

Designing Intelligent Machines

Volume 2

Concepts in Artificial
intelligence

The two volumes of this book were produced as the major components of
the third-level undergraduate course Mechatronics: Designing Intelligent
Machines, written by a Course Team at The Open University, UK. They are:

Volume 1: Perception, Cognition and Execution

Edited by George Rzevski

Volume 2: Concepts in Artificial Intelligence

By Jeffrey Johnson and Philip Picton

Designing Intelligent Machines

Volume 2

Concepts in Artificial
In telligence
By Jeffrey Johnson and Philip Picton

Butterworth-Heinemann in association with The Open University

E I N E M A N N iF-= u Theopen
University

OXFORD LONDON BOSTON MILTON KEYNES

MUNICH NEW DELHl SINGAPORE SYDNEY

TOKYO TORONTO WELLINGTON

BUTTERWORTH-HEINEMANN LTD, Linacre House, Jordan Hill, Oxford OX2 8DP,
England, UK

-@A member oirhe Reed Elsevier plc group

OXFORD LONDON BOSTON
MUNICH NEW DELHI SINGAPORE SYDNEY
TOKYO TORONTO WELLINGTON

in association with
THE OPEN UNIVERSITY, Walton Hall, Milton Keynes MK7 6AA, England, UK

First published in the United Kingdom by the Open University in serial form for Open
University students and staff 1994.

This edition first published in the United Kingdom 1995, and reprinted with corrections
1999. Reprinted 200 1.

Copyright O 1994 and 1995 The Open University.

Edited, designed and typeset by The Open University.

Printed and bound in the United Kingdom by the Alden Press, Oxford, United Kingdom.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means without written permission from the
publisher or without a licence from the Copyright Licensing Agency Limited. Details of such
licences (for reprographic reproduction) may be obtained from the Copyright Licensing
Agency Ltd, 90 Tottenham Court Road, London WIP OLP, United Kingdom.

This text forms part of an Open University course. If you would like to know more about
Open University courses, please write to the Course Reservations Centre, PO Box 724, The
Open University, Walton Hall, Milton Keynes, MK7 6ZS, United Kingdom.

British Library Cataloguing in Publication Data
A record is available from the British Library

ISBN 0-7506-2403-5

Cover: Computer art created by Dr Paul Margerison using a Silicon Graphics IRIS
workstation as part of his PhD research in the Design Discipline at the Open University.
The images were created by random sampling of previously drawn images and subsequent
interpolation.

P R E F A C E

George Rzevski
This textbook is aimed at undergraduate and postgraduate students and those
working in industry who wish to learn the fundamentals of a branch of engineer-
ing called mecha t ron i c s .

The name was coined in the 1970s to acknowledge an urgent need to integrate
two engineering disciplines -mechan ics and electronics - with a view to
developing and manufacturing mechanical machines controlled by means of
electronic circuits. Since then the control and communication technologies have
advanced beyond recognition and are now dominated by the software and
hardware of digital computers and by embedded artificial intelligence. The name,
therefore, may now be considered to be somewhat restrictive. It is, nevertheless,
widely used.

The second part of the title -designing in te l l igent m a c h i n e s - emphasizes that
this book covers new aspects of mechatronics, that is, how to specify and design
machines capable of smart sensing, planning, pattern recognition, navigation,
learning and reasoning.

The book consists of two independent volumes. Volume 1 covers the fundamen-
tals of mechatronics and discusses the design of machine perception, cognition
and execution. Volume 2 is concerned with the concepts of artificial intelligence
needed for the design of machines with advanced intelligent behaviour.

Each volume has an 'Overview' which provides the reader with the orientation
needed when approaching the study of an unfamiliar and multidisciplinary
subject, and provides the rationale for the inclusion and ordering of the topics.

These two volumes were written as the major components of a package of
distance learning material for the Open University undergraduate course
Mechatron ics : Des ign ing Intel l igent Machines . The contributors to these two
volumes were part of an interdisciplinary Course Team, brought together to
integrate the disciplines and techniques underlying mechatronics. This Course
Team has also generated complementary components of the course, which
include video tapes, software, a home experiment kit, study guides and course
assessments. More detailed information on the course is given overleaf.

rhe Open Univer=
;ourse

The two volumes of this book were produced as the major components of the undergradu-
ate third-level course Mechatronics: Designing Intelligent Machines by a Course Team at
the UK Open University.

Complementary components of the undergraduate course include video tapes, a home
experiment kit, software, study guides and course assessments. Video tapes provide
students with an opportunity to watch state-of-the-art mechatronic systems in action, to
listen to interviews with leading designers of intelligent machines, and to use visual aids
to clarify more advanced concepts. The home experiment kit is used to build a scanner
and a small vehicle connected by an infra-red link to the student's own personal computer.
Avariety of computer programs and programming environments enable students not only
to simulate and experiment but also to design new vehicle behaviours, including
autonomous navigation.

If you would like a copy of Studying with the Open University, please write to the Central
Enquiry Service, P.O. Box 200, The Open University, Walton Hall, Milton Keynes,
MK7 6YZ, United Kingdom. Enquiries regarding the availability of supporting material
for this and other courses should be addressed to: Open University Educational Enter-
prises Ltd, 12 Cofferidge Close, Stony Stratford, Milton Keynes, MKll 1BY, UK.

Course Team Chair and A~ ;,~;,~:~i~,!~,~.~ ~,~

Professor George Rzevski, The Open University, UK

Authors
Chris Bissell Anthony Lucas-Smith George Rzevski
Chris Earl Phil Picton Alfred Vella
Jeffrey Johnson Joe Rooney Paul Wiese
George Kiss

Supporting staff
Geoff Austin (Academic Computing John Newbury (Staff Tutor)
Service) Christopher Pym (Course Manager)
George Bellis (Project Officer) Janice Robertson (Editor)
Pam Berry (Text Processing) John Stratford (BBC Producer)
Phillippa Broadbent (Print Production) John Taylor (Graphic Artist)
Jennifer Conlon (Secretary) Helen Thompson (Academic Computing
Roger Dobson (Course Manager) Service)
Ian Every (Academic Computing Service) David Wilson (Project Control)
Ruth Hall (Graphic Designer) Bill Young (BBC Producer)
Garry Hammond (Editor)

External assessor
Professor Duc-Truong Pham, of University of Wales, College of Cardiff.

Acknowledgements
The Course Team wishes to acknowledge the contributions made in the development of
the course by" Mike Booth of Booth Associates; Professor John Meleka; and Dr Memis
Acar, Professor J. R. Hewit, Paul King and Dr. K. Bouazza Marouf of Loughborough
University of Technology. The Course Team is also indebted to Stuart Burge, Douglas
Leith, Don Miles and Peter Steiner, and the many students who participated in the piloting
exercises for the course material.

vi

PREFACE V

OVERVIEW OF VOLUME 2 xiv

CHAPTER 1 Introduction

1 . 1
1.2
7.3
1.4
1.5
1.6
1.6. 7
1.6.2
1.6.3
1.7

Artificial intelligence in engineering

Strong A/, weak A/ and cognitive science

Why build intelligence into machines?

How much intelligence can be built into machines?

What is artificial intelligence?

How is A1 applied to engineering in practice?

A1 in perception

A1 in cognition

A1 in execution

The principles behind the applications

Reference

CHAPTER 2 Pattern recognition

2.1
2.2
2.2. 7
2.2.2
2.2.3
2.3
2.4
2.5
2.6
2.6. I
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.7

Introduction

Theoretical foun da tions

What is a pattern?

Patterns and operators

lnvariance

Relational patterns and graph matching

Hierarchical structure in pattern recognition

Data transformation in pattern recognition

Pattern recognition using multidimensional data

Representing items in multidimensional data spaces

Multidimensional pattern classification

Classifying multidimensional spaces by statistical methods

Rectangular box classification

Non-metric classification for chalk-cheese systems

Neural networks as pattern classifiers

Multiple classifications and fuzzy sets

i
2
2
3
4
6
6
6
7
8
8

9
15
15
15
17
18
23
24
28
28
32
34
37
39
44
44

vii

2.8 Errors: non-recognition versus misclassification

2.9
2. 10 Conclusion

Rigorous procedures for training pattern recognizers

References and further reading

CHAPTER 3 Search

3. 7
3.2
3.2. I
3.2.2
3.2.3
3.2.4
3.3
3.3. I
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.4. 7
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.5

Introduction

Tree search

Depth-first search

Breadth-first search

Best-first search

The A* search algorithm

Calculus-based search

Mathematical models

Newton-Raphson method

Minimization

Gradient descent

Discrete search spaces and hill climbing

Probabilistic search

limitations of gradient descent

A two-dimensional problem

Hill climbing

Simulated annealing

Genetic algorithms

Summary of the optimization techniques described

Conclusion

References and further reading

CHAPTER 4 Neural networks

4.7
4.2
4.3
4.4
4.5
4.5. 7
4.5.2
4.6

viii

Introduction

The artificial neural unit

Pattern classification

Feedforward networks

Learning in neural networks

Delta rule

Back-propagation

Feedback networks

46
46
50
57

53
58
60
67
62
67
68
68
77
74
75
77
78
7 8
7 9
81
82
85
92
92
94

95
700
7 05
770
773
7 73
179
123

4.7 Uses of the multilayer perceptron

4.7.1 An example: optical character recognition

4.8 Conclusion

References

I24
7 27
135
i36

CHAPTER 5 Scheduling

5. I Introduction 137
5.2 Representation in scheduling 138

5.3 Graphs and networks for representing scheduling problems 7 39
5.4 Shortest paths 142
5.5 Critical path analysis 144
5.6 Critical path activity scheduling 151
5.7 The 'travelling salesman problem' 155
5.7. 1 Hill-clim bing 159
5.7.2 Crossed paths 16 7
5.7.3 Simulated annealing 162
5.7.4 Genetic algorithms 164
5.7.5 Routeing 169
5.8 Intelligent scheduling 170
5.9 Conclusion I 7 2

Acknowledgement 173
References 173

CHAPTER 6 Reasoning

6. 1 lntroduction

6. 7 . 7 Deterministic reasoning

6.1.2
6.1.3
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3. I
6.3.2

Dynamic reasoning

Non-deterministic reasoning

Reasoning with certainty

Propositional logic

Predicate logic

Rules of inference

Theorem proving

Non-monotonic reasoning

Reasoning with uncertainty

3-valued logic

Probability theory

175
I 76
178
I 7 8
180
7 80
185
187
188
189
191
191
7 92

ix

6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.4

Bayes' rule

Probability and logic

Possibility and fuzzy reasoning

Fuzzy sets and membership functions

Defuzzification

Paradoxes in applying fuzzy sets

Defuzzification is not the inverse of fuzzification

Conciusion

References and further reading

CHAPTER 7 Rule-based systems

7. I
7. I . I
7 . I .2
7.1.3
7.7.4
7. 1.5
7.7.6
7. 1.7
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.3
7.4
7.5

Knowledge-based, rule-based and expert systems

The knowledge base

forward chaining

Conflict resolution

Backward chaining

Rule-based systems can explain their reasoning

Diagnosis in rule-based systems

Variables and instantiation

Implementation

Knowledge representation

Editors, parsing, and inputting knowledge

Pattern matching

Dynamic data acquisition

Updating the Fact Database when rules fire

Arithmetic and mathematical calculations

Interfacing a rule-based system to sensors and actuators

Knowiedge elicitation

Confidence levels and fuzzy rules

Programming language and rule-based system shells

Conclusion

References

CHAPTER 8 Learning

8. I Introduction

8.2 Learning by memory

8.3 Learning by updating parameters

1 95
1 98
20 1
203
208
213
215
2 16
2 16

2 17
220
22 I
224
230
233
234
236
239
23 9
240
242
242
243
244
244
245
246
247
24 8
24 8

24 9
250
25 1

X

8.4
8.5 learning from examples

8.5. 1 Classification through training

8.5.2 Learning rules by searching for relationships

8.6 learning by analogy

8.7 Learning by discovery

8.8 Conclusion

CHAPTER 9 Intelligent control

learning during execution using Bayesian updating

9. 1
9.2
9.3
9.3. 1
9.3.2
9.3.3
9.4
9.4.7
9.4.2
9.4.3
9.5
9.6
9.7
9.7. 7
9.7.2
9.7.3
9.7.4
9.7.5
9.7.6
9.8

Introduction

The broom-balancer

Classical solution

Linear controller

Non-linear and bang-bang control

Summary of classical control

Neural network solution

Single neuron

Multilayer network

Recurrent networks

Genetic algorithms

Fuzzy rules

Hierarchical control of complex systems

Complex control problems

Control of a simple vehicle

Cognition for control

Scheduling and path planning for control

Control as search

Controlling complex systems

Conclusion: principles for intelligent control design

Further reading

Acknowledgement

References

CHAPTER 10 Computer vision

10.1 Introduction

10.2
10.3

Abstracting information from digitul images

The nature of digital images

252
258
258
258
267
269
272

273
274
277
278
282
284
285
285
286
288
29 1
293
303
303
304
306
307
308
308
31 1
3 12
313
3 13

3 15
3 17
322

xi

10.3. 1 lmages from television cameras 323
10.3.2 Simon’s Three-Pixel Principle 323
10.3.3 Humans’ astonishing ability to read images 326
10.3.4 The generality of digital images 33 7
10.4 Computer vision versus computer graphics 332
10.4.1 Computer vision and computer graphics as

complementary disciplines 332
7 0.4.2 Representation and CAD data structures 332
10.4.3 2-D vision and 3-D stereo vision 333

10.5.1

10.5.2

10.5 Object recognition and measurement 333

Detecting insects in a digital image using neural
networks 333

Measuring the diameter of a pin using sub-pixel
edge detection 339

10.5.3 Optical character and handwriting recognition 339
10.5.4 Rejection versus error in pattern recognition 345

10.6 A summary of the basic techniques in computer vision 345
10.6.1
7 0.6.2
1 0.6.3 Associative memory

Criteria for success in computer vision

Pixel grid template matching
345
346
347

10.6.4 Spectrum histogram and statistical matching 347

10.6.5 Binarization of greyscale images and local thresholding 348
10.6.6 Skeletonization

1 0.6.7 Edge detection
10.6.8 Mathematical morphology
7 0.6.9 Neural networks

10.6. 7 0 Reasoning in computer vision

7 0.6. 7 1 Simon’s Principle of Robust Primitives

348
349
349
350
350
35 1

10.7 A hierarchical architecture for computer vision 35 1

10.7.2 Top-down reasoning in computer vision 352

1 0.7.3 Computer vision as an iterative top-down, bottom-up
process 352

I0.7.1 Boftom-up processing in computer vision 35 1

10.8 Conclusion: computer vision in intelligent machines 353

Further reading
References

xii

354
354

CHAPTER 1 1 Integration

1 1 . I
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

7 1.9. 7
7 7.9.2
1 1.9.3
11.9.4
11.9.5
7 1.9.6
7 1.9.7
7 7.9.8
11.9.9
11.10

An introduction to blackboard systems

The blackboard system as a development environment

Running many rule-based systems in parallel

Running many agents in parallel

Implementing a perception subsystem

Implementing a cognition subsystem

implementing an execution subsystem

Integration: emergent behaviour and control

Blackboard systems and the concepts and
techniques of A1
Search

Pattern recognition

Neural networks

Scheduling

Reasoning

Rule-based systems

Learning

Intelligent control

Computer vision

Conclusion

Reference

ACKNOWLEDGEMENTS

INDEX

355
356
357
359
359
360
362
362

364
364
364
364
364
365
365
366
366
367
367
367

368

369

xiii

O V E R V I E W 0 F V O L U M E 2

Jeffrey Johnson and Philip Picton
Volume 2 provides the theoretical background for the implementation of con-
cepts of artificial intelligence (AI) in engineering design and mechatronics. Our
goal has been to explain the ideas to those who have no previous knowledge of the
subject, but at the same time to give sufficient technical information to be useful
at the operational level. But AI is a huge subject, and it is impossible to cover all
the details in a single introductory book. This means that some subjects are
discussed in depth, while others are raised to set the wider context and to guide
readers to the more specialist literature.

This book was written in the context of the development of the SmartLab
software and home experiment kit which the Open University provides to all
students on its Mechatronics course. Many of the examples given here come from
our work on SmartLab, and hopefully this has kept us sufficiently close to our
goal of presenting theoretical concepts in an applications-oriented way. We are
both practising engineers, and we appreciate that the ultimate value of theoretical
ideas is how well they can be applied to solving practical problems. In this we
encourage our students to adopt the European connotation of 'engineer' of an
ingenious and creative problem solver as implied by the Latin root of the word. It
is our belief that engineering requires the highest levels of intellect, exploiting the
new problem-solving paradigms enabled by new technologies of information
processing.

We do not adopt a purist approach to 'Artificial Intelligence' and we are not here
involved in the fierce debates about the possibilities of creating artificial brains or
human-like robots. Although we enjoy speculating on this as much as anyone
else, the approach adopted in this book will follow that attributed to Edsgar
Dijkstra: 'the question of whether a computer can think is no more interesting
than the question of whether a submarine can swim'. Although we have concen-
trated on the main ideas of AI in the context of solving practical engineering
problems, AI raises some important philosophical, social and scientific issues.
We hope that after reading this book you will be in a better position to make up
your own mind on this.

The book starts off in Chapter 1 with a general introduction to artificial intelli-
gence. This is followed in Chapter 2 by quite a detailed discussion of pattern
recognition within an engineering context. Chapter 3 introduces one of the most
important topics in AI, namely search. Search is important because many
problems can be construed as searching the universe of all possibilities for
something that can be considered to be a solution to a problem. Many interesting
problems do not have solutions in the sense that a mathematical equation has a
solution, and deciding if a particular answer is acceptably good involves many
theoretical subtleties. Artificial intelligence has given new insights into the nature

xiv

of search, and produced new approaches such as simulated annealing and genetic
algorithms. The theme of search permeates the whole book.

In Chapter 4 we explain the new computational paradigm of neural networks,
which learn from data rather than being programmed. In Chapter 5 we consider
the problems of scheduling which intelligent machines must solve in order to
decide where they should be and when, and what they should be doing when they
get there. Chapter 6 introduces machine reasoning, including traditional logical
and non-deterministic approaches such as probability and fuzzy logic. Chapter 7
shows how logical reasoning can be implemented in computers using rule-based
systems.

Chapter 8 introduces the idea of machine learning which is widely felt to lie at the
heart of machine intelligence. Alan Turing, one of the founding fathers of AI,
knew that if machines are to achieve the levels of intelligence to which we aspire,
then they must be capable of learning for themselves.

The remaining chapters are concerned with implementation. Chapter 9 considers
the subject of intelligent control, in which the ideas developed in earlier chapters
are applied to the benchmark problem of balancing an upside-down broom on a
wheeled trolley. The ideas of the earlier chapters can also be applied to less well-
defined problems with more uncertainty such as a robot negotiating a path
through an unknown landscape. Chapter 10 discusses the problem of computer
vision, which involves machines abstracting useful information from images.
Chapter 11 shows how, of many possibilities, all the techniques discussed in the
book can be implemented and integrated in a simple architecture called the
blackboard system.

After reading the book, readers should feel that they know the main issues in
artificial intelligence as far as they apply to practical engineering design, and that
they are sufficiently familiar with the basic techniques to use them in practice.
However, there is no substitute for hands-on experience, and we hope that readers
will try out some of these ideas for themselves, as our students do with SmartLab.

This book is the outcome of many meetings and discussions with our colleagues
on the Mechatronics course team. Their input has been invaluable. The book
would not exist without the academic editor and course team chair, George
Rzevski, who had the original idea. Also it would not exist without the efforts of
Roger Dobson who, like all Open University course managers, had the imposs-
ible task of interfacing academics to reality. We would especially like to thank the
course editor, Garry Hammond, who often transformed our impenetrable English
and mathematical formulae into the current much improved form.

We would be pleased to receive constructive criticism from readers, but we hope
that most will find the book a useful introduction to some profound and important
ideas that will characterize the engineering of the future.

X V

This Page Intentionally Left Blank

C H A P T E R 1
I N T R O D U C T I O N

1.1 Artificial intelligence
in engineering

This book, Volume 2 in the series, sets out to explain how the fruits of fifty years'
research into artificial intelligence (AI) can be applied to make intelligent and
better machines. We have two objectives: the first is to explain the theory of the
mainstream ideas in AI, and the second is to show how these ideas can be applied
in practical engineering situations.

Artificial intelligence is a young discipline which has had some spectacular
successes, and some equally spectacular failures. The failures have mostly been
due to underestimating the complexity of apparently simple problems combined
with a belief that brute computer power ought to be able to solve any problem.
The successes have been due to human ingenuity, scientific analysis, good
engineering practice, and sometimes good luck. Out of all this experience,
engineering principles are emerging which can be used to guide engineers who
have to tackle problems of ever-increasing complexity in an increasingly compet-
itive world.

After reading this chapter you should:

I~ be aware of the distinction between strong and weak AI;

i~ be aware of the term cognitive science;

be aware of the concepts of human-computer systems and human-computer
interaction;

I~ know the benefits of building more intelligence into machines;

realize that there are currently limits to how much intelligence can be built
into machines;

i~ know the five critical features of AI and the ten enduring characteristics
suggested by Schank;

I~ be aware of how AI can be applied in the study of perception, cognition and
execution.

As in Volume 1, key terms are picked out in bold type when they are first
introduced.

VOLUME TWO

AI has two main camps. The proponents of strong AI believe that it will be
possible to build machines with human-like intelligence. By contrast, the propo-
nents of weak A! believe that machines can exhibit what might be called
intelligent behaviour, but that there are limits which mean that machines will
always be intellectually inferior to humans. Within the weak AI camp there is an
active research area called cognitive science which uses computers to model
human behaviour with the intention of learning more about human beings. A very
important aspect of this is the relationship between humans and computers.
Whether or not it is possible to build human-like machines, we certainly build
human-computer systems which involve both machines and people. For such
systems to function properly it is just as important to engineer the human part of
the system as it is to engineer the physical computing part of the system. It is also
essential to understand how the human and physical subsystems interface to each
other, and the last twenty years have seen a huge increase in research into
human--computer interfaces (HCIs).

In this book we will be mainly concerned with explaining the concepts of AI as
they relate to physical systems. We are interested in engineering problems which
either have no conventional solution, or which can be solved better by the
application of information processing and computation. We will not attempt to
give an absolute definition of 'intelligence'. Rather, we will explain some recent
ideas and computational paradigms coming under the umbrella of AI. Readers
can decide for themselves if machines which embody these are intelligent.

The main reasons for building more machine intelligence into machines are that
they may be cheaper to build, cheaper to maintain, more reliable, or able to
overcome problems which other engineering approaches cannot. This question is
discussed in some detail in Volume 1. We will summarize the conclusions as:

i~ machine intelligence offers new possibilities;

i~ machine intelligence can give better solutions to problems;

i~ software is relatively inexpensive to mass produce;

i~ software can often be changed more easily than hardware.

1.4 How much intelligence can
be built into machines?

CHAPTER 1: INTRODUCTION

The simple answer to this question is that no one knows. Engineering is the
adaptation of general scientific knowledge to particular situations and problems.
The engineer often has to fill in the details which the scientist has not provided,
and in some cases the engineer has to become a scientist in order to fill in essential
pieces of theoretical knowledge. Applied AI is like this. Often the engineer will
have to do research to find how a general technique can be applied to the
particular problem. Although research is by its nature unpredictable, there are
some guidelines.

The first guideline is that no machine works without some level of human
supervision. In other words, all machines are part of a human-computer system.
Suppose the intelligent part played by machines in any particular system can be
quantified between 0% (no machine intelligence) and 100% (no human intelli-
gence, which we claim is impossible). Then the cost of increasing the machine
component of the system's intelligence can be sketched as shown in Figure 1.1.

r

E
eD

100% human
0% machine

0% human
100% machine

practical limit to
mechanization
(some%age human
supervision inevitable)

Figure 1.1
The running costs of systems
combining human and
machine intelligence
decrease with the
introduction of greater
machine intelligence, but the
capital costs increase.

VOLUME TWO

The first principle that the engineer can infer from this is that it gets progressively
more expensive to replace human intelligence with machine intelligence. In
general, putting greater intelligence into machines gets increasingly expensive.
The design engineer should therefore be aware that there will always be a cut-off
where the investment in going just a bit further cannot be justified.

The information technology revolution of the past thirty years has seen many
mundane human tasks being taken over by computers. It has been cost effective to
begin the process of introducing machine intelligence into systems which require
data processing and the handling of large amounts of information. Yet although
the check-out counters at supermarkets are now intelligent enough to recognize
the groceries passed and do all the 'special offer' calculations on our bill, we still
have human operators at the till at the time of writing. The human tasks require
only a relatively low educational attainment, and yet the operators possess a level
of intelligence which cannot be built into the check-out machines. This is the
subtle human intelligence which, among other things, smiles engagingly at the
kate customer, has a kind word for the lonely pensioner, and alerts security to deal
with the shifty potential shoplifter.

In giving an answer to the question 'What is AI, anyway?', Roger Schank writes:

Artificial Intelligence is a subject that, due to the massive, often quite
unintelligible, publicity it gets, is nearly completely misunderstood by
people outside the field. Even AI's practitioners are somewhat confused with
respect to what AI is really about.

Schank suggests five critical features of AI:

~" communication

~" internal knowledge

i~ world knowledge

~" goals and plans

i~ creativity.

He also suggests ten 'enduring characteristics' of AI (we have added the
comments in parentheses):

1 representation

2 decoding (real systems encoded into and from machine representations)

3 inference

CHAPTER 1: INTRODUCTION

4 control of combinatorial explosion

5 indexing (for recalling knowledge)

6 prediction and recovery

7 dynamic modification (including learning)

8 generalization

9 curiosity

10 creativity.

Most of these are of immediate importance in designing intelligent machines. A
major theme throughout this book will be the problem of representing the
machine and its environment. If we want to reason and make inferences we will
have to encode these data in a symbolic language. The resultant knowledge base
will have to be indexed in a way which allows information to be extracted quickly
and efficiently. Alan Turing (1912-54), one of the founding fathers of machine
intelligence, realized fight from the outset that for a machine to become 'intelli-
gent' it would have to learn, and to generalize from specific information in order
to acquire new knowledge. Prediction is an important requirement for intelligent
machines since they must know what is possible and choose between the options.
Similarly, it is highly desirable that a machine that has made a mistake should be
able to detect that mistake and recover from it.

The characteristics of curiosity and creativity are rare in contemporary machines.
In one sense we expect intelligent machines to be 'curious' through the actions of
their sensors, which are constantly seeking to know 'what's out there'. Higher
levels of curiosity may appear in the next few generations of machines. A robot
might muse along the lines of 'although I have been doing this job for years with
my fight arm, I wonder if I could do it better with my left leg', and miglat thus
spontaneously improve its performance. Whether we want our machines to be
creative, and possibly unpredictable, remains an open question.

Although there is a substantial body of applicable knowledge arising from AI, the
subject remains young with many more questions than answers. One of the major
failures of AI to date is the inability of machines to understand natural languages
such as English, French, Hebrew, Arabic or German. Certainly we can feed the
electrical signals from microphones into computers, but we cannot make
machines which abstract the kind of information that humans do so effortlessly
with our ears and brains. Vision is another area in which progress in AI has been
slow despite many hundreds of man-years of research effort. So we can conclude
that computers are rather poor at the cognitive functions which lie at the heart of
much of our human intelligence. However, the story is not entirely negative, and
in this book we will show how AI and information engineering can be applied in
the practical design of intelligent machines.

VOLUME TWO

AI can make major contributions to designing intelligent machines in the areas of
perception and cognition, and also to actuators such as 'intelligent' grippers on
robot arms.

1.6.1 AI in perception
As seen in Volume 1, effective perception is essential in the design of intelligent
machines. In particular, these machines need to have sensors which provide
information on internal aspects and on the environment. Many sensors deliver
information which is not useful in itself. Sometimes sensors produce 'noisy' data
with uncertain interpretation. Sometimes information from many sensors must be
combined in order to give useful information. And sometimes the cognition
subsystem requires information in symbolic form. AI has developed many
principles and techniques for processing noisy sensor information and synthesiz-
ing it into useful symbolic forms of known reliability. Techniques which are
particularly useful in perception include:

I~ pattern classification

I~ neural networks

I~ image interpretation: computer vision, sonar, radar

I~ data fusion

i~ learning.

1.6.2 AI in cognition
Once a machine has reasonably reliable information about itself and its environ-
ment it must constantly be making decisions as to what to do in the long and short
terms. Thus a machine must be able to m o d e l itself within its environment and
predict the possible states of both itself and the environment. Techniques which
are particularly useful in cognition include:

I~ reasoning:

representation

logical reasoning

knowledge-based systems

fuzzy logic

scheduling and planning:

representation

activity planning

CHAPTER 1: INTRODUCTION

critical-path analysis

path planning

emergency planning

problem solving:

heuristics

I~ learning.

1.6.3 AI in execution
Assuming that a machine has established its goals and has a plan to enable it to
achieve them, it must execute that plan. Execution usually involves the machine
moving, either the whole machine as in the case of an autonomous vehicle, or
parts of the machine as in the case of a robot gripper.

Some intelligent machines use human beings in the execution stage. For example,
machines to detect drugs and explosives use human customs inspectors to take
the appropriate action once a contraband substance has been detected. The link
between the cognition subsystem and the human being is often implemented
through graphic user interfaces (GUIs). The sensing-cognition--execution loop is
then closed using devices such as the keyboard, the mouse, and so on. The area of
human-computer interfaces is becoming increasingly important as machines
gain more intelligence and greater functionality.

Sometimes intelligence is distributed throughout machines, with parts such as
grippers having their own processing ability. Distributed systems may h.ave a
central controller, or the overall behaviour may be allowed to emerge from the
interacting subsystems. Often, distributed intelligence is limited and dedicated to
specific tasks. This may allow subsystems to be controlled by relatively high-
level commands such as 'pick up the block' or 'spray the panel'. The intelligent
execution subsystem must interpret such commands and 'unpack' them in the
context of the knowledge or model it has of its tasks or function. The final result of
this will, in general, be to activate switches which power motors and other
actuators.

In this volume AI in execution appears mainly under the heading of 'intelligent
control'. This involves decision-making using various kinds of reasoning,
including rule-based systems, fuzzy logic, and even neural networks.

From the viewpoint of this book, reasoning in execution differs from reasoning in
cognition by its motivation. In cognition the goal is to find appropriate informa-
tion. In execution the goal is to control actuators to make things happen. Thus the
techniques used in cognition and execution may be similar to those listed in
Section 1.6.2.

VOLUME TWO

Apart from applying AI-derived solutions to engineering, AI has also given us
methodological knowledge which can be applied in engineering design.

One of the main lessons we learn from AI research is that it can be hard to find an
appropriate way of representing things inside a computer. Often this means
having to analyse things very carefully and abstract their parts and relationships.
Also, we sometimes have choices in methods of representation, and we can look
to AI for principles which help us choose between the possibilities.

Another important lesson learnt from AI is that 'brute force' computer power
cannot solve a large class of important problems. Our computers can store and
process huge amounts of information, but for many problems the search for
particular outcomes or solutions must be guided by heuristics, i.e. rules of thumb
based on trial and error, which usually work, but don't always; i.e. they give
reasonably good results most of the time.

Machine reasoning is a major area of research in AI and has resulted in successes
such as knowledge-based systems, fuzzy logic and non-monotonic reasoning. To
build intelligent machines we must have a good understanding of what it means
for a machine to reason.

Learning is another major area of AI which we can exploit in designing
intelligent machines. Building everything into machines once and for all makes
them expensive and inflexible. Machines that can learn tend to be cheaper, more
adaptable, and in principle able to improve their performance.

The building of intelligent machines, especially robotics, is itself a mainstream
research area in AI. From this the subject of intelligent control has evolved, which
deals with situations in which conventional control theory is not applicable. These
include open-loop control, where the machine has inadequate feedback infor-
mation or lacks the reference information required to use conventional control
techniques. These new approaches to control are often based on logic rather than
more traditional continuous mathematical techniques such as calculus.

In the rest of this book we will examine these topics in greater detail. Our goal is
for you to understand the principles of AI sufficiently well to be able to apply
them to real engineering problems.

Schank, R. C. (1990) 'What is AI, anyway', in Partridge, D. and Wilks, Y. (eds) The
Foundations of Artificial Intelligence, Cambridge University Press.

C H A P T E R 2
P A T T E R N R E C O G N I T I O N

2.1 Introduction

Pattem recognition is fundamental to perception and cognition in intelligent
systems. A machine's sensors can generate a huge number of combinations of
inputs over short periods of time. To be useful it is necessary to transform these
data into one of a set of known classes by recognizing patterns in the data. In
perception, for example, a microphone delivers a waveform corresponding to
sound. Until parts of the wave which correspond to words such as 'yes' and 'no'
are recognized, these data may have little or no value. Pattern recognition occurs
also during cognition, for example, when a machine has to decide what to do next.
Some patterns of data from the sensors combined with data in memory will
require one action, other patterns will require other actions.

Human beings are astoundingly good at pattern recognition; so good that the
pioneers of machine intelligence severely underestimated how difficult it would
be to represent patterns of any complexity. For example, can you see a pattern in
the following configuration of dots?

�9 �9 �9 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 �9 O 0 O 0 0 0 0

You probably see a pattern of one dot, two dots, three dots, etc., and you probably
see that the dots form a straight line.

Human pattem recognition is used extensively in large and small systems. For
example, security systems includehuman guards whose job includes looking at
television monitors and recognizing unusual patterns (perception), deciding if
this pattern is an emergency (cognition), and raising the alarm if it is (execution).
In industrial systems human quality controllers have to look at assemblies and
recognize unusual configurations (perception), decide if the configuration is
outside the specification (cognition), and physically move rejected parts (execu-
tion). In many similar cases the execution could be performed by machines if only
one could automate the pattern recognition, In some systems this has already
happened; for example, most large aircraft are controlled much of the time by an
autopilot.

Although human pattern recognition can be very good, it is unreliable. People get
tired, lose concentration, miss things, and make mistakes. Also it is sometimes

Figure2.1
Is there a pattern in the

dots?

VOLUME TWO

not possible to use human pattern recognition, especially in environments in
which the fragile human body cannot survive. For these reasons automating
pattern recognition has been an active research area for many years.

Figure 2.2 shows that human beings have the remarkable ability to recognize
patterns which are not explicit in the sensory data. The 'sun illusion' shows how a
circle can emerge from a set of straight lines. There is nothing in any individual
line to suggest a circle, but together they produce what is called a subjective
contour.

Where does the circle come from? Something in our brains seems to allow it to
recognize a circle in the lines, although this remains something of a mystery. As
Figure 2.3 shows, the explanation that subjective contours are due to edge
detectors in the brain is inadequate (edge detectors are defined in Chapter 4 of
Volume 1). There the subjective contours are orthogonal to the edge segment data
and in most places there is no explicit edge data for an edge detector to respond to.

411 Figure 2.2
A subjective contour in the
sun illusion.

~il Figure 2.3
Subjective contours cannot
be explained by simple edge
detectors: here the edges are
orthogonal to the lines and
there is no explicit edge data
in these directions.

10

CHAPTER 2" PATTERN RECOGNITION

Figure 2.4 shows that just a few points can give the strong illusion of lines and
geometric shapes, even when there are no explicit edge data at all. These
phenomena are not well understood and they suggest that automating pattern
recognition may be very hard: how can we get a machine to see patterns which are
not explicit in the data?

.

Figure 2.5 shows shapes that can be perceived in patterns of dots. The first of
these can be recognized as the letter A. When you see this shape it symbolizes the
first letter of the Roman alphabet. You have a tremendous amount of implicit
information about the symbol. You can equate it with the symbol A for some
purposes, and sometimes you equate it with a. You know it can be a word by itself,
and you can even make a sound which corresponds to the symbol: 'a' to rhyme
with 'hay'.

: ' -
".

/
:- - _ .

- :. ".

. "..
- . :

. ."
, .

�9 :

. . . ' ~
�9 ~

~ �9
. . . . "

:::~--: ::~:ii'~::: :::ii."i:

"2 ..; -

�9 �9 .% " :

,. ; ; "

"..iii?::::::::::i.."

(a) (b) (c)

The second shape can be perceived to be a heart shape. You have a tremendous
amount of implicit information associated with this symbol. It symbolizes
romantic love and 'affairs of the heart', and you have probably seen bumper
stickers giving the message I ~ N Y which can easily be read as '! love New
York'. The third shape is not a symbol that will be recognized by everyone. In fact
it represents the River Thames between Tower Bridge in central London and the
Thames Barrier in the east. This shape will easily be recognized by many
Londoners as symbolic of the capital.

Symbols form the link between explicitly sensed information, and a priori
information stored in a different form within a machine.

~ Figure 2.4
A few dots are sufficient for
us to perceive lines and
geometric shapes in images.

~ Figure 2.5
Patterns of dots as shapes
and symbols.

11

VOLUME TWO

What information is there in the following patterns of letters?

MCARNC NFDIBUS POJDT

EHTOIS

Both of these patterns use symbols to represent information, but recognizing the
symbols does not complete the information abstraction process.

In the first pattern a word can be abstracted by applying the rule 'read the symbols
from left to fight as top-bottom pairs'. Thus the first two letters are M and E, the
second two letters are C and H, and so on. In this case the pattern has atomicparts
(letters) with a spatial relation on them.

The second pattem is also read from left to fight, but this time we have used the
schoolboy code which replaces a letter by the letter that follows it in the alphabet:
N replaces M, F replaces E, D replaces C, and so on. Here we have used the order
relation on the letters of the alphabet to abstract the pattern, and this involved pre-
existing knowledge.

A m A m

�9 �9
(a) The reference pattem (b) The test pattem

m A m "~~
�9 �9

(c) The parts of the test pattern can be matched
with the parts of the reference pattern

,i, m

(d) The relationships between the parts
of the pattern can be matched

Figure2.6
Matching a test pattern
against a reference pattern.

12

CHAPTER 2: PATTERN RECOGNITION

Consider the patterns shown in Figure 2.6 (a) and (b). The first is a reference
pattern, a standard against which others will be compared. The second is a test
pattern. Is the test pattern the same as the reference pattern? Using our human
pattern recognition system most of us would instantly say that the two patterns are
the same. However, how might this be implemented on a computer? As shown in
Figure 2.6, this pattern recognition problem can be split into two. First, we test to
see if the test pattern has the same number of parts as the reference pattern, and try
to match them. Here we can match the triangles, squares and circles, so the
patterns are the same as far as the set of their parts is concerned, Figure 2.6(c).
Second, we ask if those parts are assembled in the same way. In other words, do
the patterns have the same relationships between their parts? In this case they do,
as shown in Figure 2.6(d): the triangle is to the left of the square in both (shown
by the solid line m) , the square is above the circle in both (shown by the dotted
line), and the triangle is above and to the left of the circle in both (shown by
the dashed line). Since the parts match and the relationships between the
parts match, we could define the patterns to be the same.

Other considerations have to be taken into account when matching patterns. For
example, which of the patterns in Figure 2.7 can be matched with the reference
pattern of Figure 2.6(a)?

m A * m

�9 m �9 +
(a) (b) (c)

The first of these, Figure 2.7(a), is the reference pattern rotated 90 ~ clockwise.
The triangular, square and circular parts can be matched as before. If the reference
pattern is rotated, the relationships between the parts can be matched. Whether or
not rotating the reference pattern makes any difference depends on the applica-
tion. Similarly, the second pattern (Figure 2.7b) is the same pattern as the
reference pattern, but this time it is flipped about a vertical axis. In the third case
the patterns are similar by having three parts, but they are different because the
parts are different. In an application in which the precise nature of the parts
matters, these patterns are different. On the other hand, if the precise nature of the
parts is irrelevant, or if it is known that stars are equivalent to triangles, and
crosses are equivalent to circles, then the patterns are the same. In Section 2.3 we
will show how graph theory can make these concepts more precise, as a step
towards implementing them on machines.

Apart from matching patterns of objects in space, we often need to match patterns
of numbers. For example, consider the following observation of sensor inputs
corresponding to a machine's pressure and temperature taken under normal and
abnormal running conditions:

~l Figure 2.7
Can these patterns be
matched with the reference
pattern, Figure 2.6(a) ?

13

VOLUME TWO

Normal Abnormal

(0.812, 0.423) (0.714, 0.518)

(0.823, 0.433) (0.622, 0.444)

(0.720, 0.302) (0.719, 0.483)

Given these data, could one conclude from a subsequent observation
(0.721,0.310) whether the machine was operating normally or not?
And what of the observation (0.705, 0.530)?

Intuitively, (0.721,0.310) looks more similar to the last 'normal' value and so is
likely to indicate normal running. On the other hand, (0.705, 0.530) looks more
similar to the 'abnormal' values and so indicates abnormal running. Section 2.5
will show how these data can be systematically analysed as the basis of auto-
mated pattern recognition.

Machine pattern recognition attempts to automate the process of finding patterns
in both relational and numerical data. Invariably it does this by having a set of
patterns of known type stored in its memory, and new pattems are compared with
these. If the new pattem matches one of the known pattems it is classified as being
of that type (or class). The known patterns may come from a variety of sources,
but usually they come from models, or a process of training.

In order to train a pattern recognition system it is necessary to start with a set of
training data, which consists of input-output pairs. The input data in some way
characterize an object type or class. The output is usually the code correspoiading
to the object type or class.

Once trained, the pattern recognition system will be expected to recognize
objects from input data it has not encountered before. For example, it may have
been trained on a number of handwritten characters: the input data consist of the
pattern of black/white dots from an optical scanner and the output is a symbol
such as the letter L (Figure 2.9 in the next section). The objective of such a system
is to recognize other handwritten characters which are sufficiently similar to the
trained L. We speak of the system generalizing from its training data. This means
that, given particular examples during training, the system is expected to general-
ize to other examples which it has not seen before.

This chapter will develop the theoretical foundations of pattern recognition and
illustrate these with some particular techniques, it will also consider in some
depth how it is possible to train a pattern recognition system and, most impor-
tantly, how one conducts rigorous tests to determine success rates.

14

CHAPTER 2" PATTERN RECOGNITION

2.2.1 What is a pattern?
A simple pattern is defined to be a set of atomic parts assembled by a relation. A
pattern is a set of parts (possibly simple patterns and parts of patterns) assembled
by a relation. A part of a pattern is an atom or atomic feature if it can be perceived
independently of the rest of the pattern.

In the case of the 'sun illusion' (Figure 2.2) there are 16 straight lines. Each can be
sensed independently of the rest of the pattern, and so they are atomic features.
These atomic features are assembled by a spatial configuration relation which
arranges them as the spokes of a wheel. This relation can be expressed precisely
by the angles between the lines and their positions relative to their neighbours.

The circle in the sun illusion is an emergent feature which human perception
abstracts from the pattern. It can be extremely difficult to program machines to
recognize such subtle illusions. However, there are many emergent features
which can be detected quite easily. For example the sides of a square do not
possess the 'squareness' property, but it is easy to test if four lines satisfy the
relational requirements for them to form a square.

The circle illusion is an example of what psychologists call a Gestalt, which
comes from the German word meaning 'form'. There are some patterns which
can only be sensed as a whole and whose existence breaks down when one of the
parts is removed. For example, the property of being the letter L is not possessed
by either its vertical or horizontal strokes, I and _ respectively. Gestalt patterns
are those in which the whole is more than the sum of its parts, i.e. their emergent
features cannot be recognized in the absence of any of the supporting parts.

2.2.2 Patterns and operators
In his book on patterns and operators, Jean-Claude Simon (see References), a
pioneer of pattern recognition, suggests that the subject is best understood in
terms of:

computational complexity

the properties of representation spaces

the properties of interpretation spaces.

Computational complexity is discussed in some depth in Chapter 3 on search.
Simon writes that 'pattern recognition is first and foremost a battle against
complexity'. This means that the obvious approach to pattern recognition where
the input pattern is compared with all possible matches is usually not feasible. In
general, the computational demands are too great and they always will be.

15

VOLUME TWO

Therefore we have to try to find methods which are computationally feasible, in
general this means devising heuristics (procedures which usually work but are
not guaranteed to do so).

Representation is one of the fundamental problems in designing intelligent
machines: how is the information and knowledge that underlies intelligence to be
stored in the machioe? In this chapter two major classes of representation will be
considered. The first represents patterns as objects and their relationships. For
example, a square is a set of four lines subject to a set of spatial relationships. The
second representation uses numbers in multidimensional spaces to represent
patterns. For example, coins can be classified by a two-dimensional space of their
diameters and their weights as discussed in Chapter 4 of Volume 1.

In general, it is more difficult to handle relational patterns and usually we try to
find a representation in terms of numbers. This can mean finding transformations
from one representation to another.

As far as intelligent machines are concerned, Simon presents pattern recognition
in terms of spaces and operators (Figure 2.8).

real-world sensor .~ representation pattern ,,. interpretation
r

o b j e c t information spaces recognition spaces

For example, in Figure 2.9 the handwritten pattern which is to be interpreted as
the character L could have a physical representation as dots in a rectangular array
after being digitized by a document scanner. These data in the representation
space form the input to the pattern recognition system. This is shown as an
operator which takes the bit-mapped representation to a symbolic interpretation
as the letter L. In fact, in the machine it is more likely to be represented by the
ASCII code for the letter L, i.e. the binary number 01001100.

real-world representation interpretation
object space space

data from scanner

handwritten bit-mapped
character character

pattern recognition

L symbol
0 1 0 0 1 100

A representation of an item observed by a machine's sensors is a string of
elements in a finite alphabet representing (or coding) it. At the machine level the
representation will usually be a string of bits written in the machine's memory; for
example, the 0/1 bits representing black/white picture elements in the bit-mapped
image of the handwritten character L.

Figure 2.8
The fundamental diagram of
pattern recognition, after
Simon (1986).

Figure 2.9
The representation and
interpretation of a
handwritten character.

16

CHAPTER 2: PATTERN RECOGNITION

The possibility of multiple interpretations is one reason for the difficulty of
automating pattern recognition. For example, in Figure 2.10 the interpretation of
the central shape can be either H as in THE, or A as in CAT. Here the
interpretation depends on the context.

C

A single representation can have several different interpretations; these can be
made either by a human being or by a machine, and it is important that the two
make the same interpretation; e.g. the symbol L or its ASCII code 01001100.

Identification is defined as the action of giving a particular interpretation to a rep-
resentation. This is the objective of pattern recognition, e.g. interpreting the bit-
mapped image of the handwritten character as the symbol L.

A feature is defined to be the result of a partial identification, e.g. one stroke of a
character, one phoneme in a spoken word, an edge or texture in a visual image.
The term initial or primitive feature is sometimes used in connection with the
initial description of a representation. This underlines the fact that there is always
a lowest level of data in pattern recognition. In general, primitive features are
identifications of the information represented by the sensor inputs.

In many pattern recognition systems the first step is to identify primitive features
which together form part of a higher level representation in a hierarchy of
identification. For example, a system might first recognize strokes as image prim-
itives, and then recognize configurations of strokes as characters.

It is most important in pattern recognition that the primitives are robust and easy
to recognize without confusion. Although subsequent reasoning can correct
errors in pattern recognition, it is very hard to do so when the initial data are
ambiguous.

~il Figure 2.10
The representation/-~ can be
interpreted as H and A.

2.2.3 Invariance
In pattern recognition we want the identification to be invariant to some things but
not to others. Figure 2.7 showed three patterns and asked if they were the same as
the reference pattern in Figure 2.6(a). In the case of Figure 2.7(a), if the pattern

17

VOLUME TWO

recognition allows the reference to be rotated the answer is yes. But if it is not
invariant to rotation (i.e. rotation matters), then the patterns are not the same.
Similarly, if the reference pattern can be flipped over then it can be matched with
Figure 2.7(b). If the pattern recognition need not be invariant to the precise nature
of the parts, then Figure 2.7(c) can be matched with the reference pattern of Fig-
ure 2.7(a).

Consider an optical character reading (OCR) machine. We would want it to work
whatever the angle of the text, i.e. it should be invariant to rotation. However,
complete rotational invariance would mean that, for example, the symbol + might
get confused with the symbol x. Here it is required that the overall pattern
recognition should have rotational invariance but that the system can decide the
orientation of the text and treat each character in a rotation-dependent way.

There are many invariances that are of interest in pattern recognition. They
include:

invariance to sensor errors and noise

invariance to sensor position and orientation

invariance to signal strengths received by sensors

size invafiance

colour invariance

speed invariance

distance invariance.

When specifying a pattern recognition system it is important to specify the
required invariances.

Apattern is defined to be a set of parts assembled by a relation. The relation can
be very complicated, and it is often made up of many subrelations.

An n-ary relation, R, on the set of elements {a l, a2, ... an}, is defined by a
proposition concerning these elements which can be judged true or false, and an
operational procedure for making that judgement. The related set is written

<a l , a 2 ,an;R>.

For example, in Figure 2.11 the set {block 1, block 2, block 3 } is assembled by
the 'arch' relation defined as follows. Here n = 3 since there are three components
being related, The proposition defining the 'arch' relation can be stated as a set of
relationships ~uch as:

(a) Block x and block y have equal length.

18

CHAPTER 2: PATTERN RECOGNITION

This means there are two blocks which have the same length. For the arch in
Figure 2.11 we can choose x = 1 and y = 2. Substituting these values, relationship
(a) reads as: 'block 1 and block 2 have equal length', which can be operationally
tested by measuring.

(b) Block x must stand vertically and block y must stand vertically.
)

This requires that the blocks designated x and y must stand vertically. This can be
tested by measuring their height against their base. Then we find that 'block 1
stands vertically' is true, and that 'block 2 stands vertically' is true.

(c) Block x stands to the left of block y with a gap between them not
exceeding the length of block z.

To test this we look to the left of block 2 to see ifblock 1 can be found there. It can.
Then we measure the distance between blocks 1 and 2. In order to test the rules we
try block 3 as block z. By measuring block 3 it can be found that the distance
between block 1 and block 2 is less than the length of block 3.

(d) Block z stands above block x and above block y, touching both.

This means that block 3 must touch both block 1 and block 2. It does. It also
means it must be on top of block 1 and block 2, which it is.

In this way it has been shown that the pattern in Figure 2.11 satisfies the
conditions of the 3-ary relation which defines the arch relation. So, by definition,
the blocks form an arch. Any set which satisfies all the conditions (a) to (d) is
defined to be of the 'arch' pattern.

block 3

block 1 block 2

A Figure 2.11
An arch pattern <block 1, block 2, block 3; arch relation>
assembled from three blocks.

The compound proposition which defines a relation can be hard to understand
when it is written in words, and it is common for it to be represented by a graph
such as Figure 2.12, if this is possible. In a graph the vertices represent objects
and the links represent relationships between pairs of objects.

19

VOLUME TWO

block z

,es ove
t o u c h e s ~ ~

..... ~ block y block x to left of,
parallel and vertical,

equal length

Given a set of learnt patterns, pattern recognition can be considered to be the
process of comparing new patterns with those in memory. If a pattern is identified
with one in memory it is identified as being of that class.

One method of establishing whether a test pattern is the same as a known pattern
is to compare their graphs: if the graphs are the same then the patterns are the
same.

Consider the configuration in Figure 2.13. Should it be recognized as an arch?
Let block x = block 4, block y = block 5, and block z = block 6. Then it has the
same graph as that in Figure 2.11, and by the definition given it is an arch. But it is
clearly not the same arch as that in Figure 2.11, even though it satisfies the
definition.

block 6

41 Figure 2.12
A relational pattern.

block 4 block 5

The difference between the two arches is that the second has an overhang on the
fight. Is this what was required? The answer to this question depends on the
purpose of the pattern recognition. If this is what is required, then the pattern
recognition has worked. If it is not what was required, then the definitions of the
relations are not precise enough. They might be made more precise by adding the
conditions:

(e) All the blocks x, y and z must have proportions between 3:1 and 10:1.

(f) The ends of the top block, z, should be in line with the outsides of the side
blocks x and y.

~l Figure 2.13
An arch with an overhang.

20

CHAPTER 2' PATTERN RECOGNITION

The second arch then fails to be an arch of the pattern of the first. This suggests the
following definition. Two patterns are defined to be identified if:

1 the elements of the first are identified with the elements of the second in a
specified way, and

2 the relations of the first are identified with the relations of the second in a
specified way.'

In practice this means that the engineer has to give rules for matching the vertices
in the graphs and rules for matching the links in the graphs.

A graph isomorphism is defined by two one-to-one mappings. The first maps
each vertex of one graph to a unique vertex of the other. The second maps every
link in the first graph to a unique link in the second. The mappings have to satisfy
the requirement that if link L i is mapped to link L' i, then the ends of link L i are
mapped to the ends of link L" i. Thus if the vertices of L i are a and b, and the
vertices of L'i are a' and b', then a is mapped to a', and b is mapped to b'.

Figure 2.6 illustrated a graph isomorphism. The mapping between the vertices
was given in 2.6(c). The mapping between the links was given in Figure 2.6(d).

One of the major ways of establishing pattern matches is to require that the graphs
of the patterns are isomorphic.

In principle the letters p, q, d and b could be considered to be isomorphic, as could
the numbers 6 and 9. Indeed the symbols are sometimes written _6 and 9 to make
sure they are not identified incorrectly. The underlining is a convention which
establishes a relationship between the whole pattern and an external reference
(in this case the horizon). This suggests that the definition for two patterns to be
identified requires a third condition:

Any relations of the first pattern with external reference objects must be
identified with the relations of the second pattern with the external reference
objects in a specified way.

The vertices of the configuration in Figure 2.14 can be put into one-to-one
correspondence with those of Figure 2.11. However, the blocks do not satisfy our
rule (d); block 3 is under the other two so there are no links to express block 3
being above block 1 and above block 2. No isomorphism can be established
between the graphs, and this shape fails to be recognized as an arch. (Strictly
speaking the relations 'above' and 'below' require an external reference, but this
is not developed here for reasons of simplicity.)

21

VOLUME TWO

block 1

block 3

block 2

to left of,
parallel and vertical,

block 1 equal length block 2
- ,

~x~ches t o u c h e s ~ ~

a ~bove ~ ~ ~ ~ /) ~ a b o v e

block 3

A Figure 2.14 An inverted arch.

In pattern recognition we have to allow for the possibility that parts of the pattern
are missing, or not quite fight. For example, the configuration in Figure 2.15 is
almost the same as that in Figure 2.11, but it just fails to meet the requirement that
block 3 touches block 2. In this respect it is a n e a r miss .

block 3

block 1
block 2

The graphs for the arch in Figure 2.11 and that in Figure 2.15 are given in
Figure 2.16. The 'near miss' is expressed by the absence of a link in the second
graph.

block 3 block 3

a b o v e a b o v e ~ / ~

/ ~ t o u c h e s t~ "x~ ~ ~ % h e s

, ~ . .

block 1 r block 2 block 1 block 2 left of left of

The graphs give a homogeneous way of representing the multitude of relations
between elements of patterns. They allow heuristics to be expressed such as
identifying patterns which are near misses by just one link. However, care is

,~ Figure 2.15
A 'near-miss' arch.

,~ Figure 2.16
The absence of a link in a
'near-miss' pattern.

22

CHAPTER 2 PATTERN RECOGNITION

needed in this because some links are essential to the integrity of a pattern while
others may be more expendable.

When patterns get very complicated their graphs can have many vertices and
links. Comparing graphs can be very expensive in terms of computation due to
problems of complexity. (Using the notation developed in the next chapter, the
complexity is usually of order O(n2).)

Relational pattern representations might be considered to be models of the things
they represent. In principle, one could build a pattern recognition based on
general propositions. This kind of model-based pattern recognition is different
from the training-based pattern recognition discussed in the next section.

Pattern recognition is in general too complex to be performed in a single
operation. Usually it begins with low-level pattern recognition of the primitive
features. These primitives are selected by the criteria:

they must be robust: easy and reliable to detect

they should appear in a large class of patterns

there should not be too many primitives.

In the last two respects, we seek primitives which have properties similar to the
alphabet: every English word can be made up from the alphabet, but there are
only 26 primitives.

Once primitive features are detected, another level of pattern recognition assem-
bles them to form higher-level structures. For example, in an OCR system the
primitives might be the strokes of the letters. Intermediate structures might be
assemblies such as the configuration L which is found in the letters B, D, E and L.

At the next level of assembly the system might recognize a letter such as E as the
assembly of configurations, as in Figure 2.17.

level 1 level 2 level 3 level 4

L
I-

U I
I L

E
Figure 2.17

A pattern recognition
hierarchy.

23

VOLUME TWO

The great advantages of using hierarchies in classifications are:

breaking down the process reduces the computational complexity;

this approach can handle missing data.

This last requirement is very important. In many pattern recognition applications
one does not have all the data. For example, in computer vision pieces of one
object may be occluded by parts of another. Within hierarchical classification we
can accept that a configuration such as

I_
I_

might be an E which has lost its top stroke.

Hierarchical pattern recognition is illustrated by computer vision in Chapter 10.

2.5 Data transformation in
pattern recognition

Sometimes the initial representation of a pattern does not lend itself to simple
methods of automatic pattern recognition. For example, in Chapter 10 there is a
discussion of the problem of recognizing insects in digital images.

A digital colour image is effectively three arrays of numbers, one array represent-
ing the intensity of red in the image, one array representing the intensity of green
in the image, and one array representing the intensity of blue. In other words, each
picture element (p/xe/) in a horizontal and vertical grid has three numbers
assigned to it, one each for its red, green and blue intensifies.

These data can be used to put coloured dots on a computer screen, and our eyes
and brains can abstract structure from these mosaics to recognize shapes and
configurations. It is difficult to program a computer to achieve the same degree of
subtle pattern recognition which our biological vision system performs so
effortlessly.

Simply matching the pixels in an image of a reference insect with a test image
would be hopeless because the test insect may be in a different position with a
different orientation in a different pose. Abstracting the shape of the insects is a
quite complex operation which gives poor results in such images.

In Chapter 10 we suggest a very simple solution to the problem of recognizing
insects in the images. First, the background is made a single blue colour which is
easy to detect. Then six colours are defined* which can be determined from the

* The details do not matter here. In fact the six colours are obtained by partitioning the two-
dimensional red-green sub-space of three-dimensional RGB space using a rectangular box classifi-
cation similar to that described later, in Section 2.6.4.

24

CHAPTER 2: PATTERN RECOGNITION

red-green-blue values of each pixel. In this way most of the pixels can be
classified as being blue, red, green, yellow, ochre (a browny orange), black, and
white. Blue pixels are background pixels and are ignored. The others are insect
pixels and are counted to give a list of six numbers for each insect. For example, in
Table 2.1 the ladybird has the most red pixels, the wasp has the most yellow
pixels, the greenbottle has the most green pixels, and the blowfly has the most
black pixels.

This is an example ofadata-to-data transformation in which the original domain
(digitized video image data, 768 • 576 pixels • 224 possible colours) has been
transformed to another domain (lists of six numbers). For the four insects shown
the pattern recognition then becomes very easy, based on the predominant pixel
colour.

TABLE 2.1 THE RESULT OF TRANSFORMING DATA FROM THE VIDEO IMAGE
DOMAIN TO A NUMERICAL LIST DOMAIN

Red Green Yellow Ochre Black White

Ladybird 12872 554 423 291 9107 223

Wasp 2314 3590 12 753 1686 8386 2846

Greenbottle 842 7 931 3192 63 14 925 3 287

Blowfly 1801 4033 432 231 24722 24

The previous example illustrates a very important technique in pattern recogni-
tion: if pattern recognition is difficult in one representation domain, then seek a
transformation into another representation domain in which the desired pattern
recognition may be easier.

Finding appropriate domains and transformations is a creative activity, and is one
point at which pattern recognition becomes as much an art as a science. However
it is an art that requires the engineer to understand the science of data representa-
tion, and the many possible ways of representing things and transforming them
within machines.

An important class of pattern recognition problems concerns the recognition of
waveforms, since this is the way that many sensors deliver their data. Although
these usually have characteristic forms, there may be considerable variation
between them. This is illustrated in Figure 2.18 (over page) in which there are
three examples of a waveform with a large peak at A, followed by a lesser peak at
B, followed by a double peak at C and D, followed by a lesser peak at E.

Although humans can see the similarities in this kind of waveform, it is very
difficult to program computers to make the match. For example, although the
concept of 'peak' seems fairly clear, the A-peak in (b) is actually a double peak,

25

VOLUME TWO

something that happens quite often in sensor output waveforms. A similar obser-
vation can be made for the B-peak in (c). In fact, recognizing peaks is itself a
major pattem recognition problem.

. , . -~
rao

(a)

A

C D

E

time

(b)

D
C

time

(c)

A

C D
B

time

Figure 2.18
Three similar waveforms

from a sensor.

26

CHAPTER 2: PAITERN RECOGNITION

Superimposing one waveform on another will not be very informative because
the peaks are out of phase, e.g. the C-peak of (c) corresponds more or less to the
D-peaks of (a) and (b).

This waveform representation does not lend itself to methods of matching the
waves which can be programmed easily on a computer. In such circumstances
engineers attempt to transform the representation from one domain to another in
which it is easier tcr detect the pattern of interest.

An example of such a transformation, described in Volume 1, is the Fourier
transform. The Fourier transform converts the data from the time domain to the
frequency domain. Recall that periodic signals can be represented by coefficients
in the series

f(t) = a 0 + a 1 sin(2nfl + q~l) + azsin(2~f2 + ~) + a3sin(2~f3 + ~) + ..-

from which we can draw a magnitude spectrum and a phase spectrum, with
frequency as the horizontal axis, and the values of a i and ~i as the vertical axes,
respectively.

To illustrate this, consider the sampled waveforms of Figure 2.19 which show
voltage varying through time. These waves are said to be in the time domain, and
are typical of the data produced by many sensors.

5.0

4.0

-6 3.0
>

2.0

1.0

0.0
I I k _ I . I I _ _

0.25 0 . 5 0 0.75 1.0 1.25 1.5 1.75 2.0
time/ms

Although it is sometimes possible to analyse waveforms in the time domain, it
can be difficult when the data are 'noisy', with erroneous spikes and other
distortions.

Using the Fourier transform, we can obtain a representation in the frequency
domain as shown in Figure 2.20 (over page). In this case the comparison of the
waves can be performed by comparing the five pairs of numbers (vertical bars)
representing the magnitudes. In general, similar waves will have similar spectra,
or parts of their spectra will be similar.

Transforming the data from the original domain to the spectral coefficients of the
Fourier domain can make it much easier to classify the waveforms. Because they
offer a more tractable representation than the waveforms from which they are
derived, Fourier transforms hold out the possibility of easier pattern recognition
operators.

Figure 2.19
Waveforms such as those
produced by sensors in the
time domain.

27

VOLUME TWO

3
~D

2
t~

3.30 3.45

1.24
1.04

0.57

i

1.0

0.10 0.18
0 i ,ll

0 0.5 2.0

0.36
0.15 0.10 li i l l y

1.5 2.5
frequency I kHz

Data transformations in pattern recognition frequently reduce the problem to that
of comparing sequences of numbers. For example, the insect recognition prob-
lem becomes that of comparing the counts of pixels with specified colours. Often
the sequences of numbers are considered to be the coordinates of points in
multidimensional space, and the pattern recognition problem is transformed into
the problem of classifying points in multidimensional space, which we consider
next.

~l Figure 2.20
The waveforms of Figure
2.19 transformed from the
time domain to the
frequency domain. The left
lines of each pair are the
spectral components of (a),
the right lines are the
spectral components of (b) in
Figure 2.19.

2.6.1 Representing items in multidimensional data
spaces
It is very common for the representation of an item to be a set of numbers in
multidimensional space. Sometimes this is a consequence of data coming as
numbers from n sensors in the form (Xl,X 2 ,x,), and sometimes data are
transformed into this form in order to exploit the many classification techniques
for such data.

For example, as discussed in the previous section, computer images of insects can
be represented by the numbers of pixels of various colours in the image. This
results in each image of an insect being represented by six numbers,

(nred, ngreen , nyellow, nochre, nblack, nwhite). Pattern recognition then occurs in the
six-dimensional space of numbers of coloured pixels.

To illustrate pattern recognition based on multidimensional data, consider a
hypothetical machine to be used by customs officials to detect explosives of a
certain kind. In general, such a machine would have many numerical inputs, but
here it will be supposed that there are two, x 1 and x 2. Suppose that in ten trials it is
found that suitcases containing explosives give the set of responses shown in
Table 2.2.

28

CHAPTER 2 PATTERN RECOGNITION

TABLE 2.2 DATA FROM SUITCASES THAT CONTAIN EXPLOSIVES

Suitcase number Measurement of xl Measurement of x2

1 25 83

2 29 94

3 10 50

4 15 75

5 25 79

6 23 85

7 19 90

8 27 56

9 26 65

10 17 77

These data can be plotted as a two-dimensional scatter diagram as shown in

Figure 2.21, in which the points cluster together in the top-left corner. Suppose a

new measurement is taken with x 1 = 45 and x2 = 80; does this suitcase contain

explosives or not? At first sight one might think that this point in the representa-

tion space is close enough to the others to indicate the presence of explosives.

However, more information is needed.

x2 t
100

90 ,-.'~
E!

80 D �9

0 "

O
60

50 [3

!--1

40

30

20

10

0 10 20 30 40 50 60 70 80 90 100 x~

~i~ Figure 2.21
The representation points for
suitcases containing
explosives, plotted as a two-
dimensional scatter diagram.

29

VOLUME TWO

The pattern recognition problem here involves discriminating between two sets:
suitcases which contain explosives and suitcases which do not contain explo-
sives. These are the real-world objects the system is trying to recognize. All
suitcases presented to the system are represented by a pair of numbers, (x 1, x2).
The objective of the system is to give suitcases the identification 'explosives
present' or 'explosives not present'. Let us suppose that the machine encodes
these interpretations on a piece of wire attached to an alarm bell with 9 V (bell
tings) meaning explosives are present and 0 V (bell silent) meaning explosives
are not present. Should the sensor data (45, 80) make the bell ring?

More data are required in order to complete the design of this machine, namely
pairs of numbers which are typical of the class of suitcases which do not contain
explosives. Suppose a series of trials gives the data in Table 2.3.

TABLE 2.3 DATA FROM SUITCASES NOT CONTAINING EXPLOSIVES

Trial number Measurement of x l Measurement of X 2

1 55 83

2 29 30

3 40 50

4 55 75

5 82 49

6 23 45

7 49 90

8 87 56

9 56 25

10 57 63

When these points are plotted in Figure 2.22, it can be seen that the point (45, 80)
is actually closer to the samples which do not contain explosives. This suggests
that the suitcase with values (45, 80) should be classified as not containing
explosives.

The main idea behind this approach to pattem classification is that a point in the
representation space will be assigned to the class to whose samples it is 'closest'.
This is equivalent to the assumption that the representation space can be classi-
f ied so that every point in the representation space is associated with one of the
classes of interpretation. This is illustrated in Figure 2.23, in which the partition
of the representation space is based on a rather simple procedure which examines
the closest pairs of samples between the classes.

30

CHAPTER 2' PATTERN RECOGNITION

x2 l
100

explosives in
suitcase

E]
90 El

qh
80 U1 (~

6:
70

60
D

0

0

no explosives
in suitcase

0

D O

50 [3 c~ ~..1 k.)

O
40

30 C)

20
O

10

0 10 20 30 40 50 60 70 80 90 100 x 1

x2 y

100

explosives in no explosives
suitcase in suitcase

El C

o

d~,, | t o

90

80

7O

a] o
6O

J __~ �9 50 [~,,,~.---
O

40

30

20
O

O

10

O ~_ ~ l p , ~

0 10 20 30 40 50 60 70 80 90 100 x 1

This discussion illustrates a general approach to pattern recognition, which

involves making the representation space well defined, and finding some criteria

that partition it in a way which is consistent with the recognition classes. Then the

representation of any new pattern can be located as a point in the partitioned

representation space and its class determined.

Figure 2.22
The representation points for
suitcases containing and not
containing explosives, plotted
as a two-dimensional scatter
diagram (squares correspond
to suitcases containing
explosives, circles correspond
to suitcases which do not
contain explosives).

Figure 2.23
Partitioning the
representation space to
facilitate classifying data
points and identification.

31

VOLUME TWO

2.6.2 Multidimensional pattern classification
The general idea behind classification using multidimensional spaces is as
follows:

(A) Partition the representation space into classes of points, with each class
associated with one of the identifications.

(B) This a priori classification allows any new data point to be mapped into the
representation space and associated with an identification.

(C) This establishes a pattern recognition.

Although it is very useful to see pattern recognition in this way, it highlights two
of the main problems of pattern recognition using multidimensional data:

Problem 1: For some data a simple partition of the representation space may not
exist.

Problem 2: When a partition of the representation space does exist, in general
there are many ways to partition the sample data in a representation space.

The first of these is often overlooked by those using pattern recognition, but it is
most important to test this fundamental property. In the extreme, the data
collected may be irrelevant to the classes. For example, suppose the variable x 1
had been the cost of the suitcase and the variable x 2 had been its size in cubic
metres. Let data be collected such as that in Table 2.4.

TABLE 2.4

Suitcase number Cost Volume / m 3 Explosives
found?

1 s 0.36 no

2 s 0.39 yes

3 s 0.36 no

4 s 0.40 no

5 s 0.36 no

6 s 0.39 yes

7 s 0.38 yes

8 s 0.36 yes

9 s 0.42 no

10 s 0.39 no

11 s 0.34 no

32

CHAPTER 2" PATTERN RECOGNITION

TABLE 2.4 - Continued

Sui tcase n u m b e r Cost V o l u m e / m 3 Explos ives

found?

12 s 0.33 yes

13 s 0.39 no

14 s 0.40 no

15 s 0.36 no

16 s 0.34 yes

17 s 0.37 no

18 s 0.33 no

19 s 0.32 no

20 s 0.43 yes

W h e n these data are plotted as a graph (Figure 2.24), the representat ion space

cannot natural ly be part i t ioned into classes o f suitcases which do contain explo-

sives versus those which do not. The two classes are all mixed together for these

variables. In fact things are worse still: there are two points in the representat ion

space which correspond to both explosives found and explosives not found

(labelled 'mult iple-class points ') . This is a p rofound weakness in these data, and

the engineer is well advised to seek indicators which better discriminate the data.

0.50 m 2

0.40 m 2

r

~ 0.45 m2
0

?~
0.35 m 2

0.30 m 2
s

D o

o (

multiple-class points E]

E]

s s s s

I--1 suitcase with explosives present

O suitcase with no explosives present

s

cost of suitcase

"~ Figure 2.24
The scatter diagram for cost
and volume of suitcases
shows that these variables
give poor discrimination
between suitcases which
contain explosives and those
which do not.

33

VOLUME TWO

Problem 2 means that selecting one method of partitioning the representation
space will give one set of results, while a different method may give different
results. Since it is assumed that an item belongs to a single class, irrespective of
the method used, the case of contradictory data cannot be resolved by a 'better'
classifier; ideally, the source of contradiction should be found.

Engineers sometimes overlook the necessity of testing to ensure that the assump-
tions underlying a l~articular classifier are satisfied by the data, and sometimes
they use inappropriate classifiers which give poor results for their system in its
environment. Such problems could be detected by rigorous testing, as discussed
in Section 2.9.

2.6.3 Classifying multidimensional spaces by statistical
methods
Figure 2.25 shows a two-dimensional scatter of data points obtained from a
remotely-sensed satellite image. The image is a grid of pixels. The dimensions
are two spectral bands: x I = Band 3 (red, very strong vegetation absorbency) and
x 2 = Band 4 (near infra-red, high land-water contrasts, very strong vegetation
reflectance). The numbers on these scales are pixel greyscales, and they vary
between 0 (no light) and 255 (measurement instrument saturated).

tl)

E

.,-,i

U
U
U

U U

U U

U
U

U
U

U U

/
urban

W

W W
W

w w / water
. /

W W

W W

W
W

W

U U U
U

S
s s.1-- sand

S S
S

S S

u

U
U

U U

u

u

corn

C

c c c
C C

C C
~ C C C H H H

HH~
H H

H
H

H H
H H

H
H H

H
H

.a: ~ HH
H H H

H
H F

F

F F

forest - - - - I F F F

F F F F
F

F F
F

F

F
F

F F
F F

F F F

F

Band 4 digital number

Figure 2.25
Pixel observations on a
scatter diagram.

34

CHAPTER 2: PATTERN RECOGNITION

The classes are

S Sand F Forest

C Corn W Water

H Hay U Urban

To obtain this scatter diagram a number of pixels from each of the classes is
sampled to give training points (x 1,x2) from which the system will 'learn' and
generalize.

As can be seen, a class such as 'Water' is quite distinct from the others. However
some classes such as 'Hay' and 'Forest' are not so clearly separated.

The objective in this application is to recognize the correct class for every pixel in
the image (about half a million) on the basis of a few hundred samples taken on
the ground (often called ground truth). Since ground truth samples are time-
consuming and expensive to collect, this approach attempts to optimize the
information they contain. This example and the subsequent discussion of various
ways of partitioning the representation space are taken from Lillesand and
Kiefer's standard textbook, Remote Sensing and Image Interpretation (see
References list).

t~

t~

water mean i

urban mean
\

u

U U U x ~ U
U U

sand mean
, / /

s s

u s~ S
u s $

u ~
+. U U ~ C

~ +C
. U "-.... \ .CZ'C

u ~'" l',k H, <
..-'~" ~ \\ H H H n

. , . / " I \ H H H
/ ' - I H\ H ~

11 H t~ H

H H H~ H

H I
HI F F

H ~,

F
F ~

F F
F

F F F F
F F F
F F

u
u

u
u

u u

...--
J

f
7

f
W . t

I
W W jl

wW."

w w
w

w
w

f
f

7

i - corn mean

_.i hay mean

forest mean

Band 4 digital number

Figure 2.26
Minimum distance to means
strategy.

35

VOLUME TWO

The minimum distance to means method of partitioning the data space is
illustrated in Figure 2.26. The idea here, and in many other approaches, is to
abstract statistical measures from all the pixels in a given class, and use these for
classification. One of the simplest measures is the mean greyscale value in each
of Band 3 and Band 4. The means of each class are shown by crosses in
Figure 2.26.

A test pixel, such as that labelled 1 in Figure 2.26, can then be compared with
these means. In this case it is closest to the Corn mean, and so pixel 1 is identified
as belonging to the Corn class. Similarly, pixel 2 is closest to the Sand mean, and
is identified as a Sand pixel.

This approach is simple and computationally undemanding. However it does not
take into account the statistical properties of the distributions in each of the
classes. In particular, some classes are much 'tighter' than others. For example,
the class of Sand pixels is grouped much closer together than the class of Urban
pixels. A second look at Figure 2.26 suggests that pixel 2 has been misclassified.
Although it is further from the mean of the Urban pixels than it is from the mean of
Sand pixels, the former spread much more than the latter and pixel 2 is actually
closer to the sampled Urban pixels than it is to any particular Sand pixel.

Other classification techniques attempt to overcome this by considering the
variance of the distribution, which measures the spread of the distribution. For
example, the maximum likelihood method of classification assumes that the data
points are sampled from a normal distribution. One of the main features of a
normal distribution is that it is symmetric about its mean. Another important
feature is that a normal distribution can be modelled by two statistics, the mean
and the variance. The details of this are beyond this text, but these assumptions
mean that the ideal distributions of the classes appear as shown in Figure 2.27(a).
These have equiprobability contours as shown in Figure 2.27(b).

~[Figure 2.27(a)

36

equitProbabilit

CHAPTER 2: PATTERN RECOGNITION

(b)

Band 4 digital number

The maximum likelihood method uses the training data to calculate the necessary
statistics and 'calibrate' the probability model based on normal distributions.
Once these statistics have been calculated, the method classifies a point (x 1,x 2)
according to the greatest probability for each of the classes at this point. Thus in
Figure 2.27(b), point 1 has the greatest probability of being a Corn pixel. This
method assigns pixel 2 to the class Urban, which accords much better with
intuition.

The maximum likelihood method has the disadvantage that it is computationally
expensive and too slow for all but the simplest real-time applications. It also has
the disadvantage that it systematically misclassifies points and introduces error.

There are other statistical techniques, such as Principal Component Analysis and
Factor Analysis, which attempt to give summary information in the multidimen-
sional data by projecting them onto axes in a way which accounts for the
maximum variance. In general, they have demanding data requirements. They
are also expensive and slow, and may be unsuitable for real-time applications.

,~ Figure 2.27(b)
Probability density functions
(a), and equiprobability
contours (b), defined by a
maximum likelihood
classifier.

2.6.4 Rectangular box classification
A very simple approach to classifying multidimensional spaces involves defining
intervals for each dimension. In the case of two dimensions these intervals define
a rectangular box, as shown in Figure 2.28(a).

37

VOLUME TWO

~0

m W

W W

w w w w

W
W W

(a)

U
U

U
U U U U

U U
U

U U �9
U U U

U U

U U U U U

U U
U U

U
U U U

U

2

C
C C

C C

C C
C C

- " ~ C C C H H H
H 1=

H H
H H H

H
H H

H H
H

~I H H
H H

H
H H

H

H~F' F b]
F F F ~ ,

F F F F

F
F F F F
F F F

F F

Band 4 digital number

.,,-4

(b)

W W

[

U
U

U
U U U U

U U U

U U
U U U

U U

U U U U U

U U
U U

U
U U U

H H HI

H H H I
H H H . I

Band 4 digital number

Figure 2.28
(a) Rectangular box
(paraUelepiped) classification
strategy; (b) strategy
employing stepped decision
boundaries.

38

CHAPTER 2: PATTERN RECOGNITION

The technique is very inexpensive computationally and suitable for pattern
recognition in which the classes are widely separated, as in the case of Water,
Urban, Sand, Corn and Forest. This technique becomes problematic when the
classes intersect, as in the case of Hay and Corn, and Hay and Forest. Sometimes
this can be overcome by a refinement which uses stepped decision boundaries, as
in Figure 2.28(b).

7

Lillesand and Kiefer call this technique parallelepiped classification, but we
prefer the term rectangular box.

2.6.5 Non-metric classification for chalk-cheese
systems
One of the great dangers of representing pattern data by a sequence of numbers
such as (Xl,X 2 x n) is that it is almost irresistible to assume that this is a point in
a metric space, i.e. a space in which a meaningful distance can be attributed
between every pair of points.

Sometimes things are referred to as being 'as different as chalk and cheese'. For
illustration, suppose one dimension of a representation is chalk and the other
dimension is cheese, and that for the variables concerned there is no natural
equality between the two. For example, density might be measured along the
cheese axis and purity might be measured along the chalk axis.

A 'distance' can be calculated between the points (1,2) and (4, 6) as

~(1-4) 2+ (2-6) 2=~9+ 16=5

But this is exactly the same as the distance between the points (1,2) and (6, 2). So,
as far as this measure of distance is concerned, a difference of 5 along the chalk
axis can be 'traded' against a difference of 3 along the chalk axis and a difference
of 4 along the cheese axis. In fact the assumption that the distance metric exists is
equivalent to assuming that one unit of cheese/density equates to one unit of
chalk/purity. This could lead to some very odd results!

When the dimensions of a multidimensional representation space have no natural
trade-offs, it will be defined to be non-metric. How then can the points in non-
metric space be classified? The answer to this question lies in understanding that
the concept of distance is related to that of closeness, and that the required
classification depends upon relative closeness.

