
Lecture Notes in Computer Science 5701
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Umeshwar Dayal Johann Eder
Jana Koehler Hajo A. Reijers (Eds.)

Business Process
Management

7th International Conference, BPM 2009
Ulm, Germany, September 8-10, 2009
Proceedings

13

Volume Editors

Umeshwar Dayal
Hewlett-Packard Laboratories
1501 Page Mill Rd., Palo Alto, CA 94304, USA
E-mail: umeshwar.dayal@hp.com

Johann Eder
Alps Adria University Klagenfurt
Universitätsstr. 65, 9020 Klagenfurt, Austria
E-mail: johann.eder@uni-klu.ac.at

Jana Koehler
IBM Zurich Research Laboratory
Saeumerstr. 4, 8803 Rüschlikon, Switzerland
E-mail: koe@zurich.ibm.com

Hajo A. Reijers
Eindhoven University of Technology
PO Box 513, 5600 MB Eindhoven, The Netherlands
E-mail: h.a.reijers@tue.nl

Library of Congress Control Number: 2009932360

CR Subject Classification (1998): J.1, H.5.3, D.2.9, F.3.2, K.6

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-03847-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03847-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12739387 06/3180 5 4 3 2 1 0

Preface

The BPM (Business Process Management) Conference series has the ambition
to be the premier forum for researchers in the area of process-aware information
systems. It has a record for attracting contributions in innovative research of the
highest quality related to all aspects of business process management including
theory, frameworks, methods, techniques, architectures, and empirical findings.

BPM 2009 was the 7th instantiation of this series. It took place in Ulm, Ger-
many, September 8–10, 2009, organized by the Institute of Databases and Infor-
mation Systems of the University of Ulm. This volume contains 17 contributed
research papers and two contributed industrial papers selected from 116 sub-
missions from 31 countries. The thorough reviewing process—each paper was
reviewed by three to five Program Committee members—was extremely com-
petitive as the acceptance rate of 16% indicates. In addition to the contributed
papers, these proceedings contain two papers and an outline documenting the
invited keynote talks. Furthermore, a report is included on the collaboration
structure in BPM research derived from an analysis of papers accepted for all
past BPM conferences.

In conjunction with the main conference, nine international workshops took
place the day before the conference. These workshops fostered the exchange of
fresh ideas and experiences between active BPM researchers, and stimulated
discussions on new and emerging issues in line with the conference topics. The
proceedings with the papers of all workshops will be published in a separate
volume of Springer’s Lecture Notes in Business Information Processing series.

This is the place to express our gratitude to all those who made BPM 2009
possible by generously and voluntarily sharing their knowledge, skills and time:
the General Chairs Peter Dadam and Manfred Reichert and the Organization
Chairs Jens Kolb and Rüdiger Pryss for providing an excellent environment for
the conference, and all other colleagues holding offices. In particular we thank
the senior and regular Program Committee members as well as the additional
reviewers for devoting their expertise and time to ensure the high quality of
the conference in an extensive review and discussion process. And last but not
least, we are grateful to all the authors who showed their appreciation of the
conference by submitting their valuable work to it.

September 2009 Umeshwar Dayal
Johann Eder
Jana Koehler
Hajo Reijers

Conference Organization

General Chairs

Peter Dadam, Germany
Manfred Reichert, Germany

Program Chairs

Umeshwar Dayal, USA
Johann Eder, Austria
Hajo Reijers, The Netherlands

Industry Chair

Jana Koehler, Switzerland

Local Organization

Jens Kolb, Germany
Rüdiger Pryss, Germany

Workshop Chairs

Frank Leymann, Germany
Stefanie Rinderle-Ma, Germany
Shazia Sadiq, Australia

Workshop Chairs

Ana Karla Alves de Medeiros, The Netherlands
Barbara Weber, Austria

Tutorial/Panel Chairs

Joachim Herbst, Germany
Gerti Kappel, Austria

Publicity Chair

Heiko Ludwig, USA

VIII Organization

Senior Program Committee

Wil van der Aalst, The Netherlands
Gustavo Alonso, Switzerland
Boualem Benatallah, Australia
Fabio Casati, Italy
Peter Dadam, Germany
Joerg Desel, Germany
Marlon Dumas, Estonia
Schahram Dustdar, Austria
Gregor Engels, Germany
Claude Godart, France

Rick Hull, USA
Stefan Jablonski, Germany
Frank Leymann, Germany
Manfred Reichert, Germany
Michael Rosemann, Australia
Amit Sheth, USA
Jianwen Su, USA
Arthur ter Hofstede, Australia
Kees van Hee, The Netherlands
Mathias Weske, Germany

Program Committee

Ana Karla Alves De Medeiros,
The Netherlands

Pedro Antunes, Portugal
Joonsoo Bae, South Korea
Hyerim Bae, South Korea
Alistair Barros, Australia
Catriel Beeri, Israel
Djamal Benslimane, France
M. Brian Blake, USA
Christoph Bussler, USA
Jorge Cardoso, Germany
Malu Castellanos, USA
Valeria De Antonellis, Italy
Jan Dietz, The Netherlands
Maria Grazia Fugini, Italy
Avigdor Gal, Israel
Dimitrios Georgakopoulos, USA
Peter Green, Australia
Paul Grefen, The Netherlands
Daniela Grigori, France
Thomas Gschwind, Switzerland
Manfred Hauswirth, Ireland
Marta Indulska, Australia
Leonid Kalinichenko, Russia
Gerti Kappel, Austria
Ekkart Kindler, Denmark
Jana Koehler, Switzerland
Agnes Koschmider, Germany
John Krogstie, Norway
Jochen Kuester, Switzerland

Akhil Kumar, USA
Lea Kutvonen, Finland
Selma Limam Mansar, Qatar
Chengfei Liu, Australia
Ling Liu, USA
Bertram Ludscher, USA
Heiko Ludwig, USA
Zongwei Luo, Hong Kong
Axel Martens, USA
Jan Mendling, Australia
Bela Mutschler, Germany
John Mylopoulos, Canada
Andreas Oberweis, Germany
Aris Ouksel, USA
Cesare Pautasso, Switzerland
Barbara Pernici, Italy
Olivier Perrin, France
Calton Pu, USA
Frank Puhlmann, Germany
Krithivasan Ramamritham, India
Jan Recker, Australia
Berthold Reinwald, USA
Wolfgang Reisig, Germany
Stefanie Rinderle, Germany
Shazia Sadiq, Australia
Mohand Said-Hacid, France
Heiko Schuldt, Switzerland
Karsten Schultz, Australia
Timos Sellis, Greece
Juliane Siegeris, Germany

Organization IX

Stefan Tai, USA
Farouk Toumani, France
Aphrodite Tsalgatidou, Greece
Jan Vanthienen, Belgium
Hagen Voelzer, Switzerland

Barbara Weber, Austria
Petia Wohed, Sweden
Andreas Wombacher, The Netherlands
Xiaohui Zhao, Australia

External Reviewers

Antonia Albani
Syaiful Ali
Samuil Angelov
George Athanasopoulos
Micheal Axelsen
Joseph Barjis
Sami Bhiri
Devis Bianchini
Wassim Derguech
Joao Ferreira
Nadine Froehlich
Christian Gerth
Christian Gierds
Mati Golani
Pieter Van Gorp
Peter Green
Armin Haller
Susan Hickl
Bjrn Keuter
Paul El Khoury
Kostas Kontogiannis
Rob Kusters
Christoph Langguth
Philipp Liegl
Maya Lincoln

Niels Lohmann
Linh Thao Ly
Peter Massuthe
Michele Melchiori
Thorsten Moeller
Hamid Motahari
Kreshnik Musaraj
Oanea Olivia
Michael Pantazoglou
Daniel Ried
Al Robb
Martina Seidl
Dimitrios Skoutas
Jos Trienekens
Jochem Vonk
Gabriela Vulcu
Qingyang Wang
Daniela Weinberg
Manuel Wimmer
Jiajie Xu
Ustun Yildiz
Jianwei Yin
Sira Yongchareon
Marco Zapletal
Maciej Zaremba

