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ABSTRACT
Designing Asynchronous Circuits using NULL Convention Logic (NCL) begins with an introduc-
tion to asynchronous (clockless) logic in general, and then focuses on delay-insensitive asynchronous
logic design using the NCL paradigm. The book details design of input-complete and observable
dual-rail and quad-rail combinational circuits, and then discusses implementation of sequential cir-
cuits, which require datapath feedback. Next, throughput optimization techniques are presented,
including pipelining, embedding registration, early completion, and NULL cycle reduction. Sub-
sequently, low-power design techniques, such as wavefront steering and Multi-Threshold CMOS
(MTCMOS) for NCL, are discussed. The book culminates with a comprehensive design example
of an optimized Greatest Common Divisor circuit.

Readers should have prior knowledge of basic logic design concepts, such as Boolean algebra
and Karnaugh maps. After studying this book, readers should have a good understanding of the
differences between asynchronous and synchronous circuits, and should be able to design arbitrary
NCL circuits, optimized for area, throughput, and power.

KEYWORDS
computer engineering, digital design, asynchronous logic, delay-insensitive logic, com-
binational logic, sequential logic,NULL Convention Logic,NCL, input-completeness,
observability, dual-rail, quad-rail, pipelining, embedded registration, early completion,
NULL cycle reduction, wavefront steering, MTCMOS
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C H A P T E R 1

Introduction to Asynchronous
Logic

For the last three decades, the focus of digital design has been primarily on synchronous, clocked
architectures. However, as clock rates have significantly increased while feature size has decreased,
clock skew has become a major problem. High performance chips must dedicate increasingly larger
portions of their area for clock drivers to achieve acceptable skew, causing these chips to dissipate
increasingly higher power, especially at the clock edge, when switching is most prevalent. As these
trends continue, the clock is becoming more and more difficult to manage, while clocked circuits’
inherent power inefficiencies are emerging as the dominant factor hindering increased performance.
These issues have caused renewed interest in asynchronous digital design. Asynchronous, clock-
less circuits require less power, generate less noise, and produce less electro-magnetic interference
(EMI), compared to their synchronous counterparts, without degrading performance. Furthermore,
delay-insensitive (DI) asynchronous paradigms have a number of additional advantages, especially
when designing complex circuits, like Systems-on-a-Chip (SoCs), including substantially reduced
crosstalk between analog and digital circuits, ease of integrating multi-rate circuits, and facilitation
of component reuse. Asynchronous circuits can even utilize a synchronous wrapper, such that the
end user does not know that the internal circuitry is actually asynchronous in nature. Currently,
companies such as ARM, Phillips, Intel, and others are incorporating asynchronous logic into some
of their products using their own proprietary tools.

As demand increases for designs with higher performance, greater complexity, and decreased
feature size, asynchronous paradigms will become more prevalent in the multi-billion dollar semi-
conductor industry, as predicted by the International Technology Roadmap for Semiconductors
(ITRS), which envisions a likely shift from synchronous to asynchronous design styles in order to
increase circuit robustness, decrease power, and alleviate many clock-related issues. ITRS shows
that asynchronous circuits accounted for 11% of chip area in 2008, compared to 7% in 2007, and
estimates they will account for 23% of chip area by 2014, and 35% of chip area by 2019.

Asynchronous circuits can be grouped into two main categories: bounded-delay and delay-
insensitive models. Bounded-delay models, such as micropipelines [1], assume that delays in both
gates and wires are bounded. Delays are added based on worse-case scenarios to avoid hazard
conditions. This leads to extensive timing analysis of worse-case behavior to ensure correct circuit
operation. On the other hand, delay-insensitive circuits assume delays in both logic elements and
interconnects to be unbounded. Although they assume that wire forks within basic components,
such as a full adder, are isochronic. This means that the wire delays within a component are much
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less than the logic element delays within the component, which is a valid assumption even in future
nanometer technologies. Wires connecting components do not have to adhere to the isochronic
fork assumption. This implies the ability to operate in the presence of indefinite arrival times for
the reception of inputs. Completion detection of the output signals allows for handshaking to
control input wavefronts. Delay-insensitive design styles, therefore, require very little, if any, timing
analysis to ensure correct operation (i.e., they are correct-by-construction),and also yield average-case
performance rather than the worse-case performance of bounded-delay and traditional synchronous
paradigms.

Most delay-insensitive methods combine C-elements with Boolean gates for circuit construc-
tion. A C-element behaves as follows: when all inputs assume the same value then the output as-
sumes this value, otherwise the output does not change. Seitz’s [2], DIMS [3], Anantharaman’s [4],
Singh’s [5], and David’s [6] methods are examples of DI paradigms that only use C-elements to
achieve delay-insensitivity. On the other hand, both Phased Logic [7] and NULL Convention Logic
(NCL) [8] target a library of multiple gates with hysteresis state-holding functionality. Phased Logic
converts a traditional synchronous gate-level circuit into a delay-insensitive circuit by replacing each
conventional synchronous gate with its corresponding Phased Logic gate, and then augmenting
the new network with additional signals. NCL circuits are realized using 27 fundamental gates
implementing the set of all functions of four or fewer variables, each with hysteresis state-holding
functionality.

Seitz’s method, Anantharaman’s approach, and DIMS require the generation of all minterms
to implement a function, where a minterm is defined as the logical AND, or product, containing all
input signals in either complemented or non-complemented form. While Singh’s and David’s meth-
ods do not require full minterm generation, they rely solely on C-elements for speed-independence.
NCL also does not require full minterm generation and, furthermore, includes 27 fundamental
state-holding gates for circuit design, rather than only C-elements, thus yielding a greater poten-
tial for optimization than other delay-insensitive paradigms. Phased Logic also does not require
full minterm generation and does not rely solely on C-elements for speed-independence; however,
Phased Logic circuitry is derived directly from its equivalent synchronous design, not created in-
dependently, thus it does not have the same potential for optimization as does NCL. Furthermore,
the Phased Logic paradigm has been developed mainly for easing the timing constraints of syn-
chronous designs, not for obtaining speed and power benefits, whereas these are main concerns of
other asynchronous paradigms.

Self-timed circuits can also be designed at the transistor level as demonstrated by Martin [9].
However, automation of this method would be vastly different than that of the standard synchronous
approach, since it optimizes designs at the transistor level instead of targeting a predefined set
of gates, as do the previously mentioned methods. Overall, NULL Convention Logic offers the
best opportunity for integrating asynchronous digital design into the predominantly synchronous
semiconductor design industry for the following reasons:
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1) The framework for NCL systems consists of DI combinational logic sandwiched between DI
registers, which is very similar to synchronous systems, such that the automated design of NCL
circuits can follow the same fundamental steps as synchronous circuit design automation.This
will enable the developed DI design flow to be more easily incorporated into the chip design
industry, since the tools and design process will already be familiar to designers, such that the
learning curve is relatively flat.

2) NCL systems are delay-insensitive, making the design process much easier to automate than
other non-DI asynchronous paradigms, since minimal delay analysis is necessary to ensure
correct circuit operation.

3) NCL systems have power, noise, and EMI advantages compared to synchronous circuits,
performance and design reuse advantages compared to synchronous and non-DI asynchronous
paradigms, area and performance advantages compared to other DI paradigms, and have
a number of advantages for designing complex systems, like SoCs, including substantially
reduced crosstalk between analog and digital circuits, ease of integrating multi-rate circuits,
and facilitation of component reuse and technology migration.

As the trend towards higher clock frequency and smaller feature size continues, power con-
sumption, noise, and EMI of synchronous designs increase significantly. With the absence of a clock,
DI systems aim to reduce power consumption, noise, and EMI. DI circuits designed using CMOS
exhibit an inherent idle behavior since they only switch when useful work is being performed, unlike
clocked Boolean circuits that switch every clock pulse, unless specifically disabled through spe-
cialized circuitry, which itself requires additional area and power. DI circuits adhere to monotonic
transitions between DATA and NULL, so there is no glitching, unlike clocked Boolean circuits that
produce substantial glitch power. DI systems better distribute switching over time and area, reducing
the occurrence of hot spots, peak power demand, and system noise, unlike clocked Boolean circuits
where much of the circuitry switches simultaneously at the clock edge. Furthermore, DI systems are
very tolerant of power supply variations, allowing cheaper power supplies to be used and voltage to
be dramatically reduced to meet desired performance while decreasing power consumption. There-
fore, a very fast DI circuit can be run at a lower voltage to reduce power consumption when high
performance is not required. Other DI advantages include tolerance of vast temperature differences,
making these circuits well suited for operation in harsh environments, like outer space, and easing
the difficulty of integrating designs with non-harmonically related clock frequencies. Their main
disadvantage is increased area, which is approximately 1.5 – 2 times as much as an equivalent syn-
chronous design when using static CMOS gates, but less for semi-static CMOS gates. However,
for large designs, such as SoCs, the processor core(s) normally require(s) less than 1/2 of the chip’s
total area, while the rest of the chip area consists of flash, cache, RAM, peripherals, etc., which
are the same in both DI and synchronous implementations. Therefore, the increased area for the
DI implementation of the processor core(s) is less significant, especially considering the increased
robustness and numerous other advantages.
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C H A P T E R 2

Overview of NULL Convention
Logic (NCL)

2.1 NCL SYSTEM FRAMEWORK AND FUNDAMENTAL COM-
PONENTS

NCL is a delay-insensitive (DI) asynchronous (i.e., clockless) paradigm, which means that NCL
circuits will operate correctly regardless of when circuit inputs become available; therefore, NCL
circuits are said to be correct-by-construction (i.e., no timing analysis is necessary for correct op-
eration). NCL circuits utilize dual-rail or quad-rail logic to achieve delay-insensitivity. A dual-rail
signal, D, consists of two wires or rails, D0 and D1, which may assume any value from the set
{DATA0, DATA1, NULL}, as depicted in Table 2.1. The DATA0 state corresponds to a Boolean

Table 2.1: Dual-Rail signal.

DATA0 DATA1 NULL Illegal
D0 1 0 0 1
D1 0 1 0 1

logic 0, the DATA1 state corresponds to a Boolean logic 1, and the NULL state corresponds to the
empty set (meaning that the value of D is not yet available). The two rails are mutually exclusive,
such that both rails can never be asserted simultaneously; this state is defined as an illegal state. A
quad-rail signal, Q, consists of four wires, Q0, Q1, Q2, and Q3, which may assume any value from
the set {DATA0, DATA1, DATA2, DATA3, NULL}, as depicted in Table 2.2. The DATA0 state
corresponds to two Boolean logic signals, X and Y, where X = 0 and Y = 0; the DATA1 state cor-
responds to X = 0 and Y = 1; the DATA2 state corresponds to X = 1 and Y = 0; the DATA3 state
corresponds to X = 1 and Y = 1; and the NULL state corresponds to the empty set meaning that
the result is not yet available. The four rails of a quad-rail NCL signal are mutually exclusive, such
that no two rails can ever be asserted simultaneously; these states are defined as illegal states. Both
dual-rail and quad-rail signals are space optimal 1-hot delay-insensitive codes, requiring two wires
per bit. Other 1-hot encodings may be used for delay-insensitive signaling; however, these may
not be space optimal (e.g., an 8-rail MEAG (Mutually Exclusive Assertion Group) can be used to
represent 3 bits, but requires 2.67 wires per bit).

The framework for NCL systems consist of DI combinational logic sandwiched between DI
registers, as shown in Fig. 2.1, which is very similar to synchronous systems.
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Table 2.2: Quad-Rail signal.

DATA0 DATA1 DATA2 DATA3 NULL
Q0 1 0 0 0 0
Q1 0 1 0 0 0
Q2 0 0 1 0 0
Q3 0 0 0 1 0

DI Register

KiKo

DI
Combinational

Logic

DI Register

KiKo

Completion
Detection

DI
Combinational

Logic

DI Register

KiKo

Completion
Detection

DI Register

KiKo

Figure 2.1: NCL system framework: input wavefronts are controlled by local handshaking signals and
Completion Detection instead of by a global clock signal. Feedback requires at least three DI registers in
the feedback loop to prevent deadlock.

m

input 1
input 2

input n

output

Figure 2.2: THmn threshold gate.

NCL circuits are comprised of 27 fundamental gates, as shown in Table 2.3, which constitute
the set of all functions consisting of four or fewer variables. Since each rail of an NCL signal is
considered a separate variable, a four variable function is not the same as a function of four literals,
which would consist of eight variables for dual-rail logic (e.g., a literal includes both a variable and
its complement, F and F ′, whereas NCL rails are never complemented, such that a dual-rail NCL
signal, F , consists of two variables, F 1 and F 0, where F 0 is equivalent to F ′). The primary type of
threshold gate, shown in Fig. 2.2, is the THmn gate, where 1 ≤ m ≤ n. THmn gates have n inputs.
At least m of the n inputs must be asserted before the output will become asserted. In a THmn gate,



2.1. NCL SYSTEM FRAMEWORK AND FUNDAMENTAL COMPONENTS 7

Table 2.3: 27 fundamental NCL gates.