In the following, the symbol l al means the absolute value of a. It has the
magnitude of a irrespective of whether the sign of a is positive or negative, so that
lal is always positive. For example, 1 - 7 1 - 171-7 .

In a non-metric representation, let a point p = (x, y, z , . . .) be defined to be closer to

the point Pc = (Xc, Yc, Zc) than to the point Pd = (Xd, Yd, Zd) when

Ixc-x l ~<lxd-Xl, lYc-Yl ~< lYd--Yl, IZc--Zl ~< IZd--Zl, and so on.

39

VOLUME TWO

In other words , point p is c loser to Pc than it is to Pd if it is c loser on every
d imens ion x, y, z , . . . (Figure 2.29).

Pd

Pc

L_ _ _ _

Y
l . q - xl

l y d - y l

y

x

a) Point p is closer to Pc than Pd because Ix c - xl < I & - xl and l y c - y I < ly d - y I.

P c

\

lye- yl

Ixd- xl

P d

...1

tyd- yl

x

(b) The 'distances' between are non-comparable because Ix c - x l < Ix d - x l
but ly c - y I> ly d - y I

Figure 2.29
Relative closeness and
non-comparability in a
non.metric classification
space.

This definit ion of c loseness means that it is not a lways poss ible to say that a g iven

point is c loser to one of two others. Such pairs of points are said to be non-

comparable.

Let an identification point Pc be a point which is assoc ia ted with identif icat ions

for class C. Typically, ident if icat ion points c o m e f rom training data, i.e. k n o w n

examples of the pat terns which are used t o ' t ra in ' the system.

Then every point p = (x, y, z , . . .) which is ' c loser ' to the identif icat ion point Pc =

(Xc, Yc, Zc, ...) than any other identif icat ion point will be identif ied with class C.

40

CHAPTER 2: PATTERN RECOGNITION

This definition means that for any identification points Pc and pa the representa-
tion space will be partitioned into three parts: those that are closest to Pc, those
that are closest to po, and those that are not closest to either, as shown in
Figure 2.30.

For a set of identification points, pairwise comparison gives the points which are
not closest to a given identification point, p. This is illustrated in Figure 2.31, in
which the identification points around p establish which points are not closest to p
and which points cannot be classified by examination of p. The remaining points
are closest to p.

This method establishes a partial classification of the multidimensional space, i.e.
some points can be classified as being closest to one of the identification points,
but some cannot. This classification does not require a distance function which
trades off values on one dimension against another, and so it is appropriate for
chalk-and-cheese representation spaces. Non-classification occurs when a test
point is closest to an identification point on one dimension but closer to another
identification point on another dimension. The more general problem of what to
do with the areas of non-classification is discussed next.

4[Figure 2.30
Points closest to Pc, closest
to Pd, and closest to neither

in a two-dimensional non-

metric space.

41

VOLUME TWO

To classify a test point we can proceed as follows. Given a set of identification
points Pa, Pb, Pc, Pd , it is required to know which, if any, is closest to the test
point p.

For each dimension we calculate the minimum distance between p and all of the
identification points. We can then test each identification against these minimum
distances. If a particular identification point is closest on all dimensions, it is the
closest to p. If none of the identification points is closest on all dimensions, then p
cannot be classified by them.

The main problem with the non-metric approach is that it may systematically
misclassify if the training data contain errors. It is therefore only suitable for
applications in which there is a low cost of misclassification, or for which we can
be certain that the training data are correct. However, the systematic nature of
errors resulting from faulty training data is an advantage because their consis-
tency makes them relatively easy to detect and remove.

In practice, non-metric classification makes the analyst address some difficult
questions. On what basis can the data points be assumed to be separable?
Intuitively, sets of data points such as those of Figure 2.25 are considered to be
separable if a line can be drawn between the set of their points. If the separating
line is straight, then the data points are said to be linearly separable, as discussed
in more detail in Chapter 4 on Neural networks.

Figure 2.31
The points closest to p in a
2.D non-metn'c classification
space. U n s h a d e d areas are

unclassified points.

42

CHAPTER 2: PATTERN RECOGNITION

The problem of separating a data set into two classes is illustrated by the
pathological example shown in Figure 2.32(a). In this case the two classes spiral
round each other in a way that makes standard classification techniques inappro-
priate. This space can be partially classified by the non-metric classification
discussed in this section. It can also be classified by the process of dilation.
Classification by dilation involves, for example, defining a square of sides of one
unit around each data point. Assuming none of the squares intersect, all the points
in a square are assigned to the data class of the dilated point. The process is then
repeated by defining a square of two units around each data point. Again all the
points within these squares are assigned to the class of the 'dilated point'.
Eventually the dilated squares from different classes meet and the dilation has to
cease on that dimension.

0 0 �9
0 0

0 �9 �9 0 �9
0 �9 �9 0

�9 O O 0 �9 o �9 0 0
0

0 �9 �9 o �9 o �9 0
0 �9 �9

�9 0 �9 0 �9

0 �9
0 0

o �9

0

0

0
�9 �9

�9 �9
o o

(a) The double spiral problem

o ~ o o / ~
- . J o �9 t Io I o
I- . _ l O t h

o i o] .

.75..
o -LZ~~ o ,# I �9

�9 �9
�9 �9

(b) The non-Euclidian dilation solution

,~ Figure 2.32
(a) The double spiral
problem. (b) Johnson's non-
Euclidean dilation solution.

Classification by dilation gives good results for the spiral data, as shown in Figure
2.32(b). It is a variant of the rectangular box classification discussed in Section
2.6.4. It has the disadvantage that dilating by the same amount on different
dimensions requires justification for chalk-and-cheese systems. It is easier to take
into account the need for dilations due to different distributions along the
dimensions, but the problem of trading chalk and cheese still holds.

Figure 2.32 highlights an interesting property of the separating data dimensions,
namely that their importance is local. The separation of the points at the bottom
and top of the spirals depends only on the vertical data dimension, while the
points at the sides depend only on the horizontal dimension. Thus the data points
are behaving differently, and treating them as a homogeneous population without
taking into account the different roles played could lead to misleading results. For
example, it may be possible to construct populations of black and white spiralled
data points which are normally distributed and have the same means and
variances, even though they are different classes!

In this chapter we cannot resolve all the problems that have been raised, but they
serve to show that classification can be very subjective and can sometimes
depend on the method chosen and the nature of the data.

43

VOLUME TWO

2.6.6 Neural networks as pattern classifiers
All the methods of pattern recognition.discussed so far have drawbacks of one
kind or another. A particular problem is that they do not filter out irrelevant data.

In the example of suitcases which might contain explosives, variables such as the
cost and size of the suitcase were not useful for the classification. In that example

J

these were chosen to make that point, but in general we do not know how much
information there is in the data for any given dimension.

The emerging technology of neural networks, discussed in detail in Chapter 4,
automatically filters out irrelevant data by altering weights on connections which
involve those data. For this and other reasons, neural networks are sometimes
proving to be very powerful classifiers for multidimensional data.

In all classifications there is the problem of those elements 'at the edges'. This is
an artificial problem caused by insisting that the observed world can be conve-
niently partitioned into non-intersecting classes. Traditional set theory requires
that an element either belongs to a set or that it does not. Similarly, Boolean logic
requires that a proposition is either true or false.

But, as illustrated in the Escher engraving reproduced in Figure 2.33, there can be
a gradation of set membership from 'very strong membership' to 'very weak
membership'. For example, the first four rows of birds at the top of the picture are

Figure2.33
M. C. Escher's 'Sky and
Water I' (1938).

�9 1999 Cordon Art B . V . -
Baarn - Holland. All rights

reserved.

44

CHAPTER 2: PATTERN RECOGNITION

clearly bird shaped. The next row is less clearly bird shaped. The black shape at
the centre of the picture could be said to be bird shaped, but then again it could be
said that it is not bird shaped. How can one decide? Fuzzy set theory and fuzzy
logic do not force this kind of decision. These are discussed in detail in Chapter 6

on reasoning.

Arguably, classifying things into mutually exclusive sets is a non-problem which
has its roots in a scientific tradition which has obtained success from dividing
things up into mutually exclusive parts. Indeed, methods based on partitions,
such as the maximum likelihood, result in systematic misclassification, as shown

in Figure 2.34.

class A class B

members of B are members of A are
systematically systematically
misclassified as A misclassified as B

Usually, when classifying a representation space some of the classes are disjoint,
while a few classes intersect. Sometimes it is better to record that an item belongs
to class A or class B without attempting to decide between them.

Pattern recognition occurs in perception when a machine has to transform raw
data from its sensors into a form of information that it can operate on. In a simple
machine the result of the classification is fed directly to an actuator. For example:
inputs belonging to class A result in a control sequence 1; inputs belonging to
class B result in a control sequence 2; inputs which belong to class C result in
control sequence 3; and so on. In such a case it is necessary for the machine to
decide which of the available control sequences to invoke. A decision must be
made, even if it turns out that the classification was incorrect.

In more sophisticated machines the classification information may be used during
reasoning. For example: ifthe inputs currently belong to class A and the machine is
in state B and the environment is in state C, then invoke control sequence 2.

When the machine is using the classification information for reasoning it may not
be necessary to force a classification decision. This is especially the case when
the machine is using fuzzy reasoning as explained in Chapter 6. A fuzzy
classification is one which assigns a value between zero and one to the set
membership. Choosing one of the fuzzy options to make a particular action is

sometimes called defuzzification, as explained in Section 6.3. As noted earlier, it
may be better to allow that an outcome is A or B but not C or D. This kind of
partial defuzzification may give better information when the data are fed into a

knowledge-based system.

Figure 2.34
Forced classification may
lead to systematic error.

45

VOLUME TWO

As an example, in the case ofthe 'explosives in the suitcase' example developed at
the beginning of this chapter, the machine may decide that a given suitcase
belongs to the set of 'suitcases with explosives' with a weighting of 0.3 and that it
belongs to the set of 'suitcases without explosives' with a weighting of 0.7. The
decision as to what to do about this will depend on many things. For example, it
may be that very few suitcases reach a value as high as even 0.1 for containing
explosives. In such a~case it may be decided to adopt procedures which require that
a suitcase with a weighting of 0.1 or more should be opened, even though the
expectation of finding explosives in these suitcases may be one in a million or less.

This discussion brings us to the important question of the costs of failure and
success in pattern recognition.

2.8 Errors" non-recognition versus
misclassification

In pattern recognition there are two related measures of failure. The first is the
proportion of misclassification, i.e. the number of times the system assigns an
item to the wrong class. The second is the proportion of non-classifications in
which the system cannot assign an item to a class.

Misclassification is usually a more serious error than non-classification since the
former comes with no indication that something is wrong.

In pattern recognition systems which require the match to exceed a threshold
there is a trade-off between non-recognition and misclassification. In general,
increasing the match threshold makes the recognition criterion more severe, and
so reduces the number of misclassifications. On the other hand, it is likely to
increase the number of non-classifications due to more borderline cases failing to
meet the more rigorous criterion.

In any pattern recognition application the engineer should take into account the
cost of misclassification, and should design into the system procedures for
handling misclassification or their consequences, and for handling non-classifi-
cations.

2.9 Rigorous procedures for
training pattern recognizers

Pattern recognizers which are trained from data present the engineer with the
problem of deciding which of the available data to use for training, and which to
use to test the trained system.

46

CHAPTER 2: PATTERN RECOGNITION

Training data consist of input-output pairs. Usually these are obtained by
experiment and it is assumed that the given output is the correct pattern class for
the inputs. When one is training it is very tempting to hold back for testing those
pairs which seem to give the best results. To yield to such temptation is a grave
error which invariably leads to poor system behaviour in the future.

Suppose then that n training pairs are available to train a pattern recognition
system. The engineer must find reasoned answers to the following questions:

What is the smallest value of n which will give a reliable interpretation of
the test results?

How many of the n pairs should be used to train the system?

How many of the n pairs should be held back to test the trained system?

How should the test pairs be selected?

How can we interpret the results of testing the system?

Suppose that all the n training pairs were used to train a system. Suppose also that
these pairs form an unbiased sample of all possible representation-identification
pairs. Usually this means that they are selected at random.

After training, if m of these were correctly classified, then the proportion of
failures is (n-m)/n. This is likely to be the best performance this system will
achieve, and it may perform much worse on unseen data. As discussed in the
previous section, the engineer should know the cost of misclassifications and
whether this upper limit on the recognition rate of m/n is sufficiently high for each
identification class.

In general, one would not want to use methods which did not have a ratio of m/n
very close to unity, i.e. one would have to justify the use of pattern recognition
techniques which significantly misclassified their training data.

Assuming that a pattern recognition technique can train sufficiently well on its
training set, how well does it generalize to other data? Usually this is an empirical
question. The method to test this is to divide the training data into two sets: one to
use for training and one to use for testing. In general, the more data used to train
the system the better it will perform. This suggests that one wants to hold back as
few input-output pairs as possible for testing.

Statistical sampling theory tries to answer the question of generalization. Sup-
pose you asked someone if they like champagne and they answered 'no'. Since
100% of your sample answered 'no', could you deduce that 100% of the
population do not like champagne? Obviously not. Suppose you asked a second
person and they answered 'yes'. Could you deduce that 50% of the population
like champagne and that 50% do not? What if you asked ten people and five said
'yes' and five said 'no'? Intuitively, the more people you ask the more confidence
you have that the proportion of their answers represents the proportions of the
whole population. This kind of reasoning lies at the heart of the problem of how
many training pairs should be held back for testing.

47

VOLUME TWO

Statistical sampling theory is beyond the scope of this book. It is based on the idea
that the result of any particular experiment is a sample from the whole population
of all experimental outcomes. This theory has been used to prepare Table 2.5.

The column headed 'Experimental results' shows the number of failures that
occurred in a series of trials. (For example, we might be testing the classification
of a neural network and observe that it misclassifies one time in ten.) The second
column headed 'Egtimated failure rate' is simply the observed proportion of
failures. However, it is unlikely that this reflects quite precisely the true underly-
ing failure rate, which might be somewhat lower than that observed or, more
critically, rather higher. For instance, for an observed failure rate of once in ten
trials, the actual underlying failure rate might be a little lower than 0.1, or possibly
higher than that: 0.2 is certainly plausible, 0.4 too, ... 0.6? ... but 0.7 or higher
seems scarcely credible. The next four columns quantify these notions: they give

90%, 95%, 99% and 99.9% upper confidence limits for the underlying failure
rate, based on the observed experimental results.

TABLE 2.5 UPPER CONFIDENCE LIMITS FOR THE UNDERLYING FAILURE RATE

Experimental Estimated
results failure rate

Upper confidence limits for underlying
failure rate

90% 95% 99% 99.9%

1 in 10 0.1 0.34 0.39 0.50 0.62

10 in 100 0.1 0.15 0.15 0.19 0.22

100 in 1000 0.1 0.11 0.12 0.12 0.13

1 in 100 0.01 0.038 0.047 0.065 0.089

10 in 1000 0.01 0.015 0.017 0.020 0.024

1 in 1000 0.001 0.0039 0.0047 0.0066 0.0092

2 in 1000 0.002 0.0053 0.0063 0.0084 0.0112

5 in 1000 0.005 0.0093 0.0105 0.0131 0.0164

After one failure in 10 trials, while it might be tempting to interpret this as '10%
failure', Table 2.5 shows how dangerously conservative such an extrapolation
might b e - one can 'only' be 99% confident that the true failure rate is less than
one-half. In some contexts, even this level of confidence is unsatisfactorily low.

If only ten failures are observed in 100 trials, the estimated underlying failure rate
would be the same at 10%, and because the conclusions are based on a much more
extended experiment, much more confidence can be attached to a low underlying

48

CHAPTER 2: PATTERN RECOGNITION

rate; but even then you can see that an underlying failure rate more than double
this (22%) is still just credible. If only 100 failures are observed in 1000 trials
(again, an estimated 10%), the 99.9% upper confidence limit (which by any
standards must be deemed quite high!) for the underlying failure rate is just 13 %.

Other rows in the table tell a similar story. But notice that when the estimated
failure rate is very low (say, 0.001 after observing 1 failure in 1000 trials) then,
despite the size of the experiment, 'reasonable' upper confidence limits for the
underlying failure rate might still be as high as five or seven times the estimate.

To illustrate the interpretation of Table 2.5, consider a machine which tests for
explosives. Suppose that in ten trials of suitcases containing explosives the
system failed once, giving an estimated failure rate of 0.1. The underlying failure
rate is not as low as this, but these data can be interpreted as meaning that we can
have 99% confidence that the underlying failure rate is less than 0.5. Put another
way, a person contemplating trying to smuggle explosives could be 99% confi-
dent that they would get caught at least half of the time, and this would probably
be sufficient deterrence, making the machine viable from a detection viewpoint.
However, this is only part of the story. After the machine has identified a suitcase
as containing explosives, it can be assumed that a customs officer will open the
case and conduct a more detailed search. This costs time and money. It is
therefore important to know how many false alarms the system generates.
Suppose 1000 suitcases not containing explosives are tested, and there are five
failures. This means that we can be 95% confident that the rate of false alarms is
0.0105 or less. At this level of confidence, opening about 1% of suitcases as a
result of false alarms might be considered acceptable.

These figures should be studied and understood by those who intend to build
pattern recognition systems. It is perhaps surprising that just one or two observed
errors can give rise to such large statistical ranges.

For some pattern recognition purposes misclassifications can be very expensive,
and the feasibility of the system depends on the proportion of misclassification
being very low.

In recent years there has been a great interest in classifiers such as the neural
networks described in Chapter 4. Unfortunately, there has been a tendency to
overlook rigorous statistical methods and to quote 'success' rates which are
nonsense. For example, some engineers quote 99% success to mean that their
system has correctly classified 99% of its training data. In fact this means that
their system has misclassified 1% of the training data which suggests that it will
fare worse on unseen data. How much worse? We cannot say unless the pattern
recognition system is tested rigorously.

Having to generate so much data for training and testing pattern recognition
systems can be a daunting task. Some people optimize the use they get from the
available data by adding 'noise'. This means that they add small random values to
the inputs to obtain data points in the representation space which are close to the
given sample, and which it is assumed will correctly have the same identification.

49

VOLUME TWO

To test the generalization of pattern recognition from its training data, it is
necessary that the training data and the test data be kept separate. As discussed in
this section, some several hundred data points may be required to test a pattern
recognition system. In an ideal world we would have a similar number of data
points for each identification class. Smaller numbers of data points can of course
be used and they may be found to give good generalization on testing.

The designation ofan input-output pair as training or test data must of course be
done at random. In general, one would make a random selection for each
identification class. Randomness is essential, otherwise it is very easy to cheat
'just a little' in order to get good laboratory results - and pay the price of machines
which do not function well in the field.

Engineers could be responsible for some very expensive mistakes if exaggerated
performance figures were misguidedly quoted. However, if you are not familiar
with statistical methods, you may find that all these figures can be very confusing.
If so you should at least learn this" when it is important that a machine achieves a
given rate of performance you must ensure that the tests are properly designed
from a statistical viewpoint. I f you cannot do this yourself you shouM consult a
qualified statistician.*

This chapter has given an overview of pattern recognition as it relates to the
design of intelligent machines. As a result you should understand:

I~ that human abilities in perception may make pattern recognition appear more
easy than it is;

i~ that pattern recognition is fundamental in perception;

I~ that pattern recognition is important in cognition;

i~ that pattern recognition usually requires input-output pairs of training data;

i~ that a pattern is a structured set of objects;

i~ what a representation space is;

I~ what an interpretation space is;

i~ that an identification is the action of giving an interpretation to a representa-
tion;

i~ what features and primitive features are;

Readers may be interested to learn that the authors took their own advice. We had this section
checked by Dr Trevor Lambert and Dr Fergus Daly of the Open University's Statistical Advisory
Service who supplied Table 2.5 and its commentary. We are very grateful for their advice and help.

50

CHAPTER 2: PATTERN RECOGNITION

I~ how relational patterns can be represented by graphs;

i~ how relational patterns can be recognized using graph matching;

I~ how graph matching can be modified for 'near misses';

i~ that transforming the representation can facilitate recognition;

I~ that the Fourier transform is useful in pattern recognition of waveform data;

i~ how patterns can be represented as points in multidimensional spaces;

I~ how multidimensional spaces can be classified for pattern recognition;

I~ that chalk-and-cheese spaces have no metric;

i~ that spaces can be classified by order relations;

I~ that there may be problems when classifying multidimensional spaces;

i~ multiple classification with uncertainty is better than incorrect classification;

I~ multiple classifications can be represented using fuzzy sets;

i~ the important distinction between rejection (no classification) and error
(using classification);

I~ the importance of rigorous statistical sampling methods to find error rates for
a classifier;

I~ how complex pattern recognition is achieved by hierarchical pattern recogni-
tion.

Pattern recognition is a recurrent theme throughout this volume, and in later
chapters we will build on the theory and methods developed in this chapter.

Hopgood, A.A. (1993) Knowledge-Based Systems for Engineers and Scientists, CRC
Press, London.

Lillesand, T.M. and Kiefer, R.W. (1979) Remote Sensing and Image Interpretation, John
Wiley & Sons, New York.

Simon, J.C. (1986) Patterns and Operators: The foundations of data representation,
North Oxford Academic, Kogan Page, London.

51

CHAPTER 2: PATTERN RECOGNITION

I~ how relational patterns can be represented by graphs;

i~ how relational patterns can be recognized using graph matching;

I~ how graph matching can be modified for 'near misses';

i~ that transforming the representation can facilitate recognition;

I~ that the Fourier transform is useful in pattern recognition of waveform data;

i~ how patterns can be represented as points in multidimensional spaces;

I~ how multidimensional spaces can be classified for pattern recognition;

I~ that chalk-and-cheese spaces have no metric;

i~ that spaces can be classified by order relations;

I~ that there may be problems when classifying multidimensional spaces;

i~ multiple classification with uncertainty is better than incorrect classification;

I~ multiple classifications can be represented using fuzzy sets;

i~ the important distinction between rejection (no classification) and error
(using classification);

I~ the importance of rigorous statistical sampling methods to find error rates for
a classifier;

I~ how complex pattern recognition is achieved by hierarchical pattern recogni-
tion.

Pattern recognition is a recurrent theme throughout this volume, and in later
chapters we will build on the theory and methods developed in this chapter.

Hopgood, A.A. (1993) Knowledge-Based Systems for Engineers and Scientists, CRC
Press, London.

Lillesand, T.M. and Kiefer, R.W. (1979) Remote Sensing and Image Interpretation, John
Wiley & Sons, New York.

Simon, J.C. (1986) Patterns and Operators: The foundations of data representation,
North Oxford Academic, Kogan Page, London.

51

This Page Intentionally Left Blank

C H A P T E R
S E A R C H

3

The meaning of the word search in an everyday context is well k n o w n - it means
to look for something, if you had to search for a key in your house, for example,
you would decide (possibly subconsciously) on a strategy to adopt. You might
decide to look everywhere in a systematic way, starting in one room and looking
on the floor, in all the cupboards and under the furniture, then moving on to the
next room and repeating. Alternatively, you could just look in selected places
where you think there is a strong likelihood of finding a key - in pockets, drawers,
etc.

The two strategies just described are ways of searching a set, or 'space', of possi-
bilities. They can be classified as:

exhaustive search: where potentially the whole space is examined, and

heuristic search: where some 'heuristics' or knowledge acquired through expe-
rience is used to restrict the search to a smaller space.

Intelligent machines must constantly monitor their status in terms of existing
goals and plans in the context of new information provided by their sensors. At
every moment they must review what they are doing, and when unexpected
events make the current course of action inappropriate, they must find another. To
do this they must determine the space of all possible actions, and search it for the
most appropriate action.

In the early days of AI it was thought that many problems would be solved by the
ability of computers to examine many alternatives very quickly. For example,
consider all the possible sequences of moves in the game of chess, in principle the
problem of winning at chess could be considered to be that of searching the set, or
search space, of all alternative moves to find one that does not lose. Methods
which examine every alternative in the search space until it is exhausted are often
said to work by brute force.

It was soon found that exhaustive brute force methods are impractical for many
problems: existing computers are just not powerful enough to search the space of
all possibilities in a reasonable time. For example, a robot controller which took
ten hours to predict an imminent collision would not be practical.

53

VOLUME TWO

Throughout the relatively short history of electronic computers, there has been an
amazing increase in the power of machines over time. This has meant that some
problems can be solved by brute force on the new machines, and people
sometimes think that every problem will be solvable by brute force when the fight
generation of computers comes along. This is a profound error.

Consider the problem of finding your key. Suppose the search was not restricted
to your house, and your key could be in any house in the country. Suppose you
could search ten houses per day. Then to search all the houses in Britain would
take you over a thousand years. You could ask a friend to help, and so increase
your search ability. But what if your key might be anywhere, in any country of the
world? You could recruit more friends. But then, what if your key could be
anywhere in the universe? No matter how you increased your army of key
searchers, you would never be able to search the space of all possible places for
your key. An infinity of possible hiding places cannot be exhaustively searched
by a finite number of people. And an infinite search space cannot be exhaustively
searched by a finite machine (which all computers are).

This is the nub of the search problem in AI. For many interesting and important
problems, exhaustive search is not an option and it never will be. To understand
why this is so, it is necessary to consider the issue of c o m p u t a t i o n a l complexi ty .

Some computer procedures are inherently more demanding than others. For
example, a program that has to decide 'which of a set of characters is a vowel' will
work in time proportional to the number of characters to be classified. On the
other hand a program which has to calculate the distances between a set of n cities
has to perform n • (n - 1) computations, i.e. n 2 - n. When n is large, say 100, the
n - 100 term becomes insignificant compared with the n 2 = 100 • 100 = 10000 of
the squared term. This leads to a rough and ready measure of computational com-
plexity, called the 'B ig -O ' notat ion.

Suppose the time a computation takes on a given machine is related to the size of
the data set it acts on. Let n be the number of data items to be processed. If the time
taken to process these data can be expressed as a polynomial such as
an 4 + bn 3 + cn 2 + dn + e then the algorithm is said to h a v e p o l y n o m i a l complexi ty .

In general, the highest term is far more significant than the lower terms, and these
are ignored, to give a complexity of an 4. The constant a reflects the power of the
machine: for a machine with half the power the constant would be 2a. Since we
are interested in the complexity of the algorithms and not the particular machines
they are run on, these constants are ignored to make the measure of complexity
machine-independent. So for this algorithm the run time is of the 'order' of n 4,
which is written O (n 4) in the Big-O notation. There are other measures of
computational complexity, but this is one of the most widely used.

Consider a machine that is planning its movements ahead in time. Suppose for
any given state and time it can examine ten subsequent states for the next time.
Then suppose that for each of these it can examine ten more. Then to plan ahead to
time t= 1 takes 10 computations, to plan ahead for time t - 2 takes 10 • 10

54

CHAPTER 3: SEARCH

computations, to plan ahead for time t = 3 takes 10 x 10 • 10 computations, and to
plan ahead for t = n takes l0 n computations. Thus the order of complexity for this
planning program is O(1 on), which is exponential.

Since the 1950s, computers have become, very roughly, ten times more powerful
(or faster) every five years (Figure 3.1). This spectacular increase in power over
the last forty years has enabled many new applications of computing in many
fields. It is tempting (o be euphoric and to suppose that this can go on forever. It
cannot, because there are physical limits to computation determined by physical
constants such as the speed of light. But, even if it could go on forever, there are
problems whose inherent complexity makes them impossible to solve in any
practical time scale.

power

107

106 -

10 5 -

10 4 _

103 -

102

101

100 , ! - . . ,

1950 1960 1970 1980

!
f

f
J

J
f

f

J
J J

! !

1990 2000
year

Consider the machine above with exponential complexity. Suppose today that it
can look n moves ahead. A machine with 10 times the power will allow us to look
n + 1 moves ahead in the same time. With good fortune this extra computer power
will take about five years to develop. What about n + 2 moves ahead? By the same
argument it will take ten years for the necessary computer power to evolve. To
look ten moves ahead will require waiting for fifty years, even assuming the
spectacular rate of increase in computer power that has been seen in the last forty
years. This is outside the time scales of most engineering projects.

An exponential algorithm such as this is non-polynomial, and its complexity is of
a different order to polynomial algorithms. There is a large class of problems
which are not known to have algorithms of polynomial complexity to solve them.
One of the best known of these is the travelling salesman problem which appears
in Chapter 5 of this volume on scheduling. These problems are said to be non-
polynomial indeterminate, and the algorithms in this class are often called NP-
algorithms.

The improvements in computer power seen to date make little impact on these
NP-algorithms: the limitations on computer power relative to algorithms are
absolute. Like the speed of light, they are a fact of life which will not change.

Figure 3.1
The relative increase in
computer capabilities since
1950 (schematic).

55

VOLUME TWO

The triumph of artificial intelligence is to have developed methods for obtaining
practical solutions to problems which do not yield to brute force. They do this by
considering the nature of the spaces being searched and developing strategies
which may not give the best result every time, but give acceptable sub-optimal
results most of the time. This approach is said to be heuristic.

For any search problem, the search space is the set of possible solutions. The
subset of the search space which contains actual solutions is called the solution
space.

For example, the search space for the problem of finding two dominoes whose
spots add up to twenty is all the possible pairs of dominoes. The solution space is
the set of pairs:

(4/4, 6/6), (4/5, 5/6), (4/6, 5/5).

Note that here there is more than one solution, and they are all equally acceptable.

�9 �9

�9 �9

�9 �9

�9 �9 �9 �9 �9 �9 �9 �9

�9 �9

�9 �9 �9 �9 �9 �9 �9 �9

�9 �9 �9 �9 �9 �9 �9 �9

For another example, consider the problem of finding a path for a vehicle if we
know that its power consumption depends on the load it carries and the landscape
it encounters. In general, the path is non-linear with some discontinuities, as
might happen, for example, when it leaves the road to take a short cut over rough
ground, or when it has to cross a fiver. The optimum solution to this problem,
it will be supposed, is that which uses the least fuel, subjects the vehicle to the
least mechanical stress, and carries the greatest load in the least possible time. In
general, with problems like this one does not know in advance whether such an
optimal solution exists. Indeed we may not know whether or not a solution exists
at all, i.e. it may be that it is impossible for the vehicle to find a path between its
origin and its destination which can be traversed using the fuel that is available.
The machine may run out of fuel, fail to find a solution, and be stranded.

The difference between these two examples is that the first involves searching a
finite set of combinations, and any particular combination is either a solution or
not a solution. Sometimes domain knowledge can guide such a search. For
example, we can reason that to make twenty spots on a pair of dominoes, the
smallest number of spots on any one of a successful pair must be eight, since the
largest number of spots available is twelve on the double six. Later in this chapter
we will see how such heuristics can reduce the number of combinations which
have to be examined, and so make the search space smaller or easier to search.

In the second case theproblem is well defined, but we may have sparse or
imprecise knowledge about the domain. In such a case one rarely aspires to

Figure 3.2
A solution space- pairs of
dominoes with spots adding
up to 20.

56

CHAPTER 3 SEARCH

finding the 'best' solution, and is satisfied with sub-optimal solutions which have
acceptable statistical properties in the long run. In general, we try to reduce the
risk of failing on any given trial, accepting the consequence of smaller rewards
and losses. This is a better strategy for both physical and financial survival. In this
second case it may be impossible to find the optimal solution, even when it exists.
So the strategy of taking the best that you can find given the time or resource
available usually ensures the best long-term outcome.

A major area of search addresses the question of how an infinite search space can
best be searched by afinite machine in afinite time. To understand the difficulty
of this, consider a spacecraft which is prospecting for minerals on an unexplored
planet. Each point on the planet has a financial value associated with it according
to the minerals there. For simplicity, consider a search restricted to just one
dimension. Let us suppose that the machine can fly long distances, but cannot do
ground surveys and analysis when flying. To do this it must land, collect samples,
and analyse them. What is the best way for the machine to search this environ-
ment in order to optimize the value of its findings?

in order to do any surveying the spacecraft must land at least once. Since it knows
nothing about the planet it may as well land anywhere. After taking some samples
it will have an idea if this is a promising place to stay. Even if the results here are
very good, they may be better elsewhere. This suggests that the spacecraft should
try elsewhere, as illustrated in Figure 3.3. In the absence of prior knowledge,
anywhere is as good as anywhere else. So the spaceship could take off and land
somewhere else. A great many search techniques address the question of where
that somewhere else should be. The underlying problem is that, by hypothesis, it
is impossible to sample every place. This leads to the problem of selecting places
to search which give a 'good enough' spread over the search space, and so
improve the expectation of overall return in the long term.

0

(a)

good optimum

position

T .=~ better optimum
= area shown above "~

U=

O

r

(b) position

Figure 3.3
(a) The search surface for
the surveyor spacecraft (in
one dimension); (b) there is
always more of the space
which has not been
searched, and may have a
better optimum.

57

VOLUME TWO

In this chapter we will elaborate on the technical ideas underlying search in the
context of finding solutions to problems and optimization. In general, optimiza-
tion involves mathematical functions, and these lead to calculus-based search,
the concept of hill climbing, and special forms of hill climbing such as gradient
descent. Other methods that are discussed relate to methods for 'getting around'
the search space to sample it adequately, such as simulated annealing and genetic
algorithms.

The combinatorial nature of search is expressed through search trees, and the
ideas of breadth-first search, depth-first search, and best-first search are dis-
cussed, all of which are attempts to speed up the search.

For a long time research in artificial intelligence has included work on game
playing, particularly of chess. At each turn a player has to select the next move
based on what possibilities lie ahead. The player is therefore searching through
the space of all possible next moves looking for a favourable outcome. Part of the
skill of the player lies in being able to look several moves ahead. Computers are
quite good at this, and can evaluate moves in terms of the possible outcome
several moves later.

The method used by a chess-playing computer is called a tree search. The tree is
constructed from a root node which represents the current state or position. A
number of branches spring from the root node, themselves ending at nodes. Each
branch represents a possible decision. The branches terminate when there are no
further decisions to be made, either because a dead end has been reached or a
solution has been found.

To illustrate this, let's take an example of an autonomous vehicle (AV) again,
which has the possibility of moving a fixed distance forwards, backwards, fight
or left. These moves will be denoted as directions N, S, W or E respectively. Now
imagine that the AV is in an environment, as shown in Figure 3.4. This environ-
ment consists of objects (the squares), with paths in between the objects. The task
set for the AV is to get out through the exit. Assume that the AV has some form of
internal representation or map of its environment.

o 0 0

0 0

0 0 0 0

o

0 = empty space

<-- exit 0 = current position

= object

& Figure 3.4 Environment of the A V.

58

CHAPTER 3 SEARCH

Wherever it starts, the AV has to make a decision about which way to travel. This
can be represented by a tree structure with a root node and four branches,
corresponding to N, E, S and W, as shown in Figure 3.5.

root

N W

In this example, the paths are so limited that the AV can only ever choose to go
either of two ways. In addition, one of those options is usually to go back in the
opposite direction to the way that it has just travelled, which means that it could
oscillate between two squares by executing the movements N, S, N, S etc. for
ever. A simplified tree can therefore be drawn with branches showing only the
moves that take the AV to a new position. This is shown in Figure 3.6 for this
particular example.

root

N/" , . S

W / W / \ E

dead end S / ~ E

dead end \ N

N / \ E

dead end goal

The start is indicated at the top of the tree, and the goal is at the bottom. The figure
shows the complete tree, with all of the moves that are possible from this one
particular starting position. From this you should be able to see that this tree
search is an exhaustive search.

Now this is a relatively simple tree. It's not hard to appreciate that sometimes
these trees are enormous, so methods have been developed to avoid searching the
whole tree, and better s011 to avoid having to construct the whole tree. These
include depth.Just, breadth-first and best-first searches that will be described in
the following sections. However, it still may be the case that the solution lies at the
very tip of the very last branch that is searched, so that the search can still be
exhaustive. These methods speed up the search by trying to find the solution
before the whole tree is searched, and require some heuristic knowledge about the
tree.

Figure 3.5
Initial search tree for
the AV.

~[Figure 3.6

59

VOLUME TWO

3.2.1 Depth-first search
Consider the tree shown in Figure 3.7, where the nodes are labelled A to G. The
search starts at node A and finishes when node G, the goal, is found.

A

D E

A depth-first search follows the rules:

(a) If there is a branch, take the left one first. (This could equally well be the fight
one. One must decide which and then stick to it.)

(b) If a left branch turns out to be a terminal node, go back to its parent node and
take the fight branch.

Now let's use these rules. A depth-first search would proceed as follows:

1 Starting from A, examine the left branch (or child) from the parent node. This
leads to B.

2 If B is the goal, stop. It's not.

3 As the branch terminates at B, go back to its parent node, A, and take the fight
branch which leads to C.

4 If C is the goal, stop. It's not.

5 As C has branches, examine the left branch which leads to D.

6 If D is the goal, stop. It's not.

7 As the branch terminates at D, go back to its parent node, C, and examine the
fight branch which leads to E.

8 If E is the goal, stop. It's not.

9 As E has branches, examine the left branch which leads to E

10 If F is the goal, stop. It's not.

11 As the branch terminates at F, go back to its parent node, E, and examine the
fight branch which leads to G.

12 If G is the goal, stop. It is.

Figure3.7
Example of a search tree.

60

CHAPTER 3: SEARCH

In this example, a depth-first search has not managed to speed up the search at all
- it is still exhaustive. However, a simple re-ordering could make all the
difference, as shown in Figure 3.8.

A

E D

G F

If we go through the same steps again, the result is quite different.

1 Starting from A, examine the left branch (or child) from the parent node
which leads to C.

2 If C is the goal, stop. It's not.

3 As C has branches, examine the left branch which leads to E.

4 If E is the goal, stop. It's not.

5 As E has branches, examine the left branch which leads to G.

6 If G is the goal, stop. It is.

Half the number Of steps! The number of steps is very sensitive to the ordering,
which can often lead to dramatic savings. Unfortunately it is almost impossible to
predict in advance the ordering that will produce the most efficient search. On
average the search time will be close to half the number of steps compared to an
exhaustive search, particularly for large trees.

Figure 3.8
Re-ordered search tree.

3.2.2 Breadth-first search
A

B / c
D E

F G

Consider the tree in Figure 3.7, shown again here as Figure 3.9. In a breadth-first
search the tree is searched in horizontal layers. All of the nodes in each layer are
examined before moving to the next layer.

Figure 3.9

61

VOLUME TWO

Starting from node A, and assuming that the goal is G, a breadth-first search
would proceed as follows:

1 Starting from A, examine the left branch (or child) from the parent node
which leads to B.

2 If B is the goal, stop. It's not.

3 Now examine (he fight branch which leads to C.

4 If C is the goal, stop. It's not. This layer is done.

5 Go back to B. As the branch terminates at B, go back to C.

6 As C has branches, examine the left branch which leads to D.

7 If D is the goal, stop. It's not.

8 Examine the fight branch of C which leads to E.

9 If E is the goal, stop. It's not. This layer is done.

10 Go back to D. As the branch terminates at D go back to E.

11 As E has branches, examine the left branch which leads to E

12 If F is the goal, stop. It's not.

13 Examine the fight branch that leads to G.

14 If G is the goal, stop. It is.

If the goal is at a relatively high level, it will be found more quickly than if it is at a
lower level. Again, the search time is approximately half on average compared to
an exhaustive search.

3.2.3 Best-first search
In this method looking for a termination is not enough. An evaluation at each
node is required so that a decision can be made about which node should be
explored next. The value at each node is calculated using a static evaluation
function, which will vary from one situation to another.

The hill-climbing and gradient-descent methods described later in the chapter
come under the heading of best-first search, and could be represented using a
search tree. Each node would represent points in the search space with branches
from each node to all the possible points in the space that the search could try next.
The branch with the best evaluation would be chosen. It is unusual to see these
methods shown as a tree search, however. Mostly one sees search trees being used
to find goals and the methods employed aim to reduce the time needed to find the
goals. In the gradient-descent methods the goal is to find the optimal solution, but
there is no way of telling when that solution has been found, so it is difficult to use
the tree search techniques described here.

The best-first method can be illustrated using an autonomous vehicle (AV)
guidance system, where one example of an evaluation that can be made is the
distance from the goal. Various schemes exist, several of which have been

62

CHAPTER 3 : SEARCH

developed by Jarvis (1985). The methods are described as distance transforms,
and involve assigning a distance value to each square in the grid by scanning the
grid first forwards then back, and repeating until the values no longer change.
Figure 3.10 shows an example of an environment with a single object and a goal
position.

0 0 0 0 0 0 0 = empty grid

o ~ [1 i o 0 0 [1" : object

o ri l o o o 0- oa,
L _ I I I

0 0 0 0 0 0

Figure 3.10 AV environment.

The distance transform has several steps:

Step 1: Initialization
Initialize all the squares with a maximum value equal to the number of squares in
the grid, in this example 6 x 4 = 24, except for the goal which should be set to 0.

24 24 24 24 24 24 24 = empty grid

24 2~ ~ 24 0 24 [24] : object

24 2~[~ 24 24 24 0 = goal

24 24 24 24 24 24

Figure 3.11 Initialization.

Step 2: Forward scanning
Starting in the top-left corner, forward propagate to assign new values to the
squares. This is done by scanning each square in the first column, then moving to
the top of the second column and scanning down, and so on until the bottom of the
fight-hand column is reached.

At each square forward propagation is carried out as follows. For any particular
square, look at the four neighbours which consist of the three in the row below
and the one to the left, as shown in Figure 3.12.

c u r r e n t
1

s q u a r e

2 3 4

A Figure 3.12 Squares examined during forward scanning.

63

VOLUME TWO

(When the square being examined is at the edge of the grid, such as in the left-
hand column or at the bottom, just ignore the neighbours which are outside the
grid.)

For each of the neighbouring squares marked 1 to 4 calculate the distance
transform:

distance transform = (neighbour value + distance) x factor

where the factor in this equation is either 1 for current empty squares or a number
greater than 1 for current squares containing objects, typically 3. The distance is
the number of moves needed to get from the current square to the neighbouring
square. If we use the AV where only N, S, E or W directions can be travelled, the
distances to each of the neighboufing squares are shown in the following figure:

2 1 2

current
1 I square

2 1 2

A Figure 3.13 Distances to each neighbouring square.

That is, only one step is needed to get to a neighbouring square if it is directly
above, below, to the fight or to the left. Two steps are needed to get to squares
which are diagonally adjacent.

After calculating the distance transform for the four neighbours shown in
Figure 3.12, the minimum value from those four distance transforms is found. If
it is less than the value in the current square then it replaces it, otherwise the value
in the current square doesn't change.

Applying this to every square in the grid, we get:

24 24 24 2 1 2

24

24 0 1

24 24 24

24 24 24 24 24 24

& Figure 3.14 Grid after forward scanning.

24 = empty grid

~2~= object

0 = goal

Let's look at this in more detail, for example the 2 at the top of the fourth column
from the left. After initialization it was 24, and the forward scan looked like this:

64

CHAPTER 3: SEARCH

current square

+

24 24

24 0

Figure 3.15 Initial values of grid.

Using the equation for the distance transform

distance transform = (neighbour value + distance) x factor

the distance transforms of the four neighbours are:

1 (24+ 1)• 1 = 2 5

2 (2 4 + 2) • 1 = 2 6

3 (24+ 1)• 1 = 2 5

4 (0 + 2) x 1 = 2

The smallest value of the four is 2. Since 2 is smaller than 24, the new value for the
square is 2.

Step 3: Backward scanning
This is essentially the same as forward scanning except that you start at the
bottom fight-hand comer of the grid and look at the three neighbours above and
one to the fight of the current square. Figure 3.16 shows the squares to be
examined. Again, if any of the squares are off the grid then they are ignored.

1 2 3

current
square

A Figure3.16 Squares used in backward scanning.

As will be explained, the result of backward scanning on the entire grid is:

5 4 3 2 1 2 24 = empty grid

6 ~ ~6-~ 1 0 1 ~ = object

17 ~ ~ 2 1 2 0 = goal

6 5 4 3 4 24

& Figure 3.17 Grid after backward scanning.

65

VOLUME TWO

Let's look at one of the squares in the object- the one that ends up with a value of
9 say. When the scan reaches this square, the grid looks like this:

24 24 24 2 1 2 24 = empty grid

24 ~-~ ~ 1 0 1 ~ = object

24 ~-~ ~ 2 1 2 0 = goal

24 24 4 3 4 3

A Figure 3.18 The grid mid-way through backward scanning.

The four neighbours therefore look like this:

2

& Figure 3.19 Initial values of neighbouring squares.

The distance transforms are:

1 (24 + 2) x 3 = 78

2 (24+ 1) x 3 = 7 5

3 (1 + 2) x 3 = 9

4 (2 + 1) x 3 = 9

The minimum is 9, which is less than the present value of the square, so it is
replaced.

Step 4: Repeat
Repeat steps 2 and 3 until there is no further change in the values. In this example,
only one more forward and backward scan are needed, resulting in the following
grid:

5 4 3 2 1 2 24 = empty grid

6 ~ ~6-~ 1 0 1 ~-~ = object

1 0- oa,
I 1 l 1

6 5 4 3 2 3

A Figure 3.20 The final grid.

66

CHAPTER 3: SEARCH

Now we can construct a search tree from any point on the grid, where each branch
will have an evaluation equal to the distance to the goal. Searching the tree
consists of only selecting the branch with the lowest value, so it is a best-first
search. This means that at any point during the search, if there are two (or more)
branches that can be selected, the best one, which is the one with the lowest score,
is chosen. If the score on two branches is the same, one of them is arbitrarily
chosen.

For example, start from the top-left comer. The first branch gives two possibilities
- to travel S with a value of 6 or travel E with a value of 4. The choice would be to
go E, so the S branch is effectively pruned since no more searching will take place
along it. Figure 3.21 shows the search tree, where each node shows the score
associated with the position of the AV.

start
5

4

15 3

6 2

1

2 0
goal

This method effectively 'prunes' large sections of the tree. It doesn't necessarily
give the optimal solution, but it usually gives a good solution in a short time.

~l Figure 3.21
Best.first search tree.

3.2.4 The A* search algorithm
In the previous example only one branch was selected at each node, the other
branch or branches being pruned, so that large parts of the tree were left
unexplored. When there are many paths to the same goal it may be desirable to
select the best path. In order to do this, the search algorithm has to be able to go
back to unexplored parts of the tree if its current exploration proves to be more
difficult than first anticipated. The A* algorithm developed by Winston does just
this.

To illustrate the A* algorithm, let's assume that an autonomous vehicle (AV) has
to travel from A to G in Figure 3.22, and that it can take several routes which go
via sites B, C, D, E and E The distances between sites are known, and the whole

67

VOLUME TWO

environment can be described with a diagram as in Figure 3.22(a). At each stage
of the algorithm all of the existing paths that have been found so far are evaluated
and the shortest one is taken up and advanced.

A 10 B

D ~ E

F ~ G "

(a) (b)

B

2

E

A

/
C D

3

E

3

G

Step 1: Starting with A, all the paths from A are set out as branches in a tree
structure shown in Figure 3.22(b) and the shortest path to another site is found.
A to D (A-D) is the shortest path, with a length of 3.

Step 2: From A-D, the next path is A - D - E which has a length of 6. The three
existing paths so far are A - D - E (6), A-B (10) and A-C (5), so A-C is chosen.

Step 3: From A-C, the next path is A - C - F which has a length of 10. The existing
paths at this stage are A - C - F (10), A - D - E (6) and A-B (10), so A - D - E is
chosen.

Step 4: From A - D - E the next path is A - D - E - G which has a length of 9. The
existing paths are A - D - E - G (9), A-B (10), A - C - F (10), so A - D - E - G is chosen.
As no shorter path can be found the algorithm terminates.

In this way some of the tree never gets explored, and so the search time is reduced.
Also, because many alternative paths are explored and are never totally aban-
doned the solution will always be the optimum. This is therefore a very powerful
breadth-first tree-search method which is useful when some evaluation is avail-
able at each node.

3.3 Calculus-based search

Figure 3.22
(a) Diagram showing the
distances between all the
sites; (b) search tree for the
A* algorithm.

3.3.1 Mathematical models
In this section some of the basic mathematical tools that are often used in
mechatronics will be discussed. It is assumed that basic calculus, namely differ-
entiation and integration, doesn't have to be explained, and various formulae will
be derived based on that assumption.

68

CHAPTER 3: SEARCH

In many applications a well-defined mathematical model of a solution space
exists as a function or formula. An answer can be found by 'solving' the
mathematical function. In general, solving a mathematical formula means find-

ing values for the variables in the formula such that the equation is satisfied.

For example, a mechatronic system such as an autonomous vehicle (AV) can
move about a factory floor without any external guidance. One of its goals is to
travel in a straight line from A to B, which is a short distance, x, in a time, t.
Assuming that initially the AV is stationary, one way of doing this would be to
accelerate at a constant rate up to a particular velocity, stay at that velocity for a
certain length of time, and then slow down at a constant rate to a halt, having
covered the distance, x. Figure 3.23 shows this motion as a graph of v against t.
The distance travelled is found as the area under the graph.

This is a very simple model, and clearly in a practical situation you couldn't
expect a vehicle to travel in such a perfect way. However, the model can still be
used to calculate the 'ideal' values for the acceleration, velocity and deceleration.
When these values are tried on the actual system, the performance will almost
certainly be worse than that predicted from the model, but should still be
sufficiently close to the desired performance. So a model, even a simplified ideal

one, can still be useful.

The formula for the distance travelled is

2
x = 0.5air 1 + v2t 2 + 0.5a2t32 (3.1)

where a 1 is the acceleration and a 2 is the deceleration.

If we assume that the acceleration and deceleration are both equal to a (for no
other reason than to make the problem less complicated) then t I = t 3 and the
formula can be simplified to

x = 0.5at12 + v2t 2 + 0.5at12 = at l 2 + v2t 2 (3.2)

Equation (3.2) describes the motion of the vehicle. The details of how this is
derived do not concern us here. What is important is that it is possible to find a

relationship between v 2 (which in the subsequent discussion we will call simply
v), and a, which turns out to be

v 2 - a v t + ax = 0 (3.3)

where t = t 1 + t 2 + t3, and at l = at 3 = v.

4[F igure 3.23

Graph of velocity against
time for the autonomous
vehicle.

69

VOLUME TWO

This equation can be solved by finding values for v and a which satisfy the
equation; that is, values which make the whole expression equal to zero. It is clear
that there is not one solution but a whole family of solutions which satisfy this
problem. If we assume that we are interested in the specific problem where, say,
x = 10 m and t = 5 seconds, then the solution space of a = ve/(vt- x) can be drawn
with axes as a and v, as shown in Figure 3.24. All the solutions lie on this curve.

2.5

2.0

1.5

1.0

0.5

0.0 Y i r i ,

2 3 4 5 6 7
i | v

8 9 v

Faced with this problem the vehicle could search the solution space until it found
a point which was on the curve, which would give suitable values for a and v.
These values would be selected, and the vehicle could start to accelerate up to the
required velocity.

In this example, the solution space had to be searched to find suitable values for
the acceleration and velocity so that the vehicle travels the correct distance in the
correct time. Sometimes solutions exist which can be calculated exactly given
some additional data. For example, suppose one of the system objectives was to
conserve power in the AV. This could be done by selecting the solution with the

lowest value for the acceleration, ami n. This, as we shall see in the next section,
turns out to be

4x
ami n = t-- ~- (3.4)

Since the solution can be found by calculation alone, there would be no need to
search the solution space in any other way.

The lesson to be learned from all this is that if a mathematical model exists, it may
be possible simply to calculate the solution, which will almost certainly be
quicker than searching the solution space using the methods developed later in
this chapter.

If the problem is more complex there may be no known methods of finding the
solution directly. However, if the problem can still be expressed as a mathemati-

Figure 3.24
Graph of a against v,
showing all the solutions,
a = vZ/(vt - x).

70

CHAPTER 3- SEARCH

cal formula, methods may exist for approximating to the solution and maybe even
finding the exact solution.

For example, suppose a problem can be defined by a polynomial equation in x,
P(x). if the polynomial is up to fourth order (has terms in x, x 2, x 3 and x 4) then it
can be solved directly. Surprisingly, if there are higher order terms such as x 5, no
method exists for solving the equation exactly. Even so, there are methods such as
that in the next sectibn which successfully search for good approximations.

3.3.2 Newton-Raphson method
The N e w t o n - R a p h s o n method is a popular algorithmic method for finding the
solution to polynomial expressions. For illustration, we'll take the example of the
autonomous vehicle again, so that the solution is known in advance. Let's
assume, as before, that the required distance to be travelled is 10 m in a time of
5 seconds. The minimum acceleration solution given in equation (3.4) is

4x s- 2
ami n = -~-= 1.6 m

Substituting a = 1.6, x = 10 and t = 5 into equation (3.3) for the vehicle gives

v 2 - 8 v + 1 6 = 0

This equation is satisfied when the value of v is 4. Now let's assume that we don't
know this solution. Figure 3.25 shows a plot of the equation

f (v) = v 2 - 8v + 16

Notice that it crosses (or in this case just touches) the v-axis when v= 4.

f(v)

2o

18

16

14

12

10

8

6

4

2

0 ! i i i l ' i

0 1 2 3 4 5 6 7 8 Figure 3.25

71

VOLUME TWO

Recall that the derivative off(v) is an expression for the value of the slope off(v)
at any point. In Figure 3.26, the slope is shown at the point v = 6, and it can be

measured by drawing a tangent to the curve at v = 6 and measuring the sides of the
fight-angled triangle formed with the v-axis.

The Newton-Raphson method uses the fact that the slope of the curve gives an
indication of the direction in which you have to travel to get closer to the point
where the curve crosses the v-axis. It is at this point that one of the solutions to the
expression v 2 - 8v + 16 = 0 exists. So the tangent at v = 6 could be extended and

the value of v noted where the tangent crosses the v-axis, as in Figure 3.26, where
the value is found to be v = 5. Now if v = 6 had been our first guess at the solution
to the equation, we could say that 5 is our second guess. This could be continued,
so that the slope at v = 5 could be found, and the tangent drawn and the point
where it intercepts the v-axis would be our third guess.

This method can be expressed as follows:

Let our first guess be v 1. From this we' l l make a new guess, v 2.

The slope at v 1 i s f ' (v l) , wheref ' (v) is the derivative off(v) with respect to time.
The slope equals the height of the vertical side of the shaded triangle divided by
the width of the base of the triangle. The height of the vertical side is equal to the
value off(v1). The value of the width of the base is the first guess vl minus the new

second guess v 2. So,

f(Vl)
f ' (v l) = (vl-v2)

f (v l)
v 1 - v 2 f ' (v l)

f (v l)
V 2 = V 1 f ' (v l)

~1 Figure 3.26

72

CHAPTER 3' SEARCH

In general, the new guess is obtained from the old guess using the formula

f (vk)
Vk+l = Vk f , (vk) (3.5)

Now, instead of measuring the slope at each point, the derivative can be obtained
directly from the equation of the problem:

f (v) = v2 - 8v + 16

So,

f ' (v) = 2 v - 8

(v 2 - 8Vk + 16)
vk+ l = vk- (2vk- 8)

To show how this works, let's continue with this example, starting with v l = 6.

Step 1:

f (v l) = 4

f ' (v l) = 4

4
v 2 = 6 - ~ = 5

Step 2:

f(v2) = 1

f ' (v 2) - 2

1
v 3 = 5 - ~ = 4.5

Step 3:

f(v3) = 0.25

f '(v3) = 1

0.25
V 4 = 4 . 5 - - - Y

and so on.

= 4.25

The iterations continue while the value of v continues to get closer and closer to 4.
The iterations stop if the value of f (v) = 0; that is, when the v-axis is reached.
However, it is more usually the case that the point where f (v) = 0 is never quite
reached. Eventually the method stops when the value off(v) is so close to 0 that
the error can be neglected.

Thus, the Newton-Raphson method allows us to find a solution to a problem
which can be expressed mathematically. This can be considered to be a search

73

VOLUME TWO

method: the solution exists in some search space, and the Newton-Raphson
method searches that space by moving in a direction towards the solution. It can
be used when the derivative is known. Later we shall look at a gradient descent
method which can be applied when the mathematical form of the gradient is not
known.

3.3.3 Minimization
The previous section showed how a polynomial expression of the form

P(x) = 0

could be solved using the Newton-Raphson method.

Many problems exist where the desired solution is the minimum or maximum
value of a function. If the problem can be expressed as an equation, this can be
translated into a problem of the sort just described by making use of the
derivative.

In the example in the previous section the equation relating the velocity to the
acceleration of the vehicle was given in equation (3.3) as

v 2 - a r t + a x = 0

The graph in Figure 3.24 showed that there is a minimum value of a. This
minimum is a turn ing point , so called because the curve changes direction at that
point. The value of the derivative at that point is 0, so we can calculate the value of
v where the minimum occurs by finding the derivative and equating it to 0. In the
above example, the derivative of a = v2 / (v t - x) with respect to v is

da a t - 2v

dv x - vt

Equating to 0 gives

a t - 2 v = 0

2v at
a = o r v = m

t 2

Substituting this expression for v into equation (3.3) gives the value of v and
hence a in terms of x and t alone as

2x
v = ~ (3.6)

t

4x
a ~ m

t 2

The equation for a is the same as that used earlier in equation (3.4). Given a more
complicated function, it may not be so easy to find the minimum, in which case

74

CHAPTER 3' SEARCH

the Newton-Raphson method can be employed again. Identical arguments apply
to finding the maximum of a function where the derivative is also 0.

For example, if an object is thrown straight up into the air, it slows down to a halt,
and then falls back to the ground. A graph of its height against time is shown in
Figure 3.27. Notice that when it is at its maximum height the velocity, i.e. the
derivative of the cu~e, is zero.

at maximum height
~ the velocity is zero

time

Care must always be taken to ensure that when finding a minimum or a maximum
the correct turning point is found. This can be done by looking at the value of the
derivative either side of the solution that has been found. Figure 3.28 shows three
types of turning point and the sign of the slope either side of the turning point.
Notice that a curve is also shown which has a point where the derivative is zero
but it doesn't change direction. This is called a point o f inflexion.

inflexion maximum

Given a differentiable mathematical formula you can therefore find a minimum
by searching the space defined by the derivative of the expression for the point
where it has a value of zero.

,~ Figure 3.27
Trajectory of an object
thrown into the air.

Figure 3.28
The three possible turning
points.

3.3.4 Gradient descent
The Newton-Raphson method can sometimes become very complex. In exam-
ples such as the autonomous vehicle we have been considering, the process can
be simplified. The expression for the Newton-Raphson algorithm derived earlier
as equation (3.5) was

Vk+ 1 = v k -
f(vk)

minimum

75

VOLUME TWO

and for the specific case where x--- 10 m and t = 5 seconds,

(vk 2 - 8v~ + 16)
vk+l = v~- (2v~- 8)

This can be rationalized as follows:

('dk-- 4) 2
Vk+ 1 = v k - 2(vk_4)

(vk--4)
vk+ l = Vk-- 2

The term (v k - 4) is proportional to the derivative of the function. So in general,

the algorithm can be expressed as

vk+ 1 = v ~ - a f ' (v k) (3.7)

where a is a constant.

This is the equation for a g r a d i e n t - d e s c e n t m e t h o d . It is called gradient descent

because the change to the variable, v in this case, is proportional to the size of the

gradient, f ' (v) . It approximates the Newton-Raphson method in this example

because the minimum of the function

f (v) = v Z - 8 v + 16

lies on the v-axis. It applies more generally to any function, but instead of

terminating when it reaches the v-axis, it terminates when it reaches a minimum

where f ' (v) = O.

For the particular problem that we 've been considering, the formula for the

gradient descent is

vk+l = v k - a (v k - 4)

If we let its value of a be 0.1, the formula becomes

Vk+l = vk - 0.1 v k + 0.4 = 0.9v k + 0.4

Let v 1 = 6.

v 2 = 0 . 9 x 6 + 0 . 4 = 5 . 8

v 3 = 0.9 • 5.8 + 0.4 = 5.62

v 4 = 0.9 • 5.62 + 0.4 = 5.458

v 5 = 0.9 • 5.458 + 0.4 = 5.3122

and so on. We find that when n is very large,

v n = 4

76

CHAPTER 3: SEARCH

So the method converges to the solution, which means that it gets closer and
closer to the correct value with each iteration. The number of iterations is selected
to give the appropriate accuracy for the finally selected value.

Gradient descent, therefore, gives a useful means of finding minima when the
actual derivative is not known exactly, but the slope can be estimated from local
information. This is particularly true when the solution space is not a smooth
continuous differentiable space but a discrete one, which is discussed in the next
section.

An extension of gradient descent is steepest descent. In a multidimensional
search space there will be gradients in many different directions, and the choice is
made to follow the steepest gradient. This will also be discussed in the next
section in the context of discrete search spaces.

3.3.5 Discrete search spaces and hill climbing
So far the mathematical models described have assumed a continuous differentia-
ble search space. Very often the search space is not continuous but discrete, i.e.
made up of individual points. Sometimes the discrete search space arises from
sampling a continuous space, or sometimes the search space is discrete by nature,
and sometimes just a set. An example of the latter is the set of pairs of dominoes
that add up to 20. The search space consists of all possible pairs of dominoes
which can be thought of as points in a space with nothing in between. Searching
consists of 'hopping' from one point to another.

In order to perform an equivalent of gradient descent in a discrete space the
nature of a gradient has to be considered in a different way from a continuous
space. Let there be a measure associated with each point x, written f (x) . If the
current position in the space is x k and a neighbouring position is Xk+ 1, then the
gradient is approximated by (f(xk+ ~) - f (x k)). Secondly, since the step size has to
be fixed so that it is the distance between points in the space, there cannot be a
constant like a which would produce variable step sizes. So, a mechanism is
needed to jump from the currently examined point to another. For example, the
points could be arbitrarily laid out on a grid (e.g. Table 3.1), and all the
neighbours examined to see if any were better. This illustrates hill climbing,
which simply ensures that the value selected at each iteration is less than (or
greater than) the previous value.

Let the best solution so far be at the point x = x k and the measure associated with it
be f(xk). A neighbouring point in the solution space is xk+ 1 and has a measure
f(xk+l). The search moves to xk+ 1 according to the following criterion:

I f f(xk+l) <f(xk) then x = Xk+ 1 (3.8)

else if f(xk+ l) >i f (xk) then x = xk

77

VOLUME TWO

In this way, a solution is finally found which has a measure that cannot be reduced
by any further moves. Just like gradient descent, it moves down the slope to a
minimum. What hasn't been mentioned is what happens when a point has several
neighbours, as would be the case in a multidimensional search space. The
distinction is made that in hill climbing, an arbitrary neighbour can be selected
and examined, and if its value is less than the present value the search moves to
that neighbouring point. The alternative is that all the neighbours are examined
and the one chosen is the one which has the lowest value and therefore makes the
biggest change. This method is called steepest descent.

In the following section we discuss some of the limitations of these gradient
descent methods and also some attempts to overcome those limitations.

3.4.1 Limitations of gradient descent
To illustrate the concept of local optimum, consider the following one-dimen-
sional space of numbers:

6 5 5 4 4 2 3 3 4 5 6 7 8 6 3 1 3 4 4 5 7 8 9 8 7 6 5 6 6 6 7

Here the numbers 2, 1_ and 5_ are local minima, and of these _1 is the global
minimum. The numbers 6, 8, 9 and 7 are local maxima, and of these 9 is the
global maximum.

1 How do you avoid ending up at a local minimum?

2 How do you know when the minimum that you have found is just a local
minimum or the global minimum?

If you use gradient descent, the point at which the search starts is crucial in
determining which minimum is found. The problem of finding the global
minimum is that the search can get stuck in one of the local minima. In order to
overcome this problem, the idea of aprobabilistic search has been developed in
which the search in general is still a descent, but occasionally the search is
allowed to jump to a higher value. This allows the possibility of a search 'jumping
out' of a local minimum.

This helps to overcome one difficulty, but in general whatever search method is
used (except exhaustive search) there is no way of knowing with complete
certainty that the minimum which is found is the global minimum. All we can do
is to improve the probability of it being the global minimum using the techniques
described in this section.

78

CHAPTER 3- SEARCH

3.4.2 A two-dimensional problem
Table 3.1 shows part of a two-dimensional discrete solution space for a particular
problem. This sort of space could arise as part of a perception subsystem which
uses a neural network such as the Hopfield network discussed in the next chapter.
It is a network that stores data at the minima of the search space. This gives it the
ability to reconstruct ~data from partial or corrupted input patterns.

TABLE 3.1

4 5 7 6 4 4

4 3 6 5 5 4

5 4 6 4 4 3

5 5 5 4 3 3

5 6 5 4 2 3

4 5 5 5 4 4

4 4 3 4 5 5

5 4 1 3 4 5

6 6 4 4 6 5

6 6 5 6 5 5

By looking at the numbers you should be able to see that there are three minima
(the bold numbers): that is, points where the values are smaller than all of their
neighbours. The global minimum is the point with the smallest value, which in
this example is the point with a value of 1. The two local minima have values of 2
and 3 respectively.

To find the global minimum you have to search the whole space, if there are N
points in the space then you have to look at all N points to be absolutely certain
that you have found the global minimum. This is an exhaustive search, and i fN is
very large this could be very time-consuming and therefore impractical. It is also
possible that the search space is not finite, in which case an exhaustive search
is impossible. This is why methods have been developed for searching the
space more efficiently. To measure the efficiency, the probability of finding the
global minimum will be used (probability is explained in detail in Chapter 6). If
the probability of finding the global minimum is 1, then you can be totally
confident that it can be found. If the probability is 0, then the global minimum
cannot be found. The probability will always lie somewhere between 0 and 1
inclusively.

In an exhaustive search the probability of finding the global minimum increases
linearly with the number of points examined. So initially the probability is 0, and
after looking at all of the points the probability is 1. When half the points have

79

VOLUME TWO

been examined, the probability is 0.5. If the number of points examined is n, the
probability of finding the global minimum, p(g), can be expressed as

H
p(g) = ~ (3.9)

Now let's see if other methods exist that can do better than this, starting with
random search. Hel-e, points are selected at random, and the value at that point is
examined. If the value is the smallest value that has been seen so far it will be
stored as the minimum value. What is the probability that after selecting n points
the global minimum has been found?

The probability of not finding the global minimum in one trial is (N - 1)/N. The
probability of not finding the global minimum in n trials is ((N- 1)/N) n, so the
probability of finding the global minimum in n trials is:

p (g) = l - (N - ~) n
(3.10)

For the space in Table 3.1, N = 60. Figure 3.29 shows the graphs of this probabil-
ity and of the previous exhaustive search.

P(g)~

1.0-

0 . 8 -

0.6-

0.4-

0.2

0
0

exhaustive

I I t I I I I 1 I I I I

5 10 15 20 25 30 35 40 45 50 55 60 n

The graph shows that random search performs worse than exhaustive search.
This is because the assumption has been made that points in the solution space can
be visited more than once. If this is changed so that a record is kept of which
points have been seen, then the probability becomes the same as the exhaustive
search because you would know for certain when all the points had been visited.

Figure 3.29
Probability of exhaustive and
random search finding the
global minimum.

80

CHAPTER 3 SEARCH

3.4.3 Hill climbing
As you've seen, hill climbing is a sort of gradient descent (or ascent) which can be
used when a gradient cannot be defined, such as in a discrete search space. The
method simply ensures that the value selected at each iteration is less than (or
greater than) the previous value.

)

In the problem of finding a minimum in Table 3.1, hill climbing is applied by
choosing a point at random, and then selecting a neighbouring point also at
random. If the neighbouring point has a value which is less than or equal to the
value at the current position, move to the neighbouring point. This was tried, and
the results are shown in Figure 3.30, which also shows the exhaustive and
random search.

P(g)~

1.0

0.8

0.6

0.4

0.2

exhaustive

random

hill climbing

,-"

I I I 1 1 i '1 | I I ' I I P

0 5 10 15 20 25 30 35 40 45 50 55 60 n

"~ Figure 3.30
Probability of hill climbing
finding the global minimum.

From this graph it is clear that hill climbing gives a better probability of finding
the global minimum in fewer steps, but that it never gets better than a probability
of about 0.5. This is because hill climbing finds local minima. In this example, the
search gets stuck in the two other local minima about half of the time.

Next, a steepest descent algorithm is tried, where a point is selected at random and
the eight neighbours examined. The search moves to the neighbour with the
lowest value. The results of an experiment with the same data as before are shown
in Figure 3.3 i.

81

VOLUME TWO

P(g)~

1.0-

0.8-

0.6

0.4

0.2

exhaustive

random

hill climbing

steepest

_ . _ _ . , - - - -

(- / / . 7 -- m

/ / /

i ! v i ! / i i I i ! i

0 5 10 15 20 25 30 35 40 45 50 55 60 n

This figure shows that the steepest descent method gets to the minimum very
quickly, but suffers from the same handicap as hill climbing which is the problem
of ending up at a local minimum. However, this does show that within five steps
the search will arrive at a minimum, and that about 50% of the time this will be the
global minimum for this example.

~il Figure 3.31
Probability of gradient
descent finding the global
minimum.

3.4.4 Simulated annealing
A popular method of probabilistic search has been developed by physicists based
on their understanding of some of the processes that take place when substances
c o o l - in particular, the method of annealing a metal, where it is heated up and
then cooled very slowly. The molecules of the metal form crystals which are in
the minimum energy state for the metal. The metal has therefore settled at a global
minimum for this example.

Simulated annealing, as the name suggests, mimics this process. The energy of a
system, E, has to be defined, and this becomes the search space for the problem,
which is to find a point of minimum energy.

It is similar to the hill-climbing method except that the decision about whether to
keep the new solution or throw it away is probabilistic. This means that some-
times the new solution will be kept even though the measure associated with it is
worse than the best solution so far. This allows the search to jump out of a local
minimum.

The probabilities are such that if the new solution, at xk+ i, has a measure of
energy, E~§ 1, that is less than the best solution so far at x k, then there is a high

82

CHAPTER 3: SEARCH

probability (between 0.5 and 1) that the new solution becomes the best solution.
Similarly, if Ek+ 1 is greater than E k, there is a low probability (between 0 and 0.5)
that the new solution becomes the current best solution.

Let's say that in a particular example the probability of accepting a new solution
turns out to be 0.8. This means that in eight cases out of ten the new solution
becomes the best solution so far, but in two cases out of ten it doesn't. The values
of probability always lie between 0 and 1.

The probabilities, Pk, are calculated as follows:

I f Ek+l < Ek x = Xk+l with a 1 i> Pk > 0.5
probability of Pk

else Ek+l >i E~ x = Xk+ 1 with a 0.5 i> Pk > 0
probability of Pk

rearranging:

if (Ek-Ek§ > 0 x = X k § 1 with a 1 i> Pk > 0.5
probability of Pk

else (Ek-Ek§ <<. 0 x = Xk§ with a 0.5 i> Pk > 0
probability of Pk

What is needed therefore is a function that produces a value for the probability
between 0.5 and 1 when (Ek-Ek§ > 0, and a value between 0 and 0.5 when
(Ek-Ek+l) < 0. A function which has this property is the sigmoid function,
described by the equation

1
y =

1 + e - x

When x = 0, y = 0.5.

W h e n x > 0 , 1 > y > 0 . 5 .

When x < 0, 0.5 > y > 0

As this method simulates annealing, a factor equivalent to temperature has to be
included in the model. This is done by dividing (Ek-Ek+l) by a notional
'temperature' T, and then substituting for x in the equation of the sigmoid. The
probability is therefore

1
Pk = (3 11)

1 + e -(Ek-Ek+I)/T

When T is very large, Pk approaches 0.5, which means that the decision about
keeping the new solution or throwing it away is purely random. When T= 0,
Pk = 1 and the decision is not probabilistic but is equivalent to the hill-climbing
method described earlier. So if the 'temperature' starts out high, the decisions
seem arbitrary. As the temperature drops, the decision to make the new solution
the current best solution or not becomes more deterministic. The effect is that the

83

VOLUME TWO

search can jump out of local minima, and should end up when T = 0 at the global
minimum or a relatively good minimum.

This method can be understood in terms of jumping around in an 'energy
landscape'. Hill climbing gets the search to a lower energy but can be caught in a
local minimum, and simulated annealing allows jumps to higher energies, so
escape from local minima becomes possible. Inevitably, there is more to this
method when it comes to practical implementation. Firstly, cooling has to follow
a schedule, and secondly decisions have to be made about the limits of the
notional temperature.

For simulated annealing to work, a cooling schedule has to be constructed. This
means that the 'temperature' has to be set to an initial value, and held at this value
for a length of time while the search continues. How long is a difficult question to
answer. The originators of this method say that the system has to reach thermal
equilibrium before the temperature can be lowered. However, no way is given to
determine when thermal equilibrium is reached.

To understand the importance of thermal equilibrium, you have to know about the
probability of finding yourself at a particular point in the search space. The way
that the problem has been configured, this probability is proportional to the
energy at that point. In other words, the search will spend more time at a point if it
is lower than any other point. This means that the search will spend more time at
the global minimum than at any other point. However, these probabilities apply
only when the system is in thermal equilibrium.

Imagine starting the search at a particular point. Shortly afterwards the search is
halted and the statistics about which part of the space have been searched are
obtained. Inevitably, the area immediately around the starting point will have
been visited, and points remote from the starting point will not have been visited.
It is important, therefore, to ensure that the search will have had enough time to
cross the entire search space. This needs to be estimated for any given problem.

Returning to the problem defined earlier in Table 3.1, simulated annealing can be
applied. The numbers in the table are interpreted as the values of the energy at any
point in the space. The following cooling schedule was chosen:

For 10 steps: T = 1.0

For 10 steps: T = 0.8

For 10 steps: T = 0.6

For 10 steps: T = 0.4

For 10 steps: T = 0.2

For 10 steps: T = 0.1

In this particular problem, the maximum valueofEk-Ek+ l = 7 - 1 = 6, so with
T = 1.0 the probability is about 0.1, so that 10% of the time the search will be able
to jump out of any minimum, which seems reasonable. With this cooling
schedule, statistics were gathered and are presented in Figure 3.32.

84

CHAPTER 3: SEARCH

P(g)~

1 . 0 -

0.8

0.6

0.4

0.2

exhaustive

random

hill climbing

steepest

............. annealing

/ .:.-.= .-..-..-. =....-....-....-...-....-...-. =.-

,/ //.-'"

i i i i i i t i i i i i

0 5 10 15 20 25 30 35 40 45 50 55 60 n

The curve shows that annealing performs about as well as hill climbing. In fact, if
the data are examined in detail, the performance is just slightly better than hill
climbing since the global minimum is eventually reached a few times more often.
The choice of a cooling schedule is critical to the performance. Several cooling
schedules were tried and the result given here was the best that was obtained.

The very simple nature of the search space in Table 3.1 does not demonstrate the
power of simulated annealing very well. In other experiments in which hill
climbing was compared with simulated annealing in a 50-city travelling salesman
problem, hill climbing was consistently out-performed by simulated annealing.

All of the gradient-descent methods described so far are limited to searching local
regions of the search space. This means that the solution found is highly
dependent on the starting point, since the gradient descent will move from this
solution to the nearest minimum. Simulated annealing attempts to overcome this
by allowing the search to reach 'thermal equilibrium', which means that when
simulated annealing starts the temperature is high, so that the search can move
about freely. This ensures that a large area of the search space is covered before
cooling takes place, and so frees the search from the constraint of finding only
solutions near the initial solution. In the next section another method is intro-
duced which tries to combine the power of local gradient descent searching with
the ability to cover large parts of the search space.

~ll Figure 3.32
Probability of simulated
annealing finding the global
minimum.

3.4.5 Genetic algorithms
Genetic algorithms were invented specifically to avoid getting stuck in local
minima and to cover as much of the solution space as possible. They are a very

85

VOLUME TWO

efficient means of searching a solution space. Their inspiration came from nature,
where it is believed that evolution has provided solutions to the difficult task of
adapting life forms to suit particular niches.

The essential features of a genetic algorithm are the chromosomes that contain
the genetic information. These are strings of data that define a particular solution.
For example, a chromosome representing six genes might be specified as a six-
digit binary number, say 110011. A population of these chromosomes, corre-
sponding to a number of individual solutions to the problem, is created. The
population of chromosomes at any one time will represent only a small number of
the possible 'good' solutions. The population is initially created randomly,
although it is possible to 'seed' the initial population with individuals which are
known to be good solutions.

Next we need some way of measuring thefitness of the chromosomes so that the
good solutions are selected to be parents more often than the not-so-good
solutions. This is analogous to natural selection, where 'survival of the fittest' is
said to occur. The fitness function selected is specific to the particular applica-
tion, but generally it has a positive value which is large when a solution is good,
and small when the solution is bad.

The mechanism for producing a new population from the current one is called
breeding. Parents are chosen in proportion to their fitness using a mechanism
called roulette-wheel selection. Each chromosome has a fitness, which can be
regarded as a portion of the total fitness of the population. If this is drawn as a pie
chart where the total area of the pie corresponds to the total fitness of the
population, then an individual has a slice of the pie with a size that is proportional
to its own fitness. This is shown in Figure 3.33.

total fitness = 100% individual with a fitness of 14%

25

point

Imagine that the pie is spun like a roulette wheel with a pointer at a fixed position.
When the wheel stops spinning, the pointer indicates which individual is selected

Figure 3.33
The fitness of a population
of nine individuals.

86

CHAPTER 3: SEARCH

to be a parent. The probability of the pointer pointing at any individual is
proportional to the size of the slice allocated to that individual. In other words, the
number of times that an individual will be selected to be a parent is proportional to
its fitness. If there are N individuals in the population, then the wheel is spun N
times to select new parents.

Let's look at a simple example. Suppose there are 6 individuals in a population.
Initially they are randomly generated and their fitness calculated, as in Table 3.2.

TABLE 3.2

Individual Fitness Running total

A 12 12

B 5 12 + 5 = 17

C 23 17 + 23 = 40

D 13 40 + 13 - 53

E 1 53+ 1 = 5 4

F 16 54 + 16 - 70

The total fitness is 70, so the fitness of A as a proportion is 12/70, which is about
17%. Figure 3.34 shows the roulette wheel.

E F

D

C

poi y
Figure 3.34

Roulette wheel of the six
members of the population.

The roulette wheel is a good way of imagining what is going on in selection. What
actually happens is that a random number is generated between 0 and the total
fitness, in this example 70. The number generated is compared with the running
total, shown in Table 3.2. The first individual with a running total greater than

87

VOLUME TWO

the random number is then selected. For example, if the random number
generated is 45, D would be chosen because D is the first individual found when
scanning down the table which has a running total, 53, which is greater than the
random number.

In this example there is a population of 6, so a random number is generated six
times. Let's assume that the six numbers generated are 45, 23, 31, 57, 4 and 55.
The corresponding individuals would be D, C, C, F, A and E These are the parents
of the new population.

Offspring are produced by selecting pairs of parent chromosomes and crossing
over some of the genetic material. In the example just given, the parents would be
paired D and C, C and F, and finally A and E Each pair of parents then produces
two offspring. It is permissible for two parents to be the same, such as A and A,
even though the offspring are also A and A.

Figure 3.35 illustrates a crossover for two binary-valued, six-digit parent chro-
mosomes. The result is two offspring chromosomes, combining the digits of the
parents according to the crossover point chosen.

parent 1 1 1 0

parent 2 1 0 1

0 1 1 offspring 1 1 1 0

0 1 0 offspring 2 1 0 1

0 1 0

0 1 1

crossover point

A Figure 3.35 Breeding using single-point crossover.