Table of Contents

Editorial

A Collaboration and Productiveness Analysis of the BPM
Community . 1

Hajo A. Reijers, Minseok Song, Heidi Romero, Umeshwar Dayal,
Johann Eder, and Jana Koehler

Invited Talks

BPM 3.0 . 15
August-Wilhelm Scheer and Joerg Klueckmann

Change in Control . 28
John Hoogland

Scientific Workflows: Business as Usual? . 31
Bertram Ludäscher, Mathias Weske, Timothy McPhillips, and
Shawn Bowers

Modeling I

Graph Matching Algorithms for Business Process Model Similarity
Search . 48

Remco Dijkman, Marlon Dumas, and Luciano Garćıa-Bañuelos

Controllability in Temporal Conceptual Workflow Schemata 64
Carlo Combi and Roberto Posenato

Towards Algorithmic Generation of Business Processes: From Business
Step Dependencies to Process Algebra Expressions 80

Márcio K. Oikawa, João E. Ferreira, Simon Malkowski, and
Calton Pu

Managing Processes

Extending BPM Environments of Your Choice with Performance
Related Decision Support . 97

Mathias Fritzsche, Michael Picht, Wasif Gilani, Ivor Spence,
John Brown, and Peter Kilpatrick

Business Process-Based Resource Importance Determination 113
Stefan Fenz, Andreas Ekelhart, and Thomas Neubauer

XII Table of Contents

Case Study and Maturity Model for Business Process Management
Implementation . 128

Michael Rohloff

Process Mining I

Discovering Process Models from Unlabelled Event Logs 143
Diogo R. Ferreira and Daniel Gillblad

Abstractions in Process Mining: A Taxonomy of Patterns 159
R.P. Jagadeesh Chandra Bose and Wil M.P. van der Aalst

Processes and Services

Aggregating Hierarchical Service Level Agreements in Business Value
Networks . 176

Irfan ul Haq, Altaf Huqqani, and Erich Schikuta

Set Algebra for Service Behavior: Applications and Constructions 193
Kathrin Kaschner and Karsten Wolf

A Restructuring Method for WS-BPEL Business Processes Based on
Extended Workflow Graphs . 211

Thomas S. Heinze, Wolfram Amme, and Simon Moser

Modeling II

The Triconnected Abstraction of Process Models . 229
Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

Granularity as a Cognitive Factor in the Effectiveness of Business
Process Model Reuse . 245

Oliver Holschke, Jannis Rake, and Olga Levina

Artifact-Based Transformation of IBM Global Financing 261
Tian Chao, David Cohn, Adrian Flatgard, Sandy Hahn,
Mark Linehan, Prabir Nandi, Anil Nigam, Florian Pinel,
John Vergo, and Frederick y Wu

Verification and Compliance

Instantaneous Soundness Checking of Industrial Business Process
Models . 278

Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler,
Niels Lohmann, Hagen Völzer, and Karsten Wolf

Table of Contents XIII

Symbolic Abstraction and Deadlock-Freeness Verification of
Inter-enterprise Processes . 294

Kais Klai, Samir Tata, and Jörg Desel

Effect of Using Automated Auditing Tools on Detecting Compliance
Failures in Unmanaged Processes . 310

Yurdaer Doganata and Francisco Curbera

Process Mining II

Divide-and-Conquer Strategies for Process Mining 327
Josep Carmona, Jordi Cortadella, and Michael Kishinevsky

Discovering Reference Models by Mining Process Variants Using a
Heuristic Approach . 344

Chen Li, Manfred Reichert, and Andreas Wombacher

Author Index . 363

A Collaboration and Productiveness Analysis

of the BPM Community

Hajo A. Reijers1, Minseok Song1, Heidi Romero1, Umeshwar Dayal2,
Johann Eder3, and Jana Koehler4

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

{h.a.reijers,m.s.song,h.l.romero}@tue.nl
2 HP Laboratories, 1501 Page Mill Road, Palo Alto, 94304, USA

umeshwar.dayal@hp.com
3 University of Klagenfurt, Universittsstrae 65-67, 9020 Klagenfurt, Austria

johann.eder@uni-klu.ac.at
4 IBM Zurich Research Laboratory CH-8803 Rueschlikon, Switzerland

koe@zurich.ibm.com

Abstract. The main scientific event for academics working in the field
of Business Process Management is the International BPM Conference.
In this paper, social network analysis techniques are used to unveil the
co-authorship networks that can be derived from the papers presented at
this conference. Links between two researchers are established by their
co-authorship of a paper at one of the conference editions throughout the
years 2003-2008. Beyond the relations between individual authors, aggre-
gated analyses are presented of the interactions between the institutes
that the authors are affiliated with as well as their country of residence.
Additionally, the output of individual authors is measured. All analyses
are carried out for the individual conference years and at cumulative lev-
els. In this way, this paper identifies the hotbeds of BPM research and
maps the progressive collaboration patterns within the BPM community.

1 Introduction

In the introduction of the first proceedings of the BPM conference series1, Busi-
ness Process Management (BPM) has been characterized as the study of those
methods, techniques, and software that can be used to design, enact, control,
and analyze operational processes involving humans, organizations, applications,
documents and other sources of information [1]. In line with this view, the tech-
nological perspective and the attention for formal methods have consistently
been important ingredients of the papers presented in the series. Recently, an
inflow of papers and keynotes have appeared that also deal with BPM as a man-
agement philosophy instead of a pure technological approach [2,3]. Additionally,
papers have been included that concentrate not so much on the design but rather
on the empirical evaluation of methods and techniques [4,5].
1 For an overview of all its editions, see http://www.bpm-conference.org/

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 H.A. Reijers et al.

Consequently, the character of the BPM conference extends over a diverse
array of subjects and draws from disciplines such as computer science, informa-
tion systems, management science, artificial intelligence, industrial engineering,
software engineering, and economics. In this multidisciplinary context, it is ev-
idently important for BPM researchers to foster and extend collaborations to
stay up to date of state-of-the-art developments in their own field and acquire
access to complementary fields of expertise.

This paper aims at analyzing the collaborations between individual researchers,
their institutes, and the hosting countries as tied to contributions to the BPM
conference series. For this purpose, all papers that have been included in the
proceedings of the six conference editions between 2003 and 2008 have been
considered. The biographical attributes of these papers have been subjected to
various Social Network Analysis techniques [6,7,8]. The social network miner
and analyzer [9], as part of the ProM framework [10], have been applied to carry
out this analysis. The collaboration networks that are the main results identify
the hotbeds of BPM research activity and disclose the interconnections between
them. The presented analysis of these networks over time also gives an indication
of how the BPM community extends and becomes more interwoven.

The structure of this paper is now as follows. In Section 2, we will describe the
methodology to collect, conceptualize, analyze and verify the used data. Section
3 will present the results from this analysis. The paper ends with a discussion
and a conclusion.

2 Methodology

The methodology employed to identify the underlying relationship between re-
searchers followed several steps that will be detailed in this section. Those steps
are described in four subsections: (1) Data collection, (2) Conceptualization of
the event logs, (3) Log verification, and (4) Network generation using ProM.

2.1 Data Collection

Our data collection has consisted of the compilation of all the references from
the conferences publications. The proceedings of these conferences were pub-
lished by Springer as volumes in the Lecture Notes in Computer Science series
(See Table 1).

