+1 

-3 

Y2 

0.05 

0.27 

0.01 

0.05 

0.27 

0.73 

0.05 

0.27 
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Now if input values of say 1,0.8, 0.1 and 1 appear at the inputs x 0 to x 3, the outputs 
of the two units would be 

y~ = 0.23, Y2 = 0 . 6  

The outputs are not clear 0s or ls. But it is still possible to reason that Y2 is greater 
than Yl and therefore one could have more confidence in Y2 being correct than Yl 
being correct. In both cases one could make a decision, even though neither of 
these values are binary 0s or l s. 

4.7.1 An example" optical character recognition 
An area where neural networks have had some success is in optical character 
recognition (OCR) of typed, printed or handwritten characters. At the time of 
writing, OCR is certainly a growth area: scanners that can read documents are 
becoming more readily available, and the software to read and interpret the 
images produced by these scanners is becoming more sophisticated. Most of the 
OCR software that is available has some form of learning ability, although most 
do not use a neural network approach. However, it is claimed that some OCR 
software using neural networks is not only able to read typed text, but also some 
handwritten text. 

There are many problems involved in reading text. Typically, the process 
involves a number of stages before the pattern recognition properties of the 
software are put to use. These stages include image processing, where the image 
is 'cleaned up' so that the text is made clearer. In the simplest case this just 
involves a threshold which converts a grey-scale image into a binary image, so 
that in each picture cell the black text is represented with a binary 0, while the 
white background is represented with a binary 1. 

Next, there has to be some fairly sophisticated software which can isolate all ofthe 
characters. Some researchers have said that this is the real problem in OCR. It may 
seem quite trivial, but examples where the text has 'run together', that is where 
two characters are touching, are difficult to separate. There are also problems of 
scaling for size and adjusting for rotation. Usually OCR packages can handle a 
slight degree of rotation, due to the document not being aligned properly in the 
scanner. However, if a document is scanned upside-down, or rotated through 90 ~ 
then it is unlikely that the OCR software could process the data successfully. 

Finally, there is a stage of pattern recognition. One way would be to use templates 
to compare with each character in turn. The template that is nearest or most similar 
to the character would produce the highest score, and so the character would be 
identified. In packages which can learn, the human operator would be asked to 
identify any character which either produces a very low score because no template 
matches very well, or because more than one template matches the character and 
so the correct one has to be selected. In these cases the templates would be 
modified or new templates created to accommodate this new information. 
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A neural network solution would consist of training a network on examples of a 
particular character set, such as a particular typographic font. All the characters in 
that font would be shown to the network, and when the error reaches a suitably 
low value, the network would have been trained. Showing the network any 
character from that font again should produce the correct response which would 
identify the character. 

As an example, let us consider the problem of representing and recognizing the 
ten characters 0 to 9. 

Considering first the numeral 0 (zero), we can represent it as an 8 x 8 pattern of 
black and white picture cells, and as a pattern of binary 0s and ls: 

Inputpauern 
0 0 0 0 0 0 0 0  
0 0 0 1 1 0 0 0  
0 0 1 0 0 1 0 0  
0 1 0 0 0 0 1 0  
0 1 0 0 0 0 1 0  
0 0 1 0 0 1 0 0  
0 0 0 1 1 0 0 0  
0 0 0 0 0 0 0 0  

- - -  | - - - V - V  

-n i l  i l iB 

nmm mnmm  
,9 
U 

Our desired output pattern for the numeral 0 is the following string of ten binary 
digits (bits): 

Desired output pattern 
1 0 0 0 0 0 0 0 0 0  

If the first bit of the output is 1 and all the other bits are Os, the output pattern 
represents the numeral O. Similarly, if the second bit is 1 and all the others are Os, 
the output pattern represents the numeral 1, and so on for all ten numerals. 

So, for each of the ten numerals we can draw up an input pattern and a desired 
output pattern, as shown below and on the next page. This can be used as our 
training set for a neural network. 

Numeral:O 

I~utpauern 
0 0 0 0 0 0 0 0  
0 0 0 1 1 0 0 0  
0 0 1 0 0 1 0 0  
0 1 0 0 0 0 1 0  
0 1 0 0 0 0 1 0  
0 0 1 0 0 1 0 0  
0 0 0 1 1 0 0 0  
0 0 0 0 0 0 0 0  
Desiredou~utpat~rn 
1 0 0 0 0 0 0 0 0 0  

NN mm mm 
Nun nun 

Numeral: 1 

Input pattern 
0 0 0 0 0 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0 1 1 0 0 0  
0 0 0  1 1  o o o  
O O O l l O O O  
o o o  1 1  o o o  
o o o  1 I o o o  
o o o o o o o o  
Desired output pattern 
0 1 0 0 0 0 0 0 0 0  

128 



b~
 

~
. ,,..
, 

..
..

 n
.l

 
..

./
.i

- 

~ 
~ 

~
~

0
~

 
~ 

~ 
..~

 

I'
/"

'-
 

I,
/_

_
 

~ 
~ 

~
-

0
0

~
'

~
 

~ 

q 
~

0
0

0
0

~
~

 

I""
-,, 

I 
//

 
I 

I 
Ii

 
I 

/ 
I 

i/
 

/ 
I 

I 
i 

E 
..

..
 

~ ~
. 

0
0

0
0

0
0

0
0

 
~ 

I 
I 

II
 

I 
I 

I 
u 

II
II

II
II

 

I 
U

/l
/ 

I 
I 

//
 

/ 
I 

I 
//

 
n 

I 
I 

__
I 

Z -n
 

~>
 

r-
- 

Z F~
 o c~
 



VOLUME TWO 

Now let us consider how these input and output pairs can be used to train a 
multilayered perceptron to recognize the ten numbers. As with all cases, a choice 
has to be made about the architecture of the network. In this example it was found, 
after trying a number of different configurations, that a network with the 
following parameters could be successfully trained to recognize the ten input 
patterns we have specified. 

Number of inputs 64 

Number of outputs 10 

Number of hidden layers 1 

Learning coefficient 0.5 

Units in hidden layer 10 

Number of training pairs 10 

This describes a three-layer perceptron with 64 input units, 10 output units, and 
10 units in the hidden layer, with the learning coefficient set at 0.5. Figure 4.25 
shows the network. 

???? ?? 

10 output units 

1 0  units 
in hidden layer 

64 input 
units 

~l Figure 4.25 
The numeral classifier 
network (for clarity, not all 
the connections are shown). 

The network was initialized by setting all the weights to a random value between 
- 1 and + 1. After presenting the training data to the network 100 times, the outputs 
were as shown in Table 4.7. 
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TABLE 4.7 

Numeral Outputs 

0.46 0.02 0.17 0.13 0.08 0.09 0.02 0.13 0.19 0.15 

0.06 0.72 0.07 0.10 0.12 0.10 0.00 0.31 0.06 0.18 

0.12 0.05 0.22 0.15 0.04 0.10 0.10 0.05 0.14 0.07 

0.09 0.06 0.12 0.17 0.02 0.15 0.02 0.09 0.13 0.14 

0.11 0.11 0.09 0.06 0.67 0.07 0.14 0.18 0.09 0.12 

0.08 0.04 0.10 0.14 0.03 0.14 0.02 0.10 0.13 0.16 

0.07 0.03 0.17 0.11 0.23 0.12 0.82 0.05 0.14 0.07 

0.13 0.17 0.05 0.08 0.11 0.10 0.00 0.33 0.09 0.27 

0.15 0.02 0.13 0.12 0.03 0.12 0.04 0.07 0.16 0.15 

0.11 0.04 0.06 0.09 0.04 0.12 0.01 0.19 0.12 0.26 

The values highlighted in bold are the outputs that should be 1, while all the other 

outputs should be 0. You can see that there is little correspondence between most 

of the inputs and the outputs at this stage. However,  after 200 iterations the 

outputs were as shown in Table 4.8. 

TABLE 4.8 

Numeral Outputs 

0.85 0.00 0.06 0.05 0.07 0.00 0.00 0 . 1 1  0.13 0.08 

0.01 0.84 0.05 0.07 0.03 0.04 0.00 0.11 0.00 0.04 

0.07 0.08 0.76 0.18 0.01 0.08 0.03 0.01 0.18 0.01 

0.05 0.08 0.13 0.74 0.00 0.25 0.00 0.06 0.06 0.04 

0.06 0.04 0.02 0.00 0.84 0.01 0.08 0.04 0.06 0.04 

0.00 0.02 0.03 0.14 0.02 0.60 0.02 0.01 0.16 0.18 

0.0i 0.02 0.09 0.02 0.11 0.16 0.90 0.00 0.18 0.05 

0.09 0.10 0.01 0.09 0.06 0.03 0.00 0.82 0.02 0.17 

0.07 0.00 0.10 0.02 0.04 0.11 0.05 0.01 0.68 0.20 

0.01 0.01 0.00 0.01 0.06 0.16 0.00 0.10 0.14 0.76 
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At this stage all the outputs were greater than 0.5 where they are supposed to be i, 
and all the outputs were less than 0.5 where they are supposed to be 0. So the 

network seems to be converging on a solution. 

After 600 iterations the outputs were as shown in Table 4.9 

TABLE 4.9 

Numeral  Outputs 

0.94 0.00 0.01 0.03 0.04 0.00 0.00 0.03 0.04 0.03 

0.00 0.95 0.03 0.01 0 . 0 1  0.01 0.00 0.04 0.00 0.01 

0.01 0.03 0.94 0.04 0.00 0.01 0.01 0.01 0.04 0.00 

0.03 0.01 0.03 0.93 0.00 0.06 0.00 0.02 0.01 0.01 

0.03 0.03 0.01 0.00 0.94 0.00 0.03 0.01 0.01 0.00 

0.00 0.01 0 . 0 1  0.04 0.00 0.91 0.02 0.00 0.04 0.04 

0.00 0.01 0.03 0.00 0.05 0.06 0.95 0.00 0.04 0.01 

0.03 0.03 0 . 0 1  0.03 0.01 0.00 0.00 0.94 0.00 0.03 

0.03 0.00 0.03 0.00 0.01 0.02 0.02 0.00 0.92 0.03 

0.01 0.00 0.00 0.00 0.02 0.04 0.00 0.03 0.03 0.94 

Clearly, all the outputs are now within 0.1 of their correct values. We chose to stop 

the training here even though the outputs were not exactly correct. It is quite a 

common practice to stop the training when all the outputs are within a certain 

value of the desired value, since further training would reduce these errors but 

only at the expense of a lot more processing time. 

To test the network we presented it with 12 input patterns. These consisted of the 

10 numerals which had been corrupted by noise, shifted, or generally made 
slightly different (see over page), and two other test patterns which consisted of 

'all 0s' and 'all ls '  respectively, as shown below. 

All0s 

l~utpaHern 
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

Allls 

l~utpattern 
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1  

mmmmmmmm 
mmmmmmmm 
mmmmmmmm 
mmmmmmmm 
mnmmmumm 
mmmmmmmm 
mmmmmmmm 
mmmmmmmm 
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The responses were as shown in Table 4.10. 

TABLE 4.10 

Input 
pattern 

All 0s 

All ls 

Outputs 

0.04 0.12 0.02 0.03 0.08 0.01 0.02 0.08 0.01 0.08 

0.00 0 .01  0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.22 

0.93 0.00 0 . 0 1  0.02 0.04 0.00 0.00 0.03 0.03 0.02 

0.04 0.11 0.01 0.32 0.01 0.00 0.00 0.18 0.00 0.01 

0.05 0.00 0.08 0 . 0 1  0.00 0.01 0 . 0 1  0 . 0 1  0.82 0.01 

0.06 0.06 0.89 0.33 0.00 0.01 0 . 0 1  0.01 0.01 0.00 

0.25 0.00 0.01 0.00 0.22 0.00 0.00 0.06 0.16 0.04 

0.00 0 . 0 1  0.01 0.04 0.00 0.84 0.01 0.00 0.04 0.03 

0.00 0.02 0.17 0.00 0.03 0.12 0.61 0.00 0.08 0.00 

0.01 0.01 0.00 0.01 0.02 0.00 0.00 0.81 0.01 0.05 

0.09 0.00 0.03 0.00 0.05 0 . 0 1  0.01 0.01 0.89 0.01 

0.04 0.00 0.00 0.17 0.00 0.01 0.00 0.04 0.02 0.44 

First, the 'all 0s' and 'all Is '  patterns produced no definite high output. This is as 
we would expect, as they don't correspond to any of the training patterns. Next, 
the corrupted numerals 0, 5, 6, 7 and 8 produced good responses, even though the 
value of the output that should be 1 is lower. In the case of 9 the value is very low 
(below 0.5), but at least it is higher than any of the other outputs, so it would be 
correctly classified but with a low confidence. 

The corrupted numerals 1, 2, 3 and 4 are all incorrectly classified. The network 
responds that 2 is an 8 and that 3 is a 2. In these cases the changes we made to the 
numerals were fairly major, just to see how the network copes. The number i, for 
example, has been shifted to the fight, which gives the network a problem. This 
emphasizes what we said earlier about an OCR system: shift and rotation would 
have to be dealt with by an earlier part of the system before pattern recognition 
takes place. A neural network is particularly sensitive to displacements, so that in 
many systems some form of transformation is used which produces an output that 
is invariant to these changes before attempting to classify the images. 

In our test, the numerals 2, 3 and 4 have been altered so that, in effect, they are new 
symbols. It's not surprising that the neural network fails, because it hasn't seen 
these new symbols before. This shows the importance of selecting the training 
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set. It must contain representative examples of all the sorts of patterns that it will 
encounter. If two different types of the number 4 are expected, for example, then 
it should be shown both types in the training set. 

This shows that a neural network can generalize so that inputs that are similar but 
not exactly the same can produce the correct response. But in generalizing, some 
bizarre input patterns can produce outputs which appear to be correct but are in 
fact completely wrong. Care must always be taken to ensure that the training set 
contains examples of all the input patterns that the network is likely to encounter. 
Outside of the training set, the neural network can make catastrophic errors. 

Artificial neural networks have become increasingly popular because of their 
ability to perform complex pattern classifications without having to be explicitly 
told how. Their ability to learn from examples and to be able to generalize from 
these examples makes them a very powerful tool. Inevitably, they have their 
supporters but also their critics. Critics of neural networks point out that although 
networks can be shown to work on small 'toy' problems there is a real difficulty in 
scaling them up to work on very large problems. Although they entered the field 
with an initial enthusiasm, many researchers into neural networks have found 
them difficult to apply successfully. However, it is becoming clearer that success 
in neural networks depends not only on a good knowledge of the networks 
themselves, but also a good understanding of their intended application. Too 
often people have tried to apply neural networks to problems which are them- 
selves not well understood, in the hope that the network will be able to '  sort it out 
for itself'. 

As we discussed at the beginning of this chapter, deciding on which information- 
processing paradigm to use is a decision in which the engineer must weigh up the 
pros and cons for the particular application. We can summarize these as follows: 

I~ Neural networks are black-box classifiers. They are appropriate for applica- 
tions in which matched input--output pairs are easy to define. 

I~ Neural networks are well suited to applications in which the data are very 
noisy. In particular they are very good at transforming multiple sensor 
information into symbolic form for further processing by neural or conven- 
tional computers. 

I~ Problems which may not appear appropriate for neural processing can be 
transformed by pre-processing into appropriate forms. Often this requires the 
system designer to have a good understanding of the system. 

i~ Since they have no model, by themselves neural networks are not appropriate 
for knowledge-based processing involving reasoning. 
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l~ Neural networks cannot communicate their workings to humans, and so it 
may be difficult to see if they are going wrong (although computer graphics 
and other techniques are addressing this). 

l~ Neural networks may be slow to train, and also unpredictable in their 
training. However, once trained they are inexpensive to copy for mass- 
production. 

l~ Neural networks can be simulated in software on conventional sequential 
computers. 

l~ Neural networks are very good at interpolating and very bad at extrapolating: 
they are well suited for applications in which the boundaries of the possible 
inputs are known but are less well suited for situations very different from 
their training data. 

l~ Neural networks cannot detect inconsistent data which may result in unpre- 
dictable training behaviour or training which gives incorrect outputs. 

When used intelligently, in problems which can be defined by a representative set 
of input and output pairs, neural networks are excellent. There is always a certain 
amount of experimentation needed to select the appropriate architecture with an 
appropriate set of parameters. Rules of thumb are starting to emerge to help in this 
selection process, and algorithms are being developed to speed up training. These 
aids will reduce the time taken to establish whether or not a proposed network will 
converge on a solution. 

In this chapter we have only described the tip of the iceberg. There are many more 
neural network architectures which are proving to be successful in other areas. 
Networks with the ability to self-organize, for example, are becoming more 
common. But at the time of writing, the field is dominated by the multilayered 
perceptron, which we expect will be with us for some time to come. We strongly 
commend neural networks as an information-processing paradigm that really 
works for many difficult applications. We also urge caution in their use. Neural 
networks are not well suited to safety-critical applications, unless they are used in 
hybrid systems which also have some knowledge-based processing. As it hap- 
pens, most applications of neural networks are indeed hybrid, combining the best 
of both the neural and sequential information-processing paradigms. 

Rumelhart, D.E. and McClelland, J.L. (1986) Parallel Distributed Processing, 
MIT Press. 

Picton, P.D. (1994) Introduction to Neural Networks, Macmillan Press, Basing- 
stoke and London. 
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S C H E D U L I N G  

Scheduling in intelligent machines involves determining the order of activities 
for execution. This means developing a time sequence of actions, control 
heuristics, and positions for the machine to follow in order to achieve its goals. 

Examples of scheduling in intelligent machines include deciding which activity 
takes priority to be performed next, and in what order activities will be performed 
after that. For example, a robot may decide that it must recharge its batteries 
before doing anything else. It may realize that it must pick up a part from one 
place before it can deliver it to another. In more complex situations a mechatronic 
system may have to reschedule 'on the fly' when there is a component failure, say. 
For example, a conveyor belt in a manufacturing system may break down and the 
system may need to decide how to transport parts until it is repaired. This might 
involve mobile robots being diverted from other, less urgent, tasks to shuttle the 
parts between the start and end of the conveyor belt. At the time of writing few 
industrial systems have anything like the intelligence needed for this. 

The main elements of scheduling are: 

time 

position 

activities and their execution 

ordering activities in time 

ordering activities by position 

ordering positions in time (path planning). 

An important class of scheduling algorithms relate to what is called the travelling 
salesman problem. This problem involves finding the shortest circuit for a 
salesman between a set of cities, with the requirement that no city is to be visited 
twice. In other words, the salesman must find a path along which he can perform 
his activities in space and time. Furthermore the path must be optimal in some 
sense. Typically there are penalties or costs attached to both the distance travelled 
and the time it takes to traverse the path. The travelling salesman problem is 
important because its computational complexity means that it must be solved 
heuristically for any but the most simple problems. Even though the search space 
is finite, for as few as 100 cities it would take centuries to search exhaustively. 
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In an industrial context the travelling salesman problem might translate into the 
'travelling robot problem' in which a robot has to plan a route in order to perform 
various tasks along the way while minimizing the energy load on its motors and 
minimizing its travel time. 

The main problems related to scheduling that will be covered in this chapter, are: 

i~ critical path analysis 

I~ shortest path problems 

i~ travelling salesman problems 

i~ heuristic activity-path planning 

I~ dynamic activity-path planning 

1~ scheduling hierarchical systems. 

As always in AI, scheduling immediately raises the issue of representation. How 
should we represent the concepts of time, space and activity in order to design 
machines which can accomplish some stated purpose? 

In physics and mathematics one often represents a point in three-dimensional 
space by Cartesian coordinates such as (x, y, z) where x, y and z are real numbers. 
In practice we can rarely represent the position of a machine in this way because 
we can only use finite decimal numbers. For example, a machine that theoreti- 
cally stops after rt seconds will probably stop after 3.142 seconds since it is 
impossible to represent exactly the irrational number rt by a finite decimal expan- 
sion. In considering machines which move in space it is common to represent the 
space by an array of square cells. In this case we do not discriminate between the 
points within any particular cell. 

Figure 5.1 shows an example of a two-dimensional grid. A point, p, in that space 
has Cartesian coordinates of x= 2.135 and y= 3.076, but the grid representation 
would simply say that the point is within the square with the coordinates x = 2 and 
y=3 .  

Sometimes the cells are made to correspond to the grid of pixels on a computer 
screen so that an operator can see where the machine is. Within a Cartesian 
representation objects may be represented by geometric entities such as points, 
lines, polygons and poiyhedra. Within the cellular representation objects may be 
represented as sets of cells, which may approximate to geometrical objects. 
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p e  

1 2 3 4 x 

in Newtonian physics one represents time by real numbers such as t 1 and t 2, 
where the number (t 1 - t2)  is called the duration of the interval between the time 
instants t 1 and t 2. In AI we must also divide time up into equal sampling intervals, 
and each action is considered to have taken place at the end of one of those 
intervals. This is rather like thinking of a clock ticking; we examine the machine 
and its surroundings at each tick but not in between. 

Similarly, we must find an appropriate representation for the set of actions that the 
machine may take during execution. In simple cases the actions may just be a list, 
such as switching motors on and off in a washing machine. However the set of 
actions may be much more complex, as in the case of an autonomous vehicle. 
Here we may have atomic actions such as switching motors on and off, and we 
may have more complex actions such as picking up an object. This suggests that 
there can be a hierarchy of actions in complex machines in which composite 
actions result from sequences of simpler actions. 

,~ Figure 5.1 
Grid representation of a 
two-dimensional space. 

The language of nodes, links and arrows in graph and network theory provides 
invaluable ways of representing many of the central ideas in scheduling. 

Somewhat informally, we define a graph to be a set of objects called nodes (or 
vertices) and a set of objects called links (or edges), where every link is associated 
with two nodes. Intuitively the nodes are dots or points, and the links are lines 
between pairs of points. Thus in Figure 5.2 the link 'corridor' is associated with 
the node 'bin' containing parts and the node 'machine' which requires them. 
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node link node 

A ..... . . . . . . . .  A 
W W 

bin corridor machine 

A directed link is a link in which the order of its nodes matters. For example, it 
might be desirable to distinguish between the link from the bin to the machine on 
which parts are carried, and the return journey link from the machine to the bin. 
An arrowhead is placed on the link to denote its direction. For example, 
Figure 5.3 shows the case where the link is directed from the bin to the machine, 
so that the same link cannot be used to travel from the machine to the bin. 

node link node 

A ~ A 
W w 

bin corridor machine 

In general we may have many links or arrows between nodes, each one represent- 
ing different things. For example, parts might be transported between two 
locations by robot or conveyor belt as shown in Figure 5.4. 

robot (bin to machine) 

bin ~ ~ ~ machine 

(~ robot (machine to bin) 9 

conveyor belt 

This representation demonstrates that the robot is capable of more than the 
conveyor belt because it can move in two directions whereas this conveyor belt 
can only move in one. 

As we 've already said, a graph is any set of links with their nodes. A directed 

graph is a graph in which all the links are directed (represented by arrows). A 
network is a graph which has numbers attached to its links which represent some 
quantity. For example, the link may be weighted in terms of its length, the time it 
takes to travel it, the number of objects it can transport in unit time, and so on. 
Often one speaks of the weighting of the links. 

A path through a graph is a contiguous set of links. The weight of a path in a 
network is the sum of the weights on its links. A minimum path between two 
nodes is one for which there is no other path with smaller path weight. When the 
weights refer to distance we speak of a shortest path. A cycle in a network is a 
path in which the start and end nodes are the same. 

A large class of problems in scheduling is concerned with finding shortest paths 
and cycles for the (usually very large) set of all possible paths or cycles between 
locations. 

Figure 5.5 shows an example of a graph, a directed graph and a network, and a 
path or a cycle in each. 

Figure 5.2 
The concept of a link 
between two nodes. 

Figure 5.3 
A directed link. 

Figure 5.4 
Many directed links between 
nodes. 
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(a) A graph thick lines show a path in the graph 

(b) A directed graph thick lines show a directed path in the directed graph 

3 
2 

q 1 

(c) A network with weights on the directed links 

2 

1 

thick lines show a cycle in the network with a total weight of 15 

Figure 5.5 
Examples of graphs, directed graphs, networks, paths and a cycle. 

Apart from representing paths in physical space, networks can be used to represent 
paths through what might be called priority space. For example, for a given set of 
activities, suppose we know that some must occur before others. Then we can 
represent this by placing an arrow from each of the activities to each activity which 
follows it. This then leads to the idea of critical paths through the activity network. 
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In general, a machine that is moving from one position to another will attempt to 
find the '  shortest' path between them. Here the term shortest means the path with 
the smallest weighting in the network of possible movement links. When the link 
weightings represent actual distances, the term 'shortest' corresponds to its usual 
meaning of having the least length. However, the weightings may take into 
account other things such as travel times, gradients, reliability, danger or cost. in 
such cases the term 'shortest' is used rather loosely to mean the path with 
minimum weighting. 

The problem of computing shortest paths has attracted a great deal of attention 
over the last forty years. This has been driven by the many commercial situations 
in which finding the shortest path will save money. It has also been driven to a 
great extent by the problem of trying to resolve urban, and increasingly rural, 
traffic congestion. Road traffic theory begins from a fundamental assumption 
stated by J. G. Wardrop in 1952: 'The journey times on all the routes actually used 
are equal, and less than those which would be experienced by a single vehicle on 
any other route'; that is, drivers choose what they expect to be the shortest time 
path between their origin and destination. 

Increasingly, road traffic systems are becoming computer controlled, and they 
can be considered to be very large and complex mechatronic systems. Each 
vehicle on a road system has an autonomous intelligent controller (the human 
driver) which plans its route and determines its local behaviour at any given time. 
The vehicle is subject to external controls such as the existence of roads and 
intersections, traffic lights, speed restrictions, and road signpostings. The exist- 
ence of widespread traffic jams suggests that the theory and control strategies for 
road systems are currently rather poor. It is believed that introducing more 
machine intelligence into the control of road systems will improve their overall 
behaviour. 

Chapter 1 of Volume 1 distinguishes two strategies for the control of complex 
systems. The first is hierarchical top-down control, where everything is ulti- 
mately decided by a master controller. Some people believe that this approach to 
control cannot be viable for very complex systems such as those increasingly 
encountered. An alternative allows that the parts of the system can make 
autonomous control decisions out of which system behaviour will emerge. If all 
the control decisions taken by drivers were taken by computers, road systems 
would exemplify this kind of control. For this reason, mechatronic engineers can 
learn a lot from the research that has been conducted into road systems over many 
decades. 

A number of algorithms have been proposed for finding shortest paths; these 
algorithms have different characteristics depending on the nature of the problem. 
In general, the amount of time it takes a computer to find a shortest path between 
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an origin and a destination increases with the number of links and nodes in the 
network. A network has n nodes, so there are n 2 - n ordered pairs of nodes. If it 
takes an average of t seconds to find a shortest path between one pair of nodes, 
and the shortest path were computed for each pair of nodes, the computation time 
would be (n 2 - n)t seconds. Suppose t -  0.0001 s. Then for 100 nodes the compu- 
tation time is about a second, while for 1000 nodes it is over a minute, and for 
10000 nodes it is nearly three hours. To understand the practical significance of 
this, we can note that London has many more than 10000 road intersections. 

Dijkstra's algorithm is more efficient at finding shortest paths between every 
origin and every destination in a network, having complexity O(n log n). It 
achieves this by doing all the calculations together, rather than doing them in 
pairwise sequence. Using Dijkstra's algorithm, a personal computer might take 
some 20 seconds to calculate a path between John O'Groats and Land's End 
through the 25 000 nodes of the Ordnance Survey road network data. (In practice 
it also finds the shortest path to the other 25000 nodes.) The details of this 
algorithm are beyond the scope of this book, but they can be found in many 
standard texts. 

These computation times are important because they determine whether or not a 
machine can calculate them 'on the fly' in real time. In order to reduce computa- 
tion times, the environment is usually structured in some way. For example, only 
a subset of all possible links and nodes may be considered. In general, this means 
that 'shortest' paths obtained may not be the shortest possible, and the solutions 
obtained using them may be sub-optimal. 

The failure of road traffic planners to design congestion out of road systems is 
partly due to a flaw in the representation. Although it is simple to represent roads 
in terms of their static features such as length, number of lanes, and gradients, the 
quantity optimized by most drivers is travel time. This is not a linear function of 
any of these static measures; indeed it is not even a continuous function. The time 
taken to travel a given piece of road depends critically on the number of other 
vehicles travelling on that road. When the concentration of vehicles on the road 
reaches a certain level the dynamics become unstable, and shock waves may be 
experienced as drivers have to reduce speed from free flow to a crawl. In fact the 
representation is even more complex than this. If a road link in front is blocked 
then flow on the current link will also be blocked: the travel time on a given link 
may depend on what is happening on other links. 

The lesson to be learnt from this is that simplistic representations may not allow 
the engineer to address the reality of the system, and so make it uncontrollable. 
Finding shortest paths through large complex mechatronic systems will undoubt- 
edly be an important element in their control. These shortest paths must allow for 
the possibility of unexpected events such as links becoming blocked or other 
parts of the system behaving in unexpected ways. 
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Intelligent machines will often have to perform complex sequences of operations 
in order to achieve their goals. Each operation will take a certain time, and some 
will have to be completed before others can begin. The machine will have to plan 
the order in which to perform the various tasks, and estimate the time it will take. 

For example, the process of assembling a bicycle can be split into the activities 
listed in Table 5.1. 

TABLE 5.1 

Activity Duration 
(minutes) 

A frame preparation, including front forks 

B mounting and aligning front wheel 

C mounting and aligning back wheel 

D attaching the derailleur gears to the flame 

E installing the gear cluster 

F attaching the chain-wheel to the crank 

G attaching the crank and chain-wheel to the flame 

H mounting the right pedal and toe-clip 

I mounting the left pedal and toe-clip 

J final attachments (handle-bars, seat, brakes, etc.) 

7 

7 

7 

2 

3 

2 

2 

8 

8 

18 

Source: Dolan and Aldous, 1993 

The precedence relations of these activities, i.e. what activities must be com- 
pleted before these activities can begin, are shown in Table 5.2. (Activities with 
no preceding activities are omitted.) 

TABLE 5.2 

Activity Preceding 

activities 

C D,E  

E D 

F D 

G F 

H E , F , G  

I E , F , G  

J A, B, C, D, E 
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CHAPTER 5 SCHEDULING 

An activity network is a network in which each activity or operation is repre- 
sented by a node. A directed link from one activity to another indicates that the 
first activity must be completed before the second can begin. The number on the 
link indicates how long that activity will take to complete. The activity network 
for the bicycle assembly example is shown in Figure 5.6. 

This network is obtained as follows. First we mark those activities which have no 
preceding activity, i.e. A, B and D (shown by underlining in Table 5.3). This is the 
first ' layer'  of activities, and it follows the start. 

TABLE 5.3 

Activity Preceding 

activities 

C D,E  

E D 

F D 

G F 

H E, E G  

I E, E G  

J A, B, C, D, E 

Figure5.6 
Activity network for bicycle 
assembly. 
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The activities just found can be numbered: 

(1) A, (2) B, (3) D. 

Remove A, B and D from the list and find the next layer of activities with no 
preceding activity: these are E and F (Table 5.4). 

TABLE 5.4 

Activity Preceding 

activities 

C E 

G F 

H E, E G  

I E, E G  

J C,E_ 

The activities found can be numbered: 

(1) A, (2) B, (3) D, (4) E, (5) F. 

Remove E and F from the list and find the next layer of activities with no 
preceding activity: these are C and G (Table 5.5). 

TABLE 5.5 

Activity Preceding 

activities 

H G 

I G 

J C 

The activities found can be numbered: 

(1) A, (2) B, (3) D, (4) E, (5) F, (6) C, (7) G. 

On removing C and G we are left with the last layer of activities before the finish, 
namely H, I and J. 

The activities can now all be numbered: 

(1) A, (2) B, (3) D, (4) E, (5) F, (6) C, (7) G, (8) H, (9) I, (10) J. 

Then no activity is preceded by an activity with a lower number. 
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To obtain the activity network, each of these layers is set out in columns across the 
page. The activities related by precedence are then joined by an arrow, with 
weight the duration of the earlier activity. This method of construction ensures 
that all the arrows go from earlier layers to later layers. 

The minimum time to complete the sequence of activities can be calculated from 
the activity network by finding a longestpath through it. A longest path is a path 
between the start and finish for which the sum of the times of the activities is the 
largest possible. A criticalpath is a path for which any delay in completing an 
activity on that path delays the completion of the project by the same amount. In 
general there may be more than one critical path through an activity network. The 
minimum completion time is equal to the length of a critical path. 

By inspection it can be seen that the critical path through the bicycle assembly 
project is: 

0 2 3 7 18 
START ~ D ---) E ----> C ---) J --~ FINISH 

and the minimum time for the assembly is 30 minutes. To complete the project in 
this time some of the tasks would have to be done simultaneously, for example by 
two or more robots. 

Consider the path' 

0 2 2 2 8 
START ~ D --+ F ---) G ~ H FINISH 

This is the longest path that can be found that passes through H, and has total time 
14 minutes, which is less than the minimum time. Suppose activity H was 
delayed. Would this make the project overrun? In fact H could be delayed or 
overrun by up to 16 minutes before this path exceeded the 30 minutes minimum. 

The maximum time that an activity can be delayed without delaying the project is 
called thefloat of that activity. Activities on a critical path have a float of zero. So, 
for example, none of activities D, E, C or J can be delayed without making the 
project take longer than the minimum time. 

If a project is to be completed in the shortest possible time, then particular 
attention must be paid to activities on any critical path. For other activities there is 
some leeway in their starting times or durat ions-  the float. 

In general an algorithm is needed to find critical paths. This involves a forward 
scan in which the vertices are numbered. This is followed by a backward scan in 
which the critical path is found. 
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It is assumed that the network involves n activities (there are n vertices in the 
activity network, plus the start and finish vertices). The start vertex is numbered 
as the 0th and the finish vertex is numbered as the (n + 1)th. In the bicycle 
example, n = 10. 

The duration of the activity represented by the arrow ij is denoted cij. For example 

Cl,10= 7. 

As will be explained, the algorithm assigns numbers pj and ej to each vertex j, for 
j = 0 ,  1 ,2  . . . . .  n + l .  

When the algorithm is finished, ej will be the length of the longest path to the 
vertex j, and pj will be the number of the preceding vertex on this longest path. 

(A) Forward scan 
The forward scan effectively moves through the layers calculating the longest 
path length, ej, to each vertex j. 

Step 1. Label the START vertex with P0 = 0 and e 0 = 0. 

Step 2: Set j = 1. 

Step 3: For the current vertex j: for each arow ij coming into vertex j, 
calculate ei+ cij. Choose the largest of these sums (or any of 
them in the event of a tie). This is to be the value of ej. Set Pi 
equal to i, the value for which the sum was largest. If j is less 
than or equal to n, increase j by 1 and repeat Step 3. 

(B) Backward scan 
The backward scan effectively starts at the FINISH and picks out paths between the 
vertices with the largest values of ej. 

Step 4: Start with the FINISH vertex, n + 1, and mark the link that 
joins this to the preceding vertex given by the number Pn+l 
which was found during the forward scan. The vertex Pn+l 
will be called the 'current vertex'. 

Step 5: Suppose the current vertex is j. Mark the link joining this 
vertex to the preceding vertex, given by pj, which was found 
during the forward scan. 

Let pj become the current vertex. 

If the current vertex is not the START, repeat Step 5. 

The marked arrows found in this way form a critical path. The algorithm needs 
some modification in order to find all the critical paths if there is more than one, 
but we will not consider this here. 
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Example of forward and backward scanning 
The a lgor i thm can be i l lustrated us ing the b icyc le  a s s em b ly  example .  

Step 1: (start) Set  e o = 0 and Po = 0. 

Step 2: Set  j = 1 (A): el = 0 and Pl  = 0 (Pl is the START ver tex)  

Step 3: Set  j = 2 (B): e 2 = 0 and P2 = 0 (P2 is the START ver tex)  

Set  j = 3 (D): e3 = 0 and P3 = 0 (P3 is the START ver tex)  

(This comple t e s  the first layer.)  

Set j = 4 (E): e 4 = e 3 + 2 = 2, P4 = 3 (ver tex  D) 

Set j -- 5 (F): e5 = e3 + 2 - 2, P5 = 3 (ver tex  D) 

(This comple t e s  the second  layer.)  

Set  j - 6 (C): e 6 = e 4 + 3 = 5, P6 = 4 (ver tex  E) 

Set j = 7 (G): e 7 = e 5 + 2 = 4, P7 = 5 (ver tex F) 

(This comple t e s  the third layer.)  

Set  j = 8 (H): e 8 = e 7 + 2 = 6, P8 = 7 (ver tex  G) 

Set  j = 9 (I): e 9 = e 7 + 2 = 6, P9 = 7 (ver tex  G) 

Set j =10 (J): elo = e 6 + 7 = 12, P lo  = 6 (ver tex  C) 

(This comple t e s  the last layer.)  

Set  j =11 (finish): e l l  = elo + 18 = 30, P l l  = 10 (ver tex  J) 

(This comple t e s  the FINISH node . )  

The  fo rward  scan is no w  comple te .  We con t inue  wi th  the b a c k w a r d  scan. 

Step 4: Start  with 1i ,  the FINISH vertex:  P l l  = 10, wh ich  is ve r tex  J. 

M a r k  the a r row b e t w e e n  J and the finish. 

Step 5: Set the current  ver tex  to 10 (J): P l0  = 6, wh ich  is ver tex  C. 

M a r k  the a r row b e t w e e n  C and J. 

Set the current  ver tex  to 6 (C): P6 = 4, wh ich  is ver tex  E. 

M a r k  the arrow b e t w e e n  E and C. 
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Set the current vertex to 4 (E): P4 = 3, which is vertex D. 

Mark the arrow between D and E. 

Set the current vertex to 3 (D): P3 = 0, which is the start 
vertex. 

Mark the arrow between the START and D. 

The critical path found is therefore 

START ----) D ~ E ~ C --9 J ~ FINISH 

It has length ell = 30. 

Apart from finding a critical path, the value of e i found by this algorithm is the 
earliest  starting time for activity i. For example, the earliest starting time for 
activity 8 (H) is e 8 = 6. 

If the algorithm were 'run backwards' from FINISH to START, the values of e i 

subtracted from the minimum time would be the latest starting times. Thus the 
f loat  can be calculated as the latest starting time minus the earliest starting time. 
The float for each vertex is a measure of how sensitive it is to delay or 
overrunning. 

Critical path analysis gives a system information which enables it to decide in 
which order to perform tasks, it also gives the system information which enables 
it to deal with uncertainty. Knowledge of the nodes along critical paths enables 
heuristics to be applied, such as 'monitor this node carefully and give high 
priority to taking action if it gets delayed or overruns'. Similarly, knowledge of 
the float of the nodes allows their importance to be weighted in terms of 
monitoring progress. 

The method described here is the Critical Path Method (CPM) and was developed 
by the Du Pont Nemours Company in order to plan large-scale industrial projects. 
Their primary concern was to minimize the total cost of a project. The method is 
useful when activity times can be predicted with reasonable accuracy. 

Another approach to planning large projects is Program Evaluation and Review 
Technique (PERT). This was used by the US Navy to plan the Polaris missile 
project, where the main objective was to complete the project in the shortest 
possible time. This was a complex project involving some activities whose times 
could not be accurately predicted. The important feature of PERT is that the 
technique permits probabilistic estimates of activity times and so can accommo- 
date research and development projects in which times for the activities cannot be 
predicted with confidence. PERT can also be used for projects which may suffer 
disruption through strike action, late delivery of materials, mechanical break- 
downs, and so on. Both PERT and CPM allow many subtleties which cannot be 
discussed further here. 
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In the previous section we saw that the minimum completion time for a project is 
given by the length of a critical path in the corresponding activity network. This is 
the shortest time in which a project can be completed if there is no restriction on 
the number of workers available. However, if there is a limit on the number of 
machines or processors available, it may not be possible to achieve this minimum 
completion time. 

If the product of the minimum completion time and the number of machines is 
less than the sum of all the durations of all activities, then it is obviously 
impossible to finish the project within the minimum completion time. Even if this 
is not the case, the precedence relations may be such that some machines must 
have idle periods, so that it is again impossible to finish in the minimum 
completion time. 

In this section we investigate the problem of scheduling the activities of a project 
for a given number of robots in the best possible way. It is supposed that an ideal 
schedule satisfies the factory rules: 

I~ No machine may be idle if there is some activity which can be done. 

i~ Once a machine starts an activity, that activity must continue until it is 
completed. 

I~ The project must be completed as soon as possible with the machines 
available. 

These rules, which may not be achieved in practice, suggest that each machine 
has a tightly packed schedule, and that activities on any critical path should be 
started as soon as possible. 

There is no practical algorithm to solve the activity scheduling problem in a way 
that satisfies the factory rules. The following heuristic algorithm, the criticalpath 
scheduling algorithm, has often been used in industry. It produces a schedule 
which satisfies the first two factory rules, but not necessarily the third rule. 

The algorithm is illustrated for a number of processors sharing a multiple-activity 
computation: 

START Set the project clock to zero. 

Step 1: If at least one processor is free, assign to any free processor 
the most critical unassigned activity which can be started (this 
is the activity with the least latest starting time). 
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Repeat until no processor is free, or until no activity can be started. 

Step 2: Advance the project clock until a time is reached when at 
least one activity is completed, so that at least one processor 
is free. 

Step 3: If all the activities have been assigned, advance the project 
clock until all the activities have been completed, then 
FINISH. Otherwise go back to Step 1. 

To illustrate this, consider the bicycle assembly project of Section 5.5. It will be 
assumed that two general-purpose robots are available for this project. The latest 
starting times are as listed in Table 5.6. 

TABLE 5.6 

Vertex Activity Latest 
number starting time 

1 A 5 

2 B 5 

3 D 0 

4 E 2 

5 F 18 

6 C 5 

7 G 20 

8 H 22 

9 I 22 

10 J 12 

START Set the project clock to 0. 

Step 1: The activities which can be started are A, B and D. The most 
critical of these is activity D, since it has the smallest latest 
starting time (0). Therefore we assign activity D to robot 1. 

Activities A and B can both be started, and both have the 
same latest starting time (5), so either can be chosen. Assign 
activity A to robot 2. 

Step 2: Advance the project clock to 2 minutes. 

Activity D is now completed and robot 1 is free. 
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Activities E and F are now free to be started, as well as B 
which is waiting. 

Step 1: Of activities B, E and F which can be started, E has the 
smallest latest starting time, so this is assigned to robot 1. 

Step 2: Advance the project clock to 5 minutes (i.e. 2 + 3 minutes). 

Activity E is now completed, and so robot 1 is flee. 

Activity C is now free to be started. 

The current state of the scheduling of the activities is shown in Figure 5.7. 

time in minutes 
0 2 

l I 
4 6 8 10 

11  i l l  l J  I ]  J 

robot 1 ] D E ] 

robot 2 [ A 1 

T 
time of project clock 

activities free to be 
started: B, C, F 

~l Figure 5.7 
State of scheduling after 
5 minutes. 

Step 1: Of the three activities which are free to be started, B and C 
are the most critical. Both have a latest starting time of 5 
minutes. Since the project clock is now at five minutes, and 
since we cannot assign both of these activities to a robot at 
this point, there will be a delay in the completion of the 
project. In other words the time taken with this schedule will 
exceed the critical path time. 

Let activity C be assigned to robot 1. 

Step 2: Advance the project clock to 7 minutes. 

Activity A is completed, so robot 2 is free. 

No further activity is made free by the completion of A, and 
activities B and F remain free to be started. 

Step 1: Activities B and F are free to be started. 

Activity B has the smallest starting latest starting time and is 
assigned to robot 2. 

Step 2: Advance the project clock to 12 minutes. 

Activity C is completed, so robot 1 is free. 

Activity F remains free to be started. 
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Step 1: Activity F is the only activity which is free to be started, so it 
is assigned to robot 1. 

The current state of the scheduling activities is shown in Figure 5.8. 

time in minutes 
0 2 4 6 8 10 12 14 16 

I r I I I I I I I I I I 
robot 1 D ] E I c I F 

robot 2 A l B 

time of project clock 

Figure5.8 
State of scheduling after 
12 minutes. 

Step 2: Advance the project clock to 14 minutes. 

Activities B and F are completed, so both robots are free. 

Activities G and J are now free to be started. 

Step 1: Activity J has the smallest latest starting time, and is assigned 
to robot 1. The only remaining activity which can be started is 
G, so this is assigned to robot 2. 

Step 2: Advance the project clock to 16 minutes. 

Activity G is completed, so robot 2 is free. 

Activities H and I are now free to be started. 

Step 1: Activities H and I have the same latest starting time. Activity 
H is assigned to robot 2. 

Step 2: Advance the project clock to 24 minutes. 

Activity H is completed and robot 2 is free. 

Step 1: Activity I is the only remaining activity which is free to be 
started, so it is assigned to robot 2. 

Step 2: Advance the project clock to 32 minutes. 

All activities have now been completed and both robots are 
free. 

Step 3: FINISH. 
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The resulting schedule is shown in Figure 5.9. 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 
timemminutes [ [ I I I 1.1 I 1 i I 1 1 1 1 [ [.I I I I I I ! 1,1 1 1 1 1 t 1J 

robot 1 [D I E C I F] J ] 

robot 2 [ A I B [ G I H I [ 

T 
finishing time 

As it happens, this schedule optimizes the use of the robots, but this need not be 
the case. For example, if three robots were available there would be times when 
one of them would be idle. 

In this and the previous section you have been introduced to some elementary 
ideas in activity scheduling. In practice one needs to take into account many more 
features. For example, it was assumed that the two robots were interchangeable. 
In general, robots will not have the same repertoire of activities and the schedul- 
ing algorithm has to be adjusted accordingly. 

If a mechatronic system is to be capable ofself-repair, such as reconfiguring itself 
when parts are damaged or lose part of their functionality, it has to reschedule its 
activities when the damage or failure is detected. It must also revise its estimate of 
how long the project will take. In some safety-critical applications the system 
may have to be able to predict dangerous loss of synchronization long before it 
happens, and so signal the need for human intervention. 

Activity scheduling is a highly technical subject with its own extensive literature 
and theory. It is yet another specialism that mechatronic engineers must draw on. 

~1 Figure 5.9 
The schedule is completed at 
32 minutes. 

Many of the techniques described in the previous chapters can be used to find 
solutions to difficult problems. A large number of problems fall into the category 
of being non-polynomial indeterminate, as described in Chapter 3, Section 3.1. 
The computational effort required to solve such problems grows astronomically 
with the 'size' of the problem. For example, in the 'travelling salesman problem' 
the size is determined by the number of cities to be visited. Even with modem 
computers, these problems cannot be solved exactly in a reasonable time, so 
heuristics have to be used to zoom in on inexact or sub-optimal solutions. 

The travelling salesman problem is a minimization problem, which has become 
something of a benchmark for algorithms and artificial intelligence methods. In 
this section we will describe some of the more encouraging recent techniques. 
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The travelling salesman problem has many variants, and one which is of 
particular interest in mechatronics is the routeing problem. In this, a number of 
vehicles have to deliver items to many sites scattered around an area. The vehicles 
could be lorries delivering goods for shops, or autonomous vehicles in a factory 
delivering components to the places where they are needed. So although the 
travelling salesman problem is somewhat artificial, methods of finding solutions 
to it are applicable to many other problems. 

This example is relevant to mechatronics because one of the functions of the 
cognitive element in a system is to plan a sequence of actions. This may take the 
form of planning a suitable route for a vehicle to travel in order to minimize the 
distance travelled. 

Suppose a salesman starts in a city a and has to travel around N cities and return to 
a without visiting any other city more than once. The problem is to find the 
shortest route. Figure 5.10 shows an example where N is 6. 

b 

a 

v 

f e f e 

Figure 5.10 is a relatively simple diagram which just shows the cities (a to f) and 
two closed paths between them. From Section 5.3 it should be clear that the 
problem could be represented as a graph, in which each of the cities is a node and 
the paths between the cities are links. Since a path has to be travelled in one 
direction, the paths would be directed links, and since each path has a distance 
associated with it the graph becomes a network. So the problem that we are 
addressing is that of finding the cycle in a network that has the shortest path. 

The value that has to be minimized in the travelling salesman example is the total 
distance travelled. It is an interesting problem because there is no known 
analytical solution. It is assumed in the basic travelling salesman problem that a 
path exists from every city to every other city. The only way of finding the 
shortest distance is to consider every possible combination and measure the 
distance, which is clearly an unattractive proposition and a very time-consuming 
one. To illustrate how difficult this is, consider how many different routes there 
are for N cities. 

When N - 3 there is only one route, if direction is ignored. 

When N = 4 there are 3 different routes. 

When N -  5 there are 12 different routes. 

When N = 6 there are 60 different routes. 

When N = 7 there are 360 different routes. 

Figure 5.10 
Travelling salesman problem 
with six cities, showing two 
possible routes. 
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In general, if there are N cities there are �89 • ( N -  1)! different routes, where N! 
(N factorial) is given by 

N! = 1 x 2 x 3 x 4 x . . ,  x ( N - 2 )  x ( N - 1 ) x N  

For example, when N = 5 

N ! =  1 • 2 1 5 2 1 5 2 1 5  120 

( N - l ) !  = 1 •  

S o � 8 9 2 1 5  12 w h e n N - 5  

If all routes are to be examined, the computation involved becomes astronomical 
very quickly for increasing values of N. For example, for N = 10 the number of 
routes to be examined is 181440. For N= 20 this increases to 6 x 1016. Although 

computers are getting more powerful all the time, problems like this can still only 
be exhaustively solved in a reasonable time for relatively small values of N. 

