
Lecture Notes in Computer Science 6336
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Richard Hull Jan Mendling Stefan Tai (Eds.)

Business Process
Management
8th International Conference, BPM 2010
Hoboken, NJ, USA, September 13-16, 2010
Proceedings

13

Volume Editors

Richard Hull
IBM Research, Thomas J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532, USA
E-mail: hull@us.ibm.com

Jan Mendling
Humboldt-Universität zu Berlin, Institut für Wirtschaftsinformatik
Unter den Linden 6, 10099 Berlin, Germany
E-mail: contact@mendling.com

Stefan Tai
Karlsruhe Institute of Technology (KIT)
Englerstraße 11, Gebäude 11.40, 76131 Karlsruhe, Germany
E-mail: stefan.tai@kit.edu

Library of Congress Control Number: 2010933361

CR Subject Classification (1998): D.2, F.3, D.3, D.1, D.2.4, F.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-15617-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15617-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The BPM Conference series has established itself as the premier forum for re-
searchers in the area of business process management and process-aware informa-
tion systems. It has a record of attracting contributions of innovative research
of the highest quality related to all aspects of business process management,
including theory, frameworks, methods, techniques, architectures, systems, and
empirical findings.

BPM 2010 was the 8th conference of the series. It took place September 14-
16, 2010 on the campus of Stevens Institute of Technology in Hoboken, New
Jersey, USA—with a great view of Manhattan, New York. This volume con-
tains 21 contributed research papers that were selected from 151 submissions.
The thorough reviewing process (each paper was reviewed by three to five Pro-
gram Committee members followed in most cases by in-depth discussions) was
extremely competitive with an acceptance rate of 14%. In addition to the con-
tributed papers, these proceedings contain three short papers about the invited
keynote talks.

In conjunction with the main conference, nine international workshops took
place the day before the conference. These workshops fostered the exchange of
fresh ideas and experiences between active BPM researchers, and stimulated
discussions on new and emerging issues in line with the conference topics. The
proceedings with the papers of all workshops will be published in a separate
volume of Springer’s Lecture Notes in Business Information Processing series.
Beyond that, the conference also included a doctoral consortium, an industry
program, fireside chats, tutorials, panels, and demonstrations.

We want to express our gratitude to all those who made BPM 2010 possi-
ble by generously and voluntarily sharing their knowledge, skills and time: the
General Chair Michael zur Muehlen for providing an excellent environment for
the conference, and all other colleagues holding offices. In particular, we thank
the senior and regular Program Committee members as well as the additional
reviewers for devoting their expertise and time to ensure the high quality of the
conference scientific program through an extensive review and discussion pro-
cess. Finally, we are grateful to all the authors who showed their appreciation
and support for the conference by submitting their valuable work to it.

September 2010 Rick Hull
Jan Mendling

Stefan Tai

Conference Organization

General Chair

Michael zur Muehlen, USA

Program Chairs

Rick Hull, USA
Jan Mendling, Germany
Stefan Tai, Germany

Industry Chair

Michael Rosemann, Australia

Local Organization

Michael zur Muehlen, USA

Workshop Chair

Jianwen Su, USA

Doctoral Consortium Chair

Ted Stohr, USA

Demo Chair

Marcello La Rosa, Australia

Publicity Chair

Marta Indulska, Australia

Proceedings Chair

Robin Fischer, Germany

VIII Organization

Senior Program Committee

Serge Abiteboul, France
Gustavo Alonso, Switzerland
Boualem Benatallah, Australia
Marlon Dumas, Estonia
Schahram Dustdar, Austria
Claude Godart, France
Arthur ter Hofstefe, Australia
Stefan Jablonski, Germany

Frank Leymann, Germany
Tova Milo, Israel
Manfred Reichert, Germany
Hajo Reijers, The Netherlands
Michael Rosemann, Australia
Mathias Weske, Germany
Francisco Curbera, USA
Leon Zhao, China

Program Committee

Wil van der Aalst, The Netherlands
Valeria de Antonellis, Italy
Pedro Antunes, Portugal
Djamal Benslimane, France
Shawn Bowers, USA
Christoph Bussler, USA
Fabio Casati, Italy
Malu Castellanos, USA
Peter Dadam, Germany
Umeshwar Dayal, USA
Alin Deutsch, USA
Remco Dijkman, The Netherlands
Asuman Dogac, Turkey
Boudewijn van Dongen,

The Netherlands
Johann Eder, Austria
Gregor Engels, Germany
Avigdor Gal, Israel
Dimitrios Georgakopoulos, Australia
Guiseppe de Giacomo, Italy
Daniela Grigori, France
Paul Harmon, USA
Kees van Hee, The Netherlands
Willem-Jan van den Heuvel,

The Netherlands
Marta Indulska, Australia
Leonid Kalinichenko, Russia
Gerti Kappel, Austria
Dimka Karastoyanna, Germany
Ekkart Kindler, Denmark
Jana Koehler, Switzerland

Agnes Koschmider, Germany
John Krogstie, Norway
Akhil Kumar, USA
Ana Liu, Australia
Heiko Ludwig, USA
Zakaria Maamar, UAE
Selma Limam Mansar, Qatar
Michael zur Muehlen, USA
Bela Mutschler, Germany
Prabir Nandi, USA
Andreas Oberweis, Germany
Yannis Papakonstantinou, USA
Theresa Pardo, USA
Oscar Pastor, Spain
Cesare Pautasso, Switzerland
Marco Pistore, Italy
Frank Puhlmann, Germany
Jan Recker, Australia
Wolfgang Reisig, Germany
Stefanie Rinderle-Ma, Austria
Roberto Rocha, USA
Domenico Sacca, Italy
Shazia Sadiq, Australia
Wasim Sadiq, Australia
Mohand Said-Hacid, France
Timos Sellis, Greece
Amit Sheth, USA
Farouk Toumani, France
Hagen Vlzer, Switzerland
Harry Wang, USA
Barbara Weber, Austria

Organization IX

Petia Wohed, Sweden
Eric Wohlstadter, Canada
Karsten Wolf, Germany

Andreas Wombacher, The Netherlands
Xiaohui Zhao, Australia
Christian Zirpins, Germany

External Reviewers

Arya Adriansyah
Erdem Alpay
Maria Florencia Amitrano
Paul Bannerman
Henry Bi
Devis Bianchini
Petra Brosch
Mark Cameron
Shiping Chen
Soudip Roy Chowdhury
Fabian Christ
Claudio Di Ciccio
Amit Deokar
Felix Elliger
Dirk Fahland
Cédric Favre
Kathrin Figl
Robin Fischer
Sergio Flesca
Francesco Folino
Angelo Furfaro
Baris Güldali
Manolo Garcia
Ahmed Gater
Christian Gerth
Beat Gfeller
James Gibson
Christian Gierds
Karthik Gomadam
Suat Gonul
Antonella Guzzo
Hakim Hacid
Allel Hadjali
Armin Haller
Uwe Hartmann
Daning Hu
Christian Huemer
Zille Huma
Christian Janiesch

Sonja Kabicher
Udo Kannengiesser
Kathrin Kaschner
Nico Kerschbaumer
Markus Klems
Christian Koncilia
Kevin Lee
Maria Leitner
Domenico Lembo
Massimiliano de Leoni
Tammo van Lessen
Chen Li
Maya Lincoln
Mark Linehan
Manlu Liu
Rong Liu
Zheng Liu
Niels Lohmann
Ana Maria Lopez
Markus Luckey
Jürgen Mangler
Massimo Mecella
Michele Melchiori
Amin Mesmoudi
Kreshnik Musaraj
Alejandro Mussi
Benjamin Nagel
Tuncay Namli
Surya Nepal
Anil Nigam
Alexander Nowak
Olivia Oanea
Kian Win Ong
Riccardo Ortale
George Papastefanatos
Jarungjit Parnjai
Fabio Patrizi
Christian Pichler
Horst Pichler

X Organization

Karsten Ploesser
Rodion Podorozhny
Luigi Pontieri
Senan Postaci
Francesco Pupo
Ella Rabinovich
Ajith Ranabahu
Marcello La Rosa
Christoph Rosenkranz
Pasquale Rullo
Jan Sürmeli
Juan Sañchez Dı́az
Yacine Sam
Rob Schumaker
David Schumm
Nelly Schuster
Martina Seidl
Larisa Shwartz
Natalia Sidorova
Dimitrios Skoutas
Christian Soltenborn
Mirko Sonntag
Trent Spaulding
Giandomenico Spezzano
Christian Stahl

Michael Strommer
Sergey Stupnikov
Sherry Sun
Yehia Taher
Manolis Terrovitis
Fulya Tuncer
Jose Luis de la Vara
Eric Verbeek
Padmal Vitharana
Marc Voorhoeve
Hiroshi Wada
Sebastian Wagner
Matthias Weidlich
Daniela Weinberg
Edgar Weippl
Jan Martijn van der Werf
Branimir Wetzstein
Harro Wimmel
Fred Wu
Harris Wu
Moe Wynn
Marco Zapletal
Henry Zhang
Xuan Zhou
Liming Zhu

Table of Contents

Invited Talks

The Next Decade of BPM . 1
Phil Gilbert

BPM in Cloud Architectures: Business Process Management with SLAs
and Events . 5

Vinod Muthusamy and Hans-Arno Jacobsen

Warning: Don’t Assume Your Business Processes Use Master Data 11
Clay Richardson

BPM in Practice

IT Requirements of Business Process Management in Practice – An
Empirical Study . 13

Susanne Patig, Vanessa Casanova-Brito, and Barbara Vögeli

How Novices Model Business Processes . 29
Jan Recker, Niz Safrudin, and Michael Rosemann

BPM in Practice: Who Is Doing What? . 45
Hajo A. Reijers, Sander van Wijk, Bela Mutschler, and
Maarten Leurs

Correctness

How to Implement a Theory of Correctness in the Area of Business
Processes and Services . 61

Niels Lohmann and Karsten Wolf

Deciding Behaviour Compatibility of Complex Correspondences
between Process Models . 78

Matthias Weidlich, Remco Dijkman, and Mathias Weske

Correctness Ensuring Process Configuration: An Approach Based on
Partner Synthesis . 95

Wil van der Aalst, Niels Lohmann, Marcello La Rosa, and Jingxin Xu

XII Table of Contents

Design

Impact of Granularity on Adjustment Behavior in Adaptive Reuse of
Business Process Models . 112

Oliver Holschke

Machine-Assisted Design of Business Process Models Using Descriptor
Space Analysis . 128

Maya Lincoln, Mati Golani, and Avigdor Gal

From Informal Process Diagrams to Formal Process Models 145
Debdoot Mukherjee, Pankaj Dhoolia, Saurabh Sinha,
Aubrey J. Rembert, and Mangala Gowri Nanda

Distributed Processes

Value-Oriented Coordination Process Modeling . 162
Hassan Fatemi, Marten van Sinderen, and Roel Wieringa

Coordination for Fragmented Loops and Scopes in a Distributed
Business Process . 178

Rania Khalaf and Frank Leymann

PAPEL: A Language and Model for Provenance-Aware Policy
Definition and Execution . 195

Christoph Ringelstein and Steffen Staab

Mining

A Fresh Look at Precision in Process Conformance 211
Jorge Muñoz-Gama and Josep Carmona

Trace Alignment in Process Mining: Opportunities for Process
Diagnostics . 227

R.P. Jagadeesh Chandra Bose and Wil M.P. van der Aalst

Content-Aware Resolution Sequence Mining for Ticket Routing 243
Peng Sun, Shu Tao, Xifeng Yan, Nikos Anerousis, and Yi Chen

Semantics

Symbolic Execution of Acyclic Workflow Graphs . 260
Cédric Favre and Hagen Völzer

Structuring Acyclic Process Models . 276
Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and Marlon Dumas

Table of Contents XIII

A New Semantics for the Inclusive Converging Gateway in Safe
Processes . 294

Hagen Völzer

Processes and People

From People to Services to UI: Distributed Orchestration of User
Interfaces . 310

Florian Daniel, Stefano Soi, Stefano Tranquillini, Fabio Casati,
Chang Heng, and Li Yan

Self-adjusting Recommendations for People-Driven Ad-Hoc
Processes . 327

Christoph Dorn, Thomas Burkhart, Dirk Werth, and
Schahram Dustdar

A Collaborative Approach to Maturing Process-Related Knowledge 343
Hans Friedrich Witschel, Bo Hu, Uwe V. Riss, Barbara Thönssen,
Roman Brun, Andreas Martin, and Knut Hinkelmann

Author Index . 359

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 1–4, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Next Decade of BPM

Phil Gilbert

IBM Corporation, Austin, Texas
pgilbert@us.ibm.com

Abstract. Business process management has been around for 20+ years. It can
generally be described as having two distinct eras so far: in the 1990’s BPM
was led by process experts inside the business who transformed the focus from
big-bang quality improvement initiatives (BPR-style) toward a focus on opera-
tional measurement and continuous improvement; in the 2000’s BPM shifted
to an IT-led competency, centering on the role technology played in process
understanding and improvement. In 2010, BPM is still the province of experts
from the business and IT. What’s next? Two key changes will occur by 2020.
First, notions of process will change from today’s workflow-centric depictions
to a more business-focused view of operations, transparency and measurement.
Second, as we move from middleware-dependent systems into cloud-based
software, BPM participation will spread throughout the organization, disinter-
mediating the “experts,” enabling entire cultures based on change and business
improvement.

Keywords: BPM, governance, cloud, middleware, BPR, transparency, decen-
tralization, measurement, globalization, process.

BPM Is Not About Process

Many people attribute modern notions of process, leading up to today’s business
process management, to W. Edwards Deming and, to a lesser degree, George E. P.
Box.1 Deming is rightly credited with simplifying Walter A. Shewhart’s work at Bell
Laboratories into the Plan-Do-Check-Act cycle. There’s no question that this notion
of “continuous improvement” is dominant in today’s discussions around BPM.

But for me the father of modern BPM is Alfred P. Sloan He invented the concepts
of modern corporate organization in the 1920’s at General Motors, and he was,
somewhat ironically, a force for decentralization and transparency. Like Warren
Buffett today, Sloan realized the best people to operate the business weren’t the cen-
tralized executives at headquarters, but rather were the business people who knew the
business, locally and intimately. He wasn’t blind to the operational details, however.
Sloan’s genius was figuring out the set of detailed metrics his business units gathered,
a level of operational transparency unprecedented in industry, and analyzing them in

1 See, for example, venture capitalist J. William Gurley, Pay Attention To BPM,
http://news.cnet.com/Pay-attention-to-BPM/
2010-1071_3-994310.html

2 P. Gilbert

the proper context. Decentralized operations, transparency into those operations, and
centralized measurement and analysis.

As a young man he was an entrepreneur; he knew the operations of business. In
middle years he was the leader of a large and growing enterprise; and he navigated
these often turbulent times (early ‘20’s; the Great Depression) by relentlessly focusing
on the operational metrics combined with the financial results the company
achieved – he married operational data (like production capacity and defects) with the
business data (inventories, sell-through rates); he was always looking at the numbers
and making adjustments to the business model. And to me his lasting legacy, even
more than General Motors, is the best book on business yet written, My Years With
General Motors.2 It is here you really get to see how he thought, as he walks you
through the data.

As we think about the future of business process management, we need to keep fo-
cused on the value this philosophy provides the business – the unique value – and
make sure that our work drives toward unleashing that value. There are only two
views that interest business people, the past and the future. Financial statements do a
great job looking back; BPM is the technology that gives us a look into the future.

BPM should not be primarily about “process;” it should be about giving us a flash-
light into the future. Light that is derived from a unique focus on operations, trans-
parency and measurement. Process is only interesting because it gives us a way to
represent business operations in a structured way. Process is the prism through which
we can view operations in a structured way. For example, using this prism, I can now
compare the operational qualities of, say, bank account opening vs. loan processing.
If one group meets customer expectations (represented as SLAs) and another doesn’t,
I know where to focus my management time.

The goal isn’t great process… the goal is great business outcomes! Process helps
us structure the data so we can act on it. So BPM isn’t about process so much as it is
about using process as a proxy to unearth the operational plusses and minuses of your
business.

Using BPM we can see the future and react to it. The better the BPM in your com-
pany, the better you can see the future. And the better you can see the future, the
easier it is to be great.

BPM Is Not About Experts

Resolved: Kill the “BPM Centers of Excellence!”
Imagine if I were to suggest “we don’t need an informed citizenry to run a country,

we only need a few informed people.” I am pretty sure you wouldn’t agree with me. I
hope you wouldn’t agree with me. In fact, this type of system has been tried (think
“five year plans!” and, no, I’m not talking about ERP installations…)

I’ve talked about how BPM is actually about the combination of operations, trans-
parency and measurement, which when done well results in a flashlight on the future.
If so, then wouldn’t the very best BPM come about as a result of everyone in opera-
tions participating in the conversation; being transparent or, more to the point, visible?

2 Sloan, Alfred P (1964). My Years at General Motors. New York: Doubleday.

 The Next Decade of BPM 3

What if we could create entire populations at ease with change and familiar with
this structured transparency? What if the goal of your BPM program were to em-
power everyone to participate instead of drawing and simulating process diagrams
and models? That is, focus on the decentralization of actions and transparency as the
end game. Which do you think would take longer: changing your culture or automat-
ing a given process? Which would have the largest impact?

In his 1999 book Business @ the Speed of Thought, Bill Gates said “[w]e always
overestimate the change that will occur in the next two years and underestimate the
change that will occur in the next ten.” Why is this? Because real change rarely has
to do with tools or even with creating a super class of experts using new tooling. Real
change can only occur when culture shifts to reflect the possibilities of the new tech-
nologies. And changing culture takes time.

From 2000-2010, BPM’s second decade began the exploration of creating tooling
for real business people. Indeed, the defining, interesting attribute of BPM was the
notion that business could regain control over its digital assets only if it participated
directly in the definition, design, use and measurement of those assets. And so tool-
ing began to be created on the backbone of standards emanating from the web revolu-
tion of the 1990’s. Because this tooling could stand on the shoulders of IT-centric
advances and standardized interfaces, vendors could concentrate on ease-of-use.

Strides were made but progress was insufficient for large-scale change. Today,
most BPM “platforms” support only a few of a company’s processes, even as many
processes are presented as candidates for BPM, the number of qualified people and
the ability to scale the platforms is in question. This isn’t a result of inability of the
platforms to scale, but the inability of organizations to scale yet another middleware
platform.

Middleware itself is part of the bottleneck.
The other bottleneck is in our own failures of imagination. Because the history of

computerized technology is one of leverage, we don’t have the right mental model for
creating the scale it takes to get everyone involved. Up until now, enterprise technol-
ogy has been about scaling the very smart technologists by leveraging the technology
they write. But the “new scale” is about inverting that pyramid, delivering software
easy enough for the masses to use to communicate with, to be transparent with.

We have to make BPM scale not via the leverage of experts, but rather via the lev-
erage of the masses.

To wit: Kill the centers of excellence; extol the hoi polloi!
We need to work on scaling the knowledge and ability to participate in business

improvement conversations, not on scaling more technology and not solely on devel-
oping more experts and automating more processes.

In order to capture the possibilities of BPM, we have to create cultures of people
who embrace change, who take control of the digital assets at their command, while
still maintaining transparency into those activities and control over those assets. It’s
the assets that should be controlled; it’s the actions on those assets that should be
measure.

Software today can be delivered to these masses. In order to get to them in cost ef-
fective ways it imperative that we move to cloud-based, browser-based platforms.
This will, in and of itself, require a cultural change.

4 P. Gilbert

BPM is not about experts. It’s about decentralization of operations, combined with
transparency and accountability (or measurement). This is the best way for global
organizations to continue to grow. Let’s focus on enabling this shift.

This Keynote Address

Reflecting on the twin pillars of business empowerment and transparency, I’ll discuss
how BPM is uniquely positioned to deliver the next great wave of value to compa-
nies; how the future can be seen not two seconds ahead of time, but weeks and
months ahead of time.

In the next decade, the final maturation of BPM will be seen, leading to its becom-
ing the dominant management paradigm for the next half century. But in order for
this to happen, we need to change cultures globally.

I’ll give examples of real companies who are managing their future using BPM,
and who have created cultures of thousands who embrace structured change around
the world.

BPM in Cloud Architectures: Business Process

Management with SLAs and Events

Vinod Muthusamy and Hans-Arno Jacobsen

University of Toronto

1 Introduction

Applications are becoming increasingly distributed and loosely coupled in terms
of their development processes, software architectures, deployment platforms,
and other aspects. For example, in Web mashups [12,13], utility or cloud comput-
ing environments [2,3], and service-oriented architectures (SOA) [4,10] applica-
tions are developed by orchestrating reusable services using high level workflows
or business processes. Application developers, however, must navigate a complex
ecosystem that includes the services they depend on, the execution platforms of
their applications and services, and the users of these applications, none of which
they have much control over.

Business process management (BPM) practices address complexity in such
environments with systematic development processes [1]. However, the develop-
ment, administration and maintenance of a business process still requires much
manual effort that can be automated. For example, non-functional goals, often
expressed as Service Level Agreements (SLA) [7,11] defining a contract between
a service provider and consumer, are specified during an early design stage but
may need to be manually considered at each subsequent stage of development.

We present an SLA-driven approach to BPM for service-oriented applications
in environments such as cloud computing platforms. The approach employs two
key ideas: formally specified SLAs of applications, and event processing tech-
nologies. The SLAs are used to simplify tasks such as process deployment and
monitoring, and an event paradigm is used to develop components, such as an
event-based distributed process execution engine, that can exploit the charac-
teristics of such distributed environments. These ideas complement one another
in that the goals specified in the SLA can be used to automatically monitor the
relevant parts of a process’s execution in a loosely-coupled manner, or optimize
the deployment of the process at runtime.

2 System Model and Architecture

Consider a typical SOA development cycle illustrated in Fig. 1 consisting of
modelling, development, execution, and monitoring stages. Each stage differs in
the level of abstraction considered and is performed by the indicated roles, each
of whom have varying expertise and concerns.

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 5–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

6 V. Muthusamy and H.-A. Jacobsen

Business analyst

Architect, developer

Administrator

Analyst, architect, administrator

Model

Services

Events

Modelling

Development

Execution

Monitoring

Fig. 1. Development cycle

SLA Model: We make no major changes to
the common development process outlined in
Fig. 1 other than requiring a precise definition
of the SLA requirements during the modelling
stage. The details of our SLA model, which
is designed to simplify the authoring of com-
plex SLAs by composing and configuring exist-
ing SLA artifacts, is detailed in [5]. Capturing
the SLAs early in a formal model has a number
of benefits. For example, SLAs at the modelling
stage can be mapped to lower level requirements
on the services developed and resources provi-
sioned, and translated to metrics that need to
be monitored to observe SLAs violations. Fur-
thermore, to ensure SLAs are satisfied, several
runtime adaptations can be performed such as
those discussed in Sec. 3.

Table 1. Cost model
components

Component Notation
Distribution cost Cdist

Message rate Cd1
Message size Cd2
Message latency Cd3
Engine cost Ceng

Load Ce1
Resources Ce2
Task complexity Ce3
Service cost Cserv

Service latency Cs1
Service execution Cs2
Marshalling Cs3

Cost Model: Portions of the SLA are mapped to a
cost model that captures various relevant factors.
Some of these cost factors are shown in Table 1
grouped into cost components, such as the distri-
bution cost which represents the overhead of dis-
tributing a process into fine-grained activities, the
engine cost which captures the resource usage of
an activity on the engine it is executing on, and
the service cost which relates to the expense of
calling external services.

A cost function based on a combination of
cost components can flexibly express a variety of
goals. The cost function specifies that an arbitrary
weighting of the cost components should either
meet a threshold or be minimized. In the former case, the process is adapted
only when the threshold is violated, while in the latter, process adaptation oc-
curs whenever a more optimal placement is found. For example, a cost function
can constrain process response times to three seconds, or minimize the network
traffic overhead of a process.

Distributed Process Execution: Business process execution engines are typically
centralized systems in which one node is provisioned to execute and manage
all instances of one or more business processes. To address scalability, the cen-
tralized engine can be replicated and the process instances balanced among the
replicas. We take a fundamentally different architectural approach whereby even
individual process instances are executed in a distributed manner.

Our distributed execution engine decomposes a process, such as a BPEL
process, into its individual activities and deploys these activities to any set of

BPM in Cloud Architectures: Business Process Management 7

execution engines in the system. These activities then coordinate by emitting
and consuming events over the PADRES1 distributed publish/subscribe plat-
form. For example, an activity that only executes after two other activities fin-
ish would subscribe to the composite event that indicates that both dependent
activities have completed. Further details on how a BPEL process is mapped
into this event-driven engine is presented in [8].

The execution engines in this architecture can be light-weight as they only
execute fine-grained tasks, as opposed to complete processes. Another benefit
of such an architecture is the ability to deploy portions of processes close to
the data they operate on, thereby minimizing bandwidth and latency costs of
a process. For example, for data intensive business processes, it is possible to
deploy only those portions of the process that require access to large data sets
close to their respective data sources. Different parts of the process that operate
on different data sets can be independently deployed near their respective data
sources. This is not possible in a clustered architecture since the entire process
instance must be executed by a single engine.

Execution Engine: The internal components of an execution engine are presented
in Fig. 2. Each engine is autonomous in deciding whether an activity should be
redeployed to another engine. These decisions are based on the cost function
associated with the process. Notably, there is no centralized component that is
used to gather statistics, or to make activity placement decisions.

Execution Engine

Atomic Redeployer

Candidate Engine
Discovery

Messaging

Activity Manager

Tasks

Activity Profiler Engine Profiler

La
te

nc
y

Ba
nd

w
id

th

En
gi

ne
 R

es
ou

rc
e

Redeployment
Manager

SLAs, cost models

Estimators

Ranking algorithms

Instance states

Input, output queues

Fig. 2. Distributed execution engine

The distributed exe-
cution engine shown in
Fig. 2 consists of a core
Activity Manager that
provides support ser-
vices for the activities to
collaborate among one
another to execute a
particular business pro-
cess [8]. A Candidate
Engine Discovery com-
ponent is used to find
other execution engines
in the system [14], and
these candidates are periodically probed by the Engine Profiler to gather vari-
ous statistics. The Redeployment Manager computes the cost function for each
activity executing in the engine, and determines if a more optimal placement of
the activity is available among the known candidate engines. Finally, activities
that are to be moved are redeployed using the Atomic Redeployer component
which is responsible for ensuring that the movement of the activity does not
affect the execution of the process [6].

1 Available for download at at http://padres.msrg.org

8 V. Muthusamy and H.-A. Jacobsen

Redeployment Manager: The Redeployment Manager maintains for each activity
ai the engine is currently hosting, the cost function f(ai) associated with the
activity, a running average of the cost c(ai, ej) imposed by the activity were
it hosted by engine ej , and the engines where activity ai’s predecessors and
successors are hosted. For convenience, the cost of deploying ai at the current
engine is denoted as c(ai).

The running average of the cost c(ai, ej) of an activity is computed and main-
tained based on information from various profilers. An update of the cost c(ai, ej)
may reveal a better placement for activity ai. For example, if the cost function
is to be minimized, the algorithm finds the engine emin ∈ E such that c(ai, ei)
is minimized across all ei ∈ E where E is the set of known candidate engines.
Activity ai is then moved to engine emin. On the other hand, if the cost function
associated with activity ai is a threshold function, a check is made to see if the
accumulated cost c(ai) exceeds the threshold. If the cost is still within the thresh-
old, nothing further is done. Otherwise, the system finds the engine emin that
results in min

ei∈E
c(ai, ei), and redeploys activity ai to engine emin. Now it may be

that c(ai, emin) still exceeds the cost function threshold, in which case the pre-
decessors of activity ai are asked to redeploy themselves. This “back pressure”
by activities to force a redeployment of their predecessors will occur repeatedly
as long as the optimal placement of the activity is not sufficient to satisfy the
cost function threshold. The redeployment procedure is further discussed in [9].

3 Benefits

D E F

p q
B

C
A I

G

H

XFixed activities:

Initial branch probabilities:
p = 0.9, q = 0.1

Fig. 3. Evaluated process

Runtime Redeployment: We
present a sample of the ben-
efits of the SLA-driven dis-
tributed process execution
architecture. The process con-
sisting of nine activities whose
dependencies are depicted in Fig. 3 is deployed in a network of nine execution
engines, with each engine running on a machine with a 1.6 GHz Xeon proces-
sor and 4 GB of memory. The execution engines utilize an overlay of PADRES
publish/subscribe brokers communicating over a 1 Gbps switch.

To simplify the experiment, activities D and F , as indicated in Fig. 3, are
fixed to the initial engine they are deployed on, but the remaining activities can
move. The process is invoked every second, and each process instance traverses
the process graph according to the branch probabilities p and q as indicated in
the figure. Notice that the 90% probability with which activity E transitions to
activity D (as opposed to activity F) results in a process hotspot at activities
D and E. About halfway through the experiment, the transition probabilities of
p and q are reversed, so that a hotspot now occurs at activities E and F .

Fig. 4(a) presents the message overhead of executing the process in Fig. 3
under the case where activities remain in their initial deployment with each
activity assigned to a different execution engine. The graph plots the number

BPM in Cloud Architectures: Business Process Management 9

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180 200

M
es

sa
ge

s

Process instance

cost per instance
running average

(a) Static deployment

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

M
es

sa
ge

s

Process instance

cost per instance
running average

(b) Dynamic deployment

Fig. 4. Message traffic for process in Fig. 3

of messages the engines exchange in order to coordinate the execution of each
process instance. The average overhead computed over a sliding window of ten
process instances shows that per-instance message traffic remains relatively sta-
ble at about thirty messages.

We expect, however, that due to the tight loop around activities D and E, the
message overhead can be reduced if these activities were deployed on the same
engine. Indeed, when a cost function to minimize the message traffic is applied
to the process, the system reconfigures itself by moving activities A, B, C, and
E to the same engine as activity D, and by redeploying activities G, H , and I to
the engine where F resides. Fig. 4(b) shows that it takes about thirty seconds for
the respective execution engines to determine the more optimal deployment and
complete the movement of activities. Under the new deployment, the message
traffic is only about 10% of the static case. After about 100 instances, the process
traversal patterns are changed by swapping the initial branch probabilities p and
q. This causes a momentary increase in the traffic overhead before the system
again stabilizes in about thirty seconds by this time placing activity E together
with activity F .

In more complex systems with multiple large processes and continuously
changing process execution patterns and environmental conditions, it becomes
increasingly infeasible to find an optimal static deployment, and the dynamic
SLA-driven execution engine becomes more critical to ensure that the process
SLA targets are achieved.

Automated Monitoring: A precisely specified SLA can be used to automati-
cally instrument the process and generate monitoring code to detect SLA vi-
olations [5]. The monitoring subsystem is also event-driven and consumes the
events emitted by the activities in our distributed process execution engine. This
loose coupling allows the monitoring components to be deployed independently
of the process, and can take advantage of the event processing optimizations of
the underlying publish/subscribe system [8].

Furthermore, it turns out that the monitoring of a process can itself be mod-
elled as a distributed process, thereby enabling the runtime process deployment
optimizations above to be applied to the monitoring process as well [9]. For ex-
ample, an SLA can be applied to the monitoring of the SLA to minimize the

10 V. Muthusamy and H.-A. Jacobsen

network overhead of monitoring, or to optimize the monitoring latency in order
to detect SLA violations quickly.

Service Selection: The external services composed by an application can have
significant effect on the execution of the application. In cases where there are
a number of interchangeable external services that a process may use, such as
a credit verification or weather reporting service, resource discovery techniques
can be used to find the service instance that helps achieve the SLA, whether it
be a low latency, high throughput, or cheap service instance [14].

4 Summary and Conclusions

BPM in cloud architectures give rise to challenging issues that stem, in part, from
the conflicting demands of application developers seeking simplicity and flexibil-
ity, administrators focused on reducing costs, and users demanding performance.
An event-based runtime architecture, coupled with formal SLA models, can ad-
dress some of these challenges and afford a number of benefits to the end-to-end
development of business processes including efficient resource utilization, dynamic
process deployment, automated monitoring, and intelligent resource discovery.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: Business Process Management (2003)

2. Amazon Web Services, http://aws.amazon.com
3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,

Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A
Berkeley view of cloud computing. Tech. rep., Univ. of California, Berkeley (2009)

4. Channabasavaiah, K., Holley, K., Tuggle Jr., E.M.: Migrating to a service-oriented
architecture. IBM developerWorks Technical Library (2003)

5. Chau, T., Muthusamy, V., Jacobsen, H.A., Litani, E., Chan, A., Coulthard, P.:
Automating SLA modeling. In: CASCON, Toronto, Canada (2008)

6. Hu, S., Muthusamy, V., Li, G., Jacobsen, H.A.: Transactional mobility in dis-
tributed content-based publish/subscribe systems. In: ICDCS (2009)

7. IBM: Web service level agreements (WSLA) project,
http://www.research.ibm.com/wsla/

8. Li, G., Muthusamy, V., Jacobsen, H.A.: A distributed service-oriented architecture
for business process execution. ACM Trans. Web 4(1) (2010)

9. Muthusamy, V., Jacobsen, H.A., Chau, T., Chan, A., Coulthard, P.: SLA-driven
business process management in SOA. In: CASCON, Toronto, Canada (2009)

10. Natis, Y.V.: Service-oriented architecture scenario. (April 2003),
http://www.gartner.com/DisplayDocument?doc_cd=114358

11. Paschke, A., Schnappinger-Gerull, E.: A categorization scheme for SLA metrics.
In: Service Oriented Electronic Commerce (2006)

12. Wang, H.J., Fan, X., Howell, J., Jackson, C.: Protection and communication ab-
stractions for Web browsers in MashupOS. In: SOSP (2007)

13. Yahoo Pipes, http://pipes.yahoo.com
14. Yan, W., Hu, S., Muthusamy, V., Jacobsen, H.A., Zha, L.: Efficient event-based

resource discovery. In: DEBS (2009)

Warning: Don’t Assume Your Business

Processes Use Master Data

Clay Richardson

Forrester Research
crichardson@forrester.com

Outline

It’s an age old question: Which came first: data or process? — When this ques-
tion is presented to IT professionals, the answer depends heavily on each person’s
individual perspective and role within IT. Ask most business process profession-
als, and the immediate response is: “Without process, data does not exist.” Ask
data management professionals, and the immediate response is: “Without data,
processes can’t execute.”

In recent research, Forrester tackled this vexing question and concluded that
process and data are of course inseparable. Unfortunately, most business pro-
cess professionals, data management professionals, and vendors we interviewed
couldn’t see the forest for the trees. In our 2009 MDM & BPM Survey, only 11%
of respondents indicated that their MDM and BPM initiatives shared the same
cost center and that team members work together on a daily basis to develop
solutions for the business.

In many ways, master data management (MDM) and business process man-
agement (BPM) represent two different sides of the same coin when it comes to
business optimization and transformation. So, why is there such little collabora-
tion and interaction between business process and data management profession-
als? Here are some of key findings our research uncovered:

– Business process professionals assume process-related data is trustworthy.
While most process improvement initiatives pay lip service to data quality,
only a small handful take data seriously and incorporate data modeling and
data mapping into upfront discovery efforts. BPM teams typically focus on
process first and user experience second, while data becomes an afterthought.
Process improvement teams rarely ask whether data is clean until it’s too
late in the project.

– Data management professionals value clean data over process context. “If we
create clean data, then they will come” is often the mantra of data man-
agement professionals. However, many executives still struggle to quantify
the value of on-going data quality initiatives, with some executives going
as far to ask: “Why are we spending so much money on something when
we can’t articulate its business impact?” In other words, data management
professionals often fail to provide cross-enterprise context for MDM.

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 11–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

12 C. Richardson

– BPM suite vendors offer few tools to connect process to data. Technology
vendors argue that service oriented architecture (SOA) is the silver bullet to
bridge the gap between MDM and BPM initiatives. While SOA addresses
component reuse and architecture challenges, BPM teams are provided very
few tools to model and synchronize process-related data in upfront process
discovery activities. Only a handful of BPM suite offerings provide business
glossaries and business-oriented capabilities to connect process improvement
and master data efforts.

– MDM vendors focused on data governance and stewardship only. The good
news is these MDM vendors do in fact recognize that business process plays
a major role in their success. The bad news is they are only actively ad-
dressing one side of the problem: the business processes and stewardship
roles that govern the administrative workflows within the MDM tools them-
selves. MDM vendors are not actively influencing the business processes that
consume and depend upon the master data these vendors provide.

Although business process and data management professionals may not see it,
BPM and MDM are interconnected and one initiative cannot survive for long
without the other. In this presentation, we highlight the fact that process im-
provement initiatives face a vicious cycle of deterioration and decline if master
data issues are not addressed from the outset. We also highlight how MDM ini-
tiatives face an uphill battle and certain extinction if they’re not connected to
cross-cutting business processes that feed and consume master data from differ-
ent upstream and downstream activities.

In 2009, Forrester Research highlighted the emergence of ”process data man-
agement” in a comprehensive evaluation of the maturity of different components
that make up the BPM ecosystem. This new category in the business process
landscape organically merges BPM and MDM disciplines and capabilities to
provide the enterprise with one version of ”process and data truth.”

Since outlining this new capability, Forrester has published several research
docs and presentations that scope the process data management challenge, pro-
vide best practices for combining process improvement and data management
initiatives, and present case studies highlighting teams that have successfully
integrated these two critical disciplines.

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 13–28, 2010.
© Springer-Verlag Berlin Heidelberg 2010

IT Requirements of Business Process Management in
Practice – An Empirical Study

Susanne Patig, Vanessa Casanova-Brito, and Barbara Vögeli

University of Bern, Institute of Business Information Systems,
Engehaldenstrasse 8, CH-3012 Bern, Switzerland

{Susanne.Patig,Vanessa.Casanova-Brito,
Barbara.Voegeli}@iwi.unibe.ch

Abstract. Substantial use of dedicated software characterizes the highest level
of Business Process Management (BPM) maturity. Currently, companies are far
below this level. This situation is due to the fact that the existing BPM tools
don’t satisfy key requirements of BPM. We have conducted a worldwide survey
of major public companies to elicit these requirements, which are grounded in
the nature of processes and the usage of software. The analysis of 130 responses
indicates that human-oriented process modeling languages and BPM tools
as well as BPM tools with software integration capabilities are most urgently
required.

Keywords: Adoption and Practice of BPM, Business Process Modeling, BPM
maturity, Empirical Study.

1 Introduction

Business process management (BPM) deals with the design, administration, configu-
ration, enactment and analysis of business processes [20]. Business processes are sets
of linked activities or tasks that collectively realize a business objective or policy goal
within the context of an organizational structure [22]. For brevity, we omit the term
‘business’ in the following and just speak about ‘processes’ wherever appropriate.

Older [15] and recent [23] empirical studies indicate that more and more compa-
nies adopt BPM to, e.g., improve customer satisfaction or reduce costs. However,
empirical investigations also show that the level of BPM capabilities in the compa-
nies, i.e., the respective BPM maturity, is rather low. Typical BPM maturity levels1
are [23], [10]:

• Level 1: No processes are defined, and the organization is functional.
• Level 2: The core and most commonly used processes are defined, and the repre-

sentatives from functional areas meet regularly to coordinate with each other.
• Level 3: All processes are defined; BPM is employed with strategic intent; proc-

ess-oriented organization (e.g., chief process officers (CPO) or central BPM
teams) exist outside the functional organization to gather process data and opti-
mize processes.

1 For a history of distinct BPM maturity models and an alternative approach see [16].

14 S. Patig, V. Casanova-Brito, and B. Vögeli

• Level 4: The coordination within the company and with its vendors and suppliers
is process-oriented. The functional organization structure is subordinate to the
process structure. Process performance measures and BPM software are ex-
tensively used.

Empirical evidence suggests that most companies in the USA and Europe are on BPM
maturity Level 2 or between Level 2 and Level 3 [23], [10]. Level 4, which relies on
the broad use of dedicated software, isn’t reached yet. As a hypothesis, we attribute
this situation to the fact that current software systems do not sufficiently satisfy the
requirements of BPM. The (exploratory) research goal of our work is to elicit these
requirements that must be met by tools that support BPM.

The term BPM tool denotes any software that can be used to manage business
processes. According to the definition of BPM, a BPM tool must at least enable the
description of processes (as explicit knowledge about processes is a prerequisite to
their administration, configuration and enactment). We allow both modeling lan-
guages and text or tables for process descriptions (see Section 3.2). More progressive
BPM tools support the execution of workflows, which are the computerized automa-
tion of business processes [21]. Thus, for the purpose of our requirements gathering,
BPM tools comprise text processing systems, simple graphics tools, repository-based
modeling tools as well as workflow engines. BPM suites/systems (i.e., TIBCO iProc-
ess Suite2) combine several of the listed software categories [23].

The existing empirical investigations of BPM, which are summarized in Section 2,
do not reveal in detail what companies expect from software that supports BPM. For
that reason we have conducted a worldwide survey of major public companies and
obtained 130 responses. The procedure and the results can be found in Section 3.
Section 4 discusses our findings, relates them to the findings of other investigations
and comments on their validity. Section 5 concludes our work and gives some
outlook.

2 Related Work

During the last years, several empirical studies in the field of BPM have been pub-
lished. This section classifies them (see Table 1). The main classification criteria are
the focus of the study (management, BPM tools, process modeling languages), the
object of research (company assessments, experts, BPM tools, business processes,
process models) and the research method (cases, surveys, samples and a Delphi
study). We assume studies that were conducted by vendors of BPM suites to be biased
and, thus, exclude them here.

The oldest empirical study stems from 1999 and explores the importance, under-
standing and realization of business process management in European companies [15].
It focuses on the drivers and benefits of BPM as well as the degree of BPM imple-
mentation at that time; BPM tools were not considered.

Ten years later, based on assessments of hundreds of companies in the USA,
Europe, China and Brazil, the key turning points in business process maturity were

2 All names of products and services are trademarks, service marks or registered trademarks of

the respective companies – even if not explicitly stated.

 IT Requirements of Business Process Management in Practice – An Empirical Study 15

identified [10]: Process documentation, knowing the customer and endorsing team-
work are important at the BPM maturity Level 2. Process measurement and a process
language (in the sense of corporation-wide process terms) are important to reach the
BPM maturity Level 3. Finally, process-oriented jobs and the support by BPM tools
are needed for the transition to the BPM maturity Level 4. Details about BPM lan-
guages or tools were not reported.

As BPM tools are important to reach higher levels or BPM maturity, some investi-
gations (e.g., [11], [23]) combine questions on managerial issues of BPM and BPM
tools: The study “Status Quo of BPM” [11] asked 185 companies from Germany,
Austria and Switzerland (mainly IT-driven branches) about the alignment between
BPM and business strategy, about process management methods, the organization of
BPM and the role of IT. It showed that mainly proprietary systems and Enterprise
Resource Planning (ERP) systems influence the companies’ business processes; BPM
suites are less important. If companies use a BPM suite, they mostly apply process
modeling and process publication. Altogether, the tool-related questions are poorly
reported, which affects their reliability.

The report “State of Business Process Management 2010” [23] focuses on the un-
derstanding of BPM in companies, the BPM drivers, spending, standardization and
training. Only three questions deal with BPM tools and services: They show that
companies mainly rely on simple graphics as well as repository-based modeling tools;
only 26% use a BPM suite. The dominant BPM suite is IBM WebSphere BPM.

Most tool-related studies [18], [7], [12] deal with tool evaluation, i.e., they propose
a set of criteria and calculate some quantitative measure that rates some BPM tool
with respect to these criteria. Usually, the origin or distribution of the tools is not
considered (‘anywhere’ in Table 1). Beside such evaluations, cases of implementing
business processes with BPM tools have been reported in conjunction with the
realized benefits and the encountered challenges [8]. Finally, tools supporting the
Business Process Modeling Notation (BPMN) [13] were investigated [17]: Among
modelers from practice and academia, simple graphics tools (Microsoft Visio) are
widespread, followed by repository-based modeling tools. These tools and the BPMN
are mainly (51%) used to document processes and to support business process reengi-
neering (BPR), but also for process simulation and workflow engineering. The most
appreciated functionalities of the BPMN tools are navigation between process models,
integrated repository and additional fields for attributes.

Empirical studies related to process modeling languages either concentrate on the
BPMN [24], [25] or are language-neutral [4], [5]. For BPMN, two sets of sample
processes have been analyzed to find out which BPMN constructs are really used in
practice [24], [25]. The language-neutral investigations questioned experts from prac-
tice, academia and tool vendors on the benefits, issues and challenges of business
process modeling. Process improvement, understanding and communication emerged
as overall (across all three stakeholder groups) benefits of process modeling [4],
whereas standardization, the value proposition of process modeling to business
and model-driven process execution are currently seen as main overall issues and
challenges [5].

Table 1 summarizes the studies just mentioned. None of them provides detailed in-
formation of the requirements of BPM that must be satisfied by BPM tools. These
requirements mainly depend on the nature of processes and the kind of IT support

16 S. Patig, V. Casanova-Brito, and B. Vögeli

aimed for. We investigated both aspects. The design and results of our investigation
are described in the next section.

Table 1. Summary of relevant empirical studies in the field of BPM

Ref. Year Focus

Type Method Object
(Number)

Distribution
of Objects

Findings

[15] 1999 Management QN Survey,
Cases

EP (92) Europe BPM drivers,
benefits, realization

[10] 2009 Management QN Cases CA (hun-
dreds)

USA, China,
Europe, Brazil

Turning points in
business process
maturity

[11] 2009 Management
(Tools)

QN Survey E [P] (185) Austria,
Germany,
Switzerland

Alignment, BPM
methods & organiz-
ation, tools used

[23] 2010 Management
(Tools)

QN Survey E [P] (264) Worldwide Understanding of
BPM, BPM spend-
ing, tools used

[8] 2007 Tools
(Manage-
ment)

QL Cases P (4) Switzerland Benefits and
challenges of BPM
implementation

[18] 2008 Tools QN/
QL

Cases T (41) Anywhere Approach for tool
evaluation

[7] 2006 Tools QN Cases T (4) Anywhere Approach for tool
evaluation

[12]¡ 2006 Tools
(Languages)

QN Cases T (7) Anywhere Approach for tool
evaluation

[17] 2008 BPMN Tools QN Survey E (590) Worldwide Use of BPMN in
practice

[4],
[5]

2009 Languages QN Delphi
Study

E [P/A/T]
(62)

(Worldwide) Benefits, issues
and challenges of
BP modeling

[25] 2008 Language
(BPMN)

QN Sample PM (120) not stated Usage rates of
BPMN constructs

[24] 2007 Language
(BPMN)

QN Cases PM (19) USA Usage of BPMN
constructs

Abbreviations: CA: Company assessments, E [P/A/T] – Experts from Practice/Academia/ Ven-
dors, P: Process, PM: Process models, QL: Qualitative, QN: Quantitative, T: Tools.

3 Empirical Investigation on the Requirements of Business
Process Management

3.1 Method

Participants: The basic population for our investigation consisted of the companies
from the list “Forbes Global 2000” [2]. This list is an annual ranking of the top 2,000
public companies in the world based on sales, profit, assets and market value. As we
focus on IT support for BPM, ‘e-readiness’ is required. E-Readiness describes the

 IT Requirements of Business Process Management in Practice – An Empirical Study 17

ability of a country and its businesses to use information and communication technol-
ogy to their benefits [1]. The ‘e-readiness’ of 70 countries is yearly assessed on a
scale between 1 (lowest) and 10 [1]. We used the e-readiness rating of the year 2008,
where the average e-readiness score amounted to 6.4. All companies that are head-
quartered in countries with below-average e-readiness were removed from the list
“Forbes Global 2000”. From the remaining 1,680 companies, we draw a sample of
1,172 companies (by random numbers), which were contacted as described below.

Table 2. Numbers of Responses per Country

Countries Responses
(Listing according to equal count of responses) Per country Total

United States 17 17

Switzerland 15 15

Germany; Japan 11 22

UK; Canada 9 18

Australia; France; Spain 5 15

Hong Kong; Italy; Portugal; Sweden; Taiwan 4 20

Austria; Belgium 3 6

Netherlands; Singapore; Greece; Denmark; Ireland; Korea; Norway 2 14

New Zealand; Luxemburg; Iceland 1 3

Sum 130

In total, N = 130 companies responded; so, the response rate was 11%. Some ques-
tions were not answered by all companies; the resulting missing values are stated as
‘na’ in this paper. By their headquarters, European companies account for the major-
ity (58%) of responses, followed by companies from North America (20%), Asia
(18%) and Oceania (5%). The numbers of responses per country are given in Table 2.
All branches were represented (see Table 3); some of the companies operate in more
than one branch. Most responses came from the banking sector (19%), followed by
utilities (8%), transportation and insurance (7% in each case) as well as oil & gas, and
technology hardware (6% in each case).

Half of the companies’ representatives who answered the questionnaire work in IT
departments (53%); other affiliations are departments for BPM (22.9%) or for com-
pany organization (13.3%), functional areas (9.6%) and product divisions (1.2%). In
addition to knowledge about the processes of their own departments (29.4%), the
participants stated to also know the processes of other departments (23.9%) or even
have a company-wide picture (46.7%) of the processes.

Materials: The questionnaire consisted of 42 questions that were grouped in the sev-
eral sections dealing with BPM (current status, tools), processes (characteristics,
change, statistics), process modeling (procedure, languages) and socio-demographic
information. Because of space limitations, we concentrate here on the questions re-
lated to IT-support for BPM; the results concerning process modeling are discussed in
another paper.

18 S. Patig, V. Casanova-Brito, and B. Vögeli

Table 3. Numbers of Responses per Branch (multiple answers)

Branches Responses
(Listing according to equal count of responses) Per branch Total
Banking 30 30
Utilities 10 10

Insurance; Transportation 9 18

Oil & Gas Operations; Technology Hardware & Equipment 8 16

Diversified Financials; Materials 7 14

Capital Goods; Retailing 6 12

Chemicals; Software & Services; Telecommunications Service 5 15

Consumer Durables; Food, Drink & Tobacco;
Hotels, Restaurants & Leisure; Media; Semiconductors

4 20

Business Services & Supplies; Construction; Trading Companies
Drugs & Biotechnology; Household & Personal Products

3 12

Health Care Equipment & Services; Conglomerates 1 2

All 42 questions of the questionnaire were partially open-ended, i.e., they provided

a list with alternatives and an alternative ‘other’ to enter free text for unanticipated
answers. Some questions were optional. The data was collected on nominal scale
(participants were asked to select all alternatives that apply) or on ordinal scale (parti-
cipants were asked to make a ranking or to rate some alternative). Except for question
Q19 (see Table 11 in Section 3.2), equal ratings were allowed. All rating scales had
four levels (to avoid neutral answers) and an additional level (e.g., ‘Don’t know’, ‘Not
applicable’, ’Not needed’, ‘None’) to avoid forced ratings [6]. The resulting total
number of five rating levels is generally reckoned optimal since the ability to differen-
tiate between ratings decreases with an increasing number of rating levels [6].

The questionnaire also contained explanations of key terms that were used in the
questions. All material was written in English and implemented as an online form
with the tool ‘Limesurvey’ [9]. To contact the companies, we sent letters by surface
mail containing the link to the online form and explaining the goals and importance of
our investigation. These letters were written in English, German, Spanish and Japa-
nese – depending on the location of the company’s headquarter - to increase the un-
derstanding of our research.

Procedure: We conducted a pretest of the questionnaire with 10 BPM experts from
practice and academia to check the questions for understandability and clarity; after-
wards, the questionnaire was revised. As little is known about the internal organization
of BPM in a company, we sent the letters with the link to the revised questionnaire to
the CIOs or CEOs of the sampled companies and asked them to forward the letters to
the persons responsible for BPM. After four to six weeks, we phoned the offices of the
CIOs or CEOs to inquire after the status of our information request. After six to eight
week we sent reminder letters by surface mail.

In total, the survey was carried out from January to December 2009. No incentives
were given; the companies were only offered to obtain the results of the investigation
free of charge. Some of these results can be found in the next section.

 IT Requirements of Business Process Management in Practice – An Empirical Study 19

3.2 Results

Reporting of the results: In the following, we denote the questions on ordinal scale by
the superscript ‘*’; all other questions are on nominal scale. As our questions on
nominal scale (‘choose all alternatives that apply …’) usually allow more than one
answer, the sum of counts usually exceeds the number N of companies’ responses. In
the tables, the column ‘percentage’ always relates the count ci of each alternative to
the sum Σci of counts of all alternatives, whereas the column ‘percentage of re-
sponses’ relates the count ci of an alternative to the number N of responses (N ≤ 130,
depending on the number na of missing values). To save space, some nominal ques-
tions are reported by text only, where we give the count for each alternative answer
followed (after a slash) by the percentage of responses. The alternative with the abso-
lute highest count (absolute frequency) represents the mode [3].

Processes: First, our investigation gathered information about the nature of the man-
aged processes. In addition to process statistics (see Table 4), we inquired about the
scope (Q6) of processes (N=128, na=2), their organizational distribution (Q7*), aver-
age run time (Q8*) and execution frequency (Q9*) as well as about process change
(Q10, Q11).

Table 4. Statistics for an average process

(Question)
Please estimate the …

Mini-
mum

Maxi-
mum

Mean Standard
Deviation

N/na

(Q1) Number of involved persons from
the same department

1 55 7.31 11.59 70/60

(Q2) Number of involved departments 1 18 3.70 2.56 73/57
(Q3) Number of other companies
involved

0 8 1.60 1.39 58/72

(Q4) Number of applications involved 1 24 4.27 4.22 69/61
(Q5) Number of tasks 3 120 19.09 20.82 60/70

Scope (Q6): By absolute frequency, most processes are related to the companies’
products (78/60.9%), immediately followed by administration (71/55.5%), customer
contact (67/ 52.3%), system integration (66/51.6%), system development (65/50.8%),
emergency procedures (33/25.8%) and other things (12/9.4%).

The questions Q7* to Q9* required the respondents to rate the portion of processes
to which an answer alternative applies on a scale providing the levels ‘all’, ‘most’,
‘some’, ‘a few’ and ‘none’. Table 5 assigns the answer alternatives of each question
to their most frequent rating; the particular counts are given in brackets.

Concerning process distribution (Q7*; see also Table 4, Q2 and Q3), most process-
es stay within the company, but span several departments; some processes involve
several persons from the same department, or they involve other companies (see also
Q3 in Table 4). Only a few processes can be accomplished by a single person (see
also Q1 in Table 4). The average run time (Q8*) of most processes is measured in
days. Some processes have an average run time that is measured in weeks, and only a

20 S. Patig, V. Casanova-Brito, and B. Vögeli

few processes run months or years. The majority of processes are executed (Q9*)
several times a day, some are executed several times per week or per month, and a
few processes are executed several times a year.

Table 5. Nature of processes according to modes

Rating Question
Most Some A few

N/na

Distribution of
processes (Q7*)

1 Company &
>1 Department

(83)

1 Department &
 >1 Person (51);

>1 Company (55)

1 Department &
1 Person (60)

130/0

Measure of average
process run time (Q8*)

In days
(54)

In weeks
(49)

In month (34);
in years (30)

87/43

Execution frequencies
of processes (Q9*)

Several times a
day (59)

Several times a week
(58) / a month (56)

Several times a
year (50)

102/28

The frequency of process changes (Q10; N=111, na=19) is low: Yearly process
changes occur in 39/35.1% of the companies. Also rare (30/27%) or quarterly
(29/26.1%) process changes are common, whereas short term process changes, i.e.,
monthly (8/7.2%) or weekly (4/3.6%), are rare. The most frequent trigger of process
change (Q11; N=130, na=0) is the evolving internal business (115/88.5%), followed
by forces from environment (92/70.8%), deviations from planned values (52/40%)
and internal disruptions (28/21.5%).

Process Description: Process documentation is a key turning point to reach the BPM
maturity Levels 2 and 3 [10]. Table 6 summarizes how the sampled companies cur-
rently document (Q12) their processes. Obviously, many companies combine text
(55.9%) and some (modeling) language (altogether 55.9%), but also tables are wide-
spread (31.5%). Among the languages, BPMN dominates, followed by the Unified
Modeling Language (UML) and Event-driven Process Chains (EPC).

Table 6. Current documentation of processes (N = 127; na = 3)

Answers Count ci Percentage (ci / Σci) Percentage responses (ci / N)
As text 71 36.2% 55.9%
As tables 40 20.4% 31.5%
As flow charts 2 1.0% 1.6%
With languages BPMN 27 13.8% 21.3%
 UML 19 9.7% 15.0%
 EPC 16 8.2% 12.6%
 BPEL 5 2.6% 3.9%
 IDEF 4 2.0% 3.1%
Other 12 6.1% 9.4%

Total (Σci) 196 100.0% 154.3%

• Organization (Q13): In 42.6% of the companies, the processes are identified and
described within the individual departments and then centrally aligned. However,

 IT Requirements of Business Process Management in Practice – An Empirical Study 21

the extreme positions – decentralized process modeling in the departments with-
out alignment (30.8%) and a central BPM team (26.6%) - also exist.

• The motives for describing processes (Q14) partially build on each other (N=130,
na=0). Ordered by decreasing frequency, they can be grouped as follows (the dif-
ference between the groups is 8 to 13 percentage points):
− Group 1: Processes are described to prepare BPR, i.e., the optimization and

reorganization of processes (92/70.8%) or to have precise guidelines (‘to-be’
processes) for the persons involved in process execution (89/68.5%).

− Group 2: Companies describe ‘as-is’ processes to document what happens
(78/60%) or to automate process execution (72/55.4%).

− Group 3: Described ‘to-be’ processes serve as targets in monitoring process
execution (58/44.6%) or to integrate software systems (57/43.8%).

− Group 4: Processes are described for ISO certification (37/28.5 %) and to se-
lect between business applications by comparing the processes these systems
support to the actual processes in the company (26/20%).

− Group 5: This group comprises less important motives to describe processes,
namely compliance (5/3.8%) and company-specific factors (8/6.2 %).

• More than half of the companies (70/58.8%) affirmed (Q15) that process models
can be found in non-BPM software they use (N=119, na=11). In detail, process
models exist within ERP software and alike (50/42%) – such as systems for HR
or CRM-, integration software (39/32.8%), data warehouses (26/21.8%) and re-
quirements engineering software (16/13.4%).

Information systems: Support by BPM tools is a prerequisite to reach the BPM matur-
ity Level 4 [10]. Thus, we asked the participants to rate the importance (Q16*) of a
list of functionalities and qualities for BPM tools on the following scale: ‘very impor-
tant’ (1), ‘important’ (2), ‘not so important’ (3), and 4 (‘not important at all’) or 5
(‘don’t know’). The list was compiled based on BPM literature, e.g. [20], [12], [17],
[7]. Fig. 1 shows the results: Usability is clearly the most important quality of BPM
tools (78/60%). Among the important requirements, the following functionalities or
qualities appear (ordered by decreasing frequency): alignment to standards (71/55%),
modeling capabilities (64/49%), simulation capabilities (63/48%) and workflow en-
actment (63/48%). To get a clearer picture of the overall importance of each require-
ment, we calculated the mean rating for each functionality and quality (see Table 7):
Usability stays in the first place, followed by modeling capabilities, software integra-
tion, report generation, alignment to standards and process execution.

Table 7. Important functionalities and qualities for BPM tools (N= 130, na=0)

Answer Mean Std. Dev. Rank Answer Mean Std. Dev. Rank

Usability 1.49 .760 1 Process Monitoring 2.25 1.027 6
Modeling Capabilities 1.81 .924 2 Process Simulation 2.45 .957 7
Software Integration 2.12 .996 3 Language Adaptability 2.52 .998 8
Report Generation 2.13 .976 4 Correctness Proofs 2.55 1.028 9
Alignment to Standards 2.18 .947 5 Syntax Checks 2.65 1.009 10
Process Execution 2.18 .979 5 Different Notations/

 Standards
2.72 1.019 11

22 S. Patig, V. Casanova-Brito, and B. Vögeli

0%

10%

20%

30%

40%

50%

60%

70%

Very Important Important Not so important Not at all important

Modeling capabilities Syntax checks Correctness proofs
Language adaptability Different notations/standards Alignment to standards
Process simulation Process execution Process monitoring
Report generation Software integration Usability

Fig. 1. Important functionalities and qualities for BPM tools

Software integration capabilities come third among the requirements of BPM tools.
This finding becomes plausible when analyzing the applications involved (Q17) in the
execution of business processes (see Table 8): Mainly databases, ERP systems and
office software are needed. Obviously, the implementation of business processes does
not necessarily require BPM suites, which rank 10th in the list.

Table 8. Applications involved in the execution of business processes (N=130; na=0)

Answers Count Percentage Percentage responses

Database(s), data warehouse(s) 87 11.5% 66.9%

Enterprise resource planning system(s) 79 10.4% 60.8%

Office software 79 10.4% 60.8%

Customer relationship management system(s) 76 10.1% 58.5%

Integration software, middleware 66 8.7% 50.8%

Procurement system(s) 63 8.3% 48.5%

Content management system(s) 56 7.4% 43.1%

Supply chain management system(s) 55 7.3% 42.3%

Product data management system(s) 50 6.6% 38.5%

BPM suites 41 5.4% 31.5%

Application software at business partners 38 5.0% 29.2%

Production data acquisition 29 3.8% 22.3%

Educational software 18 2.4% 13.8%

Other 10 1.3% 7.7%

No software 9 1.2% 6.9%

Total 756 100.0% 581.5%

 IT Requirements of Business Process Management in Practice – An Empirical Study 23

Asked for the kind of support (Q18*) required from software during process execu-
tion, the average rankings – on the scale 1 (‘very important’), 2 (‘important’), 3 (‘not
so important’), 4 (‘not important at all’) or 5 (‘don’t know’) - reveal that the execution
of tasks is most appreciated, followed by task routing, information providing and
automated process execution (see Table 9). This overall ranking is consistent with the
answers to the previous question (Q17).

Table 9. Required kind of support for process execution

 Execution of
Tasks

Routing of
Tasks

Information
Providing

Automated
Process Execution

N Counts 120 112 113 117

na Missing Values 10 18 17 13

Mean 2.11 2.43 2.54 2.83

Standard Deviation 0.797 0.824 0.991 0.854

Rank 1 2 3 4

The software currently used (Q19) in the companies to describe or manage busi-

ness processes was also gathered; see Table 10. In line with the preferred ways of
describing processes (Q12; Table 6), drawing and writing tools come first and second
place, followed by a particular ERP system. The first BPM suite in the list is the
ARIS toolset; in our sample, its prevalence slightly outperforms the one of in-house
solutions and IBM Websphere BPM.

Table 10. Software used to describe business processes (N=129; na=1)

Answers Count Percentage Percentage responses each

MS Visio 78 25.4% 60.5%

MS Word 60 19.5% 46.5%

SAP R/3 or mySAP ECC 39 12.7% 30.2%

ARIS Toolset 29 9.4% 22.5%

In-house solution 24 7.8% 18.6%

IBM Websphere BPM 23 7.5% 17.8%

TIBCO iProcess Suite 5 1.6% 3.9%

iGrafx Suite, Oracle 4 1.3% 3.1%

ADONIS 3 1.0% 2.3%
Intalio BPMS, MS Excel, MS
Powerpoint, MS Sharepoint, Nimbus 2 .7% 1.6%

Prometheus Suite, Semtalk 1 .3% .8%

Other 26 8.5% 20.2%

Total 307 100.0% 238.0%

To get information on the distinct criteria influencing the selection of BPM tools

(Q20*), we asked the companies to assign one of the ranks 1 (highest rank) to 5 (lowest

24 S. Patig, V. Casanova-Brito, and B. Vögeli

rank) to each of the criteria listed in Table 11. In the overall order resulting from the
mean ranks, functionalities and qualities are in first position, followed by pricing, sup-
port, the positive image and experience of the vendor as well as the prior availability of
some tool in a company.

Table 11. Decision criteria for BPM tool selection (N=130, na=0)

 Functionalities
and Qualities Pricing Support Vendor

Image Availability

Mean 1.77 2.99 3.03 3.43 3.78

Standard Deviation 1.450 1.350 1.207 1.011 1.163

Rank 1 2 3 4 5

4 Discussion

In this section we interpret our results, relate them to the results of other studies (see
Table 12) and comment on the validity of our findings.

To the best of our knowledge, we are the first to inquire into the characteristics of
business processes on a global scale. The current picture is as follows: Processes tend
to stay within a company (Q7*), which is typical for the BPM maturity Levels 1-3
[10]. Our assessment of current BPM maturity is supported by other studies that lo-
cate the companies worldwide on BPM maturity Level 2 [23]. In the companies of our
sample, the average processes (Q1-Q5; Table 4) span 3-4 departments and involve
around 7 persons as well as 20 tasks and 4 applications. The latter number also means
that each process potentially (in the case of automation) requires substantial software
integration. The main time unit for process duration and execution frequency is a day
(Q8*, Q9*; Table 5); so, processes run fast and frequently – and they are stable (most
changes occur yearly; Q10). Finally, processes are product-, administration- and cus-
tomer-driven (Q6); the first and the latter driver conform to ‘increased customer satis-
faction’ as a well-known, historical motive for BPR and BPM [15], [23].

The BPM maturity Levels 2 and 3 are characterized by documented processes and
a process language [10], and our study suggests that both should be ‘human-oriented’:
First, ‘BPR’ as an organizational goal, ‘guidelines for humans’ and ‘documentation’
form the three most important motives to describe processes; process automation
follows only in the fourth place (Q14). These findings are completely [4] or at least
concerning BPR [23] and documentation [17] confirmed by other studies. Secondly,
apposite to these motives, text in natural language (Q12; Table 6) and the correspond-
ing tools (Q17; Table 8) are as popular to describe processes as modeling languages.
Thirdly, usability is the by far most important requirement concerning BPM tools
(Q16*; Fig. 1). Finally, the software involved in the execution of business processes
(Q17; Table 8) and the kind of software support required for process execution
(Q18*; Table 9) indicate that task routing is currently often in the hand of humans,
who use the description of the processes as a guideline (Q14). The usage of text and
tables to describe processes, the importance of usability and the required software
support during process execution are original results of our study. The low prevalence

 IT Requirements of Business Process Management in Practice – An Empirical Study 25

of BPM suites (around 30% of all companies) other studies report [23], [11] affirm
our finding that task routing is often not automated, but done by employees.

According to question Q18* (Table 9), the companies want software to undertake
the routing of tasks. Our survey makes clear that a central requirement for this support
is software integration: It is the third most important requirement (Q16*; Table 7),
which is explained by the distribution of processes within and between companies
(Q7*; Table 5) as well as the number (Q4; Table 4) and the kind (Q16*; Table 8) of
applications involved in the execution of average processes.

The important role of ERP and CRM systems during process execution (Q16*; Ta-
ble 8) was also observed by the study “Status Quo of BPM” [11]. Based on our re-
sults, this observation can be interpreted as follows: First, ERP systems fulfill the
requirement of ‘task execution’ (Q18*; Table 9). Secondly, they are the most impor-
tant ‘non-BPM’ software that incorporates process models (Q15). Having CRM sys-
tems in fourth position (Q17, Table 8 and [11]) among the software that is involved in
process execution agrees with the process scope (Q6: a product or customer contact)
and the BPM motive ‘customer satisfaction’ [23].

Table 12. Results of this survey and relations

Findings of our survey Relation to other surveys
 [11] [23] [17] [4]

Processes are currently:
Mainly company-internal (Q3, Q7*) ++ ○ ++ ○ ○

Medium-sized (Q1, Q2, Q5), fast (Q8*), frequent (Q9*),
stable (Q10), substantially applications involving (Q4),
mainly product-driven (Q6)

++ ○ ○ ○ ○

Processes descriptions are:

Mainly created decentralized and centrally aligned (Q13) ++ + + ○ ○

Needed for BPR, documentation, automated process
execution (Q14)

++ ○ + + ++

Text, models (BPMN) or tables (Q12) ++ ○ ○ (BPMN) ○

Software relevant to BPM:

Business processes rely on databases, ERP, office
software, CRM software, EAI …. WfMS (Q17)

++ + ○ ○ ○

To describe business processes, graphics tools, text
processing software, ERP systems and BPM suites are
used (Q19)

++ ○ + + ○

The most important requirements concerning BPM tools
are usability, modeling and software integration
capabilities (Q16*)

++ ○/+/○ ○/+/○ - (BPMN
tools)

○

During process enactment, software is needed to execute
tasks, to route tasks or to provide information (Q18*)

++ ○ ○ ○ ○

Symbols:
++ Completely confirmed, + Partially confirmed, ─: Contradiction, ○: Not investigated

The importance of software integration for BPM is not visible from other empirical
investigations. If they ask for requirements at all, they focus on requirements concerning

26 S. Patig, V. Casanova-Brito, and B. Vögeli

BPM suites and neglect more or less the overall IT context of BPM. However, it is
generally confirmed that modeling capabilities are important for BPM tools [11], [23].

Our study shows, moreover, that process documentation is opportunistic, i.e.,
adapted to (1) the purposes of BPM, (2) the available standards and (3) the used tools:
First, the above-mentioned human-oriented documentation can be conveniently real-
ized by text and tables (Q12), whereas workflow execution or non-BPM software
(Q15) need process modeling. Secondly, there seems to be some satisfaction with
both the BPMN as the current process modeling standard – it is the prevalent model-
ing language (Q12; Table 6) – and the resulting modeling capabilities provided by
tools: Language adaptability (rank 8) as well as support for different notations and
standards (rank 11) are no longer important requirements of BPM tools (Q16*; Table
7). The worldwide acceptance of the BPMN as a process modeling standard is con-
firmed by other studies [23], [17]. Contrary to our results, for BPMN tools some ex-
tensibility at the level of attributes seems to be required [17].

Finally, the current focus on company-internal processes (Q7*; Table 5) and the
just beginning integration of suppliers and vendors (Q3; Table 4) indicate that the
companies of the sample are mainly on BPM maturity Level 2. The organization of
process modeling (Q13), however, shows evidence of the next higher level of BPM
maturity: Over two thirds of the companies either centrally align process modeling or
even have a central process modeling team. This result of our investigation strength-
ens the observations of the report “State of BPM 2010” [23].

Because of the sampling procedure (see Section 3.1), our results can be assumed to
be representative for large companies that operate worldwide, independent of their
branch. However, the focus on large companies is accompanied by some lack of se-
lectivity: Most of the investigated companies consist of more or less independent sub-
organizations that often use distinct process modeling methods or tools. As the major-
ity of our participants had a company-wide picture of the processes (see Section 3.1),
the impression about BPM on the company level often looks like ‘anything goes’.
This problem affects all investigations of large companies. However, the resulting
impression of BPM in practice is very realistic.

The list ‘Forbes Global 2000’ we used suffers from three limitations: First, it dis-
regards large non-American companies that don’t have commercial relations with the
USA, and, secondly, ranking companies based on sales, profit and market value fa-
vors branches where borrowed capital is important (e.g., banking and insurance com-
panies). Thirdly, non-profit organizations (i.e., public administration, universities) are
completely excluded. These limitations might well affect the validity of our results.

Half of our participants work for IT departments. The resulting IT focus is in line
with our research goal and, at the same time, not restrictive: The majority of the
participants had a company-wide picture of the processes, and the findings concerning
human-orientation show that the role of IT was not overemphasized. Finally, by
comparison with other investigations, this section has proven the plausibility of our
results.

The ratings we have obtained from the companies reflect the subjective experi-
ences of our participants, which is a common limitation of such surveys. From a me-
thodical point of view, the calculation of mean ratings is only valid if the ratings of
the underlying scale are equidistant (interval scale). This assumption is generally
made [6]. Additionally, our conclusions rely on the orders of alternative answers

 IT Requirements of Business Process Management in Practice – An Empirical Study 27

resulting from the calculated means and, thus, remain on the ordinal scale of the rat-
ings. Moreover, wherever appropriate we referred to the modes as they are valid de-
scriptive statistics for nominal and ordinal data and insensitive to outliers [3].

5 Conclusions and Outlook

We have conducted an empirical investigation of 130 major public companies from
all over the world about the requirements of BPM, which must be satisfied by the
used BPM tools. Our investigation confirms that the majority of companies are on the
BPM maturity Level 2, where the core business processes are defined and document-
ed. The soon transition to the BPM maturity Level 3 is possible in two-thirds of the
inquired companies, since they already centrally align process modeling or even have
a central process modeling team.

The transition to the highest BPM maturity level seems to be hindered by the fact
that current BPM tools do not satisfy two requirements: First, BPM requires process
modeling languages and BPM tools that are designed for the use by humans (currently
the focus is on automation). Secondly, BPM tools must be able to integrate the het-
erogeneous applications involved in the execution of business processes. Both re-
quirements hint at necessary improvements of process modeling languages and BPM
tools.

Usually, requirements engineering is not done by surveys, but for particular cases
and organizational settings. For that reason we asked the companies that participated
in our survey whether they would allow a more in-depth investigation of their proc-
esses. Twenty-five companies agreed. We will continue our requirements engineering
research by an analysis of these cases to obtain detailed, qualitative data.

References

1. Economist Intelligence Unit (in co-operation with the IBM Institute for Business Value):
The 2006 e-readiness rankings. A White Paper from the Economist Intelligence Unit. Lon-
don et al. (2006)

2. Forbes: The Forbes Global (2000),
http://www.forbes.com/2005/03/30/05f2000land.html

3. Gravetter, F.J., Wallnau, L.B.: Statistics for the Behavioral Sciences, 8th edn. Wadsworth,
Belmont (2009)

4. Indulska, M., Recker, J., Rosemann, M., Green, P.: Business process modeling: Perceived
Benefits. In: Laender, A.H.F. (ed.) ER 2009. LNCS, vol. 5829, pp. 458–471. Springer,
Heidelberg (2009)

5. Indulska, M., Recker, J., Rosemann, M., Green, P.: Business process modeling: Current is-
sues and future challenges. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 501–514. Springer, Heidelberg (2009)

6. Jackson, S.L.: Research Methods and Statistics: A Critical Thinking Approach, 3rd edn.
Wadsworth, Belmont (2009)

7. Jaklic, J., Bosilj-Vuksic, V., Stemberger, M.I.: Business Process Oriented Tool Selection
Model – A Case Study. In: Hlupic, V., et al. (eds.) 1st Int. Conf. Future Challenges and
Current Issues in Business Information, Organization and Process Management 2006, pp.
94–102. Westminster Business School, London (2006)

28 S. Patig, V. Casanova-Brito, and B. Vögeli

8. Künger, P., Hagen, C.: The fruits of Business Process Management: an experience report
from a Swiss bank. Business Process Management Journal 13, 477–487 (2007)

9. Limesurvey, Version 1.85, http://www.limesurvey.org/
10. McCormack, K., et al.: A global investigation of key turning points in business process

maturity. Business Process Management Journal 15, 792–815 (2009)
11. Neubauer, T.: An empirical study about the status of business process management. Busi-

ness Process Management Journal 15, 166–183 (2009)
12. Nietro-Ariza, E.M., Rodriguez-Ortiz, G., Ortiz-Hermández, J.: An empirical evaluation for

business process tools. In: Ochoa, S.F., Roman, G.-C. (eds.) Advanced Software Engineer-
ing: Expanding the Frontiers of Software Technology, pp. 77–84. Springer, Boston (2006)

13. Object Management Group (OMG): Business Process Model and Notation (BPMN), Ver-
sion 1.2. OMG Document Number: formal/2009-01-03,

 http://www.omg.org/spec/BPMN/1.2/
14. Pernici, B., Weske, M.: Business process management. Data & Knowledge Engineer-

ing 56, 1–3 (2007)
15. Pritchard, J.-P., Armisted, C.: Business process management – Lessons from European

Business. Business Process Management Journal 5, 10–35 (1999)
16. Rosemann, M., de Bruin, T., Hueffner, T.: A Model for Business Process Management

Maturity. In: Proc. ACIS 2004, Paper 6 (2004),
 http://aisel.aisnet.org/acis2004/6

17. Recker, J.: BPMN Modeling – Who, where, how and why. BPTrends (March 2008)
http://www.sparxsystems.com/press/articles/pdf/
bpmn_survey.pdf

18. Schmietendorf, A.: Assessment of Business Process Modeling Tools under Consideration
of Business Process Management Activities. In: Dumke, R., et al. (eds.) IWSM 2008.
LNCS, vol. 5338, pp. 141–154. Springer, Heidelberg (2008)

19. van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., Verbeek, E.: Business proc-
ess management: Where business processes and web services meet. Data & Knowledge
Engineering 61, 1–5 (2007)

20. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,
Berlin (2007)

21. The Workflow Management Coalition (WfMC): The Workflow Reference Model, Docu-
ment Number TC00-1003, Issue 1.1 (November 19 1995),

 http://www.wfmc.org/standards/docs/tc003v11.pdf
22. The Workflow Management Coalition (WfMC): Terminology & Glossary, Document

Number WFMC-TC-1011, Issue 3.0 (February 1999),
http://www.wfmc.org/standards/docs/
TC-1011_term_glossary_v3.pdf

23. Wolf, C., Harmon, P.: The State of Business Process Management 2010. BPTrends Re-
ports (February 2010), http://www.bptrends.com/surveys_landing.cfm

24. zur Muehlen, M., Recker, J., Indulska, M.: Sometimes less is more: Are process modeling
languages overly complex? In: Proc. EDOC Conference Workshop, EDOC. Eleventh In-
ternational IEEE, Annapolis, MD, pp. 197–204 (2007)

25. zur Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use
of the Business Process Modeling Notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE
2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 29–44, 2010.
© Springer-Verlag Berlin Heidelberg 2010

How Novices Model Business Processes

Jan Recker, Niz Safrudin, and Michael Rosemann

Queensland University of Technology 126 Margaret Street, Brisbane QLD 4000, Australia
{j.recker,norizan.safrudin,m.rosemann}@qut.edu.au

Abstract. In this paper, we examine the design of business process diagrams in
contexts where novice analysts only have basic design tools such as paper and
pencils available, and little to no understanding of formalized modeling
approaches. Based on a quasi-experimental study with 89 BPM students, we
identify five distinct process design archetypes ranging from textual to hybrid,
and graphical representation forms. We also examine the quality of the designs
and identify which representation formats enable an analyst to articulate busi-
ness rules, states, events, activities, temporal and geospatial information in a
process model. We found that the quality of the process designs decreases with
the increased use of graphics and that hybrid designs featuring appropriate text
labels and abstract graphical forms are well-suited to describe business proc-
esses. Our research has implications for practical process design work in indus-
try as well as for academic curricula on process design.

Keywords: Design skills, process modeling, design quality, experiment.

1 Introduction

When seeking to (re-) design business processes to organizations increasingly use
graphical documentations of their business processes – so called process models [1].
These models act as blueprints of organizational processes, and are a key tool for
making re-design decisions, i.e., decisions about where, how and why changes to the
processes should be enacted to warrant improved operational efficiency, cost reduc-
tions, increased compliance or better IT-based systems.

Essentially, a process model is a cognitive design tool allowing the process analyst
to offload memory and information processing, and to promote discovery and infer-
ences about the process at hand [2]. When the process design activity is not computer-
supported (e.g., through a modeling tool), analysts use basic tools such as pencil and
paper to illustrate how a business operates at present (as-is process design) or in the
future (to-be process design).

Our interest in this paper is in the way analysts use the affordances offered by pa-
per and pencil to create diagrammatic representations of business process designs.
Specifically, we seek to understand how novice analysts create business process de-
sign representations when they are uninformed of any process design method (such as
a process modeling notation like BPMN [3]). We have several reasons for this spe-
cific focus of our study. First, in organizations, the share of employees equipped with
method knowledge about process design methods is typically radically low. Domain

30 J. Recker, N. Safrudin, and M. Rosemann

experts involved in process (re-) design work are often unable to review a (semi-
) formalized process model or to provide meaningful feedback. In some cases domain
experts even reject process models because of a lack of exposure and training in proc-
ess modeling methods [4]. Second, process design artifacts (e.g., the process models)
are meant to facilitate a shared understanding in the organization, which therefore
includes employees unfamiliar with the chosen process design method. Third, studies
of process design in industry practice [5] still report on the widespread use of ‘butcher
paper’ process design work. Typical workshops on process design employ design
tools such as whiteboards, flip charts and post-its to capture knowledge about a cur-
rent or future process [6]. Fourth, informal sketches and diagrammatic drawings were
found to be key to any design activity, as they serve as an externalization of one’s
internal thoughts, and assist in idea creation and problem-solving [7, 8], two key skills
to support business process re-design. Deriving insights on these external representa-
tions may therefore promote an understanding of how individuals form their own
cognitive framework in process design work [9]. In conclusion, understanding how
uninformed analysts externalize their conceptions of a business process design using a
basic cognitive tool such as paper and pencil is an important object of study.

When given basic cognitive design tools without the use of a (semi-) formalized
design method, individuals have numerous ways to illustrate a business process de-
sign. For instance, their design diagrams may entail the use of textual descriptions,
graphical icons, geometric shapes, or even cartoon sketches, to name just a few. An
example for such an informal design diagram, representing an airport check-in and
boarding process, is given in Fig. 1.

Fig. 1. Example of an informal business process diagram

The aim of our research is two-fold. First, we seek to understand which design
forms novice analysts choose when conceiving business process diagrams with paper
and pencil. Second, we seek to establish differences between these process design
types in terms of their ability to convey relevant information about the business proc-
ess represented. To that end, in this paper we report on an empirical analysis of proc-
ess design work carried out by a team of student analysts as part of their university
coursework. We state the following research questions:

RQ1 How can process design representations chosen by novice analysts be
characterized?

 How Novices Model Business Processes 31

RQ2 How good are different types of process designs in describing important
elements of a business process?

We proceed in the following manner. First, we review prior work on process model-
ing as a design activity, and related work from design disciplines that provide an un-
derstanding of the design process as such. We then discuss our research model. Next,
we discuss how we collected data on informal business process designs by novice
analysts, and how we prepared this data for analysis. In section 4 we give the results
from our study, and present a discussion of these results in section 5. We conclude
this paper in section 6 by reviewing contributions, implications and limitations.

2 Background

2.1 Prior Work

The common aim of process design representations such as process models is to fa-
cilitate a shared understanding and to increase knowledge about a business process, so
as to support problem solving for making (re-) design decisions, a task performed by
business analysts and systems designers, for instance, in the context of organizational
re-structuring, compliance management or workflow implementations. Following
Simon [10], we can classify process modeling as a design activity because process
models are used to represent the (process) problem so as to make potential solutions
apparent. Being the most commonly employed cognitive vehicle in process (re-
) design work, process models are therefore asked to be readily and intuitively under-
standable by the various stakeholder group engaged in this work [11].

Various approaches have been suggested to measure the quality of a process model
(e.g., [12, 13]). Yet, these only apply to formalized process modeling methods such as
Petri Nets, EPCs or BPMN only. However, these approaches are not applicable to
informal design representations such as sketches, diagrams or text that do not follow
an explicit meta model and well-defined syntactical rules. For us to be able to judge
the quality of informal business process design representations, we turn to diagram
correctness criteria suggested by Yang et al. [14], and the quality of a process design
as its ability to accurately represent all the important constituent factors of a business
process in context, i.e., the activities, events, states, and business rule logic that con-
stitute a business process [15]. We complement these process-specific correctness
criteria with two criteria found to be important in general design work, viz., temporal
and geospatial design information [2, 16]. These two criteria, in a process design,
relate to where (geographical location) and when (temporal location) work tasks in a
business process have to be carried out.

Fig. 2 illustrates how typical cognitive design vehicles, in this case a BPMN proc-
ess model, meet these criteria. Specifically, it shows that temporal and geospatial
design information is normally absent from these design representations.

Process modeling, as any design work, is a cognitive activity [17]. Regardless of
the work discipline, designs bear similarities, particularly in terms of the cognitive
approach taken by the designer. For instance, an architectural student is more likely to
generate multiple solutions to a problem before arriving at a final design, whereas a

32 J. Recker, N. Safrudin, and M. Rosemann

science student is more likely to analyze a problem thoroughly before drawing out
only one design solution [17].

Fig. 2. Important Constituent Process Elements in a BPMN Diagram

Viewing process modeling as a design activity suggests the importance of prior ex-
perience in design approaches (e.g., experience in process modeling methods) to this
activity. For instance, Wang and Brooks [18] found that novice modelers conceptual-
ize important domain elements in a fairly linear process in contrast to experts, who
were found to have better analysis and critical evaluation skills.

Looking at the artifacts created in process design work, business process diagrams,
at a very simple level, typically entail the use of graphic icons, basic geometric
shapes, and textual information [11]. Several studies highlight the importance of vis-
ual means to aid understanding of the design outcome – which is the key premise
underlying process modeling [19]. Visual attributes function as an aid for the human
mind to recognize and group objects in diagrams [20]. Work on imagery have shown
how images have particular properties [21] that can affect interpretations. These find-
ings suggest that different types of visual aids used in business process design will
affect interpretation and understandability of the created process models.

Often, conceptual design work is carried out using informal sketching, a process of
mental imagery [22], with the purpose of identifying properties of imaged elements to
enable the retrieval of information from memory. Like drawings, sketching across
multiple disciplines plays a consistent role in the generation, development, evaluation,
and communication of ideas [9], which suggests their applicability to process
(re-) design activities.

Within sketches as well as more formal process diagrams, the use of graphical
icons, in addition to geometric shapes, is often prevalent. This is because graphic icons
are quicker and easier to recognize than text [23]. The two types of graphic icons typi-
cally used in process diagrams can be categorized as Concrete and Abstract. Concrete,
high-imagery and high frequency graphics, are often represented with freehand

 How Novices Model Business Processes 33

sketches of objects such as stickman figures and telephone icons (see Fig. 5c-Fig. 5e),
while Abstract are low-imagery, low-frequency graphics that entail geometric shapes
and arrows [24] (see Fig. 5b). Also, process diagrams typically feature textual informa-
tion in the form of labels attributed to geometric shapes (like activity boxes) or addi-
tional free-text descriptions. Textual information plays a vital role in ensuring proper
interpretation and association, as well as to enhance the building of a cognitive model
[20]. Textual information further enhances the graphical information in a process dia-
gram, because textual and graphical information can be processed in parallel through
the complementary receptor channels of the human brain [25].

In conclusion, we assert that a study of process design work with informal repre-
sentation forms should consider, at least:

• which representation aids are used in the process design (e.g., the use of textual
means, geometric shapes, iconic imagery, and the like);

• to what extent process design means enable a reader to receive all relevant infor-
mation about a business process (such as important events, activities, states, or
business rules);

• whether and how temporal or geospatial information about the business process
is conveyed; and

• how individual experience levels, specifically with design work, with modeling
approaches or with the process itself, contribute to the design work.

2.2 Research Model

Based on our review of relevant work, we conceptualize the above research objectives
that we attempt to address in this study in the research model shown in Fig. 3.

Process Design Work

F: Process design
 quality

O: Semantic correctness
 assessment

F: Process design
 representation type

O: Diagram
 classification

Key

Theoretical Factor Operationalization of FactorF O

Prior Experience

F: Method knowledge

O: Process modeling
 experience
Data modeling
 experience
Object-oriented
 modeling experience

F: Domain Knowledge

O: Experience with
 airport domain

F: Design Knowledge

O: Graphical design
 skill assessment

Fig. 3. Research Model

In line with our research questions, first, we seek to understand the types of process
design representations chosen by novice analysts. To that end, we seek to ascertain to
which extent prior experience determines the type of process design representation
used. As per Fig. 3, we distinguish two forms of experience: Following Khatri et al.

34 J. Recker, N. Safrudin, and M. Rosemann

[26] we differentiate (a) experience with a method (a modeling approach) from (b)
experience with a process (knowledge of the process domain). We anticipate that
novice analyst with an educational or working background in any formalized model-
ing approach (data-, process- or object-oriented) would have a predisposition towards
the diagramming representation typically associated with the modeling approach,
which can be expected to affect their preference for such a process design representa-
tion type. Domain knowledge has been shown to affect modeling processes and out-
comes [26], and may thus influence both the type and quality of the process design
conceived. Given the importance of graphical and visual cues in conceptual design
work [20, 21] we further expect that novice analysts with experience in graphical
design work may choose a design representation format that is more graphically than
textually oriented.

Second, we seek to examine the outcome of the process design work. Following
Fig. 3, our interest in the outcome of the design process is two-fold, namely the type
of process design representation chosen by the novice analysts, and the quality of the
designs created. In the following, we describe how we collected data to examine our
research model.

3 Method

Data collection was conducted using a three-part quasi-experiment conducted with a
group of Information Systems students enrolled in a Business Process Modeling sub-
ject unit as part of their university Information Systems course. The experiment took
place during opening minutes of the very first lecture in the subject in a lecture hall,
consuming approximately 25 minutes.

The first part of the experiment captured demographic information about the stu-
dents, viz., their level of education (under-graduate or post-graduate), gender, English
Language as their arterial language, their experience in formalized modeling methods
(process-, data- and/or object-oriented), and their familiarity with the procedures at an
airport, which was the process domain selected for our study.

The second part of the experiment aimed at assessing the students’ ability to draw
graphical diagrams, as a proxy measure for graphical design skills. To that end, a
picture of the Sydney Opera House was projected to the participants, who were to
draw an accurate sketch of the image on a blank piece of paper. The rationale behind
the Sydney Opera House image was based on the assumption that the majority of the
participants would be familiar with the landmark, as it represents one of Australia’s
most prominent features. Students were given ten minutes to complete this task but
task times were not recorded.

The third part of the experiment was to examine the students’ ability to create a
business process design representation. A specific process scenario was portrayed in
textual format to the participants as a narrative of an actor seeking to travel to Sydney.
This included a detailed account of the arrival at the airport, followed by check-in and
boarding procedures and leisurely activities taken in between. The rationale behind
this activity was to provide a business process with which both domestic and interna-
tional students would have some level of familiarity with (as opposed to a business
process in a specific industry vertical – for instance, insurance – where results could

 How Novices Model Business Processes 35

have been significantly biased due to non-existence of any domain knowledge). Stu-
dents were asked to draw a model that represents the airport process scenario as accu-
rately and completely as possible, within ten minutes, using only a blank piece of
paper.

Overall, 89 students participated voluntarily in the study. Complete data about all
three parts of the experiment were provided by 75 students (84%).

4 Analysis and Results

Data analysis proceeded in several steps. First, we coded the demographic informa-
tion obtained. Our specific interest was in students’ experience of airport processes
(domain knowledge), as well as experience in formal modeling methods – process
modeling knowledge (PMK), data modeling knowledge (DMK), and object modeling
knowledge (OMK).

Second, we assessed the quality of the Opera house drawings, to create a measure
of graphical design skills. To that end, all drawings were provided to a professional
artist, who judged each drawing using a six-item drawing quality measure that as-
sessed composition (COM), proportions (PROP), perspectives (PERS), shading
(SHAD), drawing style (STY) and overall impression (IMP) of the drawings on a 7-
point scale (1 = very bad, 4 = neutral, 7 = very good).

Third, to distinguish different process design representation types, we categorized
the various types of process design representations created in the third part of the
experiment, in accordance with their aesthetic design properties. This assessment
included the examination of the relative use of graphical icons, textual information,
and sequential flow or structure of the process diagram. To ensure coding reliability,
all diagrams were assessed separately by three research assistants, who then, itera-
tively, met to discuss, defend and revise their coding work until consensus was
reached.

Fourth, we attempted to measure the quality of each process design representation.
To that end, we adapted the semantic correctness criteria suggested by Yang et al.
[14] to the constituent elements of business process models (activities, events, states,
business rules, see [11]) and other design artifacts (temporal and geospatial informa-
tion, see [2]), in a six-item 5-point scale (1 = aspect not at all represented, 5 – aspect
fully represented). Again, we used a three-member coding team and an iterative con-
sensus-building process to ensure validity and reliability of our assessment.

Using this data, the following sections report on the analyses carried out to address
the two research questions as per our research model (see Fig. 3).

4.1 Identifying Process Design Types

Our coding of the 75 process diagrams resulted in the identification of five process
design archetypes. This assessment was based on the aesthetic representation of the
process diagrams, such as frequency of graphic use, textual information, and the se-
quential flow of the process structured within the Euclidean space afforded by the
piece of paper. Similar to the Physics of Notations suggested by Moody [27], we found
that the archetypes could be differentiated based on their use of text and graphics.

36 J. Recker, N. Safrudin, and M. Rosemann

Fig. 4 positions the five identified archetypes along a continuous scale from domi-
nantly textual (type I) to dominantly graphical (type V) representation formats, and
describes key traits of each design type. Fig. 5a-5e provide examples for each design
archetype.

Type I
Design

•Full u
•No u
abst
ete g

No gra
All text

I Textual
n

use of text
use of
ract/concr
graphics

Ty
Flo
De

•T
g

•N
u
g

phics Negli
t Lots o

ype II
owchart
esign

Text & abstract
graphics
No/negligible
use of concrete
graphics

igible graphics
of text

Type III Hybrid
Design

•Text & abstract
graphics

• Some concrete
graphics

Some graphics
Lots of text

t

Type IV
Storyboard
Design

• Less text
• Significant
more abst
& concrete
graphics

s Lots of grap
Some text

tly
ract
e

Type V
Design

•No/ne
text us

• Full us
concre
graphi

phics All gra
Neglig

Canvas

egligible
se
se of
ete
ics

aphics
gible text

Fig. 4. Process Design Archetypes

The first type, Textual design, resembles very closely that of an algorithm pattern.
This design type does not utilize any form of graphical illustration but uses lines of
words as the primary representation of process information. The second type, Flow-
chart design, contains textual information embedded within graphical shapes that are
of abstract nature, i.e., lines/arrows and/or boxes and borderlines around captions, and
generally have a sequential flow that, to some extent, resembles more formal model-
ing techniques used for process-, data-, or object-modeling, and of course, the classi-
cal flowchart. The third type, Hybrid designs, uses concrete graphics (such as stick-
man figures, telephone icons and the like) to supplement the textual labels and de-
scriptions in the presence of abstract graphics (shapes and boxes). The Hybrid design
also follows a structured process flow of information. The forth and fifth design types
are notable due to the distinctively dominant use of concrete graphics over and above
textual representations. The Storyboard design uses a great variety of concrete graph-
ics such as icons, complemented with brief textual descriptions, typically in the form
of verbs and nouns.

Resembling a real “Storyboard”, this design type further features segmented pieces
of information, some partitioned as objects within rectangular boxes (abstract graph-
ics) or swim-lanes, and were structured in a flowing manner to accommodate the
Euclidean space and orientation of the paper. As for the Canvas design, the entire
process is illustrated with concrete graphics without any meaningful use of textual
information, occupying the entire page of the paper to provide a picturesque view of
the scenario. Due to the “picture-painting” nature of this design, the diagram lacks
any precise representation of the process flow, or detailed textual information.

Having distinguished the five different process design representation types, we ex-
amined whether any of the experience factors we considered (method, domain or
graphical design experience) was significantly associated with any of the design rep-
resentation types chosen by the participants. To that end, we ran logistic regression

 How Novices Model Business Processes 37

analyses [28] for each design type (DT1-5), using as independent factors three binary
variables PMK, DMK, OMK capturing respondents’ prior experience with modeling
methods, and six factor scores (IMP, COM, PROP, PERS, SHAD, STY) describing
the graphical design skills as per the evaluation from a professional artist. Last, for the
factor domain knowledge we created a binary variable groupDK that grouped respon-
dents into two groups (high/low) as per their self-perceived rating of familiarity with
airport procedures.

Fig. 5a. Process Design Type 1: Textual (1
diagram)

Fig. 5b. Process Design Type 2: Flowchart
(54 diagrams)

Fig. 5c. Process Design Type 3: Hybrid (6
diagrams)

Fig. 5d. Process Design Type 4: Storyboard
(11 diagrams)

Fig. 5e. Process Design Type 5: Canvas (3
diagrams)

38 J. Recker, N. Safrudin, and M. Rosemann

We omit a complete description and discussion of the results. The results from the
logistic regression analysis showed that there are no significant relationships between
the independent variables considered with DT1 (textual design), DT3 (hybrid design)
and DT5 (canvas design). It may well be that the non-significance of the results for
DT1 and DT5 is due to the limited sample size.

For DT2 (flowchart design) however, we found a significant association with pre-
vious domain knowledge (Beta = 1.465, p = 0.039). This result suggest that people
highly familiar with airport procedures tend to prefer a flowchart-based representation
of airport processes, unlike the representation format of current process modeling
methods. Interestingly, for this design, process modeling method knowledge was a
largely insignificant predictor (Beta = -0.444, p = 0.534). This finding suggests that
domain expertise dominates method expertise as a predictive factor. It might well be
that the thorough understanding of the domain facilitates the capability to abstract the
process into the form of flowcharts while pure method expertise is not sufficient to
clearly identify and isolate the individual steps of this process.

For DT4 (storyboard design), we found a significant association with object-
oriented modeling method knowledge (Beta = -3.619, p = 0.009). Note that partici-
pants unfamiliar with object-oriented modeling methods showed a significant associa-
tion with predominantly graphic storyboard process designs, whereas those with ob-
ject-oriented modeling method knowledge did not choose this design type. This could
indicate that the loose and creative structure of storyboard forms a contrast to the
conceptually advanced ideas of object-orientation and its paradigms such as coupling
and decomposition.

4.2 Evaluating Process Design Quality

Next, we examine the data collected about the quality of the process designs, as per
our six-item semantic correctness measure adapted from [14]. We proceeded in two
steps.

First, we ran a Univariate Analysis of Variance (ANOVA, [28]), with Design
Quality (DQ) as an aggregate dependent variable, computed as the average total factor
score of the six semantic correctness scale items. As independent factors we used
design type (DT), the binary grouping variable domain knowledge (groupDK), the
three measures for previous modeling method knowledge (PMK, DMK and OMK)
and the graphic design score overall impression (IMP). The ANOVA results showed
that design type (F = 12.459, df = 4, p = 0.000) and previous domain knowledge (F =
9.569, df = 1, p = 0.005) are significant predictors of the aggregate design quality
measure, whilst the other independent factors as well as all interaction effects were
insignificant. The results from the ANOVA specifically showed that higher levels of
domain knowledge results in higher quality designs, and that more textually oriented
process design representation types achieved higher quality scores than the graphi-
cally oriented process design representation types (as per the classification in Fig. 4).

To examine these results in more detail, we then ran a Multivariate Analysis of
Variance (MANOVA), with the six semantic correctness measures as dependent vari-
ables, and the same input factors as above. Table 1 gives selected descriptive results
from the MANOVA about the impact of the design type, and Table 2 displays corre-
sponding significance levels.

 How Novices Model Business Processes 39

Table 1. Multivariate ANOVA: Selected Descriptive Results

DT with highest
mean results

State Task Event Business
Rules

Time Distance

DT1 5.00 5.00 1.00 4.00 4.00 5.00
DT2 2.98 3.81 2.81 4.06 3.15 3.07
DT3 2.50 3.00 1.33 3.17 3.00 3.67
DT4 2.73 2.82 1.27 3.09 2.91 3.73
DT5 1.00 1.00 1.00 1.00 1.00 1.00

The results from Table 1 and Table 2 suggest that there is relationship between the
type of design employed by the students to represent the business processes and the
different dimensions of the quality of these designs. Specifically, Table 1 suggests
that more textually oriented design types are better in representing the State, Task,
Event, and Business Rules aspects (under elimination of DT1 – which only featured
one case). The purely graphical design, DT5 Canvas, scored the lowest aggregate in
representing all six factors that entail the design quality. We note specifically that
DT2 (Flowchart) scored the highest aggregate in all aspects of quality, except for
Distance, which is best represented with DT4 (Storyboard). Table 2 shows that these
score differences were significant, except for the quality dimension Business Rules,
where we did not identify a significant association with the type of design used. These
findings suggest that the use of graphical shapes in combination with textual encoding
leads to superior design representations, and offer some empirical evidence for the
theory of effective visual notations offered by Moody [27].

Table 2. Multivariate ANOVA: Significant Results of design type and interaction effects

Significance levels Independent
variables with
significant results

State Task Event Business
Rules

Time Distance

DT 0.005 0.002 0.011 - 0.003 0.007
DT & PMK - - - - 0.002 0.001
DT & OMK - - - - 0.017 -
DT & groupDK - - - - - 0.016

Table 2 further suggests important interaction effects stemming from the type of
knowledge possessed by the participants. We note that participants with prior process
modeling knowledge, when exercised with their choice of design, achieved higher
quality scores for their representations of Time and Distance. Subjects with object
modeling knowledge were found to be better in representing Time with their design
type, while those with previous domain knowledge were found to be better in repre-
senting Distance.

Perusing MANOVA we further found a number of interesting effects on design
quality stemming from prior experience of the subjects. Table 3 summarizes the sig-
nificance levels for the different types of prior experience captured.

40 J. Recker, N. Safrudin, and M. Rosemann

Table 3. Multivariate ANOVA: Significant Results of prior experience

Aspects with significant
 results

State Task Event Business
Rule

Time Distance

PMK - - - 0.037 - -
PMK & DMK 0.023 - - - - 0.010
DMK - - - - 0.023 -
DMK & GroupDK - 0.032 - - - -
OMK - - - - 0.018 -
OMK & GroupDK - - - 0.047 - -
OMK & PMK 0.006 - - - - -

Examination of the data displayed in Table 4 shows that those participants with
knowledge of process modeling methods achieved higher scores for representing
Business Rules (p = 0.037). Students with both process and data modeling knowledge
achieved higher scores for representing States (p = 0.023) and Distance (p = 0.010).
Time was well represented by students with data modeling knowledge (p = 0.023) and
those with object modeling knowledge (p = 0.018). The data also showed the exis-
tence of an interaction effect between students with both data modeling and domain
knowledge in representing Tasks (p = 0.032), while those with object modeling and
domain knowledge represented Business Rules well (p = 0.047). Last, we found an
interaction effect concerning the representation of States (p = 0.006), for those par-
ticipants with both object and process modeling knowledge. These findings suggest
that different method knowledge, solely or when combined with other method or
domain knowledge, can increase the specific level of quality in a business process
diagram.

5 Discussion

The finding that design representation forms chosen to conceptualize business proc-
esses range from predominantly textual, to hybrid, to predominantly graphical types,
and the finding that some of the design types, more notably the combined graphical
and textual types, achieve higher quality scores, extend our understanding on the use
of conceptual design tools and the quality traits of the design outcomes.

We turn to Dual Coding theory [29] to discuss our results. This theory stipulates
that text and graphics together can provide a more effective conveyance of informa-
tion than using either on their own. We find that design types two (Flowchart) and
three (Hybrid) both fall under this banner. Yet, the results regarding the relative supe-
riority of the Flowchart over the Hybrid design type provides an important extension
of Dual Coding theory, by suggesting that text and abstract graphics (shapes such as
boxes, circles and arrows) apparently are more effective in displaying important do-
main semantic elements than the combined use of text and concrete graphics (icons
such as stickman figures – as found in design type 3, hybrid).

And indeed, during the three-member evaluation of the process diagrams, it was
reported that certain concrete icons, when unfamiliar with the given context, tended to
create a certain level of ambiguity towards the end-users. For instance, one of the

 How Novices Model Business Processes 41

coders mis-interpreted a sketched icon representing the utility of an online check-in
facility (as per context scenario), as a public restroom. This anecdotal evidence fur-
ther corroborates our findings on the Hybrid design.

Moody’s [27] theory of effective visual notations provides a rationale for this find-
ing. The use of concrete graphics such as icons can in some instances violate the no-
tion of monosemy whereby a symbol should have one predefined and independent
meaning. This is not to say that all concrete graphics used in diagrams are undefined.
For instance, the use of concrete graphics such as stickman figures, which clearly
represent the main actor in a process, or a combination of a stickman with a telephone
icon, followed by a taxi vehicle, can clearly indicate the representation of the actor
calling a taxi as described in the process scenario. Such icons are of a semantically
immediate nature, which allows novices to establish its meaning based on their ap-
pearance alone [27]. Still, the only partial and inconsistent use of semantically imme-
diate concrete graphics in more graphically oriented diagrams (types 3, 4, or 5) may
explain why the more textually-oriented process diagrams, such as the Flowchart
design, which employ abstract graphics such as geometric shapes and arrows, appear
to provide more clarity in conveying process information. Moody [27] highlights such
symbols as being semantically opaque, in which the relationship between a symbol’s
appearance and connotation is merely arbitrary. Note that we found that predomi-
nantly students with notably high levels of domain knowledge tended to employ this
design type with increased use of text and semantically opaque symbols. This finding
would suggest specifically that geometric shapes can faithfully be used to describe
different constituent elements of a process such as activities (typically rectangles),
events (typically circles) or business rules (typically diamond-shaped gateways). It
also highlights the important role of appropriate textual labels and the importance of
conventions to guide the textual semantic specification of these labels.

Further note that the Flowchart design was also found to be the most favored type
of design by the majority of students (72%), which may not only indicate preference,
but perhaps also the novice’s default way of conveying process information (using
bare minimum concrete graphics).

Turning to what appears to be the second most used type of design (15% of stu-
dents), the Storyboard design, we note that the simultaneous use of both graphics and
text, plus a structured flow of process, may imply intuitiveness of graphical use to
emphasize representation. And indeed, the theory of spatial contiguity [30] suggests
that inclusion rather than segregation of both text and images can be more effective
towards the end-user in terms of comprehension, regardless of spatial and verbal abili-
ties. This theory may also contribute to explaining why we found only one case of
design type 1, Textual design, as, per theory, such diagrams lack the intuitiveness of
graphics for end-users.

Therefore, we posit that concrete graphic icons, in certain instances, enable a
reader to receive and understand relevant information. They are aesthetically pleasing
as people generally have a preference on real objects rather than abstract shapes.
However, our study shows that abstract icons, in conjunction with the use of textual
information, are beneficial for those who lack designing skills or diagramming exper-
tise. It is also important to note that while graphics may be attributed a more readily
intuitive appearance, an overuse of concrete graphics over and above textual or ab-
stract graphical shapes can also be detrimental, as we have seen in the case of design

42 J. Recker, N. Safrudin, and M. Rosemann

type 5, Canvas design, which has the lowest design quality in conveying semantic
correctness. Do et al. [7] studied how verbal protocols and reasoning account for
inaccurate designing processes. Their findings suggest an impact of the verbal instruc-
tions (to draw a model of the airport scenario) given to the individuals who adopted
the Canvas design. The novices interpreted the word “draw” literally, resulting in a
strongly picturesque design of the process, thus signifying the imagery’s congruence
to one’s perception and various psychological phenomena [31].

As a last item of discussion, we turn to the representation of the “non-standard”
contextual process elements temporal and geospatial information.

We found that distances appeared to be best represented through the Storyboard
design, whose dominant representation comprises of graphics, both abstract and con-
crete, with little textual annotation. Notably, we found the most prominent representa-
tion to be a signboard graphic icon with the unit of measure (e.g., 3 km).

Temporal information, on the other hand, was found to be best conveyed again
through Flowchart designs. In this style, we found that temporal information was
generally conveyed using text labels and abstract shapes such as additional timeline
arrows complementary to the process flow. This finding could suggest that it is
deemed more accurate for both the illustrator and the reader to use textual descrip-
tions of time periods, as opposed to drawing a clock icon (a concrete graphic) to indi-
cate a particular time or duration.

6 Conclusion

In this paper we reported on an experimental study carried out to examine how nov-
ices conceptualize their understanding of a business process using paper and pencil.
We considered three main factors, namely, drawing skills, formal modeling method
knowledge, and domain experience, to determine the impact on the quality of the
process design against the resulting design types. Our findings reveal that the five
types of design range from being dominantly textual, to a hybrid of text and graphics
(both abstract and concrete), and to being dominantly graphical.