This form of crossover is called single-point crossover. The actual point at which
crossover takes place is randomly chosen. Other forms of crossover exist such as
two-point crossovers, but we will only use single-point in this book.

Again, let's take our six chromosomes, and let's assume that they have the
following binary structure:

A 1 1 0 0 1 1

B 1 0 1 0 1 1

C 0 1 0 1 0 1

D 1 1 1 0 1 0

E 0 0 0 0 0 1

F 0 1 0 0 1 0

Crossover takes place by generating a random number that corresponds to the
position along the chromosome. The genetic material is then swapped over

88

CHAPTER 3 SEARCH

between the parents at that point to create two new individuals. The random
numbers generated for these examples would be in the range 0 to 5, correspond-
ing to the six points along each chromosome where there is a 0 or a 1, starting
from the fight. If the random numbers are 3, 1 and 2, then crossover takes place
after bit 3 in the first pair of parents, after bit 1 in the second pair and after bit 2 in
the third pair. Crossover would then look like this (one parent in each pair is
shown in bold to show where the genetic material comes from):

parents offspring

5 4 3 2 1 0 5 4 3 2 1 0

D 1 1

C 0 1

1 0 1 0 1 1 0 1 0 1

0 1 0 1 0 1 1 0 1 0

C 0 1 0 1

F 0 1 0 0

0 1 0 1 0 1 1 0

1 0 0 1 0 0 0 1

A 1 1 0

F 0 1 0

0 1 1 1 1 0 0 1 0

0 1 0 0 1 0 0 1 1

before crossover after crossover

A Figure 3.36 Breeding using single-point crossover.

In addition to crossover, mutation is allowed. This happens when some of the

genetic material changes randomly, as shown in Figure 3.37.

chromosome 11 1 0 0 1 0 1 0 1 0 1 0

$

mutation

+

chromosome 1 l l 0 0 1 1 1 0 1 0 1 0

A Figure 3.37 Mutation.

Mutation is usually defined by the mutation rate, which is normally set to quite a

low value, 0.001 say. This corresponds to one change in a thousand bits of data.
The bits that are actually mutated are randomly selected. After a bit has been
selected for mutation it is inverted, so a 0 becomes a 1 and vice versa.

89

VOLUME TWO

In our simple example, the new population, after mutation, might look something
like Figure 3.38, where two bits have been mutated (shown in bold):

A' 1 1 0 1 0 1

B' 0 1 0 0 1 0

C' 0 1 0 1 1 0

D' 0 1 0 0 0 1

E' 1 1 0 0 1 1

F" 0 1 0 0 1 1

Figure 3.38 Example of population after mutation.

When a genetic algorithm is applied to a problem an initial population is created
with randomly generated chromosomes. Each chromosome is tested and an
evaluation of its fitness is made. Having evaluated the whole population, breed-
ing can take place. Breeding continues until a new population is created, at which
point the old population is replaced by the new one. (In the elitist strategy, a

proportion of the fittest parents would also be carried over into the next genera-
tion, so there would be correspondingly fewer offspring in the next generation.)

This breeding and evaluation process continues, with the average fitness of the
population being monitored together with the fitness of the fittest individuals. In a
typical situation the maximum individual fitness will rise quickly and then at
some point it will 'flatten off'. The average fitness of the population will rise
more slowly, and if left to run for a long time would equal the value of the fittest
individual. This latter fact arises because, if left for a long time, the population
would eventually consist of replicas of the fittest individual and no others.
Usually the search is terminated when the maximum individual fitness flattens off
but the average fitness of the population is still rising.

It is not immediately obvious why genetic algorithms should be so good at
searching for solutions. The answer is that the mutation operation tends to move
the chromosome to a neighbouring position in the search space, and so could be
considered as a local search. If the mutated offspring is fitter than its parent then
its chances of breeding are improved. This is rather like the hill-climbing methods
that have already been described. In addition, the crossover operation allows
large jumps to be made in the solution space. This ensures that large areas of the
space are searched and that solutions do not get stuck in local minima.

Genetic algorithms were also tried on the example problem that has been used
throughout this section, originally given in Table 3.1. To try to get some sort of
comparison with the other methods described, a population of 10 was selected
and the algorithms used to obtain six generations. Each chromosome contained a
binary representation of the x and y coordinates of the two-dimensional surface -
four bits for the y-coordinate and three bits for the x-coordinate. In order that all of

90

CHAPTER 3: SEARCH

the codes that could be generated by the chromosomes would be meaningful, the
two-dimensional surface was extended so that the whole pattern was a grid of
8 points by 16 points - the additional points being given a high value of 10.
Single-point crossover was used and the mutation rate was set at 0.28.

The values given in Table 3.1 were used to calculate the fitness. The actual fitness
function used was

60
fitness = - - - 6

x

where x is one of the values given in Table 3.1. This fitness function ensures that
when the value of x is 10, the fitness is 0, and that the largest values of fitness
occur at the minima.

After running the algorithm for 2000 trials, the statistics for the number of times
the local and global minima were found for each generation were as shown in
Table 3.3.

TABLE 3.3

Generation Found global Found local Failed to find

minimum minima any minimum

1 10% 20% 70%

2 15% 30% 55%

3 17% 31% 52%

4 21% 31% 48%

5 21% 35% 44%

6 21% 35% 44%

Since each generation contains 10 individuals, roughly speaking the genetic
algorithm found the global optimum 21% of the time after 6 generations or about
60 iterations. More often it found one of the other local minima, and just under
half of the time it failed to find any of the minima.

Just as with simulated annealing, the example of Table 3.1 is too simple to
demonstrate the power of genetic algorithms properly. On more complex prob-
lems they have been found to give good results, and there are many examples in
the literature.

91

VOLUME TWO

3.4.6 Summary of the optimization techniques described
The techniques described in this chapter all try to follow some kind of gradient to
continually improve some measure of performance, with the aim of finding the
solution that gives the best performance. Most of the techniques only ever search
the immediate neighbourhood, and so can never break away from the locality in
the search space in which the search is started. Simulated annealing tries to
overcome this by allowing jumps to intermediate solutions that may perform
worse than the present solution so that more of the search space can be examined.
Genetic algorithms also use crossover to create new solutions in unexplored areas
of the space.

Different methods suit different search spaces. The example problem was a
relatively simple space, with the result that simple gradient-descent algorithms
worked well. If the space was more complex - for example, if it was much bigger
with much more diversi ty- then the gradient-descent methods would usually
perform less well than simulated annealing and genetic algorithms. There exist
some search spaces for which, until simulated annealing and genetic algorithms
came along, there was no way of finding a solution apart from random or
exhaustive search. These new tools at least allow machines to find solutions,
possibly sub-optimal, faster than before. They do not find solutions easily, but
they are a first step in overcoming the barrier of finding solutions to problems
with a computational complexity which is NP-indeterminate. They will be
demonstrated later in the book: simulated annealing will be shown applied to the
travelling salesman problem in Chapter 5 on Scheduling, and genetic algorithms
will be shown being applied to neural networks in control applications in
Chapter 9 on Intelligent control.

The principles of applying a search method can be abstracted from this chapter.
They can be found by posing the following questions:

1~ What sort of search problem is this?

combinatorial search of finitely-generated set, e.g. the domino problem

quantified optimization problem, e.g. the calculus-based methods.

I~ How big is the search space?

sma l l - a few thousand to a million points

l a rge - many millions

infinite.

92

CHAPTER 3: SEARCH

i~ What is known about the search space?

is it continuous?

is it differentiable?

is there a formula(e) to represent it?

i~ What are the information sources?

databases

generative calculations, e.g. deduced knowledge (see Chapter 6 on
Reasoning)

sensors (continuous and discrete).

i~ What methods are available for this kind of search?

exhaustive search

random search

breadth-first, depth-first, best-first

hill climbing

gradient or steepest descent

simulated annealing

genetic algorithms.

i~ How well do each of these methods work for each kind of problem?

use exhaustive search for small finite spaces when it is essential that the
global minimum is found;

use random search for large evenly distributed homogeneous spaces;

use hill climbing for discrete spaces where a sub-optimal solution is
acceptable;

use gradient descent for continuous or discrete spaces when a fast but
probably sub-optimal solution is acceptable;

use simulated annealing for large continuous or discrete spaces where a
better solution than gradient descent is required, possibly the optimum
solution, but with the cost of longer times needed for calculation;

use genetic algorithms for large or infinite search spaces with sparse and
diverse data;

use tree search when a lot is known about the search space which is
usually discrete, when a decision can be made at each step as to which
direction to search and when there is a distinct goal. Sometimes this can
be exhaustive, and therefore not fast except when the space is relatively
small. Depth-first, breadth-first and best-first can speed up the search,
each method being appropriate to different problems.

I~ Can the search problem be converted to another search problem ?

using a different representation

using new information (data fusion).

93

VOLUME TWO

Answering these questions would help to pin down which search methods are
applicable. However, it is not such a simple task and there are no absolutely clear
guidelines to help. We hope this chapter has provided you with a set of tools that
can be applied to specific problems, and an insight into how they work and when
they work best.

Search lies at the heart of artificial intelligence, since almost all problems require
a search to find a solution. Conventional mathematics can be used to find
solutions to problems which have a mathematical representation, such as a
formula or set of equations. Searching for solutions to the many other problems
which do not have such a representation requires some understanding of the
nature of the search space and how it is structured. This knowledge then guides
the selection of an appropriate search technique and becomes the basis of
heuristics aimed at giving acceptable solutions most of the time within acceptable
costs.

Many of the techniques described in this book involve search in one guise or
another. In pattern recognition we search for an interpretation of a given represen-
tation. In neural networks we have to search for a set of network weights which
minimize the error of the system. In scheduling, we search for the best schedule of
activities and places in time. In reasoning, rule-based systems and learning, we
search for relevant new knowledge, given a knowledge base and new informa-
tion. In intelligent control we search for a control strategy that will keep ill-
defined and complex systems within specifications, and in computer vision we
seek an interpretation of images. For these reasons the concepts appearing in this
chapter will recur throughout the book.

Davis, L. (ed.) (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold.
Jarvis, R.A. (1985) 'Collision free trajectory planning using distance transforms', Mech.

Eng. Trans. of the I. E. Aust., ME 10, 3, pp. 187-191.
Winston, E H. (1984) Artificial Intelligence, Addison-Wesley.

94

C H A P T E R 4
N E U R A L N E T W O R K S

4.1 Introduction

Artificial neural networks are emerging as an exciting new information-process-
ing paradigm for intelligent systems. They differ in many respects from conven-
tional sequential computers, and it is claimed that neural networks have the
following advantages.

Potential advantages of neural networks
I~ They do not need to be programmed, as they can learn from examples.

I~ They can generalize from their training data to other data.

I~ They are fault tolerant: they can produce correct outputs from noisy and
incomplete data, whereas conventional computers usually require correct
data.

I~ On being damaged, they degrade 'gracefully' (that is, in a progressive
manner), unlike sequential computers which can fail catastrophically after
isolated failures.

I~ They are fast: their many interconnected processing units work in parallel.

i~ They are relatively inexpensive to build and to train.

These potential advantages have created considerable interest in the possibilities
for applying neural networks in engineering, and have resulted in a great deal of
research over the last ten years. Some of the claimed advantages are exaggerated,
but others are certainly proven, and neural networks are becoming a standard
technology for engineers.

Some of the many applications of neural networks include:

systems which detect explosives at airport gates;

character recognition and document reading systems;

robot vision systems;

speech understanding systems, e.g. telephone systems which can recog-
nize and distinguish between words such as yes, no, one, two, three, etc.;

financial investment systems.

The fundamental feature of any neural network is that it is composed of a large
number of interconnected processing units. These units are often relatively

95

network /
connections \

simple, and the network gets its computational power from the many units being
connected, with outputs from the units being inputs to others. The way the units
are connected is called the network topology (Figure 4.1).

outputs

T l]

Q 0

inputs
'" l

VOLUME TWO

\

/

simple
processors
arranged
in layers

Neural networks excel at classification; they are pattern recognizers par excel-
lence. When used in this way they are presented with information about objects or
cases to be recognized, and their output signifies the class to which the object
belongs. For example, later in the chapter we will see how a neural network can
recognize characters on the basis of black and white information. We train the
network by showing it examples of 'ideal' characters. On seeing new cases the
network can tell us which class or character it best fits. The network generalizes
from the characters it has seen to be able to recognize other characters in that class.

In this book we will present neural networks as powerful black-box classifiers.
By this we mean that they take input data, process them, and give output data. In
general, we do not know precisely what is going on inside the network, which is
why we say it is a black-box system. In general, the output is of the yes/no binary
type: 'yes' the object belongs to this class, or 'no' the object does not belong to
this class (Figure 4.2). This is why we call them classifiers.

Figure 4.1
General architecture of a
neural network.

Figure 4.2
Character classification.

96
characters for class 1 characters for class 2

CHAPTER 4: NEURAL NETWORKS

To understand why classifiers are such powerful information processors, con-
sider the following questions that an intelligent machine might have to resolve:

What should I do next?

Which way should I go?

Is there an obstacle in my way?

Are explosives present in this suitcase?

Is this atmosphere poisonous?

Should I invest in this currency?

Is the system I am monitoring in a 'normal' state?

Is this character a 1 or a 2?

Is the camera aperture correct for this light level?

These can all be considered to be classification problems. If we assume that each
question has a finite number of answers, and we can find appropriate training
data, then answering these questions amounts to classifying the outputs as
'correct' or 'incorrect'.

Defining appropriate inputs and outputs, and finding appropriate training data, lie
at the heart of successful engineering applications of neural networks. This can
require considerable knowledge and ingenuity on the part of the engineer. In
particular, it is essential that the input data are in the fight form for a network to
operate on, and they must contain sufficient information for the classification to
be made. It is also essential, of course, that the outputs are relevant.

There are many examples in the literature of networks that can do wonderful
things, such as the applications listed above. Almost all of them work because the
system designers understood the overall nature of the problem they were trying to
solve, and created appropriate pre-processing andpost-processing subsystems,
as illustrated in Figure 4.3.

For example, neural networks are commonly used for classifying objects in
image data. A very simple example of this is shown in Figure 4.4, where the
characters 0, 1, + and • are formed on a 3 • 3 square grid. For consistency with
generally accepted terminology, the squares will be called pixels (picture ele-
ments).

How can such graphic data be input into a neural network?

97

VOLUME TWO

information, typically symbolic, such as a classification

post-processor

t

i

J~

neural
network

pre-processor

l ' I t t I
information, typically numeric or binary from sensors

Figure4.3
A typical neural network
architecture sandwiches the

network between a pre-

processor and a post-
processor.

0 1 + x
Figure4.4

Characters in a 3 x 3 image.

The answer to this question is that the graphical data must be transformed into a
sequence of numbers in order to be input into a neural network. In other words, a

pre-processor is required. For a given application, satisfactory pre-processing

may be achieved in a number of different ways. In some cases the design of the

pre-processor is an essential feature in building a useful neural system.

98

CHAPTER 4' NEURAL NETWORKS

Let us construct a p re -processor as fol lows. First, let us n u m b e r the pixels f rom

0 to 8 as shown in F igure 4.5(a). (In comput ing it is usual to begin count ing f rom 0

rather than 1.)

0 1 2

3 4 5

6 7 8

(a) Assigning numbers to each pixel of the 3 x 3 grid

1 1 1 0 1 0

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
1 0 1 = 1 1 1

1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0
1 1 1 0 1 0

0 1 0

0 1 0

1 0 1

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 0 =
0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1

(b) Converting the grid of pixels (1 = black pixel, 0 = white pixel)
into a sequence of numbers

The pre -processor specifies the inputs for the networks . Let the outputs be

def ined as follows:

1 0 0 0 0

0 1 0 0 1

0 0 1 0 +

0 0 0 1 x

The characters ass igned to each class give the in format ion required by the post-

p rocessor to m a k e a classification.

The training data for the ne twork are therefore:

~1 Figure4.5
The action of the image-
to.numbers pre-processor.

I n p u t s O u t p u t s C l a s s

1 1 1 1 0 1 1 1 1 1 0 0 0 0

0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 1 0 1 1 1 0 1 0 O0 1 0 +

1 0 1 0 1 0 1 0 1 0 0 0 1 x

99

VOLUME TWO

The pre-processor converts the raw data available to the system into a form that
can be input to a neural network, i.e. it encodes the input data as a list of numbers.
The network then does the essential classification work to give one of the desired
outputs. However, the outputs are presented as a list of numbers which may
require decoding by the post-processor.

In this case the post-processor might be a module of a computer program which
accepts outputs of the network such as (0.01, 0.04, 0.98, 0.11) and thresholds
these numbers to obtain the binary string (0, 0, 1, 0), matches this binary string
against data in memory and passes the symbol + to the cognition/execution
subsystems. For example, it could give a message on a computer screen such as
'the character + was recognized'.

Thus the pre-processor converts image data into a sequence of nine numbers
which can be input to a network, while the post-processor interprets as a character
the four output numbers which come out of the network.

We began this section by listing some of the attributes of neural computers which
people think are advantageous. We will end it by listing some of the features that
are sometimes considered less advantageous. As always, when choosing between
different alternatives such as information-processing paradigms, the engineer
must be aware of the pros and cons.

Potential disadvantages of neural networks
I~ Neural networks have no model of the universe in which they work.

I~ Whereas neural networks work well for inputs reasonably similar to their
training data, they may give completely unpredictable outputs outside this
region.

I~ Although they require no programming, a considerable effort may go into the
pre-processing and post-processing subsystems for a neural network.

I~ Much of the knowledge about neural networks is empirical.

Most of the remainder of this chapter will be devoted to explaining the technicali-
ties of neural networks. Our objective is to give you sufficient information on this
subject for you to be able to design and build your own neural processing systems.

The fundamental feature of any neural network is that it is composed of many
interconnected units, each of which performs a weighted sum of its inputs.
Figure 4.6 shows an example of one of these units.

100

CHAPTER 4: NEURAL NETWORKS

Yl

Xo

Xl x 3
x2

X n
~11 Figure4.6
A unit in a neural network.

The unit has n + 1 inputs, x 0 to x n, and a single output, y. Associated with each
input is a weight, which is a real number. The value of each weight, w 0 to w n, can
be either positive or negative (or zero), very large or very small. When a particular
set of input values arrives at the unit, each of the inputs is multiplied by its
associated weight value and the sum of all the weighted inputs is found.
Mathematically, this can be summarized by the following expression:

t/

S = w Ox 0 + W l X l + .." + WnXn = ~ wix i

i = 0

This is the weighted sum of the inputs, S. The value of this weighted sum
determines the output of the unit, y. Exactly what that output is depends on the
output f u n c t i o n , which in turn depends on the particular type of neural network.
A typical output function would produce either an output of 1 if the weighted sum
is positive, or an output of 0 if the weighted sum is negative. What happens when
the weighted sum is zero? Again this can vary but typically this is treated the same
as a positive weighted sum, so the output would be 1. This sort of output function
is shown graphically in Figure 4.7, and is described as hard-l imit ing.

v

S -~ ~ wixi
i = 0

"91 Figure4 .7
Hard.limiting output
function.

101

VOLUME TWO

You will notice that the expression for the weighted sum shows that the sum is

taken for all the inputs x 1 to x n, which are variable, but that it also includes a term

x 0 with a corresponding weight w 0. This extra input x 0 has a constant value of 1

and provides an offset of w 0 to the weighted sum. This is essential for the correct
working of the unit, as we shall see later.

The way that the units in an artificial neural network function has often been

compared to the way that biological neurons work. It is known that neurons are
connected together via synapses, as shown in Figure 4.8.

~il Figure 4.8
Typical biological neuron.

A synapse produces a chemical response to an input. The size of the response can
vary, and the mechanism is analogous to the weights in the units of an artificial

neural network. The biological neuron 'fires' if the sum of all the reactions from

the synapses is sufficiently large, so there is a similarity in their behaviour to the

'units' that have been described. In fact, the units were originally invented as an
attempt at modelling biological neurons, hence the use of the term 'neural

networks' . However, an element of caution is needed. Although there are some

102

CHAPTER 4: NEURAL NETWORKS

similarities between the functioning of these units and biological neurons, it

would be untrue to say that an artificial neural network is like a brain. Biological

neurons are far more complex than these simple models.

Artificial neural networks are composed of large numbers of these units con-

nected together. However, it is worth looking at the properties of just one of these

units to start with. First of all we want to show that a single unit is capable of

performing the Boolean logic functions AND, OR and NOT when the inputs are

binary with the values of either 0 or 1.

Figure 4.9 shows a single unit with two inputs xland x 2. For technical reasons

explained in Section 4.3, there is a another fixed input, x 0, called the offset, which

has a fixed value of 1.0. The weights are set to w 0 = -1.5, w 1 = 1.0 and w 2 = 1.0. It

is assumed that the unit is hard-limited as explained previously, so that the output

y is 0.0 if the sum, S, of the input times the weights is less than zero, and y - 1.0
otherwise.

When both the inputs x I and x 2 are 0.0,

S = -1 .5 x 1.0 + 1.0 x 0.0 + 1.0 x 0.0 = -1 .5

and the output of the unit is 0.0. When xl is 0.0 and x 2 is 1.0,

S = -1 .5 x 1.0 + 1.0 x 0.0 + 1.0 • 1.0 = -0 .5

and the output of the unit is 0.0. When x 1 is 1.0 and x 2 is 0.0

S = -1 .5 x 1.0 + 1.0 x 1.0 + 1.0 x 0.0 = -0 .5

and the output y is again 0.0. Finally, when xl is 1.0 and Y2 is 1.0,

S = -1 .5 x 1.0 + 1.0 • 1.0 + 1.0 x 1.0 = +0.5

and in this case, after hard-limiting, the output of the unit is y = 1.0. Table 4.1

summarizes these results.

TABLE 4.1 THE AND FUNCTION

Xo Xl x2
(fixed)

1 0 0

1 0 1

1 1 0

1 1 1

-1.5

-0.5

-0.5

+0.5

AND

Y

l - 0
Xl

The output in Table 4.1 is only 1 when both inputs xl AND X 2 are 1, and therefore

the unit performs the logical AND function.

~[Figure 4.9
The AND function.

103

VOLUME TWO

Figure 4.10 shows a unit with two inputs which is capable of performing the
logical OR function. The output response is summarized in Table 4.2. You can see
that the output is 1 when either xl is 1 OR x 2 is 1.

TABLE 4.2 THE O R FUNCTION

Xo Xl x2
(fixed)

1 0 0

1 0 1

1 1 0

1 1 1

0.~

0.~

0.~

1.~

O R
Yl

2
Xl

~q[Figure 4.10
The OR function.

Finally, Figure 4.11 shows a unit that can perform the logical NOT function. If the
input x 1 is 0 then the output is 1, and vice versa. This is summarized in Table 4.3.

TABLE 4.3 THE N O T FUNCTION

Xo Xl
(fixed)

1 0

1 1

S

+0.5

-0.5

NOT y l

Y

1

0
x 0 Xl

Figure 4.11
The NOT function.

We have therefore demonstrated how these simple units can perform the logical
functions AND and OR for the case where the number of inputs is two (not
counting the constant input x 0) and NOT where there is one input and x0. It was
stated in Chapter 3 of Volume 1 of this book that any logic function can be con-
structed from gates that perform these three basic logical functions. This means
that conventional computers could be built using these artificial neural units
alone instead of the usual transistor-based logic circuits.

We are not suggesting that computers can or ever will be built using neural
networks, but their potential was the reason for the initial excitement over neural
networks. Researchers felt that they had shown that, since brains are made of
neurons, and neurons behave like logic gates, and computers are made from logic
gates, it follows that the brain is like a computer. Therefore it should be possible to
mimic or simulate the functions of the brain on a computer. Unfortunately this

104

CHAPTER 4: NEURAL NETWORKS

was too optimistic, because neurons are much more complex than this simple
model. The quest for producing an artificial brain is still highly elusive and is
likely to remain so for many years to come.

In engineering terms, on the other hand, these units provide a medium in which
certain operations can be carried out with more success than conventional
algorithmic methods. In particular, pattern classification, which was introduced
earlier in the book, can be implemented relatively successfully using neural
networks.

Objects are said to belong to a particular class if they have properties which are
similar to other objects in that class. If we wanted to make a two-way classifica-
tion of fruit into either apples or bananas, for example, we could select a set of
measurements such as size and weight. When presented with an unknown
example of a fruit at a later stage we could classify it as either belonging to the
class 'apple' or the class 'banana' according to which class has the most features
in common with the previously learnt examples.

What makes the 'apples and bananas' example difficult for machines to carry out
is that the objects to be classified don't match up exactly with any of the
previously recorded examples. One way to resolve this is to store some 'ideal'
object that is representative of each class - the perfect apple and the perfect
banana. This ideal object is then the model or template against which we compare
new objects. In a similar way, new discoveries of fossils are classified by
comparing them with the large collection of previously identified fossil speci-
mens in the British Museum and elsewhere.

Neural networks provide an alternative approach in which there is no model.
Somehow the general characteristics of the class have to be inferred from the
examples that have been seen. It is sometimes said that the neural network has a
distributed model, which means that the model is not stored in one place but is
distributed throughout the network in the values of the weights.

A single unit can sometimes be enough to be able to carry out a pattern
classification. As an example, we will carry out a two-way classification into
classes A and B, using only two measurements x 1 and x 2. Table 4.4 lists the data
that we collected from ten samples. Notice that the data here are not binary
numbers: the values are decimals. In this example we are going to leave the data in
this form.

105

VOLUME TWO

TABLE 4.4 MEASUREMENTS OF TEN SAMPLES,
CLASSIFIED AS OBJECTS A AND B

S a m p l e X 1 X2 Class i f i ca t ion

l 2 .0 3.5 A

2 3.0 1.5 B

3 4.5 1.5 B

4 1.5 2.0 B

5 3.0 4.5 A

6 2.0 5.0 A

7 4.0 3.0 B

8 3.0 3.0 B

9 3.0 5.5 A

10 4.0 4.5 A

It would not be too difficult to carry out the classification of any new sample given

the two measurements. For example, what class does the object with the follow-

ing measurements belong to?

x I = 2.0, x 2 = 4.5

It isn't immediately obvious, but yes, it's A. Don ' t worry if you can' t see why - it

will become clearer as we go along.

We could display the same data on a graph using x~ and x 2 as the two axes, and

mark the position of each sample on the graph with a symbol representing either

'A' or 'B' . This is shown in Figure 4.12. Chapter 2 gave various methods for

separating the clusters of points, and neural networks provide another method

with the great advantage of learning from examples.

�9 class A data point

�9 class B data point

X2~

6

2

f
--4 -3 -2 -1 0

Q

0 x 2 = m x 1 + c

o

C �9 �9

i 2 3 4 5 6 x I

Figure 4.12
Graph of the two-object
data, for the samples of
Table 4. 4.

106

CHAPTER 4: NEURAL NETWORKS

The graph, called thepattern space, shows that the two types of object lie in quite

distinct clumps. We can separate the clumps quite easily by drawing a line

between them, as shown in Figure 4.12. Given data for some new object, we
would only have to test to see if the data correspond to a point in the pattern space

which lies on one side of the line or the other in order to classify the object. These

two classes can therefore be described as linearly separable.

How do we test whether a point is on one side of a line or the other? A line has the

general form

y = m x + c

where m is the slope or gradient of the line and c is the point on the y-axis where

the line intersects.

On our graph, y corresponds to x 2 and x corresponds to x 1 , so the equation for a
general line in our pattern space is

X 2 = m x 1 + c (4.1)

This can be rearranged to give

x 2 - m x l - c = 0 (4.2)

We can find the value of c for the straight line in Figure 4.12 by noting where the

line passes through the x 2 axis, i.e. at x 2 = 2.0. So, when x I = 0, x2 = 2.0. Substitut-
ing into equation (4.2), we get

2 . 0 - m • O - c = 0

c = 2.0

Similarly, by looking at the point where the line goes through the x 1 axis we can

find m. In this instance, the line crosses the x 1 axis at x 1 = - 4 . 0 , so when x 2 = O,

x 1 = - 4 . 0 . Substituting again, we get

O - m(-4.0) - 2.0 = 0

m = 0.5

So the equation for the straight line in Figure 4.12 is

x 2 - 0 . 5 x 1 - 2.0 - 0 (4.3)

When a pair of coordinates x 1 andx 2 are substituted into this equation, if the result
is 0 then the coordinates correspond to a point that lies on the line.

It turns out that if x 1 and x 2 are substituted into this equation and the result is

greater than 0, the point lies above the line. Similarly if the result is less than 0 the
point lies below the line. So for classification, when the two measurements are

substituted into equation (4.3) for the line separating the two classes, if the result
is greater than 0 the object is of type A. Alternatively, if the result is less than 0 the

object is of type B.

107

VOLUME TWO

For example, consider x 1 = 2.0 and x 2 = 4.5. Substituting into the left-hand side of
equation (4.3) we get

4.5 - (0.5 X 2 .0) - 2.0 = 1.5

The result is greater than 0, so the object is of type A, confirming our earlier
intuitive conclusion.

Now, let's return to neural networks. Recall that a single unit gives an output of 1
if the weighted sum is greater than or equal to 0, and an output of 0 if the weighted
sum is less than 0. If we code the objects such that 1 corresponds to A and 0
corresponds to B then we have to find a set of weights that will produce 0 and 1
when appropriate. The equation for the weighted sum of a two-input unit is

2

Z WiXi = WoX 0 + W IX 1 W2X2 +

i = 0

The output of the unit, y, is 1 when the weighted sum is greater than 0, i.e.

y = i when WoX o + w l x 1 + w 2 x 2 > 0

Similarly, the output is 0 when the weighted sum is less than 0, i.e.

y = 0 when WoX o + w l x l + w 2 x 2 < 0

The dividing line between them corresponds to the weighted sum being equal to
0"

WoX 0 + W l X l + w2x2 = 0 (4.4)

This can be rearranged to give

W2X 2 = --W l x l - W O x 0 (4.5)

W1 WO
X 2 = - - - X 1 --)C o (4.6)

w2 ~

Comparing equation (4.6) with equation (4.1) and putting x 0 = 1 gives

w 1 w 0
m - , c -

w 2 w 2

There is no unique solution to these two equations. Just as an example, let us start
by assuming that w 2 = 1.0. Then equation (4.3) is obtained from the values

w 0 = - 2 . 0 and w l = - 0 . 5

With these weights the unit can discriminate between the two classes of objects. A
single unit with the weights shown in Figure 4.13 could classify objects A and B
on the basis of the data in Table 4.4.

108

CHAPTER 4: NEURAL NETWORKS

Xo x2
Xl

We can test this by presenting the unit with the two values shown earlier, and see if
the output corresponds to the correct classification. The values used were

x 1 = 2 . 0 , x 2 = 4 . 5

When these values are presented to the unit the weighted sum is

WoX 0 + W lX 1 + WzX 2 = (--2.0 X 1) + (-0.5 X 2.0) + (4.5 X 1.0) = 1.5

The weighted sum is greater than 0 so the output is 1, which, by our design,
corresponds to object A. What has been achieved is described as generalization,
which means that although the weights were selected on the basis of a set of
known input-output data, the unit can correctly classify new data that it has not
seen before.

This shows some of the capabilities of a single unit, but clearly it would be far
better if the weights could be determined automatically. In this example it was not
difficult to find values for the weights because the pattern space was two-
dimensional. Problems with more inputs would produce a pattern space with
more than two dimensions, which is difficult to visualize, and so it is more
difficult to find simple lines or equations that separate the data.

A further problem is the fact that it is not always possible to separate data using
straight lines. Figure 4.14 shows two examples of a pattern space with two
classes of data. Neither of these sets of data could be separated using just a straight
line, and they are therefore described as non- l inear ly separable. Fortunately this
can be overcome if you use several units rather than just one.

~[Figure 4.13
Two-way classifying unit.

0 0
0

0
n @ @

i @
�9 m

m m m o

[] �9 mo o

[]

0 0
0

m

0 0 �9 m
n

m �9 0

�9 �9 m O0 0

0 0

Figure 4.14
Examples of non-linearly
separable problems.

109

VOLUME TWO

The way that the units are connected determines whether a network is a feed-
forward or a feedback network. In the following sections these two types of
network will be examined. Also, you will be shown how the weights can be deter-
mined by the network itself.

The single unit in the previous section was found to have the ability to perform a
pattern classification only when the data are linearly separable. For our simple
example of a two-input problem the line can be drawn in the pattern space, and the
weights calculated by hand. Even so, the unit we considered had the ability to
generalize from the initial set of data, and therefore provides a very powerful
method for pattern classification.

Two problems remain:

1 How can these units be used to classify non-linearly separable data?

2 How can the weights be determined in cases where there are more than two
inputs?

The first problem can be overcome by connecting several units together to form a
feedforward network, as shown in Figure 4.15. In a feedforward network the
units are grouped into layers. The reason that this type of network is called a
feedforward network is that the outputs of units in one layer are only ever

output
layer

hidden (
layer

input
layer C)

x1

T

I T
x 2 x3

)

l
X4

Figure 4.15
A three-layer feedforward
network.

110

CHAPTER 4 NEURAL NETWORKS

connected to the inputs of units in a later layer, usually the next layer. The
information in the network is therefore always flowing from the inputs to the
outputs.

The first layer is called the input layer, and is usually a fan-out layer. This means
that a unit in this layer has one input and several outputs which all have a value
equal to the input so that no actual processing takes place.

The next layer is called a hidden layer because its inputs and outputs are not
connected to the outside world, so there is no direct access to the units in this
layer. The example shown in Figure 4.15 has only one hidden layer, but in general
there could be many hidden layers.

The final layer is called the output layer. It has several inputs from the units in the
previous hidden layer, and its outputs are the outputs of the network.

Units in the hidden layers and the output layer are of the type that was discussed in
the previous section, with one difference. This difference is that the output isn't
necessarily hard-limited. The exact nature of the output function is concerned
with learning, and will be described in the next section.

The network in Figure 4.15 is a special case called afuUy connected multilayer
network, in which all of the units in one layer are connected to all of the units in
the next layer and only the next layer. Thus outputs from units in the input layer
are connected to the inputs of units in the first hidden layer. Outputs from units in
the first hidden layer are connected to the inputs of units in the second hidden
layer, and so on, until finally the outputs from units in the last hidden layer are
connected to the inputs of the units in the output layer.

We are not going to prove that a feedforward network is capable of classifying
non-linearly separable data. We will, however, describe one classic problem and
show how it can be implemented. This problem is called the EXCLUSIVE-OR, and
has become a sort of test problem over the years to show the limitations of the
single unit. Table 4.5 shows the EXCLUSIVE-OR function, which has two binary
inputs. Figure 4.16 shows the same function in pattern space.

TABLE 4.5 THE E X C L U S I V E - O R FUNCTION x 2

�9 desired output is l

o desired output is 0

Xl X2

0 0

0 1

1 0

1 1

y

r

Xl

Figure 4.16
The EXCLUSIVE-OR function
in pattern space.

111

VOLUME TWO

It should be apparent from the pattern space that it is impossible to draw a single
straight line that would separate the 0s from the ls. A single unit would therefore
be unable to solve this problem. The network in Figure 4.17, on the other hand,
can implement the EXCLUSIVE-OR problem.

The network in Figure 4.17 can use hard-limiters because the solution can be
found using the three types of logic gate (AND, OR and NOT) that were described at
the start of this chapter rather than letting the network find the values for the

weights itself. Later in this section we will describe the method for automatically
finding a solution in which hal-d-limiting cannot be used.

Yl
unit 3

Y2

unit 1 unit 2

/
Xo

()
T T
Xl x2

The EXCLUSIVE-OR problem can be stated in words as:

the output is 1 when either x 1 is 1 AND x 2 is NOT 1

OR x 1 is NOT 1 AND x 2 is 1

otherwise the output is 0.

The hard-limited units in Figure 4.17 are carrying out these logical functions:

Unit l : y 1 = 1 when x 1 is 1 AND x 2 is NOT 1

Unit 2:Y2 = 1 when x 1 is NOT 1 AND x 2 is 1

Unit 3: y = 1 when Y l is 1 OR Y2 is 1 but not both

Note that the unnumbered units in the first (or input) layer do no more than
receive the inputs and fan them out to the next l a y e r - they do not have any
weights and do no processing; they simply make each output the same as the
input.

4[Figure4.17
Feedforward solution to tt~
EXCLUSIVE-OR problem.

112

CHAPTER 4: NEURAL NETWORKS

The processing can be summarized as follows:

Xo XI X2

1 0 0

1 0 1

1 1 0

1 1 1

yl y2 y

Thus the inputs shown in Table 4.5, if applied to the inputs of this network, would
give the correct output in each case. This shows that a feedforward network is
capable of classifying non-linearly separable data.

4.5 Learning in neural networks

The next problem is that of finding the values for the weights automatically.
Given a particular classification problem, if we assume that we have chosen a
feedforward network with a sufficient number of layers and number of units in
each layer, then there exists a set (or many sets) of weights which produce the
correct responses. Finding a set of weights therefore requires us to search for an
acceptable solution. When the values of the output are known, they can be used to
find values for the weights by a process described as supervised learning. (We
will look more closely at what we mean by 'learning' in Chapter 8.)

4.5.1 Delta rule
Of the search techniques described in Chapter 3, the calculus-based search
showed how a derivative could be used as an indication of the direction to the
solution if the solution exists at a minimum (or maximum). The gradient-descent
method, described in Section 3.3.4, is also referred to as the delta rule when
applied in feedforward networks. A feedforward network using the delta rule is
called a multilayer perceptron.

The search space is multidimensional, with the number of dimensions corre-
sponding to the number of weights. The value used to measure the candidate solu-
tion is the mean squared error, E. The error is the difference between the desired

113

VOLUME TWO

output, d, and the actual output, y. This value, e, is squared and the average value
found for all the examples in a training set. The training set consists of all the
known input-output pairs. If there are P examples in the training set, then for a
single processing unit the mean squared error is

P
- - 1 2

p = l

(4.7)

where ep = dp-yp for each example, p.

It is possible to picture what is required for learning in problems with only two
inputs (including the constant input x0). An example of such a problem is the
NOT function described earlier. The weighted sum is

s--Z
i = 0

W i X i = W o X 0 + W l X 1

and, since x 0 = 1,

S = w 0 + w 1 y I

The mean squared error for this case is

2
- 1

p = l

In order to show how E changes with the values of w 0 and w~, we are going to use
a small 'sleight of hand'. We are going to remove the hard-limiting from the
output and compare the desired value with the weighted sum, just for the moment.
Since there are only two possible binary inputs (0 and 1), and the output in each
case is the inverse (1 and 0), the mean squared error can be calculated as

2
- 1

p = l

1) 2 2
= ~ [(d~ - S~ + (d 2 - S2)]

When X l = 0 , the desired output is d l= 1, and the actual output is Sl=W0.
Similarly, when xl = 1, the desired output is d 2 - 0 , and the actual output is
$2 = w0 + w l. The total error is

- (1 - w0) 2 + (0 - w 0 - wl)2
E =

2

114

CHAPTER 4: NEURAL NETWORKS

When this function is plotted as in Figure 4.18 it can be seen that a surface is
created called the error surface. A valley or minimum exists at the point where
w0= 1 and wl = - 1 , at which point the mean squared error is zero. So in this
example, it turns out that the hard-limiter is not needed since the unit can produce
the correct output without it. This is not generally the case, but serves to illustrate
the error surface in this particular example.

Figure 4.18
Error surface for the
inverter problem.

In gradient descent, the aim is to move down a surface to a minimum. This is
achieved by changing each of the variables (the weights in this case) by an
amount that is proportional to the negative of the slope. That is,

bE
Awi = - a OWl (4.8)

where a is a constant, and E is the mean squared error. The symbol A is a delta,
and the notation Aw i means 'the change to wi'. The derivative of the mean squared
error with respect to a weight w i is

~)/~ 2 e Oy

bwi p ~ e OWl
p = 1

This is derived as follows. The mean squared error is defined as

P
- 1 2 Ze

p = l

where e = d - y for each example, and P is the number of examples.

115

VOLUME TWO

Using gradient descent, the change to each weight w i is proportional to the
negative of the slope. That is,

m

~E
Awi - - a ~W i

where o~ is a constant. The derivative of the mean squared error with respect to a
weight is

~E
aWl

1 P
1 e ~ e2 =1 0-~~(d y)2

By the chain rule of calculus,

3E 1 3 ~y 1 3y _ 2 Oy
~)w/. - P ~ ~yy(d - y)2 • ~wi _ e - 2 (d - Y)ff-ww~ p e a w i

p = l p = l

This shows that in order to find the derivative of the mean squared error with
respect to the weights, the derivative of the output y with respect to the weights is
needed. This is why the hard-limiter function used earlier in this chapter won't do,
as it is not a differentiable function.

In order to overcome this problem a different output function is applied to the
summed weights. This has to be differentiable and monotonic, which means
that for every value of the weighted sum, there is only one value of output, and
vice versa. A commonly used function is the s i g m o i d f u n c t i o n , shown in
Figure 4.19.

Y
1.0

0.5

/

The equation for this sigmoid output function is

1
Y= l + e - S

n

where S = ~ WiX i and e is the base of natural logarithms.
i=0

(4.9)

Figure 4.19
Sigmoid func t ion .

116

CHAPTER 4- NEURAL NETWORKS

As you can see, when the weighted sum is greater than 0 the value of the output
rises to 1 as the value of the weighted sum increases, and similarly when the

weighted sum is less than 0 the output falls to 0 as the value of the weighted sum
decreases. When the weighted sum is 0 the output is 0.5.

The derivative of the sigmoid function with respect to the weighted sum, S, is:

dy e -s

dS = (1 + e-S) 2 = y (1 - y)

This gives us enough information to be able to evaluate the changes that have to
be made to the weights to reduce the error and consequently to find the solution.

Suppose a sigmoid function is applied to give the output

1
y =

1 + e -s

The derivative of the output with respect to a weight can be found using the chain
rule ,

ay dy bS
= X

~wi dS 3wi

/7

w h e r e S - ~ wixi .
i = 0

For a sigmoid function, y -
1

1 + e - s ' we have

Also

-s dy e

dS (1 + e-S) 2
= y(1 - y)

~S
awi

n

a ~ w j @ -
OWi j = 0

Substituting these, we get

i

aE
~wi

ay
p e Owi

p = l

which can be written as

~ awj
j = o a-~w* xj - x,

- 2 v , P dy aS
p 2_, e-d- ~ X aW i

p = 1

2 P

~_, ey(1 - y) x i
P

p = l

aE
~w;

P
2 pZ

p = l

&;

where ~ = ey(1 - y) = y(1 - y)(d - y) .

117

VOLUME TWO

Therefore, from (4.8),

aE 2 a p
A W i -- - - a OW i = p ~_~ axi

p = l

which can be written using the Greek symbol 7"/(eta) as

P

A w i = 17 s ~x i
p = l

2 a
where 7/ - -fi- is a constant, or

A w i -

P

Z rl~xi
p = l

This states that the adjustment to the weight w i is the sum of 77 (~X i taken over all of
the examples in the training set. it is common practice to simplify this procedure
by simply changing the value of w i by an amount 77 5 x i after each example in the
training set.

The result is the delta rule formula:

A w i = 1" I (~x i (4.10)

where

S = y (1 - y) (d - y) (4.11)

and r/is a small positive constant, usually between 0 and 1, called the l e a r n i n g

rate.

This formula shows us that the change to a weight is positive when 5 and x i are

both positive or both negative. For example, if x i is 0.3 and y is 0.2 when the
desired output is 1, then

= 0 .2 (1 -0 .2) (1 -0 .2) = 0.128

A w i = 17 X 0.128 X 0.3 = 0.03847"/

Let us assume that r/= 0.5 and that w i is initially -0.8. The value of Awi is added to
the old value of the weight, w i, to produce the new value. The new value for w i

will be

wi(new) = wi(old) + Aw i

= - 0 . 8 + (0.0384 x 0.5)

= -0.7808

Here the value of the weight gets more positive so that the value of the weighted
sum increases, and consequently the output will be closer to the desired value.

118

CHAPTER 4: NEURAL NETWORKS

This gives us the formula for changing the weights for a single unit when the
value of the error between the desired output and the actual output is available. In
multilayer networks this formula has to be modified for the units in the hidden

layer.

4.5.2 Back-propagation
In a multilayer perceptron, the value of the output of a unit in one of the hidden
layers can be found, but in the first instance there is no 'desired' value, so an error
cannot be formed. The error only exists at the output layer where we know what

value we want the output to be.

The derivation of the formula for the weight changes in the hidden layers

proceeds as follows.

Assume that the network is a three-layer network with a single perceptron in the

output layer, as shown in Figure 4.20.

Xo

YT
Y0 ._ ' ~ output

"- W o ...] layer
w 1 w 3

) /
~ - ~ / u n i t 1 ~ - ~ unit 2 ~ ~ m t 3

~ /' ~ x0 I | x0 I_.. I hidden
w 0 ~ ,, W o W2] ItWo _..] ~w,o] layer

input
layer

T t
x 1 x 2

~l Figure 4.20
T h r e e - l a y e r , s i n g l e - o u t p u t

p e r c e p t r o n .

Consider a weight in the hidden layer. If we want to change w 1 in unit 2 in the
hidden layer, we need to know the effect that it has on the final output, y. To do this
we need the derivative of the error with respect to w l.

The squared error at the output of the network is E = (d - y)2.

1 1 9

VOLUME TWO

We are making the assumption from the start that we are going to adjust the
weight after every example in the training set, so the squared error is used and not
the mean squared error; i.e. we assume

~E
Aw~ - - a O w ~

where E is the current error. Then

y - f
;3)

Z wiYi
= 0

for the unit in the output layer

Y2 - f i2 / WiXi
= 0

for unit 2 in the hidden layer

where f() is the output function, which we can assume is a sigmoid.

By the chain rule,

Owt = dy x ~wl

dE dy ay2
~y • •

N o w ,

dE

dy

Furthermore

~y

@2

and

2

~)wl

So

~E

~W 1

d d y2
~yy (d - y)2 _ dyy (d 2 _ 2dy +) - - 2 (d - y)

~ t 1) _ w2e-2W'Y'
~)Y2 1 + e -xw' y' (1 + e -2w' y')2 = w2y(1 - y)

0 t 1) _ xle-XW;X'
bWl 1 + e -xw' ' ' - (1 + e-XW;X;) 2 = xly2(1 - y2)

= -2Xl Y2(1 - y2)wzy(1 - y) (d - y)

120

CHAPTER 4: NEURAL NETWORKS

3E
and since, by (4.8), AWl - -oc OWl

Awl = r/xiy2(1 - y2)wzy(1 - y)(d - y)

or

Awl - / /x lY2(l - y2)w2~

where S = y (1 - y)(d - y), and in this case the constant, r/, is r /= 2a.

And then

zXwl = r/xla2

where ~ = y2(1 - y2)w28.

So the change Awl for the intermediate layer has been found from the parameter
calculated for the output layer.

If there were more output neurons, the error E would be the sum

E = [d 1 - y l] 2 + [d 2 - y 2] 2 + . . . + [dm - y m] 2

So the derivative of the error with respect to the outputs is

~E
~" 3Yi = - 2 ~_, [di - Yi]

Consequently, the general form of the equation for 6 i for unit i in hidden layer k is

m

~/ - y(1 - y) ~ w i (j ~ s
j = l

where y is the output of the hidden unit, m is the number of units in layer k + 1 that
unit i is connected to via weight Wi(j) , and ~j is the value of ~ for each of the m
units in layer k + 1.

The result is the same as equation (4.10), repeated here as equation (4.12)"

Awi = 7"1 ,Sxi (4.12)

The expression for 8, however, is quite different in this case:

m

~. = y (l - y) ~ wi(j~ ~
j - ' l

(4.13)

This is a rather fierce-looking formula but is actually not too difficult to interpret.
Instead of the error (d - y) , the weighted sum of the S values from the units one
layer ahead are used. Layer k + 1 could be the output layer or another hidden layer.
It is assumed that the unit in layer k is connected to m units in layer k + 1. The

121

VOLUME TWO

subscript i indicates which unit in the current layer, k, is being adjusted, and the
subscriptj indicates the unit in the next layer, k + 1. The weight, wi(j), is therefore
the weight in unit j of layer k + 1 that is associated with the input from unit i in
layer k.

In back-propagation, the calculations start at the output layer, where the first
values of 3are calculated using equation (4.11) and the weights adjusted. Next the
values of 3 in the hidden layer immediately preceding the output layer are
calculated and the weights adjusted. This time equation (4.13) is used to calculate
the ~3values. This continues back through the network until all of the weights have
been adjusted.

Figure 4.21 shows a specific case of a unit in a hidden layer, k, connected to two
units in the next layer, k+ 1. In this case m = 2.

81 82

unit 1 unit 2 layer k + l

unit i layer k

To make life easier, let us assume that layer k+ 1 is the output layer. The two
values, ~1 and 62 are calculated using equation (4.11) and all the weights in units 1
and 2 in layer k + 1 are adjusted according to the formula in equation (4.10). Next,
the weighted sum of these 6values is found. The weights used are those in units 1
and 2 in layer k + 1 that receive an input from unit i in layer k. Thus the weighted
sum is

wi(1)61 + Wi(2)r 2

This is then used to calculate the value of ~i so that the weights in unit i can be
adjusted.

Figure 4.21
Calculating ~ for a unit in a
hidden layer.

122

CHAPTER 4: NEURAL NETWORKS

The main difference between feedback networks and feedforward networks is
that the connections in feedback networks allow information to flow in either
direction, including from the output to the input. As a result, back-propagation
cannot be used as a means of learning. Solutions are therefore found not by
minimizing the error function but by minimizing a function that is analogous to
the 'energy' in the network. In the feedforward case the error was seen to form a
surface, and gradient descent was used to move down the surface to the lowest
point, called a minimum. In feedback networks the 'energy' also forms a surface.

In one example, the Hopf ie ld ne twork shown in Figure 4.22, a set of inputs and
corresponding outputs are used to calculate weights which position the network
at minima in the energy surface. Training is therefore much simpler than in back-
propagation as it is achieved in one calculation. When the network is operating as
a pattern recognizer, it is initialized by holding the inputs, x i, at their desired
values. Since the x inputs are connected to the outputs of the units, the values o f x i

become the initial outputs of the network. The x inputs are then removed and the
network is allowed to iterate until it settles to a stable solution. During the
iterations, a unit is arbitrarily selected and the weighted sum of its inputs is
calculated. If the weighted sum is greater than 0 the output is 1, otherwise the
output is 0. The network is performing gradient descent, with the result that the
network is directed towards the nearest local minimum, which hopefully corre-
sponds to the correct output value.

Problems arise in the Hopfield network because the creation of the many local
minima corresponding to input-output pairs also creates other spurious minima.
Thus it is possible for one of the original input values taken from the training set to
drive the network to one of these spurious local minima and produce the wrong

output.

(

1 1 ,

X3 X 2 Xl

Figure 4.22
The Hopfield network.

123

VOLUME TWO

One way of overcoming this problem is to ensure that the desired input-output
relationship is placed at the global minimum in the energy surface while the
system is learning. An example of such a network is the Boltzmann machine,
shown in Figure 4.23. It uses simulated annealing (Section 3.2.4) to set the values
of the weights when learning input-output relationships so that the network is at a
global minimum. Then when an input arrives at the network, simulated annealing
again allows the network to settle into a global minimum, producing the correct
output response.

bidirectional
link

outputs

t T

T c T
inputs

,~ Figure 4.23
The Boltzmann machine.

Although feedback networks have very important properties, due to limitations
on space we will focus exclusively on feedforward networks in the remainder of
this chapter. At the time of writing, feedback networks were being used much less
than feedforward networks partly due to the limits of the available technology to
construct these networks and partly because of the length of time that these
networks take to arrive at solutions. Interested readers can find more detailed
descriptions of the Hopfield network and Boltzmann machine in other books, for
example Rumelhart and McClelland (1986) and Picton (1994).

The multilayer perceptron consists of units which have a sigmoid as the output
function and the weights are adjusted using back-propagation. Any problem that
requires a particular input-output relationship which is known in advance, or
where examples exist of correct input and output values, can be implemented
using a multilayer perceptron.

I24

CHAPTER 4: NEURAL NETWORKS

In a mechatronic system, multilayer perceptrons can be used in all of the three
subsystems that were identified in Volume 1 of this book.

(a) Perception
Multilayer perceptrons can be used to classify visual or other sensory inputs - an
important function in pattern recognition.

(11) Execution
Multilayer perceptrons can be used to transform the desired target coordinates to,
say, appropriate joint angles in a robot arm. They can also be used to control linear
systems, but have found an important role in controlling complex non-linear
systems where models are difficult to obtain.

(c) Cognition
Finally, the functions of the cognition subsystem are:

pattern recognition

searching

reasoning

learning.

It is clear that neural networks can recognize patterns and that they learn, but what
about searching and reasoning? The way that neural networks learn makes use of
search techniques such as gradient descent or simulated annealing, for example.
Learning is equivalent to finding a solution in a multidimensional space, so a
neural network can be thought of as a physical embodiment of a search technique.
If a problem can be set out in such a way that it can be defined by a set of input and
output pairs, then a neural network should be able to find a solution. A suitable
choice of those pairs ensures that generalization is meaningful.

Although this sounds easy, it is in fact the most difficult aspect of any neural
network implementation. If we can assume that when a problem is defined by a
set of input-output pairs the neural network can find the solution, just how the
network does it is no longer of interest. Getting a problem into that form,
however, is usually non-trivial and may even be impossible.

Exact reasoning uses deductive logic to produce an output that can be used to
make a decision from a set of inputs. At the beginning of this chapter you were
shown how the neural units could behave like logical elements. It follows that a
neural network is capable of logical reasoning. However, because of the net-
work's ability to produce outputs other than just 0 or 1 when using sigmoid output
functions, it is possible to have some form of inexact reasoning.

125

VOLUME TWO

The ability of the network to generalize means that missing input data or noisy
data can still sometimes produce an output which has a value other than 0 or 1, but
which is still distinguishable from other outputs. For example, Figure 4.24 shows

a network in which unit 1 has been set up to perform the AND function of three

inputs, x 1ANDx 2 AND x3, while unit 2 performs the function x 1 AND NOT x 2 AND x 3.

yl y2

unit 1

Xo l l X 3 X 0 X3
Xl X2 X 1 X2

unit 2

~1 Figure 4.24
Two different logic
functions.

The value of Sl is calculated as the weighted sum of the inputs when the weights

w 0 to w 3 are -5 , 2, 2, 2, and the value of S 2 is the weighted sum of the inputs when
the weights a r e - 3 , 2 , -2 , 2. The outputs (Table 4.6) are calculated by substituting
the weighted sum into the sigmoid function.

TABLE 4.6 INPUTS, OUTPUTS AND WEIGHTED SUMS FOR THE UNITS IN
FIGURE 4.21

Xo Xl x2 x3

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

S1

-5

-3

-3

+1

Yl

0.01

0.05

0.05

0.27

0.05

0.27

0.27

0.73

$2

-3

-1

-5

-3

+1

-3

Y2

0.05

0.27

0.01

0.05

0.27

0.73

0.05

0.27

126

CHAPTER 4: NEURAL NETWORKS

Now if input values of say 1,0.8, 0.1 and 1 appear at the inputs x 0 to x 3, the outputs
of the two units would be

y~ = 0.23, Y2 = 0 . 6

The outputs are not clear 0s or ls. But it is still possible to reason that Y2 is greater
than Yl and therefore one could have more confidence in Y2 being correct than Yl
being correct. In both cases one could make a decision, even though neither of
these values are binary 0s or l s.

4.7.1 An example" optical character recognition
An area where neural networks have had some success is in optical character
recognition (OCR) of typed, printed or handwritten characters. At the time of
writing, OCR is certainly a growth area: scanners that can read documents are
becoming more readily available, and the software to read and interpret the
images produced by these scanners is becoming more sophisticated. Most of the
OCR software that is available has some form of learning ability, although most
do not use a neural network approach. However, it is claimed that some OCR
software using neural networks is not only able to read typed text, but also some
handwritten text.

There are many problems involved in reading text. Typically, the process
involves a number of stages before the pattern recognition properties of the
software are put to use. These stages include image processing, where the image
is 'cleaned up' so that the text is made clearer. In the simplest case this just
involves a threshold which converts a grey-scale image into a binary image, so
that in each picture cell the black text is represented with a binary 0, while the
white background is represented with a binary 1.

Next, there has to be some fairly sophisticated software which can isolate all ofthe
characters. Some researchers have said that this is the real problem in OCR. It may
seem quite trivial, but examples where the text has 'run together', that is where
two characters are touching, are difficult to separate. There are also problems of
scaling for size and adjusting for rotation. Usually OCR packages can handle a
slight degree of rotation, due to the document not being aligned properly in the
scanner. However, if a document is scanned upside-down, or rotated through 90 ~
then it is unlikely that the OCR software could process the data successfully.

Finally, there is a stage of pattern recognition. One way would be to use templates
to compare with each character in turn. The template that is nearest or most similar
to the character would produce the highest score, and so the character would be
identified. In packages which can learn, the human operator would be asked to
identify any character which either produces a very low score because no template
matches very well, or because more than one template matches the character and
so the correct one has to be selected. In these cases the templates would be
modified or new templates created to accommodate this new information.

127

VOLUME TWO

A neural network solution would consist of training a network on examples of a
particular character set, such as a particular typographic font. All the characters in
that font would be shown to the network, and when the error reaches a suitably
low value, the network would have been trained. Showing the network any
character from that font again should produce the correct response which would
identify the character.

As an example, let us consider the problem of representing and recognizing the
ten characters 0 to 9.

Considering first the numeral 0 (zero), we can represent it as an 8 x 8 pattern of
black and white picture cells, and as a pattern of binary 0s and ls:

Inputpauern
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0

- - - | - - - V - V

-n i l i l iB

nmm mnmm
,9
U

Our desired output pattern for the numeral 0 is the following string of ten binary
digits (bits):

Desired output pattern
1 0 0 0 0 0 0 0 0 0

If the first bit of the output is 1 and all the other bits are Os, the output pattern
represents the numeral O. Similarly, if the second bit is 1 and all the others are Os,
the output pattern represents the numeral 1, and so on for all ten numerals.

So, for each of the ten numerals we can draw up an input pattern and a desired
output pattern, as shown below and on the next page. This can be used as our
training set for a neural network.

Numeral:O

I~utpauern
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
Desiredou~utpat~rn
1 0 0 0 0 0 0 0 0 0

NN mm mm
Nun nun

Numeral: 1

Input pattern
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 o o o
O O O l l O O O
o o o 1 1 o o o
o o o 1 I o o o
o o o o o o o o
Desired output pattern
0 1 0 0 0 0 0 0 0 0

128

b~

~
. ,,..
,

..
..

 n
.l

..

./
.i

-

~
~

~
~

0
~

~

~
..~

I'
/"

'-

I,
/_

_

~
~

~
-

0
0

~
'

~

~

q
~

0
0

0
0

~
~

I""
-,,

I
//

I

I
Ii

I

/
I

i/

/
I

I
i

E
..

..

~ ~
.

0
0

0
0

0
0

0
0

~

I
I

II

I
I

I
u

II
II

II
II

I
U

/l
/

I
I

//

/
I

I
//

n

I
I

__
I

Z -n

~>

r-
-

Z F~
 o c~

VOLUME TWO

Now let us consider how these input and output pairs can be used to train a
multilayered perceptron to recognize the ten numbers. As with all cases, a choice
has to be made about the architecture of the network. In this example it was found,
after trying a number of different configurations, that a network with the
following parameters could be successfully trained to recognize the ten input
patterns we have specified.

Number of inputs 64

Number of outputs 10

Number of hidden layers 1

Learning coefficient 0.5

Units in hidden layer 10

Number of training pairs 10

This describes a three-layer perceptron with 64 input units, 10 output units, and
10 units in the hidden layer, with the learning coefficient set at 0.5. Figure 4.25
shows the network.

???? ??

10 output units

1 0 units
in hidden layer

64 input
units

~l Figure 4.25
The numeral classifier
network (for clarity, not all
the connections are shown).

The network was initialized by setting all the weights to a random value between
- 1 and + 1. After presenting the training data to the network 100 times, the outputs
were as shown in Table 4.7.

130

CHAPTER 4: NEURAL NETWORKS

TABLE 4.7

Numeral Outputs

0.46 0.02 0.17 0.13 0.08 0.09 0.02 0.13 0.19 0.15

0.06 0.72 0.07 0.10 0.12 0.10 0.00 0.31 0.06 0.18

0.12 0.05 0.22 0.15 0.04 0.10 0.10 0.05 0.14 0.07

0.09 0.06 0.12 0.17 0.02 0.15 0.02 0.09 0.13 0.14

0.11 0.11 0.09 0.06 0.67 0.07 0.14 0.18 0.09 0.12

0.08 0.04 0.10 0.14 0.03 0.14 0.02 0.10 0.13 0.16

0.07 0.03 0.17 0.11 0.23 0.12 0.82 0.05 0.14 0.07

0.13 0.17 0.05 0.08 0.11 0.10 0.00 0.33 0.09 0.27

0.15 0.02 0.13 0.12 0.03 0.12 0.04 0.07 0.16 0.15

0.11 0.04 0.06 0.09 0.04 0.12 0.01 0.19 0.12 0.26

The values highlighted in bold are the outputs that should be 1, while all the other

outputs should be 0. You can see that there is little correspondence between most

of the inputs and the outputs at this stage. However, after 200 iterations the

outputs were as shown in Table 4.8.

TABLE 4.8

Numeral Outputs

0.85 0.00 0.06 0.05 0.07 0.00 0.00 0 . 1 1 0.13 0.08

0.01 0.84 0.05 0.07 0.03 0.04 0.00 0.11 0.00 0.04

0.07 0.08 0.76 0.18 0.01 0.08 0.03 0.01 0.18 0.01

0.05 0.08 0.13 0.74 0.00 0.25 0.00 0.06 0.06 0.04

0.06 0.04 0.02 0.00 0.84 0.01 0.08 0.04 0.06 0.04

0.00 0.02 0.03 0.14 0.02 0.60 0.02 0.01 0.16 0.18

0.0i 0.02 0.09 0.02 0.11 0.16 0.90 0.00 0.18 0.05

0.09 0.10 0.01 0.09 0.06 0.03 0.00 0.82 0.02 0.17

0.07 0.00 0.10 0.02 0.04 0.11 0.05 0.01 0.68 0.20

0.01 0.01 0.00 0.01 0.06 0.16 0.00 0.10 0.14 0.76

131

VOLUME TWO

At this stage all the outputs were greater than 0.5 where they are supposed to be i,
and all the outputs were less than 0.5 where they are supposed to be 0. So the

network seems to be converging on a solution.

After 600 iterations the outputs were as shown in Table 4.9

TABLE 4.9

Numeral Outputs

0.94 0.00 0.01 0.03 0.04 0.00 0.00 0.03 0.04 0.03

0.00 0.95 0.03 0.01 0 . 0 1 0.01 0.00 0.04 0.00 0.01

0.01 0.03 0.94 0.04 0.00 0.01 0.01 0.01 0.04 0.00

0.03 0.01 0.03 0.93 0.00 0.06 0.00 0.02 0.01 0.01

0.03 0.03 0.01 0.00 0.94 0.00 0.03 0.01 0.01 0.00

0.00 0.01 0 . 0 1 0.04 0.00 0.91 0.02 0.00 0.04 0.04

0.00 0.01 0.03 0.00 0.05 0.06 0.95 0.00 0.04 0.01

0.03 0.03 0 . 0 1 0.03 0.01 0.00 0.00 0.94 0.00 0.03

0.03 0.00 0.03 0.00 0.01 0.02 0.02 0.00 0.92 0.03

0.01 0.00 0.00 0.00 0.02 0.04 0.00 0.03 0.03 0.94

Clearly, all the outputs are now within 0.1 of their correct values. We chose to stop

the training here even though the outputs were not exactly correct. It is quite a

common practice to stop the training when all the outputs are within a certain

value of the desired value, since further training would reduce these errors but

only at the expense of a lot more processing time.

To test the network we presented it with 12 input patterns. These consisted of the

10 numerals which had been corrupted by noise, shifted, or generally made
slightly different (see over page), and two other test patterns which consisted of

'all 0s' and 'all ls ' respectively, as shown below.

All0s

l~utpaHern
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Allls

l~utpattern
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

mmmmmmmm
mmmmmmmm
mmmmmmmm
mmmmmmmm
mnmmmumm
mmmmmmmm
mmmmmmmm
mmmmmmmm

132

CHAPTER 4: NFlJRAL NETWORKS

VOLUME TWO

The responses were as shown in Table 4.10.

TABLE 4.10

Input
pattern

All 0s

All ls

Outputs

0.04 0.12 0.02 0.03 0.08 0.01 0.02 0.08 0.01 0.08

0.00 0 .01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.22

0.93 0.00 0 . 0 1 0.02 0.04 0.00 0.00 0.03 0.03 0.02

0.04 0.11 0.01 0.32 0.01 0.00 0.00 0.18 0.00 0.01

0.05 0.00 0.08 0 . 0 1 0.00 0.01 0 . 0 1 0 . 0 1 0.82 0.01

0.06 0.06 0.89 0.33 0.00 0.01 0 . 0 1 0.01 0.01 0.00

0.25 0.00 0.01 0.00 0.22 0.00 0.00 0.06 0.16 0.04

0.00 0 . 0 1 0.01 0.04 0.00 0.84 0.01 0.00 0.04 0.03

0.00 0.02 0.17 0.00 0.03 0.12 0.61 0.00 0.08 0.00

0.01 0.01 0.00 0.01 0.02 0.00 0.00 0.81 0.01 0.05

0.09 0.00 0.03 0.00 0.05 0 . 0 1 0.01 0.01 0.89 0.01

0.04 0.00 0.00 0.17 0.00 0.01 0.00 0.04 0.02 0.44

First, the 'all 0s' and 'all Is ' patterns produced no definite high output. This is as
we would expect, as they don't correspond to any of the training patterns. Next,
the corrupted numerals 0, 5, 6, 7 and 8 produced good responses, even though the
value of the output that should be 1 is lower. In the case of 9 the value is very low
(below 0.5), but at least it is higher than any of the other outputs, so it would be
correctly classified but with a low confidence.

The corrupted numerals 1, 2, 3 and 4 are all incorrectly classified. The network
responds that 2 is an 8 and that 3 is a 2. In these cases the changes we made to the
numerals were fairly major, just to see how the network copes. The number i, for
example, has been shifted to the fight, which gives the network a problem. This
emphasizes what we said earlier about an OCR system: shift and rotation would
have to be dealt with by an earlier part of the system before pattern recognition
takes place. A neural network is particularly sensitive to displacements, so that in
many systems some form of transformation is used which produces an output that
is invariant to these changes before attempting to classify the images.

In our test, the numerals 2, 3 and 4 have been altered so that, in effect, they are new
symbols. It's not surprising that the neural network fails, because it hasn't seen
these new symbols before. This shows the importance of selecting the training

134

CHAPTER 4: NEURAL NETWORKS

set. It must contain representative examples of all the sorts of patterns that it will
encounter. If two different types of the number 4 are expected, for example, then
it should be shown both types in the training set.

This shows that a neural network can generalize so that inputs that are similar but
not exactly the same can produce the correct response. But in generalizing, some
bizarre input patterns can produce outputs which appear to be correct but are in
fact completely wrong. Care must always be taken to ensure that the training set
contains examples of all the input patterns that the network is likely to encounter.
Outside of the training set, the neural network can make catastrophic errors.

Artificial neural networks have become increasingly popular because of their
ability to perform complex pattern classifications without having to be explicitly
told how. Their ability to learn from examples and to be able to generalize from
these examples makes them a very powerful tool. Inevitably, they have their
supporters but also their critics. Critics of neural networks point out that although
networks can be shown to work on small 'toy' problems there is a real difficulty in
scaling them up to work on very large problems. Although they entered the field
with an initial enthusiasm, many researchers into neural networks have found
them difficult to apply successfully. However, it is becoming clearer that success
in neural networks depends not only on a good knowledge of the networks
themselves, but also a good understanding of their intended application. Too
often people have tried to apply neural networks to problems which are them-
selves not well understood, in the hope that the network will be able to ' sort it out
for itself'.

As we discussed at the beginning of this chapter, deciding on which information-
processing paradigm to use is a decision in which the engineer must weigh up the
pros and cons for the particular application. We can summarize these as follows:

I~ Neural networks are black-box classifiers. They are appropriate for applica-
tions in which matched input--output pairs are easy to define.

I~ Neural networks are well suited to applications in which the data are very
noisy. In particular they are very good at transforming multiple sensor
information into symbolic form for further processing by neural or conven-
tional computers.

I~ Problems which may not appear appropriate for neural processing can be
transformed by pre-processing into appropriate forms. Often this requires the
system designer to have a good understanding of the system.

i~ Since they have no model, by themselves neural networks are not appropriate
for knowledge-based processing involving reasoning.

135

VOLUME TWO

l~ Neural networks cannot communicate their workings to humans, and so it
may be difficult to see if they are going wrong (although computer graphics
and other techniques are addressing this).

l~ Neural networks may be slow to train, and also unpredictable in their
training. However, once trained they are inexpensive to copy for mass-
production.

l~ Neural networks can be simulated in software on conventional sequential
computers.

l~ Neural networks are very good at interpolating and very bad at extrapolating:
they are well suited for applications in which the boundaries of the possible
inputs are known but are less well suited for situations very different from
their training data.

l~ Neural networks cannot detect inconsistent data which may result in unpre-
dictable training behaviour or training which gives incorrect outputs.

When used intelligently, in problems which can be defined by a representative set
of input and output pairs, neural networks are excellent. There is always a certain
amount of experimentation needed to select the appropriate architecture with an
appropriate set of parameters. Rules of thumb are starting to emerge to help in this
selection process, and algorithms are being developed to speed up training. These
aids will reduce the time taken to establish whether or not a proposed network will
converge on a solution.

In this chapter we have only described the tip of the iceberg. There are many more
neural network architectures which are proving to be successful in other areas.
Networks with the ability to self-organize, for example, are becoming more
common. But at the time of writing, the field is dominated by the multilayered
perceptron, which we expect will be with us for some time to come. We strongly
commend neural networks as an information-processing paradigm that really
works for many difficult applications. We also urge caution in their use. Neural
networks are not well suited to safety-critical applications, unless they are used in
hybrid systems which also have some knowledge-based processing. As it hap-
pens, most applications of neural networks are indeed hybrid, combining the best
of both the neural and sequential information-processing paradigms.

Rumelhart, D.E. and McClelland, J.L. (1986) Parallel Distributed Processing,
MIT Press.

Picton, P.D. (1994) Introduction to Neural Networks, Macmillan Press, Basing-
stoke and London.

136

C H A P T E R 5
S C H E D U L I N G

Scheduling in intelligent machines involves determining the order of activities
for execution. This means developing a time sequence of actions, control
heuristics, and positions for the machine to follow in order to achieve its goals.

Examples of scheduling in intelligent machines include deciding which activity
takes priority to be performed next, and in what order activities will be performed
after that. For example, a robot may decide that it must recharge its batteries
before doing anything else. It may realize that it must pick up a part from one
place before it can deliver it to another. In more complex situations a mechatronic
system may have to reschedule 'on the fly' when there is a component failure, say.
For example, a conveyor belt in a manufacturing system may break down and the
system may need to decide how to transport parts until it is repaired. This might
involve mobile robots being diverted from other, less urgent, tasks to shuttle the
parts between the start and end of the conveyor belt. At the time of writing few
industrial systems have anything like the intelligence needed for this.

The main elements of scheduling are:

time

position

activities and their execution

ordering activities in time

ordering activities by position

ordering positions in time (path planning).

An important class of scheduling algorithms relate to what is called the travelling
salesman problem. This problem involves finding the shortest circuit for a
salesman between a set of cities, with the requirement that no city is to be visited
twice. In other words, the salesman must find a path along which he can perform
his activities in space and time. Furthermore the path must be optimal in some
sense. Typically there are penalties or costs attached to both the distance travelled
and the time it takes to traverse the path. The travelling salesman problem is
important because its computational complexity means that it must be solved
heuristically for any but the most simple problems. Even though the search space
is finite, for as few as 100 cities it would take centuries to search exhaustively.

137

VOLUME TWO

In an industrial context the travelling salesman problem might translate into the
'travelling robot problem' in which a robot has to plan a route in order to perform
various tasks along the way while minimizing the energy load on its motors and
minimizing its travel time.

The main problems related to scheduling that will be covered in this chapter, are:

i~ critical path analysis

I~ shortest path problems

i~ travelling salesman problems

i~ heuristic activity-path planning

I~ dynamic activity-path planning

1~ scheduling hierarchical systems.

As always in AI, scheduling immediately raises the issue of representation. How
should we represent the concepts of time, space and activity in order to design
machines which can accomplish some stated purpose?

In physics and mathematics one often represents a point in three-dimensional
space by Cartesian coordinates such as (x, y, z) where x, y and z are real numbers.
In practice we can rarely represent the position of a machine in this way because
we can only use finite decimal numbers. For example, a machine that theoreti-
cally stops after rt seconds will probably stop after 3.142 seconds since it is
impossible to represent exactly the irrational number rt by a finite decimal expan-
sion. In considering machines which move in space it is common to represent the
space by an array of square cells. In this case we do not discriminate between the
points within any particular cell.

Figure 5.1 shows an example of a two-dimensional grid. A point, p, in that space
has Cartesian coordinates of x= 2.135 and y= 3.076, but the grid representation
would simply say that the point is within the square with the coordinates x = 2 and
y=3 .

Sometimes the cells are made to correspond to the grid of pixels on a computer
screen so that an operator can see where the machine is. Within a Cartesian
representation objects may be represented by geometric entities such as points,
lines, polygons and poiyhedra. Within the cellular representation objects may be
represented as sets of cells, which may approximate to geometrical objects.

138

CHAPTER 5: SCHEDULING

p e

1 2 3 4 x

in Newtonian physics one represents time by real numbers such as t 1 and t 2,
where the number (t 1 - t2) is called the duration of the interval between the time
instants t 1 and t 2. In AI we must also divide time up into equal sampling intervals,
and each action is considered to have taken place at the end of one of those
intervals. This is rather like thinking of a clock ticking; we examine the machine
and its surroundings at each tick but not in between.

Similarly, we must find an appropriate representation for the set of actions that the
machine may take during execution. In simple cases the actions may just be a list,
such as switching motors on and off in a washing machine. However the set of
actions may be much more complex, as in the case of an autonomous vehicle.
Here we may have atomic actions such as switching motors on and off, and we
may have more complex actions such as picking up an object. This suggests that
there can be a hierarchy of actions in complex machines in which composite
actions result from sequences of simpler actions.

,~ Figure 5.1
Grid representation of a
two-dimensional space.

The language of nodes, links and arrows in graph and network theory provides
invaluable ways of representing many of the central ideas in scheduling.

Somewhat informally, we define a graph to be a set of objects called nodes (or
vertices) and a set of objects called links (or edges), where every link is associated
with two nodes. Intuitively the nodes are dots or points, and the links are lines
between pairs of points. Thus in Figure 5.2 the link 'corridor' is associated with
the node 'bin' containing parts and the node 'machine' which requires them.

139

VOLUME TWO

node link node

A A
W W

bin corridor machine

A directed link is a link in which the order of its nodes matters. For example, it
might be desirable to distinguish between the link from the bin to the machine on
which parts are carried, and the return journey link from the machine to the bin.
An arrowhead is placed on the link to denote its direction. For example,
Figure 5.3 shows the case where the link is directed from the bin to the machine,
so that the same link cannot be used to travel from the machine to the bin.

node link node

A ~ A
W w

bin corridor machine

In general we may have many links or arrows between nodes, each one represent-
ing different things. For example, parts might be transported between two
locations by robot or conveyor belt as shown in Figure 5.4.

robot (bin to machine)

bin ~ ~ ~ machine

(~ robot (machine to bin) 9

conveyor belt

This representation demonstrates that the robot is capable of more than the
conveyor belt because it can move in two directions whereas this conveyor belt
can only move in one.

As we 've already said, a graph is any set of links with their nodes. A directed

graph is a graph in which all the links are directed (represented by arrows). A
network is a graph which has numbers attached to its links which represent some
quantity. For example, the link may be weighted in terms of its length, the time it
takes to travel it, the number of objects it can transport in unit time, and so on.
Often one speaks of the weighting of the links.

A path through a graph is a contiguous set of links. The weight of a path in a
network is the sum of the weights on its links. A minimum path between two
nodes is one for which there is no other path with smaller path weight. When the
weights refer to distance we speak of a shortest path. A cycle in a network is a
path in which the start and end nodes are the same.

A large class of problems in scheduling is concerned with finding shortest paths
and cycles for the (usually very large) set of all possible paths or cycles between
locations.

Figure 5.5 shows an example of a graph, a directed graph and a network, and a
path or a cycle in each.

Figure 5.2
The concept of a link
between two nodes.

Figure 5.3
A directed link.

Figure 5.4
Many directed links between
nodes.

140

CHAPTER 5: SCHEDULING

(a) A graph thick lines show a path in the graph

(b) A directed graph thick lines show a directed path in the directed graph

3
2

q 1

(c) A network with weights on the directed links

2

1

thick lines show a cycle in the network with a total weight of 15

Figure 5.5
Examples of graphs, directed graphs, networks, paths and a cycle.

Apart from representing paths in physical space, networks can be used to represent
paths through what might be called priority space. For example, for a given set of
activities, suppose we know that some must occur before others. Then we can
represent this by placing an arrow from each of the activities to each activity which
follows it. This then leads to the idea of critical paths through the activity network.

141

5.4 Shortest paths

VOLUME TWO

In general, a machine that is moving from one position to another will attempt to
find the ' shortest' path between them. Here the term shortest means the path with
the smallest weighting in the network of possible movement links. When the link
weightings represent actual distances, the term 'shortest' corresponds to its usual
meaning of having the least length. However, the weightings may take into
account other things such as travel times, gradients, reliability, danger or cost. in
such cases the term 'shortest' is used rather loosely to mean the path with
minimum weighting.

The problem of computing shortest paths has attracted a great deal of attention
over the last forty years. This has been driven by the many commercial situations
in which finding the shortest path will save money. It has also been driven to a
great extent by the problem of trying to resolve urban, and increasingly rural,
traffic congestion. Road traffic theory begins from a fundamental assumption
stated by J. G. Wardrop in 1952: 'The journey times on all the routes actually used
are equal, and less than those which would be experienced by a single vehicle on
any other route'; that is, drivers choose what they expect to be the shortest time
path between their origin and destination.

Increasingly, road traffic systems are becoming computer controlled, and they
can be considered to be very large and complex mechatronic systems. Each
vehicle on a road system has an autonomous intelligent controller (the human
driver) which plans its route and determines its local behaviour at any given time.
The vehicle is subject to external controls such as the existence of roads and
intersections, traffic lights, speed restrictions, and road signpostings. The exist-
ence of widespread traffic jams suggests that the theory and control strategies for
road systems are currently rather poor. It is believed that introducing more
machine intelligence into the control of road systems will improve their overall
behaviour.

Chapter 1 of Volume 1 distinguishes two strategies for the control of complex
systems. The first is hierarchical top-down control, where everything is ulti-
mately decided by a master controller. Some people believe that this approach to
control cannot be viable for very complex systems such as those increasingly
encountered. An alternative allows that the parts of the system can make
autonomous control decisions out of which system behaviour will emerge. If all
the control decisions taken by drivers were taken by computers, road systems
would exemplify this kind of control. For this reason, mechatronic engineers can
learn a lot from the research that has been conducted into road systems over many
decades.