It has often been said that computing power has increased by a factor of 10 every 
five years for the same price since the 1950s. Even assuming that this continues, 
some problems will still remain unsolved for a long time to come. To give some 
idea, when N = 20 again, if we assume that each route can be examined in a 
microsecond, it would still take about 2000 years to examine all the possible 
routes! If the trend in computing continues, in 10 years' time computers will be a 
hundred times faster than they are now. Still, it would take 20 years to calculate 
the solution for N = 20. So it looks as though we would have to wait a considerable 
time before computers can handle some of these NP-hard problems if they are 
going to use the brute force method of looking at all the solutions first before the 
best one can be selected. 

In order to deal with problems like this, decisions have to be made about a strategy 
for finding a shortest path. One strategy is to find any path, irrespective of the 
length, and then to try to shorten it. For example, a path can be found by the 
following method: 

1 Start at the first city. 

2 Select any other city, draw a path to that city and move to it. 

3 Select any other city that hasn't been visited before, draw a path to it and 
move to it. 

4 Repeat 3 until there are no more unvisited cities. 

5 Return to the first city. 

This will eventually get you around all the cities, but it almost certainly won' t  be 
the shortest path. This can be improved on using the so-called greedy algorithm. 
This is essentially the same, except that the closest city is always selected. Thus: 

1 Start at the first city. 

2 Select the nearest city, draw a link to that city and move to it. 
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3 Select the nearest city that hasn't  been visited before, draw a link to it and 
move to it. 

4 Repeat 3 until there are no more unvisited cities. 

5 Return to the first city. 

This may produce a shorter path than the first method, but there are no guarantees. 
Another variation on the greedy algorithm that can sometimes produce an even 
shorter path is to 'grow' the path from both ends. For convenience, let's call the 
two ends of the path the head and the tail. The method then looks like this: 

1 Start at the first city. 

2 Select the nearest city, draw a path to that city and move to it. This is the head 
of the path. 

3 Find the nearest cities to the head and the tail of the path that haven't  been 
visited before. Whichever is nearest of the two, draw a path to it and move to 
it. 

4 Repeat 3 until there are no more unvisited cities. 

5 Join the head and the tail of the path. 

These methods can be illustrated by a simple example. Figure 5.11 shows five 
cities, a to e. 

a 3 b 3 c 

8 
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Using the first version of the greedy algorithm, and starting from a, the sequence 
of cities visited is: 

Figure 5.11 
An example of five cities. 

3 3 7.2 4 8 
a ---> b --~ c ---> d --~ e --~ a 

The total path length is therefore 25.2 units. 
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Now if the modified greedy algorithm is used, again starting from a we get: 

3 3 
a --> b --> c 

but at c the nearest unvisited city is d with a distance of 7.2, whereas the nearest 
unvisited city to a is d with a distance of 4, so the tail of the path moves to d. The 
next nearest unvisited city is e, which is closest to d, and then finally e and c are 
joined, so the final path looks like: 

3 3 l0 4 4 
a --> b --> c --> e --> d --> a 

The final path length is 24 units, which is shorter than the first method. 

These examples produce solutions, but it would be very unusual if the path turned 
out to be the shortest in more complex examples. The following sections look at 
some methods which can improve on this. 

5.7.1 Hill climbing 
Hill climbing was described earlier in Chapter 3 on Search, where it was said that 
it is a form of gradient descent (or ascent) used when it is very difficult to define a 
gradient. The method simply ensures that the value selected at each iteration is 
less than (or greater than) the previous value. 

For the travelling salesman problem, we start by writing down a list of the cities in 
any order, and call this list L1. We may as well use the greedy algorithm to find 
this initial path. Measure the total distance of this path as if this was the route to be 
travelled and call that distance D 1. For example, where a, b, c, d, e and f represent 
6 cities, 

L l = [a, b, c, d, e , f, a] 

Now take any pair of cities, and swap them around in the list. This process is 
called permutation. For example, when b and c have been swapped, 

L 2=  [a, c, b, d, e, f, a] 

Measure the new total distance, D 2, and compare it to the unswapped distance. If 
it's shorter keep the new list, else go back to the previous list. 

Let the list of the shortest path so far be L and the shortest distance so far be D. 
Then if the new list L k has a distance D k that is less than D, L becomes L k. 
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If Dk < D  

else D k >i D 

Continue swapping in this way until a list is finally produced which has a distance 
that cannot be shortened by any further swapping. This list corresponds to a local 
minimum. 

L becomes Lk, and D becomes D k 

L is unchanged, and D is unchanged 

Figure 5.12 shows a set of four cities with the distances marked between them. 

a 4 b 

] 
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The three possible permutations of the list of cities with their corresponding total 
distances are shown below. 

411 Figure 5.12 
An example with four cities. 

a b c d a  10 

a b d c a  12.75 

a c b d a  10.75 

You may be wondering why there are so few permutations. For example, where is 
the permutation a d c b a ?  The answer is that a path could be travelled in either of 
two directions without affecting the length of the path, so the permutation a d e b a  

is the same as the path a b c d a  but in reverse. 

Let's start the search for the shortest path with the list a c b d a ,  which has a 
distance of 10.75. By swapping any two of the middle three cities around, the 
possible swaps that could take place are: 

a b c d a  10 

a d b c a  10.75 (same as a c b d a )  

a c d b a  12.75 (same as abdca) 

I f a c d b a  is tried, it would be rejected because its distance is greater than 10.75. If 
a b c d a  is tried it would be accepted because its length is less than 10.75. No 
further swapping would produce a shorter distance, and a minimum has been 
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reached. In this example this happens to be the global minimum. With N greater 
than this there are likely to be many local minima and hill climbing will most 
likely result in the search getting stuck in one of these. Simulated annealing is one 
way of improving on this, and we will look at this in the next section. First, there 
are some simpler heuristics that can help. 

In this very simple example we have effectively done an exhaustive search, but of 
course in larger examples this would not be feasible. 

5.7.2 Crossed paths 
Very often a path will be found using a hill-climbing approach in which the path 
crosses itself at some point, as shown in Figure 5.13(a) for example. It is nearly 
always the case that a path which crosses itself is not the shortest path, and that if it 
could be uncrossed in some way a new path could be found which would be 
shorter. Sometimes, swapping two cities can uncross the path but then may cross 
it again at some other point, and the resulting path may be longer. 

In Figure 5.13(a) the path is crossed and the total length is 27.5 units. If cities g 
and d are swapped, the resulting path is shown in Figure 5.13(b). This new path is 
also crossed and has a length of 28.5 units. Now this path can be easily uncrossed 
by swapping cities e and f which produces the path shown in Figure 5.13(c) which 
has a length of 27.5 units again. Finally, swapping cities c and g produces the path 
shown in Figure 5.13(d) which has a length of 23 units. 

c 2 b 5 c 

a 3 4 a f 3 f 

e e 

(a) (c) 

C 

g ' ( . . i  5 a 
f f 

3 2 

2.5 
e e 

(b) (d) 

A Figure 5.13 
(a) Crossed path, (b) path still crossed, (c) further shortening, (d) shortest path 
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This example shows how uncrossing a path ultimately shortens it. However, the 
act of uncrossing the path sometimes increases the path length if we use the two- 
city swapping method. Usually, if a point is found where the path crosses itself, it 
is a good rule-of-thumb or heuristic to uncross the path straight away. This will 
nearly always produce a shorter path with the help of hill climbing. 

To do this in our example, note that the path crosses between pairs of cities f, g and 
c, d (Figure 5.14a). Simply altering the path so that it goes from e to f, and from d 
to g, creates a new uncrossed path as shown in Figure 5.14(b). The new path 
length is 23 units, so the length is the same as in Figure 5.13(d) even though the 
path is slightly different. This process is not the same as swapping cities but is a 
new heuristic which could be called an 'uncrossing' heuristic. It produces a 
shorter path but doesn't have to go via a longer path to get to the solution. 

5.7.3 Simulated annealing 
Simulated annealing, as described in Chapter 3 on Search, mimics the process of 
cooling a metal. The 'energy' of a system has to be defined, and this becomes the 
search space for the problem, which is to find the global minimum energy. In the 
travelling salesman problem the energy can be equated to the distance around the 
path. 

b 5 c 

2 

a 3 4 f 

2.5 
e 

(a) 

b 5 c 

a 

f 

3L , 3 
2.5 

e 

(b) 

4[ Figure 5.14 
(a) Crossed path, (b) 
uncrossed path 
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The method is similar to hill climbing except that the decision about whether to 
keep the new list after swapping or throw it away is probabilistic. This means that 
sometimes the new list will be kept even though the total distance associated with 
it is longer than the previous list, in order to allow the search to 'jump out' of a 
local minimum. 

The probabilities are such that if the new list, L k, has a distance, D k, that is less 
than the current best distance, D, then there is a probability of greater than 0.5 that 
the new list becomes the best list. Similarly, if D k is greater than D, there is a 
probability of less than 0.5 that the new list becomes the current list. For example, 
if the probability turns out to be 0.8, then in eight cases out of ten the new list 
becomes the current list, but in two cases out of ten it doesn't. The values of 
probability, of course, always lie between 0 and 1. 

The probabilities, Pk, are used as follows: 

I f  Dk < D  L becomes Lk, with a probability of Pk 
where 1 > P k > 0.5 

else D k >i D L is unchanged, with a probability of Pk 
where 0.5 > P k > 0 

Rearranging: 

I f  ( D - D k ) > O  L b e c o m e s L  k 1 > P k  >0"5 

else (D - Dk) ~< 0 L is unchanged 0.5 > Pk > 0 

We therefore need a function that produces a value for the probability which is 
between 0.5 and 1 when ( D - D k ) > 0  and a value between 0 and 0.5 when 
( D - D  k) <~ 0. A function which has this property is the sigmoid function, 
described by the equation 

1 
Y= l + e - X  

When x = 0, y = 0.5. 

W h e n x > 0 ,  1 > y > 0 . 5 .  

W h e n x < 0 ,  0 . 5 > y > 0 .  

As this method is simulating annealing, a factor equivalent to temperature, T, has 
to be included in the model. This is done by dividing (D-Dk)  by a parameter T, 
and then substituting for x in the equation of the sigmoid. The probability is 
therefore: 

Pk = 
1 + e - ( D  - D k  ) / T 
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When T is very large, P k approaches 0.5, which means that the decision about 
keeping the new list or throwing it away is purely random. When T = 0, Pk = 1 and 
the decision is not probabilistic, but is equivalent to the hill-climbing method 
described earlier. So if the temperature starts out high, the decisions seem 
arbitrary. As the temperature drops, the decision to make the new list the 
current list or not becomes more deterministic. The effect is that the search can 
jump out of local minima, and is more likely to end up at the global minimum 
when T= 0. 

The cooling schedule should be set so that thermal equilibrium is reached. To 
ensure this, the search has to be able to sample the entire space adequately before 
the temperature is dropped. In our case with N cities, the worst case is that two 
paths are N - 2  permutations apart, so at least N - 2  iterations are necessary at 
each temperature. For example, when N = 6  two paths might be 

a b c d e f a  and a e d b f c a  

To get from one to the other by swapping two cities around could go like this: 

abcdefa  

aecdbfa  

aedcbfa  

aedbcfa  

aedbfca  

first permutation, b and e swapped 

second permutation, c and d swapped 

third permutation, b and c swapped 

fourth permutation, c and f swapped 

So to get across the search space from the first list to the second requires at least 
four iterations. In practice, many more iterations would be used since the decision 
to accept the permutation is probabilistic. Even when the temperature is high the 
probability is only 0.5, so that on average at least 2 •  iterations are 
required to cross the search space. 

5.7.4 Genetic algorithms 
As we saw in Chapter 3 on Search, the essential features of a genetic algorithm are 
the chromosomes that contain the genetic information. These are strings of data 
that define a particular solution. In the travelling salesman problem, one way of 
setting up the chromosomes is to use the list of cities in the order that they are to be 
visited. 

A population of these chromosomes, corresponding to a number of individual 
solutions to the problem, are created. In the travelling salesman problem there 
will be many possible routes that can be taken. The population of chromosomes 
at any one time will represent only a small number of those solutions. The 
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population is usually created randomly although it is possible to 'seed' the initial 
population with individuals that are known to be good solutions. 

Next we need some way of measuring the 'fitness' of the chromosomes so that the 
good solutions are selected to be parents more often than the not-so-good 
solutions. This is analogous to natural selection, in which 'survival of the fittest' 
is said to occur. In the travelling salesman problem the fitness measure is a 
function of the total distance travelled, the 'fittest' being the ones with the shortest 
distance. An example of a function that does this is 

1 

total distance 

The first difficulty that we encounter in the travelling salesman problem is that we 
cannot encode the cities directly as a string or list because genetic crossover* and 

mutation would produce strings which are not valid solutions. To overcome this 
we construct chromosomes consisting of binary 0s and ls  corresponding to all the 
possible connections between pairs of cities. For a problem with six cities and a 
path which can be listed as a b c d e f a ,  this would look like: 

ab ac ad ae af  bc bd be bf  cd ce cf  de df  ef  

1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 

In this representation, the presence of a binary 1 indicates the existence of a link 
between the two cities, and a 0 indicates the absence of a link. 

The type of crossover that is used is called recombination, where individual bits 
of data are taken from parent chromosomes at randomly selected points. Recom- 
bination is essentially a variation of the critical path method described earlier in 
this chapter. For example, take the following two paths, a b e d e f a  and a e f b d c a ,  

set out as chromosomes: 

ab ac ad ae af  bc bd be bf  cd ce cf de df  ef  

1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 

0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 

* Note that the term crossover used here in connection with genetic algorithms is not the same as the 
concept of crossover on a path. 
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The method of recombination is as follows: 

Step 1: Produce a table with all the cities in one column, and in the 
second column list all the cities connected to them in either of 
the parent chromosomes. Using the two chromosomes above, 
this table is: 

City Connected to: 

b, f, c, e 

a, c, d, f 

b, d, a 

c, e, b 

d , f , a  

a, e, b 

Step 2." 

Step 3: 

Randomly select a city as the current city. Let's choose c as 
the current city. 

Delete the current city from the fight-hand side of the table. 
The table becomes: 

CURRENT CITY: c 

City Connected to: 

b , f , e  

a, d, f 

b, d, a 

e, b 

d , f , a  

a, e, b 

Step 4: 

Step 5: 

Look at all the cities connected to the current city, and select 
the one with the fewest connections. If there are two or more 
cities with the same smallest number of connections, choose 
one randomly. In this example, d has two connections, while 
b and a have three. Therefore select d as the current city. 

Repeat Steps 3 and 4 until there are no cities left. 
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This goes as follows for this example. 

Step 3 Delete the current city, d, from the right-hand side of the 
table. The table becomes: 

CURRENT CITY: d 

City Connected to: 

b , f , e  

a, f 

b, a 

e, b 

f , a  

a, e, b 

Step 4: 

Step 3" 

Look at all the cities connected to the current city, and select 
the one with the fewest connections. In this example, both e 
and b have two connections, so randomly select b as the 
current city. 

Delete the current city from the fight-hand side of the table. 
The table becomes: 

CURRENT CITY: b 

City Connected to: 

~e 

a, f 

a 

e 

f , a  

a, e 

Step 4" Look at all the cities connected to the current city, and select 
the one with the fewest connections. In this example, both a 
and f have two connections, so randomly select a as the 
current city. 

167 



VOLUME TWO 

Step 3: Delete the current city from the fight-hand side of the table. 
The table becomes: 

CURRENT CITY: a 

City Connected to: 

f~e 

f 

Step 4: Look at all the cities connected to the current city, and select 
the one with the fewest connections. In this example, both e 
and f have one connection, so randomly select e as the current 
city. 

Only f is left. The resulting path is the list of cities in the order that they were 

selected by this process of recombination: 

c d b a e f c  

If we look at this as a chromosome and compare it with the parent chromosomes, 
you can see that recombination has taken data from each of the parent chromo- 

somes. In the table below, the parent chromosomes are labelled 1 and 2, and the 
offspring is labelled 3. Bold digits in the parent chromosome indicate the source 
of the genetic material in the offspring. When the source could be either parent, 

both are indicated in bold. 

ab ac ad ae af bc bd be bf  cd ce cf de df  ef  

1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 

0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 

1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 

Recombination can also cause mutation. In this example, the offspring has a 1 in 
the chromosome at cf (shown in bold) which was in neither parent. Thus recombi- 
nation is a powerful method which performs crossover and mutation at the same 

time. 
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The essence of the genetic algorithm recombination technique is to construct the 
set of links belonging to either of the parent routes. These are then recombined to 
form the child route which, by construction, is made up of the links of its parents. 
The exception to this is when neither parent has a link between the end node and 
start node found by recombination: in this case a new link is created by what we 
have called mutation. 

Genetic algorithms work in this case because relatively good routes will be made 
up of relatively good links. Breeding from relatively good parents will tend to 
recombine their relatively good links with a relatively good chance of finding a 
better route. 

This exemplifies the genetic algorithm approach: they allow locally good parts of 
solutions to be combined to form globally better solutions. Mutation is essential, 
of course, to try to ensure that the improvements are not restricted to local optima 
in the search space. 

5.7.5 Routeing 
The travelling salesman problem is a good benchmark for testing heuristic 
methods of finding the shortest path. However, it is a rather simplistic problem, 
and although many similar problems exist to which the methods described in this 
chapter can be applied, it is often the case that in real applications there are some 
practical constraints which make these methods inapplicable. A typical example 
is the vehicle routeing problem. 

On the surface this looks very similar to the travelling salesman problem. A depot 
(or sometimes more than one depot) contains several vehicles of different sizes 
and capacities, and the requirement is that a variety of goods are delivered to retail 
outlets in an area. The problem is not just one of shortening the route, which is 
helpful but not necessarily the best solution, but involves reducing the number of 
vehicles or separate journeys for each vehicle. So, for example, if a company 
currently requires 10 vehicles, some of which may have to make two or more 
journeys a day to deliver all the goods, then it would be beneficial to that company 
if the number of vehicles could be reduced to 8 and only one journey a day for 
each. 

The problem is more complex than the original travelling salesman problem 
because there are several paths that need to be found, one for each vehicle. It is 
beyond the scope of this book to show how this can be achieved, but you should 
appreciate that essentially the same methods can be used. The route taken 
between retail stores has to be found which minimizes the distance, and finally, 
we need to decide which vehicle is going to visit which stores so as to reduce the 
number of journeys. All of this can be done using some variation on hill climbing 
with some heuristics such as paths not being allowed to cross, as described 
earlier. 
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route A 

route B 

route D 

route C 

4[ Figure 5.15 
Typical solution to a vehicle 
routeing problem. 

All the methods described so far for the travelling salesman problem assume that 
everything is known in advance, such as the cities which have to be visited, the 
distances between them, and the nature of the paths. What happens if, after a path 
has been planned, an obstruction occurs on one of the paths? With the methods 
described so far they would simply have to abandon the path planned and find a 
new one, which is both inconvenient and costly. 

A situation might arise in which a path is blocked, so a detour is necessary. Suppose 
that one of the cities that isn't scheduled until later is nearby. If the original 
schedule is rigidly stuck to, that city would be ignored, since the principal goal at 
this point is to get back onto the original path. But this misses an opportunity to save 
time. 
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There are therefore three major drawbacks to the methods described: 

1 A lot of computing has to be done in advance, which could take a lot of time. 

2 All the effort could be wasted if the path changes, due to a blockage for 
example. 

3 The methods aren't opportunistic, which means that they don't take advan- 
tage of opportunities when they arise. 

One exception to this is the greedy algorithm that was described at the start of this 
chapter. It requires very little computing, and only needs local information to plan 
its next move. This doesn't produce the optimal schedule, but is still relatively 
good. For example, a worst case scenario for a path planner would be a situation 
in which several points have to be visited, and all of those points are moving in 
unpredictable ways. All the methods except for the greedy algorithm would not 
have a chance at planning a path. The greedy algorithm would at least succeed in 
the task, even if it does not find the optimal solution. 

It would appear, then, that a method is needed which can do some planning in 
advance, but which makes use of local information once the plan is put into action 
to take account of any changes that occur. This is known as intelligent scheduling. 
The greedy algorithm seems to work for the travelling salesman problem, so it 
would be useful if something similar could be applied to other problems such as 
path planning in a complex changing environment. One such method is to use the 
distance transformation described earlier in Chapter 3 on Search. 

Recall that forward and backward scanning are used to calculate a value for every 
square in a grid which represents the environment. The example given in Chapter 3 
is shown in Figure 5.16. 

5 4 3 2 1 2 6 = empty grid 

6 ~ ~-~ ' 0 1 ~6~ = object 

6 5 4 3 2 3 

The numbers in the grid represent the number of steps to the goal. Objects, which 
have to be avoided, end up with a relatively high value. Starting from any point on 
the grid, all one has to do to get to the goal along the shortest path is to move to the 
neighbouring square with the lowest value. We therefore have a method which 
calculates all the values in advance, and could, if desired, plan the whole path in 
advance. Alternatively, a path could be followed using only the local information 
that is available at the time. 

Figure 5.16 
A grid with values found by 
the distance transform. 
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If an obstacle appears that blocks the path to the neighbour with the lowest value, 
an alternative can be taken by looking at the neighbouring squares for the next 
lowest value. Having avoided the obstacle, a new path is taken to the goal based 
on the local information from the area that is currently occupied. In this way, 
opportunities to reach the goal are not missed by insisting on getting back to the 

original path. 

Ultimately, even the distance transform method fails to be intelligent, because it 
also relies on there being some form of map of the environment which is known in 
advance. When humans, whom we might regard as the most intelligent schedul- 
ers so far, give directions, for example, it is usually in the form of instructions 

such as: 

'Keep walking along this street until you come to a set of traffic lights. Turn 
left at the lights and then go up the hill until you come to the second turning 
on the right.' 

These are very imprecise instructions, but somehow we all manage to follow 
them. We follow the road even when there are many bends; we avoid getting 
stuck when there is an obstruction in the way by simply going around it, and we 
take advantage of the fact that we might be able to see in advance the set of traffic 
lights and so cross the road before we get to them. Whether or not machines will 
ever be able to follow a similar set of instructions is debatable, but we would 
guess that soon they will be able to. The problem with the set of instructions is the 
imprecision, which is also a problem in many other areas of AI such as speech 
recognition, handwriting recognition, and generally in any environments that are 

complex or contain humans. 

This chapter has dealt with various approaches to scheduling. One of the major 
tasks is formulating a problem so that the various techniques described in this 
chapter can be applied. Graph theory is one way that allows us to set up a 
scheduling problem as a graph or a network. Once the problem is represented in 
this way, there are methods that can be used to identify the shortest route and the 

critical paths in the network. 

With some conventional methods the computational effort involved grows very 
quickly as the size and complexity of the problem increase. The result is that in 
many cases it is impossible to compute a shortest path in anything like a 
reasonable time. However, in scheduling activities, we nearly always require 
some value, such as the distance travelled or the time taken, to be minimized, and 
the results are needed quickly. This is why many of the techniques described in 
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Chapter 3 on Search have been applied, such as hill climbing, simulated anneal- 
ing and genetic algorithms. The travelling salesman problem was used to 
illustrate this, and it was shown that attempting to find the shortest path by 
examining all the paths becomes a computational nightmare. The search tech- 
niques provide a way of finding a sub-optimal solution, and sometimes the 
optimal solution, using much less computing resource. 

Although the travelling salesman problem is somewhat artificial, the methods 
employed to solve it can usually be applied to more complex 'realistic' problems 
by incorporating features such as weighting the values on the links on the graph. 
Yet more complex problems so far elude optimization techniques, so we have to 
fall back on sub-optimal solutions such as those produced by the greedy algo- 
rithm and the distance transform. Although these generally tend to be called 
'intelligent scheduling', we will have to wait to see if they really are intelligent as 
new techniques come along that can deal with situations more in the way that 
humans do, with all of its imprecision. 

The discussion of critical-path scheduling is based largely on that given in Dolan 
and Aldous (1993). 

Dolan, A.K. and Aldous, J. (1993) Networks andAtgorithms: an introductory approach, 
John Wiley & Sons, Chichester. 

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1985) (eds.) The 
Travelling Salesman Problem, Wiley-Interscience. 
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C H A P T E  R 6 
R E A S O N I N G  

6.1 Introduction 

One fundamental item of information required by every intelligent machine is 
'what to do next'. For example, a machine that can move about might contain 
knowledge such as 'there is an obstacle in front', and 'crashing into obstacles at a 
high speed may be dangerous'. From this it might deduce that its next action 
should be to 'slow down'. Reasoning is part of the machine's cognition sub- 
system, and is necessary when the sensors of the perception subsystem cannot 
deliver information in the required form. 

Reasoning is the process of going from what is known to what is not known. 

Humans are very good at reasoning, as it is something that we have to do all the 
time. We are constantly picking up clues from the information around us and 
drawing conclusions based on these clues. One of the major areas of artificial 
intelligence is concerned with finding ways of emulating this process. By far the 
most frequently used tool is logic. The logical methods that are used in artificial 
intelligence are drawn from many sources, including philosophy and mathemat- 
ics. Of the many mechanisms for doing this, we will consider the following in this 
chapter: 

i~ deterministic reasoning: 

propositional logic 

predicate logic 

dynamic reasoning: 

non-monotonic logic 

i~ non-deterministic reasoning: 

multi-valued logic 

probability theory and Bayesian deduction 

fuzzy logic. 

In the rest of this introduction we will give an overview of these logics: their 
origins and their applicability to machine reasoning. Each one will then be dealt 
with in more detail in the subsequent sections in this chapter. 
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6.1.1 Deterministic reasoning 
Deterministic reasoning goes back to the Greeks, and Plato's student Aristotle 
(384-322BC). Aristotle abstracted a set of rules called syllogisms. We can 
illustrate the general idea using one of the best known syllogisms which takes the 
form of an If-Then rule. First, let's state the rule in everyday language. 

A moving vehicle uses computer vision to guide it through a complex environ- 
ment. Ifit 'sees' an unknown object in its path, Then it should take action to avoid 
that object. This statement can be written in a more concise way as a rule: 

The rule 

if the camera image contains an unknown object 

Then take evasive action 

The first part of the rule contains a statement which can be either TRUE or FALSE. 
If it is TRUE, then the second part of the rule is activated. The second part of the 
rule is also a statement that can be either TRUE or FALSE; if evasive action is being 
taken then the statement is TRUE, otherwise it is FALSE. When the first part of the 
rule is TRUE, the system containing the rule can initiate evasive action to make the 
second part of the rule TRUE. 

This process is deduction, where the truth value of a fact can be deduced from 
another. Consider this example: 

The known fact 

'the camera image contains an unknown object' is TRUE 

The deduced fact 

'take evasive action' is TRUE 

Such was the respect accorded to Aristotle over the centuries that almost no 
further developments were made in logic until the work of George Boole 
(1815-1864). Boole worked out a system by which new statements can be 
deduced from others using the connectives AND and OR. In the previous example, 
the object that is 'seen' by the camera is described as being 'unknown'.  We could 
split up the original statement into two parts: the first concerning the fact that an 
object has been detected, the second concerning whether or not the object can be 
matched to any known object in the system's database. The known facts become: 

The known facts 

'the camera image contains an object' is TRUE 

AND 

'the object cannot be matched in the database' is TRUE 
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This says that an object has been detected, but it doesn't match any known 
objects. There are two known facts, and they have to be combined into a single 
fact before the system can decide whether to take action or not. The connective 
AND is used to combine the facts. 

The deduced fact 

'the camera image contains an object' 

AND 

'the object cannot be matched in the database' is TRUE 

Here the deduced fact is clearly more complicated than either of its constituents. 
For practical purposes we might equate the deduced fact with the proposition that 
the camera image contains an unknown object. Using Boole's logic (Boolean 
logic) we can work out the truth of this proposition given the truth values of the 
two sub-propositions which are connected by the AND. 

Although Boolean logic is very powerful, it does not contain one of the most 
powerful ideas in logic, that of quantifiers, due to Friedrich Frege (1848-1925) in 
its modem form. For example, there is clearly a difference between saying 'there 
exists an object in the database and that object matches the object detected by the 
camera' and 'for all objects in the database, those objects match the object 
detected by the camera'. The first of these is called the existential quantifier 
while the second is called the universal quanttfier. These quantifiers are power- 
ful devices because they save writing out the proposition many times. For 
example, a machine might be required to switch off its motors for all those 
occasions on which it reads the bar codes beginning with I II. Then instead of 
laboriously writing out 

'if the bar code is IIII then switch off the motors' 

'if the bar code is III II then switch off the motors' 

'if the bar code is IIIII then switch off the motors' 

'if the bar code is IIIiill then switch off the motors' 

'if the bar code is IIIII then switch off the motors' 

'if the bar code is Illlll then switch off the motors' 

and so on, we can simply write 

'for all bar codes, if the bar code begins with III then switch off the motors' 

Propositional logic allows us to deduce the truth value of compound propositions 
made up from simpler propositions and the Boolean connectives AND, OR and 
NOT. Predicate logic, developed mainly by Friedrich Frege and Bertrand Russell 
(1872-1970), goes one step further by allowing us to evaluate the truth values of 
compound propositions which also involve the quantifiers 'for all' and 'there 
exists'. 
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6.1.2 Dynamic reasoning 
Although logical reasoning allows us to reason about things that will certainly 
happen, it still does not capture the richness of human thought that enables us to 
function in the face of incomplete and inconsistent information about our rapidly 
changing environment and goals. Modem research in artificial intelligence has 
introduced dynamic reasoning, which addresses the cognitive ability of human 
beings to reason in the face of changing circumstances. Non-monotonic logic 
attempts to allow reasoning in which the truth value of a proposition is allowed to 
change. 

The commonly cited example is that, given 'Tweety is a bird' is TRUE, and since 
we know that 'birds fly' is TRUE we may deduce that 'Tweety can fly' is TRUE. 
However, we may subsequently learn that 'Tweety is a penguin' is TRUE, and 
since 'penguins cannot fly' is TRUE we now deduce that 'Tweety can fly' is 
FALSE. 

What has happened is that the original deduction was based on two propositions, 
plus some default knowledge. In other words, since we said that Tweety is a bird, 
in the absence of any other information we would assume that it could fly since 
typically birds can fly. In deterministic logic it is assumed that there is no default 
knowledge, so that when a deduction is made, any new evidence should support 
that deduction. However, in this example the new knowledge does not support the 
deduction. If we tried to resolve this problem using deterministic logic, state- 
ments like 'birds fly' would have to be qualified by a list of exceptions which 
could get quite cumbersome. Non-monotonic logic allows the deduction to 
change as new evidence arrives, so getting rid of the need for additional 
qualifiers. 

Non-monotonic logic tries to capture the dynamic aspect of human logic in which 
we cope with massive uncertainty by constantly formulating working hypotheses 
which mostly turn out to be correct, but may sometimes have to be revised on the 
acquisition of new information. 

6.1.3 Non-deterministic reasoning 
Propositional and predicate logic have been developed in modem form in the 
nineteenth and twentieth centuries. However, they do not capture all the tech- 
niques of reasoning which seem to be so effective in humans. Non-deterministic 
logic, such as multi-valued logic, allows us to use predicate logic but with truth 
values such as 'unknown'.  Furthermore, we often encounter situations in which 
black-and-white judgements are inappropriate, instead of predicting future 
events on a TRUE-FALSE basis we often assess them in terms of likelihood. 

Probability theory is an extension of the empirical notion of relative frequency. 
For example, if we observe that 89 identical components in a batch of 1000 fail 
within 1000 hours of use, the relative frequency of failure is 89/1000, or 0.089. 
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We can use this empirical data as a measure of the abstract probability of the 
component failing, p(failure) - 0.089. Although we cannot predict that the 
component will certainly fail at any given instant, we can predict that in 1000 
hours we expect about 89 failures in a thousand. Probability theory allows us to 
deduce other failure rates: 

The known facts  

89 components from 1000 failed within 1000 hours use. 

The deduced facts  

The probability of a component not failing within 1000 hours is 

89 
1 -p(fail ing) = 1 1000 = 0.911 

Suppose a machine that depends on two such components, A and B, will fail if 
component A fails or component B fails. Put another way, the machine does not 

fail if component A does not fail and component B does not fail. Therefore the 
probability of the machine not failing within 1000 hours is 

( 1 0 0 0 - 8 9 )  ( 1 0 0 0 - 8 9 )  
x = 0.829921 

P = 1000 1000 

That is, the probability of the machine failing within 1000 hours is approximately 
1-0 .83,  which is 0.17. We expect 17% of machines with components A and B to 
fail within 1000 hours. 

From this kind of calculation we can deduce that 17% of machines with two of the 
components will fail within 1000 hours. About one-quarter of machines depend- 
ing on three of these components will fail within 1000 hours, while about one- 
third of machines depending on four of these components will fail within 1000 
hours. Similarly, one can use probability to reason about the likelihood of 
complex outcomes given the probabilities of the constituent parts using the 
logical connectives AND, OR and NOT, just as in the case of Boolean logic. 

In general, machines are constantly collecting data that enable them to update 
their probability estimates of various atomic and compound events. Ideally, one 
wants to use the new and old information in a way which optimizes the value of 
both. For example, the experience that a robot found the correct part in a given bin 
may not guarantee that the part will always be available in that place, but added to 
previous experience it may increase the expectation of finding the part in this 
place in future. A result in probability theory called Bayes' Theorem allows prior 
estimates of probability to be continually updated in the light of new observa- 
tions. 

Deterministic logic and probability theory can be combined to give rules of the 
form 'if the probability of collision is >0.1, initiate evasive action'. Thus, 
however measured, once the system has decided that the likelihood of collision 
exceeds the threshold value of 0.1, the rule definitely requires it to take evasive 
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action. As we will see in this chapter, there are more subtle ways of combining 
intuitions about likelihood with those of predicate logic. 

In 1965 Lotfi Zadeh proposed a form of reasoning using what has become known 
as fuzzy logic. One of the main ideas is that propositions need not be classified as 
true or false, but their truth and falsehood can be weighted. This differs from 
probability theory by its dependence on the idea of a fuzzy set in which set 
membership is weighted. Thus a machine could be'stationary' with a value of 0.9 
and 'moving' with a value of 0.1. This is particularly useful when representing 
the universe in which a machine is operating. There is always some uncertainty 
about the position of the machine or its parts, and engineers are used to designing 
tolerances into their machines. Traditional engineering has tended to improve the 
behaviour of machines by using highly specified materials and precise, highly 
skilled assembly. In mechatronics, we are interested in replacing traditional 
solutions by incorporating machine intelligence that can compensate for low 
tolerances. Thus expensive manufacturing processes may be replaced by designs 
with less exacting specifications. Fuzzy set theory allows us to represent, say, the 
position of an autonomous vehicle in a 'fuzzy' way. It may be more useful to 
reason on the basis that the machine is 'in the comer' than to know precisely its 
x,y coordinates. This fuzziness in the representation allows a fuzziness in 
reasoning which can be very useful. 

In the remaining sections of this chapter we will explain the mainstream topics 
from reasoning in more detail, and we will show how they can be used in 
designing intelligent machines. 

6.2.1 Propositional logic 
The rules that were described in the previous section under the heading of 
deterministic reasoning are known more precisely as rules of inference. The 
conditional parts of the statement are known as propositions, and the theory of 
manipulating these statements is known as propositional logic. In a rule of the 
form 

If (X) Then (Y) 

the terms X and Yare called propositional symbols, and they have a truth value. In 
this section we shall assume that this means that they can be either TRUE o r  FALSE 

statements, but not both. (Later we look at ways of using more than two truth 
values.) For example, if X is the statement 

(temperature of room is less than T r) 
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then the proposition is TRUE when the temperature of the room is less than Tr and 
FALSE when the temperature is greater than or equal to T r . Similarly, an action to 
be taken, Y, could be: 

(radiator valve is ON) 

which is TRUE if the radiator valve is turned on, or FALSE if the radiator valve is 
NOT turned on. At first sight this second statement does not look like an action 
statement. However, a system that uses If-Then rules can force the statement to be 
TRUE by taking action. Thus, if the rule states that when the temperature is below 

T r then (radiator valve is ON) should be TRUE, the system will turn on the radiator 
valve to make the statement TRUE. 

In order to make a distinction between the proposition and its truth value, the 

following notation is used: 

T(X) = TRUE if X is TRUE 

T(X) = FALSE if X is FALSE 

This is needed because we want to make statements in which the truth values of 

two propositions can be compared. If, for example, the two propositions X and Y 
are both TRUE, then it is possible to say 

T(X) = T(Y) 

That is, the truth values of the two propositions are the same. This is quite 
different from saying that the two propositions themselves are the same, X = Y. 

The propositional logic that we will be using in this chapter contains all the rules 
of Boolean logic, just as in the treatment of logic gates in Volume 1, Section 3.3.4. 
One of the first laws of this propositional logic is that of the 'excluded middle' .  
This says that a proposition has to be either TRUE or FALSE; it can ' t  be anything 
else. A second law is that of 'contradiction',  which says that a proposition cannot 
be both TRUE and FALSE at the same time. 

The following are consequences of the Law of the Excluded Middle: 

1 IfX is TRUE, Then (NOT X) is FALSE. In other words, since a proposition has to 
be either TRUE or FALSE, if we know that it is NOT TRUE, then it must by 
definition be FALSE, and similarly if we know that it is NOT FALSE it must be 

TRUE. 

2 The proposition that X is TRUE AND X is FALSE must be FALSE since X cannot 
be both TRUE and FALSE at the same time. 

3 The propositionX is TRUE ORX is FALSE must be TRUE sinceX has to be either 
TRUE or FALSE, it cannot be anything else. 

Clearly then, we can combine propositional symbols using Boolean operators 
such as AND, OR and NOT since the truth values of the propositions are logical. In 
propositional logic, AND, OR and NOT are known as connectives. The symbols 
that are used for these connectives are 
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X A Y means X AND Y 

X v Y means X OR Y 

---,X means NOT X 

There are alternative notations for the logical operators. Other notations are in use 

for the negation operator, NOT, such as .~X and -X; students of electronics may 

also be familiar with the bar notation for negation, X. 

These connectives can generate new propositions from the combinations of 

individual propositions. Rules can contain combinations of propositions such as" 

/f ((temperature of room less than Tr)/x (timer is ON)) 

Then  (radiator valve is ON) 

Just as the individual statements, X and Y, can be TRUE or FALSE, so a combination 

such as (X/x Y) can be TRUE or FALSE. For example, if T(X) is TRUE and T(Y) is 

FALSE then T(X/, ,  Y) is FALSE. 

The connectives AND, OR and NOT are summarized in Table 6.1, using both 

notations. 

T A B L E  6.1 S U M M A R Y  OF T H E  C O N N E C T I V E S  X ^ Y, X v Y A N D  ~ X  

X Y 

FALSE FALSE 

FALSE TRUE 

TRUE FALSE 

TRUE TRUE 

X A Y X v Y ---,X X---> Y 

X AND Y X OR Y NOT X X implies Y 

FALSE FALSE TRUE TRUE 

FALSE TRUE TRUE TRUE 

FALSE TRUE FALSE FALSE 

TRUE TRUE FALSE TRUE 

In Volume 1, Chapter 3 of this book, Boolean logic was introduced in terms of 

logic gates, and a statement was made that all logical functions can be imple- 
mented using only NAND gates. One of the reasons that this is true is that the OR 

connective can be replaced by a combination of the AND connective and the NOT 
connective. The relationship between the two is summarized by DeMorgan's 
Laws: 
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DeMorgan's Laws 

If there are two propositions, X and Y, then 

X v Y = ~ ( ~ X  A-~Y) X OR Y = NOT(NOT X AND NOT Y) 

and similarly 

X A Y = ~ ( ~ X  v ~Y) X AND Y = NOT(NOT X OR NOT Y) 

This rule is sometimes helpful in manipulating logical expressions to get them 
into a form that is easy to interpret. 

There is one other operation shown in Table 6.1 that plays an important role in 
propositional logic, namely implication. This has the symbol: 

X---~Y X implies Y (equivalent to ~ X  v Y) 

This operation needs some explanation. You can see that the 'X implies Y' entry in 
Table 6.1 is TRUE for all cases except one, where X is TRUE and Yis FALSE. From 
this we can deduce that implication is equivalent to the expression --,X v Y, but 
this doesn't  shed any light on its usefulness. The term 'implication' often causes 
confusion. A lot of people expect 'X implies Y' to mean that the value of Y will be 
dictated by the value of X, but it does not. If it helps, imagine a small box, BOX x, 
inside a larger box, BOX~, as shown in Figure 6.1. Then let the propositional 
symbols, X and Y, mean: 

X (object is inside B o x o  

(object is inside BOXy) 

BOX y 

BOX x object 

Figure 6.1 
An example of implication. 
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We can say that X ~ Y, because if an object is inside BOX x then it must also be 
inside BOXy If, on the other hand, the object is not inside BOX x, then it is valid 
for it to be inside BOXy or outside; these are both situations which could be TRUE. 
The only situation that cannot happen is for the object to be inside BOX x and 
outside BOXy which corresponds to T(X)=  TRUE and T(Y) = FALSE, so the 
combination T(X---)Y)= FALSE. 

For example, if X represents (lightbulb is illuminated) and Y represents (power 
supply connected to switch on light), then X ---) Y. That is, if the light is illuminated 
then the power supply must be connected. If the light is off, the power supply may 
be connected or not, you can't say, as the switch controlling the light may be on or 
off. However, if the light is on and the power supply is not connected, then there is 
something strange going on. 

Implication can appear in a rule. For example, a system which monitors the 
temperature of a bath might have three propositions, X, Y and Z, where 

X (hot tap turned on) 

Y (water hot) 

Z (sound alarm) 

A rule which uses these propositions could be 

If T(~ (X ~ Y) ) 

Then T(Z) 

In words, what this rule says is that if NOT(X implies Y) is TRUE- that is (X implies 
Y) is FALSE- sound an alarm. This means that if the hot tap is on and the water is 
not hot then there is something wrong: either the tap hasn't  turned on or the heat 
sensor is faulty. In all other cases there is no need for an alarm. These cases are: 

tap on, water hot OK 

tap off, water hot OK 

tap off, water not hot OK 

Propositional logic can take us quite a long way in reasoning. However, there are 
some situations where putting together all of the propositions required to test a 
situation is a long and tedious job. For example, if a system has to examine a 
hundred sensors and sound an alarm when any one of them is indicating a 
potentially dangerous situation, then the rule would have to be quite long: 
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/f ((sensor 1 is ON) v (sensor 2 is ON) v ... v (sensor 100 is ON)) 

Then (sound alarm) 

As you can see, this is a fairly simple construction, but it would be more 
convenient if there was a shorthand notation for this. Fortunately there is, but not 
in propositional logic. To get some new operators we need to move to predicate 
logic. 

6.2.2 Predicate logic 
The main differences between propositional logic and predicate logic are that in 
predicate logic we can use variables, and there are two new symbols called 
quantifiers. Firstly, let's look at variables. 

In the previous section there were propositions like (water is hot) which had a 
truth value. This proposition just tests one object, the water, and so can't be used 
to test anything else. With predicate logic, the proposition is split into a subject 
(called the argument) and a predicate which is a single verb phrase. In this 
example the argument is 'water '  and the predicate is 'is hot'. 

Now the predicate is independent of the argument, so it can be applied to any 
other argument such as 'the weather is hot' or 'ice is hot'. A shorthand way of 
writing this is to state the predicate and put the arguments in brackets after it. The 
predicate 'is hot' can therefore be written as 

hot(x) 

where the argument, x, could be any object, and the quality of 'hotness' is 
attached to it. This predicate can be used as a proposition if the object is replaced 
by a specific item such as water: 

hot(water) TRUE if water is hot, FALSE if water is not hot 

hot(ice) FALSE by most definitions 

The predicate, hot(x), does not have a truth value, since x could be anything. It is 
only when a specific item is substituted for x that a truth value can be assigned. 
Even then, a logical value can be assigned only if what is substituted can be 
meaningfully described as hot. Formally what we mean is that the predicate 'hot' 
is defined for a specific domain, which in this case contains all objects that have a 
measurable temperature. 

Predicates can have more than one argument. For example, the predicate 'bigger'  
could have two arguments, bigger(x,y), which is TRUE if x>y and FALSE 
otherwise. For example, bigger(3,2) is TRUE whereas bigger(2,3) is FALSE. 
Similarly, equal(x,y) is TRUE if x=y and FALSE otherwise. 
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The second aspect of predicate logic that makes it different from propositional 
logic is that there are two additional symbols. These are: 

V x P(x) means 'for all x, P(x) is TRUE' 

3 x P(x) means 'there exists x such that P(x) is TRUE' 

where x is an object and P(x) is a predicate of x. 

The upside-down A (for All) symbol, V, is called the universal quantifier, and the 
back-to-front E (for Exists) symbol, 3, is called the existential quantifier. The 
universal quantifier has to be used with care since it is necessary to define the 
'universe',  or set, or domain, to which x belongs. For example, the quantified 
predicate 

V x ,  1 / x < x  

is false, for example, for values of x between 0 and 1. However, 

V x, x is a number greater than l, 1/x < x 

is true. In this case the universe is the set of numbers greater than one, and for this 
universe the quantified predicate is true. To see why it is necessary to specify the 
universe, consider the following 

V x ,  x i s a n e g g ,  1 / x < x  

is meaningless because the string of symbols 1/egg has no meaning. Even when 
the string is meaningful the universe must be carefully stated. For example, 

V x, x is a number, 1Ix < x 

is a meaningful predicate, albeit a predicate that is false. Just one exception for 
which a universally quantified predicate is false makes the whole thing false. 
Here x - 0.1 will do. 

It is necessary to specify the universe for the existential quantifier in order to 
ensure that the predicate is meaningful. For example, it is certainly true that 

3 x ,  1 / x < x  

since, for example, x can simply be set equal to 3. However it is not meaningful to 
assert that 

3 x ,  x i s a n e g g ,  l / x < x  

In mathematics quantifiers are essential for manipulating propositions about the 
members of infinite sets. In areas such as mechatronics they can be useful in 
presenting information about finite sets in summary forms. For example, recall 
the rule that sounds an alarm if any of the sensors turn on. This can now be 
expressed more succinctly as follows: 

I f  (3 x on(sensor x)) 

Then on(alarm) 
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The predicate on(sensor x) is TRUE if sensor x is ON, and on(alarm) is TRUE if the 
alarm is sounding. The rule therefore says that if there exists a value of x such that 
the predicate on(sensor x) is TRUE then sound the alarm. 

In computer implementations, the domains of quantified predicates usually have 
to be declared or constructed. For example, the rule which involved the predicate 
on (sensorx) would have been declared in such a way that the computer knew that 
x had to be a positive integer. 

6.2.3 Rules of inference 
Having established that some propositions are TRUE, it is often desirable to be 
able to derive further propositions and establish their truth values. This process is 
called inference and is based around the implication operator described earlier. 
There are many rules of inference-  16 in all - but two of the most frequently used 
rules of inference are known as modus ponens and modus tollens. 

Modus ponens 

Assume: X ~ Y 

and: X 

Then: Y 

This says that i fwe assume thatX ~ Yis TRUE, andX is TRUE, then it follows that 
Y must be TRUE. Care has to be taken because nothing is said about Y if X ~ Y is 
FALSE. For example, suppose we know that if a cooling system on a car fails, X, 
the engine will get hot, Y. We therefore know that X---) Y is TRUE. Then suppose 
that the cooling system fails (XisTRUE), it follows that the engine is hot 
(Y is TRUE). Alternatively, if we said that when the ashtray in a car is full, X, the 
engine gets hot, Y. In this case X --~ Yis FALSE. So if the ashtray is full (X is TRUE) 
we cannot say whether the engine is hot or not. 

Modus tollens 

Assume: X --~ Y 

and: -~Y 

Then: ~ X  

First we assume thatX --~ Yis TRUE. Then if--, Yis TRUE (or Yis FALSE) it follows 
that--,X must be TRUE (or X is FALSE). Using the same examples as above, a failed 
cooling system (X is TRUE) implies a hot engine (Yis TRUE). If the engine isn't hot 
(Y is FALSE), it follows that the cooling system hasn't  failed (X is FALSE). 
Similarly, for the example where the implication is FALSE, if the engine isn't hot 
(Y is FALSE) we can't  say whether the ashtray is full or not. 
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From these simple examples you might believe that it is blindingly obvious when 
something implies something else. However, it is not difficult to think of 
historical examples where inference has been applied with the result that new 
discoveries are made. For example, it would be true to say that if the world is flat 
(X) you could fall off the edge of the world (Y), so the implication of the statement 
is TRUE, (X ~ Y). People once believed that the Earth was flat (X is TRUE), so by 
applying modusponens they believed that if you went to the edge of the Earth you 
would fall off (Yis TRUE). When people found that they didn't fall off the edge of 
the Earth (Yis FALSE) it followed that the Earth couldn't be flat (X is FALSE), even 
though the implication (X ~ Y) is still TRUE. 

We use rules of inference in mechatronic systems to deduce new information 
from existing propositions. For example, imagine that a light sensor, X, is used by 
a mechatronic system to determine when it is night time, Y, and if it is night time, a 
light is switched on, Z. The three propositions contained in the system are: 

X, sensor is ON 

Y, it is night time 

- sensor OFF when it gets dark 

Z, light is ON 

The system assumes that (~X ~ Y) and applies a rule of the form: 

if T(r3 

Then T(Z) 

Some of the knowledge contained in the system is found by direct measurement 
or sensing, namely the state of the sensor and the state of the light, whereas the 
knowledge about whether it is night time or not can only be inferred from X. We 
will see more of this in Chapter 7 on Rule-based systems. 