NCL Gate Boolean Function
TH12 A + B

TH22 AB

TH13 A + B + C

TH23 AB + AC + BC

TH33 ABC

TH23w2 A + BC

TH33w2 AB + AC

TH14 A + B + C + D

TH24 AB + AC + AD + BC + BD + CD

TH34 ABC + ABD + ACD + BCD

TH44 ABCD

TH24w2 A + BC + BD + CD

TH34w2 AB + AC + AD + BCD

TH44w2 ABC + ABD + ACD

TH34w3 A + BCD

TH44w3 AB + AC + AD

TH24w22 A + B + CD

TH34w22 AB + AC + AD + BC + BD

TH44w22 AB + ACD + BCD

TH54w22 ABC + ABD

TH34w32 A + BC + BD

TH54w32 AB + ACD

TH44w322 AB + AC + AD + BC

TH54w322 AB + AC + BCD

THxor0 AB + CD

THand0 AB + BC + AD

TH24comp AC + BC + AD + BD

each of the n inputs is connected to the rounded portion of the gate; the output emanates from the
pointed end of the gate; and the gate’s threshold value, m, is written inside of the gate.

Another type of threshold gate is referred to as a weighted threshold gate, denoted as
THmnWw1w2 . . . wR . Weighted threshold gates have an integer value, m ≥ wR > 1, applied to in-
putR.Here 1 ≤ R < n;where n is the number of inputs;m is the gate’s threshold; and w1, w2, . . . wR ,
each > 1, are the integer weights of input1, input2, …inputR, respectively. For example, consider
the TH34W2 gate, whose n = 4 inputs are labeled A, B, C, and D, shown in Fig. 2.3. The weight
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3
A

D
C
B Z

Figure 2.3: TH34w2 threshold gate: Z = AB + AC + AD + BCD.

of input A, W(A), is, therefore, 2. Since the gate’s threshold, m, is 3, this implies that in order for
the output to be asserted, either inputs B, C, and D must all be asserted, or input A must be asserted
along with any other input, B, C, or D.

NCL threshold gates are designed with hysteresis state-holding capability, such that after the
output is asserted, all inputs must be deasserted before the output will be deasserted. Hysteresis
ensures a complete transition of inputs back to NULL before asserting the output associated with
the next wavefront of input data. Therefore, a THnn gate is equivalent to an n-input C-element
(i.e., when all inputs are asserted the output is asserted; the output then remains asserted until all
inputs are deasserted, at which time the output becomes deasserted); and a TH1n gate is equivalent
to an n-input OR gate. NCL threshold gates may also include a reset input to initialize the output.
Circuit diagrams designate resettable gates by either a d or an n appearing inside the gate, along
with the gate’s threshold. d denotes the gate as being reset to logic 1; n, to logic 0. These resettable
gates are used in the design of DI registers.

NCL systems contain at least two DI registers, one at both the input and at the output.
Two adjacent register stages interact through their request and acknowledge signals, Ki and Ko,
respectively, to prevent the current DATA wavefront from overwriting the previous DATA wave-
front, by ensuring that the two DATA wavefronts are always separated by a NULL wavefront. The
acknowledge signals are combined in the Completion Detection circuitry to produce the request
signal(s) to the previous register stage. NCL registration is realized through cascaded arrangements
of single-bit dual-rail registers or single-signal quad-rail registers, depicted in Figs. 2.4 and 2.5,
respectively. These registers consist of TH22 gates that pass a DATA value at the input only when
Ki is request for data (rfd) (i.e., logic 1) and likewise pass NULL only when Ki is request for null (rfn)
(i.e., logic 0). They also contain a NOR gate to generate Ko, which is rfn when the register output is
DATA and rfd when the register output is NULL. The registers shown below are reset to NULL,
since all TH22 gates are reset to logic 0. However, either register could be instead reset to a DATA
value by replacing exactly one of the TH22n gates with a TH22d gate.

An N-bit register stage, comprised of N single-bit dual-rail NCL registers, requires N com-
pletion signals, one for each bit. The NCL completion component, shown in Fig. 2.6, uses these
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2n

2n

I0

I1

O0

O1

1Ko

Ki
Reset

Figure 2.4: Single-bit dual-rail register.

NKo lines to detect complete DATA and NULL sets at the output of every register stage and request
the next NULL and DATA set, respectively. In full-word completion, the single-bit output of the
completion component is connected to all Ki lines of the previous register stage. Since the maximum
input threshold gate is the TH44 gate, the number of logic levels in the completion component for an
N-bit register is given by �log4 N�. Likewise, the completion component for an N-bit quad-rail reg-
istration stage requires N

2 inputs, and can be realized in a similar fashion using TH44 gates. Figs. 2.7
and 2.8 show the flow of DATA and NULL wavefronts through an NCL combinational circuit (i.e.,
an AND function) and an arbitrary pipeline stage, respectively. The average DATA/NULL cycle
time, referred to as TDD , is comparable to the clock frequency of a synchronous circuit.

2.2 TRANSISTOR-LEVEL NCL GATE DESIGN

As explained in Section 2.1,NCL threshold gates are designed with hysteresis state-holding capability,
such that after the output is asserted,all inputs must be deasserted before the output will be deasserted.
Therefore, NCL gates have both set and hold equations, where the set equation determines when the
gate will become asserted and the hold equation determines when the gate will remain asserted once
it has been asserted.The set equation determines the gate’s functionality as one of the 27 NCL gates,
as listed in Table 2.4, whereas the hold1 equation is simply all inputs ORed together. The general
equation for an NCL gate with output Z is: Z = set + (Z− • hold1), where Z− is the previous
output value and Z is the new value.
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Table 2.4: 27 fundamental NCL gates.
NCL Boolean Transistor Transistor Count
Gate Function Count (static) (semi-static)

TH12 A + B 6 6
TH22 AB 12 8
TH13 A + B + C 8 8
TH23 AB + AC + BC 18 12
TH33 ABC 16 10
TH23w2 A + BC 14 10
TH33w2 AB + AC 14 10
TH14 A + B + C + D 10 10
TH24 AB + AC + AD + BC +

BD + CD

26 16

TH34 ABC + ABD + ACD + BCD 24 16
TH44 ABCD 20 12
TH24w2 A + BC + BD + CD 20 14
TH34w2 AB + AC + AD + BCD 22 15
TH44w2 ABC + ABD + ACD 23 15
TH34w3 A + BCD 18 12
TH44w3 AB + AC + AD 16 12
TH24w22 A + B + CD 16 12
TH34w22 AB + AC + AD + BC + BD 22 14
TH44w22 AB + ACD + BCD 22 14
TH54w22 ABC + ABD 18 12
TH34w32 A + BC + BD 17 12
TH54w32 AB + ACD 20 12
TH44w322 AB + AC + AD + BC 20 14
TH54w322 AB + AC + BCD 21 14
THxor0 AB + CD 20 12
THand0 AB + BC + AD 19 13
TH24comp AC + BC + AD + BD 18 12
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Figure 2.5: Single-signal quad-rail register.

To implement an NCL gate using CMOS technology, an equation for the complement of Z is
also required, which in general form is: Z

′ = reset + (Z−′ • hold0), where reset is the complement of
hold1 (i.e., the complement of each input, ANDed together) and hold0 is the complement of set, such
that the gate output is deasserted when all inputs are deasserted, and then remains deasserted while
the gate’s set condition is false.To achieve hysteresis state-holding behavior, the new output value, Z,
depends on the previous output value,Z−,which requires internal gate feedback, as shown in Fig.2.9.
For the static realization, the equations for Z and Z′, given above, are directly implemented in the
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Figure 2.6: N-bit completion component.
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Figure 2.7: NCL AND function: Z = X • Y : initially X =DATA1 and Y =DATA0, so Z =DATA0;
next X and Y both transition to NULL, so Z transitions to NULL; then X and Y both transition to
DATA1, so Z transitions to DATA1.

NMOS and PMOS logic, respectively, after simplifying; whereas, the semi-static realization only
requires the set and reset equations to be implemented in the NMOS and PMOS logic, respectively,
and hold0 and hold1 are implemented using a weak inverter.

For example, the set equation for the TH23 gate is AB + AC + BC, as given in Table 2.4,
and the hold equation is A + B + C; therefore, the gate is asserted when at least 2 inputs are asserted
and it then remains asserted until all inputs are deasserted. The reset equation is A′B ′C′ and the
simplified set’ equation is A′B ′ + B ′C′ + A′C′. Directly implementing these equations for Z and
Z′, after simplification, yields the static transistor-level realization, shown in Fig. 2.10(a). The semi-
static TH23 gate is shown in Fig. 2.10(b). In general, the semi-static implementation requires fewer
transistors, but is slightly slower because of the weak inverter. Note that TH1n gates are simply OR
gates and do not require any feedback, such that their static and semi-static implementations are
exactly the same.
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Figure 2.8: NCL DATA/NULL cycle. a)DATA flows through input register and combinational circuit;
b)DATA flows through output register and rfn flows through completion circuit;
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Figure 2.8: NCL DATA/NULL cycle. c)NULL flows through input register and combinational circuit;
d)NULL flows through output register and rfd flows through completion circuit.
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Figure 2.9: NCL gate realizations. a) static implementation; b) semi-static implementation.
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Figure 2.10: TH23 gate realizations. a) static implementation; b) semi-static implementation.



17

C H A P T E R 3

Combinational NCL Circuit
Design

NCL circuit design is similar to synchronous Boolean design, where minimized equations are gen-
erated and then mapped to a set of gates; however, NCL circuits must be both input-complete and
observable in order to achieve delay-insensitivity.

3.1 INPUT-COMPLETENESS AND OBSERVABILITY

Input-Completeness requires that all outputs of a combinational circuit may not transition from
NULL to DATA until all inputs have transitioned from NULL to DATA, and that all outputs of
a combinational circuit may not transition from DATA to NULL until all inputs have transitioned
from DATA to NULL. In circuits with multiple outputs, it is acceptable according to Seitz’s “weak
conditions” of delay-insensitive signaling, for some of the outputs to transition without having a
complete input set present, as long as all outputs cannot transition before all inputs arrive. For
example, the NCL AND function in Fig. 3.1 is not input-complete because the output, Z, will
transition to DATA0 if either input is DATA0, even if the other input is NULL. However, the half-

2

1
X0

Z1

Z0

Y1

X1

Y0

Figure 3.1: Input-incomplete NCL AND function.

adder in Fig. 3.2 is input-complete, even though Cout is not input-complete, because both inputs
must be DATA in order for S to transition to DATA, such that the entire output set, {S, Cout},
cannot transition to DATA until both inputs transition to DATA. The hysteresis within each NCL
gate ensures that all inputs must transition to NULL before a combinational circuit’s output will
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transition to NULL, making the circuit input-complete with respect to NULL, assuming that the
circuit is input-complete with respect to DATA.

TH24compB

D
C

A

1

TH24compB

D
C

A

S0

2

S1

Cout
0

Cout
1

Y0Y1X0X1

Figure 3.2: NCL half-adder.

To determine if a circuit is input complete, one must analyze the equation for each out-
put. An output is input-complete with respect to a particular input if and only if every non-
don’t care product term in the output’s equation (i.e., equations for all rails of the output) con-
tains any of the rails of the particular input. Take Fig. 3.3, for example. The output equations
are as follows: X0 = B0C1 + B0B1 + C0C1 + C0B1; X1 = A1B1A0 + A0B0 + A1B1C1; Y 0 =
A0C0 + A1C1; Y 1 = A1B1C0 + A1B1B0 + C1C0 + C1B0. Removing the don’t care terms, where
two rails of the same signal are both asserted (i.e., both rails can never be simultaneously as-
serted; they are mutually exclusive), yields the following equations: X0 = B0C1 + C0B1; X1 =
A0B0 + A1B1C1; Y 0 = A0C0 + A1C1; Y 1 = A1B1C0 + C1B0. X has a B in each product term,
so it is input-complete with respect to B. Y has a C in each product term, so it is input-complete
with respect to C. To make the circuit input-complete with respect to A, A must be added to all
product terms in which it is missing in either X or Y , but not both. Since A is only missing in
one of the Y product terms, it is added here, by ANDing the product term with logic 1, formed by
ORing both rails of A, resulting in the following equation: Y 1 = A1B1C0 + C1B0(A1 + A0) =
A1B1C0 + C1B0A1 + C1B0A0. However, since Y 0 contains an A1C1 product term, the new
C1B0A1 product term in Y 1 must have been a don’t care in the original expression, since both
Y 0 and Y 1 cannot be simultaneously asserted; therefore, the C1B0A1 don’t care term can be removed
to simplify Y 1 as: Y 1 = A1B1C0 + C1B0A0. The input-complete circuit can then be redrawn as
shown in Fig. 3.4.