A number of algorithms have been proposed for finding shortest paths; these
algorithms have different characteristics depending on the nature of the problem.
In general, the amount of time it takes a computer to find a shortest path between

/42

CHAPTER 5: SCHEDULING

an origin and a destination increases with the number of links and nodes in the
network. A network has n nodes, so there are n 2 - n ordered pairs of nodes. If it
takes an average of t seconds to find a shortest path between one pair of nodes,
and the shortest path were computed for each pair of nodes, the computation time
would be (n 2 - n)t seconds. Suppose t - 0.0001 s. Then for 100 nodes the compu-
tation time is about a second, while for 1000 nodes it is over a minute, and for
10000 nodes it is nearly three hours. To understand the practical significance of
this, we can note that London has many more than 10000 road intersections.

Dijkstra's algorithm is more efficient at finding shortest paths between every
origin and every destination in a network, having complexity O(n log n). It
achieves this by doing all the calculations together, rather than doing them in
pairwise sequence. Using Dijkstra's algorithm, a personal computer might take
some 20 seconds to calculate a path between John O'Groats and Land's End
through the 25 000 nodes of the Ordnance Survey road network data. (In practice
it also finds the shortest path to the other 25000 nodes.) The details of this
algorithm are beyond the scope of this book, but they can be found in many
standard texts.

These computation times are important because they determine whether or not a
machine can calculate them 'on the fly' in real time. In order to reduce computa-
tion times, the environment is usually structured in some way. For example, only
a subset of all possible links and nodes may be considered. In general, this means
that 'shortest' paths obtained may not be the shortest possible, and the solutions
obtained using them may be sub-optimal.

The failure of road traffic planners to design congestion out of road systems is
partly due to a flaw in the representation. Although it is simple to represent roads
in terms of their static features such as length, number of lanes, and gradients, the
quantity optimized by most drivers is travel time. This is not a linear function of
any of these static measures; indeed it is not even a continuous function. The time
taken to travel a given piece of road depends critically on the number of other
vehicles travelling on that road. When the concentration of vehicles on the road
reaches a certain level the dynamics become unstable, and shock waves may be
experienced as drivers have to reduce speed from free flow to a crawl. In fact the
representation is even more complex than this. If a road link in front is blocked
then flow on the current link will also be blocked: the travel time on a given link
may depend on what is happening on other links.

The lesson to be learnt from this is that simplistic representations may not allow
the engineer to address the reality of the system, and so make it uncontrollable.
Finding shortest paths through large complex mechatronic systems will undoubt-
edly be an important element in their control. These shortest paths must allow for
the possibility of unexpected events such as links becoming blocked or other
parts of the system behaving in unexpected ways.

143

VOLUME TWO

Intelligent machines will often have to perform complex sequences of operations
in order to achieve their goals. Each operation will take a certain time, and some
will have to be completed before others can begin. The machine will have to plan
the order in which to perform the various tasks, and estimate the time it will take.

For example, the process of assembling a bicycle can be split into the activities
listed in Table 5.1.

TABLE 5.1

Activity Duration
(minutes)

A frame preparation, including front forks

B mounting and aligning front wheel

C mounting and aligning back wheel

D attaching the derailleur gears to the flame

E installing the gear cluster

F attaching the chain-wheel to the crank

G attaching the crank and chain-wheel to the flame

H mounting the right pedal and toe-clip

I mounting the left pedal and toe-clip

J final attachments (handle-bars, seat, brakes, etc.)

7

7

7

2

3

2

2

8

8

18

Source: Dolan and Aldous, 1993

The precedence relations of these activities, i.e. what activities must be com-
pleted before these activities can begin, are shown in Table 5.2. (Activities with
no preceding activities are omitted.)

TABLE 5.2

Activity Preceding

activities

C D,E

E D

F D

G F

H E , F , G

I E , F , G

J A, B, C, D, E

144

START

8 / /

A J

0 / 2

7

B / / E / C

CHAPTER 5 SCHEDULING

An activity network is a network in which each activity or operation is repre-
sented by a node. A directed link from one activity to another indicates that the
first activity must be completed before the second can begin. The number on the
link indicates how long that activity will take to complete. The activity network
for the bicycle assembly example is shown in Figure 5.6.

This network is obtained as follows. First we mark those activities which have no
preceding activity, i.e. A, B and D (shown by underlining in Table 5.3). This is the
first ' layer' of activities, and it follows the start.

TABLE 5.3

Activity Preceding

activities

C D,E

E D

F D

G F

H E, E G

I E, E G

J A, B, C, D, E

Figure5.6
Activity network for bicycle
assembly.

145

VOLUME TWO

The activities just found can be numbered:

(1) A, (2) B, (3) D.

Remove A, B and D from the list and find the next layer of activities with no
preceding activity: these are E and F (Table 5.4).

TABLE 5.4

Activity Preceding

activities

C E

G F

H E, E G

I E, E G

J C,E_

The activities found can be numbered:

(1) A, (2) B, (3) D, (4) E, (5) F.

Remove E and F from the list and find the next layer of activities with no
preceding activity: these are C and G (Table 5.5).

TABLE 5.5

Activity Preceding

activities

H G

I G

J C

The activities found can be numbered:

(1) A, (2) B, (3) D, (4) E, (5) F, (6) C, (7) G.

On removing C and G we are left with the last layer of activities before the finish,
namely H, I and J.

The activities can now all be numbered:

(1) A, (2) B, (3) D, (4) E, (5) F, (6) C, (7) G, (8) H, (9) I, (10) J.

Then no activity is preceded by an activity with a lower number.

146

CHAPTER 5 SCHEDULING

To obtain the activity network, each of these layers is set out in columns across the
page. The activities related by precedence are then joined by an arrow, with
weight the duration of the earlier activity. This method of construction ensures
that all the arrows go from earlier layers to later layers.

The minimum time to complete the sequence of activities can be calculated from
the activity network by finding a longestpath through it. A longest path is a path
between the start and finish for which the sum of the times of the activities is the
largest possible. A criticalpath is a path for which any delay in completing an
activity on that path delays the completion of the project by the same amount. In
general there may be more than one critical path through an activity network. The
minimum completion time is equal to the length of a critical path.

By inspection it can be seen that the critical path through the bicycle assembly
project is:

0 2 3 7 18
START ~ D ---) E ----> C ---) J --~ FINISH

and the minimum time for the assembly is 30 minutes. To complete the project in
this time some of the tasks would have to be done simultaneously, for example by
two or more robots.

Consider the path'

0 2 2 2 8
START ~ D --+ F ---) G ~ H FINISH

This is the longest path that can be found that passes through H, and has total time
14 minutes, which is less than the minimum time. Suppose activity H was
delayed. Would this make the project overrun? In fact H could be delayed or
overrun by up to 16 minutes before this path exceeded the 30 minutes minimum.

The maximum time that an activity can be delayed without delaying the project is
called thefloat of that activity. Activities on a critical path have a float of zero. So,
for example, none of activities D, E, C or J can be delayed without making the
project take longer than the minimum time.

If a project is to be completed in the shortest possible time, then particular
attention must be paid to activities on any critical path. For other activities there is
some leeway in their starting times or durat ions- the float.

In general an algorithm is needed to find critical paths. This involves a forward
scan in which the vertices are numbered. This is followed by a backward scan in
which the critical path is found.

147

VOLUME TWO

It is assumed that the network involves n activities (there are n vertices in the
activity network, plus the start and finish vertices). The start vertex is numbered
as the 0th and the finish vertex is numbered as the (n + 1)th. In the bicycle
example, n = 10.

The duration of the activity represented by the arrow ij is denoted cij. For example

Cl,10= 7.

As will be explained, the algorithm assigns numbers pj and ej to each vertex j, for
j = 0 , 1 ,2 n + l .

When the algorithm is finished, ej will be the length of the longest path to the
vertex j, and pj will be the number of the preceding vertex on this longest path.

(A) Forward scan
The forward scan effectively moves through the layers calculating the longest
path length, ej, to each vertex j.

Step 1. Label the START vertex with P0 = 0 and e 0 = 0.

Step 2: Set j = 1.

Step 3: For the current vertex j: for each arow ij coming into vertex j,
calculate ei+ cij. Choose the largest of these sums (or any of
them in the event of a tie). This is to be the value of ej. Set Pi
equal to i, the value for which the sum was largest. If j is less
than or equal to n, increase j by 1 and repeat Step 3.

(B) Backward scan
The backward scan effectively starts at the FINISH and picks out paths between the
vertices with the largest values of ej.

Step 4: Start with the FINISH vertex, n + 1, and mark the link that
joins this to the preceding vertex given by the number Pn+l
which was found during the forward scan. The vertex Pn+l
will be called the 'current vertex'.

Step 5: Suppose the current vertex is j. Mark the link joining this
vertex to the preceding vertex, given by pj, which was found
during the forward scan.

Let pj become the current vertex.

If the current vertex is not the START, repeat Step 5.

The marked arrows found in this way form a critical path. The algorithm needs
some modification in order to find all the critical paths if there is more than one,
but we will not consider this here.

148

CHAPTER 5: SCHEDULING

Example of forward and backward scanning
The a lgor i thm can be i l lustrated us ing the b icyc le a s s em b ly example .

Step 1: (start) Set e o = 0 and Po = 0.

Step 2: Set j = 1 (A): el = 0 and Pl = 0 (Pl is the START ver tex)

Step 3: Set j = 2 (B): e 2 = 0 and P2 = 0 (P2 is the START ver tex)

Set j = 3 (D): e3 = 0 and P3 = 0 (P3 is the START ver tex)

(This comple t e s the first layer.)

Set j = 4 (E): e 4 = e 3 + 2 = 2, P4 = 3 (ver tex D)

Set j -- 5 (F): e5 = e3 + 2 - 2, P5 = 3 (ver tex D)

(This comple t e s the second layer.)

Set j - 6 (C): e 6 = e 4 + 3 = 5, P6 = 4 (ver tex E)

Set j = 7 (G): e 7 = e 5 + 2 = 4, P7 = 5 (ver tex F)

(This comple t e s the third layer.)

Set j = 8 (H): e 8 = e 7 + 2 = 6, P8 = 7 (ver tex G)

Set j = 9 (I): e 9 = e 7 + 2 = 6, P9 = 7 (ver tex G)

Set j =10 (J): elo = e 6 + 7 = 12, P lo = 6 (ver tex C)

(This comple t e s the last layer.)

Set j =11 (finish): e l l = elo + 18 = 30, P l l = 10 (ver tex J)

(This comple t e s the FINISH node .)

The fo rward scan is no w comple te . We con t inue wi th the b a c k w a r d scan.

Step 4: Start with 1i , the FINISH vertex: P l l = 10, wh ich is ve r tex J.

M a r k the a r row b e t w e e n J and the finish.

Step 5: Set the current ver tex to 10 (J): P l0 = 6, wh ich is ver tex C.

M a r k the a r row b e t w e e n C and J.

Set the current ver tex to 6 (C): P6 = 4, wh ich is ver tex E.

M a r k the arrow b e t w e e n E and C.

149

VOLUME TWO

Set the current vertex to 4 (E): P4 = 3, which is vertex D.

Mark the arrow between D and E.

Set the current vertex to 3 (D): P3 = 0, which is the start
vertex.

Mark the arrow between the START and D.

The critical path found is therefore

START ----) D ~ E ~ C --9 J ~ FINISH

It has length ell = 30.

Apart from finding a critical path, the value of e i found by this algorithm is the
earliest starting time for activity i. For example, the earliest starting time for
activity 8 (H) is e 8 = 6.

If the algorithm were 'run backwards' from FINISH to START, the values of e i

subtracted from the minimum time would be the latest starting times. Thus the
f loat can be calculated as the latest starting time minus the earliest starting time.
The float for each vertex is a measure of how sensitive it is to delay or
overrunning.

Critical path analysis gives a system information which enables it to decide in
which order to perform tasks, it also gives the system information which enables
it to deal with uncertainty. Knowledge of the nodes along critical paths enables
heuristics to be applied, such as 'monitor this node carefully and give high
priority to taking action if it gets delayed or overruns'. Similarly, knowledge of
the float of the nodes allows their importance to be weighted in terms of
monitoring progress.

The method described here is the Critical Path Method (CPM) and was developed
by the Du Pont Nemours Company in order to plan large-scale industrial projects.
Their primary concern was to minimize the total cost of a project. The method is
useful when activity times can be predicted with reasonable accuracy.

Another approach to planning large projects is Program Evaluation and Review
Technique (PERT). This was used by the US Navy to plan the Polaris missile
project, where the main objective was to complete the project in the shortest
possible time. This was a complex project involving some activities whose times
could not be accurately predicted. The important feature of PERT is that the
technique permits probabilistic estimates of activity times and so can accommo-
date research and development projects in which times for the activities cannot be
predicted with confidence. PERT can also be used for projects which may suffer
disruption through strike action, late delivery of materials, mechanical break-
downs, and so on. Both PERT and CPM allow many subtleties which cannot be
discussed further here.

150

CHAPTER 5: SCHEDULING

In the previous section we saw that the minimum completion time for a project is
given by the length of a critical path in the corresponding activity network. This is
the shortest time in which a project can be completed if there is no restriction on
the number of workers available. However, if there is a limit on the number of
machines or processors available, it may not be possible to achieve this minimum
completion time.

If the product of the minimum completion time and the number of machines is
less than the sum of all the durations of all activities, then it is obviously
impossible to finish the project within the minimum completion time. Even if this
is not the case, the precedence relations may be such that some machines must
have idle periods, so that it is again impossible to finish in the minimum
completion time.

In this section we investigate the problem of scheduling the activities of a project
for a given number of robots in the best possible way. It is supposed that an ideal
schedule satisfies the factory rules:

I~ No machine may be idle if there is some activity which can be done.

i~ Once a machine starts an activity, that activity must continue until it is
completed.

I~ The project must be completed as soon as possible with the machines
available.

These rules, which may not be achieved in practice, suggest that each machine
has a tightly packed schedule, and that activities on any critical path should be
started as soon as possible.

There is no practical algorithm to solve the activity scheduling problem in a way
that satisfies the factory rules. The following heuristic algorithm, the criticalpath
scheduling algorithm, has often been used in industry. It produces a schedule
which satisfies the first two factory rules, but not necessarily the third rule.

The algorithm is illustrated for a number of processors sharing a multiple-activity
computation:

START Set the project clock to zero.

Step 1: If at least one processor is free, assign to any free processor
the most critical unassigned activity which can be started (this
is the activity with the least latest starting time).

/5/

VOLUME TWO

Repeat until no processor is free, or until no activity can be started.

Step 2: Advance the project clock until a time is reached when at
least one activity is completed, so that at least one processor
is free.

Step 3: If all the activities have been assigned, advance the project
clock until all the activities have been completed, then
FINISH. Otherwise go back to Step 1.

To illustrate this, consider the bicycle assembly project of Section 5.5. It will be
assumed that two general-purpose robots are available for this project. The latest
starting times are as listed in Table 5.6.

TABLE 5.6

Vertex Activity Latest
number starting time

1 A 5

2 B 5

3 D 0

4 E 2

5 F 18

6 C 5

7 G 20

8 H 22

9 I 22

10 J 12

START Set the project clock to 0.

Step 1: The activities which can be started are A, B and D. The most
critical of these is activity D, since it has the smallest latest
starting time (0). Therefore we assign activity D to robot 1.

Activities A and B can both be started, and both have the
same latest starting time (5), so either can be chosen. Assign
activity A to robot 2.

Step 2: Advance the project clock to 2 minutes.

Activity D is now completed and robot 1 is free.

152

CHAPTER 5: SCHEDULING

Activities E and F are now free to be started, as well as B
which is waiting.

Step 1: Of activities B, E and F which can be started, E has the
smallest latest starting time, so this is assigned to robot 1.

Step 2: Advance the project clock to 5 minutes (i.e. 2 + 3 minutes).

Activity E is now completed, and so robot 1 is flee.

Activity C is now free to be started.

The current state of the scheduling of the activities is shown in Figure 5.7.

time in minutes
0 2

l I
4 6 8 10

11 i l l l J I] J

robot 1] D E]

robot 2 [A 1

T
time of project clock

activities free to be
started: B, C, F

~l Figure 5.7
State of scheduling after
5 minutes.

Step 1: Of the three activities which are free to be started, B and C
are the most critical. Both have a latest starting time of 5
minutes. Since the project clock is now at five minutes, and
since we cannot assign both of these activities to a robot at
this point, there will be a delay in the completion of the
project. In other words the time taken with this schedule will
exceed the critical path time.

Let activity C be assigned to robot 1.

Step 2: Advance the project clock to 7 minutes.

Activity A is completed, so robot 2 is free.

No further activity is made free by the completion of A, and
activities B and F remain free to be started.

Step 1: Activities B and F are free to be started.

Activity B has the smallest starting latest starting time and is
assigned to robot 2.

Step 2: Advance the project clock to 12 minutes.

Activity C is completed, so robot 1 is free.

Activity F remains free to be started.

153

VOLUME TWO

Step 1: Activity F is the only activity which is free to be started, so it
is assigned to robot 1.

The current state of the scheduling activities is shown in Figure 5.8.

time in minutes
0 2 4 6 8 10 12 14 16

I r I I I I I I I I I I
robot 1 D] E I c I F

robot 2 A l B

time of project clock

Figure5.8
State of scheduling after
12 minutes.

Step 2: Advance the project clock to 14 minutes.

Activities B and F are completed, so both robots are free.

Activities G and J are now free to be started.

Step 1: Activity J has the smallest latest starting time, and is assigned
to robot 1. The only remaining activity which can be started is
G, so this is assigned to robot 2.

Step 2: Advance the project clock to 16 minutes.

Activity G is completed, so robot 2 is free.

Activities H and I are now free to be started.

Step 1: Activities H and I have the same latest starting time. Activity
H is assigned to robot 2.

Step 2: Advance the project clock to 24 minutes.

Activity H is completed and robot 2 is free.

Step 1: Activity I is the only remaining activity which is free to be
started, so it is assigned to robot 2.

Step 2: Advance the project clock to 32 minutes.

All activities have now been completed and both robots are
free.

Step 3: FINISH.

154

CHAPTER 5: SCHEDULING

The resulting schedule is shown in Figure 5.9.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
timemminutes [[I I I 1.1 I 1 i I 1 1 1 1 [[.I I I I I I ! 1,1 1 1 1 1 t 1J

robot 1 [D I E C I F] J]

robot 2 [A I B [G I H I [

T
finishing time

As it happens, this schedule optimizes the use of the robots, but this need not be
the case. For example, if three robots were available there would be times when
one of them would be idle.

In this and the previous section you have been introduced to some elementary
ideas in activity scheduling. In practice one needs to take into account many more
features. For example, it was assumed that the two robots were interchangeable.
In general, robots will not have the same repertoire of activities and the schedul-
ing algorithm has to be adjusted accordingly.

If a mechatronic system is to be capable ofself-repair, such as reconfiguring itself
when parts are damaged or lose part of their functionality, it has to reschedule its
activities when the damage or failure is detected. It must also revise its estimate of
how long the project will take. In some safety-critical applications the system
may have to be able to predict dangerous loss of synchronization long before it
happens, and so signal the need for human intervention.

Activity scheduling is a highly technical subject with its own extensive literature
and theory. It is yet another specialism that mechatronic engineers must draw on.

~1 Figure 5.9
The schedule is completed at
32 minutes.

Many of the techniques described in the previous chapters can be used to find
solutions to difficult problems. A large number of problems fall into the category
of being non-polynomial indeterminate, as described in Chapter 3, Section 3.1.
The computational effort required to solve such problems grows astronomically
with the 'size' of the problem. For example, in the 'travelling salesman problem'
the size is determined by the number of cities to be visited. Even with modem
computers, these problems cannot be solved exactly in a reasonable time, so
heuristics have to be used to zoom in on inexact or sub-optimal solutions.

The travelling salesman problem is a minimization problem, which has become
something of a benchmark for algorithms and artificial intelligence methods. In
this section we will describe some of the more encouraging recent techniques.

155

VOLUME TWO

The travelling salesman problem has many variants, and one which is of
particular interest in mechatronics is the routeing problem. In this, a number of
vehicles have to deliver items to many sites scattered around an area. The vehicles
could be lorries delivering goods for shops, or autonomous vehicles in a factory
delivering components to the places where they are needed. So although the
travelling salesman problem is somewhat artificial, methods of finding solutions
to it are applicable to many other problems.

This example is relevant to mechatronics because one of the functions of the
cognitive element in a system is to plan a sequence of actions. This may take the
form of planning a suitable route for a vehicle to travel in order to minimize the
distance travelled.

Suppose a salesman starts in a city a and has to travel around N cities and return to
a without visiting any other city more than once. The problem is to find the
shortest route. Figure 5.10 shows an example where N is 6.

b

a

v

f e f e

Figure 5.10 is a relatively simple diagram which just shows the cities (a to f) and
two closed paths between them. From Section 5.3 it should be clear that the
problem could be represented as a graph, in which each of the cities is a node and
the paths between the cities are links. Since a path has to be travelled in one
direction, the paths would be directed links, and since each path has a distance
associated with it the graph becomes a network. So the problem that we are
addressing is that of finding the cycle in a network that has the shortest path.

The value that has to be minimized in the travelling salesman example is the total
distance travelled. It is an interesting problem because there is no known
analytical solution. It is assumed in the basic travelling salesman problem that a
path exists from every city to every other city. The only way of finding the
shortest distance is to consider every possible combination and measure the
distance, which is clearly an unattractive proposition and a very time-consuming
one. To illustrate how difficult this is, consider how many different routes there
are for N cities.

When N - 3 there is only one route, if direction is ignored.

When N = 4 there are 3 different routes.

When N - 5 there are 12 different routes.

When N = 6 there are 60 different routes.

When N = 7 there are 360 different routes.

Figure 5.10
Travelling salesman problem
with six cities, showing two
possible routes.

156

CHAPTER 5: SCHEDULING

In general, if there are N cities there are �89 • (N - 1)! different routes, where N!
(N factorial) is given by

N! = 1 x 2 x 3 x 4 x . . , x (N - 2) x (N - 1) x N

For example, when N = 5

N ! = 1 • 2 1 5 2 1 5 2 1 5 120

(N - l) ! = 1 •

S o � 8 9 2 1 5 12 w h e n N - 5

If all routes are to be examined, the computation involved becomes astronomical
very quickly for increasing values of N. For example, for N = 10 the number of
routes to be examined is 181440. For N= 20 this increases to 6 x 1016. Although

computers are getting more powerful all the time, problems like this can still only
be exhaustively solved in a reasonable time for relatively small values of N.

It has often been said that computing power has increased by a factor of 10 every
five years for the same price since the 1950s. Even assuming that this continues,
some problems will still remain unsolved for a long time to come. To give some
idea, when N = 20 again, if we assume that each route can be examined in a
microsecond, it would still take about 2000 years to examine all the possible
routes! If the trend in computing continues, in 10 years' time computers will be a
hundred times faster than they are now. Still, it would take 20 years to calculate
the solution for N = 20. So it looks as though we would have to wait a considerable
time before computers can handle some of these NP-hard problems if they are
going to use the brute force method of looking at all the solutions first before the
best one can be selected.

In order to deal with problems like this, decisions have to be made about a strategy
for finding a shortest path. One strategy is to find any path, irrespective of the
length, and then to try to shorten it. For example, a path can be found by the
following method:

1 Start at the first city.

2 Select any other city, draw a path to that city and move to it.

3 Select any other city that hasn't been visited before, draw a path to it and
move to it.

4 Repeat 3 until there are no more unvisited cities.

5 Return to the first city.

This will eventually get you around all the cities, but it almost certainly won' t be
the shortest path. This can be improved on using the so-called greedy algorithm.
This is essentially the same, except that the closest city is always selected. Thus:

1 Start at the first city.

2 Select the nearest city, draw a link to that city and move to it.

157

3 Select the nearest city that hasn't been visited before, draw a link to it and
move to it.

4 Repeat 3 until there are no more unvisited cities.

5 Return to the first city.

This may produce a shorter path than the first method, but there are no guarantees.
Another variation on the greedy algorithm that can sometimes produce an even
shorter path is to 'grow' the path from both ends. For convenience, let's call the
two ends of the path the head and the tail. The method then looks like this:

1 Start at the first city.

2 Select the nearest city, draw a path to that city and move to it. This is the head
of the path.

3 Find the nearest cities to the head and the tail of the path that haven't been
visited before. Whichever is nearest of the two, draw a path to it and move to
it.

4 Repeat 3 until there are no more unvisited cities.

5 Join the head and the tail of the path.

These methods can be illustrated by a simple example. Figure 5.11 shows five
cities, a to e.

a 3 b 3 c

8

VOLUME TWO

Using the first version of the greedy algorithm, and starting from a, the sequence
of cities visited is:

Figure 5.11
An example of five cities.

3 3 7.2 4 8
a ---> b --~ c ---> d --~ e --~ a

The total path length is therefore 25.2 units.

158

CHAPTER 5: SCHEDULING

Now if the modified greedy algorithm is used, again starting from a we get:

3 3
a --> b --> c

but at c the nearest unvisited city is d with a distance of 7.2, whereas the nearest
unvisited city to a is d with a distance of 4, so the tail of the path moves to d. The
next nearest unvisited city is e, which is closest to d, and then finally e and c are
joined, so the final path looks like:

3 3 l0 4 4
a --> b --> c --> e --> d --> a

The final path length is 24 units, which is shorter than the first method.

These examples produce solutions, but it would be very unusual if the path turned
out to be the shortest in more complex examples. The following sections look at
some methods which can improve on this.

5.7.1 Hill climbing
Hill climbing was described earlier in Chapter 3 on Search, where it was said that
it is a form of gradient descent (or ascent) used when it is very difficult to define a
gradient. The method simply ensures that the value selected at each iteration is
less than (or greater than) the previous value.

For the travelling salesman problem, we start by writing down a list of the cities in
any order, and call this list L1. We may as well use the greedy algorithm to find
this initial path. Measure the total distance of this path as if this was the route to be
travelled and call that distance D 1. For example, where a, b, c, d, e and f represent
6 cities,

L l = [a, b, c, d, e , f, a]

Now take any pair of cities, and swap them around in the list. This process is
called permutation. For example, when b and c have been swapped,

L 2= [a, c, b, d, e, f, a]

Measure the new total distance, D 2, and compare it to the unswapped distance. If
it's shorter keep the new list, else go back to the previous list.

Let the list of the shortest path so far be L and the shortest distance so far be D.
Then if the new list L k has a distance D k that is less than D, L becomes L k.

159

If Dk < D

else D k >i D

Continue swapping in this way until a list is finally produced which has a distance
that cannot be shortened by any further swapping. This list corresponds to a local
minimum.

L becomes Lk, and D becomes D k

L is unchanged, and D is unchanged

Figure 5.12 shows a set of four cities with the distances marked between them.

a 4 b

]

VOLUME TWO

The three possible permutations of the list of cities with their corresponding total
distances are shown below.

411 Figure 5.12
An example with four cities.

a b c d a 10

a b d c a 12.75

a c b d a 10.75

You may be wondering why there are so few permutations. For example, where is
the permutation a d c b a ? The answer is that a path could be travelled in either of
two directions without affecting the length of the path, so the permutation a d e b a

is the same as the path a b c d a but in reverse.

Let's start the search for the shortest path with the list a c b d a , which has a
distance of 10.75. By swapping any two of the middle three cities around, the
possible swaps that could take place are:

a b c d a 10

a d b c a 10.75 (same as a c b d a)

a c d b a 12.75 (same as abdca)

I f a c d b a is tried, it would be rejected because its distance is greater than 10.75. If
a b c d a is tried it would be accepted because its length is less than 10.75. No
further swapping would produce a shorter distance, and a minimum has been

160

CHAPTER 5: SCHEDULING

reached. In this example this happens to be the global minimum. With N greater
than this there are likely to be many local minima and hill climbing will most
likely result in the search getting stuck in one of these. Simulated annealing is one
way of improving on this, and we will look at this in the next section. First, there
are some simpler heuristics that can help.

In this very simple example we have effectively done an exhaustive search, but of
course in larger examples this would not be feasible.

5.7.2 Crossed paths
Very often a path will be found using a hill-climbing approach in which the path
crosses itself at some point, as shown in Figure 5.13(a) for example. It is nearly
always the case that a path which crosses itself is not the shortest path, and that if it
could be uncrossed in some way a new path could be found which would be
shorter. Sometimes, swapping two cities can uncross the path but then may cross
it again at some other point, and the resulting path may be longer.

In Figure 5.13(a) the path is crossed and the total length is 27.5 units. If cities g
and d are swapped, the resulting path is shown in Figure 5.13(b). This new path is
also crossed and has a length of 28.5 units. Now this path can be easily uncrossed
by swapping cities e and f which produces the path shown in Figure 5.13(c) which
has a length of 27.5 units again. Finally, swapping cities c and g produces the path
shown in Figure 5.13(d) which has a length of 23 units.

c 2 b 5 c

a 3 4 a f 3 f

e e

(a) (c)

C

g ' (. . i 5 a
f f

3 2

2.5
e e

(b) (d)

A Figure 5.13
(a) Crossed path, (b) path still crossed, (c) further shortening, (d) shortest path

161

VOLUME TWO

This example shows how uncrossing a path ultimately shortens it. However, the
act of uncrossing the path sometimes increases the path length if we use the two-
city swapping method. Usually, if a point is found where the path crosses itself, it
is a good rule-of-thumb or heuristic to uncross the path straight away. This will
nearly always produce a shorter path with the help of hill climbing.

To do this in our example, note that the path crosses between pairs of cities f, g and
c, d (Figure 5.14a). Simply altering the path so that it goes from e to f, and from d
to g, creates a new uncrossed path as shown in Figure 5.14(b). The new path
length is 23 units, so the length is the same as in Figure 5.13(d) even though the
path is slightly different. This process is not the same as swapping cities but is a
new heuristic which could be called an 'uncrossing' heuristic. It produces a
shorter path but doesn't have to go via a longer path to get to the solution.

5.7.3 Simulated annealing
Simulated annealing, as described in Chapter 3 on Search, mimics the process of
cooling a metal. The 'energy' of a system has to be defined, and this becomes the
search space for the problem, which is to find the global minimum energy. In the
travelling salesman problem the energy can be equated to the distance around the
path.

b 5 c

2

a 3 4 f

2.5
e

(a)

b 5 c

a

f

3L , 3
2.5

e

(b)

4[Figure 5.14
(a) Crossed path, (b)
uncrossed path

162

CHAPTER 5 SCHEDULING

The method is similar to hill climbing except that the decision about whether to
keep the new list after swapping or throw it away is probabilistic. This means that
sometimes the new list will be kept even though the total distance associated with
it is longer than the previous list, in order to allow the search to 'jump out' of a
local minimum.

The probabilities are such that if the new list, L k, has a distance, D k, that is less
than the current best distance, D, then there is a probability of greater than 0.5 that
the new list becomes the best list. Similarly, if D k is greater than D, there is a
probability of less than 0.5 that the new list becomes the current list. For example,
if the probability turns out to be 0.8, then in eight cases out of ten the new list
becomes the current list, but in two cases out of ten it doesn't. The values of
probability, of course, always lie between 0 and 1.

The probabilities, Pk, are used as follows:

I f Dk < D L becomes Lk, with a probability of Pk
where 1 > P k > 0.5

else D k >i D L is unchanged, with a probability of Pk
where 0.5 > P k > 0

Rearranging:

I f (D - D k) > O L b e c o m e s L k 1 > P k >0"5

else (D - Dk) ~< 0 L is unchanged 0.5 > Pk > 0

We therefore need a function that produces a value for the probability which is
between 0.5 and 1 when (D - D k) > 0 and a value between 0 and 0.5 when
(D - D k) <~ 0. A function which has this property is the sigmoid function,
described by the equation

1
Y= l + e - X

When x = 0, y = 0.5.

W h e n x > 0 , 1 > y > 0 . 5 .

W h e n x < 0 , 0 . 5 > y > 0 .

As this method is simulating annealing, a factor equivalent to temperature, T, has
to be included in the model. This is done by dividing (D-Dk) by a parameter T,
and then substituting for x in the equation of the sigmoid. The probability is
therefore:

Pk =
1 + e - (D - D k) / T

163

VOLUME TWO

When T is very large, P k approaches 0.5, which means that the decision about
keeping the new list or throwing it away is purely random. When T = 0, Pk = 1 and
the decision is not probabilistic, but is equivalent to the hill-climbing method
described earlier. So if the temperature starts out high, the decisions seem
arbitrary. As the temperature drops, the decision to make the new list the
current list or not becomes more deterministic. The effect is that the search can
jump out of local minima, and is more likely to end up at the global minimum
when T= 0.

The cooling schedule should be set so that thermal equilibrium is reached. To
ensure this, the search has to be able to sample the entire space adequately before
the temperature is dropped. In our case with N cities, the worst case is that two
paths are N - 2 permutations apart, so at least N - 2 iterations are necessary at
each temperature. For example, when N = 6 two paths might be

a b c d e f a and a e d b f c a

To get from one to the other by swapping two cities around could go like this:

abcdefa

aecdbfa

aedcbfa

aedbcfa

aedbfca

first permutation, b and e swapped

second permutation, c and d swapped

third permutation, b and c swapped

fourth permutation, c and f swapped

So to get across the search space from the first list to the second requires at least
four iterations. In practice, many more iterations would be used since the decision
to accept the permutation is probabilistic. Even when the temperature is high the
probability is only 0.5, so that on average at least 2 • iterations are
required to cross the search space.

5.7.4 Genetic algorithms
As we saw in Chapter 3 on Search, the essential features of a genetic algorithm are
the chromosomes that contain the genetic information. These are strings of data
that define a particular solution. In the travelling salesman problem, one way of
setting up the chromosomes is to use the list of cities in the order that they are to be
visited.

A population of these chromosomes, corresponding to a number of individual
solutions to the problem, are created. In the travelling salesman problem there
will be many possible routes that can be taken. The population of chromosomes
at any one time will represent only a small number of those solutions. The

164

CHAPTER 5: SCHEDULING

population is usually created randomly although it is possible to 'seed' the initial
population with individuals that are known to be good solutions.

Next we need some way of measuring the 'fitness' of the chromosomes so that the
good solutions are selected to be parents more often than the not-so-good
solutions. This is analogous to natural selection, in which 'survival of the fittest'
is said to occur. In the travelling salesman problem the fitness measure is a
function of the total distance travelled, the 'fittest' being the ones with the shortest
distance. An example of a function that does this is

1

total distance

The first difficulty that we encounter in the travelling salesman problem is that we
cannot encode the cities directly as a string or list because genetic crossover* and

mutation would produce strings which are not valid solutions. To overcome this
we construct chromosomes consisting of binary 0s and ls corresponding to all the
possible connections between pairs of cities. For a problem with six cities and a
path which can be listed as a b c d e f a , this would look like:

ab ac ad ae af bc bd be bf cd ce cf de df ef

1 0 0 0 1 1 0 0 0 1 0 0 1 0 1

In this representation, the presence of a binary 1 indicates the existence of a link
between the two cities, and a 0 indicates the absence of a link.

The type of crossover that is used is called recombination, where individual bits
of data are taken from parent chromosomes at randomly selected points. Recom-
bination is essentially a variation of the critical path method described earlier in
this chapter. For example, take the following two paths, a b e d e f a and a e f b d c a ,

set out as chromosomes:

ab ac ad ae af bc bd be bf cd ce cf de df ef

1 0 0 0 1 1 0 0 0 1 0 0 1 0 1

0 1 0 1 0 0 1 0 1 1 0 0 0 0 1

* Note that the term crossover used here in connection with genetic algorithms is not the same as the
concept of crossover on a path.

165

VOLUME TWO

The method of recombination is as follows:

Step 1: Produce a table with all the cities in one column, and in the
second column list all the cities connected to them in either of
the parent chromosomes. Using the two chromosomes above,
this table is:

City Connected to:

b, f, c, e

a, c, d, f

b, d, a

c, e, b

d , f , a

a, e, b

Step 2."

Step 3:

Randomly select a city as the current city. Let's choose c as
the current city.

Delete the current city from the fight-hand side of the table.
The table becomes:

CURRENT CITY: c

City Connected to:

b , f , e

a, d, f

b, d, a

e, b

d , f , a

a, e, b

Step 4:

Step 5:

Look at all the cities connected to the current city, and select
the one with the fewest connections. If there are two or more
cities with the same smallest number of connections, choose
one randomly. In this example, d has two connections, while
b and a have three. Therefore select d as the current city.

Repeat Steps 3 and 4 until there are no cities left.

166

CHAPTER 5' SCHEDULING

This goes as follows for this example.

Step 3 Delete the current city, d, from the right-hand side of the
table. The table becomes:

CURRENT CITY: d

City Connected to:

b , f , e

a, f

b, a

e, b

f , a

a, e, b

Step 4:

Step 3"

Look at all the cities connected to the current city, and select
the one with the fewest connections. In this example, both e
and b have two connections, so randomly select b as the
current city.

Delete the current city from the fight-hand side of the table.
The table becomes:

CURRENT CITY: b

City Connected to:

~e

a, f

a

e

f , a

a, e

Step 4" Look at all the cities connected to the current city, and select
the one with the fewest connections. In this example, both a
and f have two connections, so randomly select a as the
current city.

167

VOLUME TWO

Step 3: Delete the current city from the fight-hand side of the table.
The table becomes:

CURRENT CITY: a

City Connected to:

f~e

f

Step 4: Look at all the cities connected to the current city, and select
the one with the fewest connections. In this example, both e
and f have one connection, so randomly select e as the current
city.

Only f is left. The resulting path is the list of cities in the order that they were

selected by this process of recombination:

c d b a e f c

If we look at this as a chromosome and compare it with the parent chromosomes,
you can see that recombination has taken data from each of the parent chromo-

somes. In the table below, the parent chromosomes are labelled 1 and 2, and the
offspring is labelled 3. Bold digits in the parent chromosome indicate the source
of the genetic material in the offspring. When the source could be either parent,

both are indicated in bold.

ab ac ad ae af bc bd be bf cd ce cf de df ef

1 0 0 0 1 1 0 0 0 1 0 0 1 0 1

0 1 0 1 0 0 1 0 1 1 0 0 0 0 1

1 0 0 1 0 0 1 0 0 1 0 1 0 0 1

Recombination can also cause mutation. In this example, the offspring has a 1 in
the chromosome at cf (shown in bold) which was in neither parent. Thus recombi-
nation is a powerful method which performs crossover and mutation at the same

time.

168

CHAPTER 5: SCHEDULING

The essence of the genetic algorithm recombination technique is to construct the
set of links belonging to either of the parent routes. These are then recombined to
form the child route which, by construction, is made up of the links of its parents.
The exception to this is when neither parent has a link between the end node and
start node found by recombination: in this case a new link is created by what we
have called mutation.

Genetic algorithms work in this case because relatively good routes will be made
up of relatively good links. Breeding from relatively good parents will tend to
recombine their relatively good links with a relatively good chance of finding a
better route.

This exemplifies the genetic algorithm approach: they allow locally good parts of
solutions to be combined to form globally better solutions. Mutation is essential,
of course, to try to ensure that the improvements are not restricted to local optima
in the search space.

5.7.5 Routeing
The travelling salesman problem is a good benchmark for testing heuristic
methods of finding the shortest path. However, it is a rather simplistic problem,
and although many similar problems exist to which the methods described in this
chapter can be applied, it is often the case that in real applications there are some
practical constraints which make these methods inapplicable. A typical example
is the vehicle routeing problem.

On the surface this looks very similar to the travelling salesman problem. A depot
(or sometimes more than one depot) contains several vehicles of different sizes
and capacities, and the requirement is that a variety of goods are delivered to retail
outlets in an area. The problem is not just one of shortening the route, which is
helpful but not necessarily the best solution, but involves reducing the number of
vehicles or separate journeys for each vehicle. So, for example, if a company
currently requires 10 vehicles, some of which may have to make two or more
journeys a day to deliver all the goods, then it would be beneficial to that company
if the number of vehicles could be reduced to 8 and only one journey a day for
each.

The problem is more complex than the original travelling salesman problem
because there are several paths that need to be found, one for each vehicle. It is
beyond the scope of this book to show how this can be achieved, but you should
appreciate that essentially the same methods can be used. The route taken
between retail stores has to be found which minimizes the distance, and finally,
we need to decide which vehicle is going to visit which stores so as to reduce the
number of journeys. All of this can be done using some variation on hill climbing
with some heuristics such as paths not being allowed to cross, as described
earlier.

169

VOLUME TWO

route A

route B

route D

route C

4[Figure 5.15
Typical solution to a vehicle
routeing problem.

All the methods described so far for the travelling salesman problem assume that
everything is known in advance, such as the cities which have to be visited, the
distances between them, and the nature of the paths. What happens if, after a path
has been planned, an obstruction occurs on one of the paths? With the methods
described so far they would simply have to abandon the path planned and find a
new one, which is both inconvenient and costly.

A situation might arise in which a path is blocked, so a detour is necessary. Suppose
that one of the cities that isn't scheduled until later is nearby. If the original
schedule is rigidly stuck to, that city would be ignored, since the principal goal at
this point is to get back onto the original path. But this misses an opportunity to save
time.

170

CHAPTER 5: SCHEDULING

There are therefore three major drawbacks to the methods described:

1 A lot of computing has to be done in advance, which could take a lot of time.

2 All the effort could be wasted if the path changes, due to a blockage for
example.

3 The methods aren't opportunistic, which means that they don't take advan-
tage of opportunities when they arise.

One exception to this is the greedy algorithm that was described at the start of this
chapter. It requires very little computing, and only needs local information to plan
its next move. This doesn't produce the optimal schedule, but is still relatively
good. For example, a worst case scenario for a path planner would be a situation
in which several points have to be visited, and all of those points are moving in
unpredictable ways. All the methods except for the greedy algorithm would not
have a chance at planning a path. The greedy algorithm would at least succeed in
the task, even if it does not find the optimal solution.

It would appear, then, that a method is needed which can do some planning in
advance, but which makes use of local information once the plan is put into action
to take account of any changes that occur. This is known as intelligent scheduling.
The greedy algorithm seems to work for the travelling salesman problem, so it
would be useful if something similar could be applied to other problems such as
path planning in a complex changing environment. One such method is to use the
distance transformation described earlier in Chapter 3 on Search.

Recall that forward and backward scanning are used to calculate a value for every
square in a grid which represents the environment. The example given in Chapter 3
is shown in Figure 5.16.

5 4 3 2 1 2 6 = empty grid

6 ~ ~-~ ' 0 1 ~6~ = object

6 5 4 3 2 3

The numbers in the grid represent the number of steps to the goal. Objects, which
have to be avoided, end up with a relatively high value. Starting from any point on
the grid, all one has to do to get to the goal along the shortest path is to move to the
neighbouring square with the lowest value. We therefore have a method which
calculates all the values in advance, and could, if desired, plan the whole path in
advance. Alternatively, a path could be followed using only the local information
that is available at the time.

Figure 5.16
A grid with values found by
the distance transform.

171

VOLUME TWO

If an obstacle appears that blocks the path to the neighbour with the lowest value,
an alternative can be taken by looking at the neighbouring squares for the next
lowest value. Having avoided the obstacle, a new path is taken to the goal based
on the local information from the area that is currently occupied. In this way,
opportunities to reach the goal are not missed by insisting on getting back to the

original path.

Ultimately, even the distance transform method fails to be intelligent, because it
also relies on there being some form of map of the environment which is known in
advance. When humans, whom we might regard as the most intelligent schedul-
ers so far, give directions, for example, it is usually in the form of instructions

such as:

'Keep walking along this street until you come to a set of traffic lights. Turn
left at the lights and then go up the hill until you come to the second turning
on the right.'

These are very imprecise instructions, but somehow we all manage to follow
them. We follow the road even when there are many bends; we avoid getting
stuck when there is an obstruction in the way by simply going around it, and we
take advantage of the fact that we might be able to see in advance the set of traffic
lights and so cross the road before we get to them. Whether or not machines will
ever be able to follow a similar set of instructions is debatable, but we would
guess that soon they will be able to. The problem with the set of instructions is the
imprecision, which is also a problem in many other areas of AI such as speech
recognition, handwriting recognition, and generally in any environments that are

complex or contain humans.

This chapter has dealt with various approaches to scheduling. One of the major
tasks is formulating a problem so that the various techniques described in this
chapter can be applied. Graph theory is one way that allows us to set up a
scheduling problem as a graph or a network. Once the problem is represented in
this way, there are methods that can be used to identify the shortest route and the

critical paths in the network.

With some conventional methods the computational effort involved grows very
quickly as the size and complexity of the problem increase. The result is that in
many cases it is impossible to compute a shortest path in anything like a
reasonable time. However, in scheduling activities, we nearly always require
some value, such as the distance travelled or the time taken, to be minimized, and
the results are needed quickly. This is why many of the techniques described in

172

CHAPTER 5: SCHEDULING

Chapter 3 on Search have been applied, such as hill climbing, simulated anneal-
ing and genetic algorithms. The travelling salesman problem was used to
illustrate this, and it was shown that attempting to find the shortest path by
examining all the paths becomes a computational nightmare. The search tech-
niques provide a way of finding a sub-optimal solution, and sometimes the
optimal solution, using much less computing resource.

Although the travelling salesman problem is somewhat artificial, the methods
employed to solve it can usually be applied to more complex 'realistic' problems
by incorporating features such as weighting the values on the links on the graph.
Yet more complex problems so far elude optimization techniques, so we have to
fall back on sub-optimal solutions such as those produced by the greedy algo-
rithm and the distance transform. Although these generally tend to be called
'intelligent scheduling', we will have to wait to see if they really are intelligent as
new techniques come along that can deal with situations more in the way that
humans do, with all of its imprecision.

The discussion of critical-path scheduling is based largely on that given in Dolan
and Aldous (1993).

Dolan, A.K. and Aldous, J. (1993) Networks andAtgorithms: an introductory approach,
John Wiley & Sons, Chichester.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1985) (eds.) The
Travelling Salesman Problem, Wiley-Interscience.

173

CHAPTER 5: SCHEDULING

Chapter 3 on Search have been applied, such as hill climbing, simulated anneal-
ing and genetic algorithms. The travelling salesman problem was used to
illustrate this, and it was shown that attempting to find the shortest path by
examining all the paths becomes a computational nightmare. The search tech-
niques provide a way of finding a sub-optimal solution, and sometimes the
optimal solution, using much less computing resource.

Although the travelling salesman problem is somewhat artificial, the methods
employed to solve it can usually be applied to more complex 'realistic' problems
by incorporating features such as weighting the values on the links on the graph.
Yet more complex problems so far elude optimization techniques, so we have to
fall back on sub-optimal solutions such as those produced by the greedy algo-
rithm and the distance transform. Although these generally tend to be called
'intelligent scheduling', we will have to wait to see if they really are intelligent as
new techniques come along that can deal with situations more in the way that
humans do, with all of its imprecision.

The discussion of critical-path scheduling is based largely on that given in Dolan
and Aldous (1993).

Dolan, A.K. and Aldous, J. (1993) Networks andAtgorithms: an introductory approach,
John Wiley & Sons, Chichester.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1985) (eds.) The
Travelling Salesman Problem, Wiley-Interscience.

173

This Page Intentionally Left Blank

C H A P T E R 6
R E A S O N I N G

6.1 Introduction

One fundamental item of information required by every intelligent machine is
'what to do next'. For example, a machine that can move about might contain
knowledge such as 'there is an obstacle in front', and 'crashing into obstacles at a
high speed may be dangerous'. From this it might deduce that its next action
should be to 'slow down'. Reasoning is part of the machine's cognition sub-
system, and is necessary when the sensors of the perception subsystem cannot
deliver information in the required form.

Reasoning is the process of going from what is known to what is not known.

Humans are very good at reasoning, as it is something that we have to do all the
time. We are constantly picking up clues from the information around us and
drawing conclusions based on these clues. One of the major areas of artificial
intelligence is concerned with finding ways of emulating this process. By far the
most frequently used tool is logic. The logical methods that are used in artificial
intelligence are drawn from many sources, including philosophy and mathemat-
ics. Of the many mechanisms for doing this, we will consider the following in this
chapter:

i~ deterministic reasoning:

propositional logic

predicate logic

dynamic reasoning:

non-monotonic logic

i~ non-deterministic reasoning:

multi-valued logic

probability theory and Bayesian deduction

fuzzy logic.

In the rest of this introduction we will give an overview of these logics: their
origins and their applicability to machine reasoning. Each one will then be dealt
with in more detail in the subsequent sections in this chapter.

175

VOLUME TWO

6.1.1 Deterministic reasoning
Deterministic reasoning goes back to the Greeks, and Plato's student Aristotle
(384-322BC). Aristotle abstracted a set of rules called syllogisms. We can
illustrate the general idea using one of the best known syllogisms which takes the
form of an If-Then rule. First, let's state the rule in everyday language.

A moving vehicle uses computer vision to guide it through a complex environ-
ment. Ifit 'sees' an unknown object in its path, Then it should take action to avoid
that object. This statement can be written in a more concise way as a rule:

The rule

if the camera image contains an unknown object

Then take evasive action

The first part of the rule contains a statement which can be either TRUE or FALSE.
If it is TRUE, then the second part of the rule is activated. The second part of the
rule is also a statement that can be either TRUE or FALSE; if evasive action is being
taken then the statement is TRUE, otherwise it is FALSE. When the first part of the
rule is TRUE, the system containing the rule can initiate evasive action to make the
second part of the rule TRUE.

This process is deduction, where the truth value of a fact can be deduced from
another. Consider this example:

The known fact

'the camera image contains an unknown object' is TRUE

The deduced fact

'take evasive action' is TRUE

Such was the respect accorded to Aristotle over the centuries that almost no
further developments were made in logic until the work of George Boole
(1815-1864). Boole worked out a system by which new statements can be
deduced from others using the connectives AND and OR. In the previous example,
the object that is 'seen' by the camera is described as being 'unknown'. We could
split up the original statement into two parts: the first concerning the fact that an
object has been detected, the second concerning whether or not the object can be
matched to any known object in the system's database. The known facts become:

The known facts

'the camera image contains an object' is TRUE

AND

'the object cannot be matched in the database' is TRUE

176

CHAPTER 6: REASONING

This says that an object has been detected, but it doesn't match any known
objects. There are two known facts, and they have to be combined into a single
fact before the system can decide whether to take action or not. The connective
AND is used to combine the facts.

The deduced fact

'the camera image contains an object'

AND

'the object cannot be matched in the database' is TRUE

Here the deduced fact is clearly more complicated than either of its constituents.
For practical purposes we might equate the deduced fact with the proposition that
the camera image contains an unknown object. Using Boole's logic (Boolean
logic) we can work out the truth of this proposition given the truth values of the
two sub-propositions which are connected by the AND.

Although Boolean logic is very powerful, it does not contain one of the most
powerful ideas in logic, that of quantifiers, due to Friedrich Frege (1848-1925) in
its modem form. For example, there is clearly a difference between saying 'there
exists an object in the database and that object matches the object detected by the
camera' and 'for all objects in the database, those objects match the object
detected by the camera'. The first of these is called the existential quantifier
while the second is called the universal quanttfier. These quantifiers are power-
ful devices because they save writing out the proposition many times. For
example, a machine might be required to switch off its motors for all those
occasions on which it reads the bar codes beginning with I II. Then instead of
laboriously writing out

'if the bar code is IIII then switch off the motors'

'if the bar code is III II then switch off the motors'

'if the bar code is IIIII then switch off the motors'

'if the bar code is IIIiill then switch off the motors'

'if the bar code is IIIII then switch off the motors'

'if the bar code is Illlll then switch off the motors'

and so on, we can simply write

'for all bar codes, if the bar code begins with III then switch off the motors'

Propositional logic allows us to deduce the truth value of compound propositions
made up from simpler propositions and the Boolean connectives AND, OR and
NOT. Predicate logic, developed mainly by Friedrich Frege and Bertrand Russell
(1872-1970), goes one step further by allowing us to evaluate the truth values of
compound propositions which also involve the quantifiers 'for all' and 'there
exists'.

177

VOLUME TWO

6.1.2 Dynamic reasoning
Although logical reasoning allows us to reason about things that will certainly
happen, it still does not capture the richness of human thought that enables us to
function in the face of incomplete and inconsistent information about our rapidly
changing environment and goals. Modem research in artificial intelligence has
introduced dynamic reasoning, which addresses the cognitive ability of human
beings to reason in the face of changing circumstances. Non-monotonic logic
attempts to allow reasoning in which the truth value of a proposition is allowed to
change.

The commonly cited example is that, given 'Tweety is a bird' is TRUE, and since
we know that 'birds fly' is TRUE we may deduce that 'Tweety can fly' is TRUE.
However, we may subsequently learn that 'Tweety is a penguin' is TRUE, and
since 'penguins cannot fly' is TRUE we now deduce that 'Tweety can fly' is
FALSE.

What has happened is that the original deduction was based on two propositions,
plus some default knowledge. In other words, since we said that Tweety is a bird,
in the absence of any other information we would assume that it could fly since
typically birds can fly. In deterministic logic it is assumed that there is no default
knowledge, so that when a deduction is made, any new evidence should support
that deduction. However, in this example the new knowledge does not support the
deduction. If we tried to resolve this problem using deterministic logic, state-
ments like 'birds fly' would have to be qualified by a list of exceptions which
could get quite cumbersome. Non-monotonic logic allows the deduction to
change as new evidence arrives, so getting rid of the need for additional
qualifiers.

Non-monotonic logic tries to capture the dynamic aspect of human logic in which
we cope with massive uncertainty by constantly formulating working hypotheses
which mostly turn out to be correct, but may sometimes have to be revised on the
acquisition of new information.

6.1.3 Non-deterministic reasoning
Propositional and predicate logic have been developed in modem form in the
nineteenth and twentieth centuries. However, they do not capture all the tech-
niques of reasoning which seem to be so effective in humans. Non-deterministic
logic, such as multi-valued logic, allows us to use predicate logic but with truth
values such as 'unknown'. Furthermore, we often encounter situations in which
black-and-white judgements are inappropriate, instead of predicting future
events on a TRUE-FALSE basis we often assess them in terms of likelihood.

Probability theory is an extension of the empirical notion of relative frequency.
For example, if we observe that 89 identical components in a batch of 1000 fail
within 1000 hours of use, the relative frequency of failure is 89/1000, or 0.089.

178

CHAPTER 6 REASONING

We can use this empirical data as a measure of the abstract probability of the
component failing, p(failure) - 0.089. Although we cannot predict that the
component will certainly fail at any given instant, we can predict that in 1000
hours we expect about 89 failures in a thousand. Probability theory allows us to
deduce other failure rates:

The known facts

89 components from 1000 failed within 1000 hours use.

The deduced facts

The probability of a component not failing within 1000 hours is

89
1 -p(fail ing) = 1 1000 = 0.911

Suppose a machine that depends on two such components, A and B, will fail if
component A fails or component B fails. Put another way, the machine does not

fail if component A does not fail and component B does not fail. Therefore the
probability of the machine not failing within 1000 hours is

(1 0 0 0 - 8 9) (1 0 0 0 - 8 9)
x = 0.829921

P = 1000 1000

That is, the probability of the machine failing within 1000 hours is approximately
1-0 .83, which is 0.17. We expect 17% of machines with components A and B to
fail within 1000 hours.

From this kind of calculation we can deduce that 17% of machines with two of the
components will fail within 1000 hours. About one-quarter of machines depend-
ing on three of these components will fail within 1000 hours, while about one-
third of machines depending on four of these components will fail within 1000
hours. Similarly, one can use probability to reason about the likelihood of
complex outcomes given the probabilities of the constituent parts using the
logical connectives AND, OR and NOT, just as in the case of Boolean logic.

In general, machines are constantly collecting data that enable them to update
their probability estimates of various atomic and compound events. Ideally, one
wants to use the new and old information in a way which optimizes the value of
both. For example, the experience that a robot found the correct part in a given bin
may not guarantee that the part will always be available in that place, but added to
previous experience it may increase the expectation of finding the part in this
place in future. A result in probability theory called Bayes' Theorem allows prior
estimates of probability to be continually updated in the light of new observa-
tions.

Deterministic logic and probability theory can be combined to give rules of the
form 'if the probability of collision is >0.1, initiate evasive action'. Thus,
however measured, once the system has decided that the likelihood of collision
exceeds the threshold value of 0.1, the rule definitely requires it to take evasive

179

VOLUME TWO

action. As we will see in this chapter, there are more subtle ways of combining
intuitions about likelihood with those of predicate logic.

In 1965 Lotfi Zadeh proposed a form of reasoning using what has become known
as fuzzy logic. One of the main ideas is that propositions need not be classified as
true or false, but their truth and falsehood can be weighted. This differs from
probability theory by its dependence on the idea of a fuzzy set in which set
membership is weighted. Thus a machine could be'stationary' with a value of 0.9
and 'moving' with a value of 0.1. This is particularly useful when representing
the universe in which a machine is operating. There is always some uncertainty
about the position of the machine or its parts, and engineers are used to designing
tolerances into their machines. Traditional engineering has tended to improve the
behaviour of machines by using highly specified materials and precise, highly
skilled assembly. In mechatronics, we are interested in replacing traditional
solutions by incorporating machine intelligence that can compensate for low
tolerances. Thus expensive manufacturing processes may be replaced by designs
with less exacting specifications. Fuzzy set theory allows us to represent, say, the
position of an autonomous vehicle in a 'fuzzy' way. It may be more useful to
reason on the basis that the machine is 'in the comer' than to know precisely its
x,y coordinates. This fuzziness in the representation allows a fuzziness in
reasoning which can be very useful.

In the remaining sections of this chapter we will explain the mainstream topics
from reasoning in more detail, and we will show how they can be used in
designing intelligent machines.

6.2.1 Propositional logic
The rules that were described in the previous section under the heading of
deterministic reasoning are known more precisely as rules of inference. The
conditional parts of the statement are known as propositions, and the theory of
manipulating these statements is known as propositional logic. In a rule of the
form

If (X) Then (Y)

the terms X and Yare called propositional symbols, and they have a truth value. In
this section we shall assume that this means that they can be either TRUE o r FALSE

statements, but not both. (Later we look at ways of using more than two truth
values.) For example, if X is the statement

(temperature of room is less than T r)

180

CHAPTER 6: REASONING

then the proposition is TRUE when the temperature of the room is less than Tr and
FALSE when the temperature is greater than or equal to T r . Similarly, an action to
be taken, Y, could be:

(radiator valve is ON)

which is TRUE if the radiator valve is turned on, or FALSE if the radiator valve is
NOT turned on. At first sight this second statement does not look like an action
statement. However, a system that uses If-Then rules can force the statement to be
TRUE by taking action. Thus, if the rule states that when the temperature is below

T r then (radiator valve is ON) should be TRUE, the system will turn on the radiator
valve to make the statement TRUE.

In order to make a distinction between the proposition and its truth value, the

following notation is used:

T(X) = TRUE if X is TRUE

T(X) = FALSE if X is FALSE

This is needed because we want to make statements in which the truth values of

two propositions can be compared. If, for example, the two propositions X and Y
are both TRUE, then it is possible to say

T(X) = T(Y)

That is, the truth values of the two propositions are the same. This is quite
different from saying that the two propositions themselves are the same, X = Y.

The propositional logic that we will be using in this chapter contains all the rules
of Boolean logic, just as in the treatment of logic gates in Volume 1, Section 3.3.4.
One of the first laws of this propositional logic is that of the 'excluded middle' .
This says that a proposition has to be either TRUE or FALSE; it can ' t be anything
else. A second law is that of 'contradiction', which says that a proposition cannot
be both TRUE and FALSE at the same time.

The following are consequences of the Law of the Excluded Middle:

1 IfX is TRUE, Then (NOT X) is FALSE. In other words, since a proposition has to
be either TRUE or FALSE, if we know that it is NOT TRUE, then it must by
definition be FALSE, and similarly if we know that it is NOT FALSE it must be

TRUE.

2 The proposition that X is TRUE AND X is FALSE must be FALSE since X cannot
be both TRUE and FALSE at the same time.

3 The propositionX is TRUE ORX is FALSE must be TRUE sinceX has to be either
TRUE or FALSE, it cannot be anything else.

Clearly then, we can combine propositional symbols using Boolean operators
such as AND, OR and NOT since the truth values of the propositions are logical. In
propositional logic, AND, OR and NOT are known as connectives. The symbols
that are used for these connectives are

181

VOLUME TWO

X A Y means X AND Y

X v Y means X OR Y

---,X means NOT X

There are alternative notations for the logical operators. Other notations are in use

for the negation operator, NOT, such as .~X and -X; students of electronics may

also be familiar with the bar notation for negation, X.

These connectives can generate new propositions from the combinations of

individual propositions. Rules can contain combinations of propositions such as"

/f ((temperature of room less than Tr)/x (timer is ON))

Then (radiator valve is ON)

Just as the individual statements, X and Y, can be TRUE or FALSE, so a combination

such as (X/x Y) can be TRUE or FALSE. For example, if T(X) is TRUE and T(Y) is

FALSE then T(X/, , Y) is FALSE.

The connectives AND, OR and NOT are summarized in Table 6.1, using both

notations.

T A B L E 6.1 S U M M A R Y OF T H E C O N N E C T I V E S X ^ Y, X v Y A N D ~ X

X Y

FALSE FALSE

FALSE TRUE

TRUE FALSE

TRUE TRUE

X A Y X v Y ---,X X---> Y

X AND Y X OR Y NOT X X implies Y

FALSE FALSE TRUE TRUE

FALSE TRUE TRUE TRUE

FALSE TRUE FALSE FALSE

TRUE TRUE FALSE TRUE

In Volume 1, Chapter 3 of this book, Boolean logic was introduced in terms of

logic gates, and a statement was made that all logical functions can be imple-
mented using only NAND gates. One of the reasons that this is true is that the OR

connective can be replaced by a combination of the AND connective and the NOT
connective. The relationship between the two is summarized by DeMorgan's
Laws:

182

CHAPTER 6: REASONING

DeMorgan's Laws

If there are two propositions, X and Y, then

X v Y = ~ (~ X A-~Y) X OR Y = NOT(NOT X AND NOT Y)

and similarly

X A Y = ~ (~ X v ~Y) X AND Y = NOT(NOT X OR NOT Y)

This rule is sometimes helpful in manipulating logical expressions to get them
into a form that is easy to interpret.

There is one other operation shown in Table 6.1 that plays an important role in
propositional logic, namely implication. This has the symbol:

X---~Y X implies Y (equivalent to ~ X v Y)

This operation needs some explanation. You can see that the 'X implies Y' entry in
Table 6.1 is TRUE for all cases except one, where X is TRUE and Yis FALSE. From
this we can deduce that implication is equivalent to the expression --,X v Y, but
this doesn't shed any light on its usefulness. The term 'implication' often causes
confusion. A lot of people expect 'X implies Y' to mean that the value of Y will be
dictated by the value of X, but it does not. If it helps, imagine a small box, BOX x,
inside a larger box, BOX~, as shown in Figure 6.1. Then let the propositional
symbols, X and Y, mean:

X (object is inside B o x o

(object is inside BOXy)

BOX y

BOX x object

Figure 6.1
An example of implication.

183

VOLUME TWO

We can say that X ~ Y, because if an object is inside BOX x then it must also be
inside BOXy If, on the other hand, the object is not inside BOX x, then it is valid
for it to be inside BOXy or outside; these are both situations which could be TRUE.
The only situation that cannot happen is for the object to be inside BOX x and
outside BOXy which corresponds to T(X)= TRUE and T(Y) = FALSE, so the
combination T(X---)Y)= FALSE.

For example, if X represents (lightbulb is illuminated) and Y represents (power
supply connected to switch on light), then X ---) Y. That is, if the light is illuminated
then the power supply must be connected. If the light is off, the power supply may
be connected or not, you can't say, as the switch controlling the light may be on or
off. However, if the light is on and the power supply is not connected, then there is
something strange going on.

Implication can appear in a rule. For example, a system which monitors the
temperature of a bath might have three propositions, X, Y and Z, where

X (hot tap turned on)

Y (water hot)

Z (sound alarm)

A rule which uses these propositions could be

If T(~ (X ~ Y))

Then T(Z)

In words, what this rule says is that if NOT(X implies Y) is TRUE- that is (X implies
Y) is FALSE- sound an alarm. This means that if the hot tap is on and the water is
not hot then there is something wrong: either the tap hasn't turned on or the heat
sensor is faulty. In all other cases there is no need for an alarm. These cases are:

tap on, water hot OK

tap off, water hot OK

tap off, water not hot OK

Propositional logic can take us quite a long way in reasoning. However, there are
some situations where putting together all of the propositions required to test a
situation is a long and tedious job. For example, if a system has to examine a
hundred sensors and sound an alarm when any one of them is indicating a
potentially dangerous situation, then the rule would have to be quite long:

184

CHAPTER 6: REASONING

/f ((sensor 1 is ON) v (sensor 2 is ON) v ... v (sensor 100 is ON))

Then (sound alarm)

As you can see, this is a fairly simple construction, but it would be more
convenient if there was a shorthand notation for this. Fortunately there is, but not
in propositional logic. To get some new operators we need to move to predicate
logic.

6.2.2 Predicate logic
The main differences between propositional logic and predicate logic are that in
predicate logic we can use variables, and there are two new symbols called
quantifiers. Firstly, let's look at variables.

In the previous section there were propositions like (water is hot) which had a
truth value. This proposition just tests one object, the water, and so can't be used
to test anything else. With predicate logic, the proposition is split into a subject
(called the argument) and a predicate which is a single verb phrase. In this
example the argument is 'water ' and the predicate is 'is hot'.

Now the predicate is independent of the argument, so it can be applied to any
other argument such as 'the weather is hot' or 'ice is hot'. A shorthand way of
writing this is to state the predicate and put the arguments in brackets after it. The
predicate 'is hot' can therefore be written as

hot(x)

where the argument, x, could be any object, and the quality of 'hotness' is
attached to it. This predicate can be used as a proposition if the object is replaced
by a specific item such as water:

hot(water) TRUE if water is hot, FALSE if water is not hot

hot(ice) FALSE by most definitions

The predicate, hot(x), does not have a truth value, since x could be anything. It is
only when a specific item is substituted for x that a truth value can be assigned.
Even then, a logical value can be assigned only if what is substituted can be
meaningfully described as hot. Formally what we mean is that the predicate 'hot'
is defined for a specific domain, which in this case contains all objects that have a
measurable temperature.

Predicates can have more than one argument. For example, the predicate 'bigger'
could have two arguments, bigger(x,y), which is TRUE if x>y and FALSE
otherwise. For example, bigger(3,2) is TRUE whereas bigger(2,3) is FALSE.
Similarly, equal(x,y) is TRUE if x=y and FALSE otherwise.

185

VOLUME TWO

The second aspect of predicate logic that makes it different from propositional
logic is that there are two additional symbols. These are:

V x P(x) means 'for all x, P(x) is TRUE'

3 x P(x) means 'there exists x such that P(x) is TRUE'

where x is an object and P(x) is a predicate of x.

The upside-down A (for All) symbol, V, is called the universal quantifier, and the
back-to-front E (for Exists) symbol, 3, is called the existential quantifier. The
universal quantifier has to be used with care since it is necessary to define the
'universe', or set, or domain, to which x belongs. For example, the quantified
predicate

V x , 1 / x < x

is false, for example, for values of x between 0 and 1. However,

V x, x is a number greater than l, 1/x < x

is true. In this case the universe is the set of numbers greater than one, and for this
universe the quantified predicate is true. To see why it is necessary to specify the
universe, consider the following

V x , x i s a n e g g , 1 / x < x

is meaningless because the string of symbols 1/egg has no meaning. Even when
the string is meaningful the universe must be carefully stated. For example,

V x, x is a number, 1Ix < x

is a meaningful predicate, albeit a predicate that is false. Just one exception for
which a universally quantified predicate is false makes the whole thing false.
Here x - 0.1 will do.

It is necessary to specify the universe for the existential quantifier in order to
ensure that the predicate is meaningful. For example, it is certainly true that

3 x , 1 / x < x

since, for example, x can simply be set equal to 3. However it is not meaningful to
assert that

3 x , x i s a n e g g , l / x < x

In mathematics quantifiers are essential for manipulating propositions about the
members of infinite sets. In areas such as mechatronics they can be useful in
presenting information about finite sets in summary forms. For example, recall
the rule that sounds an alarm if any of the sensors turn on. This can now be
expressed more succinctly as follows:

I f (3 x on(sensor x))

Then on(alarm)

186

CHAPTER 6: REASONING

The predicate on(sensor x) is TRUE if sensor x is ON, and on(alarm) is TRUE if the
alarm is sounding. The rule therefore says that if there exists a value of x such that
the predicate on(sensor x) is TRUE then sound the alarm.

In computer implementations, the domains of quantified predicates usually have
to be declared or constructed. For example, the rule which involved the predicate
on (sensorx) would have been declared in such a way that the computer knew that
x had to be a positive integer.

6.2.3 Rules of inference
Having established that some propositions are TRUE, it is often desirable to be
able to derive further propositions and establish their truth values. This process is
called inference and is based around the implication operator described earlier.
There are many rules of inference- 16 in all - but two of the most frequently used
rules of inference are known as modus ponens and modus tollens.

Modus ponens

Assume: X ~ Y

and: X

Then: Y

This says that i fwe assume thatX ~ Yis TRUE, andX is TRUE, then it follows that
Y must be TRUE. Care has to be taken because nothing is said about Y if X ~ Y is
FALSE. For example, suppose we know that if a cooling system on a car fails, X,
the engine will get hot, Y. We therefore know that X---) Y is TRUE. Then suppose
that the cooling system fails (XisTRUE), it follows that the engine is hot
(Y is TRUE). Alternatively, if we said that when the ashtray in a car is full, X, the
engine gets hot, Y. In this case X --~ Yis FALSE. So if the ashtray is full (X is TRUE)
we cannot say whether the engine is hot or not.

Modus tollens

Assume: X --~ Y

and: -~Y

Then: ~ X

First we assume thatX --~ Yis TRUE. Then if--, Yis TRUE (or Yis FALSE) it follows
that--,X must be TRUE (or X is FALSE). Using the same examples as above, a failed
cooling system (X is TRUE) implies a hot engine (Yis TRUE). If the engine isn't hot
(Y is FALSE), it follows that the cooling system hasn't failed (X is FALSE).
Similarly, for the example where the implication is FALSE, if the engine isn't hot
(Y is FALSE) we can't say whether the ashtray is full or not.

187

VOLUME TWO

From these simple examples you might believe that it is blindingly obvious when
something implies something else. However, it is not difficult to think of
historical examples where inference has been applied with the result that new
discoveries are made. For example, it would be true to say that if the world is flat
(X) you could fall off the edge of the world (Y), so the implication of the statement
is TRUE, (X ~ Y). People once believed that the Earth was flat (X is TRUE), so by
applying modusponens they believed that if you went to the edge of the Earth you
would fall off (Yis TRUE). When people found that they didn't fall off the edge of
the Earth (Yis FALSE) it followed that the Earth couldn't be flat (X is FALSE), even
though the implication (X ~ Y) is still TRUE.

We use rules of inference in mechatronic systems to deduce new information
from existing propositions. For example, imagine that a light sensor, X, is used by
a mechatronic system to determine when it is night time, Y, and if it is night time, a
light is switched on, Z. The three propositions contained in the system are:

X, sensor is ON

Y, it is night time

- sensor OFF when it gets dark

Z, light is ON

The system assumes that (~X ~ Y) and applies a rule of the form:

if T(r3

Then T(Z)

Some of the knowledge contained in the system is found by direct measurement
or sensing, namely the state of the sensor and the state of the light, whereas the
knowledge about whether it is night time or not can only be inferred from X. We
will see more of this in Chapter 7 on Rule-based systems.

6.2.4 Theorem proving
We shall look at the ideas involved in theorem proving, as this is also one of the
main areas of logical reasoning. Theorem proving is used extensively in mathe-
matics, but can also find a use in machine intelligence. A formal system is
required which consists of axioms, rules of inference and, of course, theorems.
The axioms are propositions which are always TRUE for a particular system, so
that these axioms, together with a set of rules of inference, define a particular
formal system. Essentially, theorem proving is the process of deducing whether a
theorem is TRUE or not. The method is to show that a theorem can be derived from
the axioms using only the rules of inference. This may all sound very abstract, so
we will illustrate it with an example.

Let's take the example of the previous section, of the sensor that detects the onset
of night time again. The 'theorem' that we want to prove is that it is night. First of
all, let's set out the axioms. The propositions that are relevant are:

188

CHAPTER 6: REASONING

X, sensor is ON

Y, it is night

Axiom 1: Sensor is OFF (~X)

Axiom 2: Sensor OFF (--,X) implies night (Y), (~X--9 Y)

For the system that we are defining, these axioms are always TRUE. Next we state
the rules of inference that will be used in this system. In this example, modus
ponens will be used:

Rule of inference: If (A -9 B) is TRUE, AND A is TRUE Then B is TRUE

Notice that we've used some 'dummy' variables here, A and B, to make the rule
general.

Finally, the theorem. The theorem that we wish to prove is that it is night.

Theorem: It is night (Y)

We prove the theorem by showing that it can be deduced from the axioms using
the rule of inference. In this example we only have to do this once and the theorem
is proven. By substituting --,X for A and Y for B we get:

If (~ X - 9 Y) is TRUE, and ~ X is TRUE

Then Y is TRUE

We have therefore shown that Y is TRUE, so the theorem is proven. Now this is a
very simple example, and in general the logical system would be much more
complex. However, the process of theorem proving would be the same. You can
perhaps see how this process is applied in mathematics where new theorems get
proposed, and mathematicians gather to test if these new theorems are correct.
But we hope that you can also appreciate that in a mechatronic system a
hypothesis such as 'If I go left I will reach my goal' can only be answered by
posing the question as a theorem, and testing to see if that theorem can be proven.
The structure of the formal system containing axioms and rules of inference is
essential for the system to prove the theorem.

Theorem proving is an important but difficult area in artificial intelligence. Some
deductions are quite complicated because the interaction of quantifiers and
connectives makes testing truth values difficult. In particular, different symbols
may be used for what turns out to be the same variables, and sorting this out
may require the application of heuristic search techniques and a great deal of
computation.

6.2.5 Non-monotonic reasoning
Before we leave reasoning with certainty, the notion of monotonicity needs to be
mentioned, in classical logic, if we start with a set of assumptions and then use
these assumptions to deduce some new conclusions, then strictly speaking the

189

VOLUME TWO

new conclusions are expected to hold universally. No new assumptions should be
discovered that alter these conclusions.

For example, a robot operates provided that there is power to the robot and that all

safety devices are in place.

X power to robot

Y safety devices in place

P robot operates

T(P) = T(X A Y)

If T(X) is TRUE and T(Y) is TRUE then T(P) is TRUE and the robot is operating.

At some time later it is found that the robot is not operating despite there being
power available and safety devices in place. The problem is that the robot has
seized up due to lack of lubricant. This changes the situation because we now
have a third condition that needs to be examined before the robot operates:

Z adequate lubricant

T(P) = T(X /x Y/x Z)

So it is now possible for T(P) to be FALSE even though T(X) is TRUE and T(Y) is

TRUE.

In classical logic it should be impossible to find a new proposition Z that would
alter the original conclusions. This is because it is assumed that the system is
completely understood, so any new evidence should support the original deduc-
tion. The term monotonic arises because the number of conclusions that can be
drawn from a set of propositions should never decrease when new propositions
are discovered. In other words, if the number of propositions is A, and the number
of TRUE conclusions is C, then if new propositions are found, B, such that the
number of propositions is now A + B, the number of TRUE conclusions should still
be at least C. Mathematical functions that only ever increase (or only ever
decrease) are called monotonic.

In the robot example, a new proposition causes the number of TRUE conclusions
to decrease because a conclusion that was originally TRUE is now FALSE. So if we
want to be able to handle conclusions that change we have to resort to non-

monotonic logic.

This is all a very long-winded way of saying that we allow conclusions to change.
In a system that uses logic, this would mean constantly checking to see if the
conclusions that are currently held to be TRUE are still TRUE given that the
propositions might have changed. So the propositions themselves are found
under conditions of certainty, but they can still change as new evidence is found.
This introduces an element of uncertainty. In the next sections, we discuss ways
of dealing with uncertainty in the propositions.

190

6.3 Reasoning with uncertainty

CHAPTER 6: REASONING

The previous section showed how a machine could be made to follow a set of

rules using If-Then decisions. These rely on a condition being TRUE or FALSE,
which in turn rely on the data (arriving from a sensor say) being available and

accurate. What happens if the data are unreliable, either because the signal is very
noisy or because there are gaps in the data? We would still like to be able to (and

sometimes have to) make decisions. In this section we look at a number of ways

of doing this.

6.3.1 3-valued logic
Up until now we have assumed that a proposition must have a truth value which is

either TRUE or FALSE. In some cases data may be missing and we find ourselves in

a position where a decision still has to be made, even though there are gaps in the

data. In 3-valued logic a third value is allowed which is 'UNKNOWN'. The purpose

of this is that it may sometimes be possible to infer some value of a compound

proposition even though some of its elements are unknown. The alternative is to

just give up and say that nothing can be done.

As an example, suppose we have a proposition, P, that consists of (X v Y).

T(P) = T(X v Y)

Now suppose that the value of X, T(X) = TRUE, but we don' t know the value of Y;

that is, T(Y)= UNKNOWN. What is T(P)?

Table 6.2 is the truth table for X v E

TABLE 6.2 S U M M A R Y OF THE T R U T H VALUES OF THE C O N N E C T I V E X v Y

X Y X v Y

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

From this we can see that if T(X) is TRUE, irrespective of the value of T(Y), the

value of T(X v Y) is TRUE. So in this case we can find the truth value of P even if

one of its elements were UNKNOWN. We can't always do this, but it's an improve-
ment on never being able to determine the truth value of a compound proposition

just because one of its elements is UNKNOWN.

191

VOLUME TWO

As was the case with Boolean logic, a 3-valued logic with the truth value
UNKNOWN can be defined by showing how it deals with the connectives AND, OR

and NOT. This is shown in Table 6.3, where TRUE, FALSE and UNKNOWN have

been abbreviated to T, F and U respectively.

TABLE 6.3 SUMMARY OF THE CONNECTIVES IN 3-VALUED LOGIC

X Y

F F

F T

F U

T F

T T

T U

U F

U T

U U

X A Y X v Y - ,X X---> Y

F F T T

F T T T

F U T T

F T F F

T T F T

U T F U

F U U U

U T U T

U U U U

As before, the table includes implication, where we can see that implication can
be true even when one of the variables is UNKNOWN in some cases.

We could go further than this and have any-valued logic - for example,
4-valued logic. All we have to do is define what happens with each of the

connectives.

6.3.2 Probability theory
Most people have some intuitive idea of probability. If you were asked what are

the chances of some event happening you could make a guess based on some

notion of how often you think that event happens. Will it snow tomorrow? If it is
summer, then your answer is 'not very likely', but if it is winter your answer could

be 'yes, I think it probably will'. There is no way that you could say with complete

certainty whether it will snow tomorrow, so you have to guess, but the guess is not
completely w i l d - it will be an 'intelligent guess'. You would use some historical
data, like 'it 's never snowed at this time of year before', and some general

knowledge like 'it doesn' t snow in summer because it's too hot' . Then you would

use some local or current knowledge, such as 'it has been snowing for the last two

days and it doesn' t look like easing up', or 'there's a low pressure front coming in

from the north'. So, you would gather information from a variety of sources and

combine them to make your educated guess.