6.2.4 Theorem proving 
We shall look at the ideas involved in theorem proving, as this is also one of the 
main areas of logical reasoning. Theorem proving is used extensively in mathe- 
matics, but can also find a use in machine intelligence. A formal system is 
required which consists of axioms, rules of inference and, of course, theorems. 
The axioms are propositions which are always TRUE for a particular system, so 
that these axioms, together with a set of rules of inference, define a particular 
formal system. Essentially, theorem proving is the process of deducing whether a 
theorem is TRUE or not. The method is to show that a theorem can be derived from 
the axioms using only the rules of inference. This may all sound very abstract, so 
we will illustrate it with an example. 

Let's take the example of the previous section, of the sensor that detects the onset 
of night time again. The 'theorem' that we want to prove is that it is night. First of 
all, let's set out the axioms. The propositions that are relevant are: 

188 



CHAPTER 6: REASONING 

X, sensor is ON 

Y, it is night 

Axiom 1: Sensor is OFF (~X) 

Axiom 2: Sensor OFF (--,X) implies night (Y), (~X--9 Y) 

For the system that we are defining, these axioms are always TRUE. Next we state 
the rules of inference that will be used in this system. In this example, modus 
ponens will be used: 

Rule of inference: If  (A -9 B) is TRUE, AND A is TRUE Then B is TRUE 

Notice that we've used some 'dummy'  variables here, A and B, to make the rule 
general. 

Finally, the theorem. The theorem that we wish to prove is that it is night. 

Theorem: It is night (Y) 

We prove the theorem by showing that it can be deduced from the axioms using 
the rule of inference. In this example we only have to do this once and the theorem 
is proven. By substituting --,X for A and Y for B we get: 

If  ( ~ X - 9  Y) is TRUE, and ~ X  is TRUE 

Then Y is TRUE 

We have therefore shown that Y is TRUE, so the theorem is proven. Now this is a 
very simple example, and in general the logical system would be much more 
complex. However, the process of theorem proving would be the same. You can 
perhaps see how this process is applied in mathematics where new theorems get 
proposed, and mathematicians gather to test if these new theorems are correct. 
But we hope that you can also appreciate that in a mechatronic system a 
hypothesis such as 'If I go left I will reach my goal' can only be answered by 
posing the question as a theorem, and testing to see if that theorem can be proven. 
The structure of the formal system containing axioms and rules of inference is 
essential for the system to prove the theorem. 

Theorem proving is an important but difficult area in artificial intelligence. Some 
deductions are quite complicated because the interaction of quantifiers and 
connectives makes testing truth values difficult. In particular, different symbols 
may be used for what turns out to be the same variables, and sorting this out 
may require the application of heuristic search techniques and a great deal of 
computation. 

6.2.5 Non-monotonic reasoning 
Before we leave reasoning with certainty, the notion of monotonicity needs to be 
mentioned, in classical logic, if we start with a set of assumptions and then use 
these assumptions to deduce some new conclusions, then strictly speaking the 
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new conclusions are expected to hold universally. No new assumptions should be 
discovered that alter these conclusions. 

For example, a robot operates provided that there is power to the robot and that all 

safety devices are in place. 

X power to robot 

Y safety devices in place 

P robot operates 

T(P) = T(X A Y) 

If T(X) is TRUE and T(Y) is TRUE then T(P) is TRUE and the robot is operating. 

At some time later it is found that the robot is not operating despite there being 
power available and safety devices in place. The problem is that the robot has 
seized up due to lack of lubricant. This changes the situation because we now 
have a third condition that needs to be examined before the robot operates: 

Z adequate lubricant 

T(P) = T(X /x Y/x Z) 

So it is now possible for T(P) to be FALSE even though T(X) is TRUE and T(Y) is 

TRUE. 

In classical logic it should be impossible to find a new proposition Z that would 
alter the original conclusions. This is because it is assumed that the system is 
completely understood, so any new evidence should support the original deduc- 
tion. The term monotonic arises because the number of conclusions that can be 
drawn from a set of propositions should never decrease when new propositions 
are discovered. In other words, if the number of propositions is A, and the number 
of TRUE conclusions is C, then if new propositions are found, B, such that the 
number of propositions is now A + B, the number of TRUE conclusions should still 
be at least C. Mathematical functions that only ever increase (or only ever 
decrease) are called monotonic. 

In the robot example, a new proposition causes the number of TRUE conclusions 
to decrease because a conclusion that was originally TRUE is now FALSE. So if we 
want to be able to handle conclusions that change we have to resort to non- 

monotonic logic. 

This is all a very long-winded way of saying that we allow conclusions to change. 
In a system that uses logic, this would mean constantly checking to see if the 
conclusions that are currently held to be TRUE are still TRUE given that the 
propositions might have changed. So the propositions themselves are found 
under conditions of certainty, but they can still change as new evidence is found. 
This introduces an element of uncertainty. In the next sections, we discuss ways 
of dealing with uncertainty in the propositions. 
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The previous section showed how a machine could be made to follow a set of 

rules using If-Then decisions. These rely on a condition being TRUE or FALSE, 
which in turn rely on the data (arriving from a sensor say) being available and 

accurate. What happens if the data are unreliable, either because the signal is very 
noisy or because there are gaps in the data? We would still like to be able to (and 

sometimes have to) make decisions. In this section we look at a number of ways 

of doing this. 

6.3.1 3-valued logic 
Up until now we have assumed that a proposition must have a truth value which is 

either TRUE or FALSE. In some cases data may be missing and we find ourselves in 

a position where a decision still has to be made, even though there are gaps in the 

data. In 3-valued logic a third value is allowed which is 'UNKNOWN'. The purpose 

of this is that it may sometimes be possible to infer some value of a compound 

proposition even though some of its elements are unknown. The alternative is to 

just give up and say that nothing can be done. 

As an example, suppose we have a proposition, P, that consists of (X v Y). 

T(P) = T(X v Y) 

Now suppose that the value of X, T(X) = TRUE, but we don' t  know the value of Y; 

that is, T(Y)= UNKNOWN. What is T(P)? 

Table 6.2 is the truth table for X v E 

TABLE 6.2 S U M M A R Y  OF THE T R U T H  VALUES OF THE C O N N E C T I V E  X v Y 

X Y X v Y  

FALSE FALSE FALSE 

FALSE TRUE TRUE 

TRUE FALSE TRUE 

TRUE TRUE TRUE 

From this we can see that if T(X) is TRUE, irrespective of the value of T(Y), the 

value of T(X v Y) is TRUE. So in this case we can find the truth value of P even if 

one of its elements were UNKNOWN. We can't  always do this, but it's an improve- 
ment on never being able to determine the truth value of a compound proposition 

just because one of its elements is UNKNOWN. 
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As was the case with Boolean logic, a 3-valued logic with the truth value 
UNKNOWN can be defined by showing how it deals with the connectives AND, OR 

and NOT. This is shown in Table 6.3, where TRUE, FALSE and UNKNOWN have 

been abbreviated to T, F and U respectively. 

TABLE 6.3 SUMMARY OF THE CONNECTIVES IN 3-VALUED LOGIC 

X Y 

F F 

F T 

F U 

T F 

T T 

T U 

U F 

U T 

U U 

X A Y X v Y - ,X  X---> Y 

F F T T 

F T T T 

F U T T 

F T F F 

T T F T 

U T F U 

F U U U 

U T U T 

U U U U 

As before, the table includes implication, where we can see that implication can 
be true even when one of the variables is UNKNOWN in some cases. 

We could go further than this and have any-valued logic - for example, 
4-valued logic. All we have to do is define what happens with each of the 

connectives. 

6.3.2 Probability theory 
Most people have some intuitive idea of probability. If you were asked what are 

the chances of some event happening you could make a guess based on some 

notion of how often you think that event happens. Will it snow tomorrow? If it is 
summer, then your answer is 'not very likely', but if it is winter your answer could 

be 'yes, I think it probably will'. There is no way that you could say with complete 

certainty whether it will snow tomorrow, so you have to guess, but the guess is not 
completely w i l d -  it will be an 'intelligent guess'. You would use some historical 
data, like 'it 's never snowed at this time of year before',  and some general 

knowledge like 'it doesn' t  snow in summer because it's too hot' .  Then you would 

use some local or current knowledge, such as 'it has been snowing for the last two 

days and it doesn' t  look like easing up',  or 'there's a low pressure front coming in 

from the north'. So, you would gather information from a variety of sources and 

combine them to make your educated guess. 
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All of this reasoning is done in words. Probability theory allows you to do the 
same but using numbers derived from statistical theory. Numerical representa- 
tions are often easier to manipulate in a machine than natural language. 

It has to be emphasized that probabilities are abstract quantities. The probability 
of an event occurring is expressed as a number between 0 and 1. A probability of 0 
means that the event will never happen, and a probability of 1 means that the 
event will certainly happen. A value in between, 0.7 say, indicates that the number 
of times that the event will take place is expected to be 70% in a large number of 
trials. For example, when tossing a coin the probability of the coin coming down 
heads is 0.5, which means that we expect the number of times that the coin lands 
with heads up to be close to 50% in a large number of trials. 

Given a set of data, the relative f requency  of an event can be measured. The 
frequency is the number of times that an event occurs, whereas the relative 
frequency is the number of times an event occurs, divided by the total number of 
trials. If b is the number of trials (times that x could occur) and a is the number of 
times that the event actually did occur, the relative frequency is then: 

a 

relative frequency, f ( x )  = -~ 

The relative frequency is an empirical measurement. The probability is an 
abstract notion of how often an event will occur in a large number of trials. In the 
absence of any other knowledge, the relative frequency can be used as the current 
estimate of the probability. It is usually assumed that as the number of events 
increases, the more accurate the relative frequency becomes as a measure of the 
probability. 

Suppose that you toss a coin 10 times and note that the number of times that it was 
heads is 7. The relative frequency is 

7 
f(heads) = ]--0 = 0.7 

We can use this value to hypothesize that the probability of heads, p(heads)= 0.7. 

Now suppose you toss the coin another 90 times, making a hundred in total, and 
note that the number of additional times that it was heads was 48, making a total of 
55. The relative frequency is 

55 
f(heads) - 100 - 0.55 

We would now adjust the estimate of the probability to p(heads)= 0.55. 

In theory, as the number of tosses of an unbiased coin increases, the probability 
approaches 0.5. How do we know this? The answer is that there are many 
situations in which the probabilities can be calculated theoretically. In the case of 
tossing a coin, there are two possible outcomes which, as far as we know, are 
equally likely. The theoretical probability is calculated by the number of out- 

193 



VOLUME TWO 

comes that we are predicting, divided by the total number of possible outcomes. If 
we are trying to find the probability of an unbiased coin landing with heads up, 
then the number of outcomes that we are testing is one, and the total number of 
possible outcomes is two, namely heads or tails. The theoretical probability is 
therefore 

1 
p(heads) = ~ = 0.5 

If we were throwing a die there would be six possible outcomes. The probability 
of the die showing a particular number, such as 6, is 1/6 = 0.167. The probability 
of the outcome being an even number is 3/6 = 0.5, because there are 3 possible 
numbers that could be counted, divided by the total number of outcomes which is 
6. 

Of course, this all assumes that the die is not 'loaded' and is therefore 'unbiased'. 
Although the theoretical probability of throwing, say, a 5 is 1/6, the only way to 
test this is to throw the die a number of times. If the long-term relative frequency 
is about 1/6 we can conclude that the die is unbiased. Otherwise we conclude that 
the die is biased and use the empirical probability (relative frequency) rather than 
the a p r i o r i  theoretical probability. 

So we have two ways of arriving at probabilities. The first is to actually measure 
the number of times an event takes place and use the relative frequency as an 
estimate of the probability. If the number of trials is large, the value that you end 
up with is relatively accurate, and applies to the specific event that is in question. 
The second is more general and more idealized. By making an assumption that all 
outcomes are equally likely, for example, it is possible to derive the theoretical 
probability of an event. Often it is a wise precaution to test the 'equally likely' 
assumption by experiment, and it is sometimes necessary to calibrate in order to 
allow for bias. 

A consequence of our definitions of probability is that the sum of the probability 
of an event happening and the probability of an event NOT happening must be 1. A 
probability of 1 represents a certainty- that is, it is bound to happen. So what we 
are saying is that an event is either going to happen or it is not. Mathematically this 
is represented by 

p ( x )  + p ( - - , x )  - 1 

It therefore follows that if we know the probability of an event happening, then 
we also know the probability of the event not happening: 

p ( - ~ x )  = 1 - p ( x )  
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6.3.3 Bayes' rule 
Given that the probability of an event occurring is known, the next step is to know 
how to use this probability to determine how likely an event is of being TRUE, 
given some evidence which itself has a probability of being TRUE. For example, if 
a sensor detects an unusually high temperature in a system, what are the chances 
that this is due to a leak in the cooling system? One method which is often used is 
called Bayes' rule, named after the eighteenth century British cleric, the Rev. 
Thomas Bayes (1702-1761). Essentially, he managed to solve this problem by 
turning the question around to a simpler one which is usually easier to answer. In 
this example, the question is turned around so that it becomes a question of what 
are the chances of a leak in the cooling system causing an unusually high 
temperature? Since a leak in the cooling system will certainly cause a high 
temperature, this is an easier question to answer. 

Mathematically, Bayes' rule can be expressed as 

p(BIa) • p(A) 
p(AIB) = 

p(B) 

where 

p(AIB) 

p(BIA) 

p(A) 

p(B) 

is the probability of A happening, given that B has happened 

is the probability of B happening, given that A has happened 

is the probability of A happening 

is the probability of B happening. 

The first of these, p(A IB), is what we want to find out. Before we do this, let's look 
at what this expression p(AIB) means in general. To do this, let's go back to 
throwing dice again. Given two dice, A and B, what is the probability of throwing 
a double six? 

We have already said that throwing a six is one outcome out of a possible six, so 
the probability of throwing a six is 1/6 = 0.167: 

p(A) = 0.167, where A means a six will be thrown with die A. 

We want to throw two sixes, so we have two events, each with a probability of 
0.167: 

p(A) = 0.167, where A means a six will be thrown with die A 

p(B) = O. 167, where B means a six will be thrown with die B. 

With two dice there are 36 possible outcomes, shown in Table 6.4, and a double 
six is only one of those outcomes. 
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TABLE 6.4 THE 36 POSSIBLE OUTCOMES OF THROWING TWO DICE 

Die B 3 

Die A 

1 2 3 4 5 6 

1,1 1,2 1,3 1,4 1,5 1,6 

2,1 2,2 2,3 2,4 2,5 2,6 

3,1 3,2 3,3 3,4 3,5 3,6 

4,1 4,2 4,3 4,4 4,5 4,6 

5,1 5,2 5,3 5,4 5,5 5,6 

6,1 6,2 6,3 6,4 6,5 6,6 

So the probability of throwing a double six with two unbiased dice is 1/36 = 
0.0278: 

p(C) = 0.0278 

where C means a six will be thrown on both dice A and B. 

It turns out that 

p(C) = p(A) • p(BIA) 

The second probability on the fight-hand side, p(BIA), is the probability of B 
given that A has already happened. In this example, since the probability of B is 
independent of A, p(BIA) reduces to p(B), and the probability of throwing a 
double six becomes 

p(C) = p(A) x p(B) 

This is true of any two independent events. The probability of two independent 
events, A and B, happening is the product of the probabilities of each individual 
event happening. 

Suppose, in the dice example, that die A is thrown and is a six. What is the 
probability of a double six now? Well, the probability is just the probability of 
throwing a six with a single die, namely 0.167. This probability is 

p(ClA) = 0.167 

This expression is the probability of throwing two sixes, given that one six has 
already been thrown. 

Returning to Bayes' rule and the example of an overheating machine, 

p(B IA) x p(A) 
p(alB) = p(B) 
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To calculate p(AIB) we have to know all the other probabilities, three in this case. 
So although we have a formula, quite often we can get stuck here because the 
information is simply not available. However, in our example of an overheating 
machine, let's assume that this particular machine has been monitored for most of 
its working life so that statistics are available about the number of times that there 
have been leaks in the cooling system, how often the temperature has been too 
high, and how often the high temperature has been caused by a coolant leak. 

Total working life: 

Number of hours temperature has been high: 

Number of hours that the cooling system has leaked: 

10000 hours 

42 hours 

32 hours 

Now we can calculate some probabilities. First, the probability of there being a 
leak, p(A). Over the 10000 hours, the cooling system has leaked for only 32 
hours. So the probability of it leaking at any given time is 

32 
p(A) = 1000----6 = 0.0032 

Over the 10000 hours the temperature has been high for only 42 hours, so the 
probability of there being a high temperature, p(B), is 

42 
p(B) : 10000 = 0.0042 

Finally, the probability of the system getting hot when there is a leak in the 
cooling system is 1 since this will definitely happen, so 

p(BIA) = 1 

Now we can calculate p(AtB), which is the probability of overheating being 
caused by a leak in the cooling system: 

1 x 0.0032 
p(AIB) = 0.0042 = 0.762 

This figure could be used as an aid to making a decision. We could say that we are 
about 76% confident that the cooling system is the cause of the high temperature. 
So if, for example, we decided to replace the cooling system to cure overheating, 
then about 8 times out of 10 that would be the correct decision. 

In the next section we will look at ways in which probabilities can be combined in 
a similar way to propositional logic so that evidence from a number of sources can 
be used to make a decision. 
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6.3.4 Probability and logic 
The logical operations that have been used so far are AND, OR and NOT. If we had a 
Boolean expression containing propositions combined with some of these logical 
operations, and each proposition had a probability associated with it, we would 
like to know the probability of the entire expression. 

The NOT operation has already been described. If an event, X, has a probability of 
p(X), then the probability of the event not happening is 1-p(X).  So, 

p ( - ~ J 0  = 1 - p(X) 

We have also seen the AND operation when we were looking at the probability of 
two events, X and Y, occurring. The probability is 

p(X /~ Y) = p(X) x p(YIX) 

When these two events are independent, this reduces to 

p(X ^ Y) = p(X)  x p ( r )  

This just leaves the OR operation. This turns out to be 

p(X  v Y) = p(X) + p(Y) - p ( X  ^ Y) 

The probability of event X OR event Y taking place is the sum of the two 
probabilities, together with a compensating factor which takes into account the 
possibility that the two events may occur together. This is needed because p(X) is 
the probability that event X will occur which can be split into two parts: the 
probability that X will occur when Y is not happening, plus the probability that 
event X will occur when Y is happening. Similarly, p(Y) can be split into the 
probability that Y will occur when X is not happening plus the probability that Y 
will occur when X is happening. When these two probabilities are added, 
p(X) + p(Y), the probability of X and Y happening together has been double 
counted, so the amount p(X A Y) has to be subtracted to redress the balance. 

To summarize, the three logical operators can be replaced by arithmetical 
operations when probabilities are used as follows: 

Negation 

p (~X)  = 1 - p(X) 

Conjunction 

p(X A Y) = p(X) x p(YIX) 

When these two events are independent, this reduces to 

p (X ^ Y) = p(X)  x p(IO 

Disjunction 

p(X v Y) = p(X) + p(Y) - p (X  ^ Y) 
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Again, when X and Y are independent, this reduces to 

p t X v  t )  = p(X) + p ( t )  - p ( X )  x p(r)  

As an example, let p(X) = 0.8 and p(Y) - 0.9, where X and Y are independent 

events. The combinations of these events are 

p(--,X) = 1 - p(X) = 1 - 0.8 = 0.2 

p(X/~ Y) = p(X) x p(Y) = 0.8 x 0.9 = 0.72 

p(X v Y) = p(X) + p(Y) - p ( X )  x p(Y) = 0.8 + 0.9 - 0.8 x 0.9 = 0.98 

Earlier it was shown that the AND and OR operations are related by DeMorgan's  
Laws. Does this still apply to probabilities? DeMorgan's  Law for the OR opera- 

tion was stated as: 

X v  Y = --,(--,X/~ --,Y) 

Rewriting this probabilistically for independent events X and Y gives 

p(--,(--,x ^ ~ D )  = 1 - p ( ~ X  /, --,F) 

= 1 - p ( - - , x )  x p(-- ,r)  

= l - ( 1 - p ( X ) ) x ( 1 - p ( Y ) )  

= 1 - ( 1  - p ( X ) -  p(Y) + p(X) x p(Y)) 

= p(X) + p(F) - p ( X )  x p(F) 

= p ( X v  

A similar proof can be shown for the AND connective, so DeMorgan 's  Laws still 
apply to probabilities when events are independent. 

This gives us a method of finding the probabilities of Boolean expressions given 
the individual probabilities of the propositions contained in the expressions. 
However, great care must be taken when applying these equations, as it is very 
easy to be misled. To finish this section, and before we go on to look at fuzzy 
reasoning, some examples will be given from the dice example again, just to 
show that care must be taken when applying probabilities. 

What  is the probability of throwing a 5 and a 6 with two dice? 

The probability of throwing a 5 with one die is 1/6, and similarly the probability of 
throwing a 6 with one die is 1/6. The probability of throwing a 5 AND a 6 is 

therefore: 
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p(5 AND 6) = p(5) • p(6) 

= 1 / 6  • 1/6 

= 1/36 

However, i fyou look back to Table 6.4 you will see that there are two possibilities 
of throwing a 5 and a 6, namely 5,6 and 6,5, so the probability should have been 
2/36. What 's  gone wrong? What has happened is that we haven't  expressed the 

problem well enough. The question should have been interpreted as" 

What is the probability of throwing either a 5 followed by a 6 OR a 6 followed by a 

5? 

The answer becomes" 

p((5 AND 6) OR (6 AND 5)) 

= p(5 AND 6) + p(6 AND 5) - p ( ( 5  AND 6) AND p(6 AND 5)) 

= p(5) • p(6) + p(6) x p(5) - 0 

= 1/6 • 1/6 + 1/6 • 1/6 

= 2/36 

The term 

p((5 AND 6) AND (6 AND 5)) 

is zero because you cannot throw both a 5 followed by a 6 AND a 6 followed by a 5 

with the same two dice. 

What is the probability of throwing a 6 with two dice? 

This time we'll  go straight for the fight answer. The question has to be interpreted 

aS" 

What is the probability of throwing a 6 with the first die OR throwing a 6 with the 

second? 

p(6 OR 6) = p(6) + p(6) - p ( 6 )  • p(6) 

= 1/6 + 1 / 6 -  1/36 

= 11/36 

Check with Table 6.4 to see if there are actually 11 possibilities of throwing a 6. 
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What is the probability of not throwing a 6 with two dice? 

It is tempting to apply the OR operation to this problem as in Example 2, but that 
would give the wrong answer (35/36). This question should be interpreted as: 

What is the probability of NOT throwing a 6 with the first die AND NOT throwing a 
6 with the second? 

p(NOT 6 AND NOT 6) = p(NOT 6) • p(NOT 6) 

= 516 • 516 

= 25/36 

Check with Table 6.4 to see if there are actually 25 possible ways of throwing two 
dice and not getting a 6. 

6.3.5 Possibility and fuzzy reasoning 
Possibilistic logic was first proposed by Zadeh in 1965, and has become more 
popular under the name of fuzzy  logic. The ideas involved in fuzzy logic allow us 
to combine in a 'logical' way some weighting factors associated with proposi- 
tions from different sources. In fuzzy logic the truth value can vary between zero 
and one, i.e. 0 ~ T(X) ,< 1. Earlier we saw that proposititional logic uses the logical 
operators AND, OR and NOT to combine logical inputs. In fuzzy logic we have 
equivalent operations, namely MIN, MAX and (1 - T(X)) as follows: 

TABLE 6.5 FUZZY LOGIC EQUIVALENTS TO THE BOOLEAN CONNECTIVES 

Boolean  Fuzzy  

T(X A Y) MIN(T(X), T(Y)) 

T(X v Y) MAX(T(X),  T(Y)) 

T(~X) (1 - T(X) ) 

T(X ~ Y) MAX((1- T(X)), T(Y)) 

Fuzzy logic is consistent with Boolean logic; for example, the fuzzy values T(X) - 
0 and T(X) - 1 work in exactly the same way as Boolean variables in this table. 

Remember that X and Y are the propositions, and T(X) and T(Y) are their truth 
values respectively. Any Boolean logic expression can now be converted to a 
fuzzy logic expression by substituting MIN, MAX and ( 1 -  T(X)) for AND, OR and 
NOT, respectively. For example, the last entry, X implies Y, shows how a 
complicated logical expression can be made using fuzzy logic. Earlier you were 
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shown that X --~ Yis equivalent to ~ X  v Y In fuzzy logic, the truth value of-~X is 

replaced by 1 -  T(X), and similarly T ( X  v Y) is replaced by MAX(T(JO, T(Y)). So 

~ X  v Y is replaced by MAX((1 - T(X)), T(Y)). There are other definitions of fuzzy 

implication, but this one uses the substitutions that we have defined. 

If we assign 0 to FALSE and 1 to TRUE as is usually done, then we can show that the 

operations are equivalent. This is done in Tables 6.6 and 6.7. 

TABLE 6.6 BOOLEAN CONNECTIVES 

X Y 

0 0 

0 1 

1 0 

1 1 

X A Y  X v Y  ~ X  X--> Y 

0 0 1 1 

0 1 1 1 

0 1 0 0 

1 1 0 1 

TABLE 6.7 FUZZY CONNECTIVES 

X Y 

0 0 

0 1 

1 0 

1 1 

MIN(X, Y) MAX(X, Y) (1 -X) MAX((1  - X), Y) 

0 0 1 1 

0 1 1 1 

0 1 0 0 

1 l 0 1 

So when the truth values are 0 and 1 there is no difference between Boolean logic 

and fuzzy logic. Fuzzy logic, however, can generalize so that the truth values can 

be any number between 0 and 1, as we shall see in the next section. 

To conclude this section we shall check to see if one of the rules of Boolean logic 

still applies to fuzzy logic. Earlier you were introduced to DeMorgan's  Laws, 

which related the OR and AND operators. The first of these was stated as 

XvY - ~ ( ~ X A - - , Y )  X OR Y - NOT(NOT X AND NOT Y) 

Now let's try this with the fuzzy operators MAX, MIN and i -  T(X). Suppose 

T(JO i> T(Y), so that 1 - T(X) <, 1 - T(Y). Then 

MAx(T(X),T(Y)) = T(X) 

= 1 - ( 1 - T ( X ) )  

= 1 - MIN((1 - T ( X ) ) ,  (1 - T ( Y ) ) )  
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which is analogous to X v Y -  ~ ( ~ X / x  ~Y). This derivation works equally well if 
we start with T(Y)i> T(X) and 1 -  T(Y) <, 1 -  T(X); you can try this for yourself. 

The second of DeMorgan's  Laws was stated as 

X/x Y = ~ ( ~ X  v ~ Y) X AND Y = NOT(NOT X OR NOT Y) 

Suppose T(X) i> T(Y), so that 1 - T(X) <, 1 - T(Y). Then 

MIN(T(X),T(Y)) = T(Y) 

= 1 - ( 1 - T ( Y ) )  

= 1 - MAX((1 - T(X)), (1 - T(Y))) 

which is analogous to X A Y= ~ ( ~ X  v ~Y). This derivation also works if we start 

with T(Y) i> T(X). 

So DeMorgan 's  Laws still apply in fuzzy logic, even when the values of T(X) and 

T(Y) are between 0 and 1. 

6.3.6 Fuzzy sets and membership functions 
Logic and set theory are closely related by the concept of the characteristic 
function, otherwise called the membership function. In conventional set theory 
the membership function of the set A is denoted by ZA (using the Greek letter 

'chi ' )  and has the property 

ZA(X)= 1 if x is a member  of A 

Z A ( X ) = 0  if x is not a member  of A 

This can be rewritten as 

ZA(X) = 1 if (x is a member  of A) is TRUE 

XA(X) = 0 if (X is a member  of A) is FALSE 

This concept can be extended to let the value of ZA lie between zero and one. In 
this way one can represent uncertainty about set membership. For example, will 
tomorrow belong to the set of 'sunny days' ? If the available information suggests 
that it is more likely to be sunny tomorrow than not, we might estimate that 

Zsunny days(t~176176 - 0.7. 

A fuzzy set is a set whose membership function takes values between zero and 
one. There is a close relationship between fuzzy sets and fuzzy logic, as you will 
see. Fuzzy set membership is probably easier to explain by looking at an example. 

The terms 'cold' ,  'warm'  and 'hot'  are all descriptions related to temperature. 

Figure 6.2 shows how you might set some arbitrary thresholds T 1 and T 2 so that as 
you start from a low temperature and move up the scale you cross the thresholds. 
Starting from COLD, you cross the first threshold, T 1, and now you are WARM. 
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Continuing up the scale you cross the second threshold and become HOT. 

COLD WARM HOT 

" I . . . .  i I iP- 

T 1 T 2 T 

At any temperature, T, you could say that you belong to a particular region, either 
COLD, WARM or HOT. 

Figure 6.2 
Temperature scale with cr isp  
thresholds. 

T <~ T 1 COLD 

T 1 <T<~ 7"2 WARM 

T 2 < T  HOT 

We can think of these regions as sets of temperatures, and ascribe a membership 
to these sets. Any given temperature T would be a member  of only one set. 
Membership of a set is given the value I and non-membership of a set is given the 
value 0, as shown in Table 6.8. 

TABLE 6.8 BINARY SET MEMBERSHIPS FOR THE SETS COLD, WARM AND HOT 

Temperature COLD WARM HOT 

T <~ T 1 1 0 0 

Tl <T<~T2 0 1 0 

T 2 < T  0 0 1 

In other words, the set called COLD contains all temperatures which are less than 
or equal to T 1. These membership functions are shown in Figure6.3.  The 
membership can be used as the truth value so that, for example, if the membership 
of the set COLD is 1, then this is equivalent to the proposition (temperature is 
COLD) being TRUE. At the same time, membership of the other two sets is 0 is 
equivalent to the propositions (temperature is WARM) and (temperature is HOT) 
being FALSE. 

The problem with these sets is that on the boundary between two sets there is a 
very 'crisp' change from membership of one set to membership of another. For 

example, if T 1 is 10 ~ say, then at a temperature of 5 ~ it is clearly COLD. However, 
it is not so obvious whether a temperature of 9.999 ~ should be interpreted as COLD 
or WARM: it is somehow both. 
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_ 

COLD 

i i . i  

T 1 T 2 T 

(a) Binary set membership for COLD 

_ 

WARM 

T 2 r 

(b) Binary set membership for WARM 

HOT 

i y 

r] r2 r 

(c) Binary set membership for HOT 

In fuzzy logic we can change the shape of the membership functions so that the 
boundary is not so crisp. Figure 6.4 shows an example, using the commonly 

found triangular functions. 

The most obvious difference is that the sets overlap, so that at some temperatures 
it is possible to be a member  of two different sets. At the temperature of 8 ~ shown 
in Figure 6.4(d), the memberships are: 

Figure 6.3 
Membership functions for 
COLD, WARM and HOT. 

COLD 0.7 

WARM 0.3 

HOT 0.0 
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T 1 T2 

(a) Fuzzy set membership for COLD 

_ 

T 1 T 2 T 

(b) Fuzzy set membership for WARM 

_ 

r 

T 1 T 2 T 

(c) Fuzzy set membership for HOT 

0.7- 

0.3- 

I 

COLD i HOT 

8 ~ T 1 T2 

(d) Combined fuzzy set membership for COLD, WARM and HOT 

Figure 6.4 
Fuzzy set membership 
functions. 
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So at 8 ~ the temperature is a member of the COLD set with a membership value of 
0.7, and a member of the WARM set with a membership value of 0.3. In some ways 
these memberships are similar to probabilities, and have been described as the 
'probability of an event being possible'. However, it is important not to read too 
much into fuzzy set membership values, as they may be rather arbitrary. Whereas 
there is a clear relationship between theoretical probability and relative fre- 
quency, fuzzy set membership values may be derived in a less rigorous and more 
empirical way. 

These memberships can be combined or processed using the MIN, MAX and 
( 1 -  T(X)) operations so that logical If-Then rules can be applied. For example: 

If 

Then 

(temperature is COLD) 

(turn heating on HIGH) 

If, at a particular temperature, the membership of COLD is 0.7, then the heating is 
turned on HIGH with a membership of 0.7. In other words, the membership value 
is passed on to the action part of the rule. The set HIGH could be only one of a 
number of options, such as OFF, LOW, MEDIUM or HIGH. This rule asks for the 
heating to be turned on HIGH. Other rules might ask for the heating to be turned on 
LOW, for example: 

If 

Then 

(temperature is WARM) 

(turn heating on LOW) 

Membership of the set WARM could be 0.3, so now this rule wants the heating to 
be turned on to LOW with a membership of 0.3. Figure 6.5 shows the membership 
functions for the heater. Here too, the membership functions are triangular, and 
are spread over the operating range of the heater from 0 to 15. 

Figure 6.5 
Membership functions of a 
heater. 
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The membership values that are passed to the output appear as the shaded areas on 

the diagram. To calculate the final setting for the heater a process called 

def i~zz i f ica t ion  is used which finds the 'centre of gravity' of the shaded area. This 
is shown on the diagram, and is the point at which the shaded area to the left of the 

point equals the shaded area to the right. This point turns out to be approximately 

9, so the heater would be turned up to a setting of 9 or 60% of its full power. 

6.3.7 Defuzzification 
The usual method for defuzzification involves taking the centre of gravity for all 

the areas shaded under the fuzzy set membership curves. Suppose it is known that 

curve 1 has its centre of gravity at x = x l, and that curve 2 has its centre of gravity 

at x = x 2. Let the areas under these curves be A 1 and A 2 respectively. Then the 

centre of gravity ofboth areas is the point c for which ( C - X l ) A  1 - (x2 - c)A2,  i.e. a 
'weight '  ofA 1 a tx  1 would balance a 'weight '  ofA 2 a tx  2 at the 'fulcrum' point c. 
From this it follows that 

cA ~ - XlA1 = x2A2 - cA2 

so that 

and 

c(A 1 + A 2) = XlA  1 + x2A 2 

c = (XlA ! + x2A2) / (A 1 + A2) 

In general, 

c = (Y__.x i A i )  / Z A  i 

Finding the centre of gravity of a general curve can be quite complicated, but it 

can be simplified considerably if one uses symmetric set membership functions 

since the centre of gravity lies on the axis of symmetry of the curve. 

The centre of gravity of the areas under the curves Xi for i = 1, ..., n is given by the 
formula 

centre of gravity = 

2; 
i=I 

centre of gravity; x area under curvei 

t7 

~ area under curve/ 
i=1 

The area under a symmetric triangular curve has its centre of gravity under the 

apex, and is a trapezium which is easy to calculate, as shown in Figure 6.6. 
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l p -., 

(a) A trapezium of altitude h and sides I and l' 

d = l  +Xl+ x 2 - - ~  

V ' q  ..... / k 
~ - X l - ~ - - -  d = l '  - x 1 - x 2 - - - ~ " - x 2 - -  

(b) d + d = l + x 1 + x 2 + l ' - x  I - x 2, therefore d = ~(l + l'), 

therefore area = ~h(l + l') 

So, us ing t r iangular  fuzzy set m e m b e r s h i p  funct ions means  that defuzzif icat ion 

can be ca lcula ted  according to the fo rmula  

a r e a / :  
(li + l~ )hi 

If  x i is the centre  of  gravi ty  of  the area under  curve  Zi, then 

centre  of  gravity = 

p 

n (li + li )hi 
xi 2 

i=1 

/7 P 

~_~ (li + li )hi 
2 

i=1 

In the case of  the curve in Figure  6.7 the calculat ion is 

a r e a A - 0 . 7 5 ( 0 " 5 + 2 ' 0 )  2 = 0 . 9 3 7 5 ,  

a r e a B - 0 . 2 5 t l ' 5 + 2 " 0 ) - 0 . 4 3 7 5  
2 

X A -- 0 . 0 0  

X B -  1.00 

(0.0 x 0 .9375)  + (1.00 • 0 .4375)  
centre  of  gravi ty  = 0.9375 + 0.4375 = 0.318 

So in this case the defuzzif icat ion of  Z A  = 0.75 and ZB = 0.25 gives a value of  

x = 0.318. 

Figure 6.6 The area 
under a trapezium of altitude 
h and sides of  length ! and l" 
is ~h(l + l') 
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area =~(0.5 + 2.0) • 0.75 = 0.9375 

Z 

1.0 

Z A =0.75 

0.5 

2' B = 0.25 

0.0 
- 1.00 -0.75 -0.50 -0.25 

area = �89 + 2.0) x 0.25 = 0.4375 

A B 

i i i i 1 i 1 i i i i 1 v 

0 0 .25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 x 

,~  Figure 6. 7 
Defuzzifying the set 
membership values 
~A = 0.75 and )~B = 0.25. 

In the following example, the use of symmetric functions suggests negative 
salaries, which may seem odd, but it does no harm and greatly facilitates the 

defuzzification calculation. 

To illustrate defuzzification, consider the rules 

If 

and 

and 

Then 

a person has high skills 

that person has high responsibility 

that person gets new business 

that person gets a high salary 

If 

and 

Then 

a person has high skills 

that person does their job well 

that person gets a medium salary 

if 

and 

Then 

a person has low skills 

that person is not experienced 

that person gets a low salary 

Suppose the fuzzy constructs of being highly paid or lowly paid have the set 

membership functions shown in Figure 6.8. 

Now suppose the rules are applied to Mr A who has low skill (0.9) and high skills 

(0.1), little responsibility (0.1), gets no new business (0.0), does his job OK (0.5) 

but is not a very experienced worker (0.6). Then his fuzzy values can be 

calculated as 
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/f a person has high skills (0.1) 

and that person has high responsibility (0.1) 

and that person gets new business (0.o) 

Then that person gets a high salary .. (0.0) 

since 0.1 and 0.1 and 0.0 means min{0.1, 0.1, 0.0} = 0.0 in this rule. 

I f  a person has high skills (0.1) 

and that person does their job well (0.5) 

Then that person gets a medium salary (0.1) 

since 0.1 and 0.5 means min{0.1, 0.5 ) = 0.1 in this rule. 

I f  a person has low skills (0.9) 

and that person is not experienced (0.6) 

Then that person gets a low salary (0.6) 

since 0.9 and 0.6 means 

Mr A has an area of 

min{0.9, 0.6) = 0.6 in this rule. 

0 "6 (  40"0+2 16.0) = 16.8 

under the LOW SALARY curve and 

0 1 / 6 0 " 0 + 5 4 ' 0 ) - 5 " 7 "  2 

under the MEDIUM SALARY curve. His area under the HIGH SALARY curve is zero. 
His defuzzified salary is therefore 

16.8 • 0 + 5.7 x 30 171.0 
salary for Mr A = 16.8 + 5.7 = 22.-----5 = s p.a. 

So Mr A earns a crisp salary of s per annum. 
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Now consider Ms B who has good skills (0.8), has some responsibility (0.6), gets 
some new business (0.6), does her job well (0.8), and is quite experienced (0.8). 

I f  a person has high skills (0.8) 

and that person has high responsibility (0.6) 

and that person gets new business . (0.6) 

Then that person gets a high salary . . . .  (0.6) 

since 0.8 and 0.6 and 0.6 means min{0.8, 0.6, 0.6} = 0.6 in this rule. 

/f a person has high skills .... (0.8) 

and that person does their job well (0.8) 

Then that person gets a medium salary . (0.8) 

since 0.8 and 0.8 means min{0.8, 0.8} = 0.8 in this rule. 

If a person has low skills (0.2) 

and that person is not experienced (0.2) 

Then that person gets a low salary (0.2) 

since 0.2 and 0.2 means 

Ms B has an area of 

min{0.2, 0.2} = 0.2 in this rule. 

0 . 2 (  3 2 . 0 + 4 0 . 0  ) 
2 - 7.2 

under the LOW SALARY curve, an area of 

08 ( _  1 2 " 0 + 6 0 " 0  ] 
' 2 - 28.8 

u r l c l c t "  t h e .  i~ f t '~_ i~ f~T~f  5 ; ~ L A R Y  C U r V e .  ~ r J d  ~ t n  a r e a  o F  

0 (480 + 1 00 / 
2 - 50.4 

under the HIGH SALARY curve. Therefore" 

salary for Ms B = 
7.2 x 0 + 28.8 x 30 + 50.4 x 100 

7.2 + 28.8 + 50.4 

5904 

86.4 
= s p.a. 
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So Ms B gets a salary of s per annum. You may feel that these fuzzy rules 
do not represent this situation very well. If so, try changing them to see if you can 
get a fairer set of rules for financial rewards, including fuzzy characteristics that 
you might think important if you were an employer. 

A Figure 6.8 Defuzzifying peoples' salaries: calculating areas under fuzzy curves. 

6.3.8 Paradoxes in applying fuzzy sets 
One of the useful features of fuzzy sets is that they can be built up on the basis of 
minimal information, and then adjusted until they are more consistent with 
observation. However, we should not be careless, as the following examples show. 

Consider the fuzzy set membership function shown in Figure 6.9. When x = 0.0, 
Z = 1 and the area under the curve is the whole triangle, the centre of gravity for 
this triangle is approximately at the point x = 0.29. When x is just below 1.0, Z is 

213 



VOLUME TWO 

just above 0.0 and the area is approximated by a thin bar between x = 0.0 and 

x = 1.0 (ignoring the small triangular piece which should be removed from the 

fight of the bar). Therefore the centre of gravity is approximately at the centre of 

the bar, and in the limit the centre of gravity corresponding to x = 1.0 is at the point 

x = 0.5. Therefore, whatever the original value of Z is (between 0.0 and 1.0), the 

defuzzified value of Z always lies between 0.29 and 0.50. 

Of  course, if the fuzzy values are defined by a symmetric curve about the point x c, 

then for all values of x, Z will defuzzify to the constant value x c. 

TINY 0.1 

MEDIUM 0.0 

HUGE 0.1 

(b) area under the curve for x = 1, )~ = 0 ~1 Figure 6.9 

A more perplexing property of fuzzy sets is exhibited by what we call Hopgood's 
Paradox. This is illustrated in Figure 6.10. Suppose there is little information 

available about this system, and due to calculations elsewhere in the system the 

fuzzy values are: 

1.0 
TINY 

/ 0.75 

0.5 

0.25 

0.0 

, ,/ 

(a) area under the curve for x = 0, ~ = 1 

MEDIUM HUGE 

/ 
-I.0 - 0 .5 0 0.5 1.0 1.5 2 .0  

- - i n , ~  

2.5 3.0 x 

Figure 6.10 
Fuzzy sets which lead to 
Hopgood 's defuzzification 
paradox. 
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If these values are defuzzified, the result is x = 1.00, and so the new fuzzy values 

become 

TINY 0.0 

MEDIUM 1.0 

HUGE 0.0 

In this case both TINY and HUGE started with small values of 0.1 and finished up 

with values of 0.0, but MEDIUM started out with a small fuzzy value of 0.0 and 

finished with 1.0. 

The paradox here is that apparently 'weak'  information can result in apparently 

'strong' information on defuzzification. 

6.3.9 Defuzzification is not the inverse of fuzzification 

Figure 6.11 shows the fuzzy set membership functions for YOUNG and OLD in 

years. For any value of age there are fuzzy values of YOUNG and OLD; for 

example, if age = 20 years those values are 0.75 and 0.25, respectively. These two 

values can be used to recover a defuzzified value of age. In this case the fuzzified 

age 20 defuzzifies to age 25.5. This is one of the worst distortions caused by 
defuzzifying the fuzzified value, as shown in Figure 6.12. In a perfect system the 

defuzzification of the fuzzified value would equal the original value, but, as 

Figure 6.12 shows, this is not always the case. 

,~ Figure 6.11 
Membership set for young 
and old. 

80 

70 

60 

50 

~= 40 
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N 30 
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# 

/ / / / /  .... 
/ /  
0 10 20 30 40 50 60 70 80- 

age in years 

41~ Figure 6.12 Graph of 
defuzzified values of young 
and old. 
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This chapter has described ways of reasoning which can be incorporated into the 
cognitive subsystem of a mechatronic system. The main tool that is available is 
logic, which takes many forms, and in this chapter we have introduced some of 
the more commonly found examples. Propositional and predicate logic allow 
statements to be evaluated as being either TRUE or FALSE. These statements can be 
combined using the Boolean connectives, AND, OR and NOT, to form more 
complex propositions, and the truth or falsity of these complex statements can 
also be evaluated. The If-Then rule shows how a decision can be made based on 
some conditions being TRUE or FALSE. These conditions would generally be 
determined by sensor inputs, although some of the higher level propositions 
would be inferred from lower level propositions rather than directly from sensor 
inputs. Theorem proving can also be used by applying rules of inference to 
propositions, to determine whether they are TRUE or FALSE, and thus hypotheses 
can be tested. 

Variations on these ideas have been shown in the form of non-monotonic logic, 
where deductions are allowed to change in the light of new evidence, and multi- 
valued logic where a new truth value, UNKNOWN, can be processed logically, 
giving a system the ability to reason even when information is missing. 

in situations where the data are less certain, probabilities can help to make 
decisions. Bayes' rule showed how the probability of a proposition can be 
calculated indirectly from data which are easiest to collect. Finally, it is often 
desirable to 'fuzzify' some of the rigid thresholds that are used to determine 
propositions. The result is a membership function whose value lies in the range 0 
to 1. Fuzzy logic can also handle this information logically. 

In the next chapter we shall see how these ideas of reasoning can be implemented 
in a rule-based system, so that some of the more practical aspects of reasoning in 
machines will become clearer. 
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C H A P T E  R 7 
R U L E - B A S E D  S Y S T E M S  

Rule-based systems are sometimes called by other names, some authors using the 
terms knowledge-based systems and expert systems interchangeably. In this 
chapter we use the term rule-based system because, at the heart of all these 
systems, is a set of rules. 

Figure 7.1 shows a typical structure of a rule-based system. The major compo- 
nents are the knowledge base, which contains facts as well as rules, and the 
inference engine. The inference engine is the part where the reasoning takes 
place: where input information is combined with the rules and facts in the 
knowledge base to make decisions and construct new information. 

Figure 7.1 (a) shows what is involved in building a rule-based system. The rules 
usually come from humans via a user interface, most commonly a graphic user 

input from 
rule-base 
designer 

• Knowledge t knowledge J 
aquisition 

"-I interface elicitation "-1 database. 

Inference engine 

c! I 
' Fa ' I RUa/aeb ase 

(a) During construction Knowledge base 

input from sensor ~.j Sensor 
"-1 interface 

input from user ,.J User 
"-I interface 

(b) During use 

A Figure 7.1 
Architecture of a rule-based system. 

I Inference engine 

J~ J~ 

Ir 

-~ Fact 
database 

Rule 
database 

Knowledge base 

Actuator 
interface 

control signals 
to actuators 
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interface (GUI). The a priori facts which are built into the system also enter the 
system in this way. The process of getting knowledge from humans to put into 
machines is called knowledge elicitation. In expert systems, which attempt to 
capture and emulate some area of human expertise, knowledge elicitation is very 
important. Usually an expert's knowledge is not explicit: he or she 'just knows'. It 
can be very difficult to get this implicit information from an expert and convert it 
into the explicit form required to store and manipulate it in a computer. For this 
reason, specialists called knowledge engineers may be used to guide and facilitate 
the knowledge elicitation process. In mechatronics it is likely that the 'expert' on 
designing intelligent machines is also an expert on building rule-based systems, 
and therefore acts as his or her own knowledge engineer. 

Figure 7.1(b) shows a rule-based system in use. In this case information is 
supplied to the system by sensors or human users. In mechatronic systems the 
output will include control signals to actuators, such as electrical logic levels 
which switch motors on and off. The user may or may not supply information to 
such a system when it runs. When they do it will be through some interface, which 
may be a full GUI in the case of a power station controller, or it may be a few 
buttons in the case of a washing machine. Usually the users of rule-based systems 
are not the people who designed them, and an interface which makes them 
intuitive and easy to use is an important feature. 

The term expert system would usually be applied to systems which are specifi- 
cally designed to be operated by humans. The human operators would be less 
expert in a particular field than the person who designed the system, but the 
combination of the human operator and the expert system acts as an expert in that 
particular field. One example is in medical diagnosis where information is fed 
into the system and analysed by applying the rules. These rules would have been 
extracted from one or more human experts on medical matters by analysing their 
decisions given similar sets of data. So an expert system is just a rule-based 
system, but the rules tend to have been extracted from human experts, and the 
system is expected to give the same diagnoses or answers as human experts, or to 
improve the performance of a lesser expert. Paradoxically, expert systems based 
on many human experts sometimes have worse performances than systems based 
on a single expert. This is because any given expert is likely to be consistent in 
their knowledge and beliefs, but combining expertise may introduce inconsis- 
tency. 

In mechatronic systems, a rule-based system may also be required to behave like 
a human expert. But it is often the case that the rules that it contains are not 
extracted from experts because experts in that particular field do not exist. The 
rules are found by trial and error and may be adapted as time goes by, by the 
machine itself. We will therefore not use the term expert system in this chapter, 
but understand that in some cases the rules may have been extracted from human 
experts. 
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Rule-based systems differ in many respects from conventional computer pro- 
grams. The main features are as follows: 

i~ In a particular application, all the knowledge about that application is kept 
separate from the control structure of the programs. In a conventional 
program the two would be intermixed, typically through the design of 
application-specific data structures. 

i~ Rule-based systems have the significant advantage that new knowledge can 
be added or unwanted knowledge taken away relatively easily. In a conven- 
tional program, if some new knowledge became available the program 
would probably have to be re-written. 

I~ Rule-based systems have mechanisms to explain their conclusions and lines 
of reasoning. 

When a computer system is operating it may take some action which seems odd. 
With rule-based systems a user can interrogate the system and ask for reasons to 
be given for that action. A conventional system could only supply some sort of 
explanation if a continuous record or log has been kept of all the actions it has 
taken. In rule-based systems the method called backward chaining (which will be 
described later) is particularly well suited to work out and indicate which rule has 
been used and why it has been used, by way of an explanation for its action. It 
would be very difficult to incorporate this facility into any other architecture such 
as conventional programs or neural networks for example. 