We acknowledge that our study bears certain limitations. First, the subjects ob-
served were students and not business analysts. As such, our findings may only hold
for novice analysts, which, however, was the desired cohort for our study. Second,
there could be some subjectivity in our coding of data analysis. We attempted to miti-
gate potential bias through a multiple coder approach. Third, our attempt to ascertain
the designing skills of the students could be seen as an assessment of their drawing
but not their design skills. Another limitation is the potentially limited explanatory
power of the statistical analysis due to the non-normal distribution of the design cate-
gories, and their relative sample size. For some design types we received only few
data points, which renders some conclusions about these types difficult to make. Yet,
our selected data analyses do not require normal data distribution, which increases our
confidence in the results obtained. Still, an identified opportunity for lies in the re-
coding of the process models by a professional process modeler to ensure integrity in
representing process information.

Our findings on the various types of design generated by students have provided
insights on how individuals without experience in formal modeling method(s) con-
ceptualize and externalize business processes. Specifically, the moderate use of

 How Novices Model Business Processes 43

graphics and abstract shapes to illustrate a process is more intuitive and would aid the
understanding on the concept of process modeling. This would benefit the teaching
aspect of business process modeling subjects, or any process-oriented disciplines, by
introducing an informal approach before applying formal modeling methods. This is
due to the nature of graphical illustrations being intuitive, such as that of concrete
icons and abstract symbols used in the Flowchart, Hybrid and Storyboard designs.
However, there is also a trade-off in the quality of process design when graphics are
fully incorporated which suggests that while graphics can, to a certain extent, aid the
understanding and communication of a business process, it could also result in a loss
of information due to ambiguity and/or misinterpretation. On the other hand, process
designs that fully utilize textual labels and descriptions, such as that in Textual design,
may be useful in representing certain process information such as Business Rules, but
are not entirely intuitive. We believe that our study provides some valuable insights
on the cognitive aspects of novice process designers, which can be the basis for fur-
ther cognitive studies in the field of business process design.

References

1. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do Practitioners Use
Conceptual Modeling in Practice? Data & Knowledge Engineering 58, 358–380 (2006)

2. Nickerson, J.V., Corter, J.E., Tversky, B., Zahner, D., Rho, Y.J.: The Spatial Nature of
Thought. In: Boland, R.J., Limayem, M., Pentland, B.T. (eds.) Proceedings of the 29th In-
ternational Conference on Information Systems. Association for Information Systems,
Paris, France (2008)

3. BPMI.org, OMG: Business Process Modeling Notation Specification. Final Adopted
Specification. Object Management Group (2006), http://www.bpmn.org

4. Grosskopf, A., Edelman, J., Weske, M.: Tangible Business Process Modeling - Methodol-
ogy and Experiment Design. In: Mutschler, B., Recker, J., Wieringa, R. (eds.) Proceedings
of the 1st International Workshop on Empirical Research in Business Process Manage-
ment. LNBIP, vol. 1. Springer, Heidelberg (2009)

5. Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process Manage-
ment Journal 12, 249–254 (2006)

6. Edelman, J., Grosskopf, A., Weske, M.: Tangible Business Process Modeling: A New Ap-
proach. In: Proceedings of the 17th International Conference on Engineering Design. Stan-
ford University, Stanford (2009)

7. Do, E.Y.-L., Gross, M.D., Neiman, B., Zimring, C.: Intentions in and Relations Among
Design Drawings. Design Studies 21, 483–503 (2000)

8. Eisentraut, R., Günther, J.: Individual Styles of Problem Solving and their Relation to Rep-
resentations in the Design Process. Design Studies 18, 369–383 (1997)

9. Prats, M., Lim, S., Jowers, I., Garner, S.W., Chase, S.: Transforming Shape in Design: Ob-
servations from Studies of Sketching. Design Studies 30, 503–520 (2009)

10. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
11. Mendling, J., Reijers, H.A., Recker, J.: Activity Labeling in Process Modeling: Empirical

Insights and Recommendations. Information Systems 35, 467–482 (2010)
12. Recker, J., Rosemann, M., Indulska, M., Green, P.: Business Process Modeling: A Com-

parative Analysis. Journal of the Association for Information Systems 10, 333–363 (2009)

44 J. Recker, N. Safrudin, and M. Rosemann

13. Krogstie, J., Sindre, G., Jørgensen, H.D.: Process Models Representing Knowledge for Ac-
tion: a Revised Quality Framework. European Journal of Information Systems 15, 91–102
(2006)

14. Yang, Y., Tan, Q., Xiao, Y.: Verifying Web Services Composition Based on Hierarchical
Colored Petri Nets. In: Hahn, A., Abels, S., Haak, L. (eds.) Proceedings of the 1st Interna-
tional Workshop on Interoperability of Heterogeneous Information Systems, pp. 47–54.
ACM, Bremen (2005)

15. Curtis, B., Kellner, M.I., Over, J.: Process Modeling. Communications of the ACM 35,
75–90 (1992)

16. Boroditsky, L.: Metaphoric Structuring: Understanding Time through Spatial Metaphors.
Cognition 75, 1–28 (2000)

17. Visser, W.: Design: One, but in Different Forms. Design Studies 30, 187–223 (2009)
18. Wang, W., Brooks, R.J.: Empirical Investigations of Conceptual Modeling and the Model-

ing Process. In: Henderson, S.G., Biller, B., Hsieh, M.-h. (eds.) Proceedings of the 39th
Conference on Winter Simulation, pp. 762–770. IEEE, Washinton (2007)

19. Larkin, J.H., Simon, H.A.: Why a Diagram Is (Sometimes) Worth Ten Thousand Words.
Cognitive Science 11, 65–100 (1987)

20. Koning, H., Dormann, C., van Vliet, H.: Practical Guidelines for the Readability of IT-
architecture Diagrams. In: Haramundanis, K., Priestley, M. (eds.) Proceedings of the 20th
Annual International Conference on Computer Documentation, pp. 90–99. ACM, Ontario
(2002)

21. Purcell, A.T., Gero, J.S.: Drawings and the Design Process: A Review of Protocol Studies
in Design and Other Disciplines and Related Research in Cognitive Psychology. Design
Studies 19, 389–430 (1998)

22. Kavakli, M., Gero, J.S.: Sketching as Mental Imagery 22(4) (2001)
23. Ferreira, J., Noble, J., Biddle, R.: A Case for Iconic Icons. In: Piekarski, W. (ed.) Proceed-

ings of the 7th Australasian User Interface Conference, pp. 64–100. CRPIT, Hobart (2006)
24. Rogers, Y.: Pictorial Representations of Abstract Concepts Relating to Human-Computer

Interaction. ACM SIGCHI Bulletin 18, 43–44 (1986)
25. Mayer, R.E.: Multimedia Learning. Cambridge University Press, Cambridge (2001)
26. Khatri, V., Vessey, I., Ramesh, V., Clay, P., Sung-Jin, P.: Understanding Conceptual

Schemas: Exploring the Role of Application and IS Domain Knowledge. Information Sys-
tems Research 17, 81–99 (2006)

27. Moody, D.L.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Vis-
ual Notations in Software Engineering. IEEE Transactions on Software Engineering 35,
756–779 (2009)

28. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 4th edn. Allyn & Bacon, Bos-
ton (2001)

29. Paivio, A.: Mental Representations: A Dual Coding Approach. Oxford University Press,
New York (1990)

30. Mayer, R.E., Moreno, R.: Nine Ways to Reduce Cognitive Load in Multimedia Learning.
Educational Psychologist 38, 43–51 (2003)

31. Kavlaki, E., Loucopoulos, P.: Experiences With Goal-Oriented Modeling of Organiza-
tional Change. IEEE Transactions on Systems, Man and Cybernetics - Part C 36, 221–235
(2006)

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 45–60, 2010.
© Springer-Verlag Berlin Heidelberg 2010

BPM in Practice: Who Is Doing What?

Hajo A. Reijers1, Sander van Wijk2, Bela Mutschler3, and Maarten Leurs2

1 Eindhoven University of Technology, The Netherlands
h.a.reijers@tue.nl

2 Deloitte Consulting, The Netherlands
{svanwijk,mleurs}@deloitte.nl

3 Ravensburg-Weingarten University of Applied Sciences, Germany
bela.mutschler@hs-weingarten.de

Abstract. This paper investigates the adoption of BPM, i.e., the use and de-
ployment of BPM concepts in different kinds of organizations. A set of 33
completed, industrial BPM projects is analyzed based on project documentation
and interviews with involved project members. In addition to the main study,
which is conducted in the Netherlands, the paper also presents results of a repli-
cation study in Germany comprising six interview-based case studies and an in-
ternational survey among 77 BPM experts. Thereby, various characteristics of
BPM projects (such as a project’s objective, strategic orientation or focus area)
are analyzed to derive valuable insights both for practitioners performing BPM
projects and for academics facing the challenge to support practitioners with in-
novative solutions in the field of BPM.

Keywords: Business process management, BPM projects, case study analysis.

1 Introduction

Considerable confusion exists about what Business Process Management (BPM)
entails, as it blends paradigms and methodologies from organization management
theory, computer science, mathematics, linguistics, semiotics, and philosophy. It is
this versatility and interdisciplinary setting that also characterizes BPM as a true “the-
ory in practice” subject [1]. In fact, BPM is pre-eminently a field where theoretical
and technological developments are directly motivated by industrial application.

An industrial motivation calls for an understanding of industrial practice. For the
progress of BPM – a management discipline that is closely linked to and enabled by
various technologies – it is highly relevant to understand which organizations are
embracing it in practice and which activities they undertake. Only by knowing more
about the “consumers” of BPM methods, tools, and techniques, it becomes possible
for its “producers” to properly position their research activities, engage in meaningful
cooperation with industrial partners, and develop a meaningful research agenda.

In this light, it may come as a surprise that contemporary insights are missing into
which categories of organizations are adopting BPM and which type of BPM projects
they are carrying out. Most reflections on this subject are anecdotic or presented
without any empirical evidence. For example, Gartner recently stated that “BPM

46 H.A. Reijers et al.

adoption has been strongest in the service industries (such as banking, insurance,
telephone companies and other utilities)” [2]. For those who recall that BPM initially
was most popular in and emerged from manufacturing settings [3], such a statement
craves for empirical back-up.

The objective of this paper is to provide a contemporary, empirically informed in-
sight into the types of organizations that are adopting BPM and the type of projects
they are carrying out. More specifically, we want to know whether any organizational
watersheds in the practicing of BPM can be established. For this purpose, we investi-
gated a range of organizational dimensions (size, profit motive, sector, and strategic
orientation) as well as various characteristics of the BPM projects organizations are
involved in (e.g., which phases of the BPM life-cycle are covered). The criteria we
used to analyze both organizational dimensions and BPM project characteristics have
been selected on the basis of a literature review and an exploration of industrial cases.

To gain access to a large set of actual BPM projects, this research has been carried
out in close cooperation with the Dutch practice of one of the world’s largest consult-
ing firms. This cooperation provided us with the unique opportunity to examine in
detail all the BPM projects of recent years that this firm has been involved in: all
project documentation could be referred to, and the involved consultants were avail-
able for consultation. Since this specific cooperation potentially also introduces bias,
specifically with respect to the geographic area of the projects and the client base, we
have taken various measures to counter this threat, including a replication of our in-
vestigation through an international survey and case studies in Germany.

The structure of this paper is as follows. Section 2 provides the background for this
paper, by providing a short reflection on the BPM concept. It also examines which
indications of organizational differentiators are known to play a role in BPM adop-
tion. In Section 3, the design of the research is addressed. Section 4 presents the re-
sults of our research. The paper concludes with a discussion of the results and our
conclusions.

2 Background Information

2.1 Views on BPM

BPM is a difficult concept to pin down, as has been noted before, e.g., in [4-6]. On the
one hand, it is strongly associated with process-oriented techniques and tools, in par-
ticular with process modeling and workflow management technology [7-10]. On the
other hand, BPM can be also considered as a management concept [3;11;12], which
draws from predecessors such as Total Quality Management and Business Process
Reengineering. Since industrial projects are often labeled as BPM projects without
specific technologies playing an important role, we will follow the latter, more holis-
tic, interpretation. In line with [11], we see BPM as an integrated management phi-
losophy and set of practices that includes incremental change and radical change in
business process, and emphasizes continuous improvement, customer satisfaction, and
employee involvement. An earlier study that has studied the characteristics of indus-
trial BPM projects is [13], but its focus is mostly on process modeling.

 BPM in Practice: Who Is Doing What? 47

Various authors have been using the notion of a life-cycle to distinguish between
the various phases that a BPM initiative can go through, see e.g. [8;14;15]. All these
life-cycles have in common that a business process is seen as the object that is con-
tinuously improved. One of the most elaborate life-cycles is presented in [16], which
distinguishes between the following phases (see Fig. 1).

Fig. 1. The BPM life-cycle, cf. [16]

In the analysis phase of this life-cycle, a set of requirements is developed for the
business process in question such as performance goals or intentions. During the
design, the process activities, their order, the assignment of resources to activities and
the organization structure are defined. The infrastructure for the business process is
set up during the implementation, which includes training of staff, provision of a
dedicated work infrastructure or the technical implementation and configuration of
software. In the enactment phase, the dedicated infrastructure is used to handle indi-
vidual cases covered by the business process. Depending on process metrics, counter-
actions are taken to deal with problematic situations in the monitoring phase. The
evaluation phase leads to new requirements that are taken as input in the next turn of
the business process management life-cycle.

In the remainder of this paper, these phases will be used as one of the aspects to
characterize the type and sophistication of the analyzed BPM projects.

2.2 BPM Adoption

Despite the benefits that are often associated with BPM initiatives, little research has
been conducted on the considerations of, or types of, organizations adopting BPM.
The earliest report on the industrial application of BPM that is known to us [3], spe-
cifically ties BPM to manufacturing settings and the goal to better handle product
quality. The authors also call for the wider adoption of BPM in non-manufacturing
settings, implying that BPM is applicable there, but hardly popular at the time of the
survey. The main survey in [4] is accompanied by a brief discussion of possible
differences in adoption rate of BPM between small and large organizations on the
one hand and between public- and private organizations on the other. However, no

48 H.A. Reijers et al.

significant differences with respect to organizational BPM adoption on these dimen-
sions were established within the European organizations that were examined.

In [17] a method is described to measure the extent to which an organization is
process-oriented. The application of this instrument to a large set of American com-
panies suggests that smaller companies tend to score better than larger ones, implying
that those are more process-oriented. Service companies also seemed to score better
than manufacturing companies. While this work did not focus on the adoption of
BPM as a management concept or on actual BPM projects, it clearly hints at different
BPM needs within organizations.

Considering the further literature, a potential link between BPM adoption and stra-
tegic management can also be distinguished [18]. Several authors [11;19] explicitly
mention the type of strategic alignment as a crucial part of BPM and it is included in
Rosemann & De Bruin’s recent BPM Maturity Model [12]. Moreover, in [4;20] it is
claimed that a “true process enterprise” should be connected to an overarching strate-
gic initiative. In this context, it is important to note that the most common way to
characterize an organization’s strategic orientation is provided in [21], where a dis-
tinction is made between a strategy of operational excellence, customer intimacy or
product leadership.

In summary, while insights into the kind of organizations adopting BPM are virtu-
ally absent, the literature hints at the following dimensions that are of potential impor-
tance: size (small vs. large), profit motive (public vs. private), sector (manufacturing
vs. non-manufacturing), and strategic orientation (operational excellence, customer
intimacy, product leadership). These dimensions will be used as the basis for our
study, as will be outlined in the following section.

3 Research Design

3.1 Research Method

Given the empirical nature of the targeted research, as well as the lack of contempo-
rary studies into the topic, the applied research method is based on a method as pro-
posed in [22]. This approach is highly iterative and explorative without requirements
on explicit hypotheses as a starting point. In such an approach the various phases
characteristically overlap, but in this case the main flow of the study can be said to
have involved the initial phases of exploration and conceptualization, which were
followed by iterations of data collection and data analysis. In addition, a replication
study was carried out to deal with the bias resulting from our approach. These phases
are shown in Fig. 2 and further discussed in the following sections.

Exploration

Concep-
tualization

Data
Collection

Data Analysis

Replication

Fig. 2. Research Phases

 BPM in Practice: Who Is Doing What? 49

3.2 Exploration and Conceptualization

The exploration phase incorporated a literature study to determine relevant organiza-
tional characteristics (see Section 2.2.), as well as a first round of interviews with
BPM consultants. These consultants were targeted based on “snowball sampling” and
by an analysis of their resumes, as available within the consulting firm. Additionally,
project documentation was studied to get a first impression of BPM encounters.

To arrive at a proper conceptualization, i.e. decide which concepts to study and
how they are related, it is important to determine at what level BPM activities are
studied. We decided to focus on the project level, hence, BPM projects represent the
unit of analysis. In contrast to what can be found in the professional literature [23], we
do not see the start of a BPM project as a necessary indication of a low level of BPM
maturity of the organization it takes place in. Rather, in our view BPM projects can be
encountered in organizations that find themselves in any phase of the BPM life-cycle.

As a preparatory step for the subsequent phases of data gathering and analysis, we
decided on the criteria for the selection of cases. First of all, we decided to only con-
sider projects that are characterized by a focus on a business process as the object of
study. After all, the notion of an end-to-end sequence of business tasks is fundamental
to what BPM techniques and technologies entail. This criterion ruled out projects, for
example, that are carried out within a single department or target stand-alone IT sys-
tems. Secondly, we excluded cases for which it was certain that their only aim was to
document business activities. The motivation here is that a BPM project in some way
aims to facilitate or assist organizational change in the foreseeable future. Thirdly, we
focused on recent projects because of our goal to derive a contemporary state of the
art, effectively only considering projects that were completed in 2005 or later. Finally,
we only considered projects where a complete set of project documentation existed
and for which consultants are still present within the consulting organization who
were actually involved in the project.

While the literature review led to the identification of important organizational
characteristics, the further identification of the relevant concepts to be studied at the
BPM project level was done as part of the data collection and analysis phase, as will
be explained below.

3.3 Data Collection and Analysis

The collection and analysis of data has been carried out in two iterations. The first
iteration served to complete the conceptualization phase by (1) determining the char-
acteristics that can be used to describe a BPM project on the one hand (in addition to
the set of organizational characteristics determined before) (2) developing a codifica-
tion framework, which covers both the characteristics of the BPM project and the
organization in which the project was carried out. We determined the characteristics
and developed the framework by selecting and analyzing a sub-set of the overall
number of projects that were available to us. We selected these on the basis of their
diversity, and iteratively improved the framework to maximize the applicability of the
codes on a diverse set of cases. For the sake of illustration, the nine cases that were
used for this purpose are shortly described in Table 1. Because the codification
framework is highly relevant for the justification and interpretation of our results, we
will discuss it as part of the results section (see Section 4.1).

50 H.A. Reijers et al.

Table 1. Case Descriptions Used for the Development of the Codification Framework

Organization Project
Municipal authority To become compliant to new regulations, the processes concerning

permits - for among others building and demolition - are redesigned

and implemented including supporting IT.

Market supervision institute Quality management including the identification, description and

implementation of processes.

Financial service provider #1 An optimization and implementation of mortgage sales processes

based on Lean Six Sigma methodology.

Private equity firm The identification, modeling and improvement of most basic

processes to facilitate a lagging ERP system implementation.

Energy solutions provider A Lean Six Sigma project to improve processes in order to become

more cost effective and best in class.

Entertainment producer Process fit-gap-analysis to move from a local to a more central

distribution model and achieve vertical integration of production

activities.

Financial service provider #2 A Business Process Redesign to achieve compliance with new

regulations. The project included a full implementation and

processing of a due diligence of all existing clients.

Soft drink producer Analysis, harmonization and modeling of over 300 processes to

uniformize SAP implementation and facilitate best practice transfer.

Insurance company

Development and implementation of new processes, organizational

structure and some supporting IT applications to enable the intro-

duction of new product in the market through a new channel.

The second iteration of the data collection and analysis phase aimed at a charac-
terization of all those BPM projects that satisfied the selection criteria we established
before. For example, for each project it was determined whether it was part of an
overarching initiative (e.g., a merger) or carried out as an independent project. The
coding allowed for a subsequent clustering of the projects in the analysis phase.

In order to reduce bias and to increase replicability, for each project one of the par-
ticipating consultants was asked to code the project as well. This was done through a
semi-structured interview which in all but two cases was conducted face-to-face or
through telephone. In the two exceptional cases the questions were answered via e-
mail. All interviewees were invited to answer the questions, shaped as a question-
naire1, and comment on their answers to obtain more qualitative data. Those com-
ments were documented. This approach mitigates the weakness of having just one
investigator and allowed us to ensure that understanding of the concepts exists with
the interviewee. The outcomes of the interviews were used during a further statistical
analysis.

1 The questionnaire can be downloaded from http://tinyurl.com/2uqkm7p

 BPM in Practice: Who Is Doing What? 51

3.4 Replication

After having carried out the previously described phases as part of the main study, we
additionally performed six interview-based case studies in southern Germany and an
additional international (online) survey. Analyzing and comparing results of both
studies, we had two goals: (1) fight geographical bias and (2) avoid potential bias
resulting from working with a consultancy company. Selected results from both the
survey and the six German case studies are also described in Section 4.

4 Results

4.1 Codification Framework

As mentioned in the design of our research, we coded BPM projects on both the or-
ganizational characteristics of the organization in which these are carried out, and
BPM project characteristics. These two sets of characteristics were both split into
different sub-characteristics, which were one-by-one tested for correlations with each
other in order to find possible relationships between the characteristics of organiza-
tions and the BPM projects carried out within these. We aimed for at most four or five
categories (or code values) per characteristic in order to obtain both enough contrast
between the various categories and have sufficiently large numbers of cases in each
category. We will discuss both categories of characteristics in more detail before
presenting the results.

Organizational characteristics. Several distinctions between organizations can be
made concerning organization size. Research on ERP adoption [24], for example,
takes the number of employees as a measure. We followed this approach.

Based on the sample of cases, we defined four categories of organization size. The
smallest category consists of organizations employing less than 250 employees while
organizations in the category ‘very large’ employ over 10.000 employees. Annual
reports and organizational databases were searched to obtain the required numbers.
For projects conducted within multi-divisional organizations, the size of the entity in
which the project was conducted is taken as the size of the organization.

We coded the profit motive of each organization as either being public or private.
Due to the limited number of cases, we limited the number of options for an organiza-
tion’s sector at two, and determined whether the main value proposition of the or-
ganization is of a manufacturing, or non-manufacturing (e.g. service) nature.

Finally, the strategic orientation is based on [21] and thus brings three options:
operational excellence, customer intimacy and product leadership. We explicitly con-
sidered strategic orientation as a predominant concept for an entire organization,
following [25]. An assumption with this classification is that none of the organiza-
tions is “stuck in the middle”, i.e. does not have a predominant strategic orientation.
The classification on this characteristic was done on the basis of documentation on the
organization as, for example, annual reports and organizational websites.

BPM project characteristics. We derived BPM project characteristics from litera-
ture. First of all, an initiative of any kind is generally triggered by some event or need.

52 H.A. Reijers et al.

In [20] it is mentioned that an overarching strategic initiative can trigger a move
towards BPM or a BPM project. One can think of business events like a merger, sup-
ply chain integration, an ERP implementation or a move to e-commerce. All of these
examples are also mentioned in [23]. Clearly, not each BPM project is associated with
such an initiative. Therefore, we have chosen to classify a BPM project as either trig-
gered by (or being part of) an overarching (strategic) initiative or as an independent
project.

Secondly, we examined the objectives of the BPM project. Based on the first set of
nine cases, we decided to split the objectives in two different characteristics: business
objectives and technical objectives. While the business objective can either be an aim
for business performance improvement, another option is to aim for business confor-
mance. The latter is commonly observed when a BPM project is aimed at ensuring
compliance with the rules and regulations as issued by relevant authorities.

The technical objective also consists of two categories. In many cases, implemen-
tation of technology (IT) is the main goal, for example an ERP implementation or the
development of a mid-office solution. In those cases, the BPM project is classified as
having a technical objective. If IT is not of any great relevance for the project, or is
only used in a supportive way, (for instance a process modeling tool), the BPM pro-
ject is classified as not pursuing a technical objective.

Apart from the reasons for initiation and its objectives, a BPM project is scoped in
terms of the area in which the project is carried out. The focus area of a BPM project
refers to the type of business processes that are in scope. We used the classification of
[26], which comprises three types of processes: primary processes (which are value-
creating processes), secondary processes (which support primary processes), and
managerial processes. To arrive at a somewhat even distribution of cases over the
classes, we decided to merge the support and managerial processes to support proc-
esses. This yielded the following options; pure creating processes (core processes),
pure support processes, or a mix of both.

Finally, the most extensive project characteristic is formed by the type of BPM.
Here, we applied the BPM life cycle of [16] (cf. Section 2.1). For each phase of this
life-cycle (analysis, design, implementation, enactment, monitoring, evaluation) we
defined whether this phase was in- or outside of the scope of the BPM projects under
study. Arguably, advanced phases in the BPM life-cycle point at a higher level of
sophistication of the BPM project.

4.2 General Demographic Data

In total, we identified 67 BPM projects that complied with all criteria (cf. Section
3.2). Of this initial set, 33 cases turned out to be sufficiently documented to allow for
a classification on all the organizational and BPM project characteristics we
described. Those cases were used for the main data analysis. This set thus includes the
nine cases described in Table 1 and used to develop the framework. Documentation of
the omitted cases mostly lacked a clear description of the background of the project,
hampering an assessment of the trigger of the project. The organizations in the
sample vary greatly in size, ranging from about 25 to up over 40.000 employees. 13
of them are active in the financial service industry, eight cases represent public sector
organizations. Also, energy & utilities (3), manufacturing (3), consumer business (2),

 BPM in Practice: Who Is Doing What? 53

technology media & telecommunications (2), aviation & transportation (1) and health
care (1) organizations are represented, leading to 24 service (non-manufacturing)
organizations and nine manufacturing organizations in the sample. With this division,
the sample shows great resemblance to the total client base of the consulting firm
involved. The strategic orientation of the organizations is rather evenly distributed
over operational excellence (11), customer intimacy (14) and product leadership (8).
Given this composition of the sample, there is no apparent bias that may influence the
BPM project characteristics.

The characteristics of BPM projects show a great diversity and are rather evenly dis-
tributed over the various categories. In 18 out of the total of 33 cases, an overarching
(strategic) initiative is identified to be the trigger. Business performance improvement
is the main objective in a large majority of the projects (25); in the remaining eight
projects, business conformance was the objective.

Moreover, almost half of the projects (16) had a technical objective. Note that
when a technical objective was not dominant, IT might still be used as a solution in
the project. In effect, in three cases the implementation of an IT system was a part of a
project that was classified as having a non-technical objective. Here, IT served as an
enabler to support the main objective of the BPM project: business performance im-
provement through better business processes.

A focus on core processes was found in as many as 15 BPM projects. Another 15
projects had a focus on both core and support processes. In only three cases, support
processes are found to be the exclusive focus.

Almost all projects (31) go through the design phase of the BPM life-cycle, in most
cases preceded by an analysis phase. The analysis phase is part of the project for 29
cases and in two cases it is the only phase that is performed. The implementation
phase is part of 12 BPM projects. Only for eight BPM projects, additional phases are
carried out after the implementation phase. On average, the BPM projects in our sam-
ple touch three phases of the overall life-cycle.

4.3 Inter-rater Agreement

To assess the reliability of this data, the codes assigned by the research team were
compared to the codes by the involved consultants. This inter-rater reliability is meas-
ured through the Cohen’s Kappa (Κ) statistic [27]. Its value ranges from -1 (no agree-
ment) and 0 (no agreement above chance) to 1 (representing perfect agreement). This
metric can be used in case of more than two categories, but does lead to a lower Κ
value [28]. Hence, the Κ values for the organizational size, predominant strategic
orientation and focus area are potentially an underestimation.

Cohen’s Kappa is calculated for every organizational and BPM project characteris-
tic. For two characteristics, the agreement is 100% leading to a Κ of 1.000. Even the
lowest value obtained (Κ = 0.472 for the strategic orientation) is still classified as
moderate agreement [29].

A suitable method to assess the overall Κ of the entire dataset is proposed by Fleiss
et al. [30], whose formula is based on the standard errors of the individual Κ values.
As this method cannot cope with complete agreement, the two instances where Κ
equals 1.000 are not included in the calculation of Κoverall. Κoverall is determined at 0.701.

54 H.A. Reijers et al.

This demonstrates that the inter-rater agreement is substantial, which provides support
for the reliability of the data.

4.4 Correlation Tests

With the validated data set as an input, we conducted a statistical analysis aimed to
identify correlations between organizational and BPM project characteristics. Note
that in cases where a disagreement existed between the coding of the research team
and the involved consultants, the latter coding prevailed.

All characteristics are coded on a categorical, mainly nominal scale, except for or-
ganizational size which has an underlying rank order and is thus measured on an ordi-
nal scale. The categorical nature of the data excludes the possibility of applying
non-parametric tests like rank sum tests. In such cases, specifically Chi-square (χ2)
contingency tests and Fisher’s exact tests are useful to uncover correlations between
variables measured on a nominal scale. Basically, those tests calculate the likelihood
that a correlation exists between the rows and the columns of a contingency table.

The statistical package SPSS is used, which automatically conducts the χ2 test, both
with and without the continuity adjustment for 2x2 contingency tables. The Fisher’s
exact test (or Fisher-Irwin test) is capable of handling small sample sizes, and can be
considered as an alternative. We opted for methodological triangulation and con-
ducted both tests. For all cases, the null hypothesis that the row-and-column classifi-
cations are independent is tested. Hence, in case the P-value falls below the desired
value of α, the null hypothesis is rejected.

Table 2. Fisher's exact test results (P-values) * = significant at α = 0.05

O
rg

an
iz

at
io

n
 s

iz
e

P
ro

fi
t

m

ot
iv

e

M
an

uf
ac

tu
ri

ng
 /

no

n-
 m

an
uf

ac
tu

ri
ng

St
rt

eg
ic

or

ie
nt

at
io

n

Trigger 0.680 0.722 1.000 0.017 *

Business objective 1.000 0.164 0.394 0.768

Technical objective 0.569 0.161 0.708 0.038 *

Focus area 0.299 0.138 0.855 0.053

BPM Phase: Analysis 0.029* 0.289 1.000 0.328

BPM Phase: Design 0.330 1.000 0.477 0.324

BPM Phase: Implementation 0.050* 0.461 0.425 0.346

BPM Phase: Enactment 0.446 0.640 1.000 0.729

BPM Phase: Monitoring 0.062 0.646 0.642 0.417

BPM Phase: Evaluation 0.025* 0.397 1.000 0.653

BPM Phase: No. of phases 0.596 0.705 0.321 0.619

 BPM in Practice: Who Is Doing What? 55

Both types of tests yielded largely similar P-values and led to the exact same deci-
sions with respect to the null hypotheses. The single exception was the correlation
between organizational size and the implementation life cycle phase, which yielded a
P-value of 0.060 in the χ2test and a P-value of 0.050 for the Fisher exact test. We
decided to reject the null hypothesis at the α = 0.05 level, although the exact P-value
remains questionable.

An additional Kruskal-Wallis test was performed for the tests involving organiza-
tion size. This test is specifically aimed at contingency tables composed of an ordinal
and a nominal variable. Again, the resulting P-values are only slightly different from
the ones obtained from other tests. This agreement between several statistical methods
strengthens the confidence in the outcomes. A summary of the outcomes of the
Fisher’s exact test is depicted in Table 2.

Based on the correlations found, we can present four main findings. First of all, we
can establish on the basis of our sample that organization size correlates significantly
with the type of BPM activities. Hence, the null hypothesis is rejected. After all, for
three phases of the BPM life cycle, the correlation found is significant at α = 0.05:

Finding #1: An organization’s size relates with the phases of the BPM life cycle that a
BPM project goes through within such an organization.

Interestingly, in the case of the profit motive and manufacturing or non-
manufacturing, we could not nearly reject the null hypothesis. This null hypothesis
states that the profit motive and the distinction between manufacturing and non-
manufacturing do not have a correlation with any of the BPM project characteristics
studied. Hence, the failure to reject the null hypothesis leads to the conclusion that a
statistically significant correlation between those organizational characteristics and
the BPM projects could not be found. This contrasts the existing literature (cf. section
2.2, among others [3], [4], [17]). Even though this literature hints upon differences,
our results lead to the following findings #2 and #3:

Finding #2: The profit motive of an organization does not relate to the characteristics
of the BPM projects carried out within such an organization.

Finding #3: Whether an organization is of a manufacturing type or not does not mat-
ter for the characteristics of the BPM projects carried out within such an organization.

The strategic orientation correlates in a highly significant manner with the trigger and
technical objective of the BPM projects. This leads to our fourth and final finding:

Finding #4: An organization’s strategic orientation shows a relation with the charac-
teristics of the BPM projects carried out within such an organization.

In the remainder of this paper, we will shed light on our findings and provide more
context, both by relating our findings to existing literature and by presenting a secon-
dary study testing whether our results can be generalized.

56 H.A. Reijers et al.

4.5 Results from the Replication Study

Can the results from the Dutch main study be generalized? In order to answer this
question, we performed an international (online) survey as well as six interview-based
(mini) case studies in southern Germany. Thereby, we followed the research design
specified by the Dutch main study (cf. Section 3). This section shortly summarizes the
main results from both the survey and the case studies.

Online Survey. The survey involves BPM experts from manufacturing and non-
manufacturing organizations from both the private and the public sector. 77 partici-
pants from more than 70 organizations across the world participated. Specifically,
58.44% of the responses stem from European participants, 20.78% from North
American ones, 11.69% from South American ones, 2.6% from Asian ones and 1.6%
from Australian and African ones. The questionnaire (which is exactly the one which
was also used in the main Dutch study) has been distributed via a Web-based delivery
platform and comprised 14 questions. Most questions are structured, i.e., provide a
predefined set of possible answers. Some questions additionally allow for giving other
than predefined answers. Known international mailing lists as well as personal con-
tacts were used to promote the online survey.

Taking a look at the survey data, we see that only two of the four main findings are
directly confirmed, namely finding #2, i.e., profit motive of the client organization
does not relate with BPM project characteristics, and finding #3, i.e., manufactur-
ing/non-manufacturing organizations do not differ with respect to the BPM project
characteristics. By contrast, survey data do not show a statistically significant correla-
tion between organization size and the support of BPM life-cycle phases (finding #1).
Also, data do not show a statistically significant correlation between an organization’s
strategic orientation and the characteristics of its BPM projects (finding #4).

However, please note that, despite statistically significant correlations cannot be
found for findings #1 and #4, collected data regarding findings #1 and #4 is not con-
flictive. Indeed, the data also points into the expected direction, only a statistically
significant correlation cannot be determined. A bigger sample may well result in a
confirmation of the hypotheses #1 and #4 after all.

Case Studies. The case studies are based on interviews at six organizations that com-
prise four manufacturing organizations and two non-manufacturing ones. As manu-
facturing organizations, we selected two large suppliers from the automotive industry,
one mid-tier organization from the metal-working industry, and one mid-sized organi-
zation from the logistics domain. As non-manufacturing organizations, we included
one public organization (a mid-size municipal administration department specifically)
and one franchise company providing haircutting services.

Interviews were based on a semi-structured interview guideline. Each interview
lasted between 90 and 180 minutes. At each organization, one interview session was
performed, whereas these interviews were actually group interviews in most cases,
i.e., typically several BPM key players joined the interviews in order to take the dif-
ferent perspectives on BPM activities into account.

Most importantly, our interview results confirm all findings from the Dutch main
study. Generally, we can see that BPM projects are performed in a more systematic

 BPM in Practice: Who Is Doing What? 57

manner in larger and more mature organizations (echoing findings #1 and #4). An
additional distinction between private sector and public sector organizations is not
necessary as both kinds of organizations are generally faced with the challenge to
work as efficiently as possible (echoing findings #2). The reason is that larger and
more mature organizations deal with the challenge to optimize their overall way of
working already for a long time. Thereby, especially manufacturing organizations
already pick up many of the typical BPM activities (such as process modeling, proc-
ess automation, process monitoring). Notwithstanding, our interviews also showed
that non-manufacturing organizations adopt many basic themes underlying BPM
initiatives as well, such as process thinking, adoption of a life-cycle-oriented way of
working, process analysis – although the respective activities are sometimes not ex-
plicitly considered or recognized as “BPM activities” (which, however, seems more
of a wording problem). This is in line with finding #3.

5 Summary, Conclusions and Future Work

The goal of this paper is to derive valuable insights both for practitioners performing
BPM projects and for academics facing the challenge to support practitioners with
innovative solutions in the field of BPM. In order to achieve this goal, we have inves-
tigated the adoption of BPM, i.e., the use and deployment of BPM techniques and
tools in different kinds of organizations. Specifically, a large set of 33 BPM projects
has been analyzed based on interviews, available project documentation, and project
data. To improve the validity of the results, we have taken various measures, includ-
ing a replication of our investigation through an international survey among 77 BPM
experts and six case studies in Germany. The findings have been described in Section
4. But what are now the specific implications of the presented work for both research
and practice?

Adopting the academic perspective, we have to recapitulate that our study is one of
the first reports dealing with considerations of, or types of, organizations adopting
BPM. As mentioned in Section 2, one of the rare studies is described in [3]. In this
study, BPM was tied to manufacturing settings. At the same time, the study requested
a wider adoption of BPM in non-manufacturing settings. Picking up this request, our
study clearly shows that significant progress has been made in non-manufacturing
settings so far (finding #2), whereas the profit-motive underlying a BPM initiative is
thereby not relevant (finding #3).

Surprisingly, adopting typical BPM concepts mainly depends on the size of an or-
ganization (finding #1). In fact, finding #4 states that also an organization’s strategic
orientation shows a relation with the characteristics of the BPM projects carried out
within such an organization. However, as strategic considerations are often only
discussed in larger enterprises (where objectives such as cost reductions or process
optimizations play a more important role), this finding can be considered as a conse-
quence of finding #1. This simple, but interesting conclusion (which also contrasts
existing literature) needs to be picked up both by researchers and practitioners and has
some significant impact on the way BPM solutions have to be discussed.

A consequence for researchers is that they also have to address “smaller” BPM use
cases emerging in small and medium-sized enterprises. Such enterprises are not that

58 H.A. Reijers et al.

interested in the top-of-the-notch process technology, but do certainly aim at the ap-
plication of BPM concepts for which the gateway hurdle is significantly lower. Aca-
demic research has to pick up this demand and has to develop innovative, but less
complex and therefore BPM solutions that are easier to apply. Respective solutions
can also make use of (simple) process technology, but have to focus more on organ-
izational issues at the beginning. Technology seems to be the second step only.

Adopting the practitioners’ perspective, we see – as aforementioned – that BPM
projects are performed in a much more systematic manner in larger and more mature
organizations (cf. finding #1). The reason is that these kinds of organizations deal
with the continuous need to optimize their work processes for a longer time. Conse-
quently, small and medium-sized enterprises need to be supported in learning from
larger companies. Thereby, it is not necessary to distinguish between manufacturing
and non-manufacturing enterprises (finding #3), i.e., the occurring and emerging
problems are more or less the same. Also, and this is confirmed by our study as well
(cf. finding #2), the profit motive does not significantly influence specific kinds of
BPM activities. What practitioners in small and medium-sized enterprises need is
therefore more and better methodological support enabling them to profit from ex-
periences in larger enterprises. This requires, however, that available BPM solutions
are scaled down, so that small and medium-sized enterprises are able to adopt innova-
tive, but less complex BPM solutions.

From an overall perspective, we can conclude that the size of an enterprise is the
most important dimension determining the use and deployment of BPM concepts in
practice. Neither the specific setting (manufacturing vs. non-manufacturing) nor the
profit motive influences the characteristics of BPM projects. Summarizing, we
strongly believe that more empirical insights into the application of BPM concepts is
needed. Hence, future work will include additional empirical research activities to
investigate the presented findings and observed phenomena in more detail. Respective
activities will include additional online surveys, case studies, and the performance of
controlled experiments (involving both students and practitioners). Special attention
will be paid on extending the international scope of BPM projects and client bases.

Acknowledgments. Special thanks go to Edgar Rot and Christian Waibel for accom-
plishing the international survey and their support on performing the six German case
studies. We further acknowledge the generous help of all consultants involved in the
analysis of the case studies. This research is supported by the Technology Foundation
STW, applied science division of NWO, and the technology programme of the Dutch
Ministry of Economic Affairs.

References

[1] Ko, R.K.L., Lee, S.S.G., Lee, E.W.: Business Process Management (BPM) Standards: a
Survey. BPM Journal 15(5) (2009)

[2] Hill, J.B., Cantara, M., Kerremans, M., Plummer, D.C.: Magic Quadrant for Business
Process Management Suites. Gartner Research, 164–485 (2009)

[3] Elzinga, D.J., Horak, T., Lee, C.Y., Bruner, C.: Business Process Management: Survey
and Methodology. IEEE Transactions on Engineering Management 42(2) (1995)

 BPM in Practice: Who Is Doing What? 59

[4] Pritchard, J.P., Armistead, C.: Business Process Management: Lessons From European
Business. BPM Journal 5(1), 10–32 (1999)

[5] Vergidis, K., Turner, C.J., Tiwari, A.: Business Process Perspectives: Theoretical Devel-
opments Vs. Real-World Practice. International Journal of Production Economics 114(1),
91–104 (2008)

[6] Ko, R.K.L.: A Computer Scientist’s Introductory Guide to Business Process Management
(BPM). Crossroads 15(4), 4 (2009)

[7] Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Management.
Distributed and Parallel Databases 3(2), 119–153 (1995)

[8] van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management:
A Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003.
LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

[9] Leymann, F., Roller, D., Schmidt, M.T.: Web Services and Business Process Manage-
ment. IBM Systems Journal 41(2), 198–211 (2002)

[10] Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the Effectiveness of Process-
Oriented Information Systems: Problem Analysis, Critical Success Factors and Implica-
tions. IEEE Transactions on Systems, Man, and Cybernetics (Part C) 38(3), 280–291
(2008)

[11] Hung, R.Y.Y.: Business Process Management As Competitive Advantage. TQM & Busi-
ness Excellence 17(1), 21–40 (2006)

[12] Rosemann, M., de Bruin, T.: Towards a Business Process Management Maturity Model.
In: Proceedings of the 13th European Conference on Information Systems, ECIS 2005
(2005)

[13] Iden, J., Opdahl, A.L., Eikebrokk, T.R., Olsen, D.H.: What Makes Process Modelling Ef-
fective: Modelling or Project Factors. In: Proceedings of the 1st International Working
Conference on Business Process and Services Computing (BPSC 2007), pp. 78–92
(2007)

[14] Zur Muehlen, M.: Workflow-Based Process Controlling. Logos (2004)
[15] Reijers, H.A.: Design and Control of Workflow Processes: Business Process Manage-

ment for the Service Industry. Springer, Heidelberg (2003)
[16] Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error

Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008)
[17] McCormack, K.: Business Process Orientation: Do You Have It? Quality Progress 34(1),

51–60 (2001)
[18] Kiraka, R.N., Manning, K.: Managing Organisations Through a Process-Based Perspec-

tive. Business Change and Re-engineering 12(4), 288–298
[19] Lee, R.G., Dale, B.G.: Business Process Management: a Review and Evaluation. BPM

Journal 4(3), 214–225 (1998)
[20] Hammer, M., Stanton, S.: How Process Enterprises Really Work. Harvard Business Re-

view 77, 108–120 (1999)
[21] Treacy, M., Wiersema, F.: The Discipline of Market Leaders. Addison-Wesley, Reading

(1995)
[22] Eisenhardt, K.M.: Building Theories From Case Study Research. The Academy of Man-

agement Review 14(4), 532–550 (1989)
[23] Jeston, J., Nelis, J.: Management by Process: A Practical Road-Map to Sustainable Busi-

ness Process Management. Butterworth-Heinemann, Butterworths (2008)
[24] Laukkanen, S., Sarpola, S., Hallikainen, P.: Enterprise Size Matters: Objectives and Con-

straints of ERP Adoption. Journal of Enterprise Information Management 20(3), 319–334
(2007)

60 H.A. Reijers et al.

[25] Kaplan, R.S., Norton, D.P.: Having Trouble With Your Strategy? Then Map It. Harvard
Business Review 78(5), 167–176 (2000)

[26] van der Aalst, W.M.P., Hee, K.M.: Workflow Management: Models, Methods, and Sys-
tems. MIT Press, Cambridge (2002)

[27] Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychologi-
cal Measurement 20(1), 37–46 (1960)

[28] Sim, J., Wright, C.C.: The Kappa Statistic in Reliability Studies. Physical Therapy 85(3),
257 (2005)

[29] Landis, J.R., Koch, G.G.: The Measurement of Observer Agreement for Categorical Data.
Biometrics 33(1), 159–174 (1977)

[30] Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions (1981)

How to Implement a Theory of Correctness
in the Area of Business Processes and Services

Niels Lohmann and Karsten Wolf

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
����������	
����

���������������
���������

Abstract. During the previous years, we presented several results concerned
with various issues related to the correctness of models for business processes
and services (i. e., interorganizational business processes). For most of the results,
we presented tools and experimental evidence for the computational capabilities
of our approaches. Over the time, the implementations grew to a consistent and
interoperable family of tools, which we call �������-����	
�
�
.
��.

This paper aims at presenting this tool family �������-����	
�
�
.
�� as a
whole. We briefly sketch the underlying formalisms and covered problem settings
and describe the functionality of the participating tools. Furthermore, we discuss
several lessons that we learned from the development and use of this tool family.
We believe that the lessons are interesting for other academic tool development.

1 Introduction

It is a phenomenon which is common to several technologies based on formal meth-
ods that they su�er from a devastating worst-case complexity, but perform surprisingly
well on real-world instances. Most prominent examples are model checking [10] and
SAT checking [48]. Consequently, any approach based on such technologies needs to be
complemented with a prototypical implementation, which provides evidence for the dif-
ference between theoretical complexity and actual observed run time. At the same time,
such implementations are an important milestone in the technology transfer between
academia and industry as they can be tried out and evaluated in realistic case studies
such as [42, 19].

In this paper, we aim at introducing and discussing a family of tools,
�������-����	
�
�
.
��, which has been developed over the previous couple of years
and is, in di�erent aspects, related to correctness of business processes and such ser-
vices which internally run nontrivial processes as well. Whereas various members of
the family have already been used to provide experimental data in several articles, for
instance [26, 36, 34, 31, 60, 63, 19, 30, 39], this is the first occasion to introduce and
discuss the common principles and lessons learned from �������-����	
�
�
.
�� as a
whole.

Central artifacts in the tool family are formal models for services and business pro-
cesses (based on Petri nets and automata-based formalisms) and formal models for sets
of services (based on annotated automata). The member tools of �������-����	
�
�
.
��1

1 Available for download at ���������
�����������������
������� .

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 61–77, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

62 N. Lohmann and K. Wolf

are concerned with importing and exporting models from and to more established lan-
guages, with analyzing artifacts, and with synthesizing artifacts. The distinguishing
feature of the tool family is that each basic functionality is provided by its own command-
line based tool. Additional functionality can be derived by combining tools by connect-
ing their input and output data streams. This way, our tool family is similar to the family
of basic UNIX tools such as grep, awk, sed, and the like.

Many tools in the tool family implement algorithms that involve exponential worst-
case complexity and complex data structures. To this end, an eÆcient implementation
is the key factor to apply these algorithms to realistic case studies.

In Sect. 2, we discuss related tools and approaches which as well aim at demonstrat-
ing practical applicability of formal methods. Then, in Sect. 3, we give a walk-through
introducing the current members of the tool family and the recurring concepts. In the
remaining sections, we discuss several observations that we made concerning the inte-
gration of the tool family into its environment (Sect. 4), the formal models used (Sect. 5),
and the chosen architecture (Sect. 6). Section 7 summarizes the lessons we learned dur-
ing the development which may as well be applicable to other domains.

2 Related Work and Tools for Process Correctness

Errors in business process models obstruct correct simulation, code generation, and exe-
cution of these models. Consequently, business process verification techniques received
much attention from industry and academia which is reflected by a constant and large
number of tools and research papers on this topic. Interestingly, general-purpose model
checking tools are hardly used. This could be explained, on the one hand, by the lacking
tool support and eÆciency in the early days of BPM research. On the other hand, the
properties a business process needs to satisfy are typically much simpler than what tem-
poral logics such as CTL or LTL o�er. For over one decade, soundness [1] is now the
established correctness notion. Soundness ensures proper termination (i. e., the absence
of deadlocks and livelocks in the control flow) while excluding dead code (i. e., tasks
that can never be executed).

Soundness can be naturally expressed in terms of simple Petri net properties, and
tools such as Woflan [58] exploit eÆcient Petri net algorithms to verify soundness.
Because of a close relationship [37] of many business process modeling languages to
Petri nets, soundness analysis techniques are e�ortlessly applicable to other formalisms.
For instance, Woflan is embedded as plugin into the ProM framework [2], and with
WofYAWL [57], there also exists an extension to verify YAWL [3] models.

A common assumption for business process is that they can be modeled by workflow
nets [1]; that is, models with a single distinguished initial and final state, respectively.
This structural restriction is heavily exploited by state-of-the-art tools such as Woflan
and may help to avoid expensive state space exploration whenever possible. The SESE
decomposition approach [56] which is used by the IBM Websphere Business Modeler
to decompositionally check soundness further assumes the free-choice property [15].
Similarly, the ADEPT framework [12] employs a block-structured language and o�ers
eÆcient algorithms to ensure soundness in adaptive systems [49].

How to Implement a Theory of Correctness 63

prepare1

prepare2

check

update

execute

approve

reject

offer reject accept invoice

Fig. 1. Petri net models for processes (left) and services (right)

Structural techniques such as Woflan’s heuristics or the SESE decomposition are
state of the art as a recent case study [19] reports. However, not all features of cur-
rent languages, such as BPMN or BPEL, can be expressed in terms of the mentioned
structural restrictions. At the same time, the case study [19] reveals that state space
verification became likewise eÆcient. Consequently, only state space verification tools
o�er the necessary flexibility to verify business processes with complex structures.

3 Overview of the Tool Family

The tools available in �������-����	
�
�
.
�� are all concerned with control flow mod-
els of business processes or services. These models are typically given as Petri nets.
The only distinction between processes and services is the absence (or presence) of dis-
tinguished interface places and transitions; see Fig. 1 for simple examples. We use a
simple file format for Petri nets and have compilers available which manage the import
and export into standard formats such as PNML [8].

Most tools in our tool family read or write such Petri net models; Figure 2 provides
an overview of the whole tool family. To avoid repetition of programming e�orts, we
created a Petri net API which provides an internal representation of all basic Petri net
elements and provides standard access methods (e. g., iterating on the set of nodes).

One way of creating a Petri net model to use a plain text editor or to import it from
modeling tools that o�er PNML export such as Oryx [14] or Yasper [25]. For obtain-
ing realistic Petri net models, we use two di�erent approaches. First, we have several
compilers which translate specifications of practically relevant languages into Petri net
models:

– BPEL2oWFN [32] for translating WS-BPEL [4] specifications into Petri nets;
– UML2oWFN [18] for translating business process models from the IBM Websphere

Business Modeler into Petri nets.

From UML2oWFN, we obtain a business process model. For BPEL2oWFN, the user
may chose whether to create a business process model from a single WS-BPEL process
specification (its internal control flow) or the control flow of a service collaboration
specified in BPEL4Chor [13, 34], or whether to obtain a service model from a WS-
BPEL process specification.

More models can be obtained using distinguished �������-����	
�
�
.
�� synthesis
tools (see below). These tools typically produce automata-like models for the control
flow of a business process or a service. Such a model can, however, be translated into

64 N. Lohmann and K. Wolf

oWFN2BPEL

BPEL2oWFN

UML2oWFN

Wendy

Rachel

Cosme

Mia

Linda

Yasmina

Safira

Diane

Sayo

Rebecca

Marlene

Candy

PNAPI

LoLA

Wendy

PNAPI

Cosme

model transformation

model transformation

open
nets

migration information transformation rulesadapter/mediator

communication
fingerprint

Petri nets

operating
guideline

correction
actions

cost
specification

choreographyspecification witness/counter-example

model transformation

composition

decomposition model
transformation

choreography
realization

model
checking

choreography
correction

service
automata

adapter
synthesis

runtime
migration

substitutability
check

public view
generation

matching

set operations

cost optimization

partner
synthesis

partner
characterization

BPEL
process

UML business
process

n

n

n

n

21-2

comparisons

2

PNAPIPNML
Petri net

model import

Fig. 2. Illustration of the interdependencies of the �������-����	
�
�
.
�� tools

a Petri net model by either using a brute-force translation where each state of the au-
tomaton is translated into a separate place of the Petri net, or by using region theory [5]
which leads to much more compact Petri net models. Both methods are available in
our Petri net API. For the latter method, the API calls the external tools Petrify [11] or
Genet [9] which, consequently, interoperate seamlessly with our tool family.

Our tool family can as well be plugged into existing tools and frameworks. We would
like to mention ongoing integration e�orts into the ProM framework [2], Oryx [14],
and the YAWL editor [3]. In these cases, we chose to build plugins to these tools which
translate the native modeling language into a representation of our Petri net API. It is
then close to trivial to incorporate any subset of the tools mentioned next.

A Petri net model of a business process can be verified. Within the tool family, the
Petri net-based model checker LoLA [61] is available which has proven to be powerful
enough for the investigation of business process models [26, 19] or service collabora-
tions [34]. LoLA verifies properties by explicitly investigating the state space of a Petri
net using several of state-of-the-art state space reduction techniques.

For a model of a single service, we can not only verify its internal control flow. With
the concept of controllability (“does the service have at least one correctly interacting
partner?”) [62], verification covers the interaction of the service with its environment.
We decide the controllability problem by trying to construct a canonical (“most per-
missive”) partner. This is one of the tasks of our tool Wendy [39]. For constructing the
partner service, Wendy explores the state space of the given service. The distinguishing
feature of Wendy with respect to a prior implementation is that it employs the state

How to Implement a Theory of Correctness 65

!invoice !offer

!invoice (?reject ?accept) !offer

?reject ?accept!invoice

final

!invoice

!invoice

!invoice
?accept

?accept

!offer?reject

!offer?reject

Fig. 3. Operating guideline [36]

service
broker

service
requestor

service
provider

service
registry

requestor
service

provider
service

bind

publishfind

Fig. 4. The SOA triangle [23]

space exploration power of LoLA rather than traversing the state space using its own
implementation. Surprisingly, the gain of using the sophisticated data structures and al-
gorithms in LoLA outweighs the loss caused by transferring Petri net models and ASCII
representations of computed state spaces between LoLA and Wendy.

A partner as constructed by Wendy is useful for a several applications. It can be
used as a communication skeleton for actually programming such a partner. To this end,
our compiler oWFN2BPEL [33] is quite useful which maps a Petri net to an abstract
WS-BPEL process thus closing the loop between our formal realm and reality.

A related application for the partner created by Wendy is the synthesis of an adapter
[16] service that mediates between otherwise incorrectly interacting services. This is the
task of the tool Marlene. Marlene reads service models and a specification of permitted
adapter activities (which messages can be created, transformed, deleted by the adapter?)
and produces an adapter. As the adapter can be roughly seen as a correctly interacting
partner to the given services, it is no surprise that large parts of the synthesis task are
left to a call of Wendy.

Instead of inserting an additional component (the adapter) into the service collabora-
tion, it is also possible to replace one of the participating services. This task is supported
by the tool Rachel [31]. Given a service collaboration which does not interact correctly,
Rachel can replace one of its participants (selected by the user) by another service which
interacts as similar as possible but establishes correct interaction.

The second central artifact in the �������-����	
�
�
.
�� tool family is a finite rep-
resentation of possibly infinite sets of service models. Syntactically, we use annotated
automata [36]. An annotated automaton A represents the set of all those service mod-
els which can establish a simulation relation [44] with the automaton A such that the
constraints represented in the annotations of A get satisfied. The most prominent exam-
ple for a useful set of services is the set of all correctly interacting partners of a given
service that we called operating guidelines in several publications [35,36,52]. Figure 3
shows an example of such an operating guideline.

Consequently, the transformation of a service model into one or all correctly interact-
ing partner services is a core element of our theory. This is a nontrivial task as obvious
ideas like just copying the control flow and reversing the direction of message transfer
do not work in general. Our solution [36] annotates the most permissive partner. The
corresponding implementation is thus done within Wendy.

66 N. Lohmann and K. Wolf

In several settings, it is also desirable to replace a service with a new one such that
the new one interacts correctly in any collaboration where the old one was participating
(be it for technical update or changes in the context like new legal requirements). In
this case, the tool Cosme can verify the underlying substitutability property [52]. Sub-
stitutability means that every correct partner of the old service interacts correctly with
the new one. The key to deciding this inclusion on (typically infinite) sets of services is
their finite representation as operating guidelines.

For collaborations which are already running, Mia [30] suggests transitions from
states of the old service to states of the new service such that the old service can be
migrated to the new service and the latter can take over the collaboration at run time.

One of the core concepts in the way services are expected to collaborate is the service-
oriented architecture (SOA) [23] with its eye-catching SOA triangle (see Fig. 4). Some
of the �������-����	
�
�
.
�� members aim at supporting the procedures visualized in
the triangle. The tool Linda turns a service model S into what we call a communication
fingerprint [54]. This is an abstract pattern covering the correct interactions that S is
able to produce. In the current version Linda provides lower and upper bounds for the
occurrence of messages in correctly terminating runs. The idea of fingerprints is that it is
much easier to select a correctly interacting partner from a repository if most entries in
the repository can be ruled out by just finding incompatibilities in the communication
fingerprint than by performing model checking on the complete service models. The
task of comparing communication fingerprints is implemented in the tool Yasmina.

Another opportunity for organizing a service repository is to store operating guide-
lines of services instead of the services themselves. In this case, a SOA requester needs
to be compared (matched) with the operating guidelines of registered services. Whereas
the generation of operating guidelines is done by Wendy, it is Cosme to perform the ac-
tual matching. With the tool Candy, nonfunctional properties such as costs can be added
to service models to refine the analysis.

In [28], we argued that it would be beneficial to aggregate operating guidelines for
speeding up the selection of registered services. At the same time, more abstract find
requests can be translated into annotated automata; that is, the formalism used for rep-
resenting operating guidelines. Basic operations to be performed in a registry then boil
down to basic set operations (union, intersection, complement, membership test, empti-
ness test). Our tool Safira [27] implements many of these operations by manipulating
annotated automata.

If, for some reason, operating guidelines are not suitable for some purpose, our tool
Sayo transforms the operating guideline of a given service S into some service model
S � — a public view of S — which is behaviorally equivalent to S . We believe that this
procedure could be used as an obfuscator for S ; that is, for publishing all relevant in-
formation about S without disclosing its control flow. Unfortunately, we still lack some
information-theoretic foundation of this obfuscation property.

Beyond SOA, choreographies are a promising technology for creating service
collaborations. For choreographies, realizability [21] is a fundamental correctness prop-
erty comparable to soundness of workflows. We observed that the realizability prob-
lem is conceptually very close to a certain variant of the controllability problem for
services [40]. As a result, the tool Rebecca which implements the algorithm to check

How to Implement a Theory of Correctness 67

state space exploration /
model checking

partner synthesis

partner characterization
(operating guidelines, fingerprints)

inspect / compare / manipulate
partner characterizations

model transformation

Wendy

LoLA

Rebecca

Cosme

Diane
Sayo

Safira

Wendy

Mia
Rachel

Linda

Yasmina
Candy

BPEL2oWFN
UML2oWFN

oWFN2BPEL
Petri Net API

Marlene

Fig. 5. Our technology stack

realizability for a choreography and to synthesize realizing services can also be used by
Wendy to investigate that variant of controllability.

Finally, we would like to mention our tool Diane [43] which provides another con-
nection between business processes and services. Diane takes a Petri net model of a
business process N (in fact an arbitrary Petri net) and produces a set of service models
S 1� � � � � S n such that their composition is equivalent to N. This procedure can be used
for divide-and-conquer approaches for the verification of Petri nets in general [46]. We
are also working on an extension of this idea leading to suggestions for spinning o�
services from existing business process models.

To summarize, we have a large set of single purpose tools that exchange informa-
tion by means of files or data streams. Single-purposeness is the main distinction be-
tween �������-����	
�
�
.
�� and previous implementations in our group. The tools
can be grouped into compilers (BPEL2oWFN, oWFN2BPEL, UML2oWFN), the two
core technology providers LoLA and Wendy, a large set of application-oriented tools
(Marlene, Rachel, Safira, Rebecca, Linda, Yasmina, Cosme, Candy), and a few model
manipulation tools (Sayo, Diane, Petri Net API). Virtually, all tools use the Petri net
API for the internal representation of Petri nets. Some external tools are very useful
in our family. Apart from the already mentioned tools Petrify and Genet, we rely on
powerful libraries for solving linear constraint problems (lpsolve [20]), for manipulat-
ing Boolean functions using Binary Decision Diagrams (CUDD [51]), and for solving
the satisfiability problem for propositional Boolean formulae (MiniSat [17]).

The application-oriented tools import critical calculations (such as state space ex-
ploration or partner synthesis) from the core technology providers LoLA and Wendy.
Hence, optimizations done to the data structures and algorithms in these tools directly
transfer to the performance of the application-oriented tools. This led us to view our
tool family in terms of a technology stack (see Fig. 5).

We already discussed the model transformations which realize the import and export
of models, as well as conversions between di�erent file formats. On top of this layer, the
bottom technology is state space exploration as provided in LoLA. The next two layers
use state space exploration to produce a partner service to a given service which in turn
is used as a central element in operating guidelines. Most other applications inherit their
computational power at least partly from LoLA or Wendy.

68 N. Lohmann and K. Wolf

In the remainder of this article, we discuss several lessons we learned from the avail-
ability of the tools listed so far and from the way we implemented them. We discuss the
lessons in the light of academic tool development which di�ers in several respects from
industrial tool development.

4 Link to Reality

This section is devoted to lessons related to the link between our family of tools and
reality. The following lessons are not necessarily surprising. We believe, however, that
our experience with the �������-����	
�
�
.
�� tool family adds some evidence to these
lessons.

One of the most apparent purposes for implementing theoretical approaches is to
prove applicability in nontrivial context. This is necessary as theoretical results on
worst-case complexity typically do not clearly distinguish between working and non-
working approaches. In [19], for example, we demonstrated that — di�erent to common
belief — state space methods can very well be competitive for the formal verification of
business processes. Only because of the convincing results in this study we have been
to raise the issue of using verification even as part of actual modeling process (“verify
each time you save or load models”).

Lesson 1. An actual prototype implementation propels transfer of technology from the-
ory to practice.

Another advantage of the prototype implementation is that experimental data presented
in papers become more serious. Over the previous few years, we chose to make tools
and experimental input data available over the Internet. The page2 is an example related
to the paper [31]. Because of the simple architecture of our tool family, it is possible to
provide just the relevant part of our tool family, and to freeze the state of implementation
at the point in time where the experiments have actually been carried out. By making
experimental results repeatable by independent instances and by disclosing the source
code of the tools, we address recent discussions on fraud and bad scientific practice.

Lesson 2. Prototype implementations help in making experimental evidence
transparent.

Our implementations also provided valuable feedback to the improvement of tools. In
the case study [19], we compared various combinations of soundness checking tech-
niques. Among them were preprocessing approaches based on Petri net structural reduc-
tion rules [7, 45]. Such a rule locally replaces a Petri net pattern with a simpler one yet
preserving given properties (such as soundness). By the experiments on a large sample
set, we found that the e�ect of applying these reductions is marginal if the subsequent
state space verification is using the partial order reduction, one of the most e�ective
state space reduction methods. Consequently, we were able to shift e�orts from further
implementation of structural reduction to other, more beneficial tasks.

2 ���������
�����������������
��������
���������	
������ ���	

How to Implement a Theory of Correctness 69

Lesson 3. Large case studies help to detect bottlenecks early.

We observed anecdotal evidence for this during the evaluation of the results of a case
study. With our earlier tool Fiona, we calculated the operating guidelines of several
industrial service orchestrators we translated from WS-BPEL processes. Both runtime
and memory consumption were larger than we expected, compared to the relatively
small sizes of the resulting operating guidelines. Fiona faithfully implemented the con-
struction algorithm from [36] and first calculated an overapproximation of the final an-
notated automaton from which it iteratively removed states that could not belong to the
final result. For the concrete examples, however, it turned out that over 90 % of the gen-
erated states were eventually removed. We did not observe such a large overhead during
the analysis of academic examples. Consequently, any previous optimization e�ort was
put into an eÆcient generation of this overapproximation. With the experience of this
case study, we reimplemented the algorithm in the new tool Wendy and implemented a
static analysis of the model to avoid the generation of spurious states in the first place.
Even though this preprocessing employs assumed expensive state space verification, it
allowed for dramatic speedups. Wendy is typically 10 to 100 times faster than Fiona,
because we could reduce the number of spurious states to less than 1 %.

5 Choice of Formalism

In this section, we report on observations that we made concerning the choice of formal-
ism. During the development of some of the tools, we discussed several variations, most
notably the use of a workflow net structure [1]. In the end, we found that we would ben-
efit most from the most liberal formalism that is still analyzable: bounded (finite state)
Petri nets and finite automata.

Again, the study [19] yields an excellent example. For comparing tools, we translated
various business processes not only into the LoLA format, but also into Woflan format
which uses the aforementioned workflow nets both in modeling and verification. Stick-
ing to this workflow structure has a couple of advantages in verification, for instance
through a simple connection between soundness on one hand and well investigated
Petri net properties [1] on the other hand. By the workflow net structure, each model
has a single distinguished end state. Unfortunately this was not the case for our models
stemming from the IBM Websphere Business Modeler. These models inherently have
multiple end states. Using the algorithm of Kiepuszewski et al. [29], we were able to
extend the models such that all end states merged into one. This construction, however,
is only applicable to nets with free choice structure [15]. For free choice nets, many
eÆcient verification techniques are available which do not work at all, or at least not
eÆciently, for arbitrary Petri nets. So whereas Woflan forced us into a workflow net
structure for reasons of eÆciency in one regard, it forced us into less structured models,
with more serious runtime penalties in other regards.

Lesson 4. The input formalism of a verification tool should not contain any structural
restrictions beyond those required by the implemented technique.

With a liberal formalism, the resolution of the tradeo� between di�erent structural fea-
tures can be left to the generation of the model. Whether a model satisfies a certain

70 N. Lohmann and K. Wolf

structural constraint (such as workflow net structure or free choice nature) can typically
be easily decided.

Admittedly, the situation in our tool family is easier than in Woflan. Our models are
typically generated by the compilers of our tool family, whereas Woflan models can be
directly drawn using a graphical editor. Not forcing any structural restrictions in Woflan
would mean that users tend to produce spaghetti-like models which are then rather error-
prone and hard to verify. Hence, the previous lesson only works in combination with
another one.

Lesson 5. It is beneficial to separate the formalism used for modeling from the one
used for verification.

Then, the generation of a “verification-friendly” model is enforced in the translation
between the formalisms. Decoupling the modeling from verification has another ad-
vantage. Whereas modeling tools inherently need to address domain-specific notations,
structuring mechanisms, and procedures, this is not necessarily the case for verification
technology. Actually, when we tuned our tool LoLA for the verification of business
processes, we ended up with more or less the same combination of reduction tech-
niques which were also found optimal in the verification of asynchronous hardware
circuits [53] or even biochemical reaction chains [55]. In turn, having implemented
a verification tool for some purpose, a domain-unspecific formalism helps to conquer
new application areas and to transfer experience from one domain to another. A further
good example in this regard is the tool Petrify. Although its designers focused on appli-
cations in hardware synthesis, they kept their basic formalism suÆciently general and
hence allowed us to use their tool in a services context. According to our experience, the
ability to reach out for new application domains is much more significant than potential
performance gains by domain-specific heuristics. Last but not least, domain-unspecific
formalisms tend to be much simpler with respect to basic concepts than domain-specific
ones (compare Petri nets or automata with notations such as EPC or BPMN) thus sim-
plifying data structures and algorithms in the tools.

Lesson 6. Keep verification technology domain-unspecific.

As our internal representation of business processes and services did not reflect any re-
strictions from the modeling domain, the only tool a�ected by the shift from the Petri
net semantics for BPEL4WS 1.1 [26] to the one for WS-BPEL 2.0 [32] was the corre-
sponding compiler. In both semantics, we were able to represent complex mechanisms
such as fault handlers, compensation handlers, or termination handlers. Likewise, the
link to new languages (such as BPMN 2.0) will only involve building a new compiler
whereas we will not need to touch any technology provider or application-oriented tool
in our family.

As a side-e�ect of domain-unspecific technology, it is easy to integrate our tools
into other frameworks. LoLA is already integrated into several Petri net frameworks
including CPN-AMI [24], the Petri Net Kernel [59], the Model Checking Kit [50], and
the Pathway Logic Assistant [55]. Integrations into other frameworks are progressing,
such as into ProM, Oryx, or YAWL. This way, we benefit from functionality of the
mentioned tools. In particular, there is no reason for us to invest resources into graphical

How to Implement a Theory of Correctness 71

user interfaces or simulation engines. Instead, we can focus all available resources on
our core competencies which are verification techniques.

Providing domain-unspecific verification technology does not necessarily mean that,
through a suÆciently general formalism used for verification, the development of com-
pilers into the formalism can be done completely independent of the subsequent tech-
nology providers. Compare, for example, the di�erent Petri net semantics given to WS-
BPEL [32, 47]. The proposal of [47] employs cancellation regions, a feature which
is supported by YAWL. These cancellation regions can be transformed to ordinary
Petri nets. This translation, however, introduces several global status places which in-
troduce dependencies between Petri net transitions. These dependencies, in turn, spoil
the partial order reduction, LoLA’s most powerful state space reduction technique. Con-
sequently, the translation [32] carefully avoids the introduction of global status places.
A detailed discussion of the di�erent modeling approaches is provided in [38].

Lesson 7. Despite a domain-unspecific formalism, compilers need to fit to the subse-
quent technology providing tools.

6 Architecture

Several lessons can be learned from the architecture of �������-����	
�
�
.
��. Two
years ago, most of our results were implemented within a single tool, Fiona [41]. As
more and more results emerged, the tool constantly grew and eventually we ran into
severe maintenance problems.

With Wendy, we completely rethought our tool development process. We came to
the conclusion that it would be beneficial to switch from a single multipurpose tool
to the family of single-purpose tools which we sketched in Sect. 3. The advantages
of the single-purpose paradigm became such evident that we managed to copy most
functionality of Fiona in the new tool family in less than a year.

The main lesson of this section is:

Lesson 8. Separate functionality into a multitude of single-purpose tools rather than
integrating it into a single tool.

The decisive advantage of the single-purpose approach is that data structures are sig-
nificantly simpler than in a multipurpose tool. In our case, many algorithms roughly
shared the same core data structures (in particular, annotated automata). However, each
of the algorithms required some subtle changes in the general scheme, or required cer-
tain constraints. In e�ect, we dived into an increasingly deep class hierarchy. As this
hierarchy became less and less transparent, programmers did no longer oversee which
invariants they could rely on for certain data structures and so a number of redundant
computations occurred. It become increasingly diÆcult to familiarize students with the
existing code and to add functionality. Cross-dependencies caused severe problems for
maintenance and testing.

Wendy was an attempt to flee this self-magnifying loop. It reimplements the core
tasks of Fiona: computation of a correctly interacting partner and computation of an
annotated automaton which represents all correctly interacting partners. We achieved
the following results:

72 N. Lohmann and K. Wolf

– Wendy’s core functionality could be implemented within 1,500 lines of code in-
stead of more than 30,000 lines of code in Fiona.

– Wendy was coded within two weeks compared to several years of developing Fiona.
– Wendy solves problems 10 to 100 times faster than Fiona although it is used on the

same basic algorithmic idea. At the same time, the memory consumption could be
decreased by a similar factor.

– Wendy has shallow data structures and its code is easy to understand. For instance,
the whole functionality is implemented in six classes and there was no need for any
class hierarchies (viz. inheritance). In contrast, Fiona consists of over 50 classes
with an up to 5-level class inheritance.

The data structures could be kept shallow as they no longer needed to fit the needs of
many tool components at once.

Lesson 9. Single-purpose tools yield simpler data structures which in turn simplifies
maintenance and testability.

The clearer structure of the tool helped us to design a set of tests with more than 95 %
code coverage. A similar endeavor would have been hopeless for Fiona as the various
interfering features would have caused an astronomical number of test cases. For the
same lack of interference with other features, it is much easier to repeat bugs on simple
samples rather than big input files thus speeding up debugging.

With Wendy’s 1,500 lines of code, it was quite easy to delegate further implemen-
tation tasks to students. Excited by the eÆciency gains of Wendy, we span o� more
functionality from Fiona. The pattern described above repeated to all the tools which
now form the �������-����	
�
�
.
�� family. In addition, we observed that the separa-
tion into many autonomous tools actually led to tremendous speed-ups in the response
to errors. As we assigned whole tools to students (what we could do because of the
light weight of each tool), responsibilities for errors were fully transparent. Moreover,
we recognized that the students committed much more to “their tool” than they used to
commit to “their changes in the code” of the big tool. It was easier to get them to work.
In the old tool, they hesitated to touch code as they feared “to break everything”.

These observations may be typical for an academic context. Here, much of the pro-
gramming work is carried out by students. On the one hand, their commitment to tool
development is only part of their duties and only for a very limited time interval. Pro-
gramming is often just a side-product of writing a thesis or a paper. This way, skills and
experience do not grow over time and senior software architects are rare. On the other
hand, the algorithmic solutions to be implemented tend to be rather involved as they
stem from theoretically challenging problems. Hence, for successful tool development
it is critical to provide an architectural environment that is as simple as possible.

Lesson 10. Single purpose tools have just the right granularity for tool development in
an academic context.

Apparently, other groups have come to similar conclusions. At least, the plugin concepts
in ProM and Oryx also seem to follow the idea that the unit of code to be delegated to
a single student should be extremely well encapsulated. However, their plugin concept

How to Implement a Theory of Correctness 73

seems to require a very well designed and mature core unit which does not exist in our
family. Furthermore, these tools o�er very sophisticated graphical user interfaces which
not only justifies the need of a central framework, but also a higher level of abstraction
in the interface between the plugins and this framework. In our tool family, however,
performance is the key factor and we decided to keep user interaction and abstraction
layers to a minimum.

Lesson 11. Single purpose tools permit tool development at varying speed and sophis-
tication.

In our case, the transition from a monolithic tool to a family of tools led to smaller
release cycles. We were able to implement concepts such as code reviews, four-eyes
programming and other extreme programming [6] techniques. In particular, the core
control logic of each individual tool tends to be rather simple and linear.

Of course, one may object that we just shifted complexity from a single tool to the
interplay between the tools. One issue could be the definition of formats for exchanging
definitions. Surprisingly, this was a minor issue so far in our family, for the following
simple reason:

Lesson 12. Data exchanged between tools of the family are typically tied to precisely
defined core concepts of the underlying theory.

As the theoretical concepts are only to a small degree subject to continuous improve-
ments, the exchange formats remain rather stable. Another issue with single purpose
tools could be to find out what the single purpose of such a tool would be. Again the
answer might be surprising.

Lesson 13. It is not overly important to precisely understand the purpose of a single-
purpose tool in early development stages.

If, after some time of development, it turns out that the functionality of a tool should
have been split into separate tools, just split then! This is what we have exercised with
Fiona. Originally thought as a tool to decide controllability, Fiona grew over time into
a tool for synthesizing partners and operating guidelines, for verifying substitutability,
for synthesizing adapters, and other tasks. Only then we realized that this functionality
would be better provided by more than one tool and only then could we plan these new
tools. Only with the experience from Fiona we have been able to define the functionality
that should go into the Petri net API. The costs for refactoring are a�ordable and provide
a canonical opportunity for revising design decisions.

In addition, a certain modularity in the tool family is suggested by a corresponding
modularity in the underlying theory. In the single-purpose paradigm, a cited result in the
theory is often copied by a call of the related tool. Here, Marlene is an excellent example.
Marlene is devoted to the computation of an adapter between otherwise incompatible
services P and R. Theory suggests [22] that the adapter A should be composed of two
parts, E and C. E implements the individual adaptation activities that can be performed
in principle by the adapter, based on a specification which is part of the input to Marlene.
C controls, based on the actual exchanged messages, when to execute the available
activities in E. According to the theory, C is just a correctly interacting partner of the

74 N. Lohmann and K. Wolf

composition P � E � R. Hence, Marlene transforms the input into a Petri net E, calls
Wendy on P � E � R to synthesize C and compiles the resulting C to the final adapter
A � E � C. Every optimization or extension that is done to Wendy is thus immediately
inherited by Marlene.

A third concern of the single-purpose paradigm could be the fear of divergence be-
tween the tools which could compromise interoperability. However, despite available
tools for software engineering, a whole tool will always be more encapsulated than a
single method.

Lesson 14. It is easier to let di�erent versions of a tool coexist than to maintain di�er-
ent versions of a function or method within a single tool.

We think that this is an advantage of a tool family even compared to a plugin based
architecture where it is nontrivial to run various versions of a plugin concurrently.

7 Conclusion

We introduced �������-����	
�
�
.
�� as a tool family which provides prototype im-
plementations for several theoretical results on correctness of business processes and
services. The core technology providers in this family have been successfully exposed
to real-world problems. These real-world problems were accessible, because we have
several compilers which mediate between theoretical core formalisms and industrial
languages. In this paper, we shared several insight that we observed upon tool devel-
opment. As our development included a significant refactoring from a monolithic tool
toward an interoperable tool family, we are able to directly compare di�erent solutions.
Our findings particularly concern the specifics of academic tool development.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. Journal of
Circuits, Systems and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros, A.K.A.,
Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W.E., Weijters, A.J.M.M.T.: ProM 4.0: Com-
prehensive support for real process analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)

3. van der Aalst, W.M.P., Hofstede, A.H.M.t.: YAWL: yet another workflow language. Inf.
Syst. 30(4), 245–275 (2005)

4. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0. OASIS
Standard, OASIS (2007)

5. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) APN
1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

6. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-Wesley,
Reading (2005)

7. Berthelot, G., Lri-Iie: Checking properties of nets using transformation. In: Rozenberg, G.
(ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)

How to Implement a Theory of Correctness 75

8. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post,
R., Stehno, C., Weber, M.: The Petri net markup language: Concepts, technology, and tools.
In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505.
Springer, Heidelberg (2003)

9. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: a tool for the synthesis and mining of
Petri nets. In: ACSD 2009, pp. 181–185. IEEE, Los Alamitos (2009)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
11. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: A tool

for manipulating concurrent specifications and synthesis of asynchronous controllers. Trans.
Inf. and Syst. E80-D(3), 315–325 (1997)

12. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for
robust and flexible process support. Computer Science - R&D 23(2), 81–97 (2009)

13. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for modeling
choreographies. In: ICWS 2007, pp. 296–303. IEEE, Los Alamitos (2007)

14. Decker, G., Overdick, H., Weske, M.: Oryx - an open modeling platform for the BPM com-
munity. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
382–385. Springer, Heidelberg (2008)

15. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cambridge (1995)
16. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation for service

interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

18. Fahland, D.: Translating UML2 Activity Diagrams Petri nets for analyzing IBM WebSphere
Business Modeler process models. Informatik-Berichte 226, Humboldt-Universität zu Berlin,
Berlin, Germany (2008)

19. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: In-
stantaneous soundness checking of industrial business process models. In: Dayal, U., Eder,
J., Koehler, J., Reijers, H.A. (eds.) Business Process Management. LNCS, vol. 5701, pp.
278–293. Springer, Heidelberg (2009)

20. Berkelaar, M., et al.: Free Software Foundation: lpsolve: Mixed Integer Linear Programming
(MILP) Solver, ������������������
����
������

21. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and verifica-
tion of reactive electronic services. Theor. Comput. Sci. 328(1-2), 19–37 (2004)

22. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service adapter based
on transformation rules. Preprint CS-02-08, Universität Rostock, Rostock, Germany (2008)

23. Gottschalk, K.: Web Services Architecture Overview. IBM whitepaper, IBM developerWorks
(2000), ���������	���	���������
!�
����������

������

24. Hamez, A., Hillah, L., Kordon, F., Linard, A., Paviot-Adet, E., Renault, X., Thierry-Mieg,
Y.: New features in CPN-AMI 3: focusing on the analysis of complex distributed systems. In:
ACSD, pp. 273–275. IEEE, Los Alamitos (2006)

25. van Hee, K.M., Oanea, O., Post, R., Somers, L.J., van der Werf, J.M.E.M.: Yasper: a tool for
workflow modeling and analysis. In: ACSD 2006, pp. 279–282. IEEE, Los Alamitos (2006)

26. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der Aalst, W.M.P.,
Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 220–235.
Springer, Heidelberg (2005)

27. Kaschner, K.: Safira: Implementing set algebra for service behavior. In: CEUR Workshop
Proceedings, ZEUS 2010, vol. 563, pp. 49–56. CEUR-WS.org (2010)

28. Kaschner, K., Wolf, K.: Set algebra for service behavior: Applications and constructions.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp.
193–210. Springer, Heidelberg (2009)

76 N. Lohmann and K. Wolf

29. Kiepuszewski, B., Hofstede, A.H.M.t., van der Aalst, W.M.P.: Fundamentals of control flow
in workflows. Acta Inf. 39(3), 143–209 (2003)

30. Liske, N., Lohmann, N., Stahl, C., Wolf, K.: Another approach to service instance migration.
In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC 2009. LNCS, vol. 5900, pp. 607–621.
Springer, Heidelberg (2009)

31. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-based
graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 132–147. Springer, Heidelberg (2008)

32. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Dumas, M.,
Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)

33. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models into sim-
ple abstract BPEL processes. In: Modellierung 2008. LNI, vol. 127, pp. 57–72. GI (2008)

34. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verification and
participant synthesis. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp.
46–60. Springer, Heidelberg (2008)

35. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL processes.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 17–32.
Springer, Heidelberg (2006)

36. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services. In: Kleijn,
J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer, Heidelberg
(2007)

37. Lohmann, N., Verbeek, H., Dijkman, R.M.: Petri net transformations for business processes –
a survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 46–63.
Springer, Heidelberg (2009); Special Issue on Concurrency in Process-Aware Information
Systems

38. Lohmann, N., Verbeek, H., Ouyang, C., Stahl, C.: Comparing and evaluating Petri net seman-
tics for BPEL. Int. J. Business Process Integration and Management 4(1), 60–73 (2009)

39. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 297–307. Springer, Heidelberg
(2010)

40. Lohmann, N., Wolf, K.: Realizability is controllability. In: Laneve, C. (ed.) WS-FM 2010.
LNCS, vol. 6194, pp. 110–127. Springer, Heidelberg (2010)

41. Massuthe, P., Weinberg, D.: Fiona: A tool to analyze interacting open nets. In: CEUR Work-
shop Proceedings, AWPN 2008, vol. 380, pp. 99–104. CEUR-WS.org. (2008)

42. Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., van Dongen, B.F., van der Aalst,
W.M.P.: Faulty EPCs in the SAP reference model. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 451–457. Springer, Heidelberg (2006)

43. Mennicke, S., Oanea, O., Wolf, K.: Decomposition into open nets. In: CEUR Workshop
Proceedings, AWPN 2009, vol. 501, pp. 29–34. CEUR-WS.org (2009)

44. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Englewood Cli�s (1989)
45. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),

541–580 (1989)
46. Oanea, O., Wimmel, H., Wolf, K.: New algorithms for deciding the siphon-trap property. In:

Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 267–286. Springer,
Heidelberg (2010)

47. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., Hofstede, A.H.M.t.:
Formal semantics and analysis of control flow in WS-BPEL. Sci. Comput. Program. 67(2-3),
162–198 (2007)

48. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verifi-
cation. STTT 7(2), 156–173 (2005)

How to Implement a Theory of Correctness 77

49. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.
In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 115–135.
Springer, Heidelberg (2009); Special Issue on Concurrency in Process-Aware Information
Systems

50. Schröter, C., Schwoon, S., Esparza, J.: The Model-Checking Kit. In: van der Aalst, W.M.P.,
Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer, Heidelberg (2003)

51. Somenzi, F.: CUDD: CU Decision Diagram Package,
����������������

�������"�
����#$%%�

52. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with operat-
ing guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460,
pp. 172–191. Springer, Heidelberg (2009); Special Issue on Concurrency in Process-Aware
Information Systems

53. Stahl, C., Reisig, W., Krstic, M.: Hazard detection in a GALS wrapper: A case study. In:
ACSD 2005, pp. 234–243. IEEE, Los Alamitos (2005)

54. Sürmeli, J.: Profiling services with static analysis. In: CEUR Workshop Proceedings, AWPN
2009, vol. 501, pp. 35–40. CEUR-WS.org (2009)

55. Talcott, C.L., Dill, D.L.: Multiple representations of biological processes. In: Priami, C.,
Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI),
vol. 4220, pp. 221–245. Springer, Heidelberg (2006)

56. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models through SESE decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

57. Verbeek, H.M.W., van der Aalst, W.M.P., Hofstede, A.H.M.t.: Verifying workflows with
cancellation regions and OR-joins: An approach based on relaxed soundness and invariants.
Comput. J. 50(3), 294–314 (2007)

58. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow processes using
Woflan. Comput. J. 44(4), 246–279 (2001)

59. Weber, M., Kindler, E.: The Petri Net Kernel. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber,
H. (eds.) Petri Net Technology for Communication-Based Systems. LNCS, vol. 2472, pp.
109–124. Springer, Heidelberg (2003)

60. Weinberg, D.: EÆcient controllability analysis of open nets. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 224–239. Springer, Heidelberg (2009)

61. Wolf, K.: Generating Petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)

62. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P. (eds.) Trans-
actions on Petri Nets. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

63. Wolf, K., Stahl, C., Ott, J., Danitz, R.: Verifying livelock freedom in an SOA scenario. In:
ACSD 2009, pp. 168–177. IEEE, Los Alamitos (2009)

Deciding Behaviour Compatibility of Complex
Correspondences between Process Models

Matthias Weidlich1, Remco Dijkman2, and Mathias Weske1

1 Hasso-Plattner-Institute, University of Potsdam, Germany
{matthias.weidlich,weske}@hpi.uni-potsdam.de

2 Eindhoven University of Technology, The Netherlands
r.m.dijkman@tue.nl

Abstract. Compatibility of two process models can be verified using common
notions of behaviour inheritance. However, these notions postulate 1:1 correspon-
dences between activities of both models. This assumption is violated once activ-
ities from one model are refined or collapsed in the other model or in case there
are groups of corresponding activities. Therefore, our work lifts the work on be-
haviour inheritance to the level of complex 1:n and n:m correspondences. Our
contribution is (1) the definition of notions of behaviour compatibility for models
that have complex correspondences and (2) a structural characterisation of these
notions for sound free-choice process models that allows for computationally ef-
ficient reasoning. We show the applicability of our technique, by applying it in
a case study in which we determine the compatibility between a set of reference
process models and models that implement them.

1 Introduction

For two process models the compatibility of their behaviour can be verified, by de-
termining that their behaviour is equivalent, modulo activities that have been added,
removed, or refined. Compatibility verification is, for example, applied to determine
whether a business process correctly implements the service that an organization pro-
vides to its clients, as it is specified by another (abstract) process (cf., [1]). As another
example, compatibility verification is used to check whether a business process cor-
rectly implements a reference process (cf., [2,3]).

Compatibility verification is based on correspondences that are defined between ac-
tivities that are considered to be equivalent. While we assume these correspondences
to be given, we discuss techniques for identifying correspondences when reviewing
related work. For the case of elementary 1:1 correspondences between activities, com-
mon notions of behaviour inheritance [4,5] can be applied to check for the absence of
behavioural contradictions. These notions differ with respect to the treatment of activ-
ities that are without counterpart in the other model (i.e., added or removed). In the
behavioural analysis, these transitions might either be hidden or blocked. If both mod-
els satisfy a certain behaviour equivalence, e.g., branching bisimulation or trace equiv-
alence, once activities that are without any correspondence are hidden (blocked), we
conclude on projection inheritance (protocol inheritance) [4].

In this paper, we solve the problem of checking compatibility in the presence of
complex 1:n and n:m correspondences between two process models. We build upon the

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 78–94, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Deciding Behaviour Compatibility of Complex Correspondences 79

(a)

(b)

Determine Resource
Demands (D)

Check Integrity
(B)

Create Delivery Plan (H)

Deliver Status
Report (J)

Request Immediate
Clearing (E)

Analyse PO
Data (1)

Conduct Load
Planning (3)

Release Prod.
Order (6)

Initiate Settlement
of PO (7)

Maintain PO Integrity (2)

C1 C2 C3 C4

Get Order
Details (A)

Resolve Integrity
Issues (C)

Schedule for
Clearing (F)

Allocate Shipment (I)

Retrieve Past
POs (4)

Create Prod.
Order (5)

Schedule Production (G)

Fig. 1. Two process models that illustrate an order processing, (a) is a reference model, (b) is a
model customised for a specific organisation

existing work on behaviour inheritance and lift it to the level of complex correspon-
dences. Here, 1:n correspondences stem from activities from one model that are refined
or collapsed in the other model. Moreover, n:m correspondences represent a relation
between sets activities, for which there are no correspondences between one of their
activity subsets. That is due to differences in modularisation of functionality between
two process models. Fig. 1 illustrates our setting by a reference model (a) and a cus-
tomised process model (b), along with four correspondences. Apparently, model (b) is
not a hierarchical refinement of model (a), such that we observe a non-trivial relation
between both models. For instance, activities A and D of model (b) have been identi-
fied to correspond to activities 1, 3, and 4 in the reference model (a). We answer the
question, whether these correspondences are compatible.

The contribution of this paper is twofold. First, we introduce the notions of projection
and protocol compatibility of correspondences and, therefore, process models. To this
end, we use trace equivalence as the underlying equivalence criterion. Albeit based on
the ideas of behaviour inheritance, we speak of compatibility as the notions are not
directed. Second, we show that for the class of sound free-choice process models, these
notions of compatibility can be characterised structurally. Thus, our notions can be
decided efficiently based on structural analysis. We also report on findings from a case
study. Due to space limitations, all proofs can be found in [6].

The remainder of this paper is structured as follows. Section 2 gives preliminaries for
our work in terms of a formal model. Section 3 elaborates on our notions of behaviour
compatibility of correspondences. Subsequently, their structural characterisation is ad-
dressed in Section 4. Section 5 introduces our case study. Finally, we review related
work in Section 6 and conclude in Section 7.

2 Preliminaries

Our investigations are based on workflow (WF-) nets [7], a class of Petri nets used
for process modelling and analysis. Petri net based formalisations have been presented
for (parts of) common process modelling languages, such as BPEL, BPMN, and UML
activity diagrams (e.g., [8,9,10]).

80 M. Weidlich, R. Dijkman, and M. Weske

We recall basic definitions according to [7,11]. A net is a tuple N = (P, T, F) with P
and T as finite disjoint sets of places and transitions, and F ⊆ (P ×T)∪(T ×P) as the
flow relation. Without stating it explicitly, we assume a net to be always defined as N =
(P, T, F). We write X = (P ∪T) for all nodes. The transitive closure of F is denoted by
F+. For a node x ∈ X , its preset and postset are defined as •x := {y ∈ X | (y, x) ∈ F}
and x• := {y ∈ X | (x, y) ∈ F}, respectively. A tuple N ′ = (P ′, T ′, F ′) is a subnet
for a net N = (P, T, F), if P ′ ⊆ P , T ′ ⊆ T , and F ′ = F∩((P ′×T ′)∪(T ′×P ′)). Note
that a subnet is induced by a given subset of places or transitions, respectively. A net N
is free-choice, iff ∀ p ∈ P with |p • | > 1 holds •(p•) = {p}. A workflow (WF-) net
is a net N = (P, T, F), such that there is exactly one place i ∈ P with •i = ∅, exactly
one place o ∈ P with o• = ∅, and ∀ x ∈ X [iF+x ∧ xF+o]. A path of length n ∈ N,
n > 1, is a sequence π : {1, . . . , n} 	→ X , denoted by π(x1, xn) or π = x1, . . . , xn,
which satisfies ((1, x1), (2, x2)), . . . , ((n − 1, xn−1), (n, xn)) ∈ F . We write t ∈ π
if (i, t) ∈ π for some i ∈ N. A subpath π′ of a path π is a subsequence. The set
PN contains all complete paths π(i, o) of a WF-net N . A path π = x1, . . . , xn in a net
N = (P, T, F) can be restricted to its transitions yielding the path πT = x1, x3, . . . , xm

(if x1 ∈ T) or πT = x2, x4, . . . , xm (otherwise) with m ∈ {n − 1, n} and xm ∈ T .
The set PT

N contains all complete paths restricted to their transitions of N . We write
πT ⊆ T ′ if for all (i, t) ∈ π it holds t ∈ T ′ ⊆ T .

We define semantics for a WF-net N = (P, T, F) with initial place i and final place
o according to [7]. M : P 	→ N is a marking of N , M is the set of all markings. For
a place p ∈ P , Mp is the marking that puts a token on p and no token elsewhere. For
a transition t ∈ T , Mt is the marking that puts a token on every place p ∈ •t and no
token elsewhere. For a WF-net, Mi is the initial, Mo the final marking. M(p) returns
the number of tokens in p, if p ∈ dom(M). Moreover, for two markings M, M ′ ∈ M,
M ≥ M ′ if M(p) ≥ M ′(p) for all p ∈ P . For any transition t ∈ T and any marking
M ∈ M, t is enabled in M , denoted by (N, M)[t〉, iff ∀ p ∈ •t [M(p) ≥ 1]. Marking
M ′ is reached from M in N by firing of t, denoted by (N, M)[t〉(N, M ′), such that
M ′ = M −•t + t•. A firing sequence of length n ∈ N is a sequence σ : {1, . . . , n} 	→
T . For σ = {(1, tx), . . . , (n, ty)}, we also write σ = t1, . . . , tn. We write t ∈ σ if
(i, t) ∈ σ for some i ∈ N, and σ ⊆ T ′ if for all (i, t) ∈ σ it holds t ∈ T ′ ⊆ T . Any
firing sequence σ with (N, Mi)[σ〉(N, Mo) is a complete trace (or trace). The set of all
complete traces of N is the language of N , denoted by LN . A subtrace σ′ of a trace σ
is a subsequence of σ. A marking M ′ ∈ M is reachable from M ∈ M in N , denoted by
M ′ ∈ [N, M〉, if there exists a firing sequence σ, such that (N, M)[σ〉(N, M ′).

We also recall the soundness criterion, which requires WF-nets (1) to always ter-
minate, and (2) to have no dead transitions (proper termination is implied for WF-
nets) [12]. A WF-net N is live, if for every marking M ∈ [N, Mi〉 and t ∈ T , there
is a marking M ′ ∈ [N, M〉 such that (N, M ′)[t〉. A WF-net N is bounded, iff the set
[N, Mi〉 is finite. A WF-net N with N = (P, T, F) is sound, iff the short-circuit net
N ′, N ′ = (P, T ∪ {tc}, F ∪ {(o, tc), (tc, i)}), is live and bounded.

3 Behaviour Compatibility of Correspondences

This section introduces behaviour compatibility for correspondences between WF-nets.
We use WF-nets as behavioural models due to our focus on process models. It is worth

Deciding Behaviour Compatibility of Complex Correspondences 81

to mention though, that all concepts can be lifted to general Petri nets or even state
transitions systems in a straightforward manner. First, Section 3.1 clarifies the notion of
a correspondence. Second, Section 3.2 elaborates on a partitioning of traces that is im-
posed by these correspondences. Third, Section 3.3 introduces two kinds of behaviour
compatibility for a pair of correspondences. Finally, Section 3.4 elaborates on how to
decide behaviour compatibility.

3.1 Correspondences between WF-Nets

In general, a correspondence between two WF-nets is defined by two sets of transi-
tions of the WF-nets. Following on the classification of correspondences between data
schemata or ontologies [13], we speak of elementary or complex correspondences de-
pending on the cardinality of the associated set of transitions.

Definition 1 (Correspondence). Let N = (P, T, F) and N ′ = (P ′, T ′, F ′) be two
WF-nets. The correspondence relation ≡ ⊆ ℘(T) × ℘(T ′) associates corresponding
sets of transitions of both nets to each other. Let T1 ⊆ T and T2 ⊆ T ′. If T1 ≡ T2 then
(T1, T2) is referred to as a correspondence. (T1, T2) is called elementary, iff |T1| =
|T2| = 1, and complex otherwise.

In the remainder of this paper, we assume all correspondences to be non-overlapping.
That is, two correspondences C = (T1, T3) and C′ = (T2, T4) must not share any
transition in any of the WF-nets, i.e., T1 ∩ T2 = ∅ and T3 ∩ T4 = ∅. Overlapping
correspondences raise various questions regarding their intended meaning. Assume two
correspondences are defined as C = ({a}, {x, y}) and C′ = ({b}, {y}). Then, the
occurrence of the two transitions x and y in one model might correspond to both, the
occurrence of transition a only, or the occurrence of both transitions, a and b, in the
other model. Hence, the inherent semantic ambiguity of overlapping correspondences
has to be addressed as a prerequisite for any behavioural analysis.

In our example in Fig. 1, for instance, C1 would be classified as a complex 3:2 corre-
spondence, while C3 is a 2:1 correspondence. Note that the correspondences depicted
in Fig. 1 are all non-overlapping.

After having defined the notion of a correspondence, it is worth to mention that such
a correspondence induces certain semantics. In terms of trace semantics, the transitions
that are part of a correspondence occur in dedicated subtraces of the net. Thus, a cor-
respondence induces a relation between subtraces of the one net and subtraces of the
other net. For instance, correspondence C1 in Fig. 1 relates the subtraces 〈1, 3, 4〉 and
〈1, 4, 3〉 in model (a) to the subtrace 〈A, D〉 in model (b). For C2, in turn, there is a
relation between the subtrace 〈2〉 in model (a) and an infinite set of traces in model (b),
e.g., 〈B〉 and 〈B, C, B〉.

3.2 Trace Partitioning Based on Correspondences

In the previous section, we argued that a correspondence between sets of transitions
induces semantics in terms of subtraces of two nets that are considered to correspond to
each other against the background of the alignment. Therefore, for two correspondences,

82 M. Weidlich, R. Dijkman, and M. Weske

the constraints between the respective subtraces of both correspondences imposed by
one net, should hold for the respective subtraces in the other net as well. Here, con-
straints refer to the observable order and number of occurrences of such subtraces in all
complete traces of a net.

<1, 2, 3, 4, 5, 6, 7>

t

<A, B, D, C, B, E, G, H, I, J>

C1 C3 C4

C2 C3C1 C4

C2

Trace of
model (b)

Trace of
model (a)

Fig. 2. Exemplary traces of the models of Fig. 1 along
with their relation to correspondences

We illustrate the relation be-
tween subtraces by means of the
WF-nets of Fig. 1. Here, we see
that the constraints for the sub-
traces relating to the correspon-
dences C1 and C3 are equal. That
is, any subtrace of model (a) built
of transitions of C1, is followed
by a subtrace comprising transi-
tions of C3. In addition, both sub-
traces occur at most once. This
also holds for the respective subtraces in model (b), as exemplified for a pair of traces
in Fig. 2. For correspondences C1 and C2, the constraints imposed by both models are
equal either. That is, in any trace of both nets, a transition belonging to C1 is observed
first and might potentially be followed by transitions of C1 and C2. Note that the spe-
cific order of interleaving transitions of both correspondences is different though. For
instance, in the subtrace 〈A, B, D, C, B〉 of model (b), two transitions of C1 are fol-
lowed by a transition of C2. This is not possible in any subtrace of model (a), due to
the different number of interleaving transitions of C1 and C3 in both nets, cf., Fig. 2.
When focussing on correspondences C3 and C4, however, we detect differences in the
imposed constraints. For instance, there is a trace in model (b), in which a transition of
C4 occurs before any transition of C3, which yields a contradiction with the semantics
of model (a).

These examples illustrate that the interleaving of transitions belonging to different
correspondences has to be taken into account when assessing behaviour compatibility.
We speak of two interleaving transitions, if for every trace in which they directly occur
together, there is another trace that is equal to the first one besides a switched order of
the interleaving transitions.

Definition 2 (Interleaving Transitions). Let N = (P, T, F) be a WF-net. Two transi-
tions (t1, t2) ∈ (T × T) are interleaving, iff for each trace σ1 ∈ LN with (i, t1), (i +
1, t2) ∈ σ1 for some i ∈ N, there is a trace σ2 ∈ LN with σ2 = {(i, t2), (i + 1, t1)} ∪
{(j, t) | (j, t) ∈ σ1 ∧ j �= i ∧ j �= i + 1}. Given two disjoint sets of transitions
T1, T2 ⊆ T , the set ι(T1,T2)(N) ⊆ T1 ∪ T2 contains all transitions that are part of an
interleaving transition pair (t1, t2) ∈ (T1 × T2).

For our example in Fig. 1, the set of interleaving transitions for the correspondences
C1 = (T1, T3) and C2 = (T2, T4) with T1 = {1, 3, 4}, T2 = {2}, T3 = {A, D},
and T4 = {B, C} are defined as ι(T1,T2) = {2, 3, 4} for model (a) and ι(T3,T4) =
{B, C, D} for model (b).

Given two correspondences for a net, their dependencies can be assessed in a cer-
tain trace by partitioning the trace into subtraces that represent interleaving and non-
interleaving parts of the correspondences.

Deciding Behaviour Compatibility of Complex Correspondences 83

Definition 3 (Partitioning of a Trace). Let N = (P, T, F) be a WF-net and T1, T2 ⊆
T two disjoint sets of transitions. For any trace σ ∈ LN the partitioning ρ(T1,T2)(σ)
induced by T1 and T2 is a sequence of subtraces of maximal length ρ(T1,T2)(σ) =
σ1, . . . , σn such that for any i ∈ N with 1 ≤ i ≤ n it holds either σi ⊆ T1 \ ι(T1,T2)(N),
σi ⊆ T2 \ ι(T1,T2)(N), σi ⊆ ι(T1,T2)(N), or σi ⊆ T \ (T1 ∪ T2).

Partitioning
of complete
traces of
model (a)

t

(C1,C2)

C1,C3

C1,C2

Partitioning
of complete
traces of
model (b)

C3,C4

C1

C3C1

C4C3

(C1,C2)

C1,C3

C1,C2

C3,C4

C1

C3C1

C4(C3,C4)

Fig. 3. Partitioning of traces of the
models in Fig. 1

According to this definition, any transition that is
part of a trace belongs to one of the four classes
w.r.t. two sets of transitions. It is an interleaving
transition, it belongs to one of the sets of transi-
tions without being an interleaving transition, or it
is not part of the two sets at all. The partitioning of
traces for the models of our example is illustrated
in Fig. 3 for three exemplary pairs of transition
sets. As these sets are induced by the respective
correspondences, we also speak of transitions of
correspondences and name the sets accordingly.
Note that all transitions that do not relate to the
respective correspondences have been neglected.
For correspondences C1 and C3, in all traces a
subtrace comprising non-interleaving transitions of C1 is followed by a subtrace com-
prising non-interleaving transitions of C3 in both models, (a) and (b). Similarly, for cor-
respondences C1 and C2, non-interleaving transitions of C1 are followed by a subtrace
consisting of interleaving transitions of both correspondences in both models. In con-
trast, for correspondences C3 and C4, the contradicting constraints as discussed above
are visible in the trace partitioning. Non-interleaving transitions of C3 are followed by
non-interleaving transitions of C4 in model (a), whereas interleaving transitions of C3
and C4 are followed by non-interleaving transitions of C4 in model (b).

3.3 Notions of Behaviour Compatibility

Based on a trace partitioning induced by the transitions of two correspondences, we de-
fine two notions of compatibility. Informally, both notions require that for each trace of
the one net, there is a trace in the other net that shows the same partitioning in interleav-
ing and non-interleaving subtraces of the transitions of the respective correspondences.
Still, we distinguish two ways of coping with transitions that are not part of any cor-
respondence. They might be hidden or blocked, cf., [4,5]. Following on the notions
of projection inheritance (hiding) and protocol inheritance (blocking), this distinction
leads to the notions of projection and protocol compatibility of correspondences. First
and foremost, we define projection compatibility for correspondences. It uses the notion
of a trace projection. Given a WF-net N = (P, T, F), a set of transitions H ⊆ T , and a
trace σ ∈ LN , the set Hσ|j = {(x, t) ∈ σ | x < j ∧ t ∈ H} denotes the occurrences of
transitions of H in σ up to index j ∈ N. Based thereon, we define the projection τH(σ)
for a trace σ ∈ LN of length n induced by H as τH(σ) =

⋃|Hσ|n|
i=0 (i, ti) with ti ∈ H ,

such that ∃ j ∈ N [(j, ti) ∈ σ ∧ i = |Hσ|j |]. Informally, the projected trace τH(σ) is
derived by taking all transitions in H from σ.

84 M. Weidlich, R. Dijkman, and M. Weske

Definition 4 (Projection Compatibility). Let N = (P, T, F) and N ′ = (P ′, T ′, F ′)
be WF-nets, and C1 = (T1, T3), C2 = (T2, T4) two correspondences.
◦ C1 and C2 are projection compatible from N to N ′, iff for any trace σ ∈ LN , there

is a trace σ′ ∈ LN ′ , such that for the partitioned projections ρ(T1,T2)(τ(T1∪T2)(σ))
= σ1, . . . , σn and ρ(T3,T4)(τ(T3∪T4)(σ

′)) = σ′
1, . . . , σ

′
m it holds n = m and for all

i ∈ N with 0 ≤ i ≤ n:

− σi ⊆ (T1 \ ι(T1,T2)(N)) ⇒ σ′
i ⊆ (T3 \ ι(T3,T4)(N

′)).
− σi ⊆ (T2 \ ι(T1,T2)(N)) ⇒ σ′

i ⊆ (T4 \ ι(T3,T4)(N
′)).

− σi ⊆ ι(T1,T2)(N) ⇒ σ′
i ⊆ ι(T3,T4)(N ′).

◦ C1 and C2 are projection compatible, iff they are projection compatible in either
direction.

Projection compatibility of two correspondences between two nets means that every
complete trace in one net has a corresponding complete trace in the other net, which
shows the same partitioning w.r.t. the two correspondences. We see that projection com-
patibility can be decided for two correspondences in isolation, i.e., independent of other
correspondences. That is due to the fact that any transitions not belonging to the respec-
tive correspondences are projected before comparing the partitioning of traces. In con-
trast, protocol compatibility of two correspondences has to be decided always against
the background of an alignment, i.e., a set of correspondences. Following on the ap-
proach introduced for protocol inheritance in [4], we use an encapsulation operator δH

that creates the subnet induced by a set of transitions H ⊆ T from a net N = (P, T, F),
such that δH(N) = (P, H, FH). Encapsulation of a WF-net might yield a net that is not
a WF-net anymore. Therefore, we also define the normalisation operator ηN that creates
the workflow subnet of a subnet N1 of a WF-net N , such that ηN (N1) = (Pη, Tη, Fη)
with Pη = P1 \ Xr and Tη = T1 \ Xr and Xr = {x ∈ X1 | i��F+

1 x ∨ x��F+
1 o } (i and

o being the initial and final place of N). Normalisation yields the empty net, if there is
no workflow subnet.