The references were obtained from SpringerLink2, the online access point
to Springer’s Lecture Notes in Computer Science series, and stored in Refer-
ence Manager3, a bibliographical database system. Entries were extracted from
SpringerLink in the RIS format using the “RIS FORMAT (Include ID)” filter
available in the ReferenceManager software system. All references were classified
as Book Chapters and included the chapter title, authors, start and end page,
abstract and a unique ID (DOI). After all entries had been entered, the entire
2 http://www.springerlink.com/
3 http://www.refman.com/

A Collaboration and Productiveness Analysis of the BPM Community 3

Table 1. BPM Conference Proceedings

Conference LNCS Volume Venue Dates ISBN

BPM 2003 2678 Eindhoven June 26-27, 2003 3-540-40318-3

BPM 2004 3080 Potsdam June 17-18, 2004 3-540-22235-9

BPM 2005 3649 Nancy September 5-8, 2005 3-540-28238-6

BPM 2006 4102 Vienna September 5-7, 2006 3-540-38901-6

BPM 2007 4714 Brisbane September 24-28, 2007 978-3-540-75182-3

BPM 2008 5240 Milan September 2-4, 2008 978-3-540-85757-0

database has been exported to an Excel Sheet, which was a convenient format
to translate the data into the form of a MXML file, which is readable by ProM.

2.2 Conceptualization

To arrive at an MXML file that could be analyzed with the social network anal-
ysis toolset [9], a decision needed to be made on how to translate the previously
described information into a form that is both convenient and meaningful for
analysis. It should be noted that the main purpose of the ProM framework,
which was selected for the derivation and analysis of the collaboration networks
because of its ease of use and analytical power, is to support the analysis of an
event log. This is a collection of events that is stored by any kind of transac-
tional information system, e.g., ERP, CRM, or workflow management system
[11]. Clearly, the occurrences of successive editions of a conference series is not a
business process in the traditional sense, so a mapping of the domain concepts on
the business process concepts that are common to ProM had to be established.

In essence, each publication has been considered as a separate case instance
that could be processed by one or more authors. Each author performs a unique
activity in dealing with a case, as to avoid conflicts in situations where one
author participates in more than one publication in the same year. Because we
only have the year information and no more fine-grained time notion, it would
otherwise be difficult to distinguish these. This simple conceptualization leads
to a total of 383 authors and the same amount of activities.

As mentioned, ProM can read files in the MXML format [12], a generic XML
format appropriate to representing event log data (see Figure 1). It includes the
definition of the process instance with the audit trails including attributes like
Workflow Model Element, Event type, Timestamp and Originators. The exact
mapping of bibliographical elements to the elements of the MXML format that
is used by ProM can now be specified as follows.

The process instance is defined as a publication (book chapter), and each of
these has an identical Id which is the DOI, related to the book that this book
chapter belongs to. The description linked to every Process Instance is the name
of the publication, for instance “Modeling Medical e-Services”. For each Process
Instance an attribute was defined as a Data item called “ConferenceYear”, to fa-
cilitate filtering the publications related only to a specific year. For each process

4 H.A. Reijers et al.

Fig. 1. The MXML format

instance there is an Audit Trail Entry related to each activity followed in the
process. We define an activity as the contribution of every author to the pub-
lication. This means that a publication performed by two authors will contain
two audit trails, each one with a Workflow Model Element that contains the au-
thor’s name, and only containing “Complete” event types. The timestamp was
not defined in the log because the information needed is the year related to the
conference in which the paper was published. The latter information is already
provided by the Data attribute mentioned earlier. Finally, the Originator is the
name of the author.

In a similar way an organizational model file [9] (without log) was created, to
relate the authors to their university and countries. The university was identified
as the Role and the country as the Organizational Unit. The university or insti-
tution associated to each author is where the author works or is affiliated with.
The country being considered is the country where the university resides. We
found authors that changed their working place during the time of the study. In
those few cases, the author was assigned to the university where they published
the most and, in case of a tie, was assigned arbitrarily to one.

2.3 Verification

To verify whether no errors have been introduced in the creation of the MXML
file, the basic ProM feedback was used to assess high level errors. ProM reports
that the log contains one process with 190 cases (publications) and 383 origina-
tors (authors). It further indicates a minimum number of events that equals 1,
a mean number of 2 and a maximum of 7, representing the number of authors
per publication. This information is consistent with the figures that could be ob-
tained in the Excel sheet. Next, we used the “ConferenceYear” attribute to check

A Collaboration and Productiveness Analysis of the BPM Community 5

for potential mistakes in the assignment of the year to cases. We manually in-
spected each entry, for example, by applying the filter using the ConferenceYear
2003, it is expected to see only the instances with the Id 3-540-44895-0. In case
that a different code appears it means that there is a publication from another
year misclassified. For this study every filter was manually verified to avoid this
error, before further analysis.

Another important point of verification is whether the organizational model
links every author to exactly one country and one university. To inspect this
aspect we used the Filter / Advanced and selected Replacement Filters to gen-
erate separate lists of originators, representing the countries and universities. In
this way it was possible to detect for each author a missing assignment or an
undesirable swap, e.g. a country that was used as a university.

2.4 Network Generation

The social networks that were generated are all based on the working together
metric [13, Definition 4.8]. Informally stated, the metric expresses for each pair
of performers whether or not they have performed activities for the same case.
In our domain, this means that two authors have worked on the same paper.
Clearly, the relation is symmetrical. While our analysis considers only undirected
graphs, the figures in this paper show graphs where the relation is show as two
arrows with opposed directions. It should be noted that such a visual pair of ar-
rows will account for only a single link. We have established the network on the
basis of the working together metric for each individual conference year (leading
to six networks) and for each of the cumulative increments for the conferences
(leading to another six networks, e.g. for 2003, 2003+2004, 2003+2004+2005,
etc.). Additionally, the results on the working together metric between individu-
als were exported in a matrix representation to NetMiner [14], which is another
tool to analyze the social networks. With NetMiner the following analysis mea-
surements were derived for each network:

1. Density measures the level of connectedness among the nodes in a network.
This measurement is important to compare networks of different sizes. It
defined as follows.
D = 2|A|

|N |(|N |−1) , where |A| denotes number of arcs and |N | denotes number
of nodes.

2. Inclusiveness represents a measurement of the connectivity between nodes
in the network. It defined as follows.
I = |N |−|Ni|

|N | ∗ 100, where |N | denotes number of nodes and |Ni| denotes
number of isolated nodes.
The isolated nodes are those with a connection degree equals to zero.

Finally, these networks and analysis measures were also established by aggre-
gating the authors to the level of research institutes and countries. For example,
a co-publication at the BPM 2005 conference between an author from Mac-
quarie University in Australia and another author from Tilburg University in the

6 H.A. Reijers et al.

Netherlands leads to a relation between the respective universities in the institute
network for 2005, as well as a relation between Australia and the Netherlands
in the countries network of 2005.

It should be noted that many more relations exist to create social networks,
as well as many more analysis measurements to evaluate these. For an overview,
see [13]. However, the working together metric is the most useful for our purpose.
The networks resulting from our analysis will be presented in the next section.

3 Results

The results in this section will be successively presented on the individual
(author) level, the institute level, and the country level.

3.1 Individual Level

To provide an initial idea of the networks that were created, Figure 2 represents
the social networks on the level of co-authors for publications in the year 2003,
while Figure 3 represents the same type of social network considering all publi-
cations of the years 2003 to 2008 combined. While it is clear that the network
has expanded considerably over the years, the data in Table 2 gives a better
insight into this development.