Observability requires that no orphans may propagate through a gate. An orphan is defined
as a wire that transitions during the current DATA wavefront but is not used in the determination
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Figure 3.3: NCL circuit that’s input-incomplete with respect to A.

of the output. Orphans are caused by wire forks and can be neglected through the isochronic fork
assumption (i.e., gate delays are much longer than wire delays within a component, such as a full
adder, which is a valid assumption even in future nanometer technologies), as long as they are not
allowed to cross a gate boundary. This observability condition, also referred to as indicatability or
stability, ensures that every gate transition is observable at the output, which means that every gate
that transitions is necessary to transition at least one of the outputs. Consider an unobservable version
of an XOR function, shown in Fig. 3.5, where an orphan is allowed to pass through the TH12 gate.
For instance, when X =DATA0 and Y =DATA0, the TH12 gate is asserted, but does not take part
in the determination of the output, Z =DATA0. This orphan path is shown in boldface in Fig. 3.5.
The equation for Z1 can be repartitioned to obtain a fully observable version of the XOR function,
as shown in Fig. 3.6. Here, the two internal TH22 gates are each connected to a TH23W2 output
gate with a weight of 2, which is the same as the threshold, such that if either internal gate is asserted,
its corresponding output gate will always become asserted. Note that this circuit is for example only,
since the XOR function can be simplified to two TH24comp gates.

The best way to ensure that a circuit is observable is to not divide product terms when mapping
equations to their corresponding gate-level circuits. This, however, is not required for a circuit to
be observable, and is not always possible, for example when a product term contains more than
four variables. The circuit in Fig. 3.4 is observable even though a product term has been divided.
The TH33 gate is observable because its output has the same weight as the output gate’s threshold,
similar to the previous example. This is not the case for the TH22 gate, so it must be analyzed more
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Figure 3.4: Input-complete NCL circuit.

closely. The equation for the TH22 gate is A1B1; and its output is used in the X1 and Y 1 product
terms: A1B1C1 and A1B1C0, respectively. Therefore, if the TH22 gate is asserted, it will always
cause either X1 or Y 1 to become asserted because C must either be DATA0 or DATA1; hence the
TH22 gate is observable.

3.2 DUAL-RAIL NCL DESIGN

The design process for NCL combinational circuits is similar to Boolean circuits, where a Karnaugh
map, or other simplification technique, can be utilized to determine the simplified sum-of-products
(SOP) expressions for each output. However, SOP expressions for both the function’s 1 and 0 outputs
are needed. The 0s refer to a signal’s rail0 and the 1s refer to a signal’s rail1. After expressions
for the outputs have been obtained, an assessment must be made to ensure that the circuit is input-
complete. If not, the missing input(s) must be added to the appropriate product term(s), as explained
in Section 3.1. The output equations must then be partitioned into sets of four or fewer variables to
be mapped to the 27 NCL gates, while ensuring that the resulting circuit is observable.To minimize
area and delay, partitioning should be performed such that the minimal number of sets is obtained,
which will occur when the maximum number of product terms are grouped into each set.

Take, for example, the design of a partial product (PP) generation component for the most
significant bit of an unsigned Booth2 multiplier, which is only required to be input-complete with
respect to input, MR1. Fig. 3.7 shows the Karnaugh map for this component, along with the optimal
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Figure 3.5: Unobservable NCL XOR function.
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Figure 3.6: Observable NCL XOR function.

coverings. Since this design must be input-complete with respect to MR1, the coverings should not
eliminate MR1 from the corresponding product term; hence some of the coverings are 2-coverings
instead of 4-coverings.The SOP equations are derived directly from the K-map coverings (as shown
in Fig. 3.8).

Since each product term contains MR1, the circuit is input-complete with respect to MR1.
The equations can be partitioned into four sets of 4 variables as shown in Fig. 3.8, resulting in the
optimized circuit as shown in Fig. 3.9. The first circled terms in both PP0 and PP1 each map to a
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Figure 3.7: K-map for Booth2 PP generation component.
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Figure 3.8: Booth2 PP equations and groupings.

TH54w32 gate; and the second circled PP0 and PP1 terms each map to a TH54w22 gate. The two
terms for each output rail are then ORed together with TH12 gates. Since no product terms were
divided, the resulting circuit is observable.

Now let’s consider the design of input-complete optimized 2-input fundamental Boolean logic
functions. Since each of these functions requires 2 dual-rail inputs, each output rail equation will
consist of at most 4 input variables, such that the combinational logic for each rail will require only
1 NCL gate. The canonical SOP expressions (i.e., all inputs are contained in every product term)
for an OR function, Z = X + Y , are Z0 = X0Y 0 and Z1 = X1Y 1 + X0Y 1 + X1Y 0. Z0 directly
maps to a TH22 gate and Z1 directly maps to a THand0 gate. Similarly, canonical SOP expressions
for an AND function, Z = X • Y , are Z0 = X0Y 0 + X0Y 1 + X1Y 0 and Z1 = X1Y 1. Z0 directly
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Figure 3.9: NCL Booth2 PP generation circuit.

maps to a THand0 gate and Z1 directly maps to a TH22 gate. The optimized XOR function,
Z = X ⊕ Y , is a bit more complex. The canonical SOP expressions are Z0 = X0Y 0 + X1Y 1 and
Z1 = X1Y 0 + X0Y 1, which both directly map to a THxor0 gate. However, two transistors can be
eliminated for each rail of Z (when using static gates) by adding two don’t care terms, representing
the cases when both rails of either X or Y are simultaneously asserted. The new equations are:
Z0 = X0Y 0 + X1Y 1 + X0X1 + Y 0Y 1 and Z1 = X1Y 0 + X0Y 1 + X0X1 + Y 0Y 1, both of which
now map to a TH24comp gate. An NCL inverter, F = Z′, is realized by simply swapping rails:
F 0 = Z1 and F 1 = Z0; therefore, the inverse logic functions, NAND, NOR, and NXOR, are
obtained by exchanging the output rails of the AND, OR, and XOR functions, respectively.

Finally, let’s design an optimized NCL full adder, whose truth table is shown in Fig. 3.10,
where X and Y denote the input addends and Ci denotes the carry input. S and Co denote the
sum and carry outputs, respectively. The K-map for the Co output is shown in Fig. 3.11, yielding:
C0

o = X0Y 0 + C0
i X0 + C0

i Y 0 and C1
o = X1Y 1 + C1

i X1 + C1
i Y 1, both of which directly map to a

TH23 gate.
Since Co is not input-complete with respect to any inputs, S must be input-complete with

respect to all inputs, which means that the equations for S in terms of the inputs, X, Y , and Ci ,
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X Y Ci Co S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure 3.10: Truth table for full adder.
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Figure 3.11: K-map for Co output of full adder.

must be in canonical form: S0 = X0Y 0C0
i + X0Y 1C1

i + X1Y 0C1
i + X1Y 1C0

i and S1 = X0Y 0C1
i +

X0Y 1C0
i + X1Y 0C0

i + X1Y 1C1
i , which if implemented directly would require two gate delays and

four TH33 gates and one TH14 gate for each rail. The equation for S could also be written as
S = (X ⊕ Y ) ⊕ Ci , which would require two gate delays and four TH24 comp gates. However,
since S requires two gate delays and Co is generated in only one gate delay, Co could be utilized as
a fourth input to generate S, possibly reducing the number of gates without increasing delay.

The K-map for S, based on X, Y , Ci , and Co, is shown in Fig. 3.12, with essential prime im-
plicants covered. This covering yields: S0 = C1

oX0+ C1
oY 0+ C1

oC0
i + X0Y 0C0

i and S1 = C0
oX1+

C0
oY 1 + C0

oC1
i + X1Y 1C1

i , both of which directly map to a TH34W2 gate. Checking input-
completeness, the carry output requires at least two inputs to be generated and the sum output
requires either the carry output and the third input, or all three inputs to be generated; so all three
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Figure 3.12: K-map for S output of full adder.

inputs are needed to generate the sum output. Therefore, the circuit as a whole is input-complete
even though Co is not. Furthermore, the sum output and, therefore, this circuit, is inherently input-
complete since it is impossible to determine the value of S without knowing the value of all three
inputs, X, Y , and Ci . The resulting optimized NCL full adder circuit is shown in Fig. 3.13.

3.3 QUAD-RAIL NCL DESIGN

The design process for NCL quad-rail circuits is similar to dual-rail circuits, where a Karnaugh
map, or other simplification technique, can be utilized to determine the simplified SOP expressions
for each output rail. However, instead of only 0s and 1s, corresponding to a signal’s rail0 and rail1,
respectively, the K-map also contains 2s and 3s, which correspond to a signal’s rail2 and rail3,
respectively. The 0 outputs are then grouped together to obtain a minimized expression for rail0;
the 1 outputs are grouped together to obtain a minimized expression for rail1; the 2 outputs are
grouped together to obtain a minimized expression for rail2; and the 3 outputs are grouped together
to obtain a minimized expression for rail3. After expressions for the outputs have been obtained,
an assessment must be made to ensure that the circuit is input-complete; and if not, the missing
input(s) must be added to the appropriate product term(s), as explained in Section 3.1. The output
equations must then be partitioned into sets of four or fewer variables to be mapped to the 27 NCL
gates, while ensuring that the resulting circuit is observable.To minimize area and delay, partitioning
should be performed such that the minimal number of sets is obtained, which will occur when the
maximum number of product terms are grouped into each set, the same as for dual-rail NCL design.
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Figure 3.13: Optimized NCL full adder.

Take, for example, the design of a quad-rail partial product (PP) generation component,
depicted in Fig. 3.16, for use in an unsigned quad-rail multiplier. Remember that each quad-rail
signal corresponds to 2 bits, such that the quad-rail partial product (PP) generation component is
equivalent to 2 bits × 2 bits, which yields a 4-bit result, and hence 2 quad-rail signals, PPH and PPL.
Fig. 3.15 shows the Karnaugh maps for this component, along with the optimal coverings. Note that
only linear 4-coverings, which contain all four rails of a quad-rail signal, can be utilized to eliminate
a quad-rail signal from the corresponding product term; 2-coverings will not eliminate a quad-rail
signal, and are, therefore, not used. Because of this, the input order does not need to be rearranged like
required for Boolean and dual-rail K-maps (i.e., 0, 1, 2, 3 for quad-rail vs. 00, 01, 11, 10 for Boolean
and dual-rail). Also note that 3 does not appear as an output in the PPH K-map. This is because the
maximum value of PPH is 2, resulting when A and B are both 3 (i.e., 3 × 3 = 910 = 10012 = 214);
therefore, PPH3 is always 0, and can be treated as a don’t care in subsequent circuits that use PPH as
an input. The minimal SOP equations are derived directly from the K-map coverings as shown in
Fig. 3.16.

Since all product terms in either PPL or PPH do not contain either an A or B, the re-
sulting circuit is not input-complete with respect to either input; therefore, additional terms must
be added. Specifically, additional terms must be added to either PPL0 or PPH0, since these are
the input-incomplete rails of PPL and PPH, respectively. Making PPL0 input-complete requires
fewer additional terms and does not increase PPL’s worse-case delay, whereas making PPH0 input-
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Figure 3.14: Quad-rail PP generation component.
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Figure 3.15: K-maps for quad-rail PP generation component.

complete would increase PPH’s worse-case delay from 1 gate to 2 gates; therefore, additional terms
are added to PPL to make it input-complete with respect to both A and B, as shown in the PPL0

equations. Since the first product term, A0, is missing B, B is added to the product term by ANDing
it with logic 1, formed by ORing all rails of B together. Likewise, the second product term, B0, is
missing A, so A is added to the product term by ANDing it with all rails of A ORed together. After
distributing AND over OR and removing the redundant A0B0 term, the minimal input-complete
equation for PPL0 is obtained. Now all product terms in all rails of PPL contain both an A and B;
so PPL, and, therefore, the entire circuit, is input-complete. Note that the minimal input-complete
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PPH0 = A0 + A1 + B0 + B1→ TH14
PPH1 = A2B2 + A2B3 + A3B2→ THand0
PPH2 = A3B3→ TH22
PPH3 = 0
PPL0 = A0 + B0 + A2B2 = A0(B0 + B1 + B2 + B3) + B0(A0 + A1 + A2 + A3) + A2B2

= A0B3 + A0B1 + A3B0 + A1B0 + A2B2 + A2B0 + A0B2 + A0B0

PPL1 = A1B1 + A3B3 = A1B1 + A3B3 + A1A3 + B1B3→ TH24comp

PPL2 = A2B1 + A2B3 + A1B2 + A3B2

PPL3 = A1B3 + A3B1 = A1B3 + A3B1 + A1A3 + B1B3→ TH24comp

TH33w2

TH33w2

TH34w32

Figure 3.16: Quad-rail PP generation equations and groupings.

equation for PPL0 can also be obtained directly from the K-map by only utilizing 1-coverings for
the 0 outputs, which directly yields the canonical expression for PPL0.