Definition 5 (Protocol Compatibility). Let N = (P, T, F) and N ′ =
(P ′, T ′, F ′) be WF-nets and ≡ a correspondence relation between them. Let T≡ ⊆ T
and T ′

≡ ⊆ T ′ be the transitions of both nets that are part of any correspondence, and
E = ηN (δT≡(N)) and E′ = ηN ′(δT ′≡(N ′)) the normalised encapsulated nets. Let
C1 = (T1, T3) and C2 = (T2, T4) be two correspondences.
◦ C1 and C2 are protocol compatible from N to N ′, iff E and E′ are WF-nets and

C1 and C2 are projection compatible from E to E′.
◦ C1 and C2 are protocol compatible, iff they are protocol compatible in either

direction.

Protocol compatibility of correspondences between two nets captures that every com-
plete trace of the one net has a corresponding complete trace in the other net, which
shows the same partitioning w.r.t. the two correspondences once transitions that are not
aligned are removed. Thus, protocol compatibility is traced back to projection compat-
ibility of the normalised encapsulated nets that contain only aligned transitions. How-
ever, it is important to notice that both notions are orthogonal. That is, correspondences
between two nets might show solely projection compatibility, but not protocol compati-
bility, and vice versa.

Deciding Behaviour Compatibility of Complex Correspondences 85

Regarding the WF-nets in Fig. 1, we conclude that, for instance, correspondences C1
and C2 are projection compatible, whereas correspondences C1 and C4 are not due to
the interleaving of their transitions in model (b) (transitions D, E, and F), which is
not possible in model (a), cf., Fig. 3. Direct application of the protocol compatibility
criterion to our example yields a negative result, as both models contain no-operation
(NOP) transitions that only realise the splitting and merging of control flow. These tran-
sitions are not part of the encapsulated nets, such that normalisation yields an empty net
and there is no completed trace from the initial to the final marking in both nets. Still,
these NOP transitions can be neglected in a way that they are part of the encapsulated
nets. Then, for instance, encapsulation removes transitions H and I of model (b). As
this does not change the observable behaviour of the remaining transitions, correspon-
dences C1 and C2 are also protocol compatible, whereas correspondences C1 and C4
are not, owing to the aforementioned issues.

So far, we discussed the compatibility of a pair of correspondences in isolation. Both
notions can be lifted from a pair of correspondences to a set of correspondences between
two nets in a straightforward manner.

Definition 6 (Projection & Protocol Compatibility (Correspondence Relation)). A
correspondence relation between two nets is projection (protocol) compatible, iff all
correspondences are pairwise projection (protocol) compatible.

3.4 Decidability of Behaviour Compatibility

1 3
2

3

34

4

2
4

2

4
2

53

5
2

6

6
2

7
Mi Mo

Mi Mo
C1

(C1,C2)

Fig. 4. LTS of model (a) of Fig. 1 along
with transitions related to correspondences
C1 and C2

In the general case, behaviour compatibility
of two correspondences between two WF-
nets can be decided by state space explo-
ration. Under the assumption of a finite state
space, all state transitions relate to none of
the correspondences, one of the correspon-
dences, or the interleaving of both correspon-
dences, respectively. Therefore, the trace par-
titioning (cf., Definition 3) is directly visible
in the respective labelled transition system
(LTS). Fig. 4 illustrates this dependency by
the LTS of model (a) of Fig. 1. In the lower
system, we highlighted the transitions that
are related to correspondences C1 = (T1, T3) and C2 = (T2, T4). Each state transition
that is part of T1 ∪ T2 can be classified as belonging to one of the three sets, ι(T1,T2),
T1 \ ι(T1,T2), or T2 \ ι(T1,T2). Based thereon, complex state transitions are derived that
represent the transition sequences of maximal length comprising solely transitions of
one of the aforementioned three sets and transitions that are not in T1 ∪ T2. The latter
is illustrated in the lower LTS in Fig. 4, in which the transition ι(C1,C2) contains solely
interleaving transitions and transitions that are not related to C1 and C2.

Moreover, interleaving transitions can be characterised as being enabled concurrently
in some marking or as not changing the marking when being fired.

86 M. Weidlich, R. Dijkman, and M. Weske

Lemma 1. Let N = (P, T, F) be a WF-net. A pair of transitions (t1, t2) ∈ (T × T)
is interleaving, iff there is a marking M ∈ [N, Mi〉 such that (1) M ≥ Mt1 + Mt2

and with (N, M)[t1〉(N, M1) and (N, M)[t2〉(N, M2) it holds Mo ∈ [N, M1〉 and
Mo ∈ [N, M2〉, or (2) (N, M)[t1〉(N, M), (N, M)[t2〉(N, M), and Mo ∈ [N, M〉.
Based thereon, we conclude decidability of behaviour compatibility of correspondences
for nets with a finite state space. The proofs can be found in [6].

Theorem 1. Given two bounded WF-nets and a set of correspondences, it is decidable
whether two correspondences are projection or protocol compatible.

Apparently, any approach of deciding behaviour compatibility based on state space
exploration is computationally hard in the general case, due to the state explosion
problem. The problem of whether two LTS show the same trace semantics is PSPACE-
complete [15]. Hence, structural characterisations of behaviour compatibility for certain
classes of nets are crucial for any real-world application.

4 A Structural Characterisation of Compatibility

This section shows that projection compatibility and, therefore, also protocol compati-
bility are decided efficiently for correspondences between sound free-choice WF-nets.
That is due to the fact that for sound free-choice WF-nets, there is a tight coupling
of syntax and semantics. First, Section 4.1 discusses the properties of sound free-choice
WF-nets that are used in our approach. Second, Section 4.2 introduces the notion of path
consistency of two correspondences between two WF-nets. Finally, Section 4.3 elabo-
rates on how this structural characterisation is used to decide behaviour compatibility.

4.1 Properties of Sound Free-Choice WF-Nets

As mentioned above, sound free-choice WF-nets show a tight coupling of syntax and
semantics. In particular, if N is sound and free-choice, the existence of a path π(x, y)
between places x and y implies the existence of a firing sequence containing all transi-
tions on π(x, y) (cf., Lemma 4.2 in [16]). Actually, this implication requires the marking
My to be a home marking (a marking reachable from every marking that is reachable
from the initial state). Still, the implication might be lifted to all home markings M1

with M1(y) > 0. Due to soundness of the net N , the short-circuit net N ′ is live and
bounded, such that all markings M ∈ [N, Mi〉 are home markings in N ′. Thus, all
markings M1(y) > 0 are reachable from markings M2(x) > 0, if M1, M2 ∈ [N ′, Mi〉.

Another important property of sound free-choice nets is the possibility to compute
the following two relations efficiently.

Concurrency Relation. The concurrency relation || ⊆ X × X for the nodes X of
a net N contains all pairs (x1, x2) such that M ≥ Mx1 + Mx2 for some reachable
marking M . Thus, the concurrency relation identifies concurrently enabled transitions
or marked places, respectively. Note that any sound free-choice net is also safe (cf.,
Lemma 1 in [17]). Thus, a single transition cannot be enabled concurrently with itself.

Deciding Behaviour Compatibility of Complex Correspondences 87

1

2

3

4

5 6 7

(C1,C2)C1

Path of
model (a)

Partitioning
of the path

Fig. 5. A path of model (a) of Fig. 1 along with the partitioning induced by the non-interleaving
and interleaving transitions of correspondences C1 and C2

According to [18], the concurrency relation can be determined in O(n3) time for live
and bounded free-choice nets with n as the number of nodes of the net.

Exclusiveness Relation. The exclusiveness relation + ⊆ T × T for the transitions of
a net N contains all pairs (t1, t2) that never occur together in a complete trace, i.e., for
all complete traces σ ∈ LN it holds t1 ∈ σ ⇒ t2 �∈ σ and t2 ∈ σ ⇒ t1 �∈ σ. Ac-
cording to [19] (Lemma 3), the exclusiveness relation can be deduced from the concur-
rency relation and the transitive closure of the flow relation for sound free-choice nets.
Based thereon, the exclusiveness relation can also be computed in O(n3) time with n
as the number of nodes as detailed in [19]. The exclusiveness relation can be lifted from
the transitions to all nodes of a net. Two places p1 and p2 are exclusive if there is no
complete trace that visits two markings M1 and M2 with M1(p1) > 0 and M2(p2) > 0.
Obviously, this information can be deduced directly from the exclusiveness of
transitions.

In our example in Fig. 1, for instance, transitions D and E of model (b) are in the
concurrency relation, while transitions E and F are exclusive.

4.2 Path Consistency of Correspondences

In order to reason on behaviour compatibility of two correspondences between two
sound free-choice WF-nets, we assess their structural consistency. That is, the existence
of certain paths in two process models is evaluated with respect to the correspondences.
To this end, we define the partitioning of a path that is induced by two sets of transitions,
similar to the partitioning of a trace presented in Section 3.2. Here, we consider solely
the transitions of a path and neglect all places. Note that such a partitioning is grounded
on the interleaving transitions of both sets. However, according to Lemma 1, the notion
of two interleaving transitions can be traced back to their concurrent enabling (or a
structural analysis of their pre- and postset, respectively), which, in turn, can be decided
structurally for sound free-choice WF-nets, cf., Section 4.1.

Definition 7 (Partitioning of a Path). Let N = (P, T, F) be a WF-net and T1, T2 ⊆ T
two disjoint sets of transitions. For any path π ∈ PT

N the partitioning ρ(T1,T2)(π)
induced by T1 and T2 is a sequence of subpaths of maximal length ρ(T1,T2)(π) =
π1, . . . , πn such that for any i ∈ N with 1 ≤ i ≤ n it holds either πi ⊆ T1 \ ι(T1,T2)(N),
πi ⊆ T2 \ ι(T1,T2)(N), πi ⊆ ι(T1,T2)(N), or πi ⊆ T \ (T1 ∪ T2).

Fig. 5 Illustrates the partitioning of an exemplary path of model (a) of our example
with respect to correspondences C1 and C2. As mentioned before, transition 1 is a

88 M. Weidlich, R. Dijkman, and M. Weske

non-interleaving transition related to correspondence C1. Transition 4 is in the set of
interleaving transitions of both correspondences. All other transitions on the highlighted
path do not relate to any of the correspondences.

C4
E

F

G

H I

J...

... C3

Fig. 6. Excerpt of model (b)

When comparing the partitioning of paths induced
by two correspondences between two WF-nets, cer-
tain subpaths have to be neglected. That is, subpaths
that represent a detour of a transition that is part of a
correspondence are identified and removed from the
net. Apparently, this reduction has to happen solely in
case there is another transition of the correspondence
that might be enabled concurrently. We illustrate the
need for this kind of preprocessing with Fig. 6. It
shows an excerpt of model (b) of our example. As-
sume that we investigate correspondences C3 and C4. Then, a path comprising transi-
tions H and I would suggest that a non-interleaving transition related to C4 (transition
J) can occur without any occurrence of an interleaving transition of both correspon-
dences (transitions E, F , and G). Hence, the subpath comprising transitions H and I
is removed by the preprocessing. Note that the preprocessing uses the concurrency re-
lation and the exclusiveness relation, which can be derived from the net structure as
discussed in Section 4.1.

Definition 8 (Preprocessing). Let N = (P, T, F) be a WF-net and T1, T2 ⊆ T two
disjoint sets of transitions. Let Xpp ⊆ (X\(T1∪T2)) contain all nodes x for which there
is a transition t1 ∈ T1 ∪ T2, such that x||t1 and for all t2 ∈ T1 ∪ T2 with t1||t2 it holds
either x||t2 or x + t2. The preprocessed WF-net for N is a subnet N ′ = (P ′, T ′, F ′)
with P ′ = P \ Xpp and T ′ = T \ Xpp.

Once two WF-nets are preprocessed with respect to a pair of correspondences, their
path consistency is assessed. Loosely spoken, path consistency implies that both nets
show equal partitionings of paths from the initial to the final place regarding the corre-
spondences when transitions not related to the correspondences are neglected. Similar
to the projection for a trace (cf., Section 3.3), we define the projection of path as fol-
lows. Given a WF-net N = (P, T, F), a set of transitions H ⊆ T , and a path π ∈ PT

N ,
the set Hπ|j = {(x, t) ∈ π | x < j ∧ t ∈ H} denotes the containment of transi-
tions of H in π up to index j ∈ N. Then, the projection τH(π) for a path π ∈ PT

N

of length n induced by H is defined as τH(π) =
⋃|Hπ|n|

i=0 (i, t) with t ∈ H , such that
∃ j ∈ N [(j, t) ∈ π ∧ i = |Hπ|j|].
Definition 9 (Path Consistency of Correspondences). Let N = (P, T, F) and N ′ =
(P ′, T ′, F ′) be two WF-nets preprocessed with respect to two correspondences C1 =
(T1, T3) and C2 = (T2, T4).
◦ C1 and C2 are path consistent from N to N ′, iff for any path of transitions

π ∈ PT
N , there is a path π′ ∈ PT ′

N ′ , such that for the partitioned projections
ρ(T1,T2)(τ(T1∪T2)(π)) = π1, . . . , πn and ρ(T3,T4)(τ(T3∪T4)(π′)) = π′

1, . . . , π
′
m it

holds n = m and for all i ∈ N with 0 ≤ i ≤ n:
− πi ⊆ (T1 \ ι(T1,T2)(N)) ⇒ π′

i ⊆ (T3 \ ι(T3,T4)(N ′).
− πi ⊆ (T2 \ ι(T1,T2)(N)) ⇒ π′

i ⊆ (T4 \ ι(T3,T4)(N ′).

Deciding Behaviour Compatibility of Complex Correspondences 89

− πi ⊆ ι(T1,T2)(N) ⇒ π′
i ⊆ ι(T3,T4)(N ′).

◦ C1 and C2 are path consistent, iff they are path consistent in either direction.

For our example setting in Fig. 1 and correspondences C1 and C2, we see that both
models are path consistent. All paths from the initial to the final place in both models
shows the same (projected) partitionings, i.e., a non-interleaving transition related to
C1 is followed by an interleaving transition of both correspondences. In contrast, cor-
respondences C3 and C4 are not path consistent. Even if both nets are preprocessed,
for instance, model (a) contains a path in which non-interleaving transitions related to
correspondence C3 (transitions 5 and 6) are followed by a non-interleaving transition
related to C2 (transition 7). Such a path does not exit in model (b) as transitions E, F ,
and G are interleaving.

4.3 Reasoning on Behaviour Compatibility

We illustrated the dependency between path consistency of a pair of correspondences
and their behaviour compatibility using our example. In fact, we show that both notions
coincide for sound free-choice WF-nets, see [6] for the proofs.

Theorem 2. Let N = (P, T, F) and N ′ = (P ′, T ′, F ′) be two preprocessed sound
free-choice WF-nets, and C1 = (T1, T3), C2 = (T2, T4) two correspondences. Then,
path consistency and projection compatibility of C1 and C2 coincide.

Based thereon, behaviour compatibility of correspondences between sound free-choice
WF-nets can be decided efficiently.

Corollary 1. The following problem can be solved in O(n3) time with n as the maxi-
mum of the number of nodes of both nets.
For two correspondences between two sound free-choice WF-nets, to decide projection
and protocol compatibility.

5 Evaluation

We evaluated our techniques for deciding behaviour compatibility, by applying them to
a collection of similar model pairs, between which correspondences were already iden-
tified. For both notions of behaviour compatibility, we first identified incompatibilities
for all pairs of models with respect to their correspondences. Second, we investigated
the resulting incompatibilities, to determine whether they represent information that is
useful to the designer.

The collection consisted of 10 pairs that were taken from Dutch municipalities. Each
of these pairs represents a standard process [20] and an implementation of this standard
process by a municipality. Each process model from the collection has, on average, 17.9
nodes, with a minimum of 11 nodes and a maximum of 69 nodes for a single process
model. The average number of arcs pointing into or out of a single node is 1.2. In total
there were 190 correspondences between the model pairs, 31 of which were complex.
All models were available as (or could be transformed into) free-choice WF-nets. In ad-
dition, we verified that all models are sound, such that the structural characterisation of

90 M. Weidlich, R. Dijkman, and M. Weske

Table 1. Overview on compatible and incompatible correspondences

Type of Comp. Type of Correspondence Pair Compatible Incompatible

Projection Comp. Elementary 83% (1732) 17% (354)
Complex 30% (115) 70% (274)

Protocol Comp. Elementary 38% (86) 62% (143)
Complex 8% (7) 92% (86)

behaviour compatibility as introduced in Section 4 could be leveraged. With our imple-
mentation of this approach, the analysis of both, projection and protocol compatibility,
was done in milliseconds for most model pairs. For two pairs of models, it took up to
several seconds to decide compatibility.

Projection Compatibility. For all 190 correspondences in total 2475 combinations of
correspondences were to be investigated for projection compatibility. Table 1 shows the
number of projection compatible and incompatible pairs for the correspondences. We
say that a pair of correspondences is elementary, if both correspondences are elemen-
tary; if one is complex, we say that the pair is complex. The table shows that most
elementary correspondences are projection compatible, while most complex correspon-
dences are not. This result is not surprising, because complex correspondences are more
complicated than elementary correspondences and, therefore, it is harder to make them
compatible.

As a second step, we randomly selected 25 elementary and 25 complex incompati-
bilities to investigate whether they represented information that is useful to the designer.
This was indeed the case. However, when studying these incompatibilites in detail, we
established that there existed overlap between them in the sense that they could be
traced back to the same cause for incompatiblity. Specifically, there were 26 pairs that
had overlap with another pair (of the 26). If we considered each correspondence pair
only once, there were only 8 cases of incompatibility; the ‘common’ pairs caused 3.25
incompatibilities on average. This kind of redundancy in the information that is pre-
sented to the designer is undesirable and leads to the conclusion that incompatibilities
can be presented to the designer in a more compact manner.

Protocol Compatibility. For all pairs of models, we also derived the encapsulated mod-
els in order to assess protocol compatibility. To this end, we removed solely transitions
representing activities that are not part of any correspondence and neglected additional
NOP transitions realising the splitting and merging of control flow. However, for four
out of our 10 pairs of models, we observed that at least for one model encapsulation led
to a net that could not be normalised into a WF-net. In these cases, encapsulation led to
a disconnect of the initial and the final place, such that both places were no longer con-
nected by any path. As these models describe processes that are bound to failure (they
cannot complete properly), they could not be investigated any further. For the remaining
four model pairs, the normalised encapsulated nets were sound, such that our structural
characterisation of behaviour compatibility could be exploited. As illustrated in Table 1,
the amount of compatible correspondences is much lower than for the case of projection

Deciding Behaviour Compatibility of Complex Correspondences 91

compatibility. This is mainly due to activities that have been introduced as intermediate
steps when implementing the standard process. Apparently, such deviations are not in
line with protocol compatibility. Due to the freedom of the municipalities to deviate
from the reference process in such a way, the notion of projection compatibility seems
to be more appropriate than protocol compatibility for this use case.

6 Related Work

Our work is related to three streams of research, matching of process models, model
specialisation, and process model similarity.

In order to assess behaviour consistency, we postulate the existence of correspon-
dences between activities of two process models. In some use cases, these correspon-
dences are given implicitly, e.g., when deriving a custom process model from a
reference model. Still, other use cases might require the explicit definition of corre-
spondences, such that automatic support for suggesting correspondences is needed. To
this end, techniques based on structural analysis and natural language processing have
been proposed in order to identify correspondences between single activities [21,22].
Recently, the ICoP framework has been introduced, which aims also at the detection of
complex correspondences [23]. In addition, techniques known from the field of schema
and ontology matching [13,24] can be applied to detect correspondences between pro-
cess model elements.

A behavioural model can be specialised by refinement and extension [5]. Refine-
ment refers to the definition of an activity or a set thereof in more detail. Extension,
in turn, refers to the act of adding new activities. Both transformations might or might
not preserve one of the well-known behaviour equivalences, see [25]. Behaviour con-
sistent refinements have been investigated in detail for many formal models, such as
process algebras and Petri nets [25,26,27,28]. See [29] for a thorough survey on Petri
net refinements. Obviously, the work on model refinement and extension has a different
focus than our work. We target at an assessment of correspondences between models
for which the concrete specialisation relation is not known. Still, transformations that
preserve the introduced notions of projection and protocol compatibility need to be in-
vestigated. For the existing notions of behaviour inheritance, projection and protocol
inheritance, a set of four inheritance preserving model transformations has been pre-
sented in [4].

Behaviour compatibility is a boolean criterion based on a behaviour equivalence.
Process models that are related by correspondences might also be analysed regard-
ing their behavioural similarity. Recently, the question of how to quantify behavioural
similarity has received much attention [30]. Process similarity can be assessed by us-
ing behavioural abstractions [31], relating similar (sub-) traces of two models to each
other [32], or quantifying the degree of state-based simulation [33]. These approaches
typically focus on the complete behaviour of two models. Therefore, additional effort
might be required to give diagnostic information with respect to the correspondences
for a similarity value below one.

92 M. Weidlich, R. Dijkman, and M. Weske

7 Conclusion

In this paper, we addressed the question of how to decide on the compatibility of
two business process models. To this end, correspondences between both models are
assumed to exist, whereas we do not impose any restrictions on the type of correspon-
dences that can exist. In particular, there might be complex 1:n and or even n:m cor-
respondences between activities of both models. Building upon the existing work on
behaviour inheritance, we introduced the notions of projection and protocol compatibil-
ity of correspondences between process models. They guarantee that correspondences
do not induce behavioural contradictions in terms of trace semantics, once activities
that are not part of any correspondence are hidden or blocked. Besides the definition
of these notions, our contribution is a structural characterisation of both notions for a
pair of correspondences between sound free-choice WF-nets. Based thereon, behaviour
compatibility is decided in O(n3) time with n as the maximum of the number of nodes
of both nets. As a proof of concept, we applied our technique to determine the compati-
bility between 10 reference process models and 10 models that implement them.

Clearly, our contribution is of relevance not only for the use case of customising ref-
erence models. The application of behaviour inheritance has been advocated to solve
other problems, such as those related to dynamic change, information management [2],
and service-oriented design [1]. Dynamic change addresses the question how to ensure
behavioural consistency for running process instance once the respective process model
is adapted. Information management refers to an aggregated view on multiple variants
of a process model. Service-oriented design addresses the issue of designing a business
process that correctly implements a service that an organisation provides to its clients,
as it is specified by another (abstract) process. Our notions of behaviour compatibil-
ity allow for tackling these problems in a broader context by going beyond elementary
1:1 relations between activities when comparing model behaviour. Still, this requires
further investigations on model transformations that preserve behaviour compatibility.
Although a formal discussion is beyond the scope of this paper, the aforementioned four
transformation rules that preserve projection (and partly protocol) inheritance [4] can
be assumed to preserve our notions of behaviour compatibility as well. The presence of
complex correspondences, however, opens the space for investigations on transforma-
tion rules that consider the partitioning of activities induced by such correspondences.
In future work, stricter notions of behaviour equivalence, such as branching bisimula-
tion [25], might also be applied as the grounding for behaviour compatibility. Finally,
the application of our technique in a case study shows that many redundant incompat-
ibilities are notified to the process designer. Consequently, in future work we aim at
developing a technique that presents incompatibilities in a compact manner.

References

1. Dijkman, R., Dumas, M.: Service-oriented design: a multi-viewpoint approach. IJCIS 13(4),
337–368 (2004)

2. van der Aalst, W.M.P.: Inheritance of business processes: A journey visiting four notorious
problems. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology
for Communication-Based Systems. LNCS, vol. 2472, pp. 383–408. Springer, Heidelberg
(2003)

Deciding Behaviour Compatibility of Complex Correspondences 93

3. Guth, V., Oberweis, A.: Delta-analysis of petri net based models for business processes. In:
Proc. of the 3rd Int. Conf. on Applied Informatics, pp. 23–32 (1997)

4. Basten, T., Aalst, W.: Inheritance of Behavior. JLAP 47(2), 47–145 (2001)
5. Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles. ACM

Trans. Softw. Eng. Methodol. 11(1), 92–148 (2002)
6. Weidlich, M., Dijkman, R., Weske, M.: Deciding Behaviour Compatibility of Complex

Correspondences between Process Models. Technical report 11-2010, Hasso Plattner
Institute,
http://bpt.hpi.uni-potsdam.de/pub/Public/
MatthiasWeidlich/bc r.pdf

7. Aalst, W.: The application of Petri nets to workflow management. Journal of Circuits, Sys-
tems, and Computers 8(1), 21–66 (1998)

8. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Dumas, M.,
Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)

9. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Information & Software Technology 50(12), 1281–1294 (2008)

10. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE Trans.
Software Eng. 30(7), 437–447 (2004)

11. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cambridge (1995)
12. Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997.

LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)
13. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
14. Hack, M.: Decidability Questions for Petri Nets. PhD thesis, M.I.T. (1976)
15. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) APN 1998.

LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)
16. Kiepuszewski, B., Hofstede, A., Aalst, W.: Fundamentals of control flow in workflows. Acta

Inf. 39(3), 143–209 (2003)
17. Aalst, W.: Workflow verification: Finding control-flow errors using petri-net-based tech-

niques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) BPM 2000. LNCS, vol. 1806,
pp. 161–183. Springer, Heidelberg (2000)

18. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency relation of
free-choice signal transition graphs. In: WODES. The Institution of Electrical Engineers, pp.
1–6 (1996)

19. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement based on Be-
havioural Profiles of Process Models. IEEE Trans. on Software Engineering (2010) (to ap-
pear)

20. Documentair structuurplan, http://model-dsp.nl/ (accessed: February 20, 2009)
21. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching and merging

of statecharts specifications. In: ICSE, pp. 54–64. IEEE CS (2007)
22. Dijkman, R., Dumas, M., Garcı́a-Bañuelos, L., Käärik, R.: Aligning business process models.

In: EDOC, pp. 45–53 (2009)
23. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: Identification of correspon-

dences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
483–498. Springer, Heidelberg (2010)

24. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)

25. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for concurrent
systems. Acta Inf. 37(4/5), 229–327 (2001)

26. Aceto, L., Hennessy, M.: Adding action refinement to a finite process algebra. Inf. Com-
put. 115(2), 179–247 (1994)

94 M. Weidlich, R. Dijkman, and M. Weske

27. Quartel, D., Pires, L.F., van Sinderen, M.: On architectural support for behavior refinement
in distributed systems design. Journal of Integrated Design and Process Science 6(1), 1–30
(2002)

28. Vogler, W.: Behaviour preserving refinement of petri nets. In: Tinhofer, G., Schmidt, G. (eds.)
WG 1986. LNCS, vol. 246, pp. 82–93. Springer, Heidelberg (1987)

29. Brauer, W., Gold, R., Vogler, W.: A survey of behaviour and equivalence preserving refine-
ments of petri nets. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 1–46. Springer,
Heidelberg (1991)

30. Dumas, M., Garcı́a-Bañuelos, L., Dijkman, R.M.: Similarity search of business process mod-
els. IEEE Data Eng. Bull. 32(3), 23–28 (2009)

31. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Similarity between Business
Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp.
450–464. Springer, Heidelberg (2008)

32. Wombacher, A.: Evaluation of technical measures for workflow similarity based on a pilot
study. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 255–272. Springer,
Heidelberg (2006)

33. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Hermanns, H., Pals-
berg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Heidelberg (2006)

Correctness Ensuring Process Configuration:
An Approach Based on Partner Synthesis

Wil van der Aalst1�3, Niels Lohmann1�2, Marcello La Rosa3, and Jingxin Xu3

1 Eindhoven University of Technology, The Netherlands
�������������	
�
�
���

2 Universität Rostock, Germany
��
�	���������������	
�����

3 Queensland University of Technology, Australia
������	����
�
���������������������
�
���
�
�����

Abstract. A configurable process model describes a family of similar process
models in a given domain. Such a model can be configured to obtain a specific
process model that is subsequently used to handle individual cases, for instance,
to process customer orders. Process configuration is notoriously diÆcult as there
may be all kinds of interdependencies between configuration decisions. In fact,
an incorrect configuration may lead to behavioral issues such as deadlocks and
livelocks. To address this problem, we present a novel verification approach in-
spired by the “operating guidelines” used for partner synthesis. We view the con-
figuration process as an external service, and compute a characterization of all
such services which meet particular requirements using the notion of configura-
tion guideline. As a result, we can characterize all feasible configurations (i. e.,
configurations without behavioral problems) at design time, instead of repeatedly
checking each individual configuration while configuring a process model.

Keywords: Configurable process model, operating guideline, Petri nets.

1 Introduction and Background

Although large organizations support their processes using a wide variety of process-
aware information systems, the majority of business processes are still not directly
driven by process models. Despite the success of Business Process Management (BPM)
thinking in organizations, Workflow Management (WfM) systems — today often re-
ferred to as BPM systems — are not widely used. One of the main problems of BPM
technology is the “lack of content”, that is, providing just a generic infrastructure to
build process-aware information systems is insuÆcient as organizations need to support
specific processes. Organizations want to have “out-of-the-box” support for standard
processes and are only willing to design and develop system support for organization-
specific processes. Yet most BPM systems expect users to model basic processes from
scratch. Enterprise Resource Planning (ERP) systems such as SAP and Oracle, on the
other hand, focus on the support of these common processes. Although all ERP systems
have workflow engines comparable to the engines of BPM systems, the majority of pro-
cesses are not supported by software which is driven by models. For example, most of

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 95–111, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

96 W. van der Aalst et al.

SAP’s functionality is not grounded in their workflow component, but hard-coded in ap-
plication software. ERP vendors try to capture “best practices” in dedicated applications
designed for a particular purpose. Such systems can be configured by setting parame-
ters. System configuration can be a time consuming and complex process. Moreover,
configuration parameters are exposed as “switches in the application software”, thus
making it diÆcult to see the intricate dependencies among certain settings.

A model-driven process-oriented approach toward supporting business processes has
all kinds of benefits ranging from improved analysis possibilities (verification, simulation,
etc.) and better insights, to maintainability and ability to rapidly develop organization-
specific solutions. Although obvious, this approach has not been adopted thus far, because
BPM vendors have failed to provide content and ERP vendors su�er from the “Law of
the handicap of a head start”. ERP vendors manage to e�ectively build data-centric so-
lutions to support particular tasks. However, the complexity and large installed base of
their products makes it impossible to refactor their software and make it process-centric.

Based on the limitations of existing BPM and ERP systems, we propose to use con-
figurable process models. A configurable process model represents a family of process
models, that is, a model that through configuration can be customized for a particular set-
ting. Configuration is achieved by hiding (i. e., bypassing) or blocking (i. e., inhibiting)
certain fragments of the configurable process model [12]. In this way, the desired behavior
is selected. From the viewpoint of generic BPM software, configurable process models
can be seen as a mechanism to add content to these systems. By developing comprehen-
sive collections of configurable models, particular domains can be supported. From the
viewpoint of ERP software, configurable process models can be seen as a means to make
these systems more process-centric, although in the latter case quite some refactoring is
needed as processes are hidden in table structures and application code.

Various configurable languages have been proposed as extensions of existing lan-
guages (e. g., C-EPCs [22], C-iEPCs [17], C-WF-nets [3], C-SAP, C-BPEL) but few
are actually supported by enactment software (e. g., C-YAWL [13]). In this paper, we
are interested in models in the latter class of languages, which, unlike traditional refer-
ence models [9,8,11], are executable after they have been configured. Specifically, we
focus on the verification of configurable executable process models. In fact, because
of hiding and�or blocking selected fragments, the instances of a configured model may
su�er from behavioral anomalies such as deadlocks and livelocks. This problem is ex-
acerbated by the total number of possible configurations a model may have, and by the
complex domain dependencies which may exist between various configuration options.
For example, the configurable process model we constructed from the VICS documenta-
tion — an industry standard for logistics and supply chain management — comprises 50
activities. Each of these activities may be “blocked”, “hidden”, or “allowed”, depending
on the configuration requirements. This results in 350 � 7�18e�23 possible configura-
tions. Clearly, checking the feasibility of each single configuration can be time consum-
ing as this would typically require to perform state-space analysis. Moreover, charac-
terizing the “family of correct models” for a particular configurable process model is
even more diÆcult and time-consuming as a naive approach would require to solve an
exponential number of state-space problems.

Correctness Ensuring Process Configuration 97

As far as we know, our earlier approach [3] is the only one focusing on the verifica-
tion of configurable process models which takes into account behavioral correctness and
avoids the state-space explosion problem. Other approaches either only discuss syntac-
tical correctness related to configuration [22,10,8], or deal with behavioral correctness
but run into the state-space problem [14]. In this paper, we propose a completely novel
verification approach where we consider the configuration process as an “external ser-
vice” and then synthesize a “most permissive partner” using the approach described
by Wolf [24] and implemented in the tool Wendy [21]. This most permissive partner
is closely linked to the notion of operating guidelines for service behavior [20]. In
this paper, we define for any configurable model a so-called configuration guideline to
characterize all correct process configurations. This approach provides the following
advantages over our previous approach [3]:

– We provide a complete characterization of all possible configurations at design
time, that is, the configuration guideline.

– Computation time is moved from configuration time to design time and results can
be reused more easily.

– No restrictions are put on the class of models which can be analyzed. The previous
approach [3] was limited to sound free-choice WF-nets. Our new approach can be
applied to models which do not need to be sound, which can have complex (non-
free choice) dependencies, and which can have multiple end states.

To prove the practical feasibility of this new approach, we have implemented it as a
component of the toolset supporting C-YAWL.

The remainder of this paper is organized as follows. Section 2 introduces basic con-
cepts such as open nets and weak termination. These concepts are used in Section 3 to
formalize the notion of process configuration. Section 4 presents the solution approach
for correctness ensuring configuration. Section 5 discusses tool support and Section 6
concludes the paper.

2 Business Process Models

For the formalization of the problem we use Petri nets which o�er a formal model of
concurrent systems. However, the same ideas can be applied to other languages (e. g.,
C-YAWL, C-BPEL).

Definition 1 (Petri net). A marked Petri net is a tuple N � (P� T� F�m0) such that: P
and T (P � T � �) are finite sets of places and transitions, respectively, F � (P � T) �
(T � P) is a flow relation, and m0 : P � IN is an initial marking.

A Petri net is a directed graph with two types of nodes: places and transitions, which
are be connected by arcs as specified in the flow relation. If p � P, t � T , and (p� t) � F,
then place p is an input place of t. Similarly, (t� p) � F means that p is an output place
of t.

The marking of a Petri net describes the distribution of tokens over places and is
represented by a multiset of places. For example, the marking m � [a2� b� c4] indicates

98 W. van der Aalst et al.

p2

p3

p5

p8

t3

t1 t2

t4

t6

Prepare
Travel Form
(Secretary)

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7
Check & Update
Travel Form
(Employee)

Arrange
travel
insurance
(Employee)

p4

t5

p6

p7

t9t8

p1

XOR-join

XOR-split

AND-join

AND-split

Flow

Place

Transition

Token

Fig. 1. The open net for travel request approval (� � �[p8]�)

that there are two tokens in place a, one token in b, and four tokens in c. Formally m is
a function such that m(a) � 2, m(b) � 1, and m(c) � 4. We use 	 to compose multisets;
for instance, [a2� b� c4] 	 [a2� b� d2� e] � [a4� b2� c4� d2� e].

A transition is enabled and can fire if all its input places contain at least one token.
Firing is atomic and consumes one token from each of the input places and produces one
token on each of the output places. m0

t

� m means that t is enabled in marking m0 and

the firing of t in m0 results in marking m. We use m0
�

� m to denote that m is reachable
from m0, that is, there exists a (possibly empty) sequence of enabled transitions leading
from m0 to m.

For our configuration approach, we use open nets. Open nets extend classical Petri
nets with the identification of final markings � and a labeling function �.

Definition 2 (Open net). A tuple N � (P� T� F�m0� �� L� �) is an open net if
– (P� T� F�m0) is a marked Petri net (called the inner net of N),
– � � P � IN is a finite set of final markings,
– L is a finite set of labels,
– � � L is a label representing invisible (also called silent) steps, and
– � : T � L � ��
 is a labeling function.

We use transition labels to represent the activity corresponding to the execution of a
particular transition. Moreover, if an activity appears multiple times in a model, we use
the same label to identify all the occurrences of that activity. The special label � refers
to an invisible step, sometimes referred to as “silent”. Invisible transitions are typically
used to represent internal actions which do not mean anything at the business level (cf.
the “inheritance of dynamic behavior” framework [2,7]). We use visible labels to denote
activities that may be configured while in Section 4 we use these labels to synchronize
two open nets.

Figure 1 shows an example open net which models a typical travel request approval.
The process starts with the preparation of the travel form. This can either be done by an

Correctness Ensuring Process Configuration 99

employee or be delegated to a secretary. In both cases, the employee personally needs
to arrange the travel insurance. If the travel form has been prepared by the secretary,
the employee needs to check it before submitting it for approval. An administrator can
then approve or reject the request, or make a request for change. Now, the employee can
update the form according to the administrator’s suggestions and resubmit it. In Fig. 1
all transitions bear a visible label, except for t5 which bears a �-label as it has only been
added for routing purposes.

Unlike our previous approach [3] based on WF-nets [1] and hence limited to a single
final place, we allow for multiple final markings here. Good runs of an open net end in
a marking in set �. Therefore, an open net is considered to be erroneous if it can reach
a marking from which no final marking can be reached any more. An open net weakly
terminates if a final marking is reachable from every reachable marking.

Definition 3 (Weak termination). An open net N � (P� T� F�m0� �� L� �) weakly termi-
nates if and only if (i�) for any marking m with m0

�

� m there exists a final marking
m f � � such that m

�

� m f .

The net in Fig. 1 is weakly terminating. Weak termination is a weaker notion than
soundness, as it does not require transitions to be quasi-live [1]. This correctness notion
is more suitable as parts of a correctly configured net may be left dead intentionally.

3 Process Model Configuration

We use open nets to model configurable process models. An open net can be configured
by blocking or hiding transitions which bear a visible label. Blocking a transition means
that the corresponding activity is no longer available and none of the paths with that
transition cannot be taken any more. Hiding a transition means that the corresponding
activity is bypassed, but paths with that transition can still be taken. If a transition
is neither blocked nor hidden, we say it is allowed, meaning it remains in the model.
Configuration is achieved by setting visible labels to allow, hide or block.

Definition 4 (Open net configuration). Let N be an open net with label set L. A map-
ping CN : L � �allow� hide� block
 is a configuration for N. We define: AC

N � �t � T �

�(t) � � � CN(�(t)) � allow
, HC
N � �t � T � �(t) � � � CN(�(t)) � hide
, and

BC
N � �t � T � �(t) � � � CN(�(t)) � block
.

An open net configuration implicitly defines an open net, called configured net, where
the blocked transitions are removed and the hidden transitions are given a �-label.

Definition 5 (Configured net). Let N � (P� T� F�m0� �� L� �) be an open net and CN

a configuration of N. The resulting configured net �C
N � (P� T C� FC�m0� �� L� �C) is

defined as follows: T C � T � (BC
N), FC � F � ((P� TC)� (P� TC)), and �C(t) � �(t) for

t � AC
N and �C(t) � � for t � HC

N.

As an example, Fig. 2(a) shows the configured net derived from the open net in Fig. 1
and the configuration CN(Prepare Travel Form (Secretary)) � block (to allow only

100 W. van der Aalst et al.

p2

p3

p5

p8

t3

t2

t4

t6

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7
Check & Update
Travel Form
(Employee)

p4

t5

p6

p7

t9t8

p2

p3

p5

p8

t3

t2

t6

Prepare
Travel Form
(Employee)

Approve
Travel Form

(Admin)

Reject
Travel Form

(Admin)

Submit
Travel Form
for Approval
(Employee)

Request for
change
(Admin)

t7

p4

t5

p6

p7

t9t8

(a) A weakly terminating configured net

p1 p1

(b) An incorrectly configured net

Fig. 2. Two possible configured nets based on the model in Fig. 1

employees to prepare travel forms), CN (Arrange Travel Insurance (Employee)) � hide
(to skip arranging the travel insurance), and CN(x) � allow for all other labels x.

Typically, configurable process models cannot be freely configured, because the use
of hiding and blocking has to comply with the application domain in which the model
has been constructed. For instance, in the travel request example we cannot hide the
labels of both t1 and t2, because all the other activities depend on the preparation of
the travel form, nor block the label of t8, because there must be an option to approve
the travel request. The link between configurable process models and domain decisions
was explored in [18] and can be incorporated easily (see Sect. 6)

A configured net may have disconnected nodes and some parts may be dead (i. e.,
can never become active). Such parts can easily be removed. However, as we impose
no requirements on the structure of configurable models, these disconnected or dead
parts are irrelevant with respect to weak termination. For example, if we block the
label of t2 in Fig. 1, transition t5 becomes dead as it cannot be enabled any more, and
hence can also be removed without causing any behavioral issues. Nonetheless, not
every configuration of an open net results in a weakly terminating configured net. For
example, by blocking the label of t4 in the configured net of Fig. 2(a), we obtain the
configured net in Fig. 2(b). This net is not weakly terminating because after firing t7
tokens will get stuck in p3 (as this place does not have any successor) and in p5 (as t5
can no longer fire).

Blocking can cause behavioral anomalies such as the deadlock in Fig. 2(b). However,
hiding cannot cause such issues, because it merely changes the labels of an open net.
Hence, we shall focus on blocking rather than hiding. In this paper we are interested
in all configurations which yield weakly terminating configured nets. We use the term
feasibility to refer to such configured nets.

Correctness Ensuring Process Configuration 101

Definition 6 (Feasible configuration). Let N be an open net and CN a configuration
of N. CN is feasible i� the configured net �C

N weakly terminates.

Given a configurable process model N, we are interested in the following two questions:
i) Is a particular configuration CN feasible? ii) How to characterize the set of all feasible
configurations?

The remainder of this paper is devoted to a new verification approach answering
these questions. This approach extends the work in [3] in two directions: (i) it imposes
no unnecessary requirements on the configurable process model (allowing for non-free-
choice nets and nets with multiple end places�markings), and (ii) it checks a weaker
correctness notion (i. e., weak termination instead of soundness). For instance, the net
in Fig. 1 is not free-choice because t4 and t5 share an input place, but their sets of input
places are not identical. The non-free-choice construct is needed to model that after
firing t1 or t7, t5 cannot be fired, and similarly, after firing t2, t4 cannot be fired.

4 Correctness Ensuring Configuration

To address the two main questions posed in the previous section, we could use a direct
approach by enumerating all possible configurations and simply checking whether each
of the configured nets �C

N weakly terminates. As indicated before, the number of pos-
sible configurations is exponential in the number of configurable activities. Moreover,
most techniques for checking weak termination typically require the construction of the
state space. Hence, traditional approaches are computationally expensive and do not
yield a useful characterization of the set of all feasible configuration. Consequently, we
propose a completely di�erent approach using the synthesis technique described in [24].
The core idea is to see the configuration as an “external service” and then synthesize
a “most permissive partner”. This most permissive partner represents all possible “ex-
ternal configuration services” which yield a feasible configuration. The idea is closely
linked to the notion of operating guidelines for service behavior [20]. An operating
guideline is a finite representation of all possible partners. Similarly, our configuration
guideline characterizes all feasible process configurations. This configuration guideline
can also be used to eÆciently check the feasibility of a particular configuration without
exploring the state space of the configured net. Our approach consists of three steps:

1. Transform the configurable process model N into a configuration interface NCI .
2. Synthesize the “most permissive partner” (our configuration guideline) QCN for the

configuration interface NCI .
3. Study the composition of NCI with QCN .

We first introduce the notion of composition. Open nets can be composed by synchro-
nizing transitions according to their visible labels. In the resulting net, all transitions
bear a �-label and labeled transitions without counterpart in the other net disappear.

Definition 7 (Composition). For i � �1� 2
, let Ni � (Pi� Ti� Fi�m0i � �i� Li� �i) be open
nets. N1 and N2 are composable i� the inner nets of N1 and N2 are pairwise disjoint. The
composition of two composable open nets is the open net N1	N2 � (P� T� F�m0� �� L� �)
with:

102 W. van der Aalst et al.

– P � P1 � P2,
– T � �t � T1 � T2 � �(t) � �
 � �(t1� t2) � T1 � T2 � �(t1) � �(t2) � �
,
– F � (F1 � F2) � ((P � T) � (T � P)) � �(p� (t1� t2)) � P � T � (p� t1) � F1 � (p� t2) �

F2
 � �((t1� t2)� p) � T � P � (t1� p) � F1 � (t2� p) � F2
,
– m0 � m01 	 m02 , � � �m1 	 m2 � m1 � �1 � m2 � �2
,
– L � �, and �(t) � � for t � T.

Composition can limit the behavior of each original net; for instance, transitions may
no longer be available or may be blocked by one of the two original nets. Hence, it is
possible that N1 and N2 are weakly terminating, but N1 	 N2 is not. Similarly, N1 	 N2

may be weakly terminating, but N1 and N2 are not. The labels of the two open nets
in Def. 7 serve now a di�erent purpose: they are not used for configuration, but to
synchronize the two nets as described in [24].

With the notions of composition and weak termination, we define the concept of
controllability, which we need to reason about the existence of feasible configurations.

Definition 8 (Controllability). An open net N is controllable i� there exists an open
net N� (called partner) such that N 	 N� is weakly terminating.

In [24], Wolf presents an algorithm to check controllability: if an open net is control-
lable, this algorithm can synthesize a partner.

After these preliminaries, we define the notion of a configuration interface. One of
the objectives of this paper was to characterize the set of all feasible configurations by
synthesizing a “most permissive partner”. To do this, we transform a configurable pro-
cess model (i. e., an open net N) into an open net NCI , called the configuration interface,
which can communicate with services which configure the original model. In fact, we
shall provide two configuration interfaces: one where everything is allowed by default
and the external configuration service can block labels, and the other where everything
is blocked by default and the external configuration service can allow labels. These two
interfaces allow us to configure both nets where all transitions are initially allowed (and
configuration is done by blocking transitions) and nets where all transitions are initially
blocked (and configuration is done by allowing transitions). In either case, the resulting
open net NCI is controllable i� there exists a feasible configuration CN of N. With-
out loss of generality, we assume a 1-safe initial marking, that is, m0(p) � 0 implies
m0(p) � 1. This assumption helps to simplify the configuration interface.

Definition 9 (Configuration interface – allow by default). Let N � (P� T� F� m0� ��

L� �) be an open net. We define the open net with configuration interface NCI
a � (PC� T C�

FC�mC
0 � �

C� LC � �C) with:

– T V � �t � T � �(t) � �
,
– PC � P � �pstart
 � �pa

t � t � T V
, T C � T � �tstart
 � �bx � x � L
,
– FC � F��(pstart� tstart)
��(tstart� p) � p � P�m0(p) � 1
��(t� pa

t) � t � T V
��(pa
t � t) �

t � T V
 � �(bx� pstart) � x � L
 � �(pstart� bx) � x � L
 � �(pa
t � b�(t)) � t � T V
,

– mC
0 � [p1 � p � �pstart
 � �pa

t � t � T V
],
– �C � �m 	

�
t�T m�

t � m � � � �t�T m�

t � �[]� [pa
t]

,

– LC � �start
 � �blockx � x � L

– �C(tstart) � start, �C(bx) � blockx for x � L, and �C(t) � � for t � T.

Correctness Ensuring Process Configuration 103

p1

p2 p3

p4

t1

t2

t3

t4

x y

τx

(a) Open net N
(� � �[p4]�)

p1

p2 p3

p4

t1

t2

t3

t4

start
tstart

blockx blockybx by

pa
t1

pa
t2

pa
t3

ττ

τ τ

pstart

(b) Configurable interface NCI
a

(allow by default)

p1

p2 p3

p4

start
tstart

pa
t1

pa
t2

allowx allowy

pb
x pb

y

ay

pa
t3

ax

t1

t2

t3

t4ττ

τ τ

pstart

(c) Configurable interface NCI
b

(block by default)

Fig. 3. An example open net (a) and its two configuration interfaces (b,c)

Figure 3 illustrates the two configuration interfaces for a simple open net N. In
both interfaces, the original net N consisting of places �p1� p2� p3� p4
 and transitions
�t1� t2� t3� t4
 is retained, but all transition labels are set to �. Let us focus on the config-
uration interface where all activities are allowed by default (Fig. 3(b)). Here transitions
bx and by are added to model the blocking of labels x and y, respectively. Places pa

t1 , pa
t2 ,

and pa
t3 are also added to connect the new transitions to the existing ones, and are ini-

tially marked as all configurable transitions are allowed by default. Firing bx will block
t1 and t2 by removing the tokens from pa

t1 and pa
t2 . These two transitions are blocked at

the same time as both bear the same label x in N. Firing by will block t3. Transitions bx

and by are labeled respectively blockx and blocky. This means that in the composition
with a partner they can only fire if a corresponding transition in the partner can fire.
Transition start has been added to ensure configuration actions take place before the
original net is activated. In this way, we avoid “configuration on the fly”. Figure 3(c)
shows the construction of the configuration interface where all activities are blocked
and is discussed later.

Consider now a configuration service represented as an open net Q. NCI
a 	 Q is the

composition of the original open net (N) extended with a configuration interface (NCI
a),

and the configuration service Q. First, blocking transitions such as bx and by can fire
(apart from unlabeled transitions in Q). Next, transition start fires after which blocking
transitions such as bx and by can no longer fire. Hence, only the original transitions in
NCI

a can fire in the composition after firing start. The configuration service Q may still
execute transitions, but these cannot influence NCI

a any more. Hence, Q represents a
feasible configuration i� NCI

a can reach one of its final markings from any reachable
marking in the composition. So Q corresponds to a feasible configuration i� NCI

a 	Q is
weakly terminating, that is, Q is a partner of NCI

a .
To illustrate the basic idea, we introduce the notion of a canonical configuration

partner, that is, the representation of a configuration CN : L � �allow� hide� block

104 W. van der Aalst et al.

in terms of an open net which synchronizes with the original model extended with a
configuration interface.

Definition 10 (Canonical configuration partner – allow by default). Let N be an
open net and let CN : L � �allow� hide� block
 be a configuration for N. QCN

a �

(P� T� F�m0� �� LQ� �) is the canonical configuration partner with:

– B � �x � L � CN(x) � block
 is the set of blocked labels,
– P � �p0

x � x � B
 � �p�
x � x � B
, T � �tx � x � B
 � �tstart
,

– F � �(p0
x� tx) � x � B
 � �(tx� p�

x) � x � B
 � �(p�
x � tstart) � x � B
,

– m0 � [(p0
x)

1 � x � B], � � � []
,1

– LQ � �blockx � x � B
 � �start
, and �(tx) � blockx for x � B, �(tstart) � start.

The set of labels which need to be blocked to mimic configuration CN is denoted by B.
The canonical configuration partner QCN

a has a transition for each of these labels. These
transitions may fire in any order after which the transition with label start fires. We
observe that in the composition NCI

a 	 QCN
a first all transitions with a label in �blockx �

x � B
 fire in a synchronous manner, followed by the transition with label start (in
both nets). After this, the net is configured and QCN

a plays no role in the composition
NCI

a 	 QCN
a any more.

The following lemma formalizes the relation between the composition NCI
a 	 QCN

a

and feasibility.

Lemma 1. Let N be an open net and let CN be a configuration for N. CN is a feasible
configuration i� NCI

a 	 QCN
a is weakly terminating.

Proof. (�) Let CN be a feasible configuration for N and let NCI
a be as defined in Def. 9.

Consider the composition NCI
a 	 QCN

a after the synchronization via label start has oc-
curred. By construction, (1) NCI

a 	 QCN
a reached the marking m � m0 	 m1 	 m2 such

that m0 is the initial marking of N, m1 marks all places pa
t of transitions t � AC

N � HC
N ,

and m2 is the empty marking of QCN . Furthermore, (2) all transitions which bear a syn-
chronization label (i. e., tstart and all bx transitions) and all t � BC

N are dead in m and
cannot become enabled any more. From NCI

a , construct the net N� by removing these
transitions and their adjacent arcs, as well as the places pstart and pa

t for all t � T V .
The resulting net N� coincides with �C

N (modulo renaming). Hence, NCI
a 	 QCN

a weakly
terminates.

(�) Assume NCI
a 	 QCN

a weakly terminates. From QCN
a , we can straightforwardly

derive a configuration C for N in which all labels are blocked which occur in NCI
a 	QCN

a .
With the same observation as before, we can conclude that �C

N coincides with the net
N� constructed from NCI

a after the removal the described nodes. Hence, �C
N weakly

terminates and C is a feasible configuration for N. ��

Lemma 1 states that checking the feasibility of a particular configuration can be reduced
to checking for weak termination of the composition. However, the reason for modeling
configurations as partners is that we can synthesize partners and test for the existence
of feasible configurations.

1 [xk � x � X] denotes the multiset where each element of X appears k times. [] denotes the
empty multiset.

Correctness Ensuring Process Configuration 105

(a) CGa Allow by default (b) CGb Block by default

Fig. 4. Two configuration guidelines characterizing all possible configurations

Theorem 1 (Feasibility coincides with controllability). Let N be an open net. NCI
a is

controllable i� there exists a feasible configuration CN of N.

Proof. (�) If NCI
a is controllable, then there exists a partner N� of NCI

a such that NCI
a 	

N� is weakly terminating. Consider a marking m of the composition reached by a run
� from the initial marking of NCI

a 	 N� to the synchronization via label start. Using
the construction from the proof of Lemma 1, we can derive a net N� from NCI

a which
coincides with a configured net �C

N for a configuration CN . As NCI
a 	 N� is weakly

terminating, CN is feasible.
(�) If CN is a feasible configuration of N, then by Lemma 1, NCI

a 	 QCN
a weakly

terminates and by Def. 8, NCI
a is controllable. ��

As shown in [24], it is possible to synthesize a partner which is most-permissive. This
partner simulates any other partner and thus characterizes all possible feasible con-
figurations. In previous papers on partner synthesis in the context of service oriented
computing, the notion of an operating guideline was used to create a finite represen-
tation capturing all possible partners [20]. Consequently, we use the term Configura-
tion Guideline (CG) to denote the most-permissive partner of a configuration interface.
Fig. 4(a) shows the configuration guideline CGa for the configurable model in Fig. 3(a),
computed from the configuration interface NCI

a in Fig. 3(b).
A configuration guideline is an automaton with one start state and one or more final

states. Any path in the configuration guideline starting in the initial state and ending
in a final state corresponds to a feasible configuration. The initial state in Fig. 4(a) is
denoted by a small arrow and the final states are denoted by double circles. The leftmost
path in Fig. 4(a) (i. e., �blockx� start�), corresponds to the configuration which blocks
label x. Path �blocky� start� corresponds to the configuration which blocks label y. The
rightmost path (i. e., �start�) does not block any label. The three paths capture all three
feasible configurations. For example, blocking both labels is not feasible. Figure 4(a) is
trivial because there are only two labels and three feasible configurations.

Thus far, we used a configuration interface that allows all configurable activities by
default, that is, blocking is an explicit action of the partner. It is also possible to use a
completely di�erent starting point and initially block all activities. As this “block by de-
fault” strategy is analogous to the “allow by default” approach we discussed before, we

106 W. van der Aalst et al.

p1

p2

p3 p4

p5

p6

v w

x

y z

t1 t2

t3

t4 t5

(a) N1

p1

p2

p3 p4

p5

p6

x

x y

y

τ

t1 t2

t3

t4 t5

(b) N2

p1

p2

p3 p4

p5

p6

τ

x y

y x

t1 t2

t3

t4 t5

(c) N3

Fig. 5. Three open nets (� � �[p6]�)

(a) CGa
1 (b) CGa

2 (c) CGa
3

Fig. 6. The configuration guidelines (allow by default) for N1 (a), N2 (b) and N3 (c)

refer to [5] for formal definitions and proofs. Figure 3(c) depicts the “block by default”
configuration interface for the net N1 (Fig. 3(a)) and Fig. 4(b) shows the respective
configuration guideline.

Let us now consider a more elaborated example to see how configuration guidelines
can be used to rule out unfeasible configurations. Figure 5 shows three open nets. The
structures are identical, only the labels are di�erent. For example, blocking x in N2

corresponds to removing both t1 and t4 as both transitions bear the same label, while
blocking x in N3 corresponds to removing t1 and t5. For these three nets, we can con-
struct the configuration interfaces using Def. 9 and then synthesize the configuration
guidelines, as shown in Fig. 6.

Figure 6(a) reveals all feasible configurations for N1 in Fig. 5(a). From the initial
state in the configuration guideline CGa

1, we can immediately reach a final state by fol-
lowing the rightmost path �start�. This indicates that all configurations which block
nothing (i. e., only allow or hide activities) are feasible. It is possible to just block
v (cf. path �blockv� start�) or block both v and y (cf. paths �blockv� blocky� start� and
�blocky� blockv� start�). However, it is not allowed to block y only, otherwise a token
would deadlock in p3. For the same reasons, one can block w only or w and z, but not z
only. Moreover, it is not possible to combine the blocking of w and�or z on the one hand
and v and�or y on the other hand, otherwise no final marking can be reached. Also x

Correctness Ensuring Process Configuration 107

can never be blocked, otherwise both v and w would also need to be blocked (to avoid a
token to deadlock in p2) which is not possible. There are 35 � 243 configurations for N1.
If we abstract from hiding as this does not influence feasibility, there remain 25 � 32
possible configurations. Of these only 5 are feasible configurations which correspond to
the final states in Fig. 6(a). This illustrates that the configuration guideline can indeed
represent all feasible configurations in an intuitive manner.

Figure 6(b) shows the three feasible configurations for N2 in Fig. 5(b). Again all
final states correspond to feasible configurations. Here one can block the two leftmost
transitions (labeled x) or the two rightmost transitions (labeled y), but not both.

The configuration guideline in Fig. 6(c) shows that nothing can be blocked for N3

(Fig. 5(c)). Blocking x or y will yield an unfeasible configuration as a token will get
stuck in p4 (when blocking x) or p3 (when blocking y). If both labels are blocked, none
of the transitions can fire and thus no final marking can be reached.

5 Tool Support

To prove the feasibility of our approach, we applied it to the configuration of C-YAWL
models [13] and extended the YAWL system accordingly. YAWL is based on the well-
know workflow patterns [4] and is one of the most widely used open source workflow
systems [15]. For configuration we restrict ourselves to the basic control-flow patterns
and do not use YAWL’s cancelation sets, multiple instance tasks and OR-joins.

A C-YAWL model is a YAWL model where some tasks are annotated as configurable.
Configuration is achieved by restricting the routing behavior of configurable tasks via
the notion of ports. A configurable task’s joining behavior is identified by one or more
inflow ports, whereas its splitting behavior is identified by one or more outflow ports.
The number of ports for a configurable task depends on the task’s routing behavior.
For example, an AND-split�join and an OR-join are each identified by a single port,
whereas an XOR-split�join is identified by one port for each outgoing�incoming flow.
An OR-split is identified by a port for each combination of outgoing flows. To restrict a
configurable task’s routing behavior, inflow ports can be hidden (thus the corresponding
task will be skipped) or blocked (no control will be passed to the corresponding task
via that port), whereas outflow ports can only be blocked (the outgoing paths from that
task via that port are disabled). For instance, Fig. 7 shows the C-YAWL model for the
travel request approval in the YAWL Editor, where configurable tasks are marked with
a ticker border.

The new YAWL Editor can be downloaded from �����������	
����	��
�. It pro-
vides a graphical interface to conveniently configure and check C-YAWL models and
subsequently generate configured models. The C-YAWL Correctness Checker [5] which
is embedded in the editor converts C-YAWL models into open nets and passes these
on to the tool Wendy [21] to produce configuration guidelines. Wendy implements the
algorithms to synthesize partners [24] and calculates operating guidelines [20]. The
complexity of the partner synthesis is exponential in the size of the Petri net with the
configuration interface (the reachability graph needs to be generated) and the size of the
interface. However, practical experiences show that Wendy is able to analyze industrial
models with up to 5 million states and to synthesize partners of about the same size [21].

108 W. van der Aalst et al.

Fig. 7. The C-YAWL model for travel request approval

At each configuration step, the Correctness Checker scans the set of outgoing edges
of the current state in the configuration guideline, and prevents users from blocking
those ports not included in this set. This is done by disabling the block button for those
ports. As users block a valid port, the Correctness Checker traverses the configuration
guideline through the corresponding edge and updates the current state. If this is not a
consistent state, that is, a state with an outgoing edge labeled “start”, further ports need
to be blocked, because the current configuration is unfeasible. In this case the compo-
nent provides an “auto complete” option. This is achieved by traversing the shortest
path from the current state to a consistent state and automatically blocking all ports in
that path. After this, the component updates the current state and notifies the user with
the list of ports that have been automatically blocked. For example, Fig. 7 shows that
after blocking the input port of task Check and Update Travel Form, the component no-
tifies the user that the input port of task Prepare Travel Form for Approval (Secretary)
and the output port of task Submit Travel Form for Approval to task Request for Change
have also been blocked. Similarly, the component maintains a consistent state in case
users decide to allow a previously blocked port. In this case it traverses the shortest
backward path to a consistent state and allows all ports in that path. By traversing the
shortest path we ensure that the number of ports being automatically blocked or allowed
is minimal.

The C-YAWL example of Fig. 7 comprises ten inflow ports and nine outflow ports. In
total more than 30 million configurations are potentially possible. If we abstract from
hiding we obtain 524,288 possible configurations, of which only 1�593 are feasible
according to the configuration guideline. Wendy took an average of 336 seconds (on a
2.4 GHz processor with 2GB of RAM) to generate this configuration guideline which
consumes 3�37 MB of disk space. Nonetheless, the shortest path computation is a simple

Correctness Ensuring Process Configuration 109

depth-first search which is linear on the number of nodes in the configuration guideline.
Thus, once the configuration guideline has been generated, the component’s response
time at each user interaction is instantaneous.

6 Conclusion

Configurable process models are a means to compactly represent families of process
models. However, the verification of such models is diÆcult as the number of possi-
ble configurations grows exponentially in the number of configurable elements. Due to
concurrency and branching structures, configuration decisions may interfere with each
other and thus introduce deadlocks, livelocks and other anomalies. The verification of
configurable process models is challenging and only few researchers have worked on
this. Moreover, existing results impose restrictions on the structure of the configurable
process model and fail to provide insights into the complex dependencies among di�er-
ent process model configuration decisions.

The main contribution of this paper is an innovative approach for ensuring cor-
rectness during process configuration. Using partner synthesis we compute the con-
figuration guideline — a compact characterization of all feasible configurations, which
allows us to rule out configurations that lead to behavioral issues. The approach is highly
generic and imposes no constraints on the configurable process models that can be an-
alyzed. Moreover, all computations are done at design time and not at configuration
time. Thus, once the configuration guideline has been generated, the response time is
instantaneous thus stimulating the practical (re-)use of configurable process models.
The approach is implemented in a checker integrated in the YAWL Editor. This checker
uses the Wendy tool to ensure correctness while users configure C-YAWL models.

Several interesting extensions are possible. First, the partner synthesis could be fur-
ther refined using behavioral constraints [19] in order to rule out specific partners. This
could be used to encode knowledge about a process’ application domain [16] in the
configuration interface. For example, domain knowledge may state that two activities
cannot be blocked or allowed at the same time. Similarly, one could study techniques
to identify semantic inconsistencies between control-flow and data-flow that can arise
from configuration, and use behavioral constraints to encode these inconsistencies (e.g.,
extend the approach in [23]). Second, one could consider configuration at run-time, that
is, while instances are running, configurations can be set or modified. This can be easily
embedded in the current approach. Finally, one could devise more compact representa-
tions of configuration guidelines (e.g. exploiting concurrency [6]).

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., Basten, T.: Inheritance of Workflows: An Approach to Tackling Prob-
lems Related to Change. Theoretical Computer Science 270(1-2), 125–203 (2002)

3. van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., La Rosa, M.,
Mendling, J.: Preserving Correctness During Business Process Model Configuration. Formal
Aspects of Computing 22(3), 459–482 (2010)

110 W. van der Aalst et al.

4. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

5. van der Aalst, W.M.P., Lohmann, N., La Rosa, M., Xu, J.: Correctness Ensuring Process
Configuration: An Approach Based on Partner Synthesis (extended version). BPM Center
Report BPM-10-02, BPMcenter.org (2010)

6. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) APN
1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

7. Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. Journal of Logic and Algebraic
Programming 47(2), 47–145 (2001)

8. Becker, J., Delfmann, P., Knackstedt, R.: Adaptive Reference Modeling: Integrating Configu-
rative and Generic Adaptation Techniques for Information Models. In: Reference Modeling:
EÆcient Information Systems Design Through Reuse of Information Models, pp. 27–58.
Physica-Verlag, Springer, Heidelberg (2007)

9. Curran, T., Keller, G.: SAP R�3 Business Blueprint: Understanding the Business Process
Reference Model. Upper Saddle River (1997)

10. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005)

11. Fettke, P., Loos, P.: Classification of Reference Models - A Methodology and its Application.
Information Systems and e-Business Management 1(1), 35–53 (2003)

12. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, H.M.: Configurable Process Models:
A Foundational Approach. In: Reference Modeling: EÆcient Information Systems Design
Through Reuse of Information Models, pp. 59–78. Physica-Verlag, Springer, Heidelberg
(2007)

13. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., Rosa, M.L.: Configurable Work-
flow Models. Int. J. Cooperative Inf. Syst. 17(2), 177–221 (2008)

14. Hallerbach, A., Bauer, T., Reichert, M.: Guaranteeing Soundness of Configurable Process
Variants in Provop. In: CEC, pp. 98–105. IEEE, Los Alamitos (2009)

15. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern Business
Process Automation: YAWL and its Support Environment. Springer, Heidelberg (2010)

16. La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-based
Variability Modeling for System Configuration. Software and Systems Modeling 8(2), 251–
274 (2009)

17. La Rosa, M., Dumas, M., ter Hofstede, A.H.M., Mendling, J., Gottschalk, F.: Beyond Control-
Flow: Extending Business Process Configuration to Roles and Objects. In: Li, Q., Spaccapietra,
S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 199–215. Springer, Heidelberg
(2008)

18. La Rosa, M., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-driven
Configuration of Reference Process Models. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 424–438. Springer, Heidelberg (2007)

19. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral Constraints for Services. In: Alonso, G.,
Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 271–287. Springer,
Heidelberg (2007)

20. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for Finite-State Services. In:
Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer,
Heidelberg (2007)

21. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 297–307. Springer, Heidelberg
(2010)

Correctness Ensuring Process Configuration 111

22. Rosemann, M., van der Aalst, W.M.P.: A Configurable Reference Modelling Language. In-
formation Systems 32(1), 1–23 (2007)

23. Trcka, N., van der Aalst, W.M.P., Sidorova, N.: Data-Flow Anti-Patterns: Discovering Data-
Flow Errors in Workflows. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 425–439. Springer, Heidelberg (2009)

24. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P. (eds.) ToP-
NoC II. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 112–127, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Impact of Granularity on Adjustment Behavior in
Adaptive Reuse of Business Process Models

Oliver Holschke

Technische Universität Berlin, Fachgebiet Systemanalyse und EDV
FR 6-7, Franklinstr. 28-29, 10587 Berlin, Germany
oliver.holschke@sysedv.tu-berlin.de

Abstract. Business process diagrams as exteriorized forms of distributed organ-
izational knowledge can be valuable assets when shared and reused in similar
process design tasks. However, little empirical research has been conducted to
shed light on the cognitive processes involved during the adaptation of retrieved
process models. We hypothesize that model granularity has significant effects
on human adjustment behavior irrespective of the editing distances between
reuse and solution models. The results of our laboratory experiment, which is
dimensioned according to real-world cases, contribute to a more specific classi-
fication of adaptation operations and their cognitive efforts, and refine the
notion of process similarity. This study follows up on our former research work
by amending minor flaws in the experiment setup; it now provides a compre-
hensive analytical apparatus for further replicated tests as the predictive power
of our explorative study, regarding e.g. varied business contexts and task di-
mensions, remains limited.

Keywords: Design by Reuse, Adaptive Reuse, Process Granularity, Cognitive
Heuristics, Knowledge Reuse, Modeling Assistance, Cognitive Ergonomics,
Reference Process Models, Experimental Study.

1 Introduction

Nowadays graphical descriptions of processes are a common extension of thought in
organizations, ranging from private enterprises to public administrations. Through the
lens of Activity Theory [1] we can regard diagrams as “exteriorized” forms of mental
processes, and as these mental processes are manifested in diagrammatic tools, they
become more readily accessible and communicable to other people, thereafter becom-
ing useful for social interaction.

The sharing and the reuse of various kinds of knowledge within organizations, in-
cluding process diagrams, is an attractive form of organized activity because of the
potential economic benefits conveyed as time-savings, qualitative improvements and
economies of scale. The effective management of knowledge reuse may even be seen
as the successful exploitation of existing diverse ideas, and poses an important ingre-
dient for radical innovation [2, 3].

 Impact of Granularity on Adjustment Behavior in Adaptive Reuse 113

There are many examples in system design and development that focus on reuse
drawing upon various artifacts settled in different enterprise contexts [4, 5], including
business process models [e.g. 6, 7].

It is important to investigate these ergonomics related aspects to determine whether
the utility of visual process diagrams as language-anchored knowledge can actually
prevail in process-oriented organizations and what conditions must be established to
improve information diffusion and specifications of reuse-based design environments.

Former experimental setups lacked well-grounded values in dimensions essentially
important to larger organizations, such as complexity of the task and placement in a
specific application domain. We therefore followed up our own research work [8] and
corrected some minor flaws in the experimental setup to pinpoint effects of granular-
ity variation on design adjustments. These corrections include, among others, the
sizing of the process design task, the precise dimensioning of the editing distances
between reuse models and solutions, and better control of individual characteristics of
the participants. We also had the possibility to base the task and reuse models on real
world dimensions from an industry case study.

The rest of this article is organized as follows. Section II presents the related re-
search work and links the question at hand. Section III introduces the concept of
granularity, its quantification and application to process models. In Section IV the
granularity concept and adjustment bias effects are considered in the design process
under reuse and hypotheses are presented. Section V describes the experimental study
conducted. Section VI summarizes the results and section VII concludes with the
limitations of this study and a brief outlook toward further research activities.

2 Related Work

While extensive research work has been conducted on the strategies, organization and
adaptation techniques of reusing process models [9, 10], still little is known about the
cognitive processes involved when adjusting process diagrams (and diagrams in gen-
eral) and what psychological effects may be involved during the adaptation process
[11]. Only for specials tasks the benefits of diagrams were formally shown [12]. The
adaptation phase [13] is of crucial importance as simple analogous reuse in dynamic
environments can hardly be expected. We therefore focus on the phase after the deci-
sion of searching for a reusable process model has been made (and a model found),
because an insurmountable performance gap had been perceived [2].

Substantial work has been done in the area of model-reading and the factors influ-
encing e.g. better comprehension and/or understanding, among them modularity,
which is highly related to the concept of granularity [14, 15]. However, model-
reading is just one part in the problem-solving process; using a diagram and actually
re-applying its content in writing a new model bears further challenges (such as mak-
ing correspondences and adaptation). In [16] groups were trained with a rule-based
and pattern-based approach respectively and the effect on model-writing (data model)
performance was tested. While the study explores model-writing and different forms
of assistance, the domain was different from process models and the help provided
was not represented as a solution estimate of the same notation.

114 O. Holschke

Among many known cognitive biases in problem-solving using assistant artifacts,
the anchoring heuristic is of high interest as it has shown to have specific influences
on the adjustment behavior of humans [17, 18]. We explore the anchoring heuristic in
a reuse-based process design task, in which we vary the granularity of the reusable
artifact, because our assumption is that the anchoring effect will have different effects
on the designer’s adjustment behavior depending on reuse model granularity.

3 Granularity: Concept and Quantification

3.1 Granularity as a Concept of Human Cognition

The term granularity has been discussed in various research areas such as Granular
Computing, Cognitive Informatics, Pattern Classification, and Conceptual Modeling.
Granularity is a fundamental concept in human cognition and deals with the construc-
tion, interpretation, and representation of granules. A granule is a clump of points
(objects) drawn together by indistinguishability, similarity, proximity or functionality
[19]. Granules are the result of a granulation process - the process that involves divid-
ing some universe into subsets or the grouping of individual subjects into clusters.
Granules can be viewed as subsets of the universe, which may be either fuzzy or crisp
[19, 20]. Once granulation has been performed, it is necessary to label granules. This
can be done by classification, i.e. assigning a name to a granule such that an element
in the granule is an instance of the named category.

A partition of a universe U is a collection of non-empty pair-wise disjoint subsets
of U whose union is U. Each subset in a partition is also called a block. In the granu-
lated view, partitions, being elements of the partition of U, are the basic building
blocks and are called elementary granules. They are the smallest nonempty subsets
that can be defined, observed or measured. From elementary granules, larger granules
can be constructed by taking unions of elementary granules [19]. Since partitions are
nonempty, they may have a cardinality bigger than 1. The parts or blocks of the parti-
tions are countable, but not observable because they cannot be differentiated. A con-
ceptual visualization of different granularities of partitions π1 and π2 is presented in
Fig. 1. The granularity of different partitions is an important characteristic of design
tasks that reside on a specific level of granularity as it may affect how designs are
planned and developed, and how efficiently available design artifacts may be reused.

3.2 Measuring Granularity and Application to Process Models

According to [19] the following function G is used as a measure of granularity for a
partition π, which has been applied in [8]:

||log
||

||
)(

1
i

m

i

i A
U

A
G ∑

=

=π (1)

We apply the granularity concept now to process models. The granularity concept
requires a perspective on the cardinality of the universe, i.e. some sort of “baseline” of
the world that is perceived must be known. Any partitions that are then made will be

 Impact of Granularity on Adjustment Behavior in Adaptive Reuse 115

Fig. 1. Granularity of partition π1 (left) and partition π2 (right) of a universe U

based on that baseline and regarded in relation to it. The perception of the universe in
the case of process modeling tasks to a large extent stems from the description of the
specific task. Since we are constrained to a laboratory experimental setup, the textual
description of the task provided by the experimenter to test subjects is used as the base-
line to determine the universe cardinality. In Fig. 2 and 3 distinct granularities of two
process models (high and low) are presented. It is shown how the textual description of
the task can be related to a very fine baseline view represented by atomic tasks and
other BPMN symbols. Based on that, two different partitions, i.e. two differently
granular process models can be defined (cf. Fig. 2 and 3). The focus is on grouping
atomic tasks to coarser sub-processes (though not indicated as sub- processes (though
not indicated as sub-processes); the grouping of other BPMN constructs is thinkable in
principal, but the abstracting relationships are not as straight-forward as it is for tasks,
e.g. the grouping of several gateways to a parent gateway is harder in terms of abstract-
ing the information. The focus on activities with regard to the granularity concept is
therefore directly related to the concept of modularity that has been reviewed an inves-
tigated regarding effects on model understanding in [14]. Applying equation 3 to the
partitions in Fig. 2 and Fig. 3 we get G (π1) = 0,773 and G (π2) = 0,516.

a

b

c

d

e f g

h i

k l

A B

π1

|A1|=1 |A2|=8 |A3|=7 |A4|=1

|U|=17

A1 A2 A3 A4

Fig. 2. Process model having high granularity with regard to the cardinality of the task

116 O. Holschke

a

b

c

d

e f g

h i

k l

α β

π2
γ δ ε

|U|=17

|A1|=1 |A3|=5 |A4|=2 |A5|=1 |A6|=6 |A7|=1
|A2|=1

A1 A2 A3 A4 A5 A6 A7

Fig. 3. Process model having low granularity with regard to the cardinality of the task

4 Granularity and Adjustment Behavior in Reuse-Based Design

Evidence from cognitive psychology suggests that making judgments about the adap-
tations required to meet specific application needs can be difficult, thereby adding to
the challenge of achieving effective reuse of system designs. Reference [18] draws
upon the anchoring heuristic and applies it to the domain of software design. Anchor-
ing (or focalism) is a cognitive bias which describes a frequent human tendency to
rely too heavily, or “anchor”, on one or few cues when making decisions [17]. In [18]
it is shown for a reuse-based Entity-Relationship modeling task from the aviation
domain, that anchoring to extraneous functionality is significant. Considering extra-
neous information in solution models as a severe impairment – because parsimony is
violated – specific reuse-oriented organizational setups have to be seriously ques-
tioned. Assuming that, despite these explorative findings, a real benefit particularly
for complex design tasks could indeed be obtained when designs are reused, we ex-
tend the former research work in two ways to gain deeper understanding. Firstly,
while significant work has been done in the domain of database models and concep-
tual schemas, we apply the above mentioned cognitive heuristics to the process mod-
eling domain, opening the discussion about how process knowledge shall be prepared
to effectively diffuse within organizations. Secondly, while acknowledging that an-
choring is an important cognitive bias to consider, we are interested in the exact con-
ditions that prevail when potential reuse benefits are either enabled or impaired.

We draw upon granularity as a factor to be explored more deeply in the context of
anchoring [8]. Varying granularity of a reuse artifact in a process design task corre-
sponds in practice with differently distributed adaptation operations required to arrive
at the solution. This can be seen in approaches where the “dilution” of reuse artifacts,
i.e. the number of extraneous information elements, progresses with decreasing granu-
larity. Compare for instance those initiatives capturing fine-level data for broad appli-
cation domains considering many different contingencies (cf. e.g. [21]). The individual
organization that reuses the artifacts will in most cases require only a fraction of the
available information. All extraneous information then must be deleted – one specific

 Impact of Granularity on Adjustment Behavior in Adaptive Reuse 117

type of adaptation. Since the share of extraneous information may be substantial, high
search costs are imposed that countervail the reuse benefits.

In the case of high granular reuse models, i.e. bigger “chunks” (see [6] as an exam-
ple), however, the adaptation requirements usually turn out to be inclusion activities
(regarding the solution) rather than deletion. Information elements are too coarse to
reflect the task requirements therefore the respective element has to be replaced by
finer constructs, i.e. more precise elements have to be included in the reuse model.
Because the inclusion of new elements is required, left out information in the reuse
model (but needed) is a case of omission (cf. [18]). As both cases – low and high
granular – could be constructed in the way that both would contain the same propor-
tions of extraneous and omitted information (against the solution), practice suggests
that provided reuse artifacts of high granularity will require more adaptive inclusion,
and those of low granularity will require more adaptive deletion of elements. Imply-
ing the effects of anchoring that have been shown in other application domains, we
expedite this finding and presume that the extent of the anchoring effect significantly
differs depending on the type of adaptation operation being carried out on the reuse
model during the design task (which relates to the reuse model granularity as ex-
plained above). Not only do we think that the difference is significant – we further
assume that deleting extraneous elements imposes the significantly heavier cognitive
burden, leading to the following null (directed difference) hypothesis to be falsified:

H0a: The percentage of required adjustments actually performed in the

high granular case are not significantly higher than in the low granu-
lar treatment.

Further, we assume that – for the size and complexity of the provided task – the model
quality of solutions created with the help of a reuse model will be superior to those
created from scratch, leading to our second null (directed difference) hypothesis:

H0b: The quality of solution models created in the reuse cases (high and

low granular) will not be higher compared with the model qualities
achieved in the from-scratch case.

5 Research Design and Experimental Setup and Procedure

We applied to large extent the research framework for experiment design to evaluate
conceptual modeling techniques by [22]. As the scope of our evaluation is confined to
the granularity characteristic of a reusable process model and its impact on modeling
performance, we controlled for the other two major factors, i.e. individual characteris-
tics of the designers and task characteristics, as is detailed in the controlled variable
section below. We adopted the laboratory-based approach, which has been employed
in data modeling studies comparing user performance [e.g. 16, 23], and in recent
years has been applied increasingly in studies that investigate process modeling in
more detail [14, 24]. Laboratory experiments allow for precision, objectiveness,
strong control, and relatively high internal validity [25]. Our complete research design
is depicted in Fig. 4.

118 O. Holschke

Fig. 4. Research model

5.1 Independent Variable

The independent variable consists of a reusable process model at different granularity
levels that is given to participants as an assistant artifact. We treat three groups with
different artifacts, i.e. group 1 receives a coarse granular reuse model (high G), group
2 receives a fine granular reuse model (low G), and group 3 does not receive an assis-
tant artifact to reuse, but has to solve the modeling task from scratch (this is the
control group). Analyzing group 3 will allow us to determine whether there are any
significant benefits at all when solving the task of the given complexity and difficulty
by reusing a provided process model (groups 2 and 3).

The granularities of the reuse models had to be specifically constructed. Since in
this study the independent variable is regarded as categorical, it was adequate to select
two granularity levels sufficiently apart from another. In a pretesting phase the proc-
ess models of differing granularity were shown to several individuals at the depart-
ment to get feedback on the apparentness of the granularity distinction. The authors
made minor adjustments to the reuse models according to the feedback and ultimately
specified the granularities of the a) coarse reuse model at G = 0.700 (high G) and the
b) fine reuse model at G = 0.316 (low G) respectively. Excerpts of the constructed
reusable process models can be seen in Appendix A, full reuse models are available at
http://sites.google.com/site/holschke/taskdescription

5.2 Dependent Variables

Required Adjustments Made: The main dependent variable consisted of a specific
aspect of modeling outcome which reflects certain human adjustment behavior during
reuse, i.e. the adjustment biases that occur in the case of required changes. We opera-
tionalized this by counting those adjustments made (to the reuse model) that were
actually required and label it “Required Adjustments Made”. In order to make
the ‘required adjustments made’ comparable, we present them as a relative share in
percentage (the absolute number could have been taken as well though, as the edit

 Impact of Granularity on Adjustment Behavior in Adaptive Reuse 119

distances in both treatments are nearly equal). Two sub-cases of adjustments have
to be distinguished to understand the different characters of adaptation that were
required.

Required Adjustments Made:

• The sub-case of extraneous elements in the reuse model: extraneous
elements are not required by the original design task and therefore had to
be deleted from the reuse model. Too many carried over extraneous
elements distort the solution process model leading to inferior quality.
Extraneous elements were the main manipulation introduced in the low
granularity treatment.

• The sub-case of omitted elements in the reuse model: omitted elements
are missing or too coarse elements in the reuse model – although they
are required by the design task. These had to be added in the solution
model. Omitted elements were the main manipulation introduced in the
high granularity treatment.

Model quality: While the overall quality of a process model remains an important
goal in order to improve shared mental models within and across organizational units
and thereby facilitate effective communication (cf. [26-28]), our main focus was the
adaptive behavior of human modelers. Still, we were interested whether the solutions
of reuse groups had any significant qualitative advantages over from-scratch solutions
(modeled by control group). A grading scheme along the dimensions validity and
completeness [26] was developed which was applied by the authors to rate the solu-
tion models. The scheme was based on 7-Point Likert scales. The average per model
ratings provided a rough quality estimate that was regarded sufficient to show the
potential differences in quality between reuse-based and from-scratch approaches. We
refrained from measuring syntax and comprehension based quality dimensions [26] as
syntax-checking facilities are available in modern editors, and layout development
hinges on tool ergonomics respectively. Our main interest was directed at whether the
solution model was valid and complete with regard to the task.

5.3 Controlled Variables

Participant and task characteristics were controlled for in this modeling experiment.
We focused on advanced end users who played the role of novice process designers
with basic computer and process modeling training, and limited application domain
knowledge. The 39 participants of the experiment were mostly graduate students of
computer science or business & information system engineering of the Technische
Universität Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, Hasso-
Plattner-Institute (HPI) Potsdam, and KTH Stockholm. Beside these, participants
were taken from the group of research assistants of these institutions. In addition to
these, some participants were business professionals that work for IT-related compa-
nies. All participants were selected based on the contact databases of our department
containing several hundreds of students, research assistants and business professionals
respectively.

120 O. Holschke

Application domain knowledge: The process design task was selected from a spe-
cific domain, i.e. the internal power supplier switch process that appeared unfamiliar
to the participants with high probability. We took the task from a real case of a large
European power utility provider to which the switch process is also new because of
recent legislative demands the participants’ application knowledge could therefore be
classified as beginner’s level. Significant impacts stemming from this factor were
therefore not expected (cf. [29] on the role of application knowledge in schema un-
derstanding).

Modeling language and knowledge: The participants could be classified as moder-
ate to advanced modelers as they all have received formal training on various process
modeling notations. For instance all academic participants have completed courses
that involved formal modeling notations and methods, such as Business Process Mod-
eling Notation (BPMN), Event-driven Process Chains (EPC) and Unified Modeling
Language (UML) that were applied to different business contexts. Business expert
participants have had similar education and training. We opted for BPMN in this
study because of its wide-spread use in process modeling projects, intensive stan-
dardization efforts and support through many tools offered by global vendors.

Edit distance between reuse model and solution: We controlled for edit distance
between the two reuse models and the solution, as a reuse model that is very different
from a to-be designed solution is assumedly much harder to be reused and adapted to
the actual solution model as it would be in case of a reuse model very similar to the
solution. Edit distance can be regarded as an operationalization of business process
similarity (cf. [30-32] on similarity and for further references). Because we want to
focus on the effects of granularity only, we kept the edit distances between high G-
reuse model and solution and low G-reuse model and solution, respectively, on an
equal level. Applying the graph edit distance measure from [31] we set the distance to
35, using skipn (node insertion and deletion) and skipe (edge insertion and deletion).
We relaxed the requirement of string edit distance for this first exploratory approach.
Taking into account the notion of graph edit similarity [31], our study will contribute
to the specific costs that are involved in different adaptation operations and thereby
render the concept of business process similarity more precisely with regard to cogni-
tive biases.

Task complexity: Various measures have been proposed to describe the complexity
of tasks [33-35]. As the selected task was presented as a textual description and as
several solution paths exist to arrive at a solution model, we drew upon constructs
from applied linguistics and problem-solving. We controlled e.g. the number of in-
formation elements [33], degree of abstraction [36], degree of “here-and-now” [33]
and syntactic features such as number of words and sentences, average sentence
length and others [35]. As in this exploratory study a single task only was used, task
complexity was not of prime importance – but in the event of testing design tasks
from other domains, as is planned by the researcher team (see Fig. 4.), the control of
task complexity will be crucial. Having tackled the research on task complexity
measures here, adequate constructs are readily available.

 Impact of Granularity on Adjustment Behavior in Adaptive Reuse 121

5.4 Experiment Procedure

Pilot sessions were conducted to test the experimental procedure and evaluate the
clarity, length, and format of the task description and the adaptability of the provided
reuse models. Based on the feedback, minor adjustments were made to the textual
task description to eliminate instances of major imprecision. As pilot users showed
some technical difficulties regarding the limited space available within reuse models,
the canvas size was evenly increased to reduce any adaptation bias caused by space
limitations as much as possible.

The overall experimental sessions were conducted individually with people (some
in parallel) at various appointments over the time period Oct. ‘09 to Feb. ‘10. The
subjects were given the same process design task and were instructed to read the case
and design the process model with the web-based Signavio-Oryx process model editor
[37]. Solutions were modeled and saved therein only.

The subjects had overall 60 minutes for reading the case and modeling their solu-
tion. By doing this we indirectly measure how quickly the task was captured by
evaluating how far the subjects would come within the given timeframe depending on
the treatment they received. The time restriction can also be seen as a proxy for condi-
tions in project work in real enterprises which are usually subject to time pressure.
The reuse models are provided in Appendix A; the task description can be found in
the online Appendix at: http://sites.google.com/site/taskdescription.

The 39 participants were randomly assigned to the three treatment groups: high
granularity reuse model, low granularity reuse model, and no reuse treatment. Group
size is comparable to other studies on modeling techniques, such as in [14] (n = 14) or
[16] (n = 13).

6 Results and Discussion

The performances regarding “Required Adjustments Made” of treatment groups 1 and
2 showed obvious differences (see Table 1). The analysis of variance (one-way
ANOVA) test was used to detect whether this difference was significant (at α = 0.05
level of significance). Because we had two independent populations for the dependent
variable “Required Adjustments Made” ANOVA leads to the same result as a two
independent sample t-test. We used ANOVA because a third control population was
introduced for the subsequent model quality evaluation (for prevention of alpha error
accumulation). The variation of reuse model granularity had a significant effect on the
required adjustments actually made. We thus can reject the null hypothesis H0a as the
probability of making a Type I error is p < 0.05 (see Table 2).

Table 1. Group statistics of collected data: Required Adjustments Made

Treatment group Mean N Std. deviation

High G 0,57 13 0,165

Low G 0,11 13 0,113

Total 0,34 26 0,275

122 O. Holschke

Table 2. Results of one-way ANOVA

 Sum of squares df Mean of
squares

F Sig.

Betw. groups (Comb.) 1,417 1 1,417 70,165 0,000

Within groups 0,485 24 0,020

Total 1,902 25

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

High G Low G

0

1

2

3

4

5

6

High G Low G No Reuse

Fig. 5. Plot of group means: Required Adjustments Made (left) and Model Quality (right)

Table 3. Post-hoc comparisons by Bonferroni test

(I) (II) Mean Diff. (I-J) Std. Error Sig. 95% Confidence Interval
 Lower Bound Upper Bound

High G Low G
No Reuse

0,718
2,974

0,165
0,165

0,000
0,000

0,301
2,558

1,135
3,391

Low G High G
No Reuse

- 0,718
2,256

0,165
0,165

0,000
0,000

- 1,135
1,839

- 0,301
2,672

No
Reuse

High G
Low G

- 2,974
- 2,256

0,165
0,165

0,000
0,000

- 3,391
- 2,672

- 2,558
- 1,839

This means that in this specific case the granularity of the reuse model indeed has a

specific impact on the extent of triggered adjustment activities: in the low granularity
case, the relative adjustments, i.e. predominantly the deletion of extraneous tasks was
significantly lower (μ = 11% only) compared to the relative adjustments (i.e. the addi-
tion of fine-granular tasks) that were made in the case in which the reuse model was
of high granularity (μ = 57%). These results have important implications on the de-
sign of knowledge management systems that provide the search and adaptation of
reusable process models in new process design tasks. The effect of anchoring to ex-
traneous functionality is apparently so strong that certain fine levels of granularity for
reuse models appear prohibitive in light of efficiency requirements. This has a direct
implication on the definition of process similarity – i.e. when adaptation costs are
implied – which must underlie the search functionality provided in a repository. The

 Impact of Granularity on Adjustment Behavior in Adaptive Reuse 123

cost of removing extraneous functionality from the reuse model in order to arrive at
the solution model must be weighed significantly higher than the adaptation opera-
tions that involve the refinement of functionality, but would still arrive at the same
solution model. The known process distance measure by [31] can therefore be com-
plemented by our newly gained propositions about the inhomogeneous costs of differ-
ent process adaptation operations.

As we wanted to also have a rough estimate of the solution quality differences of
the two reuse approaches compared to a non-reuse approach, we tested the ratings of
solution quality with a one-way ANOVA for significance. Because the overall result
was significant (rejection of H0b), we applied a post-hoc multiple comparison proce-
dure (Bonferroni test) to see at which mean pair the differences actually occur. As can
be seen in Table 3 all pair-wise mean differences are significant. We would like to
emphasize the drop of quality in the control group (no reuse of a model) compared to
the other two groups (see Fig. 5 right). Apparently participants had difficulties to map
the complete task requirements to their solution within the given time. This shows a
clear advantage of the groups that had a reuse model provided. It seems that in this
kind of setting, i.e. regarding task size, time pressure, etc., the approach of reusing
models has significant efficiency benefits. The theoretical relationship between nu-
merous extraneous information elements in a reuse model and the severe decline of
solution quality should be investigated in future studies in more depth. While the
quality difference between High G and Low G treatments were statistically signifi-
cant, the absolute difference seems small – the practical relevance of this result should
be investigated in a separate study.

Compared with our previous study [8] it must be noted that the setup has changed
regarding the experimental task. While previously two tasks resided at different
granularity levels, we now focused on a single task, but varied the reuse model granu-
larity. The lower Recall from the previous study in the High G case could not be con-
firmed as the model quality (which involves recalled elements) is now higher in the
High G case. But the previous task size was much smaller, two tasks were involved
and therefore the outcomes of the studies can hardly be compared.

7 Conclusion

We have drawn upon the cognitive heuristic of anchoring which has been demon-
strated in domains such as data-base design, and applied it to process design tasks
under reuse of available process models to evaluate possible impacts. We identified
model granularity (or modularity) as having a specific relation to certain adaptation
requirements to which the process modeler can anchor. In a laboratory experiment we
manipulated two treatment artifacts, i.e. reuse models of high and low granularity, and
showed that the anchoring effect is significantly stronger in the low granularity case
(i.e. very little adjustments were made although they were required). The failed ad-
justments consequently contribute to lower validity of solution models. Our study
contributes to a deeper insight into cognitive effects during adaptive reuse processes
in problem-oriented design tasks, particularly strong human anchoring to extraneous
information. Moreover, our finding refines the cost notions of adaptation operations
needed for a process similarity definition that is augmented by human judgment be-
havior: deleting information from reuse artifacts is relatively expensive!

124 O. Holschke

Nonetheless, our study has to be seen in light of its limitations. The external reli-
ability of the study is bound to the application domain of the supplier switch process
of the power utilities sector. Whether the effects can be observed repeatedly across
other application domains, remains to be investigated. In order to tackle this issue we
are currently conducting the same experimental study in other application domains, in
particular the telecommunication services domain. By controlling the parameters
explained in our contribution, but varying the application domain, we intend to test
the external reliability of the here shown effects of varied granularity of reuse artifacts
on modeling performance.

We have manipulated the experimental study in a specific way, i.e. the partition of
the process context, for which the granularity values were calculated, was specifically
designed by the authors. The same granularity value could be calculated for a com-
pletely different partition of the process universe, i.e. certain coarseness may have
been defined for other tasks in the process than what we have chosen, or certain other
tasks may have been much finer. As the theoretical number of possible partitions may
be very large, the future evaluation of varied partitions must follow practical consid-
erations. We have concentrated our efforts on the study of the BPMN notation. It
cannot be completely ruled out that other process modeling notations may evoke
different effects during a ceteris paribus experiment. Choosing BPMN was a prag-
matic decision in the face of large communities engaged in the discourses of BPMN,
intensive standardization efforts, and large IS technology vendors that have opted to
include BPMN as a process modeling language in products.

The subjects involved in the study can only be regarded as proxies for novices in
organizations. An interesting question therefore still is how the effects would vary if
experts only would model the given process. Moreover, the number of investigated
subjects is small with heterogeneity among them left despite the control efforts. Fu-
ture work should increase the sample size and apply homogeneity tests.

While the above poses some limitations, it presents interesting possibilities for new
research questions carrying forward our effort. One important issue to consider is that
the creators of reusable process models should be available for person-to-person assis-
tance [38]. These relationships deserve more thorough evaluation in the future.

References

1. Leontiev, A.N.: Activity, Consciousness, and Personality. Prentice-Hall, Englewood Cliffs
(1978)

2. Majchrzak, A., Cooper, L.P., Neece, O.E.: Knowledge Reuse for Innovation. Management
Science 50(2), 174–188 (2004)

3. March, J.G.: Exploration and Exploitation in Organizational Learning. Organization Sci-
ence 2(1), 71–87 (1991)

4. Frakes, W., Kang, K.: Software reuse research: status and future. IEEE Transactions on
Software Engineering 31(7), 529–536 (2005)

5. Rothenberger, M.A., Dooley, K.J., Kulkarni, U.R., Nada, N.: Strategies for Software
Reuse: A Principal Component Analysis of Reuse Practices. IEEE Transactions on Soft-
ware Engineering 29(9), 825–837 (2003)

6. Kelly, M.: Enhanced Telecom Operations Map (eTOM) - The Business Process Frame-
work, TeleManagement Forum (2007)

 Impact of Granularity on Adjustment Behavior in Adaptive Reuse 125

7. Supply-Chain Council: Supply Chain Operations Reference-model Version 8.0, Supply-
Chain Council, Inc. (2006)

8. Holschke, O., Rake, J., Levina, O.: Granularity as a Cognitive Factor in the Effectiveness
of Business Process Model Reuse. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A., et al.
(eds.) BPM 2009. LNCS, vol. 5701, pp. 245–260. Springer, Heidelberg (2009)

9. Fettke, P., Loos, P.: Classification of reference models: a methodology and its application
Information Systems and E-Business Management 1, 35–53 (2003)

10. Soffer, P., Reinhartz-Berger, I., Sturm, A.: Facilitating Reuse by Specialization of Refer-
ence Models for Business Process Design. In: 8th Workshop on Business Process Model-
ing, Development, and Support (BPMDS 2007) in Conjunction with the 19th International
Conference on Advanced Information Systems Engineering, CAiSE 2007 (2007)

11. Scaife, M., Rogers, Y.: External cognition: how do graphical representations work? Inter-
national Journal Human-Computer Studies 45, 185–213 (1996)

12. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words.
Cognitive Science 11, 65–100 (1987)

13. Prieto-Diaz, R.: Status report: Software reusability. lEEE Software 10(3), 61–66 (1993)
14. Reijers, H., Mendling, J.: Modularity in process models: review and effects. In: Dumas,

M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 20–35. Springer,
Heidelberg (2008)

15. Moody, D.L.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Vis-
ual Notations in Software Engineering. IEEE Transactions on Software Engineering 35(6),
756–779 (2009)

16. Batra, D., Wishart, N.A.: Comparing a rule-based approach with a pattern-based approach
at different levels of complexity of conceptual data modelling tasks. International Journal
of Human-Computer Studies 61(4), 397–419 (2004)

17. Plous, S.: The Psychology of Judgment and Decision Making. McGraw-Hill, New York
(1993)

18. Parsons, J., Saunders, C.: Cognitive Heuristics in Software Engineering: Applying and
Extending Anchoring and Adjustment to Artifact Reuse. IEEE Trans. Software Eng., 873–
888 (2004)

19. Yao, Y.: Probabilistic approaches to rough sets. Expert Systems 20(5), 287–297 (2003)
20. Yao, Y.: A Partition Model of Granular Computing. LNCS Transactions on Rough Sets 1,

232–253 (2004)
21. United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT):

Core Components Technical Specification, Version 3.0, United Nations (September 29,
2009)

22. Gemino, A., Wand, Y.: Evaluating modeling techniques based on models of learning.
Requirements Engineering 9(4), 248–260 (2004)

23. Teo, H.-H., Chan, H.C., Wei, K.K.: Performance Effects of Formal Modeling Language
Differences: A Combined Abstraction Level and Construct Complexity Analysis. IEEE
Transactions on Professional Communication 49(2), 160–175 (2006)

24. Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: Empirical
insights and recommendations. Information Systems 35(4), 467–482 (2009)

25. Kerlinger, F.N.: Foundations of Behavioral Research, 3rd edn. Holt, Rinehart and Winston,
Orlando, FL (1986)

26. Lindland, I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling.
IEEE Software 11, 42–49 (1994)

27. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for action:
a revised quality framework. European Journal of Information Systems 15, 91–102 (2006)

126 O. Holschke

28. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners use
conceptual modeling in practice? Data & Knowledge Engineering 58, 358–380 (2006)

29. Khatri, V., Vessey, I., Ramesh, V., Clay, P., Park, S.-J.: Understanding Conceptual Sche-
mas: Exploring the Role of Application and IS Domain Knowledge. Information Systems
Research 17(1), 81–99 (2006)

30. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic Busi-
ness Process Models. In: Fourth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2007). Australian Computer Society, Inc., Ballarat (2007)

31. Dijkman, R., Dumas, M., García-Banuelos, L.: Graph Matching Algorithms for Business
Process Similarity Search. In: Dayal, U., et al. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–
63. Springer, Heidelberg (2009)

32. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Similarity between Business
Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp.
450–464. Springer, Heidelberg (2008)

33. Robinson, P.: Task Complexity, Task Difficulty, and Task Production: Exploring Interac-
tions in a Componential Framework. Applied Linguistics 22(1), 27–57 (2001)

34. Campbell, D.J.: Task Complexity: A Review and Analysis. Academy of Management
Review 13(1), 40–52 (1988)

35. Larkey, L.S.: Automatic Essay Grading Using Text Categorization Techniques. In: 21st
annual international ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 90–95. ACM, New York (1998)

36. Prabhu, N.: Second Language Pedagogy. Oxford University Press, Oxford (1987)
37. Signavio GmbH: Signavio (2009), http://academic.signavio.com [cited

17.3.2010]
38. Boh, W.F.: Reuse of knowledge assets from repositories: a mixed methods study. Informa-

tion & Management 45 (July) 365–375 (2008)

Appendix A: Process Models Provided for Reuse

Fig. 6. Excerpt of reuse process model of high granularity (for treatment group 1)

 Impact of Granularity on Adjustment Behavior in Adaptive Reuse 127

Fig. 7. Excerpt of reuse process model of low granularity (for treatment group 2)

Machine-Assisted Design of Business Process
Models Using Descriptor Space Analysis

Maya Lincoln1, Mati Golani2, and Avigdor Gal1

1 Technion - Israel Institute of Technology
mayal@technion.ac.il, avigal@ie.technion.ac.il

2 Ort Braude College, Israel
matig@braude.ac.il

Abstract. In recent years, researchers have become increasingly inter-
ested in developing methods and tools for automating the design of busi-
ness process models. This work suggests a method for machine-assisted
design of new process models, based on business logic that is extracted
from real-life process repositories using a linguistic analysis of the rela-
tionships between constructs of process descriptors. The analysis enables
the construction of a descriptor space in which it is possible to define new
process sequences. The suggested method can assist process analysts in
designing new business processes while making use of knowledge that is
encoded in the design of existing process repositories. To demonstrate
the method we developed a software tool (“New Process Design Assis-
tant” - NPDA) that automates the suggested design method. We tested
our tool on the Oracle Applications ERP process repository, showing our
approach to be effective in enabling the design of new activities within
new business process models.

Keywords: New process model design, Business process repositories,
Business process integration and management, Process choreographies.

1 Introduction

In recent years, researchers have become increasingly interested in developing
methods and tools for automating the design of business process models. Process
modeling is considered a manual, labor intensive task, whose outcome depends
on personal domain expertise with errors or inconsistencies that lead to bad
process performance and high process costs [12]. Hence, automating the reuse of
constructs, gathered from predefined process models does not only save design
time but also supports non-expert designers in creating new business process
models. Research in this field encapsulates topics from the areas of software
design and data mining [19,15,6,4], and is focused on structured reuse of existing
building blocks and pre-defined patterns that provide context and sequences [5].

While most previous work focused on supporting the design of alternative
process steps within existing process models, less work has been carried out on
the design of new process models. We only identified a few works that address
the design of new models [12,14,7]. This work aims at filling this gap by suggest-
ing a generic method for designing new business process models related to any

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 128–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Machine-Assisted Design of Business Process Models 129

functional domain. The suggested method guides business analysts that opt to
design a new business model, by suggesting process steps (activities) that are rel-
evant to the newly created process model. The business logic for such suggestions
is extracted from process repositories through the analysis of existing business
process model activities. Each activity is encoded automatically as a descriptor,
using the “PDC” notation, suggested first in [11] and further elaborated in this
work for supporting the field of new process model design. The collection of all
descriptors formulates a descriptor space, and distances between every two space
coordinates are calculated in terms of business process conduct proximity. We
show through an empirical evaluation that by utilizing the descriptor space it is
possible to effectively support the design of new process models.

As a motivating example consider an airport process model of check-in related
processes. Now, suppose that the airport management desires to offer to its
customers a new service: “check-in from home”. In addition, it is also desired to
outline the “check-out” process model as an extension of the current repository.
Although these process models are new, the existing repository encapsulates
know-how and business logic that are relevant and useful for their creation (e.g.,
passenger check-in policies and procedures regarding security, luggage handling,
passenger handling, and document validation). In the above scenario, it would
have been helpful for the process designer to design the new processes using a
supporting system that relies on the reuse of previous know-how instead of doing
this manually from scratch. To illustrate our methodology in this work we use a
real-world case study for airport process design. Based on a “check-in” process
that already exists in the repository, we demonstrate how it is possible to design
the two, above mentioned, new business processes.

This work proposes an innovative method for assisting designers in design-
ing brand new business process models while making use of knowledge that is
encoded in the design of existing, related process models. Our work presents
the following innovations: (a) it provides generic support to the design of new
business process models; (b) it equally utilizes objects and actions for busi-
ness content analysis: we make use of all activity linguistic components (object,
actions and their qualifiers) concurrently, without special focus on objects (as
object centric methods do) or on actions (as activity-centric methods do); (c)
it extends the PDC model [11] to enable the extraction of business logic from
business process repositories.

The suggested method was implemented within a software tool, that was
demonstrated using the aviation industry case study and the Oracle Applications
ERP process repository.

The rest of the paper is organized as follows: we present related work in
Section 2, positioning our work with respect to previous research. In Section
3 we present an extended model for representing process activities based on
the process descriptor notion, presented first in [11], and extended in this work
to support new process model design. In Section 4 we define and discuss the
descriptor space and explain how to navigate in it. Then, we describe our method
for designing new business process models in Section 5. Section 6 introduces the
software tool and our empirical analysis. We conclude in Section 7.

130 M. Lincoln, M. Golani, and A. Gal

2 Related Work

Most of the efforts invested in developing methods and tools for designing pro-
cess models focus on supporting the design of alternative process steps within
existing process models. Such a method is presented in [16] aiming to provide
next-activity suggestions during execution based on historical executions and op-
timization goals. Recommendations are generated based on similar past process
executions as documented in event logs. Similarly, [5] suggests an approach for
helping business users in understanding the context and consequences of apply-
ing pre-defined patterns during a new process design. Other works extend this
research domain by adding both generalization and formalization layers [7,1]

Few works were devoted to the design of brand new process models within
specific and predefined domains. The work presented in [12] utilizes the informa-
tion about a product and its structure for modeling large process structures. [14]
presents a method, named “the product-based workflow design,” for designing
new process models based on product specification and required design criteria.

A requirement for the support of business process design involves the perfor-
mance of a structured reuse of existing building blocks and pre-defined patterns
that provide context and sequences [5]. The identification and choice of relevant
process components are widely based on the analysis of linguistic components -
actions and objects that describe business activities. Most existing languages for
business process modeling and implementation are activity-centric, representing
processes as a set of activities connected by control-flow elements indicating the
order of activity execution [20]. In recent years, an alternative approach has
been proposed, which is based on objects (or artifacts/entities/documents) as a
central component for business process modeling and implementation. This rel-
atively new approach focuses on the central objects along with their life-cycles.
Services (or tasks) are used to specify the automated and/or human steps that
help move objects through their life-cycle, and services are associated with ar-
tifacts using procedural, graph-based, and/or declarative formalisms [8]. Such
object-centric approaches include artifact-centric modeling [13,2], data-driven
modeling [12] and proclets [17]. Further analysis of the object-centric model
in terms of computing the expected coupling of object lifecycle components is
presented in [20].

Although most works in the above domain are either object or activity centric,
only a few works combine the two approaches in order to exploit an extended
knowledge scope of the business process. The work in [9] presents an algorithm
that generates an information-centric process model from an activity-centric
model. The work in [11] presents the concept of business process descriptor that
decomposes process names into objects, actions and qualifiers.

In this work we take this model several steps forward by: (a) describing the
relationships between the model components; (b) showing how the descriptor
model can automatically be generated (using NLP methods); and (c) utilizing
the qualifiers for identifying the relationships between descriptor components
within a process repository.

Machine-Assisted Design of Business Process Models 131

3 The Activity Decomposition Model

This section describes a model of business process decomposition that supports
process design. To illustrate the model components we make use of the aviation
example from Section 1.

3.1 The Descriptor Model

The Workflow Management Coalition (WFMC) [3] defines business process as
a “set of one or more linked procedures or activities which collectively realize a
business objective or policy goal.” An example of such business process model is
the “Passenger check-in” process model, presented in Fig. 1. This figure is based
on YAWL [18] with two slight visual representation modifications, convenient for
our needs: (a) roles were added at the top of each activity; and (b) predecessor
and successor processes are presented as nested activities at the beginning and
at the end of the workflow.