For all their advantages, there are some drawbacks which have to be borne in 
mind. The first is that rule-based systems tend to be used in narrowly defined 
applications. If a rule-based system is constructed for one application and the 
same system is then applied to a similar but not identical application, it often fails 
catastrophically because some of the rules are too specific. In other words, rule- 
based systems do not degrade gracefully when they reach the edges of their 
understanding. Also, they have to be periodically updated to check that the 
knowledge with which they are working is still relevant. This means that they 
cannot be left to work autonomously for long periods of time (a year, for 
example). The virtue of being able to add knowledge incrementally to rule-based 
systems can also lead to the introduction of subtle inconsistencies. And finally, 
when they are used in very complex situations where a large number of rules are 
stored they can sometimes be relatively slow. This latter aspect is not so crucial in 
many applications, but in real-time control, where decisions and actions have to 
be taken typically in milliseconds, this is very important. 

In Chapter 9 you will see how a system can be controlled using rules, and in 
particular fuzzy rules. In this chapter we want to concentrate on some of the 
particular issues relevant to rule-based systems irrespective of their application. 
These are mainly concerned with the control of the rule-based system, which 
means the order in which things happen and the general house-keeping that needs 
to go on. In this chapter we will concern ourselves with small rule-based systems 
which would be embedded in a system, rather than the larger rule-based systems 
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which involve much more house-keeping such as truth maintenance, where the 
truth value of the deductions that have been made are checked to ensure that no 
contradictions occur. 

7.1.1 The knowledge base 
The knowledge base of a rule-based system consists of facts and rules. Since the 
rule-based system is going to be applied to a specific problem, the facts and rules 
will be specific to that problem. This is called the problem domain, and the facts 
and rules can only be used in that domain. 

The assertion that something is true or false is called aproposition, or apredicate 
when variables are involved. For example 'the heating is switched to ON is TRUE' 
is a predicate. TRUE is the truth value of the predicate. The part of the predicate 
which is asserted to be true will be called a clause (this term has a more precise 
meaning which is beyond the scope of this book). The clause is often written as a 
letter, so that p could mean 'the heating is switched on'. We will use the notation 
T(p) to mean the truth value ofp. For example, T(p) = FALSE means 'the heating is 
switched on is FALSE'. 

Unfortunately the notation used in the literature is rather loose. Sometimes you 
will see 'p = TRUE' to mean 'T(p) = TRUE', and sometimes you will see things like 
' i fp  then q' to mean ' i fp  is TRUE then q is TRUE', or equivalently, 'if T(p)= TRUE 
then T(q) = TRUE'. Usually it is clear what is meant, but you are warned that these 
different usages can be confusing. 

In the following we abbreviate 'T(p)= TRUE' to T(p), and 'T(p)= FALSE' to 
~T(p),  unless stated otherwise. 

Facts and rules can be divided into two types - deep and surface. Deep knowledge 
concerns the basic principles such as the laws of physics, which we assume are 
not going to change. Surface knowledge concerns heuristics that are known to 
work from experience of similar problems but which may change. 

The sort of rules that are kept in the knowledge base are often in the form of the 
If-Then statements that were described in Chapter6 on Reasoning, although 
there can be other types. These If-Then rules are called production rules and 
typically look like this: 

If (something is TRUE) 

Then (something else is TRUE) 

where new knowledge is deduced from old. In mechatronics some rules result in 
actions: 

If (something is TRUE) 

Then (do something else) 
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For example, 

If T(cold) 

Then T(heating ON) 

Remember that the terms in brackets are called propositions and that they have a 
truth value associated with them. So terms like 'cold' would have to be more 
precisely defined, such as: 

T(cold) = TRUE if temperature from a sensor is less than 10~ 

= FALSE if temperature from a sensor is greater than or equal to 10~ 

where T(x) is the truth value of x, and 

T(heating ON) = TRUE if the heating is switched to ON 

= FALSE if heating is switched to OFF 

The left-hand side of this rule contains a condition that has to be satisfied and is 
called the antecedent. The fight-hand side of this rule contains the consequence 
of the antecedent being TRUE and is called the consequent. So if the antecedent is 
TRUE it follows that the consequent is TRUE. Recall from Chapter6 that this 
process is called modus ponens, and follows from the inference rules of implica- 
tion. If (A --> B) is TRUE and A is TRUE, it follows that B is TRUE. 

7.1.2 Forward chaining 
In a rule-based system, a rule is said to be triggered if the antecedent of the rule is 
TRUE. If the rule goes on to be used it is said to have beenfired. If the rule does not 
fire it fails, which could be due to the antecedent being FALSE or UNKNOWN or 
because the rule wasn't selected to fire. 

Often in a rule-based system more than one rule could be triggered, so there has 
to be a strategy for selecting which rule to fire. The inference engine is in control 
of the rule firing, but it can work in two quite distinct ways called forward 
chaining and backward chaining. In many applications a system would only ever 
need to use one or the other approach, but there are instances where both are 
used. 

In forward chaining the inference engine works in cycles. In each cycle the facts 
in the working memory are updated from information that has been input 
or deduced since the last cycle. Next the rules are examined and all the rules 
whose antecedents are satisfied are triggered. The collection of triggered rules is 
called the conflict set, and this conflict has to be resolved so that only one rule 
fires. Only one rule is fired in a cycle because by the time it has fired the 
conditions that led to the other rules in the conflict set being triggered may have 
changed. 
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To illustrate forward chaining, consider a rule-based security system with the 
following rules and facts: 

Rule Database 

Rule 1 

i f  

and 

Then 

and 

and 

Rule 2 

if 

and 

Then 

and 

Rule 3 

if 

Then 

and 

T(image contains a face) 

T(face recognized) 

T(open door) 

~T(image contains a face) 

~T(face recognized) 

T(image contains a face) 

~T(face recognized) 

T(alert security guard) 

~T(image contains a face) 

-~T(image contains a face) 

~T(open door) 

~T(alert security guard) 

Fact Database 

~T(image contains a face) 

~T(face recognized) 

~T(open door) 

~T(alert security guard) 

When this system starts running none of the antecedent predicates matches the 
first two facts in the Fact Database. The inference engine begins at Rule 1, finds 
that it is not triggered, moves on to Rule 2, finds that it is not triggered, moves on 
to Rule 3, finds that it is triggered, fires Rule 3 setting-~T(open door) and-~T(alert 
security guard) (initially they are already set with these truth values) and goes 
back to Rule 1 to begin the cycle all over again. 

Now suppose that the security system has a pattern-recognition system which, 
through its hardware and software interface, can alter the truth value of (face 
recognized) to make it True. Suppose also that it can automatically alter the truth 
value of (face recognized) to make it True or False depending on whether the face 
can be matched in the image database. 
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Rule 2: the first consequent 
First suppose that a visitor comes to the door and the vision system changes the 
Fact Database to contain T(image contains a face), but the face recognition test 
fails so the predicate ~T(face recognized) remains unchanged in the Fact 
Database. 

When forward chaining, the inference engine starts with Rule 1. The first 
antecedent predicate of Rule 1 now matches the Fact Database, but the second 
does not. The inference engine then tests Rule 2. In this case both antecedent 
predicates are matched and the second rule is triggered. Then the inference engine 
tests Rule 3, which is not triggered because its antecedent predicates do not match 
the Fact Database. Since Rule 2 is the only rule to be triggered, it fires, and the 
predicate ~T(alert security guard) is changed to T(alert security guard) in the Fact 
Database. It will be supposed that the security guard is alerted by a hard- 
ware-software interface that sounds a buzzer whenever the Fact Database 
contains the predicate T(alert security guard). 

Rule 2: the second consequent 
Rule 2 resets T(image contains a face) to ~T(image contains a face) to stop itself 
being triggered indefinitely. The vision system will of course change this back to 
T(image contains a face) until the visitor is either admitted by the manual 
intervention of the security guard or goes away. 

After Rule 2 has fired, the system will again begin at Rule 1 and test Rule 2 and 
Rule 3. If the visitor can still be seen by the vision subsystem, Rule 2 will again 
fire so the security guard's buzzer will sound until this person has been dealt with. 

When the person has been dealt with, the predicate ~T(image contains a face) 
will be in the Fact Database. This means that on subsequent cycles Rule 1 will not 
be triggered, Rule 2 will not be triggered, but Rule 3 will be triggered and the 
system will ensure that the predicates ~T(alert security guard) and ~T(open 
door) are in the Fact Database. Thus the guard's buzzer will no longer sound, and 
the door will be locked. 

If the vision system senses that the image contains a face and it recognizes the 
face, the predicates T(image contains a face) and T(face recognized) will be 
added to the Fact Database. On the next forward chaining cycle, Rule 1 will be the 
only rule triggered and it will fire, changing the predicate ~T(open door) to 
T(open door). Assuming that the Fact Database is interfaced to the door lock, the 
presence of the predicate T(open door) will cause the door to be unlocked so that 
the recognized person can enter. The consequent predicates of Rule 1, ~T(image 
contains a face) and ~T(face recognized), are used to update the Fact Database. 

Thus, while forward chaining, the system goes through all the rules in sequence. 
In this example the conflict set has only ever contained at most one member, 
which is the one selected to fire. However, in general, the conflict set will contain 
more than one triggered rule, and the conflict as to which one should fire must be 
resolved by conflict resolution. 
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7.1.3 Conflict resolution 
Resolving the conflict set is a skill in its own fight. There are no hard and fast 
methods that are guaranteed to be the 'best' ,  but some of the methods that are 
commonly used are as follows: 

First-come, first-served 
The first rule that is found which has its antecedent satisfied is fired. This has the 
advantage that there is no need to create a conflict set at all, so the method is fast. It 
has the disadvantage that the rule that fires might not be the most important rule in 
some respect. 

Prioritizing the rules 
The rules are rank-ordered so that the most important rule (as decided by the rule- 
base designer) is placed first in the list, and the least important is placed last. This 
has all the advantages of the first-come, first-served method and none of the 
disadvantages. This approach is also called rule ordering. 

Prioritizing the data 
The data or facts are rank-ordered by the designer, and the rule that uses the 
highest ranked data in its antecedent is fired. There may still be conflict here if 
more than one rule uses the same data. 

Recency ordering 
The least recently fired rule in the conflict set is fired, or the rule which uses the 
most recently updated data is fired. An alternative strategy is to fire the most 
recently fired rule. 

Generality ordering 
The rule that is most specific to the situation is fired. This usually means the rule 
that has the most conditions that have to be satisfied. For example, given two rules 
in the conflict set where the first rule requires condition A to be satisfied before it 
will fire, and a second rule which requires both condition A and condition B to be 
satisfied, then the second rule is chosen under this strategy. This approach is also 
called size ordering or specificity ordering. 

Context limiting 
Separate the rules into groups. At any one time, only one group of rules will be 
active, so the chances of conflict arising are reduced. 
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Buggins' Turn 
Another conflict resolution strategy, which we have called Buggins' Turn, works 
well in many circumstances. This strategy involves cycles in which every rule 
gets a chance of firing if it can. Each cycle start with the first rule and goes through 
all the other rules to form a conflict set. After this, the remaining rules in the 
conflict set are examined, excluding the rule that just fired, and a new sub-conflict 
set is formed. The first rule in this sub-conflict set is chosen to fire. After this the 
remaining rules in the original conflict set are examined, excluding any that have 
fired, and the first of these to be triggered is fired. This continues until all the rules 
in the original conflict set have been fired, or are no longer triggered. 

Then the Buggins' Turn cycle starts again with the first rule. The term 'Buggins' 
turn' comes from a system in which career promotion is based on how long 
people have been waiting rather than their merits: everyone gets a turn in the end 
no matter how mediocre they are. 

One problem that can arise in most of these strategies, but particularly in the 'first- 
come, first-served', is that the same rule can be chosen in every cycle. This may 
be correct, but it could be the case that the conditions are satisfied for two ru les-  
one which does very little and one which causes a profound change in the system. 
In the next cycle it is selected again, and so on for every future cycle. So care has 
to be taken to select the correct strategy for a particular application. Recency 
ordering and Buggins' Turn do not suffer from this defect. It is also permissible to 
use more than one strategy. For example, a rule consequent may explicitly change 
the mode of conflict resolution. Such a facility would have to be built into the 
inference engine. 

Let's look at a hypothetical rule-based temperature controller. Valve 1 and valve 2 
are responsible for circulating hot water from the boiler around the radiators and 
the hot-water tank respectively. 

There are many different ways that rules could have been formulated; here the 
criteria are simplicity and brevity. The set of rules might look something like this: 

Rule Database 

Rule 1: 

Rule 2: 

ff (T(room temperature < 20) AND T(timer ON)) 

Then T(boiler ON) 

If (T(water temperature < 40) AND T(timer ON)) 

Then T(boiler ON) 

225 



VOLUME TWO 

Rule 3: 

Rule 4: 

Rule 5: 

Rule 6: 

Rule 7: 

Rule 8: 

Rule 9: 

Rule 10: 

/f  T(boiler ON) 

Then T(pump ON) 

If  (T(pump ON) AND T(room temperature < 20)) 

Then T(valve 1 OPEN) 

If (T(pump ON) AND T(water temperature < 40)) 

Then T(valve 2 OPEN) 

/f  ~ T(timer ON) 

Then -.T(boiler ON) 

If  ~T(room temperature < 20) 

Then ~T(valve 1 OPEN) 

If ~T(water temperature < 40) 

Then ~T(valve 2 OPEN) 

If ~T(boiler ON) 

Then ~T(pump ON) 

If (~T(room temperature < 20) AND ---,T(water temperature < 40)) 

Then ~T(boiler ON) 

Notice that there are a number of rules which are similar but produce the opposite 
effects, such as Rule 3 and Rule 9. You might think that you just need Rule 3, that 
if the boiler is ON then the pump is ON, but this only turns the pump ON. If the 
conditions change and the boiler is no longer ON, Rule 3 does not fire, which is not 
the same as turning the pump OFF. A separate rule has to be constructed to make 
sure that the pump can be turned OFF. 

All the propositions, or facts, make up the rest of the knowledge base. 

Fact Database 

(room temperature < 20) 

(water temperature < 40) 

(timer ON) 

(valve 1 OPEN) 

(valve 2 OPEN) 

(boiler ON) 

(pump ON) 
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In forward chaining, the inputs are taken from the user or the sensors and 
combined with the rules in the knowledge base. Given a new set of facts, the rules 
are examined, a conflict set produced from all the rules whose antecedents are 
satisfied (are triggered), and a conflict resolution strategy applied to select a 
single rule for firing. In the heating controller a sequence of events could be as 
follows: 

(room temperature < 20) 

(water temperature < 40) 

(timer ON) 

(valve 1 OPEN) 

(valve 2 OPEN) 

(boiler ON) 

(pump ON) 

TRUE 

FALSE 

TRUE 

FALSE 

FALSE 

FALSE 

FALSE 

The following rules are triggered: 

Rule 1: 

Rule 8: 

Rule 9: 

If  (T(room temperature < 20) AND T(timer ON)) 

Then T(boiler ON) 

If  aT(water temperature < 40) 

Then ~T(valve 2 OPEN) 

ff ~T(boiler ON) 

Then ~T(pump ON) 

If the first-come, first-served strategy is used then Rule 1 fires, and T(boiler ON) = 
TRUE. The propositions now look like this: 

(room temperature < 20) 

(water temperature < 40) 

(timer ON) 

(valve 1 OPEN) 

(valve 2 OPEN) 

(boiler ON) 

(pump ON) 

TRUE 

FALSE 

TRUE 

FALSE 

FALSE 

TRUE 

FALSE 
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In the next cycle, assuming that the external conditions have remained constant, 
the inference engine triggers the following rules: 

Rule 1: If (T(room temperature < 20) AND T(timer ON)) 

Then T(boiler ON) 

Rule 3: If  T(boiler ON) 

Then T(pump ON) 

Rule 8: If ~T(water temperature < 40) 

Then ~T(valve 2 OPEN) 

Now if we just used first-come, first-served then Rule 1 would fire again, which 
gets us nowhere, instead, let's use first-come, first-served with recency, so that 
the rule that was least recently fired is selected, and if there are several rules that 
have never been fired, choose the first one that is encountered. In this example, 
Rules 3 and 8 have not been used, and Rule 3 is the first one in the list, so this is the 
one that is fired. The result is that T(pump ON) = TRUE. Assuming that there are no 
external changes, the data in the knowledge base becomes: 

(room temperature < 20) 

(water temperature < 40) 

(timer ON) 

TRUE 

FALSE 

TRUE 

(valve 1 OPEN) FALSE 

(valve 2 OPEN) FALSE 

(boiler ON) TRUE 

(pump ON) TRUE 

The inference engine produces a new conflict set. To keep track of how long ago a 
rule was fired, we add a number in brackets to the left of each rule, as shown 
below. Rule 3 was fired 1 cycle ago and Rule 1 was fired 2 cycles ago. There have 
only been 2 cycles so far, so rules which have not yet been fired just have to have a 
number which is 1 more than the number of cycles so far. The new conflict set is: 

(2) Rule 1: If  (T(room temperature < 20) AND T(timer ON)) 

Then T(boiler ON) 

(1) Rule 3: If T(boiler ON) 

Then T(pump ON) 

228 



CHAPTER 7: RULE-BASED SYSTEMS 

(3) Rule 4: 

(3) Rule 8: 

If (T(pump ON) AND T(room temperature < 20)) 

Then T(valve 1 OPEN) 

If ~T(water temperature < 40) 

Then ~T(valve 2 OPEN) 

In this case, Rule 4 and Rule 8 are triggered, but Rule 4 is first so it fires. 

The knowledge base is updated and the numbers by each rule are incremented. So 
it now looks like this, assuming no changes to the time and temperature proposi- 
tions: 

(room temperature < 20) 

(water temperature < 40) 

(timer ON) 

TRUE 

FALSE 

TRUE 

(valve 1 OPEN) TRUE 

(valve 2 OPEN) FALSE 

(boiler ON) TRUE 

(pump ON) TRUE 

In the next cycle the new conflict set is: 

(3) Rule 1: If  (T(room temperature < 20) AND T(timer ON)) 

Then T(boiler ON) 

(2) Rule 3: If T(boiler ON) 

Then T(pump ON) 

(1) Rule 4: If (T(pump ON) AND T(room temperature < 20)) 

Then T(valve 1 OPEN) 

(4) Rule 8: If ~T(water temperature < 40) 

Then ~T(valve 2 OPEN) 

This time Rule 8 fires, which doesn't actually change anything since valve 2 is 
already closed. If no more changes occur to the antecedent predicates, these four 
rules will be triggered each time the inference engine cycles round. In the next 
cycle, Rule 1 will be selected again. Following that Rule 3, then Rule 4, then 
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Rule 8 again, and so on. Although a rule will fire each cycle, there will be no more 
changes to the knowledge base until there is some external change. The most 
likely change is that the room temperature will rise, so that the predicate 
T(room temperature < 20) will become FALSE. Rule 1 would no longer be trig- 
gered, and a new sequence of actions would take place. 

In forward chaining a sequence of events takes place which is determined by 
sensors changing the facts or data in the knowledge base, so the whole process is 
described as data-driven reasoning. The alternative process of backward chain- 
ing is a method where you start with the goal, and work backwards to see how that 
goal can be achieved. Backward chaining is therefore an example of goal-driven 
reasoning. 

7.1.4 Backward chaining 
Forward chaining followed from the inference rule modus ponens: if (A ~ B) is 
TRUE and A is TRUE, it follows that B is TRUE. The repeated application of the 
rules in the rule base to the facts in the fact database will drive the system forward, 
producing new facts. If the system had no time dependency, it would deduce 
every possible consequence of the facts and rules in its knowledge base. As such 
the process is not particularly goal-oriented-  the system is just producing 
knowledge as it goes along. Usually the system designer focuses the activity of a 
forward-chaining system by judicious use of conflict resolution, knowledge of 
the data entering the system through time, and the introduction of predicates 
which help to control the process. 

For example the predicate 'I am in path planning mode is TRUE' could be used to 
direct a forward-chaining system to the task in hand, namely path planning. The 
last rule to fire during path planning would then probably hand over to another 
task using consequent predicates such as 'I am in path planning mode is FALSE' 
and 'I am in sensing and motor control mode is TRUE'. 

Whereas forward chaining goes from antecedent predicates, backward chaining 
goes the other way. It is a goal-oriented strategy which assumes that something 
specific must be deduced. 

For example, in his well known textbook Artificial Intelligence, Winston 
(1984) presents a backward-chaining system called Identifier. This system 
identifies animals, and can be implemented using a predicate such as 'the 
animal is identified as something', with the system working out what that 
'something' is. This system contains rules of the form 
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Rule 10 

If  the animal is a carnivore is TRUE 

and the animal has a tawny colour is TRUE 

and the animal has dark spots is TRUE 

Then the animal is identified as a cheetah is TRUE 

This rule has a consequent predicate following 'Then' which matches the 
question and can become the system's goal. Now the system can work backwards 
from consequent predicates to antecedent predicates: if it can show that the 
animal is a carnivore, has a tawny colour, and has dark spots, then it can achieve 
its goal and identify the animal as a cheetah. So the system looks in its fact 
database to see if it contains the antecedent fact that the animal is a carnivore. 

Initially it does not know this, but it may find a rule of the form 

Rule 5 

If  the animal is a mammal is TRUE 

and the animal eats meat is TRUE 

Then the animal is a carnivore is TRUE 

Finding out if the animal is a carnivore can become a new intermediate goal. 
Then the system works backwards from this as a consequent predicate in this rule, 
and tries to find out if the animal is a mammal and if it eats meat. 

Identifier contains the rule 

Rule 2 

If  the animal gives milk is TRUE 

Then the animal is a mammal is TRUE 

So now the system works backwards from the consequent predicate 'the animal is 
a mammal_is  TRUE', and has the new goal of finding out if the animal gives milk. 

Eventually the system will find the necessary facts in its fact database, or it will 
have to ask for information. In this case the system might ask you if the animal 
gives milk. Assuming you answered that it does, the rule would fire and the fact 
that the animal is a mammal would be added to the fact database. You might then 
be asked if the animal eats meat, in which case on answering 'yes' the rule would 
fire which deduces that the animal is a carnivore. 
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Having successfully matched the first antecedent predicate necessary to identify 
the animal as a cheetah, the system might ask you if the animal has a tawny colour. 
Suppose you answer 'yes'.  The system then has one more antecedent predicate to 
go, and asks you if the animal has dark spots. Suppose you answer 'no'. Then the 
rule identifying cheetahs cannot fire after all. 

Having failed to prove that the animal is a cheetah, the system looks for the next 
rule with an antecedent consequence which matches the original goal. In Identi- 
fier it finds 

If  the animal is a carnivore is TRUE 

and the animal has a tawny colour is TRUE 

and the animal has black stripes is TRUE 

Then the animal is identified as a tiger is TRUE 

Now the goal becomes that of proving that the animal is a tiger. The first 
antecedent predicate is already in the fact data, as is the second. It was determined 
that the animal is a carnivore and has a tawny colour when the system was trying 
(incorrectly) to prove the animal was a cheetah. So now Identifier asks if the 
animal has black stripes. Suppose it does, and you answer 'yes'.  Then this rule 
fires and the system concludes that the animal is identified as a tiger. 

Note that during backward chaining the system accumulates intermediate facts 
such as the fact that the animal is a carnivore. Although the system may seek these 
facts in order to try to make one rule fire, they may be useful even when that rule 
does not fire. For example, the knowledge that an animal has black stripes is more 
general than tigers: it could be used to help identify zebras. 

Winston writes: 

Having one if-then rule in for each animal in the zoo is possible, albeit dull. 
The consequent side of each rule would be a simple statement of animal 
name, and the antecedent side would be a bulbous enumeration of character- 
istics large enough to reject all incorrect indentifications. In operation, the 
user would first gather up all facts available and then scan the antecedent- 
consequent rule list for an antecedent-consequent rule that has a matching 
antecedent part. 
A better idea is to generate intermediate facts, making the reasoning proce- 
dure more interesting. The advantage is that the antecedent-consequent 
rules involved can be small, easily understood, easily created. Using this 
approach, the Identifier procedure produces chains of conclusions leading to 
the name of the animal. 

(Winston, 1984) 

The difference between forward chaining and backward chaining is illustrated in 
Figure 7.2. 
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Rule 13 

Rule 17 

Rule 6 

Antecedents 

Consequences 

i 
Antecedents 

Consequences 

i 
Antecedents 

Consequences 

(a) Forward chaining 

Rule 13 

Rule 17 

Rule 6 

Antecedents 

Consequences 

T 
Antecedents 

Consequences 

T 
Antecedents 

Consequences 

(b) Backward chaining 

41~ Figure 7.2 
Examples of the forward 
chaining and backward 
chaining deduction 
mechanisms. (Note that 
control does not always pass 
to consecutive rules.) 

7.1.5 Rule-based systems can explain their reasoning 
One of the defining features for an expert system is that it is a rule-based system 
which can explain the way it reasons and why it makes the deductions it does. For 
example, if you were running Identifier and looking at what, unbeknown to you, 
was a tiger, then you might be surprised to be asked if the animal gives milk, 
thinking this is a totally inappropriate question when trying to identify such a 
ferocious beast. 

Any well-designed expert system interface would allow you to answer this 
question by asking why it has been asked. In this case the system can invoke a 
rule inventory or rule trail mechanism giving an answer such as: 

I am trying to find out if: 

to deduce from rule 2 if: 

the animal gives milk 

the animal is a mammal 

I am trying to find out if: 

to deduce from rule 5 if: 

the animal is a mammal 

the animal is a carnivore 

I am trying to find out if: 

to deduce from rule 10 if: 

the animal is a carnivore 

the animal is identified as a cheetah 
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From this rule trail the user can see which rules are being invoked to make 
deductions leading towards the eventual goal. In this case the user may be 
satisfied that the 'explanation' is satisfactory, and that asking about milk was 
relevant after all. However, it is possible that the rule inventory will expose a 
highly suspect line of reasoning that the user does not accept as valid. In this case 
the user can ignore the expert system and fall back on human intelligence and 
common sense, or can suggest that the rule(s) and/or facts resulting in this odd 
behaviour be modified or removed from the knowledge base. In this way rule- 
based systems offer diagnostic information which allows human operators to 
intervene when it is clear that the system is not working properly or making 
flawed deductions and giving bad advice. 

Usually, conventional computer programs do not have this explanation feature, 
and when they behave oddly or malfunction it is difficult to find out why. 

The explanation facility of expert systems can also be used for teaching and 
training purposes, since novices interact with the system and quiz it when they do 
not understand the basis of a deduction. From this they may have rules brought to 
their attention of which they were previously ignorant. 

7.1.6 Diagnosis in rule-based systems 
Backward chaining can also be used in diagnosis. In the central heating example 
in the previous section, an example of backward chaining would be when you 
notice that a room heater is OFF but the room is cold and you want to know why. 
Three possibilities are: 

1 The boiler is not ON 

2 The pump is not ON 

3 Valve 1 is not OPEN 

Let's look at these in turn. The only fact that you know is that T(room tempera- 
ture < 20) is TRUE. First, let's check the possibility that the boiler is not ON by 
making the first goal the predicate, -iT(boiler ON). The rules are examined to see 
if this goal is the consequent of any rule, and we find that Rule 6 and Rule 10 
apply. 

Rule 6: 

Rule 10: 

If  -,T(fimer ON) 

Then -~T(boiler ON) 

If (~T(room temperature < 20) AND --,T(water temperature < 40)) 

Then --,T(boiler ON) 
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The antecedent for Rule10 is that (~T(roomtemperature<20) AND 
~T(water temperature < 40)) is TRUE, but we know that it is FALSE, so Rule 10 
could not have fired. The antecedent for Rule 6 is ~T(timer ON), but we do not 
know the state of the timer. The predicate ~T(timer ON) now becomes the goal, 
and we examine the rules to find if ~T(timer ON) is a consequent of any rule, 
which it is not. So we cannot go any further with this search, and leave the 
hypothesis that ~T(timerON) is TRUE could be one explanation of why the 
heating isn't on. 

Let's do that again for the pump. The goal is ~T(pumpON), which is the 
consequent for Rule 9. 

Rule 9: If  ~T(boiler ON) 

Then ~T(pump ON) 

For this rule to have fired, the antecedent ~T(boiler ON) must be TRUE, so this 
becomes the next goal. Check the rules to see if ~T(boiler ON) is a consequent 
and the search follows the same pattern as the previous goal, so the hypothesis is 
again that ~T(timerON) is TRUE. 

Finally, let the goal be ~T(valve 1 OPEN), which is the consequent of Rule 7. 

Rule 7: If ~T(room temperature < 20) 

Then ~T(valve 1 OPEN) 

The antecedent of this rule is ~T(room temperature <20), which we know is 
FALSE, so this rule couldn't have fired. The conclusion, then, is that the reason the 
heating isn't ON is because the timer is OFF. However, the timer is ON. 

This gives a demonstration of the diagnostic ability of backward chaining. There 
are variations on this technique, which is essentially a tree-search mechanism. As 
described in Chapter 3 on Search, it is possible to search spaces of this sort by 
breadth-first or depth-first. In a depth-first search, of the kind just described, each 
goal is checked until the knowledge base is reached and the goal can be shown to 
be satisfied or not. In the example just given, at one point there were two rules that 
had the goal as a consequent. One of those goals is pursued until it either succeeds 
or fails, and in our case the first attempt failed. The search then backtracks to 
where there was a division and searches down the next branch until a conclusion 
can be made. This is the most commonly used method of goal-driven reasoning, 
and is illustrated in Figure 7.3. 
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Goal~ T(boiler oN) 

Rule 6 Rule 10 

(a) 

--1T(timer ON) ? --1T(room temp. < 20) 
AND ---1 T(water temp. < 40) (FALSE) 

Goal -7 T(pump ON) 

Rule 9 

~ T(boiler ON) 

Rule 6 Rule 10 

(b) 

~T(timer ON) ? -,T(room temp. < 20) 
AND ---1 T (water temp. < 40) (FALSE) 

Goal ---, T (valve 1 O P E N )  

Rule 7 

(c) 

--1T (room temp. < 20) (FALSE) 

7.1.7 Variables and instantiation 
Predicates allow the use of variables and make use of the quantifiers introduced in 

Chapter 6 : 3  (there exists) and V (for all). An example of this might be where 

there are a number of sensors which test for dangerous conditions and can be 
either ON or OFF. Each condition that the sensors are monitoring is indicated by a 

red light being ON or OFF, so that if, for example, sensor 1 detects a dangerous 
situation, red light 1 will come ON if it is not already ON. A rule for doing this is: 

*il Figure 7.3 
B a c k w a r d  chain ing  as a tree 

search. 
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/f (on(sensor 1) ^ ~on(red light 1)) 

Then on(red light 1) 

Note the use of the predicate on(x), which is TRUE ifx is ON and FALSE if x is OFF. 

We could have a single rule for each sensor, but if there were a hundred sensors 
this would get very tedious and difficult to read. Alternatively we could use the 
existential quantifier as follows: 

If (3 x (on(sensor x) A ~on(red light x))) 

Then on(red light x) 

This says that if there exists a value for x such that sensor x is ON and the red light x 
is OFF, then turn red light x ON. 

One problem with this is that there may be more than one value for x which 
satisfies the antecedent; in other words, more than one sensor which is ON. The 
designer of the rule-based system has to decide whether or not to select one value 
or all the values whose antecedents are TRUE. The first of these methods is called 
single instantiation, and simply substitutes the first value for x that it finds that 
has a TRUE antecedent. The rule with that value ofx is then placed into the conflict 
set. The second method is called multiple instantiation, and finds all the values of 
x that have TRUE antecedents, and places all those instantiated rules into the 
conflict set. 

For another example of instantiation, consider the rule-based system run by 
Intelligent Marriage Brokers Inc. which contains the rule 

tf 'a first client' is male 

and 'that first client' is single 

and 'a second client' is female 

and 'that second client' is single 

Then 'that first client' and 'that second client' are eligible 
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and has the Fact Database 

Fred is male 

Fred is single 

Anne is female 

Anne is not single 

Pat is single 

Pat is female 

Jim is male 

Jim is single 

Suppose that the inference engine will match 'a first client' or 'a second client' 
with the first word of any predicate. So, initially the first antecedent predicate is 
instantiated with 'a first client' replaced by Fred, so the first part of the rule 
becomes instantiated as: 

I f  Fred is male 

and Fred is single 

The inference engine then tries to match 'a second client' and comes up with the 
third antecedent predicate 

Anne is female 

which has a match in the Fact Database. The system continues on the assumption 
that 'a second client' is Anne. However, on trying to match 

Anne is single 

it fails because the only other data about Anne is that 

Anne is not single 

Since the rule cannot fire with this instantiation, the inference engine abandons 
Anne, and seeks to instantiate 'a second client' with the next item in the Fact 
Database. It matches 

Pat is female 

and having instantiated 'a second client' with Pat, the rule becomes 

if  

and 

and 

Fred is male 

Fred is single 

Pat is female 

and Pat is single 

Then Fred and Pat are eligible 

238 



CHAPTER 7: RULE-BASED SYSTEMS 

Since all of these instantiated antecedent predicates match the Fact Database, the 
rule is triggered. In single instantiation it would be the only rule in the conflict set 
and fire. As a result, the facts that Fred and Pat are eligible would be added to the 
Fact Database, possibly to be accessed by other rules which list possible partners 
for introductions. 

With multiple instantiation the following rule would also be obtained: 

If  Jim is male 

and Jim is single 

and Pat is female 

and Pat is single 

Then Jim and Pat are eligible 

and the conflict set would contain the two instantiated rules. In this case a variant 
of random ordering might be considered appropriate in order to ensure that clients 
at the bottom of the list are not disadvantaged. 

Having considered the theoretical basis of rule-based systems, we will now 
address some important issues of implementation. These include: 

I~ How is the knowledge represented inside the machine? 

i~ Where does the knowledge come from? 

I~ How does the knowledge get into the machine? 

I~ How are the rules selected for the conflict set? 

i~ How does the knowledge get updated? 

7.2.1 Knowledge representation 
In order to explain how knowledge can be represented in a rule-based system, 
we will describe some of the features of the rule-based system that we created 
for the Open University's home experiment laboratory, which we call 
SmartLab. 

In SmartLab, a predicate is made up of a sequence of words which represent 
things of interest. For example, Dogs are fun is a clause which can have one of the 
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truth values True, False, or Unknown. The predicate is made up by attaching a 
truth value to the clause, which we write as: 

Dogs are fun is True 

Inside the computer, this could be represented by a sequence of numbers, for 
example 

3 72 18 91 1 

and a list of text strings such as 

17 is 

72 dogs 

91 fun 

where 3 means there are three words, 72 is the numerical token for the string 
dogs, 18 is the token for the string are and 91 is the token for the string fun. The 
strings are stored in a character array, and they are only used for user interface 
display and printing purposes. The 1 at the end is a number representing the truth 
value True. 

7.2.2 Editors, parsing, and inputting knowledge 
With SmartLab, users can type in clauses from the keyboard using our Rule and 
Fact editors. These accept a line of text made up of keyboard characters, and 
parse it to find words and other syntactically correct constructions such as 
formulae. The words are tested by the parser against the existing tokenized 
strings, and any new words are given a new token number and stored. The user is 
unaware of the numbers that the editors give the words, since these are part of the 
system's internal representation. 

Users can build rules using the Rule Editor which has boxes for predicates to be 
entered as antecedents, and boxes lower down for predicates to be entered as 
consequents. The editors allow the truth values of the predicates to be set as 
appropriate. So, for example, the user might input a rule which looks similar to 

If dogs are fun 

and you like dogs 

and you want fun 

Then get a dog 
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On parsing your input the database might include the following data: 

String data list 

5 a 

17 

you 

is 

18 are 

47 want 

56 get 

71 dog 

72 dogs 

91 fun 

96 like 

Antecedent predicate data list 

1 3 

-1 3 72 18 91 1 -2  

-1 3 7 96 72 1 -2  

- I  3 7 47 91 1 -2  

Consequent predicate data list 

1 1 

3 56 5 71 1 

The numbers 1 and 3 before the antecedents record the information that this is 
Rule 1 and it has three antecedent predicates. The numbers 1 and 1 before the 
consequent records that this is Rule 1 and it has 1 consequent predicate. 

The numbers -1 at the start of each antecedent predicate indicate conjunction, i.e. 
the consequent predicates are connected by the word and. The numbers -2  at the 
end of each consequent predicate indicate that the system is allowed to ask the 
user to supply that information. 

Suppose the Fact Database contained the single fact represented by the numbers 

3 72 18 91 1 

The 1 at the beginning shows there is just one fact. This fact can be translated as 
meaning that it is true that dogs are fun. 
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7.2.3 Pattern matching 
When this system is run, our inference engine takes the first antecedent predicate 
in the first rule and tries to match it with the facts in the Fact Database. 

The 3s match, which shows that the first antecedent predicate and the first (and 
only) fact have the same size. They both have 1 (True) as truth value. The first 
number in the antecedent predicate is 72 which matches that of the first fact, the 
second number in the first antecedent predicate is 18 which also matches the 
second number of the first fact, and the third number in the first antecedent 
predicate is 91 which also matches the first fact. So, the first antecedent predicate 
matches the first fact perfectly, and the inference engine goes on to the next 
antecedent predicate: 

-1  3 7 96 72 1 - 2  

T h e - 1  tells the inference engine that and is being used, which means that this 
antecedent must also be perfectly matched for the rule to fire. The inference 
engine starts with the first fact in the database. Although the size (3) and truth 
value (1) match, the first token in the antecedent predicate is 7 while that in the 
fact is 72. This is a mismatch, and this antecedent predicate does not match this 
fact. 

7.2.4 Dynamic data acquisition 
There are no more facts in the Fact Database and normally this would mean that 
the rule is not triggered. Without a mechanism for obtaining new data, this rule- 
based system will get no further. The two main mechanisms involve (a) asking 
humans questions, or (b) getting the sensors to update the Fact Database automat- 
ically through suitable hardware-software interfaces. In this case the symbol - 2  
at the end of the antecedent predicate tells the inference engine to ask you a 
question. So you would see a message on your screen asking 

Is it true that: you like dogs 

and you could click the mouse on a 'yes'  box, a 'no' box' ,  a 'don' t  know' box or 
an 'explain' box. If you click on 'no' or 'don't  know' the inference engine will 
realize that this rule cannot fire. If there were another rule it would move on to 
that. In this case the system would give you a message saying that it cannot 
deduce anything and that it has finished. 

However, suppose you clicked on the 'yes'  button. Then the Fact Database would 
be updated to become 

3 72 18 91 1 

3 7 96 72 1 
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The inference engine would then move on to the next antecedent predicate. 

-1  3 7 47 91 1 - 2  

Again it would interpret t he -1  as and; again it would not be able to match the 
numbers 7, 47, 91 with the facts in the Fact Database; and again it would interpret 
t h e - 2  as meaning that it could ask you a question: 

Is it true that: you want fun 

and again if you were to click the mouse on the 'yes' button, and the Fact 
Database would contain the following data: 

3 72 18 91 1 

3 7 96 72 1 

3 7 47 91 1 

By now the inference engine would know that the antecedent predicates had been 
successfully matched, and so it would know that the rule had been triggered and 
would add the number of the rule to a list of numbers which represents the conflict 
set. In this case the conflict set would only contain this rule, and so it would be 
selected to fire. 

7.2.5 Updating the Fact Database when rules fire 
On firing a rule, the inference engine takes the consequent predicates of the rule 
and tries to match them against the Fact Database. If a match is found, the 
inference engine changes the truth value of the fact in the Fact Database to that of 
the rule. In this case there is one consequent predicate: 

3 56 5 71 1 

which does not match any of those in the Fact Database. Therefore the conse- 
quent predicate is added as a new fact to the Fact Database which ends up as 

3 72 18 91 1 

3 7 96 72 1 

3 7 47 91 1 

3 56 5 71 1 
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The system then tries to fire another rule. Since there is only one rule, the 
inference engine goes back to the beginning and starts all over again. This time all 
the antecedent predicates match the Fact Database, and the rule would fire again 
indefinitely. We have a special consequent predicate call, end(), which is used to 
halt the system when it has done its work. 

Note that the only part of the knowledge base to change during this run is the Fact 
Database. The Rule Database is usually not changed when the system is run. 
Rules are usually changed only by the rule-based system designer when the rule- 
based system is built. Exceptions to this may occur when a system learns new 
rules from data. 

7.2.6 Arithmetic and mathematical calculations 
In most applications it will be necessary to have numerical variables, and be able 
to manipulate them to perform numerical calculations. Consider a rule which 
might be part of the control system of a mobile robot: 

If temperature > 20 is True 

and x < 50 is True 

Then x = x+ 1 Assign 

theta = arctan(x,y) Assign 

When our parser encounters symbols like > it assumes that the tokenized string 
temperature is a variable and allocates appropriate memory to store the value it 
takes. Similarly the parser will realize that the string 20 is a constant, and convert 
it to a numberl Both these tokenized strings become antecedent predicates which 
can either be true or false. 

The consequent predicates, however, are rather different. They are not logical 
statements but numerical imperatives telling the system it must assign new values 
to variables. Usually these arithmetic assignments will allow mathematical 
functions such as sine, cosine, arc tangent, square root, and so on. Thus in the last 
consequent predicate the parser will recognize the string arctan as meaning the 
arc tangent function, test to see that it is syntactically correct with the necessary 
brackets and two parameters, and store it in tokenized form along with the tokens 
for its parameters. 

7.2.7 Interfacing a rule-based system to sensors and 
actuators 
In designing intelligent machines, how can we ensure that sensor data enter the 
Fact Database and how can a rule-based system switch motors on and off?. 
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There are many possible implementations of sensor and actuator interfaces, 
including the following two methods. 

One approach to reading sensors is to have special variables in the database. The 
idea is that the sensor interface hardware and software are constantly updating 
these variables, independently of the rules. 

Another approach (the one we adopted for the Open University's SmartLab rule- 
based system) involves defining special functions which can assign values to 
variables. For example, the consequent p = pressure() might set the variable p to 
the current value of a pressure sensor, using a function called pressure(). 

The same approaches can be used for controlling actuators. For example, 
variables could be defined which are directly interfaced to actuators. Suppose 
that 'motorA' is such a variable. Then an assignment such as motorA = 1 might 
send motor A forward, motorA = -1 would send it backward, and motorA = 0 
would stop it. 

In the SmartLab rule-based system we use a different approach based on 
functions such as go() and stop(). For example, a consequent such as go(forward) 
sends two motors in a 'forward' direction, while go(clockwise) sends the left 
motor 'forward' and the fight motor 'backward'. 

The rules 

If pressure() = 0 

Then go(forward) 

direction = forward 

and 

If  pressure() > 0 

Then stop() 

p = pressure() 

illustrate how functions such as those described might be used to interface the 
rule-based system. 

The antecedent predicate of each rule requires the pressure sensor hardware to be 
'read' by the pressure() functions. The first consequent predicate results in control 
signals being sent to the actuators. Itis supposed that 'forward' is a system variable 
which is preset to a meaningful value. The last consequent predicates in the rules 
update the values of the variables 'direction' and 'p' in the knowledge base. 

7.2.8 Knowledge elicitation 
The rules in the knowledge base have to be obtained somehow. In expert systems 
these rules would have been elicited from human experts by a person called a 
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knowledge engineer. This is a highly skilled operation because the expert often 
finds it very difficult to verbalize the reasons for an action that has been taken or a 
decision that has been made. One attempt at making this process easier is to let a 
non-expert in the field attempt to construct a set of rules. Then the system is 
shown to an expert who corrects the decisions. This means that the expert doesn't 
have to say why a rule is wrong, or why the substituted rule is correct. In 
mechatronics the system designer is likely to act as his or her own knowledge 
engineer. 

Attempts at automating the knowledge elicitation process, particularly where an 
expertise does not already exist, usually involve learning, as described in the next 
chapter. One example of this is Quinlan's TDIDT algorithm which constructs a 
set of rules to classify a set of objects. 

7.3 Confidence levels and fuzzy 
rules 

It is a relatively simple process to modify the propositions in the knowledge base 
so that they are no longer either TRUE (1) or FALSE (0) but a number in between 
such as the number 0.72 for example. This says that the proposition is TRUE with a 
confidence of 72% (or FALSE with a confidence of 28%). This figure comes from 
the confidence that the system has in the input data and could be a probability of 
an event happening or a fuzzy set membership, as described in Chapter 6 on 
Reasoning. If the figures are the probabilities of certain events occurring, they 
can be updated as new data arrive using Bayesian statistics. If an unusual or 
unexpected input arrives, it would get a low confidence rating to start with. If it 
persisted, then the probability associated with it would increase. 

Rules can be selected from the conflict set on a priority basis - for example, the 
rule with the highest confidence value is selected. The confidence level of a rule is 
found from the confidence levels of its antecedents. If an antecedent has con- 
nected propositions, then the rules for combining probabilities of events con- 
nected by OR, AND and NOT can be calculated as described in Chapter 6. 

In a fuzzy rule-based system the value of the fuzzy set membership could be 
stored as a real value between 0 and 1. You should recall that the fuzzy set 
membership is calculated from the membership function, which is quite often a 
triangular function. These functions are stored in the rule-based system, some- 
times as look-up tables in the memory. 

For example, if the temperature is read from a sensor as 9~ this gives the 
predicate 'temperature = 9'. However, it may be desirable to interpret this in 
fuzzy terms as the predicates 
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temperature is cold 0.3 

temperature is warm 0.4 

temperature is hot 0.1 

Any rule which involves 'hotness' would go into the conflict set. For example, 

/f 
Then 

temperature is warm 

component has failed 

results in the predicate 'component has failed 0.4' being added or updated to the 
fact database. 

In the case of fuzzy rule-based systems, defuzzification is used to determine the 
output described in Chapter 6 and Chapter9 on Intelligent control. 

Fuzzy rule-based systems have proved to be very useful in control systems. 
Fuzzy rule-based controllers have become very popular, even to the extent that 
several companies now produce fuzzy-controller integrated circuits. These have 
been used in all sorts of consumer devices such as cameras and washing 
machines, as well as in large industrial process control systems. For a more 
detailed exposition of fuzzy control see Hopgood (1993). 

7.4 Programming language 
and rule-based system shells 

In principle, any computer language can be used to build a rule-based system. For 
example, the SmartLab shell is written in the C++ language. However, we had to 
build our own inference mechanisms and pattern matcher as discussed in Section 
7.2. Of all the high-level languages available, Prolog is particularly suitable for 
building rule-based systems since the language itself has a pattern matcher built 
in. In Prolog, facts can be declared with statements such as on(pump), and rules 
can be built using the words if and then; connectives such as and, or, not and the 
logical quanfifiers 'there exist' and 'for all'. These too are part of the language. 
For these reasons, many rule-based systems are programmed in Prolog. 

The architecture of a rule-based system allows the knowledge base to separate 
from the inference engine. This means, in principle, that the same inference 
engine can be used for applications in many different knowledge domains. In 
practice this makes it worthwhile to develop 'empty' rule-based systems which 
have very good user-interfaces and make it easy to enter new facts and rules. The 
programmer therefore does not have to design new data structures or re-program 
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the inference mechanism every time a new system is built. Indeed the system 
builder does not even need to know how to program the computer and can enter 
facts and rules using everyday language. As discussed in Section 7.2, SmartLab 
provides an example of what is called a rule-based system shell into which 
domain-specific knowledge can be entered to build rule-based systems. It is used 
by our students to build rule-based systems which do many things, including 
controlling an autonomous vehicle over a wireless communications link. Even 
students who do not know how to program a computer learn how to create 
working rule-based systems in a few hours. 

7.5 Conclusion 

Rule-based systems are becoming very common in mechatronic systems. The 
architecture allows new information to be quickly added to the knowledge base 
without having to make major alterations to the system, as would be the case in 
conventional programming. Some of the more recent developments, such as 
fuzzy logic, have revolutionized some parts of the engineering industry, and this 
is expected to continue into the future. As you will see in Chapter 11, rule-based 
systems are especially useful when integrated into the blackboard system archi- 
tecture. 
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C H A P T E  R 8 
L E A R N I N G  

8.1 Introduction 

Since the earliest days of artificial intelligence it has been realized that machines 
with a fixed knowledge base are much more limited than those that can extend 
and change their knowledge base by learning. Machine learning involves: 

I~ acquiring new information and knowledge 

I~ acquiring new skills 

I~ finding new ways of organizing existing knowledge. 

When it is built, a machine will have a certain amount of information and 
knowledge designed into it. To learn it must also have some meta-knowledge built 
in, i.e. knowledge about knowledge. In particular, the machine must be able to 
absorb new data and operate on them so that they can be used in a purposeful way. 
This assumes that the machine is able to store this accumulating knowledge in 
appropriate data structures, that it has techniques for transforming raw data from 
its sensors into knowledge, and that it is able to manage its information base. For 
example, it may be necessary to overwrite old or redundant data. 

Learning can be thought of as adaptation to the environment based on experi- 
ence. This inevitably requires new knowledge, new skills, or the reorganization 
of existing knowledge. Usually the act of learning is motivated by attempts to 
improve a system by enabling better performance or avoiding poor performance. 

The process of learning in human beings is very complex and imperfectly 
understood. It is clear that human beings have fabulous learning abilities, both in 
the control of their bodies and use of their minds. These can be observed from 
watching young children play and study at school. Although it is an area of 
intense research, machines do not have human-like learning abilities. It is 
important to realize that currently machines have a rather limited capacity for 
learning. The following categories of learning will be discussed in this chapter: 

I~ learning by memory 

i~ learning by updating parameters 

i~ Bayesian learning 

i~ learning from examples 

I~ learning by analogy 

I~ learning by observation and discovery. 
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There are other aspects to learning such as learning by instruction, concept 
learning, learning by deduction, and learning by induction, but they will not be 
considered here. 