The equations for each rail of PPH directly map to one NCL gate, as shown in Fig. 3.16.
The equations for PPL1 and PPL3 each map to TH24comp gates after adding two don’t care terms,
representing the cases when two rails of either A or B are simultaneously asserted, as shown in
Fig. 3.16, resulting in two fewer transistors for implementing each rail (when using static gates).
The equation for PPL0 can be partitioned into one set of 4 variables and two sets of 3 variables,
as shown in Fig. 3.16. The first and second circled terms each map to a TH33w2 gate, and the
third circled term maps to a TH24comp gate. These three terms are then ORed together with a
TH13 gate. The equation for PPL2 can be partitioned into one set of 3 variables and a second set
of 4 variables that contains the output of the first set as one input, as shown in Fig. 3.16. The inner
circled term maps to a TH33w2 gate, and the outer circled term (third and fourth product terms
along with the output of the TH33w2 gate) maps to a TH34w32 gate. Since no product terms were
divided, the circuit is observable. The resulting optimized circuit is shown in Fig. 3.17.

Now let’s consider the design of the increment circuitry for a 4-bit counter shown in Fig. 3.18.
The specifications for this counter included a full NCL interface with request and acknowledge
signals labeled Ki and Ko, respectively. Functionality was specified to reset count to 004 (i.e., 00002)
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when the reset signal is applied, to increment count by 1 when inc = 1, and to keep count the same
when inc = 0. The counter will rollover to 004 (i.e., 00002) when count = 334 (i.e., 11112) and
inc = 1.

To design the increment circuitry using quad-rail logic requires a dual-rail Inc input and two
quad-rail inputs, X1 and X0, and two quad-rail outputs, S1 and S0. Fig. 3.19 shows the Karnaugh
maps for the increment circuitry, along with the optimal coverings. Note that not all of the coverings
that eliminate the dual-rail input, Inc, are fully shown, so as not to clutter the drawing. The minimal
SOP equations are derived directly from the K-map coverings as shown in Fig. 3.20.
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Figure 3.20: Quad-rail increment circuitry equations.

S0 is input-complete with respect to Inc and X0 since these appear in all S0 product terms, and
S1 is input-complete with respect to X1 since it appears in all S1 product terms.Therefore, the circuit
is input-complete with respect to all inputs. Furthermore, this circuit is inherently input-complete
since it is impossible to determine the value of S without knowing the value of both X and Inc. The
equations for all rails of S0 each directly map to a TH24comp gate, after adding two don’t care terms.
The equations for all S1 rails contain two like terms, (Inc0 + X0

0 + X1
0 + X2

0) and (Inc1X3
0), such

that these can each be implemented using a single gate, and reused for all S1 rails, as shown in the
resulting optimized circuit in Fig. 3.21. Note that these two terms are mutually exclusive, such that
their product can be added as a don’t care term, along with the product of two X1 rails, as shown in
the modified S1 equations, such that each rail of S1 maps to a TH24comp gate.
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Sequential NCL Circuit Design
The outputs of sequential circuits depend not only on the current inputs, but also on the past
inputs; therefore, they utilize memory to store the current state, which is used to generate the current
outputs, and is fed back to generate the next state. Sequential circuits can be represented as Finite
State Machines (FSMs),depicted in Fig.4.1,where the State Memory is implemented using registers
and the Next-State and Output circuits are combinational logic. FSMs include Mealy and Moore
machines for simple circuits, and Algorithmic State Machines (ASMs) for more complex circuits.
FSM design and optimization is beyond the scope of this book, but is detailed in [1, 2].

Next-State
Combinational

Logic

Output
Combinational

Logic

State
Memory OutputsInputs

for Mealy Machines only

Figure 4.1: Finite State Machine block diagram.

4.1 NCL IMPLEMENTATION OF MEALY AND
MOORE MACHINES

Take, for example, the design of a non-resetting sequence detector to identify an active high or active
low pulse (i.e., 010 or 101, respectively) on input X and assert output Z when detected. Note that
resetting in this context means that after a sequence is detected, the subsequent input is treated like the
very first input;whereas for a non-resetting design,after a sequence is detected, the previous inputs are
retained and used along with the subsequent input to potentially detect another sequence.Therefore,
the sequence 0010101110100 generates an output of 0001111000110 for the non-resetting sequence
detector and 0001001000100 for a resetting version. Fig. 4.2 shows the minimal state diagram,
designed using the methods in [1]. After utilizing the Armstrong-Humphrey rules to generate a
good state assignment, QAQBQC (i.e., S0 = 100, S1 = 000, S2 = 011, S3 = 010, and S4 = 001),
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the following minimal next-state and output equations can be derived from the K-maps shown
in Fig. 4.3, as explained in [1]: DA = 0; DB = QA

′ • (X ⊕ QC); DC = X; Z = QB • (X ⊕ QC).
From these equations, the synchronous state machine can be directly implemented as shown in
Fig. 4.4.
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Figure 4.2: Minimal state diagram for non-resetting Mealy machine to detect 010 or 101.

10

QA QB

0

01

1

10

X X X X

XX10

11

10

00

01

QC X
10110100

QC

00

QA QB

0

10

0

10

X X X X

XX00

11

10

00

01

QC X
10110100

Z

00

QA QB

0

00

0

00

X X X X

XX00

11

10

00

01

QC X
10110100

QA

10

QA QB

1

10

0

10

X X X X

XX00

11

10

00

01

QC X
10110100

QB

Figure 4.3: Mealy machine K-maps.

To convert the design to NCL, the XOR and AND Boolean gates can be directly replaced with
their respective input-complete NCL functions, as given in Section 3.2 and the D-type flip-flops
replaced with a three-stage NCL register, as shown in Fig. 4.5. Note that a minimum of three NCL



4.1. NCL IMPLEMENTATION OF MEALY AND MOORE MACHINES 35

DFF1

D
Q

Q

DFF0

D
Q

Q

DFF0

D
Q

Q

Z

X

CLK

A

B

C

rst

rst

rst

reset

Figure 4.4: Synchronous Mealy machine implementation.

registers are required in a feedback loop to allow the DATA and NULL wavefronts to propagate;
however, adding a fourth register increases throughput (4% in this case for static CMOS gates imple-
mented with a 1.8V 180nm process), since this allows the DATA and NULL wavefronts to propagate
more independently. To optimize the design, input-incomplete AND/NAND/OR/NOR functions
should be used whenever possible. These input-incomplete functions only require 2 gates and 1 gate
delay for up to 4-input functions (i.e., for an n-input function, one THnn and one TH1n gate are
required). Whereas input-complete Boolean functions requiring more than 2 inputs must be decom-
posed into input-complete 2-input Boolean functions in order to retain input-completeness and,
therefore, delay-insensitivity (e.g., an input-complete 4-input AND function will require 3 input-
complete 2-input AND functions, totaling 6 gates and 2 gate delays).

In this case, the inherently input-complete XOR function is input-complete with respect to X

and QC , such that using an input-complete AND function to generate Z makes Z input-complete
with respect to X, QB , and QC . DA is a constant zero; however, NCL circuits alternate between
DATA and NULL, so a DATA0 must be generated for DA every DATA cycle. This can be done by
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Figure 4.5: NCL Mealy machine implementation using Boolean functions.

making D1
A = 0 and D0

A = Q0
A + Q1

A, such that DA is input-complete with respect to QA; hence,
the circuit as a whole is already input-complete, such that an input-incomplete AND function can
be used to generate DB , as shown in Fig. 4.5. Using this input-incomplete AND function increases
throughput by 5.3% (comparing 4-register versions) and requires 13 fewer transistors.

Alternatively, the next-state and output equations can be derived directly in dual-
rail form from the K-maps, as detailed in Section 3.2. The dual-rail equations are:
D0

A = 1 = Q0
A + Q1

A, D1
A = 0; D0

B = X0Q0
C + X1Q1

C + Q1
A, D1

B = X1Q0
AQ0

C + X0Q1
C; D0

C =
X0, D1

C = X1; Z0 = Q0
B + X0Q0

C + X1Q1
C, Z1 = X1Q1

BQ0
C + X0Q1

BQ1
C .DA is input-complete

with respect to QA; DC is input-complete with respect to X; DB can be modified to be input-
complete with respect to QC by making D0

B = X0Q0
C + X1Q1

C + Q1
AQ0

C ; and Z can be modified
to be input-complete with respect to QB by making Z0 = Q0

B + X0Q1
BQ0

C + X1Q1
BQ1

C . The
resulting input-complete design is shown in Fig. 4.6.
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Figure 4.6: NCL Mealy machine implementation using dual-rail equations.

The next-state and output equations can also be derived in quad-rail form, as detailed in
Section 3.3. This circuit consists of a single bit input, X, a single bit output, Z, and a 3-bit state
variable QAQBQC ; hence, quad-rail signals cannot be used for the input and output, but the
internal state variable can be represented as a dual-rail signal and a quad-rail signal. Since DA is a
constant zero, QB and QC are combined into a single quad-rail signal, QBC.The quad-rail equations
derived from the Karnaugh maps shown in Fig. 4.7 are: D0

A = 1 = Q0
A + Q1

A, D1
A = 0; D0

BC =
X0Q0

BC + X0Q2
BC , D1

BC = X1Q1
A + X1Q1

BC + X1Q3
BC ; D2

BC = X0Q1
BC + X0Q3

BC , D3
BC =

X1Q0
AQ0

BC + X1Q2
BC ; Z0 = Q0

BC + Q1
BC + X0Q2

BC + X1Q3
BC , Z1 = X0Q3

BC + X1Q2
BC .

DA is input-complete with respect to QA; DBC is input-complete with respect to X; and Z is
input-complete with respect to QBC. The resulting input-complete design is shown in Fig. 4.8.

Table 4.1 summarizes the Mealy machine results for the different 4-register versions using
static CMOS gates implemented with a 1.8V 180nm process. Note that the dual-rail and quad-rail
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registration and completion logic require approximately the same area (i.e., 446 transistors for dual-
rail vs. 444 transistors for quad-rail). The Optimized Boolean Function version required the least
area, whereas the Quad-Rail Optimized version was fastest, even though all designs had a worse-
case combinational delay of 2 gates. The Quad-Rail Optimized version will also utilize the least
amount of energy per operation because it only requires 3-4 gates to switch in the combinational
logic (C/L) and 17 in the registration and completion logic, per operation; whereas the Optimized
Boolean Function version always requires 4 gates to switch in the combinational logic, the Dual-
Rail Optimized version requires 3-5 gates to switch in the combinational logic, and both dual-rail
versions require 25 gates to switch in the registration and completion logic, per operation.

Table 4.1: Mealy machine design comparison.
# C/L # C/L C/L Delay

Design Gates Transistors (gates) TDD (ns)
Optimized Boolean
Function 7 91 2 2.27
Dual-Rail Optimized 8 116 2 2.31
Quad-Rail Optimized 8 111 2 1.87

In general, a dual-rail optimized design will usually outperform its optimized Boolean function
version in all aspects (i.e., area, speed, and power), especially when many input-complete Boolean
functions requiring more than 2 inputs are needed. However, there is no clear winner for dual-rail vs.
quad-rail since design differences between the two are highly circuit dependant. Quad-rail circuits
usually require less energy per operation because a quad-rail signal only requires one wire to switch
per transition from NULL to DATA and vice versa, whereas 2 wires must switch for the equivalent
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Figure 4.8: NCL Mealy machine implementation using quad-rail equations.

2 dual-rail signals. However, if the quad-rail implementation requires substantially more logic, the
dual-rail version could utilize less energy.