192

CHAPTER 6: REASONING

All of this reasoning is done in words. Probability theory allows you to do the
same but using numbers derived from statistical theory. Numerical representa-
tions are often easier to manipulate in a machine than natural language.

It has to be emphasized that probabilities are abstract quantities. The probability
of an event occurring is expressed as a number between 0 and 1. A probability of 0
means that the event will never happen, and a probability of 1 means that the
event will certainly happen. A value in between, 0.7 say, indicates that the number
of times that the event will take place is expected to be 70% in a large number of
trials. For example, when tossing a coin the probability of the coin coming down
heads is 0.5, which means that we expect the number of times that the coin lands
with heads up to be close to 50% in a large number of trials.

Given a set of data, the relative f requency of an event can be measured. The
frequency is the number of times that an event occurs, whereas the relative
frequency is the number of times an event occurs, divided by the total number of
trials. If b is the number of trials (times that x could occur) and a is the number of
times that the event actually did occur, the relative frequency is then:

a

relative frequency, f (x) = -~

The relative frequency is an empirical measurement. The probability is an
abstract notion of how often an event will occur in a large number of trials. In the
absence of any other knowledge, the relative frequency can be used as the current
estimate of the probability. It is usually assumed that as the number of events
increases, the more accurate the relative frequency becomes as a measure of the
probability.

Suppose that you toss a coin 10 times and note that the number of times that it was
heads is 7. The relative frequency is

7
f(heads) =]--0 = 0.7

We can use this value to hypothesize that the probability of heads, p(heads)= 0.7.

Now suppose you toss the coin another 90 times, making a hundred in total, and
note that the number of additional times that it was heads was 48, making a total of
55. The relative frequency is

55
f(heads) - 100 - 0.55

We would now adjust the estimate of the probability to p(heads)= 0.55.

In theory, as the number of tosses of an unbiased coin increases, the probability
approaches 0.5. How do we know this? The answer is that there are many
situations in which the probabilities can be calculated theoretically. In the case of
tossing a coin, there are two possible outcomes which, as far as we know, are
equally likely. The theoretical probability is calculated by the number of out-

193

VOLUME TWO

comes that we are predicting, divided by the total number of possible outcomes. If
we are trying to find the probability of an unbiased coin landing with heads up,
then the number of outcomes that we are testing is one, and the total number of
possible outcomes is two, namely heads or tails. The theoretical probability is
therefore

1
p(heads) = ~ = 0.5

If we were throwing a die there would be six possible outcomes. The probability
of the die showing a particular number, such as 6, is 1/6 = 0.167. The probability
of the outcome being an even number is 3/6 = 0.5, because there are 3 possible
numbers that could be counted, divided by the total number of outcomes which is
6.

Of course, this all assumes that the die is not 'loaded' and is therefore 'unbiased'.
Although the theoretical probability of throwing, say, a 5 is 1/6, the only way to
test this is to throw the die a number of times. If the long-term relative frequency
is about 1/6 we can conclude that the die is unbiased. Otherwise we conclude that
the die is biased and use the empirical probability (relative frequency) rather than
the a p r i o r i theoretical probability.

So we have two ways of arriving at probabilities. The first is to actually measure
the number of times an event takes place and use the relative frequency as an
estimate of the probability. If the number of trials is large, the value that you end
up with is relatively accurate, and applies to the specific event that is in question.
The second is more general and more idealized. By making an assumption that all
outcomes are equally likely, for example, it is possible to derive the theoretical
probability of an event. Often it is a wise precaution to test the 'equally likely'
assumption by experiment, and it is sometimes necessary to calibrate in order to
allow for bias.

A consequence of our definitions of probability is that the sum of the probability
of an event happening and the probability of an event NOT happening must be 1. A
probability of 1 represents a certainty- that is, it is bound to happen. So what we
are saying is that an event is either going to happen or it is not. Mathematically this
is represented by

p (x) + p (- - , x) - 1

It therefore follows that if we know the probability of an event happening, then
we also know the probability of the event not happening:

p (- ~ x) = 1 - p (x)

194

CHAPTER 6: REASONING

6.3.3 Bayes' rule
Given that the probability of an event occurring is known, the next step is to know
how to use this probability to determine how likely an event is of being TRUE,
given some evidence which itself has a probability of being TRUE. For example, if
a sensor detects an unusually high temperature in a system, what are the chances
that this is due to a leak in the cooling system? One method which is often used is
called Bayes' rule, named after the eighteenth century British cleric, the Rev.
Thomas Bayes (1702-1761). Essentially, he managed to solve this problem by
turning the question around to a simpler one which is usually easier to answer. In
this example, the question is turned around so that it becomes a question of what
are the chances of a leak in the cooling system causing an unusually high
temperature? Since a leak in the cooling system will certainly cause a high
temperature, this is an easier question to answer.

Mathematically, Bayes' rule can be expressed as

p(BIa) • p(A)
p(AIB) =

p(B)

where

p(AIB)

p(BIA)

p(A)

p(B)

is the probability of A happening, given that B has happened

is the probability of B happening, given that A has happened

is the probability of A happening

is the probability of B happening.

The first of these, p(A IB), is what we want to find out. Before we do this, let's look
at what this expression p(AIB) means in general. To do this, let's go back to
throwing dice again. Given two dice, A and B, what is the probability of throwing
a double six?

We have already said that throwing a six is one outcome out of a possible six, so
the probability of throwing a six is 1/6 = 0.167:

p(A) = 0.167, where A means a six will be thrown with die A.

We want to throw two sixes, so we have two events, each with a probability of
0.167:

p(A) = 0.167, where A means a six will be thrown with die A

p(B) = O. 167, where B means a six will be thrown with die B.

With two dice there are 36 possible outcomes, shown in Table 6.4, and a double
six is only one of those outcomes.

195

VOLUME TWO

TABLE 6.4 THE 36 POSSIBLE OUTCOMES OF THROWING TWO DICE

Die B 3

Die A

1 2 3 4 5 6

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

So the probability of throwing a double six with two unbiased dice is 1/36 =
0.0278:

p(C) = 0.0278

where C means a six will be thrown on both dice A and B.

It turns out that

p(C) = p(A) • p(BIA)

The second probability on the fight-hand side, p(BIA), is the probability of B
given that A has already happened. In this example, since the probability of B is
independent of A, p(BIA) reduces to p(B), and the probability of throwing a
double six becomes

p(C) = p(A) x p(B)

This is true of any two independent events. The probability of two independent
events, A and B, happening is the product of the probabilities of each individual
event happening.

Suppose, in the dice example, that die A is thrown and is a six. What is the
probability of a double six now? Well, the probability is just the probability of
throwing a six with a single die, namely 0.167. This probability is

p(ClA) = 0.167

This expression is the probability of throwing two sixes, given that one six has
already been thrown.

Returning to Bayes' rule and the example of an overheating machine,

p(B IA) x p(A)
p(alB) = p(B)

196

CHAPTER 6: REASONING

To calculate p(AIB) we have to know all the other probabilities, three in this case.
So although we have a formula, quite often we can get stuck here because the
information is simply not available. However, in our example of an overheating
machine, let's assume that this particular machine has been monitored for most of
its working life so that statistics are available about the number of times that there
have been leaks in the cooling system, how often the temperature has been too
high, and how often the high temperature has been caused by a coolant leak.

Total working life:

Number of hours temperature has been high:

Number of hours that the cooling system has leaked:

10000 hours

42 hours

32 hours

Now we can calculate some probabilities. First, the probability of there being a
leak, p(A). Over the 10000 hours, the cooling system has leaked for only 32
hours. So the probability of it leaking at any given time is

32
p(A) = 1000----6 = 0.0032

Over the 10000 hours the temperature has been high for only 42 hours, so the
probability of there being a high temperature, p(B), is

42
p(B) : 10000 = 0.0042

Finally, the probability of the system getting hot when there is a leak in the
cooling system is 1 since this will definitely happen, so

p(BIA) = 1

Now we can calculate p(AtB), which is the probability of overheating being
caused by a leak in the cooling system:

1 x 0.0032
p(AIB) = 0.0042 = 0.762

This figure could be used as an aid to making a decision. We could say that we are
about 76% confident that the cooling system is the cause of the high temperature.
So if, for example, we decided to replace the cooling system to cure overheating,
then about 8 times out of 10 that would be the correct decision.

In the next section we will look at ways in which probabilities can be combined in
a similar way to propositional logic so that evidence from a number of sources can
be used to make a decision.

197

VOLUME TWO

6.3.4 Probability and logic
The logical operations that have been used so far are AND, OR and NOT. If we had a
Boolean expression containing propositions combined with some of these logical
operations, and each proposition had a probability associated with it, we would
like to know the probability of the entire expression.

The NOT operation has already been described. If an event, X, has a probability of
p(X), then the probability of the event not happening is 1-p(X). So,

p (- ~ J 0 = 1 - p(X)

We have also seen the AND operation when we were looking at the probability of
two events, X and Y, occurring. The probability is

p(X /~ Y) = p(X) x p(YIX)

When these two events are independent, this reduces to

p(X ^ Y) = p(X) x p (r)

This just leaves the OR operation. This turns out to be

p(X v Y) = p(X) + p(Y) - p (X ^ Y)

The probability of event X OR event Y taking place is the sum of the two
probabilities, together with a compensating factor which takes into account the
possibility that the two events may occur together. This is needed because p(X) is
the probability that event X will occur which can be split into two parts: the
probability that X will occur when Y is not happening, plus the probability that
event X will occur when Y is happening. Similarly, p(Y) can be split into the
probability that Y will occur when X is not happening plus the probability that Y
will occur when X is happening. When these two probabilities are added,
p(X) + p(Y), the probability of X and Y happening together has been double
counted, so the amount p(X A Y) has to be subtracted to redress the balance.

To summarize, the three logical operators can be replaced by arithmetical
operations when probabilities are used as follows:

Negation

p (~X) = 1 - p(X)

Conjunction

p(X A Y) = p(X) x p(YIX)

When these two events are independent, this reduces to

p (X ^ Y) = p(X) x p(IO

Disjunction

p(X v Y) = p(X) + p(Y) - p (X ^ Y)

198

CHAPTER 6: REASONING

Again, when X and Y are independent, this reduces to

p t X v t) = p(X) + p (t) - p (X) x p(r)

As an example, let p(X) = 0.8 and p(Y) - 0.9, where X and Y are independent

events. The combinations of these events are

p(--,X) = 1 - p(X) = 1 - 0.8 = 0.2

p(X/~ Y) = p(X) x p(Y) = 0.8 x 0.9 = 0.72

p(X v Y) = p(X) + p(Y) - p (X) x p(Y) = 0.8 + 0.9 - 0.8 x 0.9 = 0.98

Earlier it was shown that the AND and OR operations are related by DeMorgan's
Laws. Does this still apply to probabilities? DeMorgan's Law for the OR opera-

tion was stated as:

X v Y = --,(--,X/~ --,Y)

Rewriting this probabilistically for independent events X and Y gives

p(--,(--,x ^ ~ D) = 1 - p (~ X /, --,F)

= 1 - p (- - , x) x p(-- ,r)

= l - (1 - p (X)) x (1 - p (Y))

= 1 - (1 - p (X) - p(Y) + p(X) x p(Y))

= p(X) + p(F) - p (X) x p(F)

= p (X v

A similar proof can be shown for the AND connective, so DeMorgan 's Laws still
apply to probabilities when events are independent.

This gives us a method of finding the probabilities of Boolean expressions given
the individual probabilities of the propositions contained in the expressions.
However, great care must be taken when applying these equations, as it is very
easy to be misled. To finish this section, and before we go on to look at fuzzy
reasoning, some examples will be given from the dice example again, just to
show that care must be taken when applying probabilities.

What is the probability of throwing a 5 and a 6 with two dice?

The probability of throwing a 5 with one die is 1/6, and similarly the probability of
throwing a 6 with one die is 1/6. The probability of throwing a 5 AND a 6 is

therefore:

199

VOLUME TWO

p(5 AND 6) = p(5) • p(6)

= 1 / 6 • 1/6

= 1/36

However, i fyou look back to Table 6.4 you will see that there are two possibilities
of throwing a 5 and a 6, namely 5,6 and 6,5, so the probability should have been
2/36. What 's gone wrong? What has happened is that we haven't expressed the

problem well enough. The question should have been interpreted as"

What is the probability of throwing either a 5 followed by a 6 OR a 6 followed by a

5?

The answer becomes"

p((5 AND 6) OR (6 AND 5))

= p(5 AND 6) + p(6 AND 5) - p ((5 AND 6) AND p(6 AND 5))

= p(5) • p(6) + p(6) x p(5) - 0

= 1/6 • 1/6 + 1/6 • 1/6

= 2/36

The term

p((5 AND 6) AND (6 AND 5))

is zero because you cannot throw both a 5 followed by a 6 AND a 6 followed by a 5

with the same two dice.

What is the probability of throwing a 6 with two dice?

This time we'll go straight for the fight answer. The question has to be interpreted

aS"

What is the probability of throwing a 6 with the first die OR throwing a 6 with the

second?

p(6 OR 6) = p(6) + p(6) - p (6) • p(6)

= 1/6 + 1 / 6 - 1/36

= 11/36

Check with Table 6.4 to see if there are actually 11 possibilities of throwing a 6.

200

CHAPTER 6 REASONING

What is the probability of not throwing a 6 with two dice?

It is tempting to apply the OR operation to this problem as in Example 2, but that
would give the wrong answer (35/36). This question should be interpreted as:

What is the probability of NOT throwing a 6 with the first die AND NOT throwing a
6 with the second?

p(NOT 6 AND NOT 6) = p(NOT 6) • p(NOT 6)

= 516 • 516

= 25/36

Check with Table 6.4 to see if there are actually 25 possible ways of throwing two
dice and not getting a 6.

6.3.5 Possibility and fuzzy reasoning
Possibilistic logic was first proposed by Zadeh in 1965, and has become more
popular under the name of fuzzy logic. The ideas involved in fuzzy logic allow us
to combine in a 'logical' way some weighting factors associated with proposi-
tions from different sources. In fuzzy logic the truth value can vary between zero
and one, i.e. 0 ~ T(X) ,< 1. Earlier we saw that proposititional logic uses the logical
operators AND, OR and NOT to combine logical inputs. In fuzzy logic we have
equivalent operations, namely MIN, MAX and (1 - T(X)) as follows:

TABLE 6.5 FUZZY LOGIC EQUIVALENTS TO THE BOOLEAN CONNECTIVES

Boolean Fuzzy

T(X A Y) MIN(T(X), T(Y))

T(X v Y) MAX(T(X), T(Y))

T(~X) (1 - T(X))

T(X ~ Y) MAX((1- T(X)), T(Y))

Fuzzy logic is consistent with Boolean logic; for example, the fuzzy values T(X) -
0 and T(X) - 1 work in exactly the same way as Boolean variables in this table.

Remember that X and Y are the propositions, and T(X) and T(Y) are their truth
values respectively. Any Boolean logic expression can now be converted to a
fuzzy logic expression by substituting MIN, MAX and (1 - T(X)) for AND, OR and
NOT, respectively. For example, the last entry, X implies Y, shows how a
complicated logical expression can be made using fuzzy logic. Earlier you were

201

VOLUME TWO

shown that X --~ Yis equivalent to ~ X v Y In fuzzy logic, the truth value of-~X is

replaced by 1 - T(X), and similarly T (X v Y) is replaced by MAX(T(JO, T(Y)). So

~ X v Y is replaced by MAX((1 - T(X)), T(Y)). There are other definitions of fuzzy

implication, but this one uses the substitutions that we have defined.

If we assign 0 to FALSE and 1 to TRUE as is usually done, then we can show that the

operations are equivalent. This is done in Tables 6.6 and 6.7.

TABLE 6.6 BOOLEAN CONNECTIVES

X Y

0 0

0 1

1 0

1 1

X A Y X v Y ~ X X--> Y

0 0 1 1

0 1 1 1

0 1 0 0

1 1 0 1

TABLE 6.7 FUZZY CONNECTIVES

X Y

0 0

0 1

1 0

1 1

MIN(X, Y) MAX(X, Y) (1 -X) MAX((1 - X), Y)

0 0 1 1

0 1 1 1

0 1 0 0

1 l 0 1

So when the truth values are 0 and 1 there is no difference between Boolean logic

and fuzzy logic. Fuzzy logic, however, can generalize so that the truth values can

be any number between 0 and 1, as we shall see in the next section.

To conclude this section we shall check to see if one of the rules of Boolean logic

still applies to fuzzy logic. Earlier you were introduced to DeMorgan's Laws,

which related the OR and AND operators. The first of these was stated as

XvY - ~ (~ X A - - , Y) X OR Y - NOT(NOT X AND NOT Y)

Now let's try this with the fuzzy operators MAX, MIN and i - T(X). Suppose

T(JO i> T(Y), so that 1 - T(X) <, 1 - T(Y). Then

MAx(T(X),T(Y)) = T(X)

= 1 - (1 - T (X))

= 1 - MIN((1 - T (X)) , (1 - T (Y)))

202

CHAPTER 6" REASONING

which is analogous to X v Y - ~ (~ X / x ~Y). This derivation works equally well if
we start with T(Y)i> T(X) and 1 - T(Y) <, 1 - T(X); you can try this for yourself.

The second of DeMorgan's Laws was stated as

X/x Y = ~ (~ X v ~ Y) X AND Y = NOT(NOT X OR NOT Y)

Suppose T(X) i> T(Y), so that 1 - T(X) <, 1 - T(Y). Then

MIN(T(X),T(Y)) = T(Y)

= 1 - (1 - T (Y))

= 1 - MAX((1 - T(X)), (1 - T(Y)))

which is analogous to X A Y= ~ (~ X v ~Y). This derivation also works if we start

with T(Y) i> T(X).

So DeMorgan 's Laws still apply in fuzzy logic, even when the values of T(X) and

T(Y) are between 0 and 1.

6.3.6 Fuzzy sets and membership functions
Logic and set theory are closely related by the concept of the characteristic
function, otherwise called the membership function. In conventional set theory
the membership function of the set A is denoted by ZA (using the Greek letter

'chi ') and has the property

ZA(X)= 1 if x is a member of A

Z A (X) = 0 if x is not a member of A

This can be rewritten as

ZA(X) = 1 if (x is a member of A) is TRUE

XA(X) = 0 if (X is a member of A) is FALSE

This concept can be extended to let the value of ZA lie between zero and one. In
this way one can represent uncertainty about set membership. For example, will
tomorrow belong to the set of 'sunny days' ? If the available information suggests
that it is more likely to be sunny tomorrow than not, we might estimate that

Zsunny days(t~176176 - 0.7.

A fuzzy set is a set whose membership function takes values between zero and
one. There is a close relationship between fuzzy sets and fuzzy logic, as you will
see. Fuzzy set membership is probably easier to explain by looking at an example.

The terms 'cold' , 'warm' and 'hot' are all descriptions related to temperature.

Figure 6.2 shows how you might set some arbitrary thresholds T 1 and T 2 so that as
you start from a low temperature and move up the scale you cross the thresholds.
Starting from COLD, you cross the first threshold, T 1, and now you are WARM.

203

VOLUME TWO

Continuing up the scale you cross the second threshold and become HOT.

COLD WARM HOT

" I i I iP-

T 1 T 2 T

At any temperature, T, you could say that you belong to a particular region, either
COLD, WARM or HOT.

Figure 6.2
Temperature scale with cr isp
thresholds.

T <~ T 1 COLD

T 1 <T<~ 7"2 WARM

T 2 < T HOT

We can think of these regions as sets of temperatures, and ascribe a membership
to these sets. Any given temperature T would be a member of only one set.
Membership of a set is given the value I and non-membership of a set is given the
value 0, as shown in Table 6.8.

TABLE 6.8 BINARY SET MEMBERSHIPS FOR THE SETS COLD, WARM AND HOT

Temperature COLD WARM HOT

T <~ T 1 1 0 0

Tl <T<~T2 0 1 0

T 2 < T 0 0 1

In other words, the set called COLD contains all temperatures which are less than
or equal to T 1. These membership functions are shown in Figure6.3. The
membership can be used as the truth value so that, for example, if the membership
of the set COLD is 1, then this is equivalent to the proposition (temperature is
COLD) being TRUE. At the same time, membership of the other two sets is 0 is
equivalent to the propositions (temperature is WARM) and (temperature is HOT)
being FALSE.

The problem with these sets is that on the boundary between two sets there is a
very 'crisp' change from membership of one set to membership of another. For

example, if T 1 is 10 ~ say, then at a temperature of 5 ~ it is clearly COLD. However,
it is not so obvious whether a temperature of 9.999 ~ should be interpreted as COLD
or WARM: it is somehow both.

204

CHAPTER 6: REASONING

_

COLD

i i . i

T 1 T 2 T

(a) Binary set membership for COLD

_

WARM

T 2 r

(b) Binary set membership for WARM

HOT

i y

r] r2 r

(c) Binary set membership for HOT

In fuzzy logic we can change the shape of the membership functions so that the
boundary is not so crisp. Figure 6.4 shows an example, using the commonly

found triangular functions.

The most obvious difference is that the sets overlap, so that at some temperatures
it is possible to be a member of two different sets. At the temperature of 8 ~ shown
in Figure 6.4(d), the memberships are:

Figure 6.3
Membership functions for
COLD, WARM and HOT.

COLD 0.7

WARM 0.3

HOT 0.0

205

VOLUME TWO

CO

1 i

T 1 T2

(a) Fuzzy set membership for COLD

_

T 1 T 2 T

(b) Fuzzy set membership for WARM

_

r

T 1 T 2 T

(c) Fuzzy set membership for HOT

0.7-

0.3-

I

COLD i HOT

8 ~ T 1 T2

(d) Combined fuzzy set membership for COLD, WARM and HOT

Figure 6.4
Fuzzy set membership
functions.

206

CHAPTER 6: REASONING

So at 8 ~ the temperature is a member of the COLD set with a membership value of
0.7, and a member of the WARM set with a membership value of 0.3. In some ways
these memberships are similar to probabilities, and have been described as the
'probability of an event being possible'. However, it is important not to read too
much into fuzzy set membership values, as they may be rather arbitrary. Whereas
there is a clear relationship between theoretical probability and relative fre-
quency, fuzzy set membership values may be derived in a less rigorous and more
empirical way.

These memberships can be combined or processed using the MIN, MAX and
(1 - T(X)) operations so that logical If-Then rules can be applied. For example:

If

Then

(temperature is COLD)

(turn heating on HIGH)

If, at a particular temperature, the membership of COLD is 0.7, then the heating is
turned on HIGH with a membership of 0.7. In other words, the membership value
is passed on to the action part of the rule. The set HIGH could be only one of a
number of options, such as OFF, LOW, MEDIUM or HIGH. This rule asks for the
heating to be turned on HIGH. Other rules might ask for the heating to be turned on
LOW, for example:

If

Then

(temperature is WARM)

(turn heating on LOW)

Membership of the set WARM could be 0.3, so now this rule wants the heating to
be turned on to LOW with a membership of 0.3. Figure 6.5 shows the membership
functions for the heater. Here too, the membership functions are triangular, and
are spread over the operating range of the heater from 0 to 15.

Figure 6.5
Membership functions of a
heater.

207

VOLUME TWO

The membership values that are passed to the output appear as the shaded areas on

the diagram. To calculate the final setting for the heater a process called

def i~zz i f ica t ion is used which finds the 'centre of gravity' of the shaded area. This
is shown on the diagram, and is the point at which the shaded area to the left of the

point equals the shaded area to the right. This point turns out to be approximately

9, so the heater would be turned up to a setting of 9 or 60% of its full power.

6.3.7 Defuzzification
The usual method for defuzzification involves taking the centre of gravity for all

the areas shaded under the fuzzy set membership curves. Suppose it is known that

curve 1 has its centre of gravity at x = x l, and that curve 2 has its centre of gravity

at x = x 2. Let the areas under these curves be A 1 and A 2 respectively. Then the

centre of gravity ofboth areas is the point c for which (C - X l) A 1 - (x2 - c)A2, i.e. a
'weight ' ofA 1 a tx 1 would balance a 'weight ' ofA 2 a tx 2 at the 'fulcrum' point c.
From this it follows that

cA ~ - XlA1 = x2A2 - cA2

so that

and

c(A 1 + A 2) = XlA 1 + x2A 2

c = (XlA ! + x2A2) / (A 1 + A2)

In general,

c = (Y__.x i A i) / Z A i

Finding the centre of gravity of a general curve can be quite complicated, but it

can be simplified considerably if one uses symmetric set membership functions

since the centre of gravity lies on the axis of symmetry of the curve.

The centre of gravity of the areas under the curves Xi for i = 1, ..., n is given by the
formula

centre of gravity =

2;
i=I

centre of gravity; x area under curvei

t7

~ area under curve/
i=1

The area under a symmetric triangular curve has its centre of gravity under the

apex, and is a trapezium which is easy to calculate, as shown in Figure 6.6.

208

CHAPTER 6 REASONING

l p -.,

(a) A trapezium of altitude h and sides I and l'

d = l +Xl+ x 2 - - ~

V ' q / k
~ - X l - ~ - - - d = l ' - x 1 - x 2 - - - ~ " - x 2 - -

(b) d + d = l + x 1 + x 2 + l ' - x I - x 2, therefore d = ~(l + l'),

therefore area = ~h(l + l')

So, us ing t r iangular fuzzy set m e m b e r s h i p funct ions means that defuzzif icat ion

can be ca lcula ted according to the fo rmula

a r e a / :
(li + l~)hi

If x i is the centre of gravi ty of the area under curve Zi, then

centre of gravity =

p

n (li + li)hi
xi 2

i=1

/7 P

~_~ (li + li)hi
2

i=1

In the case of the curve in Figure 6.7 the calculat ion is

a r e a A - 0 . 7 5 (0 " 5 + 2 ' 0) 2 = 0 . 9 3 7 5 ,

a r e a B - 0 . 2 5 t l ' 5 + 2 " 0) - 0 . 4 3 7 5
2

X A -- 0 . 0 0

X B - 1.00

(0.0 x 0 .9375) + (1.00 • 0 .4375)
centre of gravi ty = 0.9375 + 0.4375 = 0.318

So in this case the defuzzif icat ion of Z A = 0.75 and ZB = 0.25 gives a value of

x = 0.318.

Figure 6.6 The area
under a trapezium of altitude
h and sides of length ! and l"
is ~h(l + l')

209

VOLUME TWO

area =~(0.5 + 2.0) • 0.75 = 0.9375

Z

1.0

Z A =0.75

0.5

2' B = 0.25

0.0
- 1.00 -0.75 -0.50 -0.25

area = �89 + 2.0) x 0.25 = 0.4375

A B

i i i i 1 i 1 i i i i 1 v

0 0 .25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 x

,~ Figure 6. 7
Defuzzifying the set
membership values
~A = 0.75 and)~B = 0.25.

In the following example, the use of symmetric functions suggests negative
salaries, which may seem odd, but it does no harm and greatly facilitates the

defuzzification calculation.

To illustrate defuzzification, consider the rules

If

and

and

Then

a person has high skills

that person has high responsibility

that person gets new business

that person gets a high salary

If

and

Then

a person has high skills

that person does their job well

that person gets a medium salary

if

and

Then

a person has low skills

that person is not experienced

that person gets a low salary

Suppose the fuzzy constructs of being highly paid or lowly paid have the set

membership functions shown in Figure 6.8.

Now suppose the rules are applied to Mr A who has low skill (0.9) and high skills

(0.1), little responsibility (0.1), gets no new business (0.0), does his job OK (0.5)

but is not a very experienced worker (0.6). Then his fuzzy values can be

calculated as

210

CHAPTER 6: REASONING

/f a person has high skills (0.1)

and that person has high responsibility (0.1)

and that person gets new business (0.o)

Then that person gets a high salary .. (0.0)

since 0.1 and 0.1 and 0.0 means min{0.1, 0.1, 0.0} = 0.0 in this rule.

I f a person has high skills (0.1)

and that person does their job well (0.5)

Then that person gets a medium salary (0.1)

since 0.1 and 0.5 means min{0.1, 0.5) = 0.1 in this rule.

I f a person has low skills (0.9)

and that person is not experienced (0.6)

Then that person gets a low salary (0.6)

since 0.9 and 0.6 means

Mr A has an area of

min{0.9, 0.6) = 0.6 in this rule.

0 "6 (40"0+2 16.0) = 16.8

under the LOW SALARY curve and

0 1 / 6 0 " 0 + 5 4 ' 0) - 5 " 7 " 2

under the MEDIUM SALARY curve. His area under the HIGH SALARY curve is zero.
His defuzzified salary is therefore

16.8 • 0 + 5.7 x 30 171.0
salary for Mr A = 16.8 + 5.7 = 22.-----5 = s p.a.

So Mr A earns a crisp salary of s per annum.

211

VOLUME TWO

Now consider Ms B who has good skills (0.8), has some responsibility (0.6), gets
some new business (0.6), does her job well (0.8), and is quite experienced (0.8).

I f a person has high skills (0.8)

and that person has high responsibility (0.6)

and that person gets new business . (0.6)

Then that person gets a high salary (0.6)

since 0.8 and 0.6 and 0.6 means min{0.8, 0.6, 0.6} = 0.6 in this rule.

/f a person has high skills (0.8)

and that person does their job well (0.8)

Then that person gets a medium salary . (0.8)

since 0.8 and 0.8 means min{0.8, 0.8} = 0.8 in this rule.

If a person has low skills (0.2)

and that person is not experienced (0.2)

Then that person gets a low salary (0.2)

since 0.2 and 0.2 means

Ms B has an area of

min{0.2, 0.2} = 0.2 in this rule.

0 . 2 (3 2 . 0 + 4 0 . 0)
2 - 7.2

under the LOW SALARY curve, an area of

08 (_ 1 2 " 0 + 6 0 " 0]
' 2 - 28.8

u r l c l c t " t h e . i~ f t '~_ i~ f~T~f 5 ; ~ L A R Y C U r V e . ~ r J d ~ t n a r e a o F

0 (480 + 1 00 /
2 - 50.4

under the HIGH SALARY curve. Therefore"

salary for Ms B =
7.2 x 0 + 28.8 x 30 + 50.4 x 100

7.2 + 28.8 + 50.4

5904

86.4
= s p.a.

212

CHAPTER 6: REASONING

So Ms B gets a salary of s per annum. You may feel that these fuzzy rules
do not represent this situation very well. If so, try changing them to see if you can
get a fairer set of rules for financial rewards, including fuzzy characteristics that
you might think important if you were an employer.

A Figure 6.8 Defuzzifying peoples' salaries: calculating areas under fuzzy curves.

6.3.8 Paradoxes in applying fuzzy sets
One of the useful features of fuzzy sets is that they can be built up on the basis of
minimal information, and then adjusted until they are more consistent with
observation. However, we should not be careless, as the following examples show.

Consider the fuzzy set membership function shown in Figure 6.9. When x = 0.0,
Z = 1 and the area under the curve is the whole triangle, the centre of gravity for
this triangle is approximately at the point x = 0.29. When x is just below 1.0, Z is

213

VOLUME TWO

just above 0.0 and the area is approximated by a thin bar between x = 0.0 and

x = 1.0 (ignoring the small triangular piece which should be removed from the

fight of the bar). Therefore the centre of gravity is approximately at the centre of

the bar, and in the limit the centre of gravity corresponding to x = 1.0 is at the point

x = 0.5. Therefore, whatever the original value of Z is (between 0.0 and 1.0), the

defuzzified value of Z always lies between 0.29 and 0.50.

Of course, if the fuzzy values are defined by a symmetric curve about the point x c,

then for all values of x, Z will defuzzify to the constant value x c.

TINY 0.1

MEDIUM 0.0

HUGE 0.1

(b) area under the curve for x = 1,)~ = 0 ~1 Figure 6.9

A more perplexing property of fuzzy sets is exhibited by what we call Hopgood's
Paradox. This is illustrated in Figure 6.10. Suppose there is little information

available about this system, and due to calculations elsewhere in the system the

fuzzy values are:

1.0
TINY

/ 0.75

0.5

0.25

0.0

, ,/

(a) area under the curve for x = 0, ~ = 1

MEDIUM HUGE

/
-I.0 - 0 .5 0 0.5 1.0 1.5 2 .0

- - i n , ~

2.5 3.0 x

Figure 6.10
Fuzzy sets which lead to
Hopgood 's defuzzification
paradox.

214

CHAPTER 6- REASONING

If these values are defuzzified, the result is x = 1.00, and so the new fuzzy values

become

TINY 0.0

MEDIUM 1.0

HUGE 0.0

In this case both TINY and HUGE started with small values of 0.1 and finished up

with values of 0.0, but MEDIUM started out with a small fuzzy value of 0.0 and

finished with 1.0.

The paradox here is that apparently 'weak' information can result in apparently

'strong' information on defuzzification.

6.3.9 Defuzzification is not the inverse of fuzzification

Figure 6.11 shows the fuzzy set membership functions for YOUNG and OLD in

years. For any value of age there are fuzzy values of YOUNG and OLD; for

example, if age = 20 years those values are 0.75 and 0.25, respectively. These two

values can be used to recover a defuzzified value of age. In this case the fuzzified

age 20 defuzzifies to age 25.5. This is one of the worst distortions caused by
defuzzifying the fuzzified value, as shown in Figure 6.12. In a perfect system the

defuzzification of the fuzzified value would equal the original value, but, as

Figure 6.12 shows, this is not always the case.

,~ Figure 6.11
Membership set for young
and old.

80

70

60

50

~= 40
N
N 30
oD

"~ 20

10

0

/ / / / /
/ /
0 10 20 30 40 50 60 70 80-

age in years

41~ Figure 6.12 Graph of
defuzzified values of young
and old.

215

6.4 Conclusion

VOLUME TWO

This chapter has described ways of reasoning which can be incorporated into the
cognitive subsystem of a mechatronic system. The main tool that is available is
logic, which takes many forms, and in this chapter we have introduced some of
the more commonly found examples. Propositional and predicate logic allow
statements to be evaluated as being either TRUE or FALSE. These statements can be
combined using the Boolean connectives, AND, OR and NOT, to form more
complex propositions, and the truth or falsity of these complex statements can
also be evaluated. The If-Then rule shows how a decision can be made based on
some conditions being TRUE or FALSE. These conditions would generally be
determined by sensor inputs, although some of the higher level propositions
would be inferred from lower level propositions rather than directly from sensor
inputs. Theorem proving can also be used by applying rules of inference to
propositions, to determine whether they are TRUE or FALSE, and thus hypotheses
can be tested.

Variations on these ideas have been shown in the form of non-monotonic logic,
where deductions are allowed to change in the light of new evidence, and multi-
valued logic where a new truth value, UNKNOWN, can be processed logically,
giving a system the ability to reason even when information is missing.

in situations where the data are less certain, probabilities can help to make
decisions. Bayes' rule showed how the probability of a proposition can be
calculated indirectly from data which are easiest to collect. Finally, it is often
desirable to 'fuzzify' some of the rigid thresholds that are used to determine
propositions. The result is a membership function whose value lies in the range 0
to 1. Fuzzy logic can also handle this information logically.

In the next chapter we shall see how these ideas of reasoning can be implemented
in a rule-based system, so that some of the more practical aspects of reasoning in
machines will become clearer.

References and further reading

For further reading, we recommend:

Hopgood, A. (1993) Knowledge Based Systems for Scientists and Engineers, CRC Press,
London.

Chuen Chien Lee (1990) 'Fuzzy logic in control systems: Fuzzy Logic Controller- Part
I', lEE Transactions on Systems, Man and Cybernetics, Vo120, No. 2, March/April
1990, pp. 405-418.

Chuen Chien Lee (1990) 'Fuzzy logic in control systems: Fuzzy Logic Controller- Part
II', lEE Transactions on Systems, Man and Cybernetics Vol 20, No.2, March/April
1990, pp. 419-435.

216

C H A P T E R 7
R U L E - B A S E D S Y S T E M S

Rule-based systems are sometimes called by other names, some authors using the
terms knowledge-based systems and expert systems interchangeably. In this
chapter we use the term rule-based system because, at the heart of all these
systems, is a set of rules.

Figure 7.1 shows a typical structure of a rule-based system. The major compo-
nents are the knowledge base, which contains facts as well as rules, and the
inference engine. The inference engine is the part where the reasoning takes
place: where input information is combined with the rules and facts in the
knowledge base to make decisions and construct new information.

Figure 7.1 (a) shows what is involved in building a rule-based system. The rules
usually come from humans via a user interface, most commonly a graphic user

input from
rule-base
designer

• Knowledge t knowledge J
aquisition

"-I interface elicitation "-1 database.

Inference engine

c! I
' Fa ' I RUa/aeb ase

(a) During construction Knowledge base

input from sensor ~.j Sensor
"-1 interface

input from user ,.J User
"-I interface

(b) During use

A Figure 7.1
Architecture of a rule-based system.

I Inference engine

J~ J~

Ir

-~ Fact
database

Rule
database

Knowledge base

Actuator
interface

control signals
to actuators

217

VOLUME TWO

interface (GUI). The a priori facts which are built into the system also enter the
system in this way. The process of getting knowledge from humans to put into
machines is called knowledge elicitation. In expert systems, which attempt to
capture and emulate some area of human expertise, knowledge elicitation is very
important. Usually an expert's knowledge is not explicit: he or she 'just knows'. It
can be very difficult to get this implicit information from an expert and convert it
into the explicit form required to store and manipulate it in a computer. For this
reason, specialists called knowledge engineers may be used to guide and facilitate
the knowledge elicitation process. In mechatronics it is likely that the 'expert' on
designing intelligent machines is also an expert on building rule-based systems,
and therefore acts as his or her own knowledge engineer.

Figure 7.1(b) shows a rule-based system in use. In this case information is
supplied to the system by sensors or human users. In mechatronic systems the
output will include control signals to actuators, such as electrical logic levels
which switch motors on and off. The user may or may not supply information to
such a system when it runs. When they do it will be through some interface, which
may be a full GUI in the case of a power station controller, or it may be a few
buttons in the case of a washing machine. Usually the users of rule-based systems
are not the people who designed them, and an interface which makes them
intuitive and easy to use is an important feature.

The term expert system would usually be applied to systems which are specifi-
cally designed to be operated by humans. The human operators would be less
expert in a particular field than the person who designed the system, but the
combination of the human operator and the expert system acts as an expert in that
particular field. One example is in medical diagnosis where information is fed
into the system and analysed by applying the rules. These rules would have been
extracted from one or more human experts on medical matters by analysing their
decisions given similar sets of data. So an expert system is just a rule-based
system, but the rules tend to have been extracted from human experts, and the
system is expected to give the same diagnoses or answers as human experts, or to
improve the performance of a lesser expert. Paradoxically, expert systems based
on many human experts sometimes have worse performances than systems based
on a single expert. This is because any given expert is likely to be consistent in
their knowledge and beliefs, but combining expertise may introduce inconsis-
tency.

In mechatronic systems, a rule-based system may also be required to behave like
a human expert. But it is often the case that the rules that it contains are not
extracted from experts because experts in that particular field do not exist. The
rules are found by trial and error and may be adapted as time goes by, by the
machine itself. We will therefore not use the term expert system in this chapter,
but understand that in some cases the rules may have been extracted from human
experts.

218

CHAPTER 7: RULE-BASED SYSTEMS

Rule-based systems differ in many respects from conventional computer pro-
grams. The main features are as follows:

i~ In a particular application, all the knowledge about that application is kept
separate from the control structure of the programs. In a conventional
program the two would be intermixed, typically through the design of
application-specific data structures.

i~ Rule-based systems have the significant advantage that new knowledge can
be added or unwanted knowledge taken away relatively easily. In a conven-
tional program, if some new knowledge became available the program
would probably have to be re-written.

I~ Rule-based systems have mechanisms to explain their conclusions and lines
of reasoning.

When a computer system is operating it may take some action which seems odd.
With rule-based systems a user can interrogate the system and ask for reasons to
be given for that action. A conventional system could only supply some sort of
explanation if a continuous record or log has been kept of all the actions it has
taken. In rule-based systems the method called backward chaining (which will be
described later) is particularly well suited to work out and indicate which rule has
been used and why it has been used, by way of an explanation for its action. It
would be very difficult to incorporate this facility into any other architecture such
as conventional programs or neural networks for example.

For all their advantages, there are some drawbacks which have to be borne in
mind. The first is that rule-based systems tend to be used in narrowly defined
applications. If a rule-based system is constructed for one application and the
same system is then applied to a similar but not identical application, it often fails
catastrophically because some of the rules are too specific. In other words, rule-
based systems do not degrade gracefully when they reach the edges of their
understanding. Also, they have to be periodically updated to check that the
knowledge with which they are working is still relevant. This means that they
cannot be left to work autonomously for long periods of time (a year, for
example). The virtue of being able to add knowledge incrementally to rule-based
systems can also lead to the introduction of subtle inconsistencies. And finally,
when they are used in very complex situations where a large number of rules are
stored they can sometimes be relatively slow. This latter aspect is not so crucial in
many applications, but in real-time control, where decisions and actions have to
be taken typically in milliseconds, this is very important.

In Chapter 9 you will see how a system can be controlled using rules, and in
particular fuzzy rules. In this chapter we want to concentrate on some of the
particular issues relevant to rule-based systems irrespective of their application.
These are mainly concerned with the control of the rule-based system, which
means the order in which things happen and the general house-keeping that needs
to go on. In this chapter we will concern ourselves with small rule-based systems
which would be embedded in a system, rather than the larger rule-based systems

219

VOLUME TWO

which involve much more house-keeping such as truth maintenance, where the
truth value of the deductions that have been made are checked to ensure that no
contradictions occur.

7.1.1 The knowledge base
The knowledge base of a rule-based system consists of facts and rules. Since the
rule-based system is going to be applied to a specific problem, the facts and rules
will be specific to that problem. This is called the problem domain, and the facts
and rules can only be used in that domain.

The assertion that something is true or false is called aproposition, or apredicate
when variables are involved. For example 'the heating is switched to ON is TRUE'
is a predicate. TRUE is the truth value of the predicate. The part of the predicate
which is asserted to be true will be called a clause (this term has a more precise
meaning which is beyond the scope of this book). The clause is often written as a
letter, so that p could mean 'the heating is switched on'. We will use the notation
T(p) to mean the truth value ofp. For example, T(p) = FALSE means 'the heating is
switched on is FALSE'.

Unfortunately the notation used in the literature is rather loose. Sometimes you
will see 'p = TRUE' to mean 'T(p) = TRUE', and sometimes you will see things like
' i fp then q' to mean ' i fp is TRUE then q is TRUE', or equivalently, 'if T(p)= TRUE
then T(q) = TRUE'. Usually it is clear what is meant, but you are warned that these
different usages can be confusing.

In the following we abbreviate 'T(p)= TRUE' to T(p), and 'T(p)= FALSE' to
~T(p), unless stated otherwise.

Facts and rules can be divided into two types - deep and surface. Deep knowledge
concerns the basic principles such as the laws of physics, which we assume are
not going to change. Surface knowledge concerns heuristics that are known to
work from experience of similar problems but which may change.

The sort of rules that are kept in the knowledge base are often in the form of the
If-Then statements that were described in Chapter6 on Reasoning, although
there can be other types. These If-Then rules are called production rules and
typically look like this:

If (something is TRUE)

Then (something else is TRUE)

where new knowledge is deduced from old. In mechatronics some rules result in
actions:

If (something is TRUE)

Then (do something else)

220

CHAPTER 7: RULE-BASED SYSTEMS

For example,

If T(cold)

Then T(heating ON)

Remember that the terms in brackets are called propositions and that they have a
truth value associated with them. So terms like 'cold' would have to be more
precisely defined, such as:

T(cold) = TRUE if temperature from a sensor is less than 10~

= FALSE if temperature from a sensor is greater than or equal to 10~

where T(x) is the truth value of x, and

T(heating ON) = TRUE if the heating is switched to ON

= FALSE if heating is switched to OFF

The left-hand side of this rule contains a condition that has to be satisfied and is
called the antecedent. The fight-hand side of this rule contains the consequence
of the antecedent being TRUE and is called the consequent. So if the antecedent is
TRUE it follows that the consequent is TRUE. Recall from Chapter6 that this
process is called modus ponens, and follows from the inference rules of implica-
tion. If (A --> B) is TRUE and A is TRUE, it follows that B is TRUE.

7.1.2 Forward chaining
In a rule-based system, a rule is said to be triggered if the antecedent of the rule is
TRUE. If the rule goes on to be used it is said to have beenfired. If the rule does not
fire it fails, which could be due to the antecedent being FALSE or UNKNOWN or
because the rule wasn't selected to fire.

Often in a rule-based system more than one rule could be triggered, so there has
to be a strategy for selecting which rule to fire. The inference engine is in control
of the rule firing, but it can work in two quite distinct ways called forward
chaining and backward chaining. In many applications a system would only ever
need to use one or the other approach, but there are instances where both are
used.

In forward chaining the inference engine works in cycles. In each cycle the facts
in the working memory are updated from information that has been input
or deduced since the last cycle. Next the rules are examined and all the rules
whose antecedents are satisfied are triggered. The collection of triggered rules is
called the conflict set, and this conflict has to be resolved so that only one rule
fires. Only one rule is fired in a cycle because by the time it has fired the
conditions that led to the other rules in the conflict set being triggered may have
changed.

221

VOLUME TWO

To illustrate forward chaining, consider a rule-based security system with the
following rules and facts:

Rule Database

Rule 1

i f

and

Then

and

and

Rule 2

if

and

Then

and

Rule 3

if

Then

and

T(image contains a face)

T(face recognized)

T(open door)

~T(image contains a face)

~T(face recognized)

T(image contains a face)

~T(face recognized)

T(alert security guard)

~T(image contains a face)

-~T(image contains a face)

~T(open door)

~T(alert security guard)

Fact Database

~T(image contains a face)

~T(face recognized)

~T(open door)

~T(alert security guard)

When this system starts running none of the antecedent predicates matches the
first two facts in the Fact Database. The inference engine begins at Rule 1, finds
that it is not triggered, moves on to Rule 2, finds that it is not triggered, moves on
to Rule 3, finds that it is triggered, fires Rule 3 setting-~T(open door) and-~T(alert
security guard) (initially they are already set with these truth values) and goes
back to Rule 1 to begin the cycle all over again.

Now suppose that the security system has a pattern-recognition system which,
through its hardware and software interface, can alter the truth value of (face
recognized) to make it True. Suppose also that it can automatically alter the truth
value of (face recognized) to make it True or False depending on whether the face
can be matched in the image database.

222

CHAPTER 7: RULE-BASED SYSTEMS

Rule 2: the first consequent
First suppose that a visitor comes to the door and the vision system changes the
Fact Database to contain T(image contains a face), but the face recognition test
fails so the predicate ~T(face recognized) remains unchanged in the Fact
Database.

When forward chaining, the inference engine starts with Rule 1. The first
antecedent predicate of Rule 1 now matches the Fact Database, but the second
does not. The inference engine then tests Rule 2. In this case both antecedent
predicates are matched and the second rule is triggered. Then the inference engine
tests Rule 3, which is not triggered because its antecedent predicates do not match
the Fact Database. Since Rule 2 is the only rule to be triggered, it fires, and the
predicate ~T(alert security guard) is changed to T(alert security guard) in the Fact
Database. It will be supposed that the security guard is alerted by a hard-
ware-software interface that sounds a buzzer whenever the Fact Database
contains the predicate T(alert security guard).

Rule 2: the second consequent
Rule 2 resets T(image contains a face) to ~T(image contains a face) to stop itself
being triggered indefinitely. The vision system will of course change this back to
T(image contains a face) until the visitor is either admitted by the manual
intervention of the security guard or goes away.

After Rule 2 has fired, the system will again begin at Rule 1 and test Rule 2 and
Rule 3. If the visitor can still be seen by the vision subsystem, Rule 2 will again
fire so the security guard's buzzer will sound until this person has been dealt with.

When the person has been dealt with, the predicate ~T(image contains a face)
will be in the Fact Database. This means that on subsequent cycles Rule 1 will not
be triggered, Rule 2 will not be triggered, but Rule 3 will be triggered and the
system will ensure that the predicates ~T(alert security guard) and ~T(open
door) are in the Fact Database. Thus the guard's buzzer will no longer sound, and
the door will be locked.

If the vision system senses that the image contains a face and it recognizes the
face, the predicates T(image contains a face) and T(face recognized) will be
added to the Fact Database. On the next forward chaining cycle, Rule 1 will be the
only rule triggered and it will fire, changing the predicate ~T(open door) to
T(open door). Assuming that the Fact Database is interfaced to the door lock, the
presence of the predicate T(open door) will cause the door to be unlocked so that
the recognized person can enter. The consequent predicates of Rule 1, ~T(image
contains a face) and ~T(face recognized), are used to update the Fact Database.

Thus, while forward chaining, the system goes through all the rules in sequence.
In this example the conflict set has only ever contained at most one member,
which is the one selected to fire. However, in general, the conflict set will contain
more than one triggered rule, and the conflict as to which one should fire must be
resolved by conflict resolution.

223

VOLUME TWO

7.1.3 Conflict resolution
Resolving the conflict set is a skill in its own fight. There are no hard and fast
methods that are guaranteed to be the 'best' , but some of the methods that are
commonly used are as follows:

First-come, first-served
The first rule that is found which has its antecedent satisfied is fired. This has the
advantage that there is no need to create a conflict set at all, so the method is fast. It
has the disadvantage that the rule that fires might not be the most important rule in
some respect.

Prioritizing the rules
The rules are rank-ordered so that the most important rule (as decided by the rule-
base designer) is placed first in the list, and the least important is placed last. This
has all the advantages of the first-come, first-served method and none of the
disadvantages. This approach is also called rule ordering.

Prioritizing the data
The data or facts are rank-ordered by the designer, and the rule that uses the
highest ranked data in its antecedent is fired. There may still be conflict here if
more than one rule uses the same data.

Recency ordering
The least recently fired rule in the conflict set is fired, or the rule which uses the
most recently updated data is fired. An alternative strategy is to fire the most
recently fired rule.

Generality ordering
The rule that is most specific to the situation is fired. This usually means the rule
that has the most conditions that have to be satisfied. For example, given two rules
in the conflict set where the first rule requires condition A to be satisfied before it
will fire, and a second rule which requires both condition A and condition B to be
satisfied, then the second rule is chosen under this strategy. This approach is also
called size ordering or specificity ordering.

Context limiting
Separate the rules into groups. At any one time, only one group of rules will be
active, so the chances of conflict arising are reduced.

224

CHAPTER 7: RULE-BASED SYSTEMS

Buggins' Turn
Another conflict resolution strategy, which we have called Buggins' Turn, works
well in many circumstances. This strategy involves cycles in which every rule
gets a chance of firing if it can. Each cycle start with the first rule and goes through
all the other rules to form a conflict set. After this, the remaining rules in the
conflict set are examined, excluding the rule that just fired, and a new sub-conflict
set is formed. The first rule in this sub-conflict set is chosen to fire. After this the
remaining rules in the original conflict set are examined, excluding any that have
fired, and the first of these to be triggered is fired. This continues until all the rules
in the original conflict set have been fired, or are no longer triggered.

Then the Buggins' Turn cycle starts again with the first rule. The term 'Buggins'
turn' comes from a system in which career promotion is based on how long
people have been waiting rather than their merits: everyone gets a turn in the end
no matter how mediocre they are.

One problem that can arise in most of these strategies, but particularly in the 'first-
come, first-served', is that the same rule can be chosen in every cycle. This may
be correct, but it could be the case that the conditions are satisfied for two ru les-
one which does very little and one which causes a profound change in the system.
In the next cycle it is selected again, and so on for every future cycle. So care has
to be taken to select the correct strategy for a particular application. Recency
ordering and Buggins' Turn do not suffer from this defect. It is also permissible to
use more than one strategy. For example, a rule consequent may explicitly change
the mode of conflict resolution. Such a facility would have to be built into the
inference engine.

Let's look at a hypothetical rule-based temperature controller. Valve 1 and valve 2
are responsible for circulating hot water from the boiler around the radiators and
the hot-water tank respectively.

There are many different ways that rules could have been formulated; here the
criteria are simplicity and brevity. The set of rules might look something like this:

Rule Database

Rule 1:

Rule 2:

ff (T(room temperature < 20) AND T(timer ON))

Then T(boiler ON)

If (T(water temperature < 40) AND T(timer ON))

Then T(boiler ON)

225

VOLUME TWO

Rule 3:

Rule 4:

Rule 5:

Rule 6:

Rule 7:

Rule 8:

Rule 9:

Rule 10:

/f T(boiler ON)

Then T(pump ON)

If (T(pump ON) AND T(room temperature < 20))

Then T(valve 1 OPEN)

If (T(pump ON) AND T(water temperature < 40))

Then T(valve 2 OPEN)

/f ~ T(timer ON)

Then -.T(boiler ON)

If ~T(room temperature < 20)

Then ~T(valve 1 OPEN)

If ~T(water temperature < 40)

Then ~T(valve 2 OPEN)

If ~T(boiler ON)

Then ~T(pump ON)

If (~T(room temperature < 20) AND ---,T(water temperature < 40))

Then ~T(boiler ON)

Notice that there are a number of rules which are similar but produce the opposite
effects, such as Rule 3 and Rule 9. You might think that you just need Rule 3, that
if the boiler is ON then the pump is ON, but this only turns the pump ON. If the
conditions change and the boiler is no longer ON, Rule 3 does not fire, which is not
the same as turning the pump OFF. A separate rule has to be constructed to make
sure that the pump can be turned OFF.

All the propositions, or facts, make up the rest of the knowledge base.

Fact Database

(room temperature < 20)

(water temperature < 40)

(timer ON)

(valve 1 OPEN)

(valve 2 OPEN)

(boiler ON)

(pump ON)

226

CHAPTER 7: RULE-BASED SYSTEMS

In forward chaining, the inputs are taken from the user or the sensors and
combined with the rules in the knowledge base. Given a new set of facts, the rules
are examined, a conflict set produced from all the rules whose antecedents are
satisfied (are triggered), and a conflict resolution strategy applied to select a
single rule for firing. In the heating controller a sequence of events could be as
follows:

(room temperature < 20)

(water temperature < 40)

(timer ON)

(valve 1 OPEN)

(valve 2 OPEN)

(boiler ON)

(pump ON)

TRUE

FALSE

TRUE

FALSE

FALSE

FALSE

FALSE

The following rules are triggered:

Rule 1:

Rule 8:

Rule 9:

If (T(room temperature < 20) AND T(timer ON))

Then T(boiler ON)

If aT(water temperature < 40)

Then ~T(valve 2 OPEN)

ff ~T(boiler ON)

Then ~T(pump ON)

If the first-come, first-served strategy is used then Rule 1 fires, and T(boiler ON) =
TRUE. The propositions now look like this:

(room temperature < 20)

(water temperature < 40)

(timer ON)

(valve 1 OPEN)

(valve 2 OPEN)

(boiler ON)

(pump ON)

TRUE

FALSE

TRUE

FALSE

FALSE

TRUE

FALSE

227

VOLUME TWO

In the next cycle, assuming that the external conditions have remained constant,
the inference engine triggers the following rules:

Rule 1: If (T(room temperature < 20) AND T(timer ON))

Then T(boiler ON)

Rule 3: If T(boiler ON)

Then T(pump ON)

Rule 8: If ~T(water temperature < 40)

Then ~T(valve 2 OPEN)

Now if we just used first-come, first-served then Rule 1 would fire again, which
gets us nowhere, instead, let's use first-come, first-served with recency, so that
the rule that was least recently fired is selected, and if there are several rules that
have never been fired, choose the first one that is encountered. In this example,
Rules 3 and 8 have not been used, and Rule 3 is the first one in the list, so this is the
one that is fired. The result is that T(pump ON) = TRUE. Assuming that there are no
external changes, the data in the knowledge base becomes:

(room temperature < 20)

(water temperature < 40)

(timer ON)

TRUE

FALSE

TRUE

(valve 1 OPEN) FALSE

(valve 2 OPEN) FALSE

(boiler ON) TRUE

(pump ON) TRUE

The inference engine produces a new conflict set. To keep track of how long ago a
rule was fired, we add a number in brackets to the left of each rule, as shown
below. Rule 3 was fired 1 cycle ago and Rule 1 was fired 2 cycles ago. There have
only been 2 cycles so far, so rules which have not yet been fired just have to have a
number which is 1 more than the number of cycles so far. The new conflict set is:

(2) Rule 1: If (T(room temperature < 20) AND T(timer ON))

Then T(boiler ON)

(1) Rule 3: If T(boiler ON)

Then T(pump ON)

228

CHAPTER 7: RULE-BASED SYSTEMS

(3) Rule 4:

(3) Rule 8:

If (T(pump ON) AND T(room temperature < 20))

Then T(valve 1 OPEN)

If ~T(water temperature < 40)

Then ~T(valve 2 OPEN)

In this case, Rule 4 and Rule 8 are triggered, but Rule 4 is first so it fires.

The knowledge base is updated and the numbers by each rule are incremented. So
it now looks like this, assuming no changes to the time and temperature proposi-
tions:

(room temperature < 20)

(water temperature < 40)

(timer ON)

TRUE

FALSE

TRUE

(valve 1 OPEN) TRUE

(valve 2 OPEN) FALSE

(boiler ON) TRUE

(pump ON) TRUE

In the next cycle the new conflict set is:

(3) Rule 1: If (T(room temperature < 20) AND T(timer ON))

Then T(boiler ON)

(2) Rule 3: If T(boiler ON)

Then T(pump ON)

(1) Rule 4: If (T(pump ON) AND T(room temperature < 20))

Then T(valve 1 OPEN)

(4) Rule 8: If ~T(water temperature < 40)

Then ~T(valve 2 OPEN)

This time Rule 8 fires, which doesn't actually change anything since valve 2 is
already closed. If no more changes occur to the antecedent predicates, these four
rules will be triggered each time the inference engine cycles round. In the next
cycle, Rule 1 will be selected again. Following that Rule 3, then Rule 4, then

229

VOLUME TWO

Rule 8 again, and so on. Although a rule will fire each cycle, there will be no more
changes to the knowledge base until there is some external change. The most
likely change is that the room temperature will rise, so that the predicate
T(room temperature < 20) will become FALSE. Rule 1 would no longer be trig-
gered, and a new sequence of actions would take place.

In forward chaining a sequence of events takes place which is determined by
sensors changing the facts or data in the knowledge base, so the whole process is
described as data-driven reasoning. The alternative process of backward chain-
ing is a method where you start with the goal, and work backwards to see how that
goal can be achieved. Backward chaining is therefore an example of goal-driven
reasoning.

7.1.4 Backward chaining
Forward chaining followed from the inference rule modus ponens: if (A ~ B) is
TRUE and A is TRUE, it follows that B is TRUE. The repeated application of the
rules in the rule base to the facts in the fact database will drive the system forward,
producing new facts. If the system had no time dependency, it would deduce
every possible consequence of the facts and rules in its knowledge base. As such
the process is not particularly goal-oriented- the system is just producing
knowledge as it goes along. Usually the system designer focuses the activity of a
forward-chaining system by judicious use of conflict resolution, knowledge of
the data entering the system through time, and the introduction of predicates
which help to control the process.

For example the predicate 'I am in path planning mode is TRUE' could be used to
direct a forward-chaining system to the task in hand, namely path planning. The
last rule to fire during path planning would then probably hand over to another
task using consequent predicates such as 'I am in path planning mode is FALSE'
and 'I am in sensing and motor control mode is TRUE'.

Whereas forward chaining goes from antecedent predicates, backward chaining
goes the other way. It is a goal-oriented strategy which assumes that something
specific must be deduced.

For example, in his well known textbook Artificial Intelligence, Winston
(1984) presents a backward-chaining system called Identifier. This system
identifies animals, and can be implemented using a predicate such as 'the
animal is identified as something', with the system working out what that
'something' is. This system contains rules of the form

230

CHAPTER 7: RULE-BASED SYSTEMS

Rule 10

If the animal is a carnivore is TRUE

and the animal has a tawny colour is TRUE

and the animal has dark spots is TRUE

Then the animal is identified as a cheetah is TRUE

This rule has a consequent predicate following 'Then' which matches the
question and can become the system's goal. Now the system can work backwards
from consequent predicates to antecedent predicates: if it can show that the
animal is a carnivore, has a tawny colour, and has dark spots, then it can achieve
its goal and identify the animal as a cheetah. So the system looks in its fact
database to see if it contains the antecedent fact that the animal is a carnivore.

Initially it does not know this, but it may find a rule of the form

Rule 5

If the animal is a mammal is TRUE

and the animal eats meat is TRUE

Then the animal is a carnivore is TRUE

Finding out if the animal is a carnivore can become a new intermediate goal.
Then the system works backwards from this as a consequent predicate in this rule,
and tries to find out if the animal is a mammal and if it eats meat.

Identifier contains the rule

Rule 2

If the animal gives milk is TRUE

Then the animal is a mammal is TRUE

So now the system works backwards from the consequent predicate 'the animal is
a mammal_is TRUE', and has the new goal of finding out if the animal gives milk.

Eventually the system will find the necessary facts in its fact database, or it will
have to ask for information. In this case the system might ask you if the animal
gives milk. Assuming you answered that it does, the rule would fire and the fact
that the animal is a mammal would be added to the fact database. You might then
be asked if the animal eats meat, in which case on answering 'yes' the rule would
fire which deduces that the animal is a carnivore.

231

VOLUME TWO

Having successfully matched the first antecedent predicate necessary to identify
the animal as a cheetah, the system might ask you if the animal has a tawny colour.
Suppose you answer 'yes'. The system then has one more antecedent predicate to
go, and asks you if the animal has dark spots. Suppose you answer 'no'. Then the
rule identifying cheetahs cannot fire after all.

Having failed to prove that the animal is a cheetah, the system looks for the next
rule with an antecedent consequence which matches the original goal. In Identi-
fier it finds

If the animal is a carnivore is TRUE

and the animal has a tawny colour is TRUE

and the animal has black stripes is TRUE

Then the animal is identified as a tiger is TRUE

Now the goal becomes that of proving that the animal is a tiger. The first
antecedent predicate is already in the fact data, as is the second. It was determined
that the animal is a carnivore and has a tawny colour when the system was trying
(incorrectly) to prove the animal was a cheetah. So now Identifier asks if the
animal has black stripes. Suppose it does, and you answer 'yes'. Then this rule
fires and the system concludes that the animal is identified as a tiger.

Note that during backward chaining the system accumulates intermediate facts
such as the fact that the animal is a carnivore. Although the system may seek these
facts in order to try to make one rule fire, they may be useful even when that rule
does not fire. For example, the knowledge that an animal has black stripes is more
general than tigers: it could be used to help identify zebras.

Winston writes:

Having one if-then rule in for each animal in the zoo is possible, albeit dull.
The consequent side of each rule would be a simple statement of animal
name, and the antecedent side would be a bulbous enumeration of character-
istics large enough to reject all incorrect indentifications. In operation, the
user would first gather up all facts available and then scan the antecedent-
consequent rule list for an antecedent-consequent rule that has a matching
antecedent part.
A better idea is to generate intermediate facts, making the reasoning proce-
dure more interesting. The advantage is that the antecedent-consequent
rules involved can be small, easily understood, easily created. Using this
approach, the Identifier procedure produces chains of conclusions leading to
the name of the animal.

(Winston, 1984)

The difference between forward chaining and backward chaining is illustrated in
Figure 7.2.

232

CHAPTER 7: RULE-BASED SYSTEMS

Rule 13

Rule 17

Rule 6

Antecedents

Consequences

i
Antecedents

Consequences

i
Antecedents

Consequences

(a) Forward chaining

Rule 13

Rule 17

Rule 6

Antecedents

Consequences

T
Antecedents

Consequences

T
Antecedents

Consequences

(b) Backward chaining

41~ Figure 7.2
Examples of the forward
chaining and backward
chaining deduction
mechanisms. (Note that
control does not always pass
to consecutive rules.)

7.1.5 Rule-based systems can explain their reasoning
One of the defining features for an expert system is that it is a rule-based system
which can explain the way it reasons and why it makes the deductions it does. For
example, if you were running Identifier and looking at what, unbeknown to you,
was a tiger, then you might be surprised to be asked if the animal gives milk,
thinking this is a totally inappropriate question when trying to identify such a
ferocious beast.

Any well-designed expert system interface would allow you to answer this
question by asking why it has been asked. In this case the system can invoke a
rule inventory or rule trail mechanism giving an answer such as:

I am trying to find out if:

to deduce from rule 2 if:

the animal gives milk

the animal is a mammal

I am trying to find out if:

to deduce from rule 5 if:

the animal is a mammal

the animal is a carnivore

I am trying to find out if:

to deduce from rule 10 if:

the animal is a carnivore

the animal is identified as a cheetah

233

VOLUME TWO

From this rule trail the user can see which rules are being invoked to make
deductions leading towards the eventual goal. In this case the user may be
satisfied that the 'explanation' is satisfactory, and that asking about milk was
relevant after all. However, it is possible that the rule inventory will expose a
highly suspect line of reasoning that the user does not accept as valid. In this case
the user can ignore the expert system and fall back on human intelligence and
common sense, or can suggest that the rule(s) and/or facts resulting in this odd
behaviour be modified or removed from the knowledge base. In this way rule-
based systems offer diagnostic information which allows human operators to
intervene when it is clear that the system is not working properly or making
flawed deductions and giving bad advice.

Usually, conventional computer programs do not have this explanation feature,
and when they behave oddly or malfunction it is difficult to find out why.

The explanation facility of expert systems can also be used for teaching and
training purposes, since novices interact with the system and quiz it when they do
not understand the basis of a deduction. From this they may have rules brought to
their attention of which they were previously ignorant.

7.1.6 Diagnosis in rule-based systems
Backward chaining can also be used in diagnosis. In the central heating example
in the previous section, an example of backward chaining would be when you
notice that a room heater is OFF but the room is cold and you want to know why.
Three possibilities are:

1 The boiler is not ON

2 The pump is not ON

3 Valve 1 is not OPEN

Let's look at these in turn. The only fact that you know is that T(room tempera-
ture < 20) is TRUE. First, let's check the possibility that the boiler is not ON by
making the first goal the predicate, -iT(boiler ON). The rules are examined to see
if this goal is the consequent of any rule, and we find that Rule 6 and Rule 10
apply.

Rule 6:

Rule 10:

If -,T(fimer ON)

Then -~T(boiler ON)

If (~T(room temperature < 20) AND --,T(water temperature < 40))

Then --,T(boiler ON)

234

CHAPTER 7: RULE-BASED SYSTEMS

The antecedent for Rule10 is that (~T(roomtemperature<20) AND
~T(water temperature < 40)) is TRUE, but we know that it is FALSE, so Rule 10
could not have fired. The antecedent for Rule 6 is ~T(timer ON), but we do not
know the state of the timer. The predicate ~T(timer ON) now becomes the goal,
and we examine the rules to find if ~T(timer ON) is a consequent of any rule,
which it is not. So we cannot go any further with this search, and leave the
hypothesis that ~T(timerON) is TRUE could be one explanation of why the
heating isn't on.

Let's do that again for the pump. The goal is ~T(pumpON), which is the
consequent for Rule 9.

Rule 9: If ~T(boiler ON)

Then ~T(pump ON)

For this rule to have fired, the antecedent ~T(boiler ON) must be TRUE, so this
becomes the next goal. Check the rules to see if ~T(boiler ON) is a consequent
and the search follows the same pattern as the previous goal, so the hypothesis is
again that ~T(timerON) is TRUE.

Finally, let the goal be ~T(valve 1 OPEN), which is the consequent of Rule 7.

Rule 7: If ~T(room temperature < 20)

Then ~T(valve 1 OPEN)

The antecedent of this rule is ~T(room temperature <20), which we know is
FALSE, so this rule couldn't have fired. The conclusion, then, is that the reason the
heating isn't ON is because the timer is OFF. However, the timer is ON.

This gives a demonstration of the diagnostic ability of backward chaining. There
are variations on this technique, which is essentially a tree-search mechanism. As
described in Chapter 3 on Search, it is possible to search spaces of this sort by
breadth-first or depth-first. In a depth-first search, of the kind just described, each
goal is checked until the knowledge base is reached and the goal can be shown to
be satisfied or not. In the example just given, at one point there were two rules that
had the goal as a consequent. One of those goals is pursued until it either succeeds
or fails, and in our case the first attempt failed. The search then backtracks to
where there was a division and searches down the next branch until a conclusion
can be made. This is the most commonly used method of goal-driven reasoning,
and is illustrated in Figure 7.3.

235

VOLUME TWO

Goal~ T(boiler oN)

Rule 6 Rule 10

(a)

--1T(timer ON) ? --1T(room temp. < 20)
AND ---1 T(water temp. < 40) (FALSE)

Goal -7 T(pump ON)

Rule 9

~ T(boiler ON)

Rule 6 Rule 10

(b)

~T(timer ON) ? -,T(room temp. < 20)
AND ---1 T (water temp. < 40) (FALSE)

Goal ---, T (valve 1 O P E N)

Rule 7

(c)

--1T (room temp. < 20) (FALSE)

7.1.7 Variables and instantiation
Predicates allow the use of variables and make use of the quantifiers introduced in

Chapter 6 : 3 (there exists) and V (for all). An example of this might be where

there are a number of sensors which test for dangerous conditions and can be
either ON or OFF. Each condition that the sensors are monitoring is indicated by a

red light being ON or OFF, so that if, for example, sensor 1 detects a dangerous
situation, red light 1 will come ON if it is not already ON. A rule for doing this is:

*il Figure 7.3
B a c k w a r d chain ing as a tree

search.

236

CHAPTER 7: RULE-BASED SYSTEMS

/f (on(sensor 1) ^ ~on(red light 1))

Then on(red light 1)

Note the use of the predicate on(x), which is TRUE ifx is ON and FALSE if x is OFF.

We could have a single rule for each sensor, but if there were a hundred sensors
this would get very tedious and difficult to read. Alternatively we could use the
existential quantifier as follows:

If (3 x (on(sensor x) A ~on(red light x)))

Then on(red light x)

This says that if there exists a value for x such that sensor x is ON and the red light x
is OFF, then turn red light x ON.

One problem with this is that there may be more than one value for x which
satisfies the antecedent; in other words, more than one sensor which is ON. The
designer of the rule-based system has to decide whether or not to select one value
or all the values whose antecedents are TRUE. The first of these methods is called
single instantiation, and simply substitutes the first value for x that it finds that
has a TRUE antecedent. The rule with that value ofx is then placed into the conflict
set. The second method is called multiple instantiation, and finds all the values of
x that have TRUE antecedents, and places all those instantiated rules into the
conflict set.

For another example of instantiation, consider the rule-based system run by
Intelligent Marriage Brokers Inc. which contains the rule

tf 'a first client' is male

and 'that first client' is single

and 'a second client' is female

and 'that second client' is single

Then 'that first client' and 'that second client' are eligible

237

VOLUME TWO

and has the Fact Database

Fred is male

Fred is single

Anne is female

Anne is not single

Pat is single

Pat is female

Jim is male

Jim is single

Suppose that the inference engine will match 'a first client' or 'a second client'
with the first word of any predicate. So, initially the first antecedent predicate is
instantiated with 'a first client' replaced by Fred, so the first part of the rule
becomes instantiated as:

I f Fred is male

and Fred is single

The inference engine then tries to match 'a second client' and comes up with the
third antecedent predicate

Anne is female

which has a match in the Fact Database. The system continues on the assumption
that 'a second client' is Anne. However, on trying to match

Anne is single

it fails because the only other data about Anne is that

Anne is not single

Since the rule cannot fire with this instantiation, the inference engine abandons
Anne, and seeks to instantiate 'a second client' with the next item in the Fact
Database. It matches

Pat is female

and having instantiated 'a second client' with Pat, the rule becomes

if

and

and

Fred is male

Fred is single

Pat is female

and Pat is single

Then Fred and Pat are eligible

238

CHAPTER 7: RULE-BASED SYSTEMS

Since all of these instantiated antecedent predicates match the Fact Database, the
rule is triggered. In single instantiation it would be the only rule in the conflict set
and fire. As a result, the facts that Fred and Pat are eligible would be added to the
Fact Database, possibly to be accessed by other rules which list possible partners
for introductions.

With multiple instantiation the following rule would also be obtained:

If Jim is male

and Jim is single

and Pat is female

and Pat is single

Then Jim and Pat are eligible

and the conflict set would contain the two instantiated rules. In this case a variant
of random ordering might be considered appropriate in order to ensure that clients
at the bottom of the list are not disadvantaged.

Having considered the theoretical basis of rule-based systems, we will now
address some important issues of implementation. These include:

I~ How is the knowledge represented inside the machine?

i~ Where does the knowledge come from?

I~ How does the knowledge get into the machine?

I~ How are the rules selected for the conflict set?

i~ How does the knowledge get updated?

7.2.1 Knowledge representation
In order to explain how knowledge can be represented in a rule-based system,
we will describe some of the features of the rule-based system that we created
for the Open University's home experiment laboratory, which we call
SmartLab.

In SmartLab, a predicate is made up of a sequence of words which represent
things of interest. For example, Dogs are fun is a clause which can have one of the

239

VOLUME TWO

truth values True, False, or Unknown. The predicate is made up by attaching a
truth value to the clause, which we write as:

Dogs are fun is True

Inside the computer, this could be represented by a sequence of numbers, for
example

3 72 18 91 1

and a list of text strings such as

17 is

72 dogs

91 fun

where 3 means there are three words, 72 is the numerical token for the string
dogs, 18 is the token for the string are and 91 is the token for the string fun. The
strings are stored in a character array, and they are only used for user interface
display and printing purposes. The 1 at the end is a number representing the truth
value True.

7.2.2 Editors, parsing, and inputting knowledge
With SmartLab, users can type in clauses from the keyboard using our Rule and
Fact editors. These accept a line of text made up of keyboard characters, and
parse it to find words and other syntactically correct constructions such as
formulae. The words are tested by the parser against the existing tokenized
strings, and any new words are given a new token number and stored. The user is
unaware of the numbers that the editors give the words, since these are part of the
system's internal representation.

Users can build rules using the Rule Editor which has boxes for predicates to be
entered as antecedents, and boxes lower down for predicates to be entered as
consequents. The editors allow the truth values of the predicates to be set as
appropriate. So, for example, the user might input a rule which looks similar to

If dogs are fun

and you like dogs

and you want fun

Then get a dog

240

CHAPTER 7: RULE-BASED SYSTEMS

On parsing your input the database might include the following data:

String data list

5 a

17

you

is

18 are

47 want

56 get

71 dog

72 dogs

91 fun

96 like

Antecedent predicate data list

1 3

-1 3 72 18 91 1 -2

-1 3 7 96 72 1 -2

- I 3 7 47 91 1 -2

Consequent predicate data list

1 1

3 56 5 71 1

The numbers 1 and 3 before the antecedents record the information that this is
Rule 1 and it has three antecedent predicates. The numbers 1 and 1 before the
consequent records that this is Rule 1 and it has 1 consequent predicate.

The numbers -1 at the start of each antecedent predicate indicate conjunction, i.e.
the consequent predicates are connected by the word and. The numbers -2 at the
end of each consequent predicate indicate that the system is allowed to ask the
user to supply that information.

Suppose the Fact Database contained the single fact represented by the numbers

3 72 18 91 1

The 1 at the beginning shows there is just one fact. This fact can be translated as
meaning that it is true that dogs are fun.

241

VOLUME TWO

7.2.3 Pattern matching
When this system is run, our inference engine takes the first antecedent predicate
in the first rule and tries to match it with the facts in the Fact Database.

The 3s match, which shows that the first antecedent predicate and the first (and
only) fact have the same size. They both have 1 (True) as truth value. The first
number in the antecedent predicate is 72 which matches that of the first fact, the
second number in the first antecedent predicate is 18 which also matches the
second number of the first fact, and the third number in the first antecedent
predicate is 91 which also matches the first fact. So, the first antecedent predicate
matches the first fact perfectly, and the inference engine goes on to the next
antecedent predicate:

-1 3 7 96 72 1 - 2

T h e - 1 tells the inference engine that and is being used, which means that this
antecedent must also be perfectly matched for the rule to fire. The inference
engine starts with the first fact in the database. Although the size (3) and truth
value (1) match, the first token in the antecedent predicate is 7 while that in the
fact is 72. This is a mismatch, and this antecedent predicate does not match this
fact.

7.2.4 Dynamic data acquisition
There are no more facts in the Fact Database and normally this would mean that
the rule is not triggered. Without a mechanism for obtaining new data, this rule-
based system will get no further. The two main mechanisms involve (a) asking
humans questions, or (b) getting the sensors to update the Fact Database automat-
ically through suitable hardware-software interfaces. In this case the symbol - 2
at the end of the antecedent predicate tells the inference engine to ask you a
question. So you would see a message on your screen asking

Is it true that: you like dogs

and you could click the mouse on a 'yes' box, a 'no' box' , a 'don' t know' box or
an 'explain' box. If you click on 'no' or 'don't know' the inference engine will
realize that this rule cannot fire. If there were another rule it would move on to
that. In this case the system would give you a message saying that it cannot
deduce anything and that it has finished.

However, suppose you clicked on the 'yes' button. Then the Fact Database would
be updated to become

3 72 18 91 1

3 7 96 72 1

242

CHAPTER 7: RULE-BASED SYSTEMS

The inference engine would then move on to the next antecedent predicate.

-1 3 7 47 91 1 - 2

Again it would interpret t he -1 as and; again it would not be able to match the
numbers 7, 47, 91 with the facts in the Fact Database; and again it would interpret
t h e - 2 as meaning that it could ask you a question:

Is it true that: you want fun

and again if you were to click the mouse on the 'yes' button, and the Fact
Database would contain the following data:

3 72 18 91 1

3 7 96 72 1

3 7 47 91 1

By now the inference engine would know that the antecedent predicates had been
successfully matched, and so it would know that the rule had been triggered and
would add the number of the rule to a list of numbers which represents the conflict
set. In this case the conflict set would only contain this rule, and so it would be
selected to fire.

7.2.5 Updating the Fact Database when rules fire
On firing a rule, the inference engine takes the consequent predicates of the rule
and tries to match them against the Fact Database. If a match is found, the
inference engine changes the truth value of the fact in the Fact Database to that of
the rule. In this case there is one consequent predicate:

3 56 5 71 1

which does not match any of those in the Fact Database. Therefore the conse-
quent predicate is added as a new fact to the Fact Database which ends up as

3 72 18 91 1

3 7 96 72 1

3 7 47 91 1

3 56 5 71 1

243

VOLUME TWO

The system then tries to fire another rule. Since there is only one rule, the
inference engine goes back to the beginning and starts all over again. This time all
the antecedent predicates match the Fact Database, and the rule would fire again
indefinitely. We have a special consequent predicate call, end(), which is used to
halt the system when it has done its work.

Note that the only part of the knowledge base to change during this run is the Fact
Database. The Rule Database is usually not changed when the system is run.
Rules are usually changed only by the rule-based system designer when the rule-
based system is built. Exceptions to this may occur when a system learns new
rules from data.