Over the years, the social network has grown as a whole, both with respect to
the publications (going up from 23 in 2003 to 190 accumulated over all the years)

Fig. 2. Social network on individual level for 2003 (working together metric)

A Collaboration and Productiveness Analysis of the BPM Community 7

Fig. 3. Social network on individual level for 2003-2008 (working together metric)

Table 2. Cumulative statistics individual level (working together metric)

2003 2003-
2004

2003-
2005

2003-
2006

2003-
2007

2003-
2008

Number of publications 23 45 86 128 158 190

Number of authors 60 99 190 271 335 383

Number of links 59 103 217 372 463 555

Inclusiveness (%) 88.3 91.9 95.8 96.3 96.7 96.3

Network Density 0.032 0.021 0.012 0.010 0.008 0.008

and individual authors (going up from 60 in 2003 to 383 authors accumulated
over all the years). The factors of growth are over 8 and 6 respectively. The
inclusiveness of the cumulative networks also grows, from 88.3% to around 96%.
In other words, the relative number of authors purely publishing by themselves
drops as a relative measure, but it should be noted that this was already a small
minority from the start. At the same time, the density of the network can be
seen to drop, from 0.032 to 0.008. This means that the inflow of papers by new
authors is not matched by a corresponding increase of new collaborations that
become possible.

From all the 190 authors that have published one or more papers in the con-
ference series, it can be determined how many papers they contributed overall.
The authors that published 4 papers or more are shown in Table 5. It can be
seen that the top contributors generate a considerable but not excessive share
of the overall number of papers, which can be seen as a sign of academic health
for the conference series.

3.2 Institute Level

To provide an understanding of the evolution in collaboration patterns between
the institutes, several cumulative networks are now presented in succession.

8 H.A. Reijers et al.

Table 3. Contributions individual authors

Originator Publications Publications
(absolute) (relative to total)

Wil M.P. van der Aalst 12 6.32%
Manfred Reichert 9 4.73%
Hajo A. Reijers 8 4.21%
Mathias Weske 8 4.21%
Gero Decker 6 3.16%
Marlon Dumas 6 3.16%
Claude Godart 6 3.16%
Arthur H.M. ter Hofstede 6 3.16%
Jan Mendling 6 3.16%
Stefanie Rinderle 6 3.16%
Peter Dadam 5 2.63%
Kees M. van Hee 5 2.63%
Monique H. Jansen-Vullers 4 2.11%
Chengfei Liu 4 2.11%
Olivier Perrin 4 2.11%
Natalia Sidorova 4 2.11%
Marc Voorhoeve 4 2.11%
Xiaohui Zhao 4 2.11%

Table 4. Cumulative statistics institute level (working together metric)

2003 2003-
2004

2003-
2005

2003-
2006

2003-
2007

2003-
2008

Number of institutes 33 54 91 114 140 154

Number of links 13 29 49 79 104 128

Inclusiveness (%) 51.5 66.7 71.4 72.8 75.7 76.6

Network Density 0.024 0.020 0.011 0.012 0.010 0.010

Figures 4, 5, 6, and 7 respectively show the network in 2003, the cumulative
network over the years 2003 to 2006, the cumulative network over the years
2003 to 2007, and the cumulative network over the years 2003 to 2008.

In 2003, after the first conference, 7 collaboration groups could be identi-
fied (see Figure 4). By 2006, the number of groups had increased to 27 groups
(see Figure 5). Among them, five big groups can be identified: two Dutch-German
groups, one French group, one German-USA group, and one multi-continental
group. By 2007, one of the Dutch-German group was notably extended (see Fig-
ure 6). The situation by 2008 can be seen in Figure 7. By that time, the two
Dutch-German groups were merged and Eindhoven University of Technology be-
came the bridge between these two formerly separate groups. The German-USA
group had also grown by this time and the IBM JT Watson research center had
become the center of it.

A Collaboration and Productiveness Analysis of the BPM Community 9

Fig. 4. Social network on institute level for 2003 (working together metric)

Fig. 5. Social network on institute level for 2003 - 2006 (working together metric)

10 H.A. Reijers et al.

Fig. 6. Social network on institute level for 2003 - 2007 (working together metric)

Fig. 7. Social network on institute level for 2003-2008 (working together metric)

Table 4 gives the data for the cumulative years. What can be noted is that the
number of institutes grows considerably over the years (from 33 to 154), a factor
greater than 4, but this is not as strong an increase as the number of papers
or new authors over this period (see the previous subsection). Yet, the growth
of the inclusiveness of the network, from 51.5% to 76.6%, is more impressive
than the network on the individual level discussed previously. This means that
the cooperation between people from different institutes grows stronger than the
cooperation between individuals. Similar to the analysis level of individual au-
thors, these increasing figures are accompanied by a drop of the network density
throughout this development (from 0.024 to 0.010). This also suggests that the

A Collaboration and Productiveness Analysis of the BPM Community 11

Table 5. Contributions institutes

Originator Publications Publications
(absolute) (relative to total)

Eindhoven University of Technology 72 37.89%
Queensland University of Technology 27 14.21%
LORIA-INRIA-CNRS 23 12.10%
University of Potsdam 21 11.05%
University of Ulm 20 10.53%
Swinburne University of Technology 15 7.89%
IBM Zurich Research Laboratory 13 6.84%
Humboldt-Universitaet zu Berlin 11 5.79%
University of Stuttgart 11 5.79%
SAP Research Centre 10 5.25%
The University of Queensland 10 5.26%

entry of new institutes in the BPM field is not matched with a corresponding
growth of new collaborations on this level.

Finally, Table 5 shows the institutes that have generated 10 or more contri-
butions to the various editions of the conference series. Here, it can be seen that
the institute leading the table, Eindhoven University of Technology, has a very
large part in the overall production of papers with a production that is over
twice as big as that of the number two, Queensland University of Technology,
and over three times as big of the number three, LORIA-INRIA-CNRS.

3.3 Country Level

Collaborations between authors from institutes in different countries are visu-
alized with the network in Figure 8, while the quantitative data of the various
cumulative networks are given in Table 6.

Over the years, the number of participating countries has more than doubled,
growing from 11 countries in 2003 to 25 accumulated over the whole conference
series. The inclusiveness of the network has also grown, from 54.5% to 88.0%,
which is comparable to the growth of the network at the institute level over
the same period (see the previous subsection). Interestingly, and in contrast to
the networks that have been discussed previously for the other analysis levels,

Table 6. Cumulative statistics country level (working together metric)

2003 2003-
2004

2003-
2005

2003-
2006

2003-
2007

2003-
2008

Number of countries 11 15 17 23 25 25

Number of links 6 8 11 24 32 39

Inclusiveness (%) 54.5 66.7 70.6 73.9 80.8 88.0

Network Density 0.109 0.076 0.081 0.094 0.106 0.130

12 H.A. Reijers et al.

Fig. 8. Social network on country level for 2003-2008 (working together metric)

Table 7. Contributions countries

Originator Publications Publications
(absolute) (relative to total)

Germany 127 66.84%
The Netherlands 87 45.78%
Australia 75 39.47%
USA 46 24.21%
France 33 17.37%
Italy 22 11.58%
Switzerland 18 9.47%
Austria 16 8.42%
Israel 15 7.89%
South Korea 14 7.37%
Belgium 12 6.32%
Spain 11 5.79%
Brazil 10 5.26%

the density of the network is rather stable over the years. In other words, the
inflow of contributions from authors of ‘new’ countries goes along with an actual
exploitation of such inter-country collaborations opportunities.

As a final analysis result, the countries are shown in Table 7 of which the
hosted BPM researchers have contributed the most papers to the conference

A Collaboration and Productiveness Analysis of the BPM Community 13

series. Note that only countries with 10 or more generated publications are
shown. From this table, Germany, The Netherlands, and Australia emerge as
dominant providers of content for the BPM conference series. This could well
be expected from the results shown previously in Table 5, which mainly shows
institutes located in these countries. What is somewhat surprising is the position
of the USA in fourth place, while no American institute appears in Table 5. This
seems to suggest that the BPM research in the USA is much more scattered over
various institutes than is the case in Europe or Australia.