Fig. 1. An example: the “Passenger check-in” process model

In the Process Descriptor Catalog model (“PDC”) [11] each activity is com-
posed of one action, one object that the action acts upon, and possibly one
or more action and object qualifiers, as illustrated in Fig. 2, using UML re-
lationship symbols. Qualifiers provide an additional description to actions and
objects. In particular, a qualifier of an object is roughly related to an object state.
State-of the art Natural Language Processing (NLP) systems, e.g., the “Stanford
Parser,”1 can be used to automatically decompose process and activity names
into process/activity descriptors.

For example, in Fig. 1, the activity “Manually put luggage label” generates an
activity descriptor containing the action “put,” the action qualifier “manually,”
the object “label” and the object qualifier “luggage.”

Fig. 2. The activity decomposition model

1 http://nlp.stanford.edu:8080/parser/index.jsp

132 M. Lincoln, M. Golani, and A. Gal

3.2 A Descriptor Model for Process Design

We now enhance the PDC model of [11] to support process design. Our model
has two basic elements, namely objects and actions, and we delineate four tax-
onomies from them, namely an action hierarchy model, an object hierarchy model,
an action sequence model and an object lifecycle model. The business action and
object taxonomy models organize a set of activity descriptors according to the
relationships among business actions and objects both longitudinally (hierarchi-
cally) and latitudinally (in terms of execution order), as detailed next.

Fig. 3. A segment of the action hierarchy model extracted from the aviation processes

The longitudinal dimension of actions and objects is determined by their
qualifiers. To illustrate the longitudinal dimension of the aviation workflows, a
segment of the action hierarchy model is presented in Fig. 3 and a segment of the
object hierarchy model is presented in Fig. 4. Consider the complete action (the
action and its qualifier) “Manual check.” It is a subclass (a more specific form)
of “Check” in the action hierarchy model, since the qualifier “Manual” limits the
action of “Check” to reduced action range. It is worth noting that some higher-
hierarchy objects and actions are generated automatically by removing qualifiers
from lower-hierarchy objects and actions. For example, the action “Arrive” was
not represented without qualifiers in the aviation processes repository, and was
completed from the more detailed action: “Arrive with luggage” by removing its
action qualifier (“with luggage”) (see Fig. 3). In Section 5 we will show how such
elements assist in designing new processes by enriching the underlying process
repository range. This type of objects and actions are marked with a dashed
border. In addition, a root node “Do” is added to any action hierarchy model
and a root node “Object” is added to any object hierarchy model, effectively
generating a single object and action tree from what would have been, in graph
theoretic terminology, a forest.

Fig. 4. A segment of the object hierarchy model extracted from the aviation processes

Machine-Assisted Design of Business Process Models 133

To illustrate the latitudinal dimension of the aviation process repository, a
segment of the action sequence model is presented in Fig. 5 and a segment of the
object lifecycle model is presented in Fig. 6. Latitudinally, each object holds: (a)
a graph of ordered actions (an “action sequence”) that are applied to that object.
For example, the object “Luggage” is related to the following action sequence:
“Arrange” followed by “Send” (see Fig. 5); (b) a graph of ordered objects that
expresses the object’s lifecycle, meaning - the possible ordering of the object’s
states. This sequence is built by locating the same object with different qualifiers
along the process diagram. For example, the object “Luggage” is part of the
following object lifecycle: “Luggage” –> “Standard luggage”/”Excess luggage”
–> “Labeled luggage” (see Fig. 6).

Luggage: Arrange Send

Hand luggage: Give Put Take

Containers: Give Put Take

Passport: Give Return Give Check

Arrange

Give CheckGetPresent

Fig. 5. A segment of the action sequence model extracted from the aviation processes

Fig. 6. A segment of the object lifecycle model extracted from the aviation processes

4 The Quad-Dimensional Descriptor Space

Based on the activity decomposition model, it is possible to visualize the op-
erational range of a business process model as a descriptor space comprised of
related objects and actions. The descriptor space is a quad-dimensional space
describing a range of activities that can be carried out within a process execu-
tion flow. The coordinates represent the object dimension, the action dimension,
and their qualifiers. Therefore, each space coordinate represents an activity as
a quadruple AC = 〈O, OQ, A, AQ〉, where O is an object, OQ is a set of object
qualifiers, A is an action, and AQ is a set of action qualifiers.

For example, the activity “Arrive at appropriate terminal with luggage” can
be represented by the following coordinate: 〈arrive, with luggage, terminal,
appropriate〉. This coordinate represents an actual activity in the business pro-
cess model: “Airport entry.” Once constructed, the descriptor space includes
all the possible combinations of descriptor components, forming a much larger
and diversified set of possible descriptors. Hence it includes several “virtual”
combinations- that did not originally exist in the original process repository.

134 M. Lincoln, M. Golani, and A. Gal

These virtual combinations, together with existing activities, form an expanded
repository that is used for the design of new business processes.

For every two coordinates in the descriptor space we define a distance function
that is tailored to our method. The proposed distance function in the descriptor
space represents a linear combination of changes within each of its dimensions.
Therefore, we define four specific distance measures using the structures that
were gathered from existing business processes repositories (Section 3).

Definition 1. Object distance (OD): Let Oi and Oj be two objects, ODij is
the minimal number of steps connecting Oi and Oj in the object lifecycle model.

In a similar way we define Action distance, AD, calculated based on the action
sequence model. For example, the action distance between “Present” and “Check”
when acted on “Luggage” is 3 (see Fig. 5).

Definition 2. Object hierarchy distance (OHD): Let Oi and Oj be two
objects, OHDij is the minimal number of steps connecting Oi with Oj in the
object hierarchy model.

In a similar way we define Action hierarchy Distance, AHD, calculated based
on the action hierarchy model.

OD, AD, OHD and AHD are combined to generate a specific distance func-
tion between any two activities ACi and ACj , as follows:

Dist (ACi, ACj) = ODij + ADij + OHDij + AHDij (1)

It is worth noting that the hierarchy distances (OHD and AHD) can always be
calculated since the hierarchy models that they rely on are bidirectional trees.
However, the distances OD and AD can be undefined in some cases (e.g., when
the two objects are not connected in the object hierarchy model, or when the two
actions are not acted upon the same object and therefore do not take part in the
same action sequence). In these cases the above distance components contribute
a no-connection distance to the overall distance function. This distance is an
application specific tunable parameter.

As an example for the use of this distance function consider the two descriptors
(luggage, hand, check, null) and (luggage, null, get, from the conveyer belt). To
navigate from the first descriptor to the second, we first move one step up in
the object hierarchy (OHD = 1) from the object “Hand luggage” to the object
“Luggage” (see Fig. 4). Then, we recede two steps from the action “Check” in the
action sequence (AD = 2), resulting with the action “Get” (See Fig. 3). Finally,
we drill down one step within the action hierarchy (AHD = 1), and retrieve the
action “Get from the conveyer belt”, and by that we reach the target descriptor.
In total, the distance between the two above coordinates is 4.

In general, it is possible to navigate within the descriptor space (hence, move
from one descriptor to another) in a meaningful way. This navigation enables
us to move up to more general or drill down to more specific action and object
scopes as well as to navigate to: (a) preceding and succeeding actions that act
on the descriptor’s object and (b) advance to a successor (more advanced) state

Machine-Assisted Design of Business Process Models 135

of the object’s current state or recede to a predecessor (less advanced) state. A
more elaborated discussion regarding the navigation within the descriptor space
is presented in [10].

5 The Process Delineator Method for Assisting the
Design of Process Models

The process delineator method relies on an underlying process descriptor space
and at any phase it either refines an existing process activity or suggests a next
process activity. Since the descriptor space has a large number of elements, a
general search within this space may be very expensive. Therefore, we will hereby
suggest a more efficient navigation method that is tailored for our specific target.

Fig. 7. The process delineator mechanism

The process delineator is illustrated in Fig. 7. The design process starts when a
process designer defines the name of the new process model. This name is decom-
posed into a process descriptor format. For example, a new process named: “Send
luggage from home,” will be transformed into the following process descriptor:
object=“luggage,” action= “send,” object qualifier=“null,” action qualifier=“from
home.”

Based on the process descriptor input, the process delineator produces options
for the first process activity (see Section 5.1). The process designer reviews the
output option list, and either selects the most suitable first activity for the newly
designed process, or suggests an alternative. At any next phase the designer
either requests to refine the current activity (see Section 5.2) or advance to
design the next activity (see Section 5.3). Each time the process delineator is
requested to suggest activities as part of the design process it outputs a list of
options, sorted and flagged according to the option’s relevance to the current
design phase (see Section 5.4).

After selecting the most suitable process activity from the suggested list, the
designer examines the newly designed process model to determine if it achieves
the process goals. If goals are achieved, the design is terminated; else - the design
procedure continues until the process goal is achieved.

It is worth noting that the process delineator also uses virtual activities (see
Section 4). These activities can enrich and improve the design process by ex-
panding the optional range of available building constructs.

136 M. Lincoln, M. Golani, and A. Gal

5.1 Suggesting the First Process Activity

To suggest the first process activity, the process delineator searches the target
object and its more specific objects within the object hierarchy model. It then
creates first activity suggestions in the format of activity descriptors comprised
of the retrieved objects and the first action that acts upon them in the action se-
quence model. Continuing the example above, the following first activity options
will be suggested (see Fig. 5): “Arrange luggage” and “Give hand luggage.”

5.2 Refining the Currently Suggested Process Activity

A refinement can be performed by five orthogonal methods. To illustrate each
of these methods we will show how the action “Get luggage” can be refined.

Action and Object Refinement. To refine the reference action, the process
delineator navigates the descriptor space by drilling down the action hierarchy to
more specific actions. It then combines the retrieved, more specific, actions with
the reference object. The refinement of objects is done in a similar manner. By
applying an action refinement to our example’s reference activity, the refinement
option: “Get luggage from the conveyer belt” is retrieved (see Fig. 3).

Action and Object Generalization. The generalization method is similar to
the action and object refinement method, only this time the process delineator
navigates the descriptor space by moving up the action and the object hierarchal
dimension, respectively.

Advance an Action or an Object State. To advance the object’s state
within an activity, the process delineator navigates the descriptor space by mov-
ing forward in the object lifecycle sub-dimension. In a symmetrical manner, to
advance an activity’s action, the process delineator moves forward in the ac-
tion sequence sub-dimension of the descriptor space. In our example the objects
“Standard luggage” and “Excess luggage” represent more advanced states of the
object “Luggage” (see Fig. 6) and the action “Give” follows the action “Get” in
the action sequence applied on “Luggage” (See Fig. 5). Therefore, the follow-
ing three refinement suggestions are constructed: “Get standard luggage”, “Get
excess luggage” and “Give luggage”.

Recede to a Less Processed State of the Object or to a Former Action.
The receding method is similar to the advancing method, only this time the
process delineator navigates the descriptor space by moving backwards in the
object lifecycle and action sequence sub-dimensions. For example, the action
“Present” is acted on “Luggage” before this object is taken (before the action
“Get” is applied) (see Fig. 5), hence creating the option: “Present luggage.”

Move to a Sibling Action or Object. In order to move to a sibling ac-
tion, the process delineator moves horizontally within the action hierarchal sub-
dimension. By fixing the reference action’s level, it retrieves sibling actions for

Machine-Assisted Design of Business Process Models 137

this action. Moving to a sibling object is conducted in a similar manner. Con-
tinuing our example, a navigation to sibling actions to “Get” retrieves a list of
activities that includes: “Check luggage” and “Take luggage” (see Fig. 3).

5.3 Suggesting the Next Process Activity

This step can be achieved in two alternative ways: either by advancing to a
later action that acts on the currently accepted (reference) object, or advancing
to a sibling object combined with the reference activity’s action. The rationale
behind the last directive is that in some process flows the same action is operated
on sibling objects in order to fulfill a certain process goal. For example, in the
aviation processes, the “Check-in” process includes the two consecutive activities:
“Send standard luggage” and “Send excess luggage.”

To demonstrate this step, consider the activity following “Give passport.”
The process delineator finds in the action sequence model two options: “Check
passport” and “Return passport” (see Fig. 5). In addition, sibling objects to
“Passport” are also retrieved from the object hierarchy model, creating additional
options such as “Give visa,” “Give luggage,” and “Give information” (see Fig. 4).

5.4 Preparing a Set of Output Options

The process delineator assesses the output options in each navigation phase and
combines an ordered option list to assist the user in selecting the most suitable
option. The process delineator sorts the options according to their relevance to
the current design phase based on two considerations. First, on proximity to the
design phase reference coordinate - which represents the last selected activity
when suggesting a refined or next activity, or to the targeted process descriptor
when suggesting the first process activity. Second, the process delineator consid-
ers to what extent was it changed comparing to actual activities that were part
of the underlying process repository. Therefore, the construction of the ordered
option list is conducted according to the following four stages: (a) sort by prox-
imity to the reference activity; (b) internally sort by similarity to processes in the
repository; (c) add a random option to avoid getting stuck in a local optimum;
and (d) flag each option, as further detailed below.

Sort by Proximity to the Reference Activity. The process delineator cal-
culates the distance between the reference coordinate and each of the list options
(see definition 1), and sorts the list in an ascending order - from the closest to
the most distant option.

Internally Sort by Similarity to Processes in the Repository. The pro-
cess delineator also takes into account the extent to which a proposed activity
was changed in comparison to actual activities in the underlying process reposi-
tory. For this purpose the process delineator distinguishes between three change
levels: (a) No change- the suggested activity is represented “as is” within the un-
derlying business process repository. These options are not marked by any flag;

138 M. Lincoln, M. Golani, and A. Gal

(b) Slight modification - there is an actual activity in the underlying business
process repository containing the same object and action with different qualifiers.
These options are marked with “~”; (c) Major change - the object and action
within the suggested activity were not coupled in any of the activities within the
underlying business process repository. These options are marked with “M”.

Therefore, after sorting the options by their proximity to the reference ac-
tivity, each group of options with equal distances is internally sorted in an as-
cending order - presenting the “no change” options at the beginning of the list,
since these options posses a higher level of credibility, continuing with the “slight
modification” options and terminating the list with the “major change” options.
According to the example presented in Section 5.3, several options were gener-
ated as candidates for next activities to be conducted after the activity “Give
passport.” Most of these options were produced by combining the action “Give”
with siblings of the object “Passport,” hence having the same distance from the
reference activity. Nevertheless, these options can further be differentiated. For
example, “Give visa” is an actual activity in the aviation process repository, and
therefore is flagged as such. Nevertheless, “Give luggage” has no representation
in this repository, but since “Give hand luggage” does, this option is flagged by
“~.” Since there is no descriptor that combines the action “Give” and the object
“Information” in this repository, the option “Give information” is flagged by “M.”

Add a Random Option. To avoid getting stuck in a local optimum, the
process delineator adds at any stage a random activity from the descriptor space,
that shifts the reference activity to a new random coordinate, in a similar manner
as in simulated annealing (or mutation in genetic algorithms). Thus, the process
delineator can provide new suggestions that are based upon a proximity sort to
this new reference activity.
Flag Each Option. After assessing each option’s relevance to the current nav-
igation phase and sorting the option list accordingly, the process delineator tags
each option with both the numerical distance value and the change level. For ex-
ample, the option “Give luggage” from the example above will be flagged “[2,~].”

6 Implementation, Case Study and Experiments

6.1 Implementation

We have developed a system that implements the suggested method for design-
ing new process models. We named this software system: “New Process Design
Assistant” (NPDA). Given a process name, and based on an existing process
repository, the NPDA guides users in creating new process models. The sys-
tem implements a client-server architecture. Server side logic is implemented in
PHP using a MySql database. It uses a Natural Language (NL) parser - the
“Stanford Parser” - as a web service for decomposing sentences into linguistic
components (see Section 3.1). The client runs within an Internet browser and
is implemented in HTML and JavaScript, with AJAX calls to the server. The
server side high-level architecture is further detailed in our technical report [10].

Machine-Assisted Design of Business Process Models 139

6.2 Case Study: An Example for Designing a New Process Model

To illustrate the proposed framework we present two short examples from the
field of aviation. The full extended case-study can be found in the technical
report[10]. The aviation process repository covers airport activities starting from
the passenger’s entry to an airport, through document handling and security
checks and terminating as the passenger boards the airplane. The newly de-
signed processes are related to the aviation field, but are not covered by the pro-
cess repository. The first new process, “Passenger checkout,” extends the process
repository by handling passenger related activities conducted after an airplane
arrives at its destination. The second new process, “Send luggage from home,”
extends the process repository by offering an additional service to passengers
before their arrival at the airport.

Give
passport

Check
passport

Get luggage
from the

conveyer belt
Custom point

Give
luggage

Check
luggage

Fig. 8. The new designed process diagram for “Passenger checkout”

The first example supports the design of a new business process for: “Passenger
checkout.” The generated output (new process model) of this example is illus-
trated in Fig. 8 as a YAWL diagram. The design process starts when the (human)
process designer inserts the following process descriptor: (action=”checkout”, ac-
tion qualifier=null, object=”passenger”, object qualifier=null) to the process de-
lineator (see Fig. 9a) and determines that the first activity is: “Give passport.”
Respectively, the process delineator searches the descriptor space, looking for
next activity possibilities. The result set includes the following activities (see
Sections 5.3 and 5.4): “[1] Check passport,” “[2] Give visa” and “[2,M] Give in-
formation” (see Fig. 9b). The designer selects the option “Check passport” and
decides that this activity is suitable.

The design process continues with four more design phases. The 2nd phase
required a refinement for the option “Get luggage” - which was suggested as the
next activity after “Check Passport.” The resulted refined option list includes the
option: “[1,~] Get luggage from the conveyer belt,” (see Section 5.2), and this
option was selected by the designer. Note that this activity was not represented
“as is” in the business process repository.

The designer now wishes to design the new business process: “Send luggage
from home.” An interesting observation in this design process is that the de-
signer selects more often next step activities that share the same action applied
on sibling objects. For example, the the activity “Give passport” was followed
by “Give flight ticket” and “Give boarding pass;” and the activity “Check flight
ticket” followed the activity “Check passport” (see resulted process model dia-
gram at [10]). The business logic behind this phenomenon is that this process
expresses a more interactive business conduct in which one party (the passenger)
exchanges items with the other party (the airport representative).

140 M. Lincoln, M. Golani, and A. Gal

Fig. 9. The designer’s request for designing the new process: “Passenger Checkout”

6.3 Experiments

We now present an empirical evaluation of the proposed method effectiveness. We
first present our experimental setup and describe the data that was used. Based
on this setup we present the implemented methodology. Finally, we present the
experiment results and provide an empirical analysis of these results.

Experiment Setup. The “New Process Design Assistant” software (NPDA,
see Section 6.1) was installed on a workstation running Windows XP, IIS6, PHP
4.8 and MySQL 5.0. This workstation served both as the server and the client,
running Internet Explorer 7 as the application container and presentation layer.
The “no-connection” distance (defined in Section 4) was set to 500.

Data. We chose a set of 14 real-life processes from the Oracle Business Model
(OBM),2 comprising: (a) nine business processes from the “Procurement” cat-
egory, with 96 activities altogether; and (b) five business processes from the
“Inventory” category, with 31 activities altogether. The “Procurement” data set
contains related, sequential activities and therefore represents a focused opera-
tional area. The “Inventory” data set represents an extended business area, fea-
turing loosely coupled business logic. Using the selected 14 processes we created
a “process repository database” (see Section 6.1).

Evaluation Methodology. To evaluate the suggested method we conducted 14
experiments. At each experiment, a single process was removed from the database
and then reconstructed using the NPDA software. This “machine assisted recon-
struction” enables us to objectively measure the method’s effectiveness.

Each experiment was conducted according to the following steps: (a) prepa-
ration: remove one of the processes from the database so that the database will
not contain any of its descriptor components; (b) run the NPDA in a stepwise

2 http://www.oracle.com/applications/tutor/index.html

Machine-Assisted Design of Business Process Models 141

manner. At each phase we try to identify an activity (“goal activity”) that is
compatible with the removed process, according to the following steps: (1) if the
goal activity’s linguistic components are represented in the Process Repository
Database, run the “find next activity” algorithm (see Section 5.3). If the output
list contains the goal activity - continue to reconstruct the next goal activity.
Else, run the “activity refinement” algorithm (see Section 5.2). If the option list
produced by the refinement step does not include the goal activity, choose the
activity that shares the largest amount of common descriptor components with
the goal activity as a basis for an additional refinement. If, after 10 successive
refinements, the required activity is still not represented by one of the output op-
tions, it is inserted manually as the next process activity and the design process
is continued by locating the next activity; (2) else (the goal activity’s linguistic
components are not represented in the Process Repository Database), the next
goal activity is inputted manually by the experimenter.

Results and Analysis. Table 1 presents a summary of the experiment results.
Each experiment of creating a new process model was based on a database with
the set of all activity descriptors in all process models, excluding the set of
activity descriptors of one goal process. This means that we aim at recreating
the goal activities from a partial set of activity descriptors. On average, for 89%
of the goal activities, all descriptor components were contained both in the goal
process and in another process (see column #3). This was the case despite the
relatively small experiment size (13 processes, whereas the entire OBM includes
around 1,500 processes), highlighting the amount of similarity one would expect
when designing new processes based on an existing repository. For the remaining
11%, at least one descriptor component was missing. In such a case, the activity
was inserted manually during the design process. It is worth noting that for the
89% of activities that had the potential of reconstruction from the database,
100% were reconstructed successfully using our method (see Table 2).

In addition, Table 1 shows that on average, two iterations are required for
reconstructing a goal activity (see column #4). The design of Procurement

Table 1. Experiment results

Column # 1 2 3 4 5 6 7
Column name # of

total
pro-

cesses
in DB

of
total

activi-
ties in
DB

% of
goal ac-
tivities
repre-

sented in
the DB

Avg. #
of steps

per
design
phase

Avg.
location

of
correct
option
in ’next
activity’

Avg.
location

of
correct
option

in ’refine
activity’

Avg.
location
of the
correct
option

per
design
phase

Avg.-all 14 127 89.0% 2.0 1.2 2.8 2.6
Avg.-Procurement 9 96 90.6% 1.9 0.8 3.0 2.8

Avg.-Inventory 5 31 83.9% 2.1 1.9 2.4 2.3

142 M. Lincoln, M. Golani, and A. Gal

processes required slightly less steps than the design of Inventory processes (1.9
vs. 2.1 steps on average, respectively). It should be noted that the location of
the goal activity was very high in the ranked list of suggested activities (average
location: 2.6, see column #7). This location was even higher at phases that did
not involve refinement (average location: 1.2, see column #5); and was a little
lower in steps in which a refinement was required (2.8 on average, see column
#6). This may be due to the fact that refinement steps include a much larger
amount of alternatives. Again it should be noted that results within the Procure-
ment category were better than results within the Inventory category - probably
due to the larger database representing Procurement processes. Another reason
may be the consecutive nature of procurement processes vs. the loosely coupled
business logic of the Inventory processes.

Table 2. Distribution of successful predictions vs. the number of required refinements

of refinements 0 1 2 3 4 5 6 7 8 9
% of successful

predictions
12% 35% 27% 12% 4% 2% 2% 1% 1% 3%

Cumulative 12% 48% 75% 88% 92% 94% 96% 96% 97% 100%

Table 2 analyzes the number of refinements that are needed to design the
correct goal activity. For each number of refinements, we record the percentage
of cases where this number of refinements was needed. We also record, for each
number of refinement i, the cumulative percentage of cases where up to i refine-
ments were needed. We observe, for example, that in 88% of the cases the system
can reconstruct the goal activity after a maximum of three refinements. These
results clearly demonstrate the speed and efficiency of the suggested method.
Moreover, in all experiments the refinement process converged into a maximal
number of nine refinements in the worst case. As hypothesized earlier- a larger
database would probably yield even better results.

To summarize, we have shown the usefulness of using a descriptor repository
in identifying activities for a new business process. We also showed the method
to be effective in the given experimental setup, both in terms of the number of
design steps and in the number of refinements that are needed.

7 Conclusions

We proposed a mechanism to automate the reuse of constructs gathered from
predefined process models. Such a mechanism saves design time and supports
non-expert designers in creating new business process models. The proposed
method, software tool, and experiments provide a starting point that can al-
ready be applied in real-life scenarios, yet several research issues remain open,
including: (1) an extended empirical study to further examine the quality of
newly generated processes; (2) an extended activity decomposition model to in-
clude an elaborated set of business data and logic (e.g., roles and resources); and

Machine-Assisted Design of Business Process Models 143

(3) defining a learning mechanism that will take into account previous designer
preferences and adjusting (in real time) the process delineator mechanism.

As a future work we intend to investigate further language semantics by us-
ing more advanced natural language processing techniques, as well as semantic
distances between words. Finally, we intend to apply the techniques we have
developed to create new methods for workflow validation.

Acknowledgments

Many thanks to Samia Mazhar and the BPM Group at QUT for providing access
to the aviation process data. Also thanks to Roman Kushnarenko for supporting
the experiments.

References

1. Becker, J., Delfmann, P., Herwig, S., Lis, L., Stein, A.: Towards Increased Com-
parability of Conceptual Models-Enforcing Naming Conventions through Domain
Thesauri and Linguistic Grammars. In: ECIS (June 2009)

2. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, p. 288. Springer, Heidelberg (2007)

3. Coalition, W.M.: The workflow management coalition specification - terminology
& glossary. Technical report, Technical Report WFMC-TC-1011, Workflow Man-
agement Coalition (1999)

4. Golani, M., Pinter, S.S.: Generating a process model from a process audit log.
In: van der Aalst, W.M.P., ter Hofstede, A., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 136–151. Springer, Heidelberg (2003)

5. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process
modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 4–19. Springer, Heidelberg (2008)

6. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A gen-
eral model of software architecture design derived from five industrial approaches.
The Journal of Systems & Software 80(1), 106–126 (2007)

7. Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process model-
ing support: Method and user experience. In: Li, Q., Spaccapietra, S., Yu, E., Olivé,
A. (eds.) ER 2008. LNCS, vol. 5231, pp. 265–278. Springer, Heidelberg (2008)

8. Hull, R.: Artifact-centric business process models: Brief survey of research re-
sults and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS,
vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008)

9. Kumaran, S., Liu, R., Wu, F.Y.: On the duality of information-centric and activity-
centric models of business processes. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE
2008. LNCS, vol. 5074, pp. 32–47. Springer, Heidelberg (2008)

10. Lincoln, M., Golani, M., Gal, A.: Machine-assisted design of business process
models using descriptor space analysis. Technical Report IE/IS-2010-01, Technion
(March 2010),
http://ie.technion.ac.il/tech_reports/
1267736757_MachineAssisted_Design_of_Business_Processes.pdf

144 M. Lincoln, M. Golani, and A. Gal

11. Lincoln, M., Karni, R., Wasser, A.: A Framework for Ontological Standardization of
Business Process Content. In: International Conference on Enterprise Information
Systems, pp. 257–263 (2007)

12. Muller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, p. 131. Springer, Heidelberg (2007)

13. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42(3), 428–445 (2003)

14. Reijers, H.A., Limam, S., Van Der Aalst, W.M.P.: Product-based workflow design.
Journal of Management Information Systems 20(1), 229–262 (2003)

15. Schimm, G.: Process miner - a tool for mining process schemes from event-based
data. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS
(LNAI), vol. 2424, pp. 525–528. Springer, Heidelberg (2002)

16. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Support-
ing flexible processes through recommendations based on history. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

17. Van der Aalst, W.M.P., Barthelmess, P., Eliis, C.A., Wainer, J.: Proclets: A frame-
work for lightweight interacting workflow processes. International Journal of Co-
operative Information Systems 10(4), 443–482 (2001)

18. van der Aalst, W.M.P., Ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Information Systems 30(4), 245–275 (2005)

19. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

20. Wahler, K., Kuster, J.M.: Predicting Coupling of Object-Centric Business Process
Implementations. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, p. 163. Springer, Heidelberg (2008)

From Informal Process Diagrams

to Formal Process Models

Debdoot Mukherjee1, Pankaj Dhoolia1, Saurabh Sinha1,
Aubrey J. Rembert2, and Mangala Gowri Nanda1

1 IBM Research – India
{debdomuk,pdhoolia,saurabhsinha,mgowri}@in.ibm.com

2 IBM T.J. Watson Research Center
ajrember@us.ibm.com

Abstract. Process modeling is an important activity in business trans-
formation projects. Free-form diagramming tools, such as PowerPoint
and Visio, are the preferred tools for creating process models. However,
the designs created using such tools are informal sketches, which are not
amenable to automated analysis. Formal models, although desirable, are
rarely created (during early design) because of the usability problems
associated with formal-modeling tools. In this paper, we present an ap-
proach for automatically inferring formal process models from informal
business process diagrams, so that the strengths of both types of tools
can be leveraged. We discuss different sources of structural and semantic
ambiguities, commonly present in informal diagrams, which pose chal-
lenges for automated inference. Our approach consists of two phases.
First, it performs structural inference to identify the set of nodes and
edges that constitute a process model. Then, it performs semantic in-
terpretation, using a classifier that mimics human reasoning to associate
modeling semantics with the nodes and edges. We discuss both super-
vised and unsupervised techniques for training such a classifier. Finally,
we report results of empirical studies, conducted using flow diagrams
from real projects, which illustrate the effectiveness of our approach.

1 Introduction

Business Process Models are key artifacts that are created during the early stages
of a business-transformation project. A business process model depicts how var-
ious tasks are coordinated to achieve specific organizational goals. Such models
are used to build a consensus among the stakeholders during the requirements-
elicitation phase and then drive the subsequent transformation phases. Free-form
diagramming tools, such as Powerpoint and Visio, are widely used for creating
informal sketches of process models.

On the one hand, these tools are easy-to-use, ubiquitous, offer creative expres-
sion, and have a low barrier to adoption. On the other hand, the diagrams created
using such tools have no formal underpinnings; therefore, they are not amenable
to automated analysis—e.g., for model checking, process improvements, process

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 145–161, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

146 D. Mukherjee et al.

reuse, and bootstrapping process realization. Unlike the free-form diagramming
tools, formal process-modeling softwares offer many such benefits, but suffer from
a high barrier to adoption; this occurs for different reasons, such as complexity,
costs, and the requirement of some level of formal training. Empirical studies
reveal that the authoring constraints imposed by formal-modeling tools have
generated mixed reactions from designers and have resulted in limited adoption
of the tools [10].

To take advantage of the merits of free-form diagramming and yet leverage
the benefits of formal modeling, automated techniques for converting informal
sketches to formal process models are essential. A manual approach can be te-
dious and error-prone, especially when enterprises want to harvest formal mod-
els from a large corpus of legacy flow diagrams—a scenario that is attracting
increasing interest.

Diagramming tools offer a rich collection of shapes (known as stencils) from
which designers freely choose depictions for process flow entities, such as ac-
tivities, events, gateways, etc. Many existing formal-modeling tools (e.g., Web-
sphere Business Modeler1 (WBM), ARIS,2 System Architect,3 and Lombardi4)
offer, to various degrees, capabilities to import informal diagrams, such as Visio
diagrams. They perform mainly a shape-based transformation, using fixed or
pluggable mappings from names of drawing shapes in stencils to process model-
ing entities. This is inadequate because often the same shape is used to represent
different semantics. Further, these tools are not able to interpret diagrammatic
cues (e.g., dangling connectors) commonly used in describing the flow connec-
tions; therefore, they identify imprecise flow structures.

To address the limitations of existing tools, we present an automated ap-
proach for extracting formal process models, that conform to a given target
metamodel,5 from informal process-flow diagrams. It consists of two phases: a
structure-inference phase and a semantic-interpretation phase. In the first phase,
the approach precisely infers the flow-graph structure of a diagram, in terms of
nodes and edges (i.e., flow elements). It identifies each shape, or set of shapes,
that could correspond to a flow node. Next, it uses a novel edge-inference algo-
rithm to trace the lines between the identified nodes and infer the set of directed
edges in the diagram. In this phase, the approach also infers the association
of unlinked texts to appropriate flow elements. In the second phase, our ap-
proach annotates each node and edge with a process-modeling semantic, defined
in the target metamodel. To perform the annotation, we use pattern classifica-
tion. Specifically, we use a classifier trained on relational, geometric, and textual

1 http://www.ibm.com/software/integration/wbimodeler/advanced/features/
2 http://www.ids-scheer.com/en/ARIS_ARIS_Platform/3730.html
3 http://www.ibm.com/software/awdtools/systemarchitect/
4 http://www.lombardisoftware.com/enterprise-bpm-software.php
5 A target metamodel lists a set of process modeling elements. For example,

the Business Process Modeling Notation (BPMN) defines a metamodel compris-
ing activities, gateways, events, swimlanes, artifacts and connecting objects. See
http://www.omg.org/spec/BPMN

From Informal Process Diagrams to Formal Process Models 147

Fig. 1. Common structural and semantic ambiguities in process flow diagrams

features of flow elements to perform semantic disambiguation. We present both
supervised and unsupervised approaches for training such a classifier.

To evaluate the effectiveness of our approach, we implemented it in a tool
called idiscover that infers formal models from Visio diagrams. We conducted
empirical studies using flow diagrams taken from real business-transformation
projects. Our results illustrate that, for the diagrams considered, idiscover
infers formal models with high precision and recall, and outperforms existing
commercial tools. Our results also indicate that most standard classifiers are
applicable for interpreting process semantics with our feature space modeling.
Interestingly, an unsupervised clustering approach, which may be used in prac-
tical settings where training data is unavailable, also proves nearly as effective
as supervised ones.

The main benefit of our approach is that it automates, with a high degree of
accuracy, a transformation task that is tedious to perform manually. In doing
so, the approach enables process engineering to leverage the strengths of both
free-form diagramming tools and formal-modeling tools. More importantly, such
a facility can help greater industrial adoption of formal methods developed in
BPM research—currently the unavailability of formally specified process models
in enterprises proves to be an impediment in applying such research.

The main contributions of this work are

– The development of a novel end-to-end approach for converting informal flow
diagrams to formal process models, addressing both structural and semantic
ambiguities that are commonly present in the informal diagrams.

– The implementation of the approach in a tool called idiscover that converts
Visio process flow diagrams to BPMN process models.

– An empirical evaluation, which demonstrates effectiveness of the approach.

2 Diagram Interpretation Challenges

Figure 1 presents some ambiguities, which present challenges in interpreting the
structure and semantics of flow models. Our empirical study (Section 4) shows
that such ambiguities are indeed common in real process diagrams.

148 D. Mukherjee et al.

2.1 Structural Ambiguities

Identifying the correct set of drawing shapes corresponding to a node or an edge
is hard when, for example, the edges are not properly connected to nodes or
multiple lines are connected to form a single flow. The top part of Figure 1
illustrates three common structural ambiguities.

Dangling Connectors. Existing tools can recognize a line to be an edge only if
the line is properly glued6 at both ends of two 2D shapes. However, users can
join multiple lines to represent a single edge. Moreover, the endpoints of a line
may be left dangling (i.e., not be properly glued). In Figure 1(a), four edges
exist: (A, B), (A, D), (C, B), and (C, D). But, existing tools can recognize only
(A, B) because it is the only properly glued edge.

Unlinked Labels. People often use separate drawing shapes to specify a flow
element and its text label. In Figure 1(b), Submit is intended to be a label on the
edge from Create Order to Process Order. Label association becomes a challenge
when nearness alone does not suffice to tie unlinked texts with shapes identified
as flow elements. Tracking patterns of text label usage may help—for example, if
text labels are consistently placed on the top of shapes (e.g., as illustrated by the
Step x labels in Figure 1(b)), we can apply that pattern to resolve ambiguous
cases.

Cross-references. Cross-reference linkages across diagrams are often required to
split a large diagram across pages for convenience, as shown in Figure 1(c). Use
of cross references can occur within a single page as well.

2.2 Semantic Ambiguities

Inferring the semantics for flow elements is straightforward if each drawing shape
is used consistently to convey a single modeling semantic. However, in practice,
the following scenarios are extremely common and pose challenges for semantic
interpretation.

Under-specification. This occurs when different instances of the same shape are
used to convey different semantics. For example, in Figure 1(d), a rectangle is
used to denote both the output data artifact Order and the step Create Order.
In general, under-specification lowers the effectiveness of a simple shape-based
mapping of diagram elements to process model entities.

Over-specification. This occurs when the same semantic is being conveyed by
different shapes. In Figure 1(e), both Create Order and Process Order are activ-
ities, but are represented using different graphics. Over-specification too tends
to reduce the usefulness of shape-based mapping: the number of shapes to be
enumerated by such approaches can become prohibitively large.
6 Most diagramming formats support a notion of proper connection or glue. On click-

ing a connector in Visio, the endpoints appear red or green depending upon whether
they are glued or dangling.

From Informal Process Diagrams to Formal Process Models 149

Fused Semantics. In Figure 1(f), the two flow fragments are semantically equiv-
alent. The left fragment has an Evaluate block that represents a fusion of a task
and a decision. In the fragment on the right, Evaluate and Decide are separate
entities. Automatic interpretation of such fused semantics is difficult.

3 Automated Process Model Discovery

Our approach consists of two phases: structural inference and semantic interpre-
tation. The structural-inference phase takes as input a flow diagram, and extracts
a flow graph, which consists of nodes and edges. Additionally, the first phase com-
putes information, such as structure, geometry, and text, for each flow element
(i.e., node and edge). The second phase of the algorithm constructs the process
model from the flow graph by associating modeling semantics with each flow ele-
ment using pattern classification. Specifically, this phase applies a classifier that,
based on the relational, geometric, and textual features of the flow elements, per-
forms semantic disambiguation. The resulting process model is well-defined in
terms of both structure and semantics, and thus, can be formally analyzed.7

3.1 Structure Inference

The goal of the first phase is to infer the flow graph nodes and edges. It does
this in three steps. First, it parses the input flow diagram to identify the basic
diagram elements, which consists of shapes, lines, and text. Second, it constructs
the set of nodes, selects candidate edges from diagram elements, and determines
associations of text with nodes and candidate edges. Finally, this phase applies
an edge-inference algorithm to compute the flow.

Diagram Element Extraction. An informal flow diagram is a collection of
diagram elements such as: (1) shapes, which are candidates for nodes, (2) lines,
which are candidate edges, and (3) text, which may be used to label either nodes
or edges. We identify the diagram elements by parsing XML representations
of diagrams or using tool specific APIs. For each diagram element, we extract
information about its coordinates, dimensions, text, geometry, and group (if
any) in the diagram; this information is used for node and edge discovery. All
coordinates are expressed in some standard unit with respect to the origin of
the page, which we consider to be the bottom, left corner.

Some properties, such as text labels and arrowheads for lines, may be readily
available if they are linked to drawing shapes. If not, they need to be inferred
later as part of flow element discovery. For a drawing shape that is taken from
a stencil, the geometry is identified by the shape name as per the stencil. For a
manually created shape, the geometry is encoded by the counts of different types
of lines (e.g., straight lines, elliptical arcs, bezier arcs) used to form the shape.
7 An XML serialization of the annotated flow graph can be easily transformed to

conform to specific XML process-modeling schemas, such as BPMN 2.0 and the
WBM XML schema.

150 D. Mukherjee et al.

(c)

A B

DC

A B

C D

A B

DC
C D

A B C1 C2

C3

C5

C7

C8

C6

C4

NEU

UNK

TGTNEU

TGT

UNK

SRC

TGT
C1 C2

C3

C5

C7

C8

C6

C4

NEU

UNK

TGTNEUSRC

SRC

TGT

TGT

(d)
(a) (b)

Fig. 2. Examples to illustrate flow-edge inference

The group feature in diagramming tools, which lets a user tie related diagram
elements together, often conveys important structural cues. Therefore, for each
diagram element, we identify elements that are grouped with it.

Flow Element Discovery. The second step of structure inference discovers
flow elements: nodes, candidate edges, and associations of text with nodes and
candidate edges. It uses the following heuristics to perform the element discovery.

1. Ignore elements, such as bounding boxes, title bars, legends, etc., that are
close to page boundaries and do not have possible connections.

2. Trace undirected connected lines that form closed paths to form new nodes.
3. Recognize arrowheads that are depicted as separate shapes and associate

them with nearby lines.
4. Identify shapes that are near possible connectors as nodes.
5. Lines whose endpoints lie near nodes or other lines are recursively identified

to be part of candidate edges.
6. Identify as nodes, shape groups that have connectors emanating from their

boundaries and those that do not have a possibility of a flow within them.
7. Label association: Text in unbordered shapes are taken as labels of the nodes

or edges with which they are grouped, or as labels of their nearest node or
edge.

Flow-Edge Inference. The key step of structural inference is the identification
of directed connections between the nodes: that is, we need to list possible source
and target nodes for each candidate edge discovered from the diagram elements.

The edge-inference algorithm uses the concept of a connection point. A con-
nection point is the notional point of connection at which the endpoint of a line
connects to a node or an intermediate point on another line. The intersection of
the endpoint of a line l with an intermediate point on another line lx generates
a pair of connection points—one at the end of l and the other at the intersection
point on lx. To illustrate, consider the flow graph shown in Figure 2(a), which
has eight connection points (labeled C1–C8). The line (A, B) has connection
points C1 and C8 at its endpoints; it also has two connection points, labeled C2
and C5, at its intersections with the lines from C and D. We track the set of
connection points with each line and each node.

A connection point has five attributes:
1. An end point Cep to mark the coordinates
2. An associated line Cline on which it is either an endpoint or an intermediate

intersection point

From Informal Process Diagrams to Formal Process Models 151

algorithm InferEdges

input Wn, We nodes and candidate edges
output edgeList inferred flow edges
begin

// create CP for line-node junctions
1. foreach l ∈ We and endpoint ep do
2. foreach node n ∈ Wn do
3. if n is nearby ep then
4. create connection point C:

Cep = ep, Cline = l, Cconn = n

CisEnd = true, Cdir = src | tgt
5. add C to CP sets for l and n

// create CP for intersection of lines
6. foreach l ∈ We and endpoint ep do
7. foreach lx ∈ We do
8. if l is nearby ep then
9. create connection point Cx:

Cx,ep = ep, Cx,line = lx, Cx,conn = C

Cx,isEnd = false, Cx,dir = neu
10. add Cx to CP set for lx
11. create connection point C:

Cep = ep, Cline = l, Cconn = Cx

CisEnd = true, Cdir = tgt | unk
12. add C to CP set for l

// connect nodes
13. foreach node n ∈ Wn do
14. foreach conn. point C of n do
15. nodeSet = ∅; visit(C) = false
16. propagateDirection(Cdir , Cline , nodeSet)
17. foreach n′ ∈ nodeSet do
18. if Cdir = src then
19. add (n, n′) to edgeList

20. else add (n′, n) to edgeList

end

procedure propagateDirection(dir, l, ns)
begin
21. foreach conn. point C of l do
22. if visit(C) then continue
23. visit(C) = true
24. if CisEnd ∧ match(Cdir , dir) then
25. continue
26. if ¬CisEnd ∧ ¬match(Cdir , dir) then
27. continue
28. if Cconn instanceof Node then
29. add Cconn to ns

30. else if Cconn instanceof ConnPt then
31. Cx = Cconn ; lx = Cx,line

32. if ¬match(Cx,dir , dir) then continue
33. propagateDirection(dir, lx, ns)
end

function match(interDir , destDir)
begin
34. if interDir = destDir then
35. return true
36. else if interDir = neu ∨ unk then
37. return true
38. return false
end

Fig. 3. The edge-inference algorithm

3. A boolean value CisEnd indicating whether it is an endpoint or an inter-
mediate intersection point

4. An associated node or connection point Cconn on which it is an endpoint
5. A direction Cdir , which can be src (source), tgt (target), neu (neutral),

or unk (unknown)

The direction of a connection point C is found using the following rules

1. If C lies at the junction of a node and a line:
Cdir = tgt, if there is an arrowhead at Cep

Cdir = src, otherwise
2. If C is at the junction of the endpoint of a line l and an intermediate point

on line lx:
Cdir = neu, if C lies on lx (i.e., CisEnd = false)
Cdir = tgt, if C lies on l and there is an arrowhead at Cep

Cdir = unk, if C lies on l and there is no arrowhead at Cep

Figure 3 presents the edge-inference algorithm: InferEdges. The algorithm takes
as inputs the set of nodes and candidate edges in the flow graph, and returns
as output the inferred edges. Intuitively, the algorithm traverses the flow graph,
starting at a connection point on a node, and identifies reachable nodes such
that the directions encountered during the traversal are consistent.

152 D. Mukherjee et al.

Lines 1–5 of the algorithm create connection points for the junctions of lines
and nodes. For each line l and each endpoint ep of l, the algorithm iterates over
the nodes (lines 1–2). It uses thresholds for nearness8 to determine whether a
node n could be connected to ep (line 3). It then creates a connection point
C, with the appropriate attributes, and adds C to the set of connection points
for l and n. The direction of C is set to src or tgt depending on whether an
arrowhead occurs at ep. Similarly, lines 6–12 of InferEdges create connection
points for the intersection of two lines l and lx. In this case, two connection
points (Cx and C) are created. Cx is created for the intermediate intersecting
point on lx, whereas C is created for the endpoint of l.

After creating the connection points, InferEdges connects the nodes by travers-
ing the flow graph starting at each node n and following each connection point
on n (lines 13–16). After the traversal for a connection point is complete, appro-
priate edges are created between n and the nodes reached during the traversal
(lines 17–20).

Procedure propagateDirection traverses the flow graph, along paths in which
the directions are consistent, and identifies the reached nodes. Given a line l
and direction dir , the procedure processes each connection point C of l that has
not been previously visited (lines 21–22). If C is an endpoint and Cdir and dir
match—i.e., either both are src or both are tgt—the procedure abandons the
traversal as the path does not represent a valid edge (lines 24–25). If C is an
intermediate point, the traversal terminates if both of the following conditions
hold: (1) Cdir does not match dir and (2) Cdir is neither neu nor unk (lines 26–
27). If C occurs at a node, the procedure has found an edge; therefore, it adds
the node to the set of nodes (lines 28–29). Alternatively, if C occurs at an
intermediate intersection, the algorithm continues traversing if the directions
are consistent (lines 30–33).

To illustrate the steps of the algorithm, consider the traversal performed by
InferEdges, starting at connection point C1 in Figure 2(a). InferEdges processes
each connection point on line (A, B) (line 21 of propagateDirection). We illus-
trate the processing of C2 and C5. In both cases, the condition at line 24 evalu-
ates false because C2 and C5 do not occur at endpoints: the condition at line 26
evaluates false because their dir = neu (which causes line 36 to evaluate true);
the condition on line 28 evaluates false as well; but line 30 evaluates true. In the
case of C5, the condition on line 32 evaluates to false and propagateDirection is
invoked recursively (line 33) to continue the traversal toward node D. In this in-
vocation, the algorithm reaches C7, whose direction is tgt (i.e., does not match
C1dir); thus, a valid edge is detected. Therefore, it adds D to the node set (at
line 29), and later adds (A, D) to the edge list (at line 19). However, the line
towards C is not traversed since C3dir = tgt, which causes the condition on
line 32 to evaluate to true during the processing of C2. Note that for the traver-
sal starting at C7, InferEdges reaches C6, where isEnd = true and direction is
unk which causes line 24 to evaluate true and the traversal stops. This ensures

8 Such nearness bounds are set relative to the width and height over which diagram
elements span in a page and are thus scale invariant.

From Informal Process Diagrams to Formal Process Models 153

that the edge (A, D) does not get added twice in the edge set. The final set of
edges for the flow graph is shown in part(b) of Figure 2. Parts (c) and (d) of the
figure illustrate a different example in which the line from D is split into three
edges, one each to nodes A, B and C.

In this manner, lines get converted to edges that have sources and targets.
For each edge, we also obtain its text label, color, and line type by aggregating
these attributes for all lines that constitute it.
Cross Reference Resolution: We identify nodes that have the same text
label and exist in different pages of a drawing to be cross references if either
their indegree or their outdegree is zero. We reduce the flow graph by fusing
such nodes and merging the incoming and outgoing edges on the fused nodes.

3.2 Semantic Interpretation of Flow Elements

Phase 1 of our approach infers a well-formed graph, which has none of the struc-
tural ambiguities present in the flow diagram from which it was inferred. Next,
Phase 2 associates semantics with the nodes and edges in the graph, based on
similarity of the nodes and edges. Semantic similarity of nodes and edges quite
often follows from similarity in their geometry, relational attributes, and textual
content. We formulate semantic disambiguation as a pattern-classification prob-
lem [5]. Using a representative corpus of business process diagrams, we train a
classifier to learn patterns in features of flow elements that indicate the class of
process semantic of an element. For semantic interpretation of new diagrams, we
extract pertinent features for each flow element and feed them into the trained
classifier, which detects learnt patterns to decide process semantics. We discuss
both supervised and unsupervised schemes for learning that may be used de-
pending upon whether a corpus of diagrams is available for training or not.

Feature Extraction. We attempt to mimic human reasoning used in recogniz-
ing process semantics from a diagram. Humans usually analyze a range of visual
and textual cues to understand diagram semantics. We abstract such cues as
symbolic or numeric features that can be acted upon by standard classifiers.

Table 1 lists a set of features for nodes, grouped into three categories: rela-
tional, geometric, and textual. For each group, the table lists examples of features
(column 2), and discusses how the features are indicative of process semantics
in nodes (column 3). (A similar list can be formulated for edges; for space con-
straints, we do not present it.) Relational features such as indegree and outdegree
can be obtained directly from the extracted flow graphs, whereas geometric and
textual features are aggregated from attributes of the diagram elements involved
in the flow. For each process entity, a set of cue words that characterize expres-
sions in the labels for the entity is taken to be a textual feature. For example,
interrogative words (e.g., “Whether,” “Is,” “Does”) in the text are typical of a
gateway; similarly, text starting with strong verbs (e.g., “Create,” “Process”) in-
dicate an activity. If training data is available, we can perform text classification
on labels to identify such representative words for each target entity; otherwise,
these word lists have to be created with inputs from human experts.

154 D. Mukherjee et al.

Table 1. Features used for disambiguating node semantics

Category Features Comments

Relational No. of incoming edges (inde-
gree), no. of outgoing edges (out-
degree), no. of nodes contained
within (numContains), whether
it is contained in another node
(isContained)

Can discriminate amongst many entities irrespective
of local styles in diagrams. For example, indegree and
outdegree can easily distinguish between start, end
and intermediate events; non-zero numContains may
strongly indicate presence of a swimlane or a group.

Geometric Shape name in stencil, No. of
vertical lines, no. of horizontal
lines, no. of arcs, line style, width,
height

Can provide highly accurate insight, if data sets follow
templates very rigorously. Such features can work well
with small sets of process diagrams with uniform styles
per entity.

Textual No. of cue words for every entity
in label for the node and labels
for incident edges

Humans comprehend text to determine semantics in
highly ambiguous scenarios. For example, text in out-
going edges from gateways is often ‘yes’/‘no’/‘y’/‘n’,
text in activities typically starts with strong verbs,
’report’ and ’e-mail’ are common in data objects.

Supervised Learning. If we have a set of diagrams for which the correspond-
ing correct process models are known, we can train a classifier, in a supervised
manner, to learn classification rules from the labeled instances. The learnt rules
can be used to infer the semantics of new diagrams. A decision tree learner [14]
can formulate a decision task as a sequence of logical or binary operations from
a series of examples. It is a set of if-then-else like classification rules over the fea-
ture set, which can be easily interpreted (and edited if required) by data mining
practitioners. A Näıve Bayes classifier [11], after training on a labeled dataset,
can assign probabilities that an observation (flow element) belongs in each class
(process entity). Neural networks [13] consist of layers of interconnected nodes
where each layer produces a non-linear function of its input, thus enabling the
modeling of very general functions. Our empirical study evaluates different clas-
sifiers for their efficacy in choosing process semantics for flow elements.

Unsupervised Learning. Clustering is a popular and effective technique used
in data mining for discovering, without any human supervision, patterns from
large amounts of data [12]. We cluster flow elements based on their geometri-
cal, relational, and textual features, and hypothesize that elements with identical
process semantics get grouped into the same cluster. Next, we consider the cluster
assignments as class labels for the flow elements and train a classifier. The clas-
sifier trained in this manner can perform semantic disambiguation—eliminating
the need for performing clustering on each new diagram.

We define a measure of similarity (or distance) such that flow elements in
the same cluster exhibit greater similarity in semantics amongst them than with
elements in any other cluster. We compute similarity for each feature category:
relational (simr), geometric (simg), and textual (simt). We use the euclidean
distance to compute similarity between numeric attributes, a boolean measure
(1 for match, 0 for mismatch) for attributes that can be enumerated (e.g., shape,
name, color), and string edit distances (e.g., Levenshtein, Monge Elkan, Jaro) [4]
for text. The aggregate feature-based similarity of two flow elements, fi and fj ,
is obtained using a linear combination of the three similarity components:

From Informal Process Diagrams to Formal Process Models 155

sim(fi, fj) = wr × simr(fi, fj) + wg × simg(fi, fj) + wt × simt(fi, fj)

The weights for the different components can be set either using domain knowl-
edge about the importance of different aspects of the similarity measure, or,
alternatively, by validation over a set of labeled training instances (if available).
Given the aggregated similarity measure, there are various clustering approaches,
such as agglomerative, divisive, and k-means, for iteratively improving the clus-
tering goodness. The choice of the number of clusters may be governed by a
knowledge of the number of entities in the target meta-model. After clustering
is run, the user can examine a few exemplars flow elements in each cluster to
decide a process semantic for the cluster. Then, the semantic classification (thus
obtained via clustering) of flow elements from the training corpus is used to
train a classifier, and semantic interpretation proceeds as in the supervised case.
Our empirical studies show that clustering on features similar to those listed in
Table 1 indeed groups together elements with common process semantics, and
that an unsupervised approach is almost as effective as supervised learning for
recognizing certain semantics. In practice, an unsupervised approach is often
more applicable because sound training data is hard to get.

4 Empirical Evaluation

We implemented our approach in a tool called idiscover, and conducted em-
pirical studies to evaluate its accuracy and compare it with the accuracy of a
commercial tool. We organized the evaluation to report results on both aspects
of model discovery: structure inference and semantic interpretation.

Experimental Setup. As experimental data, we used a set of 185 Visio process
diagrams9 created as part of real business-transformation projects. We randomly
selected the diagrams from a repository of archived projects within IBM’s Service
Delivery practice. Our selection was not constrained by the stencil prescription of
any specific tool. For comparison with idiscover, we selected a top commercial
process-modeling tool. The Visio-import capabilities of all such tools recognize
diagram shapes as process elements only if the shapes come from specific Visio
stencil(s) prescribed by the tools. Moreover, they cannot resolve structural am-
biguities, such as dangling connectors and unlinked labels. The representative
tool that we selected offers support for the largest number of Visio stencils. For
proprietary reasons, we refer to the tool as pmt(Process Modeling Tool).We em-
ployed human experts to identify the true process models for the diagrams and
used them to compute the accuracies of idiscover and pmt.

We use precision and recall to measure accuracy. In the following equations,
Actual is the set of (manually identified) correct interpretations and Retrieved
is the set of (automatically inferred) interpretations by a tool.

Precision(P) =
|Actual ∩ Retrieved|

|Retrieved| , Recall(R) =
|Actual ∩ Retrieved|

|Actual|

9 https://researcher.ibm.com/researcher/files/in-debdomuk/bpm_dataset.zip

156 D. Mukherjee et al.

Table 2. Occurrence of structural ambigui-
ties in the dataset

Instances per File % Files with
Ambiguity High Average Ambiguity

Dangling Conn. 47 (100%) 3 (14%) 56
Unlinked Labels 46 (39%) 2 (3.7%) 38
Cross References 10 1 35

Table 3. Accuracy of structural infer-
ence by idiscover and pmt

idiscover pmt
Element Precision Recall Precision Recall

Node 96.93 95.91 70.44 86.29
Edge 93.26 90.86 63.43 59.87

4.1 Study 1: Structure Inference

Goals and Method. The goal of the first study was to compare the accuracies
of the structural inference performed by idiscover and pmt. We also evaluated
how the structural ambiguities present in the dataset impact structure infer-
ence in both cases. We ran idiscover’s structure extractor to infer XML flow
graphs from the Visio diagrams and compared them with actual process models,
manually identified by human experts, to measure accuracy. First, we matched
the text labels for nodes in Retrieved with those in Actual . Next, we traced the
recovered edges between matched nodes and checked if equivalent edges were
present in Actual models. Finally, we computed precision and recall for both
node and edge detection. Similarly, we validated the flow graphs produced by
pmt against the actual process models. idiscover also reports the number of
dangling connections, unlinked labels, and cross references found in the input.

Results and Analysis. Table 2 lists, for each type of structural ambiguity,
the highest and average number of instances found in the files in the dataset. It
also reports the percentage of edges that are dangling, percentage of nodes and
edges that have unlinked text labels, and percentage of files that have at least
one instance of the ambiguity. Over half of the files contain dangling connectors,
whereas unlinked labels and cross references occur in over a third of the files in
the dataset. The fact that 100% of connectors in some files were left dangling
suggests that certain users may be completely unaware of notions such as proper
gluing of connectors. The data indicate that structural ambiguities can occur
frequently in practice; therefore, to be useful, an automated inference technique
must handle them effectively.

Table 3 shows the average precision and recall of node and edge detection.
The data illustrate that idiscover performs much better than pmt. For node
inference, idiscover had ≈ 27% higher precision and ≈ 9% higher recall. For
edge inference, the performance of idiscover was even better: it achieved ≈ 30%
improvement in both precision and recall. We observed far greater correlation of
the number of dangling connectors with the edge recall of pmt (Pearson’s coeffi-
cient, ρ = −0.48) than that with the edge recall of idiscover (ρ = −0.08). This
clearly suggests that while idiscover successfully resolves dangling connectors,
pmt’s edge-inferencing capability is adversely affected by their presence.

Discussion. Overall, the study shows that idiscover consistently performs
better than pmt in terms of both precision and recall. The data also indicate

From Informal Process Diagrams to Formal Process Models 157

Fig. 4. Distribution of
BPMN entities

 80

 82

 84

 86

 88

 90

 92

 94

 96

 500 1000 1500 2000 2500
%

Number of shapes in the dataset

Supervised vs Unsupervised Semantic Interpretation

Supervised (C4.5) - Recall
Supervised (C4.5) - Precision

Unsupervised - Recall
Unsupervised - Precision

Fig. 5. Effects of varying the dataset size

that structural ambiguities, which complicate automated structure inference, can
occur frequently in practice; therefore, an approach, such as ours, that effectively
deals with such ambiguities can be valuable.

We investigated the reasons for errors in node detection in both tools, and
observed the following reasons: (1) imprecise resolution of unlinked labels in
ambiguous scenarios where nearness does not suffice; (2) failure to recognize
some shapes when a group of diagram shapes represent a single node. An edge
is taken to be accurate only if its source and target nodes are correctly inferred.
Thus, although our edge-inference algorithm identifies edges precisely, the overall
precision of edge inference suffers from inaccuracies in node detection.

4.2 Study 2: Semantic Interpretation

Goals and Method. The goals of the second study were to (1) evaluate the
effectiveness of different pattern-classification techniques in assigning semantics
to flow elements, and (2) compare the effectiveness of these techniques with that
of pmt. Specifically, we evaluated three supervised classification techniques—
C4.5 decision tree [14], Näıve Bayes, and Multi-layer perceptron (MLP) neural
network [13]—and an unsupervised clustering technique.

We asked human experts to create BPMN models for the 185 diagrams in
our dataset. To compute accuracy, we compared the semantic interpretations
of the pattern classifiers and pmt against those made by the experts.10 We
chose to evaluate interpretation of node semantics only because BPMN flow-
edge semantics can be resolved unambiguously by applying simple rules.11

To construct the training dataset for the supervised classifiers, we compared
the nodes in the flow graphs extracted by idiscover with the nodes in the

10 Note that an expert’s interpretation may differ from the actual intent of the designer
in highly ambiguous scenarios. Nevertheless, we consider the expert’s judgment to
indicate true semantics.

11 An edge that cuts across two pools is a message flow; an edge that exists between
two nodes in the same pool is a sequence flow; an edge whose source or the target is
an artifact is an association.

158 D. Mukherjee et al.

Table 4. 10-fold cross-validation results
of semantic interpretation by idiscover
and pmt

Supervised Unsuper. pmt
Class P R P R P R

Activity 92.6 91.0 89.8 88.5 66.1 84.4
Start Event 82.1 91.0 77.4 84.9 18.4 24.2
Intermediate 14.3 6.7 0 0 0 0
End Event 83.6 84.7 71.7 87.9 26.5 35.1
Gateway 96.7 97.0 90.0 97.9 93.3 92.0
Pool 100 100 99.1 92.4 76.6 87.7
Data Object 56.5 57.8 0 0 0 0

Overall 91.9 92.1 87.1 88.4 60.2 73.7

Table 5. 10-fold cross-validation results
for the three supervised classifiers

C4.5 Näıve Bayes MLP
Class P R P R P R

Activity 92.6 91.0 90.5 81.5 90.9 91.5
Start Event 82.1 91.0 81 78.6 84.4 83.6
Intermediate 14.3 6.7 14.3 53.3 75 20
End Event 83.6 84.7 75.9 83.8 78.5 84.3
Gateway 96.7 97.0 91.2 96.2 96.2 97
Pool 100 100 100 92.7 99.6 99.8
Data Object 56.5 57.8 28.4 73.3 60 40

Overall 91.9 92.1 88.9 85.6 91.2 91.4

expert-created BPMN models: we obtained 2943 matches, which formed the
training set. For each node, we aggregated different features listed in Table 1.
The training set contained seven classes of BPMN entities labeled by the ex-
perts; Figure 4 shows the distribution of these entities. Therefore, for the three
supervised classifiers, we set up a 7-class classification problem using the Weka
toolkit.12 Further, to study the effects of the training-set size on the classifi-
cation accuracy, we chose the best-performing classifier and experimented with
different sizes of the training set.

In the unsupervised case, we performed classification via clustering. We ran
k-means clustering using the similarity measures discussed in Section 3.2. We
computed pairwise similarity between the nodes and fed the similarity matrix to
a graph clusterer, which produced clusters representative of process semantics.
Then, a user decided the class of BPMN semantics (out of the seven classes) for
each cluster by studying a few exemplars in each cluster. Next, for each node,
we compared the process semantic assigned to its cluster and that assigned by
human experts to compute precision and recall. We also studied the classes of
semantics that come up in new clusters as we increase k in different runs of the k-
means clusterer. Finally, as in the case for supervised classifiers, we investigated
the effects of varying the dataset size on clustering results.

Results and Analysis. To quantify the degree of semantic ambiguities present
in our dataset, we measured under-specification and over-specification. We found
that 79.8% of the nodes were touched by under-specification in the sense that
they were represented by shape types whose instances referred to at least two
forms of semantics. We also found each class of BPMN entity to be over-specified;
that is, it was represented by more than one shape in the dataset.

Table 4 reports 10-fold cross-validation results (of precision and recall) over
the training dataset for the best-performing supervised classifier and the unsu-
pervised classifier; it also presents the precision and recall results for pmt. We
find that the overall precision and recall of both pattern-classification approaches
are ≈ 90% (within 5% of each other); and they are over ≈ 20% higher than that

12 http://www.cs.waikato.ac.nz/ml/weka/

From Informal Process Diagrams to Formal Process Models 159

of pmt. We observe that the classification approaches fare well in recognizing
most BPMN entities present in the dataset except for intermediate events and
data objects, which together constituted only 3% of the dataset. Top discrim-
inating features were noted to be: isContained, indegree, outdegree, and shape
name. pmt could detect only gateways and pools with high precision.

Table 5 reports the accuracy results for the three supervised classifiers. We
find that C4.5 decision tree performs the best, MLP neural network is almost
as effective, and Näıve Bayes is less effective by a few percentage points. Fig-
ure 5 evaluates both supervised and unsupervised approaches on a constant test
dataset of 443 nodes (not part of the training data), when the training dataset
size is varied from 500 through 2500. We find that the variation in results be-
tween the least and the greatest sizes of the training set is as low as ≈ 4%.
Moreover, the curves show less than 2% deviation as we increase the size beyond
1000 nodes. For a training set with a balanced distribution of entities, the results
for the fringe entities improved considerably but the overall results dropped by
a few points.13 In the unsupervised case, for k = 5, we obtained clusters that
represented activity, pool, gateway, start event, and end event. However, on in-
creasing k beyond 5, we observed that the new clusters represented new process
semantics, such as join/merge, fused merge, branch points, etc., but they did
not isolate data objects or intermediate events, which are part of our target set.

Discussion. Figure 5 indicates that the classification approach could work just
as well with only a third of our current dataset size. However, for such ap-
proaches to succeed, the input set should have a balanced distribution of target
model entities. The results show that clustering is indeed effective in grouping
together related process semantics. The relational features and shape name were
found to be the most discriminative features. The set of cues words for gateways
emerged as the top textual feature. We realize that textual features need to be
modeled more effectively, e.g., by capturing the relative position of words within
a sentence, performing parts-of-speech tagging, and using WordNets.

5 Related Work

Although informal expressions of business process designs are extremely com-
mon, (to the best of our knowledge) there is no existing research that addresses
the problem of automatically understanding process diagrams. Moreover, there
have been no studies of the challenges that arise in interpreting diagrams created
using stencil-based tools, such as Visio, Powerpoint, and Dia.

However, there exists a large body of work in the area of understanding line
drawings and hand sketches (e.g., [1,3,9,15]). The primary problem addressed
by sketch recognition is that of identifying various shapes present in a dia-
gram; semantic interpretation follows directly from a fixed mapping between the

13 Intermediate event (P:64%, R:44%); Data Objects (P:80%, R:90%); Overall (P:88%,
R:88%). Reference [17] provides the details of this experiment and illustration of
idiscover and pmt outputs.

160 D. Mukherjee et al.

geometry of source shapes and the semantics in the target metamodel [3,9]. In
contrast, the primary challenge in inferring formal process models from informal
flow diagrams is the detection of higher-level semantics—the basic shapes are
readily parsable from the diagram format. Thus, unlike the research in sketch
recognition, our work focuses on semantic interpretation of informal diagrams.

Gross [8] presents an approach for sketch interpretation, which consists of:
low-level glyph recognition, detection of spatial relations among glyphs, and
assembly of glyphs into high-level configurations. Although the approach is or-
ganized in a similar manner as ours, the high-level structural patterns (e.g., tree
and polyline) that they discover do not have any semantic significance. More-
over, polyline recognizers in these sketching tools can detect only pre-specified
patterns of inter-linked lines and are not as general as our edge-inference algo-
rithm. Barbu et al. [2] apply frequent graph discovery to symbol recognition from
line drawings: their approach extracts a feature vector to represent nodes and
applies an unsupervised hierarchical clustering algorithm. Unlike our approach,
they focus on inferring graphic symbols only and not semantic classes. Also, we
consider a richer set of features that includes higher-level relational attributes,
such as indegree and outdegree.

Approaches in visual language theory (e.g., [6,7,16]) rely on upfront codifica-
tion of the production rules for interpretation. Our work can be viewed as the
first step toward learning such grammars. Wittenburg [16] shows that relational
grammars are required to parse process-modeling constructs. Our current work
attempts semantic classification at the level of a single node. Future work can
attempt learning more complex relational patterns involving a sequence of nodes
(e.g., loop, fork, and merge).

6 Conclusions and Future Work

We presented a comprehensive approach for discovering formal process models
from informal process diagrams that contain structural and semantic ambigui-
ties. We presented techniques for resolving the structural ambiguities to extract
precisely a flow graph underlying a process diagram. We also showed that stan-
dard pattern-classification techniques can be successfully employed in interpret-
ing process semantics if the feature space is carefully modeled. Our approach
mimics human reasoning used in recognizing diagram semantics: it models re-
lational, geometric, and textual attributes of flow elements as features during
pattern classification, instead of simply relying on shape name as existing tools
do. Our empirical results showed that unsupervised clustering can almost match
supervised techniques in performance; thus, such an approach can work well in
practical scenarios where sound training data may not be available. Our tool,
idiscover, has better precision and recall, in both structural inference as well
as semantic interpretation, than the state-of-the-art Visio import capabilities.

Future work can strive to improve the precision and recall of semantic inter-
pretation through more efficient modeling of textual cues because text is the only
reliable feature in highly ambiguous scenarios. Label association can also be per-
fected by tracking spatial patterns of label assignments that emerge due to local

From Informal Process Diagrams to Formal Process Models 161

styles followed by designers. Finally, future research can investigate the identi-
fication of higher-level relations (block structures) between model entities (e.g.,
sub-process, loop, and fork-merge) and extend the approach to other varieties of
flow diagrams.

Acknowledgements. We would like to thank Indrajit Bhattacharya, David
Marston, Juhnyoung Lee, Rakesh Mohan, Sugata Ghosal and Kathleen Byrnes
for their valuable inputs and many useful discussions on the topic. We thank
Vanitha Nachimuthu and Mary Joshua for their efforts in preparing the training
data.

References

1. Apte, A., Kimura, T.: Recognizing multistroke geometric shapes: an experimental
evaluation. In: Proc. of ACM UIST, pp. 121–128 (1993)

2. Barbu, E., et al.: Frequent graph discovery: Application to line drawing document
images. Electronic Letters on Computer Vision and Image Analysis 5(2), 47–57
(2005)

3. Chen, Q., Grundy, J., Hosking, J.: SUMLOW: early design-stage sketching of UML
diagrams on an E-whiteboard. Software Focus 38(9), 961–994 (2007)

4. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance
Metrics for Name-Matching Tasks. In: IIWeb, pp. 73–78 (2003)

5. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley, New York (2001)
6. Futrelle, R.P., et al.: Understanding diagrams in technical documents. IEEE Com-

puter 25(7), 75–78 (1992)
7. Golin, E., Reiss, S.: The specification of visual language syntax. In: IEEE Workshop

on Visual Languages, pp. 105–110 (1989)
8. Gross, M.: Recognizing and interpreting diagrams in design. In: Workshop on Ad-

vanced Visual Interfaces, pp. 88–94 (1994)
9. Hammond, T.: Tahuti: A geometrical sketch recognition system for UML class

diagrams. In: ACM SIGGRAPH 2006 Courses, p. 25 (2006)
10. Iivari, J.: Why are CASE tools not used? Communications of ACM 39(10), 103

(1996)
11. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A review. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)
12. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood

Cliffs (1988)
13. Pal, S., Mitra, S.: Multilayer perceptron, fuzzy sets, and classification. IEEE Trans-

actions on Neural Networks 3(5), 683–697 (1992)
14. Quinlan, J.: C4. 5: Programs for Machine Learning. Morgan Kaufmann, San Fran-

cisco (2003)
15. Rubine, D.: Specifying gestures by example. In: Proc. of the Conf. on Computer

Graphics and Interactive Techniques, pp. 329–337 (1991)
16. Wittenburg, K., Weitzman, L.: Relational grammars: Theory and practice in a

visual language interface for process modeling. Visual Language Theory, pp. 193–
217 (1998)

17. Mukherjee, D., Dhoolia, P., Sinha, S., Rembert, A.J., Nanda, M.G.: From Informal
Process Diagrams To Formal Process Models. IBM Technical Report No. RI09014
(2010), http://domino.research.ibm.com/library/cyberdig.nsf/index.html

Value-Oriented Coordination Process Modeling

Hassan Fatemi, Marten van Sinderen, and Roel Wieringa

Information Systems (IS) Research Group,
Electrical Engineering, Mathematics and Computer Science (EEMCS) Department,

University of Twente, Enschede, The Netherlands
h.fatemi@utwente.nl, m.j.vansinderen@ewi.utwente.nl, roelw@cs.utwente.nl

Abstract. Business webs are collections of enterprises designed to jointly
satisfy a consumer need. Designing business webs calls for modeling the
collaboration of enterprises from different perspectives, in particular the
business value and coordination process perspectives, and for mutually
aligning these perspectives. However, business value modeling and coor-
dination process modeling have different goals and use different concepts.
Nevertheless, the resulting models should be consistent with each other
because they refer to the same system. In this paper we define consistency
between value models and coordination models in multi-perspective e-
business web design and give guidelines to produce consistent coordina-
tion process models from business value models in a simple and stepwise
manner. We provide an initial validation of these guidelines with a real-
world example of business web design.

1 Introduction

A business web is a collection of enterprises designed to jointly satisfy a complex
consumer need [1]. In a business web each enterprise contributes with its own
specific products or services to satisfy a consumer need. Each partner wants to be
sure that participation in such a collaboration network is economically rational
and, if so, specify the coordination process. Hence, business value modeling,
where economic sustainability can be analyzed, and coordination modeling, in
which coordination can be specified complement each other.

The main goal of business value modeling is to reach agreement amongst
profit-and-loss responsible stakeholders regarding the question ”Who is offering
what of value to whom and expects what of value in return?” In contrast, an
important goal of coordination process modeling is to reach a common under-
standing about which coordination activities should be carried out, by whom
and in which order. These are two different modeling goals, asking for different
modeling methods with different constructs [2]. Nevertheless, despite the differ-
ences, a business value model and its corresponding coordination process model
should be consistent with each other because they both refer to the same system.

In the current line of research two approaches for maintaining consistency be-
tween the value and coordination perspectives are used: (1) informally, by giving
a set of guidelines how to use e.g. the business value perspective for finding a re-
lated coordination process perspective and vice versa [3,4,5,6,7], and (2) formally,

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 162–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Value-Oriented Coordination Process Modeling 163

by stating consistency rules between perspectives, which e.g. can be checked by
model checkers [8,9,10]. The proposal to maintain consistency as discussed in
this paper uses both approaches. The contribution of this paper consists of the
description of an improved definition of consistency between business value and
coordination process models of a business web, and also a method to design a
coordination process model from a value model resulting in a consistent pair of
models. The contribution of the paper is unique because it shows how to move
from a business value model to a coordination process model in a structured and
stepwise way using coordination patterns.

For representing the business value perspective, we use value models of e3value
[11], and for the coordination process perspective, we use BPMN diagrams (see
http://www.bpmn.org/). At the end of the paper we will discuss the generality
of our results beyond these two particular notations.

In section 2, we discuss business value modeling in e3value methodology and
coordination process modeling in BPMN and their properties. Next, we propose
a stepwise approach to generate a coordination process model from a business
value model in section 3. We apply our method on a real-life case in section 4.
Finally we conclude with discussion, conclusion and future research in section 5.

2 (Business) Value Models and Coordination (Process)
Models

In e3value we model a business web as a graph in which the nodes represent
economic actors and the edges represent economic transactions. In addition, an
e3value model shows how a consumer need is met by a set of economic trans-
actions between actors in this network [11,12,13]. Consider the simple e3value
model (figure 1(a)) in which Buyer gives Money to Seller and receives Good
in return. The Seller, in his turn, gives Money to the Transporter and receives
Transport. This simple model illustrates all modeling constructs of e3value:

– Contract Period. A value model describes economic transactions during a
specific period of time which is called contract period. The contract period
should be specified in supporting documentation to the model and the model
will be used to analyze economic sustainability during this period only.

– Actor. An actor is an independent economic (and often also legal) entity
with a specific interest in the collaboration (making profit, increasing utility,
earning experience, ...). Actors in figure 1(a) are Buyer, Seller and Trans-
porter. The actor for whom the business web is made to satisfy his needs
is called the consumer. We represent the consumer need by a bullet placed
inside this actor.

– Value Object. A value object is a service, good, money, or experience, that
is of economic value to at least one actor and is exchanged between actors.
In our example value objects are Money, Good, Money and Transport.

– Value Port. An actor uses a value port to provide or request value objects
to or from other actors. A value port is a conceptual construct indicating

164 H. Fatemi, M. van Sinderen, R. Wieringa

(a) A simple value model (b) All interactions (exchanged messages)

(c) Transaction de-
composition tree

(d) Coordination process model

Fig. 1. From Business Value model to Coordination Process model

that during the contract period, an actor is capable of giving or receiving a
value object. Value ports are represented by small triangles on the edge of
the shapes representing actors.

– Value Interface. Value interfaces group value ports and indicate atomicity: if
one value port in the interface is triggered in the contract period, all of them
are triggered in this period (however the model makes no statement about
when this will happen: this will be specified in the coordination model).
Value Interfaces are represented by oval shapes surrounding the value ports.

– Value Transfer. A value transfer connects two value ports of different actors
with each other representing that the actors are willing to transfer value
objects in the indicated direction.

– Market Segment. A market segment is a set of actors that assign economic
value to objects equally. They are shown as overlapping rectangles.

– Value Transaction. Value transfers should come in economic reciprocal pairs,
which are called value transactions.

– Transaction Decomposition Tree (TDT). This is a rooted directed acyclic
graph with the consumer at the root and other nodes labelled by other ac-
tors linked with business transactions (see figure 1(c)). 1 The graph presents
the AND/OR logic of the transactions: each complete path from the root
(making a choice at every OR node) to the leaves represents one set of busi-
ness transactions that jointly fulfill the consumer need. Figure (1(c)) shows
the Transition Decomposition Tree for the value model in figure 1(a). It is a

1 In e3value this is called a dependency path but for consistency checking it is impor-
tant to emphasize that this is actually a tree.

Value-Oriented Coordination Process Modeling 165

simple TDT without AND/OR splits. To illustrate this more suppose that
we had two different Transporters (Normal and Special). In that case the two
transporters were linked to the Seller by an OR split in the value model. So,
we would have had the two transporters linked to the seller in the TDT with
an OR logic between them. In that case we could enumerate two different
ways of satisfying the consumer need by traversing the TDT from the root
to the leaves.

The temporal meaning of a transaction decomposition tree is that if the
need at the root occurs during the contract period, then the transactions in
the tree also occur in the contract period, namely to fulfill the need.

All transactions outside the scope of the business value model (because
they are not relevant to the economic sustainability estimation) are repre-
sented by a bull’s eye. The bull’s eyes represent the model boundaries and
are the leaves in transaction decomposition tree.

Given an e3value model attributed with quantitative estimations (for example,
the number of consumer needs per contract period and the valuation of objects
exchanged) and a contract period we can estimate the revenue of each actor in
the specified contract period. This is a first indication whether the model at
hand can be economically rational for each actor.

2.1 Differences

Consider the coordination model in figure 1(d), which is consistent (in a way to
be explained later) with the value model of figure 1(a). There are a number of dif-
ferences between these two models. In general the conceptual gap between value
models and coordination models is caused mostly by the following properties of
these models:

1. Ordering: The key concept in value modeling is value while its counterpart
in coordination modelling is time. In an e3value model there is no notion of
time ordering at all [11]. Behavior and temporal order are beyond the value
perspective and are part of the coordination perspective.

2. Time-related properties: From the value perspective, when value V is
transferred from actor A to actor B, it does not make any difference whether
this transfer occurs at once or in some steps, and also there is no differ-
ence between a time-continues and time-discontinues value transfer. In the
coordination model all these time-related properties should be determined.

3. Value versus coordination objects: In a value model every object should
be of value to at least one partner. But in a coordination model objects are
not included necessarily because they are of economic value to a partner.
They can also be included because they help coordinating the activities of
the partners (for example, messages). We call objects in the coordination
model coordination objects.

4. Third parties: A direct value transfer between two partners in a value
model does not necessarily imply that there will be a direct coordination

166 H. Fatemi, M. van Sinderen, R. Wieringa

object exchange between these partners in the corresponding coordination
model. Sometimes a third party will be involved and the path for value
object exchange becomes an indirect path for control object exchange. In the
example at hand (figure 1) there is a direct value transfer between the buyer
and the seller, while the physical transfer of the good that is the subject of
the value exchange will require an indirect control object exchange between
the buyer and the seller involving a transporter.

5. Payment methods: Money transfers are the most common transfers in
value models that indicate paying a partner some money in exchange of
his/her service or good. A money transfer between two partners in the value
model, does not indicate the payment method. There is a wide variety of
payment methods that can make the coordination model look very different
from its value model.

Moving from one type of model to the other needs the conceptual gap caused
by the above factors to be bridged.

2.2 Similarities

Despite the aforementioned conceptual gap, value modeling and coordination
modeling also address some common aspects. This is the source of consistency
requirements. Firstly, they have the same actors/partners. In the business world,
an actor joins a business web only if (s)he earns something of value to her-
self/himself. Hence, every actor in a business web must perceive some value and
therefore will be present in the value model independently. Secondly, a coordi-
nation model has a contract period too, with the same meaning as the contract
period of the value model: The actors have agreed to behave in a certain way dur-
ing the contract period. Finally, each value transaction indicates that something
should happen to realize it.

In the coordination model we abstract from internal activities of actors, i.e.
from activities that don’t involve communication with another actor. In fact,
internal business processes are an important asset of enterprises and therefore
few enterprises like to disclose information about them to the outside world.
This means that the properties of the overall business-to-business collaboration
must not be based on the internal processes of the participating enterprises, but
rather on the externally visible behavior and the associated models to represent
it [14].

Without loss of generality, we make some simplifying assumptions to reduce
the complexity of the problem and converge different solutions. The most im-
portant simplifying assumption is that all actors are trusted so that we don’t
need to consider security mechanisms to mitigate the risk of frauds. In a realistic
business model this assumption needs to be dropped but before building such a
realistic model, the partners need to check whether the cooperation is econom-
ically sustainable (value model) and practically possible (coordination model)
under the assumption that they can trust each other. If economic sustainability
and practical possibility cannot be shown under the assumption of mutual trust,

Value-Oriented Coordination Process Modeling 167

it is not worth the effort to check this under the more complicated conditions
of lack of trust [9]. In this paper we therefore make this simplifying assumption
but in future work we will drop it. We also abstract from some interactions like
confirmation messages. This does not decrease the utility of our guidelines be-
cause any set of interactions between two actors can be elaborated with more
detailed protocol information without creating an inconsistency with the value
model.

Under the above simplifying assumptions, for each value transfer a pair of
messages (coordination objects) are enough to realize it. This pair consists of
a request message and a message referring to the actual value object of the
corresponding value transfer.

2.3 Consistency

The similarities between business value models and coordination process models
motivate the definition of consistency between these models. Zlatev and Wom-
bacher [8] were the first to define consistency between an e3value and a coordina-
tion model based on an equivalence of a common semantic model (reduced model
that contains the common concepts from two models). Wieringa and Gordijn [9]
try to generate correctness formulas for value models based on the correctness
formulas provided by the designer for each business transaction. Pijpers and
Gordijn [10] check consistency by constructing an intermediate model that cap-
tures the physical transfers in a value model, thereby reducing the conceptual
gap between value and process models. This physical transfer model can then
be checked for consistency with a process model via a reduced model approach.
Bodenstaff [15,16] introduces another definition based on checking the revenue
estimation of value model with the runtime behavior of the coordination model.
First we define two concepts and then introduce our definition which integrates
and generalizes the original definitions by [9] and [8].

All these models make the basic correspondence assumption that each value
transfer should correspond to some message exchange in the coordination model
and that inversely each message exchange should correspond to some value trans-
fer. Under the simplifying assumptions of the previous section, each value trans-
fer corresponds to a request/reply pair. To elaborate this into a consistency
definition, we need the concepts of transaction path and execution sequence.

A transaction path in the e3value model is a complete (containing all children
of each AND node) and non-redundant (containing exactly one child of each OR-
node) path from the root of a transaction decomposition tree ending in bull’s
eyes. An execution sequence in a coordination model is a trace from start to end
state.

Like the value model the coordination model is valid in a specific period of
time (contract period). We must assume that a domain expert has given the
basic correspondence assumption for each value transaction. The consistency
definition then basically tells us when a coordination model and a value model
respect each others AND/OR logic. The consistency definition is general, i.e. it

168 H. Fatemi, M. van Sinderen, R. Wieringa

does not depend on simplifying assumptions. A value model and a coordination
model are consistent if:

1. The sets of actors in both models are the same.
2. The contract period of both models are the same.
3. For each transaction path in the value model, there is an execution sequence

in the coordination model which realizes the value transfers of that path,
and

4. For every possible execution sequence in the coordination model, there must
exist a transaction path, such that the message exchanges contained in the
execution sequence represent all the value transfers in the transaction path.
Each message in an execution path is part of the realization of a value transfer
or it is there because it defines a coordination logic. It is possible that two
different coordination models realize the same value model, if they only differ
in the coordination logic.

This is an informal definition, but it is precise enough to be formalized.

3 From a Value Model to a Coordination Model

Several authors have proposed a method to build a coordination model from a
value model [3,4,5,6,7]. Pijpers and Gordijn [3] proposed a method that makes an
intermediate model (e3transition model) based on the value model by extending
it with independent transfers of ownership rights of an object and the actual
object itself.

Anderson and Bergholtz [4] proposed a method that starts with a value model
and in a number of steps, each value exchange is analyzed and identified as a sub-
process of the coordination model. They break value exchanges to components
(resource, right, custody, and document evidence).

Wieringa et al [6] claim that coordination modeling is facilitated by making
a physical delivery model first, because the value and coordination model are
both views of a network of physical deliveries. They distinguish discrete from
cumulative goods and time continuous from time-discrete deliveries. They also
specify frequency or duration of deliveries and make a delivery model as an
intermediate model on the way to design a coordination process model.

In our opinion, these approaches are all too complicated because they use
intermediate models and/or introduce complicated concepts like ownership right,
custody or physical delivery that makes it hard for others to use them in practice.
Also, these methods have so far not been tested on other cases than the one
they have been developed for. Our proposed method does not introduce these
additional models or concepts and is therefore simpler and, as argued at the end
of this paper, easier to generalize.

On the basis of the analysis in section 2, we proposed a stepwise method. The
point of depature is an e3value model. For illustration, we explain our method
using e3value model in figure 1(a).

Value-Oriented Coordination Process Modeling 169

– Step 1 : The first step is identifying the actors of the coordination model.
The actors in both value model and coordination model must be the same.
Hence, in our example they are buyer, seller, and transporter.

– Step 2 : In this step we aim at identifying groups of related value transfers
and selecting the most suitable coordination pattern for each group. In other
words, we determine the necessary interaction messages which should be in-
cluded in the coordination model to realize value transactions. A domain
expert must indicate for each value transfer to which sequence of coordi-
nation messages it corresponds. Logically, there are only a few possibilities,
which we review here (figure 2).
• Simple Direct: In this case, when an actor asks another actor to send

him a value, the latter replies the former by sending him directly the
requested value. This means that the receiver of the request is able to
satisfy the requester’s need without involving other actors (i.e. by its
own). A simple value model with one value transfer and its realization
according to this coordination pattern are shown in figures 2(a) and 2(b)
respectively.

• Scheduled: There is a special type of value transfer, we call it sched-
uled transfer, which doesn’t need two messages (coordination objects)
for realization in the coordination model. An example of this type of
value transfer is scheduled payment in which a partner pays an already
determined amount of money for a service/good on already scheduled
times. In this case no party asks the other one for paying the money.
Hence, in the coordination model we only have one interaction referring
to the actual value object. Figure 2(c) shows the realization of the value
transfer in figure 2(a) according to this coordination pattern.

• Direct with arrangement: When an actor asks another actor to send
him a value, the latter may, in his turn, ask some other actors to send
him some values and then reply the former with the requested value. This
arrangement can be both as preparation or obligation. In a preparation,
the receiver of the request is not able to satisfy the requester’s need
only by its own, so he should involve some other actors to play role.
However, in an obligation the receiver of the request is able to satisfy
the requester’s need by its own, but doing so obliges him to make some
arrangements(value transfers). An example of preparation is ordering
raw materials by a factory and as an example of obligation we can refer
to clearing proprietary rights of a book or music.

These pre and post requisites are not mutually exclusive and they
both can appear in one case and from the value point of view they are the
same. A value model and its realization according to this coordination
pattern are shown in figures 2(d) and 2(e) respectively. In figure 2(e)
all the requests are connected to the same AND-split (they execute in
parallel), however they can have any ordering. The only implication is
that they should be realized before the transaction which is dependent
on them.

170 H. Fatemi, M. van Sinderen, R. Wieringa

(a) Two actors and
a value transfer

(b) Messages in simple direct
coordination pattern

(c) Messages in scheduled
coordination pattern

(d) Value transfers
with AND relation

(e) Messages in direct with arrangement co-
ordination pattern

(f) A value model (g) Messages in partial coordination pattern

(h) A chain of value transfers (i) Messages in indirect coordination pattern

(j) Value transfers with OR re-
lation

(k) Messages with OR relation in combined coor-
dination pattern

Fig. 2. Different ways of realization of a value transfer in Coordination Process Model

(a) A sample
value model

(b) coordination mes-
sages as distinct pairs

(c) interleaved coordi-
nation messages

(d) one coordination
messages pair inside
the other one

Fig. 3. Possible ordering of the coordination messages of a value transaction

Value-Oriented Coordination Process Modeling 171

• Partial: If the request consists of some distinct parts and the receiver
of the request is able to satisfy some parts of the request, he might send
those parts directly to the requestor and ask another actor(s) to provide
the other parts. An example is shown in figures 2(f) and 2(g).

• Indirect: In this situation, the first receiver of the request plays the
role of a mediator by relaying the request to another actor. The first
actor in such a relay chain that is able to satisfy the need sends back the
requested value to the first requester.

It is also conceivable that the first receiver of the request has the
actual requested value but he can not provide the value to the requester
or something should be done on it by a third actor before sending it to
the requestor. Therefore, he asks another actor to deal with that. For
example a company may transport his products to the customers via a
shipping company. This situation may also be modelled in the previous
way (Direct with arrangement). Sometimes there is no special distinction
between these two situations and either correspondence can be defined.
Figures 2(h) and 2(i) show a value model and its realization in indirect
coordination pattern.

• Combined: This case is a combination of above situations. Basically any
combination of the above cases is possible. Figures 2(j) and 2(k) show
one possible value model and its realization in combined coordination
pattern. Here the combination is just a matter of juxtaposition.

A value transaction between two actors aggregates two or more reciprocal
value transfers. Thus, we need at least four message transfers to realize each
value transaction in the coordination model. By traversing the Transaction
decomposition tree starting from the consumer, different business scenarios
and those value transactions which should occur during each scenario are
identified.

Back to our example (figure 1), there is only one possible business sce-
nario in which both transactions tagged as 1 and 2 will occur (figure 1(c)).
We assume that the domain expert has given these correspondences: The two
money value transfers correspond to the simple direct coordination pattern
and the Good and the Transport value transfers make a chain of dependent
value transfers. The coordination model after adding appropriate coordina-
tion patterns is shown in figure 1(b) which shows who is causing the transfer
of some observable object to whom. Note that this is not an intermediate
model and the method is not dependent on it. It is just for illustration and
it does not serve any other purposes.

– Step 3 : To put the message transfers in a correct order in the coordination
model the domain expert has to ask the following two questions regarding
each value transaction of the value model:

1. Who should first send a request to whom? (Which partner initiates?)
2. Which value transfer should happen first?

172 H. Fatemi, M. van Sinderen, R. Wieringa

Using the answers to these two questions we can put the four messages of
the value transactions in a correct order. A value model containing a value
transaction and three possible ordering of the coordination messages of this
value transaction is shown in figure 3. Supposing that one of the actors, here
actor A, starts the interaction , these three orderings are all possible ones.
The second ordering(figure 3(c)) does not make sense and from the value
perspective it does not differ from the first ordering(figure 3(b)). Because
what really matters is the order of the value transfers and in both cases actor
B sends the value first. Therefore we don’t consider the ordering possibility
shown in figure 3(c).

Suppose we have the following answers to the above two questions re-
garding value transfers tagged as 1 and 2 in the value model of figure 1(a)
respectively:
1. The buyer should first send a request to the seller.
2. The payment should proceed the Good value transfer.

The first answer indicates that the buyer is the actor who initiates the pro-
cess(i.e. sends the first request) so,the ordering shown in figure 3(d) applies
here in which A refers to the Buyer and B to the Seller with a subtle dif-
ference that here the Seller does not send the Good to the Buyer instead he
triggers the value transaction between himself and the Transporter.

– Step 4 : After identifying the necessary interaction messages and putting
them in the coordination model in a correct order, we check time constraints
of messages. For example there might be coordination messages that should
occur in specific points of time or before a deadline.

– Step 5 : In this step we finalize the coordination model by adding necessary
administrative activities to each partner (for example logging activities, con-
firmation messages, etc) and link the included interaction messages. Other
examples are start and the stop activities (See figure 1(d)). All of these ad-
ministrational activities do not correspond to value transfers but they are
needed to make the coordination model work in practice. We refer to this in
the discussion at the end of the paper.

Except step 2, which depends on human interpretation, the other steps can be
automated through a CASE tool if we provide it with the necessary information
like the answers of the questions of step 3.

The basic question here is: Is the value model generated by our method con-
sistent with its corresponding value model? The first two requirements of the
consistency definition are satisfied because the method requires that the actors
in both models are the same and both models have the same contract period.
Requirement 3 of the definition is satisfied because in step 2 and 3 we ensure
that each transaction path corresponds to an execution sequence. And require-
ment 4 is satisfied because the only messages added to the coordination model
are the ones needed to perform transactions (steps 2 and 3) or to control the
coordination process (steps 4 and 5). In this way, we can claim that for each
transaction path in the value model, which is a set of related transactions, there
is an execution sequence in the coordination model and vice versa. Therefore,
the models are consistent.

Value-Oriented Coordination Process Modeling 173

4 Case Study

To test the scalability of our method to a real-world case, we took an example
that deals with the problem of clearing Intellectual Property Rights (IPR). It
involves two steps: collecting fees from IPR users, i.e. radio stations, bars, dis-
cotheques and so on, who play music in public spaces with the aim of getting
money from it, and repartitioning the collected fees to Right Owners, i.e. artists,
song writers, producers. One of the main IPR societies in the Netherlands collect-
ing IPR fees and repartitioning it to owners is SENA (see http://www.sena.nl/).
IPR fee collection is currently done based on statistical evidence but SENA is
interested in a future business model in which fees are collected on is a pay-per-
play basis, in which for each music track, a track-specific network of clearing
organizations is composed. This is possible once music is broadcast over the
internet.

Figure 4 shows one possible value model of pay-per-play fee collecting in
which BMP delivers a stream of tracks using Internet-based technology for direct
playing which is not recordable at Receivers side. BMP and Receivers both
should pay IPR Societies (see figure 4). In this value model actors are:

Receivers: A receiver is an actor who broadcasts background music to get
benefits of it so, they are also IPR users.
Background Music Providers (BMP): A BMP is an actor who provides
specialized background music in exchange of fee.
IPR Societies: IPR Societies collect fees for each track played in the public
and repartition it to IPR owners.
Right Owners: Right owners of a track are those who involve in producing it,
i.e., write lyric, play a musical instrument, produce and publish track etc.

Paying BUMA/Stemra is about the copyright that the composer and/or lyri-
cist holds, whereas paying SENA is related to the rights of the performing artists
and producer. After collecting money from users it should be repartitioned be-
tween appropriate right owners. SENA repartitions fees to Artists and Producers,
and BUMA/Stemra does the same for Publishers, Composers and Lyricists.

We applied our method to this case. The result is shown in figure 5. According
to step 1 of the proposed method, actors are the same in both models. Because
of the space limitation and the high similarity that is between right owners,
we only include one right owner representing all of them. Therefore actors are:
Receivers/User, BMP, BUMA, SENA, and right owner.

Value transactions tagged as numbers 2, 3, 4, and 5 in figure 4 all match the
simple direct coordination pattern. In all these transactions a right is exchanged
for money. The right requestor should initiate and send money before receiving
the confirmation of having right (ordering shown in figure 3(d)). Value transac-
tions tagged as numbers 1,2 and 5 match direct with arrangement coordination
pattern (2(d)). However because the right which the Receiver/User should clean
is dependent on the tracks that BMP provides, first transaction 1 occurs and
then 2 and 5.

174 H. Fatemi, M. van Sinderen, R. Wieringa

Fig. 4. Value model of providing music by Streaming

The confirmation sent from BMP to Receiver/User is just for the sake of
efficiency. If we remove this confirmation message, the Receiver/User has to
wait until the arrival of the stream before being able to clear rights.

The other transactions (numbers 6 through 10) match scheduled coordination
pattern. Hence, we add only two messages to the coordination model to realize
each value transaction (one message for each value transfer).

Here we haven’t consider the time constraints and durations because the provi-
sioning of music is a simple service for which the duration is already determined.
Also the way in which the payments are being done in real life depends on the
situations and the agreements between actors and there is a great variety in this
that cannot be all included in the coordination model. For example, instead of
paying for each stream in real time, BMP may send a promise to pay to SENA
and at the end of the month pays all the payments in batch. In the last step
we include the activities in the coordination model and using them connect the
interaction messages to each other.

The two models have the same actors and we assume the same contract pe-
riod for both. There is one transaction path consisting of all transactions in
the model hence, there should be only one execution sequence in the coordina-
tion model realizing those transactions. This can be easily justified by travelling
through the execution path in the coordination model starting from the Re-
ceiver/User.

Value-Oriented Coordination Process Modeling 175

Fig. 5. Coordination model of providing music by Streaming

176 H. Fatemi, M. van Sinderen, R. Wieringa

5 Discussion and Conclusions

In this paper we have discussed the problem of how to go from a business value
model to a coordination process model in a stepwise and systematic way. Thanks
to the conceptual commonalities that exist between the two models, a method
could be proposed that starts with a value model where the main actors and
their relationships, in the form of value exchanges, are identified. In a number of
steps each value exchange is analyzed and by answering specific questions a coor-
dination model is designed. The coordination model represents the interactions
and interdependencies between the cooperating parties in terms of exchanged
messages. We consider a special collection of interactions to realize the value
transactions of value models. Based on the same analysis we have proposed a
stepwise method for generating value model from coordination model and also
check their consistency in a general and straightforward way.

The proposed guidelines make a simple method that avoids complicated con-
cepts like property right, physical delivery, etc nor does depend on intermediate
models and still is able to guide the modeler to a coordination model that is con-
sistent with the value model. Because it does not depend on any special concept
or intermediate model and nor does stipulate a special condition or attribute on
the models, we claim that it is more general than existing approaches and it is
easily generalizable beyond e3value and BPMN. We are currently validating this
claim by applying it to more cases. We have tested our method on earlier cases
done by other researchers [3,6] and observed that our application of the method
produced similar results to what was obtained in those cases and we obtained
coordination models that are consistent with their corresponding value models
according to our definition for consistency. Because our method uses less con-
cepts and does not depend on intermediate models, we hope that our method is
both easier to use and applicable to more cases than the other methods; further
validation is needed to substantiate this claim.

In addition to further validation, future work will consist of increasing the
realism of the method by dropping trust assumptions and including guidelines
for more complex coordination patterns. In step 5 we mentioned that we should
add necessary administrational activities to the coordination model to make it
work in practice. Some of these activities are related to trust issue and to have a
more realistic result we should drop trust assumptions and enrich the model with
necessary activities. In addition, more complex coordination patterns will include
value transfers realized by multi-step coordination patterns and the inclusion of
more sophisticated payment methods.

Another important addition we are working on is the addition of a reverse
method. In general, coordination and value modeling are iterated, since a change
in a coordination model may require a change in the value model. For example,
adding a trusted third party in the coordination model requires adding this actor
to the value model too. We are aiming at a reverse method that allows making
such an addition in a consistent way.

Value-Oriented Coordination Process Modeling 177

References

1. Tapscott, D., Ticoll, D., Lowy, A.: Digital Capital: Harnessing the Power of Busi-
ness Webs. Harvard Business School Press, Boston (2000)

2. Gordijn, J., Akkermans, H., van Vliet, H.: Business modelling is not process mod-
elling. In: ER Workshops, pp. 40–51 (2000)

3. Pijpers, V., Gordijn, J.: Bridging business value models and process models in
aviation value webs via possession rights. In: HICSS 2007: Proceedings of the 40th
Annual Hawaii International Conference on System Sciences, Washington, DC,
USA, p. 175. IEEE Computer Society Press, Los Alamitos (2007)

4. Andersson, B., Bergholtz, M., Grégoire, B., Johannesson, P., Schmitt, M.,
Zdravkovic, J.: From business to process models - a chaining methodology. In: Pro-
ceedings of the 8th International Conference on the Advanced Information Systems
and Engineering, CAiSE 2006 (2006)

5. Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Edirisuriya, A.,
Ilayperuma, T.: Value object analysis and the transformation from value model to
process model. In: Enterprise Interoperability, pp. 55–65. Springer, London (2007)

6. Wieringa, R., Pijpers, V., Bodenstaff, L., Gordijn, J.: Value-driven coordination
process design using physical delivery models. In: Li, Q., Spaccapietra, S., Yu,
E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 216–231. Springer, Heidelberg
(2008)

7. Fatemi, H., van Sinderen, M.J., Wieringa, R.J.: From business value model to
coordination process model. In: Proceedings of the Second IFIP WG5.8 Inter-
national Workshop on Enterprise Interoperability, IWEI 2009, Valencia, Spain.
LNBIP, vol. 38, pp. 94–106. Springer, Heidelberg (2009)

8. Zlatev, Z., Wombacher, A.: Consistency between e3-value models and activity di-
agrams in a multi-perspective development method. In: Meersman, R., Tari, Z.,
Hacid, M.S., Mylopoulos, J., Pernici, B., Babaoglu, z., Jacobsen, H.A., Loyall, J.P.
(eds.) OTM 2005. LNCS, vol. 3760, pp. 520–538. Springer, Heidelberg (2005)

9. Wieringa, R.J., Gordijn, J.: Value-oriented design of service coordination processes:
Correctness and trust. In: 20th ACM Symposium on Applied Computing, pp. 1320–
1327. ACM Press, New York (March 2005)

10. Pijpers, V., Gordijn, J.: Consistency checking between value models and process
models: A best-of-breed approach. In: Proceedings of the Third International Work-
shop on Business/IT Alignment and Interoperability (BUSITAL 2008), held in
conjunction with CAiSE 2008, Conference, pp. 58–72. CEUR-WS.org. (2008)

11. Gordijn, J., Akkermans, H.: Value based requirements engineering: Exploring in-
novative e-commerce ideas. Requirements Engineering Journal 8, 114–134 (2002)

12. Gordijn, J., Akkermans, H.: E3-value: Design and evaluation of e-business models.
IEEE Intelligent Systems 16(4), 11–17 (2001)

13. Gordijn, J., Yu, E., van der Raadt, B.: e-service design using i* and e3value mod-
eling. IEEE Software 23, 26–33 (2006)

14. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, New York (2007)

15. Bodenstaff, L., Wombacher, A., Reichert, M.U.: Dynamic consistency between
value and coordination models - research issues. Technical Report TR-CTIT-06-50,
Enschede (2006)

16. Bodenstaff, L., Wombacher, A., Reichert, M.U.: On formal consistency between
value and coordination models. Technical Report TR-CTIT-07-91, Enschede (Oc-
tober 2007)

Coordination for Fragmented Loops and Scopes

in a Distributed Business Process

Rania Khalaf1 and Frank Leymann2

1 IBM TJ Watson Research Center, 1 Rogers St, Cambridge MA 02142, USA
rhkalaf@us.ibm.com

2 Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

Frank.Leymann@iaas.uni-stuttgart.de

Abstract. This paper addresses partitioning business processes that
contain loops as well as compensation and fault handling scopes. The
resulting process fragments can be distributed and wired together, recre-
ating the execution semantics of the original process model. In earlier
work, we presented BPEL fragmentation covering data and explicit con-
trol dependencies. We now extend the approach to handle fragmenting
loops and scopes. Maintaining the focus on standards and maximizing
extensibility of Web service runtimes and standards, the solution defines
and uses new coordination protocols that plug into the WS-Coordination
framework. An implementation is presented, extending the Active End-
points BPEL engine and a WS-Coordination system.

Keywords: BPM, Distribution, Recovery, BPEL, WS-Coordination.

1 Introduction

As more work is off-shored, outsourced and globalized, business processes need
to be fragmented and distributed in an agile manner. Several challenges emerge
in doing so effectively: (1) handling partitions while maintaining operational
semantics in the presence of fault handling, compensation handling, and loops
(2) maintaining a low barrier to entry by using an open approach focused on
interoperability and transparency. This leads us to a phased approach: Use the
standards exclusively for a subset of use cases, identify when the standards are
no longer enough, provide corresponding extensions for the identified cases, and
support the extensions in a modular way avoiding force system replacement.

In [12,13], we laid the groundwork for fragmenting BPEL processes by en-
abling splitting data and explicit control dependencies. The approach repro-
duces BPEL behavior across fragments of a BPEL process by using patterns
of BPEL constructs. In summary, an intra-process dependency split by the par-
tition results in an inter-process message exchange(s) between the fragments.
The algorithms ensure that the fragments are standard BPEL processes. The
term ‘unsplit process’ refers to the process model being fragmented, ‘partition’
to the set-theoretic partition of an unsplit process, ‘split activity’ to a split loop

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 178–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Coordination for Fragmented Loops and Scopes 179

BPEL EngineBPEL Enginep

A
E

B
C

D

!

WS-
Coordination
Coordinator

p

A

B

!

D

E

p

A

B

E

C

Key:

compensate
! throw

comp. handler

fault handler

scope

Fig. 1. Splitting a process with scopes across two participants

or scope, and ‘split process’ to the set of process fragments resulting from a
partition.

In this paper, we extend the approach above to support splitting BPEL loops
and scopes1 . Scopes and loops provide shared behavior to a group of activities:
fault handling, compensation handling, and variable scoping for the former and
looping for the latter. The activities in a scope or loop serve different purposes
and therefore may need to be executed by different organizations or servers. This
results in the enclosing loop or scope being split. Splitting them using BPEL pat-
terns in each fragment works for loops fragmented with few dependencies and
participants. However, the number of exchanged messages and complexity of the
patterns created when doing so for loops drastically increase with the increase in
fragmentation and dependencies - and when doing so for scopes become poten-
tially intractable. This is due to fragmenting the corresponding implicit coordina-
tion: finding a fault handler across fragments, propagating faults, synchronizing
start/end of fragmented loops, scopes and handlers. A single fragment may also
not have enough information, such as determining and enacting default compen-
sation order. Thus, we find splitting scopes and loops to be a clear point where
language and runtime extensions provide a better solution.

An overview of the approach is in Figure 1: A designer partitions a pro-
cess (left), defined in the Web Service Business Process Execution Language
(BPEL) [20] and containing multiple nested scopes with handlers, between dif-
ferent participants such that loops and scopes may be split(thick line). For exam-
ple, this could be a new-hire onboarding process that needs to be split between
the HR department and the Payroll department based on the activities each
departhment should execute and control, while maintaining any common fault
handling or looping behavior. The right side of Figure 1 shows the execution of
the fragments by BPEL engines, recreating the operational semantics of the un-
split process by interacting with a coordinator. The extensions, compliant with
the extensibility of the standards, created for this solution consist of three new

1 Description of the protocols first shown in our technical report at
http://elib.uni-stuttgart.de/opus/volltexte/2007/3050/pdf/TR_2007_01.pdf

180 R. Khalaf and F. Leymann

BPEL attributes for scopes and loops and two new coordination protocols that
plug into the WS-Coordination [21] framework. The overall approach is layered:
Data and explicit control dependencies are split according to [12] using plain
BPEL; implicit dependencies due to split loops and scopes are split using coor-
dination as described in this paper if the process has at least one fault handler
and/or contains at least one split activity. Figure 1 does not have the former, so
no messages are exchanged directly between its fragments.