4.2 NCL IMPLEMENTATION OF ALGORITHMIC STATE
MACHINES

Algorithmic State Machines (ASMs) are used to design complex sequential circuits, and normally
consist of a datapath controlled by an ASM. ASMs utilize complex state transition conditions, such
as A(7 : 0) > B(7 : 0), whereas Mealy and Moore machines only use the value of one or few bits
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to determine state transition since Mealy and Moore machine complexity grows exponentially with
number of state transition bits. Fig. 4.9 shows the interface, ASM, and corresponding datapath
for a Greatest Common Divisor circuit. The numerical inputs are two 8-bit unsigned numbers, A

and B; the numerical output is the 8-bit Greatest Common Divisor (GCD) of A and B, Y . The
circuit also has a reset and clk input and input/output handshaking signals, following the One Cycle
Demand Driven Convention (OCDDC), as shown in Fig. 4.9(a). The OCDDC uses rqst and dat
bits along with an input or output to ensure that the input/output is valid before loading/outputting
the corresponding data. rqst is asserted to signify that the receiver is ready for new data, after which
dat is asserted (signifying valid data) for one rising clk edge (either the immediately following edge
or any subsequent edge), where the data is latched. rqst is then deasserted, or can remain asserted to
request another data. Additionally, at the rising edge of clk when reset is asserted, the circuit should
reset to its initial state.

The GCD algorithm continually subtracts the smaller of A or B from the larger, storing the
result in the larger, until both are the same. This is the GCD.

Example: A: 15 5 5
B: 10 10 5

Calculation: A − B B − A A = B → 5 is GCD
ASM design and optimization is beyond the scope of this book, but is detailed in [2].The C/L

datapath components can be designed using the techniques presented in Chapter 3. Any sequential
datapath components, such as registers and counters, can be designed as C/L with 3- or 4-register
feedback, as demonstrated for the quad-rail counter in Section 3.3. Minimal next-state and output
equations can then be derived for the ASM, following the methods detailed in [2], and implemented
as explained for the Mealy machine in Section 4.1. The optimized GCD circuit will be designed as
a comprehensive example in Chapter 7.
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C H A P T E R 5

NCL Throughput Optimization
There are a number of techniques that can be used to increase throughput of NCL systems, such as
Pipelining, Embedded Registration, Early Completion, and NULL Cycle Reduction.

5.1 PIPELINING
NCL systems can be optimized for speed by partitioning the combinational circuitry and inserting
additional NCL registers and corresponding completion components.However,NCL circuits cannot
be partitioned arbitrarily; they can only be divided at component boundaries in order to preserve
delay-insensitivity. The average cycle time for an NCL system, TDD, can be estimated as the worse-
case stage delay of any stage in the pipeline, where the delay of one stage is equal to twice the sum
of the stage’s worse-case combinational delay and completion delay, to account for both the DATA
and NULL wavefronts. Algorithm 1 depicts this calculation for an N-stage pipeline, where Dcombi

and Dcompi are stagei ’s combinational and completion delays, respectively.

TDDmax = 2 × (Dcomb1 + Dcomp1)
for (i = 2 to N) loop

TDDtemp = 2 × (Dcombi + Dcompi)
TDDmax = MAX(TDDtemp, TDDmax)

end loop

Algorithm 5.1: NCL TDD estimation.

NCL pipelining can utilize either of two completion strategies: full-word or bit-wise com-
pletion. Full-word completion, as shown in Fig. 5.1, requires that the acknowledge signals from
each bit in registeri be conjoined together by the completion component, whose single-bit output
is connected to all request lines of registeri−1. On the other hand, bit-wise completion, as shown in
Fig. 5.2, only sends the completion signal from bit b in registeri back to the bits in registeri−1 that
took part in the calculation of bit b. This method may, therefore, require fewer logic levels than that
of full-word completion, thus increasing throughput. In this example, bit-wise completion is faster
(i.e., 1 gate delay vs. 2 gate delays), but it requires more area (i.e., 4 gates vs. 2 gates).

To maximize throughput while minimizing latency and area, the following algorithm should
be used to optimally partition an NCL circuit. Steps 1 and 2 initially partition an NCL circuit into
stages of primary components, where a primary component is defined as a component whose inputs
only consist of the circuit’s inputs, or outputs of components that have already been added to a



44 CHAPTER 5. NCL THROUGHPUT OPTIMIZATION

Completion

X(3) X(2) X(1) X(0)

DI
Register

A(5) A(0)A(1)A(2)A(3)A(4)

Ki

DI
Register

DI
Register

DI
Register

Ko

Ki

Ko

Ki

Ko

Ki

Ko

DI
RegisterKi

DI
Register

DI
Register

DI
Register

Ko

Ki

Ko

Ki

Ko

Ki

KoDI
RegisterKi

KoDI
RegisterKi

Ko

Ki

Completion

Ko Reset

4

4
3

Figure 5.1: Full-word completion.

Completion

X(3) X(2) X(1) X(0)

DI
Register

A(5) A(0)A(1)A(2)A(3)A(4)

Ki

DI
Register

DI
Register

DI
Register

Ko

Ki

Ko

Ki

Ko

Ki

Ko

DI
RegisterKi

DI
Register

DI
Register

DI
Register

Ko

Ki

Ko

Ki

Ko

Ki

KoDI
RegisterKi

KoDI
RegisterKi

Ko

Ki(5)

Ko(3) Reset

3

Completion CompletionCompletion

Ki(4) Ki(3) Ki(2) Ki(1) Ki(0)

Ko(2) Ko(1) Ko(0)

Figure 5.2: Bit-wise completion.



5.2. EMBEDDED REGISTRATION 45

previous stage. Steps 3 and 4 then calculate the combinational delay (i.e., Dcomb) and completion
delay (i.e., Dcomp) for each stage and the maximum delay for the entire pipeline (i.e., max_delay),
utilizing both full-word and bit-wise completion strategies. Finally, Step 5 merges stages to reduce
latency and area, as long as doing so does not decrease throughput. Note that when merging stages
the new merged combinational delay (i.e., merged_comb) is not necessarily Dcombi + Dcombi+1.Take,
for example, two full adders in a ripple-carry adder: Dcombi = 2 and Dcombi+1 = 2, but merged_comb
= 3, since the carry output of a full adder has only 1 gate delay.

As an example, the non-pipelined quad-rail multiplier in Fig. 5.3 has a worse-case combi-
national delay of 8 and a completion delay of 1, such that TDD = 18. Applying Steps 1-4 of the
pipelining algorithm to the quad-rail multiplier yields the results shown in Tables 5.1 and 5.2 for
full-word and bit-wise completion, respectively. These tables show that the full-word pipelined de-
sign has a TDD (i.e. 2 × max_delay, to account for both the DATA and NULL wavefronts) of 10 gate
delays, while the bit-wise pipelined design has a TDD of 8 gate delays; hence, the bit-wise pipelined
design is preferred, since it maximizes throughput. Applying Step 5 of the algorithm to merge stages
for both full-word and bit-wise completion results in both pipelined designs merging Stages 3 and 4,
such that both designs only require 3 stages. The new Dcomb is 3 and the new stage delay for both
designs is 4. Note that max_outputs for the bit-wise design changes to 2 for the merged stage, such
that Dcomp becomes 1.

5.2 EMBEDDED REGISTRATION
Embedded registration merges delay-insensitive registers into the combinational logic, when pos-
sible, to increase throughput and decrease latency and area. Take, for example, an input-complete
2:1 MUX with output register, as shown in Fig. 5.4(a). The DI register can be integrated into the
combinational logic by making Ki a third input to the TH22 MUX output gates, and adjusting
these gates’ thresholds and types, accordingly, and making them resettable, as shown in Fig. 5.4(b).

Embedded registration can also be applied to the input-incomplete 2:1 MUX, shown in
Fig. 5.5(a), in either of two ways, as shown in Figs. 5.5(b) and 5.5(c). Method 1, as shown in
Fig. 5.5(b), is the same as used for the input-complete 2:1 MUX, where the DI register is integrated
into the combinational logic by making Ki another input to the output gates, and adjusting the
output gates’ thresholds and types accordingly, and making them resettable. Alternatively, when the
output gates are TH1n gates, it is often advantageous to make Ki another input to all gates preceding
the TH1n gates, and adjusting the preceding gates’ thresholds and types accordingly, and making
them resettable, as shown in Fig. 5.5(c).

Method 2 often necessitates a smaller gate library, as in this case, requiring standard resettable
TH33 gates, whereas Method 1 requires non-standard resettable TH33w2 gates.The standard NCL
gate library includes up to 4-input gates, as provided in Table 2.4, as well as resettable TH22 and
TH33 gates, and inverting TH12, TH13, and TH14 gates. Hence, any NCL gate in the standard
library has a maximum of 4 transistors in series (i.e., all 4-input gates and resettable TH33 gates).
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1) i = 1
2) loop until all components are part of a stage

-- initially partition into stages
add all primary components to stagei
i = i + 1

end loop
3) N = i -1 -- stageN is final stage

max_delayFW = 0
max_delayBW = 0

4) for j in 1 to N loop -- calculate worse-case cycle times
Dcomb = max delay of stagei’s components

-- for both full-word and bit-wise completion
B = # of outputs from stagej
Dcompj = �Log4 B�
if ((Dcomb + Dcompj) > max_delayFW) then

max_delayFW = (Dcomb + Dcompj)
end if
B = # of inputs to stagej
max_outputs = 1
for i in 1 to B loop

num_outputs = number of outputs of stagej generated by inputi
if (num_outputs > max_outputs) then

max_outputs = num_outputs
end if

end loop
Dcomp = �Log4 max_outputs�
if ((Dcomb + Dcomp) > max_delayBW) then

max_delayBW = (Dcomb + Dcomp)
end if

end loop

Algorithm 5.2: NCL pipelining algorithm (continues).
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5) if (max_delayFW > max_delayBW) then
-- bit-wise design is faster

num_stages = call mergeBW function
output bit-wise pipelined design

elsif (max_delayBW > max_delayFW) then
-- full-word design is faster

num_stages = call mergeFW function
output full-word pipelined design

else
num_stagesBW = call mergeBW function
num_stagesFW = call mergeFW function
if (num_stagesBW > num_stagesFW) then

-- full-word design has less latency
output full-word pipelined design

elsif (num_stagesFW > num_stagesBW) then
-- bit-wise design has less latency

output bit-wise pipelined design
elsif (area of full-word design

> area of bit-wise design) then
output bit-wise pipelined design

-- bit-wise design is smaller
else

output full-word pipelined design
-- full-word design is smaller

end if
end if

mergeFWfunction
num_stages = N
for k in 1 to N-1 loop -- merge stages to decrease latency
merged_comb = max combinational delay of stagek

and stagek+1 merged into a single stage
if ((merged_comb + compk+1) = max_delayFW) then
merge stagek into stagek+1

delete stagek
num_stages = num_stages − 1

end if
end loop
return num_stages

Algorithm 5.2: (continued ) NCL pipelining algorithm (continues).
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mergeBWfunction
num_stages = N
for k in 1 to N-1 loop -- merge stages to decrease latency
merged_comb = max combinational delay of stagek and

stagek+1 merged into a single stage
B = # of inputs to stagek
max_outputs = 1
for i in 1 to B loop
num_outputs = number of outputs of stagek+1 generated by inputi
if (num_outputs > max_outputs) then

max_outputs = num_outputs
end if

end loop
merged_comp = �Log4 max_outputs�
if ((merged_comb + merged_comp) = max_delayBW) then
merge stagek into stagek+1

delete stagek
num_stages = num_stages − 1

end if
end loop
return num_stages

Algorithm 5.2: (continued ) NCL pipelining algorithm.

Table 5.1: Full-word completion pipelining.
Stage Dcomb # Outputs Dcomp delay

1 2 8 2 4
2 3 6 2 5
3 2 5 2 4
4 1 4 1 2

max_delay 5

5.3 EARLY COMPLETION

Early Completion performs the completion detection for a register at its input, instead of at the
register output as in standard NCL, in order to significantly increase the throughput of NCL systems
without impacting latency or compromising delay-insensitivity. An Early Completion register is
shown in Fig. 5.6, compared to the regular DI register shown in Fig. 2.4. Early Completion requires
that the inverted completion signal from Stagei+1, Koi+1, be used as an additional input to the
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Figure 5.3: 4-bit × 4-bit unsigned quad-rail multiplier.

Completion tree for Stagei , to maintain delay-insensitivity. The Early Completion component and
pipeline are shown in Figs. 5.7 and 5.8, respectively, compared to the regular versions shown in
Figs. 2.6 and 2.1, respectively. Note that the final gate of an Early Completion component must
be resettable for proper initialization. If the stage’s register is reset to NULL/DATA, its Early
Completion component must be reset to rfd/rfn (i.e., logic 1 / logic 0), respectively.