7.2.6 Arithmetic and mathematical calculations
In most applications it will be necessary to have numerical variables, and be able
to manipulate them to perform numerical calculations. Consider a rule which
might be part of the control system of a mobile robot:

If temperature > 20 is True

and x < 50 is True

Then x = x+ 1 Assign

theta = arctan(x,y) Assign

When our parser encounters symbols like > it assumes that the tokenized string
temperature is a variable and allocates appropriate memory to store the value it
takes. Similarly the parser will realize that the string 20 is a constant, and convert
it to a numberl Both these tokenized strings become antecedent predicates which
can either be true or false.

The consequent predicates, however, are rather different. They are not logical
statements but numerical imperatives telling the system it must assign new values
to variables. Usually these arithmetic assignments will allow mathematical
functions such as sine, cosine, arc tangent, square root, and so on. Thus in the last
consequent predicate the parser will recognize the string arctan as meaning the
arc tangent function, test to see that it is syntactically correct with the necessary
brackets and two parameters, and store it in tokenized form along with the tokens
for its parameters.

7.2.7 Interfacing a rule-based system to sensors and
actuators
In designing intelligent machines, how can we ensure that sensor data enter the
Fact Database and how can a rule-based system switch motors on and off?.

244

CHAPTER 7: RULE-BASED SYSTEMS

There are many possible implementations of sensor and actuator interfaces,
including the following two methods.

One approach to reading sensors is to have special variables in the database. The
idea is that the sensor interface hardware and software are constantly updating
these variables, independently of the rules.

Another approach (the one we adopted for the Open University's SmartLab rule-
based system) involves defining special functions which can assign values to
variables. For example, the consequent p = pressure() might set the variable p to
the current value of a pressure sensor, using a function called pressure().

The same approaches can be used for controlling actuators. For example,
variables could be defined which are directly interfaced to actuators. Suppose
that 'motorA' is such a variable. Then an assignment such as motorA = 1 might
send motor A forward, motorA = -1 would send it backward, and motorA = 0
would stop it.

In the SmartLab rule-based system we use a different approach based on
functions such as go() and stop(). For example, a consequent such as go(forward)
sends two motors in a 'forward' direction, while go(clockwise) sends the left
motor 'forward' and the fight motor 'backward'.

The rules

If pressure() = 0

Then go(forward)

direction = forward

and

If pressure() > 0

Then stop()

p = pressure()

illustrate how functions such as those described might be used to interface the
rule-based system.

The antecedent predicate of each rule requires the pressure sensor hardware to be
'read' by the pressure() functions. The first consequent predicate results in control
signals being sent to the actuators. Itis supposed that 'forward' is a system variable
which is preset to a meaningful value. The last consequent predicates in the rules
update the values of the variables 'direction' and 'p' in the knowledge base.

7.2.8 Knowledge elicitation
The rules in the knowledge base have to be obtained somehow. In expert systems
these rules would have been elicited from human experts by a person called a

245

VOLUME TWO

knowledge engineer. This is a highly skilled operation because the expert often
finds it very difficult to verbalize the reasons for an action that has been taken or a
decision that has been made. One attempt at making this process easier is to let a
non-expert in the field attempt to construct a set of rules. Then the system is
shown to an expert who corrects the decisions. This means that the expert doesn't
have to say why a rule is wrong, or why the substituted rule is correct. In
mechatronics the system designer is likely to act as his or her own knowledge
engineer.

Attempts at automating the knowledge elicitation process, particularly where an
expertise does not already exist, usually involve learning, as described in the next
chapter. One example of this is Quinlan's TDIDT algorithm which constructs a
set of rules to classify a set of objects.

7.3 Confidence levels and fuzzy
rules

It is a relatively simple process to modify the propositions in the knowledge base
so that they are no longer either TRUE (1) or FALSE (0) but a number in between
such as the number 0.72 for example. This says that the proposition is TRUE with a
confidence of 72% (or FALSE with a confidence of 28%). This figure comes from
the confidence that the system has in the input data and could be a probability of
an event happening or a fuzzy set membership, as described in Chapter 6 on
Reasoning. If the figures are the probabilities of certain events occurring, they
can be updated as new data arrive using Bayesian statistics. If an unusual or
unexpected input arrives, it would get a low confidence rating to start with. If it
persisted, then the probability associated with it would increase.

Rules can be selected from the conflict set on a priority basis - for example, the
rule with the highest confidence value is selected. The confidence level of a rule is
found from the confidence levels of its antecedents. If an antecedent has con-
nected propositions, then the rules for combining probabilities of events con-
nected by OR, AND and NOT can be calculated as described in Chapter 6.

In a fuzzy rule-based system the value of the fuzzy set membership could be
stored as a real value between 0 and 1. You should recall that the fuzzy set
membership is calculated from the membership function, which is quite often a
triangular function. These functions are stored in the rule-based system, some-
times as look-up tables in the memory.

For example, if the temperature is read from a sensor as 9~ this gives the
predicate 'temperature = 9'. However, it may be desirable to interpret this in
fuzzy terms as the predicates

246

CHAPTER 7: RULE-BASED SYSTEMS

temperature is cold 0.3

temperature is warm 0.4

temperature is hot 0.1

Any rule which involves 'hotness' would go into the conflict set. For example,

/f
Then

temperature is warm

component has failed

results in the predicate 'component has failed 0.4' being added or updated to the
fact database.

In the case of fuzzy rule-based systems, defuzzification is used to determine the
output described in Chapter 6 and Chapter9 on Intelligent control.

Fuzzy rule-based systems have proved to be very useful in control systems.
Fuzzy rule-based controllers have become very popular, even to the extent that
several companies now produce fuzzy-controller integrated circuits. These have
been used in all sorts of consumer devices such as cameras and washing
machines, as well as in large industrial process control systems. For a more
detailed exposition of fuzzy control see Hopgood (1993).

7.4 Programming language
and rule-based system shells

In principle, any computer language can be used to build a rule-based system. For
example, the SmartLab shell is written in the C++ language. However, we had to
build our own inference mechanisms and pattern matcher as discussed in Section
7.2. Of all the high-level languages available, Prolog is particularly suitable for
building rule-based systems since the language itself has a pattern matcher built
in. In Prolog, facts can be declared with statements such as on(pump), and rules
can be built using the words if and then; connectives such as and, or, not and the
logical quanfifiers 'there exist' and 'for all'. These too are part of the language.
For these reasons, many rule-based systems are programmed in Prolog.

The architecture of a rule-based system allows the knowledge base to separate
from the inference engine. This means, in principle, that the same inference
engine can be used for applications in many different knowledge domains. In
practice this makes it worthwhile to develop 'empty' rule-based systems which
have very good user-interfaces and make it easy to enter new facts and rules. The
programmer therefore does not have to design new data structures or re-program

247

VOLUME TWO

the inference mechanism every time a new system is built. Indeed the system
builder does not even need to know how to program the computer and can enter
facts and rules using everyday language. As discussed in Section 7.2, SmartLab
provides an example of what is called a rule-based system shell into which
domain-specific knowledge can be entered to build rule-based systems. It is used
by our students to build rule-based systems which do many things, including
controlling an autonomous vehicle over a wireless communications link. Even
students who do not know how to program a computer learn how to create
working rule-based systems in a few hours.

7.5 Conclusion

Rule-based systems are becoming very common in mechatronic systems. The
architecture allows new information to be quickly added to the knowledge base
without having to make major alterations to the system, as would be the case in
conventional programming. Some of the more recent developments, such as
fuzzy logic, have revolutionized some parts of the engineering industry, and this
is expected to continue into the future. As you will see in Chapter 11, rule-based
systems are especially useful when integrated into the blackboard system archi-
tecture.

References

Hopgood, A. (1993) Knowledge Based Systems for Scientists and Engineers, CRC Press,
London.

Winston, P.H. (1984) Artificial Intelligence, Addison-Wesley.

248

C H A P T E R 8
L E A R N I N G

8.1 Introduction

Since the earliest days of artificial intelligence it has been realized that machines
with a fixed knowledge base are much more limited than those that can extend
and change their knowledge base by learning. Machine learning involves:

I~ acquiring new information and knowledge

I~ acquiring new skills

I~ finding new ways of organizing existing knowledge.

When it is built, a machine will have a certain amount of information and
knowledge designed into it. To learn it must also have some meta-knowledge built
in, i.e. knowledge about knowledge. In particular, the machine must be able to
absorb new data and operate on them so that they can be used in a purposeful way.
This assumes that the machine is able to store this accumulating knowledge in
appropriate data structures, that it has techniques for transforming raw data from
its sensors into knowledge, and that it is able to manage its information base. For
example, it may be necessary to overwrite old or redundant data.

Learning can be thought of as adaptation to the environment based on experi-
ence. This inevitably requires new knowledge, new skills, or the reorganization
of existing knowledge. Usually the act of learning is motivated by attempts to
improve a system by enabling better performance or avoiding poor performance.

The process of learning in human beings is very complex and imperfectly
understood. It is clear that human beings have fabulous learning abilities, both in
the control of their bodies and use of their minds. These can be observed from
watching young children play and study at school. Although it is an area of
intense research, machines do not have human-like learning abilities. It is
important to realize that currently machines have a rather limited capacity for
learning. The following categories of learning will be discussed in this chapter:

I~ learning by memory

i~ learning by updating parameters

i~ Bayesian learning

i~ learning from examples

I~ learning by analogy

I~ learning by observation and discovery.

249

VOLUME TWO

There are other aspects to learning such as learning by instruction, concept
learning, learning by deduction, and learning by induction, but they will not be
considered here.

Learning cannot easily be separated from other aspects of machine intelligence.
Pattern recognition (Chapter 2) frequently involves learning by example. Search
(Chapter 3) will be seen to be particularly important in learning. Neural networks
(Chapter 4) exemplify learning from examples. Scheduling (Chapter 5) relates to
learning since successful activity schedules and paths can be learnt and used to
evaluate new alternatives. Reasoning (Chapter 6) is important in deducing new
knowledge from old, and rule-based systems (Chapter 7) provide an architecture
which allows new facts to be deduced from existing facts. In this chapter you will
see how a machine can learn new rules from data. Intelligent control (Chapter 9)
also involves learning, as does computer vision (Chapter 10). Many of these con-
nections will become clearer as we proceed.

By learning by memory we mean the process of new data being stored in an
unprocessed form and later used by the system. For example, a stream of data
from a sensor may be stored in sequential memory to be processed when
appropriate, or an image might be stored in a two-dimensional array. Although
learning by memory is very simple, it plays an important role in machines.

Usually the memory will be digital, and the designer of an intelligent machine
must estimate how much data will be stored in order to allocate enough memory
hardware, which is usually implemented as random-access memory (RAM).
Memories soon fill up, and some kind of memory management is required. In
general, this means keeping records of what data are stored where, and which data
are no longer required and can be overwritten.

In a machine, the most important data are usually those acquired most recently,
and the memory management may involve cycling round a fixed allocation of
memory overwriting the oldest data. Sometimes the old data may be converted
and stored in a more compact summary form before being erased.

For example, consider the circuit board at the heart of an autonomous vehicle
which can read 16 sensors. Suppose two of the sensors are special, since they are
used to count the wheel rotations for dead-reckoning the vehicle's position. One
wheel on each side of the vehicle has a cam mechanism which lifts a lever which
makes and breaks a circuit twice per revolution. The microprocessor examines
the data stream produced by each sensor through time, such as

...01000000111111100000011111100000000111011110100000...

250

CHAPTER 8: LEARNING

Inevitably, the lever mechanism has some degree of bounce, and the data stream
is not a clean sequence of zeros (no contact) and ones (contact). This means that
sufficient historical samples have to be logged as data for the debounce subrou-
tine. This subroutine is able to detect the correct on--off sequence and so count the
wheel revolutions backwards and forwards in time. The logged data are stored in
memory and kept until the counting subroutine has done its work. The memory
allocated to logging the data is fixed, and the 'start position' of the logged data
cycles around, with the oldest sensor readings being overwritten by the current
reading. The wheel rotation counts are stored passively until the system accesses
them in order to calculate the vehicle's position.

Memory can be distributed over a system. For example, an autonomous vehicle
which has very limited memory may be able to communicate information to a
host PC which has much more memory, especially when its disk capacity is taken
into account. However, the amount of data that can be stored elsewhere will
depend on the bandwidth (defined in Chapter 3 of Volume 1) of the communica-
tion channels used.

Machines can use their environments to store information. To see this, consider
the story of Theseus in the labyrinth under the palace of Knossos. Although it was
impossible to learn a route through the myriad passages and openings, Theseus
used the thread given to him by the king's daughter, Ariadne, to store the route
information. Similarly, it might be useful for a machine to put down markers in its
environment to store positional information.

Logging data is the simplest way for a machine to accumulate new knowledge.
Parameter updating goes one step beyond this, by using the stream of incoming
data to modify parameters within the machine. The wheelcounts discussed in the
previous section provide a simple example of parameters which are updated as a
result of processing an incoming data stream.

In Chapter 2 on 'Pattem recognition' you were told about data-to-data transfor-
mation. It was said that in many applications, the data are easier to manipulate in
one form than in any other, so a transformation is used. One example is where data
have to be sent along a communication channel which doesn't have a sufficiently
large bandwidth to send the raw data in real time. The data therefore have to be
compressed, and as more data are received the system has to learn the best form of
compression. One way is to convert the data into its Fourier spectrum and to send
only a relatively small number of the largest spectral components. The signal can
be reconstructed at the receiving end and will be approximately the same as the

251

VOLUME TWO

original signal. In other words, the signal is modelled using the Fourier transform,
which enables it to be represented by a small number of parameters.

The knowledge in this case is embedded in the spectral coefficients and is
extracted as parameters from the data. More data may result in further changes to
the spectral representation parameters and therefore to the model.

Earlier in this volume (Chapter 4) we described neural networks. Although these
are relatively recent inventions, they are essentially parameterization networks.
Learning consists of taking a set of known input-output data and using a form of
gradient descent to search for the set of parameters (called weights in neural
networks) that will best describe the input-output relationship of a given set of
data.

In neural networks, and parameterization in general, what is described as
'learning' quite clearly involves searching. The behaviour of the networks can be
described as learning, while the mechanism employed is searching. The search
space is defined by some form of error function between the data received and the
parameterized model of the data. The aim of the search is usually to minimize this
error, and preferably to reduce it to zero. Therefore in parameterization, the
machine sometimes learns by performing a search such as gradient descent.

At any time a machine will be receiving new streams of data as it works. Some of
these data will require that a parameter be updated in a relatively incremental
way. Bayesian updating can be used for this.

In Chapter 6 on Reasoning, uncertainty was defined in terms of probabilities. A
probability of 1 meant that an event was certain to happen, whereas a probability
of 0 meant that an event was never going to happen. In between, the probability
represents the certainty or confidence that an event will take place. Bayes' rule
was shown as a way of calculating the probability of an event happening in the
light of evidence from simpler probabilities that are known. This effectively gives
us a way of learning 'on the hoof', and updating the confidence that we have of an
event taking place.

Bayes' rule can be written as

p(E IH) • p(H) (8.1)
p(HIE) = p(E)

252

CHAPTER 8" LEARNING

where

H is a hypothesis;

E is an example;

p(HIE) is the probability of the hypothesis H being TRUE given that an
example E has been found;

p(EIH) is the probability of an example E being found given that the
hypothesis H is TRUE;

p(H) is the probability of a hypothesis H being TRUE;

p(E) is the probability of an example E being found.

We will use these definitions in what follows:

p (~H) is the probability of the hypothesis being FALSE;

p(EI--,H) is the probability of finding an example when the hypothesis is
FALSE.

Let's look first at p(E). This can be expanded by noting that the probability of
finding an example, p(E), equals the probability of the hypothesis being TRUE
and finding an example when it is TRUE, p(EIH) xp(H), plus the probability of
the hypothesis being FALSE and finding an example when it is FALSE,
p(EI~H) xp(--,H):

p(E) = p(E IH) x p(H) + p(E I ~ H) x p (~ H) (8.2)

Substituting this into the Bayesian expansion of p(HIE) gives

p(E IH) x p(H) p(E IH) x p(H)
p(HIE) = = (8.3)

p(E) p(EI H)p(H) + p(E I ---, H)p(--,H)

B u t p (~ H) = 1 - p (H) , so

p(EIH) x p(H)
p(HIE) = (8.4)

p(E IH)p(H) + p(EI---,H) (1 - p(H))

Suppose the initial, unknown, probability of H being true is P0-

When the first example is found, E 1, the probability of the hypothesis being TRUE
is updated to P l from the known or estimated initial value of P0:

p(EllH) • Po
p~ = p(HI Ej) = (8.5)

p(El iH)po + p(Ell--,H)(1-p o)

Note, it is assumed that p(EilH) and p(Eil--,H) are known for any new evidence
E i. The formula allows the probability of H to be updated every time new
information comes in.

253

VOLUME TWO

This is not a very elegant expression, so a new term called the odds is defined as
the ratio of the probability of an event happening and the probability of the same
event not happening:

p(H) p(H)
O(H) = = (8.6)

p (~ H) 1 - p(H)

Thus

p(HIE)
O(HIE) = 1 - p(HIE) (8.7)

Equation (8.3) yields

p(HIE) =
p(EI-~H) p(~H)

1 +
p(EIH) p(H)

which by equation (8.6) becomes

p(HIE) =
1 +

p(E I--,H)
p(EIH)

1
X

O(H)

From this

1 p(EI ~ H)
= 1 +

p(glH) O(H) p(HIE)

so that

1 - p(HIE) p(EI ~ H)

p(HIE) p(EIH) O(H)

By equation (8.7) this gives

p(H IE) p(E IH) O(H)
O(HIE) = 1 - p (H I E) = p(EI-~H)

Thus we have

O(H) x p(EIH)
O(HIE) = (8.8)

p(EI-~H)

and updating gives us

Oo X p(EIIH)
O~ = (8.9)

p(Ell---,H)

At any stage, the odds can be converted back to a probability using the equation

o(14)
p(H) = 1 + O(H) (8.10)

254

CHAPTER 8 LEARNING

To illustrate these ideas, consider a bag which contains 10 coins, one of which is
double-headed. Take out one coin and toss it a number of times. At each toss,
what is the probability of the coin being the double-headed one?

Here the hypothesis, H, is that the double-headed coin has been pulled out of the
bag.

The probability of pulling the double-headed coin out of the bag is 0.1. So
initially, the probability of it being the double-headed coin is 0.1.

P0 =0 .1

From equation (8.5)

Pt = p(HIE1) =
p(E11H) • Po

Po p(E11H) + (1 - Po)P (EII~H)

where p(E 11H) is the probability of it being hems when it is tossed given that it is
the double-headed coin, which is therefore 1. The termp(E 11--,H) is the probabil-
ity of heads, given that it is not the double-headed coin, which is 0.5. So,
assuming the coin comes down heads,

1 x 0 . 1
Pl = p(HI E~) = 0.1 x 1 + (I - 0.1) • 0.5 = 0 . 1 8

Using equation (8.5) again,

P2 = p (H I E2) =
p(E2 IH) x Pl

ptp(E2 IH) + (1 - Pl) p(E2 I ~ H)

So, assuming the coin lands as heads the second time, we have

1 • 0 . 1 8

P2 = p(HI E2) = 0.18 • 1 + (1 - 0.18) • 0.5 = 0.30

We could keep going like this untilpn approaches 1; that is, when n is large and the
coin has not once come down tails we become almost certain that the coin is
double-headed.

Now do the same calculation using odds. From equation (8.6) the odds are

p(H)
O(H) = 1 - p (H)

Po 0.1
O o = 1 - p o 1 - 0 . 1 = 0.11

255

VOLUME TWO

Equation (8.9) then becomes

p(E~ IH) 1
01 = Oo x p(Ell---,H) = O0 x 0.5 = 2 .00o

Using odds we simply double the odds every time the coin comes down heads
when it is tossed. Odds therefore do not range between 0 and 1, but range from 0
to infinity. They are perhaps more difficult to interpret, but simpler to update.

It is easy to convert odds back to probabilities. In this case 01 = 2.000 = 0.22, and
02 = 2.001 = 0.44. By formula (8.10),

O(H) 0.44
p(H) = 1 + O(H) 1 + 0.44 0.3

so that P2 = 0.3, which is the value found previously.

In the cases of either probabilities or odds, if the tossed coin ever lands tails then
the probability or odds should go to zero. The term p(EIH) means the probability
of an event happening given that the hypothesis is TRUE. Well, if the hypothesis is
TRUE that the coin is double-headed, the probability of it landing tails is 0. Since
the probability or odds are multiplied by this term, if the coin ever lands tails the
value drops to 0 as expected.

This method is used in expert systems for diagnosis. Consider a machine which
monitors itself and tries to diagnose potential faults before they cause major
damage. Initially the probability of any particular machine having any one of
these faults is derived from statistics of the whole population of machines tested
to date.

Next, the symptoms of each fault are stored as a probability. For example,
suppose some of the faults usually involve a high temperature in some part of the
machine. Let's say we have three faults, A, B and C, and the probability of a
machine having any one of these faults is derived from the test population and
found to be

p(A) = 0.01, p(B) = 0.05, p(C) = 0.10

Converting to odds gives

O(A) = 0.010, O(B) = 0.053, O(C) - 0.111

A and C are usually accompanied by high values of temperature, T, so they might
have probabilities of

p(TIA) = 0.8, p(TIB) = 0.04, p(TIC) = 0.7

256

CHAPTER 8' LEARNING

Similarly, B and C are often accompanied by fluctuations of voltage, V, with

probabili t ies

p(VlA) = 0.03, p(VIB) = 0.75, p(ViC) = 0.60

We also need to know the probabil i ty of high temperatures and vol tage fluctua-

tions when a machine does not have any of these faults. Again these statistics

would be available for a popula t ion of test machines , and might be empirical ly

de te rmined to be

p(TI---,A) = 0.30, p(TI~B) = 0.28, p(TI~C) = 0.32

p(VI---,A) = 0.40, p(VI--,B) = 0.30, p(Vl~C) = 0.35

If we work with odds, then the updat ing factor for A when a high temperature,

which we shall call K T, is found is

p(TIA) 0.8

p(TI ---,A) 0.3
- 2.667 = Kr(A)

Similarly,

KT(B) = 0.143, KT(C) = 2.188

W h e n a machine detects vol tage fluctuations

p(V IA) 0.03
= - 0.075 = Kv (A)

p(V I ~ A) 0.4

Similarly,

Kv(B) = 2.50, Kv(C) = 1.714

So, if a machine detects a high tempera ture with vol tage fluctuations the

probabil i t ies of each of the faults is updated in two steps.

First, the h igh temperature:

O~(A) = Oo(A) • KT(A) = 0.010 • 2.667 = 0.027

Ol(B) = Oo(B) • KT(B) = 0.053 • 0.143 = 0.008

O~(C) = Oo(C) • KT(C) = 0.111 • 2.188 = 0.243

Next, the vol tage fluctuation:

O2(A) = 01(A) • Kv(A) = 0.027 • 0.075 = 0.002

02(/3) = 01(B) • Kv(B) = 0.008 • 2.50 = 0.020

O2(C) = O~(C) • Kv(C) = 0.243 • 1.714 = 0.417

257

VOLUME TWO

After calculating these odds, fault C has the highest probability. We can convert
these odds into the more conventional probability using formula (8.10):

O(C) 0.417
m

p(C) = 1 + O(C) - 1 + 0.417 = 0.294

Therefore the probability of there being a fault C is 0.294. At this stage in the self-
diagnosis the machine could instigate the repair of fault C, update parameters or
rules concerning potential problems with C, or seek more data.

Thus we have a method of updating probabilities as evidence accumulates which
a machine can use for self-diagnosis. When indications of faults appear it can
update the probabilities of the various causes.

More generally, this method gives mechatronic systems the ability to update
parameters about the environment when the environment is complex and the data
are somewhat imprecise. In Chapter 6 on Reasoning we saw how machines could
reason with probabilities. Bayesian learning provides a method for a machine to
update the probability values during operation.

8.5.1 Classification through training
A machine learns from examples when it infers relationships between things on
the basis of examples.

In Chapter 4 of Volume 1 we described images on an 8 • 8 grid of pixels obtained
from a wire scanner. Suppose a character 3 had been scanned. Then the data for
the grid are stored in memory, along with the number 3. In this way the system
learns the image produced by a particular scan of the 3. By matching this with
subsequent scans the system is able to decide if the character was a 3.

Neural networks also learn by example. In this case, examples of input-output
pairs are shown during training. The network's weights (parameters) change as it
learns, and subsequently it is able to classify the inputs in terms of the outputs.
Subsequently it can generalize from the training data, and classify further
examples of inputs.

8.5.2 Learning rules by searching for relationships
How can a machine abstract knowledge from data in the way that we do? For
example, people say 'red sky at night, shepherd's delight; red sky in the morning,

258

CHAPTER 8 LEARNING

shepherd's warning'. This kind of heuristic for weather forecasting is obviously
based on years of observation, and generalizing from those data.

To illustrate the general idea, suppose an autonomous vehicle uses dead-reckon-
ing to determine its position in the environment, i.e. it calculates its position
according to the number of revolutions of its wheels. Since the wheels may slip
this dead-reckoning is subject to errors which may accumulate over time. The
vehicle can correct these errors when it encounters a known object, but some-
times the errors will be too great for this: expected objects will not be found, and
the machine will not know whether this is because they have moved or because it
is lost.

Suppose the vehicle has two strategies to deal with this situation: the first strategy
(A) assumes that the known object has moved, and seeks another known object;
the second (B) assumes that the vehicle is lost and re-maps the environment in the
hope that the new map can be matched against the old map and the vehicle can
relocate itself.

When it works, strategy A consumes less time, but when it fails the machine
reverts to strategy B and the time spent on A is wasted. Suppose the success of
strategy A depends on the distance travelled since a known object was success-
fully recognized.

TABLE 8.1

Distance Strategy A

travelled successful

175.4 Yes

293.3 Yes

805.9 Yes

930.5 No

1001.8 No

1123.2 Yes

1305.6 No

1565.4 No

These data do not give a clear-cut value of distance below which strategy A is
always successful and above which A is always unsuccessful. However, the rules

259

VOLUME TWO

If (distance < 868.2)

Then adopt strategy A

If (distance i> 868.2)

Then adopt strategy B

will result in these data being correctly classified for seven out of the eight sample
data. The number 868.2 is obtained here by taking the mean of 805.9 and 930.5.

This is a simple example of how a machine can learn a rule by inspecting a data
set. Such rules can then be used in rule-based systems, as discussed in Chapter 7.
We will now show how this idea can be extended to a more complex data set
which generates a multi-branch decision tree.

Here we will describe a mechanism for abstracting rules from tabulated data
which is based on Quinlan's TDIDT method proposed in the 1980s. TDIDT
stands for top-down induction of decision trees. This form of learning uses best-
first search to build a decision tree.

Consider a complex mechatronic system involving many autonomous mobile
machines engaged in construction work in a hostile environment. When it rains
the machines cannot work on some parts of the site, so to optimize the scheduling
of the machines it is necessary to know if it will rain or be fine the next day.

One way to do this is to take some measurements of today's weather and see if
there are some rules that could be applied that will predict tomorrow's weather.

Recall the old saying 'red sky at night, shepherd's delight'. This is a heuristic that
is based on observation, but can also be supported by scientific knowledge. In the
UK the weather fronts tend to come from the Atlantic in the west and the sun sets
in the west. So if the sky is red at sunset it means that light is able to get through the
atmosphere after the sun has set below the horizon because there isn't much
cloud. The lack of cloud means that it probably won' t rain in the morning.

As with all rules, there will be exceptions. The rule itself is not 100% accurate, but
it might be possible to add more qualifying rules to improve the overall accuracy.
So you might add to the saying 'red sky at night' the qualifier 'and the wind is
light' to give delight to the shepherd.

One method is to use a best-first search (defined in Chapter 3 on Search). Starting
with a rule that is generally useful but not 100% accurate, one looks for
exceptions to the rule and finds new qualifying rules to supplement the original
one. The search method uses a database of statistics and gradually finds a set of
rules that describe the statistics as correctly as possible.

Table 8.2 gives weather statistics for each day in March 1992: the rainfall, hours
of sunshine, maximum and minimum temperatures. It also shows what the
weather was like on the day after the data were collected.

260

CHAPTER 8: LEARNING

TABLE 8.2 WEATHER FOR THE 31 DAYS IN MARCH 1992 FOR THE LONDON
REGION

Day in Tmi n Tma x Rainfall Sunshine Weather

March ~ ~ m m hours next day

1 9.4 11.0 17.5 3.2 Rain
2 4.2 12.5 4.1 6.2 Rain
3 7.6 11.2 7.7 1.1 Rain
4 5.7 10.5 1.8 4.3 Dry
5 3.0 12.0 0.0 9.5 Dry
6 4.4 9.6 0.0 3.5 Dry
7 4.8 9.4 0.0 10.1 Rain
8 1.8 9.2 5.5 7.8 Rain
9 2.4 10.2 4.8 4.1 Rain

10 5.5 12.7 4.2 3.8 Rain
11 3.7 10.9 4.4 9.2 Rain
12 5.9 10.0 4.8 7.1 Rain
13 3.0 11.9 0.2 8.3 Dry
14 5.4 12.1 0.0 1.8 Rain
15 8.8 9.1 8.8 0.0 Rain
16 2.4 8.5 3.0 3.1 Rain
17 4.3 10.8 4.2 4.3 Dry
18 3.4 11.1 0.0 6.6 Rain
19 4.4 8.4 5.4 0.7 Rain
20 5.1 7.9 3.0 0.1 Rain
21 4.4 7.3 1.0 0.0 Dry
22 5.6 14.0 0.0 6.8 Dry
23 5.7 14.0 0.0 8.8 Dry
24 2.9 13.9 0.0 9.5 Dry
25 5.8 16.4 0.0 10.3 Dry
26 3.9 17.0 0.0 9.9 Dry
27 3.8 18.3 0.0 8.3 Dry
28 5.8 15.4 0.0 7.0 Rain
29 6.7 8.8 6.4 4.2 Dry
30 4.5 9.6 0.0 8.8 Rain
31 4.6 9.6 3.2 4.2 Rain

The aim of the weather forecasting system is to find a rule that predicts if the next

day will be raining (or ~DRY). DRY in this context is defined as no rain.

The best-first search algorithm constructs a decision tree. The root node is the

single rule that best describes the data. For the data in Table 8.2 there are a number

of rules that could be found. Probably the simplest are rules of the fo rm:

/f (variable > constant)

Then Prediction

261

VOLUME TWO

For example:

If (Sunshine i> 4.2 hours)

Then (Nextday DRY)

This is correct 20 times out of 31, or 65%, as shown in Table 8.3. The value of the

constant is chosen so that the number of times that the rule is correct is

maximized.

TABLE 8.3 PREDICTIONS FROM If (Sunshine/> 4.2 hours) Then (Nextday DRY)

Day Sunshine Actual Predicted Correct

hours

1 3.2 Rain ~DRY Yes
2 6.2 Rain DRY No
3 1.1 Rain ~DRY Yes
4 4.3 Dry DRY Yes
5 9.5 Dry DRY Yes
6 3.5 Dry ~DRY No
7 10.1 Rain DRY No
8 7.8 Rain DRY No
9 4.1 Rain ~DRY Yes
10 3.8 Rain 7DRY Yes
11 9.2 Rain DRY No
12 7.1 Rain DRY No
13 8.3 Dry DRY Yes
14 1.8 Rain ~DRY Yes
15 0.0 Rain ~DRY Yes
16 3.1 Rain ~DRY Yes
17 4.3 Dry DRY Yes
18 6.6 Rain DRY No
19 0.7 Rain ~DRY Yes
20 0.1 Rain ~DRY Yes
21 0.0 Dry ~DRY No
22 6.8 Dry DRY Yes
23 8.8 Dry DRY Yes
24 9.5 Dry DRY Yes
25 10.3 Dry DRY Yes
26 9.9 Dry DRY Yes
27 8.3 Dry DRY Yes
28 7.0 Rain DRY No
29 4.2 Dry DRY Yes
30 8.8 Rain DRY No
31 4.2 Rain DRY No

262

CHAPTER 8: LEARNING

Other possible roles include

If (Rainfall i> 2 mm)

Then (Nextday ~DRY)

which is correct 24 times out of 31, or 77%;

g (rmin i> 6~

Then (Nextday DRY)

which is correct 16 times out of 31, or 52%; and

If (Tmax i> 13~

Then (Nextday DRY)

which is correct 23 times out of 31, or 74%.

Of all these rules, the rainfall measure is the best predictor, correctly classifying
77% of the data. This divides the tree into two branches as shown in Figure 8.1.

A Figure8.1
Dividing the data using the rule Rainfall >i 2 mm. (Incorrect predictions are shaded.)

The next step is to move down one of the branches and find the rule that works
best at classifying the data again. If we follow the fight-hand branch, a set of
possible rules with the constants chosen to maximize the discriminatory power of
the rules are:

263

VOLUME TWO

Rule Correct %
out of 15

If (Sunshine i> 4.3 hours) Then (Nextday DRY) 10 67%

If (Rainfall i> 6.5 mm) Then (Nextday ~DRY) 5 33%

If (Train i> 6.7~ Then (Nextday DRY) 11 73%

If (Tma x i> 10.8~ Then (Nextday DRY) 9 60%

Notice that all the variables are examined. In this instance the third rule is correct
most often, so is used as the second test and creates two new branches in the tree

& Figure 8.2
A further division using the rule Tmi n >i 6.7~ (Incorrect predictions are shaded.)

Next we will follow the new left-hand branch. There are only four entries, three
which are ~DRY and one which is DRY. The rule:

/f (Sunshine i> 4.2 hours)

Then (Nextday DRY)

is correct 4 out of 4 times, or 100%, as shown in Figure 8.3.

264

CHAPTER 8 LEARNING

A Figure 8.3 Further division using the rule Sunshine >t 4.2 hours. (Incorrect predictions are shaded.)

Figure 8.4 shows the tree half complete. It is left for you as an exercise to
complete the other half. The tree of Figure 8.4 is interpreted as:

If (Rainfall i> 2 mm)

OR

OR

Then

AND -'(Tmin i> 6.7 ~

AND (Tma x i> 10.8~

AND ~(Sunshine i> 6.2 hours)

AND (Sunshine i> 4 hours)

This part of the rule

corresponds to day 17.

AND

AND

(Rainfall i> 2 mm)

(Tn~n i> 6.7~

(Sunshine i> 4.2 hours)

This part of the rule

corresponds to day 29.

AND

~(Rainfall i> 2 mm)

(Nextday DRY)

This part of the rule

covers the left half

of the tree.

265

VOLUME TWO

Figure 8.4
Half of the tree completed so
that days are correctly
classified. (Incorrect
predictions are shaded.)

266

CHAPTER 8' LEARNING

This example shows that even with relatively simple rules it is possible to classify
the data. The way that the rules are produced can be described as learning by
example, where the system learns from tabulated data. Whether or not the
resulting rules are useful for classifying new data depends on how representative
the training data are of the sort of data it can expect to have to classify.

This method of abstracting rules from data is not incremental. If the system is
learning continuously, on making every new observation it would have to go
through this process from the beginning to build a new decision tree and new
rules. This is a case in which the system may log new data (learning by memory)
and revise its rule base (learning from examples and experience) later when it is
idle.

A disadvantage of this approach is that rogue data, i.e. abnormal or incorrect
observations, may not be detected and may result in incorrect rules.

There are many more sophisticated ways of constructing these rules, but the basic
principle is the same. Quinlan's ID3 (Interactive Dichotomizer 3) is basically the
same, but instead of using the percentage of correct classification as the evalua-
tion function it uses a measure called entropy. Other methods use standard
statistical techniques to show that the classification is better than chance alone
could do.

When confronted with a new problem, the history of the system can be searched
to see if a similar problem has been seen (and solved) before. If one is found, the
method of finding a solution can be applied again to the new problem to see if it
works. If it does, then it is possible to say that the problem has been solved by
analogy to the other problem.

This can be illustrated by the following problems. The first requires you to prove
that RN = OY given that R O - NY in Figure 8.5(a).

A proof goes like this:

Step 1" RO = NY (given)

Step 2" RO + ON = NY + ON (add ON to both sides)

Step 3. RN = NY + ON (RN = RO + ON)

Step 4" RN - OY (NY + ON - OY)

The second problem requires a proof that, in Figure 8.5(b), angle ABAD = angle
LCAE, given that ABAC = LDAE.

267

VOLUME TWO

R O N Y
A - - . . . L A
. w i , 1 1 , . ~ .

(a) Given RO = NY,

prove RN = OY.

C
B

D

~ E

(b) Given L BAC = ZDAE,

prove L BAD = Z CAE.

Figure 8.5 Analogical reasoning in geometry.

The analogical proof goes like this:

Step 1" ZBAC = ZDAE

Step 2" ZBAC + ZCAD = ZDAE + ZCAD

Step 3" ZBAD = LDAE + ZCAD

Step 4." ZBAD = ZCAE

(given)

(add ,/CAD to each side)

(ZBAD = ZBAC + ZCAD)

(ZCAE = ZDAE + LCAD)

The analogy works by associating angles with lines, and addition of lengths with
addition of angles.

Figure 8.6 shows another example of learning by analogy. In the first case,
Figure 8.6(a), the vehicle learns how to solve the particular navigation problem.
Although the environment is different in Figure 8.6(b), the analogy between the
two problems is that the desired trajectory cannot be achieved if the vehicle goes
exclusively in forward motion. In the first case, reversing and then going forward
solves the problem. In the second case the analogy works if this tactic is applied
twice.

In order to reason by analogy a machine has to establish the analogy between the
parts of the problems, and the analogy between the relationships between those
parts. This poses some difficult pattern recognition problems which, during
learning, the machine must set up and solve by itself. In particular, the machine
must be able to represent the problem and its solution in a way which allows it to
make subsequent analogies. In principle, learning by analogy can be very
powerful, but in practice analogies of any complexity can be hard to implement.

268

CHAPTER 8: LEARNING

(a) The vehicle has to reverse in (b)
order to go forward on its
desired trajectory.

By analogy, the vehicle has to reverse and go
forward to the intermediate position. From
there it can reverse and go forward on its
desired trajectory.

~l Figure 8.6
Learning by analogy.

Learning by discovery allows the machine to form its own conclusions, based on

the data it receives. An example of such a system is a self-organizing neural

network. As input data arrive they start to form clusters in the pattern space. The

clusters can be separated to give output classifications. How the data are
organized is determined by the network alone, so the network 'discovers'

relationships between its inputs and its outputs for itself.

As another example, consider a battery-powered autonomous vehicle exploring a

new and totally unknown environment in order to learn a new map. Suppose the

vehicle has only touch sensors: in order to map out the environment the vehicle

must move until its sensors respond to something. Since the shortest distance

269

VOLUME TWO

between two points is a straight line, let us suppose that the vehicle is pro-
grammed to move off in an arbitrary direction until its sensors are activated.
Suppose that on encountering an object, the vehicle is programmed to back off,
move to one side and seek another response. In this way the vehicle can build up a
map of points at which it sensed an object. From this it can build a picture of its
universe. As far as the machine is concerned the data stream through time appears
a s

. . . f f f b b b a a a f f f c c c f f f b b b a a a f f f c c c f f f . . .

. . . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . .

where f = forward, b = backward, c = clockwise, a = anticlockwise, 1 means an
object sensed and 0 means no object is sensed. These data correspond to the

positions shown in Figure 8.7.

Thus with respect to Figure 8.7, the vehicle is going forward at tl with no object

sensed (f,0), forward at t 2 with no object sensed (f,0), and forward at t 3 when it
senses an object (f, 1). At t 4 the vehicle is going backwards with no object sensed

(b,0), as it is at t 5 and t 6. At t 7, t 8, t 9 the vehicle rotates anticlockwise through a
total of 90 ~ with no object sensed (a,0). At q0, tl~, t12 it goes forward with no

object sensed (f,0). At t13, t14, t15 the vehicle rotates a total of 90 ~ clockwise with
no object sensed (c,0). At t16 and t17 it goes forward with no object sensed (f,0),
and at t18 it is going forward when it senses an object (f,1). The vehicle repeats
this and thus senses three colinear objects, which it may interpret as an edge.

& Figure 8.7 The sequence of data associated with an autonomous vehicle learning
its environment.

270

CHAPTER 8: LEARNING

ff the vehicle uses coordinate geometry to represent the points at which it detects
objects, the discovery of a sequence such as that shown in Figure 8.7 can be tested
for its geometric properties. For example, one can try to fit a curve to the data. In
this case linear regression would show that the points form a straight line, and
give the equation of that line in terms of coordinate geometry. There are
techniques for fitting sets of points to other geometric objects such as arcs of
circles and other curves, and the vehicle can, in principle, take samples of objects
and learn the shape of their edges.

So far we have considered a vehicle which represented its environment using
coordinate geometry. This is called a vector representation, since objects are
represented by sequences of numbers which represent points, lines, and other
geometric objects.

There is another widely used representation for two-dimensional space, namely
an array, or grid, of cells (usually squares) which represent areas of the actual
space. For example, a square cell might represent a square metre. This is called
the resolution of the grid. Any finite area will be represented by a finite number of
cells. This representation is popular because it is easy to associate the cells with
pixels, and display the representation of the environment on a computer screen.

Consider an autonomous vehicle which is planning its path in an environment
about which it has imperfect knowledge. For example, it may have a map of the
fixed part of the environment, but not know a priori if it will encounter other
objects able to move in the space.

Suppose the vehicle senses an unexpected object. The new data about a previ-
ously unknown object fills in an area of that map that was previously blank, and
that is learning. Using that data later to find a new path is search. Knowledge can
be learnt even if it is never used. In an unpredictable world you cannot say in
advance what is useful and what is not, so all knowledge that is acquired is
potentially useful in some future circumstances.

The database may be a two-dimensional array in which a zero represents
unoccupied space and a 1 represents an object, as illustrated in Figure 8.8.

vehicle

goal

A

Key

/ /
0 --- not occupied

1 - occupied

/
path

Figure 8.8
Binary array used to map
the environment.

271

VOLUME TWO

Let's assume that initially the map is full of zeros. Suppose that the vehicle moves
around trying to reach the goal square and when it bumps into something it
records a 1 in the appropriate cell of the array. Gradually it will build up a map of
the whole environment. The raw input data are signals from sensors indicating the
presence or absence of an object.

Some 'decoding' has to take place to work out the position of the object relative to
the vehicle, so that a 1 can be placed in the correct position on the map. Filling in
the map corresponds to learning about the environment and is not linked to any
specific task that may be required to be performed in that environment.

In this chapter we have seen that learning involves many of the ideas discussed in
this book, especially search. Learning describes some of the behaviour of a
machine. A machine can be said to have learnt if its behaviour is altered by the
input of new data. We have considered:

i~ Learning by memory: We described this as the accumulation of data in
memory, e.g. data logging.

i~ Learning by updating parameters: This involves the machine using incom-
ing data to update parameters.

i~ Bayesian learning: This method allows probabilities to be updated as more
knowledge about cases is accumulated. We illustrated it by a machine
monitoring itself for fault diagnosis.

I~ Learning from examples: This occurs when a machine generalizes from a set
of examples. We illustrated this by showing how rules to predict tomorrow's
weather can be abstracted from historical weather data.

I~ Learning by analogy: This happens when the machine makes an analogy
between a problem it has solved before and a new problem. We illustrated
this with a vehicle path-planning problem.

i~ Learning by observation and discovery: This occurs when a machine pur-
posefully interacts with its environment in order to acquire data from which it
can abstract useful knowledge. We illustrated this with an example of an
autonomous vehicle mapping out its environment.

Although the techniques we have described make a useful start, they come
nowhere close to the fantastic learning abilities of human beings. Learning
remains an important and very active research area in artificial intelligence and
the design of intelligent machines.

272

C H A P T E R 9
I N T E L L I G E N T C O N T R O L

The subject of control was introduced in Volume 1, Chapter 8, by presenting
methods for controlling systems which can be described by linear models using
differential equations. As a reminder, a system is linear if it has the property that a
sinewave with a frequency f applied at the input results in a sinewave with a
frequency f appearing at the output once the system has settled down. The only
differences between the two sinewaves are their amplitudes and their relative
phase. This should be true for all relevant values off, and should not vary with

time.

This kind of model is a mathematical description of the behaviour of a system,
and will always be an approximation to the actual behaviour of the system. When
a linear model is used as the basis for the design of a controller, the performance of
the controller will depend on the accuracy of the model. There are many systems
for which a linear model is sufficiently accurate for linear control to be appropri-
ate. However, there are many systems which are n o t - and a linear model would
be so inaccurate that any controller designed using a linear model would perform
badly. In these systems it is appropriate to use more complex models such asnon-
linear or time-varying models. Other complications that might arise are systems
for which there are no known models, or systems where it is impossible to
measure the output directly. Another difficulty arises in systems which are too
complex to be represented or modelled by mathematical functions alone, and in
which qualitative relational information must also be used. In these cases the
conventional control methods described in Volume 1 may be inadequate.

There is at present a great deal of research effort being applied to the realm of
'intelligent' control. The term intelligent control reflects the fact that these
techniques arise in the discipline of artificial intelligence, and does not infer that
these techniques are 'cleverer' than classical methods. Intelligent control is most
useful in situations where classical linear control is not suitable. There are
basically three ways that intelligent control overcomes the limitations or the lack
of a model. The first is that it may learn to control a system using methods such as
neural networks and genetic algorithms which do not explicitly require a model.
The second is that it can make do with very simple models, such as descriptions of
a system in words, and takes this description to produce a controller using fuzzy
logic. The third is that it can use incomplete and imprecise models and overcome
the related uncertainty by using techniques from artificial intelligence.

273

VOLUME TWO

In this chapter a distinction will be made between controlling systems which can
be represented by mathematical formulae, and controlling systems which are too
complex for this. Complex systems are usually hierarchical, and at the lowest
levels it is not uncommon to find subsystems which can be modelled by formulae.
For example, a motor car engine may be modelled by relationships between
numerical variables, but a road system containing many motor cars cannot
adequately be modelled by formulae alone.

To illustrate the application of different methods of intelligent control to a system
which can be modelled using equations, a problem called the broom-balancer
will be investigated. At some time you may have tried to keep a pole or a broom
balanced on your hand, and you may have been quite good at it. If not, have a try
(preferably somewhere safe where things will not get broken) and you will find
that it is quite a tricky control problem. This problem, also called the trolley and
pole or the inverted pendulum, has been widely used to investigate intelligent
control strategies. It has the advantage that the system can be controlled using
classical linear methods, and this can be used as a benchmark for intelligent
techniques.

After some in-depth study of intelligent control applied to the broom-balancer,
the more general problems of hierarchical control will be discussed.

Figure 9.1 shows the basic structure of the broom-balancer. A trolley runs on a
track, like a railway, and the broom handle (or pole) is hinged to the trolley (or
cart), pivoting in the same plane. The aim is to keep the broom balanced for as
long as possible without moving the trolley beyond the ends of the track.

A similar problem arose when people first tried to launch rockets. After taking
off, a rocket should be pointing upwards. If it is tilted over at an angle it will tend
to rotate due to gravity, yielding a problem rather like trying to balance a broom.
This led engineers to the solution of placing horizontal thrusters at the base of the
rocket to supply horizontal forces to compensate for this rotation and keep the
rocket pointing upwards.

In the two-dimensional problem of the broom-balancer, the trolley is moved by
applying a horizontal force in either direction- left or fight in Figure 9.1. When
the broom starts to fall to the fight, the trolley is moved to the fight and the broom
should move back to a vertical position. One more feature is added to the system,
namely that the track has end-stops, so that not only has the broom got to be
balanced but the trolley must stay near the centre of the track. (In a rocket this
final limitation is not so critical.)

274

CHAPTER 9: INTELLIGENT CONTROL

The objective is to keep the broom uptight and the trolley in the middle of the
track. In other words, the angle 0 must be kept as close as possible to zero and the
position x from a fixed reference point must be kept as close as possible to zero. It
will be assumed that the system has sensors which allow it to measure 0 and x
directly.

This system has been modelled mathematically. Barto et al. (1983) derived the
following formulae, relating the angle 0 and position x to the angular velocity of
the broom about its pivot, 0, the angular acceleration of the broom about its pivot,
t~, the velocity of the trolley, :t, and the acceleration of the trolley, Y.

Note that in the following analysis we use the dot notation for derivatives with
respect to time, t. For example, velocity 2 is equivalent to dx/dt or v, and angular
acceleration 0 is equivalent to d20/dt 2.

"4[Figure9.1
Broom-balancer.

275

VOLUME TWO

Model of the broom-balancer
F + ml [0 2 sin 0 - Ocos O] - / . t c sgn(.~)

. o

x - - M + m

gs in0 + c ~ -F-mlO2sinO+M+m/'tcsgn(~t)] -~0ml

O=
z E4 mc~176

where

0 is the angle of the broom, measured clockwise from the vertical (rad)

0 is the angular velocity (rad s -1)

O" is the angular acceleration (rad s -2)

x is the horizontal position of the trolley, measured to the fight from a reference
point (m)

~t is the velocity (m s -1)

X is the acceleration (m s -2)

~ is a constant representing the frictional force between the broom and the
trolley (= 0.000002)

/~c is a constant representing the frictional force between the trolley and the track
(=0.0005)
M is the mass of the trolley (= 1.0 kg)

m is the mass of the broom (= 0.1 kg)

l is the half-length of the broom (the length of the broom is 21 = 1 m)

F is the applied force (N)

g is the acceleration due to gravity (m s -2)

and sgn(:t) is a function which takes the following values"

+ 1 when :t > 0,

-1 when :t < 0, and

0 when ~t = 0.

Although it may be possible to measure 0and ~t directly, the accelerations depend
on the forces applied to the system. These forces are gravity, friction, and any
control force F that is applied to the trolley.

The formulae in this broom-balancer model allow the unknown accelerations to
be calculated if one knows the values of position and velocity. The difficulty with
this system is that it is inherently unstable, and the model is non-linear. The
obvious complexity means that the model needs to be simplified if classical linear
control is to be attempted, and this will be done in the next section.

276

9.3 Classical solution

CHAPTER 9: INTELLIGENT CONTROL

To illustrate how a non-linear model of a system can be approximated by a linear
model, the formulae for the broom-balancer in the previous section can be
simplified by making the following assumptions:

1 The broom is always nearly vertical. This means that 0will be less than 5 ~ so
that sin 0 is approximately 0 and cos 0 is almost 1.

2 Any terms with higher powers of 0 , such as 02, will be small, and can be
neglected.

3 Friction is negligible, so Pc = 0 and pp = 0.

4 The mass of the broom is negligible, so m = 0.

The model then reduces to two relatively simple linear differential equations:

F
J~ = ~ (9.1)

o=3gO 3F __ 3 (MgO- F) (9.2)
41 4Ml 4Ml

The next step uses Laplace transforms. If you are not familiar with the mathemat-
ics of Laplace transforms, it does not matter. In the following, just remember that
in deriving transfer functions 0 is replaced by tg, 6)is replaced by s O, and 0" is
replaced by s26), where s is the Laplace operator. A transfer function can be
derived from equation (9.2) as follows:

6~

F

-3

4Ml

s 2 3g
41

After substituting, for example, the values g = 9.8, l = 0.5, and M= 1, we get:

t9 -1.5
ff = s 2 - 14.7 (9.3)

This is the transfer function of the system, which shows the relationship between
the output, 69, and the input, F, in terms of Laplace transforms. It tells us
mathematically what happens to 0 when a force F is applied.

The first thing to note is the minus sign in the numerator of equation (9.3). This
indicates that when the force applied is negative the angle, 0, becomes more
positive and vice versa. This is intuitively what you would expect, since a positive
force pushes the trolley to the fight, which causes the broom to fall to the left.

277

VOLUME TWO

The second thing to note is that since the transfer function is second order it has
two poles in the s-plane. These are found by equating the denominator to zero:

s e - 14.7 = 0

so that

s = + 3.83

The fact that one of these poles lies in the fight half of the s-plane indicates that the
system is unstable, as explained in Chapter 8 of Volume 1.

9.3.1 Linear controller

controller broom and trolley

s 2 -14.7

l .

Figure 9.2 shows a block diagram of a feedback control system with the linear
model of the broom-balancer that we have just derived. The input, 0 d, is the
desired angular position, which equals 0 since the aim is to keep the broom
vertical. The value of the force that moves the trolley is produced as the output of
the controller. Suppose the controller is simply proportional to the error (0d- 0)
with a ga in-K, so that

F = -K(Oa - O) and F = -K(Od - O)

Then by equation (9.3) the closed-loop transfer function can be found to be:

69 1.5K

Od s 2 - 14.7 + 1.5K

This closed-loop transfer function shows that the closed-loop poles can be
positioned by altering the value of K. A negative gain is used to counteract the
previously mentioned minus sign in the transfer function. This has the effect
that when the broom is falling to the left, the angle is negative, and now the
force applied to counter this is also negative, which means the trolley gets
pushed to the left. This proportional controller, however, is unable to stabilize
the system.

A popular method used by control engineers to overcome the limitations of
proportional control by itself is to include derivative action in the controller, i.e.
to design what is called a proportional plus derivative (P+D) controller. This
helps to balance the broom by producing a force that is proportional to the
angular velocity of the broom as well as its angle. With proportional control

0

Figure 9.2
Closed.loop control of the
broom-balancer.

278

CHAPTER 9: INTELLIGENT CONTROL

alone, the force applied depended on the angle, but it is clear that when the
broom is falling quickly, the force applied has to be larger to return it to a steady
uptight position.

The effect of introducing derivative action can be seen by examining the transfer
function. A P+D controller has the form

F
= -Kp(1 + TdS)

The termE is the Laplace transform of the error, e, between the desired output and
the actual output, i.e. e = 0d - 0. The other two terms, Kp and T d, are the gain and
derivative time constant respectively. Substituting F = -EKp(1 + TdS) =
- (O o - O)Kp(1 + TdS) into equation (9.3) gives the following closed-loop transfer
function:

O 1.5Kp(1 + TdS)

Od s2+ 1.5KpTdS- 14.7 +l.5Kp

With this transfer function there are many possible ways to determine the position
of the closed-loop poles. For example, if the value of T d is set to 0.26 the resulting
transfer function can be simplified, using a process called pole-zero cancellation,
to

O 0.39Kp

Oo s - 3 . 8 3 + 0.39Kp

We can now position the remaining pole anywhere along the horizontal axis. For
example, if we make Kp equal to 40, the pole is at

s = -11.77

In theory we have produced a good d e s i g n - the broom can be balanced. In
practice, however, the system fails. When the system is steady there will be a
small steady-state error in the angle of the broom. Because of this error the trolley
accelerates in one or other direction and hits the end of the track after a short
period of time. This behaviour is plotted in Figure 9.3. The system starts with the
trolley at x = -0.5 m and the broom at an angle of 0= 0.1 rad. The broom reaches
the vertical within 2 seconds, but the trolley accelerates until it hits the end of the
track at x = 2.0 m after 6.72 seconds.

279

0.12

0.10

0.08

0.06

0.04

0.02

|

1.0

VOLUME TWO

i i i' i [

2.0 3.0 4.0 5.0 6.0
time / s

2.0

1.5

1.0
O

r ~
Q
~., 0.5

-0.5

trolley hits the end of the track at t = 6.72 s

i 1 I i i ~

2.0 3.0 4.0 5.0 6.0 6.72
time / s

Figure 9.3
Graphs of 0 and x against
time for the broom-balancet
with P+D control.

We can see why this happens by going back to the original linear equations.

Equation (9.2) was:

0~
3gO 3F

41 4Ml

If we assume that the broom can be balanced, then when the system reaches a

steady state the broom will not be moving, and any derivatives of 0 will be zero.

Also, when the broom is balanced the angle 0 is not quite zero due to the steady-

state error but is a constant, denoted by 0ss. Therefore,

3g0ss 3F

41 4Ml

and F = Mg Oss

280

CHAPTER 9: INTELLIGENT CONTROL

This means that the force being applied is also constant, which will be denoted by

Fss:

Fss = M g O s s

Substituting into equation (9.1):

fss
M

This shows the acceleration of the trolley when a force, Fss, is applied. As the
force is constant the trolley has a constant acceleration, which means that the
trolley will move and finally collide with the end of the track. For rocket
launchers, this solution may be adequate, as the rocket can move horizontally
indefinitely. For this reason the P+D solution has been used for rockets.

It is possible to design a more complicated controller that takes into account the
interaction between the trolley and the broom. There isn't space in this book to go
into this, but we can show a modification that corrects for the interaction. The
problem appears to be that the broom is balanced but no account is taken of the
position of the trolley. If the input to the controller, which is currently the error
between the desired angle and the actual angle, was to include a small fraction of
the position of the trolley, even when the broom is vertical there would be some
error unless the trolley was in the centre of the track. One possibility is therefore
to add a fraction of the velocity and position of the trolley.

Using the P+D model, F = - K p (1 + Tds)E, and substituting the parameters

T d = 0.26 seconds and Kp = 40 gives

F = - 4 0 (1 + 0.26s)E

and in Laplace form

F = - 1 0 . 4 E s - 40E

On converting this, F becomes F, E s becomes 0, and E becomes e. Therefore we
get

F = - 10.40 - 40e

But since 0 a = 0, e = 0 a - 0 = -0 , it follows that

F = 10.40 + 400 (9.4)

The effect of x can be introduced in the following way:

F = 1 0 . 4 0 + 4 0 0 + : t + x (9.5)

The small contribution of the position and velocity is just enough to ensure that
the trolley stays in the middle of the track. Initially the term 2 + x contributes very
little to the value of the force. However, when the broom has reached its steady
state the value of 10.40 + 400 is small, so that the terms 2 and x now have an
influence. The system now reaches a steady state when all of the terms are zero,

2 8 1

VOLUME TWO

which means that the broom is uptight and stationary and the trolley is in the
centre of the track and stationary. This behaviour is shown in Figure 9.4, where
initially x = -0.5 m and 0= 0.1 rad as before. The broom takes a bit longer to settle
in a vertical position, but the trolley is prevented from hitting the end of the track,
so that the system is successfully controlled.

-0.2

" o
- 0 . 1

~ 0

- 0 . 1

I I I I I l I I I

5 10 15 20 25 30 35 40 45 50 55 60
time / s

~ t
0.4-

0.2-

~ o o
, , , , ~

o ~ -0.2 -

-0.4 -

-0.6 t

t 5 \ 1~/ 15 v 25 30 35 40 45
time / s

i - - ' '1 F

50 55 60

This solution works by good fortune rather than intentional design. Generally it
would not be acceptable to simply add new terms to the controller without
analysing their effect on the stability of the system at the very least.

~il Figure 9.4
Graphs of 0 and x against
time with a modified P+D
controller.

9.3.2 Non-linear and bang-bang control
A further modification that is sometimes made by engineers is to make the
controller non-linear. This may appear to be quite contrary to what we said earlier
about trying to keep the system linear, but there are good reasons for doing it.

The non-linearity that is introduced is a hard-limiter. This gives an output of
+Frnax when its input is positive and an output of-Fma x when its input is negative.
It is introduced into the system as part of the controller, so that the controller
calculates its output using the P+D equation, but that output is then passed

282

CHAPTER 9: INTELLIGENT CONTROL

through the hard-limiter. The resulting controller produces what is called bang-
bang control. It is called 'bang-bang' because the controller only has two
possible output values, which are as hard as possible in one direction or the other.
In some controllers which produce a mechanical force on the output you can hear
the system banging as it switches from one extreme to the other.

According to Pontryagin, a Russian control engineer, under certain conditions
bang-bang control produces optimal control. This is known as Pontryagin's
maximum principle. Now there are a variety of different meanings to optimal
control, and the one that is meant here is minimum-time optimal. This means that
if you want a system to go from state A to state B in the shortest time, this can be
achieved using bang-bang control.

An example of this is driving a car. The fastest way of getting from point A to
point B with the car at rest at both points is to accelerate away from A as hard as
possible and then to brake as hard as possible to come to rest at B. Figure 9.5
shows a graph of velocity against time when this is done. The area under the graph
equals the distance travelled.

The penalties paid for this control strategy are that the accelerator or the brakes
are used constantly, so there is a high fuel consumption, brake linings don't last
long and there is severe mechanical stress placed on the system. But, barring
accidents, you reach the destination more quickly than using any other strategy.

The constraints under which bang-bang control is time-optimal are that the model
of the system being controlled is linear, where the controller is linear prior to
passing through a hard-limiter, and where only the controller output is con-
strained by having, say, a maximum value. The broom-balancer fits these
constraints. It can approximate to a linear model, and there is almost certainly an
upper limit to the force that can be applied. So, if we would like the broom-
balancer to be time-optimal, which means that we want the broom to be balanced
as quickly as possible, bang-bang control seems to be a good choice. However,
the way that we've arrived at the parameter settings is largely by good luck.
Methods do exist that enable designers to find a bang-bang solution for a limited
number of problems, but usually it is very difficult. Figure 9.6 shows graphs of
the broom-balancer with bang-bang control, plotted against time. The system

Figure 9.5
Velocity profile of a car
under bang-bang control.

283

VOLUME TWO

again starts with x =-0 .5 m and 0= 0.1 rad. Here 0 reaches the vertical position
almost straight away, showing the time-optimal behaviour. The position of the
trolley, which isn't the variable that is optimally controlled, eventually reaches
the centre of the track but takes over a minute to get there.

~l Figure 9.6
Graphs of 0 and x against
time for broom-balancer
with bang-bang control.

9.3.3 Summary of classical control
We have seen how classical control makes use of differential equations to model a
system. In many cases it is possible to simplify these differential equations to make
them linear, and then apply fairly standard design techniques to produce a feedback
system with the desired characteristics. In the case of the broom-balancer this was
possible, which is why we chose this example to illustrate the methods.

We have also seen how the interaction between the broom and the trolley could be
controlled by adding terms to the controller. The method used in this chapter was
rather ad hoc, but produced the desired result. Then finally, Pontryagin's maxi-

284

CHAPTER 9: INTELLIGENT CONTROL

mum principle was introduced to show how the response of the system could be
made time-optimal by including a hard-limiter and thus producing bang-bang
control.

In the following sections we shall look at some of the more recent developments
in the field of intelligent control which can also be applied to systems which are
more complex than the broom-balancer. We will continue to apply them to the
broom-balancer for comparison.

9.4.1 Single neuron
In the previous sections we have described the broom-balancer and shown how
classical control theory can be used to derive solutions to the problem. To do this
we used Barto et al.'s mathematical model of the system given in Section 9.2. But
what if no such model existed? For the remainder of this chapter we will assume
that no model is available in the form of a differential equation, and show how the
AI techniques explained elsewhere in this book can be used to develop new
control strategies.

In this section we will show how a neural network can be used to control a system.
The advantage of this approach is that it is not necessary to have a model of the
system in the form of a differential equation, since the network learns how to
control the system.

In the case of the broom-balancer the inputs to the network will be the data which
describe the state of the broom. These could include the position and velocity of
the trolley, and the angle and angular velocity of the broom. So it is assumed that
the system has, at least, a stream of data (x n Or) which give the values of position
and the angle of the broom at time t.

Suppose the samples arrive every T seconds. Then the velocity at time t is
approximated by (xt-xt_l)/T, and the angular velocity is approximated by
(0 t - Ot_l)/T. Given these inputs, the desired output of the network is the force
which restores x to zero and 0 to zero.

The training data for the network will usually have input values x t and 0t, and the
calculated values (xt-xt_l) /T and (0 t - Ot_l)/T, together with the force that was
applied. The output of the network will depend on the kind of transfer function the
network will learn, as will be discussed in subsequent sections. The training data
may come from observing a person controlling the system, or they may come
from simulations in which the results of many trials are recorded.

285

VOLUME TWO

The expression for the P+D controller was effectively a weighted sum of the
angular velocity, angle, velocity and position. With bang-bang control, the
controller could be described as follows:

output = +Fma x when W 10 + W20 + W3.~ + W4X >i 0

output = -Fma x when wlO + w20 + w32 + w4x < 0

You should recognize this from Chapter 4 on neural networks as being in the form
of a neuron where the neuron fires (+ 1 output) when the weighted sum of its input
is greater than some threshold (in this case 0), otherwise it doesn't fire (-1 out-
put). This implies that we can use a single neuron to control the broom-balancer.
This was precisely what Bernard Widrow thought, and went on to demonstrate it
with his ADALINE network (Widrow and Smith, 1964).

The main difficulty of this solution is the parameter setting - jus t how do we get
the appropriate values? Widrow suggested training with a teacher in which a
human tries to control the trolley. The ADALINE monitors the system outputs
(such as the angle of the broom and position of the trolley) and the corresponding
control action taken by the human. By pairing the system outputs with the
controller output a training set can be constructed where the present set of system
outputs are the inputs to the ADALINE, and the controller output is the desired
output of the ADALINE.

Clearly then, the best that this solution will ever achieve is to be able to learn to
control a system as well as an existing controller (human or otherwise). The only
situation where this is advantageous is where a system is currently controlled
manually and has to be automated, but little is known about the system. The only
way to automate it is to mimic the human controller, and the ADALINE does just
this.

A major handicap of the single neuron is its inability to emulate all input-output
relationships. This means that it might not be able to mimic a controller over the
full range of circumstances. The multilayerperceptron was shown in Chapter 4 to
have an advantage over the ADALINE, which is that it can mimic any consistent
input-output relationship. In principle, the multilayer perceptron can be used to
emulate any existing controller.

9.4.2 Multilayer network
The property of a multilayer network that is most interesting is its ability to
emulate any consistent input-output relationship. In a linear system this relation-
ship is the transfer function, and the goal in many control strategies is to find an
approximation to the inverse of the system's transfer function.

For example, in feedback control such as that shown in Figure 9.7 the closed-loop
transfer function of a system is

Y CG

X 1 + CGH

286

CHAPTER 9: INTELLIGENT CONTROL

where G is the transfer function of the system being controlled, H is the transfer
function of the feedback path, C is the transfer function of the controller, Yis the
system output and X is the system input.

X

controller plant

H

G

feedback

Ideally, designers would like the transfer function Y/X to equal 1, so that the
system responds immediately to any change in input with no error between input
and output. For example, with the broom-balancer one wants to input values of
x = 0 and 0 = 0, and for the system to hold these values. Any deviation from this is
fed back through H.

2
Making Y/X = 1 can be achieved, for example, if C = ~ and H = 0.5:

2G

Y G 2

X = 2G x 0.5 = 1 + 1 = 1
1 +

G

This shows that from a control engineer's point of view, having the transfer
function 1/G or G -1 (called the inverse of G) would be very useful. So as a general
principle, if the inverse of G can be approximated, good control can be achieved
using feedback. Since a multilayered neural network can approximate any
consistent relationship, it should be able to train to G -1.

There are a number of ways that this can be done, but we will look at just one,
called the generalized learning architecture, shown in Figure 9.8.

Figure 9. 7
Generalized linear feedback
control system.

287

VOLUME TWO

plant

I "

E

k

\

Y
A

A set of input-output training data is produced by sending inputs,x, into the system
(plant) and recording those values of x with their corresponding output values, y.
By setting the inputs ofthe neural network to y and making the desired outputx, the
network is trained to do the opposite of G, and the network will approximate the
inverse G -1. Once it has trained it effectively represents the inverse transfer
function of the system being controlled, and it can be used as part of a controller.

One problem with this method is in deciding how to select the training data. The
inputs and outputs should be representative of the states that the system will enter,
but it can be difficult to know in advance how to do this.

For the broom-balancer, the inputs to the plant would be the force, F t, applied to
the trolley. The output would be the values of xt+ 1 and Or+ 1, and possibly their
derivatives. For the neural network, the inputs would be xt§ 1 and Or+ 1, and the
desired output would be F t . The actual output of the neural network, let us call it
G t, can then be compared to the desired value and an error calculated, shown as E
in Figure 9.8. The error can be used to adjust the weights in the network using
back-propagation, as indicated by the diagonal arrow through the network.

~il Figure9.8
Generalized learning
architecture.

9.4.3 Recurrent networks
A r e c u r r e n t n e t w o r k is one where feedback is allowed. A special case of a
recurrent network is the f u l l y - c o n n e c t e d one, where the output of each neuron is
connected to the input of every other neuron and its own input. Figure 9.9 shows a
fully-connected recurrent network with three neurons and two inputs.

288

CHAPTER 9: INTELLIGENT CONTROL

not used
externally

,L

Yl

1

J

I j, '

w

not used
externally

J~

Y2

~L

v

r

q~ J, w

IL

F

x 1 x 2

An important feature of recurrent networks is that it becomes unnecessary to
enter the terms .t and 0 explicitly. This is because, for example, at any time the
system has both xt_ 1 and x t as inputs and so implicitly the term x t - x t _ ~ can enter
the system at time t..t is approximated by (x t - x t _ l) / T , where T is the (constant)
time interval between samples. In principle, the network weights will adjust the

value of (x t - x t _ 1) as appropriate, and it can be assumed that (x t - x t _ l) / T = 2 is
implicitly in the system. By a similar argument, 0is also implicitly in the system.

This sort of network is of particular interest because it is comparable with the final
P+D controller that we used earlier. The expression for the controller output of
equation (9.5) was:

F = 1 0 . 4 0 + 4 0 0 + . t + x

To convert this to a discrete approximation, the derivatives .t and 0 are approxi-
mated by the difference between the current value and the previous value divided
by the sampling period, T:

10.4(0 k - Ok_l) X k - Xk_ 1
Fk = T + 400k + T + xk

Let's assume for illustration that T = 0.02 seconds, then:

F k = 520(0 k - Ok_l) + 400 k + 50(X k - X k _ l) at" X k

so that

F k = 5600 k - 5200k_ 1 + 51x k - 50xk_ 1

Figure9.9
Fully-connected recurrent
neural network.

289

VOLUME TWO

Here we have an expression containing the present values of angle and posi-
tion and the previous values of angle and position. We therefore only have two
state variables, x and 0, although they also have to be stored for one sampling
period.

Figure 9.10 shows a network which produces the value of F k according to the
expression above. It requires three neurons and has the interesting feature that
most of the weights are forced to be zero by the absence of a connection. The final
output neuron can have a linear output or could be hard-limited to produce bang-
bang control.

G

q~

o~ x k

One aspect of the network which differs from conventional networks is that the
output of each neuron is semi- l inear, which means that it is only linear over a
range of values. In theory, when the network is controlling the system correctly,
there is no reason why the outputs cannot be linear. However, during training the
weights will not be ideal and the output can grow because of positive feedback. It
is therefore necessary to limit the output as shown in Figure 9.11. The exact value
at which the output flattens doesn't matter since it is only a safety measure and not
part of the control action.

~1 Figure 9.10
Recurrent network emulation
of the P+D controller of
equation (9.5).

output, y

Ymax

slope -- 1

input

--Ymax
Figure 9.11

Semi-linear output function
limited by -Ymax and +Ymax-

290

CHAPTER 9: INTELLIGENT CONTROL

Here we have calculated the network weights using values from an earlier
section. In principle, it should be possible to build and train a network which
provides appropriate control. However, there are practical difficulties due to the
way the problem has been defined. First, it is difficult if not impossible to train a
network by back-propagation because of the semi-linear output functions (and
possibly a hard limiter on the output neuron). Also, back-propagation requires an
appropriate error function to be defined. The desired behaviour is to balance the
broom as long as possible, but this consideration has been omitted, which makes
the network behaviour ill-defined.

An alternative is to use the time-to-failure as a measurement of how well the
network is performing, where failure is defined as the broom falling over or the
trolley hitting the end-stops. In the next section genetic algorithms will be used to
find the weights using such a measurement.

9.5 Genetic algorithms

The back-propagation technique for training network weights described in
Chapter 4 on Neural networks assumed that the network was a multilayer
perceptron. Recurrent networks which have feedback from higher levels to lower
levels do not have this architecture, and so back propagation cannot be used as a
training method.

Finding the weights in the recurrent neural network can be viewed as a search
problem, and the characteristics of genetic algorithms can be used to find the
weights for the broom balancing problem. Genetic algorithms were introduced as
a search technique in Chapter 3, and in Chapter 5 on Scheduling they were
illustrated in an application to the travelling salesman problem. This section
illustrates how the techniques described in this book may be combined to find a
solution to control problems.

Let each chromosome consist of all the weights for all the neurons. At first the
weights are chosen randomly, and the system is run until the broom falls over or
the end of the track is reached. The time-to-failure is recorded and its reciprocal
used as the fitness function. After all the members of the population have been
tried, a new population is created by breeding from the old population.

Breeding consists of an elitist strategy with single-point crossover and mutation.
Elitism means that a fraction of the population that consists of the fittest
individuals is preserved from one generation to the next (we used 10% in our
experiments). Single-point crossover consists of splitting the two parent genes at
a random point and swapping the genetic material to produce two different
offspring (as described in Section 3.3.5 of Chapter 3).

291

VOLUME TWO

For example, in Figure 9.9 there are three neurons each with five inputs. Each
chromosome therefore has 15 entries. Let the two chromosomes be

(Wl, w2, w3, w4, w5, w6, w7, w8, w9, Wl0, Wll, w12, w13, w14, w15)

and

(W1 l, W2' , W3 I, W4 t, W5 ~, W6 ~, W7' , W8 l, W9 I, W10 w, Wll t, W12 I, W13 w, W14 ~, W15 I)

First the crossover point is found at random; let us suppose the crossover point is
3. Then all the genetic material to the left of point 3 will be swapped, resulting in

(W1, W2, W3 ~, W4 w, W5 ~, W6' , W7 w, W8' , W9 t, Wl0 t, Wll ~, W12 T, W13', W14 ~, W15 ~)

and

(w1 r, w2 f, w 3, w4, w 5, w6, w7, w8, w9, w10, Wll, w12, w13, w14, w15)

The weights are all real numbers, and if crossover alone was used the weights
would simply be shuffled about. Mutation is therefore necessary to alter the
values of the weights. The form of mutation used in this application is called real
number creep, and consists of changing the value of a weight by some random
value of between-10% and + 10% of the weight. If a small population is used the
choice of weights is limited, so a high mutation rate is needed, including the
possibility of a mutation rate of 1.0 in which all values are mutated during
breeding.

The output of the controller is hard-limited, so a value of +Fma x is produced. The
exact value of Fmax is set in advance, in which case the genetic algorithm finds the
best set of weights for that pre-selected value of Fma x. Alternatively, the value of
Fma x could be included in the chromosome and would then be subject to
crossover and mutation itself.

For the broom-balancing problem we found that the genetic algorithm quickly
converged to a solution in which some members of the population could balance
the broom for hundreds of seconds. In our attempts, a working solution was found
in less than 100 generations.

In this example genetic algorithms were used as a method to train a recurrent
network, but one might ask if this technique could be applied to training neural
networks in general. This depends on the nature of the problem and the search
space. Genetic algorithms provide a powerful search mechanism, but their use
might be considered to be a sledgehammer to crack a nut for the problem of
training multilayer perceptrons. Since back propagation is designed for training
multilayer perceptrons, in many instances it will converge more quickly to a
solution when training than genetic algorithms. However, in principle genetic
algorithms can be used to train multilayer perceptrons and, like simulated
annealing, they offer the possibility of exploring more of the search space
because they do not just use hill climbing or gradient descent.

292

CHAPTER 9: INTELLIGENT CONTROL

Although the P+D controller gives a better solution than any we have managed to
generate from scratch using a genetic algorithm, these experiments show that
intelligent control techniques can produce working solutions. The P+D control-
ler has been used as a benchmark reference in this chapter because it can be
modelled by a formula. However, many control problems do not start with a
formula and sometimes it is not practical to try to find a formula. In such systems
intelligent control may provide the only way of controlling them. The P+D
solution is better because the broom gets to the uptight position more quickly and
then doesn't 'wobble about' very much. The solutions found with the genetic
algorithm are much less steady, and never really settle down. However, they all
balance the broom indefinitely. This should be expected as the fitness function
used doesn't take into account any performance criteria other than the length of
time that the broom is balanced. A more sophisticated fitness function that took
into account values such as the time to settle would produce better solutions in
this respect.

Recurrent networks provide a sufficiently flexible architecture to emulate many
conventional control strategies, and to create some new ones. Finding the weights
using a genetic algorithm seems to be one of the best ways to adjust the network to
give the best performance.

Earlier we showed that the problem of controlling the broom-balancer could be
solved using a P+D controller with a hard-limiter on the output. The reasoning
behind this was that we could use an approximate linear model of the broom-
balancer to design the P+D controller, but then we wanted the advantage of bang-
bang control to speed up the response. In effect, the controller is obeying a rule of
the form:

/f (10.40 + 400 + ~t + x) i> 0

Then output is +Fma x

Else output is -Fma x

As stated, this rule is Boolean with outputs 'Yes' (apply +Fma x) and 'No' (apply

-Fmax).

The values used in the antecedent predicates of the If statement may be inaccurate
due to measurement error, and perhaps more importantly, the model used was
only an approximation to the actual system. This means that our confidence in the

293

VOLUME TWO

control action is not 100%, and that having such a dramatic switch from +Fmax to
-Fma x may be bad. As it stands, there will be some situations where the value of

o

(10.40 + 400+ :t + x) is slightly greater than 0 which causes a force of +Fma x

to be produced. If one of the variables changes by a tiny amount such that
.

(10.40 + 400+ :t + x) becomes slightly less than 0, the force suddenly switches to
-Fma x. Sensitivity to such small changes is not desirable when there are so many
inaccuracies in the model and the measurements.

A way around this is to use fuzzy control to make that transition more fuzzy by
smoothing the control action from one side to the other. One can still have bang-
bang control, but the decision about the output of the controller can be less ' crisp'.

Clearly, if the model is accurate, then fuzzy control is not going to improve
matters. But in situations where the model is more complex, or where the model
perhaps changes slightly over time, or where the states are difficult to measure
accurately, fuzzy control is useful.

Fuzzy logic was described in Chapter 6 on Reasoning. Essentially, we describe
the system linguistically, using phrases like 'the broom is falling to the left' rather
than having an accurate measurement of the states. These phrases refer to the
fuzzy sets that describe the system, and at any time the outputs are measured and
used to calculate the set memberships of these fuzzy sets. The main difference
between fuzzy sets and the more usual 'crisp' sets is that a variable can be a
member of more than one set, with a degree of membership that is a figure
between 0 and 1. In crisp sets, a variable can only be a member of one set and then
it has a membership of 1 of that set; all other crisp sets have a membership of 0.

Figure 9.12 shows an example of the membership functions, 2", of the four state
variables, 0, 0, x, :t and the output force, F. The membership functions were
selected to be triangular and overlapping in this way so that the total confidence at
any point is 1~ There are many more possibilities for the membership functions,
but this is one of the simplest. All the variables are divided into NEGATIVE, SMALL

or POSITIVE. Again they could be further divided, but these three divisions are the
simplest. Note that the membership functions for the output variable, the force F,
are truncated as there is a maximum value for the force.

In any state, the membership of each set is found. As we've already said, a
variable can belong to more than one set. The output is also defined by member-
ship of sets as shown. These sets, together with a set of rules, are all that are
needed. The rules are in the form:

I f 0 is POSITIVE

Then force is POSITIVE

I f 0 is NEGATIVE

Then force is NEGATIVE

294

CHAPTER 9: INTELLIGENT CONTROL

This rule is found by observing and qualitatively understanding the system rather
than by examining the differential equation model. Intuitively, if the broom is
accelerating to the fight (positive), then to slow it down you have to move the
trolley to the fight, which is done by applying a positive force. So applying this
rule controls the velocity of the broom. Similar rules can be found for controlling
the angle of the broom and the velocity and position of the trolley.