Section 2 presents relevant aspects of BPEL and WS-Coordination. The struc-
ture then follows the steps of the approach: Section 3 presents split scopes and
loops and the corresponding BPEL language extensions. Section 4 presents us-
ing coordination for this problem, the split process information needed by the
coordinator, and the new coordination protocols. Section 5 describes the imple-
mentation. We then present related work and conclude.

2 Background: BPEL and WS-Coordination

BPEL scopes and loops are structured activities, thus having activities nested
within them. Structured activities are strictly nested and may be the source
or target of explicit, conditional control links. An activity with incoming links
has a ‘join condition’ that by default is the disjunction of the values of the
incoming link conditions. If it evaluates to false, the activity throws a join failure
fault that may potentially be suppressed. Suppressing it results in skipping the
activity and setting its outbound links to false. A BPEL loop is similar to a
while loop in programming languages. Explicit control links must not cross the
loop boundary, but they may cross a scope’s boundary. A BPEL scope, among
other things, defines fault and compensation handlers. A fault or compensation
handler may initiate compensation on one or more of its immediate child scopes:
explicitly naming a target scope using the ‘compensateScope’ activity or all
immediate children in default order using the ‘compensate’ activity. The default
compensation handler consists of a ‘compensate’ activity. If a fault is thrown by
an activity nested in a BPEL scope, it terminates all its nested activities, looks
for a local fault handler, and runs the handler if it finds one. Once the fault
handler completes, navigation continues at the scope boundary. If a handler is not
found, the default fault handler runs: terminate all nested running activities, run
‘compensate’, then rethrow the fault to the parent scope. Termination of a scope
results in triggering the default termination handler, which consists of a call to
‘compensate’. All links leaving a terminated activity are fired negatively. Notice
that when fault handling, faults propagate up the scope hierarchy, with the order
of aborting siblings being irrelevant. On the other hand, default compensation
occurs one level of scope nesting at a time and in an order that reverses control
dependencies between peer scopes. In-depth scope behavior is described in [14].

WS-Coordination is a standard providing a pluggable framework for coordi-
nating agreement between a set of services working together towards a joint
outcome. The standard defines an Activation Service and a Registration Service.
The optional Activation Service is used by the initiator of the coordination to

Coordination for Fragmented Loops and Scopes 181

create a unique ‘coordination context’ that identifies the particular instance of
the distributed action being coordinated. This context is then exchanged in the
header of the application messages that are part of the distributed action. The
Registration Service is used by services wishing to participate in the distributed
action. Usually, a service registers upon receiving a message with a coordination
context. The protocol used to coordinate the distributed action is pluggable and
is identified in the exchanged messages. Upon registering, each service must refer
to a corresponding protocol handler that is in charge of exchanging messages ac-
cording to the chosen protocol. Defining a new coordination protocol consists of
defining participant and coordinator protocol services and handlers, the protocol
message exchange order, and the required underlying behavior of the coordina-
tor and the participants in relation to the exchange of these messages. One may
also extend the activation and registration messages.

3 Split Loops and Scopes

A designer defines a split process, as in [12], by specifying a partition of the set
A of all primitive activities of the process. Consider Pn, the set of participant
names. Every participant p in the set of participants Pa consists of a participant
name in Pn and one or more activities such that Pa ⊆ (Pn × A). The following
restrictions apply to the partition: A participant must have at least one activity,
no two participants share the same primitive activity and every primitive activity
is assigned to a participant. The splitting algorithm [12] uses this information
to create one BPEL process and one WSDL for each participant, in addition to
wiring information that is used to connect the fragments together at runtime.

The partition definition is used to determine if a scope or loop is split: If all
activities in the body of a loop or scope or in the handlers of a scope are not
assigned to the same participant, then that loop or scope is split. For example,
scope E in Figure 1 is split but scope C is not. A handler is split if all the
activities in the handler body are not assigned to the same participant. For
loops, the designer also has to designate one participant as responsible for the
loop condition. Let Ln be the set of split loop names. Thus, we define a map
Lc that associates a participant with every split loop name: Lc : Ln → Pn. The
splitting algorithm then places a fragment of the scope or loop in each process
fragment that has at least one activities of the scope or loop assigned to it. The
algorithm denotes a loop or scope as split in the resulting fragments using the
following language extension attributes on the corresponding XML elements:

– On <process>: ‘belongs-to’ whose value is the QName of the unsplit process.
– On <scope> and <while>: ‘fragmented’ whose value is ‘yes’ or ‘no’ (default

‘no’), identifying the activity as split..
– On <while>: ‘is-responsible’ whose value is ‘yes’ or ‘no’ (default ‘no’), iden-

tifying the loop fragment responsible for evaluating the loop condition.

This paper focuses on runtime enablement, thus leaving further details on frag-
ment generation algorithms including nuances of link and activity placement to

182 R. Khalaf and F. Leymann

[10]. The restrictions for this solution are: all split activities are uniquely named
in the unsplit process model, compensation is a recovery mechanism and thus
must not fail, the join condition of a split activity is the conjunction of the lo-
cal joins of each fragment’s join condition, scope fragmentation is focused on
fault and compensation handling thus not covering variable scoping and event
handling, and without loss of generality we do not cover splitting other types
of structured activities except a ‘flow’ with no incoming/outgoing links. Such a
‘flow’ (not shown in Figure 1) is needed because BPEL syntax requires the body
of a loop, scope or handler have exactly one (structured or primitive) activity.
These are in addition to restrictions from [12] including that the fragments share
a common correlation set serving as the split process instance identifier.

Split processes exhibit a property we call the rubber band effect : BPEL scopes
and loops are strictly nested; it follows therefore that this nesting and resulting
nesting relationships must be maintained upon splitting. Scope E in Figure 1 is
split between two participants, so its ancestors A and the process itself also have
fragments in those participants. A corollary is that if x is a split scope or loop,
all ancestor scopes and loops of x (including the process), must also be split. If
this property is violated, the split process could end up in an inconsistent state.

4 Using Coordination

Split loop and scope execution can be cast as a coordination problem: each
fragment performs part of the distributed action corresponding to the behavior
of the unsplit activity. For example, the split loop protocol is about agreeing
whether or not to iterate again. Our protocols, by design, do not replace existing
BPEL engine behavior; they complement and leverage it to enable the engines
to collectively recreate the operational semantics of the unsplit process.

At first glance, it seems that the WS-BusinessActivity (WS-BA) [21] protocol
could be used to coordinate scope fragments; however, this is not the case for
several reasons including the fact that the fragments are peers whereas WS-BA
was created to perform the coordination between a parent scope and its child
scopes instead of fragments of one scope. The coordination for split loops and
scopes differs from the traditional use of WS-Coordination such as WS-BA and
WS-AtomicTransaction. The fragments of loops and scopes are known at design
time and their location is known at deployment time. The fragments are peers
and it is not known ahead of time which will start the protocol: i.e: either process
fragment in Figure 1 can receive the first message to create an instance; once
an instance is created, either fragment of scope A can be reached first in the
navigation. Our protocols are driven by lifecycle events and not by application
messages. We do not use the optional Activation Service because (1)a protocol
instance start is automatically detected when the first fragment of a split activity
is reached in the navigation and (2)each participant has enough information to
enable the coordinator to determine which protocol instance it belongs to: the
fragments, their locations, the unsplit activity they are part of, and the instance
of the process they are part of are known by the time the first coordination

Coordination for Fragmented Loops and Scopes 183

message is sent. Thus, there is no need to flow the coordination context. The
required information, defined in section 4.2, consists of design-time information
derived from the unsplit process, encoded in the relationship tree and Default
Compensation Order (DCO) graphs, deployment time information in the wiring
model, and runtime information consisting of the common correlation set value.

4.1 Deployment and Registration

To deploy fragments containing split loops or scopes, we extend the wiring model
in [12]. The model provides connectors between the fragments themselves as well
as between the fragments and external services invoked by the unsplit process.
We now add a ‘coordination’ element containing: (1)the address of the regis-
tration service of the coordinator so that the first process fragment to start
an instance can register; (2)the endpoint of a ‘starter service’ for each process
fragment.

Protocol registration requires providing a protocol identifier; therefore a URL
is used for each of the protocols. We also extend the registration message to
include additional information needed to uniquely identify the instance of coor-
dinated work and the participant registering for it.

The extensions are new sub-elements of the registration message’s ‘wsco-
ord:Register’ element: (1) <ProcessName>, the name of the split process the
activity is in; (2) <LoopName> or <ScopeName>, the name of the split activ-
ity; (3)<ParticipantName>, The name of the participant the registration is for,
used to determine which fragment is registering and match that to the infor-
mation in its relationship tree; (4)<CorrelationSetValue>, an identifier of the
instance of the coordinated work. Its value is the value of the common correla-
tion set, in effect identifying the instance of the split process; (5)<counter>, a
counter that further identifies which instance of a scope or loop is being coor-
dinated, needed to distinguish multiple iterations of the a split activity in the
same process instance.

4.2 Encoding Common Information

The a-priori information required by the coordinator about the unsplit process
model is encoded in a scope and loop relationship tree and DCO graphs. They
may be created at any time before the first process fragment creates an instance.
They may be passed to the coordinator any time before a process fragment
begins, such as at deployment time or in the registration message. Details of the
formalism of these data structures and their construction are in [10], Chapter 5.

Scope and Loop Relationship Tree. The relationship tree, RT = (Nrt, Ert),
encodes information about the nesting relationships of split activities, their han-
dlers, and their fragments. It is created from the unsplit process model and
partition definition. An example is shown in Figure 2.

The set of nodes Nrt is divided into four pair-wise disjoint sets:

– Split scope node set Srt: Each scope node srt is a tuple of a scope name,
a set Ms of faults the scope has a handler for, a Boolean stating whether

184 R. Khalaf and F. Leymann

(E, {},false,false)

(A, {aFault},false,false)

(B, {},false,false)

(p, {},false,false)

(P1,{},p,false)

(P2,{},p,false)

(P1,{},B,false)

(P2,{},B,false)

(P1,{aFault},A,false)

(P2,{},A,false)

(P1,{},E,true) (P2,{},E,true)

(P1, C,true)

(P2, D,true)

KeyScope node
Non Split Scope node

Scope fragment node

child-parent edge

fragment activity edge

Fig. 2. The relationship tree for the process partition in Figure 1

the scope is in a handler of its immediately enclosing scope, and a Boolean
whether it is in the compensation handler of its immediately enclosing scope.
Thus, srt = (name,Ms , in fault handler , in comp handler).

– Unsplit scope relevant node set Sns: Includes scopes that are not split but
need to be compensated by their ancestor split scopes. These are unsplit
scopes where: their parent scope is split and they contain an explicit com-
pensation handler either directly themselves or in any scope nested within
them. Each such node sns is a tuple consisting of the participant name it is
in, the scope name, and a Boolean whether it has an explicit compensation
handler. Thus, sns = (p name, name, has compensation).

– Split loop node set Lrt: Each loop node, lrt, is a tuple containing the name
of the loop. Thus, lrt = (name).

– Fragment node set Frt: A fragment node represents one fragment of a split
activity and is a leaf node in the tree. They are of two kinds: Loop fragment
nodes, Frtl

, and scope fragment nodes, Frts . Each loop fragment node is a
tuple containing the name of the participant it is in, the name of the loop
it is a fragment of, and a Boolean whether it is responsible for the loop
condition. Each scope fragment node is a tuple containing the name of the
participant it is in, the set O of fault names this particular fragment has a
handler for, the name of the scope it is a fragment of, and a Boolean whether
the fragment has an explicitly defined compensation handler.

The tree has three kinds of edges forming pair-wise disjoint sets:

– The set of fragment-activity edges, Art, connecting a fragment node to the
loop or scope node it is a fragment.

– The set of loop-scope edges, Brt, connecting a loop to its parent scope.
– The set of child-parent edges, Crt, connecting a scope to its immediately

enclosing scope. Each scope node has exactly one such edge except for the
root which has none. A scope in a fault handler of another scope is considered
nested in the latter.

Default Compensation Order Graphs. A DCO graph, GD = (ND, ED), is a
Directed Acyclic Graph that encodes the default compensation order of a scope.
One DCO is created for each scope that has at least one explicit compensation

Coordination for Fragmented Loops and Scopes 185

handler nested within it and zero or more ‘loopDCOS’ for compensation relevant
loops. Coordination only requires DCO graphs for split scopes, although the
graphs are not dependent on a particular partition. The set of nodes ND of a
DCO graph of a scope s contains loop and scope nodes. A loop node is a member
of ND if the loop is (1) an immediate child of s, (2) not nested in another loop
in s and (3) contains at least one scope having an explicit compensation handler
nested at any level in s. A scope node is a member of ND if it is (1) an immediate
child scopes of s, (2) not in handlers of s, (3) not nested in a loop that is in
the DCO node set, and (4)either it or any of its nested scopes has an explicit
compensation handler.

For each loop node in the DCO graph of a scope, there is an associated
loopDCO graph Gl = (Nl, El). The nodes in Nl have similar characteristics
to those in ND except using the corresponding loop instead of the scope s to
determine the relevant loop and scope.

The edges in a DCO or loopDCO represent the reversal of the control path
between the nodes of the DCO or loopDCO: an edge is present in ED (or El)
between two nodes x and y in ND (or Nl) if there exists a control path in the
process from y or any of its nested activities to x or any of its nested activities
such that the path does not contain any other node in ND (or Nl).

Running compensation in default order occurs by navigating the DCO as a
BPEL process with all join and transition conditions set to true. Book-keeping
for instances can be encoded in ‘ScopeAndLoopQ’ structures in [10,14]. Upon
navigating to a node, it is run and navigation continues by following its out-
bound edges. Running a scope node B consists of a no-op if it is not completed,
running its compensation handler if it has an explicit one, or running default
compensation by navigating its DCO. Running a loop node C, consists of navi-
gating the corresponding loopDCO, in the same way, as many times as the loop
had run for that instance of the scope/loop in which the loop node is nested.

4.3 The Coordination Protocols for Split Loops and Scopes

A protocol is provided as a state machine encoding the messages, the order in
which they are exchanged and the description of the corresponding required be-
havior. Each state corresponds to a point where either the coordinator(solid line)
or the participant(dashed line) sends a message. The coordinator executes the
protocol with each instance of a fragment of a split loop or scope. The coordina-
tor uses the relationship tree to determine when all fragments have registered,
search for handlers, and relate endpoints to participant names. The state machine
for the split scope protocol is provided in Figure 3. We explain using the three
subsets identified in the left margin: common(top), fault handling(middle), and
compensation handling(bottom). After explaining the protocols, we will show in
Figure 4 how the protocols are used to enact the split process in Figure 1.

Common Split Activity Subset. Consider the protocol subset common to all
split activities. It synchronizes the beginning of a split activity: When a fragment

186 R. Khalaf and F. Leymann

completingactive completed

dead path

aborted
completed after faultfault-end

fault
handling

starting

joinFailure

handlerCompleted

faultedInHandler

start complete

completeAfterFault

completeAfterFault

completing

fault
faulted

faultAndExit*

complete-
AfterFault

faultAndExit*

fault+exit*

faultWHandler

faultedWHandler

terminating runHandler

compensating

compensating
non-split child (2)compensating

child (1)

performing
<compensate> (1)

compensate

finalize
Scope

ch
comp

chc
comp

cc
chc comp

d-com
d-com

completed

chc
comp

cc
d-com

completedd-com
cns chc

comp

compensating
non-split child (4)

compensating
child (2)

performing<compensate> (2)

cns

compensating
non-split child (1)

cns chc
comp compensating

non-split child (3)
cns

chc
comp

compensated

cc: compensateChild
cns: compensateNonSplitChild

chc comp: childCompensationHandlerCompleted
ch comp: compensationHandlerCompleted

d-com: defaultCompensation
d-com completed: defaultCompensationComplete

C
om

m
on

Fa
ul

t h
an

dl
in

g
C

om
pe

ns
at

io
n

ha
nd

lin
g

*: only for
process scope

Fig. 3. The Split Scope Protocol

is reached in the navigation, it either starts and sends starting or it is skipped
due to a ‘joinFailure’ fault it needs to suppress and sends joinFailure. Whether it
suppresses a joinFailure depends on the activity’s suppressJoinFailure attribute.
The fragment then waits until the coordinator has heard from all fragments
and sends either completeAfterFault if at least one fragment sent joinFailure or
start otherwise. In the former case, the protocol ends in the ‘dead path’ state,
otherwise it goes to ‘active’. The protocol also synchronizes the end of a split
activity: Once a fragment is ready to complete, it sends completing and then
waits until the coordinator has received completing from all the fragments and
sends it the complete message. The protocol then ends in the ‘completed’ state.

Additional Messages for the Loop Protocol. The loop protocol (not shown)
adds two transitions to the common split activity subset, both for messages sent
by the coordinator: continueLoop from ‘completing’ to ‘active’ and complete
from ‘start’ to ‘completed’. The fragment responsible for the loop condition sends
the value of the condition in the start and complete messages to the coordinator.
Once all fragments start, the coordinator sends start if the condition is true and
continueLoop otherwise. Once all fragments complete, the coordinator sends
continueLoop if the condition is true or complete otherwise.

Fault Handling Subset of the Scope Protocol. Data provided with a fault
is sent to the coordinator, which then sends it to all fragments that have a match-
ing handler. A fault handler at a fragment that has a ‘faultVariable’ attribute
will then save this message in this variable.

Messages for fault handling are added from the ‘active’ state. Two special cases
apply if the split scope is the process itself: (1) Upon receiving start from the
first process fragment to begin, the coordinator sends a ‘startInstance’ message
containing the value of the correlation set to the starter service of each of the

Coordination for Fragmented Loops and Scopes 187

other process fragments. As each fragment creates its process instance, it will
send a registration message to the coordinator and the protocol proceeds as for
any non-process scope. (2) A process fragment may receive a faultAndExit in
the case that a fault is encountered in the split process for which no matching
handler is found. The rest of the messages apply to all fragmented scopes.

If the fragment of a scope sm encounters a fault, it sends either faulted if it has
no matching fault handler in its fragment or faultedWHandler otherwise. Either
causes the coordinator to search the tree for the scope sf in whose protocol it
will continue: sf is the scope having a matching fault handler or the process
if no handler is found. In our example, the throw activity causes scope A’s
fragment to send faultedWHandler and the coordinator finds that sf = A. We
now consider only the fault subset, adding messages and behavior related to
potential compensation for this case in the compensation handling subset below.
The coordinator first aborts the coordinator-side of scope and loop protocols
nested in sf (except for scopes in the ‘completed’ state). If there is no handler,
it sends faultAndExit to the fragments of sf = process. If a handler is found,
regardless of whether sf = sm or one of its ancestors, the coordinator sends
faultWHandler to the fragments of sf that have the handler and fault to the
rest. The fault, faultWHandler, faultAndExit messages throw the fault in the
scope at each process fragment, causing local engine behavior to abort nested
scopes and loops. Both the participant and the coordinator sides of nested split
activity protocols are therefore stopped for all fragments and no separate ‘abort’
message is needed. We require that messages arriving (i.e. due to a race) at the
coordinator side for an aborted protocol are ignored.

The protocol synchronizes the beginning and end of split fault handlers. There-
fore, a fragment having a matching handler waits for the coordinator to send
runHandler before starting it. The handler in a fragment then either completes
(signaled by sending handlerCompleted) or encounters a fault. In the former
case, the coordinator waits for all handler fragments to complete and sends
completeAfterFault. In the latter case, the participant sends faultedInHandler,
placing the protocol in the ‘aborted’ state and causing the coordinator to search
the tree for and notify the scope containing a matching fault handler.

Compensation Handling Subset of the Scope Protocol. Fragmented com-
pensation handling requires coordinating the start and end of fragmented han-
dlers as well as determining and enforcing compensation order. The latter is
not possible locally because child scopes may be in multiple fragments. BPEL
engines extended to support split activities are not allowed to calculate default
compensation order of a split scope or any of its nested children. The coordinator
will use the DCOs and relationship tree to enforce and drive compensation in
the correct order. Thus, the extended BPEL engines may only start an explicit
compensation handler of a split scope and can only do so upon receiving a re-
quest from the coordinator. For non-split scopes in the relationship tree(Sns),
the engine can only start their explicit compensation handler if the coordinator
requests it. Since there is no protocol for non-split scopes, this request arrives
via the protocol of an ancestor split scope. Both the engine and the coordinator

188 R. Khalaf and F. Leymann

may trigger the default compensation handler of scopes in Sns. The engine will
do so if default compensation is required by the scope’s termination behavior.

Consider the part of the protocol for compensating a split scope, e.g. scope
E in the example. It is covered by the states reachable from ‘completed’ be-
cause a BPEL scope may only be compensated if it has completed. If a coor-
dinator needs to compensate E, it sends compensate to all fragments of E. If
the fragment has a compensation handler, it will run the handler and send
compensationHandlerCompleted upon handler completion. Once all the han-
dler’s fragments have sent this, the coordinator sends finalizeScope to all frag-
ments. Compensating a scope in a loop requires compensating every instance of
the scope that ran for one instance of the parent scope requesting the compensa-
tion. The coordinator must request the corresponding compensation the correct
number of times and using the correct protocol instance for each of these scope
instances.

Consider compensating children of a scope s due to a ‘compensateScope’ or
‘compensate’ activity, e.g. the ‘compensate’ in scope A’s fault handler. These
activities may occur only in handlers, so the corresponding states are reachable
from the ‘fault handling’ and ‘compensating’ states. From either state, a frag-
ment of s can send defaultCompensation or compensateChild to request default
compensation or compensation of a child scope s′, respectively. The coordinator
then triggers the necessary compensation, which it does for the default compen-
sation case in the order determined from navigating the DCO. Once the compen-
sation is completed, the coordinator sends back defaultCompensationCompleted
or childCompensationHandlerCompleted, respectively.

Consider the transitions and states enabling a scope such as scope B to com-
pensate a non-split scope, such as C, nested in B and present in the relationship
tree. The work is reflected in the four ‘compensating non-split child’ states: the
protocol of B for the fragment containing C enters this state once the coordina-
tor sends it compensateNonSplitChild. Once the fragment locally completes this
compensation, it sends childCompensationHandlerCompleted. If C has not com-
pleted, the engine must treat this request as a no-op and immediately send back
the completion notification. The non-split child scopes can also be compensated
from the ‘terminating’ and ‘fault-end’ states. The coordinator, in these states,
is performing compensation of C as part of terminating the children of B and
does so through B’s protocol because there is no protocol for non-split scopes.

Some transitions to ‘aborted’ not in the figure for simplicity address faults
in the fault handler while compensation is running: faultAndExit from ‘compen-
sating non-split child(2)’ and faultAndExit and faultedInHandler from the three
compensation states reachable from ‘fault handling’.

This leaves the coordinator behavior for compensation due to termination
and rethrow of a fault, e.g. scope A faults while B is running, which uses the
protocols of multiple scopes. Recall that upon receiving a notification of a fault
from a scope sm, the coordinator continues from a scope sf . BPEL behavior
when a fault is thrown is: default termination of running activities. If the scope
has no handler, then do default compensation of completed scopes followed by

Coordination for Fragmented Loops and Scopes 189

rethrowing the fault to the parent scope. To use less messages and simplify the
runtime, we drive this behavior from sf : stop all activities in sf then perform
compensation in the order necessary by calculating what it would have been had
we, at each scope between sm and sf , actually caught and rethrown the fault.

Consider the time the coordinator has notified the fragments of sf of the
fault, causing all active activities in sf to be aborted by throwing the fault
locally in each fragment. Due to our restrictions on the engine’s ability to trigger
compensation on its own, no compensation is done during this for split scopes
in sf . Then the coordinator drives the following behavior:

1. Starting with s = sm:
(a) ‘Compensation due to Termination’ of activities in s: Perform default

compensation on every split scope st in s, innermost first, if st: it is not
in a handler of s, is not completed, and has at least one immediate child
scope that is completed and in the DCO of st.

(b) If s has no handler for the fault, perform default compensation on s and
if s �= process continue with ‘Compensation due to Rethrow’. Otherwise
skip steps 2 and 3.

2. perform ‘Compensation due to Rethrow’ of the fault: Going up the relation-
ship tree along child-parent edges from sm to sf , for each encountered scope
node sp /∈ {sm, sf}:
(a) If sp’s in fault handler Boolean is true, skip sp

(b) Otherwise, perform step 1 for s = sp, but skip any scopes already touched
by previous iterations.

3. perform ‘Compensation due to Termination’ of sf : Perform step 2 for s = sf ,
but skip traversing down any subtrees already touched in steps 1 or 2.

Finally, continue as in the fault handling subset: if sf has a matching fault
handler, send runHandler to its fragments to run the fault handler; otherwise,

Sender Recipient(s) Protocol of Message
P2 Coordinator scopeA faultedWHandler(aFault)

Coordinator P1 scopeA Fault

Coordinator P2 scopeA compensateNonSplitChild (scopeD)

P2 Coord scopeA childCompensationHandlerCompleted(scopeD)

Coordinator P1 scopeA compensateNonSplitChild (scopeC)

P1 Coordinator scopeA childCompensationHandlerCompleted(scopeC)

Coordinator P2 scopeA runHandler

P2 Coordinator scopeA defaultCompensation

Coord P1, P2 scope Compensate

P1,P2 Coordinator scope childHandlerCompleting(E)

Coordinator P1,P2 scope finalizeScope

Coordinator P2 scopeA defaultCompensationCompleted

P2 Coordinator scopeA handlerCompleted

Coordinator P2, P1 scopeA completeAfterFault

P2 Coordinator Process Completing

P1 Coordinator Process Completing

P2,P1 Coordinator Process Complete

Fig. 4. Protocol messages, in order, for the example in Figure 1

190 R. Khalaf and F. Leymann

Fragmentation Enabled BPEL EngineFragmentation Enabled BPEL EngineFragmentation Enabled BPEL Engine

BPEL Engine

Generic
Controller

...
Event
filter

Participant logic of split
activity protocols

Split Loop Participant Service

Split Scope Participant Service

Starter Service

Split Activity Custom Controller
Coordinator

Support for Split Activity protocols

Coordinator logic
of split activity

protocols

Split Loop
Coordinator Service

Registration Service

Split Scope
Coordinator Service

protocol specific registration handler

WS-Coord.
SOAP
msgs

Fig. 5. Architecture of the Runtime System (new artifacts in grey)

send faultAndExit to all fragments of the process. Figure 4 shows the protocol
messages used to coordinate the fragments in Figure 1 once the fault is thrown
by the ‘throw’ activity.

Race conditions exist when a state has transitions whose messages can be
sent by either coordinator or participant. The resolution rules are: a fault re-
lated message wins over a compensation message; in races between fault related
messages, those from the coordinator win over those from a participant; races
between compensation messages result in queuing the messages.

5 Implementation

We focus on the runtime subsystem of the fragmentation system in [10]. The
implementation of this subsystem is detailed in [22], including WSDL defini-
tions. To support the protocols, the BPEL engine(s) used must be extended
to recognize the new language extensions and support the participant side of
the protocols, which affect and are affected by the engine’s BPEL navigation.
This includes includes a starter service, a loop participant service, and a scope
participant service. Aiming to avoid new middleware where possible, we use a
modular and minimally intrusive mechanism [11] for extending existing BPEL
engines. The mechanism uses an engine-agnostic generic event model and an
event-based approach based on a ‘Generic Controller’ with pluggable ‘Custom
Controllers’ for new extensions. We created a Split Activity Custom Controller
(Figure 5, left) that implements the participant services, the outbound message
invocations they send, and the required behavioral logic. The controller’s inter-
acts with the Generic Controller by receiving and sending events over JMS using
ActiveMQ to control and react to the behavior of the engine as needed and re-
ceiving and sending protocol messages using SOAP to and from the coordinator.
[11] illustrates controlling the engine to execute a loop fragment.

Next, consider the coordinator. At deployment time, the coordinator endpoint
is bound with the controllers and the coordinator is provided with the scope re-
lationship tree, default compensation order graphs, and starter service addresses.
The coordinator implementation extends the WS-Coordination system in [27] by
plugging in the new protocols (Figure 5, right). This consists of providing: (1)
the registration handler that provides protocol registration, including handling

Coordination for Fragmented Loops and Scopes 191

the extensions in the registration message and using them to create a coordinator
side instance identifier, seeing whether an instance of the activity already exists,
creating the reference properties needed for the coordinator address sent back
in the registration response message, (2) the coordinator services for incoming
protocol messages and the outgoing invocation for the outbound ones, and (3)
the corresponding behavioral logic such as searching for fault handlers, grouping
fragments of the same instance together based on keys generated using input
from the registration handler, calculating compensation order. The coordinator
stores state in stable storage using mySQL database tables, initialized using the
scope and loop relationship tree. The table data is used by the handler and
the coordinator logic. Upon receiving a registration message, the handler checks
whether it already has a previous fragment registered for that same activity. If
not, it creates a new record for that instance of the split activity. Otherwise, it
adds the fragment to the table for that instance, and then creates and sends the
address for the coordinator instance using the same reference properties as for
other fragments of this split activity. As the messages for the protocol of that
activity instance are exchanged, the tables get updated accordingly.

The runtime subsystem implementation currently supports the protocols ex-
cept default compensation. It requires fragments of the same process instance
to interact with the same coordinator. A set of processes was created to test
that the execution semantics of the unsplit process model is preserved using
the implementation. Details on this validation are in [22]. The tested processes
contain split loops and/or scopes, including nesting, and different variations on
split fault and compensation handling.

6 Related Work

WS-Coordination has been used with BPEL to coordinate nested scopes in
BPEL 1.1 (of which sub-processes [9] are a special case) or provide transaction
capabilities [25] to all interaction activities in a scope or related to a partner-
Link. [23] compares WS-BusinessActivity to the parent-child scope relationships
in a BPEL process. [15] extends WS-BA to handle scopes spanning multiple pro-
cesses and their interaction with local scopes. SELF-SERV [2] uses coordination
between services in the same composition to enable rapid service composition.

There is a large body of work on distributed workflows. In [3], a pub/sub event
mechanism wires together processes. CrossFlow [8] focuses on inter-organizational
workflow. Several approaches start with one workflow and then split it apart: using
state-charts [18], deriving individual workflows for each organization using Petri
Nets [26], mapping from a conversation-based language (WS-CDL [17] or a state-
machine based language [7]) to BPEL. [28] and [6] split abstract process models,
recreating dependencies using exchanged messages and [6] adds synchronization
patterns for loops, multiple instances and a discriminator but no scopes. [1] pro-
vides a high level approach for splitting BPEL resulting in BPEL fragments. Other
work has distributed the execution of one workflow for runtime optimization, such
as OSIRIS [24] or the tuplespace approach in [16]. [4] uses program analysis and

192 R. Khalaf and F. Leymann

node reordering to maximize the throughput by breaking down a BPEL process
into several BPEL processes. [19] shows a model to analyze the effects of local
and remote check-pointing for fault handling and envisions embedding it in agent
based workflow systems for run-time fault tolerance technique selection. Aspect
Oriented Programming has been used to inject behavior into BPEL processes [5].
It may be used to add the participant side of the protocol to AOP-enabled BPEL
engines. The above approaches have partial to no support for splitting compensa-
tion and fault handling. Some have different goals. The goal misalignment is due to
the use of non-BPEL meta-models (UML Activity diagrams, state charts, custom
abstractions), requiring of new execution runtimes (coordination spaces, SELF-
SERV, Osiris), and/or lack of transparency because runtime artifacts (tuples) are
in different meta-models than build-time artifacts (process model).

7 Conclusion

We have provided an automatic and operational semantics-preserving decom-
position of recovery, rollback, and looping capabilities in fragmented business
processes. The approach is modular, extending existing standards and runtimes;
the implementation build on an existing BPEL engine and WS-Coordination
system. The paper complements our prior work on process decomposition to re-
sult in a decomposition solution, extensively detailed in [10], for comprehensive
business process functionality in a transparent and interoperable manner. Future
research includes fragment evolution, autonomy and reuse, and a study of how,
when and why one moves along the middleware-requirements spectrum of frag-
mentation solutions: from plain BPEL engines to modularly adding extensions
to fully distributed process execution platforms.

Acknowledgement. Michael Paluszek’s hard work building the runtime.

References

1. Baresi, L.: Towards distributed BPEL orchestrations. In: Proc. of SeTra workshops,
EASST (2006)

2. Benatallah, B., Dumas, M., Maamar, Z.: Definition and Execution of Composite
Web Services: The SELF-SERV Project. IEEE Data Eng. Bull. 25(4) (2002)

3. Casati, F., Discenza, A.: Supporting Workflow Cooperation Within and Across
Organizations. In: Proc. of SAC., ACM, New York (2000)

4. Chafle, G., Chandra, S., Mann, V., Gowri Nanda, M.: Decentralized Orchestration
of composite Web Services. In: WWW Alternate Track. ACM, New York (2004)

5. Charfi, A., Mezini, M.: AO4BPEL: An aspect-oriented extension to BPEL. World
Wide Web Journal 10(3) (2007)

6. Fdhila, W., Godart, C.: Toward synchronization between decentralized orchestra-
tions of composite web services. In: Proc. of CollaborateCom (2009)

7. Fu, X., Bultan, T., Su, J.: A top-down approach to modeling global behaviors of
Web services. In: Proc. of REOS Workshop. IEEE, Los Alamitos (2003)

Coordination for Fragmented Loops and Scopes 193

8. Grefen, P., Hoffner, Y.: CrossFlow - cross-organizational workflow support for
virtual organizations. In: Prof. of RIDE Workshop, Washington, DC. IEEE, Los
Alamitos (1999)

9. IBM and SAP. WS-BPEL Extension for Sub-processes – BPEL-SPE (2005),
http://www-128.ibm.com/developerworks/library/

specification/ws-bpelsubproc/

10. Khalaf, R.: Supporting Business Process Fragmentation While Maintaining Op-
erational Semantics: A BPEL Perspective. PhD thesis, University of Stuttgart,
dissertation.de (2008), ISBN 978-3-86624-344-6,
http://elib.uni-stuttgart.de/opus/volltexte/2008/3514/

11. Khalaf, R., Karastoyanova, D., Leymann, F.: Pluggable Framework for Enabling
the Execution of Extended BPEL Behavior (Vienna, Austria). In: Di Nitto, E., Ri-
peanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907, pp. 376–387. Springer, Heidelberg
(2009)

12. Khalaf, R., Kopp, O., Leymann, F.: Maintaining data dependencies across BPEL
process fragments. Int’l Journal of Cooperative Information Systems 17(3) (2008)

13. Khalaf, R., Leymann, F.: Role-based decomposition of business processes using
BPEL. In: ICWS, Industry Track, Chicago, USA, pp. 770–780 (2006)

14. Khalaf, R., Roller, D., Leymann, F.: Revisiting the behavior of fault and compen-
sation handlers in ws-bpel. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM
2009. LNCS, vol. 5870, pp. 286–303. Springer, Heidelberg (2009)

15. Kopp, O., Leymann, F.: The influence of an external transaction on a BPEL scope
(Vilamoura, Portugal). In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009.
LNCS, vol. 5870, pp. 381–388. Springer, Heidelberg (2009)

16. Martin, D., Wutke, D., Leymann, F.: Synchronizing control flow in a tuplespace-
based, distributed workflow management system. In: Proc. of ICEC. ACM, New
York (2008)

17. Mendling, J., Hafner, M.: From Inter-Organizational Workflows to Process Execu-
tion: Generating BPEL from WS-CDL. In: Proc. of OTM, Springer, Heidelberg
(2005)

18. Muth, P.r., Wodtke, D., Weissenfels, J., Dittrich, A.K., Weikum, G.: From central-
ized workflow specification to distributed workflowexecution. Journal of Intelligent
Information Systems 10(2) (1998)

19. Nichols, J., Demirkan, H., Goul, M.: Towards a model of fault tolerance technique
selection in static and dynamic agent-based inter-organizational workflow manage-
ment systems. In: Proc. of HICSS. IEEE, Los Alamitos (2005)

20. OASIS. Web Services Business Process Execution Language (WS-BPEL) Version
2.0 (2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

21. OASIS. WS-TX 1.2 OASIS Standards (2007),
http://www.oasis-open.org/committees/

tc home.php?wg abbrev=ws-tx#technical

22. Paluszek, M.: Coordinating distributed loops and fault handling, transactional
scopes using WS-Coordination protocols layered on WS-BPEL services. Univer-
sity of Stuttgart Diploma Thesis 2586 (2007)

23. Sauter, P., Melzer, I.: A comparison of WS-Business Activity and BPEL4WS long-
running transaction. In: Kommunikation in Verteilten Systemen (2005)

24. Schuler, C., Weber, R., Schuldt, H., Schek, H.J.: Peer-to-peer process execution
with Osiris (Trento, Italy). In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P.,
Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 483–498. Springer, Heidelberg
(2003)

194 R. Khalaf and F. Leymann

25. Tai, S., Khalaf, R., Mikalsen, T.: Composition of coordinated Web services. In:
Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 294–310. Springer,
Heidelberg (2004)

26. van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational work-
flows. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS,
vol. 2068, p. 140. Springer, Heidelberg (2001)

27. Vetter, T.: Anpassung und implementierung verschiedener transaktionsprotokolle
auf WS-Coordination. University of Stuttgart Diploma Thesis 2386 (2006)

28. Yildiz, U., Godart, C.: Towards decentralized service orchestrations. In: Proc. of
ACM Symposium on Applied Computing. ACM, New York (2007)

PAPEL: A Language and Model for

Provenance-Aware Policy Definition and
Execution

Christoph Ringelstein and Steffen Staab

WeST - Institute for Web Science and Technologies
University of Koblenz-Landau

Universitaetsstrasse 1, 56070 Koblenz, Germany
{cringel,staab}@uni-koblenz.de
http://west.uni-koblenz.de

Abstract. The processing of data is often restricted by contractual
and legal requirements for protecting privacy and IPRs. Policies pro-
vide means to control how and by whom data is processed. Conditions
of policies may depend on the previous processing of the data. However,
existing policy languages do not provide means to express such condi-
tions. In this work we present a formal model and language allowing for
specifying conditions based on the history of data processing. We base
the model and language on XACML.

Keywords: Context-aware processes, Distributed process execution, Pro-
cess tracing.

1 Introduction

Contracts (e.g. service level agreements) and laws (e.g. privacy laws) entitle cus-
tomers to control the processing of their data. Policies are statements of the goals
for the behavior of a system [7] and thus provides means to control the processing
of data. However, conditions of policies frequently depend on environmental (or
contextual) information (e.g. sharing a health record is only allowed after the pa-
tients approval). Such policies demand for controlling the process not only with
respect to the actual processing step (including actors, processed data, etc.) but
also with respect to the history of the processing (e.g. the number of backups
that have been made, or who has encrypted the data). In this paper, we focus
on policies in business processes containing conditions based on the processing
history; as is common in communities dealing with such processing histories, we
call the information about processing histories provenance information.

We need to tackle several principal problems, to enable policy conditions to
relate to provenance information: First, in closed environments the environmen-
tal information can be collected with various existing logging mechanisms and
be accessed by means of various, often proprietary, solutions. However, as soon

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 195–210, 2010.
� Springer-Verlag Berlin Heidelberg 2010

196 C. Ringelstein and S. Staab

as processes span multiple organizations and data is transfered across organi-
zational boundaries, the provenance information must be provided in a stan-
dardized manner. The open provenance model (OPM) [10] constitutes such an
approach.

Second, the policy conditions must be able to relate to provenance informa-
tion. Some policy languages allow for building policies containing conditions
based on provenance information (e.g. XACML [1] or Rei [8]). However, existing
policy mechanisms lack a specification of how to specify or access provenance in-
formation. Based on the open provenance model, we introduce a formal language
that specifies the relation between policy condition and provenance information.
We specify the language by means of an abstract syntax extending the syntac-
tic structure of eXtensible Access Control Markup Language (XACML) and we
provide a corresponding description of its execution semantics. We call our ap-
proach PAPEL: Provenance-Aware Policy definition and Execution Language.
To show its feasibility, we implement PAPEL using Datalog.

Third, the provenance information may not be queriable, because the infor-
mation may not be accessible (e.g. due to log encryption [11]). To be still able
to validate compliance with the given policies, the required provenance informa-
tion must stay accessible. We achieve this by introducing attributes and reduced
facts in PAPEL. Both mechanisms ensure that only a minimum of confidential
information is disclosed to third parties.

In this paper, we tackle these problems as follows: First, we introduce a case
study, point out problematic issues and derive requirements in Section 2. Then,
we discuss the foundations of PAPEL in Section 3, introduce the syntax of
PAPEL in Section 4, and define the semantics in Section 5. In Section 6, we
discuss the Datalog implementation of our abstract syntax. Finally, we analyze
related work and its capabilities to solve the previously introduced problems in
Section 7.

2 Case Study and Requirements

In this section, we present a case study depicting issues that occur with policies
in distributed environments:

Sharing of Health Records: A research institute of the University of
Koblenz (ukob) requires data about actual patients for its research. To this
end, it cooperates with the hospital Koblenz Medical Center (kmc). The kmc
shares its patients’ health records with the research institute that can access
the records on a server of the hospital. The patients may choose if their data
can be used for research or not. The patients’ permissions are required before
the hospital is allowed to share the data. If patients permit the use, they may
additionally demand that their data is only used after their names have been
exchanged by pseudonyms.

PAPEL: A Language and Model for Provenance-Aware Policy Definition 197

Jane Doe a patient of the kmc has specified a list of policies regarding her
health record (record JD) and the forwarding of the record to the research
laboratory of ukob:

– (A) Jane Doe allows kmc to share her record for research purposes with ukob.
– (B) However, she demands that her record is de-identified before it is shared.
– (C) With the de-identified record the research laboratory is allowed to do

anything, beside transferring it to another organization.

In addition to the patient’s policies, the kmc has own policies for forwarding
health records:

– (D) The kmc demands that the sharing of health records is approved and
the approval confirmed before the record is accessed by ukob.

In the case study multiple issues arise. We introduce a selection of these issues
in the following list, before we describe what is required to solve the issues.

– (1) ukob will access health records. To this end, the institute needs to know
which actions are permitted or restricted.

– (2) The provenance information of a patient may contain personal infor-
mation. Thus, the kmc wants to encrypt the provenance information before
forwarding a record. At the same time the kmc has to ensure that the infor-
mation needed to interpret the policies is still available without decryption.

Requirements

In summary we can point out the following technical and organizational
requirements:

– Requirement ‘Availability’: The policies must be available to anybody
accessing the associated data (see issue (1)).

– Requirement ‘Expressiveness’: The used policy language must be able
to express permissions and restrictions (see issue (1); cf. XACML [1]).

– Requirement ‘Accessibility’: The information required by policy condi-
tions must be accessible even if confidential parts of the data and of the
provenance information stay hidden (see issue (2)).

In addition to access policies such as specified in languages like XACML, we
need provenance information to address these issues and thus to meet the re-
quirements. In the following sections we present a solution consisting of three
parts: first, the foundations we build on; second, an abstract syntax of our novel
policy language PAPEL; and third, the semantics of this language.

3 Foundations of PAPEL

In this section we describe the foundations PAPEL is based on. As discussed
above, we require to model provenance information and policies. To this end,
we make use of concepts of the Open Provenance Model and of the eXtensible
Access Control Markup Language. To integrate both we introduce an abstract
syntax extending the abstract syntax of XACML.

198 C. Ringelstein and S. Staab

3.1 Open Provenance Model

The Open Provenance Model (OPM) [10] defines a process as an action or series
of actions performed on or caused by artifacts, and resulting in new artifacts.
We represent the information we require and which is given by a graph struc-
ture in the OPM by a set of primitives. The transformation leads to provenance
information represented by our abstract syntax, which is specified in Table 1.
We use the step primitive:

step (Data, Actors, InvolvedAgents, Category, Purpose, ID, PIDs)

to express the following constituents of OPM:

– Data is the artifact processed during the execution of the processing step. In
OPM an artifact is defined as an immutable piece of state, which may have
[..] a digital representation in a computer system.

– Actors are the agents controlling the process, In OPM an agent is defined
as a contextual entity acting as a catalyst of a process, enabling, facilitating,
controlling, affecting its execution.

– InvolvedAgents are agents involved in a process that do not trigger the
processing (e.g. the receiver of a transfer or access rights).

– ID is the unique identifier of the processing step (as defined by OPM1).
– PIDs are the unique identifiers of the directly preceding processing steps.

The ID together with the PIDs creates a partial order of processing steps. Be-
side these constituents of OPM, the step primitive also specifies the following
properties of a processing step:

– Category is the category of the processing step. Concepts of categories may
be used from any suitable domain specific ontology.

– Purpose is the purpose of executing the processing step. Concepts of pur-
poses of processing steps may also be used from any suitable domain specific
ontology.

Example 1: In the following we depict the provenance information of a pro-
cessing step of the Koblenz Medical Center (kmc): In the depicted processing
step the health record of Jane Doe is shared2 for research purposes with the
University of Koblenz (ukob):

step (record_JD, {kmc}, {ukob}, share, research, 3, {2})

1 In the examples we make use of simple integers, to increase readability.
2 In this and the following examples we assume that used concepts are defined in a

domain ontology provided by kmc.

PAPEL: A Language and Model for Provenance-Aware Policy Definition 199

3.2 eXtensible Access Control Markup Language

We use The eXtensible Access Control Markup Language (XACML) [1] as a start-
ing point for our formal model. XACML is a standard defining a XML based
policy framework. XACML supports three policy elements, i.e. permission (per-
mit), restriction (deny) and obligation, that we need to fulfill the Requirement
‘Expressiveness’. To generalize from XACML and to integrate with the prove-
nance information, we introduce an abstract syntax for permission, restrictions
and obligations based on XACML in Section 4 below.

XACML policies define rules by connecting a set of subjects (actors) with a
set of targets (data) and by specifying the conditions of the rule. If the conditions
are fulfilled, XACML rules result in a given effect, which is permit or deny. In
addition, a rule may require that certain obligations are met before a permission
is granted. However, this kind of obligations is expressed as part of conditions
in PAPEL (see Example 3) exploiting the provenance information.

4 Syntax of PAPEL

To evaluate rules, the provenance information can be used as source of infor-
mation about the previous processing. PAPEL defines an abstract syntax (see
Table 1) to express provenance information and polices rules based on prove-
nance information.

The provenance information is provided by means of logging or monitoring
mechanisms (cf. [11,12]). In PAPEL, we use primitives to define provenance
information (primitive is the start symbol of the provenance part of the PA-
PEL syntax). We use the step primitive as introduced in Section 3 (see Ex-
ample 1) and the reduced primitive to specify the processing provenance and
the attribute primitive to specify attributes and their value (see Table 1). The
processing steps, attribute assignments and reduced facts collected during the
execution of a process build the processing history, which we define as follows:

Definition 1: We define a history H as a conjunction of positive facts specify-
ing processing steps, attribute assignments and reduced facts.

Policy rules are provided by the person concerned or IPR (Intellectual Property
Rights) owner. In PAPEL, we use rules to specify policies (rule is the start
symbol of the policy part of the PAPEL syntax). We distinguish three types
of rules: permit, deny and assignment rules. All three types may depend on
a condition and have the parameter ID, which refers to the actual processing
step. Assignment rules specify the change of an attribute value by use of the
set_attribute primitive.

Permissions and Restrictions

We model permissions as rules specifying which kinds of processing steps are per-
mitted. Likewise, restrictions are modeled as rules specifying which processing

200 C. Ringelstein and S. Staab

Table 1. Syntax of PAPEL

PAPEL Syntax for Provenance Information:

Syntax Element EBNF syntax

Primitive Step | ReducedFact | Attribute ;

Step "step ("Data", "Actors", "InvolvedAgents", "Category",

"Purpose", "ID", "PIDs")." ;

ReducedFact "reduced ("Data", "(Actors | "hidden")",

"(InvolvedAgents | "hidden")", "(Category | "hidden")",

"(Purpose | "hidden")", "ID", "PIDs")." ;

Attribute "attribute ("Data", "Name", "Value", "ID")." ;

PAPEL Syntax for Policies:

Syntax Element EBNF syntax

Rule Permission | Restriction | Assignment ;

Permission "permit (ID) IF " Condition "." ;

Restriction "deny (ID) IF " Condition "." ;

Assignment "assignment (ID) IF " Condition

"DO" SetAttribute | SetReducedFact "." ;

Condition Primitive | ("(NOT" Primitive | Condition |
"permit (ID)" | "deny (ID)" ")") | ("(" Primitive |
Condition | "permit (ID)" | "deny (ID)" BooleanOperator

Primitive | Condition | "permit (ID)" | "deny (ID)" ")")

| (Step | ReducedFact "AFTER" Step | ReducedFact ")") ;

SetAttribute "set_attribute ("Data", "Name", "Value", "ID")." ;

SetReducedFact "set_reduced ("Data", "(Actors | "hidden")",

"(InvolvedAgents | "hidden")", "(Category | "hidden")",

"(Purpose | "hidden")", "ID", "PIDs")." ;

BooleanOperator "AND" | "OR" | "XOR" ;

steps are prohibited. The rules consist of two parts: the name, which indicates
the type of the policy (permit or deny), and the body of the rule, which defines
the conditions and obligatory processing steps. Conditions are used to express
dependencies between policies and provenance information and are specified af-
ter the IF statement (see Table 1).

Example 2: This example formalizes policy (A): All entities are denied to
transfer the data record JD, beside kmc that is allowed for transferring the data
for research purposes to ukob:

permit (ID) IF step (record_JD, {kmc}, {ukob}, transfer,
research, ID, _).

deny (ID) IF step (record_JD, _, _, transfer, _, ID, _) AND
NOT permit (ID).

In PAPEL restrictions override permissions (see ’Fulfilling Policies’ in section 5).
However, in some instances a restriction should be overridden by a permissions, as

PAPEL: A Language and Model for Provenance-Aware Policy Definition 201

shown in the example above: The second rule of this example denies the transfer of
record JD. By means of the additional part of the condition AND NOT permit (ID)
we can define exceptions to this rule. In the example the exception is defined by the
first rule and allows kmc to transfer the record to ukob.

Example 3: The following example depicts the implementation of policy (B) of
the running example (see Section 2). The patient demands that her record JD
is de-identified before it is transfered:

permit (ID) IF step (record_JD, _, _, transfer, _, ID, {PID}) AND
step (record_JD, _, _, update, de-identify, PID, _).

By using variables (in the example PID), we can specify that the approval step
has to be performed directly before the processing step, which should be per-
mitted. If the variable is not used, any preceding approval step will fulfill the
condition.

Example 4: In this example we express the policy (C) from our running ex-
ample: All processing steps that are not transfer actions will be permitted if they
are performed by ukob:

permit (ID) IF (step (_, {ukob}, _, Category, _, ID, _) AND
NOT (Category = transfer)).

In the example above we make use of the logical constant ukob, which is defined
in a domain ontology. In addition, we use the variable Category and unnamed
variables indicated by _. The _ represents another unnamed variable each time
it is used. An unnamed variable matches all possible values of its type (cf. exis-
tential quantification).

Condition Statements

In PAPEL, condition statements can be composed using logical operators (NOT,
AND, OR, XOR and AFTER) How these operators can be combined is specified in
Table 1. In addition, Table 1 depicts, that parentheses are used to specify the
interpretation order of complex statements. We define the semantics of the op-
erators in Table 2.

Example 5: The following example illustrates the implementation of policy (D)
from the running example. The policy is specified by means of a permission in
combination with a condition: If the approval of the access has been confirmed,
permit the transfer:

permit (ID) IF (step (R, {ukob}, _, access, _, ID, _) AND
(step (R, {kmc}, _, _, confirmation, _, _) AFTER

202 C. Ringelstein and S. Staab

step (R, {kmc}, _, _, access_approval, _, _))).

In difference to Example 3the rule in this example uses AFTER. By means of the
AFTER construct we can access the partial order of the processing steps in the
history. The variable R assures that the approval and confirmation is given for
the health record that should be accessed.

Attributes and Reduced Facts

As stated above the provenance information can be used as source of information
about the previous processing. However, the provenance information may contain
sensitive data (e.g. the provenance information that the cancer medication has
been adjusted). Thus, some logging approaches provide security mechanisms
like the encryption of the provenance information (e.g. [11]). To maintain the
ability to check the compliance with a policy, a method is needed to enable
access to relevant information or provide the information directly (Requirement
‘Accessibility’). To this end, we introduce attributes as well as reduced facts.

Attributes can be used to specify provenance information that can be ex-
pressed by a value (e.g. de-identification status, modification counter, etc.). We
specify attributes by the attribute primitive (see Table 1). The attribute
primitive has four parameters, the Data item the attribute relates to, the Name
of the attribute, its assigned Value, and the identifier ID of the processing step,
when the assignment was performed. The value of the attribute is assigned by
the actor performing the processing step. The assignment is done according to
the assignment rule defined by the creator of the policies.

Example 6: This example illustrates the permit rule and the assignment rule
required to implement policy (B) of the running example by means of an at-
tribute de-identified. In difference to the implementation of policy (B) we
introduced above (see Example 3), this implementation allows for de-identifying
the health record at any time: The patient demands that her record (record JD)
is de-identified before it is transfered:

permit(ID) IF (step (record_JD, _, _, transfer, _, ID, _) AND
attribute (record_JD, de-identified, true, ID)).

If the executed processing step replaces all names in record JD with pseudonyms,
set the attribute named de-identified to true, and if the record is re-identified,
set the attribute to false:

assignment(ID) IF step (record_JD, _, _, _, de-identified, ID, _)

DO set_attribute (record_JD, de-identified, true, ID).

assignment(ID) IF step (record_JD, _, _, _, re-identified, ID, _)

DO set_attribute (record_JD, de-identified, false, ID).

PAPEL: A Language and Model for Provenance-Aware Policy Definition 203

A reduced fact is a description of a processing step that is reduced to the neces-
sary and contains only the required information. Which information is hidden is
specified by means of assignments that are defined by the creator of the policy.
Reduced facts are used if attributes are not expressive enough (e.g. has the last
de-identification been performed by a specific actor). A reduced fact is added to
the provenance information. In difference to the full description, the information
of the reduced fact must not be encrypted to allow for querying the informa-
tion. The adding of the reduced fact is achieved by the actor performing the
processing step following assignments defined by the policy creator.

The parameters Data, Actors, InvolvedAgents, Category, and Purpose are
replaced by the empty placeholders hidden as required. The parameters ID and
PIDs must not be replaced. These two parameters are required to reproduce the
(partial) order of processing steps.

Example 7: In the following we depict the provenance information of a process-
ing step of the department for nuclear medicine: The processing step updates
the health record by adding a new cancer medication:

step (record_JD, {nuclear_medicine}, {},
update, new_cancer_medication, 3, {2})

If this information is not relevant to the analysis of ukob, the kmc will encrypt
the original information about the processing step and will provide reduced prove-
nance information:

reduced (record_JD, hidden, hidden, update, hidden, 3, {2})

5 Execution Semantics of PAPEL

In this section we define the semantics of PAPEL. The semantics of PAPEL spec-
ifies if execution steps of a given history violate a given set of policy rules. To
this end, we define a Tarskian semantics mapping syntactic elements of PAPEL
onto subsets and relations over a universe U . Based on this semantics we define
when a set of policies is fulfilled with respect to a history H (see Definition 1).
First we define minimal models of a history H :

Definition 2: We define a minimal model M of the history H as a model to
which no strictly smaller Herbrand model of the history H exist [9].

A minimal model of a history is only a model of the history and of subparts of
the history. Based on the definition of a minimal model of a history we define
when a set of policies is fulfilled:

204 C. Ringelstein and S. Staab

Definition 3: We define that a set of policy rules R is fulfilled with respect to
a history H if each minimal model M of the history H is also a model of the set
of policy rules R.

The Universe and Basic Axioms

The universe U is the set: U = Δ ∪A ∪X ∪ Ψ ∪ Φ ∪N ∪ V , where Δ is the set
of artifacts (e.g. data), A is the set of agents (including actors), X is the set of
categories, Ψ is the set of purposes, Φ is the set of processing step identifiers, N
is the set of attribute identifiers, and V the set of attribute values. These subsets
of U are mutually disjoint.

For the following definitions let I be a partial interpretation function and let
P (S) be the power set of S. We define I to map atomic elements of PAPEL
onto the (parts of) our universe U as follows: δI ∈ Δ, αI ⊆ A, βI ⊆ A, χI ∈ X ,
ψI ∈ Ψ, idI ∈ Φ, ρI ⊆ Φ, μI ∈ N , and νI ∈ V . The predicate representing the
processing steps step is interpreted as: stepI ⊆ Δ×P (A)×P (A)×X×Ψ×Φ×P (Φ)
and the predicate representing the attribute assignments attribute is interpreted
as: attributeI ⊆ Δ×N × V × Φ× P (Φ).

Thereby, the partial interpretation function I must satisfy the following con-
straints: Each identifier idI must clearly identify one processing step:

∀idI ∈ Φ : (δI
1 , α

I
1, β

I
1 , χ

I
1, ψ

I
1 , id

I , ρI
1), (δ

I
2 , α

I
2, β

I
2 , χ

I
2, ψ

I
2 , id

I , ρI
2) ∈

stepI ⇒ δI
1 = δI

2 ∧ αI
1 = αI

2 ∧ βI
1 = βI

2 ∧ χI
1 = χI

2 ∧ ψI
1 = ψI

2 ∧ ρI
1 = ρI

2.

Analogously, at each processing step specified by idI each attribute has exactly
one value at a time:

∀idI ∈ Φ : (δI , μI , νI
1 , id

I , ρI
1), (δ

I , μI , νI
2 , id

I , ρI
2) ∈ attributeI ⇒ νI

1 =
νI
2 ∧ ρI

1 = ρI
2.

The processing history is defined as partial order > ⊆ Φ×Φ of processing steps,
reduced facts, and attribute assignments. A tuple (idI , pidI) is element of >,
if and only if the processing step specified by pid precedes the processing step
specified by id. Before we define >, we define the relation � ⊆ Φ×Φ of directly
preceding processing steps, reduced facts, and attribute assignments. A process-
ing step sdpid immediately precedes a processing step sid, if sid is the successor
of sdpid:

� = {(idI , dpidI)|∃(δI
s , α

I
s, β

I
s , χ

I
s, ψ

I
s , id

I , ρI
s) ∈ stepI ∧ dpidI ∈ ρI

s ∨
∃(μI

a, ν
I
a , id

I , ρI
a) ∈ attributeI ∧ dpidI ∈ ρI

a}.

A processing step precedes another processing step, if a trace of consecutive pro-
cessing steps exists that connects both steps:

> = {(idI , pidI)| � (idI , pidI) ∨ ∃midI :� (idI ,midI)∧ > (midI , pidI)}.

PAPEL: A Language and Model for Provenance-Aware Policy Definition 205

In the following, we extend the interpretation function I by the interpretation
of non-atomic syntactic expressions of PAPEL.

Processing Steps, Reduced Facts and Attributes

Processing Step: Let be an unspecified parameter and be s′=(δ′, α′, β′, χ′, ψ′,
id′, ρ′), the step predicate is interpreted as follows:

(step(δ, α, β, χ, ψ, id, ρ))I =

⎧
⎪⎨

⎪⎩

true if ∃s′ ∈ stepI : (δI = δ′I ∨ δI =)∧
(αI = α′I ∨ αI =) ∧ ...,

false else.

Reduced Fact: The reduced relation is interpreted as follows:

(reduced(δr, αr, βr, χr, ψr, idr, ρr))I =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true if ∃(δI
s , α

I
s, β

I
s , χ

I
s, ψ

I
s , id

I
s,

ρI
s) ∈ stepI : idI

r = idI
s ∧

(δI
r = δI

s ∨ δI
r = hidden) ∧ ..,

false else.

Setting of Reduced Facts: Be (δs, αs, βs, χs, ψs, ids, ρs) ∈ step the pro-
cessing step described by the reduced fact, be idr = ids and ρr = ρs, and be
δr = δs ∨ δr = hidden, αr = αs ∨ αr = hidden, βr = βs ∨ βr = hidden,
χr = χs ∨ χr = hidden, and ψr = ψs ∨ ψr = hidden. The set reduced predicate
is interpreted as follows:

(set reduced(δr, αr, βr, χr, ψr, idr, ρr))I =

⎧
⎪⎨

⎪⎩

true if (δI
r , α

I
r , β

I
r , χ

I
r , ψ

I
r ,

idI
r , ρ

I
r) ∈ reducedI ,

false else.

Attributes: The attribute relation is interpreted as follows:

(attribute(δ,n, v, id, ρ))I =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if (δI , nI , vI , idI , ρI) ∈ attributeI ,

true if (δI , nI , vI , idI , ρI) /∈ attributeI∧
∃(δI , nI , vI , idI

l , ρ
I
l) ∈ attributeI∧ > (idI , idI

l)∧
¬∃(δI

m, nI
m, vI

m, idI
m, ρI

m) ∈ Φ :> (idI , idI
m)∧

> (idI
m, idI

l),

false else.

An attribute has the value assigned in the actual step, or if no value is assigned
in the actual step, it will have the value that has been assigned last.

Setting of Attributes: The set attribute predicate is interpreted as follows:

206 C. Ringelstein and S. Staab

(set attribute(δ, n, v, id, ρ))I=

⎧
⎪⎨

⎪⎩

true if ∀fidI : � (fidI , idI)→(δI , nI , vI , f idI ,

{idI}) ∈ attributeI ,

false else.

The result of the interpretation of the set attribute predicate will be true if the
value of the attribute is updated in all directly succeeding processing steps.

Logical Expressions

Above we introduced the following syntactical elements NOT, AND, OR, and XOR.
Their semantics are defined in the same manner as the corresponding boolean
expressions (see Table 2). For example the not ⊆ {true, false} relations is de-
fined as:

(not(e))I =

{
true if eI = false,

false else.

In addition, we introduce the syntactical element AFTER, which is defined as the
following relation: afterI ⊆ (stepI ∪ reducedI) × (stepI ∪ reducedI), where:

(after(s1, s2))I =

{
true if s1 = (.., id1, ..) ∧ s2 = (.., id2, ..) ∧ id1 > id2,
false else.

Table 2. Condition Statements

Syntax Natural language semantics

A A is true

NOT A A is not true

A AND B A and B are true

A OR B A or B (non-exclusive or) are true

A XOR B either A or B (exclusive or) is true

B AFTER A first A and then B (in the given order3) are true

IF Condition if the Condition is fulfilled

DO ObligatoryActions the ObligatoryActions have to be performed

Permission, Restriction and Assignment

Be L the set of functions implementing logical expressions. Permissions, restric-
tions, and assignments are functions permitI : Φ �→ {true, false}, denyI : Φ �→
{true, false}, and assignmentI : Φ �→ {true, false} as follows:

3 The processing history can be represented as a directed graph (see Section 5). Thus,
processing steps can be in order if they can be connected by a path in the graph.

PAPEL: A Language and Model for Provenance-Aware Policy Definition 207

permit : Φ �→ {true, false} is a function that will return true if the pro-
cessing step identified by ID is permitted. If it is not permitted, it will return
false. Be p1, p2, .., pn ∈ L the functions implementing the conditions of all
rules defining permissions. The predicate permit is interpreted as follows:

(permit(ID))I =

⎧
⎪⎨

⎪⎩

true if ∃ (δI , αI , βI , χI , ψI , idI , ρI) ∈ stepI :
IDI = idI ∧ (pI

1 ∨ pI
2 ∨ .. ∨ pI

n) = true

false else

deny : Φ �→ {true, false} is a function that will return true if the process-
ing step identified by ID is not denied. If it is denied, it will return false. Be
d1, d2, .., dm ∈ L the functions implementing the conditions of all rules defin-
ing restrictions and be s = (δ, α, β, χ, ψ, id, ρ), deny is interpreted as follows::

(deny(ID))I =

{
false if ∃ sI ∈ stepI : IDI = idI ∧ (dI

1 ∨ dI
2 ∨ .. ∨ dI

m)= true
true else

assignment : Φ �→ {true, false} is a function that will return true if the pro-
cessing step identified by ID does not violate an assignment. If it violates an
assignment, it will return false. Be c1, c2, .., ck ∈ L the functions imple-
menting the conditions of all rules defining assignments and be a1, a2, .., ak

the set attribute and set reduced predicates of all rules defining assignments,
assignment is interpreted as follows:

(assignment(ID))I =

⎧
⎪⎨

⎪⎩

true if ∃ sI ∈ stepI : IDI = idI∧
((¬cI1 ∨ oI

1) ∧ (¬cI2 ∨ oI
2) ∧ .. ∧ (¬cIk ∨ oI

k))= true
false else

Fulfilling Policies

Policies will be fulfilled with respect to a history if each minimal model of a
history is also a model of the policies (see Definition 3). This definition in com-
bination with the PAPEL semantics have the following conclusion: A processing
history will fulfill a set of policy rules, if all processing steps in the history are
permitted with respect to the permissions (permitI) and not prohibited with
respect to the restrictions (denyI) and if no assignment (assignmentI) has been
violated.

6 Datalog Implementation of PAPEL

Implementing PAPEL, we have demonstrated its feasibility. In the implementa-
tion the provenance information is provided as database. To access the prove-
nance information we make use of the database query language Datalog. We have

208 C. Ringelstein and S. Staab

chosen Datalog to provide a general implementation with a formal grounding.
In our implementation, we use facts to specify the provenance information and
rules to query it.

To validate a set of policies the following preparation steps are required: (1) All
Datalog rules required to specify syntactical elements are added to the database;
(2) A Datalog fact is generated for each processing step, which is described
by the provenance information. The facts are added to the database; (3) The
Datalog rules specifying the policies are added to the database; (4) A Datalog
fact specifying the processing step that should be performed is added to the
database; and (5) For each attribute Datalog facts for each processing step are
generated and added to the database.

Then, the database is queried by means of a rule, which specifies the query if
the processing step identified by the given ID will be allowed or not.

7 Related Work

Many policy languages exist that are applicable for our purpose. Thus, we based
PAPEL on these existing languages. We have decided to use the main policy
elements ‘restriction’ (deny) and ‘permission’ (permit), as defined in the eXten-
sible Access Control Markup Language (XACML) [1]. Polices, which are based
on complex environmental knowledge such as provenance information, can not
be specified using XACML. With our policy language we extend the expressive-
ness of XACML conditions to cover information about the processing history of
data.

As a foundation for more complex policy conditions we used the work of
Kagal et al. [8]. They present a domain-centric and entity-centric policy language
named Rei. Rei provides a mechanism for modeling of speech acts and delegation
of policies. The conditions in Rei are specified by means of Prolog. However,
Rei does not define how to model conditions based on provenance information.
We extend the work of Rei by defining a formalism for conditions based on
provenance information and by providing a model-theoretical semantics.

Other work which is related to our work is the Web Services Policy 1.5 -
Framework (WS-Policy) [2] that provides a model and syntax to specify policies
about entities in a Web services-based system. As WS-Policy is used to specify
the policies about entities, e.g. Web services, and not of the processed data, it
is not in the target of the WS-Policy framework to model conditions based on
provenance information.

In Table 3, we give an overview of further related work in the field of policy
languages. The Table compares the following properties of of policy languages:
Are policies directly linked to a piece of data? Does the policy language allow for
expressing dataflow polices and/or access control policies? Do policy conditions
allow for relating to provenance information (processing traces)? Does the policy
language allow for protecting confidential provenance information. Finally, we
compare if the language has a syntax definition, a formal semantics and an
implementation.

PAPEL: A Language and Model for Provenance-Aware Policy Definition 209

Table 3. Related Work

Property �
A

p
p
ro

a
ch

P
A

P
E

L

X
A

C
M

L
[1

]

E
P
A

L
[4

]

W
S
-P

o
li
cy

[2
]

R
ei

[8
]

X
rM

L
[1

3
]

C
a
sa

n
d
ra

[5
]

e-
W

a
ll
et

[6
]

IF
A

u
d
it

[3
]

Linked to Pieces of Data � - - - - � - � -
Dataflow Policies � - - - - - - - �

Access Control Policies � � � (1) � � � � -
Provenance Information � - - - - - - - �

Protection of Provenance Information � - - - - - - - -
Syntax Definition � � � � � � � � �
Formal Semantics � - � - (�) - � (2) �

Implementation � � � � � � � � �
(1) WS-Policy provides data usage policies.

(2) e-Wallet provides a formal policy processing algorithm.

However, all of them provide additional aspects of policy languages that are
not in our focus. Some policy approaches provide methods to enforce policy com-
pliance in closed environments, like organizations (cf. [4]) or data silos (cf. [6]).
Other languages define policies of actors (cf. [2]) not resources. Finally some
languages consider credentials to gain access rights (cf. [13,5]), support roles
and role delegation (cf. [5]), or provide algorithms to identify violated policies
(cf. [3]).

8 Conclusion

Existing policy languages provide means to control how and by whom data is
processed. The conditions of policies may depend on the previous processing of
the data. Such policies demand for controlling the process with respect to the
history of the processing. However, existing policy languages do not specify how
to access the provenance information about the previous processing. In this work
we have introduced PAPEL a provenance-aware policy definition and execution
language motivated by XACML. PAPEL allows for policy conditions to relate
to provenance information.

We have presented the abstract syntax of PAPEL, which extends the syntactic
structures of XACML and OPM. In addition, we have provided a corresponding
description of its execution semantics and we have sketched an implementation
of PAPEL using Datalog.

In addition we have discussed how data protection can hamper the interpreta-
tion of policy conditions. We have presented means to validate compliance with
given policies even if the required provenance information is confidential. At the
same time the confidential methods of PAPEL ensure that only a minimum of
confidential information is disclosed to third parties.

210 C. Ringelstein and S. Staab

Acknowledgment

The basic idea of this work has been motivated by discussion with Prof. Marianne
Winslett and her working group. This work has been supported by the Euro-
pean projects Where eGovernment meets the eSociety (WeGov, FP7-248512) and
Knowledge Sharing and Reuse across Media (X-Media, FP6-26978) funded by
the Information Society Technologies (IST) 6th and 7th Framework Programme.

References

1. eXtensible Access Control Markup Language (XACML) Version 2.0. Oasis stan-
dard, OASIS (February 2005)

2. Web Services Policy 1.5 - Framework. W3c recommendation, W3C (September
2007)

3. Accorsi, R., Wonnemann, C.: Auditing workflow executions against dataflow poli-
cies. In: BIS 2010: Proceedings of the 13th International Conference on Business
Information Systems (2010)

4. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise Privacy
Authorization Language (EPAL 1.2). Submission to W3c, W3C (November 2003)

5. Becker, M.Y., Sewell, P.: Becker and Peter Sewell. Cassandra: Distributed access
control policies with tunable expressiveness. In: POLICY 2004: Proceedings of
the Fifth IEEE International Workshop on Policies for Distributed Systems and
Networks, Washington, DC, USA, 2004, p. 159. IEEE Computer Society Press, Los
Alamitos (2004)

6. Gandon, F.L., Sadeh, N.M.: Semantic web technologies to reconcile privacy and
context awareness. J. Web Sem. 1(3), 241–260 (2004)

7. Hinton, H.M., Lee, E.S.: The compatibility of policies. In: CCS 1994: Proceedings
of the 2nd ACM Conference on Computer and Communications Security, pp. 258–
269. ACM, New York (1994)

8. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing en-
vironment. In: IEEE International Workshop on Policies for Distributed Systems
and Networks, pp. 63–75 (2003)

9. Lloyd, J.W.: Foundations of Logic Programming. Springer, New York (1993)
10. Moreau, L., Freire, J., Futrelle, J., Mcgrath, R., Myers, J., Paulson, P.: The open

provenance model: An overview. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW
2008. LNCS, vol. 5272, pp. 323–326. Springer, Heidelberg (2008)

11. Ringelstein, C., Staab, S.: Logging in Distributed Workflows. In: Proceedings of
the Workshop on Privacy Enforcement and Accountability with Semantics, Busan,
South-Korea (2007)

12. Ringelstein, C., Staab, S.: Dialog: Distributed auditing logs. In: IEEE International
Conference on Web Services, Los Angeles, CA, USA, pp. 429–436. IEEE Computer
Society Press, Los Alamitos (2009)

13. Wang, X., Lao, G., DeMartini, T., Reddy, H., Nguyen, M., Valenzuela, E.: Xrml
– extensible rights markup language. In: XMLSEC 2002: Proceedings of the 2002
ACM Workshop on XML Security, pp. 71–79. ACM, New York (2002)

A Fresh Look at Precision in

Process Conformance

Jorge Muñoz-Gama and Josep Carmona

Universitat Politècnica de Catalunya, Spain
jmunoz@lsi.upc.edu, jcarmona@lsi.upc.edu

Abstract. Process Conformance is a crucial step in the area of Process
Mining: the adequacy of a model derived from applying a discovery
algorithm to a log must be certified before making further decisions that
affect the system under consideration. Among the different conformance
dimensions, in this paper we propose a novel measure for precision, based
on the simple idea of counting these situations were the model deviates
from the log. Moreover, a log-based traversal of the model that avoids
inspecting its whole behavior is presented. Experimental results show a
significant improvement when compared to current approaches for the
same task. Finally, the detection of the shortest traces in the model that
lead to discrepancies is presented.

Keywords: Process Mining, Process Conformance.

1 Introduction and Related Work

Nowadays, the organizations make use of a wide variety of Process-Aware Infor-
mation Systems (PAISs) to conduct their business processes [13]. These systems
record all kind of information about the processes in logs, which can be used for
different purposes. Process Mining is an area of research that aims at the dis-
covery, analysis and extension of formal models in a PAIS, in order to support
its design and maintenance.

The problem of deriving a formal model from a log is known as Process Discov-
ery. For this problem, several algorithms exist which derive models that represent
(maybe partially) processes detected by observing the traces in the log. In partic-
ular, the production of a Petri net [7] whose underlying behavior is related to the
traces in the log has been presented extensively in the literature [17,2,14,4,18].
The Petri nets produced by many of these algorithms represent overapproxima-
tions of the log, i.e. the set of traces accepted in the net is a superset of the set of
traces in the log. Therefore, one can not rely on the accuracy of the discovered
model unless some minimality property is guaranteed ([2,4]), or a certification
provided by a metric ensures its quality.

Process Conformance aims at evaluating the adequacy of a model in describing
a log. Analyzing conformance is a complex task which involves the interplay of
different and orthogonal dimensions [8,9]:

� Fitness : indicates how much of the observed behavior is captured by (i.e.
“fits”) the process model.

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 211–226, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

212 J. Muñoz-Gama and J. Carmona

� Precision: refers to overly general models, preferring models with minimal
behavior to represent as closely as possible the log.

� Generalization: addresses overly precise models which overfit the given log,
thus been possible to generalize.

� Structure: refers to models minimal in structure which clearly reflect the
described behavior.

Different algorithms for conformance checking have been presented in the liter-
ature (a complete survey can be found in [9]). In particular, some examples of
approaches focused on precision are: [6] (measuring the percentage of potential
traces in the model that are in the log), [5] (comparing two models and a log to
see how much of the first model’s behavior is covered by the second) used in [14],
[19] (comparing the behavioral similarity of two models without a log), and [3]
(using minimal description length to evaluate the quality of the model). In this
work we focus on the precision between a model (a Petri net in our case) and a
log. On this regard, the methods presented in [10,11] may be seen as a seminal
work, were metrics for fitness, structural and precision are presented. In particu-
lar, the precision metric presented (called advanced behavioral appropriateness)
is limited to comparing the ordering relations between events in the model with
the ones from the log. This approach needs the exhaustive exploration of the
model’s state space, which can be impractical for large models that exhibit a
high degree of concurrency, i.e. the state-space explosion problem arises.

Briefly, this paper presents a novel technique to measure precision, which aims
at: i) complementing the precision information provided by other techniques, ii)
fighting the inherent complexity that relies in checking conformance for industrial
or real-life models and logs and, iii) providing useful information for later Process
Extension, i.e. the stage where the model may be extended to better reflect the
log. The initial implementation is available as the ETConformance plug-in in
the ProM 6 framework [1].

The approach can be summarized as follows:
given a model and a log, the behavior of the model
restricted to the log is computed (part with gray
background in the figure on the right). The bor-
der between the log’s and model’s behavior defines
crucial points where the model deviates from the
log. We call these situations escaping edges. By
quantifying these edges and their frequency, we
aim at providing an accurate measurement of the
precision dimension. Moreover, the escaping edges
denote inconsistencies that might be treated in the
process extension phase.

In the previous figure it has been considered that the model’s behavior includes
all the log’s behavior (perfect fitness), in order to evaluate its precision. When
the fitness condition does not hold, we recommend (as in [10]), to analyse the

A Fresh Look at Precision in Process Conformance 213

conformance in two phases: in the first phase the fitness is evaluated, filtering
the noise and analysing the discrepancies. In the second phase, the other three
dimensions are evaluated. Section 7 briefly comments how to deal with non-
fitting models.

1.1 Why a New Measure to Quantify Precision?

A fresh look at precision. We aim at providing a precision metric that
estimates the effort needed to obtain an accurate model, focusing on the
discrepancies detected. This contrasts with the existing approaches for precision
that only provide discrepancies in the event relations [11].

Efficiency. To compute the precision metric, we present a log-based traversal
of the model’s behavior . The technique avoids the traversal of the complete
model’s behavior, i.e., only the behavior of the model reflected in the log is
explored (see the figure above). Hence, the approach can handle inputs that can
not be handled by other approaches which traverse the complete behavior.

Granularity. The closest measure to the one presented in this paper, is the
advanced behavioral appropriateness, by Rozinat et al [11], denoted by a′

B. This
approach consists in computing the precedence/follows relations between tasks
in the model and in the log, and compares both relations, thus providing a
behavioral metric for precision. However, these relations can only have three
possible values: Always, Never and Sometimes. Our approach works directly
with the behavior of the model, getting a deeper view of the precision problem.

Extensionality. Finally, we feel that, in addition to the metric, it is important
to provide an appropiate mechanism for the later Process Extension. On this
regard, the methods presented in this paper output also the exact points of
discrepancy, i.e., the traces where the model starts to deviate from the log.

The background for the understanding of this paper is presented in Section 2.
Section 3 describes informally the approach, whereas Sections 4 and 5 present
the algorithm to collect escaping edges and the metric for precision analysis,
respectively. Section 6 introduces the notion of disconformant traces. Section 7
discuss some extensions and experimental results are presented in Section 8.

2 Preliminaries

In this section we present the two main inputs needed to perform the con-
formance analysis: Petri nets and logs (Event Logs). Additionally, Transitions
Systems will be presented to link these two inputs.

Some mathematical notation is provided for the understanding of the paper.
Given a set S, we denote P(S) as the powerset over S, i.e. the set of possible
subsets of elements of S. Given a set T , a sequence σ ∈ T ∗ is a called trace.

214 J. Muñoz-Gama and J. Carmona

Given a trace σ = t1t2 . . . tn, and a natural number 0 ≤ k ≤ n, hdk(σ) is the
trace t1t2 . . . tk, also called the prefix of length k in σ. Notice that hd0(σ) = λ,
i.e., the empty word. Finally, given a set of traces L, we denote Pref (L) the set
of all prefixes for traces in L.

2.1 Petri Nets

Definition 1 (Petri Net [7]). A Petri Net (PN) is a tuple (P, T, W, M0)
where P and T represent finite sets of places and transitions, respectively, with
P ∩ T = ∅. And W : (P × T) ∪ (T × P) → N is the weighted flow relation. A
marking is a mapping P → N. M0 is the initial marking, i.e. defines the initial
state of the system.

A transition t ∈ T is enabled in a marking M iff ∀p ∈ P : M(p) ≥ W (p, t).
An enabled transition can be fired resulting in a new marking M ′ such that
∀p : M ′(p) = M(p) − W (p, t) + W (t, p). A marking M ′ is reachable from M if
there is a sequence of firings σ = t1t2 . . . tn that transforms M into M ′, denoted
by M [σ〉M ′. A sequence of transitions σ = t1t2 . . . tn is a feasible sequence if
M0[σ〉M , for some M . The set of reachable markings from M0 is denoted by
[M0〉, and form a graph called reachability graph. A PN is said to be k-bounded
or simply bounded if ∀p : M ′(p) does not exceed a number k for any reachable
marking M ′ from M0. If no such number exists, it is said to be unbounded.

2.2 Event Logs

Event logs contain executions of a system [16]. These executions represent the
ordering between different tasks, but may also contain additional information,
like the task originator or its timestamp. For the purposes of this paper, all this
information is abstracted:

Definition 2 (Event Log). An event log EL is a set of traces, i.e., EL ∈ P(T ∗).

We denote by |EL| the number of traces of the log. As notation, these traces can
be iterated through σ1 . . . σ|EL|.

2.3 Relation between a Petri Net and an Event Log

Similarly as it is done in [10], tasks in the log and transitions in the Petri net
must be mapped in order to establish a relation between both objects. Besides the
most simple relation between only one task and one transition, the mapping may
have some more complex scenarios: (i) Duplicate tasks, two or more tasks in the
model are associated with the same task in the log. (ii) Invisible tasks, a task in
the model is associated with no task in the log1. In this paper, the invisible tasks
1 The reasons for this lack of relation may be different: non recordable steps in the

process (phone calls, meetings, . . .), introduced in the model for routing purposes,
relaxations of the model, or invisible tasks resulting from some discovery algorithm
(e.g., [14]).

A Fresh Look at Precision in Process Conformance 215

in the model will be represented as transitions filled black. (iii) Non Modelled
tasks, a task in the log is associated with no task in the model. Non modelled
tasks are not relevant for the purpose of this paper. Therefore, they can be
removed from the log before starting the analysis. The techniques presented in
this paper cover all the scenarios above. Note that, for the sake of clarity, we
refer to task, event or transition indistinctly, whenever no mistake is possible.

2.4 Transitions Systems

Definition 3 (Transition system). A transition system (TS) is a tuple
(S, T, A, sin), where S is a set of states, T is an alphabet of actions,
A ⊆ S × T × S is a set of (labelled) transitions, and sin ∈ S is the initial state.

We will use s
e→ s′ as a shortcut for (s, e, s′) ∈ A, and the transitive closure

of this relation will be denoted by ∗→. The language of a transition system TS,
L(TS), is the set of traces feasible from the initial state.

3 Problem Statement and Approach

As was said in the introduction, our goal is to measure the precision of a model
with respect to a log. Moreover, we strive to locate inconsistencies between the
model and the log, thus allowing the later extension of the model.

Let us introduce the PN and EL shown in Fig. 1(a) and (b), respectively, based
on the examples used in [11]. We will use this example in the rest of the paper
as a running example. The PN reflects the typical process of liability insurance
claim in a bank. Note that, although the log represents a plausible situation,
the control flow shown in the model is not realistic, i.e., the Consult Expert task
should be executed exactly once. This inconsistence may seem obvious in this
small scenario, but may be not for larger and realistic cases. Hence, we use it to
illustrate the conformance analysis.

The precision metric introduced in this paper is computed smoothly: in con-
trast to other approaches that require a complete exploration of both the model

(a) PN1 (b) EL1

Fig. 1. Running example

216 J. Muñoz-Gama and J. Carmona

and the log [11], in our approach the model exploration is restricted to the ob-
served log’s behavior. As a consequence, the computational requirements are
bounded to the log size, thus being independent of the whole model’s underlying
behavior. This might be crucial for models obtained from a mining algorithm
that may have an underlying behavior of intractable size.

The key concept of the approach is that of Escaping Edges, i.e., the situations
were the model allows more behavior than the log, thus exhibiting less precision.
We base our measure on the relation between the number and frequency of es-
caping edges with respect to model’s behavior restricted to the log . Hence, the
more the model deviates from the log, the less precise is its precision value. It is
important to stress the fact that a model can have few escaping edges (thus ex-
hibiting good precision) but with underlying behavior substantially bigger than
the log: it is not the aim of this work to compare sizes between the model and the
log, but providing an estimation of the efforts required to improve the model to
precisely describe the log. Figure 2 shows the route map of the ETConformance
approach, and indicates the section where each part is explained in detail.

Fig. 2. Route map of ETConformance: a log and a Petri net are the inputs of the
technique. Internally, log and Petri net states are identified and mapped. Finally, both
the metric and the set of minimal discrepancies are reported.

4 Log-Based Traversal of the Model’s Behavior

This section describes the log-based traversal of the model’s behavior. We have
an assumption on the input log: every trace in the log is possible in the model,
i.e. it has fitness value one (see how to adapt the technique to non-fitting models
in Section 7). This assumption is grounded on the correlations that exist between
fitness and precision dimensions, as pointed in [10]. Hence, the fitness analysis
and corresponding adjustments can be done before the precision analysis. There
are some approaches to perform this task, e.g., [11].

4.1 Basic Idea

In order to perform a log-based traversal of the model behavior, it is necessary to
find a common comparable domain between log and model, i.e. a domain where

A Fresh Look at Precision in Process Conformance 217

1 r,s,sb,p,ac,ap,c
2 r,sb,em,p,ac,ap,c
3 r,sb,p,em,ac,rj,rs,c
4 r,em,sb,p,ac,ap,c
5 r,sb,s,p,ac,rj,rs,c
6 r,sb,p,s,ac,ap,c
7 r,sb,p,em,ac,ap,c

crs

crsacp
rj

crsacp
rj

em

sb

p
ac ap cp
ac ap c

r
s
sb p

sb

s
em ac ap c

s ac ap

rj

c
em

(b)(a)

Fig. 3. (a) Event log EL, (b) corresponding transition system TS such that L(TS) = EL

states of the model and log states could be mapped. For performing such task,
state information must be obtained for both objects (model and log). In the log
side, several algorithms are presented in [15] to incorporate state information in
the log. These algorithms are parametrizable with respect to the decision of a
state (past, future or both), the representation of the information (sequence, set
and multiset), and its horizon (limited or infinite). In particular, using the past,
sequence and infinite settings allows to derive a behavioral representation of the
log (a transition system) with the same language. The states of that transition
system will be the states of the log.

Definition 4 (Prefix automaton, Log states). Given an event log EL, let
TS = (S, T, A, s0) be the automaton derived by using the construction presented
in [15] using the past, sequence and infinite settings. We call this automaton
prefix automaton. The set S will be denoted as the set of states of EL. Given a
trace σi = t1 . . . t|σi| ∈ EL, si

j ∈ S denotes the state in TS corresponding to the
prefix t1 . . . tj−1, for 0 ≤ j ≤ |σi| + 1.

Fig. 3 shows an example of this transformation. The states of this transition
system correspond to prefixes of the traces in the log: for instance, the state
filled in Fig. 3 corresponds to the prefix r, sb, p, contained in traces 3, 6 and 7.

To obtain state information for a Petri net model, its reachable states can be
computed. However, due to the well-known space-explosion problem, Petri nets
can exhibit a large or even infinite behavior, making this approach impractical
for these instances. Instead, the approach presented in this paper only visits
those reachable markings of the net for which there is at least one state in the
log (see Def. 4) mapped. Let us define formally the mapping:

Definition 5 (Mapping between log states and Petri net markings). Let
EL and PN = (P, T, W, M0) be a log and a Petri net, respectively, and consider
the prefix automaton TS = (S, T, A, s0) from EL. A marking M is mapped to the
state s ∈ S, denoted by M � s, if there exists a trace σ such that s0

σ→ s in TS
and M0[σ〉M .

Due to this mapping, the Petri net traversal can be controlled to reach only
markings for which there is a corresponding mapped state in the log. Moreover,
for each one of the markings reached on this guided traversal, the local precision

218 J. Muñoz-Gama and J. Carmona

on this marking can be measured by collecting the discrepancies between the
behavior allowed in the model with respect to the behavior observed in the log:

Definition 6 (Allowed Tasks and Reflected Tasks). Let s be a state of the
prefix automaton TS = (S, T, A, s0) from EL, and PN = (P, T, W, M0) a Petri
net. We define AT (s) = {t ∈ T | M � s ∧ M [t〉M ′} and RT (s) = {t ∈ T | s

t→
s′)} as the set of allowed and reflected tasks in s.

Since we are assuming fitness value one of the model with respect to the log,
clearly RT (s) ⊆ AT (s) for every state s of TS, i.e. the model overapproximates
the log. Now it is possible to define the concept of escaping edge:

Definition 7 (Escaping Edges). Let s be a state of the prefix automaton
TS = (S, T, A, s0) from EL, and PN = (P, T, W, M0) a Petri net. The Escap-
ing Edges (EE) of s is defined as EE(s) = AT (s) \ RT (s).

An example of escaping edge for the pair (PN1,EL1) in Fig. 1 is H in the log
state reached after the prefix AC: here PN1 accepts the H task, whereas this is
not reflected in EL1. It is important to stress that the tasks reflected of a state
s are the ones that appear in any of the traces that contain s. For instance, for
the example of Fig. 1, the prefix A has two allowed tasks in the model (B and
C) but given that both are reflected in the log (in different traces), no escaping
edge arise in the log state after observing A. The algorithm to collect the set of
escaping edges is presented as Algorithm. 1.

Input: EL, PN
foreach State s in EL do

RT := outEdges (s)
σ := prefix (s,EL)
mark := fire (σ,PN) // Fire σ and get the reached marking

AT := enable (mark,PN) // Get the enable transitions of mark
EE := AT \ RT // Allowed tasks minus Reflected Tasks

register (s,EE)

Algorithm 1. ComputeEscapingEdges

4.2 Duplicate and Invisible Tasks

Until now, the methods have been explained without considering duplicate or
invisible tasks. Although the approach presented in this paper can deal with du-
plicate and invisible tasks, we must remark some issues concerning the potential
indeterminism that may arise.

When trying to determine the marking associated to a log state, it may happen
that firing the sequence of tasks cannot be done in a deterministic way, i.e., one
log task is associated to two or more enabled transitions in the model, and
therefore, one of the transitions must be chosen to continue the firing. A similar

A Fresh Look at Precision in Process Conformance 219

situation occurs when a sequence of invisible tasks that enables a visible log
task must be fired. In this cases, part of the state space of the model reachable
from the current marking must be explored. To avoid producing an infinite state
space (for instance, because the Petri net might be unbounded), we construct
the invisible coverability graph: a variant of the well-known coverability graph
algorithm [7] where the nodes are ω-markings and the edges are only invisible
tasks. Informally, this graph will contain all the paths of invisible tasks that lead
to the enabling of a visible one. It may occur that a visible task is enabled for
several and different sequences of invisible tasks, and therefore, a guess between
the different sequences must be made to continue the traversal.

In real-life scenarios, dealing with indeterminism requires the use of heuristics
and therefore, the inconsistencies detected (escaping edges in our framework)
might be caused by a bad guess and not by a real precision problem. In [11] a
heuristic that uses the shortest sequence of invisible that enables a visible task
is proposed. This heuristic tries to minimize the possibility that a invisible fired
task interfere the future firing of another task. In general, the availability of
several heuristics can be helpful to apply ad-hoc explorations which depend on
the scenario considered.

5 Evaluating Precision

As it has been seen before, the escaping edges are a good indicator for measuring
the behavior of a model compared to the behavior reflected in the log. For that
reason, we propose a metric to take into account these escaping edges and their
frequency. This metric also allows us to compare between models to know which
one captures better the behavior reflected of a log. Let us formalize the metric:

Metric 1 (ETC Precision). Let EL = {σ1, . . . , σ|EL|} and PN = (P, T, W, M0)
be a log and a Petri net, respectively. For each trace σi (1 ≤ i ≤ |EL|), state
si

j (1 ≤ j ≤ |σi| + 1) denotes the j − th state of σi (see Def. 4). The metric is
defined as follows:

etcP (EL, PN) = 1 −
∑|EL|

i=1

∑|σi|+1
j=1 |EE(si

j)|
∑|EL|

i=1

∑|σi|+1
j=1 |AT (si

j)|

By dividing the set of escaping edges by the set of allowed tasks in the model,
the metric evaluates the amount of overapproximation in each trace. Note that,
for all si

j , |EE(si
j)| ≤ |AT (si

j)|, and therefore 0 ≤ etcP ≤ 1. The fact that we
take into account the frequency of the traces makes that the most used and
appropriate traces would contribute with higher weight than the noisy traces
and the wrong indeterministic choices. The metric value of the example for the
pair (PN1, EL1) in Fig. 1 is

1 − 0 + 3 + 3 + 2
6 + 12 + 13 + 12

= 0.81

220 J. Muñoz-Gama and J. Carmona

where every i-th summand of the numerator/denominator is processing the pe-
nalizations for the escaping edges of trace σi, e.g., in trace σ4 ∈ EL1 there are 2
escaping edges and 12 allowed tasks.

As was done in [10], we present some of the quality requirements a good
metric should satisfy and a brief justification on its fulfillment.

Validity. (The metric and the property to measure must be sufficiently corre-
lated with each other). In the case of Metric 1, the more escaping edges, the
lower value will be provided (even closer to 0 in the worst case). This inverse
correlation quantifies if a model is a precise description of a log.

Stability. (The metric must be as little as possible affected by the properties
that are not measured). In other words, the metric must measure only one
dimension (precision in this case) independently of the others (e.g., fitness,
structural, generalization). With regard to fitness or generalization, the metric
is not stable since there is a correlation between precision and both dimensions.
In contrast, by only focusing on the underlying behavior of the model, etcP is
independent to the structural dimension. To illustrate this, Fig.4 show PN2
and PN3, two Petri Nets with the same behavior and different structure. The
result provided by etcP is 1 in both cases when compared with the log EL2.

(a) PN2 (b) EL2 (c) PN3

Fig. 4. Stability of the metric with respect to structure

Analyzability. (It relates to the properties of the measured values. In our
case, the emphasis is on the requirement that the measured values should
be distributed between 0 and 1, with 1 being the best and 0 being the worst
value. It is important to be 1 when there is no precision problem). The values
returned by etcP are distributed between 0 and 1. In addition, the value 1
can be reached, indicating that there are no inconsistencies. Notice that, to
achieve this value it is not necessary to have only one enabled at each point
of the trace (like in aB [11]). This is because the metric does not depend on
the idea of more enabled tasks, more behavior, but in the concept behavior
allowed vs reflected itself. Moreover, the metric value can be 1, even if the whole
behavior of the model is distributed in two or more different traces. This is
because decision on escaping edges is done globally after processing the whole set
of traces. This can be seen in PN4 and EL3 (cf. Fig. 5), that has a etcP value of 1.

Localizability. (The system of measurement forming the metric should be able
to locate those parts in the analyzed object that lack certain measured proper-
ties). This is a crucial requirement in conformance analysis, due to the fact that

A Fresh Look at Precision in Process Conformance 221

(a) PN4 (b) EL3

Fig. 5. Global analysis of the traces leads to a global analysis of escaping edges

providing the discrepancy points we are making possible to identify the poten-
tial points of model’s enhancement. This is done in the approach of this paper
through the escaping edges, identified by their marking and the task used to
escape from the reflected behavior in the log. However, given the importance of
the localizability in conformance, we go a step further and in the next section a
technique to collect the traces leading to these situations is presented.

6 Minimal Disconformant Traces

Given a log and a model, we are interested in identifying these minimal traces
that lead to a situation where the model starts to deviate from the log. Some
of these traces may represent meaningful abstractions that arise in the model
and therefore no further action is required. For the rest of traces, a decision
on whereas the model or the log are wrong shall be made. In the case of an
erroneous model, process extension techniques must be applied.

Definition 8 (Minimal Disconformant Traces). Let EL and
PN = (P, T, W, M0) be a log and a Petri net, respectively. We define the
Minimal Disconformant Traces (MDT) as the set of traces σ = σ′t such that
M0[σ〉M , σ′ ∈ Pref(EL) and σ /∈ Pref(EL).

The escaping edges computed in previous section can be used to obtain the
Minimal Disconformant Traces. Algorithm 2 shows how to generate this set
of traces using the escaping edges: for each state s with a escaping edge, the
sequence to reach s is computed and it is concatenated with the escaping edge.
Finally, Lemma 1 ensures a minimality criterion on the derived traces.

Input: EL
Output: M
foreach State s in EL do

foreach Task t in EE(s) do
σ := prefix (s,EL)
σ := σ · t // Concatenate

addTrace (σ, M) // Register σ as an MDT
return M

Algorithm 2. ComputeMDT

222 J. Muñoz-Gama and J. Carmona

Lemma 1. Algorithm 2 computes the Minimal Disconformant Traces.

Proof: Let M the set of traces computed by the algorithm ComputeMDT and
MDT the set of traces that satisfy Definition 8. To prove M = MDT, we will
prove M ⊆ MDT and then MDT ⊆ M .

Let σ = σ′t be any trace of M . By construction σ′ is a prefix of the log.
However, given the formation of RT and EE in Algorithm 1, σ is not a prefix
of the log. Furthermore, σ′ is a feasible sequence of the model because it is a
prefix of the log, and all traces in the log are compliant with the model (since
we assume fitness value one). In addition, by construction of AT and EE , σ is a
feasible sequence by the model too. Therefore, σ ∈ MDT.

Now, let σ = σ′t be any trace of MDT. σ′ is a prefix of the log. According to
Definition 4, it must be defined a log state s after the sequence σ′. The task t
must be in the AT of s, because σ is a feasible sequence of the model. But t must
not appear in RT because σ is not a prefix of the log. By construction of RT ,
t is a Escaping Edge. Therefore, σ ∈ M . �

Fig. 6. MDTs

Following with the running example, Fig. 6 shows the MDTs
for the model PN1 and log EL1 (described in Fig. 1). The
MDT traces shown are result of the unseen behavior produced
by the loop of G, which even allows the possibility of skipping
G. Note that, the set of MDTs computed by Algorithm 2 might
be seen as a log (i.e sequence of traces). Consequently, all kind
of Process Mining techniques can be applied to it in order to get a general view
of the information. In particular, mining methods can be used to obtain a Petri
Net representing this extra behavior.

7 Extensions

Log States as Markings. The first possible extension is to consider log states
just as Petri net markings, i.e., two traces reaching the same marking correspond
to the same state. With that approach we could have a more high-level vision of
the precision, e.g., the RT sets of two different states (with the same associated
marking) now will be united in only one set corresponding to the new state.
Although it could be useful in some occasion, we must be awared about all the
information we are not considering. For instance, the etcP value of (PN1, EL1)
using this new approach would be 1, losing all track about the extra behavior
introduced by the G loop.

Non-fitting models. Symmetric to the Escap-
ing Edges (EE), we can define the Log Escaping
Edges(LEE), i.e., the points where the log deviates
from the model. All these points could be evaluated,
providing a metric that, in this case, would mesure
fitness instead of precision.

A Fresh Look at Precision in Process Conformance 223

All these extensions might be incorporated to extend the applicability of the
approach presented in this paper.

8 Experimental Results

The technique presented in this paper, implemented as the ETConformance
plug-in within ProM 6, has been evaluated on existing public-domain bench-
marks [1]. The purpose of the experiments is:

� Justify the existence of a new metric to evaluate precision, i.e. demonstrate
the novelty of the concept when compared to previous approaches.

� Show the capacity of the technique to handle large specifications.

Table 1(a) shows a comparison of the technique presented in this paper with
the technique presented in [11], implemented in ProM 5.2 as the Conformance
Checker. The rows in the table represent benchmarks with small size (few traces).
The names are shortened, e.g., GFA5 represents GroupedFollowsA5. We report
the results of checking precision for both conformance checkers in columns un-
der a′

B and etcP , respectively, for the small Petri nets obtained by the Parikh
miner [18] which derived Petri nets with fitness value one. For the case of our
checker, we additionally provide the number of minimal disconformant traces
(|MDT|). We do not report CPU times since checking precision in both ap-
proaches took less than one second for each benchmark.

From Table (a) one can see that when the model describes precisely the log,
both metrics provide the maximum value. Moreover, when the model is not a
precise description of the log, only three benchmarks provide opposite results
(GFBN2, GFl2l, GFl2lSkip). For instance, the GFl2lSkip benchmark a′

B is providing
a significant lower value: this is because the model contains an optional loop
that is always traversed in the log. This variability is highly penalized by simply
observing the tasks relations. On the other hand, metric etcP will only penalize
the few situations where the escaping edges appear in the log.

Larger benchmarks for which Conformance Checker cannot handle are pro-
vided in Table 1(b). For these benchmarks, we report the results (precision value,
number of MDT and CPU time in seconds) for the models obtained by the Parikh
miner and the RBMiner [12]. These are two miner that guarantee fitness value
one. For each one of the aN benchmarks, N represents the number of tasks
in the log, while the 1 and 5 suffixes denote its size: 100 and 900 traces, re-
spectively. The t32 has 200 (1) and 1800 (5) traces. The pair of CPU times
reported denote the computation of etcP without or with the collection of MDTs
(in parenthesis). Also, we provide the results of the most permissive models, i.e.,
models with only the transitions but without arcs or places (MT). These models
allow any behavior and thus, they have a low etcP value, as expected.

A first conclusion on Table 1 (b) is the capability of handling large benchmarks
in reasonable CPU time, even for the prototype implementation carried out. A
second conclusion is the loss of precision of the metric with respect to the increase
of abstraction in the mined models: as soon as the number of tasks increases, the

224 J. Muñoz-Gama and J. Carmona

Table 1. Experimental results for small (a) and big (b) benchmarks

(a)

Benchmark a′
B etcP |MDT| Benchmark a′

B etcP |MDT|
GFA6NTC 1.00 1.00 0 GFl2lOpt 1.00 0.85 7
GFA7 1.00 1.00 0 GFAL2 0.86 0.90 391
GFA8 1.00 1.00 0 GFDrivers 0.78 0.89 2
GFA12 1.00 1.00 0 GFBN3 0.71 0.88 181
GFChoice 1.00 1.00 0 GFBN2 0.59 0.96 19
GFBN1 1.00 1.00 0 GFA5 0.50 0.57 35
GFParallel5 1.00 0.99 11 GFl2l 0.47 0.75 11
GFAL1 1.00 0.88 251 GFl2lSkip 0.30 0.74 10

(b)

MT Parikh RBMiner

Benchmark |TS| etcP |P | |T | etcP |MDT| CPU |P | |T | etcP |MDT| CPU

a22f0n00 1 1309 0.06 19 22 0.63 1490 0(0) 19 22 0.63 1490 0(0)
a22f0n00 5 9867 0.07 19 22 0.73 9654 0(3) 19 22 0.73 9654 0(4)
a32f0n00 1 2011 0.04 31 32 0.52 2945 0(0) 32 32 0.52 2944 0(1)
a32f0n00 5 16921 0.05 31 32 0.59 22750 2(10) 31 32 0.59 22750 2(11)
a42f0n00 1 2865 0.03 44 42 0.35 7761 0(2) 52 42 0.37 7228 0(2)
a42f0n00 5 24366 0.04 44 42 0.42 60042 5(28) 46 42 0.42 60040 6(29)
t32f0n00 1 7717 0.03 30 33 0.37 15064 1(15) 31 33 0.37 15062 1(12)
t32f0n00 5 64829 0.04 30 33 0.39 125429 9(154) 30 33 0.39 125429 8(160)

miners tend to derive models less precise to account for the complex relations
between different tasks. Often, these miners derive models with a high degree
of concurrency, thus accepting a potentially exponential number of traces which
might not correspond to the real number of traces in the log.

Finally, three charts are provided: the relation between the log size with re-
spect to the CPU time, the etcP value and the number of MDTs are shown
in Fig. 7. For these charts, we selected different log sizes for different types of
benchmarks (a22f0, a22f5, a32f0,a32f5 for the two bottom charts, a42f0, t32f5
and t32f9 for the top chart). For the two bottom charts, we used the Petri nets
derived by the Parikh miner to perform the conformance analysis on each log,
whereas we use a single Petri net for the top chart to evaluate the CPU time
(without collecting MDTs) on different logs, illustrating the linear dependance
of our technique on the log size. The chart on top clearly shows the linear re-
lation between log size and CPU time for these experiments, which is expected
by the technique presented in Sect. 4. The two charts on bottom of the figure
show: (left) since for the a22/a32 benchmarks the models derived are very simi-
lar independently of the log, the more traces are included the less escaping edges
are found. On the other hand, the inclusion of more traces contributes to the
incorporation of more MDTs, as it is shown in the right chart at the bottom.

A Fresh Look at Precision in Process Conformance 225

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 200 300 400 500 600 700 800 900 1000

et
c P

|Log|

etcp vs. Log size

a22f0n00
a32f0n00
a22f5n00
a32f5n00

 0

 5000

 10000

 15000

 20000

 25000

 200 300 400 500 600 700 800 900 1000

|M
D

T
|

|Log|

|MDT| vs. Log size

a22f0n00
a32f0n00
a22f5n00
a32f5n00

Fig. 7. CPU and etcP versus log size for some large benchmarks

9 Conclusion

This paper has presented a low-complexity technique that allows checking the
precision of a general Petri net with respect to a log. By only focusing on the
underlying behavior of the Petri net that is reflected in the log, the technique
avoids the potential state explosion that might arise when dealing with large
and highly concurrent nets. The theory has been implemented as a plugin within
ProM 6 and experimental results are promising. The technique is enriched with
the detection of minimal disconformant traces that may be the starting point
for extension of the model to better represent the log.

Acknowledgments. We would like to thank M. Solé, A. Rozinat and ProM
developers for their help. This work has been supported by the project FOR-
MALISM (TIN2007-66523), and a grant by Intel Corporation.

226 J. Muñoz-Gama and J. Carmona

References

1. Process mining, http://www.processmining.org
2. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions

of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

3. Calders, T., Günther, C.W., Pechenizkiy, M., Rozinat, A.: Using minimum descrip-
tion length for process mining. In: SAC, pp. 1451–1455. ACM, New York (2009)

4. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering Petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

5. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Quantifying pro-
cess equivalence based on observed behavior. Data Knowl. Eng. 64(1), 55–74 (2008)

6. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

7. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

8. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: The need for a process mining evaluation framework in research
and practice. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM
Workshops 2007. LNCS, vol. 4928, pp. 84–89. Springer, Heidelberg (2008)

9. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: Towards an evaluation framework for process mining algorithms.
BPM Center Report BPM-07-06, BPMcenter. org. (2007)

10. Rozinat, A., van der Aalst, W.M.P.: Conformance testing: measuring the align-
ment between event logs and process models. In: BETA Working Paper Series,
Eindhoven University of Technology, vol. 144, pp. 203–210. Eindhoven University
of Technology, WP (2005)

11. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

12. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer,
Heidelberg (2010)

13. van der Aalst, W.M.P.: Process-aware information systems: Lessons to be learned
from process mining. T. Petri Nets and Other Models of Concurrency 2, 1–26 (2009)

14. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic process
mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
48–69. Springer, Heidelberg (2005)

15. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W.E., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between un-
derfitting and overfitting. Software and Systems Modeling (2009)

16. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

17. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: Dis-
covering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

18. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.)
PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)

19. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural patterns for
soundness of business process models. In: EDOC, pp. 116–128. IEEE Computer
Society Press, Los Alamitos (2006)

Trace Alignment in Process Mining:
Opportunities for Process Diagnostics

R.P. Jagadeesh Chandra Bose1,2 and Wil M.P. van der Aalst1

1 Department of Mathematics and Computer Science, University of Technology,
Eindhoven, The Netherlands

2 Philips Healthcare, Veenpluis 5-6, Best, The Netherlands
j.c.b.rantham.prabhakara@tue.nl, w.m.p.v.d.aalst@tue.nl

Abstract. Process mining techniques attempt to extract non-trivial
knowledge and interesting insights from event logs. Process mining pro-
vides a welcome extension of the repertoire of business process analysis
techniques and has been adopted in various commercial BPM systems
(BPM|one, Futura Reflect, ARIS PPM, Fujitsu, etc.). Unfortunately, tra-
ditional process discovery algorithms have problems dealing with less-
structured processes. The resulting models are difficult to comprehend
or even misleading. Therefore, we propose a new approach based on trace
alignment. The goal is to align traces in a way that event logs can be
explored easily. Trace alignment can be used in a preprocessing phase
where the event log is investigated or filtered and in later phases where
detailed questions need to be answered. Hence, it complements exist-
ing process mining techniques focusing on discovery and conformance
checking.