The Early Completion component for Stagei requests DATA/NULL when all inputs to
Registeri are NULL/DATA and Koi+1 is rfn/rfd, respectively. Note that the Early Completion
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Table 5.2: Bit-wise completion pipelining.
Stage Dcomb max_outputs Dcomp delay

1 2 4 1 3
2 3 2 1 4
3 2 2 1 3
4 1 1 0 1

max_delay 4
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Figure 5.4: Input-complete 2:1 MUX. (a) with output register; (b) with embedded registration.

component for the final stage, StageM , is slightly different, requiring the inverter for the external
KoM+1 signal (i.e., Ki) to be removed. This causes the StageM Early Completion component to
request DATA/NULL when the input to RegisterM is NULL/DATA and Ki is rfd/rfn, respectively.
This variation in the Early Completion component for the last stage is required since Ki may
change to rfn/rfd as soon as the output is DATA/NULL, respectively, assuming a zero delay external
interface. An alternative is to use the standard completion component, shown in Fig. 2.6, for StageM .
However, this later approach produces a system with reduced throughput compared to that when the
modified Early Completion component is used for the last stage. In a real system, there will be some
delay between when the outputs change and when Ki subsequently changes, such that modifying
the Early Completion component for the last stage may not be necessary.

Early Completion reduces handshaking overhead by allowing the Completion evaluation for
Stagei to begin before the DATA/NULL wavefront has been latched by Registeri . Early Completion
does not impact latency since the forward path is unchanged. However, delay-insensitivity must be
reanalyzed. In the most delay-sensitive case, Koi and Koi+1 are both rfd/rfn and all bits at the
input of Registeri−1 change to DATA/NULL, respectively, within a very short period of time.
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The DATA/NULL wavefront at the input of Registeri−1 flows through Registeri−1, followed by
Combinational Circuiti , and finally Early Completion Componenti , in order to transition Koi to
rfn/rfd, respectively. Simultaneously, the DATA/NULL wavefront at the input of Registeri−1 flows
through Early Completion Componenti−1 in order to transition Koi−1 to rfn/rfd, respectively.
Therefore, in order for the system to function incorrectly, the DATA/NULL wavefront would have to
travel through a set of TH22 gates (i.e., Registeri−1), Combinational Circuiti , and Early Completion
Componenti , before the same signal traveled through only Early Completion Componenti−1. Since
the first path is normally much longer, the delay is well known and the system remains self-timed.
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For the special case of a FIFO, the combinational logic delay would be zero, but the delay through
Early Completion Componenti and Early Completion Componenti−1 would be identical, so the
above argument would still hold. For the generalized case, Early Completion Componenti and Early
Completion Componenti−1 normally have about the same delay, within one or two gate delays, such
that the above analysis holds true.

The other delay-sensitive scenario introduced by Early Completion is when Koi+1 changes
to rfd/rfn when all inputs to Registeri are already DATA/NULL and all inputs to Registeri−1 are
NULL/DATA, respectively. In this case the rfd/rfn must pass through an inverter and oneTH22 gate
in order to transition Koi to rfn/rfd, respectively. Once Koi is rfn/rfd, the NULL/DATA wavefront
at the input of Registeri−1 can flow through the register’s TH22 gates and overwrite the previous
DATA/NULL wavefront at the input of Registeri , respectively. Simultaneously, the DATA/NULL
wavefront at the input of Registeri must only pass through one TH22 gate to be latched at the output
of Registeri . Therefore, in order for the system to function incorrectly, a signal would have to travel
through both an inverter and two TH22 gates before the same signal travels through only a single
TH22 gate. Since the path through the three gates is obviously longer than the path through a single
gate, the delays are well known and the system remains self-timed. Note that this example assumes
that there is no combinational logic delay, as would be the case for a FIFO. For the generalized case,
the delay-sensitivity would be even less, since the path through an inverter, two TH22 gates, and
combinational logic would have to be faster than the path through a single TH22 gate in order to
adversely affect self-timed operation.

As an example, Early Completion was applied to a full-word pipelined 4-bit×4-bit unsigned
multiplier, yielding a 21% increase in throughput [1, 2]. Additionally, Early Completion must be
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utilized when applying the ultra-low power NCL MTCMOS technique, explained in Section 6.2,
in order to maintain delay-insensitivity.

5.4 NULL CYCLE REDUCTION
NCL system throughput can also be increased by applying the NULL Cycle Reduction (NCR)
technique, depicted in Fig. 5.9, which increases the throughput of an NCL system by decreasing
the circuit’s NULL cycle time, without affecting its DATA cycle time. Successive input wavefronts
are partitioned so that one circuit processes a DATA wavefront, while its duplicate processes a
NULL wavefront. The first DATA/NULL cycle flows through the original circuit, while the next
DATA/NULL cycle flows through the duplicate circuit. The outputs of the two circuits are then
multiplexed to form a single output stream. NCR can be used to speedup slow stages in an NCL
pipeline that cannot be further divided (e.g., Stage 2 in the quad-rail multiplier shown in Fig. 5.3).
The application of NCR to only the slow stages in a pipeline increases the throughput for the
entire pipeline [3]. NCR can also be used to increase the throughput of a feedback loop, which
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cannot be increased by any other means, again increasing throughput for the entire pipeline [4].
Fig. 5.9 depicts the NCR architecture for a dual-rail logic circuit utilizing full-word completion;
however, NCR is also applicable to quad-rail circuits and bit-wise completion. Quad-rail logic only
requires a redesign of the Demultiplexer and Multiplexer circuits to handle quad-rail signals, whereas
bit-wise completion requires removal of the Completion Detection component and replication of
the Sequencer components, such that each input/output bit has its own Sequencer#1/Sequencer#2
component, respectively.

A Sequencer is an N-stage (at least 3 stages) single-rail ring structure consisting of resettable
TH33 gates, used to generate an N-bit sequence that changes based on Ki . Here, S1 and S2 are
taken directly from one of the sequencer taps to generate the desired sequences, 1000 and 0010,
respectively; however, various sequencer taps may be ORed together to generate any arbitrary N-bit
sequence. Sequencers can be used in lieu of state machines to generate the same repeated control
signals, or in lieu of a counter, to repeatedly count a fixed number of events [5]. An N-stage sequencer
contains 	(N-1)/2
 tokens,where a token is defined as a DATA wavefront with corresponding NULL
wavefront, and one bubble for an odd N and two bubbles for an even N , where a bubble is defined
as either a DATA or NULL wavefront occupying more than one neighboring stage [6]. When Ki

becomes rfd/rfn the DATA/NULL wavefront moves through the one or two NULL/DATA bubbles
ahead of it, creating one or two DATA/NULL bubbles in its wake, respectively. The DATA/NULL
wavefront restricts the forward propagation of the NULL/DATA wavefront, respectively, for each
change of Ki , limiting the forward propagation to only the one or two bubbles.

For the NCR architecture, Sequencer #1 is controlled by the output of the Completion circuitry
and is used to select either output A or B of the Demultiplexer. Upon reset, it selects output A to
receive the first DATA/NULL cycle, after its Ki becomes rfd. It then selects output B to receive the
second DATA/NULL cycle, and continuously alternates the DATA/NULL cycles between outputs
A and B. Sequencer #2 is controlled by the external request, Ki , and is used to allow DATA and
NULL wavefronts to flow through the output register of Circuit #1 and Circuit #2. Upon reset,
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it selects Circuit #1 to output the first DATA/NULL cycle, after Ki becomes rfd. It then selects
Circuit #2 to output the second DATA/NULL cycle, and continuously alternates the DATA/NULL
cycles between Circuit #1 and Circuit #2.
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C H A P T E R 6

Low-Power NCL Design
Delay-insensitive NCL circuits designed using CMOS exhibit an inherent idle behavior since they
only switch when useful work is being performed, unlike clocked Boolean circuits that switch every
clock pulse, unless specifically disabled through specialized circuitry, which itself requires addi-
tional area and power. Therefore, NCL systems inherently utilize significantly less power than their
synchronous counterparts. Additionally, techniques such as wavefront steering, Multi-Threshold
CMOS (MTCMOS), and supply voltage reduction can be applied to NCL systems in order to
substantially further reduce energy usage.

6.1 WAVEFRONT STEERING

Wavefront steering is used to direct a DATA/NULL wavefront to flow through only the specific
path needed for the selected operation, such that the alternative paths remain idle, and, therefore,
utilize minimal energy. Wavefront steering also increases throughput by maintaining average-case
delay.

Take, for example, the 4-operation Arithmetic Logic Unit (ALU), depicted in Fig. 6.1. The
Boolean implementation, shown in Fig.6.2, sends the input wavefront through all four functions, and
utilizes a multiplexer at the output to select the desired function; whereas the NCL implementation,
shown in Fig. 6.3, utilizes a Demultiplexer at the input to direct the input wavefront to only flow
through the selected function. Since only a single function is switching, and the other three remain
NULL, each rail of the four functions’ outputs can simply be ORed together to generate the desired
function output. Hence, all four functions switch every operation for the Boolean implementation;
whereas only the selected function switches for the NCL implementation. Additionally, the clock
period for the synchronous Boolean implementation, assuming input and output registers, will be
derived from the worse-case delay through the ALU, which for N-bit operands is O(Log N) for a
Carry-Lookahead Adder (CLA) implementation of the ADD operation.The other three operations
(i.e., XOR, AND, and OR), which only require a delay of O(1) (i.e., 1 gate delay), must still wait
the same amount of time as for the ADD operation before latching in the next set of operands to
be processed, even though their result will be ready much sooner. The NCL implementation has
an average-case delay of O(Log N) for a Ripple-Carry Adder (RCA) implementation of the ADD
operation, and 1 gate delay for the XOR, AND, and OR operations. Therefore, when an XOR,
AND, or OR operation is selected, the NCL implementation will produce the output and request
and start processing the next input set much faster than for an ADD operation. Hence, the NCL
implementation will be faster and require less energy than the Boolean implementation. The speed
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advantage will increase proportionally to the operand size, N ; and the energy advantage will increase
proportionally to the number of ALU functions.
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Figure 6.1: ALU block diagram and function table.

This wavefront steering NCL implementation is input-complete because the Demultiplexer
output is input-complete with respect to all of the ALU inputs, A, B, and the function select bits,
F1 and F0; and each of the four functions are input-complete with respect to the Demultiplexer
output. The alternative NCL implementation, similar to the Boolean implementation, would be
to send each input wavefront through all four functions and then utilize an input-complete 4:1
MUX at the output to select the desired function. This would require significantly more energy per
operation since all four functions would switch every operation, instead of only the selected function.
Additionally, speed would be substantially reduced since every operation would wait until all four
functions completed before outputting the selected result and starting the next operation.

NCL circuits that utilize wavefront steering can be pipelined by: 1) embedding registration
within the Demultiplexer, as explained in Section 5.2; 2) separately pipelining each function, as
explained in Section 5.1; 3) adding a multi-stage pipeline for the function select bits, which are
normally converted into a single MEAG, used to select the desired function pipeline to pass its
output to the OR gates; and 4) adding an output register, which can be embedded within the output
OR gates. Reference [1] details the design and subsequent pipelining of a 4-bit 8-operation ALU.

6.2 MULTI-THRESHOLD CMOS (MTCMOS)
FOR NCL (MTNCL)

With the current trend of semiconductor devices scaling into the deep submicron region, design
challenges that were previously minor issues have now become increasingly important. Where in
the past, dynamic, switching power has been the predominant factor in CMOS digital circuit power
dissipation, recently,with the dramatic decrease of supply and threshold voltages, a significant growth
in leakage power demands new design methodologies for digital integrated circuits (ICs). The main
component of leakage power is sub-threshold leakage, caused by current flowing through a transistor
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Figure 6.2: Boolean ALU implementation.

even if it is supposedly turned off. Sub-threshold leakage increases exponentially with decreasing
transistor feature size.