Learning cannot easily be separated from other aspects of machine intelligence. 
Pattern recognition (Chapter 2) frequently involves learning by example. Search 
(Chapter 3) will be seen to be particularly important in learning. Neural networks 
(Chapter 4) exemplify learning from examples. Scheduling (Chapter 5) relates to 
learning since successful activity schedules and paths can be learnt and used to 
evaluate new alternatives. Reasoning (Chapter 6) is important in deducing new 
knowledge from old, and rule-based systems (Chapter 7) provide an architecture 
which allows new facts to be deduced from existing facts. In this chapter you will 
see how a machine can learn new rules from data. Intelligent control (Chapter 9) 
also involves learning, as does computer vision (Chapter 10). Many of these con- 
nections will become clearer as we proceed. 

By learning by memory we mean the process of new data being stored in an 
unprocessed form and later used by the system. For example, a stream of data 
from a sensor may be stored in sequential memory to be processed when 
appropriate, or an image might be stored in a two-dimensional array. Although 
learning by memory is very simple, it plays an important role in machines. 

Usually the memory will be digital, and the designer of an intelligent machine 
must estimate how much data will be stored in order to allocate enough memory 
hardware, which is usually implemented as random-access memory (RAM). 
Memories soon fill up, and some kind of memory management is required. In 
general, this means keeping records of what data are stored where, and which data 
are no longer required and can be overwritten. 

In a machine, the most important data are usually those acquired most recently, 
and the memory management may involve cycling round a fixed allocation of 
memory overwriting the oldest data. Sometimes the old data may be converted 
and stored in a more compact summary form before being erased. 

For example, consider the circuit board at the heart of an autonomous vehicle 
which can read 16 sensors. Suppose two of the sensors are special, since they are 
used to count the wheel rotations for dead-reckoning the vehicle's position. One 
wheel on each side of the vehicle has a cam mechanism which lifts a lever which 
makes and breaks a circuit twice per revolution. The microprocessor examines 
the data stream produced by each sensor through time, such as 

...01000000111111100000011111100000000111011110100000... 

250 



CHAPTER 8: LEARNING 

Inevitably, the lever mechanism has some degree of bounce, and the data stream 
is not a clean sequence of zeros (no contact) and ones (contact). This means that 
sufficient historical samples have to be logged as data for the debounce subrou- 
tine. This subroutine is able to detect the correct on--off sequence and so count the 
wheel revolutions backwards and forwards in time. The logged data are stored in 
memory and kept until the counting subroutine has done its work. The memory 
allocated to logging the data is fixed, and the 'start position' of the logged data 
cycles around, with the oldest sensor readings being overwritten by the current 
reading. The wheel rotation counts are stored passively until the system accesses 
them in order to calculate the vehicle's position. 

Memory can be distributed over a system. For example, an autonomous vehicle 
which has very limited memory may be able to communicate information to a 
host PC which has much more memory, especially when its disk capacity is taken 
into account. However, the amount of data that can be stored elsewhere will 
depend on the bandwidth (defined in Chapter 3 of Volume 1) of the communica- 
tion channels used. 

Machines can use their environments to store information. To see this, consider 
the story of Theseus in the labyrinth under the palace of Knossos. Although it was 
impossible to learn a route through the myriad passages and openings, Theseus 
used the thread given to him by the king's daughter, Ariadne, to store the route 
information. Similarly, it might be useful for a machine to put down markers in its 
environment to store positional information. 

Logging data is the simplest way for a machine to accumulate new knowledge. 
Parameter updating goes one step beyond this, by using the stream of incoming 
data to modify parameters within the machine. The wheelcounts discussed in the 
previous section provide a simple example of parameters which are updated as a 
result of processing an incoming data stream. 

In Chapter 2 on 'Pattem recognition' you were told about data-to-data transfor- 
mation. It was said that in many applications, the data are easier to manipulate in 
one form than in any other, so a transformation is used. One example is where data 
have to be sent along a communication channel which doesn't have a sufficiently 
large bandwidth to send the raw data in real time. The data therefore have to be 
compressed, and as more data are received the system has to learn the best form of 
compression. One way is to convert the data into its Fourier spectrum and to send 
only a relatively small number of the largest spectral components. The signal can 
be reconstructed at the receiving end and will be approximately the same as the 
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original signal. In other words, the signal is modelled using the Fourier transform, 
which enables it to be represented by a small number of parameters. 

The knowledge in this case is embedded in the spectral coefficients and is 
extracted as parameters from the data. More data may result in further changes to 
the spectral representation parameters and therefore to the model. 

Earlier in this volume (Chapter 4) we described neural networks. Although these 
are relatively recent inventions, they are essentially parameterization networks. 
Learning consists of taking a set of known input-output data and using a form of 
gradient descent to search for the set of parameters (called weights in neural 
networks) that will best describe the input-output relationship of a given set of 
data. 

In neural networks, and parameterization in general, what is described as 
'learning' quite clearly involves searching. The behaviour of the networks can be 
described as learning, while the mechanism employed is searching. The search 
space is defined by some form of error function between the data received and the 
parameterized model of the data. The aim of the search is usually to minimize this 
error, and preferably to reduce it to zero. Therefore in parameterization, the 
machine sometimes learns by performing a search such as gradient descent. 

At any time a machine will be receiving new streams of data as it works. Some of 
these data will require that a parameter be updated in a relatively incremental 
way. Bayesian updating can be used for this. 

In Chapter 6 on Reasoning, uncertainty was defined in terms of probabilities. A 
probability of 1 meant that an event was certain to happen, whereas a probability 
of 0 meant that an event was never going to happen. In between, the probability 
represents the certainty or confidence that an event will take place. Bayes' rule 
was shown as a way of calculating the probability of an event happening in the 
light of evidence from simpler probabilities that are known. This effectively gives 
us a way of learning 'on the hoof', and updating the confidence that we have of an 
event taking place. 

Bayes' rule can be written as 

p(E IH) • p(H) (8.1) 
p(HIE) = p(E) 
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where 

H is a hypothesis; 

E is an example; 

p(HIE) is the probability of the hypothesis H being TRUE given that an 
example E has been found; 

p(EIH) is the probability of an example E being found given that the 
hypothesis H is TRUE; 

p(H) is the probability of a hypothesis H being TRUE; 

p(E) is the probability of an example E being found. 

We will use these definitions in what follows: 

p (~H)  is the probability of the hypothesis being FALSE; 

p(EI--,H) is the probability of finding an example when the hypothesis is 
FALSE. 

Let's look first at p(E). This can be expanded by noting that the probability of 
finding an example, p(E), equals the probability of the hypothesis being TRUE 
and finding an example when it is TRUE, p(EIH) xp(H), plus the probability of 
the hypothesis being FALSE and finding an example when it is FALSE, 
p(EI~H) xp(--,H): 

p(E) = p(E IH) x p(H) + p(E I ~ H )  x p ( ~ H )  (8.2) 

Substituting this into the Bayesian expansion of p(HIE) gives 

p(E IH) x p(H) p(E IH) x p(H) 
p(HIE) = = (8.3) 

p(E) p(EI H)p(H) + p(E I ---, H)p( --,H) 

B u t p ( ~ H )  = 1 - p ( H ) ,  so 

p(EIH) x p(H) 
p(HIE) = (8.4) 

p(E IH)p(H) + p(EI---,H) (1 - p(H)) 

Suppose the initial, unknown, probability of H being true is P0- 

When the first example is found, E 1, the probability of the hypothesis being TRUE 
is updated to P l from the known or estimated initial value of P0: 

p(EllH) • Po 
p~ = p(HI Ej) = (8.5) 

p(El iH)po + p(Ell--,H)(1-p o) 

Note, it is assumed that p(EilH) and p(Eil--,H) are known for any new evidence 
E i. The formula allows the probability of H to be updated every time new 
information comes in. 
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This is not a very elegant expression, so a new term called the odds is defined as 
the ratio of the probability of an event happening and the probability of the same 
event not happening: 

p(H) p(H) 
O(H) = = (8.6) 

p ( ~ H )  1 - p(H) 

Thus 

p(HIE) 
O(HIE) = 1 - p(HIE) (8.7) 

Equation (8.3) yields 

p(HIE) = 
p(EI-~H) p(~H) 

1 + 
p(EIH) p(H) 

which by equation (8.6) becomes 

p(HIE) = 
1 + 

p(E I--,H) 
p(EIH) 

1 
X 

O(H) 

From this 

1 p(EI ~ H )  
= 1 + 

p(glH) O(H) p(HIE) 

so that 

1 - p(HIE) p(EI ~ H )  

p(HIE) p(EIH) O(H) 

By equation (8.7) this gives 

p(H IE) p(E IH) O(H) 
O(HIE) = 1 - p ( H I E )  = p(EI-~H) 

Thus we have 

O(H) x p(EIH)  
O(HIE) = (8.8) 

p(EI-~H) 

and updating gives us 

Oo X p(EIIH) 
O~ = (8.9)  

p(Ell---,H) 

At any stage, the odds can be converted back to a probability using the equation 

o(14) 
p(H) = 1 + O(H) (8.10) 
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To illustrate these ideas, consider a bag which contains 10 coins, one of which is 
double-headed. Take out one coin and toss it a number of times. At each toss, 
what is the probability of the coin being the double-headed one? 

Here the hypothesis, H, is that the double-headed coin has been pulled out of the 
bag. 

The probability of pulling the double-headed coin out of the bag is 0.1. So 
initially, the probability of it being the double-headed coin is 0.1. 

P0 =0 .1  

From equation (8.5) 

Pt = p(HIE1) = 
p(E11H) • Po 

Po p(E11H) + (1 - Po)P (EII~H) 

where p(E 11H) is the probability of it being hems when it is tossed given that it is 
the double-headed coin, which is therefore 1. The termp(E 11--,H) is the probabil- 
ity of heads, given that it is not the double-headed coin, which is 0.5. So, 
assuming the coin comes down heads, 

1 x 0 . 1  
Pl = p(HI E~) = 0.1 x 1 + (I - 0.1) • 0.5 = 0 . 1 8  

Using equation (8.5) again, 

P2 = p (H I E2) = 
p(E2 IH) x Pl 

ptp(E2 IH) + (1 - Pl ) p(E2 I ~ H )  

So, assuming the coin lands as heads the second time, we have 

1 • 0 . 1 8  

P2 = p(HI E2) = 0.18 • 1 + (1 - 0.18) • 0.5 = 0.30 

We could keep going like this untilpn approaches 1; that is, when n is large and the 
coin has not once come down tails we become almost certain that the coin is 
double-headed. 

Now do the same calculation using odds. From equation (8.6) the odds are 

p(H) 
O(H) = 1 - p ( H )  

Po 0.1 
O o  = 1 - p o  1 - 0 . 1  = 0.11 
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Equation (8.9) then becomes 

p(E~ IH) 1 
01 = Oo x p(Ell---,H) = O0 x 0.5 = 2 .00o 

Using odds we simply double the odds every time the coin comes down heads 
when it is tossed. Odds therefore do not range between 0 and 1, but range from 0 
to infinity. They are perhaps more difficult to interpret, but simpler to update. 

It is easy to convert odds back to probabilities. In this case 01 = 2.000 = 0.22, and 
02 = 2.001 = 0.44. By formula (8.10), 

O(H) 0.44 
p(H) = 1 + O(H) 1 + 0.44 0.3 

so that P2 = 0.3, which is the value found previously. 

In the cases of either probabilities or odds, if the tossed coin ever lands tails then 
the probability or odds should go to zero. The term p(EIH) means the probability 
of an event happening given that the hypothesis is TRUE. Well, if the hypothesis is 
TRUE that the coin is double-headed, the probability of it landing tails is 0. Since 
the probability or odds are multiplied by this term, if the coin ever lands tails the 
value drops to 0 as expected. 

This method is used in expert systems for diagnosis. Consider a machine which 
monitors itself and tries to diagnose potential faults before they cause major 
damage. Initially the probability of any particular machine having any one of 
these faults is derived from statistics of the whole population of machines tested 
to date. 

Next, the symptoms of each fault are stored as a probability. For example, 
suppose some of the faults usually involve a high temperature in some part of the 
machine. Let's say we have three faults, A, B and C, and the probability of a 
machine having any one of these faults is derived from the test population and 
found to be 

p(A) = 0.01, p(B) = 0.05, p(C) = 0.10 

Converting to odds gives 

O(A) = 0.010, O(B) = 0.053, O(C) - 0.111 

A and C are usually accompanied by high values of temperature, T, so they might 
have probabilities of 

p(TIA) = 0.8, p(TIB) = 0.04, p(TIC) = 0.7 
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Similarly, B and C are often accompanied  by fluctuations of  voltage,  V, with 

probabili t ies 

p(VlA) = 0.03, p(VIB) = 0.75, p(ViC) = 0.60 

We also need  to know the probabil i ty of  high temperatures  and vol tage fluctua- 

tions when  a machine  does not have any of  these faults. Again  these statistics 

would  be available for a popula t ion  of  test machines ,  and might  be empirical ly 

de te rmined  to be 

p(TI---,A) = 0.30, p(TI~B) = 0.28, p(TI~C) = 0.32 

p(VI---,A) = 0.40, p(VI--,B) = 0.30, p(Vl~C) = 0.35 

If  we work  with odds,  then the updat ing factor  for A when  a high temperature,  

which  we shall call K T, is found is 

p(TIA) 0.8 

p(TI ---,A) 0.3 
- 2.667 = Kr(A) 

Similarly, 

KT(B) = 0.143, KT(C) = 2.188 

W h e n  a machine  detects vol tage fluctuations 

p(V IA) 0.03 
= - 0.075 = Kv (A) 

p(V I ~ A )  0.4 

Similarly, 

Kv(B) = 2.50, Kv(C) = 1.714 

So, if  a machine  detects a high tempera ture  with vol tage fluctuations the 

probabil i t ies of  each of  the faults is updated  in two steps. 

First, the h igh temperature:  

O~(A) = Oo(A) • KT(A) = 0.010 • 2.667 = 0.027 

Ol(B)  = Oo(B) • KT(B) = 0.053 • 0.143 = 0.008 

O~(C) = Oo(C) • KT(C) = 0.111 • 2.188 = 0.243 

Next,  the vol tage fluctuation: 

O2(A) = 01(A) • Kv(A ) = 0.027 • 0.075 = 0.002 

02(/3) = 01(B) • Kv(B) = 0.008 • 2.50 = 0.020 

O2(C) = O~(C) • Kv(C) = 0.243 • 1.714 = 0.417 
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After calculating these odds, fault C has the highest probability. We can convert 
these odds into the more conventional probability using formula (8.10): 

O(C) 0.417 
m 

p(C) = 1 + O(C) - 1 + 0.417 = 0.294 

Therefore the probability of there being a fault C is 0.294. At this stage in the self- 
diagnosis the machine could instigate the repair of fault C, update parameters or 
rules concerning potential problems with C, or seek more data. 

Thus we have a method of updating probabilities as evidence accumulates which 
a machine can use for self-diagnosis. When indications of faults appear it can 
update the probabilities of the various causes. 

More generally, this method gives mechatronic systems the ability to update 
parameters about the environment when the environment is complex and the data 
are somewhat imprecise. In Chapter 6 on Reasoning we saw how machines could 
reason with probabilities. Bayesian learning provides a method for a machine to 
update the probability values during operation. 

8.5.1 Classification through training 
A machine learns from examples when it infers relationships between things on 
the basis of examples. 

In Chapter 4 of Volume 1 we described images on an 8 • 8 grid of pixels obtained 
from a wire scanner. Suppose a character 3 had been scanned. Then the data for 
the grid are stored in memory, along with the number 3. In this way the system 
learns the image produced by a particular scan of the 3. By matching this with 
subsequent scans the system is able to decide if the character was a 3. 

Neural networks also learn by example. In this case, examples of input-output 
pairs are shown during training. The network's weights (parameters) change as it 
learns, and subsequently it is able to classify the inputs in terms of the outputs. 
Subsequently it can generalize from the training data, and classify further 
examples of inputs. 

8.5.2 Learning rules by searching for relationships 
How can a machine abstract knowledge from data in the way that we do? For 
example, people say 'red sky at night, shepherd's delight; red sky in the morning, 
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shepherd's warning'. This kind of heuristic for weather forecasting is obviously 
based on years of observation, and generalizing from those data. 

To illustrate the general idea, suppose an autonomous vehicle uses dead-reckon- 
ing to determine its position in the environment, i.e. it calculates its position 
according to the number of revolutions of its wheels. Since the wheels may slip 
this dead-reckoning is subject to errors which may accumulate over time. The 
vehicle can correct these errors when it encounters a known object, but some- 
times the errors will be too great for this: expected objects will not be found, and 
the machine will not know whether this is because they have moved or because it 
is lost. 

Suppose the vehicle has two strategies to deal with this situation: the first strategy 
(A) assumes that the known object has moved, and seeks another known object; 
the second (B) assumes that the vehicle is lost and re-maps the environment in the 
hope that the new map can be matched against the old map and the vehicle can 
relocate itself. 

When it works, strategy A consumes less time, but when it fails the machine 
reverts to strategy B and the time spent on A is wasted. Suppose the success of 
strategy A depends on the distance travelled since a known object was success- 
fully recognized. 

TABLE 8.1 

Distance Strategy A 

travelled successful 

175.4 Yes 

293.3 Yes 

805.9 Yes 

930.5 No 

1001.8 No 

1123.2 Yes 

1305.6 No 

1565.4 No 

These data do not give a clear-cut value of distance below which strategy A is 
always successful and above which A is always unsuccessful. However, the rules 
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If  (distance < 868.2) 

Then adopt strategy A 

If  (distance i> 868.2) 

Then adopt strategy B 

will result in these data being correctly classified for seven out of the eight sample 
data. The number 868.2 is obtained here by taking the mean of 805.9 and 930.5. 

This is a simple example of how a machine can learn a rule by inspecting a data 
set. Such rules can then be used in rule-based systems, as discussed in Chapter 7. 
We will now show how this idea can be extended to a more complex data set 
which generates a multi-branch decision tree. 

Here we will describe a mechanism for abstracting rules from tabulated data 
which is based on Quinlan's TDIDT method proposed in the 1980s. TDIDT 
stands for top-down induction of decision trees. This form of learning uses best- 
first search to build a decision tree. 

Consider a complex mechatronic system involving many autonomous mobile 
machines engaged in construction work in a hostile environment. When it rains 
the machines cannot work on some parts of the site, so to optimize the scheduling 
of the machines it is necessary to know if it will rain or be fine the next day. 

One way to do this is to take some measurements of today's weather and see if 
there are some rules that could be applied that will predict tomorrow's weather. 

Recall the old saying 'red sky at night, shepherd's delight'. This is a heuristic that 
is based on observation, but can also be supported by scientific knowledge. In the 
UK the weather fronts tend to come from the Atlantic in the west and the sun sets 
in the west. So if the sky is red at sunset it means that light is able to get through the 
atmosphere after the sun has set below the horizon because there isn't much 
cloud. The lack of cloud means that it probably won' t  rain in the morning. 

As with all rules, there will be exceptions. The rule itself is not 100% accurate, but 
it might be possible to add more qualifying rules to improve the overall accuracy. 
So you might add to the saying 'red sky at night' the qualifier 'and the wind is 
light' to give delight to the shepherd. 

One method is to use a best-first search (defined in Chapter 3 on Search). Starting 
with a rule that is generally useful but not 100% accurate, one looks for 
exceptions to the rule and finds new qualifying rules to supplement the original 
one. The search method uses a database of statistics and gradually finds a set of 
rules that describe the statistics as correctly as possible. 

Table 8.2 gives weather statistics for each day in March 1992: the rainfall, hours 
of sunshine, maximum and minimum temperatures. It also shows what the 
weather was like on the day after the data were collected. 

260 



CHAPTER 8: LEARNING 

TABLE 8.2 WEATHER FOR THE 31 DAYS IN MARCH 1992 FOR THE LONDON 
REGION 

Day in Tmi n Tma x Rainfall  Sunshine Weather  

March  ~ ~ m m  hours next day 

1 9.4 11.0 17.5 3.2 Rain 
2 4.2 12.5 4.1 6.2 Rain 
3 7.6 11.2 7.7 1.1 Rain 
4 5.7 10.5 1.8 4.3 Dry 
5 3.0 12.0 0.0 9.5 Dry 
6 4.4 9.6 0.0 3.5 Dry 
7 4.8 9.4 0.0 10.1 Rain 
8 1.8 9.2 5.5 7.8 Rain 
9 2.4 10.2 4.8 4.1 Rain 

10 5.5 12.7 4.2 3.8 Rain 
11 3.7 10.9 4.4 9.2 Rain 
12 5.9 10.0 4.8 7.1 Rain 
13 3.0 11.9 0.2 8.3 Dry 
14 5.4 12.1 0.0 1.8 Rain 
15 8.8 9.1 8.8 0.0 Rain 
16 2.4 8.5 3.0 3.1 Rain 
17 4.3 10.8 4.2 4.3 Dry 
18 3.4 11.1 0.0 6.6 Rain 
19 4.4 8.4 5.4 0.7 Rain 
20 5.1 7.9 3.0 0.1 Rain 
21 4.4 7.3 1.0 0.0 Dry 
22 5.6 14.0 0.0 6.8 Dry 
23 5.7 14.0 0.0 8.8 Dry 
24 2.9 13.9 0.0 9.5 Dry 
25 5.8 16.4 0.0 10.3 Dry 
26 3.9 17.0 0.0 9.9 Dry 
27 3.8 18.3 0.0 8.3 Dry 
28 5.8 15.4 0.0 7.0 Rain 
29 6.7 8.8 6.4 4.2 Dry 
30 4.5 9.6 0.0 8.8 Rain 
31 4.6 9.6 3.2 4.2 Rain 

The aim of the weather forecasting system is to find a rule that predicts if the next 

day will be raining (or ~DRY). DRY in this context is defined as no rain. 

The best-first search algorithm constructs a decision tree. The root node is the 

single rule that best describes the data. For the data in Table 8.2 there are a number 

of rules that could be found. Probably the simplest are rules of the fo rm:  

/f (variable > constant) 

Then Prediction 
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For example: 

If (Sunshine i> 4.2 hours) 

Then (Nextday DRY) 

This is correct 20 times out of 31, or 65%, as shown in Table 8.3. The value of the 

constant is chosen so that the number  of times that the rule is correct is 

maximized.  

TABLE 8.3 PREDICTIONS FROM If (Sunshine/> 4.2 hours) Then (Nextday DRY) 

Day Sunshine Actual Predicted Correct 

hours 

1 3.2 Rain ~DRY Yes 
2 6.2 Rain DRY No 
3 1.1 Rain ~DRY Yes 
4 4.3 Dry DRY Yes 
5 9.5 Dry DRY Yes 
6 3.5 Dry ~DRY No 
7 10.1 Rain DRY No 
8 7.8 Rain DRY No 
9 4.1 Rain ~DRY Yes 
10 3.8 Rain 7DRY Yes 
11 9.2 Rain DRY No 
12 7.1 Rain DRY No 
13 8.3 Dry DRY Yes 
14 1.8 Rain ~DRY Yes 
15 0.0 Rain ~DRY Yes 
16 3.1 Rain ~DRY Yes 
17 4.3 Dry DRY Yes 
18 6.6 Rain DRY No 
19 0.7 Rain ~DRY Yes 
20 0.1 Rain ~DRY Yes 
21 0.0 Dry ~DRY No 
22 6.8 Dry DRY Yes 
23 8.8 Dry DRY Yes 
24 9.5 Dry DRY Yes 
25 10.3 Dry DRY Yes 
26 9.9 Dry DRY Yes 
27 8.3 Dry DRY Yes 
28 7.0 Rain DRY No 
29 4.2 Dry DRY Yes 
30 8.8 Rain DRY No 
31 4.2 Rain DRY No 
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Other possible roles include 

If  (Rainfall i> 2 mm) 

Then (Nextday ~DRY) 

which is correct 24 times out of 31, or 77%; 

g (rmin i> 6~ 

Then (Nextday DRY) 

which is correct 16 times out of 31, or 52%; and 

If (Tmax i> 13~ 

Then (Nextday DRY) 

which is correct 23 times out of 31, or 74%. 

Of all these rules, the rainfall measure is the best predictor, correctly classifying 
77% of the data. This divides the tree into two branches as shown in Figure 8.1. 

A Figure8.1 
Dividing the data using the rule Rainfall >i 2 mm. (Incorrect predictions are shaded.) 

The next step is to move down one of the branches and find the rule that works 
best at classifying the data again. If we follow the fight-hand branch, a set of 
possible rules with the constants chosen to maximize the discriminatory power of 
the rules are: 
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Rule Correct % 
out of 15 

If (Sunshine i> 4.3 hours) Then (Nextday DRY) 10 67% 

If (Rainfall i> 6.5 mm) Then (Nextday ~DRY) 5 33% 

If (Train i> 6.7~ Then (Nextday DRY) 11 73% 

If (Tma x i> 10.8~ Then (Nextday DRY) 9 60% 

Notice that all the variables are examined. In this instance the third rule is correct 
most often, so is used as the second test and creates two new branches in the tree 

& Figure 8.2 
A further division using the rule Tmi n >i 6.7~ (Incorrect predictions are shaded.) 

Next we will follow the new left-hand branch. There are only four entries, three 
which are ~DRY and one which is DRY. The rule: 

/f (Sunshine i> 4.2 hours) 

Then (Nextday DRY) 

is correct 4 out of 4 times, or 100%, as shown in Figure 8.3. 
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A Figure 8.3 Further division using the rule Sunshine >t 4.2 hours. (Incorrect predictions are shaded.) 

Figure 8.4 shows the tree half complete. It is left for you as an exercise to 
complete the other half. The tree of Figure 8.4 is interpreted as: 

If  (Rainfall i> 2 mm) 

OR 

OR 

Then 

AND -'(Tmin i> 6.7 ~ 

AND (Tma x i> 10.8~ 

AND ~(Sunshine i> 6.2 hours) 

AND (Sunshine i> 4 hours) 

This part of the rule 

corresponds to day 17. 

AND 

AND 

(Rainfall i> 2 mm) 

(Tn~n i> 6.7~ 

(Sunshine i> 4.2 hours) 

This part of the rule 

corresponds to day 29. 

AND 

~(Rainfall i> 2 mm) 

(Nextday DRY) 

This part of the rule 

covers the left half 

of the tree. 
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Figure 8.4 
Half of  the tree completed so 
that days are correctly 
classified. (Incorrect 
predictions are shaded.) 
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This example shows that even with relatively simple rules it is possible to classify 
the data. The way that the rules are produced can be described as learning by 
example, where the system learns from tabulated data. Whether or not the 
resulting rules are useful for classifying new data depends on how representative 
the training data are of the sort of data it can expect to have to classify. 

This method of abstracting rules from data is not incremental. If the system is 
learning continuously, on making every new observation it would have to go 
through this process from the beginning to build a new decision tree and new 
rules. This is a case in which the system may log new data (learning by memory) 
and revise its rule base (learning from examples and experience) later when it is 
idle. 

A disadvantage of this approach is that rogue data, i.e. abnormal or incorrect 
observations, may not be detected and may result in incorrect rules. 

There are many more sophisticated ways of constructing these rules, but the basic 
principle is the same. Quinlan's ID3 (Interactive Dichotomizer 3) is basically the 
same, but instead of using the percentage of correct classification as the evalua- 
tion function it uses a measure called entropy. Other methods use standard 
statistical techniques to show that the classification is better than chance alone 
could do. 

When confronted with a new problem, the history of the system can be searched 
to see if a similar problem has been seen (and solved) before. If one is found, the 
method of finding a solution can be applied again to the new problem to see if it 
works. If it does, then it is possible to say that the problem has been solved by 
analogy to the other problem. 

This can be illustrated by the following problems. The first requires you to prove 
that RN = OY given that R O -  NY in Figure 8.5(a). 

A proof goes like this: 

Step 1" RO = NY (given) 

Step 2" RO + ON = NY + ON (add ON to both sides) 

Step 3. RN = NY + ON (RN = RO + ON) 

Step 4" RN - OY (NY + ON - OY) 

The second problem requires a proof that, in Figure 8.5(b), angle ABAD = angle 
LCAE,  given that ABAC = LDAE.  
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R O N Y 
A - - .  . . L  A 
. w  i ,  1 1 ,  . ~ .  

(a) Given RO = NY, 

prove RN = OY. 

C 
B 

D 

~ E  

(b) Given L BAC = ZDAE, 

prove L BAD = Z CAE. 

Figure 8.5 Analogical reasoning in geometry. 

The analogical proof goes like this: 

Step 1" ZBAC = ZDAE 

Step 2" ZBAC + ZCAD = ZDAE + ZCAD 

Step 3" ZBAD = LDAE + ZCAD 

Step 4." ZBAD = ZCAE 

(given) 

(add ,/CAD to each side) 

(ZBAD = ZBAC + ZCAD) 

(ZCAE = ZDAE + LCAD) 

The analogy works by associating angles with lines, and addition of lengths with 
addition of angles. 

Figure 8.6 shows another example of learning by analogy. In the first case, 
Figure 8.6(a), the vehicle learns how to solve the particular navigation problem. 
Although the environment is different in Figure 8.6(b), the analogy between the 
two problems is that the desired trajectory cannot be achieved if the vehicle goes 
exclusively in forward motion. In the first case, reversing and then going forward 
solves the problem. In the second case the analogy works if this tactic is applied 
twice. 

In order to reason by analogy a machine has to establish the analogy between the 
parts of the problems, and the analogy between the relationships between those 
parts. This poses some difficult pattern recognition problems which, during 
learning, the machine must set up and solve by itself. In particular, the machine 
must be able to represent the problem and its solution in a way which allows it to 
make subsequent analogies. In principle, learning by analogy can be very 
powerful, but in practice analogies of any complexity can be hard to implement. 
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(a) The vehicle has to reverse in (b) 
order to go forward on its 
desired trajectory. 

By analogy, the vehicle has to reverse and go 
forward to the intermediate position. From 
there it can reverse and go forward on its 
desired trajectory. 

~l Figure 8.6 
Learning by analogy. 

Learning by discovery allows the machine to form its own conclusions, based on 

the data it receives. An example of such a system is a self-organizing neural 

network. As input data arrive they start to form clusters in the pattern space. The 

clusters can be separated to give output classifications. How the data are 
organized is determined by the network alone, so the network 'discovers' 

relationships between its inputs and its outputs for itself. 

As another example, consider a battery-powered autonomous vehicle exploring a 

new and totally unknown environment in order to learn a new map. Suppose the 

vehicle has only touch sensors: in order to map out the environment the vehicle 

must move until its sensors respond to something. Since the shortest distance 
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between two points is a straight line, let us suppose that the vehicle is pro- 
grammed to move off in an arbitrary direction until its sensors are activated. 
Suppose that on encountering an object, the vehicle is programmed to back off, 
move to one side and seek another response. In this way the vehicle can build up a 
map of points at which it sensed an object. From this it can build a picture of its 
universe. As far as the machine is concerned the data stream through time appears 
a s  

. . . f f f b b b a a a f f f c c c f f f b b b a a a f f f c c c f f f . . .  

. . . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . .  

where f = forward, b = backward, c = clockwise, a = anticlockwise, 1 means an 
object sensed and 0 means no object is sensed. These data correspond to the 

positions shown in Figure 8.7. 

Thus with respect to Figure 8.7, the vehicle is going forward at tl with no object 

sensed (f,0), forward at t 2 with no object sensed (f,0), and forward at t 3 when it 
senses an object (f, 1). At t 4 the vehicle is going backwards with no object sensed 

(b,0), as it is at t 5 and t 6. At t 7, t 8, t 9 the vehicle rotates anticlockwise through a 
total of 90 ~ with no object sensed (a,0). At q0, tl~, t12 it goes forward with no 

object sensed (f,0). At t13, t14, t15 the vehicle rotates a total of 90 ~ clockwise with 
no object sensed (c,0). At t16 and t17 it goes forward with no object sensed (f,0), 
and at t18 it is going forward when it senses an object (f,1). The vehicle repeats 
this and thus senses three colinear objects, which it may interpret as an edge. 

& Figure 8.7 The sequence of data associated with an autonomous vehicle learning 
its environment. 
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ff the vehicle uses coordinate geometry to represent the points at which it detects 
objects, the discovery of a sequence such as that shown in Figure 8.7 can be tested 
for its geometric properties. For example, one can try to fit a curve to the data. In 
this case linear regression would show that the points form a straight line, and 
give the equation of that line in terms of coordinate geometry. There are 
techniques for fitting sets of points to other geometric objects such as arcs of 
circles and other curves, and the vehicle can, in principle, take samples of objects 
and learn the shape of their edges. 

So far we have considered a vehicle which represented its environment using 
coordinate geometry. This is called a vector representation, since objects are 
represented by sequences of numbers which represent points, lines, and other 
geometric objects. 

There is another widely used representation for two-dimensional space, namely 
an array, or grid, of cells (usually squares) which represent areas of the actual 
space. For example, a square cell might represent a square metre. This is called 
the resolution of the grid. Any finite area will be represented by a finite number of 
cells. This representation is popular because it is easy to associate the cells with 
pixels, and display the representation of the environment on a computer screen. 

Consider an autonomous vehicle which is planning its path in an environment 
about which it has imperfect knowledge. For example, it may have a map of the 
fixed part of the environment, but not know a priori if it will encounter other 
objects able to move in the space. 

Suppose the vehicle senses an unexpected object. The new data about a previ- 
ously unknown object fills in an area of that map that was previously blank, and 
that is learning. Using that data later to find a new path is search. Knowledge can 
be learnt even if it is never used. In an unpredictable world you cannot say in 
advance what is useful and what is not, so all knowledge that is acquired is 
potentially useful in some future circumstances. 

The database may be a two-dimensional array in which a zero represents 
unoccupied space and a 1 represents an object, as illustrated in Figure 8.8. 

vehicle 

goal 

A 

Key 

/ /  
0 --- not occupied 

1 - occupied 

/ 
path 

Figure 8.8 
Binary array used to map 
the environment. 
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Let's assume that initially the map is full of zeros. Suppose that the vehicle moves 
around trying to reach the goal square and when it bumps into something it 
records a 1 in the appropriate cell of the array. Gradually it will build up a map of 
the whole environment. The raw input data are signals from sensors indicating the 
presence or absence of an object. 

Some 'decoding' has to take place to work out the position of the object relative to 
the vehicle, so that a 1 can be placed in the correct position on the map. Filling in 
the map corresponds to learning about the environment and is not linked to any 
specific task that may be required to be performed in that environment. 

In this chapter we have seen that learning involves many of the ideas discussed in 
this book, especially search. Learning describes some of the behaviour of a 
machine. A machine can be said to have learnt if its behaviour is altered by the 
input of new data. We have considered: 

i~ Learning by memory: We described this as the accumulation of data in 
memory, e.g. data logging. 

i~ Learning by updating parameters: This involves the machine using incom- 
ing data to update parameters. 

i~ Bayesian learning: This method allows probabilities to be updated as more 
knowledge about cases is accumulated. We illustrated it by a machine 
monitoring itself for fault diagnosis. 

I~ Learning from examples: This occurs when a machine generalizes from a set 
of examples. We illustrated this by showing how rules to predict tomorrow's 
weather can be abstracted from historical weather data. 

I~ Learning by analogy: This happens when the machine makes an analogy 
between a problem it has solved before and a new problem. We illustrated 
this with a vehicle path-planning problem. 

i~ Learning by observation and discovery: This occurs when a machine pur- 
posefully interacts with its environment in order to acquire data from which it 
can abstract useful knowledge. We illustrated this with an example of an 
autonomous vehicle mapping out its environment. 

Although the techniques we have described make a useful start, they come 
nowhere close to the fantastic learning abilities of human beings. Learning 
remains an important and very active research area in artificial intelligence and 
the design of intelligent machines. 
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C H A P T E R  9 
I N T E L L I G E N T  C O N T R O L  

The subject of control was introduced in Volume 1, Chapter 8, by presenting 
methods for controlling systems which can be described by linear models using 
differential equations. As a reminder, a system is linear if it has the property that a 
sinewave with a frequency f applied at the input results in a sinewave with a 
frequency f appearing at the output once the system has settled down. The only 
differences between the two sinewaves are their amplitudes and their relative 
phase. This should be true for all relevant values off, and should not vary with 

time. 

This kind of model is a mathematical description of the behaviour of a system, 
and will always be an approximation to the actual behaviour of the system. When 
a linear model is used as the basis for the design of a controller, the performance of 
the controller will depend on the accuracy of the model. There are many systems 
for which a linear model is sufficiently accurate for linear control to be appropri- 
ate. However, there are many systems which are n o t -  and a linear model would 
be so inaccurate that any controller designed using a linear model would perform 
badly. In these systems it is appropriate to use more complex models such asnon- 
linear or time-varying models. Other complications that might arise are systems 
for which there are no known models, or systems where it is impossible to 
measure the output directly. Another difficulty arises in systems which are too 
complex to be represented or modelled by mathematical functions alone, and in 
which qualitative relational information must also be used. In these cases the 
conventional control methods described in Volume 1 may be inadequate. 

There is at present a great deal of research effort being applied to the realm of 
'intelligent' control. The term intelligent control reflects the fact that these 
techniques arise in the discipline of artificial intelligence, and does not infer that 
these techniques are 'cleverer' than classical methods. Intelligent control is most 
useful in situations where classical linear control is not suitable. There are 
basically three ways that intelligent control overcomes the limitations or the lack 
of a model. The first is that it may learn to control a system using methods such as 
neural networks and genetic algorithms which do not explicitly require a model. 
The second is that it can make do with very simple models, such as descriptions of 
a system in words, and takes this description to produce a controller using fuzzy 
logic. The third is that it can use incomplete and imprecise models and overcome 
the related uncertainty by using techniques from artificial intelligence. 
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In this chapter a distinction will be made between controlling systems which can 
be represented by mathematical formulae, and controlling systems which are too 
complex for this. Complex systems are usually hierarchical, and at the lowest 
levels it is not uncommon to find subsystems which can be modelled by formulae. 
For example, a motor car engine may be modelled by relationships between 
numerical variables, but a road system containing many motor cars cannot 
adequately be modelled by formulae alone. 

To illustrate the application of different methods of intelligent control to a system 
which can be modelled using equations, a problem called the broom-balancer 
will be investigated. At some time you may have tried to keep a pole or a broom 
balanced on your hand, and you may have been quite good at it. If not, have a try 
(preferably somewhere safe where things will not get broken) and you will find 
that it is quite a tricky control problem. This problem, also called the trolley and 
pole or the inverted pendulum, has been widely used to investigate intelligent 
control strategies. It has the advantage that the system can be controlled using 
classical linear methods, and this can be used as a benchmark for intelligent 
techniques. 

After some in-depth study of intelligent control applied to the broom-balancer, 
the more general problems of hierarchical control will be discussed. 

Figure 9.1 shows the basic structure of the broom-balancer. A trolley runs on a 
track, like a railway, and the broom handle (or pole) is hinged to the trolley (or 
cart), pivoting in the same plane. The aim is to keep the broom balanced for as 
long as possible without moving the trolley beyond the ends of the track. 

A similar problem arose when people first tried to launch rockets. After taking 
off, a rocket should be pointing upwards. If it is tilted over at an angle it will tend 
to rotate due to gravity, yielding a problem rather like trying to balance a broom. 
This led engineers to the solution of placing horizontal thrusters at the base of the 
rocket to supply horizontal forces to compensate for this rotation and keep the 
rocket pointing upwards. 

In the two-dimensional problem of the broom-balancer, the trolley is moved by 
applying a horizontal force in either direction- left or fight in Figure 9.1. When 
the broom starts to fall to the fight, the trolley is moved to the fight and the broom 
should move back to a vertical position. One more feature is added to the system, 
namely that the track has end-stops, so that not only has the broom got to be 
balanced but the trolley must stay near the centre of the track. (In a rocket this 
final limitation is not so critical.) 
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The objective is to keep the broom uptight and the trolley in the middle of the 
track. In other words, the angle 0 must be kept as close as possible to zero and the 
position x from a fixed reference point must be kept as close as possible to zero. It 
will be assumed that the system has sensors which allow it to measure 0 and x 
directly. 

This system has been modelled mathematically. Barto et al. (1983) derived the 
following formulae, relating the angle 0 and position x to the angular velocity of 
the broom about its pivot, 0, the angular acceleration of the broom about its pivot, 
t~, the velocity of the trolley, :t, and the acceleration of the trolley, Y. 

Note that in the following analysis we use the dot notation for derivatives with 
respect to time, t. For example, velocity 2 is equivalent to dx/dt or v, and angular 
acceleration 0 is equivalent to d20/dt 2. 

"4[ Figure9.1 
Broom-balancer. 
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Model of the broom-balancer 
F + ml [ 0 2 sin 0 - Ocos O] - / . t  c sgn(.~) 

. o  

x - -  M + m  

gs in0  + c ~  -F-mlO2sinO+M+m/'tcsgn(~t)] -~0ml 

O= 
z E4 mc~176 

where 

0 is the angle of the broom, measured clockwise from the vertical (rad) 

0 is the angular velocity (rad s -1) 

O" is the angular acceleration (rad s -2) 

x is the horizontal position of the trolley, measured to the fight from a reference 
point (m) 

~t is the velocity (m s -1) 

X is the acceleration (m s -2) 

~ is a constant representing the frictional force between the broom and the 
trolley (= 0.000002) 

/~c is a constant representing the frictional force between the trolley and the track 
(=0.0005) 
M is the mass of the trolley (= 1.0 kg) 

m is the mass of the broom (= 0.1 kg) 

l is the half-length of the broom (the length of the broom is 21 = 1 m) 

F is the applied force (N) 

g is the acceleration due to gravity (m s -2) 

and sgn(:t) is a function which takes the following values" 

+ 1 when :t > 0, 

-1  when :t < 0, and 

0 when ~t = 0. 

Although it may be possible to measure 0and ~t directly, the accelerations depend 
on the forces applied to the system. These forces are gravity, friction, and any 
control force F that is applied to the trolley. 

The formulae in this broom-balancer model allow the unknown accelerations to 
be calculated if one knows the values of position and velocity. The difficulty with 
this system is that it is inherently unstable, and the model is non-linear. The 
obvious complexity means that the model needs to be simplified if classical linear 
control is to be attempted, and this will be done in the next section. 
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CHAPTER 9: INTELLIGENT CONTROL 

To illustrate how a non-linear model of a system can be approximated by a linear 
model, the formulae for the broom-balancer in the previous section can be 
simplified by making the following assumptions: 

1 The broom is always nearly vertical. This means that 0will be less than 5 ~ so 
that sin 0 is approximately 0 and cos 0 is almost 1. 

2 Any terms with higher powers of 0 ,  such as 02, will be small, and can be 
neglected. 

3 Friction is negligible, so Pc = 0 and pp = 0. 

4 The mass of the broom is negligible, so m = 0. 

The model then reduces to two relatively simple linear differential equations: 

F 
J~ = ~ (9.1) 

o=3gO 3F __ 3 (MgO-  F) (9.2) 
41 4Ml 4Ml 

The next step uses Laplace transforms. If you are not familiar with the mathemat- 
ics of Laplace transforms, it does not matter. In the following, just remember that 
in deriving transfer functions 0 is replaced by tg, 6)is replaced by s O, and 0" is 
replaced by s26), where s is the Laplace operator. A transfer function can be 
derived from equation (9.2) as follows: 

6~ 

F 

-3 

4Ml 

s 2 3g 
41 

After substituting, for example, the values g = 9.8, l = 0.5, and M= 1, we get: 

t9 -1.5 
ff = s 2 - 14.7 (9.3) 

This is the transfer function of the system, which shows the relationship between 
the output, 69, and the input, F, in terms of Laplace transforms. It tells us 
mathematically what happens to 0 when a force F is applied. 

The first thing to note is the minus sign in the numerator of equation (9.3). This 
indicates that when the force applied is negative the angle, 0, becomes more 
positive and vice versa. This is intuitively what you would expect, since a positive 
force pushes the trolley to the fight, which causes the broom to fall to the left. 
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The second thing to note is that since the transfer function is second order it has 
two poles in the s-plane. These are found by equating the denominator to zero: 

s e -  14.7 = 0 

so that 

s = + 3.83 

The fact that one of these poles lies in the fight half of the s-plane indicates that the 
system is unstable, as explained in Chapter 8 of Volume 1. 

9.3.1 Linear controller 

controller broom and trolley 

s 2 -14.7 

l . 

Figure 9.2 shows a block diagram of a feedback control system with the linear 
model of the broom-balancer that we have just derived. The input, 0 d, is the 
desired angular position, which equals 0 since the aim is to keep the broom 
vertical. The value of the force that moves the trolley is produced as the output of 
the controller. Suppose the controller is simply proportional to the error (0d- 0) 
with a ga in-K,  so that 

F = -K(Oa - O) and F = -K(Od - O) 

Then by equation (9.3) the closed-loop transfer function can be found to be: 

69 1.5K 

Od s 2 -  14.7 + 1.5K 

This closed-loop transfer function shows that the closed-loop poles can be 
positioned by altering the value of K. A negative gain is used to counteract the 
previously mentioned minus sign in the transfer function. This has the effect 
that when the broom is falling to the left, the angle is negative, and now the 
force applied to counter this is also negative, which means the trolley gets 
pushed to the left. This proportional controller, however, is unable to stabilize 
the system. 

A popular method used by control engineers to overcome the limitations of 
proportional control by itself is to include derivative action in the controller, i.e. 
to design what is called a proportional plus derivative (P+D) controller. This 
helps to balance the broom by producing a force that is proportional to the 
angular velocity of the broom as well as its angle. With proportional control 

0 

Figure 9.2 
Closed.loop control of the 
broom-balancer. 
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alone, the force applied depended on the angle, but it is clear that when the 
broom is falling quickly, the force applied has to be larger to return it to a steady 
uptight position. 

The effect of introducing derivative action can be seen by examining the transfer 
function. A P+D controller has the form 

F 
= -Kp(1 + TdS) 

The termE is the Laplace transform of the error, e, between the desired output and 
the actual output, i.e. e = 0d - 0. The other two terms, Kp and T d, are the gain and 
derivative time constant respectively. Substituting F = -EKp(1 + TdS) = 
- ( O o -  O)Kp(1 + TdS) into equation (9.3) gives the following closed-loop transfer 
function: 

O 1.5Kp(1 + TdS) 

Od s2+ 1.5KpTdS- 14.7 +l.5Kp 

With this transfer function there are many possible ways to determine the position 
of the closed-loop poles. For example, if the value of T d is set to 0.26 the resulting 
transfer function can be simplified, using a process called pole-zero cancellation, 
to 

O 0.39Kp 

Oo s - 3 . 8 3  + 0.39Kp 

We can now position the remaining pole anywhere along the horizontal axis. For 
example, if we make Kp equal to 40, the pole is at 

s = -11.77 

In theory we have produced a good d e s i g n -  the broom can be balanced. In 
practice, however, the system fails. When the system is steady there will be a 
small steady-state error in the angle of the broom. Because of this error the trolley 
accelerates in one or other direction and hits the end of the track after a short 
period of time. This behaviour is plotted in Figure 9.3. The system starts with the 
trolley at x = -0.5 m and the broom at an angle of 0= 0.1 rad. The broom reaches 
the vertical within 2 seconds, but the trolley accelerates until it hits the end of the 
track at x = 2.0 m after 6.72 seconds. 
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Figure 9.3 
Graphs of 0 and x against 
time for the broom-balancet 
with P+D control. 

We can see why this happens by going back to the original linear equations. 

Equation (9.2) was: 

0~ 
3gO 3F 

41 4Ml 

If we assume that the broom can be balanced, then when the system reaches a 

steady state the broom will not be moving, and any derivatives of 0 will be zero. 

Also, when the broom is balanced the angle 0 is not quite zero due to the steady- 

state error but is a constant, denoted by 0ss. Therefore, 

3g0ss 3F 

41 4Ml 

and F = Mg Oss 
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This means that the force being applied is also constant, which will be denoted by 

Fss: 

Fss = M g O s s  

Substituting into equation (9.1): 

fss 
M 

This shows the acceleration of the trolley when a force, Fss, is applied. As the 
force is constant the trolley has a constant acceleration, which means that the 
trolley will move and finally collide with the end of the track. For rocket 
launchers, this solution may be adequate, as the rocket can move horizontally 
indefinitely. For this reason the P+D solution has been used for rockets. 

It is possible to design a more complicated controller that takes into account the 
interaction between the trolley and the broom. There isn't space in this book to go 
into this, but we can show a modification that corrects for the interaction. The 
problem appears to be that the broom is balanced but no account is taken of the 
position of the trolley. If the input to the controller, which is currently the error 
between the desired angle and the actual angle, was to include a small fraction of 
the position of the trolley, even when the broom is vertical there would be some 
error unless the trolley was in the centre of the track. One possibility is therefore 
to add a fraction of the velocity and position of the trolley. 

Using the P+D model, F = - K p ( 1  + Tds)E, and substituting the parameters 

T d = 0.26 seconds and Kp = 40 gives 

F = - 4 0 ( 1  + 0.26s)E 

and in Laplace form 

F = - 1 0 . 4 E s  - 40E 

On converting this, F becomes F, E s  becomes 0, and E becomes e. Therefore we 
get 

F = - 10.40 - 40e 

But since 0 a = 0, e = 0 a - 0 = -0 ,  it follows that 

F = 10.40 + 400 (9.4) 

The effect of x can be introduced in the following way: 

F =  1 0 . 4 0 + 4 0 0 + : t + x  (9.5) 

The small contribution of the position and velocity is just enough to ensure that 
the trolley stays in the middle of the track. Initially the term 2 + x contributes very 
little to the value of the force. However, when the broom has reached its steady 
state the value of 10.40 + 400 is small, so that the terms 2 and x now have an 
influence. The system now reaches a steady state when all of the terms are zero, 
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which means that the broom is uptight and stationary and the trolley is in the 
centre of the track and stationary. This behaviour is shown in Figure 9.4, where 
initially x = -0.5 m and 0= 0.1 rad as before. The broom takes a bit longer to settle 
in a vertical position, but the trolley is prevented from hitting the end of the track, 
so that the system is successfully controlled. 
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This solution works by good fortune rather than intentional design. Generally it 
would not be acceptable to simply add new terms to the controller without 
analysing their effect on the stability of the system at the very least. 