In the following it is assumed that values of x, :t, 0 and 0 are available to the
system. In practice this means thatx and 0are available from the sensors, and the.t
and 0 are calculated from them as discussed previously. Given these data, the
associated fuzzy set memberships are calculated using the functions given in
Figure 9.12. These fuzzy set membership values are then available for testing the
rules.

295

~[Figure 9.12
Membership functions of the
state variables and the
output force.

296

CHAPTER 9: INTELLIGENT CONTROL

We started from the following rules, assuming a first-come, first-served conflict
resolution strategy:

If 0 is POSITIVE

Then force is POSITIVE
I f 0 is NEGATIVE
Then force is NEGATIVE

/ f 0 is POSITIVE
Then force is POSITIVE
If 0 is NEGATIVE

Then force is NEGATIVE

I f • is POSITIVE
Then force is POSITIVE
If J~ is NEGATIVE

Then force is NEGATIVE
I f x is POSITIVE
Then force is POSITIVE

I f x is NEGATIVE
Then force is NEGATIVE
Else force is SMALL

It is important to notice the order in which the rules are tested. The angular
velocity 0is tested first, and if it is POSITtVE or NEGATIVE a force is applied. If the
angular velocity of the broom is SMALL only then will any of the other rules be
examined. What this means is that the rules have been prioritized. The angular
velocity is controlled first. When this is SMALL, the angle itself is controlled.
When this is SMALL the velocity of the trolley is controlled, and finally when this
is SMALL the position of the trolley is controlled.

A decision has to be made about the reference values for the variables so that the
terms NEGATIVE, POSITIVE and SMALL can be defined. These have to be guessed,
but guided by some knowledge of the range of system parameters. For example,
the reference angle of the broom is chosen to be 0.1 radians or about 6 ~ and the
reference position of the trolley is set to 0.1 m. These figures suggest that we want
the broom-balancer to end up very close to the centre of the track with the broom
almost vertical. The reference values for the angular velocity of the broom and the
velocity of the trolley are chosen to be 1 rads -1 (about 60 ~ s -1) and 1 ms -1
respectively. In all cases the reference values are symmetrical, which means, for
example, that the variable x is NEGATIVE if it is less than -1 m, POSITIVE if it is
greater than 1 m, and SMALL if it is between these values.

The controller works as follows. First, calculate the fuzzy membership of each of
the input sets. We will use the letters P for POSITIVE, S for SMALL and N for
NEGATIVE.

In Figure 9.13, the current state of the system is that 0= 8 ~ 0 = 53 ~ s -1 , x = 1.2 m
and .t = -0 .8 ms -1, so the 12 membership values would be"

Z ~ = 0.0 Z0s = 0.1 Z0e = 0.9

ZON = 0.0 Zos = 0.0 Z ~ = 1.0

XXN -- 0.8 X2S = 0.2 ZxP = 0.0

)(xN = 0 .0 /](xS = 0 . 0 ,~xP = 1.0
297

T

,
",~

,
I

I

,<
I

I

~
~

~
~

I

) r~

2;

I
I

I
I

I

Z

,<

t

e~

CHAPTER 9: INTELLIGENT CONTROL

The confidence in the membership of the output set is found by converting the
rules that we already have into a fuzzy form. The first step is to rearrange the rules

into a logical form. This is done by looking at what combinations of rules produce

a force of POSITIVE (P), NEGATIVE (N) and SMALL (S) in turn.

F = P

I f 0 = P

OR 0 = N A N D 0 = P

OR 0= N AND 0= N AND.r = P

OR 0 = N A N D 0 = N A N D . t = N A N D x = P

Then F = P

F = N

I f 0 = N

OR 0= PAND 0 = N

OR 0= PAND 0= PAND .t = N

OR 0= PAND 0= PAND 5c = PANDx = N

Then F = N

F = S

/f

Then

0 = S AND 0 = S AND • = S AND x = S

F = S

You should recall that the fuzzy equivalent of AND is the MIN operator, and that the

fuzzy equivalent of OR is the MAX operator. We can therefore convert the rules

into a fuzzy form as follows:

ZFP = MAX(~(~ ~ MIN(d~I~N , ZOP), MIN(~(~, ZON, Z:~P), MIN(d~0N, ZON, X~N, ZxP))

/~'FN = MAXQ~, MINQ~01 ~ ,~fi~q'), MINQ~t~Fb X0P, ~kN), MIN(,~0P~ /~'0P, X~P, XxN))

ZFS = MIN(~0S' ZOS, Z.~S, ZxS)

299

VOLUME TWO

Using the same membership values as before, in Figure 9.12, and applying the
fuzzy rules, the membership of the force fuzzy sets can be calculated as before:

Z ~ = 0.0 Z0s = 0.1 Z ~ = 0.9

ZON = 0.0 Zos = 0.0 Zor, = 1.0

ZXN = 0.8 Zxs = 0.2 ZxP = 0.0

Z~N = 0.0 Z~s = 0.0 Z~P = 1.0

ZFP = MAX(0.9, MIN(0.0, 1.0), MIN(0.0, 0.0, 0.0), MIN(0.0, 0.0, 0.8, 1.0)) = 0.9

2'FN = MAX(0.0, MIN(0.9, 0.0), MIN(0.9, 1.0, 0.8), MIN(0.9, 1.0, 0.0, 0.0)) = 0.8

ZFS = MIN(0.1, 0.0, 0.2, 0.0) = 0.0

The membership values are shown in Figure 9.14 as shaded areas.

Where sets overlap the maximum membership value is chosen. The force is
finally calculated by finding the 'centre of gravity' of the shaded areas (this
method of defuzzification is slightly different to that given in Chapter 6). The
centre of gravity is the point at which the total shaded area to its left equals the
total shaded area to its fight. In Figure 9.15 the shaded area looks like Figure 9.14,
but the area has been quantized into forces 1 newton apart.

The resulting force will be that at which the difference between the sum of the
samples to the left and the sum of samples to the fight is a minimum.

Figure 9.14
Membership values of the
output variable, F.

Figure 9.15
Defuzzification of the output.

300

CHAPTER 9: INTELLIGENT CONTROL

The fo rmula used here for f inding the centre of area, Fc, is"

n

Xmax(Fi) �9 F i

i=m (9.6) f c =
n

Xmax(Fi)
i=m

where F i is the centre of the ith discrete interval, in the range m to n, and Zmax(Fi)

is the largest fuzzy set m e m b e r s h i p value associated with F i w h e n the member -

ship funct ions intersect. In F igure 9.15 the m e m b e r s h i p funct ions of NEGATIVE

and POSITIVE do not intersect, and that for SMALL is zero. In this case m = - 10 and

n = + 10, and the centre of area can be found by eva lua t ing the two summat ions in

equat ion (9.6):

10

i = - 1 0

Xmax(Fi) . F i = -9 .5 x 0.8 - 8.5 x 0.8 - 7.5 x 0.75 - 6.5 x 0.65

- 5.5 x 0.55 - 4.5 x 0.45 - 3.5 • 0.35 - 2.5 x 0.25

- 1.5 • 0 . 1 5 - 0.5 x 0.05 + 0.5 x 0.05 + 1.5 • 0.15

+ 2.5 x 0.25 + 3.5 x 0.35 + 4.5 • 0.45 + 5.5 x 0.55

+ 6.5 x 0.65 + 7.5 x 0.75 + 8.5 x 0.85 + 9.5 • 0.9

= 1.375

10

i = - 1 0

Xmax(Fi) = 0.8 + 0.8 + 0.75 + 0.65 + 0.55 + 0.45 + 0.35 + 0.25

+ 0.15 + 0.05 + 0.05 + 0.15 + 0.25 + 0.35 + 0.45 + 0.55

+ 0.65 + 0.75 + 0.85 + 0.9

= 9.75

Subst i tut ing into (9.6), the force in newtons (N) is

1.375
Fc = 9.75 = 0.141 N

These fuzzy rules are capable of control l ing the broom-balancer . Again , the

pe r fo rmance of the sys tem is not as good as the P + D controller, but the b r o o m can

be ba lanced indefinitely. The graphs for the b room-ba l ance r unde r fuzzy control

are s h o w n in F igure 9.16.

301

VOLUME TWO

The advantage of using fuzzy rules is that the models and measurement do not
have to be precise. The designer can use loosely defined terms like large, medium
and small, and the membership functions themselves can be defined very loosely.
However, this does require a certain amount of good guesswork.

Research in this area has now focused on setting some of the parameters such as
finding the membership functions of the fuzzy sets using adaptive methods such
as neural networks. First a rough guess is made of the fuzzy rules. Then the fuzzy
rules are transformed into an equivalent neural network. The network is then
shown examples and the weights adjusted to improve the overall performance.
Then the network is transformed back into a fuzzy rule-based system.

The advantage of the neural network is that it provides an adjusting mechanism,
whereas the advantages of the fuzzy rule-based system are that it can be
efficiently coded and is robust.

Figure 9.16
Graphs of 0 and x against
time for the fuzzy controller.

302

9.7 Hierarchical control of
complex systems

CHAPTER 9: INTELLIGENT CONTROL

9.7.1 Complex control problems
So far in this chapter we have examined how the techniques of artificial
intelligence can be applied to an example of a difficult control problem. In the
case of the broom-balancer the problem is difficult because the system is
inherently unstable. However, this problem had the important features of
(1) being modelled by a formula and (2) there being measurable control variables
which allowed feedback loops to be identified, and these formed the basis of the
various control strategies. But what if one is trying to control a system where
there is no known formula and the controlled variables are difficult to define, let
alone measure?

For example, consider a hypothetical colony of mechanical ants working together
on a mining project. The goal of this mechatronic system is to extract as much
mineral as possible in the shortest possible time at the least possible expense.
Suppose that the ants have no a priori map of the area in which they are working.
The intelligent control strategies just studied cannot be invoked for this system
because it is too complex to define a single meaningful error, and the prospect of it
being controlled by a few continuous control variables is remote. How could one
begin to control a system of such complexity?

Complex systems will have the following general features:

I~ They will have emergent behaviour: parts will form wholes in which the
whole may have properties and performance not possessed by any of the
parts; for example, the ants may be specialized and form teams.

i~ There will be a hierarchy (more precisely a heterarchy) of parts and wholes;
for example, there may be divisions made up of teams responsible for mining
certain areas giving a three-level hierarchy of ants / teams / divisions. Note
that it is possible that some ants will belong to more than one team, or that
some teams will belong to more than one division. In this case the part/whole
structure is a heterarchy.

i~ They must function with uncertain information about their environment; for
example, the ants have no map and must learn the environment.

I~ The system and many of its subsystems cannot be represented by numerical
information alone. Geometrical, topological and abstract relational informa-
tion at many hierarchical levels may all be needed to represent the system
adequately in order to control it.

i~ The performance measures which may be applied to the whole system cannot
be disaggregated to give measures allowing top-down closed-loop control;
for example, the measure of quantities mined in unit time emerges from the
interacting behaviour of the ants.

303

VOLUME TWO

Some parts of the system may be controllable by closed-loop techniques,
even though the whole system may not; for example, the electro-mechanical
parts of an individual ant may be controlled by closed-loop techniques
allowing an ant to move its limbs with precision.

9.7.2 Control of a simple vehicle
In this book there is not enough space to discuss all the possible problems
involved in controlling complex hierarchical systems. However, the following
simple system illustrates a number of points.

Consider a vehicle on a grid which in one time interval is capable of making one
move North, East, South or West (Figure 9.17). Suppose this vehicle has sensors
which allow it to detect fixed obstacles up to two squares away in any direction.
The vehicle's goal is to move 10 squares to the East. What control strategy could
or should be used?

N

W~ I ~E I
s

m m m ,,,- m
- - - l - - - | -

. . . .

m m m m m m
/ mmm- m -m

m- _m
---7- m - m m
m m m mm mm

(a)
& Figure 9.17

goal

goal
goal

goal
goal
goal

- - - - goal

m -_mmmm 'm ,
mm m ~.~_ m- -
m m m m m goal

goal
- - - N i l - - l - l / - - goal

1 1 1
m m m

1 1

m
(b)

Vehicle V can move one square at a time to the North, East, South or West. It has to reach one o f the goal

squares without occupying the black obstacle squares.

304

CHAPTER 9: INTELLIGENT CONTROL

First let us consider some ad hoc suggestions and see where this leads.

Strategy 1:

(1) Go East until an obstacle is encountered to the East.

This is a poor strategy because it fails if an obstacle is encountered.

Strategy 2:

(1) Go East until an obstacle in encountered.

(2) When an obstacle is encountered to the East, go North until it is possible to go
East again.

This strategy will work if there is not a long vertical wall of obstacles, as in
Figure 9.18(a), and if there are no traps, as there are in Figure 9.18(b). So it could
be modified to give strategy 3.

1 r l 1I I [I 1

lmmmmmm 1
lummmmmm 1
lmmmmmm 1

(a) A vertical wall of (b) A trap formed by
obstacles obstacles

A Figure 9.18
Special configurations of obstacles.

S trategy 3:

(1) Go East until an obstacle is encountered

(2) When an obstacle is encountered to the East, go North unless that obstacle is
part of a wall.

(3) If an obstacle to the East is encountered and that obstacle is part of a wall, go
South.

(4) If an obstacle is encountered, and that obstacle is part of a trap, if possible go
North, else go South, else go West.

The use of terms such as 'wall' and 'trap' is a quantum leap for the representation
of this system. What is a 'wall '? What is a 'trap'? Are the objects shown in
Figure 9.19 walls or traps? Does the machine need to 'see' more than two squares
ahead in order to perceive such objects?

305

VOLUME TWO

i
i _ i ~

i i
i - - i

I l l / i l l /
n / i l l / l / / /

(a) Are these walls?

/ /
I i /
i / /
/ i /

(b) Are these traps?

A Figure 9.19
Problems of classification and pattern recognition in controL

This illustrates that strategies to solve this kind of problem depend on pattern
recognition, as discussed in Chapter 2. When more complex spatial information
is available from the sensors, techniques of computer vision may be required, as

discussed in Chapter 10.

9.7.3 Cognition for control
The control decisions for this hypothetical vehicle must be made by its cognition
subsystem, as discussed in Chapter 5 of Volume 1. Even though the environment
is structured by the grid and blocks on it, as shown in Figure 9.17 it can get quite

complicated. Recall the following from Section 5.2.4 of Volume 1:

A temptation for the mechatronics system designer is to try and cover all
cases. The target is a machine cognition subsystem that will create as
accurate and as complete a model of objects as possible in the world of
interest and use this description to plan actions. However, a complete model
may contain much information that is of little or no use to the task in hand,
and the system cannot know that it has a good model, except by performing
'experiments' and examining the consequences of actions in the world. This
suggests that learning about actions and their consequences is an important
part of the cognition function.

306

CHAPTER 9: INTELLIGENT CONTROL

Certainly there are combinatorially many possible configurations for the vehicle
to negotiate, and the mechatronics designer cannot anticipate them all. Compare
the universe of Figure 9.17(a) with that of Figure 9.17(b). Which is easiest to
negotiate and why? You can probably see at a glance that (a) is 'simpler' than (b).
What does this mean? If you count them, you will find that both environments
have exactly the same number of blocks in them. The difference between the two
is that (b) is more 'connected' than (a). For example, the longest 'chain' of black
squares (connected by an edge or a comer) in (a) has 8 members, while the longest
in (b) has 27 members. In fact the long chain in (b) acts as a kind of curtain which
makes the task hard to complete.

Once a vocabulary such as 'connected' and 'chains' has been elicited for the
problem, one can formulate knowledge using it. For example, if one knew that the
longest chain in the environment had length 2, one could reason that there can be no
traps in the environment, and a relatively simple control strategy is appropriate.

What kind of experiments might our vehicle perform? In fact, the only control
strategy available given the lack of an overview is 'move and see what you find'.
In this case the machine can find one of three outcomes: that it has encountered
the goal, that it has encountered an obstacle, or that it can keep on moving.

Examples of tactical rules for getting round local obstacles were given above.
The worst case is that the robot gets stuck in a nasty trap from which it is difficult
to escape. A machine that cannot remember where it has been, i.e. cannot learn

the environment, may get stuck in a trap forever, rather like a lobster in a lobster
pot. However, a machine that remembers its moves should be able to extricate
itself, by analogy with 'Ariadne's thread' as mentioned in Chapter 8.

This type of control must involve experiments of the 'try and see' variety, because
this is the only way that the machine can get feedback on what is in the
environment, and what are the consequences of its actions. In this context we can
see these experiments as the machine learning more about its environment, and so
adding to its knowledge base.

9.7.4 Scheduling and path planning for control
Suppose the vehicle introduced in Section 9.7.2 has a vision system which allows
it to see all of the environment. Then the vehicle does not need to engage itself in
exploratory experiments to find out what is in the environment. The vehicle now
has a different problem: given its position at V, what is the optimal path to get to
one of the goal squares?

This can be viewed as a search problem, and treated in the manner of Sec-
tion 3.4.3 in Chapter3. For example, every square can be given a number
according to its distance from the nearest goal square and a best-first search will
result in a goal being found.

307

VOLUME TWO

Alternatively it can be viewed as a path planning problem and treated in the
manner of Chapter 5. This can be achieved by constructing a network with a link
of length one between the centres of vertically or horizontally adjacent white
squares.

9.7.5 Control as search
When trying to control a system one is effectively searching the space of all
possible control actions which give the desired outcome. This means that the kind
of considerations given to selecting a search technique may be relevant in
designing the control strategy. For example, at each stage that one makes a
choice, should it be best-first? When would breadth-first be better than depth-first
for a vehicle seeking a way through its environment? When should one consider
using random search?

Although there is no definitive answer to these questions, in general best-first is to
be preferred if this is known to give a solution in the particular case. Otherwise
breadth-first search might be appropriate for a vehicle which is establishing a
base from which it expects to operate, while depth-first search might be best for a
vehicle navigating a landscape just once. A random element may be appropriate
when the vehicle has many choices, or to facilitate 'jumping' to what might be a
better starting point when it gets stuck.

9.7.6 Controlling complex systems
In his classic book on Cybernetics first published in 1956, W. Ross Ashby Writes:

Science stands today on something of a divide. For two centuries it has been
exploring systems that are either intrinsically simple or that are capable of
being analysed into simple components. The fact that such a dogma as 'vary
the factors one at a time' could be accepted for a century, shows that
scientists were largely concerned in investigating such systems as allowed
this method; for this method is often fundamentally impossible in the
complex systems.

(Ashby, 1956, p.5)

It may be difficult to accept that the mathematical science of the last two hundred
years is simple, especially if one has just struggled through undergraduate
courses on calculus and the like. Nonetheless, engineers attempting to control
systems should understand the divide that comes between those systems which
can be represented by formulae in which one can 'vary the factors one at a time',
and those in which one cannot.

Classical control and the intelligent control techniques applied to the trolley and
broom problem are low-level control strategies. This does not mean that they are
trivial or more humble than control applied at higher levels of hierarchical

308

CHAPTER 9: INTELLIGENT CONTROL

aggregation. It does mean that in any system there is a limit to the degree of
precise control that can be achieved at more aggregate levels.

For example, a large aeroplane is a relatively complex system. The engines and
other mechanical subsystems are controlled with great precision by what we have
called low-level control strategies. These increasingly include the techniques that
we discussed in the first part of this chapter.

These low-level techniques cannot be applied to controlling the whole aircraft.
For example, route selection depends on scheduling algorithms. Air traffic
controllers in the wider system could not possibly depend on low-level control
techniques since they must handle tremendous quantifies of discrete relational
information. They do this using a mixture of geometric representation and a
model of the system expressed in natural language. This model is distributed over
the many maps, manuals and handbooks that human beings have used to impose
structure on the world's air space.

In general we would like to answer the questions: what exactly is a complex
system, and what systematic approach can be taken to controlling such systems?

Poul Anderson gave the following profound insight into the nature of complex
systems:

I have yet to see any problem, however complicated, which, when you
looked at it the right way, did not become still more complicated.

Anderson's comment leads us to reflect on the nature of human understanding
versus the objective complexity of the universe. Perhaps the best definition is that
a system is complex if you do not understand it. To some people the motor car
engine is a total mystery and they regard it as something very complex; to others
the engine is arelatively simple system. But then again, automotive engineers
who do know engines very well may consider them to be very complex in the
interaction of their geometry, chemistry and physics.

Engineers attempting to control complex systems should be aware that science is
not a body of neutral objective truth: science is a belief system and every bit as
likely to be wrong as a political belief system. If engineering control systems are
based on flawed beliefs then anything can happen. The more complex the system
the more unpredictable the outcome, as illustrated by epidemics, wars and
economics in social systems.

For many complex systems that people create there is no a priori scientific
knowledge. New systems evolve, or the research engineer invents a new system
about which nothing is known. Then engineering and science go hand in hand.
This is clearly illustrated by the development of information technology in which
fundamental research has been done in the attic or the garage by anyone
sufficiently interested or motivated, not just by professional scientists.

The question as to how to control complex systems should be seen in terms of a
closely related question: how can one analyse and understand complex systems?

309

VOLUME TWO

This is a research question which is beyond the scope of the book, but it involves
the following:

1 The system must be observed systematically and the data recorded according
to rigorous scientific standards.

2 The system must be explicitly represented in an appropriate vocabulary.

3 The relationship between time and the system's dynamics must be under-
stood.

4 Predictions about the system must be expressed in terms of the vocabulary
and time constructs.

5 A theory or model of a system is as good as the last successful prediction: one
incorrect prediction makes part or all of the model wrong.

The first of these requires no justification: one cannot control a poorly understood
complex system. The last of these is the scientific principle laid down by Karl
Popper: a scientific theory can never be proved to be correct, it can only be
demonstrated to be consistent with the observations made to date. One cannot
know if a new observation will contradict the theory, and there are many
examples in science of this happening. One day scientists believe one thing is
true, the next they must believe that it is false. However, science is relatively
stable due to its ideally high standards of evidence, and its insistence on
replicability in which scientists must report their experiments in a way which
enables others to repeat and validate them.

Prediction is the way that one tests theories, and the aim of control is to make
machines and complex systems behave in predictable ways. It is important to
realize that time is a social construct with many interpretations. Although atomic
clocks behave in a very regular way, human beings do not and sometimes
complain that time drags or that time flies: social time is different to clock time.
Many complex systems are mixtures of machines and human beings, e.g. road
systems, factories, mines and space stations. Often the system's own 'heartbeat'
defines an appropriate time in which to make predictions, rather than saying' such
and such will happen at a precise clock time on a precise day'. Complex systems
are controlled more strategically. For example, time is defined in terms of a
sequence of events so that Phase II can be correctly predicted to follow the
completion of Phase I, but the precise clock time for either cannot be predicted.

Representation is a major theme in artificial intelligence, and the second of the
points listed above is very important. All the information and knowledge built
into machines must be explicit, and this requires an appropriate symbolic and
numerical vocabulary to be constructed. Sometimes this is system-specific,
which means that the representation has to be custom-built for that system. For
example, in biological systems one refers to cells and cytoplasm, while in social
systems one refers to committees and regulations. However, there are many
constructs which are common to many systems. In particular, much of
the vocabulary developed in this book can be applied to a wide diversity of
complex systems and their subsystems. Furthermore, all the science and

310

CHAPTER 9: INTELLIGENT CONTROL

mathematics that one learns contributes to this general vocabulary, as indeed do
the arts, humanities and social sciences. The main contribution that this book
can make in enabling you to control complex systems is to give you the basic
building blocks, and to illustrate how they can be applied in some particular
cases.

The field of intelligent control is expanding rapidly. The use of neural networks in
control has produced a flurry of research activity all over the world, but perhaps it
is fair to say that at this time (1995) there are relatively few commercial appli-
cations of neural networks in control. Similarly, genetic algorithms have yet to
have a major impact but hold so much potential that it is difficult to imagine an
area of research where they won't find any use. In control, they could open up
new approaches to adaptive control and in particular self-tuning control where
parameters have to be adjusted in order to meet a performance requirement.

Fuzzy control is currently being introduced into all sorts of control areas - from
self-focusing cameras to cement works. Of particular interest is the hardware that
is being developed in Japan, where the FC110 Digital Fuzzy Processor has been
built. Clearly, when investment is made in designing new forms of hardware there
is almost certainly going to be a market for these devices. So the future looks
promising for fuzzy control.

As we've seen, in cases where conventional control can be applied there is no
reason to use intelligent control, in the example of the trolley and pole, conven-
tional control performed better than the recurrent neural network or the fuzzy
controller.

In this book we have presented some of the techniques from artificial intelli-
gence that can be used to design better machines. Many of these techniques
can be applied in the control of complex systems, but it is difficult to give a
recipe for how they can be applied to any particular engineering design prob-
lem. However, there are some features that will be common to most situations,
and it is possible to lay out some principles which can guide the design
process:

Construct an explicit vocabulary of the features, objects and properties of the
system. Any concept which is to be used will have to be well defined in an
operational sense, and making the vocabulary explicit will help to discourage
wishy-washy generalities which cannot be usefully implemented.

i~ Observe the system and try to record its behaviour in terms of the vocabulary.
Express this in a way that can be entered into the machine, e.g. tables of data,
rules and facts in a rule-based system.

311

VOLUME TWO

I~ Try to quantize observations so that they can be weighted in terms of
probability and/or fuzzy set membership.

i~ Identify subsystems. Attempt to devise relatively independent control strate-
gies for them.

i~ Try to understand how subsystem variables aggregate into variables at higher
levels.

i~ Construct deterministic tactics to cope with well understood local problems.
If conventional control techniques are applicable, then use them.

i~ Optimize where possible in subsystems, but beware of hill climbing into a
local optimum which is not a global optimum solution for the whole system.

i~ Beware of being absolutely deterministic - have a random element to allow
you to jump out of a bad situation.

I~ Decide whether to expect to implement a top-down control strategy, or
whether you intend to let the system behaviour emerge from relatively
independent subsystems.

The importance of intelligent control is that it becomes possible to control
systems where conventional control is not possible, rather than to compete with
conventional control. We can therefore expect to see many new developments in
intelligent control applications in the future.

Further reading

In this chapter we come to the frontiers of knowledge on how to model and
control complex systems. This has been a very active area of research over the last
fifty years and many penetrating insights have been gained. John Casti has put
together a highly accessible account of these theories, ranging from the basic
principles of modelling and beliefs, to catastrophe theory, cellular autonoma,
chaos and discrete dynamics, game theory, brains and minds, classical control,
computation, and complex systems.

If you want to know more, the following books are highly recommended:

Casti, J.L. (1992) Reality Rules I: Picturing the world in mathematics- the fundamentals,
John Wiley & Sons, Chichester.

Casti, J.L. (1992) Reality Rules II: Picturing the worm in mathematics - the frontiers,
John Wiley & Sons, Chichester.

312

CHAPTER 9: INTELLIGENT CONTROL

The control strategies and results reported in this chapter are based on work done
by our colleagues Nick Hallam and Neil Woodcock.

Ashby, W.R. (1956) An Introduction to Cybernetics, Methuen & Co., New York.
Barto, G., Sutton, R.S. and Anderson, C.W. (1983) 'Neuronlike adaptive elements that

can solve difficult learning control problems', IEEE Trans. on Systems, Man and
Cybernetics, Vol. SMC-13, No. 5, September/October, pp. 834-846.

Widrow, B. and Smith, F.W. (1964) 'Pattern recognising control systems', In: Ton, J.T.
and Wilcox, R.H. (eds) Computer andInformation Sciences, Spartan Books, Cleaver
Hume Press, pp. 288-317.

313

CHAPTER 9: INTELLIGENT CONTROL

The control strategies and results reported in this chapter are based on work done
by our colleagues Nick Hallam and Neil Woodcock.

Ashby, W.R. (1956) An Introduction to Cybernetics, Methuen & Co., New York.
Barto, G., Sutton, R.S. and Anderson, C.W. (1983) 'Neuronlike adaptive elements that

can solve difficult learning control problems', IEEE Trans. on Systems, Man and
Cybernetics, Vol. SMC-13, No. 5, September/October, pp. 834-846.

Widrow, B. and Smith, F.W. (1964) 'Pattern recognising control systems', In: Ton, J.T.
and Wilcox, R.H. (eds) Computer andInformation Sciences, Spartan Books, Cleaver
Hume Press, pp. 288-317.

313

This Page Intentionally Left Blank

C H A P T E R 1
C O M P U T E R

0
V I S I O N

Figure 10.1 shows a digital image. It is an array of numbers called greyscales
associated with an image. Each of the cells in a digital image is called a picture
element, or pixel. Usually the greyscales are interpreted in terms of brightness:
pixels with large numbers are bright, pixels with smaller numbers are darker.

Computer vision attempts to answer the following questions:

(1) Can any objects be recognized in the digital image?

(1.1) Where is each object?

(1.2) How big is each object?

(1.3) How is each object oriented?

(2) Do the recognizable objects make up other objects?

(2.1) Can a scene be recognized?

(2.2) Can we recognize objects and scenes:

when bits are missing through occlusion (part of an object is hidden
behind another object),

when bits are missing through poor image quality,

when spurious bits are added through poor image quality?

Before you read on further, take a few minutes to try to answer questions (1) and
(2) for the image in Figure 10.1.

315

VOLUME TWO

A Figure 10.1
A digital huge.

159

1 9

140

155

153

1.52

146

1YZ

161

1.55

I!>/

155

167

157

' 149

140

161

149

156

1 5 i

157

155

155

152

156

152

150

155

153

160

I57

150

1YY

161

1.55

150

157

153

16U

184

156

153

158

l f i l

156

1t.U

160

159

l l d

lG1

166

143

155

160

160

159

164

164

161

160

159

158

161

13;r

153

157

139

165

15R

157

15/

161

167

161

160

155

158

160

159

156

158

1fiO

153

133

160

156

15.5

155

167

151

.152

158

1fiR

163

169

168

1G4

10G

163

153

161

i w

155

164

199

150

190

158

lb5

160

157

154

154

152

160

180

160

1Yd

181

161

159

153

157

164

154

155

161

163

.160 ~

163

168

160

15G

160

139

137

136

129

135

i s u

141

Id7

145

148

146

157

155

156

?5A

155

155

156

156

156

IS7

148

151

157

1%

l h l

159

166

15?

159

160

161

183

161

157

136

120

104

92

74

33

85

32

i w

110

118

125

137

143

152

1 W

164

1FJt

148

153

1.17

164

155

160

155

158

161

156

154

1%

163

153

155

151

I55

164

167

1251

111

90

7'2

70

54

60

73

64

uz

78

R?

YY

118

131

149

ltjO

168

162

153

156

153

163

152

ISR

1Yd

155

163

145

162

1s;

168

160

758

160

167

150

137

117

A4

72

77

79

81

03

78

7 3

c;e

57

51

IjU

87

117

1ZB

151

167

1hR

151

l ' ~ 3

151

162

181

1%

159

156

1%

161

158

156

154

150

162

I54

160

1%

156

1%

1G7

163

166

168

138

110

8 6 '

5d

87

07

94

91

86

91

u~

65

54

59

72

93

113

198

IS6

lh f l

157

11i3

157

152

155

IS1

152

15t

157

100

172

146

105

84

75

76

72

70

74

70

74

(I

73

68

BCJ

63

74

ZU3

114

130

161

156

1 ~ 7

157

153

152

1%

1%

101

l f io

197

129

A4

83

71

80

90

73

83

85

82

ur;

85

R3

83

70

77

81

1U1

121

154

163

157

160

151

151

15A

154

184

1fi5

154

1 6 Y l i 1 1 '

87

78

71

77

81

100

120

122

126

122

lo2

96

Od

86

83

71

79

68

107

139

162

157

156

157

156

15.7

15;

145

147

128

112.'

80

40

78

93

117

134

151

150

155

1%

122

110

YY

84

R?

77

84

86

l3il

163

1G4

-,
161

154

155

1.51

lY2

133

136

1lG

911

86

R4

92

100

138

153

148

152

157

159

14v

111

129

108

R1

71

71

/5

81

118

153

161

-
161

157

157

14R

154

133

114

105

98

87

94

102

122

147

159

153

155

157

156

135

151

l d l

116

Ba

65

71

I 1

76

l ln

152

lGlj

. .
1GO

154

155

147

14/

136

115

95

. 85

8.1

92

97

123

163

157

154

151

160

158

i u u

155

117

12b

92

6R

70

68

61

103

147

1G3

.
157

160

155

153

153

141

112

96

78

81

A4

98

12G

159

161

159

154

158

158

r t ; l

160

151

135

102

74

79

/tc

63

116

152

164

.

I61

181

150

156

l d i j

138

111

89

'dl

06

119

100

125

155

163

153

158

156

161

101

165

192

1x2

111

R.7

71

W

80

176

1 H

164

156

158

154

150

14Z

142

117

101

YU

05

100

103

119

153

162

151

161

169

167

ifjy

171

155

14/

116

!TI

78

85

101

139

175

142

155

134

153

153

156

144

130

109

t i Y

87

R3

91

109

1.12

151

155

157

182

16r

1g.t

156

141

1AJ

108

R1

81

81

ID4

I F 2

174

158

153

151

150

155

l t jd

163

148

196

152

150

154

l b /

1SB

153

137

93

01 87 101 113 112 122 137 163 167 163 157 159

151

155

167

l!$d

157

163

143

A A

96

105

I28

149

157

163

162

162

i > b

131

12R

lU3

104

7R

8A

tl5

114

155

IRR

150

150

94

M

85

108

126

133

144

144

133

1 w .

106

99

89

87

R?

78

94

128

15R

164

152

149

1M

80

70

66

141

114

121

119

14'1

99

95

70

85

74

79

77

lU2

131

167

158

151

150

104

86

82

83

90

06

94

89

h6

89

91

84

#I)

75

77

61

118

111

154

158

153

151

97

94

87

82

85

05

84

91

RR

HS

H4

RE

7d

74

RR

9 7

1%

146

148

156

Id9

149

106

95

YO

62

89

90

tJ8

99

93

86

H2

78

73

80

97

191

143

155

161

160

153

151

118

R6

8U

76

83

&J

W

BB

fld

61

W

83

RR

108

120

i4D

161

152

149

156

156

152

145

123

111

I03

35

57

YU

86

R 9

81

YP

107

17.5

131

142

153

155

153

163

157

159

157

155

152

141

136

123

110

111

113

119

122

191

138

747

143

144

157

155

154

162

161

157

159

162

15.9

l 5 i

155

IS1

142

142

1.1.1

147

147

148

118

156

150

151

164

159

159

155

161

162

15B

158

152

13;'

156

1.57

151

159

150

153

14s

144

119

l h 2

151

162

161

155

155

151

155

158

155

1

156

157

153

162

159

155

159

153

169

153

151

157

154

158

156

15.8

162

161

155

159

163

16'

CHAPTER 10' COMPUTER VISION

Faced with the question 'Can any objects be recognized in the digital image?', an
understandable response could be a peeved 'How do I know, it could be
anything!' Fortunately, in most applications of computer vision we know quite a
lot about the image already. For example, if the image comes from a satellite we
would expect it to contain objects which differ from those in a medical image. As
it happens, the object in Figure 10.1 is common in an industrial manufacturing
context. Does this, and the hint that there is just one object, help you to decide
what it is?

Figure 10.2 illustrates the kinds of problems you may have encountered when
trying to interpret Figure 10.1. Inspection of the greyscale numbers in Figure 10.2
shows there is a marked vertical column of low values in the centre of the image.
This suggests there is a dark object against a lighter background.

One approach to finding out what is in the image is to reduce the complexity of
256 different grey levels to just two, i.e. to make the image binary. This
simplification to black-and-white is known as binarization. Figure 10.3(a) shows
the central part of the image in Figure 10.2: all those pixels which have greyscales
less than or equal to 140 are shown in black. Binarization thus reveals part of a
long thin object here.

Suppose it is known that the image may contain one or more of the following
objects: washers, pins, nuts, bolts, screws, wire, bar codes and ball beatings. Can
it be decided which of these objects is present in Figure 10.3(a)? Intuitively, the
choice can be narrowed down to pins, bolts and screws, because they are all long
thin objects with a head. Of these, the screw is an unlikely candidate because the
sides of the object in the image are almost parallel. A bolt is less likely than a pin
because of the lack of serration at the sides (which would be manifest as an
irregularity of edge at this level of resolution of about 100 pixels to the inch). So it
can be concluded that the object is a pin. Even so, it does not look much like a pin.

Suppose we try to improve the image by changing the threshold from 140 to 160
greyscale units, as shown in Figure 10.3(b). Then the head of the pin becomes
more blob-like, and the shaft has parallel sides. But how is the best threshold
chosen? Unfortunately there is no single answer to this. If the threshold is chosen
to be just ten greyscale units above 160, the information in the image begins to
disintegrate as shown in Figure 10.3(c).

In bench experiments like this, one can adjust parameters such as the threshold
and observe what happens. In engineering practice we cannot afford the luxury of
machines whose performance in any particular case is very sensitive to the setting
of parameters. In general, one seeks vision techniques that are invariant to
variables such as ambient light, which can change the greyscale levels in an
image considerably. Even the signal from a video camera changes through time

317

VOLUME T W O

172 169 ' i 7 3 '1'68 1721171 175 172 172 169 172 166 166' 166 166 167 ' 168 169 166 '169 175 171' 166 169 168 168 166 - 171 [165 172 171 "
/

170 176 173 162 166 170 176 170 168 165 173 172 172 164 170 177 174 171 172 170 166 171 173 174 170 177 169 172 170 172 169

i '
177 169 166 167 176 165 170 167 i68 ~ 169 171 166 170:171 168 "169 173 171 170 171 165 168 167 168 165 173 'i76 180 '169 173 175

166 169 170 16i 168 171 17i 168 169 163 i71 168 166' 163 168 169 170 170 165 163 165 166 166 170 166' 171 166 "169 166 174 171
i

1 7 2 1 6 7 i70 166 170 168 170 165 170 168 168 165 168 i63 165 167 i68 169 172 i70 164 168 168 169 164 176 175 '172 166 168 165

170 169 "169 167 168 172 177 166 166 171 177 169 i66 165 168 169 178 173 166 163 164 166 163 169 170 171 167 172 166 172 173

171 i70 166 166 172 168 171 170 " 176 171 172 170 '174 170 17i 174 172 168 166 170 170 169 162 163 168 174 166 168 164 170 168

169 164 163 166 169 i67' 175 166 165 168 172 167 170 166 1'64 "165 168 171 170 166 164 167 162 164 165 172 165 168 166 170 169

176 171 '"172 166 172 170 174 169 i66 i66 172 170 i72 168 161 154 160 171 1'72 173 170 168 161 160 163 168 166 170 i68 171 176
=

i74 167 1 6 7 165 171 170 174, 169 172 169 172 176 172 154, 146 142 142 1 5 6 [i 7 4 176 169 170 163 166 169 174 161 169 171 174 170

176 i66 168 169 172 166 175 168 167 171 183 159 160 133 '115 112 114 131' 160 173 169 170 167 168 170 174 172 175 171 174 170

174 170 170 165 167 163 170 166 i68 168 175 173 165 124 78' 71 83 114 144 163 165 i161 161 167 170 175 169 171 167 172 170

1'69"163 167 163 167 164 170 165 164 166 170 167 156 114 59 45 65 100 139 162 159 163 165 165 167 174 169 171 169 171 166

172 168 169 167 173 168 172 166 167 167 175 168 165 134 66 1 69 130 150 158 165 170 167 168 171 176 173 172 167 173 175:

i'70 167 172 166 1 7 4 1 6 9 175 172 167 163 176 172 174' i50 77 0 74 150 165 163 171 174 168 166 167 173 167 169 '171 173 174

171 168 169 166 173 171 178 173 166 '166 177 174 173 i59 88 0 61 151 168 159 164 172 166 168 166 172 167 166 164 170 168

,
178 172 172 168 167 163 173 170 170 169 178 181 183 162 88 2 53 152 170 162 167 172 t67 165 166 173 170 172 167 169 168

169 170 176 i71' 177 174 175 171 169 168 177 175 '183 171 102 2 51 155 176 i66 164 172 173 172 167 175 175 173 171 i78 174

i 174 170 172 168 173 168 177 1721165 170 181 175 177 170 95 1 58 154 172 164 166 172 167 166 165 170 172 173 167 172 173

,,
167 164 167" 165 174 169 ' i75 172 170 169 178 174 180 168 99 4" 33 150 172 159 162 i68 169 170 170 1 7 5 176 178 169 '167 170

176 170 169, 168 176 169 176 171 165 "169 178 173 177 166 97 2 43 151 '176 164 164 173 173 173 174 176 171 170 167 i70 168

172 166 t74 ;171 180 175 181 175 168' 168 177 177' 183 169 106 0 38 1 5 2 1 7 5 164 168 i78 174 173 171 174 171 173 169 175 172

173 168 167 171 177 168 175 171 171 168 178 i73 178 165 98 1 39 150 177 163 1 6 6 1 7 3 175 173 171 178 171 173 171 175 171

....
173 167!~174 168 170 170 '176 166 164 170 176 177 182 168 111 1 27 147 175 159 158 17ff 171 167 165 175 173 174 171 177 172

i
171 166 168 168 173 164 173 169 167 169 178 177 183 167 105 3 29 145 173 162 165 173 169 166 163 171 169 171 169 173 172

175 171 173 ""172 174 168 i176 172 168 164' 173 175 177 173 112 2 29 141 170 161 160 168 169 167 168 176 171 173 170 176 174

175 171 173 151 178 169 172 174 170 167 175 176 180 '1'70 120 7 18 141 176 165 164 172 168 168 165 173 171 175 171 178 174

171 166 168 167, 172 165 175 173 170 171 177 175 178' 173 116 0 19 140 172 15'9 158 170 i'68 168 167 173 169 170 167 170 166

1691171 172 '163 170 168 171 169 169 167 173 176 179 172 125 2 12 137 176 160 157 168 167 168 165 175 167 171 173 172 167

177 168 172 173 176 170 178 173 163 1'69 180 176 179 177 128 3 9 136 174 163 164 174 172 173 170 173 170 173 168 172 170

172 169 172 164 169 170 171 169 170 168 176 175'1'82 175 136: 1 8 137 179 165 161 174 169 165 170 174 165 170 169 172 168

. i

Figure 10.2
Another digital image. Is it a washer, a pin, a nut, a bolt, a screw, a bar code, a ball bearing, or a piece o f

wire?

due to noise created by its internal circuitry" no two digital images are exactly the
same. Vision techniques which cannot cope with this and other uncertainties will
not be robust in practice.

One way to understand how to abstract information from a given class of digital
images is for the vision engineer to study displays of them on a monitor.

318

CHAPTER 10: COMPUTER VISION

A Figure 10.3 Binarr'zr'f~g the image qf a pin with difJerent tltresi2oM levels:
(a) phels with greyscalcs < 140 are black, (X i) pixels with greyscabs < 160 are Black,
(cj pixef,s wwith greyscales < 170 are black.

VOLUME TWO

Figure 10.4 shows a computer screen display of a whole image of the pin, and
Figure 10.5(a) shows an enlarged display of the head of the pin. Note a common
problem in computer vision: part of the head of the pin is missing due to a
reflected highlight. Of course, you know that the head of a pin is solid, but the
computer does not unless given this information. Similarly, in Figure 10.5(c) the
'point' of the pin does not look very sharp in the image.

Although binarization and greyscale techniques can be used to create displays of
digital images, in computer vision one is not primarily interested in creating
pictures. The task is to abstract usable information from digital pictures. In
practice this usually means going from the greyscale array to a string of symbols.
These symbols might be alphabetical, such as the word 'pin', or they might be
numerical, reflecting an encoding of the class of the object or the value of some
parameter associated with it. Converting greyscale images to binary images is a
stage in simplifying the image by classifying the pixels as either black or white. In
subsequent algorithms one can use tests such as: 'if the pixel is black then do
something, if it is white then do something else'. Binarizing images loses
information, of course, and the design engineer should ensure that essential
information is not likely to be lost before adopting this approach.

Returning to the fundamental questions of computer vision posed in Section 10.1,
question (1.1) can be answered by saying that the object is located at a certain
position in the image, for example at the pixel in the 369th column of the 290th
row. But what does this mean? The object typically occupies quite a large number
of pixels. If you want to know where the pin is, you must first define the concept

Figure 10.4
Digital image of a pin.

320

CHAPTER 10: COMPUTER VISION

Figure 10.5
Enlargement of the pixels in
the image of the pin in
Figure 10.4.

321

VOLUME TWO

of position in an operational way. For example, you might define the pin to be in a
position determined by the centre of its head and its point. Then four numbers

determine its position: (Xhead, Yhead,Xpoint,Ypoint). This is a simple but fundamental
fact: you must determine the representation for the information that computer
vision will produce. Given our definitions, the position of the pin's head can be
established to within about one or two pixels. This may be sufficiently accurate
for some purposes, in which case this would be a good method to use (it is simple
and computationally inexpensive). However, it may not be accurate enough for
other purposes. Simple thresholding as in Figure 10.3 is usually useful for only
the most simple applications of computer vision.

One can begin to answer question (1.2) of Section 10.1 by putting dimensions on
the pin: it is about three or four pixels wide, i.e. about 3.5 pixels divided by 100
pixels per inch = 0.035 inches. Using a micrometer it is found that the pin has a
diameter of about 0.67 mm, which is about 0.026 inches. This is an error of about
35%, which suggests that the threshold was set too high. Nevertheless, this shows
that computer vision can be used to make measurements. This approach could be
used to calibrate a vision system with appropriate thresholds, but this usually
means having to invest a considerable effort in keeping illumination and other
factors constant. Another approach is shown in Section 10.5.2 which can give
much more accurate measurements in a wide variety of external conditions
without the need to calibrate to find appropriate thresholds.

Having established a geometric representation for the pin through the positions of
its head and point, to answer (1.3) one can define the orientation, for example, in
terms of the angle the line between those points makes with the horizon.

in answer to question (2), in this case the pin can be considered to be made up of
three sub-objects - its head, point and sha f t - but at the moment we have no way
of discriminating 'head' pixels from 'shaft' pixels.

There are many sources of digital images, including some of scenes that cannot
normally be seen with the unaided eye. Television cameras provide one of the
most widely used sources of images, but currently (1995) there is a mis-match
between analogue television technology and digital computers. In order to obtain
a digital image from a television camera one must digitize the analogue signals
from the camera using special hardware.

322 .

CHAPTER 10: COMPUTER VISION

10.3.1 Images from television cameras
Figure 10.6 shows how one line of a television signal has been digitized to form
one row of pixels for a digital image. In general, one needs special analogue-to-
digital conversion hardware to convert the output of a camera into a form that can
be accessed by a computer. Typically, the signals from the camera are plugged
into a special graphics board inside the computer which converts the signals to
digital form, stores the data in its on-board memory, and enables them to be
displayed on a monitor.

The signal from a television camera may be encoded as a PAL video signal on a
single sheathed wire such as that used to can3, a signal to a television set. Some
cameras output separate red, green and blue signals on one wire each, often with
another wire carrying timing signals for synchronization. Such an output is called
RGB, and it gives a better quality image than video. In fact, the video signal is a
combination of the RGB data carried on a single waveform which can be sent
along a single sheathed wire cable. The PAL signal has to have the RGB
information components separated out (decoded) in order to drive the separate
red, green and blue electron guns of the colour cathode ray tube (CRT).

Britain uses the PAL system, in which a TV camera produces 25 frames per
second. It does this by producing two interlaced scans of alternate lines, each
scan taking 1/50 second, with a frequency of 50 Hz. Contemporary television
technology satisfies millions of domestic viewers but is not ideal for scientific
and industrial applications. For example, interlacing can cause jitter which is
uncomfortable for operators. This television technology is the result of incremen-
tal changes in standards over some fifty years and may be coming to the end of its
life. Although it may take some years to become the domestic standard, high-
quality digital television is set to take over.

When an image from an RGB camera is digitized, we either (1) take an 'average'
of the red, green, blue values to produce a monochrome image with one number
per pixel, or (2) take one value each for red, green and blue to produce a digital
image with three greyscale numbers per pixel.

10.3.2 Simon's Three-Pixel Principle
Figure 10.6 illustrates a very important limitation on television technology due to
sampling considerations, as discussed in Chapter 3 of Volume 1. In practice it is
never possible for a camera to respond to a perfect edge with a drop from the
maximum greyscale to the minimum greyscale. As shown in Figures 10.4 and
10.5, the edges of the pin get blurred, and instead of the idealized vertical-sided
waveform shown in Figure 10.7 the camera delivers a 'V' shaped wave. This is
due to the way that the camera samples the greyscales at points, and the
inevitability that light from neighbouring pixels will enter the camera when a

323

200 t
180

160

140

60

= 120
�9

N 100
r ~

~ 80

40

20

140

position of pin
lying vertically
in the x-y plane

white background

(a) Analogue signal delivered by the camera

200 !
1 8 0 ~

160
white background

_

_

_

= 120

100

80

60

40

20

VOLUME TWO

position of pin
lying vertically
in the x-y plane

(b) The signal converted to discrete digital form

white background

Figure 10.6
Converting continuous
signals from the camera to
discrete digital form as the

x greyscales of a row of pixels
in a digital image.

given pixel's greyscale is being sampled. We call this Simon's Three-Pixel
Principle after Jean-Claude Simon (pronounced 'Seemon'), a French pioneer in
computer vision and pattern recognition (Simon, 1986).

Simon's Principle says that 'if an object can be detected in an image, then the
response to that object must be reflected in the greyscale values of at least three
pixels'. So, if a satellite image showed a dark tarmac road in the light sand of the

324

CHAPTER 10' COMPUTER VISION

desert, no matter how high the satellite or how narrow the road, you would either
detect the road over at least three pixels in any direction, or you would not detect it

at all.

Theoretical suggestions that the road might be imaged as exactly one pixel wide
by greyscales such as ... 100, 100, 99, 100, 100 are confounded by the
problem that cameras cannot produce such precise images. The signal-to-noise
ratio of a camera is a measure of the degradation of the image within the
instrument itself. Typically a high-quality RGB camera will produce a signal with
+_4 greyscale units out of 255. This represents an error of 1.6%, which corre-
sponds to a signal-to-noise ratio of 36 dB. Human eyes cannot usually detect a
difference of one greyscale between two adjacent pixels.

Simon's Three-Pixel Principle raises the important question as to what theoretical
limitations there are to locating objects in images. Is it three pixels? The answer to
this question is emphatically no. In an industrial context the authors have
developed a method of computer vision which detects objects to sub-pixel
accuracy. How can this be possible in the light of Simon's Three-Pixel Principle?
The answer is that, while the information that defines an object must be spread
over three or more pixels, the object itself is located within some particular pixel.
One speaks of the support of the object being detected. Usually the support
consists of many pixels in the region of the object. Each of them contributes some
information to the object-detection process. For example, the method described
later in Section 10.5.2 effectively integrates and distils the information from
many pixels to give very precise, sub-pixel-accurate, positioning of the edges of

objects.

I I response to

I I idealized response

~ to the pin

I I I I I I I I I I i I

3 pixels

Figure 10. 7
Illustration of Simon's
Three-Pixel Principle: any
object that can be detected
in an image must be at least
three pixels wide.

325

VOLUME TWO

10.3.3 Humans' astonishing ability to read images
Computer vision has turned out to be an extraordinarily difficult problem. One
reason for this is that humans constantly underestimate the difficulty of the
problem because our own vision system is so spectacularly good at abstracting
information from images. For example, Figure 10.8(a) shows a digitized image of
part of a portrait of Pope Paul III, painted in the sixteenth century by Titian
(1488/90--1576). As you look at the Pope's eyes in the digital image in Fig-
ure 10.8(a) there appears to be an abrupt change from the black pupils to the
whites. The enlargement of his fight eye in the digital image shown in Fig-
ure 10.8(b) shows that the transition from black to white is much more messy than
one might have imagined.

Figure 10.9(a) shows a digital image of a selection of screws, bolts, washers, and
tags. If you look at the long bolt in the top-left of the picture you will probably be
able to see the serrated edge of the screw thread quite clearly. However, if you
look at the enlargement in Figure 10.9(b) of the part in the white rectangle you
will see that the sharp edges of the thread appear over three or more pixels at this
level of resolution (cf. Simon's Three-Pixel Principle). It can also be noted that
the bolt does not create a set of pixels of homogeneous greyscales. In fact there is
a highlight along its length, and it would be easy to mistake the 'half' of the bolt in
Figure 10.9(b) for an entire but thinner bolt. You are unlikely to make such a
mistake, but then you have a vision system which involves a large part of your

(a) Digitized image of Titian's portrait of Pope Paul III (768 • 576 pixels)

326

CHAPTER 10: COMPUTER VISION

brain and which has adapted and been perfected over millions of years of
evolution.

For many centuries artists have been fascinated by our human ability to 'read'
things into pictures which, on closer examination, are not as explicit as we think.
At the end of the last century the 'Impressionist' school of painting emerged
which exploits to the full our ability to read things into pictures. Figure 10.10(a)
shows a digitization of part of Renoir's painting of a boating party. Fig-
ure 10.10(b) shows an enlargement of the pixels of the fight eye of the girl in the
centre of the picture. At this level of detail it is very difficult to read the expression
in the gift's eye, compared to the beauty and the emotions it conveys when put in
the context of the whole face and the whole scene.

Human beings get tremendous enjoyment out of the miraculous behaviour of
their vision systems, and we use our vision so effortlessly that it is tempting to
think that vision is a simple process. It is not.

The point is further illustrated by the images of eight British postage stamps in
Figure 10.11 (a). Below these is an enlargement of the pixels making up Queen
Elizabeth's eye and nose. It is unlikely that you would have recognized this
outside the context of the whole portrait, which itself is highly stylized. You
might find it easier to 'see' the Queen if you screw up your eyes or look at
Figure 10.1 l(b) from a distance.

(b) Enlargement of the pixels making up the right eye of Pope Paul III

Figure 10. 8
Enlargement of the
pixels making up the
right eye in Ti~n's
portrait of Pope
Paul III.

327

VOLUME TWO

(a) Digitized image

(b) Enlargement of the edge of the long bolt

Figure 10.9
Digitized image of
small objects (screws,
bolts, washers and tags)
showing the serrated
edge of a bolt.

328

CHAPTER 10: COMPUTER VISION

(a) Digitized image

(b) Enlargement of the girl's eye

Figure 10.10
A close-up of the pixels
making up the eye in
the Impressionist
painter Renoir's 'The
Luncheon of the
Boating Party"
Reproduced with the
permission of The
Phillips Collection,
Washington, D.C.

329

VOLUME TWO

(a) Digitized image of eight postage stamps

(b) Enlargement of the pixels making up Queen Elizabeth's eye and nose

Figure 10.11
Enlargement of the
pixels in a postage
stamp. Reproduced by
permission of Royal
Mail.

330

CHAPTER 10: COMPUTER VISION

The digital images in this chapter suggest that it may be difficult to get a computer
to do a fraction of what our eyes and brains do so easily. Nevertheless, computer
vision is not an overwhelming challenge provided one adopts a rigorous scientific
approach.

10.3.4 The generality of digital images
There are many sources of images, such as sensor arrays or scanning sensors. The
sensors and transducers detecting one pixel's worth of information may be
detecting light, as in the case of the television camera, or they may be detecting
other phenomena. For example, sensors detecting the strength of magnetic fields
may deliver magnetic images, sensors detecting pressure may deliver a pressure
image, sensors detecting acid/alkali pH values may produce a pH image, and so
on. In fact, it is remarkably easy to create digital images from simple sensors, as
illustrated in Chapter 4 of Volume 1 by the example of a 'scanner' which uses
eight pieces of wire.

Some of the non-light-based sources of images will deliver values on a scale
which, by an abuse of language, we call greyscales. Others may deliver yes/no
information and so give us a binary image. Once the image data is inside a
computer's memory, the problem of abstracting useful information from a mosaic
of 'coloured' dots is the same irrespective of the origins of the images.

Document scanners are becoming a major source of digital images. These work at
a variety of resolutions, with 200, 300 and 400 dots per inch (d.p.i.) being
common. Colour scanners are available which typically allocate one byte of data
storage for each of the red, green and blue components of the image. A major
problem with this kind of image scanning is the huge amount of data it creates. A
typical page, without data compression, will generate some 8 inches x 300 d.p.i. •
10 inches • 300 d.p.i. • 3 bytes per pixel = 21.6 megabytes.

Although most people encounter these devices in the context of capturing images
or text for desktop publishing, they have a wide range of applications in
information processing systems. For example, commercial devices can be pur-
chased for a few thousand dollars which 'read' credit card slips in a fraction of a
second. Typically these machines read at 200 d.p.i, and one byte per pixel. The
great problem is then to abstract useful information using computer vision, as will
be discussed later in Section 10.5.3.

In many applications the speed of the available imaging devices can determine
the feasibility of whole systems. Television cameras and associated frame-
grabbing hardware can produce images at a maximum 'real time' rate of 25 per
second. Against this high imaging rate is the disadvantage that domestic TV
technology limits images to about 768• 576 pixels. Although this pixel resolu-
tion is relatively low, combined with 24 bits per pixel (8 bits each for the red,
green and blue image information) this technology delivers very high-quality

331

VOLUME TWO

images according to subjective judgement of our eyes. Colour document scan-
ners also deliver very high-quality images, but they can be slow. The general
principle is that it will take longer to produce higher quality images which have
more dots or colours.

Computer graphics and computer vision are highly inter-related but are different
disciplines. Lay people often confuse the two because both involve digital images
which can be displayed as pictures on computer screens. The important differ-
ence between the two is summarized in Figure 10.12.

computer graphics
data image

computer vision

~l Figure 10.12
Computer vision and
computer graphics are
complementary but different
disciplines.

10.4.1 Computer vision and computer graphics as
complementary disciplines

In computer graphics data are used to create pictures as exemplified by, for
example, the case of computer-aided design (CAD). In computer vision one starts
with a pictureand attempts to abstract data from it. Computer vision is orders of
magnitude more difficult than computer graphics. Usually experts in computer
vision are also experts in computer graphics and use this expertise to create
graphic user interfaces (GUIs) which make their vision products easier to use and
more attractive.

10.4.2 Representation and CAD data structures
Disciplines such as CAD have pioneered some important ideas for computer
vision related to representation. It is easy to say that one wants a robot to 'see' a
mechanical piece, but this begs the question of the robot's internal representation
of that piece. For some applications the representations developed for CAD make
an appropriate target language for computer vision. For example, a curved object
might be recorded as a small number of x-y points which can be used to create a
parameterized curve called a B-spline, which is an approximation to the edge of
the object. This representation is different to one which simply records a lot of
short lines sufficiently close together to give a piecewise linear approximation to
the original curve.

332

CHAPTER 10: COMPUTER VISION

10.4.3 2-D vision and 3-D stereo vision
Almost all digital images are two-dimensional, reflecting the geometry of the
sensing devices and the way scenes are imaged. In many applications it is
possible to abstract the required information from the two-dimensional image,
but in some applications it is necessary to reconstruct the three-dimensional scene
from the image to obtain symbolic and parametric information in three-
dimensional coordinates.

Given various hypotheses about the nature of the scene, one can abstract
3-D information from a single image. In fact, the principles of reconstruction
from perspective date back to Leonardo da Vinci (1452-1519). Geometric
considerations put a limit on how much 3-D data can be reconstructed from a
single 2-D image, especially when there is limited perspective information
available in the image. However, stereo-imaging allows powerful 3-D imaging,
as our own 3-D binocular vision illustrates. Computer-based stereo imaging
involves, for example, two cameras with known vision and geometric properties
arranged so that their 2-D pixels can be correlated. Various algorithms are then
used to recognize objects and reconstruct some 3-D data. The details of this are
beyond the scope of this book.

In computer vision one must be clear which data are actually required in any
particular case. Once this is known the engineer can choose the least expensive or
most effective way of delivering that information (assuming it is possible).

The simplest information one can demand of a vision system is whether an object
is present or not. Domestic security lights triggered by infra-red radiation
illustrate a very simple present/not-present system. The 'image' has a single
pixel which can have two states: 'red' or 'not-red' according to the single infra-
red sensor. The purpose of such a system is to detect and discourage 'intruders'
and provide illumination for legitimate visitors. These systems have very poor
discrimination, and they are frequently triggered in error by cats or other animals.
Since in most cases there is a low cost to erroneous recognition, these systems are
regarded as satisfactory for their purpose.

10.5.1 Detecting insects in a digital image using neural
networks
In some cases the cost of erroneous recognition may be unacceptably high, and
the vision system must be more discriminating than the simple infra-red sensor.

333

VOLUME TWO

To illustrate this point consider a machine whose purpose is to kill some
undesirable insects by ultraviolet irradiation but not to kill other benign insects.
Let us suppose that the insects of interest are the following, as illustrated in Figure
10.13:

W wasp G greenbottle

F fly f blowfly

B bee L ladybird

How can we begin the job of recognizing these objects in an image? What
information can we use? Of many possibilities, we might immediately think of
characteristics such as colour, shape, size, movement pattern, speed, and so on.
As always in computer vision, these things are easy to say but much more difficult
to pin down in an explicit representation. For example, how would you set about
representing the concept of insect shape within a computer? It can be done, but, of
the various possibilities, colour is one of the easiest characteristics to represent
and we will see how far one can get using colour information alone.

One of the first problems is distinguishing the objects of interest (the insects)
from objects of no interest (the background). As Figure 10.14 shows, the back-
ground can be very complex, and in the case of flowers it can move around
considerably. Thus the problem of deciding if the image contains a bee is
compounded by the problem of knowing what else the image contains. A simple
solution to the problem of background clutter is to constrain the system so that the

~[Figure 10.13
Six types of model insects to
be recognized by computer
vision.

334

CHAPTER 10: COMPUTER VISION

Figure 10.14
The first problem in computer vision: discriminating objects of interest from" the
background clutter.

background is fixed and simple. So suppose that the machine will have a platform
on which the insects will walk, and suppose that this platform will be of a constant
light blue colour which allows the pixels to be classified as either background or
insect with reasonable fidelity. In practice, of course, some pixels are mis-
classified so that in the following experiments some background pixels have their
data included in the 'insect' statistics, while some genuine insect pixels have got
lost in the background. Such 'filtering' of pixels into object and background
immediately degrades the quality of the information available, but in this case the
degradation is not critical.

335

VOLUME TWO

Having abstracted a set of 'insect pixels' from the image, suppose that the
greyscale values from a colour camera can be used to classify the pixels into one
of the following colours:

Red Green

Yellow Ochre

Black White

so that each insect will have its pixels assigned to these six classes. Table 10.1
shows the pixel frequencies for six pairs of model test insects for each of these
colours. Not surprisingly, the ladybirds have the highest numbers of red pixels,
the wasps have the highest numbers of yellow pixels, the greenbottles have the
highest numbers of green pixels, and so on. However, not all the insects can be
classified by having predominance in one colour. For example, honey bees are
mostly black but have a yellowy-brown 'ochre' colour. Even though this colour
characterizes the bees, their ochre count is less than that of the wasps whose
bright yellow becomes this ochre colour in certain lights and shadows.

TABLE 10.1 PIXEL FREQUENCIES BY COLOUR FOR SIX PAIRS OF INSECTS

Object

Ladybird 1

Ladybird 2

Fly 1

Fly 2

Bee 1

Bee 2

Wasp 1

Wasp 2

Greenbottle 1

Greenbottle 2

Blowfly 1

Blowfly 2

Red Green Yellow Ochre Black White

12872 554 423 291 9107 223
13009 483 243 314 8728 364
18579 842 228 28 16879 917
18402 938 229 25 16880 969

2775 3383 1845 294 16566 368
2831 3417 1878 334 16675 285
1399 2322 3875 375 13271 3445
1414 2378 3797 384 13398 3316

3669 4821 1281 2576 21829 693
3594 4542 1336 2762 21442 632
3695 3037 535 2021 18198 344
3623 3173 621 2102 18086 333

2314 3590 12753 1686 8386 2846
2269 3834 12675 1608 8540 2724
3097 5034 15124 3626 9599 4406
2756 3814 1 5 0 1 8 3159 8936 6701

1678 6797 1207 106 15737 1402
1691 6734 1152 98 15831 1371
842 7931 3192 63 14925 3287
873 7900 3183 57 14708 3254

1801 4033 432 23 i 24722 24
2161 3994 412 240 25271 27
3958 3578 212 153 29592 11
3893 3670 210 128 29997 17

Unclassified

145
403
283
218

1966
1482
5924
5685

779
762
266
256

2330
2155

845
1556

1891
1356
3113
3142

1185
1143
458
437

336

CHAPTER 10: COMPUTER VISION

Thus every insect is represented by six numbers: the number of its pixels
classified as red, the number classified as green, the number classified as yellow,
the number classified as ochre, the number classified as black, and the number
classified as white. For example, for the first ladybird the numbers can be
arranged as a sequence, or vector:

red green yellow ochre black white

(12872, 554, 423, 291, 9107, 223)

while for the second ladybird the statistics are:

red green yellow ochre black white

(18579, 842, 228, 28, 16879, 917)

Inspection of these data for the two ladybirds shows the entries in the vectors to be
similar but not identical. It is intended to use a pattern recognition approach
which will effectively classify insects according to their similarity to the test
vectors for the six pairs of insects.

As explained in Chapter 4 of Volume I, and Chapter 2 of this volume, each of
these colours can be considered to define an axis in a multidimensional space. So
one wants to classify the insects given their position in this six-dimensional
colour/pixel frequency space.

Although it is very difficult to show this 6-D space on 2-D paper, let us choose just
the yellow and green dimensions to get a feel for how the insects group together in
this space. Four examples of each insect are used in what follows. Thus
Figure 10.15 shows that the wasps form a cluster high in the yellow part of the
space while the greenbottles form a cluster far to the fight in the green part of the
space. The ladybirds too form a distinct cluster near the origin because they have
very few yellow pixels and very few green pixels.

Unfortunately the flies and bees are both very close in this 2-D subspace, which
suggests that they will be difficult to classify. As it happens, it could be very
important to separate bees from flies in this application. Fortunately, the other
colour dimensions allow the flies and the bees to be separated.

Having established an operational pre-processing procedure which maps the var-
ious insects into this colour/frequency space, the computer vision task can be
completed in a number of ways. This case is particularly well suited to the
application of neural networks. The training data for the network are the vectors
of colour frequencies as inputs, and the insect classes as outputs. So we might use
a six-input and six-output network with six nodes in the hidden layer. In fact this is
what we did, and the pattern recognition was very successful in correctly
assigning new insects to their class.

In this application of neural networks we exploit some of their useful features.
The first is that no two insects have exactly the same pixel colour frequencies and
so the generalization of the network to 'similar' data is essential. Indeed,

337

VOLUME T W O

30

25 t-

20

C/3

�9 ~ 15-
~ -
O

; ~ -

10

_

LL
L L

W

F F

W

G G

Key:

w wasp
F fly
k ladybird
B bee
G greenbottle
f blowfly

, .

GG
BB B B

ff! f
I I I 1 . I I I I [I] . I I I [1 I I 1 1 . I I I I . I - I ~

00 5 10 15 20 25 30

green pixels (%)

sometimes there is considerable variability in the pixel colour data, but neverthe-
less the neural network can cope with this.

Another useful feature of the neural network is its ability to cope with redundancy
in the data. It happens that there is very little useful information in the frequency
of white pixels. This is because the wings of the insects, although transparent in
some lights, are highly reflective and can produce quite large 'white' responses in
rather a random way. Neural networks cope with this kind of thing very well; as
they train, the weights given to this error-causing redundant data are lowered and
they automatically play less of a role in the classification. The exception might be
the ladybirds, which do not have reflective transparent wings, and for them the
white frequency could remain useful data. Thus the neural network paradigm
automatically adjusts to exploit the relevant discriminatory information.

Once the insect has been recognized - or more precisely, classified - the system
can take whatever action is appropriate according to its specification.

~[Figure 10.15
The insects clustered in the
two-dimensional
green-yellow subspace.

338

CHAPTER 10: COMPUTER VISION

10.5.2 Measuring the diameter of a pin using sub-pixel
edge detection

The kind of object recognition in the last section is of the 'yes/no', 'it-is-here-or-
not' kind. In many applications of computer vision much more than this is
required. Apart from knowing that an image contains an object, more information
about that object may be needed.

Measurement usually requires a geometric model of the environment, which can
be 2-D or 3-D. Recognition can use a simpler model with symbolic elements such
as 'wasp is present is true', 'bee is present is false', and 'ladybird is present is
false'.

The example of measuring the pin examined earlier in this chapter implicitly used
a model of the pin in which it has 'sides' which can be represented by lines in
Cartesian coordinate space. Thus we can define the 'diameter' of the pin to be the
perpendicular distance between the two lines which make up the edges of the pin.

As explained in Chapter 4 of Volume 1, conventional attempts at edge detection
have not been very successful because they depend on thresholding, as illustrated
by the example in Section 10.2 of this chapter. Figure 10.16 shows the results of a
new method of edge detection that has been developed by the authors in
commercial applications of vision for scientific measurement. Using this method,
the geometric 'edges' of the pin have been detected to sub-pixel accuracy
approaching one-tenth of a pixel. By this method the measurement is that the pin
is 2.5 pixels across. At 100 pixels per inch this means that the diameter
measurement of the pin is 0.025 inches. This compares to a micrometer measure-
ment of about 0.026 inches, and the system has delivered the measurement to an
accuracy of about one-tenth of a pixel. This 4% error could of course be reduced
by digitizing the pin at a higher magnification. This method is almost contrast-
independent, i.e. it is highly tolerant to changes in the level of illumination.

10.5.3 Optical character and handwriting recognition
It is a remarkable fact that human beings now communicate massive amounts of
information through their fingers by pressing the keys of computers. A modest
document of ten pages will have some 40000 characters, while a book such as this
has about half a million key presses. There are millions of books and documents
which do not exist as computer files, and even those that are on computer are not
always accessible. This creates a massive commercial demand for optical charac-
ter recognition (OCR) and devices which can read characters.

In the last ten years OCR and scanner technologies have advanced to the position
that clean black-on-white documents can be read by computer with an error rate
of a few percent. This is acceptable for some purposes, but not for others.

339

V O L U M E T W O

1 7 2 1 6 9 173 168 172 1 7 1 1 7 5 1 7 2 172 - 169 1 7 2 1 6 6 166 [166 166' 167 168 169 166 [1 6 9 i75 171 166 169

i J
170 176 : 173 : 162 166 : 170 = 176 1 7 0 : 1 6 8 165 173 172 : 172 164 170 177 174 ~ ' 172 l 170 166 ' 171 ' 173 ' 174

.
" 1 7 7 ' 1 6 9 " 1 6 6 " 1 6 7 ~ 176 "165 "170 " 1 6 7 ; 1 6 8 169 ' 1 7 1 � 9 " 1 7 0 171 � 9 169 173 17'1 1 7 0 1 7 1 1 6 5 1 6 8 1 6 7 1 6 8

J . . J

�9 ~
172 ~ 167 170 ~ 166 170 168 170 165 170 168 168 165 ~ 168 q 163 165 1167 168 169 1)2 170

170 i 169 169 : 167 " 168 " 172 t77 166 166 ' 171 ' 177 " 1 6 9 1 1 6 6 165 168 r 169 178 173 166 163

J i
171 q 170 " i 66 q 166 " 172 " 168 " 171 170 176 q 171 " 172 ' 170 'J 174 " 1 7 0 " 171 " 174 172 " 168 " i 66 " 170

|

�9 J . ~
169 164 163 1 6 6 1 6 9 ' 1 6 7 '~ 175 ' 1 6 6 165" 168 172 167 170 166 1 6 4 1 6 5 1 6 8 1 7 1 170 166

J �9 . �9

176 171 " 172 " 166 1 172 " 170 ~ 174 ' 169 1 6 6 " 166 " 172 170 1 172 168 161 154 160 171 172 173

�9 : : ~ , , �9 ,
174 167 167 165 171 170 174 169 172 169 172 176 172 154 146 142 142 156 174 176 169 170 163 166

l i
176 : 166 : 168 : 169 I 172 1 166 : 1 7 5 : 1 6 8 ! 167 : 17t 183 179 : 160 133 ' 115 ' 112 114 ' 131 ' 160 " ' t 73 169 ' t 7 0 ' 167 ' 1 6 8

i
�9 .

174 " 170 " 170 " 165 167 : 1 6 3 " 170 166 ~ 168 168 175 r 173 ~ 165 124 78 71 83 114 144 163
i

169 163 ' 167 : 163 ~ 167 = 164 : 170 .= 165 " 164 ' 166 170 167 156 114 59 45

; : : : : : : : : : | | | , |
172 168 169 167 173 168 172 166 167 167 175 168 165 134 66 1

. . !
170 167 172 "166 " 174 "169 " 175 172 167 1 163 176 172 174 150 77 0

17i : 168 1 6 9 1 6 6 ' 173 ' 171 ' 178 ' 173 166 " 166 " 177 i74 173

L .. . L
178 172 172 168 167 r 163 173 170 170 169 1 7 8 181" 183

i
: : : :

169 170 176 171 177 174 175 171 169 168 177 175 183

. , ~ , , , ~. , ,

174 170 172 1s 1 7 3 / 168 ' i 7 7 172 165 170 181 175 ' 1 7 7

159" 88 " o

162 88] 2

I

I 171 10 ~ 2

i _

1 7 0 95 1

�9 : �9 : : - _ . .
167 164 167 165 : 174 169 175 172 170 169 178 174 180 168 99 4

1 7 6 1 7 0 " 1 6 9 " 1 6 8 = 1 7 6 i 1 6 9 i 7 6 ' 1 7 1 1 6 5 i 1 6 9 1 1 7 8 1 7 3 1 7 7 1 6 6 " 9 7] : 2

; : : : : :
[- 172 166 ' 1 7 4 171 180 175 181 175 168 168 177 177 183 169 10t~ 0

1 7 3 1 6 8 " 1 6 7 " 1 7 i ' ' 1 7 7 1 1 6 8 ' 1 - [5 ' 1 7 1 " i 7 1 ! l ' , I " 9 8 i : 1

" 173 = 167 ' 174 ' 168 ' 170 ' 170 17i3 ' 166 ' 164 ' edges detected 111 1
i to sub-pixel

i 64 q168 168 169

J , , .
164 1166 163 169

J
170 1 169 " 162 163

168 168 166 171

l i J

170 177 169 1'72

�9 .

165 173 176 180

i
166 171 166 169

65 100 139 162

J �9 �9

69] 130 150 158

J
74 1 150 165 163"

/

61 15t 168 159

53 1 152 �9 1�9
/

i , ,

'1~55 1 51 76 166

jr150 172 ' i ' 5 9 33

38 -[152 i75 164

i ,
/

3 9 1 50 ' ' ~ ' ' 173

J 1

d e t e c t e d 27 147 eages i

i ~ t o sub-pixel 1 6 7

| |

164 176 175 172

�9 .

170 171 167 172

168 174 166 t68

164 i67 162 164 165 172 165 168

170 168 161 160 �9 1168 166 170

169 174 161 169

170 ' 1 7 4 ' 1 7 2 ' 1 7 5

�9 . .

165 161 161 167 170 175 169 171

�9 �9 .

159 163 165 165 167 174 169 171

.
165 170 i67 168 171 176 173 172

L
171 174 168 166 167 173 167 I 169

J J
1 6 4 1 1 7 2 166 168 166 172 167 166

167 1172 " 167 165 1 6 6 " 1 7 3 � 9 172

164 ' 172 ' 173 ' 172 167 ' 175 ' 175 �9 173

�9 | | I
166 ' 1 7 2 J 167 166 165 170 172 173

L .
1 6 2 ' 1 6 8 ' 1 6 9 ' 1 7 0 170 ' 1 7 5 176 178

164 173 173 173 174 176 171 I 1 7 0
m

/

1 6 8 � 9 " 1 7 4 1 7 3 i71 174 171 173

| |

171 178 171 173

| | |

165 175 173 174

" 1 7 1 1 6 6 " 1 6 8 1 6 8 1 7 3 ~ 1 6 4 1 1 7 3 1 6 9 i . 167I accuracy
. : . . , :j

1 7 5 ! 1 7 1 173 1-72 174 168 176 172 168- "164 173 175 177 173 112[- 2 29 141 170 161

.1 I.
" 1 7 5 ; 1 7 1 1 7 3 "171' 178 ' 1 6 9 ' 1 7 2 " 1 7 4 " 1 7 0 i 1 6 7 1 7 5 1 7 6 1 8 0 , " 1 7 0 1 2 1 7 1 8 1 1 4 t 1 7 6 1 6 5

J �9 . �9 . : �9 .

. 1 7 1 . 1 6 6 - 1 6 8 . 1 6 7 r 1 7 2 ~ 1 6 5 , 1 7 5 . 1 7 3 . 1 7 0 - - 1 7 1 ~ 1 7 7 . - 1 7 5 , 1 7 8 , 1 7 3 1 1 6 1 1 0 1 9 1 4 0 1 7 2 i59

E i 169 " 171 172 t63 r 170 ' 168 " 171 = 169 169 " 167 173 176 179 l 172 125 2 12 137 176 160
i
J . J

= 177 = 168 q 172 = 173 : 176 q 170 " 178 173 I 163 q 169 180 176 179 177 "12~' ' 3 9 q 136 174 163

J
" 172 i 169 : 1 7 2 " i 6 4 ' 169 i 1 7 0 ' 1 7 1 ' 169 i 170 ' 168 i 176 ' 17"5 ' 182 ' 175 ' 1 3 t 1 , 8 i [137 " 179 ' 165

1 0 5 3 2 9 1 4 5 accuracy 1 6 6

160 i 168 169 167

J �9 . .

164 [172 168 168

..
158 i 170 168 168

J
157 r 168 167 168

164 ~ 1 7 4 , 172 ' 173

161 t 174 ' 169 ' 165

i

J

i63 ~ 171 j 169 171

168 176 17i 173

165 173 171 175

167 " 173 169 170

165 " 175 167 1 7 1

170 173 1'70 ! 173

' i70 ' 174 i 165 ' 170

L
Figure 10.16

Sub-pixel edge detection allows the diameter of the pin to be measured as 2.5 pixels = 0.025 inches
(micrometer measurement was 0.026 inches). The image was digitized at lO0 dots per inch.

165 ' 172 171

|
170 172 169

�9 .

169 173 175

166 ' 174 i 17:1

�9 .

166 168 165

�9 .

166 172 173

164 170 168

._
166 170 169

168 171 176

171 " 174" 170

. �9

171 1 7 4 1 7 0

167 1 7 2 1 7 0

i |

169 171 166

1 6 7 1 7 3 1 7 5

171 ' 1 : 7 3 1 7 4
l

�9 .

164 170 168

167 169 168

171 ~ 178 �9 174

a, |
167 172 173

. .

169 167 170

167 170 ' 168

1 6 9 " 1 7 5 ' 172

|, |

171 175 171

1 .. |
1 7 1 177 172

| |

169 173 172

170 176 174

171 178 174

~ i67 170 166

|
173 172 167

168 172 170

169 ' 172 ' 168

340

CHAPTER 10: COMPUTER VISION

Surprisingly, there are many potential applications in which the images are
perfectly readable to human eyes, but not clean or clear enough for current OCR
technology to handle.

Typical applications of OCR include reading documents for word processing and
editing, reading mail addresses for automatic sorting, reading credit card receipts
for automatic banking, reading cheques for automated sorting, and so on.