4 Discussion and Conclusion

The analysis of the collaboration patterns behind the papers on the BPM confer-
ence series shows a growth of collaborations at all the levels of analysis: author,
institute, and country level. On the country level the increase of entrants result
in a utilization of the new research ties that potentially become available with
the new entrants. This can be taken as a sign that the BPM conference series
appears as a genuinely international forum. At the individual and institute level
this type of expansion is not so apparent. This can perhaps be more or less ex-
pected on an individual level, where young researchers will be entering this field
with a small collaboration network. However, the lack of growth in cooperation
patterns between the institutes over the years can be seen as somewhat worri-
some if this is taken as an indication of researchers at the various institutes of
favoring “in-house” research.

From the analysis of the numbers of contributions, one can establish that
Germany, The Netherlands and Australia are the leading countries in their par-
ticipation in this research area. Several universities are actively participating
in Germany including the University of Potsdam, Ulm University, Humboldt-
University of Berlin, and the University of Stuttgart, with shares of 5 up to
11% of the total number of papers. In the Netherlands, the leading university
is Eindhoven University of Technology, with strong contributions of several au-
thors amounting to a share of publications in the range of 38%. In Australia, a
broader array of universities is contributing to the field, notably Queensland Uni-
versity of Technology, Swinburne University of Technology, and The University
of Queensland, with respective shares of 14.21%, 7.89% and 5.26%.

To conclude, the co-authorship networks derived from the publications in the
BPM international conferences 2003-2008 help to recognize how the community
of researchers is built around this research area, and what influence is exerted
by their universities and the countries that they are affiliated with. The paper
is also a nice illustration of the versatility of the BPM tools that are developed
by the same community. After all, it is the ProM tool that was developed for
supporting various process mining techniques that was used for this bibliographic
study. It is our hope that the presented results provide the members of the BPM
community with some new insights and will encourage them to link up with
others, in pursuit of breakthrough research.

14 H.A. Reijers et al.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

2. Willaert, P., Van den Bergh, J., Willems, J., Deschoolmeester, D.: The process-
oriented organisation: A holistic view developing a framework for business process
orientation maturity. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 1–15. Springer, Heidelberg (2007)

3. Harmon, P.: Business process management: Today and tomorrow. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 1–1. Springer,
Heidelberg (2008)

4. Reijers, H.A., Song, M., Jeong, B.: On the performance of workflow processes with
distributed actors: Does place matter? In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 32–47. Springer, Heidelberg (2007)

5. Siegeris, J., Grasl, O.: Model driven business transformation – an experience report.
In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240,
pp. 36–50. Springer, Heidelberg (2008)

6. Burt, R., Minor, M.: Applied Network Analysis: A Methodological Introduction.
Sage, Newbury Park (1983)

7. Scott, J.: Social Network Analysis. Sage, Newbury Park (1992)
8. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.

Cambridge University Press, Cambridge (1994)
9. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organiza-

tional mining. Decision Support Systems 46(1), 300–317 (2008)
10. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W(E.), Weijters,

A.J.M.M.T., van der Aalst, W.M.P.: The proM framework: A new era in process
mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

11. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F.,
Medeiros, A., Song, M., Verbeek, H.M.W.: Business Process Mining: An Indus-
trial Application. Information Systems 32(5), 713–732 (2007)

12. Guenther, C., van der Aalst, W.M.P.: A Generic Import Framework For Process
Event Logs. BPM report (2006),
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports.htm

13. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering Social Networks from
Event Logs. Computer Supported Cooperative work 14(6), 549–593 (2005)

14. NetMiner: NetMiner Tool User’s Guide (2009), http://www.netminer.com

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 15–27, 2009.
© Springer-Verlag Berlin Heidelberg 2009

BPM 3.0

August-Wilhelm Scheer and Joerg Klueckmann

IDS Scheer AG, Altenkesseler Str. 17,
66115 Saarbrücken, Germany

joerg.klueckmann@ids-scheer.com

Abstract. Business Process Management (BPM) is an established management
discipline. Since today’s organizations expect every employee to think and act
like an entrepreneur, i.e., like a manager, BPM is also increasingly becoming
part of everyday operations. But merely adopting a process-based approach
across the enterprise is not enough to enable BPM at every level. What is
needed is a combination of organizational forms and technologies that support
distributed BPM initiatives while simultaneously consolidating them company-
wide. Every employee must be empowered to model and optimize their own
processes. At the same time, the entire BPM community needs a platform that
brings together all the individual initiatives. This is the only way to leverage the
full potential of process-oriented management. In the following article, the
authors describe the trends in BPM development that are turning users into
process managers and supporting the creation of a BPM community.

Keywords: Business Process Management, Governance, Community,
Crowdsourcing.

1 BPM Guerrilla vs. BPM Governance

BPM initiatives often start with a guerrilla approach—individual departments launch
improvement initiatives to remedy inefficient workflows, with the choice of software
tools being based on departmental preferences. To avoid time-consuming
procurement and approval processes, the choice falls on low-cost tools bought online.
Team members gradually evolve their own methodology for describing processes,
which is then developed in ad hoc fashion. When there are more than two or three
process modelers involved, the manual effort needed to maintain model consistency
rises sharply. The lack of standards means that content is frequently interpreted
differently, leading to decisions being made on incorrect data. If the BPM project
grows virally across departmental boundaries, further problems arise: other teams
have already recorded their processes using different technology, enterprise-wide
process chains cannot be created, and teams find it difficult to share their insights.
Accordingly, the guerrilla BPM initiative fails before it can deliver real value.

Many organizations recognize that BPM initiatives tend to come into being virally,
as described above, rather than due to strategic management decisions from the
center. Such projects should be encouraged rather than prevented, since process
orientation is beneficial to businesses. Having said that, there needs to be sufficient
upfront intervention to ensure that the results of individual BPM teams can be

16 A.-W. Scheer and J. Klueckmann

combined. At the same time, it is important to maintain momentum: after all, no one
has the time or inclination to wait months for the internal procurement department to
finally come up with BPM software. The guerrilla approach thus calls for products
that can be bought over the Internet and are easy to install. ARIS Express is just such
a tool. It can be downloaded online free of charge and installed on every workstation.
The integrated event-driven process chain (EPC) method ensures a consistent basis
for interpreting and evaluating process models. Models can be combined to form
cross-departmental process chains, despite the ARIS Express users being scattered
across the organization (Fig. 1).

ARIS Express also supports other types of models in addition to EPCs, such as
organizational charts, value chains, BPMN, and IT environments. Unlike the majority
of modeling tools, the software is thus not limited to a process view. This flexibility is
a key requirement for a holistic approach to Business Process Management that takes
full account of business reality.

If more specialized functionality is needed, such as model versioning, complex
evaluations across multiple process chains, or process simulation, all content can be
transferred from ARIS Express into IDS Scheer’s professional ARIS tools. The
unstructured BPM guerrilla approach can therefore be transitioned into structured,
sustained, holistic Business Process Management [1].

Fig. 1. ARIS Express

 BPM 3.0 17

BPM governance plays an important role in facilitating the transition from
unstructured to structured BPM. Organizations with a large number of BPM users and
high workflow flexibility requirements need to establish structures and policies that take
the process management process itself to a professional level. When this degree of BPM
maturity has been achieved, technologies, such as ARIS Governance Engine, must be
deployed to define and implement BPM structures and policies. Thanks to the model-
driven approach behind ARIS Governance Engine, individual departments can create
and implement their own governance processes by way of the ARIS method. A dialog
designer provides a simple drag-and-drop interface to enable creation of input templates
for subsequent automation. Thanks to predefined form fields, users can quickly create
the screens in a structured manner. The data flow needed for process control can be
created via a graphical data flow designer (Fig. 2). This greatly simplifies linking of
dialog box elements with the underlying data for non-expert users.