~il Figure 9.4 
Graphs of 0 and x against 
time with a modified P+D 
controller. 

9.3.2 Non-linear and bang-bang control 
A further modification that is sometimes made by engineers is to make the 
controller non-linear. This may appear to be quite contrary to what we said earlier 
about trying to keep the system linear, but there are good reasons for doing it. 

The non-linearity that is introduced is a hard-limiter. This gives an output of 
+Frnax when its input is positive and an output of-Fma x when its input is negative. 
It is introduced into the system as part of the controller, so that the controller 
calculates its output using the P+D equation, but that output is then passed 
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through the hard-limiter. The resulting controller produces what is called bang- 
bang control. It is called 'bang-bang' because the controller only has two 
possible output values, which are as hard as possible in one direction or the other. 
In some controllers which produce a mechanical force on the output you can hear 
the system banging as it switches from one extreme to the other. 

According to Pontryagin, a Russian control engineer, under certain conditions 
bang-bang control produces optimal control. This is known as Pontryagin's 
maximum principle. Now there are a variety of different meanings to optimal 
control, and the one that is meant here is minimum-time optimal. This means that 
if you want a system to go from state A to state B in the shortest time, this can be 
achieved using bang-bang control. 

An example of this is driving a car. The fastest way of getting from point A to 
point B with the car at rest at both points is to accelerate away from A as hard as 
possible and then to brake as hard as possible to come to rest at B. Figure 9.5 
shows a graph of velocity against time when this is done. The area under the graph 
equals the distance travelled. 

The penalties paid for this control strategy are that the accelerator or the brakes 
are used constantly, so there is a high fuel consumption, brake linings don't last 
long and there is severe mechanical stress placed on the system. But, barring 
accidents, you reach the destination more quickly than using any other strategy. 

The constraints under which bang-bang control is time-optimal are that the model 
of the system being controlled is linear, where the controller is linear prior to 
passing through a hard-limiter, and where only the controller output is con- 
strained by having, say, a maximum value. The broom-balancer fits these 
constraints. It can approximate to a linear model, and there is almost certainly an 
upper limit to the force that can be applied. So, if we would like the broom- 
balancer to be time-optimal, which means that we want the broom to be balanced 
as quickly as possible, bang-bang control seems to be a good choice. However, 
the way that we've arrived at the parameter settings is largely by good luck. 
Methods do exist that enable designers to find a bang-bang solution for a limited 
number of problems, but usually it is very difficult. Figure 9.6 shows graphs of 
the broom-balancer with bang-bang control, plotted against time. The system 

Figure 9.5 
Velocity profile of a car 
under bang-bang control. 
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again starts with x =-0 .5  m and 0= 0.1 rad. Here 0 reaches the vertical position 
almost straight away, showing the time-optimal behaviour. The position of the 
trolley, which isn't the variable that is optimally controlled, eventually reaches 
the centre of the track but takes over a minute to get there. 

~l Figure 9.6 
Graphs of 0 and x against 
time for broom-balancer 
with bang-bang control. 

9.3.3 Summary of classical control 
We have seen how classical control makes use of differential equations to model a 
system. In many cases it is possible to simplify these differential equations to make 
them linear, and then apply fairly standard design techniques to produce a feedback 
system with the desired characteristics. In the case of the broom-balancer this was 
possible, which is why we chose this example to illustrate the methods. 

We have also seen how the interaction between the broom and the trolley could be 
controlled by adding terms to the controller. The method used in this chapter was 
rather ad hoc, but produced the desired result. Then finally, Pontryagin's maxi- 
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mum principle was introduced to show how the response of the system could be 
made time-optimal by including a hard-limiter and thus producing bang-bang 
control. 

In the following sections we shall look at some of the more recent developments 
in the field of intelligent control which can also be applied to systems which are 
more complex than the broom-balancer. We will continue to apply them to the 
broom-balancer for comparison. 

9.4.1 Single neuron 
In the previous sections we have described the broom-balancer and shown how 
classical control theory can be used to derive solutions to the problem. To do this 
we used Barto et al.'s mathematical model of the system given in Section 9.2. But 
what if no such model existed? For the remainder of this chapter we will assume 
that no model is available in the form of a differential equation, and show how the 
AI techniques explained elsewhere in this book can be used to develop new 
control strategies. 

In this section we will show how a neural network can be used to control a system. 
The advantage of this approach is that it is not necessary to have a model of the 
system in the form of a differential equation, since the network learns how to 
control the system. 

In the case of the broom-balancer the inputs to the network will be the data which 
describe the state of the broom. These could include the position and velocity of 
the trolley, and the angle and angular velocity of the broom. So it is assumed that 
the system has, at least, a stream of data (x n Or) which give the values of position 
and the angle of the broom at time t. 

Suppose the samples arrive every T seconds. Then the velocity at time t is 
approximated by (xt-xt_l)/T, and the angular velocity is approximated by 
(0 t -  Ot_l)/T. Given these inputs, the desired output of the network is the force 
which restores x to zero and 0 to zero. 

The training data for the network will usually have input values x t and 0t, and the 
calculated values (xt-xt_l) /T and (0 t -  Ot_l)/T, together with the force that was 
applied. The output of the network will depend on the kind of transfer function the 
network will learn, as will be discussed in subsequent sections. The training data 
may come from observing a person controlling the system, or they may come 
from simulations in which the results of many trials are recorded. 
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The expression for the P+D controller was effectively a weighted sum of the 
angular velocity, angle, velocity and position. With bang-bang control, the 
controller could be described as follows: 

output = +Fma x when W 10 + W20 + W3.~ + W4X >i 0 

output = -Fma x when wlO + w20 + w32 + w4x < 0 

You should recognize this from Chapter 4 on neural networks as being in the form 
of a neuron where the neuron fires (+ 1 output) when the weighted sum of its input 
is greater than some threshold (in this case 0), otherwise it doesn't fire (-1 out- 
put). This implies that we can use a single neuron to control the broom-balancer. 
This was precisely what Bernard Widrow thought, and went on to demonstrate it 
with his ADALINE network (Widrow and Smith, 1964). 

The main difficulty of this solution is the parameter setting - jus t  how do we get 
the appropriate values? Widrow suggested training with a teacher in which a 
human tries to control the trolley. The ADALINE monitors the system outputs 
(such as the angle of the broom and position of the trolley) and the corresponding 
control action taken by the human. By pairing the system outputs with the 
controller output a training set can be constructed where the present set of system 
outputs are the inputs to the ADALINE, and the controller output is the desired 
output of the ADALINE. 

Clearly then, the best that this solution will ever achieve is to be able to learn to 
control a system as well as an existing controller (human or otherwise). The only 
situation where this is advantageous is where a system is currently controlled 
manually and has to be automated, but little is known about the system. The only 
way to automate it is to mimic the human controller, and the ADALINE does just 
this. 

A major handicap of the single neuron is its inability to emulate all input-output 
relationships. This means that it might not be able to mimic a controller over the 
full range of circumstances. The multilayerperceptron was shown in Chapter 4 to 
have an advantage over the ADALINE, which is that it can mimic any consistent 
input-output relationship. In principle, the multilayer perceptron can be used to 
emulate any existing controller. 

9.4.2 Multilayer network 
The property of a multilayer network that is most interesting is its ability to 
emulate any consistent input-output relationship. In a linear system this relation- 
ship is the transfer function, and the goal in many control strategies is to find an 
approximation to the inverse of the system's transfer function. 

For example, in feedback control such as that shown in Figure 9.7 the closed-loop 
transfer function of a system is 

Y CG 

X 1 + CGH 
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where G is the transfer function of the system being controlled, H is the transfer 
function of the feedback path, C is the transfer function of the controller, Yis the 
system output and X is the system input. 

X 

controller plant 

H 

G ....... 

feedback 

Ideally, designers would like the transfer function Y/X to equal 1, so that the 
system responds immediately to any change in input with no error between input 
and output. For example, with the broom-balancer one wants to input values of 
x = 0 and 0 = 0, and for the system to hold these values. Any deviation from this is 
fed back through H. 

2 
Making Y/X = 1 can be achieved, for example, if C = ~ and H = 0.5: 

2G 

Y G 2 

X =  2G x 0.5 = 1 + 1 = 1 
1 +  

G 

This shows that from a control engineer's point of view, having the transfer 
function 1/G or G -1 (called the inverse of G) would be very useful. So as a general 
principle, if the inverse of G can be approximated, good control can be achieved 
using feedback. Since a multilayered neural network can approximate any 
consistent relationship, it should be able to train to G -1. 

There are a number of ways that this can be done, but we will look at just one, 
called the generalized learning architecture, shown in Figure 9.8. 

Figure 9. 7 
Generalized linear feedback 
control system. 
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plant 
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A set of input-output training data is produced by sending inputs,x, into the system 
(plant) and recording those values of x with their corresponding output values, y. 
By setting the inputs ofthe neural network to y and making the desired outputx, the 
network is trained to do the opposite of G, and the network will approximate the 
inverse G -1. Once it has trained it effectively represents the inverse transfer 
function of the system being controlled, and it can be used as part of a controller. 

One problem with this method is in deciding how to select the training data. The 
inputs and outputs should be representative of the states that the system will enter, 
but it can be difficult to know in advance how to do this. 

For the broom-balancer, the inputs to the plant would be the force, F t, applied to 
the trolley. The output would be the values of xt+ 1 and Or+ 1, and possibly their 
derivatives. For the neural network, the inputs would be xt§ 1 and Or+ 1, and the 
desired output would be F t . The actual output of the neural network, let us call it 
G t, can then be compared to the desired value and an error calculated, shown as E 
in Figure 9.8. The error can be used to adjust the weights in the network using 
back-propagation, as indicated by the diagonal arrow through the network. 

~il Figure9.8 
Generalized learning 
architecture. 

9.4.3 Recurrent networks 
A r e c u r r e n t  n e t w o r k  is one where feedback is allowed. A special case of a 
recurrent network is the f u l l y - c o n n e c t e d  one, where the output of each neuron is 
connected to the input of every other neuron and its own input. Figure 9.9 shows a 
fully-connected recurrent network with three neurons and two inputs. 
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x 1 x 2 

An important feature of recurrent networks is that it becomes unnecessary to 
enter the terms .t and 0 explicitly. This is because, for example, at any time the 
system has both xt_ 1 and x t as inputs and so implicitly the term x t - x t _  ~ can enter 
the system at time t..t is approximated by ( x t - x t _ l ) / T ,  where T is the (constant) 
time interval between samples. In principle, the network weights will adjust the 

value of ( x t - x t _  1) as appropriate, and it can be assumed that ( x t - x t _ l ) / T  = 2 is 
implicitly in the system. By a similar argument, 0is also implicitly in the system. 

This sort of network is of particular interest because it is comparable with the final 
P+D controller that we used earlier. The expression for the controller output of 
equation (9.5) was: 

F =  1 0 . 4 0 + 4 0 0 + . t + x  

To convert this to a discrete approximation, the derivatives .t and 0 are approxi- 
mated by the difference between the current value and the previous value divided 
by the sampling period, T: 

10.4(0 k - Ok_l) X k -  Xk_ 1 
Fk = T + 400k + T + xk 

Let's assume for illustration that T = 0.02 seconds, then: 

F k = 520(0 k - Ok_l) + 400 k + 50(X k - X k _ l )  at" X k 

so that 

F k = 5600 k - 5200k_ 1 + 51x k - 50xk_ 1 

Figure9.9 
Fully-connected recurrent 
neural network. 
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Here we have an expression containing the present values of angle and posi- 
tion and the previous values of angle and position. We therefore only have two 
state variables,  x and 0, although they also have to be stored for one sampling 
period. 

Figure 9.10 shows a network which produces the value of F k according to the 
expression above. It requires three neurons and has the interesting feature that 
most of the weights are forced to be zero by the absence of a connection. The final 
output neuron can have a linear output or could be hard-limited to produce bang- 
bang control. 

G 

q~ 

o~ x k 

One aspect of the network which differs from conventional networks is that the 
output of each neuron is semi- l inear,  which means that it is only linear over a 
range of values. In theory, when the network is controlling the system correctly, 
there is no reason why the outputs cannot be linear. However, during training the 
weights will not be ideal and the output can grow because of positive feedback. It 
is therefore necessary to limit the output as shown in Figure 9.11. The exact value 
at which the output flattens doesn't matter since it is only a safety measure and not 
part of the control action. 

~1 Figure 9.10 
Recurrent network emulation 
of the P+D controller of 
equation (9.5). 

output,  y 

Ymax 

slope -- 1 

input 

--Ymax 
Figure 9.11 

Semi-linear output function 
limited by -Ymax and +Ymax- 
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Here we have calculated the network weights using values from an earlier 
section. In principle, it should be possible to build and train a network which 
provides appropriate control. However, there are practical difficulties due to the 
way the problem has been defined. First, it is difficult if not impossible to train a 
network by back-propagation because of the semi-linear output functions (and 
possibly a hard limiter on the output neuron). Also, back-propagation requires an 
appropriate error function to be defined. The desired behaviour is to balance the 
broom as long as possible, but this consideration has been omitted, which makes 
the network behaviour ill-defined. 

An alternative is to use the time-to-failure as a measurement of how well the 
network is performing, where failure is defined as the broom falling over or the 
trolley hitting the end-stops. In the next section genetic algorithms will be used to 
find the weights using such a measurement. 

9.5 Genetic algorithms 

The back-propagation technique for training network weights described in 
Chapter 4 on Neural networks assumed that the network was a multilayer 
perceptron. Recurrent networks which have feedback from higher levels to lower 
levels do not have this architecture, and so back propagation cannot be used as a 
training method. 

Finding the weights in the recurrent neural network can be viewed as a search 
problem, and the characteristics of genetic algorithms can be used to find the 
weights for the broom balancing problem. Genetic algorithms were introduced as 
a search technique in Chapter 3, and in Chapter 5 on Scheduling they were 
illustrated in an application to the travelling salesman problem. This section 
illustrates how the techniques described in this book may be combined to find a 
solution to control problems. 

Let each chromosome consist of all the weights for all the neurons. At first the 
weights are chosen randomly, and the system is run until the broom falls over or 
the end of the track is reached. The time-to-failure is recorded and its reciprocal 
used as the fitness function. After all the members of the population have been 
tried, a new population is created by breeding from the old population. 

Breeding consists of an elitist strategy with single-point crossover and mutation. 
Elitism means that a fraction of the population that consists of the fittest 
individuals is preserved from one generation to the next (we used 10% in our 
experiments). Single-point crossover consists of splitting the two parent genes at 
a random point and swapping the genetic material to produce two different 
offspring (as described in Section 3.3.5 of Chapter 3). 
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For example, in Figure 9.9 there are three neurons each with five inputs. Each 
chromosome therefore has 15 entries. Let the two chromosomes be 

(Wl, w2, w3, w4, w5, w6, w7, w8, w9, Wl0, Wll, w12, w13, w14, w15) 

and 

(W1 l, W2' , W3 I, W4 t, W5 ~, W6 ~, W7' , W8 l, W9 I, W10 w, Wll t, W12 I, W13 w, W14 ~, W15 I) 

First the crossover point is found at random; let us suppose the crossover point is 
3. Then all the genetic material to the left of point 3 will be swapped, resulting in 

(W1, W2, W3 ~, W4 w, W5 ~, W6' , W7 w, W8' , W9 t, Wl0 t, Wll ~, W12 T, W13', W14 ~, W15 ~) 

and 

(w1 r, w2 f, w 3, w4, w 5, w6, w7, w8, w9, w10, Wll, w12, w13, w14, w15) 

The weights are all real numbers, and if crossover alone was used the weights 
would simply be shuffled about. Mutation is therefore necessary to alter the 
values of the weights. The form of mutation used in this application is called real 
number creep, and consists of changing the value of a weight by some random 
value of between-10% and + 10% of the weight. If a small population is used the 
choice of weights is limited, so a high mutation rate is needed, including the 
possibility of a mutation rate of 1.0 in which all values are mutated during 
breeding. 

The output of the controller is hard-limited, so a value of +Fma x is produced. The 
exact value of Fmax is set in advance, in which case the genetic algorithm finds the 
best set of weights for that pre-selected value of Fma x. Alternatively, the value of 
Fma x could be included in the chromosome and would then be subject to 
crossover and mutation itself. 

For the broom-balancing problem we found that the genetic algorithm quickly 
converged to a solution in which some members of the population could balance 
the broom for hundreds of seconds. In our attempts, a working solution was found 
in less than 100 generations. 

In this example genetic algorithms were used as a method to train a recurrent 
network, but one might ask if this technique could be applied to training neural 
networks in general. This depends on the nature of the problem and the search 
space. Genetic algorithms provide a powerful search mechanism, but their use 
might be considered to be a sledgehammer to crack a nut for the problem of 
training multilayer perceptrons. Since back propagation is designed for training 
multilayer perceptrons, in many instances it will converge more quickly to a 
solution when training than genetic algorithms. However, in principle genetic 
algorithms can be used to train multilayer perceptrons and, like simulated 
annealing, they offer the possibility of exploring more of the search space 
because they do not just use hill climbing or gradient descent. 
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Although the P+D controller gives a better solution than any we have managed to 
generate from scratch using a genetic algorithm, these experiments show that 
intelligent control techniques can produce working solutions. The P+D control- 
ler has been used as a benchmark reference in this chapter because it can be 
modelled by a formula. However, many control problems do not start with a 
formula and sometimes it is not practical to try to find a formula. In such systems 
intelligent control may provide the only way of controlling them. The P+D 
solution is better because the broom gets to the uptight position more quickly and 
then doesn't 'wobble about' very much. The solutions found with the genetic 
algorithm are much less steady, and never really settle down. However, they all 
balance the broom indefinitely. This should be expected as the fitness function 
used doesn't take into account any performance criteria other than the length of 
time that the broom is balanced. A more sophisticated fitness function that took 
into account values such as the time to settle would produce better solutions in 
this respect. 

Recurrent networks provide a sufficiently flexible architecture to emulate many 
conventional control strategies, and to create some new ones. Finding the weights 
using a genetic algorithm seems to be one of the best ways to adjust the network to 
give the best performance. 

Earlier we showed that the problem of controlling the broom-balancer could be 
solved using a P+D controller with a hard-limiter on the output. The reasoning 
behind this was that we could use an approximate linear model of the broom- 
balancer to design the P+D controller, but then we wanted the advantage of bang- 
bang control to speed up the response. In effect, the controller is obeying a rule of 
the form: 

/f (10.40 + 400 + ~t + x) i> 0 

Then output is +Fma x 

Else output is -Fma x 

As stated, this rule is Boolean with outputs 'Yes' (apply +Fma x) and 'No' (apply 

-Fmax). 

The values used in the antecedent predicates of the If statement may be inaccurate 
due to measurement error, and perhaps more importantly, the model used was 
only an approximation to the actual system. This means that our confidence in the 
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control action is not 100%, and that having such a dramatic switch from +Fmax to 
-Fma x may be bad. As it stands, there will be some situations where the value of 

o 

(10.40 + 400+ :t + x) is slightly greater than 0 which causes a force of +Fma x 

to be produced. If one of the variables changes by a tiny amount such that 
. 

(10.40 + 400+ :t + x) becomes slightly less than 0, the force suddenly switches to 
-Fma x. Sensitivity to such small changes is not desirable when there are so many 
inaccuracies in the model and the measurements. 

A way around this is to use fuzzy control to make that transition more fuzzy by 
smoothing the control action from one side to the other. One can still have bang- 
bang control, but the decision about the output of the controller can be less '  crisp'. 

Clearly, if the model is accurate, then fuzzy control is not going to improve 
matters. But in situations where the model is more complex, or where the model 
perhaps changes slightly over time, or where the states are difficult to measure 
accurately, fuzzy control is useful. 

Fuzzy logic was described in Chapter 6 on Reasoning. Essentially, we describe 
the system linguistically, using phrases like 'the broom is falling to the left' rather 
than having an accurate measurement of the states. These phrases refer to the 
fuzzy sets that describe the system, and at any time the outputs are measured and 
used to calculate the set memberships of these fuzzy sets. The main difference 
between fuzzy sets and the more usual 'crisp' sets is that a variable can be a 
member of more than one set, with a degree of membership that is a figure 
between 0 and 1. In crisp sets, a variable can only be a member of one set and then 
it has a membership of 1 of that set; all other crisp sets have a membership of 0. 

Figure 9.12 shows an example of the membership functions, 2", of the four state 
variables, 0, 0, x, :t and the output force, F. The membership functions were 
selected to be triangular and overlapping in this way so that the total confidence at 
any point is 1~ There are many more possibilities for the membership functions, 
but this is one of the simplest. All the variables are divided into NEGATIVE, SMALL 

or POSITIVE. Again they could be further divided, but these three divisions are the 
simplest. Note that the membership functions for the output variable, the force F, 
are truncated as there is a maximum value for the force. 

In any state, the membership of each set is found. As we've already said, a 
variable can belong to more than one set. The output is also defined by member- 
ship of sets as shown. These sets, together with a set of rules, are all that are 
needed. The rules are in the form: 

I f  0 is POSITIVE 

Then force is POSITIVE 

I f  0 is NEGATIVE 

Then force is NEGATIVE 
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This rule is found by observing and qualitatively understanding the system rather 
than by examining the differential equation model. Intuitively, if the broom is 
accelerating to the fight (positive), then to slow it down you have to move the 
trolley to the fight, which is done by applying a positive force. So applying this 
rule controls the velocity of the broom. Similar rules can be found for controlling 
the angle of the broom and the velocity and position of the trolley. 

In the following it is assumed that values of x, :t,  0 and 0 are available to the 
system. In practice this means thatx and 0are available from the sensors, and the.t 
and 0 are calculated from them as discussed previously. Given these data, the 
associated fuzzy set memberships are calculated using the functions given in 
Figure 9.12. These fuzzy set membership values are then available for testing the 
rules. 
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~[ Figure 9.12 
Membership functions of the 
state variables and the 
output force. 
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We started from the following rules, assuming a first-come, first-served conflict 
resolution strategy: 

If 0 is POSITIVE 

Then force is POSITIVE 
I f  0 is NEGATIVE 
Then force is NEGATIVE 

/ f  0 is POSITIVE 
Then force is POSITIVE 
If 0 is NEGATIVE 

Then force is NEGATIVE 

I f  • is POSITIVE 
Then force is POSITIVE 
If J~ is NEGATIVE 

Then force is NEGATIVE 
I f  x is POSITIVE 
Then force is POSITIVE 

I f  x is NEGATIVE 
Then force is NEGATIVE 
Else force is SMALL 

It is important to notice the order in which the rules are tested. The angular 
velocity 0is tested first, and if it is POSITtVE or NEGATIVE a force is applied. If the 
angular velocity of the broom is SMALL only then will any of the other rules be 
examined. What this means is that the rules have been prioritized. The angular 
velocity is controlled first. When this is SMALL, the angle itself is controlled. 
When this is SMALL the velocity of the trolley is controlled, and finally when this 
is SMALL the position of the trolley is controlled. 

A decision has to be made about the reference values for the variables so that the 
terms NEGATIVE, POSITIVE and SMALL can be defined. These have to be guessed, 
but guided by some knowledge of the range of system parameters. For example, 
the reference angle of the broom is chosen to be 0.1 radians or about 6 ~ and the 
reference position of the trolley is set to 0.1 m. These figures suggest that we want 
the broom-balancer to end up very close to the centre of the track with the broom 
almost vertical. The reference values for the angular velocity of the broom and the 
velocity of the trolley are chosen to be 1 rads -1 (about 60 ~ s -1) and 1 ms  -1 
respectively. In all cases the reference values are symmetrical, which means, for 
example, that the variable x is NEGATIVE if it is less than -1 m, POSITIVE if it is 
greater than 1 m, and SMALL if it is between these values. 

The controller works as follows. First, calculate the fuzzy membership of each of 
the input sets. We will use the letters P for POSITIVE, S for SMALL and N for 
NEGATIVE. 

In Figure 9.13, the current state of the system is that 0= 8 ~ 0 = 53 ~ s -1 , x = 1.2 m 
and .t = -0 .8  ms  -1, so the 12 membership values would be" 

Z ~  = 0.0 Z0s = 0.1 Z0e = 0.9 

ZON = 0.0 Zos = 0.0 Z ~  = 1.0 

XXN -- 0.8 X2S = 0.2 ZxP = 0.0 

)(xN = 0 .0  /](xS = 0 . 0  ,~xP = 1.0 
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The confidence in the membership of the output set is found by converting the 
rules that we already have into a fuzzy form. The first step is to rearrange the rules 

into a logical form. This is done by looking at what combinations of rules produce 

a force of POSITIVE (P), NEGATIVE (N) and SMALL (S) in turn. 

F = P  

I f  0 = P  

OR 0 = N A N D  0 = P  

OR 0= N AND 0= N AND.r = P 

OR 0 = N A N D  0 = N A N D . t = N A N D x = P  

Then F = P 

F = N  

I f  0 = N  

OR 0= PAND 0 = N  

OR 0= PAND 0= PAND .t = N 

OR 0= PAND 0= PAND 5c = PANDx = N 

Then F = N 

F = S  

/f 

Then 

0 = S  AND 0 = S  AND • = S AND x = S 

F = S  

You should recall that the fuzzy equivalent of AND is the MIN operator, and that the 

fuzzy equivalent of OR is the MAX operator. We can therefore convert the rules 

into a fuzzy form as follows: 

ZFP = MAX(~(~ ~ MIN(d~I~N , ZOP), MIN(~(~, ZON, Z:~P), MIN(d~0N, ZON, X~N, ZxP)) 

/~'FN = MAXQ~, MINQ~01 ~ ,~fi~q'), MINQ~t~Fb X0P, ~kN), MIN(,~0P~ /~'0P, X~P, XxN)) 

ZFS = MIN(~0S' ZOS, Z.~S, ZxS) 
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Using the same membership values as before, in Figure 9.12, and applying the 
fuzzy rules, the membership of the force fuzzy sets can be calculated as before: 

Z ~  = 0.0 Z0s = 0.1 Z ~  = 0.9 

ZON = 0.0 Zos = 0.0 Zor, = 1.0 

ZXN = 0.8 Zxs = 0.2 ZxP = 0.0 

Z~N = 0.0 Z~s = 0.0 Z~P = 1.0 

ZFP = MAX(0.9, MIN(0.0, 1.0), MIN(0.0, 0.0, 0.0), MIN(0.0, 0.0, 0.8, 1.0)) = 0.9 

2'FN = MAX(0.0, MIN(0.9, 0.0), MIN(0.9, 1.0, 0.8), MIN(0.9, 1.0, 0.0, 0.0)) = 0.8 

ZFS = MIN(0.1, 0.0, 0.2, 0.0) = 0.0 

The membership values are shown in Figure 9.14 as shaded areas. 

Where sets overlap the maximum membership value is chosen. The force is 
finally calculated by finding the 'centre of gravity' of the shaded areas (this 
method of defuzzification is slightly different to that given in Chapter 6). The 
centre of gravity is the point at which the total shaded area to its left equals the 
total shaded area to its fight. In Figure 9.15 the shaded area looks like Figure 9.14, 
but the area has been quantized into forces 1 newton apart. 

The resulting force will be that at which the difference between the sum of the 
samples to the left and the sum of samples to the fight is a minimum. 

Figure 9.14 
Membership values of the 
output variable, F. 

Figure 9.15 
Defuzzification of the output. 
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The  fo rmula  used  here  for f inding the centre of  area, Fc, is" 

n 

Xmax(Fi) �9 F i 

i=m (9.6) f c = 
n 

Xmax(Fi) 
i=m 

where  F i is the centre of  the ith discrete interval,  in the range  m to n, and Zmax(Fi) 

is the largest  fuzzy set m e m b e r s h i p  value  associated with  F i w h e n  the member -  

ship funct ions  intersect.  In F igure  9.15 the m e m b e r s h i p  funct ions  of  NEGATIVE 

and POSITIVE do not  intersect,  and  that  for  SMALL is zero. In this case m = - 10 and 

n = + 10, and  the centre of  area can be found  by eva lua t ing  the two summat ions  in 

equat ion  (9.6): 

10 

i = - 1 0  

Xmax(Fi) . F i = -9 .5  x 0.8 - 8.5 x 0.8 - 7.5 x 0.75 - 6.5 x 0.65 

- 5.5 x 0.55 - 4.5 x 0.45 - 3.5 • 0.35 - 2.5 x 0.25 

- 1.5 • 0 . 1 5 -  0.5 x 0.05 + 0.5 x 0.05 + 1.5 • 0.15 

+ 2.5 x 0.25 + 3.5 x 0.35 + 4.5 • 0.45 + 5.5 x 0.55 

+ 6.5 x 0.65 + 7.5 x 0.75 + 8.5 x 0.85 + 9.5 • 0.9 

= 1.375 

10 

i = - 1 0  

Xmax(Fi) = 0.8 + 0.8 + 0.75 + 0.65 + 0.55 + 0.45 + 0.35 + 0.25 

+ 0.15 + 0.05 + 0.05 + 0.15 + 0.25 + 0.35 + 0.45 + 0.55 

+ 0.65 + 0.75 + 0.85 + 0.9 

= 9.75 

Subst i tut ing into (9.6), the force in newtons  (N) is 

1.375 
Fc = 9.75 = 0.141 N 

These  fuzzy rules are capable  of  control l ing the broom-balancer .  Again ,  the 

pe r fo rmance  of  the sys tem is not  as good  as the P + D  controller,  but  the b r o o m  can 

be  ba lanced  indefinitely. The  graphs for the b room-ba l ance r  unde r  fuzzy control  

are s h o w n  in F igure  9.16. 
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The advantage of using fuzzy rules is that the models and measurement do not 
have to be precise. The designer can use loosely defined terms like large, medium 
and small, and the membership functions themselves can be defined very loosely. 
However, this does require a certain amount of good guesswork. 

Research in this area has now focused on setting some of the parameters such as 
finding the membership functions of the fuzzy sets using adaptive methods such 
as neural networks. First a rough guess is made of the fuzzy rules. Then the fuzzy 
rules are transformed into an equivalent neural network. The network is then 
shown examples and the weights adjusted to improve the overall performance. 
Then the network is transformed back into a fuzzy rule-based system. 

The advantage of the neural network is that it provides an adjusting mechanism, 
whereas the advantages of the fuzzy rule-based system are that it can be 
efficiently coded and is robust. 

Figure 9.16 
Graphs of 0 and x against 
time for the fuzzy controller. 
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9.7 Hierarchical control of 
complex systems 

CHAPTER 9: INTELLIGENT CONTROL 

9.7.1 Complex control problems 
So far in this chapter we have examined how the techniques of artificial 
intelligence can be applied to an example of a difficult control problem. In the 
case of the broom-balancer the problem is difficult because the system is 
inherently unstable. However, this problem had the important features of 
(1) being modelled by a formula and (2) there being measurable control variables 
which allowed feedback loops to be identified, and these formed the basis of the 
various control strategies. But what if one is trying to control a system where 
there is no known formula and the controlled variables are difficult to define, let 
alone measure? 

For example, consider a hypothetical colony of mechanical ants working together 
on a mining project. The goal of this mechatronic system is to extract as much 
mineral as possible in the shortest possible time at the least possible expense. 
Suppose that the ants have no a priori map of the area in which they are working. 
The intelligent control strategies just studied cannot be invoked for this system 
because it is too complex to define a single meaningful error, and the prospect of it 
being controlled by a few continuous control variables is remote. How could one 
begin to control a system of such complexity? 

Complex systems will have the following general features: 

I~ They will have emergent behaviour: parts will form wholes in which the 
whole may have properties and performance not possessed by any of the 
parts; for example, the ants may be specialized and form teams. 

i~ There will be a hierarchy (more precisely a heterarchy) of parts and wholes; 
for example, there may be divisions made up of teams responsible for mining 
certain areas giving a three-level hierarchy of ants / teams / divisions. Note 
that it is possible that some ants will belong to more than one team, or that 
some teams will belong to more than one division. In this case the part/whole 
structure is a heterarchy. 

i~ They must function with uncertain information about their environment; for 
example, the ants have no map and must learn the environment. 

I~ The system and many of its subsystems cannot be represented by numerical 
information alone. Geometrical, topological and abstract relational informa- 
tion at many hierarchical levels may all be needed to represent the system 
adequately in order to control it. 

i~ The performance measures which may be applied to the whole system cannot 
be disaggregated to give measures allowing top-down closed-loop control; 
for example, the measure of quantities mined in unit time emerges from the 
interacting behaviour of the ants. 
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Some parts of the system may be controllable by closed-loop techniques, 
even though the whole system may not; for example, the electro-mechanical 
parts of an individual ant may be controlled by closed-loop techniques 
allowing an ant to move its limbs with precision. 

9.7.2 Control of a simple vehicle 
In this book there is not enough space to discuss all the possible problems 
involved in controlling complex hierarchical systems. However, the following 
simple system illustrates a number of points. 

Consider a vehicle on a grid which in one time interval is capable of making one 
move North, East, South or West (Figure 9.17). Suppose this vehicle has sensors 
which allow it to detect fixed obstacles up to two squares away in any direction. 
The vehicle's goal is to move 10 squares to the East. What control strategy could 
or should be used? 
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Vehicle V can move one square at a time to the North, East, South or West. It has to reach one o f  the goal 

squares without occupying the black obstacle squares. 
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First let us consider some ad hoc suggestions and see where this leads. 

Strategy 1: 

(1) Go East until an obstacle is encountered to the East. 

This is a poor strategy because it fails if an obstacle is encountered. 

Strategy 2: 

(1) Go East until an obstacle in encountered. 

(2) When an obstacle is encountered to the East, go North until it is possible to go 
East again. 

This strategy will work if there is not a long vertical wall of obstacles, as in 
Figure 9.18(a), and if there are no traps, as there are in Figure 9.18(b). So it could 
be modified to give strategy 3. 

1 r l  1I I [ I 1 

lmmmmmm 1 
lummmmmm 1 
lmmmmmm 1 

(a) A vertical wall of (b) A trap formed by 
obstacles obstacles 

A Figure 9.18 
Special configurations of obstacles. 

S trategy 3: 

(1) Go East until an obstacle is encountered 

(2) When an obstacle is encountered to the East, go North unless that obstacle is 
part of a wall. 

(3) If an obstacle to the East is encountered and that obstacle is part of a wall, go 
South. 

(4) If an obstacle is encountered, and that obstacle is part of a trap, if possible go 
North, else go South, else go West. 

The use of terms such as 'wall' and 'trap' is a quantum leap for the representation 
of this system. What is a 'wall '? What is a 'trap'? Are the objects shown in 
Figure 9.19 walls or traps? Does the machine need to 'see' more than two squares 
ahead in order to perceive such objects? 
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(b) Are these traps? 

A Figure 9.19 
Problems of classification and pattern recognition in controL 

This illustrates that strategies to solve this kind of problem depend on pattern 
recognition, as discussed in Chapter 2. When more complex spatial information 
is available from the sensors, techniques of computer vision may be required, as 

discussed in Chapter 10. 

9.7.3 Cognition for control 
The control decisions for this hypothetical vehicle must be made by its cognition 
subsystem, as discussed in Chapter 5 of Volume 1. Even though the environment 
is structured by the grid and blocks on it, as shown in Figure 9.17 it can get quite 

complicated. Recall the following from Section 5.2.4 of Volume 1: 

A temptation for the mechatronics system designer is to try and cover all 
cases. The target is a machine cognition subsystem that will create as 
accurate and as complete a model of objects as possible in the world of 
interest and use this description to plan actions. However, a complete model 
may contain much information that is of little or no use to the task in hand, 
and the system cannot know that it has a good model, except by performing 
'experiments' and examining the consequences of actions in the world. This 
suggests that learning about actions and their consequences is an important 
part of the cognition function. 
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Certainly there are combinatorially many possible configurations for the vehicle 
to negotiate, and the mechatronics designer cannot anticipate them all. Compare 
the universe of Figure 9.17(a) with that of Figure 9.17(b). Which is easiest to 
negotiate and why? You can probably see at a glance that (a) is 'simpler' than (b). 
What does this mean? If you count them, you will find that both environments 
have exactly the same number of blocks in them. The difference between the two 
is that (b) is more 'connected' than (a). For example, the longest 'chain' of black 
squares (connected by an edge or a comer) in (a) has 8 members, while the longest 
in (b) has 27 members. In fact the long chain in (b) acts as a kind of curtain which 
makes the task hard to complete. 

Once a vocabulary such as 'connected' and 'chains' has been elicited for the 
problem, one can formulate knowledge using it. For example, if one knew that the 
longest chain in the environment had length 2, one could reason that there can be no 
traps in the environment, and a relatively simple control strategy is appropriate. 

What kind of experiments might our vehicle perform? In fact, the only control 
strategy available given the lack of an overview is 'move and see what you find'. 
In this case the machine can find one of three outcomes: that it has encountered 
the goal, that it has encountered an obstacle, or that it can keep on moving. 

Examples of tactical rules for getting round local obstacles were given above. 
The worst case is that the robot gets stuck in a nasty trap from which it is difficult 
to escape. A machine that cannot remember where it has been, i.e. cannot learn 

the environment, may get stuck in a trap forever, rather like a lobster in a lobster 
pot. However, a machine that remembers its moves should be able to extricate 
itself, by analogy with 'Ariadne's thread' as mentioned in Chapter 8. 

This type of control must involve experiments of the 'try and see' variety, because 
this is the only way that the machine can get feedback on what is in the 
environment, and what are the consequences of its actions. In this context we can 
see these experiments as the machine learning more about its environment, and so 
adding to its knowledge base. 

9.7.4 Scheduling and path planning for control 
Suppose the vehicle introduced in Section 9.7.2 has a vision system which allows 
it to see all of the environment. Then the vehicle does not need to engage itself in 
exploratory experiments to find out what is in the environment. The vehicle now 
has a different problem: given its position at V, what is the optimal path to get to 
one of the goal squares? 

This can be viewed as a search problem, and treated in the manner of Sec- 
tion 3.4.3 in Chapter3. For example, every square can be given a number 
according to its distance from the nearest goal square and a best-first search will 
result in a goal being found. 

307 



VOLUME TWO 

Alternatively it can be viewed as a path planning problem and treated in the 
manner of Chapter 5. This can be achieved by constructing a network with a link 
of length one between the centres of vertically or horizontally adjacent white 
squares. 

9.7.5 Control as search 
When trying to control a system one is effectively searching the space of all 
possible control actions which give the desired outcome. This means that the kind 
of considerations given to selecting a search technique may be relevant in 
designing the control strategy. For example, at each stage that one makes a 
choice, should it be best-first? When would breadth-first be better than depth-first 
for a vehicle seeking a way through its environment? When should one consider 
using random search? 

Although there is no definitive answer to these questions, in general best-first is to 
be preferred if this is known to give a solution in the particular case. Otherwise 
breadth-first search might be appropriate for a vehicle which is establishing a 
base from which it expects to operate, while depth-first search might be best for a 
vehicle navigating a landscape just once. A random element may be appropriate 
when the vehicle has many choices, or to facilitate 'jumping' to what might be a 
better starting point when it gets stuck. 

9.7.6 Controlling complex systems 
In his classic book on Cybernetics first published in 1956, W. Ross Ashby Writes: 

Science stands today on something of a divide. For two centuries it has been 
exploring systems that are either intrinsically simple or that are capable of 
being analysed into simple components. The fact that such a dogma as 'vary 
the factors one at a time' could be accepted for a century, shows that 
scientists were largely concerned in investigating such systems as allowed 
this method; for this method is often fundamentally impossible in the 
complex systems. 

(Ashby, 1956, p.5) 

It may be difficult to accept that the mathematical science of the last two hundred 
years is simple, especially if one has just struggled through undergraduate 
courses on calculus and the like. Nonetheless, engineers attempting to control 
systems should understand the divide that comes between those systems which 
can be represented by formulae in which one can 'vary the factors one at a time', 
and those in which one cannot. 

Classical control and the intelligent control techniques applied to the trolley and 
broom problem are low-level control strategies. This does not mean that they are 
trivial or more humble than control applied at higher levels of hierarchical 
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aggregation. It does mean that in any system there is a limit to the degree of 
precise control that can be achieved at more aggregate levels. 

For example, a large aeroplane is a relatively complex system. The engines and 
other mechanical subsystems are controlled with great precision by what we have 
called low-level control strategies. These increasingly include the techniques that 
we discussed in the first part of this chapter. 

These low-level techniques cannot be applied to controlling the whole aircraft. 
For example, route selection depends on scheduling algorithms. Air traffic 
controllers in the wider system could not possibly depend on low-level control 
techniques since they must handle tremendous quantifies of discrete relational 
information. They do this using a mixture of geometric representation and a 
model of the system expressed in natural language. This model is distributed over 
the many maps, manuals and handbooks that human beings have used to impose 
structure on the world's air space. 

In general we would like to answer the questions: what exactly is a complex 
system, and what systematic approach can be taken to controlling such systems? 

Poul Anderson gave the following profound insight into the nature of complex 
systems: 

I have yet to see any problem, however complicated, which, when you 
looked at it the right way, did not become still more complicated. 

Anderson's comment leads us to reflect on the nature of human understanding 
versus the objective complexity of the universe. Perhaps the best definition is that 
a system is complex if you do not understand it. To some people the motor car 
engine is a total mystery and they regard it as something very complex; to others 
the engine is arelatively simple system. But then again, automotive engineers 
who do know engines very well may consider them to be very complex in the 
interaction of their geometry, chemistry and physics. 

Engineers attempting to control complex systems should be aware that science is 
not a body of neutral objective truth: science is a belief  system and every bit as 
likely to be wrong as a political belief system. If engineering control systems are 
based on flawed beliefs then anything can happen. The more complex the system 
the more unpredictable the outcome, as illustrated by epidemics, wars and 
economics in social systems. 

For many complex systems that people create there is no a priori scientific 
knowledge. New systems evolve, or the research engineer invents a new system 
about which nothing is known. Then engineering and science go hand in hand. 
This is clearly illustrated by the development of information technology in which 
fundamental research has been done in the attic or the garage by anyone 
sufficiently interested or motivated, not just by professional scientists. 

The question as to how to control complex systems should be seen in terms of a 
closely related question: how can one analyse and understand complex systems? 
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This is a research question which is beyond the scope of the book, but it involves 
the following: 

1 The system must be observed systematically and the data recorded according 
to rigorous scientific standards. 

2 The system must be explicitly represented in an appropriate vocabulary. 

3 The relationship between time and the system's dynamics must be under- 
stood. 

4 Predictions about the system must be expressed in terms of the vocabulary 
and time constructs. 

5 A theory or model of a system is as good as the last successful prediction: one 
incorrect prediction makes part or all of the model wrong. 

The first of these requires no justification: one cannot control a poorly understood 
complex system. The last of these is the scientific principle laid down by Karl 
Popper: a scientific theory can never be proved to be correct, it can only be 
demonstrated to be consistent with the observations made to date. One cannot 
know if a new observation will contradict the theory, and there are many 
examples in science of this happening. One day scientists believe one thing is 
true, the next they must believe that it is false. However, science is relatively 
stable due to its ideally high standards of evidence, and its insistence on 
replicability in which scientists must report their experiments in a way which 
enables others to repeat and validate them. 

Prediction is the way that one tests theories, and the aim of control is to make 
machines and complex systems behave in predictable ways. It is important to 
realize that time is a social construct with many interpretations. Although atomic 
clocks behave in a very regular way, human beings do not and sometimes 
complain that time drags or that time flies: social time is different to clock time. 
Many complex systems are mixtures of machines and human beings, e.g. road 
systems, factories, mines and space stations. Often the system's own 'heartbeat' 
defines an appropriate time in which to make predictions, rather than saying' such 
and such will happen at a precise clock time on a precise day'. Complex systems 
are controlled more strategically. For example, time is defined in terms of a 
sequence of events so that Phase II can be correctly predicted to follow the 
completion of Phase I, but the precise clock time for either cannot be predicted. 

Representation is a major theme in artificial intelligence, and the second of the 
points listed above is very important. All the information and knowledge built 
into machines must be explicit, and this requires an appropriate symbolic and 
numerical vocabulary to be constructed. Sometimes this is system-specific, 
which means that the representation has to be custom-built for that system. For 
example, in biological systems one refers to cells and cytoplasm, while in social 
systems one refers to committees and regulations. However, there are many 
constructs which are common to many systems. In particular, much of 
the vocabulary developed in this book can be applied to a wide diversity of 
complex systems and their subsystems. Furthermore, all the science and 
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mathematics that one learns contributes to this general vocabulary, as indeed do 
the arts, humanities and social sciences. The main contribution that this book 
can make in enabling you to control complex systems is to give you the basic 
building blocks, and to illustrate how they can be applied in some particular 
cases. 

The field of intelligent control is expanding rapidly. The use of neural networks in 
control has produced a flurry of research activity all over the world, but perhaps it 
is fair to say that at this time (1995) there are relatively few commercial appli- 
cations of neural networks in control. Similarly, genetic algorithms have yet to 
have a major impact but hold so much potential that it is difficult to imagine an 
area of research where they won't find any use. In control, they could open up 
new approaches to adaptive control and in particular self-tuning control where 
parameters have to be adjusted in order to meet a performance requirement. 

Fuzzy control is currently being introduced into all sorts of control areas - from 
self-focusing cameras to cement works. Of particular interest is the hardware that 
is being developed in Japan, where the FC110 Digital Fuzzy Processor has been 
built. Clearly, when investment is made in designing new forms of hardware there 
is almost certainly going to be a market for these devices. So the future looks 
promising for fuzzy control. 

As we've seen, in cases where conventional control can be applied there is no 
reason to use intelligent control, in the example of the trolley and pole, conven- 
tional control performed better than the recurrent neural network or the fuzzy 
controller. 

In this book we have presented some of the techniques from artificial intelli- 
gence that can be used to design better machines. Many of these techniques 
can be applied in the control of complex systems, but it is difficult to give a 
recipe for how they can be applied to any particular engineering design prob- 
lem. However, there are some features that will be common to most situations, 
and it is possible to lay out some principles which can guide the design 
process: 

Construct an explicit vocabulary of the features, objects and properties of the 
system. Any concept which is to be used will have to be well defined in an 
operational sense, and making the vocabulary explicit will help to discourage 
wishy-washy generalities which cannot be usefully implemented. 

i~ Observe the system and try to record its behaviour in terms of the vocabulary. 
Express this in a way that can be entered into the machine, e.g. tables of data, 
rules and facts in a rule-based system. 
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I~ Try to quantize observations so that they can be weighted in terms of 
probability and/or fuzzy set membership. 

i~ Identify subsystems. Attempt to devise relatively independent control strate- 
gies for them. 

i~ Try to understand how subsystem variables aggregate into variables at higher 
levels. 

i~ Construct deterministic tactics to cope with well understood local problems. 
If conventional control techniques are applicable, then use them. 

i~ Optimize where possible in subsystems, but beware of hill climbing into a 
local optimum which is not a global optimum solution for the whole system. 

i~ Beware of being absolutely deterministic - have a random element to allow 
you to jump out of a bad situation. 

I~ Decide whether to expect to implement a top-down control strategy, or 
whether you intend to let the system behaviour emerge from relatively 
independent subsystems. 

The importance of intelligent control is that it becomes possible to control 
systems where conventional control is not possible, rather than to compete with 
conventional control. We can therefore expect to see many new developments in 
intelligent control applications in the future. 

Further reading 

In this chapter we come to the frontiers of knowledge on how to model and 
control complex systems. This has been a very active area of research over the last 
fifty years and many penetrating insights have been gained. John Casti has put 
together a highly accessible account of these theories, ranging from the basic 
principles of modelling and beliefs, to catastrophe theory, cellular autonoma, 
chaos and discrete dynamics, game theory, brains and minds, classical control, 
computation, and complex systems. 

If you want to know more, the following books are highly recommended: 

Casti, J.L. (1992) Reality Rules I: Picturing the world in mathematics- the fundamentals, 
John Wiley & Sons, Chichester. 

Casti, J.L. (1992) Reality Rules II: Picturing the worm in mathematics - the frontiers, 
John Wiley & Sons, Chichester. 
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The control strategies and results reported in this chapter are based on work done 
by our colleagues Nick Hallam and Neil Woodcock. 

Ashby, W.R. (1956) An Introduction to Cybernetics, Methuen & Co., New York. 
Barto, G., Sutton, R.S. and Anderson, C.W. (1983) 'Neuronlike adaptive elements that 

can solve difficult learning control problems', IEEE Trans. on Systems, Man and 
Cybernetics, Vol. SMC-13, No. 5, September/October, pp. 834-846. 

Widrow, B. and Smith, F.W. (1964) 'Pattern recognising control systems', In: Ton, J.T. 
and Wilcox, R.H. (eds) Computer andInformation Sciences, Spartan Books, Cleaver 
Hume Press, pp. 288-317. 
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C H A P T E  R 1 
C O M P U T E R  

0 
V I S I O N  

Figure 10.1 shows a digital image. It is an array of numbers called greyscales 
associated with an image. Each of the cells in a digital image is called a picture 
element, or pixel. Usually the greyscales are interpreted in terms of brightness: 
pixels with large numbers are bright, pixels with smaller numbers are darker. 

Computer vision attempts to answer the following questions: 

(1) Can any objects be recognized in the digital image? 

(1.1) Where is each object? 

(1.2) How big is each object? 

(1.3) How is each object oriented? 

(2) Do the recognizable objects make up other objects? 

(2.1) Can a scene be recognized? 