1 Introduction

Many of today’s information systems are recording an abundance of event logs.
Process mining techniques attempt to extract non-trivial knowledge and inter-
esting insights from these event logs and to exploit these for further analysis [1].
Process mining techniques aim at discovering process, control, data, organiza-
tional and social structures from event logs. The majority of research in process
mining so far has focussed on process discovery (both from a control-flow and
organizational perspective). One of the challenging topics in process mining is
process diagnostics. Process diagnostics encompasses process performance analy-
sis, anomaly detection, diagnosis, inspection of interesting patterns and the like.
Research so far in diagnosing processes is limited to exploring ways and means of
analyzing process models (such as conformance checking), projecting diagnostic
information on these models or in dashboard like approaches over some (per-
formance) metrics. Diagnostics of processes at the model level is cumbersome,
tedious and sometimes infeasible, especially when dealing with real-life and flex-
ible processes. We have applied process mining in more than 100 organizations
and our experiences show that processes tend to be less structured than ex-
pected. Traditional process mining algorithms have problems dealing with such
unstructured processes and generate spaghetti-like process models that are hard

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 227–242, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

228 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

to comprehend. Such incomprehensible models are not amenable or are found
lacking to assist in process diagnostic efforts. When diagnosing processes, a busi-
ness analyst is confronted with lots of interesting questions. We list some of them
below:
1. What is the most common (likely) process behavior that is executed? Given

a bag of traces from a process, it would be interesting to know which pro-
cess components are essential/critical for this process. Such essential compo-
nents/functions form the backbone of the process and should be conserved.
Process re-design/improvement efforts should focus on improving such crit-
ical components.

2. Where do my process instances deviate and what do they have in common?:
In practice, there is often a significant gap between what is prescribed or sup-
posed to happen, and what actually happens. There is a need to augment
process diagnostics with techniques that can assist in finding deviations by
analyzing raw traces in the event logs. There are many domains/applications
where this requirement is felt. Fault diagnosis, anomaly detection, diagnosis
of fraudulent insurance claims are some of the applications. Given an event
log containing a mix of traces where the system process functioned nor-
mally and where it malfunctioned, analyzing these traces to find deviations
in malfunctioned/anomalous traces from normal traces would give cues in
understanding the cause of malfunction/anomaly.

3. Are there any common patterns of execution in my traces?: Analyzing logs
at the granularity of an individual event might not always be result yielding
as one often loses the context information during such analysis. An analyst
would be interested in knowing whether there are any interesting execution
(behavioral) patterns in the log. The absence or presence of such patterns
may indicate the cause of an anomaly (say for e.g., fraudulent insurance
claim) or a security violation or a malfunction.

4. What are the contexts in which an activity or a set of activities are executed
in my event log?: Dependencies exist between activities in a process and ac-
tivity executions are expected to happen within certain contexts. There can
be short-range and long-range dependencies between activities. Long-range
dependencies are difficult to discover. An analyst would be interested in un-
derstanding the contexts of execution of activities and/or activity sequences.

5. What are the process instances that share/capture a desired behavior either
exactly or approximately?: Often in diagnostics, an analyst would be inter-
ested in finding process instances that share/comply to a particular desired
behavior; The desired behavior can be represented as a manifestation of
some pattern of activity sequences or some complex form (combination) of
these patterns. Though temporal logic approaches can assist in addressing
this problem to a certain extent by discovering process instances that cap-
ture the desired behavior exactly, one might also be interested in discovering
process instances that share the desired behavior approximately.

6. Are there particular patterns (e.g., milestones, concurrent activities etc.) in
my process?: Workflow patterns refer to recurring forms/structures address-
ing business requirements. For example, milestones indicate specific execu-
tion points in the process model and provide a mechanism for supporting the

Trace Alignment in Process Mining: Opportunities for Process Diagnostics 229

conditional execution of a task or sub-process. An analyst would be inter-
ested in discovering the presence of, and in analyzing milestone patterns in
the process event log. Discovery of process models with concurrency is one
of the challenging problems in process mining. The presence of concurrent
activities creates different permutations of activities in the event log that
adds to the complexity of discovery algorithms. Detection of the presence of
concurrent activities might also help in pre-processing the logs.

In this paper, taking inspiration from biological sequence alignment [2], we pro-
pose a novel approach, called trace alignment, of aligning traces in an event log
and show the promise of such an approach in process diagnostics addressing
some of the questions enumerated above. Multiple sequence alignment is a topic
of extensive research of over three decades in computational biology and still
remains intriguing due to the intricate challenges it poses. There are significant
challenges in adopting them to trace alignment. We highlight some of the chal-
lenges in this paper and believe that this will open a new area of research within
process mining. Figure 1 illustrates the traditional dotted chart analysis and the
proposed trace alignment1. It is apparent that the proposed approach of trace
alignment uncovers common execution patterns and deviations in the log yield-
ing better insights for analysis.

Fig. 1. Comparison of Dotted Chart Analysis and Trace Alignment

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the notations used in the paper. Section 3 introduces the concept of trace
alignment and discusses the techniques for finding alignments. In Section 4, we
propose a framework for finding alignments over a set of traces. In Section 5,
we present and discuss the results of trace alignment on a synthetic log and a
real-life log and show how trace alignment can assist in gaining better insights
for process diagnostics. We discuss related work in Section 6. Finally, Section 7
concludes the paper.

2 Notations

– Let Σ denote the set of activities. |Σ| is the number of activities.
1 In the dotted chart, a dot represents an activity and the x-axis represents time. In

trace alignment, the x-axis represents the alignment position. y-axis represents trace
indices for both the dotted chart and trace alignment.

230 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

– Σ+ is the set of all non-empty finite sequences of activities from Σ. T ∈ Σ+

is a trace over Σ. |T | denotes the length of trace T .
– The set of all n-length sequences over the alphabet Σ is denoted by Σn. A

trace of length n is denoted as T n i.e., T n ∈ Σn, and |T n| = n.
– The ordered sequence of activities in T n is denoted as T (1)T (2)T (3) . . . T (n)

where T (k) represents the kth activity in the trace.
– T n−1 denotes the n− 1 length prefix of T n. In other words T n = T n−1T (n).
– An event log, L, corresponds to a multi-set (or bag) of traces from Σ+.

3 Trace Alignment

In this section, we formally define what trace alignment is and discuss techniques
for finding optimal alignments.

Definition 1. Trace alignment over a set of traces T = {T1, T2, . . . , Tn} is
defined as a mapping of the set of traces in T to another set of traces T =
{T1, T2, . . . , Tn} where each Ti ∈ (Σ ∪ {−})+ for 1 ≤ i ≤ n and

• |T1| = |T2| = . . . = |Tn| = m,

• Ti by removing all “−” gap symbols is equal to Ti,

• �k, 1 ≤ k ≤ m such that ∀1≤i≤n, Ti(k) = −
m in the definition above is the length of the alignment. An alignment over a
set of traces can be represented by a rectangular matrix A = {aij}(1 ≤ i ≤
n, 1 ≤ j ≤ m) over Σ′ = Σ ∪ {−} where − denotes a gap. The third condition
in the definition above implies that no column in A contains only gaps (−). It
is imperative to note that there can be many possible alignments for a given set
of traces and that the length of the alignment, m, satisfies the relation lmax ≤
m ≤ lsum where lmax is the maximum length of the traces in T and lsum is the
sum of lengths of all traces in T.

3.1 Pairwise Trace Alignment

Before we get into the details of aligning a set of traces, let us first consider a
special case of trace alignment, where the number of traces to align is 2. Align-
ing a pair of traces is referred to as pair-wise trace alignment. Let us consider
the example of aligning the two traces T1 = abcac and T2 = acacad. Figure 2
depicts three variants of aligning the two traces. In fact, the number of possible
alignments for two traces of length l is ≈ (1 +

√
2)2l+1l−1/2 [2], e.g., for two

traces of length 100, the number of possible alignments is approximately 1077.
Therefore, it is infeasible to enumerate all possible alignments even for moderate
values of l. Moreover, not all of these alignments would be interesting. In order
to compute “best” alignments, we need a means of associating a score to an
alignment.

Alignment between a pair of traces, T1 and T2 can be considered as a trans-
formation of the trace T1 to T2 or viceversa through a set of editing operations

Trace Alignment in Process Mining: Opportunities for Process Diagnostics 231

T2

T1

T2

T1 a b c a c −

a c a c a d T2

T1a b c a c − −

a − c a c a d

(i) (ii) (iii)

a b c a c − − − − − −

− − − − − a c a c a d

Fig. 2. An Example of Pair-wise Trace Alignments

applied to one of the traces iteratively. The traces are said to be aligned after the
transformation, and can be represented as a rectangular matrix as mentioned
earlier. Assuming that T1 is written over T2 in the alignment (as in Figure 2),
the following edit operations are defined for any column j in the alignment:

• the activity pair (a, b), a, b ∈ Σ, denotes a substitution of activity a in T1

with activity b in T2,
• the activity pair (a,−) denotes the deletion of activity a in T1, and
• the activity pair (−, b) denotes the insertion of activity b in T1.

It is important to note that insertion and deletion operations are complementary
in that an insertion in one trace can be considered as a deletion in another trace.
Henceforth, we refer to insertion and deletion operations as indel operation.
indels should be sensitive to the context in which the operations are performed.
For example, it is ok to have an activity fread after fopen but not after fclose.
Hence, we consider the indel operation as indelRightGivenLeftwhich indicates
the insertion of an activity to the right of another activity. A score function needs
to be defined for the substitution and indel operations. The substitution score
is a function S : Σ × Σ → 	 where S(a, b) denotes the score for substitution
of activity a with activity b for all a, b ∈ Σ. The indelRightGivenLeft score
is a function Il : Σ ∪ {−} × Σ ∪ {−} → 	 where Il(a, b) denotes the score for
inserting activity a given that the left activity is b for all a, b ∈ Σ. Il(a,−) =
Il(−, a) = Il(−,−) = 0 for all a ∈ Σ. Given S and Il, the score of a pair-wise
alignment can be defined as the sum of the scores of the edit operations across
all columns in the alignment. In other words, if T1 and T2 are the aligned traces
of T1 and T2, and the alignment is of length m, then:

Score(T1, T2) =
m∑

j=1

ej

where

ej =

⎧
⎪⎨

⎪⎩

S(a, b) if T1(j) = a and T2(j) = b

Il(a, b)

{
if T1(j) = a, T1(j − 1) = b and T2(j) = − or
if T1(j) = −, T2(j) = a and T2(j − 1) = b

T1(0) = T2(0) = −. Assuming a simple scoring function where a substitution
of activity pair (a, b) is associated with a score of 1 if a = b and a score of
−1 otherwise, and an indel scoring function, Il(a, b) = −1, for all a, b ∈ Σ, the
alignments enumerated in Figure 2 have the scores 1, −4 and −9 respectively. A

232 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

“best” alignment can be considered to be the one with the maximum score. It is
imperative to note that the best scoring alignment is sensitive to the substitution
and indel score functions.

How to Compute Alignments. Needleman and Wunsch [3] have proposed a
dynamic programming algorithm for finding the optimal alignment between two
amino acid sequences. The basic idea is to build up an optimal alignment using
previous solutions for optimal alignments of smaller subsequences. Let T1 and
T2 be two traces. A matrix F indexed by i and j, is constructed where the value
F (i, j) is the score of the best alignment between the prefix T i

1 of T1 and the
prefix T j

2 of T2. F (i, j) is constructed recursively by initializing F (0, 0) = 0 and
then proceeding to fill the matrix from top left to bottom right. It is possible
to calculate F (i, j) if F (i − 1, j − 1), F (i − 1, j) and F (i, j − 1) are known.
There are three possible ways that the best score F (i, j) of an alignment up
to T i

1 and T j
2 could be obtained: T1(i) could be aligned to T2(j), in which case

F (i, j) = F (i − 1, j − 1) + S(T1(i), T2(j)); or T1(i) is aligned to a gap, in which
case F (i, j) = F (i − 1, j) + Il(T1(i), T1(i − 1)); or T2(j) is aligned to a gap, in
which case F (i, j) = F (i, j − 1)+ Il(T2(j), T2(j − 1)). The best score up to (i, j)
will be the largest of these three options. In other words, we have

F (i, j) = max

⎧
⎨

⎩

F (i − 1, j − 1) + S(T1(i), T2(j)),
F (i − 1, j) + Il(T1(i), T1(i − 1)),
F (i, j − 1) + Il(T2(j), T2(j − 1)).

(1)

The values along the top row (when i = 0) and left column (when j = 0) need
to be handled as follows. The values F (i, 0) represent alignments of a prefix
of T1 to all gaps in T2. So, we can define F (1, 0) = 0 and for i > 1, F (i, 0) =
F (i−1, 0)+Il(T1(i), T1(i−1)). Similarly, we can define F (0, j). The value in the
bottom right cell of the matrix, F (|T1|, |T2|), is the best score for an alignment of
T1 and T2. To find the alignment itself, we must find the path of choices from (1)
that led to this best score, i.e., we move from the current cell (i, j) to one of the
cells (i− 1, j− 1), (i− 1, j) or (i, j − 1) from which the value F (i, j) was derived.
While doing so, we add a pair of symbols onto the front of the alignment: T1(i)
and T2(j) if the step was to (i−1, j−1), T1(i) and the gap symbol ‘−’ if the step
was to (i− 1, j), or ‘−’ and T2(j) if the step was to (i, j − 1). At the end we will
reach the start of the matrix, i = j = 0. The above procedure, called traceback,
will retrieve only one of the alignments that gives the best score; there can be
cases where multiple options of (1) are equal. In these cases, an arbitrary choice
is made. The set of all possible alignments for the best score can be enumerated
by using graph traversal techniques.

3.2 Multiple Trace Alignment

Having discussed the alignment of two traces, let us move on to the alignment
of a set of traces. One of the most popular scoring mechanisms for multiple
sequence alignment of genomic sequences is the sum-of-pairs (SP) method. We

Trace Alignment in Process Mining: Opportunities for Process Diagnostics 233

adopt the sum-of-pairs method for trace alignment as well. Let Tj and Tk be two
distinct rows extracted from a multiple trace alignment A (over a set of set of
n traces), and let Score(Tj , Tk) be the alignment score calculated in the same
way as ordinary pairwise alignment of Tj and Tk, then the SP score of a multiple
trace alignment A is defined as

ScoreSP (A) =
∑

1≤j≤k≤n

Score(Tj , Tk)

It is possible to generalize the pairwise dynamic programming alignment ap-
proach to the alignment of n traces. However, it is impractical for more than a
few traces. Assuming that the traces are all of roughly the same length l, the
space complexity of the multidimensional dynamic programming algorithm is
O(ln) and the time complexity is O(2nln) [4]. Multiple sequence alignment that
maximizes the SP score was shown to be NP-complete [5].

We adopted the progressive alignment approach for trace alignment. The basic
idea of progressive alignment is to iteratively construct a succession of pairwise
alignments. Alignment is allowed between a pair of traces, a trace and an align-
ment and between alignments. The selection of traces for alignment at each
iteration is based on their similarity. Traces that are most similar to each other
are aligned first. Once similar traces have been aligned, align the resulting clus-
ters of traces against each other. A guide tree is built to assist this process.
We use the agglomerative hierarchical clustering algorithm (AHC) for generat-
ing this tree. We can use either distance metrics such as Euclidean distance or
similarity measures for clustering. The choice of AHC is due to the fact that it
produces the tree naturally as a dendrogram while the tree has to be constructed
subsequently if other clustering algorithms such as k-means is used.

Figure 3 illustrates an example of the progressive alignment strategy. In this
example, we consider 5 traces. A guide tree is generated using AHC. Based
on the guide tree, the traces T2 and T3 would first be aligned using pairwise
trace alignment. Next traces T4 and T5 would be aligned using pairwise trace
alignment. Subsequently, trace T1 is aligned with the alignment obtained from
T2 and T3. Finally the two alignments obtained from the set of traces {T1, T2, T3}
and {T4, T5} are aligned.

While aligning an alignment A, with another alignment B, (1) is modified as

F (i, j) = max

⎧
⎨

⎩

F (i − 1, j − 1) + S(Ci
A, Cj

B),
F (i − 1, j) + Il(Ci

A, Ci−1
A),

F (i, j − 1) + Il(C
j
B, Cj−1

B).
(2)

where S(Ci
A, Cj

B) denotes the score of substituting column i of alignment A with
column j of alignment B and is defined as

S(Ci
A, Cj

B) =
∑

∀a,b∈Σ

ni
A(a).nj

B(b).S(a, b) (3)

234 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

T : j g c l e b d f i
T : j g c l e b d f
T : j g c l f e b d
T : j g c l e f b d i

T : j g c f l e b d1

2

3

4

5

T1 T2 T3 T4 T5

j g c f l e b d − −

j g c − l e b d f −

j g c − l e b d f i

j g c l − f e b d −
j g c l e f − b d i

T1 T2 T3 T4 T5

j g c − l − − e b d f i

j g c − l − − e b d f −

j g c f l − − e b d − −

j g c − l − f e b d − −

j g c − l e f − b d − i

j g c l e b d f i
j g c l e b d f −

Fig. 3. Example of Progressive Alignment Approach for Multiple Trace Alignment

where ni
X (a) denotes the frequency (count) of activity a in column i of alignment

X . Il(Ci
A, Ci−1

A) denotes the score of inserting column i in alignment A given
that its left column is i − 1 and is defined as

Il(Ci
A, Ci−1

A) =
∑

∀a,b∈Σ

f i
A(a, b).Il(a, b) (4)

where f i
A(a, b) is the frequency of activity a in column i of alignment A given

that its neighboring activity is b in column i − 1. The procedure for finding
the “best” alignment is similar to that of pairwise alignment. Note that the
guide tree enables the visualization of alignments for different subsets of the
traces. The alignment at the root of the tree corresponds to the alignment of
all the traces in the event log whereas an alignment at any internal node of the
guide tree depicts the alignment corresponding to the traces constituting the
leaves of the sub-tree at the node. It is often the case that event logs contain
traces capturing different execution behavior of a process and clustering assists
in grouping together a coherent set of traces.

4 Framework for Trace Alignment

We propose the framework depicted in Figure 4 for trace alignment. The frame-
work identifies the following parts:

Event Log
Build
Guide
Tree

Preprocessing Processed
Log

Interactive

Visualization
Alignment

Compute
Progressive Alignment

Estimate

Quality
and

Realignment

Matrices

Compute
Scoring

Pruning

Fig. 4. Framework for Multiple Trace Alignment

Trace Alignment in Process Mining: Opportunities for Process Diagnostics 235

– Preprocessing: Preprocessing involves steps such as removal of outliers, re-
moval of loop-constructs, and encoding of log into character streams. The
detection and removal of outliers is critical for obtaining interesting align-
ments.

– Compute Scoring Matrices: As discussed in Section 3, alignments are sen-
sitive to the substitution and indel score functions, S and Il respectively.
We use the approach presented in [6] for deriving the substitution and indel
score functions from the event log.

– Build Guide Tree: A guide tree assists in progressive alignment of multiple
traces as illustrated in Figure 3. We use the agglomerative hierarchical clus-
tering (AHC) for building the guide tree. However, other approaches such
as neighbor joining [7] can be used.

– Estimate the Quality of Alignment: Progressive alignment being a heuristics-
based approach, the alignment that is obtained need not be optimal. Further
any error in alignment done in early stages of progressive alignment cannot
be undone. Hence it is essential to estimate the quality of an alignment. In
this work, we adopt a metric based on the information score as a means for
assessing the quality of an alignment. The information score of a column in an
alignment is defined as 1−E/Emax, where E is the entropy of activities in the
column2 and Emax is the maximum entropy which is equal to log2(|Σ|+ 1).

– Pruning and Realignment: Construction of multiple trace alignment is a very
complex problem, and most heuristic algorithms usually fail to generate an
optimal alignment. Disturbances in an alignment can creep in from many
sources thereby making the final alignment far from optimal. Disturbances
here refer to the misplacement of gaps in an alignment. Efficient techniques
for pruning and realigning alignments need to be supported. We will discuss
more about this later in this section.

– Interactive Visualization: Apart from just pictorially depicting the align-
ment it is desirable to have additional interactive features for the analysts
to explore into the patterns and the alignments uncovered. Features such
as editing an alignment, sorting and/or filtering alignment columns based
on activities of interest would all lead to gaining further insights into the
execution of processes.

Though the definition of what constitutes an outlier is left open, in the cur-
rent exploration, we have adopted one simple definition of outliers based on the
length of the traces. It could be the case that in an event log there are certain
process instances whose lengths deviate a lot from the average trace length in
the log, e.g., one of the real life event logs that we analyzed had an average
trace length of 47 activities (across 223 traces) while there were 5 traces with
lengths above 250. Since an alignment is at least as long as the maximum trace
length, such outlier traces in the log can lead to an alignment with too many gap
symbols. Hence the removal of such traces is important. Note that the definition
of outliers can change based on the perspective of analysis. If we are interested
in finding common execution patterns or the backbone sequence of a process,
2 The entropy of a column is defined as E =

∑
a∈Σ∪{−}−pa log2(pa) where pa is the

probability of occurrence of a in the column.

236 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

the above definition of outliers may work fine. However, if we are interested in
finding non-conforming traces or deviations in anomalous traces from normal
traces, then the above definition might not always be appropriate.

Realigning alignments. Variation in the lengths of the traces (mostly due to
recurring patterns and loops), the choice of scoring matrices used, the method
and parameter choices used in the generation of guide tree, strategies used in
resolving conflicts during traceback can all lead to disturbances in the alignment.
Furthermore, disturbances in earlier stages of progressive alignment strategy per-
colate to later stages. Detecting such disturbances and realigning them might
vastly improve the quality of the final alignment. Figure 5 depicts an example of
an alignment before and after realignment. For the original alignment, the infor-
mation score for the columns 4 and 6 is 0.66 whereas the information score for
the same columns after realignment is 0.73. More than the improvement in score,
what is important it that the conserved activity sequence ahbd is preserved after
realignment.

a h b − f d k a − h b d i

a h b d f − k a − h b d i

a h b d f − k a − h b d −

a h b − − d k a f h b d i

a h b − f d k a − h b d i

a h b d f − k a − h b d i

a h b d f − k a − h b d −

a h b d − − k a f h b d i

Realignment

Fig. 5. Example of Realignment

The alignment procedure described in Section 3 is also called as global trace
alignment. Depending on the scoring functions, global trace alignment can some-
times penalize gaps at the beginning and/or end of the traces in the alignment.
In order to allow gaps to be inserted at the beginning/end of any trace in an
alignment, a variant of the global trace alignment called the semi-global trace
alignment can be considered. Here the best score of the alignment is defined to
be the one that is the maximum in the last row or last column of the F matrix
defined in Section 3. Traceback procedure starts from that cell and proceeds
until it stops at the first position it reaches in the top row or left column. Gaps
can then be inserted in the appropriate trace in the positions subsequent to the
maximum value cell in the last row/column and prior to the position it reached
in the top row or left column. Figure 6 depicts the difference between global
trace alignment and semi-global trace alignment of two traces aligned using the
same scoring functions. It is easy to see that the alignment obtained using semi-
global alignment is preferable to the one obtained using global-alignment. We
recommend to consider semi-global trace alignment (at any iteration of progres-
sive alignment) in scenarios where the traces to be aligned differ in their lengths
vastly (for example, due to the manifestation of loop constructs).

T2

T1 j g c − a h b − − − − f d

j g c f a h b d k a h b d T2

T1

Global Trace Alignment Semi−global Trace Alignment

j g c f a h b − d k a h b d

j g c − a h b f d − − − − −

Fig. 6. Example of global trace alignment and semi-global trace alignment

Trace Alignment in Process Mining: Opportunities for Process Diagnostics 237

5 Experimental Results and Discussion

Based on the techniques and framework presented in sections 3 and 4, we built
a trace alignment plug-in in ProM3. We present the results of applying trace
alignment on two event logs in the subsequent sections.

5.1 Telephone Repair Log

The telephone repair event log [8] is defined over 12 event classes and consists
of 1104 traces, of which only 77 traces are distinct when represented as activity
sequences. Since duplicate traces add to the complexity of alignment without
yielding any additional benefits, we applied the trace alignment on these 77
traces (but at the same time maintain the fact that there exists identical traces
in the log). The log consists of cases where the repair can be classified as a
simple or complex one. For our discussion here, we further distinguish two types
of cases based on the difficulty level of repair viz., cases where the telephone
repair was easy and cases where it was difficult (in both simple and complex
types). Difficult cases required multiple tries of the repair diagnosis for failing
the quality assessment test.

As mentioned earlier, the guide tree inherently captures the notion of clus-
tering. We have split the event log into four clusters for the example log and
Figure 7 depicts the trace alignment for one of the four clusters. This cluster
corresponds to traces where the repair type was easy and a complex repair pro-
cedure was done to fix the problem. The length of the alignment is 14 for this
cluster. The left panel depicts the process instance identifier (as in the log) and
identifiers with a grey background indicate traces that have identical duplicates.
For example there are traces identical to process instance 1018 (corresponding to
activity sequence jgcflebd in the event log) while there are no identical traces
for the process instance 1127. The top panel depicts a sorting component where
the traces involved in the alignment can be sorted based on the activities in a
column and the number in the column indicates the priority of sorting. For ex-
ample in Figure 7, the traces are sorted based on activity f (which indicates the
inform user activity) with traces having f in column 4 having first priority and
then with those having f in column 7 and finally with those having f in column
11. The bottom panel depicts the information score metric for each column as
well as a consensus sequence for the alignment. The consensus sequence captures
the major activity in each column and can be considered as a back-bone sequence
for the process. Columns with an information score of 1.0 indicate well con-
served patterns. For example in this alignment, the columns 1− 3 depicting the
encoded activity sequence jgc (corresponding to activities Register-complete,
Analyze (Defect)-start and Analyze (Defect)-complete) is well conserved
and appears in all the traces as the beginning subsequence. It is obvious to
see that the encoded activity f corresponding to Inform User - complete

3 ProM is an extensible framework that provides a comprehensive set of
tools/plugins for the discovery and analysis of process models from event logs. See
http://www.processmining.org for more information and to download ProM.

238 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

is a concurrent activity. Concurrent activity manifests in mutually exclusive
traces across different columns in the alignment. The encoded activities l, e,
b, d and i correspond to Repair Complex-start, Repair Complex-complete,
Test Repair-start, Test Repair-complete and Archive Repair-complete
respectively. Annotating the traces with additional information such as perfor-
mance metrics, customer feedback etc over the alignment might give further
insights. For example, let us assume that the customer was not happy for the
cases 1 and 1009, it is obvious to see that these traces differ from the rest in that
the activity f appears quite late in these traces. It could be inferred that these
customers were not timely informed about the status of their complaint and thus
were not satisfied. The rest of the 3 clusters for this event log corresponded to
the following difficulty level and repair type categories: easy and simple, difficult
and complex and difficult and simple/complex where the last cluster pertained
to cases where a simple repair procedure was first tried and finally a complex
repair procedure was done.

Fig. 7. Trace alignment of traces in telephone repair log for one of the clusters

5.2 Rental Agency Log

We applied trace alignment on a real life log of a rental agency where the cases
corresponded to cancellation of a current rental agreement and subsequent reg-
istration of a new rental agreement. This log was provided by a large Dutch
agency that rents houses and apartments (the organization has approximately

Trace Alignment in Process Mining: Opportunities for Process Diagnostics 239

1000 employees and handles 80, 000 houses). There were 74 event classes, one
event type, 210 traces and 6100 events in this log. As we can see, this log is suf-
ficiently complex in terms of the size of the alphabet and the number of cases.
The traces are first encoded into activity sequences where each activity is en-
coded as a two character sequence. Figure 8 depicts the alignment for one of the
four clusters of this log. Since the whole alignment is not legible4, we highlight
the interesting patterns/activities (that we refer to for our further discussion)
at the top and the bottom of the figure. The length of the alignment is 88. At
the outset, we can see certain patterns in the form of well conserved regions
(columns) in the alignment. Deviations and exceptional behavior are captured in
regions that are sparsely filled i.e., regions with lot of gap symbols (−). We will
present the results of analysis of some of these deviations. It could be seen that
only one of the traces (third trace in the alignment) has the activity subsequence
b4a8b0 in columns 9 − 11. Activity b0 in column 8 corresponds to the check,
is first inspection done? and the activity subsequence b4a8b0 corresponds
to the scenario where the result of the check was negative due to the fact that
the tenant was not at home. b4 corresponds to the activity of sending a letter to
the tenant and a8 corresponds to the activity of rescheduling the first inspection.

Fig. 8. Trace alignment for one of the clusters of rental agency log

The activity sequence h1g9 corresponding to the checks is final inspection
done? (h1), and are there new/repaired defects? (g9) is well conserved
across all but one of the traces . We see an exceptional activity sequence d1d0
corresponding to the offering of a flat in one of the traces (first trace) before
the activity sequence h1g9. It is strange that a flat was offered before the final
inspection was done as in all the other traces where the flat was offered, it hap-
pened subsequent to the final inspection. Upon further inspection, we observed
4 The actual alignment can be inspected at
www.win.tue.nl/~jcbose/AlignmentAnaysis3a.png

240 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

that though the flat was offered, the actual registration/check of the candidate
corresponding to activity d6 happened subsequent to the final inspection. Fur-
thermore, in all the cases where the flat was offered and the candidate registered,
the activity sequence d1d0d6 was well conserved except for the first trace. Trace
alignment helps us uncover such anomalies and deviations. Similarly, we notice
that in only one of traces (second trace) there was a need for second inspection
(activity b5 corresponds to the planning of second inspection and e5 corresponds
to the check, is second inspection done?).

The activity c9 corresponds to the determination of a candidate tenant and
the activities a5 and e0 correspond to registration of lease and signing of con-
tract respectively. It could also be observed from the alignment that there is
an exceptional behavior in one of the cases where we see a manifestation of the
activity subsequence c9g4e8d9a5e0f0c9 (the activity c9 appears twice). This
indicates the fact that for this case, there was a need for determining the can-
didate tenant twice. The determination of the second candidate tenant followed
the activity f0 which corresponds to the termination of provisional lease. In
this fashion trace alignment assists the analyst in getting diagnostic insights by
uncovering interesting patterns and deviations.

Finding good quality alignments is intriguingly challenging. Efficient prepro-
cessing techniques for transforming the log with abstractions might help in finding
better alignments. One can try to find alignments in a multi-phase approach, with
abstractions defined over conserved patterns in each iteration of the alignment.
Alternatively, one can also adopt our abstraction techniques proposed in [9].

6 Related Work

Song and van der Aalst [10] have proposed the dotted chart analysis to ana-
lyze process performance by depicting process events in a graphical way. The
dotted chart analysis (analogous to Gantt charts) primarily focuses on the time
dimension of events and presents a “helicopter view” of the event log along with
some metrics for performance such as the minimum, maximum and average in-
terval between events. The business analyst need to manually investigate the
dotted chart to identify any potential performance issues. For logs with medium
to large number of activities (of the order of a few tens to hundreds), the man-
ual inspection and comprehension of the dotted chart becomes cumbersome and
often infeasible to identify interesting patterns. Trace alignment alleviates this
problem, by finding those patterns automatically and depicting it to the user.
In the parlance of dotted chart analysis, trace alignment considers the logical
relative time perspective of the event log. Furthermore, it would be simple and
a natural extension to project the performance metrics proposed in [10] onto the
aligned traces.

Conformance checking compares an apriori model with the observed behavior
as recorded in the log and aims at detecting inconsistencies/deviations between
a process model and its corresponding execution log [11]. Conformance checking
has inherent limitations in its applicability especially for diagnostic purposes.
Firstly, it assumes the existence of a process model (the current realization of

Trace Alignment in Process Mining: Opportunities for Process Diagnostics 241

the conformance checker plugin in ProM requires the process to be modeled as
Petrinet). However, in reality, process models are either not present or if present
are incorrect or outdated (their quality typically leaves much to be desired). One
can argue that process models can be discovered from the event logs and con-
formance checking be applied on the discovered models. However, this approach
is not suitable for the analysis of highly complex and/or flexible processes, the
class of models which most of the real-life logs fall into and where the discovered
models are “spaghetti-like”. Even in cases where the process models are available
as Petrinets, it is difficult to look inside of the processes to identify and locate
problems especially with models that are large. Trace alignment analyzes the
raw event traces and highlights the deviations.

Multiple sequence alignment (MSA) is an active area of research in bioin-
formatics. Heuristic methods such as progressive alignment [12,13] and itera-
tive alignment [14] have been proposed for MSA. However there are challenges
in adapting these techniques for trace alignment. Alignment of biological se-
quences typically happens over sequences with less variation in length. However,
traces in an event log in process mining can be of different lengths. Variation in
lengths can occur due to variation in execution paths of the instances and due
to manifestation of process model constructs such as choice/loop constructs. In
biological sequence alignment, there are standard scoring matrices for substitu-
tion that are derived based on physio-chemical properties of the amino acids.
Insertion/deletion operations are primarily considered either with a constant
gap-score (or penalty) or as an affine function. Scoring matrices for trace align-
ment need to be derived automatically from the event log or provided by the
domain experts. Biological sequences deal with an alphabet size of either 4 (for
four nucleic acids) or 20 (for amino acids). However, the number of distinct ac-
tivities (event classes) in a typical process mining log can be of the order of a
few hundreds. This adds to the complexity of deriving good scoring matrices
and aligning traces. We took inspiration from MSA techniques [12,13,15] and
adapted them for trace alignment.

7 Conclusions

In this paper, we proposed a novel approach of aligning traces and showed that
this approach uncovers interesting patterns and assists in getting better insights
on process executions. We have listed some of the interesting questions in process
diagnostics and showed how trace alignment can help in diagnostic efforts. Due to
the computational complexity of multiple trace alignment, automatic generation
of high-quality alignments is still challenging. Traces that are outliers (noise) in
the log might mislead the alignment procedure and thereby result in a low quality
alignment. Better techniques to identify and discard outliers during alignment
are required. Metrics and realignment strategies in the perspective of process
modeling constructs and their manifestation in traces is highly desirable and is
an open area of research.

Acknowledgments. The authors are grateful to Philips Healthcare for funding
the research in process mining.

242 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

References

1. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: Dis-
covering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

2. Waterman, M.S.: Introduction to Computational Biology: Maps, sequences and
genomes. Chapman & Hall/CRC (2000)

3. Needelman, S., Wunsch, C.: A general method applicable to the search for similar-
ities in the amino acid sequences of two proteins. Journal of Molecular Biology 48,
443–453 (1970)

4. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic models of proteins and nuclei acids. Cambridge University Press,
Cambridge (2002)

5. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal of
Computational Biology 1(4), 337–348 (1994)

6. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards
improving process mining results. In: Proceedings of the SIAM International Con-
ference on Data Mining, pp. 401–412. SDM, Philadelphia (2009)

7. Simonsen, M., Mailund, T., Pedersen, C.N.S.: Rapid neighbor-joining. In: Algo-
rithms in Bioinformatics, pp. 113–122 (2008)

8. de Medeiros, A.K.A., van der Aalst, W.M.P.: Process mining towards semantics.
In: Advances in Web Semantics-I, pp. 35–80 (2008)

9. Bose, R.P.J.C., van der Aalst, W.M.P.: Abstractions in process mining: A taxonomy
of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009.
LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)

10. Song, M., van der Aalst, W.M.P.: Supporting process mining by showing events at a
glance. In: Proceedings of the 17th Annual Workshop on Information Technologies
and Systems (WITS), pp. 139–145 (2007)

11. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

12. Feng, D., Doolittle, R.: Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. Journal of Molecular Evoluation 25, 351–360 (1987)

13. Feng, D., Doolittle, R.: Progressive alignment of amino acid sequences and con-
struction of phylogenetic trees from them. Methods in Enzymology 266, 368–382
(1996)

14. Barton, G., Sternberg, M.: A strategy for rapid multiple alignment of protein se-
quences, confidence levels from tertiary structure comparisons. Journal of Molecu-
lar Biology 198(2), 327–337 (1987)

15. Daniel, C., Paul, D., Vidhya, M., Marco, O., Eun-Jong, H., Yaoyu, W., Shyamal, S.,
Brian, C., Shobha, P., Enoch, H.: PFAAT version 2.0: A tool for editing, annotating,
and analyzing multiple sequence alignments. BMC Bioinformatics 8(1), 381 (2007)

Content-Aware Resolution Sequence Mining
for Ticket Routing

Peng Sun1, Shu Tao2, Xifeng Yan3, Nikos Anerousis2, and Yi Chen1

1 Computer Science and Engineering, Arizona State University
{peng.sun,yi}@asu.edu

2 IBM T. J. Watson Research Center
{shutao,nikos}@us.ibm.com

3 Computer Science Department, University of California at Santa Barbara
xyan@cs.ucsb.edu

Abstract. Ticket routing is key to the efficiency of IT problem management.
Due to the complexity of many reported problems, problem tickets typically need
to be routed among various expert groups, to search for the right resolver. In
this paper, we study the problem of using historical ticket data to make smarter
routing recommendations for new tickets, so as to improve the efficiency of ticket
routing, in terms of the Mean number of Steps To Resolve (MSTR) a ticket.

Previous studies on this problem have been focusing on mining ticket res-
olution sequences to generate more informed routing recommendations. In this
work, we enhance the existing sequence-only approach by further mining the
text content of tickets. Through extensive studies on real-world problem tickets,
we find that neither resolution sequence nor ticket content alone is sufficient to
deliver the most reduction in MSTR, while a hybrid approach that mines reso-
lution sequences in a content-aware manner proves to be the most effective. We
therefore propose such an approach that first analyzes the content of a new ticket
and identifies a set of semantically relevant tickets, and then creates a weighted
Markov model from the resolution sequences of these tickets to generate routing
recommendations. Our experiments show that the proposed approach achieves
significantly better results than both sequence-only and content-only solutions.

1 Introduction

Ticket routing is a critical issue in IT problem management. When a problem is reported
to the IT service provider, a ticket is created to describe the problem symptoms and to
serve as a token in the problem management process. Due to the increasing complex-
ity of the reported IT problem, many tickets need to be routed among various expert
groups, to search for the one with the right expertise to resolve it, i.e., the resolver
group. Obviously, the goal of ticket routing is to quickly identify the resolver, so that
the caused disruptions can be minimized.

Today, ticket routing is usually driven by human decisions. It is common that tickets
can sometimes be mistakenly routed, which leads to unnecessary ticket routing steps. If
this happens, not only resources are wasted, but also it would take longer time to close
a ticket, possibly cause customer dissatisfaction. The goal of this study is to develop

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 243–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

244 P. Sun et al.

an approach to systematically reducing the number of ticket routing steps by mining
historical ticket data.

Tickets typically are categorized based on the nature of the reported problems, e.g.,
AIX, Windows, DB2, etc. This categorization is rather coarse-grained and tells little
about the problem details. Besides the problem category, two types of other information
in the tickets can be utilized to improve ticket routing: (1) ticket content, which contains
the text description of problem symptoms; (2) resolution sequence, which records the
sequence of expert groups that have processed a ticket [23], including the final resolver
group. A ticket example that contains both content and resolution sequence is shown in
Table 1.

Table 1. A ticket example with its problem description (top) and resolution sequence (bottom)

ID Description
28120 GUI is failing with ‘‘Unable to Logon: RT11844: Security

exception: [IBM][CLI Driver] SQL30081N A communication
error has been detected. Communication protocol being used:
‘‘TCP/IP".Communication API being used: ‘‘SOCKETS". Location where
the error was detected.

ID Time Entry
28120 2007-05-14 New Ticket: GUI logon failure
28120 2007-05-14 Transferred to Group SMRDX
28120 2007-05-14 Check password correctness
28120 2007-05-14 Transferred to Group SSDSISAP
28120 2007-05-14 Check authorization of user account ...
28120 2007-05-15 Transferred to Group ASWWCUST
28120 2007-05-15 Web server checking
...
28120 2007-05-18 Transferred to Group SSSAPHWOA
28120 2007-05-22 Network checking...Resolved

Previous works in this area have been focusing on mining only ticket resolution se-
quences [23,22]. In [23], a Markov-model-based method was proposed to predict the
next expert group that should diagnose the problem, based the groups previously pro-
cessed the ticket. While this method was shown to be effective, the semantic informa-
tion embedded in ticket content was ignored. Intuitively, the higher content similarity
between a historical ticket and the new ticket, the higher similarity of their routing se-
quences. Thus different historical tickets can have different importance in guiding the
routing of the new ticket. In this paper, we seek to extend the method in [23] by utilizing
this information in ticket routing.

An intuitive way of using content information is to build text classifiers that can
directly label each new ticket, based on its content, with its potential resolver group. As
we shall see, such a method only works for tickets that are (1) rich in content, and (2)
reporting very similar problems occurred in the history. As a result, it can only resolve
a portion of the studied tickets and the resulting Mean number of Steps To Resolve
(MSTR) is not always reduced, compared to existing solutions using the sequence-
based method. The reason is as follows.

Each expert group corresponds to specific problem diagnostic steps. When a ticket
is transferred among expert groups, corresponding diagnostic steps will be taken. The
problem is resolved only when the ticket is transferred to a group that performs the

Content-Aware Resolution Sequence Mining for Ticket Routing 245

diagnosis relevant to the root cause. By mining the resolution sequences of histori-
cal tickets (even though they are not reporting the same problem), the sequence-based
method can increase the likelihood of finding the right expert group given that certain
diagnostic steps have been taken and were not able to solve the problem. While for the
content-only method, it can only try the resolver groups for those not-so-similar tickets,
resulting in worse performance.

The insufficiency of considering ticket sequences only or content only motivates us
to integrate both information and develop content-aware resolution sequence mining
techniques.

In the hybrid method, we first identify a set of existing tickets that are similar to the
new ticket in content. Then, we use the resolution sequences of these similar tickets
to generate a weighted Markov model. Compared with existing approach [23], in this
model tickets having different similarity levels are weighted differently. To evaluate
content similarity, we extend the existing text-mining techniques [27,6,20]. Specifically,
we develop a Cosine-similarity-based weight function for model generation. Our study
shows that the parameters in these weight functions can make a salient difference of the
model effectiveness. Thus for the weight function, we develop an algorithm to tune its
parameters to optimally fit the new ticket based on the models built for the historical
ticket that is most similar to this ticket. Furthermore, we observe the situation where
there are a lot of tickets that are dissimilar to the new ticket, whose combined weight
may low down the effect of the highly similar tickets. Thus, we performed a model
normalization to generate a training set of tickets with uniformly distributed similarities,
even though the original training set can have a skewed distribution on similarities.

We conduct extensive experiments on a set of 1.4 million problems tickets. The re-
sults show that the Cosine-similarity-based weight function with normalization outper-
forms the other alternatives. Overall, the proposed method can reduce the MSTR of a
ticket by 12.23% over the sequence-only approach proposed in [23].

To the best of our knowledge, this work is the first attempt to combine both ticket
contents and resolution sequences to generate optimal ticket routing recommendations.
Our contributions in this paper include:

– We explore the potential of mining ticket content to complement the resolution
sequence mining method proposed in [23] to improve the accuracy in predicting
ticket routing.

– We develop a hybrid approach to mine resolution sequences in a content-aware
manner, and design algorithms to normalize the training data, as well as to fine-
tune the parameters to achieve the optimal prediction results.

– We conduct extensive experiments, with real-world ticket data, to verify the pro-
posed method. Our study shows it can significantly improve the efficiency of ticket
routing, hence reducing MSTR. Therefore, it has great potential in serving as an
on-line recommendation tool for ticket routing.

The rest of this paper is organized as follows. We first formally define our problem in
Section 2. We briefly review the sequence-only method proposed in [23] in Section 3.
Then we present a content-aware sequencing mining approach in Section 4. We intro-
duce an approach for training data normalization in Section 5, and the algorithm to

246 P. Sun et al.

generate ticket routing recommendations in Section 6. In Section 7, we evaluate the
effectiveness and robustness of the proposed approach. The related works are reviewed
in Section 8. Finally, Section 9 concludes the paper.

2 Problem Formulation

In this section, we formally define the ticket routing problem. We consider a ticket
processing system that involves a set of expert groups G = {g1, g2, ..., gm}. A ticket t
is a tuple t = (τ, s), where τ is the description of the problem and s is the resolution
sequence that consists of an ordered list of groups that processed the ticket. Take the
ticket shown in Table 1 as an example, the content describes the problem as ”unable to
logon”, while its resolution sequence records the routing among several groups, who
may leave comments regarding the diagnostic steps taken. To simplify the problem
setting, this work does not consider diagnostic comments.

In many cases, a ticket could be resolved by only one group. However, it may be
transferred and diagnosed by multiple groups before the resolver group is found. Al-
though a problem can be attributed to many different causes, there could be only one
that led to the reported problem. Using the ticket in Table 1 as an example, the logon
failure problem can be due to wrong password, unauthorized user account, server down,
or network outage. As illustrated in Figure 1, each cause is checked by a different ex-
pert group. The problem can be resolved only if the group responsible for checking the
actual cause (in this case, SSSAPHWOA) receives the ticket. Note that in this process,
the ticket can be routed to groups in different orders.

Fig. 1. Possible causes and corresponding expert groups for the ticket in Table 1

In this study, we focus on the problem of efficient ticket routing where tickets all have
a single resolver. Given this assumption, our goal is to find the resolver as quickly as
possible, so that the routing delay could be minimized. For a ticket that needs multiple
resolvers, the algorithm proposed in this work is going to find its last resolver group. We
measure the routing efficiency with the Mean number of Steps To Resolve (MSTR) [23].
Given a set of resolved tickets, T = {t1, t2, . . . , tn}, MSTR is defined as

MSTR(T) =
∑n

i=1 |si|
n

− 1. (1)

Note that we assume the initial group g1 is given. Therefore, MSTR represents the
average number of routing steps a ticket takes, starting from g1, to reach its resolver

Content-Aware Resolution Sequence Mining for Ticket Routing 247

group. Obviously, the smaller the MSTR, the more efficient the ticket routing method.
For a set of new problem tickets (each contains problem description in its content and
has a known initial group), T ′, the objective of this work is to develop a routing system
based on a training ticket set, T , which could predict the resolver of tickets in T ′, so as
to minimize the MSTR of T ′.

3 Sequence-Based and Content-Based Ticket Routing

Given a resolved ticket dataset, there are multiple ways to model ticket routing among
expert groups. A traditional approach is to build text classifiers based on ticket con-
tents and then assign tickets to different experts. In [23], we proposed a routing al-
gorithm based on resolution sequences. Since historical ticket resolution sequences
provide rich information about the relationship and dependency between experts, the
sequence-based approach has demonstrated good performance. In this section, we will
briefly review the sequence-based and content-based approaches, and then discuss their
strengths and weaknesses, respectively.

3.1 Sequence-Based Routing

The sequence-based approach proposed in [23] relies on a Markov model to capture
the transfer decisions made during ticket routing. In this model, each Markov state
represents a group that processed the ticket. For the first-order Markov model, the tran-
sition probabilities between two groups A and B, represent the likelihood that group A
transfers a ticket to B when A is not able to resolve it. In [23], we developed a more
sophisticated approach using a variable-order Markov model.

Let s(k) be the set of k expert groups, i.e., s(k) = {g(1), g(2), ..., g(k)}. Given a
resolved ticket dataset T , the total number of tickets that have been processed by s(k)

is denoted as N(s(k)); and the total number of tickets that are transferred to group g
after all the groups in s(k) processed them is denoted as N(g, s(k)). We could derive
the conditional probability of transferring a ticket to g, given that it has been processed
by s(k):

P (g|s(k)) =

{
N(g,s(k))

N(s(k))
if N(s(k)) > 0,

0 otherwise.
(2)

In [23], the conditional entropy is used to determine the optimal order of the Markov
model. Using the above transition probability, we built a sequence-based routing algo-
rithm, Variable-order Multiple active state Search (VMS) to predict the next group a
ticket should be routed to.

VMS works as follows. Given the set of all groups that have processed ticket (Lv),
VMS considers all its subsets s(k) ⊆ Lv, and selects the next group from a candidate
list Lc (Lc ∩ Lv = ∅) to maximize the transfer likelihood:

g∗ = argmaxg P (g|s(k)), ∀g ∈ Lc, s(k) ⊆ Lv, (3)

using all of transfer probabilities calculated through Eq. 2. This prediction can be con-
ducted interactively, at any stage of ticket routing, until the final resolver group is found.

248 P. Sun et al.

Note that if group g∗ identified by Eq. 3 is not the resolver, it will then be added to Lv

in the next iteration. More details of the VMS method can be found in [23].
The VMS method is a sequence-based routing method. It assumes that tickets related

to similar problems are available to build the model. In [23], this is guaranteed by the
manual ticket categorization by the experts. In practice, however, such categorization
can be coarse-grained or inaccurate, which could undermine the effectiveness of this
method.

3.2 Content-Based Routing

Ignored by the sequence-based approach, ticket content contains informative descrip-
tions of reported problems, such as where and when the problem occurred, the affected
system, the phenomena etc. Intuitively, the content information should be very useful to
identify the right resolver to a ticket. A straightforward approach of leveraging content
information is to predict resolvers from ticket description. This is a classic text clas-
sification problem, for which various known algorithms (e.g. support vector machine
(SVM), k-nearest neighbor, etc.) can be applied. For example, one could create a fea-
ture vector from the problem description. Each vector will then be mapped to a resolver
group – the class label.

In our study, we trained an SVM classifier with the RBF kernel using the training
ticket set. For each testing ticket, we use this classifier to generate a list of candidate
groups, ordered by their matching probabilities. We then assign groups in this list, start-
ing from the top, until the true resolver group is found. We refer to this method as the
content-based routing approach.

3.3 Discussion

Figure 2 compares the cumulative prediction accuracy of the sequence-based and content-
based methods as a function of the number of routing steps. The ticket dataset is obtained
from the IBM problem management system, and related to the AIX operating system.
It is clear that the prediction accuracy of the content-based method is better than the
sequence-based method at the beginning. However, it barely improves in the following

�

���

���

���

���

���

	��

���

 � � � �

������������ ������������

�������	
�����
�����������

�
�
�
�
��
��	

��

�
��
���

�
�
�
�
�

�
�
�

Fig. 2. Cumulative prediction accuracy as the number of routing steps allowed increases:
sequence-only method vs. content-only method

Content-Aware Resolution Sequence Mining for Ticket Routing 249

steps. As a result, it is outperformed by the sequence-based method gradually. A care-
ful examination of the tickets shows that the content-only method performs better for
those content-rich tickets than the sequence-only method. Unfortunately, for the tick-
ets that are either not semantically rich in their descriptions, or their reporting problems
never happened before, the content-based approach will perform poorly. In contrast, the
sequence-based method can be more effective for those tickets since its decision is based
on ticket transfer probability, which is complementary to ticket contents.

We illustrate this effect using the example in Table 1. If the reported problem has
appeared in the training data and there is only one root cause of this problem, the
content-based method will perform well. If either of the conditions is not met, it could
make huge classification errors and needs more steps to resolve the problem. For the
sequence-based method, it predicts the next step based on the actions that have been
taken: if the actions represented by SMRDX and SSDSISAP have been taken, it predicts
SSSAPHWOA as the most likely group to solve the problem. This decision process does
not rely on the fact that the same or similar problems have happened before. Instead it
can be inferred from many other ticket processing patterns in the training data.

From the above discussion, we can see clearly that both the sequence- and content-
only methods have their own strength and weakness. This motivates us to develop a
hybrid approach that combines these two methods together so that the predication ac-
curacy of ticket routing can be maximized.

4 Content-Aware Resolution Sequence Mining

In this section, we introduce a content-aware sequence mining method that customizes
the VMS routing algorithm for each new ticket: an individual VMS model is derived
for each new ticket t′ based on the similarity between t′ and the tickets in the train-
ing dataset. The basic idea is as follows: For a new ticket, we first evaluate the content
similarity between the existing tickets and the new ticket; Then, the sequences of those
similar tickets are used to learn a sequence-based routing model. In particular, the se-
quences of the training tickets weigh differently according to their similarity to the new
ticket in content.

...

s1

s2

sn

X

wt1, t’

wt2, t’

wtn, t’

ticket resolution sequences content weighting weighted VMS model

0.8

0.2

0.6

1.0
0.4 1.0

Fig. 3. Content-aware Weighted VMS Model

4.1 Overview

Given a training ticket set T and a new ticket t′, we first evaluate the similarity between
the new ticket and the existing ones, written as wti,t′ , ti ∈ T . The similarity function
will be discussed in Section 4.2. For each ticket t in T , we use s(k) to denote the set of
k groups that have processed it in the past, and if a group g processed the ticket after all
the groups in s(k), we denote it as s(k) → g. We then define I(g, s(k), t) as the indicator
function of whether s(k) → g occurred in the routing sequence of t, i.e.,

250 P. Sun et al.

I(g, s(k), t) =
{

1 if (s(k) → g) is found in t
0 otherwise.

Similarly, we define I(s(k), t) as the indicator function of whether a set of groups s(k)

ever processed ticket t, i.e.,

I(s(k), t) =
{

1 if s(k) found in t
0 otherwise.

Thus, for a new ticket t′, the weighted transition probabilities of the VMS model is
defined as:

P (g|s(k)) =

∑
ti∈T wti,t′I(g, s(k), ti)

∑
ti∈T wti,t′I(s(k), ti)

. (4)

Here, the weight function wti,t′ controls the contribution of ticket ti to the calculation
of transition probability. Figure 3 illustrated the content-aware weighted VMS model.
When wti,t′ = 1, the learned VMS model will be the same to all new tickets. When
wti,t′ reflects content similarity between training tickets ti and t′, it becomes a cus-
tomized model for ticket t′.

4.2 Content Similarity-Based Weight Functions

To measure the content similarity, we adopt the vector space model that represents text
as vectors [19,4]. Vector-based similarity models have been reported to have limitations
for representing long documents [12]. However, this is not an issue for our studied ticket
data set, in which we found 96% of the tickets contain less than 80 words.

Before vectorizing tickets, we preprocess tickets using stopword deletion, word stem-
ming [2], etc. After preprocessing, only 35,690 dimensions (distinct words) were left
for all the studied tickets. Then the bag-of-words approach is employed to convert tick-
ets to vectors. Formally, let V be the word set. For each ticket ti = (τi, si) in a ticket
dataset T , we have a |V |-dimension vector −→τ i = 〈vi1, ..., vi|V |〉, where

vij = log(c(wj , τi) + 1) log(
|T | + 1

dfj
).

Here, c(wj , τi) is the frequency of word wj in ticket τi; dfj is the number of tickets in T
that contain word wj . Using this vector definition, we can compute similarity between
tickets, and define weight functions.

In this paper, we examine the commonly used Cosine similarity function.

cos(τi, τ
′) =

−→τ i · −→τ ′

||−→τ i|| · ||−→τ ′|| , (5)

where −→τi and −→τ ′ are the vectors derived from ticket contents of ti and t′, respectively.
Specifically, we define wti,t′ as an exponential of the Cosine between two tickets.

wti,t′ = cos(τi, τ
′)m, (6)

Content-Aware Resolution Sequence Mining for Ticket Routing 251

�

�

���

�

���

�

���

�

� ��� � � � �

�
�
�
�

�������

Fig. 4. The impact of m on the routing model

where m ≥ 0 is a parameter. When m = 0, the model falls back to the unweighted
version. When m → +∞, the most similar ticket dominates the transition probabil-
ity. Figure 4 shows the MSTR achieved for a testing data set with 1,000 tickets. The
accuracy of the routing model is seemingly a convex function of m.

The optimal value of m depends on the distribution of the similarity scores between
ti and t′. Hence, it should be tuned for each new ticket. Since the resolver of a new
ticket t′ is unknown beforehand, we are not able to directly tune the parameter m for
t′. Instead, we choose the training ticket (or a set of tickets to reduce noise) that is
the most similar to t′ to tune m. Specifically, we leave the most similar one t∗ out as the
new “testing” ticket, and use the rest of the tickets in the training set T to construct the
model in Eq.(4). We gradually increase m starting from 0 with step 0.5 in each iteration,
and compare the MSTR of t∗ as m increases. The value of m that minimizes the MSTR
of t∗ will be chosen.

5 Training Data Normalization

The weighted VMS model proposed in Section 4 relies on a common assumption: the
similarity between a new ticket and all training tickets is uniformly distributed. In prac-
tice, this assumption may not hold. For instance, Figure 5(a) shows the distribution of
similarity between a randomly selected new ticket and 5,600 training tickets in the AIX
problem category, using the Consine weight function. It shows that there are far more
dissimilar tickets than similar ones.

As a consequence, even though the individual weight assigned to a dissimilar ticket
is less than that assigned to a similar one, the overall transition probability can be over-
whelmed by the dissimilar training tickets. For example, suppose there are 99 tickets
that have the similarity value of 0.1, while only one ticket has the similarity value of
0.9. Ideally, this very similar ticket should dominate the routing recommendations gen-
erated by our model. However, if all the 99 less-similar tickets contain the same transi-
tion pattern, the transition probability for this pattern is likely higher than other patterns
extracted from the most similar ticket. This might largely impact the accuracy of our
method.

To overcome this problem, we use a Bin-based Gibbs Sampling method [7] to nor-
malize the training tickets, so that their similarity to the new ticket is uniformly dis-
tributed. The approach works as follows.

252 P. Sun et al.

�

�

���

���

���

���

���

��	

��

���

���

�

� ��� �	�� ���� ���� ���� ���� �	��

�
��

���
�
��
	

�������	�
	����

 ���

�

�

���

���

���

���

���

��	

��

���

���

�

� ��� ��� 	�� ��� ����

�
��

���
�
��
	

�������	
��
���	

(a) Original training set (b) Normalized training set

Fig. 5. Similarity distribution

First, we partition all the existing tickets into 50 buckets which are made by dividing
the similarity range [0, 1] into 50 equal size bins. We consider that all the existing tickets
are represented by a n-variate joint probability distribution p(τi) = p(τi1, τi2, ..., τin),
from which we wish to sample. Here, τi represents the content of ticket i, n is the
number of dimensions in the word vector space. Suppose we choose a random ticket as
the initial sample. In each step of Gibbs Sampling, we replace the value in dimension
k (i.e., τik) by a new value drawn from the distribution of that variable conditioned
on the values of the remaining variables. That is, the value of τik is replaced by τ ′

ik

drawn from distribution p(τik|τi\k), where τi\k = (τi1, ..., τi(k−1), τi(k+1), ..., τin).
One iteration of the sampling consists of n such steps that renew the values for all n
dimensions. Then after each iteration, we find a ticket whose content vector is the most
similar to the newly generated vector (τ ′

i1, τ
′
i2, ..., τ

′
in). The iteration continues until an

equal number of tickets are sampled from each bucket.
The above method ensure that we obtain a set of tickets whose similarity to the new

ticket is uniformly distributed. For example, Figure 5(b) shows the similarity distribu-
tion of 1,000 sampled tickets obtained from the original data set in Figure 5(a), using
the proposed method. Clearly, the similarity distribution is now much closer to uniform
than the original distribution was. Using these sampled tickets as the training data, we
can then apply the models proposed in Section 4 to generate routing recommendations.
As shown later in Section 7, this normalization can significantly improve the perfor-
mance of our model.

6 Implementation

We implemented the proposed content-aware ticket routing algorithm in C#. The algo-
rithm runs in three phases as described in Algorithm 1.

In Phase One, our algorithm first vectorizes the new ticket t as discussed in Sec-
tion 4.2 and then calculates the similarity between t and the resolved tickets. Note that
to reduce the delay of this step, all historical tickets are pre-vectorized and the resulting
vectors are stored with inverted indices [19].

In Phase Two, it retrieves the most similar tickets to the new ticket t in the historical
ticket dataset. Then, it finds the optimal parameter (m), based on the leave-one-out
methods described in Section 4.

In Phase Three, our algorithm creates a weighted Markov model with the optimal
parameter determined in Phase Two. Then, routing recommendations are generated for
the new ticket t using the weighted VMS algorithm, given its initial group g.

Content-Aware Resolution Sequence Mining for Ticket Routing 253

Algorithm 1. Content-aware ticket routing (t = (τ, {g1})
ticket content: τ , initial group: g1

1. Phase 1:
2. Build vector for ticket t: −→τ .
3. Evaluate similarity between −→τ and the vector of each historical ticket.
4.
5. Phase 2:
6. Select the set of tickets Ts that are most similar to t.
7. Learn optimal m based on Ts.
8.
9. Phase 3:

10. Generate a normalized training set for t.
11. Calculate the weighted transition probabilities using Eq. 4 with the optimal m (or σ) found

in Phase 2.
12. Set initial routing sequence s = {g1}
13. while resolution group is not found do
14. Use the weighted VMS routing algorithm with input s to recommend the next group g.
15. s = s ∪ {g}.
16. end while

We tested the performance of our code on a machine with 3.60 GHz CPU, 2GB
memory. On average, the time spent in Phases One and Two in constructing the Markov
model is about 11 seconds. Once the model is obtained, the time for computing the next
routing group in Phase Three is negligible. Therefore, our algorithm can be readily used
as an online recommendation system.

7 Experiments

In this section, we evaluate the proposed approaches empirically. Our evaluation is
based on 1.4 million problem tickets obtained from IBM’s problem management system
over half a 1-year period, from Jun. 1, 2006 to Dec. 31, 2006.

These tickets were pre-classified into 553 problem categories. This is the coarse-
grained ticket categorization, typically done by the helpdesk when a ticket is first opened.
In each problem category, 50 to 900 expert groups were involved in the ticket routing
process.

Before explaining our experiment result, we will first introduce another ticket routing
approach based on the resolution sequence only: the simplest ticket routing strategy,
which we call Naive Approach. In this approach, the training dataset is composed of the
pairs of initial group and the resolver group of each routing sequence in the historical
ticket database. For an incoming ticket, based on its initial group, we calculate the
transition probabilities of possible resolver groups. The resolver groups are ranked in
the descending order of the transition probabilities, and are attempted in the order until
the resolver group is found.

Besides MSTR, we introduce another effectiveness evaluation criteria: Resolution
Rate. It measures how many tickets in the testing set can be resolved using a routing

254 P. Sun et al.

� � �

(a) Resolution Rate (b) Cumulative Resolution Rate (c) Performance (MSTR)

Fig. 6. Comparing cosine based content-aware, sequence-only, content-only, naive approaches

strategy. Specifically, for a testing set T = {t1, t2, . . . , tn}, resolution rate is defined
as:

RR(T) =

∑
ti∈T R(ti)
|T | . (7)

where the routing sequence of ti has the last group denoted as gi,

R(ti) =
{

1 if gi = g∗i ,
0 otherwise.

(8)

where g∗i is the resolver of ti determined by human decision.
Our experiments mainly aim to study the effectiveness of our approach: We first study

the relationship between resolution rate and MSTR among four approaches: naive ap-
proach, sequence-only, content-only approach and our proposed cosine based content-
aware approaches

Then we will focus on cosine based content-aware approach and sequence-only ap-
proach to show why content-aware approach is better than sequence-only approach.

7.1 Resolution Rate Comparison

First, we conduct the experiments to evaluate the resolution rate and MSTR of four
different approaches. From 15392 AIX tickets, we randomly select 75% tickets as the
training set, and use the rest of the 25% as the testing set to simulate new tickets that
need to be routed.

The resolution rate of previous four approaches is shown in Figure 6(a). As we
can see, while the other approaches have the resolution rate of at least 94%, the naive
and content-only approaches only have a resolution rate of 63% and 71% respectively,
which are not feasible to use in practice. Intuitively, since the naive approach only
considers the correlation between the initial groups and the resolver groups, ignoring
intermediate groups, it has a limited set of training instances and fails to transit many
tickets to their resolvers. Content-only approach also only considers resolver groups,
therefore it suffers a low resolution rate for the same reason as naive approach.

In addition, Figure 6(b) shows the cumulative resolution rate of tickets resolved
within a given number of routing steps, when different routing approaches are used. As
shown in the figure, cosine based content-aware approaches consistently outperform the
sequence-only approach. This clearly demonstrates the benefit of incorporating ticket

Content-Aware Resolution Sequence Mining for Ticket Routing 255

content information as well as sequence information for ticket routing: more tickets can
be resolved within a given number of predicted steps.

Besides, the content-only and naive approaches outperform the other models at the
first step of routing, showing that both of them are very effective for easy-to-resolve
tickets. However, they become less effective as the routing continues. This indicates that
for more difficult tickets, both content and sequence information should be considered
to make effective ticket routing decisions.

7.2 MSTR Comparison

Figure 6(c) shows the performance of four approaches, where the cosine based approach
has the best performance comparing to the other approaches.

Effect of Normalization. As mentioned in Section 5, to avoid lowing down the effect
of the highly similar tickets, we generate uniformly distributed tickets as the training
set. Now we evaluate the effect of the normalization.

In Figure 7, we know that normalization can reduce the MSTR about 15.28%. This
shows that the normalization approach proposed in Section 5 is effectively when han-
dling skewed data, and largely improves the MSTR.

�

Fig. 7. The effect of normalization

7.3 Content-Aware Approach vs. Sequence-Only Approach

Using the same set of AIX tickets, we evaluate the MSTR of cosine based content-
aware approach in improving the effectiveness of ticket routing, i.e., reducing MSTR,
compared with the sequence-only approach.

�

Fig. 8. The differences between sequence-only approach and the consine based content-aware
approach in the resulting number of steps needed to resolve a ticket

256 P. Sun et al.

�

�

���

���

���

���

���

��	

�
��� ���
��� ���
��	 ��	
��� ���
�

���������	
����

��
�����
�������
����
�
���
�����
�

�
�
���

�
��
	
�

�
�

���
�
��

�

�

���

���

���

���

���

��	

��

���

���

�
��� ���
��� ���
��	 ��	
��� ���
�

�
�
���

�
��
	
�

�
�

���
�
��

���������	
����

��
�����
�������
����
�
���
�����
�

�

�

���

���

���

���

���

��	

��

���

���

�
��� ���
��� ���
��	 ��	
��� ���
�

���������	
����

��
�����
�������
����
�
���
�����
�

�
�
���

�
��
	
�

�
�

���
�
��

(a) Group A (b) Group B (c) Group C

Fig. 9. Top-1 similar tickets distribution for different groups

Figure 8 shows the comparison between the sequence-only approach and the content-
aware approach, in terms of the difference in number of steps needed to resolve a ticket
in ascending order, for 500 randomly selected tickets. The figure shows that, for the ma-
jority of the tickets, the performance of cosine based content-aware approach is either
the same as or better than that of sequence-only approach (i.e., area with value greater
than 0 in the figure). Nevertheless, the content-aware approach can still be outperformed
by the sequence-only approach in some cases.

To illustrate why this happens, we first partition all the tickets into three groups based
on difference of MSTRs for two approaches. In group A, cosine based content-aware
approach performs better than sequence-only approach. In group B, both approaches
have the same MSTR. In group C, the cosine based content-aware approach has a larger
MSTR than that of sequence-only approach.

Then, we analyze the distribution for most similar ticket of each ticket in Figure 9.
Figure 9 (a) shows the distribution for group A. As we can see, most of the top-1 similar
tickets are located in the similarity range of [0.2, 0.4). While the top-1 similar tickets of
group B (Figure 9 (b))and C (Figure 9 (c)) are mostly located in the range of [0, 0.2).
Since the tickets in group A can find highly similar tickets to tune the parameters when
building the routing model, they can be more effectively routed by our approach. Also,
we can see that for group C, there is no ticket that can find a similar ticket with score
larger than 0.4, resulting a larger MSTR. These observations confirm our intuition that
the content-aware approach is more effective than the sequence-only approach when
there are more tickets reporting on similar problems in the training data.

We have compared our content-aware approach with the sequence-only approach
in all 533 problem categories, and found the former consistently outperforms the lat-
ter. Overall, the resulting MSTR of our content-aware approach is lowed by 12.23%,
compared to that achieved by the sequence-only approach in [23].

8 Related Work

Text Mining. Related to this paper are the works on text mining [13,17], which covers

several important research areas, including text classification [20,6], text association[16],
topic modeling [27], etc. The Vector Space Model (VSM) applied in our system has also
been studied before in the literature [19]. For instance, [15] first introduced SVM into
the text classification applications based on the VSM model; the robustness of different

Content-Aware Resolution Sequence Mining for Ticket Routing 257

text categorization methods was studied in [25]; [20] proposed methods to combine con-
tent and link information for document classification; [6] studied manifold methods; [6]
introduced text classification using graph-based methods; [16] extracted word associa-
tions from text using synonyms or terms that tend to co-occur; [27] developed statistical
models to find topics within a collection of documents. The weighted k-nearest neighbor
classification method proposed in [14] extended the basic k-nearest neighbor algorithm
by taking into account the distances to the nearest neighbors. In this paper, we extend
these techniques in ticket routing applications, and address the unique challenges of
parameter tuning and training set normalization in this context.

Expert Finding. The ticket routing problem is also related to expert finding: given a
keyword query, find the most knowledgeable persons regarding the keyword query. Ex-
pert finding algorithms in [5,10] use a language model to calculate the probability of an
expert candidate to generate the query terms. [21] enhances these models by allowing
candidates’ expertise to be propagated within networks such as email networks, while
[9] explores the links in documents such as DBLP [1]. Since most of expert finding
algorithms are content-based, they have the same weakness as the content-based classi-
fication methods, as illustrated in Section 3.

Sequence Mining. The problem of sequential pattern mining was introduced by Agrawal
et al. [3]. Various combinatorial algorithms such as SPADE [26], PREFIX [18], were
developed for efficient mining in large sequence databases. Besides combinatorial so-
lutions, probabilistic sequence mining was also studied in the literature [8,11,24]. For
instance, Cook et al. [8] developed neural network and Markov approaches for mining
software engineering processes. In the specific problem of ticket routing, [23] was the
first work that proposed Markov-model-based methods to predict ticket routing steps.
This paper extends that work to incorporate both sequence and content to accelerate
ticket routing.

9 Conclusions

In this paper, we study the problem of improving the efficiency of ticket routing by
mining both ticket content and resolution sequences. We propose a novel content-aware
sequence mining technique to build ticket routing models. Specifically, We build a
weighted Markov model with tickets having different similarity levels weighted dif-
ferently. Ticket content similarity is measured using a Cosine-similarity-based weight
function, where the parameters are tuned to optimally fit the new ticket. Furthermore,
our technique performs a normalization on training set to effectively handle the training
set with diverse distribution on ticket similarity. Extensive experiments on real-world
ticket data show that, because of the incorporated content information, our proposed
approach is consistently more effective than both sequence-only and content-only ap-
proaches. In particular, comparing to the sequence-only approach in [23], our approach
has almost the same resolution rate, with a significant reduction of 12.23% in MSTR,
and thus effectively accelerates the ticket routing processes.

258 P. Sun et al.

Acknowledgment

This material is based on work partially supported by the U.S. National Science Foun-
dation under grants IIS 0915438, 0917228 and 0954125.

References

1. DBLP: http://www.informatik.uni-trier.de/˜ley/db/
2. Aas, K., Eikvil, L.: Text categorisation: A survey (1999)
3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. ICDE (1995)
4. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning (1996)
5. Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise cor-

pora. In: SIGIR, pp. 43–50 (2006)
6. Belkin, M., Niyogi, P., Sindhwani, V., Bartlett, P.: Manifold regularization: A geomet-

ric framework for learning from examples. Technical report, Journal of Machine Learning
Research (2004)

7. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer, Heidelberg (October 2007)

8. Cook, J., Wolf, A.: Discovering models of software processes from event-based data. ACM
Trans. Software Eng. and Methodology 7(3), 215–249 (1998)

9. Deng, H., King, I., Lyu, M.R.: Formal models for expert finding on dblp bibliography data.
In: ICDM 2008: Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, pp. 163–172 (2008)

10. Fang, H., Zhai, C.: Probabilistic models for expert finding. In: Amati, G., Carpineto, C.,
Romano, G. (eds.) ECIR 2007. LNCS, vol. 4425, pp. 418–430. Springer, Heidelberg (2007)

11. Gaaloul, W., Bhiri, S., Godart, C.: Discovering workflow transactional behavior from event-
based log. In: Meersman, R., et al (eds.) OTM 2004. LNCS, vol. 3290, pp. 3–18. Springer,
Heidelberg (2004)

12. Garcia, E.: Description, advantages and limitations of the classic vector space model (2006)
13. Hearst, M.: What is text mining? (2003),

http://people.ischool.berkeley.edu/hearst/text-mining.html
14. Hechenbichler, K., Schliep, K.: Weighted k-nearest-neighbor techniques and ordinal classi-

fication. Technical report, Ludwig-Maximilians University (2007)
15. Joachims, T.: Text categorization with support vector machines: Learning with many relevant

features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142.
Springer, Heidelberg (1998)

16. Lin, D.: Extracting collocations from text corpora. In First Workshop on Computational Ter-
minology (1998)

17. New York Times. Text mining,
http://blogs.zdnet.com/emergingtech/?p=304

18. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: PrefixSpan:
Mining sequential patterns efficiently by prefix-projected pattern growth. In: Int. Conf. Data
Engineering (2001)

19. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc.,
New York (1986)

20. Sen, P., Namata, G.M., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective clas-
sification in network data. Technical report (2008)

21. Serdyukov, P., Rode, H., Hiemstra, D.: Modeling multi-step relevance propagation for expert
finding. In: CIKM, pp. 1133–1142 (2008)

Content-Aware Resolution Sequence Mining for Ticket Routing 259

22. Shao, Q., Chen, Y., Tao, S., Yan, X., Anerousis, N.: Easyticket: A ticket routing recommen-
dation engine for enterprise problem resolution. In: 34th Int’l Conf. VLDB, Auckland, New
Zealand (2008)

23. Shao, Q., Chen, Y., Tao, S., Yan, X., Anerousis, N.: Efficient ticket routing by resolution
sequence mining. In: KDD 2008, pp. 605–613 (2008)

24. Silva, R., Zhang, J., Shanahan, J.G.: Probablistic workflow mining. In: Proc. 1998 Int’l Conf.
Knowledge Discovery and Data Mining, pp. 469–483 (1998)

25. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: SIGIR (1999)
26. Zaki, M.: SPADE: An efficient algorithm for mining frequent sequences. Machine Learn-

ing 40, 31–60 (2001)
27. Zhai, C., Velivelli, A., Yu, B.: A cross-collection mixture model for comparative text mining.

In: KDD 2004 (2004)

Symbolic Execution of Acyclic Workflow Graphs

Cédric Favre and Hagen Völzer

IBM Research — Zurich
����������	
����
���
���

Abstract. We propose a new technique to analyze the control-flow, i.e., the work-
flow graph of a business process model, which we call symbolic execution. We
consider acyclic workflow graphs that may contain inclusive OR gateways and de-
fine a symbolic execution for them that runs in quadratic time. The result allows
us to decide in quadratic time, for any pair of control-flow edges or tasks of the
workflow graph, whether they are sometimes, never, or always reached concur-
rently. This has di�erent applications in finding control- and data-flow errors. In
particular, we show how to decide soundness of an acyclic workflow graph with
inclusive OR gateways in quadratic time. Moreover, we show that symbolic exe-
cution provides diagnostic information that allows the user to eÆciently deal with
spurious errors that arise due to over-approximation of the data-based decisions
in the process.

1 Introduction

With the increased use of business process models in simulation, code generation and
direct execution, it becomes more and more important that the processes are free of
control- and data-flow errors. Various studies (see [1] for a survey) have shown that
such errors frequently occur in process models.

Some of these errors can be characterized in terms of relationships between control-
flow edges or tasks of the process. For example, a process is free of deadlock if any
two incoming edges of an AND-join are always marked concurrently. We can say that
such a pair of edges is always concurrent. A process is free of lack of synchronization
if any two incoming edges of an XOR-join are mutually exclusive, i.e., they never get
marked concurrently. A data-flow hazard may arise if two conflicting operations on the
same data object are executed concurrently. That can happen only if the tasks contain-
ing the data operations are sometimes concurrent, i.e., not mutually exclusive. Similar
relationships have also been proposed for a behavioral comparison of processes [2].

Such control-flow relations can be computed by enumerating all reachable control-
flow states of the process by explicitly executing its workflow graph, i.e., its control-
flow representation. However, there can be exponentially many such states, resulting
in a worst-case exponential time algorithm. We propose in this paper a form of sym-
bolic execution of a workflow graph. We consider acyclic workflow graphs that may
contain inclusive OR (IOR) gateways and define a symbolic execution of such graphs
that runs in quadratic time. It captures enough information to allow us to decide, us-
ing a complementing graph analysis technique, the above mentioned relationships for
any pair of control-flow edges in quadratic time. In particular, we obtain a control-flow

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 260–275, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

Symbolic Execution of Acyclic Workflow Graphs 261

analysis that decides soundness, i.e., absence of deadlock and lack of synchronization
in quadratic time for any acyclic graph that may contain IOR gateways.

The symbolic execution keeps track of which decision outcomes within the process
flow lead to which edge being marked. Therefore, it can provide information, in case of
a detected error, about which decisions potentially lead to the error. We show how this
leads to more compact diagnostic information than obtained with prior techniques. In
particular, we show how this allows the user to eÆciently deal with spurious errors that
arise due to over-approximation of the data-based decisions in the process.

Some existing techniques can decide soundness of a workflow graph without IOR
gateways, or equivalently a Free Choice Petri net, in polynomial time: A technique
based on the rank theorem [3] in cubic time and techniques based on a complete re-
duction calculus [4] in more than cubic time. However, diagnostic information is not
provided by the former technique and was not yet worked out for the latter.

Techniques based on state space exploration return an error trace, i.e., an execution
that exhibits the control-flow error, but they have exponential worst-case time complex-
ity. It has been shown [5] for industrial processes without IOR gateways that the latter
problem can be e�ectively addressed in practice using various reduction techniques.
Various additional structural reduction techniques exist in the literature, e.g., [6,7].

Wynn et al. [8] provide a study of verifying processes with IOR gateways. They
apply state space exploration and use a di�erent IOR-join semantics.

We are not aware of approaches that provide diagnostic information to deal with the
over-approximation due to data abstraction in workflow graphs. Existing approaches to
check other notions of soundness such as relaxed soundness [9] or weak soundness [10]
have exponential complexity.

The paper is structured as follows: After setting the preliminary notions, we intro-
duce symbolic execution in Sect. 3 and show how the relationship ‘always-concurrent’
and the absence of deadlock can be decided. Then, we discuss the ‘sometimes-concur-
rent’ and ‘mutually-exclusive’ relationships and lack of synchronization in Sect. 4. In
Sect. 5, we show how the diagnostic information provided by symbolic execution can be
used to deal with the over-approximation that results from abstracting from data-based
decisions.

The proofs are omitted in this version but are available in a technical report [11].

2 Preliminaries

In this section, we define preliminary notions which include workflow graphs and their
soundness property.

2.1 Basic Notions

Let U be a set. A multi-set over U is a mapping m : U � �. We write m[e] instead
of m(e). For two multi-sets m1�m2, and each x � U, we have : (m1 � m2)[x] � m1[x] �
m2[x] and (m1 � m2)[x] � m1[x] � m2[x]. The scalar product is defined by m1 � m2 ��

x�U

(m1[x] � m2[x]). By abuse of notation, we sometimes use a set X � U in a multi-set

context by setting X[x] � 1 if x � X and X[x] � 0 otherwise.

262 C. Favre and H. Völzer

A directed graph G � (N� E) consists of a set N of nodes and a set E of ordered pairs
(s� t) of nodes, written s � t. A directed multi-graph G � (N� E� c) consists of a set N
of nodes, a set E of edges and a mapping c : E � (N � �null) � (N � �null) that maps
each edge to an ordered pair of nodes or null values. If c maps e � E to an ordered pair
(s� t) � N, then s is called the source of e, t is called the target of e, e is an outgoing
edge of s, and e is an incoming edge of t. If s � null, then we say that e is a source of
the graph. If t � null, then we say that e is a sink of the graph. For a node n � N, the
set of incoming edges of n is denoted by Æn. The set of outgoing edges of n is denoted
nÆ. If n has only one incoming edge e, Æn denotes e (Æn would denote �e). If n has only
one outgoing edge e�, nÆ denotes e�.

A path p �
x0� ���� xn� from an element x0 to an element xn in a graph G � (N� E� c)
is an alternating sequence of elements xi in N and in E such that, for any element xi � E
with c(xi) � (si� ti), if i � 0 then si � xi�1 and if i � n then ti � xi�1. If x is an element
of a path p we say that p contains x. A path is trivial, if it is contains only one element.
A cycle is a path b �
x0 � � � xn� such that x0 � xn and b is not trivial.

2.2 Workflow Graphs

F

M

J

D

a

c

b

f

i

j

g

s

t

X Y

d

e

h

I

Fig. 1. A workflow graph

A workflow graph W � (N� E� c� l) con-
sists of a multi-graph G � (N� E� c) and
a mapping l : N � �AND�XOR� IOR	
that associates a logic with every node
n � N, such that: 1. The workflow graph
has exactly one source and at least one
sink. 2. For each node n � N, there ex-
ists a path from the source to one of the
sinks that contains n. W is cyclic if there
exists a cycle in W.

Figure 1 depicts an acyclic workflow graph. A diamond containing a plus symbol
represents a node with AND logic, an empty diamond represents a node with XOR
logic, and a diamond with a circle inside represents a node with IOR logic. A node
with a single incoming edge and multiple outgoing edges is called a split. A node with
multiple incoming edges and single outgoing edge is called a join. For the sake of
presentation simplicity, we use workflow graphs composed of only splits and joins.

Let, in the rest of this section, W � (N� E� c� l) be an acyclic graph. Let x1� x2 � N�E
be two elements of W such that there is a path from x1 to x2. We then say that x1

precedes x2, denoted x1 � x2, and x2 follows x1. Two elements x1� x2 � N � E of W
are unrelated, denoted x1 �� x2, if x1 � x2 and neither x1 � x2 nor x2 � x1. A prefix of
W is a workflow graph W�

� (N�
� E�

� c�� l�) such that N� � N, for each pair of nodes
n1� n2 � N, if n2 � N� and n1 � n2 then n1 � N�, an edge e belongs to E� if there exists a
node n � N� such that e is adjacent to n, for each node n � N�, we have l�(n) � l(n), and
for each edge e � E�, we have c�(e) � (s�� t�), c(e) � (s� t), s� � s, t� � t if t � N�, and
t� � null otherwise.

The semantics of workflow graphs is, similarly to Petri nets, defined as a token game.
If n has AND logic, executing n removes one token from each of the incoming edges of
n and adds one token to each of the outgoing edges of n. If n has XOR logic, executing

Symbolic Execution of Acyclic Workflow Graphs 263

n removes one token from one of the incoming edges of n and adds one token to one
of the outgoing edges of n. If n has IOR logic, n can be executed if and only if at
least one of its incoming edges is marked and there is no marked edge that precedes a
non-marked incoming edge of n. When n executes, it removes one token from each of
its marked incoming edges and adds one token to a non-empty subset of its outgoing
edges. This IOR semantics, which is explained in detail elwhere [12], complies with the
BPMN standard and BPEL’s dead path elimination.

The outgoing edge or set of outgoing edges to which a token is added when executing
a node with XOR or IOR logic is non-deterministic, by which we abstract from data-
based or event-based decisions in the process. In the following, this semantics is defined
formally.

A marking m : E � � of a workflow graph with edges E is a multi-set over E. When
m[e] � k, we say that the edge e is marked with k tokens in m. When m[e] � 0, we say
that the edge e is marked in m. The initial marking ms of W is such that the source edge
is marked with one token in ms and no other edge is marked in ms.

Let m and m� be two markings of W. A tuple (E1� n� E2) is called a transition if n � N,
E1 � Æn, and E2 � nÆ. A transition (E1� n� E2) is enabled in a marking m if for each
edge e � E1 we have m[e] � 0 and any of the following propositions:

– l(n) � AND, E1 � Æn, and E2 � nÆ.
– l(n) � XOR, there exists an edge e such that E1 � �e	, and there exists an edge e�

such that E2 � �e�	.
– l(n) � IOR, E1� E2 are non-empty, E1 � �e � Æn � m(e) � 0	, and, for every edge

e � Æn
 E1, there exists no edge e�, marked in m, such that e� � e.

A transition T can be executed in a marking m if T is enabled in m. When T is executed
in m, a marking m� results such that m�

� m � E1 � E2.
An execution sequence of W is an alternate sequence � �
m0� T0�m1� T1���� of mark-

ings mi of W and transitions Ti � (Ei� ni� E�

i) such that, for each i � 0, Ti is enabled in
mi and mi�1 results from the execution of Ti in mi. An execution of W is an execution
sequence � �
m0� ����mn� of W such that n � 0, m0 � ms and there is no transition
enabled in mn. As the transition between two markings can be easily deduced, we often
omit the transitions when representing an execution or an execution sequence, i.e., we
write them as sequence of markings.

Let m be a marking of W, m is reachable from a marking m� of W if there exists an
execution sequence � �
m0� ����mn� of W such that m0 � m� and m � mn. The marking
m is a reachable marking of W if m is reachable from ms.

2.3 Soundness

A deadlock occurs when a token stays ‘blocked’ on one edge of the workflow graph: A
deadlock of W is a reachable marking m of W such that there exists a non-sink edge
e � E that is marked in m and e is marked in all the markings reachable from m. We
say that W contains a deadlock if and only if there exists a reachable marking m of
W such that m is a deadlock. The workflow graph in Fig. 1 permits the execution � �

[s]� [a� b� c]� [b� c� d]� [b� c� h]� [b� f � h]� [h� i]� [j]�. The marking [j] is a deadlock.

264 C. Favre and H. Völzer

A lack of synchronization of W is a reachable marking m of W such that there exists
an edge e � E that is marked by more than one token in m. We say that a workflow graph
W contains a lack of synchronization if and only if there exists a reachable marking m
of W such that m is a lack of synchronization.

A workflow graph is sound if it contains neither a deadlock nor a lack of synchro-
nization. Note that this notion of soundness is equivalent to the notion presented by van
der Aalst [13] for workflow nets.

3 Symbolic Execution and Always-Concurrent Edges

In this section, we introduce symbolic execution and show how we use it to detect
deadlocks and determine whether two edges are always-concurrent. We start by giving
a characterization of deadlock, then introduce the symbols and the propagation rules
of the symbols, we show how to compute a normal form of a symbol and discuss the
complexity of the proposed technique.

Let, in this section, W � (N� E� c� l) be an acyclic workflow graph prefix that is free
of lack of synchronization. We describe in Sect. 4.3 how we determine such prefix.

3.1 Equivalence of Edges and a Characterization of Deadlock

A deadlock arises at an AND-join when one of its incoming edges e is marked dur-
ing an execution � but another edge e� does not get marked during � because, as e�

never gets marked during �, the AND-join cannot execute and the token marking e
is ‘blocked’. Thus, in order to have no deadlock, the incoming edges of an AND-join
need to get marked ‘together’ in each execution. We can precisely capture this through
edge equivalence or the notion always-concurrent. In an acyclic workflow graph, only
an AND-join can can ‘cause’ a deadlock. An IOR-join can ‘block’ a token if and only
if there exists a preceding node that blocks another token. Thus, whenever there is a
deadlock in an acyclic workflow graph, there exists an AND-join with non-equivalent
incoming edges. Nodes that are nor AND-join or IOR-join cannot block a token. To
introduce edge equivalence, we define the Parikh vector of an execution, which records,
for each edge, the number of tokens that are produced on that edge during the execution.

Definition 1 (Parikh vector). The Parikh vector of an execution � �
m0� T0� ����, writ-
ten ��

� , is the multi-set of edges such that ��

�[s] � 1 for the source s of W and otherwise
��

�[e] � k such that k � ��i � Ti � (E� n� E�) � e � E�	�.

For example, given the execution��
[s]� (�s	� F� �a� b� c)� [a� b� c]� (�a	� X� �d)� [b� c� d]�
(�d	� Y� �h)� [b� c� h]� (�c	� I� � f)� [b� f � h] (�b� f 	� M� �i)� [h� i]� (�h� i	� J� � j)� [j]� of the
workflow graph of Fig. 1, we have ��

�[s] � ��

�[a] � ��

�[b] � ��

�[c] � ��

�[d] � ��

�[f] � ��

�[h]
�

��

�[i] � ��

�[j] � 1 and ��

�[e] � ��

�[g] � 0.

Definition 2 (Edge equivalence, always-concurrent)

– Two edges are parallel in an execution � if there is a marking in � in which both
edges are marked. Two executions ���

� are interleaving equivalent if ��

� �
��

�
�.

Symbolic Execution of Acyclic Workflow Graphs 265

Two edges are concurrent in � if there is an execution �
� such that � and �

� are
interleaving equivalent and the edges are parallel in �

�. Two edges are always-
concurrent if they are concurrent in every execution of W.

– Two edges e1 and e2 of W are equivalent, written e1 � e2, if for any execution � of
W, we have ��

�[e1] � ��

�[e2].

Two executions that are interleaving equivalent execute the same transitions; possibly
in a di�erent order. Note that these definitions are founded only for acyclic workflow
graphs.

Proposition 1. Two edges e1� e2 are always-concurrent i� e1 � e2 and e1 �� e2.

In the workflow graph depicted by Fig. 1, we have a � b � h and a � d � g. Note
that we have discussed earlier an execution of the workflow graph of Fig. 1 where ��

�[a]
�

��

�[d]. However, there exist another execution such that ��

�[a] � ��

�[d] and therefore
a � d. Moreover, a is always-concurrent to b but not to h.

Proposition 2. W contains a deadlock i� there exist two incoming edges of an AND-
join of W that are not equivalent, or equivalently, that are not always-concurrent.

In the workflow graph depicted by Fig. 1, the edges j and g are not always-concurrent.
Therefore, we get a deadlock at the AND-join D.

In the following, we show how we can compute edge equivalence and therefore also
whether two edges are always-concurrent.

3.2 Symbolic Execution

F

M

J

D

a

c

b

f

i

j

g

s

t

X Y

d

e

h

I

{s}

{s}

{s}

{s}

{d}

{e}

{f}

{g}

{d,e}

{s,f}

{d,e}

Fig. 2. The assignment resulting from the sym-
bolic execution of the workflow graph of Fig. 1

The first step to compute edge equiva-
lence is the symbolic execution of the
workflow graph. During symbolic execu-
tion, each edge is labeled with a sym-
bol, which is a set of outcomes of the
workflow graph. An outcome is the source
edge, an outgoing edge of an XOR-split,
or an outgoing edge of an IOR-split
in the graph. Figure 2 shows the label-
ing of the workflow graph of Fig. 1
that results from its symbolic execution.

a

b

a

b

S

{a}

{b}
S

S

S
S

{a}

{b}

S1∪S2

S2

S1

S2

S1

S2

S1

S1∪S2S1

a

b
if S1 ≡ S2

Fig. 3. The propagation rules

The symbolic execution starts
with labeling the source s with �s	.
All other edges are yet unlabeled.
If all incoming edges of a node are
labeled, we may label the outgoing
edges of the node by applying one
of the propagation rules depicted
by Fig. 3, depending on the logic
of the node.

266 C. Favre and H. Völzer

The intuition behind symbolic execution is to label an edge e with a set S of outcomes
such that e is marked during an execution� if and only if some of the outcomes in S get
marked during�. In general, the label of the outgoing edges depends on the labels of the
incoming edges. However, if the node is an XOR-split or an IOR-split, then the symbol
that is assigned to one of the outgoing edges only contains that outgoing edge. The
symbol associated to the incoming edge of the node is then ignored. In case of an AND-
join, the propagation rule additionally requires the symbol labeling its incoming edges
to be equivalent (which we will describe in Sect. 3.3) in order to be applied. The AND-
join rule then chooses one of the labels of the incoming edges non-deterministically as
the label for the outgoing edge. The symbol labeling an outgoing edge of a node that is
an XOR-join or an IOR-join, is the union of the symbols labeling the incoming edges
of the node. The symbolic execution terminates when there is no progation rule that can
be applied. In the following, we define these propagation rules formally.

Definition 3 (Symbolic execution). An outcome of W is the source, an outgoing edge
of some XOR-split, or an outgoing edge of some IOR-split of W. A symbol of W is a set
of outcomes of W. An assignment is a mapping � that assigns a symbol to each edge of
some prefix of W. If e is an edge of that prefix, we say that e is labeled under �.

For every node n of a workflow graph, we describe the propagation by the node n

from an assignment � to an assignment ��, written �
n
� �

�. The propagation �
n
� �

� is
activated when all the incoming edges of n are labeled under � and no outgoing edge
is labeled under �. Additionally, if n is an AND-join, the symbol associated to each
incoming edges of n must be equivalent (according to Def. 4) for the propagation to be

activated. If n is activated in �, we have �
n
� �

� where �
� is obtained as follows, for

any edge e of W:

– If l(n) � AND and there exists an edge e� � Æn, then �
�(e) � �(e�) for e � nÆ and

�
�(e) � �(e) otherwise.

– If n is an XOR-split or an IOR-split, then �
�(e) � �e	 for e � nÆ and �

�(e) � �(e)
otherwise.

– If n is an XOR-join or an IOR-join, for ��(e) �
�

e�
�Æn �(e�)for e � nÆ and �

�(e) �
�(e) otherwise.

As said above, the propagation rules establish that an edge e is marked during an execu-
tion � if and only if some of the outcomes in �(e) are marked during �:

Lemma 1. For any execution � of W and any edge e � E, ��� � �(e) � 0 � ��

�[e] � 0.

3.3 A Normal Form for Symbols

To detect a deadlock or to label the outgoing edge of an AND-join, we need to check
edge equivalence. If two incoming edges of an AND-join are not equivalent, we have
found a deadlock.

We will exploit that the equivalence of edges corresponds to an equivalence of the
symbols they are labeled with. This symbol equivalence can be defined as follows:

Definition 4 (Symbol equivalence). Two symbols S 1� S 2 are equivalent w.r.t. W, writ-
ten S 1 � S 2 if, for any execution � of W, S 1 �

��

� � 0 � S 2 �
��

� � 0.

Symbolic Execution of Acyclic Workflow Graphs 267

As W is free of lack of synchronization, for any edge e and for any execution �, we
have ��

�[e] � 1 or ��

�[e] � 0. Thus, given two edges e1� e2 labeled under �, the edges e1

and e2 are equivalent if and only if the symbols �(e1) and �(e2) are equivalent.
We will decide the equivalence of two symbols by computing a normal form for

each of them. The normal form of a symbol S is the ‘largest’ set of outcomes that is
equivalent to A. Two symbols are equivalent if and only if they have the same normal
form. To show this, we define:

Definition 5 (Maximal equivalent extension, Closure). Let � be an assignment of W
and e be an edge such that e is labeled under �. Let O be the set of outcomes of W that
are labeled under �.

– A maximal equivalent extension of �(e) w.r.t. � is a set ��(e) � O such that ��(e) �
�(e) and there exist no other set S � O such that ��(e) � S and S � �(e).

– The closure of �(e) w.r.t. � is the smallest set �(e) such that �(e) � �(e) and for
each XOR- or IOR-split n such that e� is labeled under � for each e� � nÆ, we have
�(Æn) � �(e) i� nÆ � �(e).

The existence of a maximal equivalent extension is clear. We can also show that it is
unique.

Lemma 2. Let � be an assignment of W and e an edge that is labeled under �. Then
�
�(e) is unique.

It is also clear that the closure exists and is unique. Moreover, we can prove that the
closure is equal to the maximal equivalent extension:

Theorem 1. Let � be an assignment of W. For every edge e that is labeled under �, we
have ��(e) � �(e).

That is, we obtain a unique normal form that is equivalent with a given label of an edge.
We show in Sect. 3.4 that the closure can be computed in linear time. Thus, from the
characterization as a closure, we can compute the normal form in linear time. Moreover,
the normal form has the desired property:

Theorem 2. �(e) � �(e�) whenever e and e� are equivalent.

F

M

J

D

a

c

b

f

i

j

g

s

t

X Y

d

e

h

I

���

���

���

���

���

���

���

���

�����

�����

�����

Fig. 4. Display of a deadlock

We are now able to compute the closure for
the edges g, h, i, and j of the example from
Fig. 2. We have �(g) � �g	, �(h) � �(i) �
�(j) � �s� d� e� f � g	. As �(h) � �(i), h and
i are equivalent. Thus, there is no deadlock
at the AND-join J. On the contrary, �(g)
di�ers from �(j) which implies, by Thm. 2,
that g and j are not equivalent. Therefore,
we detect a deadlock located at the AND-
join D.

When we detect a deadlock because two incoming edges of an AND-join are not
equivalent, we say that the AND-join is the location of the deadlock. To display the

268 C. Favre and H. Völzer

deadlock, we can, based on the assignment, generate in linear time an execution, called
error trace, that exhibits the deadlock. Figure 4 depicts how we would display a dead-
lock: we highlight the location of the deadlock and the error trace, i.e., the edges marked
during the execution leading to the deadlock. We discuss in Sect. 5 a form of diagnostic
information and user interaction that goes beyond this error trace.

3.4 Complexity of the Computation

In this section, we first describe an approach to compute the closure in linear time and
then discuss overall the complexity of symbolic execution.

Let, in this section, � be an assignment of W and D be the set of IOR-splits and
XOR-splits of W such that, for every node d � D, every edge in dÆ is labeled under
�. We define a closure operation of a node d � D on a symbol S that changes S to a
symbol S � such that S �

� S � �(Æd) � dÆ. A closure operation of a node n changing S
to S � is enabled when �(Æd) � S or dÆ � S and S � S �. The computation of the closure
comprises two phases:

1. We go through the nodes from the maximal to the minimal element in D w.r.t. the
precedence relation �, i.e., from the right most nodes in the graph to the left most
nodes of the graph. For each node n, we execute the closure operation of n if it is
enabled.

2. We go through the nodes from the minimal to the maximal element in D w.r.t. the
precedence relation �. For each node n, we execute the closure operation of n if it
is enabled.

It is clear that this computation requires linear time. Note that D must be sorted. This
sorting is obtained once and for all before performing symbolic execution and requires
linear time with respect to the size of the workflow graph. Moreover, we show that the
this sequence of phases is suÆcient to ensure completeness of the closure computation:

Lemma 3. After performing phase 1 and phase 2 on a symbol S , there exists no node
n � D such that a closure operation of d is enabled on S .

Symbolic execution needs just one traversal of the workflow graph. The closure is the
most expensive operation. We have shown how to compute the closure of a symbol in
linear time with respect to the size of D. Therefore, each transition takes at most linear
time and the overall worst-case time complexity is quadratic.

4 Lack of Synchronization and Sometimes-Concurrent Edges

The workflow graph depicted in Fig. 5 permits the execution � �
[s]� [a� b]� [b� d]�
[d� e]� [e� g]� [g� g]� ����. The edge g is marked by two tokens in the marking [g� g]. Thus,
the workflow graph depicted by Fig. 5 contains a lack of synchronization. In this section,
we describe an algorithm that detects lack of synchronization and sometimes-concurrent
edges. The technique has quadratic time complexity.

Symbolic Execution of Acyclic Workflow Graphs 269

S

M

J

b

s

a

e

f

g

t

X d

c

F

Fig. 5. A workflow graph that contains a lack of
synchronization

We first give a characterization of lack
of synchronization in terms of handles
of the graph and then show how han-
dles can be computed in quadratic time.
We describe how to combine the sym-
bolic execution and handle detection to
detect control-flow errors. Finally, we
show how to compute whether two edges
are sometimes-concurrent, which has
separate applications such as data-flow
analysis.

4.1 Handles and Lack of Synchronization

To characterize lack of synchronization, we follow the intuition that paths starting with
an IOR-split or an AND-split, should not be joined by an XOR-join. In the following,
we formalize this characterization and show that such structure always leads to a lack
of synchronization in deadlock-free acyclic workflow graphs.

Definition 6 (Path with an AND-XOR or an IOR-XOR handle). Let p1 �
n0� ���� ni�

and p2 �
n�

0� ���� n
�

j� be two paths in a workflow graph W � (N� E� c� l).

The paths p1 and p2 form a path with a handle1 if p1 is not trivial, p1 � p2 � �n0� ni	,
n0 � n�

0, and ni � n�

j. We say that p1 and p2 form a path with a handle from n0 to ni. We
speak of a path with an IOR-XOR handle if n0 is an IOR-split and ni is an XOR-join. We
speak of a path with an AND-XOR handle if n0 is an AND-split, and ni is an XOR-join.
In the rest of this document, we use handle instead of path with an AND-XOR handle
or path with an IOR-XOR handle. The node n0 is the start node of the handle and the
node ni is the end node of the handle.

Theorem 3. In an acyclic workflow graph that contains no deadlock, there is a lack of
synchronization i� there is a handle.

The outline of the ‘only if’ direction of the proof of Thm. 3 is that, whenever there is
a handle, this handle can be ‘executed’ in the sense that there exists an execution such
that a token reaches the incoming edge of the start node of the handle and then two
tokens can be propagated to reach two incoming edges of the end node of the handle to
create a lack of synchronization. We believe that, due to its direct relationship with an
erroneous execution, the handle is an adequate error message for the process modeler.
In Fig. 5, the handle corresponding to the lack of synchronization is highlighted. We
say that the end node of the handle is the location of the lack of synchronization. Note
that it is necessary that the workflow graph is deadlock-free in order to show that the
handle can be executed and thus a lack of synchronization be observed. However, even
if the workflow graph contains a deadlock, a handle is a design error because, once
the deadlock is fixed, the handle can be executed and a lack of synchronization can be
observed.

1 Strictly speaking, one path is the handle of the other path and vice versa.

270 C. Favre and H. Völzer

Our notion of handles is similar to the one of Esparza and Silva [14] for Petri nets. If
we restrict ourselves to workflow graphs without IOR gateways, one of the directions
of our characterization follows from a result of Esparza and Silva [14]. The converse
direction does not directly follow. Our notion of handles has been described by van der
Aalst [13] who shows that, given a Petri net N, the absence of some type of handle
in N is a suÆcient condition to the existence of an initial marking i of N such that
(N� i) is sound. He points out that path with handles can be computed using a maximum
flow approach. Various algorithms exist to compute the maximum flow (see [15] for
a list). The complexity of these algorithms ranges between O(�N� � �E�2) and O(�N� �
�E� � log(�N�)). The existence of a handle can be checked by applying a maximum flow
algorithm to each pair of transition and place of the net. Therefore, the complexity of
detecting handles with such an approach is at best O(�N�3 � �E� � log(�N�).

4.2 Computing Handles

Given an acyclic directed graph G � (N� E) and four di�erent nodes s1� s2� t1� t2 � N,
Perl and Shiloach [16] show how to detect two node-disjoint paths from s1 to t1 and
from s2 to t2 in O(�N���E�). We extend their algorithm in order to detect two edge-disjoint
paths between two nodes of an acyclic workflow graph. We sketch our extension here
while the details can be found in a separate report [17].

Perl and Shiloach [16] describe how to detect two node-disjoint paths in a directed
graph whereas we want to detect two edge-disjoint paths in a workflow graph which is
a directed multi-graph. To do so, we transform the workflow graph into its line graph.

F

a

b S e

f

M g
s

c

d

t

Fig. 6. The line graph for the workflow graph in Fig. 5

A line graph G� of
a graph G repre-
sents the adjacency
between edges of
G. Each edge of
G becomes a node
of G�. Additionally,
we carry over those
nodes from G to G�

that can be start or end nodes of a handle, i.e., S � �x � x � N� x is an AND-split or
an IOR-split	 and T � �x � x � N � x is an XOR-join	. The edges of G� are such that
the adjacency in G is reflected in G�. For the workflow graph in Fig. 5, we obtain the
line graph shown in Fig. 6. The line graph has two node-disjoint paths from an AND-
or IOR-split to an XOR-join if and only if the workflow graph has a handle from that
split to that join.

To decide whether there are such two node-disjoint paths in the line graph, we can
now apply the approach by Perl and Shiloach [16], which is the construction of a graph
that we call the state graph. To this end, we extend the partial ordering � of the nodes
in the line graph to a total ordering �. A node of the state graph is a pair (n�m) of nodes
of the line graph such that either n � m � S � T or n � m and n � m. There is an edge
in the state graph from (n�m) to (n�

�m) (or to (m� n�)) if there is an edge from n to n� in
the line graph.

Symbolic Execution of Acyclic Workflow Graphs 271

(F,F)

(F,a)

(F,b)

(M,M)

(d,c)
(c,M)

(a,M)

(d,M)
(b,a) (S,a)

(e,a)

(f,a)

(e,c)

(e,d)

(e,M)

(F,e)

(F,M)

Fig. 7. A portion of the state graph for the line graph in Fig. 6

Figure 7 depicts a portion of the state graph for the line line graph in Fig. 6. We have
two node-disjoint paths from an AND- or IOR-split s to an XOR-join j in the line graph
if and only if there is a path from (s� s) to (j� j) in the state graph. In Fig. 7, one such path
is highlighted which indicates two disjoint paths from the AND-split F to the XOR-join
M. The number of edges in the state graph is in O(�N� � �E�) and the number of nodes is
in O(�N�2) in terms of the line graph [16]. The entire algorithm can be implemented to
run in quadratic time in the size of the workflow graph, cf. [17].

4.3 Combining Symbolic Execution with Handle Detection

Symbolic execution detects deadlocks in a prefix of the workflow graph that is free of
lack of synchronization. Therefore, we first check the workflow graph for handles. We
use the end nodes of the handles to delimit a maximum prefix of the workflow graph
that is free of handles. We perform a symbolic execution of this prefix. If a deadlock
is detected, we report the deadlock. If symbolic execution labels the incoming edges of
the end node of a handle, we report the corresponding lack of synchronization. If no
deadlock is detected and there is no handle detected, the workflow graph is sound.

4.4 Sometimes-Concurrent

A data-flow hazard may arise if two conflicting operations on the same data object are
executed concurrently. This can happen only if the tasks containing the data operations
are sometimes-concurrent. A task of a process is represented as an edge in the corre-
sponding workflow graph. Thus for the purpose of data-flow analysis, we are interested
in detecting sometimes-concurrent edges for data-flow analysis.

Definition 7. Two edges are sometimes-concurrent if there exists an execution in which
they are parallel. They are mutually-exclusive or never-concurrent if they are not some-
times-concurrent.

The notion of sometimes-concurrent edges is tightly related to lack of synchronization:
It follows from the proof of Thm. 3 that two incoming edges e� e� of an XOR-join are
sometimes-concurrent if and only if there is handle to this XOR-join such that one path
goes through e and the other goes through e�. To decide whether two arbitrary edges of
a sound graph are sometimes-concurrent, we show the following:

272 C. Favre and H. Völzer

Lemma 4. In a sound prefix of the workflow graph W, if two edges e1� e2 are sometimes-
concurrent, then e1 �� e2.

Lemma 4 can be proven by contradiction: Without loss of generality, assume that e1 �

e2. As e1 and e2 are sometimes-concurrent, there exists a reachable marking m such that
m[e1] � m[e2] � 1. As there is no deadlock, we can move the token on e1 on the path
to e2 until reaching a marking m� such that m�[e2] � 2. The marking m� is a lack of
synchronization which is ruled out by the soundness assumption.

We can now determine whether two edges are sometimes-concurrent: Let W� be the
graph obtained by removing all the elements of the workflow graph that follow either
e1 or e2 and add an XOR-join x to be the target of e1 and e2. The edges e1 and e2 are
sometimes-concurrent if and only if x is the end node of a handle in W�. We obtain:

Theorem 4. It can be decided in quadratic time in the size of the workflow graph
whether a given pair of edges is sometimes-concurrent.