The process desktop provides a custom, role-based task view with a list of all open,
ongoing, delegated, and completed tasks, thus delivering a quick overview of the
user’s area of responsibility within the process. Users are guided step-by-step through
each task from this desktop via the dialog screens created earlier. Replacement cover
and escalation mechanisms deliver extra flexibility and help ensure that day-to-day
workflows run smoothly.

Fig. 2. Data flow modeler

18 A.-W. Scheer and J. Klueckmann

With ARIS Governance Engine, business process modelers equipped with the
necessary rights can become BPM governors; no IT support is needed. In change
management projects, BPM managers gain the ability to optimize and accelerate their
change processes and make them more transparent, while the role of IT architecture
managers is to implement professional approval processes and optimize IT
architecture and portfolio management activities. Governance managers can tailor
their policies to meet compliance needs and roll them out across the organization. The
overall result is more efficient and effective BPM organization.

Companies wanting to establish their level of BPM maturity can access Professor
Scheer’s Advanced BPM Assessment (http://www.professor-scheer-bpm.com/). A
BPM application wheel and BPM technology wheel display the various phases and
technologies on the path to a holistic BPM approach.

2 The Power of the Community

In recent years, there has been an explosion of online communities covering a wide
range of subjects, with Facebook and LinkedIn being particularly prominent
examples. This process has been driven by a desire to communicate with like-minded
people and learn from them. The success of business communities, such as LinkedIn,
shows that business users and BPM teams also want to interact with other users—both
within the organization and beyond. This is not exactly a new trend because user
groups have existed for a number of years, usually relating to a specific technology or
product family, such as SAP, ARIS, or UNIX. Such groups also tend to be locally
based. Today’s online communities, however, are global and characterized by a
virtualization of relationships. Regular face-to-face meetings are less important, with
their place being taken by thriving online forums. Participation of employees in a
BPM community yields a number of benefits. These include acquiring a process
mindset in an informal peer group setting, thus helping to establish a process culture
within the enterprise. External advice and comparisons with other companies become
available without the need to invest in costly consulting projects. And by actively
participating in a BPM community, employees acquire the knowledge they need to
create a successful process culture.

The new ARIS Community (Fig. 3) allows BPM evangelists and project teams to
acquire process knowledge and stay updated on the latest developments. Personal
connections can be established with BPM experts on the provider side and in other
organizations. Web 2.0 technologies make it possible for BPM teams to join forces,
exchange process knowledge, and engage in collaborative development work,
regardless of location. Since collective results and decisions are better than
individual ones, communities improve the effectiveness and efficiency of BPM
initiatives [2]. The ARIS Community also offers a growing number of BPM courses
and training materials that enable new BPM users to get up to speed quickly on the
subject.

 BPM 3.0 19

Fig. 3. ARIS Community

The ARIS Community (www.ariscommunity.com) also has plenty to offer ARIS
users, who can submit questions to IDS Scheer experts about specific ARIS products
in a special forum. Frequently asked questions are documented and accessible via a
user-friendly search function. In addition, ARIS Express can be downloaded from the
ARIS Community site. This software features the standards required by the
community to ensure that results are compatible and can be interpreted in a consistent
fashion. ARIS Community members based in different locations worldwide can work
together on best practices. The established ARIS blog (www.arisblog.com) is
integrated into the Community, as is ARIS TV (www.youtube.com/aristv), the first
BPM channel on YouTube. A Twitter feed (http://twitter.com/ariscommunity)
updates members on new contributions and keeps them informed about the ongoing
development of Community functions.

ARIS Campus (www.ariscampus.com) is a special community with a BPM focus
established by IDS Scheer for universities. Students and lecturers benefit from online
campus access to BPM knowledge, software, best practice examples, and the latest
research results. The PROWIT research project (Process-Oriented Web 2.0-based
Integrated Telecommunications service) uses ARIS Campus to examine the potential
impact of Web 2.0 on BPM [3]. The ADiWa project is conducting research into the

20 A.-W. Scheer and J. Klueckmann

potential components of semantic BPM (see Sneak Preview: Semantic BPM). This
project also uses ARIS Campus to bring together the various teams online and
encourage interaction.

3 Crowdsourcing – Making Products and Processes Democratic

Consumers are increasingly demanding more say in how products are designed. In the
auto industry, mass customization has long been established practice, with customers
able to modify the specification of their chosen car right up to shortly before
production commences. Other industries have picked up on this trend: Customers of
Lego Factory (http://factory.lego.com/), for example, can create new models from
standard Lego bricks using a form of CAD software, publish them in a community,
and order the relevant bricks. Other members are then able to add to the models. The
creativity of the community is greater than that of any design department, and it helps
Lego to produce many new models based on standard elements. Tasks previously
performed by company employees are now outsourced to a large, undefined group of
people organized in the form of a community. This approach is referred to as
“crowdsourcing” [4].

The software industry has also experienced increased demand for customer input
into products. Customers know best what range of functionality a software product
should have and what the underlying processes they need to support look like. The
obvious answer is to provide customers with standardized components from which
they can create their own applications. The IDS Scheer response to such demands
includes ARIS MashZone, which enables departmental users to create mashups
(composite applications) for visualizing and evaluating a range of data. Every user
department holds huge amounts of data that can only be accessed and visualized with
a great deal of effort. This data is often derived from different sources, and users have
a huge need to create connections and establish patterns. Because such data is often
very volatile, static reports are no longer sufficient. In fact, most reports are obsolete
by the time they reach the recipient—a situation that many companies cannot tolerate
in times of crisis.

Like in the Lego Factory scenario, ARIS MashZone users can perform their own
situation-based evaluations without needing any programming knowledge. This in
turn reduces the workload of IT staff. With every consumer of information now a
mashup producer, the long wait for analysis results becomes a thing of the past.
Employees gain better insights faster and have more freedom when it comes to
preparing/presenting key performance indicators relevant to the decision-making
process. A mashup combines internal data (ARIS Process Performance Manager,
ARIS Process Event Monitor, ARIS Business Optimizer, Excel, ERP systems, CRM
systems, data warehouse systems, etc.) with Web data (Google Maps, statistical
databases, financial tickers, etc.). To do this, it taps data sources and turns them
into feeds (Fig. 4). Consistency is ensured at all times because data remains in its
original source location. The feeds are then assembled into mashups in a visual
composer. ARIS MashZone offers a host of visualization components for this purpose

 BPM 3.0 21

Fig. 4. ARIS MashZone

(bar graphs, pie charts, pyramid charts, funnel charts, maps, etc.). Interactive display
enables intuitive analysis and filtering of data in the mashup.

Typical ARIS MashZone scenarios include evaluation of marketing campaigns,
competitor analysis, customer satisfaction analysis, and financial analysis. Fig. 5
shows a mashup of United Motors Group (UMG), IDS Scheer AG’s demo company.
The mashup visualizes the results of a roadshow marketing campaign to launch a new
vehicle. A CRM system (sales for last 12 months) is linked to e-mail marketing
software (invitations), plus two Excel lists (registrations, participants), bringing
together all the data. Users can display considerable amounts of detail, such as
showing the sales figures for an area 200 km around the roadshow location in an
integrated Google Maps view. Integrating sales process indicators from ARIS Process
Performance Manager (ARIS PPM) makes it possible to use the mashup to check
whether objectives are being achieved. If sales are below target, the user can go
directly to ARIS PPM to analyze the live processes.

The Web 2.0 approach behind ARIS MashZone means that employees can share
their mashups with colleagues and/or redeploy them (user-generated content). Thus
process information from ARIS products can also be distributed to employees who do
not use ARIS. The attractive way in which process KPIs (e.g., from ARIS PPM) are
presented in mashups increases user acceptance, making Business Process
Management fun and exciting. Thanks to a multidimensional combination of data,
new information can be acquired, generating new knowledge in the process. As a
result, the intellectual and creative potential of every member of the organization is
realized.