Among the many techniques proposed to control or minimize leakage power in deep sub-
micron technology, Multi-Threshold CMOS (MTCMOS) [2], which reduces leakage power by
disconnecting the power supply from the circuit during idle (or sleep) mode while maintaining high
performance in active mode, is very promising. MTCMOS incorporates transistors with two or
more different threshold voltages (Vt ) in a circuit. Low-Vt transistors offer fast speed but have high
leakage, whereas high-Vt transistors have reduced speed but far less leakage current. MTCMOS
combines these two types of transistors by utilizing low-Vt transistors for circuit switching to pre-
serve performance and high-Vt transistors to gate the circuit power supply to significantly decrease
sub-threshold leakage.
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6.2.1 MTCMOS FOR SYNCHRONOUS CIRCUITS
There are multiple ways to implement MTCMOS in synchronous circuits.One method is to use low-
Vt transistors for critical paths to maintain high performance, while using slower high-Vt transistors
for the non-critical paths to reduce leakage.Besides this path replacement methodology, there are two
other architectures for implementing MTCMOS. A course-grained technique investigated in [3]
uses low-Vt logic for all circuit functions and gates the power to entire logic blocks with high-Vt

sleep transistors, as shown in Fig. 6.4. The sleep transistors are controlled by a Sleep signal. During

VDD

Low-Vt CMOS Logic

SLEEP

SLEEP

INPUTS OUTPUTS

Virtual VDD

Virtual GND

Reduce sub-threshold 
leakage during sleep mode 

Reduce sub-threshold 
leakage during sleep mode 

Maintain high performance 
during active mode

Figure 6.4: General MTCMOS circuit architecture.

active mode, the Sleep signal is deasserted, causing both high-Vt transistors to turn on and provide
a virtual power and ground to the low-Vt logic. When the circuit is idle, the Sleep signal is asserted,
forcing both high-Vt transistors to turn off and disconnect power from the low-Vt logic, resulting in
a very low sub-threshold leakage current. One major drawback of this method is that partitioning
the circuit into appropriate logic blocks and sleep transistor sizing is difficult for large circuits.
An alternative fine-grained architecture, shown in Fig. 6.5, incorporates the MTCMOS technique
within every gate [4], using low-Vt transistors for the Pull-Up Network (PUN) and Pull-Down
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Network (PDN) and a high-Vt transistor to gate the leakage current between the two networks.
Two additional low-Vt transistors are included in parallel with the PUN and PDN to maintain nearly

PUN

PDN

Sleep

Sleep

Sleep

In 1

Inn

Out

P0

P1

N0

X1

X2

Figure 6.5: MTCMOS applied to a Boolean gate.

equivalent voltage potential across these networks during sleep mode. Implementing MTCMOS
within each gate solves the problems of logic block partitioning and sleep transistor sizing; however,
this results in a large area overhead.

In general, three serious drawbacks hinder the widespread usage of MTCMOS in synchronous
circuits [3]: 1) the generation of Sleep signals is timing critical, often requiring complex logic circuits;
2) synchronous storage elements lose data when the power transistors are turned off during sleep
mode; and 3) logic block partitioning and transistor sizing is very difficult for the course-grained
approach, which is critical for correct circuit operation, and the fine-grained approach requires a large
area overhead. However, all three of these drawbacks are eliminated by utilizing NCL in conjunction
with the MTCMOS technique.

6.2.2 IMPLEMENTING MTCMOS IN NCL CIRCUITS

6.2.2.1 Early-Completion Input-Incomplete (ECII) MTNCL Architecture
NCL threshold gates are larger and implement more complicated functions than basic Boolean gates,
such that fewer threshold gates are normally needed to implement an arbitrary function compared
to the number of Boolean gates; however, the NCL implementation often requires more transistors.
Therefore, incorporating MTCMOS inside each threshold gate will facilitate easy sleep transistor
sizing without requiring as large of an area overhead. Since floating nodes may result in substantial
short circuit power consumption at the following stage, an MTCMOS structure similar to the one
shown in Fig. 6.5 is used to pull the output node to ground during sleep mode. When all MTNCL
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gates in a pipeline stage are in sleep mode, such that all gate outputs are logic 0, this condition
is equivalent to the pipeline stage being in the NULL state. Hence, after each DATA cycle, all
MTNCL gates in a pipeline stage can be forced to output logic 0 by asserting the sleep control
signal instead of propagating a NULL wavefront through the stage, such that data is not lost during
sleep mode.

Since the completion detection signal, Ko, indicates whether the corresponding pipeline stage
is ready to undergo a DATA or NULL cycle, Ko can be naturally used as the sleep control signal,
without requiring any additional hardware, in contrast to the complex Sleep signal generation circuitry
needed for synchronous MTCMOS circuits. Unfortunately, the direct implementation of this idea
using regular NCL completion compromises delay-insensitivity, as shown in Fig. 6.6.

In Fig. 6.6, each inverted completion signal is used as the sleep signal for all MTNCL gates in
the corresponding pipeline stage. Looking at the left stage, after a DATA (D) cycle, the completion
signal becomes rfn (i.e., logic 0), which forces all threshold gates in the stage to enter sleep mode
since the next cycle will be NULL (N). When this sleep generated NULL wavefront is latched by
the subsequent register, the stage’s completion signal will switch back to rfd (i.e., logic 1). If this
occurs before all bits of the preceding DATA wavefront become NULL, the non-NULL preceding
wavefront bits will be retained and utilized in the subsequent operation, thereby compromising
delay-insensitivity.

To solve this problem, Early Completion, as detailed in Section 5.3, can be used in lieu of
regular completion, as shown in Fig. 6.7, where each completion signal is used as the sleep signal
for all threshold gates in the subsequent pipeline stage. Now the combinational logic won’t be put to
sleep until all inputs are NULL and the stage is requesting NULL; therefore, the NULL wavefront is
ready to propagate through the stage, so the stage can instead be put to sleep without compromising
delay-insensitivity. The stage will then remain in sleep mode until all inputs are DATA and the
stage is requesting DATA, and is, therefore, ready to evaluate. This Early Completion MTNCL
architecture, denoted as ECII, ensures input-completeness through the sleep mechanism (i.e., the
circuit is only put to sleep after all inputs are NULL, and only evaluates after all inputs are DATA),
such that input-incomplete logic functions can be used to design the circuit, which decreases area
and power and increases speed.

6.2.2.2 MTNCL Threshold Gate Design for ECII Architecture
The MTCMOS structure is incorporated inside each NCL threshold gate, and actually results in
a number of the original transistors no longer being needed. As shown in Fig. 6.8(a), the reset
circuitry is no longer needed since the gate output will now be forced to NULL by the MTCMOS
sleep mechanism, instead of by all inputs becoming logic 0. hold1 is used to ensure that the gate
remains asserted, once it has become asserted, until all inputs are deasserted, in order to guarantee
input-completeness with respect to the NULL wavefront; however, since the ECII architecture
guarantees input-completeness through the sleep mechanism, as explained in Section 6.2.2.1, NCL
gate hysteresis is no longer required. Hence, the hold1 circuitry and corresponding NMOS transistor
are removed, and the PMOS transistor is removed to maintain the complementary nature of CMOS
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Figure 6.8: Incorporating MTCMOS into NCL threshold gates.

logic (i.e., set and hold0 are complements of each other, as explained in Section 2.2), such that the
gate is never floating.

A direct MTCMOS NCL threshold gate implementation, similar to the structure shown in
Fig. 6.5, is shown in Fig 6.8(b). All PMOS transistors except the inverter are high-Vt , denoted by
a dotted circle because they are only turned on when the gate enters sleep mode and the inputs
become logic 0, and remain on when the gate exits sleep mode until the gate’s set condition becomes
true. In both cases, the gate output is already logic 0; therefore, the speed of these PMOS transistors
does not affect performance, so high-Vt transistors are used to reduce leakage current. During active
mode, the Sleep signal is logic 0 and Sleep is logic 1, such that sleep transistors M1 and M2 are
turned on, bypass transistors M3 and M4 are turned off, and the output pull-down transistor, M5,
is also turned off, such that the gate functions as normal. During sleep mode, Sleep is logic 1 and
Sleep is logic 0, such that M5, which is a low-Vt transistor, is turned on to quickly pull the output
to logic 0, while M3 and M4 are turned on to minimize the voltage potential across the hold0 and
set blocks, respectively, and high-Vt gating transistors, M1 and M2, are turned off to reduce leakage.
As an example, this MTNCL implementation of the static TH23 gate is shown in Fig. 6.9, whereas
the original static TH23 gate is shown in Fig. 2.10(a).

Note that the MTNCL TH23 gate is actually smaller than the original TH23 gate (i.e., 17
vs. 18 transistors). Although five transistors are added to each gate for the MTNCL structure, this
only increases total number of transistors for 3 out of the 27 threshold gates since the reset and hold1
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blocks are removed, such that the total number of transistors in the MTNCL version is normally
less than the original version. The exceptions are the three TH1n gates, which are OR gates and,
therefore, do not have extra hysteresis circuitry (i.e., reset = hold0 and set = hold1), such that no
transistors can be removed for the MTNCL versions, and, therefore, these three MTNCL gates
each require 5 additional transistors.

This initial MTNCL static threshold gate structure has been used to implement an 8-bit×8-
bit pipelined array multiplier with the 1.2V 130nm IBM 8RF CMOS process, yielding a 150×
leakage power reduction and 1.8× active energy savings compared to the regular NCL low-Vt

counterpart [5]. However, this structure produces unwanted glitches at the gate outputs, as shown
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in Fig. 6.10(b). Referring to Fig. 6.10(a), during sleep mode, Sleep is logic 1 and Sleep is logic 0. Q1
and Q5 are off, while Q1, Q2, and Q4 are on. The internal parasitic capacitance, Cp, is discharged
through Q4, making the internal node, p, logic 0. When the gate is taken out of sleep mode, Sleep
is logic 0 and Sleep is logic 1. Q1 and Q5 are on, while Q1, Q2, and Q4 are off. Since all inputs are
logic 0 at this moment, due to the preceding NULL/sleep cycle, Cp begins charging through the
PMOS network and Q1. However, before the voltage on p rises to VDD − |VTP|, where VTP is the
threshold voltage of the PMOS transistor in the output inverter, the gate output will start to rise
since the input signal to the inverter, which is the voltage on Cp, momentarily turns on the PMOS
transistor, causing the glitch shown in Fig. 6.10(b). With a supply voltage of 1.2V, these glitches
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Figure 6.10: (a) Original MTNCL static threshold gate structure, and (b) output glitch.

can be as high as 400mV, and are able to propagate through logic gates. Although the multiplier
test circuit still functioned correctly, these glitches need to be removed to ensure reliable operation
and eliminate glitch power. Additionally, the two bypass transistors, Q3 and Q4, were found to only
have very minimal contribution to leakage savings; therefore, they can be removed to reduce area.

To eliminate the glitch, the MTNCL threshold gate structure was modified, as shown in
Fig. 6.11, by moving the power gating high-Vt transistor to the PDN, and removing the two bypass
transistors, as discussed previously, such that during sleep mode the internal node will be charged
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Figure 6.11: (a) SMTNCL gate structure, and (b) TH23 implementation.

to logic 1. Therefore, when the gate is taken out of sleep mode, the output will remain at logic 0
without any glitch, due to the internal logic 1 flowing through the output inverter, until the DATA
wavefront arrives. Note that since the internal node is logic 1 during sleep mode and the output is
logic 0, the NMOS transistor in the output inverter is no longer on the critical path and therefore
can be a high-Vt transistor. This modified Static MTNCL threshold gate structure is referred to as
SMTNCL.

6.2.2.3 Delay-Insensitivity Analysis
Combining the ECII architecture with the SMTNCL gate structure, results in a delay-sensitivity
problem, as shown in Fig. 6.12. After a DATA cycle, if most, but not all, inputs become NULL, this
Partial NULL (PN) wavefront can pass through the stage’s input register, because the subsequent
stage is requesting NULL, and cause all stage outputs to become NULL, before all inputs are NULL
and the stage is put to sleep because the hold1 logic has been removed from the SMTNCL gates.
This violates the input-completeness criteria, discussed in Section 3.1 and can cause the subsequent
stage to request the next DATA while the previous stage input is still a partial NULL, such that the
preceding wavefront bits that are still DATA will be retained and utilized in the subsequent operation,
thereby compromising delay-insensitivity, similar to the problem when using regular completion, as
explained in Section 6.2.2.1.

There are two solutions to this problem, one at the architecture level and the other at the gate
level. Since the problem is caused by a partial NULL passing through the register, this can be fixed
at the architecture-level by ensuring that the NULL wavefront is only allowed to pass through the
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Figure 6.12: Delay-sensitivity problem combining ECII architecture with SMTNCL gates.

register after all register inputs are NULL, which is easily achievable by using the stage’s inverted
sleep signal as its input register’s Ki signal.This Fixed Early Completion Input-Incomplete (FECII)
architecture is shown in Fig. 6.13. Compared to ECII, FECII is slower because the registers must
wait until all inputs become DATA/NULL before they are latched. Note that a partial DATA
wavefront passing through the register does not pose a problem, because the stage will remain in
sleep mode until all inputs are DATA, thereby ensuring that all stage outputs will remain NULL
until all inputs are DATA.
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Figure 6.14: (a) SMTNCL1 gate structure, and (b) TH23 implementation.

This problem can be solved at the gate level by adding the hold1 logic back into each SMTNCL
gate, to ensure input-completeness with respect to NULL, such that a partial NULL wavefront
cannot cause all outputs to become NULL. Note that this requires the PMOS transistor between
hold0 and VDD to be added back to prevent a direct path from VDD to ground when both hold1
and hold0 are simultaneously asserted. Also note that the hold1 transistors not shared with the set
condition can be high-Vt transistors, since they are not on the critical path. This Static MTNCL
implementation with hold1 is shown in Fig. 6.14, and is denoted as SMTNCL1.