Although humans see text and handwriting very clearly as 'black on white',
digital images do not reflect this intuition. Figure 10.17 shows the digitization of a
credit card slip, and an enlargement of the handwritten 'e' at the far fight. The
pixels here are far from being black or white. At the left of the character the pixels
have good contrast but at the top the greyscales fade into the background as the
pressure of the writer changes. This kind of variability makes the character more
difficult to read automatically. As it happens, people tend to be reasonably
consistent in the way they apply pressure differently as they write, and work is
under way to exploit this for security applications.

Figure 10.18(a) shows the letters 'DESC' from the beginning of the printed word
'DESCRIPTION' below the date boxes. Although they are more regular than the
handwritten characters, it can be seen that there is considerable ambiguity
between the pixels of the characters and the background.

Figure 10.18(b) illustrates one of the major problems in reading handwriting,
namely that people make characters in a stylistic way which may deviate
considerably from the 'norm'. The handwritten description is '5 STAR 204573',
but the 'T' in 'STAR' looks more like the Greek letter ~y than a T. Also, there is
ambiguity between this letter and the printed line on the voucher.

Note also that the '8' is written slightly differently in the two versions of '80.75',
and that the '5's appear to be made up of two different strokes. Such idiosyn-
crasies make the general problem of reading handwriting very difficult. These are
reasonably good images for automatic reading: other images can be much worse,
with bits of characters missing or obliterated by spurious marks.

341

�9 V O L U M E T W O

(a) Digitized image of a credit card voucher

(b) Enlargement of the pixels making up the handwritten 'e' in the 'INITIALS' box

Figure 10.17
Digitized image of
handwriting on a
credit card voucher.

342

CHAPTER 10: COMPUTER VISION

(a) Enlargement of the pixels making up part of the word "DESCRIPTION' on the credit
card voucher of Figure 10.17(a)

(b) Enlargement of the letter T in the word 'STAR'

~[Figure 10.18
Digitized characters
from the credit card
voucher in
Figure 10.17.

343

VOLUME TWO

In OCR there are a number of major divisions between the difficulty of the
problems. They include:

reading clear machine-typed black text on white background;

I~ reading poor machine-typed text on white background;

i~ reading machine-typed text on a textured or patterned background (e.g. anti-
forgery patterns on cheques and bonds);

I~ reading handwritten text as discretely spaced capitals, small letters, and
numbers, in pre-set fields or boxes on pre-printed forms;

I~ reading carefully handwritten text in which the letters are all clearly written;

i~ reading carefully written joined-up handwriting;

i~ reading cursive script (general handwriting).

Of these there is good progress with the first, and some progress with handwritten
text on forms. Progress on the others is less good, and the general problems of
reading cursive script remain unsolved in 1995. When this problem is solved it
will open up many areas for new applications of computer systems, since in many
information systems getting information into the system is a major problem.
Currently it has to be done by human keyboard operators, and this makes many
potential systems uneconomic.

New notepad computers are creating a tremendous drive for recognizing hand-
written text. They have the great advantage that the pixels which make up the text
are unambiguous, having been defined by the user with the electronic 'pen'.
Nevertheless, in 1995, abstracting text information from handwriting remains a
very difficult problem, as illustrated by the cartoon strip in Figure 10.19.

Doonesbury BY GARRY TRUDEAU

Figure 10.19
Reading handwriting is a difficult problem.

344

CHAPTER 10: COMPUTER VISION

10.5.4 Rejection versus error in pattern recognition
OCR exemplifies an important idea in pattern recognition and computer vision,
namely the distinction between rejection of the recognition as dubious as opposed
to failure by the acceptance of a misclassification.

To understand the difference, consider a machine which is sorting cheques in an
automatic banking system. Suppose it has to read the amount of money on the
cheque. Suppose also that one of the digits is recognized incorrectly as a 7 (seven)
instead of a 1 (one). If the amount of money is s it would not be a
terrible mistake to recognize it as s However if the amount were
recognized as s the machine's failure could be very serious. Usually
one has a degree of 'confidence' in a computer's vision recognition, and
sometimes it makes sense for the machine to say 'I cannot recognize this with the
required confidence and I reject it'. Then the rejected items can be read by
humans, who tend to make fewer errors in resolving ambiguous images.

The problem with rejection is that humans usually have to take over, and the
higher the rejection rate the more expensive the system becomes to run. However,
the rejection rate is inversely related to the failure rate in which the machine
makes potentially expensive errors, and so a trade-off has to be made.

The previous sections have given a flavour of some of the problems and
techniques used in computer vision. After establishing some criteria for success,
this section will summarize the basic techniques of machine vision currently
available to designers.

10.6.1 Criteria for success in computer vision
Before enumerating the various techniques currently used in computer vision,
some criteria will be established for their efficacy. These conditions include:

i~ acceptably high rates of correct pattern recognition, acceptably low rates of
rejection, and acceptably low rates of errors in pattern recognition;

I~ tolerance to changes in the levels of absolute and ambient illumination;

345

VOLUME TWO

I~ invariance to changes in position, size and orientation of the object to the
camera or scanner:

translational invariance,

scale invariance,

rotational invariance;

I~ acceptably high speeds of pattern recognition;

i~ ease and cost of implementation;

I~ ease and cost of maintenance;

I~ acceptable hardware demands;

i~ acceptable levels of operator skills.

Not all applications will weight these criteria equally. For example, invariance to
orientation could be very important in an aircraft detection system. On the other
hand, we expressly do not want total orientation invariance in OCR, otherwise we
would not be able to discriminate symbols such as + from • < from >, d from p,
and so on.

The criteria for recognition rates will also vary considerably according to the
application. A system which takes an hour to process the information from a
medical scanner could be satisfactory, while a system which takes a second to
process a sales voucher could be considered to be too slow.

Computer vision techniques vary from 'cheap and cheerful' approaches such as
pixel matching to the implementation of very expensive handcrafted methods.
Vision systems of any sophistication at all usually involve a lot of highly skilled
research and development effort, and their costs reflect this.

Many applications of computer vision require 'real time' processing, which
means in practice that results must be delivered within fractions of a second. This
can sometimes be achieved by employing powerful but expensive processors,
and increasingly it is being achieved by various parallel processing configura-
tions. This includes implementation of 'neural' processors in hardware.

As in other engineering disciplines, computer vision involves selecting the most
appropriate approach for the particular application. Sometimes this involves
understanding that the present achievements in machine vision are rather limited,
and there are many potentially valuable problems which it cannot solve. The
machine vision problem is a bottleneck in many applications.

10.6.2 Pixel grid template matching
Pixel grid template matching was discussed in Chapter 4 of Volume 1. It works
very well in cases in which the objects always appear in the same place in the
image, i.e. they do not change too much in their shape, size, orientation or

346

CHAPTER 10: COMPUTER VISION

position. In cases which do not satisfy these criteria, pattern matching gives poor
performance and more advanced techniques must be used.

10.6.3 Associative memory
An interesting and successful variant on template-matching approaches is pro-
vided by the WISARD system developed in England by Wilke, Stonham and
Aleksander at Brunel University in the 1980s. This has been used successfully for
banknote recognition and other commercial applications. This vision system
works by taking a video image, binarizing it, and using pre-defined random
combinations of pixel ' l ' s (white) and 'O's (black) to address several banks of
memory, where each bank corresponds to a particular class of problem. Essen-
tially this approach works by storing a ' 1' in each bank of memory at the locations
that are addressed by the input images during training. When being used to
recognize patterns it uses the new image to address the memory and counts the
number of ' l 's produced at the output of each bank of memory, the sum being the
measure of how well the image is recognized.

This is called an associative memory, in which the score from each bank is a
measure of the association between the current input image and the images used
during training. WISARD works in real time due to its special hardware architec-
ture, which allows fast learning and fast response. An amusing and remarkable
application of WISARD involves discriminating smiling faces from those that
have frowns.

10.6.4 Spectrum histogram and statistical matching
In applications such as remote sensing from satellites, the infra-red spectrum may
be divided into many 'bands' with sensors which are especially sensitive to
particular parts of the spectrum. For example, the Multispectral Scanning System
has four bands while the Thematic Mapper has seven. This means that each pixel
in a Thematic Mapper image identifies a point in a seven-dimensional space. A
typical application in agricultural planning involves using these data to classify
the pixels by crop type, such as 'wheat', 'barley', 'corn', 'sugar beet', 'apples',
and so on.

A whole battery of techniques has been developed for these multidimensional
data, as illustrated in Chapter 2 on Pattern recognition. Typically they work on
spectral histograms and statistical models calibrated from them. The classifica-
tion paradigm is: 'this pixel of unknown class is close to a pixel of known class,
therefore this pixel has that class'.

347

VOLUME T W O

10.6.5 Binarization of greyscale images and local
thresholding
As shown in Section 10.2, one can get somewhere with image recognition
through thresholding. However, there is the problem of selecting the threshold.
Also, contrast may vary over an image due to different levels of illumination. This
could happen, for example, when an image is illuminated from the side.

Although it does not work very well over entire images, the concept of threshold-
ing is not without merit. Clearly, as one goes from a dark object to a light
background there will be dark object pixels and light background pixels. The
problem is knowing where to set the boundary between them. It seems reasonable
that this boundary will be relatively constant locally, even if it should vary over
the image. This kind of reasoning has led to a number of techniques for local
thresholding. The details of any particular technique can be rather involved, but
the basic idea is that an appropriate threshold for binarization will depend on the
local greyscale statistics. These are computed to provide thresholds which are
adapted to local conditions.

10.6.6 Skeletonization
In some applications a further operation of skeletonization after thresholding is
considered to be useful. For example, in character recognition it is easier to deal
with pixel configurations that are one pixel wide rather than those that are perhaps
three, four or five pixels wide. Skeletonization algorithms effectively 'eat away'
the outside pixels until there is just one pixel left. The results of this for an '8' and
a n ' S ' are illustrated in Figure 10.20. However, as this example shows,
skeletonization sometimes creates ambiguity.

,,ummnmn.
�9 l � 9 nnmummlmnn,h,,,, .'"--'..
�9 mmm

mmmmnmmmmmm..--,m.... .m ..
mmmmmmmummum mmmmmm �9 �9

mmmmmnmmmmmmm mmmmm �9 �9
�9 mmm mmnnnnmnnun, , m , , , " , , "

mmmmmmmmmmlmmmmmmmmmmmm m m m
mmmmmmmmmmummmmmmmmmmmm
m mmmmmm mmm �9 immnimmnnllnl,,,.,, m m Ummmwm mm mmmmmm �9 N n N N N u m m L . . , . . . , ~ ~
..mmmnmmmulm
nnnmnnnm-'i-nm-----nnnnnnn .,-" "m

.. . . , . , , ,m. l l l l l N l � 9 �9 nu
m i N I mmmimmim
mmmmmmm Immm�9 m | mmm I n / N N i l l
I l n m m , - - a u m l r
�9 l l m u m m n i m m n l l n r . . . - -

..-l~_.llNmlNmn ,'�9
mmlmm

�9 mmm . , , , m m m l l l l
. J N N I I U I N O . N .

" ' " " , , i nmnr NL'h�9 �9 NNIN
INNN., ==�9149
U N J m t . n , , m . INN

l U l U n l n l n l l U l l l l
,IrMnunnnumnn u n � 9 1 4 9
mmum n l l l l ! ~ n ~ m
!m= ,unmn

� 9 1 4 9
mmlmmmmu mmmmmummm

mmmummummmmummmmmumm
�9 mmmmnmm n m m l n l n n n m ,

"''m''llrm

uuuuulmuun

&" "'""nu

i 1
!,, l n n nuunmnUmmnm ~

�9 i n
I �9

| m m
| m m

�9 N �9
mmmmmmmmmm

~1 Figure 10.20
Skeletonization and its
limitations.

348

CHAPTER 10: COMPUTER VISION

10.6.7 Edge detection
Edge detection is an important technique in computer vision, especially in
applications in which a geometric model is used. Section 10.5.2 showed how
edge detection can be used in object recognition, and also to make measurements.
For example one can use the kind of hierarchical architecture described later in
Section 10.7 in which parts of the boundaries of objects are recognized, and
assembled by bottom-up processing. Subsequently, some degree of top-down
processing might be involved to find missing bits of the object prior to final
recognition.

There are many techniques for edge detection in the literature. Most of these are
'filters', i.e. operators which filter out non-edge from edge pixels. As we
observed in Volume 1, this leads to edges which are polygons. Also the approach
depends on setting parameters, and post-processing operations such as thinning.

10.6.8 Mathematical morphology
A new theory of image processing was suggested by Jean Serra in his booklmage
Analysis and Mathematical Morphology (1982). There he introduced a wide
range of operators for image processing. To illustrate one idea, consider a binary
image in which the pixels are either black or white. Then let the 'thinning'
operator be defined as one which makes every black pixel with a black neighbour
into a white pixel. This operator makes objects and lines thinner, as shown in
Figures 10.21 (a) and (b). The 'thickening' operator is defined as one which
makes black every white pixel with a black neighbour. This operator makes
objects and lines thicker. By applying the thinning operator followed by the
thickening operator, messy parts of images can be cleaned up as shown in
Figure 10.21 (c).

Figure 10.21
Mathematical morphology:
an example of applying
'thinning' and 'thickening'
operators to a binary image.

349

VOLUME TWO

In some images it is known that the objects of interest are relatively smooth at the
given level of resolution. However, digitization noise may cause edges to be
'jaggy'. In such cases the application of the thinning operator followed by the
application of the thickening operator may smooth out the jaggy edges and make
objects easier to recognize. There are many other operators within mathematical
morphology which enhance images according to 'logical' principles and opera-
tions.

10.6.9 Neural networks
Neural networks are increasingly being used in computer vision. There are many
architectures and variations, but for many of them a lot of work may be required to
ensure that appropriate information enters the network in the first place. Thus a
lot of expensive work may be necessary to build a pre-processing system which,
it can be argued, moves the vision problem one step back beyond the network in
order to get a solution. This was discussed in Chapter 3 on Search.

Section 10.5.1 showed neural networks applied to a vision problem in which the
pre-processing involved collecting data on pixel colour frequencies of insects. In
this application the spatial element of the problem was ignored. In other applica-
tions shape and size may be crucial, and the engineer must ensure that these are
encoded in a way which makes them suitable for neural networks to process.

Section 10.7 shows a hierarchical architecture for computer vision. There the
higher level objects are assembled from lower level substructures, and it is
possible that neural networks could be used for this.

10.6.10 Reasoning in computer vision
Computer vision often occurs when there is a model of the system or its
environment. A common problem in computer vision occurs when parts of
objects are missing because they are occluded (hidden by other objects) or
because the image is poor. Although one cannot create more information than is
in the image from the image itself, the information in the image combined with
the general model and other expectations may enable strong hypotheses to be
made. Usually these will be stated in the form: 'if this is true and that is true, then
the image viewed contains a such and such', where the confidence in the
hypothesis may be weighted.

In the early days of computer vision, when people were just beginning to learn the
power of If-Then reasoning through knowledge-based systems and the like, it
was felt that higher level reasoning would be very powerful in machine vision. So
powerful, in fact, that it would not matter too much if the primitives could not be
abstracted with great fidelity. In fact this turned out to be wrong, as illustrated in
the field of speech recognition. No amount of reasoning and logic could compen-
sate for rather poorly defined and abstracted phonemes.

350

CHAPTER 10: COMPUTER VISION

10.6.11 Simon's Principle of Robust Primitives
This principle states that, in computer vision, we must seek to abstract primitive
objects with great reliability and replicability. These are called robust primitives.
Vision techniques which do not begin with robust primitives are likely to fail.

It would be hard to underestimate the practical importance of this principle. The
edges mentioned in Section 10.5.2 are robust primitives which have enabled the
authors to build very reliable and rugged industrial vision systems which work
under a wide range of ambient lighting conditions and operators. The principle of
robust primitives is very important in pattern recognition and computer vision.

10.7 A hierarchical architecture
for computer vision

10.7.1 Bottom-up processing in computer vision
In the earliest stages of processing image data, computer vision is bottom-up. At
the bottom of the hierarchy, we have pixels and their greyscale values. These
pixels must be combined using various criteria to form classes or structures from
which useful information can be abstracted. At this earliest stage in processing it
is essential that robust primitives are used. This is illustrated in Figure 10.22(a) in

(a) A set of pixels assembled to form a line (b) A set of lines assembled to form a character

Figure 10.22
Bottom-up aggregation in
computer vision.

351

VOLUME TWO

which a group of pixels is aggregated to form a line. In this application, detecting
the lines is highly replicable and so lines are robust primitives for this application.
Figure 10.22(b) shows a set of lines assembled to form a character.

10.7.2 Top-down reasoning in computer vision
In the last section we saw how computer vision begins with a kind of feedforward
bottom-up information processing, which builds increasingly more complex
objects from simpler objects. Sometimes this will be sufficient by itself for
successful pattern recognition. However, it is necessary to use a priori knowl-
edge to reason about the objects in the image. This is essentially a top-down
process in which a given configuration of objects is hypothesized to be an object
of interest. If it actually is that object, one can deduce things that ought to be true
about the image at lower levels. These hypotheses can then be tested at the lower
levels and their outcome can inform the lower level pattern recognition.

10.7.3 Computer vision as an iterative top-down,
bottom-up process
It is becoming increasingly accepted that computer vision must involve both of
the bottom-up and top-down aspects of information processing discussed in the
previous two sections. Thus we come to an architecture for computer vision
which combines the two. This means that any vision system must have a control
mechanism to determine the current modes of the system and transfers between
them. In the simplest case this may just be an iterative process in which one goes
between bottom-up and top-down until the pattern recognition is made with the
required degree of confidence. This general architecture is represented in
Figure 10.23.

This architecture has been used in practice in the examples of eye recognition
(Volume 1, Chapter 4) and character recognition. In eye recognition, pixel con-
figurations were used which act as extremely robust primitives in this and many
other applications. These have been combined to form sub-objects such as the
pupils and whites of the eyes, and these in turn have been combined to recognize
the eyes in the context of the face (Volume 1, Chapter 4). This higher level
recognition enables discrimination of configurations at the lower level which
correspond to eyes in the image from other eye-like configurations in swirls of
hair and elsewhere.

Apart from the bottom-up aspects of computer vision, there is a top-down aspect
when there is ambiguity in the recognition. In such a case the system may attempt
to resolve the ambiguity by acting in a top-down fashion by seeking specific
diagnostic information. For example, the lines which have been abstracted with
confidence in Figure 10.23 lead to an ambiguous recognition between an fl and
an O. In order to resolve this the machine needs more information about the fight
side of the character, and so goes down the hierarchy and looks at the pixels
'through a magnifying glass' in order to see more precisely what occurs at the
right edge of the character.

352

CHAPTER 10: COMPUTER VISION

In general, computer vision is an iterative process, with information and control
moving up and down the hierarchy of representation until recognition is achieved
or the attempt is abandoned and the recognition rejected.

~ll Figure 10.23
The bottom-up, top-down
nature of computer vision.

There is no doubt that computer vision will be one of the most important enabling
technologies over the next decade. Current generations of robots have poor visual
sensing, and severe limitations in their capabilities as a result. The robot of
science fiction which will make your tea and do the housework remains a long
way off: current robots find it very difficult to abstract the necessary information
from their cameras and other sensors.

Computer vision remains a relatively expensive way of sensing for perception
and cognition in intelligent machines. This is true of both the hardware and
software, but the situation is beginning to change as the drive for intelligent
machines generates new devices and approaches. For example, the University of
Edinburgh in Scotland has designed a small and inexpensive camera. No doubt as
such devices move to large-scale mass production the price will drop and
designers will be able to incorporate many 'electronic eyes' into their systems
without making them prohibitively expensive. Similarly, custom-made hardware
for processing visual information is emerging and it too can be expected to drop in
price as time goes on. Also the price of general-purpose sequential computers
continues to drop in price/performance terms.

Software (or more precisely the development of algorithms and procedures) is the
other major element in computer vision. This is less likely to decrease in price so
quickly. The reason is that there is no general methodology of computer vision to

353

VOLUME TWO

act as a rigorous basis for engineering. Currently applications tend to be one-off
solutions to particular problems. Invariably this involves a considerable invest-
ment in research and development undertaken by highly skilled engineers, and
such computer vision systems tend to be very expensive. The hierarchical
architecture described in this chapter is part of an attempt to formulate a general
theory of computer vision, and is implicitly or explicitly used by many research-
ers and practitioners in the field.

It is probably not too optimistic to expect computer vision techniques to improve
considerably over the next decade. This will allow us to build machines with
capabilities that we can only dream of at present. Areas likely to benefit
especially include:

aeronautics and space travel
agriculture through remote sensing
automotive systems
business systems
car and truck design
crime detection and prevention
disaster prediction
domestic consumer goods
industrial and domestic security
industrial inspection

international security
medicine
military systems
paper processing and administration
robotics
scientific research
telecommunications
toys
underwater surveying and mining
weather forecasting

There can be little doubt that human kind has the potential to benefit considerably
from new generations of intelligent machines, enabled by computer vision.

Levine, D.M. (1985) Vision in Man and Machines, McGraw Hill Series in
Electrical Engineering, New York. This book gives a comprehensive account of
most of the standard techniques used in computer vision.

Serra, J.A. (1982) Image Analysis and Mathematical Morphology, Academic Press.
Simon, J.C. (1986) Patterns and Operators: The foundations of data representation, Tr. J.

Howlett, North Oxford Academic, division of Kogan Page.

354

C H A P T E R 1 1
I N T E G R A T I O N

In this book you have encountered the following concepts and techniques:

i~ pattern recognition

I~ search

i~ neural networks

scheduling

I~ reasoning

i~ rule-based systems

i~ learning

I~ intelligent control

i~ computer vision.

Even if you have mastered all of these components you may have wondered how
they can all be brought together in a single 'intelligent' system.

One approach to integrating the component parts of intelligent systems involves
the concept of blackboard systems, and this is the main topic of this chapter. This
is not the only approach, but it is simple and sufficiently powerful to enable quite
complex machines and systems to be developed.

The central feature of the blackboard system is an area of working memory called
the blackboard, as shown in Figure 11.1. The knowledge and data stored or
written 'on the blackboard' is intended to bepublic and accessible to any one of a
set of independent agents. Any agent can write to the blackboard and read from
the blackboard. This public information is not necessarily managed by any of the
agents, and may emerge from their interaction. This architecture allows each of
the agents to do its own business with its only external interface being the
blackboard. This greatly simplifies the conceptual nature of each agent, and what
one needs to know about its interactions with other agents.

The term agent is intended to be very general, but includes ordinary computer
programs (both declarative and procedural, and object-oriented modules, which
are beyond the scope of this book), rule-based systems and neural networks. To
these can be added the sensors which write information on the blackboard, and
the actuators which read information such as control commands and control
parameters from the blackboard.

355

VOLUME TWO

Blackboard
(working memory)

~ ~ Rule-based systems
I

~ " ' * l Neural networks
I

~ , 1 , Object-oriented modules

~ / ~ / ~ / ~ [Procedural modules 1
i

m m m l l m l l ' [,

Sensors

Actuators

To illustrate the application of the blackboard architecture, consider an autono-
mous robot which must operate within a changing environment. We will consider
how the perception subsystem, the cognition subsystem and the execution
subsystem can be implemented within the blackboard architecture. First, how-
ever, it is necessary to understand how a blackboard system can itself be
implemented as a software environment which enables systems to be developed
rapidly without the developer having to start fight from the beginning every time.

~l Figure 11.1 The
blackboard model (adapted
from Hopgood, 1993).

In Chapter 7 we explained how rule-based systems are often implemented using a
shell into which particular facts and rules could easily be introduced using
editors. Usually the editors check that the format of the facts and rules is
syntactically correct and help to overcome errors which would stop the system
running. The shell also contains the inference engine which operates on the facts
database using the rules to produce new facts. This requires that various modes of
conflict resolution can be set within the shell. In other words, the shell gives the
user everything that is needed to create a rule-based system except the facts and
rules for a specific domain of application.

Although it is possible to program a blackboard system from first principles for a
particular application, this may not be a cost-effective way of proceeding. Often it
is better to use a system development environment which attempts to provide the
'engine' of the blackboard system and all the necessary editors to input the

356

CHAPTER 11: INTEGRATION

subsystems or agents. Furthermore, such an environment automatically inte-
grates the subsystems by giving them access to the public data on the blackboard,
and controlling the way that the agents are distributed over the available hardware
and how they are scheduled to run on the hardware. For example, the Open
University's SmartLab home experiment laboratory runs on a single personal
computer. Since a PC usually has only one processor it means that all the agents
have to share this processor as they run. The way this is done is mostly transparent
to the user, and this makes system development relatively simple.

Typically, a blackboard system development environment for creating intelligent
machines will include:

I~ a rule-based system shell to create autonomous rule-based systems;

i~ a neural network editor and controller to create neural subsystems;

I~ editors, compilers and linkers for creating:

procedural programs (written in languages such as C and FORTRAN),

declarative programs (written in languages such as Prolog),

object-oriented programs (written in languages such as C++ and Small-
talk);

i~ software interfaces to external sensor hardware;

I~ software interfaces to external actuator control hardware.

Apart from this functionality, it is important that the environment can be used
easily, and this is often achieved using a graphic user interface (GUI). For
example, in some systems rules can be defined by manipulating graphic entities
such as boxes and arrows, where the boxes represent facts and the arrows
represent implication. Also, they sometimes allow the user to zoom in and out to
see the system in greater or lesser detail, the former giving insight into the details
of subsystems and the latter giving more of an overview.

To understand how many agents can run 'in parallel' on the available hardware,
consider a system with many rule-based systems running on a single sequential
processor. Since the processor can only execute one instruction at a time, it can
only service one rule-based system at a time. This leads to the need to decide how
the processor will service each system.

For example, the software managing the execution might allow each rule-based
system enough resource to test one rule and move on to the next rule-based
system. Alternatively, it might allow each rule-based system to go through its

357

VOLUME TWO

rules once, perform conflict resolution, and fire the selected trigger rule before
moving on to the next system. This approach is easy to understand since it means
that each rule-based system gets a turn to fire a rule as the control software cycles
around.

With a single sequential processor, by definition, nothing happens in parallel.
However, by 'slicing' up the processor's time, each rule-based system gets a slice
of time and the overall appearance is of many rule-based systems running in
parallel. However an important aspect of using a single processor is that only one
rule-based system is updating the blackboard at any given time. This can be
useful when designing blackboard systems because, although all the agents are
independent, it can be useful to know that one system will have updated the facts
database if possible before the antecedent facts are examined for a subsequent
system.

So, one of the simplest control strategies for multiple rule-based systems is to
order them all, and let each rule-based system fire a rule (if it can) when its turn
comes round. Since each rule-based system can update the information on the
blackboard, the outcome of one rule-based system can affect the conflict set and
outcome of the next. Unless the rules are very simple the behaviour of the
interacting rule-based system is emergen t , and cannot necessarily be predicted by
the constructor of the blackboard system.

Sometimes the designer of a blackboard system may want to impose a control
mechanism on how the rules in the different rule-based systems fire, and how the
systems interact. Although the agents of the blackboard system can be independ-
ent, there is no absolute requirement that they m u s t be independent.

As explained in Chapter 7 on Rule-based systems, one sometimes wants a
particular rule-based system to give each rule a 'Buggins' Turn' chance of firing.
We have found that this can be extended to wanting all the rules in a cycle to fire
before control is handed over to the next rule-based system. We have called this
blackboard control mechanism 'Buggins' cycle'. For example, the rules of a
particular rule-based system may complete a whole task which one wants to be
completed before handing on to the next.

It should be clear from this discussion that blackboard systems require control
strategies in much the same way that rule-based systems require conflict resolu-
tion control strategies. In proprietary software environments the control strategy
may be part of the environment, or the system designer may have to select the
control mechanism to be applied at any given time.

358

11.4 Running many agents in
parallel

CHAPTER t 1: INTEGRATION

In systems with many processors it is possible for each of the agents to genuinely
run in parallel. However, the problem of control remains because a conflict could
arise when two completely autonomous agents want to write on the blackboard at
the same time. If one agent wants to set a blackboard variable to one thing while
another wants to set that variable to something else, there is a conflict which must
be resolved. This conflict amounts to deciding which system will be allowed to
update the blackboard, and this is similar to deciding which system will get a slice
of a single sequential processor (and therefore unrestricted access to the black-
board) at any given time.

The sensors of a machine form an essential part of its perception subsystem.
Usually the sensor data enter the machine through special interfaces and in
principle the sensor data can be written on the blackboard to be read by the other
agents. By definition the data enter the system at the lowest level in the perception-
cognition hierarchy.

For a simple example of how hierarchical pattern recognition might be imple-
mented, consider the problem of reading characters in a grid of pixels. Instead of
trying to match the characters directly, it is much more effective to try to
recognize their parts using an agent which reads the pixel data from the black-
board and writes the recognized block data onto the blackboard. Then another
agent can read the blocks from the blackboard and write the recognized character
data on the blackboard.

The first agent might be a neural network operating directly on the black/white
binary pixel data, or it might be a rule-based system operating on those data, or it
might be a program of some kind. The second agent might also be a neural
network, a rule-based system, or a program. In this way a perception subsystem
might be implemented through a mixture of information processing techniques.

359

VOLUME TWO

The important point is that, using the blackboard model, the agents which make
up the hierarchical pattern recognition system can be kept reasonably simple and
their interface through the blackboard is also simple.

More complex perception subsystems might also have rule-based systems acting
in a 'top-down' mode and making deductions about the sensed data on the basis
of prior knowledge. These too can be implemented as agents reading and writing
data on the blackboard, and again one benefits from the implicit simplicity of the
architecture. However, this top-down processing might require some explicit
control in the order that the agents operate. For example, a procedural program
may be required to execute in its entirety before other agents modify the multiple
hierarchical level data on the blackboard and it could force this by setting a flag
variable on the blackboard which effectively prevents all the other agents
operating until the flag is reset.

Chapter 2 on Pattern recognition and Chapter 10 on Computer vision are
concerned with techniques for perception and the interface to the cognition
subsystem. The techniques described in those chapters will usually be imple-
mented by a mixture of agents writing data of different hierarchical levels to the
blackboard. Typically the cognition subsystem will read the data written at the
highest levels by the perception subsystem.

As far as weare concerned here, cognition involves the processing of higher level
data, usually symbolic or parametric. An intelligent machine operating in real
time constantly has to find an answer to the question 'what shall I do next', and
this problem is mainly the concern of the cognition subsystem.

For the most general type of intelligent machine the cognition subsystem must
fulfil many functions including:

I~ interfacing to the perception subsystem, including reasoning about the
output of the perception subsystem and even controlling it to make it deliver
information which is particularly relevant;

I~ controlling learning;

I~ maintaining a map of the relationship between the machine and its environ-
ment;

I~ searching for and establishing goals and sequences of intermediate goals,
and the order in which to attain them;

360

CHAPTER 1 1: INTEGRATION

I~ scheduling: path planning in space and time; also planning sequences of
actuator activities including the motion of the whole machine and parts of the
machine such as its arms and grippers;

pattern recognition of external states which are particularly desirable or
undesirable, possibly using neural networks;

I~ identifying problems in any of the above and finding ways to overcome them.

For mobile machines the cognition subsystem first has to update the 'map' of the
machine's physical environment. This may mean recognizing the position of the
machine on a given map, or it may require that the machine learns what is in its
environment. The map data will probably be implemented as arrays of numbers
on the blackboard, or variables which give the x-y positions of objects in the
environment as described in Chapter 8 on Learning.

Some machines will have to learn their environment explicitly before they can
operate within it. General-purpose machines should learn from how they have
solved previous problems and their experiences so that this knowledge can be
applied to subsequent situations.

Given that the cognition subsystem has decided where the machine is in relation
to its environment, mobile machines must decide the current goals, including
where they want to be. The criteria for deciding a 'good' position will usually be
programmed into the machine as rules in a rule-based system or within a
computer program agent. These may involve scheduling criteria such as those
discussed in Chapter 5.

Selecting goals and planning how to achieve them is crucial to the performance of
an intelligent machine. A machine that consistently selects near-optimum goals
and achieves them by scheduling near-optimum space-time paths will exhibit
good performance in normal usage. A machine which can maintain these
characteristics by adapting to unexpected events with new near-optimal goals and
schedules will fulfil the concept of an 'intelligent machine' which performs well
in the face of uncertainty.

Apart from the more strategic aspects of scheduling, the cognition subsystem
must interface to the execution subsystem. For example, the sequences of
movements of its drive subsystem must be planned, as must sequences of
movements of other actuators such as its arms and grippers. One of the main
problems with controlling actuators is that complex interactions of forces such as
momentum and friction can make it impractical to formulate a precise mathemati-
cal model of the dynamics of the system. In such cases intelligent control
techniques such as those discussed at the beginning of Chapter 9 are applicable.

36/

VOLUME TWO

At some stage the cognition subsystem must send control information to the
machine's actuators in order to result in execution of its goal-oriented plan. In the
simplest case the cognition subsystem can simply write an item of data to the
blackboard. For example, the cognition subsystem could change the value of a
blackboard variable called 'left motor' from zero to one. In some blackboard
systems it is possible to define special variables such as 'left_motor' which are
interfaced to external devices such as switches which supply power. In this case
the interface hardware may automatically switch to no power when the variable
has value 0, and switch to full power when the variable is 1. Thus the actuators can
be activated by writing data on the blackboard. There are many variants of this
idea, and the data that are written on the blackboard could be more subtle,
including parameters which control the amount of power which is switched and
the direction.

In principle it is possible for the cognition subsystem to undertake all the
processing necessary to control the actuators of the execution subsystem to give
the desired composite action. However, actuators themselves are becoming
increasingly intelligent and some of the low-level processing such as deciding the
precise sequence of movements of a gripper may be undertaken by the actuator
itself. The intelligence in the actuators may be implicit in the mechanical design
of its components, or the actuator may even have its own processor(s). Indeed,
some grippers are themselves complete mechatronic subsystems, having their
own perception-cognition-execution cycle. In this case the cognition subsystem
of the master machine has an easier job, since it need only write data about what is
wanted onto the blackboard and leave the intelligent actuator to get on with the
job.

Whatever the level of intelligence of the actuators, the blackboard architecture
gives a conceptually simple way of interfacing the cognition subsystem to the
execution subsystem.

The blackboard model is essentially an integrating architecture. It is designed to
allow components to be implemented as autonomous agents which can be
designed in relative isolation without the designer having to know the detailed
implementation of all the other agents: all the designer needs to know is how the
particular agent interacts with the blackboard data.

362

CHAPTER t 1: INTEGRATION

If a mechatronic system is assembled entirely in terms of autonomous agents
there may be emergent behaviour which cannot be predicted before the machine
runs. The designer may have a model of the whole system which makes the
emergent behaviour a logical consequence of the way the agents are implemented
with respect to the blackboard.

However, in very complex systems it may be impossible for the designer to
predict all the emergent behaviour of a system. For example, road traffic systems
are made up of stretches of road supporting many autonomous agents (humans
driving vehicles). One way to try to understand the emergent behaviour of this
system is to observe it at the side of the road. Recent research at the Los Alamos
National Laboratory in the USA has shown that the only way to predict the
emergent behaviour of a road system is to simulate the interactions of the many
thousands of drivers: at present there is no other known way to 'predict' the
emergent dynamic behaviour.

In complex machines the simulation may simply involve running the machine
and observing its behaviour under specified conditions. This corresponds to the
usual testing of systems in all engineering design. However the difference is that
one must expect emergent behaviour and try to understand it. In this respect the
design of intelligent machines may begin as a kind of research exercise which
eventually becomes development leading to products as the emergent behaviour
is better understood.

The use of autonomous subsystems with a simple blackboard data exchange
interface makes it easier to formulate theories as to how the components of the
machine are interacting, why the emergent behaviour is as it is, and how the
emergent behaviour may be controlled.

One way to control emergent behaviour is to make it impossible. A simple way of
doing this is to 'switch off' one or more of the agents which result in behaviour
which turns out to be undesirable. But this means that some agents are allowed to
control others by switching them on and off, and the controlled agents thereby
cease to be autonomous. In fact, it is perfectly possible that the system designer
will have all the agents grouped so that the first group executes, enables the
second group, and switches itself off; the second group executes, enables the third
group, and switches itself off; and so on until the last group executes, enables the
first group, and switches itself off. In other words, it is possible that the agents all
control each other in some way introduced by the designer. By imposing this kind
of control structure on the system the designer may be able to make useful
deductions about which data will be on the blackboard when, and thereby make
the whole system more predictable.

In summary, the blackboard architecture allows each agent to be totally autono-
mous, but sometimes the system designer may remove some of that autonomy by
making the behaviour of some agents dependent on blackboard data written by
other agents. It is the designer's responsibility to ensure that the logic of this is
correct, but they are considerably assisted in this by the inherent simplicity of the
architecture of the agents being interfaced through the blackboard.

363

VOLUME TWO

11.9.1 Search
Search is one of the most important theoretical areas of artificial intelligence,
especially heuristic search where one has to find good sub-optimal solutions to
problems which cannot be solved using optimal methods. Data for the spaces
being searched may be encapsulated in particular agents with the results of the
search being written on the blackboard, or all the data relating to the search may
be publicly available on the blackboard. Search heuristics may be implemented
as rule-based systems, programs, and neural network agents.

11.9.2 Pattern recognition
This covers a wide variety of techniques which are used in the design of
intelligent machines. Any particular pattern recognition technique might be
implemented as a rule-based system, a bespoke computer program, or a neural
network agent. In hierarchical pattern recognition, different agents may be
implemented to perform the recognition at different levels with each reading its
data from the blackboard and writing its results on the blackboard. Pattern
recognition implicitly or explicitly involves search.

11.9.3 Neural networks
In Figure 11.1 neural networks were shown as agents which may interact with the
blackboard data. In general the network will have to be interfaced to its inputs by
apre-processor and its outputs may have to interpreted by a post-processor. The
pre-processor might be an agent which, for example, reads sensor data from the
blackboard, transforms it into a form on which a neural network can operate (e.g.
a sequence of numbers) and then writes this back on the blackboard. The network
can then read the pre-processed input data from the blackboard and write its
outputs on the blackboard. The post-processor may be an agent which reads that
output and transforms it to a form which can be used by other agents. The pre-
processor and post-processor agents may be implemented as rule-based systems
or conventional computer programs.

11.9.4 Scheduling
Scheduling is one of the main tasks of the cognition subsystem. As discussed in
Chapter 5, scheduling can be considered to be the ordering of events in space and
time. The particular nature of their events and their representation will depend on

364

CHAPTER 11: INTEGRATION

the particular application. For example, although the scheduling problems are
similar, a robot planning its route around a factory will require a different
representation to an arm which must position a gripper inside a complex mechan-
ical object. The representation data for a particular scheduling problem may be
encapsulated in a single agent, or they may be public data on the blackboard.
Scheduling subsystems may be implemented as rule-based systems, programs,
and even neural networks (using appropriate pre-processors and post-proces-
sors).

11.9.5 Reasoning
Two of the main information processing paradigms discussed in this book are
logical deduction through reasoning, and learned classification of data in neural
networks. Most human theorizing and technical communication is based on
reasoning using explicit vocabularies and rules of inference. The If-Then con-
struct is one of the most fundamental ideas in reasoning and it pervades every
aspect of designing an intelligent machine. Inevitably designers will have a
mental model of the machine and its environment which may be expressed in
natural language and mathematical formalism, and they will constantly be
musing along the lines that if this is so then that must follow. Since humans
frequently make conceptual and computation errors in reasoning, the designer's
conclusions may tum out to be incorrect, as may become apparent when the
machine is tested.

Computer programs are usually full of lf-Then constructs, and they give a very
flexible way of encoding the reasoning of the programmer. It is more difficult to
make a machine reason for itself, and rule-based systems have been very
successful in this respect. Many computer-based systems now exist for the
manipulation Of knowledge expressed as facts and rules. Some of these systems
have the objective of deducing new knowledge from old and ordering this
knowledge systematically, while other systems have the objective of the machine
proving hypothetical results from extemal sources or which it has hypothesized
itself.

The agents which reason in an intelligent machine will be rule-based systems, or
other systems implemented as computer programs in languages such as C, C++,
LISP and Prolog.

11.9.6 Rule-based systems
The architecture of rule-based systems is one of the triumphs of research into
artificial intelligence. Even though this appears to be a standard technology
today, research in this area goes back only some thirty or forty years. Rule-based
systems are explicitly considered to be agents which can interact with the
blackboard data.

365

VOLUME TWO

11.9.7 Learning
Learning is considered to be one of the most important features in making
machines more intelligent and adaptable. Machines do not have anything like the
learning capabilities of humans, and this is a very active research area. The agents
which learn in a blackboard system will usually be implemented as rule-based
systems or programs. The exception is neural networks, which learn from
examples during training. The learning process will usually involve the learning
agent reading data from the blackboard, processing it, and writing the result back
on the blackboard.

As discussed in Chapter 1, the indexing problem is one of the most challenging
problems in artificial intelligence. It is relatively easy to put huge amounts of
information into machines, but it is difficult to synthesize and extract that
information in a useful form for any particular task. As described here, the
blackboard is a passive information cartier, allowing information to be written to
and read from it. It may be that intelligent machines will require pro-active
synthesizing agents which transform passive data into useful information, and
pro-active indexing agents which post meta-data on a meta-blackboard enabling
other agents to find the information they need when they need it.

11.9.8 Intelligent control
As seen in Chapter 9 on Intelligent control, low-level control such as that for the
broom-balancer may be implemented as agents which are rule-based systems,
programs and neural networks. In general these agents would read the control
d a t a s u c h as t he p o s i t i o n o f t he t r o l l e y a n d t he a n g l e o f t he b r o o m f r o m the

blackboard. Estimates of the rate of change of the variables might be calculated
by an agent which then writes velocity and angular velocity values on the
blackboard for other agents to read. The various control strategies will be
implemented as agents of appropriate types, and these will write control data to
the blackboard. The hardware and software interface of the blackboard system
will then switch the motors and apply power according to the parameters stored
on the blackboard.

The control of large complex systems is likely to be distributed over many agents
in the blackboard system according to the perception, cognition, and execution
considerations given above. In particular, some parts of the system may indeed be
autonomous agents, and the blackboard architecture allows this since individual
agents or groups of agents can be implemented in ways which make them totally
independent of all the others, except for their interaction through the blackboard
variables.

366

CHAPTER 11: INTEGRATION

11.9.9 Computer vision
Computer vision can be considered to be a special case of pattern recognition, and
its implementation will be through agents which are rule-based systems, pro-
grams and neural networks. For complex scenes computer vision requires a
sophisticated representation which usually involves two- or three-dimensional
geometry. These data may be encapsulated in specific computer vision agents, or
they may be publicly available as blackboard data. Usually the incoming images
will be public data which are written on the blackboard by the hardware and
software interface. Various perception agents may access these image data, and
process them to produce synthesized data to be written on the blackboard to be
used by other agents. Computer vision may involve top-down processing, which
is usually performed by agents which are rule-based systems or conventional
computer programs.

11.10 Conclusion

In this book we have presented some of the most important concepts and
techniques of artificial intelligence as they apply to the design of intelligent
machines. Each of the concepts needs to be understood in order that the designer
has an overview of the technologies available to solve large, complex, and
sometimes ill-defined problems. The techniques we have shown can be adapted
for particular problems, and again a good understanding of the underlying theory
is necessary for this. We have concluded the book by considering how the various
concepts and techniques might be implemented, and we have shown that the
blackboard system architecture is a simple but powerful way of integrating the
various techniques. Other architectures will be appropriate in some situations.

After reading this book you should have a good grasp of the elementary principles
of artificial intelligence and be able to implement these ideas in practical systems.
Each of the areas that we have covered has its own specialist literature which you
should now be able to read and understand in order to extend your knowledge.
Our hope is that this book has given you a good foundation from which you can go
forward to design and implement your own intelligent machines.

Reference

Hopgood, A.A. (1993) Knowledge-Based Systems for Engineers and Scientists, CRC
Press: Boca Raton, Florida, USA.

367

VOLUME TWO

A C K N O W L E D G E M E N T S

Grateful acknowledgement is made to the following sources for permission to
reproduce material in this text.

Chapter 2
Figure 2.2: Levine, M.M. (1979), Vision in Man andMachine, Copyright �9 1985
by McGraw-Hill, Inc., Reproduced with the permission of McGraw Hill, Inc.;
Figures 2.3 and 2.4: Kanizsa, G. (1979), Organization in Vision, Copyright �9
1979 Praeger, an imprint of Greenwood Publishing Group, Inc., Westport, CT.
Reprinted with permission; Figures 2.25, 2.26, 2.27(a), 2.27(b) and 2.28:
Lillesand, T.M. and Kiefer, R.W. (1979), Remote Sensing and Image Interpret-
ation, Copyright �9 1979 by John Wiley and Sons Inc., Reprinted by permission
of John Wiley and Sons Inc.; Figure 2.32: Reprinted from Artificial Intelligence
in Engineering, 8, Johnson, J.H., Picton, RD. and Hallam, N.J., 'Artificial
intelligence', pp. 307-313, Copyright 1993, with kind permission from Elsevier
Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK; Figure
2.33: M.C. Escher's 'Sky and Water I' �9 1999 Cordon Art B.V. - Baarn-
Holland. All fights reserved.

Chapter 10
Figure 10.8: Scala; Figure lO.lO: Reproduced with the permission of The
Phillips Collection, Washington, D.C.; Figure 10.11: Reproduced by permission
of Royal Mail; Figure 10.14: Heather Angel; Figure 10.19: Trudeau, G. (1993)
Universal Press Syndicate �9 1993 G. B. Trudeau; Figure 10.20: Bokser, M.
(1992) 'Omnidocument technologies', Proceedings IEEE, July 1992, Special
Issue on OCR, �9 1992 IEEE.

Chapter 11
Figure 11.1: Hopgood, A. A. (1993), Chapter 7 'Systems for interpretation and
diagnosis', in Knowledge-Based Systems for Engineers and Scientists, �9 1993 by
CRC Press, Inc. Reprinted by permission of CRC Press, Boca Raton, Florida.

Cover
Computer art courtesy of Dr. Paul Margerison.

368

I N D E X T O V O L U M E 2
Page numbers in bold indicate principal references to key terms, which are flagged in the text by the

use of bold italic type.

2-D vision 333
3-D vision 333
3-valued logic 191, 191-192
a priori classification 32
a priort facts 218
a priort information 11
a priori knowledge 352
a priort map 303
a priori Scientific knowledge 309
A* search algorithm 67, 67-68
actions 137
activity list 144-146
activity network 145, 147, 151
activity planning 6
activity scheduling 151, 155
actuators 6, 244, 245, 355, 356, 357,

360, 361,362
ADALINE network 286
aeronautics 354
agents 355, 357, 359, 360, 361,362,

363, 364, 366, 367
agricultural planning 347
agriculture 254
air traffic control 309
aircraft detection 346
algorithms 55, 142, 143, 150, 155,

333, 353
ambient illumination 345, 351
analogical reasoning 268
analogue television 322-323
analogue-to-digital conversion 323
AND function 103
AND operation 181, 182, 198, 201,

202, 216
Anderson, P. 309
animal identifier example 230--233
antecedent predicate data list 241
antecedent predicates 221, 222, 227,

229, 231,232, 293
architecture 217, 219, 247, 248, 250,

349, 350, 352, 355, 356, 362,
363, 365, 367

architecture of network 130
argument 185
Ariadne 251
Aristotle 176
arithmetic 244
array 271
artificial brain 105

artificial intelligence (AI) 1, 4-5
artificial neural networks - see neural

networks
artificial neural unit 100, 100-105
Ashby, R.W. 308
associative memory 347
atom 15
atomic actions 139
atomic feature 15
atomic parts 12
automatic sorting 341
automotive systems 354
autonomous agents 359, 362, 363,

366
autonomous control decisions 142
autonomous robot 356
autonomous vehicle (AV) 7, 180,

248, 250, 251
autonomous vehicle example 58-67,

69-75, 259-260, 269-272
axioms 188, 189
B-spline 332
back propagation 119-122, 122, 124,

291,292
background clutter 334, 335
backward chaining 221,230,

230-233, 234, 235, 236
backward scanning 65, 66, 147, 148,

149, 171
bandwidth 251
bang-bang control 282-285, 283,

290, 293
banking 341,345
banknote recognition 347
bar codes 177
Bayes' rule 195-197, 216, 252
Bayes, T. 195
Bayesian deduction 175
Bayesian learning 249, 258, 272
Bayesian statistics 246
Bayesian updating 252-258
belief system 309
best-first search 58, 59, 62-67, 93,

260, 307
bicycle assembly example 144-146,

149-150, 152-155
Big-O notation 54
binarization 317, 319, 320, 347, 348
binary array 271

binary image 127
binary set memberships 204, 205
binocular vision 333
biological neurons 102, 103
bit-mapped image 16
black-box classifiers 96, 135
black-box system 96
blackboard system architecture 248,

356
blackboard systems 355-367
blackboard variables 361,362, 366
Boltzmann machine 124
Boole, G. 176
Boolean connectives 201,202, 216
Boolean expression 198, 199
Boolean logic 177, 182, 192, 201,

202
Boolean logic functions 103
Boolean operators 181
bottom-up aggregation 353
bottom-up processing 351-352
box-in-box example 183-184
brain 312
branches 58
breadth-first search 58, 59, 61--62,

93, 235
breeding 86, 90
broom-balancer model 276
broom-balancer problem 274,

274--286, 292, 293-303, 366
Brunel University, England 347
brute force 8, 53, 54, 56, 157
Buggins' cycle 358
Buggins' Turn 225, 358
business systems 354
C programming language 357, 365
C++ 247, 357, 365
CAD data structures 332
calculus-based methods 92
calculus-based search 58, 68-78
cameras 247
car design 354
Cartesian coordinates 138, 322, 339
catastrophe theory 312
catastrophic errors 135
catastrophic failure 219
cathode ray tube (CRT) 323
cellular autonoma 312
cellular representation 138

369

INDEX TO VOLUME 2

centre of area 301
centre of gravity 208, 209, 214, 300
chain rule 120
chalk-and-cheese spaces 51
chalk-cheese systems 39-43
chaos 312
character array 240
character recognition 95, 348, 352
chromosomes 86, 88, 90, i64, 165,

166, 168, 291,292
circle in the sun illusion 10, 15
classical control 308, 312
classical control solutions 277-285
classification 30, 39-46, 51, 96, 99,

109, 258, 306, 320, 336-338, 347,
365

classification- see also

misclassification and non-
classifications

classification by dilation 43
classification problems 97
classifying multidimensional

spaces 34-37
classifying unit 109
clause 220
closed-loop control 278, 303, 304
closed-loop transfer function 278, 286
closeness 39
cognition 6-7, 50, 125, 353, 366
cognition for control 306-307
cognition subsystem 175, 306, 356,

360-361,362, 364
cognitive functions 5
cognitive science 1, 2
cognitive subsystem 216
coin tossing example 193-194,

255-256
colour 334, 335
colour camera 336
colour image 24, 28
colour scanners 331,332
combinational search 92
combinatorial explosion 5
communication 4
compilers 357
complex control problems 303-304
complex systems 312
composite actions 139
computation 312
computational complexity i5, 23, 24,

54, 55, 92, 137, 143
computational effort 155, 172
computational power 55, 96, 157
computer graphics 332-333
computer programs 355, 365, 366,

367

computer vision 6, 24, 176, 250,
306, 315-367

computer vision techniques 345-351,
354

computer-aided design (CAD) 332
concept learning 250
confidence 252
confidence levels 246-247
confidence limits 48
conflict resolution 223, 224-230,

297, 356, 358, 359
conflict set 221, 223, 224, 225, 227,

228, 229, 239, 247
conjunction 198, 241
connectives 181, 182, 189, 191, 192,

202, 216
consequent predicate data list 241
consequent predicates 221, 231,244
consumer goods 354
context limiting 224
control as search 308
control mechanism 352
control problems 303-304
control strategies 358, 366
control structure 358, 363
control theory 8
controlling complex

systems 308-311
cooling schedule 84, 164
corrupted data 132-135
cost of misclassification 46
CPM 150
creativity 4, 5
credit card reader 331
credit card voucher

example 341-343
crime detection 354
crime prevention 354
crisp sets 294
crisp thresholds 204
critical path 141, 147
critical path activity

scheduling 151-155
critical path analysis 7, 138,

144-150
critical path method 150
critical path scheduling

algorithm 151
crossed paths 161-162
crossover 88, 89, 9t, 92, 165, 168,

291,292
curiosity 5
cursive script 344
cybernetics 308
cycle 140, 141
data acquisition 242

data compression 331
data fusion 6, 93
data structures 219, 247, 249
data transformation 24-28
data-driven reasoning 230
data-to-data transformation 25
dead-reckoning 259
decision tree 260, 267
declarative programs 355, 357
decoding 4
deduced fact 176
deduction 176, 178
deduction mechanisms 233
deductive logic 125
deep knowledge 220
defuzzification 45, 208-213, 247, 300
degradation 219
delta rule 113, 113-119
DeMorgan's Laws 182-183, 199,

202, 203
depth-first search 58, 59, 60-61, 93,

235
derivative 72
derivative action 278, 279
desktop publishing 331
deterministic logic 178, 179
deterministic reasoning 175, 176,

176-177, 180
development environment 356-357
diagnosis 234, 256
dice-throwing example 195-196,

199-201
differential equations 273, 284
digital colour image 24
digital image 315, 316, 317-333
digital television 323
digitization 322, 350
digitized image 328, 329, 330, 342,

343
Dijkstra's algorithm 143
dilation 43
directed graph 140, 141
directed link 140, 141, 145
directed path 141
disaster prediction 354
discrete dynamics 312
discrete search spaces 77-78
discrete solution space 79
disjunction 198
distance transform 63, 64, 65, 171,

172, 173
distributed memory 251
distributed model 105
distributed systems 7
document reading systems 95, 341

370

INDEX TO VOLUME 2

document scanners 331,332
domain 185, 186, 220
domain knowledge 56
domain of application 356
dominoes 56
Doonesbury cartoon 344
double spiral problem 43
Du Pont Nemours Company 150
dynamic activity-path planning 138
dynamic modification 5
dynamic reasoning 175, 178
earliest starting time 150
edge 139, 328
edge data 10, 11
edge detection 339, 339-340, 349
edge detectors 10
editors 240-241,356, 357
electronic pen 344
elements 21, 22
elitist strategy 90, 291
emergency planning 7
emergent behaviour 7, 142, 303,

358, 362-363
emergent feature 15
encoding data 5
energy of a system 162
engineering 1, 6-7, 8
engineering design 8, 363
engineering disciplines 346
equiprobability contours 36, 37
error 113, 120, 12 i
error function 252
error surface 115
errors in classification 46, 51
Escher, M.C. 44
evaluation 62
EXCLUSIVE-OR function 111
EXCLUSIVE-OR problem 112
execution 7, 125, 137, 357, 366
execution subsystem 7, 356, 361,

362
exhaustive search 53, 54, 62, 78, 79,

80, 93, 161
existential quantifier 177, 186, 237
expert systems 217-239, 218
explanation facility 219, 233-234
explosives-in-suitcase

example 28-34, 44, 46, 49
exponential complexity 55
external reference 21
fact database 222, 223, 226, 230,

238, 239, 241,242, 243, 356,
358

factor analysis 37
factory rules 151

facts 220
failed rule 221
failure rate 48, 49
fan-out layer 111
fault diagnosis example 256-258
fault toleration 95
FC110 Digital Fuzzy Processor 311
feature 17
feedback control 278, 286, 287
feedback loop 303
feedback networks 123-124
feedforward 352
feedforward networks 110, 110-113,

123
fired rule 221, 358
first-come, first-served 224, 225,

227, 228, 297
fitness 165
fitness function 86, 91,291
fitness of chromosomes 86
fitness of the population 86
float 147, 150
forced classification 45
FORTRAN 357
forward chaining 221, 221-223, 227,

230, 232, 233
forward propagation 63
forward scanning 63, 64, 147, 148,

149, 171
Fourier domain 27
Fourier spectrum 251
Fourier transform 27, 51,252
frame-grabbing 331
Frege, F. 177
frequency domain 27
fully connected network 111, 288, 289
functionality 7
fuzzy classification 45
fuzzy connectives 202
fuzzy control 294, 311
fuzzy-controller integrated

circuits 247
fuzzy logic 6, 8, 45, 175, 180, 201,

202, 205, 216, 248, 273
fuzzy operators 201,202, 207, 299
fuzzy processor 311
fuzzy reasoning 201-203
fuzzy rule-based controllers 247
fuzzy, rule-based systems 247
fuzzy rules 219, 246-247, 293-302
fuzzy set membership 180
fuzzy set theory 45, 180
fuzzy sets 44-46, 51,203, 203-215,

246, 294, 295, 302, 312
game theory 312

general-purpose machines 361
generality ordering 224
generalization 5, 47, 50, 96, 109
generalized learning

architecture 287-288
generalizing 14
genetic algorithms 58, 85, 85-92,

93, 164-169, 173, 291-293, 311
genetic crossover- s e e crossover
geometric model 339, 349
geometric representation 322
Gestalt patterns 15
global maximum 78
global minimum 78, 79, 80, 81, 82,

91, 161, 164
global minimum energy 162
goal 4, 137, 360, 361,362
goal-driven reasoning 230, 235
graceful degradation 95, 219
gradient ascent 81, 159
gradient descent 58, 62, 76, 75-79,

81, 82, 92, 93, 113, 115, 116,
125, 159, 252, 292

graph isomorphism 21
graph matching 18-23, 51
graph theory 172
graphic user interface (GUI) 7,

217-218, 332, 357
graphics board 323
graphs 19, 20, 22, 51,139, 139-141
greedy algorithm 157, 159, 171, 173
greyscale 34, 36, 315, 317, 319, 323,

325, 331,348
greyscale array 320
greyscale image 127
greyscale techniques 320
greyscale threshold 317
grid 271
grippers 6, 7, 360, 361,362, 365
ground truth 35
handwriting recognition 339-345
handwritten character 16
handwritten text 344
hard-limiter 103, 112, 116, 282, 285,

291,292
hard-limiting output function 101
head (of a path) 158
heterarchy 303
heuristic activity-path planning 138
heuristic methods 169
heuristic search 53, 56, 189, 364
heuristics 7, 8, 22, 137, 161, 169,

220, 259, 260
hidden layers 111, 119, 122, 130
hierarchical architecture 349, 350,

351-353

37/

INDEX TO VOLUME 2

hierarchical control 303-311
hierarchical pattern recognition 51
hierarchical structure 23-24
hierarchical systems 138
hierarchical top-down control 142
hierarchy of actions 139
high-level languages 247
high-quality digital television 323
hill climbing 58, 62, 77, 77-78,

81-82, 93, 159-161, 163, 164,
173, 292

Hopfield network 123
Hopgood's defuzzification

paradox 214
house-keeping 220
human-computer interaction 1
human-computer interface 2, 7
human-computer systems 1, 2, 3
human brain 104
human experts 218, 245
human intelligence 4
human learning 249
human-like intelligence 2
human logic 178
human pattern recognition 9
human reasoning 175
human supervision 3
human vision 24, 326-331
identification 17
identification points 40, 41
identified 21
Identifier 230, 232, 233
idle periods 151
If-Then construct 365
If-Then decisions 191
If-Then reasoning 350
If-Then rules 176, 181,207, 216,

220, 232
If-Then statements 220
illumination levels 345, 351
illusion 10, 15
image analysis 349
image domain 25
image interpretation 6
image quality 315
implication 183, 184, 221,357
imprecision 172, 173
Impressionist painting 327, 329
independent agents 355
indexing 5
indexing agents 366
indexing problem 366
industrial inspection 354
industrial process control 247
inference 4, 5

inference engine 217, 221,222, 223,
225, 228, 238, 242, 243, 245,
247, 356

inference mechanisms 248
inference rules - see rules of

inference
infinite search space 57
inflexion 75
information content of a digital

image 317-333
information engineering 5
information processing 352, 359
information-processing

paradigm 135, 136, 365
information-processing systems 331
information technology 4
infra-red radiation 333
infra-red sensor 333
infra-red spectrum 347
initial feature 17
input-output data 109, 252, 258, 288
input--output pairs 14, 47, 50, 114,

135
input-output relationship 286
input layer 111
insect recognition example 24-25,

28, 333-338
instantiation 236-239
integration 355-367
intelligence 1
intelligent actuator 362
intelligent control 7, 8, 250, 273,

273-312, 355, 366
intelligent machines 5, 53, 97, 137,

144
intelligent scheduling 170-172
interlaced scans 323
intermediate facts 232
intermediate goal 231,360
internal knowledge 4
internal representation 58, 240
interpretation space 15, 50
interpretations 17
intruder detection 333
lnvariance 17-18
lnvanance to colour 18
lnvanance to distance 18
mvanance to orientation 346
lnvarlance to position 346
lnvarlance to rotation 18, 346
lnvanance to scale 346
lnvarlance to sensor error 18
invariance to sensor noise i8
invariance to signal strength 18
invariance to size 346
invariance to speed 18

invariance to translation 346
invariant 18
inverse of a transfer function 287,

288
inverted pendulum- see broom-

balancer problem
Jarvis, R.A. 63
jitter 323
Johnson's non-Euclidean dilation

solution 43
journey times 142
keyboard operators 344
Kiefer, R.W. 35
Knossos 251
knowledge base 217, 220-221,227,

229, 230, 246, 247, 248, 249,
307

knowledge-based systems 6, 8, 45,
217-239, 350

knowledge elicitation 218, 245-246
knowledge engineer 218, 246
knowledge representation 239-240
Laplace operator 277
Laplace transforms 277
latest starting time 150
Law of the Excluded Middle 181
layers 110
learning 5, 6, 7, 8, 125, 246, 249,

249-272, 306, 355, 360, 366
learning by analogy 249, 267-269,

272
learning by deduction 250
learning by discovery 249, 269,

269-272
learning by induction 250
learning by instruction 250
learning by memory 249, 250,

250-251,267, 272
learning by observation 249, 272
learning by updating parameters 249,

251-252, 272
learning coefficient 130
learning from examples 106, 249,

258-267, 272
learning in neural networks 113-122
learning rate 118
Leonardo da Vinci 333
Lillesand, T.M. 35
linear control 273, 276, 278-282
linear model 273, 278
linear system 286
linearly separable 42
linearly separable classes 107
linkers 357
links 19, 21, 23, 139, 143
LISP 365

372

INDEX TO VOLUME 2

list domain 25
local maxima 78
local minima 78, 84, 91, 164
local optimum 78, 169
local thresholding 348
logic 8, 198-201
logic gates 104, 182
logical deduction 365
logical functions 104, 112, 126, 182
logical operators 198, 201
logical reasoning 6, 125
longest path 147
look-up tables 246
Los Alamos National Laboratory,

USA 363
low-level control strategies 308
low-level pattern recognition 23
machine intelligence 1, 2, 3-4
machine learning- see learning
machine reasoning 8
machine-typed text 344
magnetic image 331
magnitude spectrum 27
manufacturing processes 180
manufacturing system 137
map 360, 361
map of the environment 58, 172
marriage broker example 237-239
mathematical functions 244, 245
mathematical models 68-71
mathematical morphology 349-350
maximum likelihood classifier 37
maximum likelihood method 36
mean greyscale value 36
mean squared error 113, 114, 115,

120
mechanical ants 303
mechanization 3
mechatronic systems 125, 143, 155,

218
medical diagnosis 218
medical image 317
medicine 354
membership functions 203, 203-215,

246, 294, 296, 302
membership values 297, 298, 300
meta-blackboard 366
meta-data 366
meta-knowledge 249
metric 51
microprocessors 250
military systems 354
minds 312
minimization 74-75
minimization problem 155

minimum completion time 147, 151
minimum distance to means

method 35-36
minimum path 140
mining 354
misclassification 42, 45, 46, 49, 345
model-based pattern recognition 23
models 14, 23, 105
m o d u s p o n e n s 187, 188, 189, 221,

230
m o d u s tol lens 187
monitor 318, 323
monotonic 116, 190
monotonicity 189
mosaics 24, 331
movement pattern 334
multi-valued logic 175, 178, 216
multidimensional data 347
multidimensional data space 28-44
multidimensional pattern

classification 32-34
multidimensional search space 77,

113
multidimensional space 28, 51
multilayer network 111, 286
multilayer perceptron 113, 119,

124-135, 286, 292
multiple classifications 44-46
multiple instantiation 237, 239
Multispectral Scanning System 347
mutation 89, 90, 165, 168, 169, 291,

292
mutation rate 89, 91,292
n-ary relation 18, 19
NAND gate 182
natural languages 5
near miss 22, 51
negation 198
negation operator- see NOT

operation
network theory 139
network topology 96
networks 139-141, 140, 143, 145
neural network architecture 98
neural network solution for broom-

balancer 285-291
neural networks 6, 44, 92, 94-136,

100, 250, 252, 258, 269, 302,
311,337, 338, 350, 355, 356,
359, 361,364-367

neural processors 346
neural subsystems 357
neural unit 100, 100-105
neurons 102, 104
Newton-Raphson method 71, 71-74,

75

nodes 139, 143, 145
non-classifications 46
non-comparability 40
non-deterministic logic 178
non-deterministic reasoning 175,

178-180
non-Euclidean dilation 43
non-linear control 282-284
non-linear model 277
non-linearly separable data 109
non-metric classification 39, 39-43
non-monotonic logic 175, 178, 216
non-monotonic reasoning 8, 189-190
non-polynomial algorithms 55
non-polynomial indeterminate 55,

92, 155
normal distribution 36, 37
NOT function 104
NOT operation 181, 182, 198, 201,

216
notepad computers 344
NP algorithms 55
NP-hard problems 157
NP-indeterminate 55, 92, 155
numeral classifier network 130
numerical calculations 244
object measurement 333-345
object recognition 333-345
object-oriented modules 355, 356
object-oriented programs 357
obstacle avoidance 172
obstacle navigation problem 304-308
occlusion 315, 350
O C R - see optical character

recognition
odds 254, 255, 256, 258
offset 102
one-to-one mappings 21
open-loop control 8
operator skills 346
operators 15-17
optical character recognition

(OCR) 18, 23, 127-135,
339-345

optimization techniques 92, 173
optimum solution 56
OR function 104
OR operation 181, 182, 198, 201,

202, 216
output function 101, 120
output layer 111
P+D controller- see proportional plus

derivative control
pairwise comparison 41
PAL video signal 323
paradoxes in fuzzy sets 213-215

373

INDEX TO VOLUME 2

parallel processing 357-359
parallelepiped classification

strategy 37-39
parameter updating 249, 251, 252,

272
parameterization 252
parameterization networks 252
parameterized curve 332
parent chromosomes 88
parsing 240-241,244
partitioning 24
partitioning of representation

space 31-34, 32-34
path 137, 141
path planning 7, 137, 307, 308, 360
pattern 15, 18
pattern classification 6, 105-110
pattern matching 13, 242
pattern recognition 9-51, 96, 125,

127, 222, 306, 337, 345, 346,
355, 359, 360, 361,364, 367

pattern recognition hierarchy 23
pattern space 107
perception 6, 50, 125, 353, 366
perception-cognition-execution

cycle 362
perception subsystem 175, 356,

359-360
performance 361
permutation 159, 160
personal computer 357
PERT 150
pH image 331
phase spectrum 27
phonemes 350
picture element- s e e pixel
pixel 24, 25, 34, 315, 317, 321,322,

323, 325, 327, 330, 331,333,
349, 359

pixel colour frequencies 336, 337, 350
pixel configuration 348, 352
pixel grid template

matching 346-347
planning 6
point of inflexion 75
Polaris missile project 150
poles 278
polygons 138
polyhedra 138
polynomial algorithm 54, 55
polynomial complexity 54
polynomial expressions 71, 74
Pontryagin's maximum

principle 283, 284-285
Pope Paul III 326-327
Popper, K. 310

population of chromosomes 164
position 322
possibilistic logic 201
possibility 201-203
post-processing 349
post-processing subsystem 97
post-processor 98, 100, 364, 365
postage stamps 327, 330
power station controller 218
pre-processing 135, 337
pre-processing subsystem 97
pre-processing system 350
pre-processor 98, 99, 100, 364, 365
precedence relations 144
predicate logic 175, 177, 180,

185-187, 216
predicates 185, 220, 222, 223, 230,

238, 240
prediction 5, 310
pressure image 331
primitive features 17, 23, 50
primitives 17, 351,352
principal component analysis 37
prioritizing 224
priority space 141
probabilistic search 78, 78-92
probabilities 83, 87, 163, 195, 197,

198-201,216, 252, 253, 256
probability density function 37
probability of failure 179
probability theory 175, 178, 179,

192-194
procedural programs 355, 356, 357,

360
processors 359
production rules 220
Program Evaluation and Review

Technique (PERT) 150
programming 248
programming language 247
Prolog 247, 357, 365
proportion of misclassification 46
proportional controller 278
proportional plus derivative (P+D)

control 278-282, 286, 289,
290, 293

propositional logic 175, 177,
180-185, 186, 216

propositional symbols 180, 181, 183
propositions 198, 199, 220, 221
quantifiers 177, 185, 186, 189, 236,

247
Quinlan's 'Interactive

Dichotomizer 3' 267
Quinlan's TDIDT algorithm 246, 260
radar 6

random access memory (RAM) 250
random search 80, 93
real number creep 292
real-time applications 37
real-time processing 346
reasoning 5, 125, 135, 175, 175-216,

219, 230, 232, 250, 350, 355,
360, 365

reasoning in cognition 7
reasoning in execution 7
reasoning with certainty 180-190
reasoning with uncertainty 19 t-215
recency ordering 224, 225, 228
recombination 165, 166, 168, 169
recovery 5
rectangular box classification 24,

37-39
recurrent network 288, 288-291,292
red-green-blue - s e e RGB
redundancy in data 338
reference pattern 12, 13, 17
rejection 51
rejection in pattern recognition 345
relational patterns 18-23
relations 21
relative closeness 39, 40
relative frequency of an event 193
remote sensing 347, 354
Renoir, P.A. 329
representation 4, 5, 6, 16, 17, 310,

332, 367
�9 representation domain 25

representation in scheduling 138-139
representation space 15, 30, 31-34, 50
resolution 271,317, 331,350
RGB 331
RGB camera 325
RGB data 323
RGB space 24
RGB values 25
road traffic systems 142, 143, 363
robot arm 6
robot vision systems 95
robotics 8,354
robots 137, 138, 151,353, 365
robust primitives 351, 352
root node 58
rotational invariance 346
roulette-wheel selection 86, 87
routeing 169-170
routeing problem 156
rule database 222, 225, 244
rule editor 240
rule inventory 233
rule ordering 224

374

INDEX TO VOLUME 2

rule trail 233, 234
rule-based systems 217-248, 250,

260, 355-358, 359, 360, 361,
364, 365, 366, 367

rules 217, 219, 220
rules of inference 180, 187-188,

189, 216, 221,230, 365
Russell, B. 177
s-plane 278
safety-critical applications 136, 155
sampling 289
sampling methods 51
sampling period 290
sampling theory 47, 48
satellite image 317, 324, 347
satellite image classification

example 34-39
scale invariance 346
scanner 331
scanner technologies 339
scatter diagram 29, 33, 34, 35
Schank, R. 1, 4
scheduling 6, 137-173, 250, 307,

355, 360, 361,364
scheduling algorithms 137, 309
screen display 320
search 8, 53, 53-94, 125, 250, 271,

272, 307, 355, 360, 364
search space 53, 56, 77, 92, 113,

137, 162, 169, 252, 292
search surface 57
search techniques 125
search trees 58-68
security 354
security lights 333
security systems 9, 222
self-diagnosis 258
self-repair 155
semi-linear output function 290, 291
sensing-cognition-execution loop 7
sensitivity 294
sensor waveforms 26
sensors 6, 9, 28, 45, 93, 236,

244, 245, 249, 250, 331,355,
356, 357

sequential processor 357, 358, 359
Serra, J. 349
set membership 44
set theory 203
shape 334
shell 248, 356, 357
shock waves 143
shortest path 138, 140, 142-143,

157, 169, 172
shortest path algorithm 142
shortest time 142

sigmoid function 83, 116, 117, 120,
125, 126, 163

signal-to-noise ratio 325
Simon's Principle of Robust

Primitives 351
Simon's Three-Pixel Principle 324,

323-326
Simon, J.-C. 15, 16, 324
simple pattern 15
simulated annealing 58, 82, 82-85,

91, 92, 93, 125, 161, 162-164,
173, 292

simulation 136, 363
single instantiation 237
single-point crossover 88, 89, 91,

291
size 334
size ordering 224
skeletonization algorithms 348
Smalltalk 357
SmartLab 239, 240, 245, 248, 357
software environment 356
software interfaces 357
solution space 56, 70
sonar 6
space travel 354
spatial relations 12
specificity ordering 224
spectral coefficients 27, 252
spectral components 251
spectrum histogram 347
speech recognition 350
speech understanding systems 95
state variables 290, 294, 296
statistical matching 347
statistical methods 34-37, 49, 50
statistical models 347
statistical sampling methods 51
statistical sampling theory 47, 48
statistical techniques 37
steepest descent 77, 78, 93
steepest descent algorithm 81
stereo imaging 333
string data list 241
strings 240
strong AI 1, 2
sub-optimal solutions 57, 364
sub-pixel edge detection 339-340
subjective contour 10
subroutine 251
sun illusion 10, 15
supermarket check-outs 4
supervised learning 113
surface knowledge 220
symbolism 11

symbols 320
synapses 102
synchronization 155
syntax 240,356
tail (of a path) 158
tangent 72
target language 332
TDIDT algorithm 246, 260
telecommunications 354
television cameras 322, 323, 331
television picture quality 323
television signal 323
temperature controller

example 225-230, 234-236
temperature in simulated

annealing 83-84
template 105, 127
template matching 346-347
test data 47, 50
test pattern 12, 13, 132
text string 240
Thematic Mapper 347
theorem proving 188, 188-189,

216
thermal equilibrium 84
Theseus 251
thickening operator 349-350
thinning operator 349-350
thresholding 339, 348
thresholds 100
time domain 27
time-slicing 358
time-to-failure 291
Titian 326-327
tolerances 180
top-down processing 360, 367
top-down reasoning 352, 353
toys 354
traffic jams 142
training 14, 46-50, 96, 234, 258,

366
training behaviour 136
training data 14, 40, 47, 50, 285,

288, 337
training pairs 130
training points 35
training set 114
transducers 331
transfer function 277, 278, 279, 286,

287, 288
transform 27
transistor-based logic circuits 104
translational invariance 346
trapezium 209
travel time 143

375

INDEX TO VOLUME 2

travelling salesman problem 55, 137,
138, 155-170, 173, 291

tree search 58, 58-68, 235, 236
triangular function 208-213, 246
triggered rule 221, 227, 229, 358
trolley and po le - s e e broom-balancer

problem
truck design 354
truth maintenance 220
truth values 181, 187, 189, 216, 220,

221
Turing, A. 5
turning points 74, 75
TV - s e e television
ultraviolet irradiation 334
unbiased sample 47
uncertainty 51, 178, 252
uncrossing a path 162
underwater surveying 354
universal quantifier 177, 186

University of Edinburgh,
Scotland 353

upper confidence limits 48, 49
US Navy 150
variable database 245
variables 185, 236--239
vector representation 271
vehicle navigation problem 304-308
vehicle routeing problem 169-170
velocity profile 283
vertices 19, 21, 139
video camera 317
video image 347
video image data 25
video signal 323
vision 5, 315-367
vision system 223
vocabulary 310, 311,365
Wardrop, J.G. 142

washing machine 218, 247
waveform peak discrimination

example 25-27
waveforms 25, 26, 27, 28
weak AI 1, 2
weather forecasting 354
weather forecasting example 258,

260-266
weighted sum 102, 116
weighted sum of inputs 100
weighting 140
weights 101, 124, 140, 141,252,

291,292
Widrow, B. 286
Winston, P.H. 67, 230, 232
WISARD system 347
word processing 341
world knowledge 4
Zadeh, L. 180, 201

376

	Front Cover
	Concepts in Artificial Intelligence
	Copyright Page
	Contents
	Preface
	Overview of Volume 2
	Chapter 1. Introduction
	1.1 Artificial intelligence in engineering
	1.2 Strong AI, weak AI and cognitive science
	7.3 Why build intelligence into machines?
	1.4 How much intelligence can be built into machines?
	1.5 What is artificial intelligence?
	1.6 How is AI applied to engineering in practice?
	1.7 The principles behind the applications

	Chapter 2. Pattern recognition
	2.1 Introduction
	2.2 Theoretical foun dations
	2.3 Relational patterns and graph matching
	2.4 Hierarchical structure in pattern recognition
	2.5 Data transformation in pattern recognition
	2.6 Pattern recognition using multidimensional data
	2.7 Multiple classifications and fuzzy sets
	2.8 Errors: non-recognition versus misclassification
	2.9 Rigorous procedures for training pattern recognizers
	2.10 Conclusion

	Chapter 3. Search
	3.1 Introduction
	3.2 Tree search
	3.3 Calculus-based search
	3.4 Probabilistic search
	3.5 Conclusion

	Chapter 4. Neural networks
	4.1 Introduction
	4.2 The artificial neural unit
	4.3 Pattern classification
	4.4 Feedforward networks
	4.5 Learning in neural networks
	4.6 Feedback networks
	4.7 Uses of the multilayer perceptron
	4.8 Conclusion

	Chapter 5. Scheduling
	5.1 Introduction
	5.2 Representation in scheduling
	5.3 Graphs and networks for representing scheduling problems
	5.4 Shortest paths
	5.5 Critical path analysis
	5.6 Critical path activity scheduling
	5.7 The 'travelling salesman problem'
	5.8 Intelligent scheduling
	5.9 Conclusion

	Chapter 6. Reasoning
	6.1 lntroduction
	6.2 Reasoning with certainty
	6.3 Reasoning with uncertainty
	6.4 Conclusion

	Chapter 7. Rule-based systems
	7.1 Knowledge-based, rule-based and expert systems
	7.2 Implementation
	7.3 Confidence levels and fuzzy rules
	7.4 Programming language and rule-based system shells
	7.5 Conclusion

	Chapter 8. Learning
	8.1 Introduction
	8.2 Learning by memory
	8.3 Learning by updating parameters
	8.4 learning during execution using Bayesian updating
	8.5 learning from examples
	8.6 learning by analogy
	8.7 Learning by discovery
	8.8 Conclusion

	Chapter 9. Intelligent control
	9.1 Introduction
	9.2 The broom-balancer
	9.3 Classical solution
	9.4 Neural network solution
	9.5 Genetic algorithms
	9.6 Fuzzy rules
	9.7 Hierarchical control of complex systems
	9.8 Conclusion: principles for intelligent control design

	Chapter 10. Computer vision
	10.1 Introduction
	10.2 Abstracting information from digital images
	10.3 The nature of digital images
	10.4 Computer vision versus computer graphics
	10.5 Object recognition and measurement
	10.6 A summary of the basic techniques in computer vision
	10.7 A hierarchical architecture for computer vision
	10.8 Conclusion: computer vision in intelligent machines

	Chapter 11. Integration
	11.1 An introduction to blackboard systems
	11.2 The blackboard system as a development environment
	11.3 Running many rule-based systems in parallel
	11.4 Running many agents in parallel
	11.5 Implementing a perception subsystem
	11.6 Implementing a cognition subsystem
	11.7 Implementing an execution subsystem
	11.8 Integration: emergent behaviour and control
	11.9 Blackboard systems and the concepts and techniques of AI
	11.10 Conclusion

	Acknowledgements
	Index