(2.2) Can we recognize objects and scenes: 

when bits are missing through occlusion (part of an object is hidden 
behind another object), 

when bits are missing through poor image quality, 

when spurious bits are added through poor image quality? 

Before you read on further, take a few minutes to try to answer questions (1) and 
(2) for the image in Figure 10.1. 
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A Figure 10.1 
A digital huge.  
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CHAPTER 10' COMPUTER VISION 

Faced with the question 'Can any objects be recognized in the digital image?', an 
understandable response could be a peeved 'How do I know, it could be 
anything!' Fortunately, in most applications of computer vision we know quite a 
lot about the image already. For example, if the image comes from a satellite we 
would expect it to contain objects which differ from those in a medical image. As 
it happens, the object in Figure 10.1 is common in an industrial manufacturing 
context. Does this, and the hint that there is just one object, help you to decide 
what it is? 

Figure 10.2 illustrates the kinds of problems you may have encountered when 
trying to interpret Figure 10.1. Inspection of the greyscale numbers in Figure 10.2 
shows there is a marked vertical column of low values in the centre of the image. 
This suggests there is a dark object against a lighter background. 

One approach to finding out what is in the image is to reduce the complexity of 
256 different grey levels to just two, i.e. to make the image binary. This 
simplification to black-and-white is known as binarization. Figure 10.3(a) shows 
the central part of the image in Figure 10.2: all those pixels which have greyscales 
less than or equal to 140 are shown in black. Binarization thus reveals part of a 
long thin object here. 

Suppose it is known that the image may contain one or more of the following 
objects: washers, pins, nuts, bolts, screws, wire, bar codes and ball beatings. Can 
it be decided which of these objects is present in Figure 10.3(a)? Intuitively, the 
choice can be narrowed down to pins, bolts and screws, because they are all long 
thin objects with a head. Of these, the screw is an unlikely candidate because the 
sides of the object in the image are almost parallel. A bolt is less likely than a pin 
because of the lack of serration at the sides (which would be manifest as an 
irregularity of edge at this level of resolution of about 100 pixels to the inch). So it 
can be concluded that the object is a pin. Even so, it does not look much like a pin. 

Suppose we try to improve the image by changing the threshold from 140 to 160 
greyscale units, as shown in Figure 10.3(b). Then the head of the pin becomes 
more blob-like, and the shaft has parallel sides. But how is the best threshold 
chosen? Unfortunately there is no single answer to this. If the threshold is chosen 
to be just ten greyscale units above 160, the information in the image begins to 
disintegrate as shown in Figure 10.3(c). 

In bench experiments like this, one can adjust parameters such as the threshold 
and observe what happens. In engineering practice we cannot afford the luxury of 
machines whose performance in any particular case is very sensitive to the setting 
of parameters. In general, one seeks vision techniques that are invariant to 
variables such as ambient light, which can change the greyscale levels in an 
image considerably. Even the signal from a video camera changes through time 
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Figure 10.2 
Another  digital image. Is it a washer, a pin, a nut, a bolt, a screw, a bar code, a ball bearing, or a piece o f  

wire? 

due to noise created by its internal circuitry" no two digital images are exactly the 
same. Vision techniques which cannot cope with this and other uncertainties will 
not be robust in practice. 

One way to understand how to abstract information from a given class of digital 
images is for the vision engineer to study displays of them on a monitor. 
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A Figure 10.3 Binarr'zr'f~g the image qf a pin with difJerent tltresi2oM levels: 
(a) phels with greyscalcs < 140 are black, ( X i )  pixels with greyscabs < 160 are Black, 
(cj pixef,s wwith greyscales < 170 are black. 
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Figure 10.4 shows a computer screen display of a whole image of the pin, and 
Figure 10.5(a) shows an enlarged display of the head of the pin. Note a common 
problem in computer vision: part of the head of the pin is missing due to a 
reflected highlight. Of course, you know that the head of a pin is solid, but the 
computer does not unless given this information. Similarly, in Figure 10.5(c) the 
'point' of the pin does not look very sharp in the image. 

Although binarization and greyscale techniques can be used to create displays of 
digital images, in computer vision one is not primarily interested in creating 
pictures. The task is to abstract usable information from digital pictures. In 
practice this usually means going from the greyscale array to a string of symbols. 
These symbols might be alphabetical, such as the word 'pin', or they might be 
numerical, reflecting an encoding of the class of the object or the value of some 
parameter associated with it. Converting greyscale images to binary images is a 
stage in simplifying the image by classifying the pixels as either black or white. In 
subsequent algorithms one can use tests such as: 'if the pixel is black then do 
something, if it is white then do something else'. Binarizing images loses 
information, of course, and the design engineer should ensure that essential 
information is not likely to be lost before adopting this approach. 

Returning to the fundamental questions of computer vision posed in Section 10.1, 
question (1.1) can be answered by saying that the object is located at a certain 
position in the image, for example at the pixel in the 369th column of the 290th 
row. But what does this mean? The object typically occupies quite a large number 
of pixels. If you want to know where the pin is, you must first define the concept 

Figure 10.4 
Digital image of a pin. 
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Figure 10.5 
Enlargement of the pixels in 
the image of the pin in 
Figure 10.4. 
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of position in an operational way. For example, you might define the pin to be in a 
position determined by the centre of its head and its point. Then four numbers 

determine its position: (Xhead, Yhead,Xpoint,Ypoint). This is a simple but fundamental 
fact: you must determine the representation for the information that computer 
vision will produce. Given our definitions, the position of the pin's head can be 
established to within about one or two pixels. This may be sufficiently accurate 
for some purposes, in which case this would be a good method to use (it is simple 
and computationally inexpensive). However, it may not be accurate enough for 
other purposes. Simple thresholding as in Figure 10.3 is usually useful for only 
the most simple applications of computer vision. 

One can begin to answer question (1.2) of Section 10.1 by putting dimensions on 
the pin: it is about three or four pixels wide, i.e. about 3.5 pixels divided by 100 
pixels per inch = 0.035 inches. Using a micrometer it is found that the pin has a 
diameter of about 0.67 mm, which is about 0.026 inches. This is an error of about 
35%, which suggests that the threshold was set too high. Nevertheless, this shows 
that computer vision can be used to make measurements. This approach could be 
used to calibrate a vision system with appropriate thresholds, but this usually 
means having to invest a considerable effort in keeping illumination and other 
factors constant. Another approach is shown in Section 10.5.2 which can give 
much more accurate measurements in a wide variety of external conditions 
without the need to calibrate to find appropriate thresholds. 

Having established a geometric representation for the pin through the positions of 
its head and point, to answer (1.3) one can define the orientation, for example, in 
terms of the angle the line between those points makes with the horizon. 

in answer to question (2), in this case the pin can be considered to be made up of 
three sub-objects - its head, point and sha f t -  but at the moment we have no way 
of discriminating 'head' pixels from 'shaft' pixels. 

There are many sources of digital images, including some of scenes that cannot 
normally be seen with the unaided eye. Television cameras provide one of the 
most widely used sources of images, but currently (1995) there is a mis-match 
between analogue television technology and digital computers. In order to obtain 
a digital image from a television camera one must digitize the analogue signals 
from the camera using special hardware. 
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10.3.1 Images from television cameras 
Figure 10.6 shows how one line of a television signal has been digitized to form 
one row of pixels for a digital image. In general, one needs special analogue-to- 
digital conversion hardware to convert the output of a camera into a form that can 
be accessed by a computer. Typically, the signals from the camera are plugged 
into a special graphics board inside the computer which converts the signals to 
digital form, stores the data in its on-board memory, and enables them to be 
displayed on a monitor. 

The signal from a television camera may be encoded as a PAL video signal on a 
single sheathed wire such as that used to can3, a signal to a television set. Some 
cameras output separate red, green and blue signals on one wire each, often with 
another wire carrying timing signals for synchronization. Such an output is called 
RGB, and it gives a better quality image than video. In fact, the video signal is a 
combination of the RGB data carried on a single waveform which can be sent 
along a single sheathed wire cable. The PAL signal has to have the RGB 
information components separated out (decoded) in order to drive the separate 
red, green and blue electron guns of the colour cathode ray tube (CRT). 

Britain uses the PAL system, in which a TV camera produces 25 frames per 
second. It does this by producing two interlaced scans of alternate lines, each 
scan taking 1/50 second, with a frequency of 50 Hz. Contemporary television 
technology satisfies millions of domestic viewers but is not ideal for scientific 
and industrial applications. For example, interlacing can cause jitter which is 
uncomfortable for operators. This television technology is the result of incremen- 
tal changes in standards over some fifty years and may be coming to the end of its 
life. Although it may take some years to become the domestic standard, high- 
quality digital television is set to take over. 

When an image from an RGB camera is digitized, we either (1) take an 'average' 
of the red, green, blue values to produce a monochrome image with one number 
per pixel, or (2) take one value each for red, green and blue to produce a digital 
image with three greyscale numbers per pixel. 

10.3.2 Simon's Three-Pixel Principle 
Figure 10.6 illustrates a very important limitation on television technology due to 
sampling considerations, as discussed in Chapter 3 of Volume 1. In practice it is 
never possible for a camera to respond to a perfect edge with a drop from the 
maximum greyscale to the minimum greyscale. As shown in Figures 10.4 and 
10.5, the edges of the pin get blurred, and instead of the idealized vertical-sided 
waveform shown in Figure 10.7 the camera delivers a 'V' shaped wave. This is 
due to the way that the camera samples the greyscales at points, and the 
inevitability that light from neighbouring pixels will enter the camera when a 
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(b) The signal converted to discrete digital form 

white background 

Figure 10.6 
Converting continuous 
signals from the camera to 
discrete digital form as the 

x greyscales of a row of pixels 
in a digital image. 

given pixel's greyscale is being sampled. We call this Simon's Three-Pixel 
Principle after Jean-Claude Simon (pronounced 'Seemon'),  a French pioneer in 
computer vision and pattern recognition (Simon, 1986). 

Simon's Principle says that 'if an object can be detected in an image, then the 
response to that object must be reflected in the greyscale values of at least three 
pixels'. So, if a satellite image showed a dark tarmac road in the light sand of the 

324 



CHAPTER 10' COMPUTER VISION 

desert, no matter how high the satellite or how narrow the road, you would either 
detect the road over at least three pixels in any direction, or you would not detect it 

at all. 

Theoretical suggestions that the road might be imaged as exactly one pixel wide 
by greyscales such as ... 100, 100, 99, 100, 100 . . . .  are confounded by the 
problem that cameras cannot produce such precise images. The signal-to-noise 
ratio of a camera is a measure of the degradation of the image within the 
instrument itself. Typically a high-quality RGB camera will produce a signal with 
+_4 greyscale units out of 255. This represents an error of 1.6%, which corre- 
sponds to a signal-to-noise ratio of 36 dB. Human eyes cannot usually detect a 
difference of one greyscale between two adjacent pixels. 

Simon's Three-Pixel Principle raises the important question as to what theoretical 
limitations there are to locating objects in images. Is it three pixels? The answer to 
this question is emphatically no. In an industrial context the authors have 
developed a method of computer vision which detects objects to sub-pixel 
accuracy. How can this be possible in the light of Simon's Three-Pixel Principle? 
The answer is that, while the information that defines an object must be spread 
over three or more pixels, the object itself is located within some particular pixel. 
One speaks of the support of the object being detected. Usually the support 
consists of many pixels in the region of the object. Each of them contributes some 
information to the object-detection process. For example, the method described 
later in Section 10.5.2 effectively integrates and distils the information from 
many pixels to give very precise, sub-pixel-accurate, positioning of the edges of 

objects. 

I I response to 

I I idealized response 

~ to the pin 

I I I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I 

3 pixels 

Figure 10. 7 
Illustration of Simon's 
Three-Pixel Principle: any 
object that can be detected 
in an image must be at least 
three pixels wide. 
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10.3.3 Humans' astonishing ability to read images 
Computer vision has turned out to be an extraordinarily difficult problem. One 
reason for this is that humans constantly underestimate the difficulty of the 
problem because our own vision system is so spectacularly good at abstracting 
information from images. For example, Figure 10.8(a) shows a digitized image of 
part of a portrait of Pope Paul III, painted in the sixteenth century by Titian 
(1488/90--1576). As you look at the Pope's eyes in the digital image in Fig- 
ure 10.8(a) there appears to be an abrupt change from the black pupils to the 
whites. The enlargement of his fight eye in the digital image shown in Fig- 
ure 10.8(b) shows that the transition from black to white is much more messy than 
one might have imagined. 

Figure 10.9(a) shows a digital image of a selection of screws, bolts, washers, and 
tags. If you look at the long bolt in the top-left of the picture you will probably be 
able to see the serrated edge of the screw thread quite clearly. However, if you 
look at the enlargement in Figure 10.9(b) of the part in the white rectangle you 
will see that the sharp edges of the thread appear over three or more pixels at this 
level of resolution (cf. Simon's Three-Pixel Principle). It can also be noted that 
the bolt does not create a set of pixels of homogeneous greyscales. In fact there is 
a highlight along its length, and it would be easy to mistake the 'half' of the bolt in 
Figure 10.9(b) for an entire but thinner bolt. You are unlikely to make such a 
mistake, but then you have a vision system which involves a large part of your 

(a) Digitized image of Titian's portrait of Pope Paul III (768 • 576 pixels) 
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brain and which has adapted and been perfected over millions of years of 
evolution. 

For many centuries artists have been fascinated by our human ability to 'read' 
things into pictures which, on closer examination, are not as explicit as we think. 
At the end of the last century the 'Impressionist' school of painting emerged 
which exploits to the full our ability to read things into pictures. Figure 10.10(a) 
shows a digitization of part of Renoir's painting of a boating party. Fig- 
ure 10.10(b) shows an enlargement of the pixels of the fight eye of the girl in the 
centre of the picture. At this level of detail it is very difficult to read the expression 
in the gift's eye, compared to the beauty and the emotions it conveys when put in 
the context of the whole face and the whole scene. 

Human beings get tremendous enjoyment out of the miraculous behaviour of 
their vision systems, and we use our vision so effortlessly that it is tempting to 
think that vision is a simple process. It is not. 

The point is further illustrated by the images of eight British postage stamps in 
Figure 10.11 (a). Below these is an enlargement of the pixels making up Queen 
Elizabeth's eye and nose. It is unlikely that you would have recognized this 
outside the context of the whole portrait, which itself is highly stylized. You 
might find it easier to 'see' the Queen if you screw up your eyes or look at 
Figure 10.1 l(b) from a distance. 

(b) Enlargement of the pixels making up the right eye of Pope Paul III 

Figure 10. 8 
Enlargement of the 
pixels making up the 
right eye in Ti~n's 
portrait of Pope 
Paul III. 
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(a) Digitized image 

(b) Enlargement of the edge of the long bolt 

Figure 10.9 
Digitized image of 
small objects (screws, 
bolts, washers and tags) 
showing the serrated 
edge of a bolt. 
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(a) Digitized image 

(b) Enlargement of the girl's eye 

Figure 10.10 
A close-up of the pixels 
making up the eye in 
the Impressionist 
painter Renoir's 'The 
Luncheon of the 
Boating Party" 
Reproduced with the 
permission of The 
Phillips Collection, 
Washington, D.C. 
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(a) Digitized image of eight postage stamps 

(b) Enlargement of the pixels making up Queen Elizabeth's eye and nose 

Figure 10.11 
Enlargement of the 
pixels in a postage 
stamp. Reproduced by 
permission of Royal 
Mail. 
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The digital images in this chapter suggest that it may be difficult to get a computer 
to do a fraction of what our eyes and brains do so easily. Nevertheless, computer 
vision is not an overwhelming challenge provided one adopts a rigorous scientific 
approach. 

10.3.4 The generality of digital images 
There are many sources of images, such as sensor arrays or scanning sensors. The 
sensors and transducers detecting one pixel's worth of information may be 
detecting light, as in the case of the television camera, or they may be detecting 
other phenomena. For example, sensors detecting the strength of magnetic fields 
may deliver magnetic images, sensors detecting pressure may deliver a pressure 
image, sensors detecting acid/alkali pH values may produce a pH image, and so 
on. In fact, it is remarkably easy to create digital images from simple sensors, as 
illustrated in Chapter 4 of Volume 1 by the example of a 'scanner' which uses 
eight pieces of wire. 

Some of the non-light-based sources of images will deliver values on a scale 
which, by an abuse of language, we call greyscales. Others may deliver yes/no 
information and so give us a binary image. Once the image data is inside a 
computer's memory, the problem of abstracting useful information from a mosaic 
of 'coloured' dots is the same irrespective of the origins of the images. 

Document scanners are becoming a major source of digital images. These work at 
a variety of resolutions, with 200, 300 and 400 dots per inch (d.p.i.) being 
common. Colour scanners are available which typically allocate one byte of data 
storage for each of the red, green and blue components of the image. A major 
problem with this kind of image scanning is the huge amount of data it creates. A 
typical page, without data compression, will generate some 8 inches x 300 d.p.i. • 
10 inches • 300 d.p.i. • 3 bytes per pixel = 21.6 megabytes. 

Although most people encounter these devices in the context of capturing images 
or text for desktop publishing, they have a wide range of applications in 
information processing systems. For example, commercial devices can be pur- 
chased for a few thousand dollars which 'read' credit card slips in a fraction of a 
second. Typically these machines read at 200 d.p.i, and one byte per pixel. The 
great problem is then to abstract useful information using computer vision, as will 
be discussed later in Section 10.5.3. 

In many applications the speed of the available imaging devices can determine 
the feasibility of whole systems. Television cameras and associated frame- 
grabbing hardware can produce images at a maximum 'real time' rate of 25 per 
second. Against this high imaging rate is the disadvantage that domestic TV 
technology limits images to about 768• 576 pixels. Although this pixel resolu- 
tion is relatively low, combined with 24 bits per pixel (8 bits each for the red, 
green and blue image information) this technology delivers very high-quality 
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images according to subjective judgement of our eyes. Colour document scan- 
ners also deliver very high-quality images, but they can be slow. The general 
principle is that it will take longer to produce higher quality images which have 
more dots or colours. 

Computer graphics and computer vision are highly inter-related but are different 
disciplines. Lay people often confuse the two because both involve digital images 
which can be displayed as pictures on computer screens. The important differ- 
ence between the two is summarized in Figure 10.12. 

computer graphics 
data image 

computer vision 

~l Figure 10.12 
Computer vision and 
computer graphics are 
complementary but different 
disciplines. 

10.4.1 Computer vision and computer graphics as 
complementary disciplines 

In computer graphics data are used to create pictures as exemplified by, for 
example, the case of computer-aided design (CAD). In computer vision one starts 
with a pictureand attempts to abstract data from it. Computer vision is orders of 
magnitude more difficult than computer graphics. Usually experts in computer 
vision are also experts in computer graphics and use this expertise to create 
graphic user interfaces (GUIs) which make their vision products easier to use and 
more attractive. 

10.4.2 Representation and CAD data structures 
Disciplines such as CAD have pioneered some important ideas for computer 
vision related to representation. It is easy to say that one wants a robot to 'see' a 
mechanical piece, but this begs the question of the robot's internal representation 
of that piece. For some applications the representations developed for CAD make 
an appropriate target language for computer vision. For example, a curved object 
might be recorded as a small number of x-y points which can be used to create a 
parameterized curve called a B-spline, which is an approximation to the edge of 
the object. This representation is different to one which simply records a lot of 
short lines sufficiently close together to give a piecewise linear approximation to 
the original curve. 
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10.4.3 2-D vision and 3-D stereo vision 
Almost all digital images are two-dimensional, reflecting the geometry of the 
sensing devices and the way scenes are imaged. In many applications it is 
possible to abstract the required information from the two-dimensional image, 
but in some applications it is necessary to reconstruct the three-dimensional scene 
from the image to obtain symbolic and parametric information in three- 
dimensional coordinates. 

Given various hypotheses about the nature of the scene, one can abstract 
3-D information from a single image. In fact, the principles of reconstruction 
from perspective date back to Leonardo da Vinci (1452-1519). Geometric 
considerations put a limit on how much 3-D data can be reconstructed from a 
single 2-D image, especially when there is limited perspective information 
available in the image. However, stereo-imaging allows powerful 3-D imaging, 
as our own 3-D binocular vision illustrates. Computer-based stereo imaging 
involves, for example, two cameras with known vision and geometric properties 
arranged so that their 2-D pixels can be correlated. Various algorithms are then 
used to recognize objects and reconstruct some 3-D data. The details of this are 
beyond the scope of this book. 

In computer vision one must be clear which data are actually required in any 
particular case. Once this is known the engineer can choose the least expensive or 
most effective way of delivering that information (assuming it is possible). 

The simplest information one can demand of a vision system is whether an object 
is present or not. Domestic security lights triggered by infra-red radiation 
illustrate a very simple present/not-present system. The 'image' has a single 
pixel which can have two states: 'red' or 'not-red' according to the single infra- 
red sensor. The purpose of such a system is to detect and discourage 'intruders' 
and provide illumination for legitimate visitors. These systems have very poor 
discrimination, and they are frequently triggered in error by cats or other animals. 
Since in most cases there is a low cost to erroneous recognition, these systems are 
regarded as satisfactory for their purpose. 

10.5.1 Detecting insects in a digital image using neural 
networks 
In some cases the cost of erroneous recognition may be unacceptably high, and 
the vision system must be more discriminating than the simple infra-red sensor. 
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To illustrate this point consider a machine whose purpose is to kill some 
undesirable insects by ultraviolet irradiation but not to kill other benign insects. 
Let us suppose that the insects of interest are the following, as illustrated in Figure 
10.13: 

W wasp G greenbottle 

F fly f blowfly 

B bee L ladybird 

How can we begin the job of recognizing these objects in an image? What 
information can we use? Of many possibilities, we might immediately think of 
characteristics such as colour, shape, size, movement pattern, speed, and so on. 
As always in computer vision, these things are easy to say but much more difficult 
to pin down in an explicit representation. For example, how would you set about 
representing the concept of insect shape within a computer? It can be done, but, of 
the various possibilities, colour is one of the easiest characteristics to represent 
and we will see how far one can get using colour information alone. 

One of the first problems is distinguishing the objects of interest (the insects) 
from objects of no interest (the background). As Figure 10.14 shows, the back- 
ground can be very complex, and in the case of flowers it can move around 
considerably. Thus the problem of deciding if the image contains a bee is 
compounded by the problem of knowing what else the image contains. A simple 
solution to the problem of background clutter is to constrain the system so that the 

~[ Figure 10.13 
Six types of model insects to 
be recognized by computer 
vision. 
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Figure 10.14 
The first problem in computer vision: discriminating objects of interest from" the 
background clutter. 

background is fixed and simple. So suppose that the machine will have a platform 
on which the insects will walk, and suppose that this platform will be of a constant 
light blue colour which allows the pixels to be classified as either background or 
insect with reasonable fidelity. In practice, of course, some pixels are mis- 
classified so that in the following experiments some background pixels have their 
data included in the 'insect' statistics, while some genuine insect pixels have got 
lost in the background. Such 'filtering' of pixels into object and background 
immediately degrades the quality of the information available, but in this case the 
degradation is not critical. 
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Having abstracted a set of 'insect pixels' from the image, suppose that the 
greyscale values from a colour camera can be used to classify the pixels into one 
of the following colours: 

Red Green 

Yellow Ochre 

Black White 

so that each insect will have its pixels assigned to these six classes. Table 10.1 
shows the pixel frequencies for six pairs of model test insects for each of these 
colours. Not surprisingly, the ladybirds have the highest numbers of red pixels, 
the wasps have the highest numbers of yellow pixels, the greenbottles have the 
highest numbers of green pixels, and so on. However, not all the insects can be 
classified by having predominance in one colour. For example, honey bees are 
mostly black but have a yellowy-brown 'ochre' colour. Even though this colour 
characterizes the bees, their ochre count is less than that of the wasps whose 
bright yellow becomes this ochre colour in certain lights and shadows. 

TABLE 10.1 PIXEL FREQUENCIES BY COLOUR FOR SIX PAIRS OF INSECTS 

Object 

Ladybird 1 

Ladybird 2 

Fly 1 

Fly 2 

Bee 1 

Bee 2 

Wasp 1 

Wasp 2 

Greenbottle 1 

Greenbottle 2 

Blowfly 1 

Blowfly 2 

Red Green Yellow Ochre Black White 

12872 554 423 291 9107 223 
13009 483 243 314 8728 364 
18579 842 228 28 16879 917 
18402 938 229 25 16880 969 

2775 3383 1845 294 16566 368 
2831 3417 1878 334 16675 285 
1399 2322 3875 375 13271 3445 
1414 2378 3797 384 13398 3316 

3669 4821 1281 2576 21829 693 
3594 4542 1336 2762 21442 632 
3695 3037 535 2021 18198 344 
3623 3173 621 2102 18086 333 

2314 3590 12753 1686 8386 2846 
2269 3834 12675 1608 8540 2724 
3097 5034 15124 3626 9599 4406 
2756 3814 1 5 0 1 8  3159 8936 6701 

1678 6797 1207 106 15737 1402 
1691 6734 1152 98 15831 1371 
842 7931 3192 63 14925 3287 
873 7900 3183 57 14708 3254 

1801 4033 432 23 i 24722 24 
2161 3994 412 240 25271 27 
3958 3578 212 153 29592 11 
3893 3670 210 128 29997 17 

Unclassified 

145 
403 
283 
218 

1966 
1482 
5924 
5685 

779 
762 
266 
256 

2330 
2155 

845 
1556 

1891 
1356 
3113 
3142 

1185 
1143 
458 
437 
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Thus every insect is represented by six numbers: the number of its pixels 
classified as red, the number classified as green, the number classified as yellow, 
the number classified as ochre, the number classified as black, and the number 
classified as white. For example, for the first ladybird the numbers can be 
arranged as a sequence, or vector: 

red green yellow ochre black white 

( 12872, 554, 423, 291, 9107, 223 ) 

while for the second ladybird the statistics are: 

red green yellow ochre black white 

( 18579, 842, 228, 28, 16879, 917 ) 

Inspection of these data for the two ladybirds shows the entries in the vectors to be 
similar but not identical. It is intended to use a pattern recognition approach 
which will effectively classify insects according to their similarity to the test 
vectors for the six pairs of insects. 

As explained in Chapter 4 of Volume I, and Chapter 2 of this volume, each of 
these colours can be considered to define an axis in a multidimensional space. So 
one wants to classify the insects given their position in this six-dimensional 
colour/pixel frequency space. 

Although it is very difficult to show this 6-D space on 2-D paper, let us choose just 
the yellow and green dimensions to get a feel for how the insects group together in 
this space. Four examples of each insect are used in what follows. Thus 
Figure 10.15 shows that the wasps form a cluster high in the yellow part of the 
space while the greenbottles form a cluster far to the fight in the green part of the 
space. The ladybirds too form a distinct cluster near the origin because they have 
very few yellow pixels and very few green pixels. 

Unfortunately the flies and bees are both very close in this 2-D subspace, which 
suggests that they will be difficult to classify. As it happens, it could be very 
important to separate bees from flies in this application. Fortunately, the other 
colour dimensions allow the flies and the bees to be separated. 

Having established an operational pre-processing procedure which maps the var- 
ious insects into this colour/frequency space, the computer vision task can be 
completed in a number of ways. This case is particularly well suited to the 
application of neural networks. The training data for the network are the vectors 
of colour frequencies as inputs, and the insect classes as outputs. So we might use 
a six-input and six-output network with six nodes in the hidden layer. In fact this is 
what we did, and the pattern recognition was very successful in correctly 
assigning new insects to their class. 

In this application of neural networks we exploit some of their useful features. 
The first is that no two insects have exactly the same pixel colour frequencies and 
so the generalization of the network to 'similar' data is essential. Indeed, 
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sometimes there is considerable variability in the pixel colour data, but neverthe- 
less the neural network can cope with this. 

Another useful feature of the neural network is its ability to cope with redundancy 
in the data. It happens that there is very little useful information in the frequency 
of white pixels. This is because the wings of the insects, although transparent in 
some lights, are highly reflective and can produce quite large 'white' responses in 
rather a random way. Neural networks cope with this kind of thing very well; as 
they train, the weights given to this error-causing redundant data are lowered and 
they automatically play less of a role in the classification. The exception might be 
the ladybirds, which do not have reflective transparent wings, and for them the 
white frequency could remain useful data. Thus the neural network paradigm 
automatically adjusts to exploit the relevant discriminatory information. 

Once the insect has been recognized - or more precisely, classified - the system 
can take whatever action is appropriate according to its specification. 

~[ Figure 10.15 
The insects clustered in the 
two-dimensional 
green-yellow subspace. 
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10.5.2 Measuring the diameter of a pin using sub-pixel 
edge detection 

The kind of object recognition in the last section is of the 'yes/no', 'it-is-here-or- 
not' kind. In many applications of computer vision much more than this is 
required. Apart from knowing that an image contains an object, more information 
about that object may be needed. 

Measurement usually requires a geometric model of the environment, which can 
be 2-D or 3-D. Recognition can use a simpler model with symbolic elements such 
as 'wasp is present is true', 'bee is present is false', and 'ladybird is present is 
false'. 

The example of measuring the pin examined earlier in this chapter implicitly used 
a model of the pin in which it has 'sides' which can be represented by lines in 
Cartesian coordinate space. Thus we can define the 'diameter' of the pin to be the 
perpendicular distance between the two lines which make up the edges of the pin. 

As explained in Chapter 4 of Volume 1, conventional attempts at edge detection 
have not been very successful because they depend on thresholding, as illustrated 
by the example in Section 10.2 of this chapter. Figure 10.16 shows the results of a 
new method of edge detection that has been developed by the authors in 
commercial applications of vision for scientific measurement. Using this method, 
the geometric 'edges' of the pin have been detected to sub-pixel accuracy 
approaching one-tenth of a pixel. By this method the measurement is that the pin 
is 2.5 pixels across. At 100 pixels per inch this means that the diameter 
measurement of the pin is 0.025 inches. This compares to a micrometer measure- 
ment of about 0.026 inches, and the system has delivered the measurement to an 
accuracy of about one-tenth of a pixel. This 4% error could of course be reduced 
by digitizing the pin at a higher magnification. This method is almost contrast- 
independent, i.e. it is highly tolerant to changes in the level of illumination. 

10.5.3 Optical character and handwriting recognition 
It is a remarkable fact that human beings now communicate massive amounts of 
information through their fingers by pressing the keys of computers. A modest 
document of ten pages will have some 40000 characters, while a book such as this 
has about half a million key presses. There are millions of books and documents 
which do not exist as computer files, and even those that are on computer are not 
always accessible. This creates a massive commercial demand for optical charac- 
ter recognition (OCR) and devices which can read characters. 

In the last ten years OCR and scanner technologies have advanced to the position 
that clean black-on-white documents can be read by computer with an error rate 
of a few percent. This is acceptable for some purposes, but  not for others. 
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Figure 10.16 

Sub-pixel edge detection allows the diameter of the pin to be measured as 2.5 pixels = 0.025 inches 
(micrometer measurement was 0.026 inches). The image was digitized at lO0 dots per inch. 

165 ' 172  171 

| 
170 172 169 

�9 . 

169 173 175 

166 ' 174 i 17:1 

�9 . 

166 168 165 

�9 . 

166 172 173 

164 170 168 

._ 
166 170 169 

168 171 176 

171 " 174"  170 

. �9 

171 1 7 4 1 7 0  

167 1 7 2 1 7 0  

i | 

169 171 166 

1 6 7 1 7 3 1 7 5  

171 ' 1 : 7 3 1 7 4  
l 

�9 . 

164 170 168 

167 169 168 

171 ~ 178 �9 174 

a, | 
167 172 173 

. . 

169 167 170 

167 170 ' 168 

1 6 9 "  1 7 5 '  172  

|, | 

171 175 171 

1 .. | 
1 7 1  177 172 

| | 

169 173 172 

170 176 174 

171 178 174 

~ i67  170 166 

| 
173 172 167 

168 172 170 

169 ' 172 ' 168 

340 



CHAPTER 10: COMPUTER VISION 

Surprisingly, there are many potential applications in which the images are 
perfectly readable to human eyes, but not clean or clear enough for current OCR 
technology to handle. 

Typical applications of OCR include reading documents for word processing and 
editing, reading mail addresses for automatic sorting, reading credit card receipts 
for automatic banking, reading cheques for automated sorting, and so on. 

Although humans see text and handwriting very clearly as 'black on white', 
digital images do not reflect this intuition. Figure 10.17 shows the digitization of a 
credit card slip, and an enlargement of the handwritten 'e' at the far fight. The 
pixels here are far from being black or white. At the left of the character the pixels 
have good contrast but at the top the greyscales fade into the background as the 
pressure of the writer changes. This kind of variability makes the character more 
difficult to read automatically. As it happens, people tend to be reasonably 
consistent in the way they apply pressure differently as they write, and work is 
under way to exploit this for security applications. 

Figure 10.18(a) shows the letters 'DESC' from the beginning of the printed word 
'DESCRIPTION' below the date boxes. Although they are more regular than the 
handwritten characters, it can be seen that there is considerable ambiguity 
between the pixels of the characters and the background. 

Figure 10.18(b) illustrates one of the major problems in reading handwriting, 
namely that people make characters in a stylistic way which may deviate 
considerably from the 'norm'. The handwritten description is '5 STAR 204573', 
but the 'T' in 'STAR' looks more like the Greek letter ~y than a T. Also, there is 
ambiguity between this letter and the printed line on the voucher. 

Note also that the '8' is written slightly differently in the two versions of '80.75', 
and that the '5's appear to be made up of two different strokes. Such idiosyn- 
crasies make the general problem of reading handwriting very difficult. These are 
reasonably good images for automatic reading: other images can be much worse, 
with bits of characters missing or obliterated by spurious marks. 
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(a) Digitized image of a credit card voucher 

(b) Enlargement of the pixels making up the handwritten 'e' in the 'INITIALS' box 

Figure 10.17 
Digitized image of 
handwriting on a 
credit card voucher. 
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(a) Enlargement of the pixels making up part of the word "DESCRIPTION' on the credit 
card voucher of Figure 10.17(a) 

(b) Enlargement of the letter T in the word 'STAR' 

~[ Figure 10.18 
Digitized characters 
from the credit card 
voucher in 
Figure 10.17. 
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In OCR there are a number of major divisions between the difficulty of the 
problems. They include: 

reading clear machine-typed black text on white background; 

I~ reading poor machine-typed text on white background; 

i~ reading machine-typed text on a textured or patterned background (e.g. anti- 
forgery patterns on cheques and bonds); 

I~ reading handwritten text as discretely spaced capitals, small letters, and 
numbers, in pre-set fields or boxes on pre-printed forms; 

I~ reading carefully handwritten text in which the letters are all clearly written; 

i~ reading carefully written joined-up handwriting; 

i~ reading cursive script (general handwriting). 

Of these there is good progress with the first, and some progress with handwritten 
text on forms. Progress on the others is less good, and the general problems of 
reading cursive script remain unsolved in 1995. When this problem is solved it 
will open up many areas for new applications of computer systems, since in many 
information systems getting information into the system is a major problem. 
Currently it has to be done by human keyboard operators, and this makes many 
potential systems uneconomic. 

New notepad computers are creating a tremendous drive for recognizing hand- 
written text. They have the great advantage that the pixels which make up the text 
are unambiguous, having been defined by the user with the electronic 'pen'. 
Nevertheless, in 1995, abstracting text information from handwriting remains a 
very difficult problem, as illustrated by the cartoon strip in Figure 10.19. 

Doonesbury BY GARRY TRUDEAU 

Figure 10.19 
Reading handwriting is a difficult problem. 
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10.5.4 Rejection versus error in pattern recognition 
OCR exemplifies an important idea in pattern recognition and computer vision, 
namely the distinction between rejection of the recognition as dubious as opposed 
to failure by the acceptance of a misclassification. 

To understand the difference, consider a machine which is sorting cheques in an 
automatic banking system. Suppose it has to read the amount of money on the 
cheque. Suppose also that one of the digits is recognized incorrectly as a 7 (seven) 
instead of a 1 (one). If the amount of money is s it would not be a 
terrible mistake to recognize it as s However if the amount were 
recognized as s the machine's failure could be very serious. Usually 
one has a degree of 'confidence' in a computer's vision recognition, and 
sometimes it makes sense for the machine to say 'I cannot recognize this with the 
required confidence and I reject it'. Then the rejected items can be read by 
humans, who tend to make fewer errors in resolving ambiguous images. 

The problem with rejection is that humans usually have to take over, and the 
higher the rejection rate the more expensive the system becomes to run. However, 
the rejection rate is inversely related to the failure rate in which the machine 
makes potentially expensive errors, and so a trade-off has to be made. 

The previous sections have given a flavour of some of the problems and 
techniques used in computer vision. After establishing some criteria for success, 
this section will summarize the basic techniques of machine vision currently 
available to designers. 

10.6.1 Criteria for success in computer vision 
Before enumerating the various techniques currently used in computer vision, 
some criteria will be established for their efficacy. These conditions include: 

i~ acceptably high rates of correct pattern recognition, acceptably low rates of 
rejection, and acceptably low rates of errors in pattern recognition; 

I~ tolerance to changes in the levels of absolute and ambient illumination; 
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I~ invariance to changes in position, size and orientation of the object to the 
camera or scanner: 

translational invariance, 

scale invariance, 

rotational invariance; 

I~ acceptably high speeds of pattern recognition; 

i~ ease and cost of implementation; 

I~ ease and cost of maintenance; 

I~ acceptable hardware demands; 

i~ acceptable levels of operator skills. 

Not all applications will weight these criteria equally. For example, invariance to 
orientation could be very important in an aircraft detection system. On the other 
hand, we expressly do not want total orientation invariance in OCR, otherwise we 
would not be able to discriminate symbols such as + from • < from >, d from p, 
and so on. 

The criteria for recognition rates will also vary considerably according to the 
application. A system which takes an hour to process the information from a 
medical scanner could be satisfactory, while a system which takes a second to 
process a sales voucher could be considered to be too slow. 

Computer vision techniques vary from 'cheap and cheerful' approaches such as 
pixel matching to the implementation of very expensive handcrafted methods. 
Vision systems of any sophistication at all usually involve a lot of highly skilled 
research and development effort, and their costs reflect this. 

Many applications of computer vision require 'real time' processing, which 
means in practice that results must be delivered within fractions of a second. This 
can sometimes be achieved by employing powerful but expensive processors, 
and increasingly it is being achieved by various parallel processing configura- 
tions. This includes implementation of 'neural' processors in hardware. 

As in other engineering disciplines, computer vision involves selecting the most 
appropriate approach for the particular application. Sometimes this involves 
understanding that the present achievements in machine vision are rather limited, 
and there are many potentially valuable problems which it cannot solve. The 
machine vision problem is a bottleneck in many applications. 

10.6.2 Pixel grid template matching 
Pixel grid template matching was discussed in Chapter 4 of Volume 1. It works 
very well in cases in which the objects always appear in the same place in the 
image, i.e. they do not change too much in their shape, size, orientation or 
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position. In cases which do not satisfy these criteria, pattern matching gives poor 
performance and more advanced techniques must be used. 

10.6.3 Associative memory 
An interesting and successful variant on template-matching approaches is pro- 
vided by the WISARD system developed in England by Wilke, Stonham and 
Aleksander at Brunel University in the 1980s. This has been used successfully for 
banknote recognition and other commercial applications. This vision system 
works by taking a video image, binarizing it, and using pre-defined random 
combinations of pixel ' l ' s  (white) and 'O's (black) to address several banks of 
memory, where each bank corresponds to a particular class of problem. Essen- 
tially this approach works by storing a '  1' in each bank of memory at the locations 
that are addressed by the input images during training. When being used to 
recognize patterns it uses the new image to address the memory and counts the 
number of '  l 's produced at the output of each bank of memory, the sum being the 
measure of how well the image is recognized. 

This is called an associative memory, in which the score from each bank is a 
measure of the association between the current input image and the images used 
during training. WISARD works in real time due to its special hardware architec- 
ture, which allows fast learning and fast response. An amusing and remarkable 
application of WISARD involves discriminating smiling faces from those that 
have frowns. 

10.6.4 Spectrum histogram and statistical matching 
In applications such as remote sensing from satellites, the infra-red spectrum may 
be divided into many 'bands' with sensors which are especially sensitive to 
particular parts of the spectrum. For example, the Multispectral Scanning System 
has four bands while the Thematic Mapper has seven. This means that each pixel 
in a Thematic Mapper image identifies a point in a seven-dimensional space. A 
typical application in agricultural planning involves using these data to classify 
the pixels by crop type, such as 'wheat', 'barley', 'corn', 'sugar beet', 'apples', 
and so on. 

A whole battery of techniques has been developed for these multidimensional 
data, as illustrated in Chapter 2 on Pattern recognition. Typically they work on 
spectral histograms and statistical models calibrated from them. The classifica- 
tion paradigm is: 'this pixel of unknown class is close to a pixel of known class, 
therefore this pixel has that class'. 
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10.6.5 Binarization of greyscale images and local 
thresholding 
As shown in Section 10.2, one can get somewhere with image recognition 
through thresholding. However, there is the problem of selecting the threshold. 
Also, contrast may vary over an image due to different levels of illumination. This 
could happen, for example, when an image is illuminated from the side. 

Although it does not work very well over entire images, the concept of threshold- 
ing is not without merit. Clearly, as one goes from a dark object to a light 
background there will be dark object pixels and light background pixels. The 
problem is knowing where to set the boundary between them. It seems reasonable 
that this boundary will be relatively constant locally, even if it should vary over 
the image. This kind of reasoning has led to a number of techniques for local 
thresholding. The details of any particular technique can be rather involved, but 
the basic idea is that an appropriate threshold for binarization will depend on the 
local greyscale statistics. These are computed to provide thresholds which are 
adapted to local conditions. 

10.6.6 Skeletonization 
In some applications a further operation of skeletonization after thresholding is 
considered to be useful. For example, in character recognition it is easier to deal 
with pixel configurations that are one pixel wide rather than those that are perhaps 
three, four or five pixels wide. Skeletonization algorithms effectively 'eat away' 
the outside pixels until there is just one pixel left. The results of this for an '8' and 
a n ' S '  are illustrated in Figure 10.20. However, as this example shows, 
skeletonization sometimes creates ambiguity. 
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limitations. 
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10.6.7 Edge detection 
Edge detection is an important technique in computer vision, especially in 
applications in which a geometric model is used. Section 10.5.2 showed how 
edge detection can be used in object recognition, and also to make measurements. 
For example one can use the kind of hierarchical architecture described later in 
Section 10.7 in which parts of the boundaries of objects are recognized, and 
assembled by bottom-up processing. Subsequently, some degree of top-down 
processing might be involved to find missing bits of the object prior to final 
recognition. 

There are many techniques for edge detection in the literature. Most of these are 
'filters', i.e. operators which filter out non-edge from edge pixels. As we 
observed in Volume 1, this leads to edges which are polygons. Also the approach 
depends on setting parameters, and post-processing operations such as thinning. 

10.6.8 Mathematical morphology 
A new theory of image processing was suggested by Jean Serra in his booklmage 
Analysis and Mathematical Morphology (1982). There he introduced a wide 
range of operators for image processing. To illustrate one idea, consider a binary 
image in which the pixels are either black or white. Then let the 'thinning' 
operator be defined as one which makes every black pixel with a black neighbour 
into a white pixel. This operator makes objects and lines thinner, as shown in 
Figures 10.21 (a) and (b). The 'thickening' operator is defined as one which 
makes black every white pixel with a black neighbour. This operator makes 
objects and lines thicker. By applying the thinning operator followed by the 
thickening operator, messy parts of images can be cleaned up as shown in 
Figure 10.21 (c). 

Figure 10.21 
Mathematical morphology: 
an example of applying 
'thinning' and 'thickening' 
operators to a binary image. 
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In some images it is known that the objects of interest are relatively smooth at the 
given level of resolution. However, digitization noise may cause edges to be 
'jaggy'. In such cases the application of the thinning operator followed by the 
application of the thickening operator may smooth out the jaggy edges and make 
objects easier to recognize. There are many other operators within mathematical 
morphology which enhance images according to 'logical' principles and opera- 
tions. 

10.6.9 Neural networks 
Neural networks are increasingly being used in computer vision. There are many 
architectures and variations, but for many of them a lot of work may be required to 
ensure that appropriate information enters the network in the first place. Thus a 
lot of expensive work may be necessary to build a pre-processing system which, 
it can be argued, moves the vision problem one step back beyond the network in 
order to get a solution. This was discussed in Chapter 3 on Search. 

Section 10.5.1 showed neural networks applied to a vision problem in which the 
pre-processing involved collecting data on pixel colour frequencies of insects. In 
this application the spatial element of the problem was ignored. In other applica- 
tions shape and size may be crucial, and the engineer must ensure that these are 
encoded in a way which makes them suitable for neural networks to process. 

Section 10.7 shows a hierarchical architecture for computer vision. There the 
higher level objects are assembled from lower level substructures, and it is 
possible that neural networks could be used for this. 

10.6.10 Reasoning in computer vision 
Computer vision often occurs when there is a model of the system or its 
environment. A common problem in computer vision occurs when parts of 
objects are missing because they are occluded (hidden by other objects) or 
because the image is poor. Although one cannot create more information than is 
in the image from the image itself, the information in the image combined with 
the general model and other expectations may enable strong hypotheses to be 
made. Usually these will be stated in the form: 'if this is true and that is true, then 
the image viewed contains a such and such', where the confidence in the 
hypothesis may be weighted. 

In the early days of computer vision, when people were just beginning to learn the 
power of If-Then reasoning through knowledge-based systems and the like, it 
was felt that higher level reasoning would be very powerful in machine vision. So 
powerful, in fact, that it would not matter too much if the primitives could not be 
abstracted with great fidelity. In fact this turned out to be wrong, as illustrated in 
the field of speech recognition. No amount of reasoning and logic could compen- 
sate for rather poorly defined and abstracted phonemes. 
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10.6.11 Simon's Principle of Robust Primitives 
This principle states that, in computer vision, we must seek to abstract primitive 
objects with great reliability and replicability. These are called robust primitives. 
Vision techniques which do not begin with robust primitives are likely to fail. 

It would be hard to underestimate the practical importance of this principle. The 
edges mentioned in Section 10.5.2 are robust primitives which have enabled the 
authors to build very reliable and rugged industrial vision systems which work 
under a wide range of ambient lighting conditions and operators. The principle of 
robust primitives is very important in pattern recognition and computer vision. 

10.7 A hierarchical architecture 
for computer vision 

10.7.1 Bottom-up processing in computer vision 
In the earliest stages of processing image data, computer vision is bottom-up. At 
the bottom of the hierarchy, we have pixels and their greyscale values. These 
pixels must be combined using various criteria to form classes or structures from 
which useful information can be abstracted. At this earliest stage in processing it 
is essential that robust primitives are used. This is illustrated in Figure 10.22(a) in 

(a) A set of pixels assembled to form a line (b) A set of lines assembled to form a character 

Figure 10.22 
Bottom-up aggregation in 
computer vision. 
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which a group of pixels is aggregated to form a line. In this application, detecting 
the lines is highly replicable and so lines are robust primitives for this application. 
Figure 10.22(b) shows a set of lines assembled to form a character. 

10.7.2 Top-down reasoning in computer vision 
In the last section we saw how computer vision begins with a kind of feedforward 
bottom-up information processing, which builds increasingly more complex 
objects from simpler objects. Sometimes this will be sufficient by itself for 
successful pattern recognition. However, it is necessary to use a priori knowl- 
edge to reason about the objects in the image. This is essentially a top-down 
process in which a given configuration of objects is hypothesized to be an object 
of interest. If it actually is that object, one can deduce things that ought to be true 
about the image at lower levels. These hypotheses can then be tested at the lower 
levels and their outcome can inform the lower level pattern recognition. 

10.7.3 Computer vision as an iterative top-down, 
bottom-up process 
It is becoming increasingly accepted that computer vision must involve both of 
the bottom-up and top-down aspects of information processing discussed in the 
previous two sections. Thus we come to an architecture for computer vision 
which combines the two. This means that any vision system must have a control 
mechanism to determine the current modes of the system and transfers between 
them. In the simplest case this may just be an iterative process in which one goes 
between bottom-up and top-down until the pattern recognition is made with the 
required degree of confidence. This general architecture is represented in 
Figure 10.23. 

This architecture has been used in practice in the examples of eye recognition 
(Volume 1, Chapter 4) and character recognition. In eye recognition, pixel con- 
figurations were used which act as extremely robust primitives in this and many 
other applications. These have been combined to form sub-objects such as the 
pupils and whites of the eyes, and these in turn have been combined to recognize 
the eyes in the context of the face (Volume 1, Chapter 4). This higher level 
recognition enables discrimination of configurations at the lower level which 
correspond to eyes in the image from other eye-like configurations in swirls of 
hair and elsewhere. 

Apart from the bottom-up aspects of computer vision, there is a top-down aspect 
when there is ambiguity in the recognition. In such a case the system may attempt 
to resolve the ambiguity by acting in a top-down fashion by seeking specific 
diagnostic information. For example, the lines which have been abstracted with 
confidence in Figure 10.23 lead to an ambiguous recognition between an fl and 
an O. In order to resolve this the machine needs more information about the fight 
side of the character, and so goes down the hierarchy and looks at the pixels 
'through a magnifying glass' in order to see more precisely what occurs at the 
right edge of the character. 
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In general, computer vision is an iterative process, with information and control 
moving up and down the hierarchy of representation until recognition is achieved 
or the attempt is abandoned and the recognition rejected. 

~ll Figure 10.23 
The bottom-up, top-down 
nature of computer vision. 

There is no doubt that computer vision will be one of the most important enabling 
technologies over the next decade. Current generations of robots have poor visual 
sensing, and severe limitations in their capabilities as a result. The robot of 
science fiction which will make your tea and do the housework remains a long 
way off: current robots find it very difficult to abstract the necessary information 
from their cameras and other sensors. 