Since SMTNCL1 increases transistor count, the MTCMOS structure can be applied to
semi-static NCL gates, which utilize a weak feedback inverter to implement the hold1 and hold0
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functions. This Semi-Static MTNCL design with hold1 is denoted as SSMTNCL1, and is shown
in Fig. 6.15. Note that a 1 at the end of an MTNCL gate name denotes that the gate includes
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Figure 6.15: (a) SSMTNCL1 gate structure, and (b) TH23 implementation.

hold1 circuitry. The NMOS transistor in the weak inverter serves as the hold1 function, which is not
needed for the FECII architecture; hence, this transistor can be removed to save area when using the
slower FECII architecture. This modified Semi-Static MTNCL design is denoted as SSMTNCL,
and is shown in Fig. 6.16.

To summarize, the ECII architecture only works with SMTNCL1 or SSMTNCL1 gates,
which both include the hold1 function. The FECII architecture works with all four MTNCL gate
designs (i.e., SMTNCL, SMTNCL1, SSMTNCL1, and SSMTNCL). However, the SMTNCL
and SSMTNCL gates require fewer transistors than their equivalent SMTNCL1 and SSMTNCL1
gates, respectively, such that the FECII architecture would normally use either the SMTNCL or
SSMTNCL gates. Additionally, the ECII architecture is faster than FECII; and the static NCL
gates (i.e., SMTNCL and SMTNCL1) perform better than their semi-static counterparts (i.e.,
SSMTNCL and SSMTNCL1) at reduced supply voltages, since the static implementations do not
utilize a weak inverter, which ceases to operate properly with a substantially reduced supply voltage,
for state-holding. Preliminary simulation results can be found in [5]–[7]; and additional results will
be posted on the authors’ websites [8]–[9], as they become available. Note that MTNCL is also
known as DIMLOG (i.e., Delay-Insensitive Multi-threshold LOGic).
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C H A P T E R 7

Comprehensive NCL Design
Example

This chapter details the NCL implementation of an optimized version of the Greatest Common
Divisor (GCD) circuit, discussed in Section 4.2 and shown in Fig. 4.9. The ThroughPut Capability
(TPC) diagram for the original GCD circuit is shown in Fig. 7.1.TPC is a measure of the number of
new inputs loaded divided by the number of clock cycles to process the data. A * denotes when a new

S0

S1

number of 
subtractions

Figure 7.1: TPC diagram for original GCD circuit.

data is loaded, which occurs on the transition from one state to another. Note that the following three
assumptions are used when calculating TPC: 1) steady state operation (i.e., initial states are ignored);
2) data is supplied as fast as requested (i.e., Xdat is always asserted); and 3) data is requested at the
output as fast as supplied (i.e., Yrqst is always asserted). This TPC diagram shows that TPC is 1/2
for the special case where A = B (i.e., S0 → S1 → S0, loading a data on the S0 → S1 transition),
and 1/(number of subtractions + 2) for the general case when A �= B (i.e., S0 → S1 + S1 → S1
for each subtraction +S1 → S0, loading a data on the S0 → S1 transition). Additionally, overall
TPC is calculated as the worse-case TPC for any operation (e.g., for the original GCD circuit, the
worse case operation is when one input is 1 and the other is 255, which requires 254 subtractions,
yielding a worse-case TPC of 1/256).
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By analyzing the GCD algorithm, the maximum attainable TPC, TPCMAX, is expected to
be 1 for the special case where A = B, and 1/(number of subtractions) for the general case when
A �= B. To achieve TPCMAX, the datapath and corresponding ASM have been redesigned to load
new operands at the same time the previous result is output, and to output the result one cycle
sooner, by taking it from the output of the adder rather than loading it back into the register, as
shown in Figs. 7.2(a) and 7.2(b), respectively. The new TPC diagram, shown in Fig. 7.2(c), indeed
shows that TPC is 1 when A = B (i.e., S1 → S1 loading new operands each transition), and
1/(number of subtractions) when A �= B (i.e., S1 → S1, which outputs the previous result after the
final subtraction and loads the next operands simultaneously, +S1 → S1 number of subtractions
– 1 times). Note that S0 is an initial state since it is never returned to as long as Xdat is asserted;
hence, S0 is not shown in the TPC diagram. Also note that this GCD optimization increases TPC
at the expense of increased datapath delay, such that if the GCD datapath has the longest delay in
the system, it may be better to utilize a less optimized GCD circuit, such that a faster clock can be
used for the entire system.

When implementing the GCD circuit using NCL, the OCDDC handshaking is no longer
needed since NCL circuits already utilize input and output handshaking. Therefore, the interface
and ASM must be modified, as shown in Fig. 7.3(b) and 7.3(c). The datapath, shown in Fig. 7.3(a),
must be modified by replacing the A and B input/feedback registers with 3-register NCL feedback.
This requires adding two MUXes to feedback data to the input MUXes each iteration (i.e., either A

or the RCA sum for the top MUX and either B or the RCA sum for the bottom MUX). To reduce
area, registration was embedded within all four MUXes, and a third DI Register was added on both
of these feedback paths to complete the required 3-register feedback. Additionally, Y is only output
when the GCD operation is completed, not every iteration; hence, a Select Register is required,
controlled by Ydat, which is now an internal signal. Two additional single-bit DI Registers were
added, one to generate the select signal, S, for the input MUXes, which was required to complete
the 3-register feedback, and a second to latch Ydat.

MUX Reg is the input-incomplete 2:1 MUX with embedded registration, shown in Fig.5.5(c).
Note that the value in parenthesis in the registers denotes their reset condition (i.e., N refers to
NULL, D0 to DATA0, and D1 to DATA1). MUX Reg Comp0 is a 2:1 MUX with embedded
registration that is input-complete with respect to its D0 input, but not D1.This is equivalent to the
input-complete 2:1 MUX with embedded registration, shown in Fig. 5.4(b), with the TH24comp
gate replaced by a TH12 gate with inputs D00 and D01. The Select Reg is shown in Fig. 7.4, and
only passes data to the output when both Ki and S are asserted.

The input MUXes are both designed to be input-incomplete with respect to their D1 inputs
because A and B are only DATA at the beginning of each new operation. The B input MUX must
be input-complete with respect to its D0 input to ensure that the output of the B/sum feedback
MUX is observable when a new operand is loaded. This is not required for the A input MUX since
the output of the A/sum feedback MUX is observable through the Select Reg when a new operand
is loaded. The feedback MUXes are both input-incomplete because one of the two will always pass
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Figure 7.2: Optimized GCD circuit. (a) datapath; (b) ASM; (c) TPC diagram.
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the RCA sum, which is input-complete with respect to both the internal A and B signals, such that
the C/L is input-complete, and the RCA sum is observable. Since Select Reg only outputs a DATA
at the end of a complete GCD operation, not every iteration, its Ko signal will remain rfd during
all internal GCD iterations, such that it needs to be masked during these iterations to allow the
DATA/NULL cycles to flow through the feedback loops. This is done by ANDing its completion
signal with the inverse of Y 0

dat, such that when Ydat is DATA0 (i.e., the result is not ready and will
not be output through the Select Reg) the completion signal becomes rfn. Likewise, when Ydat is
DATA1 or NULL, the completion signal of Select Reg is passed. Additionally, since new A and
B operands are only loaded at the beginning of each new GCD operation, not each iteration, Ko

cannot be generated from the input MUX Regs’ completion signals; instead, Ko is tied to the input
MUXes’ select input, S1, such that Ko is only asserted when the new operands are ready to be passed
through the input MUXes.

NCL versions of the C/L datapath components can be designed as follows. The Conditional
Inverse circuit is simply an array of NCL XOR functions, each consisting of two TH24comp gates,
as explained in Section 3.2, with INV as one XOR input and one of the 8-bit data inputs as the
second XOR input, generating the corresponding bit of the 8-bit data output. The RCA utilizes a
FA1 component (i.e., full adder with constant 1 input) with inputs A0 and B0 to generate the least
significant bit, which consists of an NCL XNOR function to generate the sum output and an input-
incomplete OR function to generate the carry output. These functions are described in Sections 3.2
and 4.1, respectively. Full adders, as shown in Fig. 3.13, are used to generate bits 1-6; and a FAS
component (i.e., full adder with sum output only), which consists of two NCL XOR functions, is
used to generate the Most Significant Bit (MSB). Note that a regular full adder cannot be used for
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the MSB because the internal gates are not observable when carry is not an output. The A = B

comparators are designed as shown in Fig. 7.5, where the XNOR and AND gates are both NCL
functions; and the AND gates are input-complete to ensure observability of the XNOR outputs.
The A > B output of the third comparator is designed by partitioning the inputs into groups of
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B2

A3

B3

A4

B4

A5

B5

A6

B6

A7

B7

AeqB

A2eqB2

Figure 7.5: AeqB comparator.

two, as shown in the following equation:

AgB = A2gB2(7 : 6) + A2eqB2(7 : 6) • A2gB2(5 : 4)

+ A2eqB2(7 : 6) • A2eqB2(5 : 4) • A2gB2(3 : 2)

+ A2eqB2(7 : 6) • A2eqB2(5 : 4) • A2eqB2(3 : 2) • A2gB2(1 : 0)
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The A2eqB2 circuit is shown in the dotted box in Fig. 7.5; and the A2gB2 circuit is shown in
Fig.7.6,designed using the method described in Section 3.2.The complete diagram of the AgB/AeqB
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0 B0
1B0

0 A1
1A1

0 A0
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0

AgB1

AgB0

Figure 7.6: A2gB2 circuit.

comparator is shown in Fig. 7.7, where all AND and OR gates are input-complete NCL functions,
to ensure observability. Alternatively, the AgB output could have been designed by partitioning the
inputs into groups of three, also resulting in a circuit with 6 gate delays; however, the implementation
shown in Fig. 7.7 requires fewer gates.

The minimal next-state and output equations are derived directly from the ASM and then
optimized as follows utilizing Boolean algebra and mutually exclusive conditions:

S = S0 + S1 • AeqB + S1 • AeqB′ • AgB • BeqS + S1 • AeqB′ • AgB′ • AeqS
= S0 + AeqB + BeqS + AeqS

SB = INVA = S1 • AeqB′ • AgB′ = S1 • AgB′
INVB = S1 • AeqB′ • AgB = S1 • AgB

SA = S1 • AeqB′ • AgB + S1 • AeqB′ • AgB′ • AeqS = S1 • AgB + S1AeqS
Ydat = S1 • AeqB + S1 • AeqB′ • AgB • BeqS + S1 • AeqB′ • AgB′ • AeqS

= S1 • (AeqB + BeqS + AeqS)

D = 1
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Figure 7.7: AgB/AeqB comparator.

These equations could now be implemented in a 3-register feedback state machine, as detailed in
Section 4.1. However, since S0 is only an initial state that is never returned to, the initial setup
condition (i.e., S asserted and Ydat not asserted) can be realized by using separate registers for S and
Ydat, as shown in Fig. 7.3(a), to reset S to DATA1 to pass the first operands and Ydat to NULL to not
output Y upon reset. Hence, the state is no longer needed, and can be removed from the equations
as follows:

S = Ydat = AeqB + BeqS + AeqS
SB = AgB′

INVB = AgB
SA = AgB + AeqS

To make the comparators’ outputs observable, S/Ydat must utilize an input-complete NCL OR3
function, consisting of two input-complete NCL OR2 functions, while SA can be implemented
with an input-incomplete OR function. SB is implemented by simply swapping the rails of AgB, as
discussed in Section 3.2. This ensures that all comparator outputs return to NULL before the next
data wavefront is latched to flow through the C/L.
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As mentioned above, using the fully optimized GCD circuit for a synchronous design depends
on the clock period of the entire system, due to the tradeoff of increased datapath delay vs. increased
TPC. The NCL GCD circuit is self-timed and therefore its throughput is independent of other
system components. Hence, the design with the smaller datapath delay should also be considered
to ensure optimal throughput. This design is shown in Fig. 7.8, where the new operands are still
loaded at the same time the previous result is output, but the result is output one cycle later when
A �= B, resulting in a TPC of 1 when A = B and 1/(number of subtractions + 1) when A �= B.

Both systems were exhaustively simulated (i.e., 65025 non-zero operand input combinations)
using a VHDL library with timing extracted from physical-level simulations of 1.8V 180nm static
NCL gates [1], showing that the version with the smaller datapath delay decreased average operation
time by 12% (i.e., 212ns for Fig.7.3 vs. 190ns for Fig.7.8).Additionally, utilizing bit-wise completion
between Select Reg and MUX Reg (for Fig. 7.3) and 4-register feedback were explored; however,
neither decreased average operation time.

BIBLIOGRAPHY
[1] http://comp.uark.edu/˜smithsco/VHDL.html.

http://comp.uark.edu/~smithsco/VHDL.html
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