Kovalyov and Esparza [18], propose a technique to detect sometimes-concurrent edges
for sound workflow graphs that do not contain IOR logic in cubic time.

5 Dealing with Over-Approximation

In this section, we show how the labeling that is computed in the symbolic execution
can be leveraged to deal with errors that are detected in the workflow graph but may not
arise in a real execution of the process due to the correlation of data-based decisions.

5.1 User Interaction to Deal with Over-Approximation

When we capture the control-flow of a process in a workflow graph, we abstract from the
data-based conditions that are evaluated when executing an XOR-split or an IOR-split
of the process. Such a data-based decision can be, for example, isGoldCustomer(client).
The data-abstraction may result in errors that occur in the workflow graph but not in
an actual execution of the process. We use in the following the term actual execution

OJ

X

D

F

s

b

a

e

d

g t

c

f

{s}

{s}

{s}

{c}

{d}

{e}

{f}

Fig. 8. A deadlock

to refer to an execution of the real process as op-
posed to its workflow graph, which is an abstrac-
tion of the process.

For example, the graph in Fig. 8 contains a
deadlock located at J. However, if the data-based
decisions in all actual executions are such that
outcome d is taken whenever e is taken, this dead-
lock would never occur in an actual execution.
For example, the data-based condition on d could
be exactly the same as on e. The user should therefore have the opportunity to inspect
the deadlock and decide whether outcomes d and e are related as mentioned above and
then dismiss the deadlock. Analysis of the graph should then continue.

To inspect a deadlock, we provide the AND-join, two incoming edges e� e� of the join,
and their non-equivalent labels �(e)� �(e�) to the user. Then, she has to decide whether

Symbolic Execution of Acyclic Workflow Graphs 273

for each outcome o � �(e) and each actual execution where o is taken, there is an
outcome o� � �(e�) that is also taken in that execution and vice versa. If the user aÆrms
the latter, she can dismiss the deadlock. This basically postulates the equivalence of the
two symbols in actual executions. Henceforth, we continue the symbolic execution by
treating, internally to the analysis, the AND-join as an IOR-join.

OJ

X

D

F

s

b

a

e

d

g t

c

f

{s}

{s}

{s}

{c}

{e}

{f}

{d}

Fig. 9. A lack of synchronization

To inspect a lack of synchronization, we pro-
vide the XOR-join that terminates the detected
handle and the two incoming edges e� e� of the
XOR-join that are part of the handle to the user.
Furthermore, we provide the labels �(e)� �(e�).
Then, the user has to determine that for each pair
of outcomes o � �(e) and o� � �(e�), we have that
o is taken in an actual execution implies that o� is
not taken in that execution. If the user aÆrms the
latter, she can dismiss the lack of synchronization. This basically postulates that o and
o� are mutually-exclusive in actual executions. If this is done for all incoming edges
of the XOR-join, we can henceforth continue the symbolic execution by treating, inter-
nally to the analysis, the XOR-join as an IOR-join. Figure 9 shows an example with a
lack of synchronization located at J. The user may dismiss it because for example, the
conditions on c and e are the same, i.e., d and e are mutually-exclusive.

S

J

M

a

b

d

s t

c

{s}
{a}
{b}

{c}

Fig. 10. A deadlock and a lack of syn-
chronization

Figure 10 shows another example where the
deadlock can be dismissed if b and c are deemed
to be equivalent. Once the user dismissed the
deadlock, we continue the symbolic execution
and label the edge d with the symbol �b� c	 ac-
cording to the IOR-join propagation rule. To dis-
miss the lack of synchronization at M, the user
then has to check the pair a� b and the pair a� c for mutual exclusion.

The deadlock displayed on Fig. 4, can be dismissed if g is equivalent to s, i.e., g is
deemed to be marked in every execution of the process.

Note that, if we provided an execution, i.e., an error trace, rather than the symbolic
information to dismiss an error, we would present exponentially many executions that
contain the same error in the worst case. The analysis of the outcome sets precisely
gives the conditions under which one deadlock or one lack of synchronization occurs.
It does not contain information that is irrelevant for producing the error.

5.2 Relaxed Soundness

OJ

X

D

F

s

b

a

e

d

g t

c

f

{s}

{a}

{b}

{c}

{d}

{e}

{f}

Fig. 11. A deadlock located at J that
should not be dismissed

In some cases, the user should not be allowed to
dismiss an error. Figure 11 shows a deadlock that
cannot be avoided unless d and e are never taken
which clearly indicates a modeling error. This is
related to the notion of relaxed soundness [9]. A
workflow graph is relaxed sound if for every edge
e, there is a sound execution that marks e, where
an execution is sound if it neither reaches a dead-
lock nor a lack of synchronization.

274 C. Favre and H. Völzer

The graph in Fig. 11 is not relaxed sound. We do not know any polynomial-time al-
gorithm to decide relaxed soundness for acyclic workflow graphs. However, we provide
here necessary conditions for relaxed soundness that can be checked in polynomial time.

One necessary condition for relaxed soundness is that for every AND-join j and
every pair of incoming edges e� e� of j, e and e� are sometimes-concurrent. Likewise,
for every XOR-join j and every pair of incoming edges e� e� of j, e and e� must not be
always-concurrent. Moreover, we have the following stronger necessary conditions:

Theorem 5. Let W be an acyclic workflow graph.

– If for an AND-join j, and a pair of incoming edges e� e� of j and one outcome
o � �(e), we have that all outcomes o� � �(e�) are mutually-exclusive with o, then
W is not relaxed sound.

– If for an XOR-join j, and a pair of incoming edges e� e� of j, we have �(e)��(e�) � �,
then W is not relaxed sound.

O

J

X

F

s

a

d

g

t

c

b

{d}

{s}

{s}

{s}

{c}

Fig. 12. A lack of synchronization that
should not be dismissed

Based on the previous results in this paper, we
can compute these necessary conditions for re-
laxed soundness in polynomial time. If one of
them is true, the corresponding error should not
be dismissible. For example, the deadlock in the
workflow graph depicted by Fig. 11 cannot be dis-
missed because d and e are mutually-exclusive.
The lack of synchronization located at J in the
workflow graph depicted by Fig. 12 cannot be dismissed because �(d) � �d	 and
�(b) � �s� c� d	 and thus �(e) � �(e�) � �.

Note that, deciding soundness and relaxed soundness complement each other. If we
only decided relaxed soundness, we would not detect the deadlock that may be present
in an actual execution of Fig. 8 for example.

6 Conclusion

We have shown how basic relationships between control-flow edges of a process can be
decided in polynomial time for acyclic workflow graphs with inclusive OR gateways.
This has various applications, for example, to detect control-flow errors, to perform
data-flow analysis, or to compare processes at a behavioral level. Moreover, we have
proposed a control-flow analysis that decides soundness in quadratic time and gives
concise error information that precisely characterizes a single error. We outlined how
the diagnostic information can be used to eÆciently dismiss spurious errors that may
not occur in actual executions of the process due to correlated data-based decisions.

Note that, to increase the applicability of this approach, we can combine it with
workflow graph parsing using the Refined Process Structure Tree [19], which allows
us to decompose the workflow graph into fragments and to analyze each fragment in
isolation (see [5] for details). Thus, our approach can be used to analyze every acyclic
fragment of a cyclic workflow graph. However, it has to be worked out how the user
interaction proposed in Sect. 5 can be extended to that class. Some cyclic fragments can
be analyzed using suitable heuristics [20] which can be applied in linear time. Moreover,
we would like to extend symbolic execution to cyclic workflow graphs in future work.

Symbolic Execution of Acyclic Workflow Graphs 275

References

1. Mendling, J.: Empirical Studies in Process Model Verification. T. Petri Nets and Other Mod-
els of Concurrency (ToPNoC) 2, 208–224 (2009)

2. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: EÆcient Computation of Causal
Behavioural Profiles using Structural Decomposition. Technical Report BPT 10, HPI (2010)

3. Desel, J., Esparza, J.: Free choice Petri nets. Cambridge tracts in theoretical computer science,
vol. 40. Cambridge University Press, Cambridge (1995)

4. Esparza, J.: Reduction and synthesis of live and bounded free choice Petri nets. Information
and Computation 114(1), 50–87 (1994)

5. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: In-
stantaneous soundness checking of industrial business process models. In: Dayal, U., Eder,
J., Koehler, J., Reijers, H.A. (eds.) BPM. LNCS, vol. 5701, pp. 278–293. Springer, Heidel-
berg (2009)

6. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction techniques. Inf.
Syst. 25(2), 117–134 (2000)

7. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. PhD
thesis, Vienna University of Economics and Business Administration, Vienna, Austria (2007)

8. Wynn, M., Verbeek, H., Aalst, W., Hofstede, A., Edmond, D.: Business process verification-
finally a reality! Business Process Management Journal 15(1), 74–92 (2009)

9. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich, K.R., Geppert,
A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170. Springer, Heidelberg
(2001)

10. Martens, A.: On compatibility of web services. Petri Net Newsletter 65, 12–20 (2003)
11. Favre, C., Völzer, H.: Symbolic execution of acyclic workflow graphs. Technical Report

RZ3780, IBM Research (2010)
12. Völzer, H.: A new semantics for the inclusive converging gateway in safe processes. In: Hull,

R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 285–300. Springer, Heidel-
berg (2010)

13. van der Aalst, W.: Workflow verification: Finding control-flow errors using Petri-net-based
techniques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) BPM 2000. LNCS, vol. 1806,
pp. 161–183. Springer, Heidelberg (2000)

14. Esparza, J., Silva, M.: Circuits, handles, bridges and nets. Advances in Petri nets 483, 210–
242 (1990)

15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4),
921–940 (1988)

16. Pearl, Y., Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in a graph.
Journal of the ACM (JACM) 25(1), 1–9 (1978)

17. Favre, C.: An eÆcient approach to detect lack of synchronization in acyclic workflow graphs.
In: ZEUS. CEUR Workshop Proceedings, vol. 563, pp. 57–64 (2010)

18. Kovalyov, A., Esparza, J.: A Polynomial Algorithm to Compute the Concurrency Relation of
Free-Choice Signal Transition Graphs. In: Proc. of the International Workshop on Discrete
Event Systems, WODES 1996, The Institution of Electrical Engineers, Edinburgh, pp. 1–6
(1996)

19. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl.
Eng. 68(9), 793–818 (2009)

20. Vanhatalo, J.: Process Structure Trees: Decomposing a Business Process Model into a Hier-
archy of Single-Entry-Single-Exit Fragments. PhD thesis, Universität Stuttgart (2009)

Structuring Acyclic Process Models

Artem Polyvyanyy1, Luciano Garćıa-Bañuelos2, and Marlon Dumas2

1 Hasso Plattner Institute at the University of Potsdam, Germany
Artem.Polyvyanyy@hpi.uni-potsdam.de

2 Institute of Computer Science, University of Tartu, Estonia
{luciano.garcia,marlon.dumas}@ut.ee

Abstract. This paper addresses the problem of transforming a process
model with an arbitrary topology into an equivalent well-structured pro-
cess model. While this problem has received significant attention, there
is still no full characterization of the class of unstructured process mod-
els that can be transformed into well-structured ones, nor an automated
method to structure any process model that belongs to this class. This
paper fills this gap in the context of acyclic process models. The paper
defines a necessary and sufficient condition for an unstructured process
model to have an equivalent structured model under fully concurrent
bisimulation, as well as a complete structuring method.

1 Introduction

In the Business Process Modeling Notation (BPMN) and in similar notations, a
process model is composed of nodes (e.g., tasks, events, gateways) connected by a
“flow” relation. Although BPMN allows process models to have almost any topol-
ogy, it is often preferable that process models follow some structure. In this re-
spect, a well-known property of process models is that of (well-)structuredness [1],
meaning that for every node with multiple outgoing arcs (a split) there is a cor-
responding node with multiple incoming arcs (a join), such that the set of nodes
between the split and the join form a single-entry-single-exit (SESE) region. For
example, Fig.1(a) shows an unstructured process model, while Fig.1(b) shows
an equivalent structured model. Note that Fig.1(b) uses short-names for tasks
(a, b, c . . .), which appear next to each task in Fig.1(a).

This paper studies the problem of automatically transforming process models
with arbitrary topology into equivalent well-structured models. The motivation
for such a transformation is manifold. Firstly, it has been empirically shown that
structured process models are easier to comprehend and less error-prone than
unstructured ones [2]. Thus, a transformation from unstructured to structured
process model can be used as a refactoring technique to increase process model
understandability. Secondly, a number of existing process model analysis tech-
niques only work for structured models. For example, a method for calculating
cycle time and capacity requirements of structured process models is outlined
in [3], while a method for analyzing time constraints in structured process models
is presented in [4]. By transforming unstructured process models to structured

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 276–293, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Structuring Acyclic Process Models 277

Pay by
cash

Pay by
cheque

Update
account

Approve
R1

P1

Reject payment
request

Inform
customer

B1

P2

P3

a

b

c

d

e f

i ot

u

v

w

x y z

(a)

b

a

P3

i ov w x y z

P1

B1

P2

B2 B3

c

d

e f

(b)

Fig. 1. Unstructured process model and its equivalent structured version

ones, we can extend the applicability of these techniques to a larger class of mod-
els. Thirdly, a transformation from unstructured to structured process models
can be used to implement converters from graph-oriented process modeling lan-
guages to structured process modeling languages, e.g., BPMN-to-BPEL.

In the context of flowcharts, without parallel splits and joins, it has been
shown that any unstructured flowchart can be transformed into a structured
one [5]. If we add parallel splits and joins, this result no longer holds: There exist
unstructured process models that do not have equivalent structured ones [1].
Several authors have attempted to classify the sources of unstructuredness in
process models [6,7,8] and to define automated methods for structuring process
models [9,10,11]. However, these methods are incomplete: There is currently no
full characterization of the class of inherently unstructured process models, i.e.,
unstructured process models that have no equivalent structured model. Also,
none of the existing structuring methods is complete. In fact, this problem has
not been fully solved even for acyclic process models. This paper fills this gap.

To streamline the presentation, we make several assumptions. Firstly, we
consider process models composed of nodes (tasks, events, gateways) and con-
trol flow relations. In terms of BPMN, this means that we abstract away from
other process model elements such as artifacts, annotations, associations, groups,
pools, lanes, message flows, sub-process invocations and attributes associated to
sub-process invocations, e.g., repetition. Nonetheless, the proposed method is
applicable even if these types of elements are present in the input model. Sim-
ply, these ancillary elements and attributes need to be moved along with the
tasks or events to which they are attached. In the same vein, we do not dis-
tinguish between events and tasks since, for the purpose of the transformation,
both of these elements are treated equally. Secondly, we consider only sound pro-
cess models [12]. This restriction is natural since soundness is a widely-accepted
correctness criterion for process models. Thirdly, we consider process models in
which every node has only one incoming or one outgoing arc. This restriction is
merely syntactical because one can trivially split a node with multiple incoming
and multiple outgoing arcs into two nodes: one node with a single outgoing arc
and the other with a single incoming arc. Fourthly, we consider models with
only one start node and one end node. Again, this is not a restriction since
every sound model with multiple end nodes can be transformed into an equiv-
alent sound model with a unique end node [12]. The reverse technique can be

278 A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas

applied to models with multiple start nodes. Finally, we do not deal with the
following BPMN constructs: OR gateways, complex gateways, error events and
non-interrupting events. Lifting this latter restriction is left as future work.

The next section presents a taxonomy of (unstructured) process components
in process models and reviews related work. Next, Sect.3 introduces the for-
malism used to represent process models. Sect.4 then introduces the behavioral
equivalence used in this paper, viz. fully concurrent bisimulation (FCB), and
shows that two acyclic process models are equivalent under this equivalence no-
tion iff they have the same set of ordering relations. This result is used in Sect.5
to characterize the class of acyclic process components that can be structured
and to define a structuring algorithm. Finally, Sect.6 concludes the paper.

2 Background and Related Work

This section discusses a complete taxonomy of process components. Next, we
analyze previous work with respect to the proposed taxonomy.

2.1 Taxonomy of Process Components

The Refined Process Structure Tree (RPST) [13] is a technique to decompose a
process model into a tree of regions. Each node in the RPST maps to a SESE
region, herewith called a process component. A component in the RPST contains
all components at the lower level, and all components at a given level are disjoint.

Each component in the RPST can be classified into one out of four classes [14]:
A trivial (T) component consists of a single flow arc. A polygon (P) represents a
sequence of components. A bond (B) stands for a set of components that share
two common nodes. Any other component is a rigid (R). Rigid components
explicitly define what makes a process model unstructured.

Process component

Trivial Polygon Bond Rigid

Homogeneous Heterogeneous

XOR AND

Acyclic Cyclic

Acyclic Cyclic

Fig. 2. Taxonomy

Fig.1 exemplifies the RPST decomposition in
the form of dotted boxes. For instance in Fig.1(a),
polygon P1 is the root of the RPST and corre-
sponds to the whole process model. Polygon P1
contains bond B1 that, in turn, contains polygons
P2 and P3. Observe that trivial components and
polygons that are composed of two flow arcs are
not visualized for simplicity reasons.

Trivials, polygons, and bonds are structured
process components. If one could transform each
rigid component in the RPST into an equivalent
structured component, the entire model could be
structured by traversing the RPST bottom-up and replacing each rigid by its
equivalent structured component. Accordingly, the rest of the paper focuses on
structuring rigid components.

The methods for structuring rigid components differ depending on the types
of gateways present in the rigid and whether the rigid contains cycles or not.
We classify rigids as follows. A homogeneous rigid contains either only xor or

Structuring Acyclic Process Models 279

only and gateways. We call these rigids (homogeneous) and rigids and (homo-
geneous) xor rigids, respectively. A heterogeneous rigid contains a mixture of
and/xor gateways. Heterogeneous and homogeneous xor rigids are further clas-
sified into cyclic, if they contain at least one cycle, or acyclic. Importantly, a safe
process model cannot contain homogeneous and rigids with cycles. Upon this
background, a taxonomy of process components is provided in Fig.2.

2.2 Related Work

The problem of structuring process models is relevant in the context of de-
signing BPMN-to-BPEL transformations. However, BPMN-to-BPEL transfor-
mations such as [11] treat rigids as black-boxes that are translated using BPEL
links or event handlers, rather than seeking to structure them. In this sense, the
present contribution is complementary to this previous work.

A large body of work on flowcharts and GOTO program transformation [5],
has addressed the problem of structuring xor rigids. In some cases, these trans-
formations introduce additional boolean variables in order to encode part of the
control flow, while in other cases they require certain nodes to be duplicated.

In [1], the authors show that not all acyclic and rigids can be structured.
They do so by providing one counter-example, but do not give a full charac-
terization of the class of models that can be structured nor do they define any
automated transformation. Instead, they explore some causes of unstructured-
ness. In a similar vein, [6] presents a taxonomy of unstructuredness in process
models, covering cyclic and acyclic rigids. But the taxonomy is incomplete, i.e.,
it does not cover all possible cases of models that can be structured. Also, the
authors do not define an automated structuring algorithm.

In [7], the authors outline a classification of process components using region
trees, a predecessor of the RPST. However, the authors do not provide a complete
structuring method for acyclic heterogeneous rigids, e.g., the one in Fig.1(a). A
similar remark applies to [10]. Meanwhile, [9] proposes a method for restructuring
xor rigids based on GOTO program transformations, and extends this method
to process graphs where such xor rigids are nested inside bonds. However, this
method cannot deal with and rigids nor heterogeneous rigids.

3 Preliminaries

Below we introduce the notations used subsequently to represent process models.

3.1 Petri Nets

Petri nets are a well-known formalism for modeling concurrent systems. Below
we present standard definitions of Petri nets and their semantics.

Definition 1 (Petri net). A Petri net, or a net, is a tuple N � �P,T,F �, with
P and T as finite disjoint sets of places and transitions, and F � �P �T ���T �P �
as the flow relation.

280 A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas

We identify F with its characteristic function on the set �P�T ���T�P �. We write
X � �P � T � for all nodes of a net. For a node x � X , �x � �y � X � F �y, x� � 1�
and x� � �y � X � F �x, y� � 1�. A node x �X is an input (output) node of a node
y �X , iff x � �y (x � y�). For Y � X , �Y � �y�Y �y and Y � � �y�Y y�. We denote
by F � and F � irreflexive and, respectively, reflexive transitive closures of F .

Definition 2 (Net semantics). Let N � �P,T,F � be a net.
� M � P � N0 is a marking of N , where M�p�, p � P , returns the number of

tokens in place p. �p� denotes the marking when place p contains just one
token and all other places contain no tokens.

� For any transition t � T and for any marking M of N , t is enabled in M ,
denoted by �N,M��t�, iff �p � �t �M�p� � 1.

� If t � T is enabled in M , then it can fire, which leads to a new marking M �,
denoted by �N,M��t��N,M ��. The new marking M � is defined by M ��p� �
M�p� �F �p, t� �F �t, p�, for each place p � P .

� A sequence of transitions σ � t1 . . . tn, n � N, is a firing sequence, iff there exist
markings M0 . . .Mn, such that for all 1 � i � n holds �N,Mi�1��ti��N,Mi�.

� For any two markingsM andM � ofN ,M � is reachable fromM inN , denoted
by M � � �N,M�, iff there exists a firing sequence σ leading from M to M �.

� A net system, or a system, is a pair �N,M0�, where N is a net and M0 is a
marking of N . M0 is called the initial marking of N .

Workflow (WF-)nets [15] are a subclass of Petri nets specifically designed to
represent business process models. A WF-net is a net with two special places:
one to mark the start and the other the end of a workflow execution.

Definition 3 (WF-net, Short-circuit net, WF-system).
A Petri net N � �P,T,F � is a workflow net, or a WF-net, iff N has a dedicated
source place i � P , with �i � 	, N has a dedicated sink place o � P , with o� � 	,
and the short-circuit net N � � �P,T � �t��, F � ��o, t��, �t�, i���, t� � T , of N is
strongly connected. A WF-system is a pair �N,Mi�, where Mi � �i�.

Soundness and safeness are basic properties of WF-systems [15]. Soundness states
that every execution of a WF-system ends with a token in the sink place, and
once a token reaches the sink place, no other tokens remain in the net. Safeness
refers to the fact that there is never more than one token in the same place.

In the rest of the paper, we also use three structural subclasses of Petri nets
(free-choice net, occurrence net, and causal net), as well as labeled Petri nets to
distinguish observable and silent transitions. These are defined below.

Definition 4 (Free-choice net, Occurrence net, Causal net).
A Petri net N � �P,T,F � is a free-choice net, iff �p � P , �p � � � 1 � ��p�� � �p�.
Let N � �P,T,F � be a net such that �x, y � P � T � �x, y� � F � � �y, x� � F �.
� Net N is an occurrence net, iff �p � P � � � p� � 1.
� Net N is a causal net, iff �p � P � � � p� � 1
 �p � � � 1.

Definition 5 (Labeled net). A labeled net is a tuple N � �P,T,F,� , λ�,
where �P,T,F � is a net, � is a set of labels, such that τ � � , and λ � T � �

Structuring Acyclic Process Models 281

is a function that assigns labels to transitions. If λ�t� � τ , then t is observable;
otherwise, t is silent. λ is distinctive if it is injective on a subset of observable
transitions.

3.2 Process Model
As discussed in Sect.1, we consider process models consisting of activities and
gateways, as captured in the following definition.

Definition 6 (Process model)
A process model is a tuple W � �A,G�,G�,C,�, μ�, where A is a non-empty set
of activities (or tasks), G� is a set of and gateways, G� is a set of xor gateways
(these sets are disjoint). We write G � �G�

�G�� for all gateways and Z � �A�G�
for all nodes of a model. C � Z � Z defines the control flow. � is a non-empty
set of names and μ � A � � is a function that assigns names to tasks.
A task a � A is a source, iff �a � 	 and it is a sink, iff a� � 	, where �x, x � Z,
stands for a set of immediate predecessors and x� stands for a set of immediate
successors of node x. As discussed in Sect.1, we assume that �Z,C� is a graph
with a single source, a single sink and is such that every node is on a path from
the source to the sink. Each task a � A has at most one incoming and at most
one outgoing arc, i.e., ��a� � 1
 �a�� � 1, while each gateway is either a split or a
join: A gateway g � G is a split, iff ��g� � 1
 �g�� � 1. A gateway g � G is a join,
iff ��g� � 1
 �g�� � 1. The execution semantics of process models is defined by a
mapping to labeled free-choice Petri nets (cf. Definition 7). For example, Fig.3
shows the WF-net of the process model in Fig.1(a). The figure highlights the
subnet that corresponds to rigid component R1 in Fig.1(a) (cf. dotted box).

ta
tt,a

pi
ti tb

tt,b

te
tt,e

pt

pt,a

pt,b

pt,e
tf

pe,f

pz

tu

tv

pa,u

pb,v

pw

px

tc

td

pw,c

px,d

tw,c

tx,d ty

pc,y

pd,y
to

potz,o pz,o
R1

Fig. 3. A WF-net that corresponds to the process model in Fig.1(a)

Definition 7 (WF-net of a process model). Let W � �A,G�,G�,C,�, μ�
be a process model. Let I and O be sources and sinks of W , respectively. The
labeled net N � �P,T,F,� , λ� corresponding to W is defined by:
� P � �px � x � G�� � �px,y � �x, y� � C
 y � A �G�� � �px � x � I �O�.
� T � �tx � x � A �G�� � �tx,y � �x, y� � C
 x � G��.
� F � ��tx, py� � �x, y� � C
x � A�G�

y � G�����tx, px,y� � �x, y� � C
x, y �
A �G�� � ��tx,y, py� � �x, y� � C
 x, y � G�� � ��tx,y, px,y� � �x, y� � C
 x �

G�

y � A�G�����px, tx,y� � �x, y� � C
x � G�����px,y, ty� � �x, y� � C
y �

A �G�� � ��px, tx� � x � I� � ��tx, px� � x � O�.
� � � � � �τ�. λ�tx� � μ�x�, tx � T,x � A, otherwise λ�t� � τ, t � T .

282 A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas

Definition 7 states that a task is mapped to a Petri net transition with a single
input and a single output arc. An and gateway maps to a transition with multiple
outgoing arcs (and-split) or multiple incoming arcs (and-join). An xor gateway
maps to a place with multiple outgoing arcs (xor-split) or multiple incoming arcs
(xor-join). The places corresponding to xor-splits are immediately followed by
empty (τ) transitions representing the branching conditions (cf. transitions tx,y

introduced in the mapping). Sources and sinks of the process model are mapped
to places.

A process model is sound if its corresponding WF-net is sound. In this paper
we only consider sound process models. We note that a sound free-choice WF-
system is guaranteed to be safe [16] and Definition 7 always produces free-choice
WF-nets. Thus the rest of the paper deals with sound and safe process models.

4 Behavioral Equivalence of Process Models

This section motivates fully concurrent bisimulation as the equivalence notion for
process models, cf., Sect.4.1, and discusses the procedure of checking equivalence
for the class of behavior captured by occurrence nets, cf., Sect.4.2.

4.1 Fully Concurrent Bisimulation

An unstructured model and the corresponding structured model are structurally
different, but behaviorally equivalent. There exist many notions of behavioral
equivalence for concurrent systems [17]. A common notion of behavioral equiva-
lence for concurrent systems is that of bisimulation. Related notions are those of
weak bisimulation and branching bisimulation, which abstract away from silent

ta

tb
tc

td

td

td

tc

td

td

tc

te tf

toti
pi popz

px

py

pw

pc,d,1

pd,c,1

pc,d,2

pd,c,2

pe,fpw,e

pw,b

pw,atw,a

tw,b

tw,e

Fig. 4. Sequential simulation of the net in Fig.3

transitions. These notions have
been advocated as being suit-
able for comparing process
models [12]. However, we argue
that they are not suitable for
our purposes. These three no-
tions adopt an interleaving se-
mantics – i.e., no two tasks are
executed exactly at the same
time. Thus, a concurrent sys-
tem and its sequential simula-
tion are considered equivalent. For example, Fig.4 shows the sequential simula-
tion of the net in Fig.3. This net is structured and weakly bisimilar to the net
in Fig.3, but it contains no parallel branch. We could take any process model,
compute its sequential simulation, structure this sequential net using GOTO
program transformations, and transform back the resulting sequential net into a
structured process model. This structuring method is complete, but if we start
with a process model containing and gateways, we obtain a (much larger) struc-
tured process model without any parallel branches.

Structuring Acyclic Process Models 283

Accordingly, we adopt a notion of equivalence that preserves the level of con-
currency of observable transitions, viz. fully concurrent bisimulation (FCB) [18].
FCB is defined in terms of concurrent runs of a system, a.k.a. processes in the
literature (but not to be confused with “business processes” or workflows).

Let N � �P,T,F � be a causal net. A P-cut c � P of N is a maximal set of
places unordered w.r.t. F �. Let Min�N� define the set �x � X � �x � 	� and let
Max�N� define the set �x � X � x� � 	�.

Definition 8 (Process). A process π � �Nπ, ρ� of a system S � �N,M0�, N �

�P,T,F �, consists of a causal net Nπ � �Pπ, Tπ, Fπ� and a function ρ � Xπ � X :
� ρ�Pπ� � P, ρ�Tπ� � T ,
� Min�Nπ� is a P-cut, which corresponds to the initial marking M0, that is
� p � P �M0�p� � �ρ�1�p� �Min�Nπ��, and

� � t � Tπ � p � P � �F �p, ρ�t�� � �ρ�1�p� � �t��
 �F �ρ�t�, p� � �ρ�1�p� � t � ��.
A process π of S is initial, iff Tπ � 	.

A process π� is an extension of a process π if it is possible to observe π before
one observes π�. Consequently, process π is a prefix of π�.

Definition 9 (Prefix, Process extension)
Let π � �Nπ, ρ�, Nπ � �Pπ, Tπ, Fπ�, be a process of S � �N,M0�, N � �P,T,F �.
Let c be a P-cut of Nπ and let c� be the set �x � Xπ � � y � c � �x, y� � F ��. A
process π�

c is a prefix of π, iff π�
c � ��Pπ � c

�, Tπ � c
�, F ��c�� c���, ρ�c��. A process

π� is an extension of process π if π is a prefix of π�.

In order to define FCB, we need two auxiliary definitions: λ-abstraction of a
process, which is a process footprint that ignores silent transitions, and the
order-isomorphism of λ-abstractions.

Definition 10 (Abstraction of a process of a labeled system)
Let S � �N,M0�, N � �P,T,F,� , λ�, be a labeled system and let π � �Nπ, ρ�,
Nπ � �Pπ, Tπ, Fπ�, be a process of S. The λ-abstraction of π, denoted by αλ�π� �
�T �

π,	, λ
��, is defined by T �

π � �t � Tπ � λ�ρ�t�� � τ�, 	 � ��t1, t2� � T �

π �

T �

π � �t1, t2� � F
��, and λ� � T �

π � � , such that λ��t� � λ�ρ�t��, t � T �

π.

Two λ-abstractions are order-isomorphic if there exists a one-to-one correspon-
dence between transitions of both abstractions that also preserves the ordering
of the corresponding transitions in the respective abstractions.

Definition 11 (Order-isomorphism of abstractions)
Let αλ1 � �T1,	1, λ1� and αλ2 � �T2,	2, λ2� be two λ-abstractions, both with
labels in � . Then αλ1 and αλ2 are order-isomorphic, denoted by αλ1
 αλ2 ,
iff there is a bijection β � T1 � T2 such that � t � T1 � λ1�t� � λ2�β�t�� and
� t1, t2 � T1 � t1 	1 t2 � β�t1� 	2 β�t2�.

Given the above, fully concurrent bisimulation is defined as follows.

Definition 12 (Fully concurrent bisimulation)
Let S1 � �N1,M

1
0 � and S2 � �N2,M

2
0 � be labeled systems,N1 � �P1, T1, F1,�1, λ1�

and N2 � �P2, T2, F2,�2, λ2�. S1 and S2 are fully concurrent bisimilar, denoted
by S1 � S2, iff there is a set � � ��π1, π2, β��, such that:

284 A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas

(i) π1 is a process of S1, π2 is a process of S2, and β is a relation between the
non-τ transitions of π1 and π2.

(ii) If π1
0 and π2

0 are the initial processes of S1 and S2, respectively, then
�π1

0 , π
2
0 ,	� � �.

(iii) If �π1, π2, β� � �, then β is an order-isomorphism between the λ1-abstraction
of π1 and the λ2-abstraction of π2.

(iv) ��π1, π2, β� � � �

(a) If π�1 is an extension of π1, then ��π�1, π
�

2, β
�� � � where π�2 is an extension

of π2 and β � β�.
(b) Vice versa.

FCB defines an equivalence relation on labeled systems that is stricter than
weak bisimulation and related notions. The nets in Fig.4 and Fig.3 are weakly
bisimilar but not FCB-equivalent. Meanwhile, the two models in Fig.1 are FCB-
equivalent (with the understanding that two process models are FCB-equivalent
if the corresponding Petri nets are FCB-equivalent).

4.2 Behavioral Equivalence and Ordering Relations

The above definition of FCB-equivalence is abstract and hardly of any use when
synthesizing structured nets from unstructured ones. Accordingly, we employ a
more convenient way of reasoning about FCB-equivalence based on the ordering
relations of occurrence nets. The idea is that any pair of nodes in an occurrence
net can be in a precedence, conflict, or concurrent ordering relation as defined
below, and these ordering relations can be used to reason about FCB-equivalence.

Definition 13 (Ordering relations)
Let N � �P,T,F � be an occurrence net and let x, y �X be two nodes of N .
� x precedes y, denoted by x�N y, iff �x, y� � F �.
� x and y are in conflict, denoted by x #N y, iff � t1, t2 � T, t1 � t2 � ��t1��t2 �
	�
 t1 �N x
 t2 �N y.

� x and y are concurrent, denoted by x ��N y, iff they are neither in precedence,
nor in conflict.

The set � � ��N ,#N , ��N� forms the ordering relations of N .

Let N � �P,T,F,� , λ� be a labeled occurrence net and let T � � �t � T � λ�t� � τ�.
The λ-ordering relations of N are formed by the set �λ � ��N � T �

� T �,#N �

T �
� T �, ��N � T �

� T ��. We say that two ordering relations are isomorphic if for
each pair of observable transitions the ordering relation coincides.

Definition 14 (Isomorphism of ordering relations)
Let N1 � �P1, T1, F1,�1, λ1� and N2 � �P2, T2, F2,�2, λ2� be two labeled occur-
rence nets with distinctive labelings. Let T �

1 and T �

2 denote non-τ transitions of
N1 and N2, respectively. Two λ-ordering relations �λ1 of N1 and �λ2 of N2 are
isomorphic, denoted by �λ1
 �λ2 , iff there is a bijection γ � T �

1 � T �

2, such that:
� � t � T �

1 � λ1�t� � λ2�γ�t��, and
� � t1, t2 � T

�

1 � �t1 �N1 t2
 γ�t1� �N2 γ�t2��
 �t2 �N1 t1
 γ�t2��N2 γ�t1��

�t1 #N1 t2
 γ�t1� #N2 γ�t2��
 �t1 ��N1 t2
 γ�t1� ��N2 γ�t2��.

Structuring Acyclic Process Models 285

Finally, we show that two occurrence nets with isomorphic ordering relations are
FCB-equivalent, and vice-versa. This result is exploited in the next section.

Theorem 1. Let S1 � �N1,M
1
i �, N1 � �P1, T1, F1,�1, λ1�, and S2 � �N2,M

2
i �,

N2 � �P2, T2, F2,�2, λ2�, be two labeled occurrence systems with distinctive label-
ings and T �

1 � T1, T �

2 � T2 observable transitions, such that there exists bijection
ψ � T �

1 � T �

2 for which holds λ1�t� � λ2�ψ�t��, for all t � T �

1. Let �λ1 and �λ2 be
the λ-ordering relations of N1 and N2. Then, it holds:

S1 � S2 � �λ1
 �λ2 .

Proof. We prove each direction of the equality separately.
��� Let S1 and S2 be FCB-equivalent. We want to show that �λ1
 �λ2 .

Let us assume that S1 � S2 holds, but �λ1
 �λ2 does not hold. Fur-
thermore, let us consider transitions t1i , t

1
j � T

�

1 that are in one-to-one corre-
spondence with transitions t2i , t

2
j � T �

2, i.e., λ1�t
1
i � � λ2�ψ�t2i �� and λ1�t

1
j� �

λ2�ψ�t2j��. All scenarios can be reduced to the following two cases:

Case 1: (t1i �N1 t
1
j or t1i �N1 t

1
j , and t2i #N2 t

2
j). If t1i �N1 t

1
j or t1i �N1 t

1
j , then

there exists process π1 in S1 that contains t1i and t1j . If t2i #N2 t
2
j , then there

exists no process π2 in S2 that contains t2i and t2j .
Case 2: (t1i �N1 t

1
j , and t2j �N2 t

2
i or t2i ��N2 t

2
j). Let π1 be a process in S1 that

contains t1i and t1j , and let π2 be a process in S2 that contains t2i and t2j .
Then, there exists no φ � ψ, such that φ is an order-isomorphism between
λ-abstractions of π1 and π2.
In both cases we reach the contradiction, i.e., systems S1 and S2 cannot be
FCB-equivalent if the λ-ordering relations are not isomorphic.

��� Let �λ1
 �λ2 . We want to show that S1 and S2 are FCB-equivalent.
Let us assume that �λ1
 �λ2 holds, but S1 � S2 does not hold. Then,
for instance, in S1 there exists process π�1 that has no corresponding order-
isomorphic process in S2. Suppose that π�1 has the minimal size among all
such processes, i.e., any prefix of π�1 has a corresponding order-isomorphic
process in S2. Let π�1 be an extension of π1 by exactly one observable transi-
tion t1j � T

�

1. Let π2 be a process in S2 that is order-isomorphic with π1. Let
t2j � T

�

2 be in one-to-one correspondence with t1j , i.e., λ1�t
1
j� � λ2�ψ�t2j��. All

scenarios can be reduced to the following three cases:
Case 1: There exists process π�2 that contains t2j and is an extension of π2 by one

observable transition. Moreover, there exists t1i � T
�

1 in π1, such that t1i �N1

t1j . However, it holds t2i ��N2 t2j , for t2i � T �

2, such that λ1�t
1
i � � λ2�ψ�t2i ��;

otherwise there exists an order-isomorphism φ � ψ between π�1 and π�2.
Case 2: There exists no process π�2 that contains t2j and is an extension of π2.

Moreover, there exists t1i � T �

1 in π1, such that t1i �N1 t
1
j . However, it holds

t2i #N2 t
2
j , for t2i � T

�

2, such that λ1�t
1
i � � λ2�ψ�t2i ��.

Case 3: There exists process π�2 that contains t2j and is an extension of π2, but
not by only one observable transition. Then, there exists t2k � T �

2 and process
π��2 in S2, such that t2k �N2 t

2
j , π

��

2 is prefix of π�2, and π2 is prefix of π��2 .
However, t1k � T �

1, λ1�t
1
k� � λ2�ψ�t2k��, is not in π�1 and, hence, t1k �N1 t

1
j .

286 A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas

In all three cases we reach the contradiction, i.e., the λ-ordering relations
cannot be isomorphic if systems S1 and S2 are not FCB-equivalent. ��

5 Synthesis of Structured Process Models

The key idea of the proposed structuring method is to compute the ordering
relations of every rigid component, and to synthesize a structured process com-
ponent from these ordering relations (if such a structured process component
exists). A structured process component is one whose RPST contains only triv-
ials, bonds and polygons. Accordingly, what we need is to find such structures
in the graph induced by the ordering relations of the component. To this end,
we rely on the concept of modular decomposition [19]. Below we discuss how
to compute the ordering relations of a process component and then we use the
output of this step to synthesize a structured component based on the modular
decomposition.

5.1 Computing Ordering Relations

In order to compute the ordering relations of tasks in a process component, we
first need to build a corresponding occurrence net, using a procedure known as
unfolding [20]. For example, Fig.5 presents the occurrence net for the rigid com-
ponentR1 in Fig.3. The occurrence net may include multiple transitions referring
to the same task, e.g., transitions tc,1 and tc,2 refer to task c. If we used the order-
ing relations computed from the occurrence net to synthesize a structured process
component, the component would contain many duplicate tasks. Fortunately, for
any safe net there exists a prefix of its occurrence net, called the complete prefix
unfolding [20], that is more compact than the occurrence net but contains all the
information about markings contained in the occurrence net. Moreover, this prefix
is finite (even for safe nets with cycles). The complete prefix unfolding is obtained
by truncating the occurrence net in points where the information about reachable
markings starts to be redundant.

Definition 15 (Complete Prefix Unfolding, Cutoff transition)
Let N � �P,T,F � be an occurrence net.
� A local configuration 	t
 of a transition t in an occurrence net is the set of

transitions that precede t, i.e., 	t
 � �t� � T � �t�, t� � F ��.
� The final marking of a local configuration Mark�	t
� is the set of places that

are marked after all the transitions in 	t
 fire.
� An adequate order � is a strict well-founded partial order on local configu-

rations, so that 	t
 � 	t�
 implies 	t
 � 	t�
1.
� A transition t of an occurrence net is a cutoff transition if there exists a

corresponding transition t�, such that Mark�	t
� � Mark�	t�
� and 	t�
 � 	t
.
� A complete prefix unfolding is the greatest backward closed subnet of an

occurrence net containing no transitions after cutoff transitions.
1 Several definitions of adequate order exist; we use the one defined in [20], because it

has been shown to generate compact unfoldings.

Structuring Acyclic Process Models 287

The dotted lines in Fig.5 indicate which parts of the occurrence net are trun-
cated in the complete prefix unfolding. In the unfolding, transition tv is a cutoff
transition.

ta

tb

Complete prefix unfolding

pt,att,a

pt

pt,btt,b

pa,u

pb,v

tu

tv

pw

px

pw

px

tw,c,1

tx,d,1
tc,1

td,1

pw,c

px,d

tc,2

td,2

pw,c

px,d

pc,y

pd,y

pc,y

pd,y

ty,1 pz

pzty,2

tw,c,2

tx,d,2

Fig. 5. Occurrence net and complete prefix
unfolding of the running example

Alg.1 (adapted from [21]) com-
putes the ordering relations based on
a complete prefix unfolding. This al-
gorithm has a low polynomial time
to the size of the net. However,
the overall complexity of computing
ordering relations is dominated by
the exponential worst-case complex-
ity of computing the prefix unfold-
ing, which is an NP-complete prob-
lem. Observe that in the case of and
rigids this step is not required as the
corresponding WF-net is always an occurrence net. Besides, we do not compute
the prefix unfolding over the whole net, but only on individual rigid components
of the net. Tests we have conducted with sample process models show that the
prefix unfolding computation takes sub-second times2. This finding is in line
with other work that have empirically shown that prefix unfolding computation
is efficient in practice [20].

Algorithm 1: Compute Ordering Relations of a Complete Prefix Unfolding
Input: A WF-net W � �Pw , Tw, Fw�, its Complete Prefix Unfolding

U � �P,T,F �, and the mapping function lw � T � Tw

Output: Matrix ORel containing the ordering relations of transitions in U
foreach ti, tj � T do Assert �ti �U tj� in ORel
foreach ti � T following a preorder traversal of U do

foreach tj � T such that tj � �� � ti� do
Assert �tj �U ti� in ORel
foreach tk � T such that �tk �U tj� � ORel do

Assert �tk �U ti� in ORel
foreach tk � T such that �tk #U tj� � ORel do

Assert �tk #U ti�, �ti #U tk� in ORel
foreach tj � T such that ti � tj � �ti � �tj � � do

Assert �tk #U ti� in ORel
foreach tk � T such that �tj �U tk� � ORel do

Assert �tk #U ti�, �ti #U tk� in ORel
// Iterate over cutoff transitions in reverse topological order

foreach ti, tj , tk � T such that ti is a cutoff in U , tj is not a cutoff in U ,
Mark��ti�� � Mark��tj��, lw�ti�� � lw�tj��, and lw�ti� � � � lw�tk� � � do

foreach tm, tn � T such that �tk �U tm� � ORel � tk � tm and tn � �ti� do
Assert �tn �U tm� in ORel

return ORel

2 Using the Mole tool for prefix unfolding http://www.fmi.uni-stuttgart.de/szs/

tools/mole/ which implements the algorithm in [20].

288 A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas

Alg.1 comprises two phases. First, it computes the ordering relations of transi-
tions on the unfolding according to Definition 13. Then, it updates the relations
of transitions in the local configuration of every cutoff transition to overcome the
effects of truncation. The update must be performed in reverse topological or-
der. For instance, the algorithm will assert �tb � tc,1� in addition to �ta � tc,1�,
i.e., task c may be preceded by either a or b. Note that we impose an additional
requirement i.e., postsets of a cutoff transition and its corresponding transition
must map to the same set of places in the WF-net, for all cutoff transitions. If a
complete prefix unfolding does not meet this requirement, it must be expanded.

5.2 From Ordering Relations to Process Models

This section presents the algorithm for synthesizing a well-structured process
model that is fully concurrent bisimilar with a given (unstructured) model. Also,
we identify the cases when an equivalent well-structured model does not exist.

According to Theorem 1, two process models are fully concurrent bisimilar,
iff they demonstrate same ordering relations. Given an (unstructured) process
model, the algorithm proceeds by computing its ordering relations, as discussed
in Sect. 5.1. Afterwards, the algorithm attempts to synthesize a well-structured
model with the same ordering relations.

Let N � �P,T,F,� , λ� be a labeled occurrence net. The ordering relations
graph of N is a triple �λ � �V,E,��, where V is the set of non-τ transitions
of N , � � �ε,�,#,�� is a set of labels, and E � V � V � � is an edge labeling
function, such that E�x, y� � �, x, y � V and � � � � ε, if x �N y, otherwise
E�x, y� � ε. Self-relations are ignored, i.e., E�x,x� � ε, x � V . Observe that �λ

is an alternative representation of λ-ordering relations �λ of N .
Fig.6(a) shows the ordering relations graph of a complete prefix unfolding that

is given in Fig.5. As the conflict and concurrency relations are symmetric, the
corresponding edges are visualized as two-sided arrows; solid and dotted for the
conflict (a # b) and concurrency (c � d) relation, respectively. Regular arrows
reflect the precedence relation, which is transitive and asymmetric. Edges that
have ε labels are not visualized. Because of the precedence relation, most of the
ordering relations graphs are asymmetric.

The RPST of a well-structured model is composed of trivial, polygon, and
bond (either and or xor) components. Contrary to a rigid component that can
have an arbitrary topology, the structure of each component of a well-structured
model is well-defined and has a precise structural characterization in terms of the
corresponding ordering relations graph. The ordering relations graph of a bond
is a complete graph, or a clique. All edges in the graph have the same label: #
for xor bonds and � for and bonds. This topology is consistent with the intuition
behind: all nodes in a xor bond are in conflict, i.e., only one is executed; all nodes
in an and bond are concurrently executed. Fig.6(b) shows an and bond with three
parallel branches, whereas Fig.6(c) shows the corresponding clique of concurrent
relations. In the cases of a trivial and polygon component, the ordering relations
graph is a direct acyclic graph representing the transitive closure, or the total
order, of the precedence relation. All edges of the graph are labeled �. Fig.6(d)

Structuring Acyclic Process Models 289

a

b

c

d

(a)

b

a

c

(b)

a

b c

(c)

a b c

(d)

a b c

(e)

a

b

c

d

L1C1 C2

(f)

Fig. 6. (a) An ordering relations graph, (b) an and bond component, (c) an and com-
plete module, (d) a polygon component, (e) a linear module, (f) the MDT of (a)

shows a polygon composed of three activities, whereas Fig.6(e) presents the
corresponding transitive closure over the precedence relation.

Let � � �V,E,�� be an ordering relations graph. A module M � V of � is a
non-empty subset of transitions that have a uniform relations with transitions
V �M , i.e., � x, y �M � z � V �M � E�x, z� � E�y, z�
E�z, x� � E�z, y�. Note
that singleton sets of V are referred to as trivial modules.

Definition 16 (Complete, Linear, Primitive)
Let M be a non-singleton module of �.
� M is complete (C), iff � l � �#,�� � x, y � M,x � y � E�x, y� � l, i.e., the

subgraph induced by M is a complete graph, or a clique. If l � #, then M is
xor complete, otherwise M is and complete.

� M is linear (L), iff there exists a linear order �x1, ..., x�T � �� of elements of T �,
such that E�xi, xj� � �, if i
 j, and E�xi, xj� � ε otherwise.

� If M is neither complete, nor linear, then M is primitive (P).

The following proposition summarizes relations between components of a process
model and modules of an ordering relations graph.

Proposition 1. Let C1 be a process component and let M1 be the correspond-
ing ordering relations graph. Let M2 be an ordering relations graph and let C2

be the corresponding process component.
1. If C1 is trivial or polygon, then M1 is linear.
2. If M2 is linear, then there exists C2 that is trivial or polygon.
3. If C1 is and (xor) bond, then M1 is and (xor) complete.
4. If M2 is and (xor) complete, then there exists C2 that is and (xor) bond.

Two modules M1 and M2 of � overlap, iff they intersect and neither is a subset
of the other, i.e., M1 �M2, M1 �M2 , and M2 �M1 are all non-empty. M1

is strong, iff there exists no module M2 of �, such that M1 and M2 overlap.
The modular decomposition substitutes each strong module of a graph by a new
vertex and proceeds recursively. The result is a rooted, unique tree called the
Modular Decomposition Tree, which can be computed in linear time [19].

Definition 17 (Modular Decomposition Tree). Let � � �V,E,�� be an
ordering relations graph. The Modular Decomposition Tree (MDT) of �, denoted
by MDT ���, is a containment hierarchy of all strong modules of �.

290 A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas

a

b

c

d

e

f

Book freight
shipment

Send
invoice to
customer

Handle
confidential
shipment

Handle
regular
shipment

Request
security
clearance

Send
delivery
notice

(a)

a
f2

f1

e d

c

b

(b)

Fig. 7. (a) A rigid process component and (b) its ordering relations graph

Fig.6(f) shows the MDT of the ordering relations graph that is proposed in
Fig.6(a). Each module is enclosed in a box with rounded corners. Note that
module names hint at their class. For instance, module C1 is a complete module,
and is composed of two nodes a and b that are in conflict relation, a # b. There-
fore, C1 is a xor complete module. Similarly, C2 is an and complete module. By
treating both modules as singletons, the modular decomposition identifies that
they are in total order and, hence, form a linear module L1.

We are now ready to present the main result of this section.

Theorem 2. Let � be an ordering relations graph. The Modular Decomposition
Tree of � has no primitive module, iff there exists a well-structured process model
W such that � is the ordering relations graph of W .

Proof. Let � � �V,E,�� be an ordering relations graph.
��� Assume that the MDT of � has no primitive module. We show now by

structural induction on the MDT of � that there exists a well-structured
process model W with ordering relations �. The MDT of � contains single-
ton, linear, and complete, and xor complete modules.

Base: If the MDT of � consists of a single module M , then M is singleton and
W is a process model composed of a single task m �M .

Step: Let M be a module of the MDT of � such that each child module of M
has a corresponding well-structured process model. If M is linear, then W
can be a trivial or polygon component composed from children of M , cf., 2
in Prop. 1. If M is complete, then W can be a bond component, either and
or xor, composed from children of M , cf., 4 in Prop. 1. In both cases, M has
a corresponding well-structured process model.

Therefore, there exists a well-structured process model W composed from
children of module V of � that has ordering relations graph �.

��� Let W be a well-structured process model with ordering relations graph �.
We want to show that the MDT of � has no primitive module. Because W is
well-structured, the RPST of W has no rigid component. The corresponding
ordering relations graph of a non-rigid component, i.e., trivial, polygon, or
bond component, is either complete or linear, cf., 1 and 3 in Prop. 1. If W is
composed of a single task, then � consists of one singleton trivial module. ��

Finally, we detail the approach for structuring acyclic rigid components in Alg.2.

Structuring Acyclic Process Models 291

Algorithm 2: Restructure an Acyclic Rigid Process Component
Input: An acyclic rigid process component
Output: The RPST of a well-structured process component
Compute the complete prefix unfolding of the input process component
Compute the ordering relations of the unfolding (Alg. 1)
Restrict the ordering relations to the set of non-τ transitions
Compute the MDT of the graph formed with the restricted ordering relations
Construct the RPST by traversing each module M of the MDT (in postorder)
� If M is trivial singleton, then generate a task
� If M is and complete, then generate an and bond component
� If M is xor complete, then generate a xor bond component
� If M is linear, then generate a trivial or polygon component
� If M is primitive, then FAIL // component cannot be restructured

return the RPST

Based on all previous results, Alg.2 synthesizes, whenever possible, the RPST
of an FCB-equivalent well-structured component for a given acyclic rigid com-
ponent. No variables are introduced. Task duplication depends on the “quality”
of the prefix unfolding. The complexity of the algorithm is determined by the
exponential complexity of the unfolding (see earlier discussion). All other steps
are polynomial. In the case of an and rigid, the unfolding is not needed because
the WF-net of an and rigid is already an occurrence net. The algorithm fails
if the input process component is inherently unstructured, such as the process
component in Fig.7(a). In this particular case, the ordering relations graph forms
a single primitive module, cf., Fig.7(b). Note that the unfolding step duplicates
task f .

6 Conclusion

We conclude that a sound and safe acyclic process model is inherently unstruc-
tured if its RPST has a rigid component for which the modular decomposition of
its ordering relations contains a primitive. In all other cases, Algorithm 2 applied
to each rigid in the RPST constructs an equivalent structured model. We have
thus provided a characterization of the class of structured acyclic process models
under FCB equivalence, and a complete structuring method. This method is im-
plemented in a tool, namely bpstruct, that structures BPMN models exported
from Oryx3. The tool is available at https://code.google.com/p/bpstruct/.

This method can also be used to structure models with SESE cycles, even
if these cycles contain unstructured components. In this case, the unstructured
components and the cycles are in different nodes of the RPST. However, the
proposed method cannot deal with models with arbitrary cycles. Also, the results
do not apply to models with OR-joins, complex gateways, exception handlers and
non-interrupting events. Future work will aim at lifting these restrictions.

3 http://oryx-project.org/

292 A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas

Acknowledgments. This research is partly funded by the ERDF via the Esto-
nian Center of Excellence in Computer Science.

References

1. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow Mod-
elling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp.
431–445. Springer, Heidelberg (2000)

2. Laue, R., Mendling, J.: The Impact of Structuredness on Error Probability of
Process Models. In: UNISCON. LNBIP, vol. 5, pp. 585–590. Springer, Heidelberg
(2008)

3. Laguna, M., Marklund, J.: Business Process Modeling, Simulation, and Design.
Prentice Hall, Englewood Cliffs (2005)

4. Combi, C., Posenato, R.: Controllability in Temporal Conceptual Workflow
Schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009.
LNCS, vol. 5701, pp. 64–79. Springer, Heidelberg (2009)

5. Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3), 379–387
(1982)

6. Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 268–284. Springer, Heidelberg (2005)

7. Hauser, R., Friess, M., Küster, J.M., Vanhatalo, J.: An Incremental Approach to
the Analysis and Transformation of Workflows Using Region Trees. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C 38(3), 347–359 (2008)

8. Polyvyanyy, A., Garćıa-Bañuelos, L., Weske, M.: Unveiling Hidden Unstructured
Regions in Process Models. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM
2009. LNCS, vol. 5870, pp. 340–356. Springer, Heidelberg (2009)

9. Hauser, R., Koehler, J.: Compiling Process Graphs into Executable Code. In: Kar-
sai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 317–336. Springer,
Heidelberg (2004)

10. Koehler, J., Hauser, R.: Untangling Unstructured Cyclic Flows - A Solution Based
on Continuations. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290,
pp. 121–138. Springer, Heidelberg (2004)

11. Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Mendling,
J.: From business process models to process-oriented software systems. ACM Trans.
Softw. Eng. Methodol. 19(1) (2009)

12. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of
Control Flow in Workflows. Acta Inf. 39(3), 143–209 (2003)

13. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data
& Knowledge Engineering 68(9), 793–818 (2009)

14. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generaliza-
tion of the refined process structure tree. Technical Report RZ 3745, IBM (2009)

15. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

16. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A.
(eds.) BPM 2000. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

17. van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Ab-
stract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp.
278–297. Springer, Heidelberg (1990)

Structuring Acyclic Process Models 293

18. Best, E., Devillers, R.R., Kiehn, A., Pomello, L.: Concurrent bisimulations in petri
nets. Acta Inf. 28(3), 231–264 (1991)

19. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of di-
rected graphs. Discrete Applied Mathematics 145(2), 198–209 (2005)

20. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding Al-
gorithm. FMSD 20(3), 285–310 (2002)

21. Kondratyev, A., Kishinevsky, M., Taubin, A., Ten, S.: Analysis of Petri Nets by
Ordering Relations in Reduced Unfoldings. FMSD 12(1), 5–38 (1998)

A New Semantics for the Inclusive Converging Gateway
in Safe Processes

Hagen Völzer

IBM Research — Zurich, Switzerland
��������	�
���
	��

Abstract. We propose a new semantics for the inclusive converging gateway
(also known as Or-join). The new semantics coincides with the intuitive, widely
agreed semantics for Or-joins on sound acyclic workflow graphs which is im-
plied, for example, by dead path elimination on BPEL flows. The new seman-
tics also coincides with the block-based semantics as used in BPEL on cyclic
graphs that can be composed from sound acyclic graphs, repeat- and while-loops.
Furthermore, we display several examples for unstructured workflow graphs for
which Or-joins get the desired intuitive semantics. A key insight is that not all
situations where two or more Or-joins seem to be mutually dependent (known as
‘vicious circles’) are necessarily symmetric. Many such situations are asymmet-
ric and can be resolved naturally in favor of one of the Or-joins. Still symmetric
or almost symmetric situations exist, for which it is not clear what semantics is
desirable and which result in a deadlock in our semantics. We show that enabled-
ness of an Or-join in our semantics can be decided in linear time in the size of the
workflow graph.

1 Introduction

The semantics of the inclusive converging gateway, also known as Or-join, is recog-
nized as one of the main problems of defining an execution semantics for a business
process modeling language that permits unrestricted directed graphs such as BPMN
and EPCs. With an increased interest in directly executing BPMN models or generat-
ing code from them, the problem has become more important and consequently, has
received a lot of attention recently [1–4, 7–9].

Or-joins were introduced into business process modeling languages to be able to
synchronize a variable set of threads. The simplest example is shown in Fig. 1, which
is drawn using BPMN [5]. The Or-split s1 produces a token for either or both of its
outgoing edges, i.e., either task A will be enabled, or task B or both of them. The corre-
sponding Or-join j1 is meant to synchronize the created threads, i.e., it should wait for
all tokens that were created by the Or-split s1 before it consumes them and produces
a token on its outgoing edge. This simple example already shows that the semantics
of the Or-join is necessarily non-local, i.e., in contrast to all other usual gateways, its
enabledness does not only depend on the tokens on its incoming edges. To see that,
consider the states shown in Fig. 1(a) and (b), where a token on an edge is shown as a
black dot. The Or-join behaves di�erently in both states: In (a), j1 is enabled whereas
in (b), j1 is not enabled as it has to wait for the other token that has not yet passed task

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 294–309, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

A New Semantics for the Inclusive Converging Gateway in Safe Processes 295

B

A

j1s1
B

A

j1s1

(a) (b)

Fig. 1. A simple example of an Or-join

B. However both states are indistinguishable if we only look at the incoming edges of
j1. Therefore, the semantics of the Or-join is non-local.

Figure 2 shows more examples for using an Or-join to synchronize a variable set of
threads. In other words, the Or-join merges a set of paths that are neither necessarily
pairwise alternative, in which case an Xor-join can be used, nor are the paths pairwise
parallel, in which case an And-join can be used. Figure 2 shows that no Or-split is
needed to create such a variable set of paths.

We henceforth do not show any tasks in our examples because they are not relevant
for our considerations. The reader may imagine a task on each edge of the graph.

The Or-join is often used without a formalized semantics. The informal statement
that is usually given to explain its intended behavior is that the Or-join has to wait for
all tokens that ‘may still arrive’ on its incoming edges, cf. [7]. This statement raises at
least two fundamental problems:

1. Whether a token may still arrive is traditionally interpreted on the state space of the
graph [3, 7–9]. Van der Aalst, Desel, and Kindler [7] have shown that a straight-
forward formalization of the informal statement then fails because ‘may still arrive’
implicitly refers to the very semantics that it is used to define. The same authors [7]
and later, Kindler [3], showed that this self-reference can be resolved using fixed-
point theory. While it remains unclear whether the resulting semantics is useful
for all graphs, there is still another problem with the state-space interpretation: In
order to determine whether an Or-join is enabled in a given state s of the graph,
one has to explore in the worst case all possible future states of s, of which there
are exponentially many. This would potentially pose a substantial problem for an
execution engine.

(a) (b) (c)

Fig. 2. Or-joins for synchronizing a variable set of threads

296 H. Völzer

2. The second fundamental problem is that two or more Or-joins may mutually depend
on each other: One join would be enabled only if the other would not and vice versa.
Such situations, which can only occur in cyclic graphs, have been called ‘vicious
circles’ [7]. A typical example is shown later in Fig. 5. It is not clear whether
models containing such situations actually occur in practice and if so, what they
are intended to model and hence how the semantics should be defined for them.

We address the first problem by using a graph-based interpretation of ‘may arrive’,
which is inspired by informal statements in version 1.0 of the BPMN specification [5].
A similar approach has also been proposed by Dumas et al.[2]. This resolves the for-
malization problem and results in a low computational complexity of enactment. Dumas
et al.[2] obtain an algorithm that runs in quadratic time which can be reduced to linear
time after constructing a data structure of quadratic size. We will display a simple linear
time algorithm for our new semantics.

Regarding the second problem, we argue that ‘vicious circles’ can occur in prac-
tice by displaying simple reasonable graphs that contain vicious circles. Even simple
well-structured graphs, i.e., graphs that are composed from matching pairs of splits and
joins, may contain a vicious circle. Existing proposals for Or-join semantics, includ-
ing Dumas et al.[2], then introduce either a deadlock or an artificial non-deterministic
choice to such well-structured graphs, which we do not find satisfactory. We argue that
a well-structured graph has a natural semantics as it can be seen as a representation of
a block-structured process, e.g. modeled in BPEL, and it can be executed accordingly
as implied, e.g., by the semantics of BPEL. This was also stated as a design goal for an
Or-join semantics by Mendling and van der Aalst [4].

We show how the natural semantics for well-structured graphs can be defined with-
out referring to blocks, which gives rise to a new semantics for general workflow graphs.
The new semantics agrees with the widely accepted Or-join semantics for acyclic graphs,
which is implied, for example, by the semantics for BPEL flows, i.e., dead path elim-
ination. The new semantics also agrees with the above mentioned natural semantics
for well-structured graphs. Moreover, we display examples of unstructured cyclic graphs
that also get a desired intuitive semantics. Still some models with vicious circles re-
main, for which it is not clear what a reasonable semantics should be. These cases
create a deadlock in our semantics and hence could be sorted out by static
analysis.

Our semantics was developed as part of the BPMN 2.0 standardization e�ort and it
is included in the current BPMN 2.0 specification draft [6].

The paper is structured as follows. After introducing preliminary notions in Sect. 2,
we discuss Or-join semantics for acyclic graphs in Sect. 3. Acyclic graphs form an im-
portant class because essentially, it is intuitively clear how Or-joins should behave in
acyclic graphs, viz. as defined by dead path elimination (see Sect. 3.3). As said above,
‘vicious circles’ do not occur in acyclic graphs. Then, in Sect. 4, we stepwise intro-
duce the new semantics and discuss its various aspects. Some proofs are omitted in this
version but can be found in an extended version of this paper.

A New Semantics for the Inclusive Converging Gateway in Safe Processes 297

2 Preliminaries

This section defines the basic preliminary notions of this paper, which include work-
flow graphs, their semantics and the soundness property for workflow graphs. Unsound
workflow graphs are usually considered as invalid models that contain modeling errors.

A workflow graph G � (V� E� �) consists of set V of nodes, a set E � V �V of edges1,
and a partial mapping � : V � �And�Xor�Or� such that

1. �(x) is defined if and only if x has more than one incoming edge or more than one
outgoing edge,

2. there is exactly one source and at least one sink,
3. the source has exactly one outgoing edge and each sink has exactly one incoming

edge, and
4. every node is on a path from the source to some sink.

The source is also called the start node, a sink is called an end node, �(x) is called the
logic of x. If the logic is And, Or or Xor, we call x a gateway; if x has no logic and x
is no start or end node, we call x a task. We use BPMN to depict workflow graphs, i.e.,
gateways are drawn as diamonds, where the symbol “�” inside stands for And, a circle
stands for Or, whereas no decoration stands for Xor. Tasks are drawn as rectangles, start
and end nodes as circles. A gateway that has more than one incoming edge and only one
outgoing edge is also called a join, a gateway with more than one outgoing but only one
incoming edge is also called a split. We may assume for simplicity of the presentation
that every gateway is either a split or a join. We say that an edge e is incident to a node
n if e is incoming to n or outgoing from n. Let x� y be two graph elements, i.e., nodes or
edges. If there is a path from x to y, we also say sometimes that x is upstream of y and
y is downstream of x. If the graph is acyclic, then ‘upstream’ is a partial order and we
write x � y.

The semantics of a workflow graph is, similarly to Petri nets, defined as a token
game. A state of a workflow graph is represented by tokens on the edges of the graph.
Let G � (V� E� �) be a workflow graph. A state of G is a mapping s : E � �, which
assigns a natural number to each edge. When s(e) � k, we say that edge e carries
k tokens in state s. The semantics of the various nodes is defined as usual. An And-
gateway removes one token from each of its ingoing edges and adds one token to each
of its outgoing edges. An Xor-gateway nondeterministically chooses one of its incom-
ing edges on which there is at least one token, removes one token from that edge, then
nondeterministically chooses one of its outgoing edges, and adds one token to that out-
going edge. As usual, we abstract from the data that controls the flow in Xor-gateways,
hence the nondeterministic choice. Enabledness of an Or-gateway will be defined later
in this paper. When an Or-gateway executes, it consumes a token from each incoming
edge that carries a token and produces a token for each edge of a nonempty subset of
its outgoing edges. That subset is chosen nondeterministically, again abstracting from
data-based decisions.

To be more precise, let s and s� be two states and n a node that is neither a start nor
an end node. At this point, we assume that a definition of when an Or-join is enabled

1 We show some example workflow graphs that have multiple edges from one node to another.
The reader may imagine a task on such edges to comply with this formalization.

298 H. Völzer

in a state s of the workflow graph is given, i.e., the following is parametrized by such
a definition. Because we will introduce several such definitions later in this paper, we
say also an Or-join is X-enabled in a state s to make the parameter more explicit. The
parameter X will occur in the notions that depend on X-enabledness of Or-joins.

We write s
n
� s� when s changes to s� by executing node n. We have s

n
� s� if

1. �(n) � And or the logic of n is undefined, and

s�(e) �

�
������
������

s(e) � 1 e is an incoming edge of n�

s(e) � 1 e is an outgoing edge of n�

s(e) otherwise.
Note that our assumption that every gateway is either a join or a split implies that
an edge cannot be both, incoming and outgoing for the same node.

2. �(n) � Xor and there exists an incoming edge e� and an outgoing edge e�� of n such
that

s�(e) �

�
������
������

s(e) � 1 e � e��

s(e) � 1 e � e���

s(e) otherwise.

3. �(n) � Or, x is X-enabled in s, and there exists a nonempty set F of outgoing edges
of n such that

s�(e) �

�
������
������

s(e) � 1 e is an incoming edge of n such that s(e) � 1�

s(e) � 1 e 	 F�

s(e) otherwise.

The initial state of G is the state where there is exactly one token on the unique outgoing
edge of the start node and no token anywhere else. A node n that has Xor- or And-logic

or is an Or-split is enabled in a state s if there exists a state s� such that s
n
� s�. We also

say X-enabled in a context where n can be an Or-join or another gateway. A state s� is

X-reachable from a state s if there exists a finite sequence s0
n1
� s1 � � � sk�1

nk
� sk� k � 0

such that s0 � s and sk � s�. Such a sequence is called an X-execution. A state is a
X-reachable state of G if it is reachable from the initial state of G.

An X-reachable state s is a (local) X-deadlock if there exists a token on an incoming
edge of a gateway such that every state that is X-reachable from s also contains a token
on that edge. A state is unsafe or has a lack of synchronization if there is an edge which
carries more than one token in s, otherwise it is safe. A workflow graph G is X-live if it
has no X-deadlock and X-safe if no X-reachable state has a lack of synchronization. G
is X-sound if it is X-live and X-safe.

Note that all notions are independent of the parameter X in case G does not contain
an Or-join.

3 Semantics for Acyclic Workflow Graphs

To clarify the Or-join semantics for acyclic graphs, we define a state-space based and
a graph-based semantics of the Or-join in this section. We show that both coincide
on sound workflow graphs. Furthermore, we show that the graph-based semantics is

A New Semantics for the Inclusive Converging Gateway in Safe Processes 299

the same that is induced by the execution semantics for BPEL flows, i.e., dead path
elimination.

It is agreed that at least one incoming edge of the Or-join needs to have a token for its
enabledness. It is also usually assumed that, if there is a token on each incoming edge,
the Or-join is enabled. We are now going to interpret what it means that the Or-join has
to wait for any tokens that ‘may still arrive’ on the empty incoming edges.

3.1 The State-Space View

The problem of formalizing the state-space based interpretation of ‘a token may arrive’
arises already for acyclic workflow graphs. Given a state s of the graph, a token may
arrive on an edge e if s can evolve into a state s� such that e has a token in s�. How-
ever, before it can be defined whether a state can evolve into another state, we need
to define whether an Or-join is enabled. Conversely, before we can define whether an
Or-join is enabled, we need to define when a state can evolve into another state. This
cyclic dependency prevents a straight-forward formalization. To avoid fixed point the-
ory as a resolution here, we can exploit the fact that, in an acyclic workflow graph, the
dependencies between multiple Or-joins are given by the partial order that is induced
by the edges of the graph. In particular, minimal Or-joins with respect to this order do
not depend on any other Or-join and their semantics can be defined without referring to
the Or-join semantics:

Definition 1. Let G be an acyclic workflow graph.

1. Let j be an Or-join of G. The depth of j is the largest number of Or-joins that are
contained on any path from the start node to j (not counting j itself).

2. We say that a state s� is k-S-reachable (‘S’ stands for ‘state-based’) from a state s
for k � 0 if there is an S-execution that starts in s, ends in s�, and that does not
contain any Or-join of depth � k.

3. An Or-join of depth k is S-enabled in a state s for k � 0 if s(e) � 1 for some
incoming edge e of x and if for each incoming edge e� of x with s(e�) � 0, there is
no state s� such that s� is k-S-reachable from s and s�(e�) � 1.

To evaluate S-enabledness of an Or-join according to this definition, one can first eval-
uate the S-enabledness of Or-joins of depth 0, then depth 1 and so forth. To see whether
an Or-join of depth 0 is S-enabled, one has to check whether a token can be produced
on an empty incoming edge of the Or-join by executing only Or-splits, And- and Xor-
gateways but not Or-joins. To see whether an Or-join of depth 1 is S-enabled, one has
to check whether a token can be produced on an empty incoming edge of the Or-join
by executing only Or-splits, And- and Xor-gateways and Or-joins of depth 0. Consider
for example Fig. 3. In part (a), j1 has depth 0 and is S-enabled, whereas j2 has depth 1
and is not S-enabled. In part (b), both j1 (depth 0) and j2 (depth 1) are S-enabled.

3.2 The Graph-Based View

An alternative interpretation of ‘may arrive’ is graph-based and was indicated in the
BPMN 1.0 specification [5]2: A token may arrive on an edge e if there is an edge e�

2 Dumas et al.[2] have proposed a di�erent graph-based interpretation.

300 H. Völzer

j1

j2 j1 j2

(a) (b)

Fig. 3. Examples for the state-space and graph-based interpretation

that has a token in s and there is a directed path from e� to e in the workflow graph.
This interpretation has the advantage of a straight-forward formalization and simple
and eÆcient enactment:

Definition 2. Let G be an acyclic workflow graph. An Or-join j is P-enabled (‘P’ stands
for ‘path’) in a state s if s(e) � 1 for some incoming edge e of j and if for each incoming
edge e� of j with s(e�) � 0 and for each edge e�� of the graph with s(e��) � 1, there is no
directed path from e�� to e�.

In Fig. 3(a), j1 is P-enabled, whereas j2 is not. In Fig. 3(b), neither j1 nor j2 is P-
enabled. Hence, S-enabledness and P-enabledness coincide in Fig. 3(a) but they di�er
in Fig. 3(b). The reason is that the graph in Fig. 3(b) contains deadlocks. The deadlocks
prevent tokens to move to the empty incoming edges of the Or-joins. While the state-
space interpretation is aware of the deadlocks, the graph-based interpretation is not.
Since such deadlocks are usually considered modeling errors, the di�erence of the two
semantics on such models is not substantial. In fact, we can show that the state-space
and graph-based interpretation coincide on sound acyclic graphs:

Definition 3. Given a workflow graph G, we say that two semantics X and Y coincide
under soundness if the following statements hold:

1. G is X-sound if and only if it is Y-sound.
2. If G is X-sound (or equivalently Y-sound), then a state is X-reachable whenever it

is Y-reachable.
3. If G is X-sound (or equivalently Y-sound), then an Or-join is X-enabled in an X-

reachable (equivalently: Y-reachable) state whenever it is Y-enabled.

Theorem 1. P-semantics and S-semantics coincide under soundness on acyclic work-
flow graphs.

Proof. The proof is included in an extended version of this paper. We sketch here the
main idea: If an Or-join j is not P-enabled because there is a token upstream of an empty
incoming edge of j, then it can be shown that that token can be moved to that empty
incoming edge of j, provided the graph is deadlock-free. Then, j is also not S-enabled.

Conversely, if j is not S-enabled because a token can be brought to an empty incom-
ing edge of j, then that token must be located upstream of the empty incoming edge of
j and hence j is not P-enabled.

Note that P-semantics can be enacted in linear time in the number of edges of the graph,
i.e., it can be determined in linear time whether an Or-join is enabled in a given state.

A New Semantics for the Inclusive Converging Gateway in Safe Processes 301

3.3 Dead Path Elimination

In this section, we show that P-semantics essentially coincides with semantics that is
implied by Dead Path Elimination (DPE) for BPEL flows. Dead path elimination deter-
mines the enabledness of an Or-join in an acyclic graph by inspection of its incoming
edges only. This works as follows. Let G be an acyclic workflow graph. A DPE-state is
again a distribution of tokens over the edges of G, however each token has now a value,
which is either true or false. Initially there is a true token on the initial edge and no
token elsewhere. Each gateway waits for a token, true or false, on each incoming edge.
As soon as all incoming edges have a token, these tokens are consumed and a token
is produced on each outgoing edge. If all inputs are false, all outputs are false as well.
Upon receipt of a true token, an Or-split produces true tokens on a nonempty subset of
outgoing edges and false tokens on all other edges. The Xor-split and the And-split can
be thought of as special cases of the Or-split: the former always produces exactly one
true token, whereas the latter always produces only true tokens. The value of the token
that is produced by a join is determined by applying the logical function of the join to
the inputs, i.e., an Or-join applies the Or-function, the And-join the And-function and
the Xor-join the Xor-function.

Figure 4 shows an example of dead path elimination. The labeling represents an
entire DPE execution. An intermediate reachable DPE state is represented by the tokens
shown in italics. The following lemma characterizes reachable DPE states. It can be
easily shown by induction on the reachable DPE states.

Lemma 1. Let G be acyclic. Then for each reachable DPE-state x and each edge e of
G, exactly one of the following three statements is true: (1) e has a token in x, (2) some
edge e� � e has a token or (3) some edge e� � e has a token.

We say that a DPE step is a true step, denoted x
n
� x�, if at least one true token is con-

sumed, otherwise we say it is an elimination step, denoted x
n
� x�. If x� can be reached

from x through elimination steps only (zero or more), we write x
�

� x�. Furthermore,

we write x
max
� x� if x

�

� x� and x� does not enable any further elimination step. It is not

diÆcult to see that x� always exists and is unique. We say that a step x
n
� x� is unsound

if either n is an And-join that consumes at least one false token in this step or n is an
Xor-join that consumes more than one true token in this step. We say that the graph G
is DPE-sound if no reachable DPE-state enables an unsound step. Note that if the graph
is DPE-sound, all Xor- and And-joins can be replaced by Or-joins without changing the
behavior.

true

true

false

true

true

true

true

Fig. 4. An example for dead path elimination

302 H. Völzer

We show now that for sound acyclic graphs, P-execution and DPE execution mutu-
ally simulate each other in a strong sense. To this end, we say that a safe P-reachable
state s and a reachable DPE-state x correspond, denoted s
 x, if for all edges e, s has
a token on e if and only if x has a true token on e. Thus a state may correspond to more
than one DPE-state. DPE semantics and P-semantics coincide if elimination steps are
hidden. This can be formalized as follows:

Theorem 2. Let G be an acyclic workflow graph, s be P-reachable state, x a reachable
DPE-state and n a node of G.

1. The initial state and the initial DPE-state of G correspond.
2. Let x

n
� x� be a sound DPE step and s
 x. Then, there exists a state s� such that

s
n
� s� and s�
 x�.

3. s
 x and x
�

� x� implies s
 x�,
4. Let G be P-safe. Then, s
 x, s

n
� s� and x

max
� x� implies that there exists a DPE

state x� such that x�
n
� x� and s�
 x�.

5. G is P-sound if and only if G is DPE-sound.

Proof. The proof is included in an extended version of this paper. We sketch the main
ideas here. For part 2, where s
 x, one can show by help of Lemma 1 that a false token
on an edge e in x implies that there is not only no token on e in s but also no token in s
on any edge upstream from e. It immediately follows that an OR-join that is enabled in
x is also enabled in s.

For part 4, consider an Or-join n that is P-enabled in s. If n has an empty incoming
edge e in s, it can be shown, again by help of Lemma 1, that there must be a false token
upstream of e in x. Because false tokens move as far as possible when going from x to
x�, it can be shown that the Or-join is then enabled in x�.

4 Semantics for Cyclic Workflow Graphs

In this section, we extend the graph-based semantics to deal with cyclic workflow
graphs. While the graph-based semantics addresses the first fundamental problem men-
tioned in Sect. 1, we encounter the second problem mentioned in Sect. 1 when we
want to extend the semantics to cyclic graphs: Figure 5 shows an example of a graph
with two mutually dependent Or-joins, which is known as a ‘vicious circle’. Applying a
state-space interpretation, j1 is enabled if and only if j2 is not enabled and j2 is enabled
if and only if j1 is not enabled. If we apply the graph-based interpretation as defined in
Def. 2, then the state in Fig. 5 is a deadlock. This may be satisfactory because it is not
clear what the intended behavior of the graph in Fig. 5 is and hence what semantics it
should have. As it defines a deadlock, it can be sorted out by static analysis as a mod-
eling error. However, we show in the next subsection that this argument does not apply
to all vicious circles.

4.1 Block-Based Semantics for Separable Graphs

Although, it seems that the example in Fig. 5 does not present a serious problem, there
are more natural workflow graphs that exhibit the same problem. Figure 6 shows a well-
structured workflow graph, i.e., it is composed of matching pairs of splits and joins. In

A New Semantics for the Inclusive Converging Gateway in Safe Processes 303

j1

j2

Fig. 5. A symmetric vicious circle

contrast to the previous example in Fig. 5, its not diÆcult to imagine a real business
process behind it—provided that suitable tasks are inserted at the edges of the graph.
However, the informal semantics produces the same problems as for the example in
Fig. 5: The join j2 should wait for the token at e1 to arrive at e4 and the join j1 should
wait for the token at e3 to arrive at e2, which can go there via s3 and j3. This is also
reflected by the graph-based semantics as in Def. 2, now applied to a cyclic graph,
which interprets the state shown as a deadlock. Previous semantic proposals [2, 3, 8]
either define this as a deadlock (neither j1 nor j2 is enabled) or a nondeterministic
choice between the two joins (both, j1 and j2 are enabled but execution of one disables
the other). Moreover, note that a execution of j2 implies that the graph is then unsound.

We believe that neither of these two options is reasonable for this graph. It is a well-
structured graph, in fact it can be thought of a BPMN representation of a BPEL process
where a flow, i.e., a sound acyclic subgraph, is nested in a repeat-until-loop, cf. Fig. 6(b).
BPEL semantics implies a block-based execution: Before a new iteration of the loop
is started, the flow has to complete first. This means that j2 waits for j1 but not the
other way around, i.e., the structure of the process implies an asymmetric dependency
between j1 and j2. We believe that a block-based execution as in BPEL provides the
natural semantics for such well-structured graphs. This was also advocated by Mendling
and van der Aalst [4].

To capture this semantics, we define a class of workflow graphs, called separable
graphs, which include well-structured graphs. A separable graph is a workflow graph
that can be composed from sound acyclic and from sequential blocks:

Definition 4. Let G be a workflow graph with nodes N and edges E such that G has a
unique end node n� and let n� be its unique start node.

j1

j2

j1

j2

(a) (b)

s1

s2

s1

s2s3j3 s3j3
e1

e2

e3

e4

Fig. 6. A vicious circle in a well-structured graph

304 H. Völzer

1. Let B � N be a nonempty set of nodes and EB � E � (B � B) the induced set of
edges. B is a block if the induced subgraph (B� EB) has a single entry edge and
a single exit edge, i.e., there exist edges e� e� 	 E with E � ((N � B) � B) � �e�
and E � (B � (N � B)) � �e��; e and e� are called the entry and the exit edge of B,
respectively.

2. Let B0 � N � �n�� n��. B0 is a block, called the root block. A decomposition of G is
a set D of blocks of G such that B0 	 D and for each pair of blocks B� B� 	 D , we
have B � B�, B� � B, or B � B�

�
. If B� � B, we say B� is a subblock of B. B� is
an immediate subblock of B if there is no block B�� 	 D such that B� � B�� � B.

3. Let B 	 D be a block. The abstraction of B with respect to D is the workflow graph
that results from taking the graph (B� EB), replacing each immediate subblock B� 	

D of B by a fresh task and adding a fresh start node and a fresh end node that are
connected to the entry and the exit of the block respectively. B is sequential if each
gateway in its abstraction has Xor logic; B is a flow if its abstraction is acyclic and
sound. G is separable if there is a decomposition D such that each block in D is
either a flow or sequential; D is then called a separating decomposition of G.

Definition 5. Let G be a separable workflow graph and D a separating decomposition
of G. An Or-join j is D-enabled in a state s if it is P-enabled in s with respect to the
smallest block in D that contains j.

Note that in a separable workflow graph, the smallest block that contains an Or-join is
not sequential and hence must be acyclic.

Lemma 2. Let G be a separable workflow graph and D a separating decomposition.
Then G is D-sound.

Proof. We say that a block is active in a state s of G if some edge e 	 EB of the block has
a token in s. It can be shown by structural induction on D that a block has no deadlock
and lack of synchronization provided that its subblocks are sound and provided that its
entry edge never gets a token while the block is active. Since the top-level block, i.e., the
workflow graph G itself, never gets more than one token, it follows that G is D-sound.

D-semantics does not seem satisfactory since a decomposition is used to define it.
However, the semantics does not depend on the particular decomposition. For exam-
ple, the separating decomposition D1 � �B0� B1� shown in Fig. 6(b), where B0 �

�s1� j1� s2� j2� s3� j3� and B1 � �s1� j1� s2� j2� induces the same semantics as D2 �

�B0� B1� B2� where B2 � �s1� j1�.

Proposition 1. Let D and D � be two separating decompositions of G. Then, D-seman-
tics and D �-semantics coincide on G.

Proof. The proof is included in an extended version of this paper. The main idea is the
following. The essential proof obligation is to show that an Or-join j is enabled with
respect to a containing block X whenever it is enabled with respect to another containing
block Y. It can be shown that one can restrict to the case Y � X. One direction is trivial.
For the other direction, suppose that j is enabled in Y but not in X. Then, there is a token
upstream of j in X �Y. Because there is no deadlock (Lemma 2), it can be shown that we
can then move the token to the entry of Y and then further to the non-empty incoming
edge of j, which would cause a lack of synchronization, which contradicts Lemma 2.

A New Semantics for the Inclusive Converging Gateway in Safe Processes 305

Although this block-based semantics gives a reasonable meaning to separable graphs
that is aligned with block-based execution as in BPEL, its description is not yet fully
satisfactory because one needs to find a decomposition in order to figure out the en-
abledness of an Or-join. We will see later that it is not necessary to be aware of the
blocks. The same semantics can be defined in a di�erent way that does not refer to
blocks.

4.2 A New Semantics

We consider again the well-structured graph in Fig. 6. The block-based semantics sug-
gests that the dependency between the joins j1 and j2 is not as symmetric as in Fig. 5.
The structure suggests that j2 should wait for j1 but not vice versa. How can we char-
acterize this asymmetry? Let us compare the path from e1 to e4 with the path from e3 to
e2. The path from e1 to e4 shows how the token on e1 catches up to its ‘sibling token’
on e3. However, if we move the token from e3 to e2, then this starts a new iteration of
the loop, causing the synchronization of two tokens from di�erent rounds. Starting a
new round is witnessed for example by the fact that the path from e3 to e2 visits the
gateway s1 because s1 has also a path to e1 where there is already a token waiting.
Executing s1 therefore could cause a second token on e1 which would manifest the
synchronization error. Clearly, such a new iteration would also be started if the path
visits the waiting join itself. For example, the join j1 should not wait for the token on
e1 to arrive at e2. Any corresponding path from e1 to e2 goes through j1 and should
therefore not be considered. We therefore define the semantics as follows:

Definition 6. An Or-join j is Q-enabled in state s if

1. there is an incoming edge e of j such that s(e) � 1 and
2. for each edge e� of the graph with s(e�) � 1, we have: If there is a path from e� to

some incoming edge e of j with s(e) � 0 that does not visit j, then there is a path
from e� to some incoming edge e of j with s(e) � 0 that does not visit j.

This definition implicitly defines inhibiting paths to j, i.e., a path from a token an empty
incoming edge of j such that the path does not visit j. Furthermore, an anti-inhibiting
path to j is a path from a token to a non-empty incoming edge of j such that the path
does not visit j. An Or-join j has to wait only for those token that have an inhibiting
path but no anti-inhibiting path to j. Note that there is no anti-inhibiting path in Fig. 6(a)
to j2 from the token on e1 because the path from e1 to e3 visits j2.

We show now that Q-semantics and P-semantics coincide on sound acyclic graphs.

Proposition 2. P-semantics and Q-semantics coincide on P-sound acyclic workflow
graphs.

Theorem 3. Let G be a separable workflow graph and D a separating decomposition.
Then D-semantics and Q-semantics coincide on G.

Note that the compliance with block-based semantics is related to the fact that the Q-
enabledness of an Or-join j does not depend on the tokens outside the smallest block

306 H. Völzer

that contains j. In other words, the Or-join behavior is non-local only within that block.
This remains true for non-separable graphs under a mild syntactic restriction3. This
locality of Q-semantics with respect to such a block makes the behavior of a larger graph
easier to understand provided it contains smaller blocks. Moreover, this means that
such blocks can be understood, executed and analyzed in isolation, i.e., they constitute
logically atomic parts of the workflow graph in Q-semantics. Furthermore, refining a
task with such a block or replacing a block with another block does not change the
behavior of the surrounding graph. This eases constructing, changing and refactoring a
workflow graph. In particular, the behavior of a business process does not change when
a process model is changed by encapsulating such a block into a subprocess.

4.3 Non-separable Graphs

We have argued in the previous section that Q-semantics suits separable graphs well. In
this section, we study examples of how non-separable graphs behave under Q-semantics.

(a) (b)

j1s1

j2

s2

Fig. 7. Two non-separable cyclic graphs

We first look at some examples, for which we think that the intended meaning is
clear and also achieved by Q-semantics. Figure 7 shows two cyclic graphs where an
Or-region, i.e., a pair of an Or-split and an Or-join, has an additional entry on one of
the paths between the split and join. Figure 8(a) can be seen as an Or-region with two
parallel additional entries. Figure 7(a) and (b) can be seen as special cases of Fig. 8(a)
where one additional entry was omitted. The correspondence between Fig. 7(a) and
Fig. 8(a) is given by the labeling of the gateways. Figure 8(b) shows how an Or-join
can be used to glue a flow with a well-structured loop. All these examples are Q-sound.
The reader may verify that Q-semantics indeed produces the desired behavior for these
examples.

The symmetric vicious circle in Fig. 5 still creates a deadlock in Q-semantics. As we
argued before, we do not consider this as a problem. The intended behavior is not clear
and therefore, the graph can be rejected by static analysis. Figure 9(a) shows a graph
where the situation seems to be di�erent at first sight. The dependency between the two
Or-joins j1 and j2 does not seem to be symmetric. In fact, the graph is similar to the
graph in Fig. 7(a), they only di�er in the logic of j2. However, Q-semantics defines the

3 One has to require that for every incoming edge e of an Or-join j contained in the block, there
is a path from the start node to e that does not visit j.

A New Semantics for the Inclusive Converging Gateway in Safe Processes 307

(a) (b)
s1

j2

j1 s2

Fig. 8. Two more sound cyclic graphs

state shown as a deadlock. This may contrast our intuition because one might think that
this graph should have the same behavior as the graph in Fig. 7(a), so that j1 waits for
j2 but not the other way around. However, this intuition may be caused by the layout
of the graph: Fig. 9(b) shows how the same graph can be re-drawn. Now, the layout
suggests that j2 should wait for j1 and not the other way around. Thus, the dependency
is more symmetric than these two layouts suggest and in fact, the graph can also be
re-drawn as shown in Fig. 9(c) to resemble more the graph in Fig. 5. Again, we think
that the intended behavior is not clear and that the deadlock can be used to reject the
graph in static analysis.

How to treat such ‘vicious circles’ in practice can be seen as a meta-issue, which
is fairly independent from the discussion in this paper. The deadlocks produced by
these examples can be detected at analysis time or at runtime (cf. [2]) and they can be
treated in a di�erent way by an engine or tool as defined through a ‘meta-semantics’.
In particular, an engine could apply a more optimistic approach [2, 3] and resolve the
deadlocks through a non-deterministic choice between the Or-joins if there are reasons
to do so. This approach clearly remains possible on top of Q-semantics.

4.4 Enactment

In this section, we show that Q-semantics of an Or-join can be enacted in linear time.
If an Or-join j has at least one token on an incoming edge, we have to determine

whether there are any inhibiting and anti-inhibiting paths to j. The algorithm consists
of two parts. First we mark all edges of the graph that contribute to anti-inhibiting
paths. Those can be determined by backward reachability search starting from the non-
empty incoming edges of j. We mark all those edges in red. We stop exploration when

j1

j2

j1

j2

(a) (b)

s1 s2 s1
s2 j1

j2

s1 s2

(c)

Fig. 9. Three di�erent layouts of the same cyclic graph

308 H. Völzer

Procedure 1. Returns true i� Or-join j is Q-enabled in state s.
IsEnabled(Workflow graph G, State s, Or-join j)

�� :� �e � e is an incoming edge of j such that s(e) � 0�
while there exist an edge e � (n1� n2) �
�� and e� � (n3� n1) �
�� such that n1 � j do

�� :�
�� ��e��

����� :� �e � e is an incoming edge of j such that s(e) � 0�
while there exist an edge e � (n1� n2) � ����� and e� � (n3� n1) � (����� �
��) such that
n1 � j do

����� :� ����� ��e��

return (����� ��e � s(e) � 0� � �).

we reach j itself in order not to mark the empty incoming edges of j. The second
part of the algorithm marks all edges in green that are not red already and that are
backward-reachable from any empty incoming edge of j. Again, we stop exploration
when we reach j itself in order not to mark any non-empty incoming edge of j. This
part computes the inhibiting paths. The Or-join j is then enabled if and only if there is
no token on some green edge. The Pseudo-code in Procedure 1 makes this algorithm
more precise. It is not diÆcult to see that this algorithm can be implemented to run in
linear time in the size of the workflow graph. We conclude:

Theorem 4. Let G be a workflow graph. It can be computed in linear time (in the size
of G) whether an Or-join is Q-enabled in a given state of G.

5 Conclusion

We have presented a new semantics for the Or-join in workflow graphs. We have ar-
gued that a graph-based semantics gives rise to a straight-forward formalization as well
as an eÆcient enactment. Furthermore, we have pointed out that reasonable process
graphs exist where ‘vicious circles’ arise and argued that those should neither result in
a deadlock nor be resolved by non-deterministic choice. We have shown that a natural
semantics can be defined for those cases by extending the graph-based semantics for
acyclic graphs to general workflow graphs. Our semantics is aligned with block-based
execution of well-structured graphs. We have shown various examples of cyclic graphs
that are not well-structured but still receive an intuitive semantics in our proposal. Nev-
ertheless, there are cases where mutually dependent Or-joins create a deadlock in our
semantics. We have argued that in those cases, the intended meaning is not clear and
hence they should be sorted out by static analysis.

As usual, unsoundness is considered as a modeling error in this paper. In fact, lack
of synchronization can cause undesired race conditions for Or-join enabledness in Q-
semantics. Extending our semantics to models which treat lack of synchronization as a
feature rather than an error is beyond the scope of this paper.

Our semantics is included in the draft for the BPMN 2.0 standard [6].

A New Semantics for the Inclusive Converging Gateway in Safe Processes 309

Acknowledgement. We would like to thank Alistair Barros and the other members of
the BPMN 2.0 RFP taskforce, in particular Matthias Kloppmann and Stephen A. White,
moreover we thank Ekkart Kindler, Jussi Vanhatalo and Thomas Hettel for helpful dis-
cussions. We also would like to thank the anonymous reviewers for their constructive
comments to improve the presentation.

References

1. Börger, E., Sörensen, O., Thalheim, B.: On defining the behavior of OR-joins in business
process models. J. UCS 15(1), 3–32 (2009)

2. Dumas, M., Großkopf, A., Hettel, T., Wynn, M.T.: Semantics of standard process models with
OR-joins. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 41–58.
Springer, Heidelberg (2007)

3. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. Data Knowl. Eng. 56(1),
23–40 (2006)

4. Mendling, J., van der Aalst, W.M.P.: Formalization and verification of EPCs with OR-joins
based on state and context. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 439–453. Springer, Heidelberg (2007)

5. OMG. Business process modeling notation (BPMN) version 1.0, OMG document number
dtc�06-02-01. Technical report (2006)

6. OMG. Business process model and notation (BPMN) version 2.0, OMG document number
dtc�2010-05-03. Technical report (2010)

7. van der Aalst, W.M.P., Desel, J., Kindler, E.: On the semantics of EPCs: A vicious circle. In:
EPK, GI-Arbeitskreis Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten,
pp. 71–79 (2002)

8. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. Inf.
Syst. 30(4), 245–275 (2005)

9. Wynn, M.T., Edmond, D., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Achieving a general,
formal and decidable approach to the OR-join in workflow using reset nets. In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 423–443. Springer, Heidelberg
(2005)

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 310–326, 2010.
© Springer-Verlag Berlin Heidelberg 2010

From People to Services to UI:
Distributed Orchestration of User Interfaces

Florian Daniel1, Stefano Soi1, Stefano Tranquillini1, Fabio Casati1,
Chang Heng2, and Li Yan2

1 University of Trento, Povo (TN), Italy
{daniel,soi,tranquillini,casati}@disi.unitn.it

2 Huawei Technologies, Shenzhen, P.R. China
{changheng,liyanmr}@huawei.com

Abstract. Traditionally, workflow management systems aim at alleviating peo-
ple’s burden of coordinating repetitive business procedures, i.e., they coordinate
people. Web service orchestration approaches, instead, coordinate pieces of
software (the web services), hiding the human aspects that are intrinsically pre-
sent in any business process behind the services. The recent emergence of tech-
nologies like BPEL4People and WS-HumanTask, which introduce human
actors into service compositions, manifest that taking into account the people
involved in business processes is however important. Yet, none of these ap-
proaches allow one to also develop the user interfaces (UIs) the users need to
concretely participate in a business process.

With this paper, we want to go one step beyond state-of-the-art workflow
management and service composition and propose an original model, language
and running system for the composition of distributed UIs, an approach that al-
lows us to bring together UIs, web services and people in a single orchestration
logic and tool. To demonstrate the effectiveness of the idea, we apply the ap-
proach to a real-world home assistance scenario.

1 Introduction

Workflow management systems support office automation processes, including the
automatic generation of form-based user interfaces (UIs) for executing the human
tasks in a process. Service orchestrations and related languages focus instead on
integration at the application level. As such, this technology excels in the reuse of
components and services but does not facilitate the development of UI front-ends for
supporting human tasks and complex user interaction needs, which is one of the most
time consuming tasks in software development [1].

Only recently, web mashups [2] have turned lessons learned from data and applica-
tion integration into lightweight, simple composition approaches featuring a significant
innovation: integration at the UI level. Besides web services or data feeds, mashups
reuse pieces of UI (e.g., content extracted from web pages or JavaScript UI widgets) and
integrate them into a new web page. Mashups, therefore, manifest the need for reuse in
UI development and suitable UI component technologies. Interestingly, however, unlike

 From People to Services to UI: Distributed Orchestration of User Interfaces 311

what happened for services, this need has not yet resulted in accepted component-based
development models and practices.

This paper tackles the development of applications that require service composi-
tion/process automation logic but that also include human tasks, where humans inter-
act with the system via a possibly complex and sophisticated UI that is tailored to help
them in performing the specific job they need to carry out. In other words, this work
targets the development of mashup-like applications that require process support,
including applications that require distributed mashups coordinated in real time, and
provides design and tool support for professional developers, yielding an original
composition paradigm based on web-based UI components and web services.

This is a common need that today is typically fulfilled by developing UIs in ad hoc
ways and using a process engine in the back-end for process automation. As an exam-
ple, consider the following scenario.

O
p

er
at

o
r

A
ss

is
ta

n
t

S
ys

te
m

Request a visit

P
at

ie
n

t

View
instructions

Visit
patient

Write
report

yes

no

Archive
booking

Archive
report

Further exams
needed?

Book exam

Archive report

Exams UI component;
confirmation via regular
phone

Visit and Map UI
components Physical visit, not

assisted by IT

Patient and Visit
UI components

System activities
implemented by means of
one or more web services

Report UI component

Visit and Map UI components

Regular phone

Enter request
and check

patient data

Send
instructions

Excerpt of the operator’s web application (for
presentation purpose, we omit the discussion of

the Exams UI component): the interface is
composed of a Patient UI component plus UI

components that are reused in the assistant’s
web application, i.e., the Visits UI component

and the Maps UI component. Upon selection or
creation of a visit request in the Visits

component, the Patient and Map component
are synchronized in order to show related

information. The assistant (A) and the selected
patient (B) are positioned on the map. The

dynamic behavior of the application is achived
via JavaScript.

BPMN-like
model of the
applications’
underlying
process logic

Fig. 1. Simplified home assistance process: gray shaded swim lanes are instantiated only once
(in form of suitable UIs) and handle multiple instances of white shaded swim lanes

Scenario. Figure 1 shows the high-level model of a home assistance process in the
Province of Trento we want to aid in one of our projects. A patient can ask for
the visit of a home assistant (e.g., a paramedic) by calling (via phone) an operator of
the assistance service. Upon request, the operator inputs the respective details and

312 F. Daniel et al.

inspects the patient’s data and personal health history in order to provide the assistant
with the necessary instructions. There is always one assistant on duty. The home as-
sistant views the description, visits the patient, and files a report about the provided
service. The report is processed by the back-end system and archived if no further
exams are needed. If exams are instead needed, the operator books the exam in the
local hospital asking confirmation to the patient (again via phone); in parallel, the
system archives the report. Upon confirmation of the exam booking, the system also
archives the booking, which terminates the responsibility of the home assistance
service.

Our goal is to develop an application that supports this process. This application
includes, besides the process logic, two mashup-like, web-based control consoles for
the operator and the assistant that are themselves part of the orchestration and need to
interact with (and are affected by) the evolution of the process. Furthermore, the UI
can be itself component-based and created by reusing and combining existing
UI components. The two applications, once instantiated, should be able to manage
multiple requests for assistance, while the system activities will be instantiated inde-
pendently for each report to be processed.

Challenges and contributions. The scenario requires the coordination of the individ-
ual actors in the process and the development of the necessary distributed user inter-
face and service orchestration logic. Doing so requires (i) understanding how to
componentize UIs and compose them into web applications, (ii) defining a logic that
is able to orchestrate both UIs and web services, (iii) providing a language and tool
for specifying distributed UI compositions, and (iv) developing a runtime environment
that is able to execute distributed UI and service compositions.

Structure of the paper. Implementing the process of the scenario is a non-trivial
composition problem. After describing the UI orchestration approach (Section 3), in
this paper we show how defining a new type of binding allows us to leverage the
standard WSDL [4] language to describe HTML/JavaScript UI components (Section
4). We then build on existing composition languages (in particular WS-BPEL [5]) to
introduce the notions of UI components, pages, and actors to support the specification
of distributed UI compositions (Section 5). The extended BPEL is compiled to gener-
ate the UI composition logic (that runs entirely on the browser, for performance rea-
sons) and the server-side logic that performs service orchestration and distributed UI
synchronization. Finally, we extend the Eclipse BPEL editor to support this extension,
and we describe a system that is able to execute distributed UI compositions, starting
from the extended BPEL specification. These models and tools are integrated in a
hosted development and execution platform, called MarcoFlow (Section 6), jointly
developed by Huawei Technologies and the University of Trento.

2 State of the Art in Orchestrating Services, People and UIs

In most service orchestration approaches, such as BPEL [5], there is no support for UI
design. Many variations of BPEL have been developed, e.g., aiming at the invocation of
REST services [6] or at exposing BPEL processes as REST services [7]. IBM’s Shar-
able Code platform [8] follows a slightly different strategy in the composition of REST

 From People to Services to UI: Distributed Orchestration of User Interfaces 313

and SOAP services and also allows the integration of user interfaces for the Web; UIs
are however not provided as components but as ad-hoc Ruby on Rails HTML templates.

BPEL4People [9] is an extension of BPEL that introduces the concept of people
task as first-class citizen into the orchestration of web services. The extension is
tightly coupled with the WS-HumanTask [10] specification, which focuses on the
definition of human tasks, including their properties, behavior and operations used to
manipulate them. BPEL4People supports people activities in form of inline tasks
(defined in BPEL4People) or standalone human tasks accessible as web services. In
order to control the life cycle of service-enabled human tasks in an interoperable
manner, WS-HumanTask also comes with a suitable coordination protocol for human
tasks, which is supported by BPEL4People. The two specifications focus on the coor-
dination logic only and do not support the design of the UIs for task execution.

The systematic development of web interfaces and applications has typically been
addressed by the web engineering community by means of model-driven web design
approaches. Among the most notable and advanced model-driven web engineering
tools we find, for instance, WebRatio [11] and VisualWade [12]. The former is based
on a web-specific visual modeling language (WebML), the latter on an object-
oriented modeling notation (OO-H). Similar, but less advanced, modeling tools are
also available for web modeling languages/methods like Hera, OOHDM, and UWE.
These tools provide expert web programmers with modeling abstractions and auto-
mated code generation capabilities for complex web applications based on a hyper-
link-based navigation paradigm. WebML has also been extended toward web services
[13] and process-based web applications [14]; reuse is however limited to web ser-
vices and UIs are generated out of HTML templates for individual components.

A first approach to component-based UI development is represented by portals
and portlets [15], which explicitly distinguish between UI components (the portlets)
and composite applications (the portals). Portlets are full-fledged, pluggable Web
application components that generate document markup fragments (e.g., (X)HTML)
that can however only be reached through the URL of the portal page. A portal server
typically allows users to customize composite pages (e.g., to rearrange or show/hide
portlets) and provides single sign-on and role-based personalization, but there is no
possibility to specify process flows or web service interactions (the new WSRP [16]
specification only provides support for accessing remote portlets as web services).
Also JavaServer Faces [17] feature a component model for reusable UI components
and support the definition of navigation flows; the technology is however hardly reus-
able in non-Java based web applications, navigation flows do not support flow con-
trols, and there is no support for service orchestration and UI distribution.

Finally, the web mashup [2] phenomenon produced a set of so-called mashup
tools, which aim at assisting mashup development by means of easy-to-use graphical
user interfaces targeted also at non-professional programmers. For instance, Yahoo!
Pipes (http://pipes.yahoo.com) focuses on data integration via RSS or Atom feeds via
a data-flow composition language; UI integration is not supported. Microsoft Popfly
(http://www.popfly.ms; discontinued since August 2009) provided a graphical user
interface for the composition of both data access applications and UI components;
service orchestration was not supported. JackBe Presto (http://www.jackbe.com)
adopts a Pipes-like approach for data mashups and allows a portal-like aggregation of
UI widgets (so-called mashlets) visualizing the output of such mashups; there is no

314 F. Daniel et al.

synchronization of UI widgets or process logic. IBM QEDWiki (http://services.alpha-
works.ibm.com/qedwiki) provides a wiki-based (collaborative) mechanism to glue
together JavaScript or PHP-based widgets; service composition is not supported. Intel
Mash Maker (http://mashmaker.intel.com) features a browser plug-in which interprets
annotations inside web pages allowing the personalization of web pages with UI wid-
gets; service composition is outside the scope of Mash Maker.

In the mashArt [3] project, we worked on a so-called universal integration ap-
proach for UI components and data and application logic services. MashArt comes
with a simple editor and a lightweight runtime environment running in the client
browser and targets skilled web users. MashArt aims at simplicity: orchestration of
distributed (i.e., multi-browser) applications, multiple actors, and complex features
like transactions or exception handling are outside its scope. The CRUISe project [17]
has similarities with mashArt, especially regarding the componentization of UIs. Yet,
is does not support the seamless integration of UI components with service orchestra-
tion, i.e., there is no support for complex process logic. CRUISe rather focuses on
adaptivity and context-awareness. Finally, the ServFace project [19] aims at support-
ing even unskilled web users in composing web services that come with an annotated
WSDL description. Annotations are used to automatically generate form-like inter-
faces for the services, which can be placed onto one or more web pages and used to
graphically specify data flows among the form fields. The result is a simple, user-
driven web service orchestration. None of these projects, however, supports the coor-
dination of multiple different actors inside a same process, and none of the
approaches discussed in this section supports the distribution of UIs over multiple
browsers.

3 Distributed User Interface Orchestration: Approach

If we analyze the home assistance scenario, we see that the envisioned application (as a
whole) is highly distributed over the Web: The UIs for the actors participating in the
application are composed of UI components, which can be components developed in-
house (like the Visit component) or sourced from the Web (like the Map component);
service orchestrations are based on web services. The UI exposes the state of the applica-
tion and allows users to interact with it and to enact service calls. The two applications
for the operator and the assistant are instantiated in different web browsers, contributing
to the distribution of the overall UI and raising the need for synchronization.

The key idea to approach the coordination of (i) UI components inside web pages,
(ii) web services providing data or application logic, and (iii) individual pages (as
well as the people interacting with them) is to split the coordination problem into two
layers: intra-page UI synchronization and distributed UI synchronization and web
service orchestration.

We have seen that many of the research challenges raised by the home assistance
application are not yet covered adequately by existing works. Especially the aim of
providing a single development approach that is able to cover all development aspects
in an integrated fashion poses requirements to the whole life cycle of UI orchestra-
tions, especially in terms of design, deployment and execution support.