Computer vision remains a relatively expensive way of sensing for perception 
and cognition in intelligent machines. This is true of both the hardware and 
software, but the situation is beginning to change as the drive for intelligent 
machines generates new devices and approaches. For example, the University of 
Edinburgh in Scotland has designed a small and inexpensive camera. No doubt as 
such devices move to large-scale mass production the price will drop and 
designers will be able to incorporate many 'electronic eyes' into their systems 
without making them prohibitively expensive. Similarly, custom-made hardware 
for processing visual information is emerging and it too can be expected to drop in 
price as time goes on. Also the price of general-purpose sequential computers 
continues to drop in price/performance terms. 

Software (or more precisely the development of algorithms and procedures) is the 
other major element in computer vision. This is less likely to decrease in price so 
quickly. The reason is that there is no general methodology of computer vision to 
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act as a rigorous basis for engineering. Currently applications tend to be one-off 
solutions to particular problems. Invariably this involves a considerable invest- 
ment in research and development undertaken by highly skilled engineers, and 
such computer vision systems tend to be very expensive. The hierarchical 
architecture described in this chapter is part of an attempt to formulate a general 
theory of computer vision, and is implicitly or explicitly used by many research- 
ers and practitioners in the field. 

It is probably not too optimistic to expect computer vision techniques to improve 
considerably over the next decade. This will allow us to build machines with 
capabilities that we can only dream of at present. Areas likely to benefit 
especially include: 

aeronautics and space travel 
agriculture through remote sensing 
automotive systems 
business systems 
car and truck design 
crime detection and prevention 
disaster prediction 
domestic consumer goods 
industrial and domestic security 
industrial inspection 

international security 
medicine 
military systems 
paper processing and administration 
robotics 
scientific research 
telecommunications 
toys 
underwater surveying and mining 
weather forecasting 

There can be little doubt that human kind has the potential to benefit considerably 
from new generations of intelligent machines, enabled by computer vision. 

Levine, D.M. (1985) Vision in Man and Machines, McGraw Hill Series in 
Electrical Engineering, New York. This book gives a comprehensive account of 
most of the standard techniques used in computer vision. 

Serra, J.A. (1982) Image Analysis and Mathematical Morphology, Academic Press. 
Simon, J.C. (1986) Patterns and Operators: The foundations of data representation, Tr. J. 

Howlett, North Oxford Academic, division of Kogan Page. 
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C H A P T E  R 1 1 
I N T E G R A T I O N  

In this book you have encountered the following concepts and techniques: 

i~ pattern recognition 

I~ search 

i~ neural networks 

scheduling 

I~ reasoning 

i~ rule-based systems 

i~ learning 

I~ intelligent control 

i~ computer vision. 

Even if you have mastered all of these components you may have wondered how 
they can all be brought together in a single 'intelligent' system. 

One approach to integrating the component parts of intelligent systems involves 
the concept of blackboard systems, and this is the main topic of this chapter. This 
is not the only approach, but it is simple and sufficiently powerful to enable quite 
complex machines and systems to be developed. 

The central feature of the blackboard system is an area of working memory called 
the blackboard, as shown in Figure 11.1. The knowledge and data stored or 
written 'on the blackboard' is intended to bepublic and accessible to any one of a 
set of independent agents. Any agent can write to the blackboard and read from 
the blackboard. This public information is not necessarily managed by any of the 
agents, and may emerge from their interaction. This architecture allows each of 
the agents to do its own business with its only external interface being the 
blackboard. This greatly simplifies the conceptual nature of each agent, and what 
one needs to know about its interactions with other agents. 

The term agent is intended to be very general, but includes ordinary computer 
programs (both declarative and procedural, and object-oriented modules, which 
are beyond the scope of this book), rule-based systems and neural networks. To 
these can be added the sensors which write information on the blackboard, and 
the actuators which read information such as control commands and control 
parameters from the blackboard. 
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Blackboard 
(working memory) 

~ ~  Rule-based systems 
I .... 

~ " ' * l  Neural networks 
I 

~ , 1 ,  Object-oriented modules 

~ / ~ / ~ / ~ [  Procedural modules 1 
i .... 

m m m l l m l l ' [ ,  

Sensors 

Actuators 

To illustrate the application of the blackboard architecture, consider an autono- 
mous robot which must operate within a changing environment. We will consider 
how the perception subsystem, the cognition subsystem and the execution 
subsystem can be implemented within the blackboard architecture. First, how- 
ever, it is necessary to understand how a blackboard system can itself be 
implemented as a software environment which enables systems to be developed 
rapidly without the developer having to start fight from the beginning every time. 

~l Figure 11.1 The 
blackboard model (adapted 
from Hopgood, 1993). 

In Chapter 7 we explained how rule-based systems are often implemented using a 
shell into which particular facts and rules could easily be introduced using 
editors. Usually the editors check that the format of the facts and rules is 
syntactically correct and help to overcome errors which would stop the system 
running. The shell also contains the inference engine which operates on the facts 
database using the rules to produce new facts. This requires that various modes of 
conflict resolution can be set within the shell. In other words, the shell gives the 
user everything that is needed to create a rule-based system except the facts and 
rules for a specific domain of application. 

Although it is possible to program a blackboard system from first principles for a 
particular application, this may not be a cost-effective way of proceeding. Often it 
is better to use a system development environment which attempts to provide the 
'engine' of the blackboard system and all the necessary editors to input the 
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subsystems or agents. Furthermore, such an environment automatically inte- 
grates the subsystems by giving them access to the public data on the blackboard, 
and controlling the way that the agents are distributed over the available hardware 
and how they are scheduled to run on the hardware. For example, the Open 
University's SmartLab home experiment laboratory runs on a single personal 
computer. Since a PC usually has only one processor it means that all the agents 
have to share this processor as they run. The way this is done is mostly transparent 
to the user, and this makes system development relatively simple. 

Typically, a blackboard system development environment for creating intelligent 
machines will include: 

I~ a rule-based system shell to create autonomous rule-based systems; 

i~ a neural network editor and controller to create neural subsystems; 

I~ editors, compilers and linkers for creating: 

procedural programs (written in languages such as C and FORTRAN), 

declarative programs (written in languages such as Prolog), 

object-oriented programs (written in languages such as C++ and Small- 
talk); 

i~ software interfaces to external sensor hardware; 

I~ software interfaces to external actuator control hardware. 

Apart from this functionality, it is important that the environment can be used 
easily, and this is often achieved using a graphic user interface (GUI). For 
example, in some systems rules can be defined by manipulating graphic entities 
such as boxes and arrows, where the boxes represent facts and the arrows 
represent implication. Also, they sometimes allow the user to zoom in and out to 
see the system in greater or lesser detail, the former giving insight into the details 
of subsystems and the latter giving more of an overview. 

To understand how many agents can run 'in parallel' on the available hardware, 
consider a system with many rule-based systems running on a single sequential 
processor. Since the processor can only execute one instruction at a time, it can 
only service one rule-based system at a time. This leads to the need to decide how 
the processor will service each system. 

For example, the software managing the execution might allow each rule-based 
system enough resource to test one rule and move on to the next rule-based 
system. Alternatively, it might allow each rule-based system to go through its 

357 



VOLUME TWO 

rules once, perform conflict resolution, and fire the selected trigger rule before 
moving on to the next system. This approach is easy to understand since it means 
that each rule-based system gets a turn to fire a rule as the control software cycles 
around. 

With a single sequential processor, by definition, nothing happens in parallel. 
However, by 'slicing' up the processor's time, each rule-based system gets a slice 
of time and the overall appearance is of many rule-based systems running in 
parallel. However an important aspect of using a single processor is that only one 
rule-based system is updating the blackboard at any given time. This can be 
useful when designing blackboard systems because, although all the agents are 
independent, it can be useful to know that one system will have updated the facts 
database if possible before the antecedent facts are examined for a subsequent 
system. 

So, one of the simplest control strategies for multiple rule-based systems is to 
order them all, and let each rule-based system fire a rule (if it can) when its turn 
comes round. Since each rule-based system can update the information on the 
blackboard, the outcome of one rule-based system can affect the conflict set and 
outcome of the next. Unless the rules are very simple the behaviour of the 
interacting rule-based system is emergen t ,  and cannot necessarily be predicted by 
the constructor of the blackboard system. 

Sometimes the designer of a blackboard system may want to impose a control 
mechanism on how the rules in the different rule-based systems fire, and how the 
systems interact. Although the agents of the blackboard system can be independ- 
ent, there is no absolute requirement that they m u s t  be independent. 

As explained in Chapter 7 on Rule-based systems, one sometimes wants a 
particular rule-based system to give each rule a 'Buggins' Turn' chance of firing. 
We have found that this can be extended to wanting all the rules in a cycle to fire 
before control is handed over to the next rule-based system. We have called this 
blackboard control mechanism 'Buggins' cycle'. For example, the rules of a 
particular rule-based system may complete a whole task which one wants to be 
completed before handing on to the next. 

It should be clear from this discussion that blackboard systems require control 
strategies in much the same way that rule-based systems require conflict resolu- 
tion control strategies. In proprietary software environments the control strategy 
may be part of the environment, or the system designer may have to select the 
control mechanism to be applied at any given time. 
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In systems with many processors it is possible for each of the agents to genuinely 
run in parallel. However, the problem of control remains because a conflict could 
arise when two completely autonomous agents want to write on the blackboard at 
the same time. If one agent wants to set a blackboard variable to one thing while 
another wants to set that variable to something else, there is a conflict which must 
be resolved. This conflict amounts to deciding which system will be allowed to 
update the blackboard, and this is similar to deciding which system will get a slice 
of a single sequential processor (and therefore unrestricted access to the black- 
board) at any given time. 

The sensors of a machine form an essential part of its perception subsystem. 
Usually the sensor data enter the machine through special interfaces and in 
principle the sensor data can be written on the blackboard to be read by the other 
agents. By definition the data enter the system at the lowest level in the perception- 
cognition hierarchy. 

For a simple example of how hierarchical pattern recognition might be imple- 
mented, consider the problem of reading characters in a grid of pixels. Instead of 
trying to match the characters directly, it is much more effective to try to 
recognize their parts using an agent which reads the pixel data from the black- 
board and writes the recognized block data onto the blackboard. Then another 
agent can read the blocks from the blackboard and write the recognized character 
data on the blackboard. 

The first agent might be a neural network operating directly on the black/white 
binary pixel data, or it might be a rule-based system operating on those data, or it 
might be a program of some kind. The second agent might also be a neural 
network, a rule-based system, or a program. In this way a perception subsystem 
might be implemented through a mixture of information processing techniques. 
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The important point is that, using the blackboard model, the agents which make 
up the hierarchical pattern recognition system can be kept reasonably simple and 
their interface through the blackboard is also simple. 

More complex perception subsystems might also have rule-based systems acting 
in a 'top-down' mode and making deductions about the sensed data on the basis 
of prior knowledge. These too can be implemented as agents reading and writing 
data on the blackboard, and again one benefits from the implicit simplicity of the 
architecture. However, this top-down processing might require some explicit 
control in the order that the agents operate. For example, a procedural program 
may be required to execute in its entirety before other agents modify the multiple 
hierarchical level data on the blackboard and it could force this by setting a flag 
variable on the blackboard which effectively prevents all the other agents 
operating until the flag is reset. 

Chapter 2 on Pattern recognition and Chapter 10 on Computer vision are 
concerned with techniques for perception and the interface to the cognition 
subsystem. The techniques described in those chapters will usually be imple- 
mented by a mixture of agents writing data of different hierarchical levels to the 
blackboard. Typically the cognition subsystem will read the data written at the 
highest levels by the perception subsystem. 

As far as weare concerned here, cognition involves the processing of higher level 
data, usually symbolic or parametric. An intelligent machine operating in real 
time constantly has to find an answer to the question 'what shall I do next', and 
this problem is mainly the concern of the cognition subsystem. 

For the most general type of intelligent machine the cognition subsystem must 
fulfil many functions including: 

I~ interfacing to the perception subsystem, including reasoning about the 
output of the perception subsystem and even controlling it to make it deliver 
information which is particularly relevant; 

I~ controlling learning; 

I~ maintaining a map of the relationship between the machine and its environ- 
ment; 

I~ searching for and establishing goals and sequences of intermediate goals, 
and the order in which to attain them; 
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I~ scheduling: path planning in space and time; also planning sequences of 
actuator activities including the motion of the whole machine and parts of the 
machine such as its arms and grippers; 

pattern recognition of external states which are particularly desirable or 
undesirable, possibly using neural networks; 

I~ identifying problems in any of the above and finding ways to overcome them. 

For mobile machines the cognition subsystem first has to update the 'map' of the 
machine's physical environment. This may mean recognizing the position of the 
machine on a given map, or it may require that the machine learns what is in its 
environment. The map data will probably be implemented as arrays of numbers 
on the blackboard, or variables which give the x-y positions of objects in the 
environment as described in Chapter 8 on Learning. 

Some machines will have to learn their environment explicitly before they can 
operate within it. General-purpose machines should learn from how they have 
solved previous problems and their experiences so that this knowledge can be 
applied to subsequent situations. 

Given that the cognition subsystem has decided where the machine is in relation 
to its environment, mobile machines must decide the current goals, including 
where they want to be. The criteria for deciding a 'good' position will usually be 
programmed into the machine as rules in a rule-based system or within a 
computer program agent. These may involve scheduling criteria such as those 
discussed in Chapter 5. 

Selecting goals and planning how to achieve them is crucial to the performance of 
an intelligent machine. A machine that consistently selects near-optimum goals 
and achieves them by scheduling near-optimum space-time paths will exhibit 
good performance in normal usage. A machine which can maintain these 
characteristics by adapting to unexpected events with new near-optimal goals and 
schedules will fulfil the concept of an 'intelligent machine' which performs well 
in the face of uncertainty. 

Apart from the more strategic aspects of scheduling, the cognition subsystem 
must interface to the execution subsystem. For example, the sequences of 
movements of its drive subsystem must be planned, as must sequences of 
movements of other actuators such as its arms and grippers. One of the main 
problems with controlling actuators is that complex interactions of forces such as 
momentum and friction can make it impractical to formulate a precise mathemati- 
cal model of the dynamics of the system. In such cases intelligent control 
techniques such as those discussed at the beginning of Chapter 9 are applicable. 
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At some stage the cognition subsystem must send control information to the 
machine's actuators in order to result in execution of its goal-oriented plan. In the 
simplest case the cognition subsystem can simply write an item of data to the 
blackboard. For example, the cognition subsystem could change the value of a 
blackboard variable called 'left motor' from zero to one. In some blackboard 
systems it is possible to define special variables such as 'left_motor' which are 
interfaced to external devices such as switches which supply power. In this case 
the interface hardware may automatically switch to no power when the variable 
has value 0, and switch to full power when the variable is 1. Thus the actuators can 
be activated by writing data on the blackboard. There are many variants of this 
idea, and the data that are written on the blackboard could be more subtle, 
including parameters which control the amount of power which is switched and 
the direction. 

In principle it is possible for the cognition subsystem to undertake all the 
processing necessary to control the actuators of the execution subsystem to give 
the desired composite action. However, actuators themselves are becoming 
increasingly intelligent and some of the low-level processing such as deciding the 
precise sequence of movements of a gripper may be undertaken by the actuator 
itself. The intelligence in the actuators may be implicit in the mechanical design 
of its components, or the actuator may even have its own processor(s). Indeed, 
some grippers are themselves complete mechatronic subsystems, having their 
own perception-cognition-execution cycle. In this case the cognition subsystem 
of the master machine has an easier job, since it need only write data about what is 
wanted onto the blackboard and leave the intelligent actuator to get on with the 
job. 

Whatever the level of intelligence of the actuators, the blackboard architecture 
gives a conceptually simple way of interfacing the cognition subsystem to the 
execution subsystem. 

The blackboard model is essentially an integrating architecture. It is designed to 
allow components to be implemented as autonomous agents which can be 
designed in relative isolation without the designer having to know the detailed 
implementation of all the other agents: all the designer needs to know is how the 
particular agent interacts with the blackboard data. 
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If a mechatronic system is assembled entirely in terms of autonomous agents 
there may be emergent behaviour which cannot be predicted before the machine 
runs. The designer may have a model of the whole system which makes the 
emergent behaviour a logical consequence of the way the agents are implemented 
with respect to the blackboard. 

However, in very complex systems it may be impossible for the designer to 
predict all the emergent behaviour of a system. For example, road traffic systems 
are made up of stretches of road supporting many autonomous agents (humans 
driving vehicles). One way to try to understand the emergent behaviour of this 
system is to observe it at the side of the road. Recent research at the Los Alamos 
National Laboratory in the USA has shown that the only way to predict the 
emergent behaviour of a road system is to simulate the interactions of the many 
thousands of drivers: at present there is no other known way to 'predict' the 
emergent dynamic behaviour. 

In complex machines the simulation may simply involve running the machine 
and observing its behaviour under specified conditions. This corresponds to the 
usual testing of systems in all engineering design. However the difference is that 
one must expect emergent behaviour and try to understand it. In this respect the 
design of intelligent machines may begin as a kind of research exercise which 
eventually becomes development leading to products as the emergent behaviour 
is better understood. 

The use of autonomous subsystems with a simple blackboard data exchange 
interface makes it easier to formulate theories as to how the components of the 
machine are interacting, why the emergent behaviour is as it is, and how the 
emergent behaviour may be controlled. 

One way to control emergent behaviour is to make it impossible. A simple way of 
doing this is to 'switch off' one or more of the agents which result in behaviour 
which turns out to be undesirable. But this means that some agents are allowed to 
control others by switching them on and off, and the controlled agents thereby 
cease to be autonomous. In fact, it is perfectly possible that the system designer 
will have all the agents grouped so that the first group executes, enables the 
second group, and switches itself off; the second group executes, enables the third 
group, and switches itself off; and so on until the last group executes, enables the 
first group, and switches itself off. In other words, it is possible that the agents all 
control each other in some way introduced by the designer. By imposing this kind 
of control structure on the system the designer may be able to make useful 
deductions about which data will be on the blackboard when, and thereby make 
the whole system more predictable. 

In summary, the blackboard architecture allows each agent to be totally autono- 
mous, but sometimes the system designer may remove some of that autonomy by 
making the behaviour of some agents dependent on blackboard data written by 
other agents. It is the designer's responsibility to ensure that the logic of this is 
correct, but they are considerably assisted in this by the inherent simplicity of the 
architecture of the agents being interfaced through the blackboard. 
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11.9.1 Search 
Search is one of the most important theoretical areas of artificial intelligence, 
especially heuristic search where one has to find good sub-optimal solutions to 
problems which cannot be solved using optimal methods. Data for the spaces 
being searched may be encapsulated in particular agents with the results of the 
search being written on the blackboard, or all the data relating to the search may 
be publicly available on the blackboard. Search heuristics may be implemented 
as rule-based systems, programs, and neural network agents. 

11.9.2 Pattern recognition 
This covers a wide variety of techniques which are used in the design of 
intelligent machines. Any particular pattern recognition technique might be 
implemented as a rule-based system, a bespoke computer program, or a neural 
network agent. In hierarchical pattern recognition, different agents may be 
implemented to perform the recognition at different levels with each reading its 
data from the blackboard and writing its results on the blackboard. Pattern 
recognition implicitly or explicitly involves search. 

11.9.3 Neural networks 
In Figure 11.1 neural networks were shown as agents which may interact with the 
blackboard data. In general the network will have to be interfaced to its inputs by 
apre-processor and its outputs may have to interpreted by a post-processor. The 
pre-processor might be an agent which, for example, reads sensor data from the 
blackboard, transforms it into a form on which a neural network can operate (e.g. 
a sequence of numbers) and then writes this back on the blackboard. The network 
can then read the pre-processed input data from the blackboard and write its 
outputs on the blackboard. The post-processor may be an agent which reads that 
output and transforms it to a form which can be used by other agents. The pre- 
processor and post-processor agents may be implemented as rule-based systems 
or conventional computer programs. 

11.9.4 Scheduling 
Scheduling is one of the main tasks of the cognition subsystem. As discussed in 
Chapter 5, scheduling can be considered to be the ordering of events in space and 
time. The particular nature of their events and their representation will depend on 
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the particular application. For example, although the scheduling problems are 
similar, a robot planning its route around a factory will require a different 
representation to an arm which must position a gripper inside a complex mechan- 
ical object. The representation data for a particular scheduling problem may be 
encapsulated in a single agent, or they may be public data on the blackboard. 
Scheduling subsystems may be implemented as rule-based systems, programs, 
and even neural networks (using appropriate pre-processors and post-proces- 
sors). 

11.9.5 Reasoning 
Two of the main information processing paradigms discussed in this book are 
logical deduction through reasoning, and learned classification of data in neural 
networks. Most human theorizing and technical communication is based on 
reasoning using explicit vocabularies and rules of inference. The If-Then con- 
struct is one of the most fundamental ideas in reasoning and it pervades every 
aspect of designing an intelligent machine. Inevitably designers will have a 
mental model of the machine and its environment which may be expressed in 
natural language and mathematical formalism, and they will constantly be 
musing along the lines that if this is so then that must follow. Since humans 
frequently make conceptual and computation errors in reasoning, the designer's 
conclusions may tum out to be incorrect, as may become apparent when the 
machine is tested. 

Computer programs are usually full of lf-Then constructs, and they give a very 
flexible way of encoding the reasoning of the programmer. It is more difficult to 
make a machine reason for itself, and rule-based systems have been very 
successful in this respect. Many computer-based systems now exist for the 
manipulation Of knowledge expressed as facts and rules. Some of these systems 
have the objective of deducing new knowledge from old and ordering this 
knowledge systematically, while other systems have the objective of the machine 
proving hypothetical results from extemal sources or which it has hypothesized 
itself. 

The agents which reason in an intelligent machine will be rule-based systems, or 
other systems implemented as computer programs in languages such as C, C++, 
LISP and Prolog. 

11.9.6 Rule-based systems 
The architecture of rule-based systems is one of the triumphs of research into 
artificial intelligence. Even though this appears to be a standard technology 
today, research in this area goes back only some thirty or forty years. Rule-based 
systems are explicitly considered to be agents which can interact with the 
blackboard data. 
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11.9.7 Learning 
Learning is considered to be one of the most important features in making 
machines more intelligent and adaptable. Machines do not have anything like the 
learning capabilities of humans, and this is a very active research area. The agents 
which learn in a blackboard system will usually be implemented as rule-based 
systems or programs. The exception is neural networks, which learn from 
examples during training. The learning process will usually involve the learning 
agent reading data from the blackboard, processing it, and writing the result back 
on the blackboard. 

As discussed in Chapter 1, the indexing problem is one of the most challenging 
problems in artificial intelligence. It is relatively easy to put huge amounts of 
information into machines, but it is difficult to synthesize and extract that 
information in a useful form for any particular task. As described here, the 
blackboard is a passive information cartier, allowing information to be written to 
and read from it. It may be that intelligent machines will require pro-active 
synthesizing agents which transform passive data into useful information, and 
pro-active indexing agents which post meta-data on a meta-blackboard enabling 
other agents to find the information they need when they need it. 

11.9.8 Intelligent control 
As seen in Chapter 9 on Intelligent control, low-level control such as that for the 
broom-balancer may be implemented as agents which are rule-based systems, 
programs and neural networks. In general these agents would read the control 
d a t a  s u c h  as  t he  p o s i t i o n  o f  t he  t r o l l e y  a n d  t he  a n g l e  o f  t he  b r o o m  f r o m  the  

blackboard. Estimates of the rate of change of the variables might be calculated 
by an agent which then writes velocity and angular velocity values on the 
blackboard for other agents to read. The various control strategies will be 
implemented as agents of appropriate types, and these will write control data to 
the blackboard. The hardware and software interface of the blackboard system 
will then switch the motors and apply power according to the parameters stored 
on the blackboard. 

The control of large complex systems is likely to be distributed over many agents 
in the blackboard system according to the perception, cognition, and execution 
considerations given above. In particular, some parts of the system may indeed be 
autonomous agents, and the blackboard architecture allows this since individual 
agents or groups of agents can be implemented in ways which make them totally 
independent of all the others, except for their interaction through the blackboard 
variables. 
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11.9.9 Computer vision 
Computer vision can be considered to be a special case of pattern recognition, and 
its implementation will be through agents which are rule-based systems, pro- 
grams and neural networks. For complex scenes computer vision requires a 
sophisticated representation which usually involves two- or three-dimensional 
geometry. These data may be encapsulated in specific computer vision agents, or 
they may be publicly available as blackboard data. Usually the incoming images 
will be public data which are written on the blackboard by the hardware and 
software interface. Various perception agents may access these image data, and 
process them to produce synthesized data to be written on the blackboard to be 
used by other agents. Computer vision may involve top-down processing, which 
is usually performed by agents which are rule-based systems or conventional 
computer programs. 

11.10 Conclusion 

In this book we have presented some of the most important concepts and 
techniques of artificial intelligence as they apply to the design of intelligent 
machines. Each of the concepts needs to be understood in order that the designer 
has an overview of the technologies available to solve large, complex, and 
sometimes ill-defined problems. The techniques we have shown can be adapted 
for particular problems, and again a good understanding of the underlying theory 
is necessary for this. We have concluded the book by considering how the various 
concepts and techniques might be implemented, and we have shown that the 
blackboard system architecture is a simple but powerful way of integrating the 
various techniques. Other architectures will be appropriate in some situations. 

After reading this book you should have a good grasp of the elementary principles 
of artificial intelligence and be able to implement these ideas in practical systems. 
Each of the areas that we have covered has its own specialist literature which you 
should now be able to read and understand in order to extend your knowledge. 
Our hope is that this book has given you a good foundation from which you can go 
forward to design and implement your own intelligent machines. 
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double spiral problem 43 
Du Pont Nemours Company 150 
dynamic activity-path planning 138 
dynamic modification 5 
dynamic reasoning 175, 178 
earliest starting time 150 
edge 139, 328 
edge data 10, 11 
edge detection 339, 339-340, 349 
edge detectors 10 
editors 240-241,356, 357 
electronic pen 344 
elements 21, 22 
elitist strategy 90, 291 
emergency planning 7 
emergent behaviour 7, 142, 303, 

358, 362-363 
emergent feature 15 
encoding data 5 
energy of a system 162 
engineering 1, 6-7, 8 
engineering design 8, 363 
engineering disciplines 346 
equiprobability contours 36, 37 
error 113, 120, 12 i 
error function 252 
error surface 115 
errors in classification 46, 51 
Escher, M.C. 44 
evaluation 62 
EXCLUSIVE-OR function 111 
EXCLUSIVE-OR problem 112 
execution 7, 125, 137, 357, 366 
execution subsystem 7, 356, 361, 

362 
exhaustive search 53, 54, 62, 78, 79, 

80, 93, 161 
existential quantifier 177, 186, 237 
expert systems 217-239, 218 
explanation facility 219, 233-234 
explosives-in-suitcase 

example 28-34, 44, 46, 49 
exponential complexity 55 
external reference 21 
fact database 222, 223, 226, 230, 

238, 239, 241,242, 243, 356, 
358 

factor analysis 37 
factory rules 151 

facts 220 
failed rule 221 
failure rate 48, 49 
fan-out layer 111 
fault diagnosis example 256-258 
fault toleration 95 
FC110 Digital Fuzzy Processor 311 
feature 17 
feedback control 278, 286, 287 
feedback loop 303 
feedback networks 123-124 
feedforward 352 
feedforward networks 110, 110-113, 

123 
fired rule 221, 358 
first-come, first-served 224, 225, 

227, 228, 297 
fitness 165 
fitness function 86, 91,291 
fitness of chromosomes 86 
fitness of the population 86 
float 147, 150 
forced classification 45 
FORTRAN 357 
forward chaining 221, 221-223, 227, 

230, 232, 233 
forward propagation 63 
forward scanning 63, 64, 147, 148, 

149, 171 
Fourier domain 27 
Fourier spectrum 251 
Fourier transform 27, 51,252 
frame-grabbing 331 
Frege, F. 177 
frequency domain 27 
fully connected network 111, 288, 289 
functionality 7 
fuzzy classification 45 
fuzzy connectives 202 
fuzzy control 294, 311 
fuzzy-controller integrated 

circuits 247 
fuzzy logic 6, 8, 45, 175, 180, 201, 

202, 205, 216, 248, 273 
fuzzy operators 201,202, 207, 299 
fuzzy processor 311 
fuzzy reasoning 201-203 
fuzzy rule-based controllers 247 
fuzzy, rule-based systems 247 
fuzzy rules 219, 246-247, 293-302 
fuzzy set membership 180 
fuzzy set theory 45, 180 
fuzzy sets 44-46, 51,203, 203-215, 

246, 294, 295, 302, 312 
game theory 312 

general-purpose machines 361 
generality ordering 224 
generalization 5, 47, 50, 96, 109 
generalized learning 

architecture 287-288 
generalizing 14 
genetic algorithms 58, 85, 85-92, 

93, 164-169, 173, 291-293, 311 
genetic crossover- s e e  crossover 
geometric model 339, 349 
geometric representation 322 
Gestalt patterns 15 
global maximum 78 
global minimum 78, 79, 80, 81, 82, 

91, 161, 164 
global minimum energy 162 
goal 4, 137, 360, 361,362 
goal-driven reasoning 230, 235 
graceful degradation 95, 219 
gradient ascent 81, 159 
gradient descent 58, 62, 76, 75-79, 

81, 82, 92, 93, 113, 115, 116, 
125, 159, 252, 292 

graph isomorphism 21 
graph matching 18-23, 51 
graph theory 172 
graphic user interface (GUI) 7, 

217-218, 332, 357 
graphics board 323 
graphs 19, 20, 22, 51,139, 139-141 
greedy algorithm 157, 159, 171, 173 
greyscale 34, 36, 315, 317, 319, 323, 

325, 331,348 
greyscale array 320 
greyscale image 127 
greyscale techniques 320 
greyscale threshold 317 
grid 271 
grippers 6, 7, 360, 361,362, 365 
ground truth 35 
handwriting recognition 339-345 
handwritten character 16 
handwritten text 344 
hard-limiter 103, 112, 116, 282, 285, 

291,292 
hard-limiting output function 101 
head (of a path) 158 
heterarchy 303 
heuristic activity-path planning 138 
heuristic methods 169 
heuristic search 53, 56, 189, 364 
heuristics 7, 8, 22, 137, 161, 169, 

220, 259, 260 
hidden layers 111, 119, 122, 130 
hierarchical architecture 349, 350, 

351-353 
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hierarchical control 303-311 
hierarchical pattern recognition 51 
hierarchical structure 23-24 
hierarchical systems 138 
hierarchical top-down control 142 
hierarchy of actions 139 
high-level languages 247 
high-quality digital television 323 
hill climbing 58, 62, 77, 77-78, 

81-82, 93, 159-161, 163, 164, 
173, 292 

Hopfield network 123 
Hopgood's defuzzification 

paradox 214 
house-keeping 220 
human-computer interaction 1 
human-computer interface 2, 7 
human-computer systems 1, 2, 3 
human brain 104 
human experts 218, 245 
human intelligence 4 
human learning 249 
human-like intelligence 2 
human logic 178 
human pattern recognition 9 
human reasoning 175 
human supervision 3 
human vision 24, 326-331 
identification 17 
identification points 40, 41 
identified 21 
Identifier 230, 232, 233 
idle periods 151 
If-Then construct 365 
If-Then decisions 191 
If-Then reasoning 350 
If-Then rules 176, 181,207, 216, 

220, 232 
If-Then statements 220 
illumination levels 345, 351 
illusion 10, 15 
image analysis 349 
image domain 25 
image interpretation 6 
image quality 315 
implication 183, 184, 221,357 
imprecision 172, 173 
Impressionist painting 327, 329 
independent agents 355 
indexing 5 
indexing agents 366 
indexing problem 366 
industrial inspection 354 
industrial process control 247 
inference 4, 5 

inference engine 217, 221,222, 223, 
225, 228, 238, 242, 243, 245, 
247, 356 

inference mechanisms 248 
inference rules - see rules of 

inference 
infinite search space 57 
inflexion 75 
information content of a digital 

image 317-333 
information engineering 5 
information processing 352, 359 
information-processing 

paradigm 135, 136, 365 
information-processing systems 331 
information technology 4 
infra-red radiation 333 
infra-red sensor 333 
infra-red spectrum 347 
initial feature 17 
input-output data 109, 252, 258, 288 
input--output pairs 14, 47, 50, 114, 

135 
input-output relationship 286 
input layer 111 
insect recognition example 24-25, 

28, 333-338 
instantiation 236-239 
integration 355-367 
intelligence 1 
intelligent actuator 362 
intelligent control 7, 8, 250, 273, 

273-312, 355, 366 
intelligent machines 5, 53, 97, 137, 

144 
intelligent scheduling 170-172 
interlaced scans 323 
intermediate facts 232 
intermediate goal 231,360 
internal knowledge 4 
internal representation 58, 240 
interpretation space 15, 50 
interpretations 17 
intruder detection 333 
lnvariance 17-18 
lnvanance to colour 18 
lnvanance to distance 18 
mvanance to orientation 346 
lnvarlance to position 346 
lnvarlance to rotation 18, 346 
lnvanance to scale 346 
lnvarlance to sensor error 18 
invariance to sensor noise i8 
invariance to signal strength 18 
invariance to size 346 
invariance to speed 18 

invariance to translation 346 
invariant 18 
inverse of a transfer function 287, 

288 
inverted pendulum- see broom- 

balancer problem 
Jarvis, R.A. 63 
jitter 323 
Johnson's non-Euclidean dilation 

solution 43 
journey times 142 
keyboard operators 344 
Kiefer, R.W. 35 
Knossos 251 
knowledge base 217, 220-221,227, 

229, 230, 246, 247, 248, 249, 
307 

knowledge-based systems 6, 8, 45, 
217-239, 350 

knowledge elicitation 218, 245-246 
knowledge engineer 218, 246 
knowledge representation 239-240 
Laplace operator 277 
Laplace transforms 277 
latest starting time 150 
Law of the Excluded Middle 181 
layers 110 
learning 5, 6, 7, 8, 125, 246, 249, 

249-272, 306, 355, 360, 366 
learning by analogy 249, 267-269, 

272 
learning by deduction 250 
learning by discovery 249, 269, 

269-272 
learning by induction 250 
learning by instruction 250 
learning by memory 249, 250, 

250-251,267, 272 
learning by observation 249, 272 
learning by updating parameters 249, 

251-252, 272 
learning coefficient 130 
learning from examples 106, 249, 

258-267, 272 
learning in neural networks 113-122 
learning rate 118 
Leonardo da Vinci 333 
Lillesand, T.M. 35 
linear control 273, 276, 278-282 
linear model 273, 278 
linear system 286 
linearly separable 42 
linearly separable classes 107 
linkers 357 
links 19, 21, 23, 139, 143 
LISP 365 
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list domain 25 
local maxima 78 
local minima 78, 84, 91, 164 
local optimum 78, 169 
local thresholding 348 
logic 8, 198-201 
logic gates 104, 182 
logical deduction 365 
logical functions 104, 112, 126, 182 
logical operators 198, 201 
logical reasoning 6, 125 
longest path 147 
look-up tables 246 
Los Alamos National Laboratory, 

USA 363 
low-level control strategies 308 
low-level pattern recognition 23 
machine intelligence 1, 2, 3-4 
machine learning- see learning 
machine reasoning 8 
machine-typed text 344 
magnetic image 331 
magnitude spectrum 27 
manufacturing processes 180 
manufacturing system 137 
map 360, 361 
map of the environment 58, 172 
marriage broker example 237-239 
mathematical functions 244, 245 
mathematical models 68-71 
mathematical morphology 349-350 
maximum likelihood classifier 37 
maximum likelihood method 36 
mean greyscale value 36 
mean squared error 113, 114, 115, 

120 
mechanical ants 303 
mechanization 3 
mechatronic systems 125, 143, 155, 

218 
medical diagnosis 218 
medical image 317 
medicine 354 
membership functions 203, 203-215, 

246, 294, 296, 302 
membership values 297, 298, 300 
meta-blackboard 366 
meta-data 366 
meta-knowledge 249 
metric 51 
microprocessors 250 
military systems 354 
minds 312 
minimization 74-75 
minimization problem 155 

minimum completion time 147, 151 
minimum distance to means 

method 35-36 
minimum path 140 
mining 354 
misclassification 42, 45, 46, 49, 345 
model-based pattern recognition 23 
models 14, 23, 105 
m o d u s  p o n e n s  187, 188, 189, 221, 

230 
m o d u s  tol lens 187 
monitor 318, 323 
monotonic 116, 190 
monotonicity 189 
mosaics 24, 331 
movement pattern 334 
multi-valued logic 175, 178, 216 
multidimensional data 347 
multidimensional data space 28-44 
multidimensional pattern 

classification 32-34 
multidimensional search space 77, 

113 
multidimensional space 28, 51 
multilayer network 111, 286 
multilayer perceptron 113, 119, 

124-135, 286, 292 
multiple classifications 44-46 
multiple instantiation 237, 239 
Multispectral Scanning System 347 
mutation 89, 90, 165, 168, 169, 291, 

292 
mutation rate 89, 91,292 
n-ary relation 18, 19 
NAND gate 182 
natural languages 5 
near miss 22, 51 
negation 198 
negation operator- see  NOT 

operation 
network theory 139 
network topology 96 
networks 139-141, 140, 143, 145 
neural network architecture 98 
neural network solution for broom- 

balancer 285-291 
neural networks 6, 44, 92, 94-136, 

100, 250, 252, 258, 269, 302, 
311,337, 338, 350, 355, 356, 
359, 361,364-367 

neural processors 346 
neural subsystems 357 
neural unit 100, 100-105 
neurons 102, 104 
Newton-Raphson method 71, 71-74, 

75 

nodes 139, 143, 145 
non-classifications 46 
non-comparability 40 
non-deterministic logic 178 
non-deterministic reasoning 175, 

178-180 
non-Euclidean dilation 43 
non-linear control 282-284 
non-linear model 277 
non-linearly separable data 109 
non-metric classification 39, 39-43 
non-monotonic logic 175, 178, 216 
non-monotonic reasoning 8, 189-190 
non-polynomial algorithms 55 
non-polynomial indeterminate 55, 

92, 155 
normal distribution 36, 37 
NOT function 104 
NOT operation 181, 182, 198, 201, 

216 
notepad computers 344 
NP algorithms 55 
NP-hard problems 157 
NP-indeterminate 55, 92, 155 
numeral classifier network 130 
numerical calculations 244 
object measurement 333-345 
object recognition 333-345 
object-oriented modules 355, 356 
object-oriented programs 357 
obstacle avoidance 172 
obstacle navigation problem 304-308 
occlusion 315, 350 
O C R -  see optical character 

recognition 
odds 254, 255, 256, 258 
offset 102 
one-to-one mappings 21 
open-loop control 8 
operator skills 346 
operators 15-17 
optical character recognition 

(OCR) 18, 23, 127-135, 
339-345 

optimization techniques 92, 173 
optimum solution 56 
OR function 104 
OR operation 181, 182, 198, 201, 

202, 216 
output function 101, 120 
output layer 111 
P+D controller- see proportional plus 

derivative control 
pairwise comparison 41 
PAL video signal 323 
paradoxes in fuzzy sets 213-215 
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parallel processing 357-359 
parallelepiped classification 

strategy 37-39 
parameter updating 249, 251, 252, 

272 
parameterization 252 
parameterization networks 252 
parameterized curve 332 
parent chromosomes 88 
parsing 240-241,244 
partitioning 24 
partitioning of representation 

space 31-34, 32-34 
path 137, 141 
path planning 7, 137, 307, 308, 360 
pattern 15, 18 
pattern classification 6, 105-110 
pattern matching 13, 242 
pattern recognition 9-51, 96, 125, 

127, 222, 306, 337, 345, 346, 
355, 359, 360, 361,364, 367 

pattern recognition hierarchy 23 
pattern space 107 
perception 6, 50, 125, 353, 366 
perception-cognition-execution 

cycle 362 
perception subsystem 175, 356, 

359-360 
performance 361 
permutation 159, 160 
personal computer 357 
PERT 150 
pH image 331 
phase spectrum 27 
phonemes 350 
picture element- s e e  pixel 
pixel 24, 25, 34, 315, 317, 321,322, 

323, 325, 327, 330, 331,333, 
349, 359 

pixel colour frequencies 336, 337, 350 
pixel configuration 348, 352 
pixel grid template 

matching 346-347 
planning 6 
point of inflexion 75 
Polaris missile project 150 
poles 278 
polygons 138 
polyhedra 138 
polynomial algorithm 54, 55 
polynomial complexity 54 
polynomial expressions 71, 74 
Pontryagin's maximum 

principle 283, 284-285 
Pope Paul III 326-327 
Popper, K. 310 

population of chromosomes 164 
position 322 
possibilistic logic 201 
possibility 201-203 
post-processing 349 
post-processing subsystem 97 
post-processor 98, 100, 364, 365 
postage stamps 327, 330 
power station controller 218 
pre-processing 135, 337 
pre-processing subsystem 97 
pre-processing system 350 
pre-processor 98, 99, 100, 364, 365 
precedence relations 144 
predicate logic 175, 177, 180, 

185-187, 216 
predicates 185, 220, 222, 223, 230, 

238, 240 
prediction 5, 310 
pressure image 331 
primitive features 17, 23, 50 
primitives 17, 351,352 
principal component analysis 37 
prioritizing 224 
priority space 141 
probabilistic search 78, 78-92 
probabilities 83, 87, 163, 195, 197, 

198-201,216, 252, 253, 256 
probability density function 37 
probability of failure 179 
probability theory 175, 178, 179, 

192-194 
procedural programs 355, 356, 357, 

360 
processors 359 
production rules 220 
Program Evaluation and Review 

Technique (PERT) 150 
programming 248 
programming language 247 
Prolog 247, 357, 365 
proportion of misclassification 46 
proportional controller 278 
proportional plus derivative (P+D) 

control 278-282, 286, 289, 
290, 293 

propositional logic 175, 177, 
180-185, 186, 216 

propositional symbols 180, 181, 183 
propositions 198, 199, 220, 221 
quantifiers 177, 185, 186, 189, 236, 

247 
Quinlan's 'Interactive 

Dichotomizer 3' 267 
Quinlan's TDIDT algorithm 246, 260 
radar 6 

random access memory (RAM) 250 
random search 80, 93 
real number creep 292 
real-time applications 37 
real-time processing 346 
reasoning 5, 125, 135, 175, 175-216, 

219, 230, 232, 250, 350, 355, 
360, 365 

reasoning in cognition 7 
reasoning in execution 7 
reasoning with certainty 180-190 
reasoning with uncertainty 19 t-215 
recency ordering 224, 225, 228 
recombination 165, 166, 168, 169 
recovery 5 
rectangular box classification 24, 

37-39 
recurrent network 288, 288-291,292 
red-green-blue - s e e  RGB 
redundancy in data 338 
reference pattern 12, 13, 17 
rejection 51 
rejection in pattern recognition 345 
relational patterns 18-23 
relations 21 
relative closeness 39, 40 
relative frequency of an event 193 
remote sensing 347, 354 
Renoir, P.A. 329 
representation 4, 5, 6, 16, 17, 310, 

332, 367 
�9 representation domain 25 

representation in scheduling 138-139 
representation space 15, 30, 31-34, 50 
resolution 271,317, 331,350 
RGB 331 
RGB camera 325 
RGB data 323 
RGB space 24 
RGB values 25 
road traffic systems 142, 143, 363 
robot arm 6 
robot vision systems 95 
robotics 8,354 
robots 137, 138, 151,353, 365 
robust primitives 351, 352 
root node 58 
rotational invariance 346 
roulette-wheel selection 86, 87 
routeing 169-170 
routeing problem 156 
rule database 222, 225, 244 
rule editor 240 
rule inventory 233 
rule ordering 224 

374 



INDEX TO VOLUME 2 

rule trail 233, 234 
rule-based systems 217-248, 250, 

260, 355-358, 359, 360, 361, 
364, 365, 366, 367 

rules 217, 219, 220 
rules of inference 180, 187-188, 

189, 216, 221,230, 365 
Russell, B. 177 
s-plane 278 
safety-critical applications 136, 155 
sampling 289 
sampling methods 51 
sampling period 290 
sampling theory 47, 48 
satellite image 317, 324, 347 
satellite image classification 

example 34-39 
scale invariance 346 
scanner 331 
scanner technologies 339 
scatter diagram 29, 33, 34, 35 
Schank, R. 1, 4 
scheduling 6, 137-173, 250, 307, 

355, 360, 361,364 
scheduling algorithms 137, 309 
screen display 320 
search 8, 53, 53-94, 125, 250, 271, 

272, 307, 355, 360, 364 
search space 53, 56, 77, 92, 113, 

137, 162, 169, 252, 292 
search surface 57 
search techniques 125 
search trees 58-68 
security 354 
security lights 333 
security systems 9, 222 
self-diagnosis 258 
self-repair 155 
semi-linear output function 290, 291 
sensing-cognition-execution loop 7 
sensitivity 294 
sensor waveforms 26 
sensors 6, 9, 28, 45, 93, 236, 

244, 245, 249, 250, 331,355, 
356, 357 

sequential processor 357, 358, 359 
Serra, J. 349 
set membership 44 
set theory 203 
shape 334 
shell 248, 356, 357 
shock waves 143 
shortest path 138, 140, 142-143, 

157, 169, 172 
shortest path algorithm 142 
shortest time 142 

sigmoid function 83, 116, 117, 120, 
125, 126, 163 

signal-to-noise ratio 325 
Simon's Principle of Robust 

Primitives 351 
Simon's Three-Pixel Principle 324, 

323-326 
Simon, J.-C. 15, 16, 324 
simple pattern 15 
simulated annealing 58, 82, 82-85, 

91, 92, 93, 125, 161, 162-164, 
173, 292 

simulation 136, 363 
single instantiation 237 
single-point crossover 88, 89, 91, 

291 
size 334 
size ordering 224 
skeletonization algorithms 348 
Smalltalk 357 
SmartLab 239, 240, 245, 248, 357 
software environment 356 
software interfaces 357 
solution space 56, 70 
sonar 6 
space travel 354 
spatial relations 12 
specificity ordering 224 
spectral coefficients 27, 252 
spectral components 251 
spectrum histogram 347 
speech recognition 350 
speech understanding systems 95 
state variables 290, 294, 296 
statistical matching 347 
statistical methods 34-37, 49, 50 
statistical models 347 
statistical sampling methods 51 
statistical sampling theory 47, 48 
statistical techniques 37 
steepest descent 77, 78, 93 
steepest descent algorithm 81 
stereo imaging 333 
string data list 241 
strings 240 
strong AI 1, 2 
sub-optimal solutions 57, 364 
sub-pixel edge detection 339-340 
subjective contour 10 
subroutine 251 
sun illusion 10, 15 
supermarket check-outs 4 
supervised learning 113 
surface knowledge 220 
symbolism 11 

symbols 320 
synapses 102 
synchronization 155 
syntax 240,356 
tail (of a path) 158 
tangent 72 
target language 332 
TDIDT algorithm 246, 260 
telecommunications 354 
television cameras 322, 323, 331 
television picture quality 323 
television signal 323 
temperature controller 

example 225-230, 234-236 
temperature in simulated 

annealing 83-84 
template 105, 127 
template matching 346-347 
test data 47, 50 
test pattern 12, 13, 132 
text string 240 
Thematic Mapper 347 
theorem proving 188, 188-189, 

216 
thermal equilibrium 84 
Theseus 251 
thickening operator 349-350 
thinning operator 349-350 
thresholding 339, 348 
thresholds 100 
time domain 27 
time-slicing 358 
time-to-failure 291 
Titian 326-327 
tolerances 180 
top-down processing 360, 367 
top-down reasoning 352, 353 
toys 354 
traffic jams 142 
training 14, 46-50, 96, 234, 258, 

366 
training behaviour 136 
training data 14, 40, 47, 50, 285, 

288, 337 
training pairs 130 
training points 35 
training set 114 
transducers 331 
transfer function 277, 278, 279, 286, 

287, 288 
transform 27 
transistor-based logic circuits 104 
translational invariance 346 
trapezium 209 
travel time 143 
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travelling salesman problem 55, 137, 
138, 155-170, 173, 291 

tree search 58, 58-68, 235, 236 
triangular function 208-213, 246 
triggered rule 221, 227, 229, 358 
trolley and po le -  s e e  broom-balancer 

problem 
truck design 354 
truth maintenance 220 
truth values 181, 187, 189, 216, 220, 

221 
Turing, A. 5 
turning points 74, 75 
TV - s e e  television 
ultraviolet irradiation 334 
unbiased sample 47 
uncertainty 51, 178, 252 
uncrossing a path 162 
underwater surveying 354 
universal quantifier 177, 186 

University of Edinburgh, 
Scotland 353 

upper confidence limits 48, 49 
US Navy 150 
variable database 245 
variables 185, 236--239 
vector representation 271 
vehicle navigation problem 304-308 
vehicle routeing problem 169-170 
velocity profile 283 
vertices 19, 21, 139 
video camera 317 
video image 347 
video image data 25 
video signal 323 
vision 5, 315-367 
vision system 223 
vocabulary 310, 311,365 
Wardrop, J.G. 142 

washing machine 218, 247 
waveform peak discrimination 

example 25-27 
waveforms 25, 26, 27, 28 
weak AI 1, 2 
weather forecasting 354 
weather forecasting example 258, 

260-266 
weighted sum 102, 116 
weighted sum of inputs 100 
weighting 140 
weights 101, 124, 140, 141,252, 

291,292 
Widrow, B. 286 
Winston, P.H. 67, 230, 232 
WISARD system 347 
word processing 341 
world knowledge 4 
Zadeh, L. 180, 201 
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