22 A.-W. Scheer and J. Klueckmann

Fig. 5. Mashup of United Motors Group

4 The Search Function – A Gateway to Everything

Few technologies have attracted as much attention in recent years as search
functionality. Much of this can be attributed to Google, which was founded by
students at Stanford University. The Google search engine revolutionized not only the
way Web information is accessed, but also user behavior. Instead of trawling through
sitemaps or complex menu structures in software products, more and more users are
using search functionality to access the information or functions they need. The major
benefit of this kind of search is finding things you never knew existed. Conversely, if
information or functions are “invisible,” they are worthless.

The same is true of BPM projects: best practices, policies, and process standards
are worthless if employees cannot find them. New ARIS Rocket Search therefore
gives all company staff—regardless of their process and methodology knowledge—
easy access to all forms of process content, ranging from workflow descriptions to
templates for documents associated with the workflow and decision-making aids.
Rather than navigating through a series of hierarchies to identify a process, all users
have to do is enter the description of the process in the search box. Every letter
entered reduces the number of hits returned. Fig. 6 shows a search for a sales process
in the UMG process repository. Entering “SAP” as an additional search term would
return all sales processes supported by an SAP system. Users can go directly from the
search screen to the relevant process or object. ARIS Rocket Search also makes work
easier for modelers working on process models, giving them the ability to select
objects in the process chain and search for them in the ARIS repository. A filter is
available to restrict the search to an exact combination of objects or to each individual
object (Fig. 7).

 BPM 3.0 23

Fig. 6. Searching for a sales process

Fig. 7. Searching within a process

24 A.-W. Scheer and J. Klueckmann

To make working in ARIS easier, it is also possible to search menu structures,
interfaces, and the help system. For example, to find out how to run a report, users
can simply enter “Run report,” and the function is executed immediately. Since BPM
content is often stored in different databases, ARIS Rocket Search can search any
number of process, architecture, or service repositories and associated document
management systems. Hit accuracy improves with every search because ARIS Rocket
Search tracks the results most frequently used. Key information is identified,
categorized, and prioritized during the next search, aided by the use of semantic
information from the process repository. Searches for a job description also return
processes, manuals, IT systems, and employees (social network) associated with the
job. Benefits include the ability to create training programs quickly and easily. The
search results can be displayed in list form as well as graphically, offering statistics
and intuitive visualization in greater detail. ARIS Rocket Search also benefits from
sophisticated input recognition functionality, enabling number ranges and time spans
to be recognized and searched for. Whether the approach is BPM guerrilla or BPM
governance, intuitive search functions that deliver fast, accurate hit rates are set to
become the standard access mechanism for BPM information.

5 BPM and the Cloud

One of the hottest topics in the BPM community is currently BPM in the cloud. Using
the software-as-a-service (SaaS) model, this involves offering and consuming BPM
services via the Internet (cloud). Users can access these services and execute the
application on the Web via a thin client. Because processing takes place online, an
almost complete BPM environment is available. But before an organization decides to
take to the cloud with its BPM initiative, it needs to distinguish between core
processes and context processes and identify the relevant risks and opportunities.

Core processes are a company’s essential value-adding processes. As such, they
are the operational expression of corporate strategy. If the strategy is one of price
leadership, core processes will be geared toward cost minimization. If high service
quality is the strategy, the focus will be on smooth operation and ongoing
optimization of all processes with customer touchpoints. In a word: core processes
carry an organization’s DNA and are crucial to business success. Clearly, such
processes should not be placed in the cloud without careful consideration—
competitors could access them and gain an advantage. Core processes are also not
candidates for public exchange of information on freely accessible platforms, so there
is no real case for making them available across corporate boundaries.

The situation is different when it comes to context processes, which tend to play a
supporting role (HR processes, support processes, etc.). Best practices are frequently
exchanged publicly and documented as part of various standardization initiatives
across a broad range of industries. For example, the business processes of
telecommunications companies are documented in eTOM [5].

IDS Scheer supports both scenarios, enabling organizations to use Java-based
ARIS versions to launch BPM initiatives in a “private cloud” for users in different
locations around the world. All data is stored and consolidated in the central ARIS
repository. ARIS Governance Engine enables transparent design and efficient

 BPM 3.0 25

Fig. 8. Modeling as a service

implementation of change processes. IDS Scheer also offers modeling as a service,
which enables customers to use an installation operated within IDS Scheer’s data
center, instead of having to buy hardware or install software. Rights- and role-based
access to the system is provided via the Web (Fig. 8). Context processes, on the other
hand, can be published and discussed on ARIS Community, where the collective
intelligence of members enables continuous process improvement. Of course, not-for-
profit organizations can also have their core processes analyzed and improved by the
community, in the same way that open source software, such as Linux, is developed
collectively.

But many enterprises have a much more basic problem: they have no real
knowledge of their core and context processes. This can lead to huge problems in
times of economic turmoil. If core processes are compromised by cost cutting and
restructuring activities, customers will quickly switch to competitors. At the same
time, care must be taken that any outsourcing decision only applies to context
processes, while continued investment in core processes is essential to retain existing
customers and acquire new ones.

6 Sneak Preview: Semantic BPM

To implement Business Process Management at the IT level, business processes need
to be transformed into technical processes. For some years now, the technology of
choice here has been service-oriented architectures (SOAs). All too often, however,
SOA projects fail to deliver the desired results, often because of a lack of adequate
cooperation between user department (SOA customer) and IT department (SOA
provider). The barrier between business and IT is due in large part to the different

26 A.-W. Scheer and J. Klueckmann

language used by the two groups. The SUPER research project (Semantics Utilized
for Process Management within and between Enterprises) seeks to bridge this gap
through a combination of semantic Web services and BPM [6]. The result is a
methodology for semantic BPM covering the entire BPM lifecycle. Process models
are semantically annotated, which increases reuse of process fragments. The models
are then translated into the BPEL4SMS standard and executed. Users can use
semantic queries at runtime to search for and execute new software services [7].

As an example of a semantic BPM scenario, take a food manufacturer, who has to
comply with new EU regulations stipulating that certain foods must now be sold
within a shorter sell-by date than before. If the organization already has a BPM
initiative, it needs to identify the processes relating to shipping of the relevant
products—a task that can only be performed by a human being. With semantic BPM,
the business processes and EU regulations would be defined in a way that allows
automatic execution of the required process changes. Technologies used here include
reasoners, ontologies, and mediators, which have all been developed to make the
semantic Web a reality. In the semantic Web, machines can understand and categorize
Web content [8].

Although semantic BPM currently only exists in the research labs of universities
and a limited number of BPM technology providers, such as IDS Scheer, this
technology is key to the future of BPM. For it to succeed, organizations must have a
high level of BPM maturity, but given the rapid progress made recently by BPM at
the technology and organizational levels, it can only be a matter of a few years before
semantic BPM becomes reality.

7 Summary

The BPM guerrilla approach and BPM governance are not conflicting choices.
Rather, they are two different organizational forms that represent a natural
progression as an organization’s BPM maturity increases. Both depend on technology
to deliver the benefits of a process-driven organization. It needs to be possible to
combine the output of independent BPM teams and interpret it consistently. Teams
also need the ability to form communities and share insights. This is the only way to
propagate the process mindset across the enterprise. Whether search functionality or
mashup technology are used, access to process information must be quick and easy.
Increased viral distribution of process information enables generation of greater
knowledge. Although prospects for the emergence of a self-learning BPM system are
encouraging, it should be remembered that processes will always be modeled,
optimized, implemented, and monitored by humans. Technology is simply a means to
an end—it is always people who drive growth.