 From People to Services to UI: Distributed Orchestration of User Interfaces 315

Indeed, supporting the design of distributed UI orchestrations such as the ones needed
in the example scenario requires:

− Defining a new type of component, the UI component, which is able to modu-
larize pieces of UI and to abstract their external interfaces in a way that
conforms to the standard WSDL [4] format for service descriptions (to keep
compatibility with the BPEL editors and language). We deal with the novel
technological aspects introduced by UI components by defining a new type of
WSDL binding, which allows us to specify how to translate the abstract WSDL
operation descriptions into JavaScript function calls.

− Bringing together the needs of UI synchronization and service orchestration
in one single language. UIs are typically event-based (e.g., user clicks or key
strokes), while service invocations are coordinated via control flows. In this pa-
per, we show how to extend the standard BPEL language in order to support UIs
(BPEL comes with graphical editors and ready, off-the-shelf runtime engines
that we want to reuse, not re-implement). We call this extended language
BPEL4UI.

− Implementing a suitable, graphical design environment that allows developers
to visually compose services and UI components and to define the grouping of
UI components into pages. We achieve this by extending the Eclipse BPEL edi-
tor with UI-specific modeling constructs that are able to generate BPEL4UI in
output.

Supporting the deployment of UI orchestrations requires:

− Splitting the BPEL4UI specification into the two orchestration layers for intra-
page UI synchronization and distributed UI synchronization and web service or-
chestration. For the former we use a lightweight UI composition language
(UICL), which allows specifying how UI components are coordinated in the cli-
ent browser. For the latter we rely on standard BPEL.

− Providing a set of auxiliary web services that are able to mediate communica-
tions between the client-side UI composition logic and the BPEL logic. We
achieve this layer by automatically generating and deploying a set of web ser-
vices that manage the UI-to-BPEL and BPEL-to-UI interactions.

Supporting the execution of UI orchestrations requires:

− Providing a client-side runtime framework for UI synchronization that is able
to instantiate UI components inside web pages and to propagate events from one
component to other components, starting from a UICL specification. Events of a
UI component may be propagated to components running in the same web page
or in other pages of the application and to web services.

− Providing a communication middleware layer that is able to run the generated
auxiliary web services for UI-to-BPEL and BPEL-to-UI communications. We
implement this layer by reusing standard web server technology able to instanti-
ate SOAP and RESTful web services.

− Setting up a BPEL engine that is able to run standard BPEL process specifica-
tions. The engine is in charge of orchestrating web services and distributed UI-
UI communications. We rely on standard technology and reuse an existing
BPEL engine.

316 F. Daniel et al.

These requirements and the respective hints to our solution show that the main
methodological goals in achieving our UI orchestration approach are (i) relying as
much as possible on existing standards, (ii) providing the developer with only few
and simple new concepts, and (iii) implementing a runtime architecture that associates
each concern to the right level of abstraction and software tool (e.g., UI synchroniza-
tion is handled in the browser, while service orchestration is delegated to the BPEL
engine).

4 The Building Blocks: Web Services and UI Components

Orchestrating remote application logic and pieces of UI requires, first of all, under-
standing the exact nature of the components to be integrated. For the integration of
application logic, we rely on standard web service technologies, such as WSDL-
SOAP services, i.e., remote web services whose external interface is described in
WSDL, which supports interoperability via four message-based types of operations:
request-response, notification, one-way, and solicit-response. Most of today’s web
services of this kind are stateless, meaning that the order of invocation of their opera-
tions does not influence the success of the interaction, while there are also stateful
services whose interaction requires following a so-called business protocol that de-
scribes the interaction patterns supported by the service.

Graphical rendering of the Visit UI
component

The component’s
JavaScript code

function VisitUIComponent(id,divId,constrParams){
...
this.load = function() { //constructor: renders first page

this.myDiv= document.getElementById(this.divId);
this.myDiv.innerHTML='Overview | ...';

}

this.visitSelected = function(inputArray){ //visitSelected event
var detailsDiv= this.myDiv.getElementsByTagName('div')[1];
detailsDiv.innerHTML= '<h2>Short description ' + inputArray['name'] + '</h2>'+

inputArray['desc'] + ' <a href="details.php?id=' + inputArray['id'] +
'>More details'; //renders short description

MarcoFlow.FW.raiseEvent(id,"visitSelected",inputArray); //raises event
}

this.detailsRequested= function(inputArray){ //detailsRequested event
MarcoFlow.FW.raiseEvent(id,"detailsRequested",inputArray);

}

this.addRequest= function(inputArray){ // addRequest operations
...

}
}

Event

Fig. 2. Graphical rendering and internal logic of a JavaScript/HTML UI component

For the integration of UI, we rely instead on JavaScript/HTML UI components,
which are simple, stand-alone web applications that can be instantiated and run inside
any common web browser. Figure 2 shows an example of UI component (the Visit UI
component of our reference scenario), along with an excerpt of its JavaScript code.
Unlike web services, UI components are characterized by:

− A user interface. UI components can be instantiated inside a web browser and
can be accessed and navigated by a user via standard HTML. The UI allows the
user to interactively inspect and alter the content of the component, e.g., the

 From People to Services to UI: Distributed Orchestration of User Interfaces 317

short description in Figure 2. UI components are therefore stateful, and the com-
ponent’s navigation features replace the business protocol needed for services.

− Events. Interacting with the UI generates system events (e.g., mouse clicks) in
the browser used to manage the update of contents. Some events may be ex-
posed as component events in order to communicate state changes. For instance,
a click on the Details link in Figure 2 launches a visitSelected event.

− Operations. Operations enact state changes from the outside. Typically, we can
map the event of one component to the operation of another component in order
to synchronize the components’ state (so that they show related information).

− Properties. The graphical setup of a component may require the setting of con-
structor parameters, e.g., to align background colors or to specify the start page
of a component.

In order to make UI components available in BPEL, each component is equipped with
a standard WSDL descriptor that describes the events and operations (the constructor
is expressed as operation) in terms of one-way and notification WSDL operations,
respectively. To support the instantiation and execution of components, we have de-
fined a new JavaScript binding for WSDL, which binds the abstract operations to the
JavaScript functions of the component. The WSDL-UI descriptor can be used as is by
the client-side runtime framework and adapted for its use by the BPEL engine.

5 Modeling UI Orchestrations

Specifying a UI orchestration requires modeling two fundamental aspects: (i) the
interaction logic that rules the passing of data among UI components and web ser-
vices and (ii) the graphical layout of the final application. Supporting these tasks in
BPEL requires extending the expressive power of the language with UI-specific
constructs.

5.1 BPEL4UI: Concepts and Syntax

Figure 3 shows the simplified meta-model of BPEL4UI. Specifically, the figure de-
tails all the new modeling constructs necessary to specify UI orchestrations (gray-
shaded) and omits details of the standard BPEL language, which are reused as is by
BPEL4UI (a detailed meta-model for BPEL can be found in [20]).

In terms of standard BPEL [5], a UI orchestration is a process that is composed of
a set of associated activities (e.g., sequence, flow, if, assign, validate, or similar),
variables (to store intermediate processing results), message exchanges, correlation
sets (to correlate messages in conversations), and fault handlers. The services or UI
components integrated by a process are declared by means of so-called partner links,
while partner link types define the roles played by each of the services or UI compo-
nents in the conversation and the port types specifying the operations and messages
supported by each service or component. There can be multiple partner links for each
partner link type.

Modeling UI-specific aspects requires instead introducing a set of new constructs
that are not yet supported by BPEL. The constructs, illustrated in Figure 3, are:

318 F. Daniel et al.

Activity

Process

ActivityContainer

MessageExchange

Variable

PartnerLink

CorrelationSet

Catch
faultHandlers

Page

Actor

UIComponent

PlaceHolderName
Description
TemplateURL
UIEngineName
isStartPage

Name

Name

Name

accessibleTo

renderedIn

Property
Name
Value
Type

1..*

1..1

0..*

1..1
1..1

1..1

0..*1..1

0..*

PartnerLinkType
UIType

describedBy
1..1

0..1

WSDL-UI

has

contains

Fig. 3. Simplified BPEL4UI meta-model in UML. White classes correspond to standard BPEL
constructs [20]; gray classes correspond to constructs for UI and user management.

− UI type: The use of UI components in service compositions asks for a new kind
of partner link type. Although syntactically there is no difference between web
services and UI components (the JavaScript binding introduced into WSDL-UI
comes into play only at runtime), it is important to distinguish between services
and UI components as their semantics and, hence, their usage in the model will
be different. Also, it is necessary to mark UI component types as such, in order
to support the generation of standard BPEL, as described in Section 6.

As exemplified in Figure 4, we specify the new partner link type like a stan-
dard web service type (lines 10-13). In order to reflect the events and operations
of the UI component, we distinguish the two roles. Lines 1-8 define the neces-
sary name spaces and import the WSDL-UI descriptor of the UI component.

− Page: The distributed UI of the overall application consists of one or more web
pages, which can host instances of UI components. Pages have a name, a de-
scription, a reference to the pages’ layout template, the name of the UI engine
(see Section 6) they will run on, and an indication of whether they are a start
page of the application or not (similar to the start activity in process models).

The code lines 16-21 in Figure 4 show the definition of a page called “Opera-
tor”, along with its layout template and the name of the UI engine on which the
page will be deployed; the page is a start page for the process.

− Place holder: Each page comes with a set of place holders, which are empty
areas inside the layout template that can be used for the graphical rendering of
UI components. Place holders are identified by a unique name, which can be
used to associate UI components.

Place holders are associated with page definitions and specified as sub-
elements, as shown in lines 19-20 in Figure 4.

− UI component: UI types can be instantiated as UI components. For instance, there
might be one UI type but two different instances of the type running in two different
web pages. Declaring a UI component in a BPEL4UI model leads to the creation of
an instance of the UI component in one of the pages of the application. Each
component is part of one process and has a unique name.

 From People to Services to UI: Distributed Orchestration of User Interfaces 319

We specify UI component partner links by extending the standard partner link
definition of BPEL with three new attributes, i.e., isUiComponent, pageName
and placeHolderName. Lines 25-31 in Figure 4 show how to declare the Visit UI
component of our example scenario.

− Property: As we have seen in the previous section, UI components may have a
constructor that allows one to set configuration properties. Therefore, each UI
component may have a set of associated properties than can be parsed at instan-
tiation time of the component. We use simple name-value pairs to store con-
structor parameters.

Properties extend the definition of UI component link types by adding prop-
erty sub-elements to the partner link definition, one for each constructor parame-
ter, as shown in lines 29-30 in Figure 4.

− Actor: In order to coordinate the people in a process, pages of the application
can be associated with individual actors, i.e., humans, which are then allowed to
access the page and to interact with the UI orchestration via the UI components
rendered in the page. As for now, we simply associate static actors to pages (us-
ing their names); yet, actors can easily be assigned also dynamically at deploy-
ment time or runtime by associating roles instead of actors and using a suitable
user management system.

Actors are added to page definitions by means of the actorName attribute, as high-
lighted in line 18 in Figure 4.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

<bpel:process name="HomeAssistance"
 targetNamespace=www.unitn.it/bpel4ui/HomeAssistance
 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/
 executable" xmlns:visit="http://www.unitnt.it/UI/VisitUIComponent" ...>

<bpel:import namespace="http://www.unitn.it/UI/VisitUIComponent"
 location="VisitUI.wsdl" importType="http://schemas.xmlsoap.org/wsdl/">
</bpel:import>
...
<bpel:partnerLinkType name="VisitUIComponent">
 <bpel:role name="Receive" portType="visit:VisitUI_RECEIVE"/>
 <bpel:role name="Invoke" portType="visit:VisitUI_INVOKE"/>
</bpel:partnerLinkType>
...
<pages>
 <page name="Operator" description="Operator’s home page"
 templateURL="http://www.unitn.it/BPEL4UI/operatorLayout.html"
 uiEngineName="UNITN" isStartPage="yes" actorName="Paul">
 <placeholder name="marcoflow-left"/>
 <placeholder name="marcoflow-right"/>
 </page>
 ...
</pages>
<bpel:partnerLinks>
 <bpel:partnerLink name="VisitUI_Operator"
 partnerLinkType="VisitUIComponent" myRole="Receive"
 partnerRole="Invoke" isUiComponent="yes" pageName="Patient"
 placeHolderName="marcoflow-left">
 <property name="StartPage" type="xsd:string">New Visit</property>
 <property name="BackgroundColor" type="xsd:string">white</property>
 </bpel:partnerLink>
</bpel:partnerLinks>
...
</bpel:process>

Fig. 4. Excerpt of the BPEL4UI home assistance process (new constructs in bold)

320 F. Daniel et al.

UI operations of the
Exams and Map UI
components

Intra-page UI
synchronization

that can be
executed entirely
on the client side

Distributed UI
synchronization and

service orchestra-
tion that requires
mediation by the

BPEL engine. The
two events (Receive

activities) are
correlated by means
of a BPEL correlation
set composed of the

paramter tuple
<UIOrchestrationID,

VisitID>, i.e., an
identified assigend by
the UI engine and the

identifier of the re-
quested visit (carried

in the report).

UI events
coming from
the client side

Fig. 5. Part of the BPEL4UI model of the home assistance process modeled in the extended
Eclipse BPEL editor (these and other Sequence constructs run inside a Flow)

5.2 Modeling the Orchestration Logic

The code example in Figure 4 shows that the UI-specific modeling constructs have a
very limited impact on the syntax of BPEL and are concerned with the abstract speci-
fication of the layout and the declaration of UI partner links. The actual composition
logic relies exclusively on standard BPEL constructs, yet – since UI components are
different from web services (e.g., it is important to know in which page they are run-
ning) – it is important to understand the effect individual modeling patterns have on
the execution of the final application, i.e., the semantics of the patterns. As hinted at
in Section 2 and illustrated in Figure 5, we distinguish three main design patterns:

− Intra-page UI synchronization: The sequence construct in the right part of
Figure 5 shows the internals of the View instructions task in Figure 1. When the
assistant clicks on a visit request, the patient’s address is shown on the Google
map. In BPEL terms, we receive a message from the Visit UI component (the
event) and forward it to the operation of the Map component, implementing an
intra-page UI synchronization. Both UI components involved in the sequence are
associated with the page of the assistant. Hence, this kind of UI synchronization
can be performed on the client side without involving the BPEL engine.

− Distributed UI synchronization: The sequence construct in the left part of the
figure, instead, contains a distributed synchronization that cannot be executed on
the client only, as the two UI components involved in the communication (Re-
port and Exam) run in different web pages. The event generated upon submis-
sion of a new report is processed by the BPEL engine, which then decides
whether an additional exam needs to be booked by the operator or not.

− Service orchestration: The distributed UI synchronization also involves the
orchestration of the Report archiving and Booking archiving web services, as
well as some BPEL flow control constructs. For instance, the modeled logic

 From People to Services to UI: Distributed Orchestration of User Interfaces 321

checks whether the report expresses the need for further exams or not. In either
case, the further processing of the report involves the invocation of either one or
both the web services, in order to correctly terminate the handling of a visit
request.

The BPEL4UI excerpt in Figure 5 shows that, when modeling a UI orchestration, it is
important to keep in mind who communicates with whom and where UI components
will be rendered. Depending on these two considerations, the modeled composition
logic will either be executed on the client side, in the BPEL engine, or in both layers.
For instance, it suffices to associate the Map component with a different page so as to
turn the intra-page UI synchronization in the right hand side of Figure 5 into a distrib-
uted communication and, hence, to require support from the BPEL engine.

Data transformations. When composing services or UI components, it is not enough
to model the communication flow only. An important and time-consuming aspect is
that of transforming the data passed from one component to another. With BPEL4UI
we support all data transformation features provided by BPEL by means of its Assign
activity. This allows us to leverage on technologies, such as XPath, XQuery, XSLT or
Java, for the implementation of also very complex data transformations. Yet, the type
of data transformation may affect the logic of the UI orchestration. For instance, if the
SetPosition activity in Figure 5 does not transform data at all or only performs simple
parameter mappings (with the BPEL Copy construct) the intra-page UI synchroniza-
tion can be executed in the client browser. If instead a more complex transformation
is needed, we rely on the BPEL engine to perform it.

The reason for this choice is that UI synchronization typically involves exchanging
only simple data (e.g., parameter-value pairs) and does not require complex transfor-
mations like when interacting with web services. This choice allows us to keep the
client-side framework as lightweight as possible, while not giving up any data trans-
formation capabilities. The decision of where to transform data is taken based on the
nature of the involved partner links and the type of transformation.

Correlation. The intra-page UI synchronization in Figure 5 does not involve any
asynchronous communication pattern or multiple entry points into the process logic.
It is therefore not necessary to implement any correlation logic in BPEL4UI in order
to propagate the VisitSelected event to the ShowPoint operation. The correlation of the
event and the operation in the two web pages is achieved outside the BPEL engine (in
the UI engine server in Figure 6) by sharing a common key (the UIOrchestrationID)
that is carried by each event and used to dispatch events. This kind of correlation is
automated in our runtime environment and does not require specific modeling.

The distributed UI synchronization, instead, involves two UI events from two dif-
ferent actors: ReportCompleted and BookingConfirmed. In this case, it is necessary to
configure a so-called correlation set (in BPEL terminology) that allows the BPEL
engine to understand whether they belong to the same process instance or not. In
Figure 5, we use UIOrchestrationID and VisitID (part of the report) as correlation set.

Graphical layout. Defining web pages and associating UI partner links with place
holders therein requires implementing suitable HTML templates that are able to host
UI components. As we focus on the middleware layer for UI orchestrations, for the
layout templates we rely on standard web design instruments and technologies. The

322 F. Daniel et al.

UI engine client (web browser)UI engine client (web browser)

BPEL4UI editor

Service
WSDLs

UI component
WSDLs

BPEL4UI Compiler

BPEL engine

UI engine server (web server)

UI engine client (web browser)

UI event bus

BPEL4UI

BPEL

UI2BPEL
communication

BPEL2UI
communication

JSON via
HTTP

XML via
SOAP

SOAP web
services

Application
developer

System
configuration

Design time
Deployment time

Runtime

JS via HTTP

Layout and UI
logic generator

BPEL generator

Comm. services
generator

AB
C

UI components

A B
C

UI component container

JSON via
HTTP

XML via
SOAP

XML via SOAP

Layout
configurator

UI partner link
configurator

HTML
templates

UI
composition

Layout and
UI logic

System components

Document flows

System/human communications

Automatically generated elements

Event
forwarder
Event

forwarder
Event

forwarders

Notification
handler

Notification
handler

Notification
handlers

Event
proxy

Event
proxy

Event
buffer

Event
proxy

Event
proxy

Event
proxy

Users

Fig. 6. From design time to runtime: overall system architecture of MarcoFlow

only requirement the templates must satisfy is that they provide place holders in form
of HTML DIV elements that can be indexed via standard HTML identifiers following
a predefined naming convention: <div id=“marcoflow-left”>… </div>.

6 Deploying and Running UI Orchestrations

The BPEL4UI language is only a piece of the integrated system for UI orchestration,
called MarcoFlow. The overall architecture of the system is shown in Figure 6 (for
presentation purposes, we discuss a slightly simplified version), which partitions its
software components into design time, deployment time, and runtime components.

The design part comprises the BPEL4UI editor with its UI partner link configura-
tor and layout configurator. Starting from a set of web service WSDLs, UI component
WSDLs, and HTML templates the application developer graphically models the UI

 From People to Services to UI: Distributed Orchestration of User Interfaces 323

orchestration, and the editor generates a corresponding BPEL4UI specification in
output. The composition logic in Figure 5 has been modeled in our BPEL4UI editor,
an extended Eclipse BPEL editor with (i) a panel for the specification of the pages in
which UI components can be rendered and (ii) a property panel that allows the devel-
oper to configure the web pages, to set the properties of UI partner links, and to asso-
ciate them to place holders in the layout.

The deployment of a UI orchestration requires translating the BPEL4UI specifica-
tion, which is not immediately executable neither by a standard BPEL engine nor by
the UI rendering engine (the so-called UI engine, which we discuss in the following),
into executable formats. This task is achieved by the BPEL4UI compiler, which, start-
ing from the BPEL4UI specification, the set of used HTML templates and UI compo-
nent WSDLs, and the system configuration of the runtime part of the architecture,
generates three kinds of outputs:

1. A set of communication channels (to be deployed in the so-called UI engine
server), which mediate between the UI engine client (the client browser) and
the BPEL engine. These channels are crucial in that they resolve the technol-
ogy conflict inherently present in BPEL4UI specifications: a BPEL engine is
not able to talk to JavaScript UI components running inside a client browser,
and UI components are not able to interact with the SOAP interface of a BPEL
engine. For each UI component in a page, the compiler therefore generates (i)
an event proxy that is able to forward events from the client browser to the
BPEL engine and (ii) an event buffer that is able to accept events from the
BPEL engine and stores them on behalf of the UI engine client.

2. A standard BPEL specification containing the distributed UI synchronization
and web service orchestration logic. Unlike the BPEL4UI specification, the
generated BPEL specification does no longer contain any of the UI-specific
constructs introduced in Section 4.1 and can therefore be executed by any
standards-compliant BPEL engine. This means that all references to UI com-
ponent partner links in input to the compilation are rewritten into references to
the respective communication channels of the UI components in the UI engine
server, also setting the correct, new SOAP endpoints.

3. A set of UI compositions (one for each page of the application) consisting of
the layout of the page, the list of UI components of the page, the assignment of
UI components to place holders, the specification of the intra-page UI
synchronization logic, and a reference to the client-side runtime framework.
Interactions with web services or UI components running in other pages are
translated into interactions with local system components (the notification
handlers and event forwarders), which manage the necessary interaction with
the communication channels via suitable RESTful web service calls.

Finally, the BPEL4UI compiler also manages the deployment of the generated arti-
facts in the respective runtime environments. Specifically, the generated communica-
tion channels and the UI compositions are deployed in the UI engine server and the
standard BPEL specification is deployed in the BPEL engine.

324 F. Daniel et al.

The execution of a UI orchestration requires the setting up and coordination of
three independent runtime environments: First, the interaction with the users is man-
aged in the client browser by an event-based JavaScript runtime framework that is
able to parse the UI composition stored in the UI engine server, to instantiate UI com-
ponents in their respective place holders, to configure the notification handlers and
event forwarders, and to set up the necessary publish-subscribe logic ruling the event-
to-operation mapping of the components running inside the client browser. While
event forwarders are called each time an event is to be sent from the client to the
BPEL engine, the notification handlers are active components that periodically poll
the event buffers of their UI components on the UI engine server in order to fetch
possible events coming from the BPEL engine (we are currently studying suitable
push mechanisms for events).

Second, the UI engine server must run the web services implementing the commu-
nication channels. In practice we generate standard Java servlets and SOAP web ser-
vices, which can easily be deployed in a common web server, such as Apache
Tomcat. The use of a web server is mandatory in that we need to be able to accept
notifications from the BPEL engine and the UI engine client, which requires the abil-
ity of constant listening. The event buffer is implemented via a simple relational data-
base (in PostgreSQL) that manages multiple UI components and distinguishes
between instances of UI orchestrations by means of a session key that is shared
among all UI components participating in a same UI orchestration instance.

Third, running the BPEL process requires a BPEL engine. Our choice to rely on
standard BPEL allows us to reuse a common engine without the need for any UI-
specific extensions. In our case, we use Apache ODE, which is characterized by a
simple deployment procedure for BPEL processes.

The MarcoFlow system shown in Figure 6 is fully implemented and running. A
demo of the tool is available at http://mashart.org/marcoflow/demo.htm.

7 Conclusion

The spectrum of applications whose design intrinsically depends on a structured flow
of activities, tasks or capabilities is large, but current workflow or business process
management software is not able to cater for all of them. Especially lightweight, com-
ponent-based applications or Web 2.0 based, mashup-like applications typically do
not justify the investment in complex process support systems, either because their
user basis is too small or because there is need only for few, simple applications. Yet,
these applications too demand for abstractions and tools that are able to speed up their
development, especially in the context of the Web with its fast development cycles.

We introduced the idea of distributed UI orchestration, a component-based devel-
opment technique that introduces a new first-class concept into the workflow man-
agement and service composition world, i.e., UIs, and that fits the needs of many of
today’s web applications. We proposed a model for UI components and showed how
their use requires extending the expressive power of standard service composition
languages. The language comes with a suitable modeling environment and a code
generator able to produce code and instructions that can be executed straightaway by

 From People to Services to UI: Distributed Orchestration of User Interfaces 325

our runtime environment, which separates the problem of intra-page UI synchroniza-
tion from that of distributed UI synchronization and service orchestration. The result
is an approach to distributed UI orchestration that is comprehensive and free.

Unlike in our research on universal composition [3] and unlike mashup tools, in
this paper we do not aim at enabling less skilled web users to develop simple applica-
tions. MarcoFlow targets skilled web developers that are familiar with BPEL and
applications that are complex and possibly involve multiple actors that are distributed
over the Web, but that need orchestration. While the idea of event-based UI compo-
nents has been around for some time now, distributed UI orchestration and multi-
browser/multi-actor applications as proposed in this paper are new.

Next, we plan to support the dynamic selection of actors (during deployment or at
runtime), advanced access policies, and data flow mechanisms that go beyond the
current event-based communication (e.g., through a suitable persistence layer).

References

1. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: SIGCHI 1992, pp.
195–202 (1992)

2. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development and its
Differences with Traditional Integration. IEEE Internet Computing 12(5), 44–52 (2008)

3. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Mod-
els, Languages and Infrastructure in mashArt. In: ER 2009, pp. 428–443 (2009)

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description
Language (WSDL) 1.1. W3C Note (March 2001), http://www.w3.org/TR/wsdl

5. OASIS. Web Services Business Process Execution Language Version 2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

6. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)

7. van Lessen, T., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Management
Framework for WS-BPEL. In: ECoWS 2008, Dublin, pp. 187–196 (2008)

8. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs and
Service Mashups. Internet Computing 12(5), 32–43 (2008)

9. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. WS-BPEL Extension for People
(BPEL4People), Version 1.0 (June 2007)

10. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. Web Services Human Task (WS-
HumanTask), Version 1.0 (June 2007)

11. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Applications
Design and Development with WebML and WebRatio 5.0. In: TOOLS 2008, pp. 392–411
(2008)

12. Gómez, J., Bia, A., Parraga, A.: Tool Support for Model-Driven Development of Web Ap-
plications. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z.
(eds.) WISE 2005. LNCS, vol. 3806, pp. 721–730. Springer, Heidelberg (2005)

13. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design and
Deployment of Service-Enabled Web Applications. ACM Trans. Internet Technol. 5(3),
439–479 (2005)

14. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web Applica-
tions. ACM Trans. Softw. Eng. Methodol. 15(4), 360–409 (2006)

326 F. Daniel et al.

15. Sun Microsystems. JSR-000168 Portlet Specification (October 2003),
http://jcp.org/aboutJava/communityprocess/final/jsr168/

16. OASIS. Web Services for Remote Portlets, (August 2003)
 http://www.oasis-open.org/committees/wsrp

17. Oracle. JavaServer Faces Technology,
http://java.sun.com/javaee/javaserverfaces/

18. Pietschmann, S., Voigt, M., Rümpel, A., Meissner, K.: CRUISe: Composition of Rich
User Interface Services. In: ICWE 2009, pp. 473–476 (2009)

19. Feldmann, M., Nestler, T., Jugel, U., Muthmann, K., Hübsch, G., Schill, A.: Overview of
an end user enabled model-driven development approach for interactive applications based
on annotated services. In: WEWST 2009, pp. 19–28 (2009)

20. WSPER.org. WS-BPEL 2.0 Metamodel,
http://www.ebpml.org/wsper/wsper/ws-bpel20.html

Self-adjusting Recommendations for People-Driven
Ad-Hoc Processes

Christoph Dorn1, Thomas Burkhart2, Dirk Werth2, and Schahram Dustdar1

1 Distributed Systems Group
Vienna University of Technology

1040 Vienna, Austria
���������	�
����
���	��
��
��

2 Institute for Information Systems (IWi)
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
���������	�	
�
�	
��

Abstract. A company’s ability to flexibly adapt to changing business require-
ments is one key factor to remain competitive. The required flexibility in people-
driven processes is usually achieved through ad-hoc workflows. E�ective
guidance in ad-hoc workflows requires simultaneous consideration of multiple
goals: support of individual work habits, exploration of crowd process knowledge,
and automatic adaptation to changes. This paper presents a self-adjusting approach
for providing context-sensitive process recommendations based on the analysis of
user behavior, crowd processes, and continuous application of process detection.
Specifically, we classify users as eagles (i.e., specialists) or flock. The approach is
evaluated in the context of the European research project Commius.

1 Introduction

Today, enterprise competitiveness is primarily determined by an organization’s ability
to adapt to dynamically changing environments. Keeping the pace with innovations to
maintain a competitive advantage requires the rapid assembly of value chains where
multiple specialized companies cooperate in the production of increasingly complex
products. As a direct consequence, established work practises—especially in people
driven process environments—need to become flexible and adaptable.

Traditional work-flow engines lack the required flexibility for reacting to ad-hoc
changes. Their rigid underlying process model would need to foresee all possible varia-
tion, which becomes unfeasible even for simple processes. Support systems for flexible
processes (e.g., Caramba [1]) recommend a user to follow a predefined process path, but
allow them to deviate from that process on demand (For a exhaustive survey on flexible
business support systems see [2]). This paper focuses on two major challenges that re-
mained mostly unaddressed: (a) users in people-driven processes require a combination
of personalized recommendations, while exploiting the best practises emerging from
the overall user community; (b) flexible processes need to evolve across time to reflect
the changes in working style, business constraints, and impact of cross-organizational
cooperation.

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 327–342, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

328 C. Dorn et al.

In this paper, we introduce a hybrid approach that combines user-centric process
recommendation with crowd-based process knowledge. Specifically we provide rec-
ommendations learned from previous processes executed by that user and couple them
with process decisions taken from all users involved in that particular process type. Our
main contribution is a self-adjusting user classification model that determines whether a
user engages in individualized process adaptations (eagle) or whether the user follows a
generally agreed upon process step sequence (flock). Monitoring and recommendation
evaluation continuously adjusts this classification. The underlying ad-hoc process en-
gine allows any deviations from the modeled flow. These deviations feed back into the
process model, ultimately enabling process evolution through self-learning of process
patterns.

A motivating scenario sets the scene for our self-adjusting recommendation approach
(Section 2). In Section 3, we continue with a brief discussion of the term flexibility as
applied in the domain of adaptive business processes, followed by related work focusing
on flexible process support systems. Section 4 describes the process recommendation
algorithm and feedback mechanism. Section 5 discusses our advanced recommendation
aggregation and user classification technique. We evaluate our approach based on the
scenario and our prototype implementation in Section 6. Finally, Section 7 gives a short
conclusion and an outlook on future work.

2 Supporting Flexibility in People-Driven Processes

Based on the continuum given in [3] business processes can be classified as follows:

Structured processes represent the traditional work flows with full automation capac-
ity. Structured process-models determine a-priori the complete process flow, agents,
alternative paths etc. and remain unchanged for all process instances.
Semi-structured processes—or case-oriented processes [4]—reside between ad-hoc
processes and structured processes. They follow certain rules but cannot be entirely
standardized.
Ad-hoc processes represent the most flexible type of processes because their actual ex-
ecution path is completely defined at run-time with no given structure forcing a certain
course of action.

We focus on ad-hoc processes where users are free to decide which process steps to exe-
cute. In order to provide recommendations, however, we allow users to model processes
which are then refined through user monitoring. We apply the taxonomy by Regev et
al. [5] to characterize our supported process flexibility:

Abstraction Level: Runtime changes a�ect only the process instance. However, these
changes eventually cause an evolution of the process model through process learning.
Subject of Change: Process advice supports only behavioral changes, as we recom-
mend only the selection and order of process steps. (Functional, operational, informa-
tion, and organizational perspectives remain outside the scope of this paper).
Properties of Change: Our main focus lies on process learning which results in small,
incremental changes to the process. Revolutionary changes through business process re-
engineering, however, are also supported. Changes to the process model a�ect only new

Self-adjusting Recommendations for People-Driven Ad-Hoc Processes 329

instances (i.e., deferred as opposed to immediate) and emerge from past user actions in
an ad-hoc fashion.

2.1 Motivating Scenario

Within this paper, a common show-case will be used to point out di�erent aspects of the
introduced approach. The scenario (Figure 1) focuses on a business process describes
the handling of incoming orders and the subsequent dispatching of the ordered items.
An incoming order triggers the process. Subsequently, an order confirmation is returned
to the customer. Further, credit and inventory checks confirm the credit-worthiness of
the customer and the availability of the ordered items. In case the ordered goods are not
on stock, the replenishment of the items is triggered. As soon as all required items are
gathered, the shipment as well as the corresponding invoice are prepared. The process
ends with the dispositioning of the ordered items.

The scenario describes a primarily people-driven work flow. At first sight, the pro-
cess does not seem very ad-hoc. The individual workers, however, are free to select
the desired selection and sequence of process steps. The main purpose of the process
description is obtaining a first, generic process that provides a rough guide for most
cases. As business requirements change due to internal forces (e.g., new products, dif-
ferent customer focus) or external forces (e.g., important customers demand special
treatment) the individual workers adapt the order of steps as they see fit. A worker, for
example, can decide to ship the goods before completing billing and invoicing. Our
mechanism monitors such decisions and continuously adapts to recommend always the
most suitable next steps.

[A]
Confirm
Order

[B]
Check

Inventory

[D]
Send

Acceptance

[E]
Replenish

[C]
Credit
Check

[F]
Prepare

Shipment

[G]
Billing +
Invoicing

[H]
Regular
Dispatch

V VV

[J]
Priority

Dispatch

XORV

Start

End

Fig. 1. Scenario: generic people-driven order process model (PM)

3 Related Work

Defining Flexibility in Business Processes. The term flexibility in the context of busi-
ness processes comes with a multitude of interpretations. An overview over the most
established interpretations of flexibility allows us to better compare our contribution to
existing approaches.

330 C. Dorn et al.

In the scope of this paper, we define process flexibility as the ability to adapt the
process flow on demand through adding, skipping, or sequence reordering of process
steps. This definition is closely related to the interpretation by Adams et al. [6] in which
processes simply provide a guideline while the appropriate way of handling single tasks
is chosen on an as-needed basis. In Reijers et al. [7], process models define the normal
way of achieving a goal, but still o�er the possibility to deviate based on available case
data. Sadiq et al. [8], on the other hand, describe flexibility as the ability to deal with
processes that are only partially defined at build-time. So�er [9] distinguishes between
short-term flexibility (i.e., deviations from a given model) and long-term flexibility (i.e.
evolution of processes). Greiner and Rahm [10] limit the definition to exception han-
dling capabilities in case of unforeseen events or policy changes. In contrast to the
application specific perspectives, Adamides et al.[11], define strategic flexibility which
describes a company’s diversity of strategies and its capability to switch between them.

Flexible Process Support Systems. Research on providing recommendations in flex-
ible workflow systems focuses on multiple aspects. The major means of providing
recommendations is done by guidelines. A predefined process model assists a user in
choosing how to proceed a workflow. In more detail, such a guideline can exists merely
of process parts (like presented by Sadiq et al. [8]) and which thus does not require a
complete process model. Alternatively, guidelines can define what has to be done in
each specific process state but still not provide a complete process path [12]. More-
over, Adams et al. [13] define each process step within such a guideline as a simple
placeholder task which is dynamically replaced by a context sensitive choice from an
extensible catalog of suitable workflow definitions during run-time. The actual selection
process is ultimately defined by so-called Ripple Down Rules [6]. In addition, recom-
mendations can be derived based on a rough task structure [14]. In contrast to these
guideline approaches that are mainly based on predefined process models and might
not be instantiated at all, recommendations are based on best-practices shared by users
within a company [15]. Pesic et al. and van der Aalst [16,17] provide recommendations
based on past experiences and additionally on a specific process goal. This is achieved
by comparing the current process instance with past executions (logs), while preferring
those executions that satisfy the specified goal. A similar approach can be found in [18]
where recommendations are generated based on similar past process executions by con-
sidering the specific optimization goals. Another approach is followed by Almeida and
Casanova [19] whose recommendations are based on an ontology and semantic rules
that generate possible process alternatives or suitable process steps if the execution of
a workflow instance fails to proceed. Vanderfeesten et al. [20] follow an approach in
which, based on the information available for a case, the next step to be performed
is determined using a strategy of e.g. lowest cost or shortest processing time. While
the previous approaches focus on concrete recommendations, the TIBCO Software Inc.
provides detailed process information and context to the user. Thus, a user can identify
which steps are required to achieve the process goal [21].

These flexible process support systems seem to be on the right track when com-
paring their capabilities to the stated definitions and statements concerning flexibility.
According to several surveys, however, actual implications of the ad-hoc approach lack

Self-adjusting Recommendations for People-Driven Ad-Hoc Processes 331

of a suÆcient degree of process guidance during run-time due to their overly extensive
degree of freedom (cf. [2]).

4 Process Recommendation

The recommendation mechanism applies two related data sets, the process model (PM,
Figure 1) and the sequence graph (SG). Figure 2a) displays the sequence graph for
the first steps of the scenario process. The sequence graph S G(P� E) comprises nodes
representing the individual process steps P. An directed edge e � E in SG between two
nodes A and B describes a temporal sequence that process step B follows immediately
after A. Whenever a user conducts process step B after process step A we increase the
edge value. The SG accumulates all individual process step sequences for a particular
process type. It thus yields the likelihood (i.e., preference) of following a particular
path through the process. In Figure 2a, the arc thickness indicates this preference. The
flow control model describes the dependency between process steps. Joins, splits and
sequential steps are extracted from the sequence graph by existing process techniques
[22].

A

B

E

a) Sequence Graph (SG) b) Candidates for A c) Candidates for D

D

C A

B

E

D

C

G + ... G + ...

A

B

E

D

C

G + ...

Fig. 2. Sequence Graph (SG) excerpt and process step candidates: completed process steps in
dark gray, candidates in shaded blue, and inactive process steps in green. (Colors online)

When a process is started, we derive an instance of the process model. As we track
the progress of the process, we utilize the process instance to select the relevant process
steps that are sensible to enact in the current process state. This is the task of the Process
Instance Manager (Fig. 5). For each point in time, it keeps track of process steps that
have been completed, which are active (i.e., all process step preconditions are fulfilled,
but the step has not been carried out), and which steps need to be (de)activated. For our
recommendation purpose the Process Instance Manager provides a list of process step
candidates that are ready to be carried out.

The sequence graph then provides the information to establish which of the possible
process steps to carry out first. The algorithm in Listing 1 describes the recommen-
dation procedure in detail. After completion of the order confirmation process step A,
the Process Instance Manager identifies Check Inventory B, Credit Check C, and Send
Acceptance D from the PM as valid next steps (Figure 2b). A recommendation r con-
sists of a process step S , and the recommendation confidence w defined in the interval

332 C. Dorn et al.

[0� 100], where 100 indicates absolute certainty. Within a set of recommendations R,
the sum of confidence values will always add up to exactly 100 (

�
wi � 100 � ri � R).

Subsequently, the SG weights these candidates according to the edge values (e.g.,
here w(AB) � 70�w(AC) � 10, and w(AD) � 30). The first phase ranks all process
step candidates that are active and exhibit incoming edges from the recently finished
process step (here A) as detailed in lines 1 to 12 in Algorithm 1. Let us assume the user
does not follow the top-rated recommendation B and instead selects step D (Figure 2c).
Now, simple recommendation on the SG would suggest primarily to continue with the
process (G� ...) and as second choice continuing to C (because arc DG yields a higher
edge weight than edge DC). A pre-selection of valid edges based on the PM, however,
identifies B and C as the only sensible next process steps. In short, the sequence graph
by itself cannot give recommendations that respect control flow constraints. The flow
control model by itself, on the other hand, cannot provide suggestions on the order of
which process step to carry out first.

We cannot focus on recommending subsequent process steps only, as the user is free
to select any process step. Lines 13 to 26 in Algorithm 1 analyze the process for skipped
and out-of-order process steps. Thus, after finishing D, the SG will analyze both C and
B. First, we check any preceding steps of D that are still active (i.e., only C) and score
them according to outgoing weights (i.e., w(CD)) — lines 13 to 18.

Finally, if the SG does not exhibit any edge between the candidates and the last
completed step (i.e., B), the candidates are ranked based on their aggregated weight
on their respective incoming edges (i.e., w(AB)). We limit the incoming edges to those
that originate at already completed process steps. We, thus, prefer candidates that follow
after already completed steps and that are frequently traversed (lines 19 to 26).

The algorithm recommends only the next, active process steps that need comple-
tion for sake of simplicity (as opposed to process step sequences). The process model
and sequence graph, however, contain the required information to provide also multi-
step recommendations. The recommendation model does not support dependencies be-
tween process steps explicitly. When the users are aware of such limitations, the process
logs and subsequent mined process models will eventually reenforce such dependencies
implicitly.

4.1 User-Based Recommendation

The generic scenario process gives rise to distinctive process adaptations as required
by di�erent environment needs. We observe the behavior of following three example
users. User 1 is responsible for regular customers that order standard products which
get automatically restocked once a certain threshold is undercut. Standard customers
receive their goods via regular shipping. Consequently, User 1’s personal process model
deviates from the standard order process. Figure 3 display PM (a) and SG (b) for User
1. The graphs does not display process steps B, E, and J as they are never invoked.
Note that User 1 embraced the habit of always preparing the billing before triggering
the shipment, having steps G and F in sequence (Figure 3a). From the sequence graph
(Figure 3b) we learn, that User 1 has hardly any preference on whether to execute C or
D first.

Self-adjusting Recommendations for People-Driven Ad-Hoc Processes 333

Algorithm 1. Crowd-based Recommendation Algorithm �(S G� P� S)
1: for all ProcessS tep PS � P do � Get list of process step candidates.
2: if state(PS) �� active then
3: R � PS
4: end if
5: end for � Initialize process step ranking scores.
6: W � �

7: for all ProcessS tep C � R do � For all consecutive process steps of S .
8: W[C] � � S G�getEdge(S �C)�weight
9: end for

10: if hasActivePredecessors(S) then � If a preceding process step has been temporarily
skipped.

11: for all ProcessS tep C � R do � Extract incoming edge weight from SG.
12: W[C] � � S G�getEdge(C� S)�weight
13: end for
14: end if � For any other active process step that is not directly connected to S .
15: for all ProcessS tep C � R �W[C] �� 0 do
16: for all Arc a � S G�getInEdge(C) do
17: if state(sourceNode(a)) �� completed then � Count the edge weight only if the

predecessor step has been completed.
18: wsum � � a�weight
19: end if
20: end for
21: W[C] � � w
22: end for � Rank candidates by weights W
23: sort(R�W)
24: return R

User 2 serves to premium customers that have a high order volume, pay regularly and
thus need not go through a credit check. Premium customers receive priority shipment
(J) to deliver their order goods as fast as possible. Similar to User 1, User 2 doesn’t
check the availability of stock before confirming an order either. Consequently, steps A
and D become a sequence as steps B�C� E, and H are missing (Figure 3c�d). This user
also exhibits a strong tendency to first trigger shipment preparations (F) and dispatching
the goods (J) before preparing invoicing (G). User 3 handles special cases. Being a new
employee, he tends to forget certain process steps. Specifically, he never returns order
confirmations (D), and occasionally misses the preparation of billing information (G).
Consequently, the process extracted from the sequence graph joins steps F and G via
an OR instead of an AND (Figure 3e�f).

Each individual user exhibits a very personalized process that deviates considerably
from the standard order process.1 While personalized recommendation would yield
highly relevant process step rankings, these recommendations cannot exploit alterna-
tive activities when exceptions such as delayed shipping, or partial order content is

1 Note that for collaborative processes (i.e., multiple interacting users) the personalized process
and respective recommendations cover only the part of the process in which the user is involved
in.

334 C. Dorn et al.

A

D

C F

G

H

A

D

J

A E

H

J

V V

F

G

V V

XOR

B

C

V V

V V

A

C

G

F

H

A D

G

F

J

D

A

B

G

F H

C

F

G

V V

J

E

a) Process Model (User 1) b) Sequence Graph (User 1)

c) Process Model (User 2) d) Sequence Graph(User 2)

e) Process Model (User 3)

f) Sequence Graph (User 3)

Fig. 3. Process Model and Sequence graph for User 1 (handling standard orders), User 2 (serving
premium customers), and User 3 (handling special cases)

out of stock. Moreover, pure personalized recommendations will reinforce ineÆcient
or even incorrect sequences such as inadvertently skipping an important process step.
Crowd-based recommendations mitigate this shortcoming.

4.2 Crowd-Based Recommendation

Crowd-based recommendations enrich the set of relevant possible process paths through
aggregation of the process experiences from multiple users. Personalized processes cap-
ture the habits of an individual user. They are, however, limited to process step se-
quences that particular user has executed so far. Alternative sequences that potentially
reduce overall processing time remain unavailable. Also, a personalized process cannot
be applied for giving advice in exceptional situations that have not been encountered by
the user before.

Figure 4 displays the aggregated flow control model and sequence graph for users
1, 2, and 3. The SG is a simple aggregation of all process step sequence from process
instances completed by the three users. The process mining technique reference above
then generates the corresponding PM. Note, due to User 3, the PM joins steps F and G
via an OR.

Self-adjusting Recommendations for People-Driven Ad-Hoc Processes 335

A E

H

J

XOR

B

C

V V F

G

V VV V

D
Process Model

Fig. 4. Aggregated Process Model for User 1, 2, and 3

The complete recommendation cycle is depicted in Figure 5. An incoming request
for recommendation triggers the recommendation mechanism (1). The recommender
collects information from the process instance manager (2a) and the sequence graph
(2b) to aggregate sensible upcoming process steps. The process recommender retrieves
this information from both personal and crowd-based SG, respectively PM. The exact
aggregation of personal and crowd-based recommendations is outlined in Section 5. The
recommender subsequently provides the user the recommended process steps (3).The
user selects one process step and enacts it by clicking, for example, on a link in his�her
user interface (4). Note that the user doesn’t explicitly agree or disagree with a rec-
ommendation. Instead, the system monitor observes the user’s actions (5a), and other
system events (5b) to determine the true process progress. The system monitor updates
the process instance manager whenever a process step has been completed (6). The pro-
cess instance manager in turn updates the personal and crowd-based sequence graph for
each completed step (7). In regular intervals, the Process Miner takes a sequence graph
(8) and generates an updated process model (9). This procedure is performed for each
process type to generate the crowd-based PM and for each individual user and process
type to derive the personal PM. We apply an aging mechanism to reduce the e�ect of
old, potentially outdated, process sequences. For every new incoming process sequence
we remove the oldest sequence.

5 Self-adjusting Recommendation Model

The overall recommendation combines user-centric and crowd-based recommendations
according to the classifier �. It describes the user on a scale between 0 and 1, where 1
denotes a user always adhering to his individual work style — the eagle. At the other
extreme end of the classifier (� � 0), a user follows generally applied work practices —
flock. We determine � for each user and process type as a user’s work style potentially
deviates for each process type. The overall recommendation merges user-centric and
crowd-based recommendations according to the following formula:

Roverall � � � Ruser � (1 � �) � Rcrowd (1)

Specifically, we multiply a recommendation’s weight wREC within Ruser with � and
repeat the same for Rcrowd with (1 � �). Sorting the merged list provides the overall
recommendation.

Suppose following simple example consisting of user- and crowd-based recommen-
dations: Ruser recommending S 1� S 3� S 4 and Rcrowd recommending S 2� S 3� S 5� S 6. We

336 C. Dorn et al.

Personal
Sequence Graph

Crowd-based PM

PM Instance (2x)

(4) select and
execute

recommendation

(5a) log action
eventService

Recommendation
Candidates Process Monitor

(6) mark process step
complete

Process Instance
Manager

(create or update)

(7) log process
step transition

Crowd-based
Sequence Graph

(8) extract

Personal Process
Model

(9) generate

Manual
Process
Model(0) seed

Process
Recommender (2a) allowed/sensible process steps

(2b) prefered order of process steps

(3a) provide

Process Miner

(5b) external events

(1) recommendation
request

Fig. 5. Feedback cycle for personal and crowd-centric recommendations

obtain following overall recommendation for � � 0�5 (Note that the weights for S 3 are
aggregated.):

0�5 �

����������
S 1 70
S 3 15
S 4 15

���������� � 0�5 �

��������������

S 2 80
S 3 10
S 5 5
S 6 5

��������������
��

�������������������������

S 2 40
S 1 35
S 3 12�5
S 4 7�5
S 5 2�5
S 6 2�5

�������������������������

(2)

In our example, we set � � 0�5 to denote a user that has not been classified as eagle
or flock, yet. We reject a fixed configuration of the parameter �. Instead, dynamic clas-
sification adjustment reflects a user’s adaptation to changing process requirements and
learning e�ects. To this end, we observe the user’s selection of recommended process
steps. We increase the value of � when the user carries out a process steps that origi-
nated from Ruser. Similarly, we reduce the value of � when the user follows crowd-based
recommendations.

Following factors determine the amount to which � is moved:

– Similarity of user-centric and crowd-based recommendations: We cannot clearly
distinguish between distinctive user behavior when both recommendation set con-
tain similar top-rated process steps.

– Process success: When � remains close to 1 but process success declines, we have
to assume that the personalized recommendations fail as they most likely reinforce
bad decisions. In this case, we need to push � towards the neutral value to introduce
again crowd-based recommendations.

– Current value of �: Remaining in the middle between eagle and flock is not desir-
able, as we neither provide user-centric know how, nor exploit the wisdom of the
crowd. Consequently, moving away from the middle is reinforced. Reaching the
absolute extremes, however, is hard to allow for a quick transition between the two
behavior types.

Self-adjusting Recommendations for People-Driven Ad-Hoc Processes 337

Recommendation Similarity. We calculate the similarity of user-centric and crowd-
based recommendations implicitly by comparing the actual user actions with both rec-
ommendations. We assume that users deviate slightly from recommended process steps
on a regular basis. Subsequently, we first combine the user’s actions in an anonymous
process step type and then compare that process step with the given recommendations.

We determine the similarity of two process steps by observing the overlap of com-
mon and individual actions. Specifically, we apply the weighted Jaccard similarity mea-
surement.

simwJaccard(s1� s2) �

�
a�s1�s2

wIDF (a)�
a�s1�s2

wIDF (a)
(3)

where wIDF (a) is the weight function describing the frequency of action a occurring in
a process step s. Here the weight function is the inverse document frequency (IDF) of
a, having the document base comprise all process steps defined in the process model.
The weight for a particular action ai is defined as:

wIDF (ai) � log
�S �

s : ai � s
(4)

where �S � is the number of all process steps and s : ai � s counts all process steps that
contain action ai. Actions that occur in most process steps will thus yield low weight
when comparing two process steps, while rare actions will yield a high weight.

The similarity of user actions and recommendation derive the recommendation’s
success. Each recommended process step is additionally weighted by the recommen-
dation’s weight. For an anonymous process step A we calculate:

succ(R� A) �
R�

i

simwJaccard(A� si) � wREC(si) (5)

The overall e�ect on � moving towards eagle or flock is then simply derived through
comparison of personalized and crowd-based recommendation success:

Æ(A) � succ(Ruser� A) � succ(Rcrowd� A) (6)

Avoiding Classification Lock-in. An eagle remains locked-in his classification when
he repeatedly fails to successfully complete a process but continues to receive exclusive
personal recommendations. In this case, we have to abandon the underlying classifica-
tion. A user is considered locked-in, when his average process success rate falls below
the average process success rate of the top 50% flock users. Specifically, we sort all
users according to their current classification value � in ascending order and select the
process success rate psucc of all users having � equal or below the second quartile. We
set � � 0�5 for user u if he fails to meet following threshold condition:

¯psucc(u) �
2 �

�
i

¯psucc(ui)
�U �

�ui : �i � Q2 (7)

This is expected to raise the number of successful processes as the user is presented
with process step alternatives he did not consider before. The user classification might
again deviate towards eagle again, but this time resulting in more sensible process steps.

338 C. Dorn et al.

Accelerated Classification Divergence. When recommendations combine profile-
based and crowd-based recommendation to approximately equal extent, the top recom-
mended process steps are potentially similar or, on the other hand, completely contra-
dicting. We apply a sigmoid function to avoid remaining too long in the middle between
eagle and flock (� 	 0�5). The sigmoid function (see Fig. 7) ensures that we can quickly
move from the middle in both directions. However, we will only move if Æ(A) ! � 0 (i.e.,
when there is a trend towards eagle or flock) otherwise we remain with the previous �

value. Based on Æ(A) and current classification value �t, we determine the new �t�1:

�t�1 �

	

�

�
Min[Max[(1 � e�10�(�t�Æ(A))�5)�1� 0]� 1] if Æ(A) � 0,

�t if Æ(A) � 0.
(8)

where the Min and Max operators limit � to the interval [0� 1].

Process
Recommendation

DB

User Profile DB

Process Monitor

Eagle
Or

Flock

User
Classification

(1) Notify completed Step

(2) retrieve personal and
crowd-based Recommendation

(4) retrieve user
classifaction (alpha t)

(5) update user
classification (alpha t+1)

(3) retrieve user
process success rate

Process
Recommender

(aggregate
personal and
crowd-based

recommendations)

(9b) store personal and
crowd-based Recommendations

(8) retrieve user
classifaction (alpha)

(7) retrieve personal and
crowd-based PM + SG

(6) Recommendation
Request

Process Model +
Sequence GraphProcess Instance

Manager

Recommendation Success Evaluation phase Recommendation Aggegation phase

(9a) merged
recommendations

Fig. 6. Self-tuning of classification parameter � based on recommendation success

Classification Self-Tuning Cycle. The complete classification self-tuning cycle con-
sists of the Recommendation Success Evaluation phase and the Recommendation Ag-
gregation phase (Figure 6). For each completed process step (1) the User classification
component retrieves the corresponding personal and crowd-based recommendations (2)
from the Process Recommendation DB. Next, we apply the recommendation similarity
comparison. Subsequently, we evaluate the user process success rate (3) to check for
classification lock-in . The User Profile DB manages classification values for the vari-
ous process types and the corresponding process success information. We calculate the
new classification value based on the previous value (4). The previous value is neglected
if the lock-in check triggers a classification reset. Finally, the new classification value
is stored (5).

The recommendation aggregation phase provides more details on how the Process
Recommender — first introduced in Figure 5 — merges personal and crowd-based

Self-adjusting Recommendations for People-Driven Ad-Hoc Processes 339

recommendations. Upon an incoming recommendation request (1), the recommender
retrieves personal and crowd-based PM and SG (7). For each set, the ranking algo-
rithm in Listing 1 determines the top process step candidates. The two sets are then ag-
gregated applying the classification parameter (8). While the user receives the merged
recommendations (9a), the process recommender stores the two output rankings of the
recommendation algorithm separately (9b).

6 Experiments

Scenario Evaluation. We demonstrate the e�ect of user classification based on the
motivating scenario, in particular based on the behavior of the three user types. Fig-
ure 8 provides the process recommendation evaluation results for 10 instances of the
order process for each user (dashed lines) and the corresponding e�ect on the user
classification � (full lines). We applied rapid aging in the experiment to visualize the
convergence towards eagle or flock more clearly (i.e., new process sequences have an
early and strong impact).

−0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α
t

α t+
1

Change Effect

Fig. 7. Sigmoid function: the new user classifica-
tion (�t�1) depends on the previous classification
value (�t) and the shift towards eagle or flock

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

R
ec

om
m

en
da

tio
n

S
uc

ce
ss

 δ

Iteration t

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

C
la

ss
ifi

ca
tio

n
α

User 1 α
User 2 α
User 3 α
User 1 δ
User 2 δ
User 3 δ

Fig. 8. Classification change � (full lines)
and user recommendation success Æ (dashed
lines) for User 1, 2, and 3 across 10 time
intervals

User 1 takes up some crowd-based recommendations but remains slightly with the
personalized recommendations (i.e., Æ on average between 0 and 0.1). We have a de-
layed convergence towards eagle, however, deviations towards flock have no e�ect.
User 2 displays also eagle behavior, albeit diverges more quickly. User 3 exhibits a
typical learning behavior. As he realizes to execute process step D, he strongly devi-
ates from the personal recommendation, thus he becomes a flock member (t1 to t4) .
As his corrected behavior becomes more present in the personal flow model, the di�er-
ences between personal and crowd-based recommendations decrease (t5 to t6) and his
personal sequence preferences start to show e�ect (t7 to t10). Multiple, sequential rec-
ommendation evaluations towards eagle (Æ � 0) cause his reclassification. As users
learn and adapt their behavior, new flow control structures emerge from the crowd

340 C. Dorn et al.

A

E

H

J

XOR

B

C

V
F

G

V V

D

VV V

Process Model

XOR

Fig. 9. Evolved Process Model and Sequence Graph for User 1, 2, and 3

sequence graph. Once User 3 apprehends to always send an order confirmation, the
evolved crowd-based PM (Figure 9) identifies process step D as mandatory (and no
longer optional).

Prototype Evaluation. The recommendation approach introduced in this paper has
been implemented as a proof-of-concept within a software prototype of the European
research project Commius. The prototype connects to a standard email environment—
intercepting and analyzing email traÆc—in order to detect process steps from the com-
munication behavior of a user.

The users apply the process configuration tool (Figure 10) to define a coarse-grained
structure of the desired process. Within Commius, we allow only a simple sequential
structure to enable process modeling also for non-experts. The refined process model
is later derived from user actions. When the system recognizes this predefined process
steps in the email traÆc, it will automatically enrich the corresponding emails with
context sensitive information as well as process recommendation concerning further
steps [23]. Figure 10 (inset) displays an example email enriched with process recom-
mendations. The process step sequence with highest probability is provided on the right
side (here four subsequent process steps taken from the scenario). The aggregation of
personal and crowd-based recommendations exhibits a di�erent process step sequence
than the originally modeled flow. User 3 has been classified as flock, thus the recommen-
dation advises him to prepare an order confirmation. The enhanced email also demon-
strates the flexibility supported by our prototype. In case the user prefers not to follow
any of the given recommended steps, s�he is free to select any other step from the un-
derlying process. The popup contains the probabilities how well the alternative process
steps match the current process context.

Results. The evaluation results are twofold. First, we achieved the successful applica-
tion of our approach in email-based process environments. Recommendation support is
directly integrated in the email client. Second, we demonstrated the user classification
mechanism based on three user types. Classification diverges quickly (User 1, User 2),
and displays the benefit of crowd-based process model to overcome erroneous process
decisions (User 3) followed by subsequent reclassification.

Self-adjusting Recommendations for People-Driven Ad-Hoc Processes 341

Fig. 10. Commius process modeling tool and email-based process step recommendation (inset)

7 Conclusion and Outlook

Recommendations for people-driven ad-hoc processes exhibit maximum e�ectiveness
when personal and crowd-based behavior is combined. Adding continuous process de-
tection and user classification ensure valid recommendations even in case of process
evolution. We introduced the concepts of eagle and flock to describe the recommenda-
tion needs of distinct user types.

Future work will focus on evaluating the recommendations in real-world environ-
ments within the scope of the Commius project. At the same time, we plan to integrate
context constraints to distinguish between process sequences that depend to a large de-
gree on data input and�or specific environmental conditions. This will allow to give
even more targeted recommendations. In addition, we intend to investigate clustering
techniques for discovering conflicting recommendations in the crowd-centric process
model.

Acknowledgment

This work has been partially supported by the EU STREP project Commius (FP7-
213876).

References

1. Dustdar, S.: Caramba Process-Aware Collaboration System Supporting Ad hoc and Collab-
orative Processes in Virtual Team. Distributed Parallel Databases 15(1), 45–66 (2004)

2. Burkhart, T., Loos, P.: Flexible business processes - evaluation of current approaches. In:
Proceedings of Multikonferenz Wirtschaftsinformatik - MKWI 2010 (2010)

342 C. Dorn et al.

3. Huth, C., Erdmann, I., Nastansky, L.: Groupprocess: Using process knowledge from the par-
ticipative design and practical operation of ad hoc processes for the design of structured
workflows. In: HICSS (2001)

4. Dellen, B., Maurer, F., Pews, G.: Knowledge based techniques to increase the flexibility of
workflow management. In: Data and Knowledge Engineering.North-Holland, Amsterdam
(1997)

5. Regev, G., So�er, P., Schmidt, R.: Taxonomy of flexibility in business processes. In: BPMDS
(2006)

6. Adams, M., Hofstede, A., Edmond, D., van der Aalst, W.: Facilitating flexibility and dynamic
exception handling in workflows through worklets. In: CAiSE 2005, pp. 45–50 (2005)

7. Reijers, H., Rigter, J., Aalst, W.V.D.: The case handling case. International Journal of Coop-
erative Information Systems 12, 365–391 (2003)

8. Sadiq, S.W., Sadiq, W., Orlowska, M.E.: Pockets of flexibility in workflow specification.
In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 513–526.
Springer, Heidelberg (2001)

9. So�er, P.: On the notion of flexibility in business processes. In: Pastor, Ó., Falcão e Cunha,
J. (eds.) CAiSE 2005. LNCS. Springer, Heidelberg (2005)

10. Müller, R., Greiner, U., Rahm, E.: Agent work: a workflow system supporting rule-based
workflow adaptation. Data Knowl. Eng. 51(2), 223–256 (2004)

11. Adamides, E.D., Stamboulis, Y., Pomonis, N.: Modularity and strategic flexibility: a cogni-
tive and dynamic perspective. In: Systems Dynamics Society Conference 2005 (2005)

12. Polyvyanyy, A., Weske, M.: Flexible process graph: A prologue. In: OTM Conferences,
vol. (1), pp. 427–435 (2008)

13. Adams, M., Edmond, D., ter Hofstede, A.H.M.: The application of activity theory to dynamic
workflow adaptation issues. In: 7th Pacific Asia Conference on Information Systems, pp.
1836–1852 (2003)

14. Eichholz, C., Dittmar, A., Forbrig, P.: Using task modelling concepts for achieving adaptive
workflows. In: EHCI�DS-VIS, pp. 96–111 (2004)

15. Stoitsev, T., Scheidl, S., Spahn, M.: A framework for light-weight composition and man-
agement of ad-hoc business processes. In: Winckler, M., Johnson, H., Palanque, P. (eds.)
TAMODIA 2007. LNCS, vol. 4849, pp. 213–226. Springer, Heidelberg (2007)

16. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. In: Business Process Management Workshops, pp. 169–180 (2006)

17. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-based work-
flow models: Change made easy. In: OTM Conferences, vol. (1), pp. 77–94 (2007)

18. Schonenberg, H., Weber, B., Dongen, B., Aalst, W.: Supporting flexible processes through
recommendations based on history. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)

19. Almeida, T., Vieira, S.C., Casanova, M.A.: Flexible workflow execution through an
ontology-based approach. In: Workshop on Ontologies as Software Engineering Artifacts,
OOPSLA (2004)

20. Vanderfeesten, I.T.P., Reijers, H.A., van der Aalst, W.M.P.: Product based workflow support:
Dynamic workflow execution. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 571–574. Springer, Heidelberg (2008)

21. TIBCO, Software, Inc.: Tibco iprocess conductor (2007)
22. Gaaloul, W., Baı̈na, K., Godart, C.: Log-based mining techniques applied to web service

composition reengineering. Service Oriented Computing and Applications 2(2-3), 93–110
(2008)

23. Burkhart, T., Werth, D., Loos, P.: ”Commius An Email Based Interoperability Solution Tai-
lored For SMEs. Journal Of Digital Information Management 6 (2008)

A Collaborative Approach to Maturing

Process-Related Knowledge

Hans Friedrich Witschel1, Bo Hu1, Uwe V. Riss1,
Barbara Thönssen2, Roman Brun2, Andreas Martin2, and Knut Hinkelmann2

1 SAP AG, Dietmar-Hopp-Allee 16
69190 Walldorf, Germany

{Hans-Friedrich.Witschel,Bo01.Hu,Uwe.Riss}@sap.com
2 University of Applied Sciences Northwestern Switzerland (FHNW),

Institut for Business Information Systems,
Riggenbachstr. 16, 4600 Olten, Switzerland

{Barbara.Thoenssen,Roman.Brun,Andreas.Martin,Knut.Hinkelmann}@fhnw.ch

Abstract. We introduce a new approach supporting knowledge workers
in sharing process-related knowledge. It is based on the insight that - while
offering valuable context information - traditional business process mod-
elling approaches are too rigid and inflexible to capture the actual way
processes are executed. Therefore, business process models are made ag-
ile and open for changes during execution. To achieve this, the strict
distinction between build time modelling and run time execution are
softened and process activities are represented to the users in a way
that allows for individual adaptations. That can be done by attaching
resources, commenting on an issue or adding problems and solutions to
an activity or process. In addition activities can be delegated or new
(sub-)activities can be added. Thus, the model can adapt to the reality
of actual process executions and valuable resources and experiences are
proactively presented to users in the right context. A double-staged ap-
proach is chosen to apply the model in the real application scenario of a
university.

1 Introduction

Agility has emerged as an important common characteristic of successful busi-
nesses of any size, who benefit from quick response to volatile markets and rapid
changing user requirements. In this work, we inspect business agility through
the apparatus of knowledge sharing. More specifically, we leverage the process-
related knowledge, in terms of knowledge about processes (process knowledge)
and knowledge needed in processes (functional knowledge), to increase the agility
of organisations. As such knowledge is used and generated during work, its shar-
ing and maturing has to be aligned with business processes that faithfully re-
flect an organisation’s core and mission-critical activities. Businesses need to
make sure that employees, participating in mission-critical activities, share the
acquired process-related knowledge to keep established experience within the
organisation and optimise its performance in the face of employee fluctuation.

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 343–358, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

344 H.F. Witschel et al.

In practice, we deal with process-related knowledge with the help of Business
Process Management Systems (BPMS) and/or Workflow Management Systems
(WfMS). BPMS mainly manipulate process knowledge on the business level by
making process structures and resources explicit and by supporting process im-
provement. But they lack process automation. This is the function of WfMS,
which automate process execution (see [28], pp 8f). WfMS’s modelling function-
ality, however, is specialised for technical aspects and is not rich enough regarding
knowledge aspects. When aligned with everyday work activities, however, exist-
ing business process modelling and execution approaches may find themselves
overstretched in answering the call of agility due to the lack of flexibility and
the amount of overhead required for predefined process models. Usually, pro-
cess models are created by experts who attempt to bring together all relevant
knowledge about a certain process and model it in a BPMS. After negotiat-
ing and compromising, a resultant process model could truly represent how a
process appears under certain generalised circumstances. The model, however,
often differs from the reality of process execution [16]. Variations in execution,
which are seldom readily documented, become inevitable when applying process
models to new situations. The problem cannot be simply remedied with business
process reengineering, which is carried out in a structured and systematic way
and cannot keep pace with rapidly changing businesses or markets.

Coming from a totally different perspective, knowledge sharing (for all kinds
of knowledge) sometimes takes place informally, e.g., via email and telephone or
by imitation (apprenticeship). Although this is flexible and can be very efficient
at times, it usually restricts the benefits to the persons that are directly taking
part in the exchange (i.e., the information is completely lost for all others). Even
if employees have documented their experience and made it publicly available
(e.g. in a company Wiki, a lessons-learned database, or on a file share), it does
not mean that others are aware of the existence of such information. Needless to
say there is much less chance that they will be able to find it or that they will
even look for it in a given work situation where it is needed.

The intrinsic inadequacy of formal and informal process knowledge sharing
inspired us to take an eclectic approach so as to bridge exactly this gap: to learn
process models by doing and to enable adding and sharing individual knowl-
edge and experience. This approach enhances agile process modelling [11] with
functional knowledge used in a specific process instance and the possibility of
its informal exchange through so-called task patterns, during the execution of
processes.

Our vision emphasises the participation of users in a succession of phases known
as seeding, evolutionary growth and re-seeding in the SER model [5] (originally
applied in the area of managing complex design environments). The SER model
describes an approach “between the two extremes of ‘put-all-the-knowledge-in-at-
the-beginning’ and ‘just-provide-an-empty-framework’ ”. It combines the strengths
and avoids the weaknesses of both top-down and bottom-up approaches, respec-
tively. The SER model assumes that once a seed is taken up by a community, there
is a phase in which the knowledge artefacts evolve in a rather uncontrolled way.

A Collaborative Approach to Maturing Process-Related Knowledge 345

According to Fischer, it is necessary not to force users to invest much effort into
formalising their contributions since this would interrupt their normal work pro-
cess (something most people are not prepared to accept). Contribution should be
kept simple and will eventually lead to structures that are too redundant and un-
wieldy to be understood and managed. They are thus pruned and restructured in
the reseeding phase, which is done by a knowledge engineer, removes inconsisten-
cies and creates generalisations (i.e. removing pieces of information that are too
context-specific) and formalisations of the knowledge.This is exactly whatwewant
to achieve with the task pattern approach [22] that we introduce in this paper as
mediator between processmodelling and individual task execution. Projected onto
the SER model, reseeding in our work is understood as a chance to understand and
align the most frequent (and hence possibly most important) contributions to task
patterns in order to learn about potential improvements of the original seeds. This
realises a continuous improvement of process models and the task patterns based
on actual work activities.

The paper is organised as follows: in Section 2 task patterns as the central
building block for learning and maturing process-related knowledge is described.
This is followed by a description of our approach to monitor performed tasks
in order to semi-automatically support process model adaptations. In Section 3
we give an example of application of our new approach. Next, we describe some
technical details of the system (Section 4), then give a brief overview on related
work (Section 5) before Section 6 concludes.

2 Combining Knowledge Intensive Processes with Task
Patterns

A business process is a collection of structured activities with a precise goal to
be achieved over a period of time. In general, the activities of a process are in
a pre-defined order, resources are mapped (e.g. software systems or personnel,
via roles) and the process flow is depending on fixed decision rules. The KISS
approach [4] aims to bridge the gap of a strict distinction between design time
and run time. A knowledge intensive process (KIP) can be regarded as a col-
lection of activities building the ‘skeleton’ of a business process, some activities
of which can be knowledge intensive (called ‘KIA’). Whereas ordinary activities
are always executed (i.e., in every process instanc), KIAs are optionally executed
depending on information specific for the certain process instance. That can be
application data, process data or functional data.

KIAs are modelled during build time but their execution is triggered – or
suggested – during run time based on rules. If, for example, an application has
to be checked, several KIAs could be executed such as ‘Refer to an expert’, ‘Ask
for additional material’ or ‘Clarify with applicant’. Which one is selected within
a specific process instance depends on rules operating on run time information:
information already provided for the application, decisions taken in previous
process instances or data that is available from related information sources, e.g.
out of a legacy system maintaining data of former applications.

346 H.F. Witschel et al.

We will call the concrete instance of an activity (assigned to particular mem-
bers of an organisation) task, regardless whether it is a KIA or not. A task is
a definition of a particular item of work that specifies the requirements and the
goal of this work (cf. [1]). We introduce task patterns as abstractions of tasks
that provide information and experience that is generally relevant for the task
execution. By abstraction we mean common features of a family of similar tasks,
which aim at the same goals under similar conditions (for details refer to [3,27]).

In this section, we describe how agile business processes can work together
with task patterns to yield a new form of knowledge sharing. Meanwhile, in order
to fully understand the way informal process knowledge to be attached to agile
business processes, we explain the notion of task patterns more closely.

2.1 Task Patterns

In our approach of maturing process knowledge described below, we will intro-
duce a one-to-one relationship between an activity and a task pattern. That is,
for each activity of an agile business process there is exactly one task pattern that
serves as the basis for collecting information and experience around the tasks.
Tasks concretise task patterns and thus instantiate the corresponding activity.

How does this facilitate the transfer of information and experience work? In
general, task patterns provide two means for knowledge sharing (cf. [21,27]):

1. Abstraction services: these provide contextual information about resources
that can be used in the task – including information objects such as files, but
also persons who are to be contacted – or sub-tasks that should be started.

2. Problem/solution objects: These enable users to share experience regarding
typical problems that may arise during the execution of a task, together with
descriptions of possible solutions.

Users can interact with task patterns in two ways:

Consuming information from task patterns: when working on a task T, a suit-
able task pattern P can be displayed alongside the task. The user can access
P’s abstraction services to consume the resources that they offer and at-
tach them to the current task T. The same applies to solutions offered for a
problem that happens to occur in T.

Contributing to task patterns: users can also attach resources to their concrete
task T while working on it. This enables them to associate such information
with abstraction services or problem/solution objects of the task pattern P
and publishing that information to a shared repository.

The approach maintains a clear separation between personal knowledge, con-
tained in the individual task, and public experience, contained in the
task pattern. This separation prevents an intermixture of private and public
data. Therefore, it makes transparent to the user which task information is ex-
posed and shared with others and which remains under individual control [20].

A Collaborative Approach to Maturing Process-Related Knowledge 347

2.2 Sharing Work Experience

Regarding knowledge sharing, each activity of the process model is the basic unit
to which information and experience gets attached. This happens via a one-to-
one relationship between task patterns and activities (which are instantiated by
tasks): for each activity, the corresponding task pattern collects the information
and experience that users have attached to it while they were working on a task.

In the following, we will describe how agile business processes and task pat-
terns play together. We differentiate such interplay into one that happens at
design time and one that occurs during run time. At design time, for each ac-
tivity, a draft of a corresponding task pattern is created with the aid of a group
of experts who define an initial set of abstraction services and known problems
together with their solutions. The initial pattern should be thought of as a seed
that triggers the process of attaching experience to a work context. Subject to
further refinement, the initial task patterns do not have to be (and will never
be) complete in the beginning. These initial patterns are meant to grow larger
while their users learn more about the activities and mature over time adapting
to the actual way in which they are executed in practice.

All process information is stored in an ontology-based data store. Specifically,
this store contains all information on task instances, encapsulated in so-called
task description objects (TDOs). TDOs are filled dynamically by the back-end
system and loaded into the front-end once a task gets accepted by a user (see
below) - they thus serve as a means of communication between the two.

At run time, when the process is actually executed, the existing task pattern
for an activity, which we denote by P, will be retrieved. A task pattern man-
agement system will first consult the task ontology to retrieve the abstraction
services of P. It then helps users to instantiate P by recommending candidate
fillers or each abstraction service. More specifically, one proceeds as follows (this
flow of action is also depicted in Fig 1):

1. The workflow engine identifies which task T with corresponding task pattern
P should be performed next.

2. A task T is instantiated and a set of organisational members is selected as
potential executors of T. The selected persons are notified. They can accept
or reject the request to execute T.

3. Since T is the instantiation of an activity A and since for each activity A,
there is exactly one task pattern P assigned to it, the workflow engine will
next retrieve that task pattern P.

4. It then determines the context of T and uses it to retrieve relevant resources
that should be added to abstractor services of the task pattern P. These
resources will be added to the TDO corresponding to T.

5. Once the first person has accepted the task, the corresponding TDO is
fetched, together with the task pattern P. P is enriched with the information
in TDO and both the task details and the task pattern are displayed to the
user in a task management application.

348 H.F. Witschel et al.

6. The user can then start working on the task, making use of the informa-
tion provided in the task pattern P. Resources, but also problem/solution
objects can be easily copied from the task pattern into the task, becoming
attachments to it.

7. On the other hand, the user can also attach her own resources (that she
considers useful in the context of T) to T.

8. Enhancements of a task pattern are stored locally. They will be available
if the same user performs another task T’ that corresponds to the same A
(i.e. when the task pattern is loaded next time). However, if the user chooses
to publish the enhancements, she can do so by a simple click, making them
available to the others who have to perform a task of type A.

9. When the user has finished working on the task, she sets the status to “com-
pleted” and the workflow engine is notified of this.

Fig. 1. Flow of action during runtime

2.3 Learning from Work Experience

As mentioned in the introduction task patterns should be thought of as seeds
to aggregate information contributed by end-users. This participation becomes
particularly relevant since we do not believe in fully automatic improvements of
process models. Instead we envisage a tool that is able to detect deviations and
analyse the collected data in order to make suggestions for process changes, in
a way similar to work carried out in the area of process mining, e.g. [30]. Based on

A Collaborative Approach to Maturing Process-Related Knowledge 349

those blueprints the knowledge engineer will be able to decide on the suggested
changes. For process improvement the following aspects will be analysed [3,27]:

Subtasks that are frequently added to a task (or as subtask abstractor to the
corresponding task pattern): if many users add the same (kind of) subtask
to a given task, this indicates that potentially the process model can be
improved by including that subtask as a new activity.

Delegation of tasks can indicate that either the work balance is not correctly
considered or the skills of the assigned persons are not appropriately evalu-
ated. Rules for resource allocation should be adapted accordingly.

Problem/solution objects added to a task pattern can be included by other
users in their tasks. If many users do so, it means that the problem oc-
curs frequently and that it should be considered for process or task pattern
improvements.

Resources such as documents or persons can be attached to abstractor services
of task patterns, indicating the contexts in which they are useful (namely the
process, and activity, task, respectively they are being used in). An analysis
of these contexts is generally of interest as it may help to categorise the
resources according to their domains of application. Similarly, an analysis of
the set of all documents attached to task patterns can lead to a categorisation
of documents based on the type of situation(s) in which they are consumed.

In all these cases, an initial step in the analysis is aligning the corresponding
items with each other, e.g. to find out that two problem descriptions refer to the
same (type of) problem in reality.

3 An Application Scenario

This section presents the scenario of an evaluation study that was performed
within the University of Applied Sciences Northwestern Switzerland (FHNW)
in the context of the EU-funded project MATURE to elicit application sce-
narios and requirements for the ICT system that is being built to realise the
process-related knowledge maturing concepts presented in this paper. There-
fore, a prototype (later also called “demonstrator”) was built that implements
the concepts described here.

The model for the business process of matriculation is shown in Fig 2. We
can see that the student, the administration office and the dean are involved in
the process; tasks can be assigned to the administration office or to the dean as
they directly interact with the system. KIAs are highlighted.

The matriculation process starts with a student’s application request. After
the receipt of the request, several checks of the application have to be executed
in a KIP. As it is shown, the KIAs will not be executed in a pre-defined or-
der. The reason is the following: Depending on where the applicant comes from
(but also further criteria), different activities have to be performed. E.g. the
availability of a matriculation number has only to be checked if the applicant is

350 H.F. Witschel et al.

from Switzerland. Therefore, a variable process identification and selection ser-
vice automatically chooses the needed activities and assigns them to the possible
executor of the activity. The determination of study fees is based on given reg-
ulations and can be supported using a constraint checking service for decision
making. Further on, a resource allocation service assigns artefacts based on given
criteria. For instance, when checking the approval of a university, appropriate
websites or experts from a respective nation are attached to the activity.

Fig. 2. First part of the matriculation process model and the KIP sub-process “Check
application”

After these checks, the process goes on and it is decided whether the needed
requirements are fulfilled or not. The branching and decision making service can
be invoked in order to decide, whether it is already clear at this stage that the
requirements cannot be fulfilled by the applicant and a rejection letter has to be
sent. Otherwise the applicant is invited to an interview. Afterwards an interview
will be held, the application dossier will be updated and a commission meeting
will be held to decide about the acceptance or rejection of the applicant. The
process continues with mainly administrative activities until it reaches the end.

A Collaborative Approach to Maturing Process-Related Knowledge 351

3.1 Example of Task Pattern Application

Now, we illustrate the application of task patterns by giving an example from
the matriculation scenario described above. Let us consider the task of checking
the completeness of an applicant’s certificates (part of the knowledge intensive
sub-process “Check Application” displayed in Fig 2).

Fig. 3. An example of a task pattern and how to consume information from it

Fig 3 shows a task pattern that corresponds to this activity. More precisely,
the details of the current task - namely “Check certificates of applicant John
Doe” - are displayed (e.g. due date and owner of the task) on the left-hand
side. The task pattern with its abstractor services (called “abstractors” in the
UI) is displayed on the right-hand side. We can see two abstractor services:
i) experienced colleagues: colleagues who have handled many applications; ii)
checklists: lists that provide guidance as to what should be checked and how.

The figure also shows a context menu that appears when right-clicking on
the latter abstractor service. It contains the resources that are offered by the
abstractor service. Clicking on “Add to Task” will result in a resource being dis-
played on the left-hand-side, vertically aligned with the corresponding abstractor
service. Imagine, for example, that a new colleague by the name of Jane has to
work on the task at hand and needs to get acquainted with the official guidelines.

352 H.F. Witschel et al.

In that case, she would access the information in the abstractor service “Check-
lists” and consult the “Official FHNW guidelines” as depicted in the figure. A
similar context menu exists for resources on the left-hand side, allowing these to
be added to abstractor services and thus for the contribution of resources to task
patterns. For example, Jane might discover – after having worked for some time
on various student applications – that a few additional things usually need to be
checked, which she documents in her own private checklist that she attaches to
her tasks. Via the context menu, she can add this checklist to the “Checklist”
abstractor service such that it becomes available for other users. Thus, using
these context menus, end-users can easily consume information offered in task
patterns and contribute to them.

3.2 Demonstrator Evaluation

In order to verify the automated process knowledge maturing, comprehensive
use of the approach is necessary. Therefore an evaluation phase of one month
where the demonstrator was used, including intermediate and post-evaluation
interviews, was conducted.

The main aim of the evaluation was to use the demonstrator in a productive
environment. Therefore it was of special interest whether KISSmir addresses the
clear need and/or problem in the tester’s context. The post-interview should
give an insight about the use of all functionalities, suggestions, tasks patterns,
knowledge sharing but also technology acceptance. Of further interest was the
perceived degree of support of the demonstrator regarding maturing of process-
related knowledge and how it could be improved.

The results showed first that process adaptations do actually surface as a
result of the use of the demonstrator. Although the matriculation process was
modeled together with the end users, some adaptations of it were detected to be
necessary during productive use. Furthermore necessary changes in rules were
identified. As a second point, the process support was experienced as big benefit
of using the demonstrator. The end users liked to be reminded about the tasks
needed to be executed and being guided by the sequence. As the number of
tasks and their sequence varies for each process execution, they didn’t have to
think about which tasks need to be done and were able to accomplish the tasks
more quickly. Thirdly, the resource recommender functionality was analysed. For
each task, experts, historical cases and web-links were proposed (if available) by
the demonstrator. The post-evaluation interview showed that with exception of
web-links these suggestions have been used very seldom. The main reason for
the limited use was mainly the unawareness of it and a (too) small knowledge
base. Further features as quick notes which can be added to any task at any time
and problem/solution objects were perceived as being useful. Last but not least
the knowledge sharing functionalities were analysed. By adding resources to task
patterns and publish this information, knowledge can be shared. The same can be
done with problem/solution descriptions. However, similar as for the suggestions,
the interviewed persons think these are nice functionalities as needed information
could be found easier and faster, but did not use it extensively.

A Collaborative Approach to Maturing Process-Related Knowledge 353

4 Implementation

4.1 Process Modelling and Execution

The modelling of an adaptive business process can be performed in a seman-
tic modelling environment like ATHENE [9] or WSMO-Studio [2]. ATHENE
provides the creation of several models (process model, organisational model,
etc.) based on ontologies. The activities of the processes will be linked with the
related task patterns and resources (files, roles, etc.) which are stored in seman-
tic repositories (❶ in Fig 4). Further on, the process model can be enhanced
with adaptivity services (❷). After modelling the process in ATHENE it can be
transferred to the execution framework and stored in a semantic repository (❸).
The model is represented in a knowledge representation language like RDF/S1

or OWL2 and will be transformed via a transformation service into a process
execution language like BPEL3 or XPDL4.

The transformed process can be executed in the execution framework (e.g.,
BPEL workflow engine) (❹). The process can access the linked resources which
are stored in the semantic repositories. During run time the process can invoke
the defined adaptivity services. The “task management service”, which is part
of the process framework, invokes the task GUI (graphical user interface) (❺).
The instance management service stores and holds the instances.

4.2 Task Pattern and Task Management

Tasks and task patterns are delivered to the user through a Personal Task Man-
agement infrastructure. That infrastructure is part of the NEPOMUK Social
Semantic Desktop [7].

It consists of a semantic task management framework (STMF [19]) which
offers task-related (web) services over the entire desktop and handles the manip-
ulation, storage and retrieval of all task and task pattern-related information;
information is stored locally in the RDF repository of the Social Semantic Desk-
top in a way that ensures seamless semantic integration of information objects
and task representations.

As a user interface, the KASIMIR sidebar [6] has been developed, which builds
on the STMF task services and makes Task Management functionality available
to end- users. KASIMIR allows users to assign basic task properties and to
attach involved persons, information objects and subtasks. It also allows users
to view task patterns attached to a task, consume its resources and contribute
In addition to the local storage of personal task (pattern) information, there is
a server component that stores public task patterns. It is based on Semantic
MediaWiki (SMW5), which allows the initial modelling and later adaptation
1 http://www.w3.org/TR/rdf-schema/
2 http://www.w3.org/TR/owl-features/
3 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
4 http://www.wfmc.org/xpdl.html
5 http://semantic-mediawiki.org/

354 H.F. Witschel et al.

Fig. 4. Customer Information Portal Architecture

of public task patterns over the Wiki’s user interface. Entities related to task
patterns are modelled as SMW semantic templates.

5 Related Work

Making business processes agile to meet the requirements of knowledge intensive
work and faster changing business environments is a topic that has already been
addressed for some time. It is guided by the insight that in knowledge intensive
processes the particular sequence of tasks is often variable and depends on the
information at hand. Traditionally Workflow Management Systems (WfMS) dis-
tinguish between design time and run time [12] and it is the dependency of the
process on input information that makes this distinction to become blurry. An
overview of approaches to tackle this problem can be found in [22].

Usually a process model containing all activities and resources is created
during design time. Flexibility is provided through modelling choices and merge-
constructs. This can lead to highly complex models which are hard to
maintain [25]. In addition, especially in the tertiary sector the processes are
knowledge-intensive and cannot be foreseen for all exceptional situations and
circumstances. During run time exceptional situations, unforeseeable events and
unpredictable situations have to be dealt with. Therefore van der Aalst et al.

A Collaborative Approach to Maturing Process-Related Knowledge 355

introduced case handling ’as a new paradigm for supporting flexible business
processes’ [31] in order to avoid predefined process execution.

However, supporting flexible process execution does not cover all of the di-
mensions of change in business processes (dynamism, adaptability, flexibility)
as introduced by Sadiq et al. [25]. For this, tracking and mining of the actual
process/task variations users perform are necessary.

To support agility, semantic technologies have been used in several approaches,
amongst others by [8] for process implementation and querying by [14] to build
their ‘agent based business process management system’ or by [22] to facili-
tate task patterns. Especially the pattern approach is tightly built on semantic
technologies and an approach for combining it with Service-Oriented Architec-
ture has been proposed [23]. Another semantic approach to process management
based on Unified Activity Management has been suggested by Moran et al. [18].
A general overview is given by [17]. Recently, Feldkamp, Hinkelmann et al. in-
troduced the ‘KISS approach’ combining semantically enriched process models
with business rules ([18], [10]). Although this approach reaches the flexibility
to execute agile processes, two aspects are not yet covered: a) how to share the
knowledge gained through task handling without cumbersome publishing and b)
how to automatically detect execution variances. In this paper we have shown
how deviations between the actual process execution and the process model can
be identified and how adaptations can be recommended automatically. Question
a) is addressed in section 2.2, whereas question b) is detailed in section 2.3.

As far as the world of business process modelling is concerned, approaches to
collect and mature process knowledge collaboratively are scarce. [15] has pro-
posed an architecture that integrates knowledge management and business pro-
cess management. However, this approach follows a traditional expert-driven
way. Approaches in the field of process mining (e.g. [31]) - which try to extract
process knowledge from implicit information contained in system event logs - ex-
ploit user interaction, but do not actually encourage explicit user contributions
to an evolving process knowledge repository. With respect to knowledge work
this is a complicated task since the nature of individual tasks and the associated
experience cannot be identified properly enough to enable successful knowledge
proliferation. Sharing process knowledge in a task management environment has
been explored, for example, in [13], suggesting to copy information from previous
related tasks. Task patterns, as a more elaborate way of mediating experience
transfer have been proposed in [22] and elaborated further, cf. e.g. [3,20,27].
In [29], a more process-oriented view of task patterns has been introduced where
users can exchange and collaboratively develop lightweight process models.

6 Conclusion and Future Work

In this article, we have outlined a new paradigm of knowledge and experience
sharing that enhances agile business processes. This is done through connecting
activities in formal process models with loosely regulated task patterns emerged
from our everyday work. The former gives guidance to the business target while

356 H.F. Witschel et al.

the latter allows us to proceed in a way that best suits the end-users’ needs.
Task patterns capture how people carry out a task (process knowledge) and how
people leverage resources in supporting their solutions (functional knowledge).
They thus help to avoid the problem of rigidity inherent in traditional process
modelling approaches since it involves the end-users in shaping the support that
the model offers and since it eventually adapts to the reality of end-users’ process
execution.

The results of our evaluation of the prototype with the University of Applied
Sciences Northwestern Switzerland are promising: both the conceptual frame-
work and the prototype were well accepted even though some non-technical
barriers were identified.

In our approach we have followed the idea of knowledge maturing as a process
that understands “[. . .]learning activities as embedded into, interwoven with, and
even indistinguishable from everyday work processes[. . .]” [26]. According to the
knowledge maturing concept learning is seen as a social and collaborative activ-
ity, in which individual and organisational learning processes are dynamically
interlinked among each other [24]. This approach has been applied to knowledge
intensive processes where the continuous collaborative enhancement appears as
particularly important due to continuously changing work targets and situations.

Furthermore, we envisage the following improvement to our approach. For
the future, it is planned to implement and deploy the agile business process
(together with appropriate task patterns) at the project application partners
and to observe if and how the intended process knowledge maturing takes place.
Compared to other types of knowledge, the evolution of process knowledge is
less transparent and thus more difficult to analyse. The interplay between task
patterns and process model provides valuable insights. Indeed, after having the
process productive over a certain period, a reasonable amount of real-life usage
data of tasks and task patterns can be accumulated. Such data provide the
ground for automatic or customised business process model updates.

Acknowledgements

This work is supported by the European Union IST fund through the EU FP7
MATURE Integrating Project (Grant No. 216356).

References

1. Byström, K., Hansen, P.: Conceptual framework for tasks in information studies.
Journal of the American Society for Information Science and Technology 56(10),
1050–1061 (2005)

2. Dimitrov, M., Simov, A., Momtchev, V., Konstantinov, M.: Wsmo studio—a se-
mantic web services modelling environment for wsmo. In: Franconi, E., Kifer, M.,
May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 749–758. Springer, Heidelberg
(2007)

A Collaborative Approach to Maturing Process-Related Knowledge 357

3. Du, Y., Riss, U.V., Ong, E., Chen, L., Patterson, D., Wang, H.: Work experi-
ence reuse in pattern based task management. In: 9th International Conference on
Knowledge Management (I-KNOW), pp. 149–158 (2009)

4. Feldkamp, D., Hinkelmann, K., Thönssen, B.: Kiss: Knowledge-intensive service
support: An approach for agile process management. In: Paschke, A., Biletskiy, Y.
(eds.) RuleML 2007. LNCS, vol. 4824, pp. 25–38. Springer, Heidelberg (2007)

5. Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B., Shipman,
F.: Seeding, evolutionary growth and reseeding: The incremental development of
collaborative design environments (2001)

6. Grebner, O., Ong, E., Riss, U.V.: Kasimir: Work process embedded task manage-
ment leveraging the semantic desktop. In: Multikonferenz Wirtschaftsinformatik
(MKWI 2008), Berlin, pp. 715–726. GITO-Verlag (2008)

7. Groza, T., Handschuh, S., Möller, K., Minack, E., Jazayeri, M., Mesnage, C., Reif,
G., Gudjónsdóttir, R.: The nepomuk project- on the way to the social semantic
desktop (2007)

8. Hepp, M., Leymann, F., Domingue, J., Bussler, C., Wahler, A., Fensel, D.: Semantic
business process management: A vision towards using semantic web services for
business process management. In: IEEE International Conference on e-Business
Engineering (ICEBE), pp. 535–540 (2005)

9. Hinkelmann, K., Nikles, S., von Arx, L.: An ontology-based modeling tool for
knowledgeintensive services. In: 1st International Conference on Methodologies,
Technologies and Tools Enabling E-Government, pp. 43–56 (2007)

10. Hinkelmann, K., Probst, F., Thönssen, B.: Agile process management frame-
work and methodology. In: AAAI Spring Symposium on Semantic Web Meets
e-Government (2006)

11. Hinkelmann, K., Thönssen, B., Probst, F.: Referenzmodellierung für e-government-
services. Wirtschaftsinformatik 5, 356–366 (2005)

12. Hollingsworth, D.: The workflow reference model. Workflow Management Coalition
(1993)

13. Holz, H., Rostanin, O., Dengel, A., Suzuki, T., Maeda, K., Kanasaki, K.: Task-
based process know-how reuse and proactive information delivery in tasknaviga-
tor. In: CIKM 2006: Proceedings of the 15th ACM International Conference on
Information and Knowledge Management, pp. 522–531. ACM, New York (2006)

14. Jennings, N.R., Norman, T.J., Faratin, P., O’Brien, P., Odgers, B.: Autonomous
agents for business process management. Applied Artificial Intelligence: An Inter-
national Journal 14(2), 145–189 (2000)

15. Jung, J., Choi, I., Song, M.: An integration architecture for knowledge management
systems and business process management systems. Computers in Industry 58(1),
21–34 (2007)

16. Karagiannis, D., Junginger, S., Strobl, R.: Introduction to business process manage-
ment systems. In: Scholz-Reiter, B., Stickel, E. (eds.) Business Process Modelling,
pp. 81–106. Springer, Heidelberg (1996)

17. Lautenbacher, F., Bauer, B.: A survey on workflow annotation & composition
approaches. In: Workshop on Semantics for Business Process Management, SBPM
(2007)

18. Moran, T.P., Cozzi, A., Farrell, S.P.: Unified activity management: supporting
people in e-business. ACM Commun. 48(12), 67–70 (2005)

19. Ong, E., Grebner, O., Riss, U.V.: Pattern-based task management: Pattern life-
cycle and knowledge management. In: 4th Conference of Professional Knowledge
Management (WM 2007), vol. 2, pp. 357–364 (2007)

358 H.F. Witschel et al.

20. Riss, U.V., Cress, U., Kimmerle, J., Martin, S.: Knowledge transfer by sharing
task templates: two approaches and their psychological requirements. Knowledge
Management Research & Practice 5(4), 287–296 (2007)

21. Riss, U.V., Grebner, O., Du., Y.: Task journals as means to describe temporal
task aspects for reuse in task patterns. In: 9th European Conference on Knowledge
Management, pp. 721–730 (2008)

22. Riss, U.V., Rickayzen, A., Maus, H., van der Aalst, W.M.P.: Challenges for business
process and task management. Journal of Universal Knowledge Management (2),
77–100 (2005)

23. Riss, U.V., Weber, I., Grebner, O.: Business process modelling, task management,
and the semantic link. In: AAAI Spring Symposium AI Meets Business Rules and
Process Management, pp. 99–104 (2009)

24. Riss, U.V., Witschel, H.F., Brun, R., Thönssen, B.: What is organizational knowl-
edge maturing and how can it be assessed? In: 9th International Conference on
Knowledge Management (I-KNOW), pp. 28–38 (2009)

25. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specification.
In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp.
513–526. Springer, Heidelberg (2001)

26. Schmidt, A., Hinkelmann, K., Ley, T., Lindstaedt, S.N., Maier, R., Riss, U.: Con-
ceptual foundations for a service-oriented knowledge and learning architecture:
Supporting content, process and ontology maturing. In: Pellegrini, T., Auer, S.,
Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media,
ch. 6, vol. 221, pp. 79–94. Springer, Heidelberg (2009)

27. Schmidt, B., Riss, U.V.: Task patterns as means to experience sharing. In: Spaniol,
M., Li, Q., Klamma, R., Lau, R.W.H. (eds.) ICWL 2009. LNCS, vol. 5686, pp. 353–
362. Springer, Heidelberg (2009)

28. Workflow Management Coalition Specification. Workflow Management Coalition,
Terminology & Glossary (Document No. WFMC-TC-1011). Workflow Manage-
ment Coalition Specification (February 1999)

29. Stoitsev, T., Scheidl, S., Spahn, M.: A framework for light-weight composition and
management of ad-hoc business processes. pp. 213–226 (2007)

30. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

31. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data & Knowledge Engineering 53(2), 129–162 (2005)

Author Index

Anerousis, Nikos 243

Brun, Roman 343

Burkhart, Thomas 327

Carmona, Josep 211

Casanova-Brito, Vanessa 13

Casati, Fabio 310

Chen, Yi 243

Daniel, Florian 310

Dhoolia, Pankaj 145

Dijkman, Remco 78

Dorn, Christoph 327

Dumas, Marlon 276

Dustdar, Schahram 327

Fatemi, Hassan 162

Favre, Cédric 260

Gal, Avigdor 128

Garćıa-Bañuelos, Luciano 276

Gilbert, Phil 1

Golani, Mati 128

Gowri Nanda, Mangala 145

Heng, Chang 310

Hinkelmann, Knut 343

Holschke, Oliver 112

Hu, Bo 343

Jacobsen, Hans-Arno 5

Jagadeesh Chandra Bose, R.P. 227

Khalaf, Rania 178

La Rosa, Marcello 95

Leurs, Maarten 45

Leymann, Frank 178

Lincoln, Maya 128

Lohmann, Niels 61, 95

Martin, Andreas 343

Mukherjee, Debdoot 145

Muñoz-Gama, Jorge 211

Muthusamy, Vinod 5

Mutschler, Bela 45

Patig, Susanne 13

Polyvyanyy, Artem 276

Recker, Jan 29

Reijers, Hajo A. 45

Rembert, Aubrey J. 145

Richardson, Clay 11

Ringelstein, Christoph 195

Riss, Uwe V. 343

Rosemann, Michael 29

Safrudin, Niz 29

Sinha, Saurabh 145

Soi, Stefano 310

Staab, Steffen 195

Sun, Peng 243

Tao, Shu 243

Thönssen, Barbara 343

Tranquillini, Stefano 310

van der Aalst, Wil M.P. 95, 227

van Sinderen, Marten 162

van Wijk, Sander 45

Vögeli, Barbara 13

Völzer, Hagen 260, 294

Weidlich, Matthias 78

Werth, Dirk 327

Weske, Mathias 78

Wieringa, Roel 162

Witschel, Hans Friedrich 343

Wolf, Karsten 61

Xu, Jingxin 95

Yan, Li 310

Yan, Xifeng 243

	Front matter
	Chapter 1
	The Next Decade of BPM

	Chapter 2
	BPM in Cloud Architectures: Business Process Management with SLAs and Events
	Introduction
	System Model and Architecture
	Benefits
	Summary and Conclusions
	References

	Chapter 3
	Warning: Don’t Assume Your Business Processes Use Master Data

	Chapter 4
	IT Requirements of Business Process Management in Practice – An Empirical Study
	Introduction
	Related Work
	Empirical Investigation on the Requirements of Business Process Management
	Method
	Results

	Discussion
	Conclusions and Outlook
	References

	Chapter 5
	How Novices Model Business Processes
	Introduction
	Background
	Prior Work
	Research Model

	Method
	Analysis and Results
	Identifying Process Design Types
	Evaluating Process Design Quality

	Discussion
	Conclusion
	References

	Chapter 6
	BPM in Practice: Who Is Doing What?
	Introduction
	Background Information
	Views on BPM
	BPM Adoption

	Research Design
	Research Method
	Exploration and Conceptualization
	Data Collection and Analysis
	Replication

	Results
	Codification Framework
	General Demographic Data
	Inter-rater Agreement
	Correlation Tests
	Results from the Replication Study

	Summary, Conclusions and Future Work
	References

	Chapter 7
	How to Implement a Theory of Correctness in the Area of Business Processes and Services
	Introduction
	Related Work and Tools for Process Correctness
	Overview of the Tool Family
	Link to Reality
	Choice of Formalism
	Architecture
	Conclusion
	References

	Chapter 8
	Deciding Behaviour Compatibility of Complex Correspondences between Process Models
	Introduction
	Preliminaries
	Behaviour Compatibility of Correspondences
	Correspondences between WF-Nets
	Trace Partitioning Based on Correspondences
	Notions of Behaviour Compatibility
	Decidability of Behaviour Compatibility

	A Structural Characterisation of Compatibility
	Properties of Sound Free-Choice WF-Nets
	Path Consistency of Correspondences
	Reasoning on Behaviour Compatibility

	Evaluation
	Related Work
	Conclusion
	References

	Chapter 9
	Correctness Ensuring Process Configuration: An Approach Based on Partner Synthesis
	Introduction and Background
	Business Process Models
	Process Model Configuration
	Correctness Ensuring Configuration
	Tool Support
	Conclusion
	References

	Chapter 10
	Impact of Granularity on Adjustment Behavior in Adaptive Reuse of Business Process Models
	Introduction
	Related Work
	Granularity: Concept and Quantification
	Granularity as a Concept of Human Cognition
	Measuring Granularity and Application to Process Models

	Granularity and Adjustment Behavior in Reuse-Based Design
	Research Design and Experimental Setup and Procedure
	Independent Variable
	Dependent Variables
	Controlled Variables
	Experiment Procedure

	Results and Discussion
	Conclusion
	References

	Chapter 11
	Machine-Assisted Design of Business Process Models Using Descriptor Space Analysis
	Introduction
	Related Work
	The Activity Decomposition Model
	The Descriptor Model
	A Descriptor Model for Process Design

	The Quad-Dimensional Descriptor Space
	The $Process Delineator$ Method for Assisting the Design of Process Models
	Suggesting the First Process Activity
	Refining the Currently Suggested Process Activity
	Suggesting the Next Process Activity
	Preparing a Set of Output Options

	Implementation, Case Study and Experiments
	Implementation
	Case Study: An Example for Designing a New Process Model
	Experiments

	Conclusions
	References

	Chapter 12
	From Informal Process Diagrams to Formal Process Models
	Introduction
	Diagram Interpretation Challenges
	Structural Ambiguities
	Semantic Ambiguities

	Automated Process Model Discovery
	Structure Inference
	Semantic Interpretation of Flow Elements

	Empirical Evaluation
	Study 1: Structure Inference
	Study 2: Semantic Interpretation

	Related Work
	Conclusions and Future Work
	References

	Chapter 13
	Value-Oriented Coordination Process Modeling
	Introduction
	(Business) Value Models and Coordination (Process) Models
	Differences
	Similarities
	Consistency

	From a Value Model to a Coordination Model
	Case Study
	Discussion and Conclusions
	References

	Chapter 14
	Coordination for Fragmented Loops and Scopes in a Distributed Business Process
	Introduction
	Background: BPEL and WS-Coordination
	Split Loops and Scopes
	Using Coordination
	Deployment and Registration
	Encoding Common Information
	The Coordination Protocols for Split Loops and Scopes

	Implementation
	Related Work
	Conclusion
	References

	Chapter 15
	PAPEL: A Language and Model for Provenance-Aware Policy Definition and Execution
	Introduction
	Case Study and Requirements
	Foundations of PAPEL
	Open Provenance Model
	eXtensible Access Control Markup Language

	Syntax of PAPEL
	Execution Semantics of PAPEL
	Datalog Implementation of PAPEL
	Related Work
	Conclusion
	References

	Chapter 16
	A Fresh Look at Precision in Process Conformance
	Introduction and Related Work
	Why a New Measure to Quantify Precision?

	Preliminaries
	Petri Nets
	Event Logs
	Relation between a Petri Net and an Event Log
	Transitions Systems

	Problem Statement and Approach
	Log-Based Traversal of the Model's Behavior
	Basic Idea
	Duplicate and Invisible Tasks

	Evaluating Precision
	Minimal Disconformant Traces
	Extensions
	Experimental Results
	Conclusion
	References

	Chapter 17
	Trace Alignment in Process Mining: Opportunities for Process Diagnostics
	Introduction
	Notations
	Trace Alignment
	Pairwise Trace Alignment
	Multiple Trace Alignment

	Framework for Trace Alignment
	Experimental Results and Discussion
	Telephone Repair Log
	Rental Agency Log

	Related Work
	Conclusions
	References

	Chapter 18
	Content-Aware Resolution Sequence Mining for Ticket Routing
	Introduction
	Problem Formulation
	Sequence-Based and Content-Based Ticket Routing
	Sequence-Based Routing
	Content-Based Routing
	Discussion

	Content-Aware Resolution Sequence Mining
	Overview
	Content Similarity-Based Weight Functions

	Training Data Normalization
	Implementation
	Experiments
	Resolution Rate Comparison
	MSTR Comparison
	Content-Aware Approach vs. Sequence-Only Approach

	Related Work
	Conclusions
	References

	Chapter 19
	Symbolic Execution of Acyclic Workflow Graphs
	Introduction
	Preliminaries
	Basic Notions
	Workflow Graphs
	Soundness

	Symbolic Execution and Always-Concurrent Edges
	Equivalence of Edges and a Characterization of Deadlock
	Symbolic Execution
	A Normal Form for Symbols
	Complexity of the Computation

	Lack of Synchronization and Sometimes-Concurrent Edges
	Handles and Lack of Synchronization
	Computing Handles
	Combining Symbolic Execution with Handle Detection
	Sometimes-Concurrent

	Dealing with Over-Approximation
	User Interaction to Deal with Over-Approximation
	Relaxed Soundness

	Conclusion
	References

	Chapter 20
	Structuring Acyclic Process Models
	Introduction
	Background and Related Work
	Taxonomy of Process Components
	Related Work

	Preliminaries
	Petri Nets
	Process Model

	Behavioral Equivalence of Process Models
	Fully Concurrent Bisimulation
	Behavioral Equivalence and Ordering Relations

	Synthesis of Structured Process Models
	Computing Ordering Relations
	From Ordering Relations to Process Models

	Conclusion
	References

	Chapter 21
	A New Semantics for the Inclusive Converging Gateway in Safe Processes
	Introduction
	Preliminaries
	Semantics for Acyclic Workflow Graphs
	The State-Space View
	The Graph-Based View
	Dead Path Elimination

	Semantics for Cyclic Workflow Graphs
	Block-Based Semantics for Separable Graphs
	A New Semantics
	Non-separable Graphs
	Enactment

	Conclusion
	References

	Chapter 22
	From People to Services to UI: Distributed Orchestration of User Interfaces
	Introduction
	State of the Art in Orchestrating Services, People and UIs
	Distributed User Interface Orchestration: Approach
	The Building Blocks: Web Services and UI Components
	Modeling UI Orchestrations
	BPEL4UI: Concepts and Syntax
	Modeling the Orchestration Logic

	Deploying and Running UI Orchestrations
	Conclusion
	References

	Chapter 23
	Self-adjusting Recommendations for People-Driven Ad-Hoc Processes
	Introduction
	Supporting Flexibility in People-Driven Processes
	Motivating Scenario

	Related Work
	Process Recommendation
	User-Based Recommendation
	Crowd-Based Recommendation

	Self-adjusting Recommendation Model
	Experiments
	Conclusion and Outlook
	References

	Chapter 24
	A Collaborative Approach to Maturing Process-Related Knowledge
	Introduction
	Combining Knowledge Intensive Processes with Task Patterns
	Task Patterns
	Sharing Work Experience
	Learning from Work Experience

	An Application Scenario
	Example of Task Pattern Application
	Demonstrator Evaluation

	Implementation
	Process Modelling and Execution
	Task Pattern and Task Management

	Related Work
	Conclusion and Future Work
	References

	Back matter