References

1. Davis, R., Brabänder, E.: ARIS Design Platform – Getting Started with BPM. Springer,
London (2008)

2. Tapscott, D., Williams, A.D.: How Mass Collaboration Changes Everything, Portfolio,
USA (2008)

 BPM 3.0 27

3. Wagner J.: BPM in the Web 2.0 era,
http://www.arisblog.com/2009/03/30/bpm-in-the-web-20-era/

4. Howe, J.: Crowdsourcing: How the Power of the Crowd is Driving the Future of Business.
Crown Business, USA (2008)

5. TM Forum, http://www.tmforum.org/browse.aspx
6. IDS Scheer, http://www.ariscampus.com/community/research
7. Van Lessen, T., Wetzstein, B., Nitzsche, J., Ma, Z., Karastoyanova, D., Leymann, F.:

Geschäftsprozessmanagement Meets Semantic Web, Stuttgart,
http://www.taval.de/INPROC-2007-60%20BPMmeetsSW.pdf

8. Stein, S., Stamber, C.: Semantic Business Process Management. In: Kuropka, D., Tröger, P.,
Staab, S., Weske, M. (eds.) Semantic Service Provisioning, pp. 127–143. Springer, Berlin
(2008)

Change in Control

John Hoogland

Pallas Athena
Piet Joubertstraat 4, 7315 AV Apeldoorn, The Netherlands

johnhoogland@pallas-athena.com

Outline

Change is a popular word since Barack Obama so successfully used it in his
campaign to become president of the US. Change almost became a synonym for
“yes, we can”. Change, and things will improve. Suddenly change is sexy. We
don’t seem to suffer from resistance to change anymore. People now LIKE to
change?

Control usually is considered to almost be opposite to change. Control is not
sexy. It is associated with accountants, budget restrictions, penalties, rules. It is
considered to be counterproductive. You need it for compliance, but how easy
would it be to change without control?

BPM is stuck in the middle. It used to be positioned as a technology that
improves efficiency, effectiveness and quality. Cheaper, faster and better. But
suddenly BPM is all about Agility. BPM for change. BPM is sexy too! At the
same time, BPM is considered to be a tool for compliance, risk management and
a means to guarantuee SLA’s, KPI’s, etc. Control!

So how can this be? BPM does not bring agility by itself. Nothing is more
agile than processes that are not under control of any system. BPM is only
called agile, because it gives more flexibility than built-in process control in
legacy applications. At least, that is what we all believe (or say we believe). We
call this the flexibility paradox. Process automation adds control, takes away
flexibility and at the same time brings agility.

What do analysts, vendors and consultants say about BPM and agility?
Gartner says: “Business Process Management is a discipline that enables

business agility in three important ways. It allows faster and better-informed
decisions, reduces the process revision cycle time, and promotes consensus for
rapid adoption of change”[1].

It is very important to realize that two different types of agility are mixed
here. First of all, there is the ability to make better change decisions based on
better data and communicated in a better way. Second, there is the ability to
execute changes easier and faster. In this position paper, the emphasis is on the
second form of agility.

Most vendors of BPM suites connect the concept of agility to two BPM
functionalities:

1. Round trip BPM, meaning that the iterative process cycle from design to
execution, reporting and analysis is done in one integrated environment,
allowing business users to be heavily involved.

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 28–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Change in Control 29

2. Rules engines, allowing to change business rules without the need to change
the process definition.

It is really surprising to see that hardly any vendor or analyst explains HOW a
BPM system delivers better agility. It is almost considered to be common sense,
like you don’t have to explain why you get warm in the sun. But it is not that
obvious at all. So how can agility be achieved through executing and controlling
business processes by automating them?

Flexibility in business processes can be achieved in two ways:

1. Intrinsic flexibility thanks to a rich BPM engine able to support many work-
flow patterns, resource patterns or even exception handling patterns [2,3,4]

2. Flexibility through adaptability of process behavior.

The main difference between the two is that in the first case any change in
the behavior of the system needs a change in the process definition. That is
why better engines offer more flexibility. The goal is to prevent changes in the
definition of processes, because however easy it is to make these changes, every
change will require releasing a new version of the process model. And such a
version upgrade will need to be tested, accepted and therefore planned. This is
especially true when the process is highly integrated with other applications or
services in the infrastructure. Based on experience, one might state that these
changes cannot be effectuated more than three times per year. This process cycle
is often called the outer circle of process management.

Therefore, support for many patterns, operational flexibility that allows end
users to defer from the process definition in a controlled way (based on senior-
ity for instance), exception handling capabilities like skipping steps, roll back
processes with compensation actions, ad-hoc activities, etc. etc., all bring about
functionality that prevent releasing new versions. This concept is implemented
in a number of BPM tools, but hardly communicated as such. Many vendors
even with these capabilities in their product, still market agility in relation to
easier modeling, round trip modeling (from process design to execution without
intermediate translation). And this is strange, since round trip modeling is not
a differentiator, while the mentioned capabilities are!

In the second case, which can be referred to as the inner circle, changes in
the behavior of the BPM system can be achieved through parameterization in
rules, distribution, process variables, resource allocation, web services, etc. The
goal is that in a separated configuration environment, business users are able
to adapt the process, without the need to release a new version. The cycle time
of these kind of changes is short (often real-time), and preferably the configura-
tion capabilities are decentralized in business domains, and hierarchical layers,
ensuring in this way that business managers can only make changes in business
areas for which they are responsible or authorized. Inner circle support brings
true agility. Work distribution can be changed ad hoc and real time, without
any IT support. Business rules can be adapted without the need to release new
versions. Process thresholds for control steps, escalation steps, can be lowered or
increased in order to cope with unexpected workload, deadlines and SLA’s can
temporarily be adapted for the same reason.

30 J. Hoogland

And this is how we find the equilibrium between change and control. The
outer circle brings control where needed, the inner circle offers the flexibility to
manoeuver between clear boundaries. Change in control.

References

1. Hill, J., Melenovsky, M.: Achieving Agility: BPM Delivers Business Agility through
New Management Practices; Gartner. Gartner Report G00137553 (2006)

2. Russell, N., Ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow control-flow
patterns: A revised view. BPM Center Report BPM-06-22, BPMcenter. org, 06–22
(2006)

3. Russell, N., Hofstede, A., Edmond, D., Aalst, W.: Workflow Resource Patterns.
BETA Working Paper Series, WP 127, Eindhoven University of Technology,
Eindhoven (2005)

4. Russell, N., van der Aalst, W., ter Hofstede, A.: Exception handling patterns in
process-aware information systems. BPM Center Report BPM-06-04, BPMcenter.
org, 06–04 (2006)

Scientific Workflows: Business as Usual?�

Bertram Ludäscher1,2, Mathias Weske3, Timothy McPhillips1, and Shawn Bowers1

1 Genome Center, University of California Davis, USA
{ludaesch,tmcphillips,bowers}@ucdavis.edu

2 Department of Computer Science, University of California Davis, USA
3 Hasso-Plattner-Institute University of Potsdam, Germany

weske@hpi.uni-potsdam.de

Abstract. Business workflow management and business process modeling are
mature research areas, whose roots go far back to the early days of office automa-
tion systems. Scientific workflow management, on the other hand, is a much more
recent phenomenon, triggered by (i) a shift towards data-intensive and computa-
tional methods in the natural sciences, and (ii) the resulting need for tools that
can simplify and automate recurring computational tasks. In this paper, we pro-
vide an introduction and overview of scientific workflows, highlighting features
and important concepts commonly found in scientific workflow applications. We
illustrate these using simple workflow examples from a bioinformatics domain.
We then discuss similarities and, more importantly, differences between scientific
workflows and business workflows. While some concepts and solutions devel-
oped in one domain may be readily applicable to the other, there remain suffi-
ciently many differences that warrant a new research effort at the intersection of
scientific and business workflows. We close by proposing a number of research
opportunities for cross-fertilization between the scientific workflow and business
workflow communities.

1 Introduction

Whether scientists explore the limits and origins of the observable universe with ever
more powerful telescopes, probe the invisibly small through particle accelerators, or in-
vestigate processes at any number of intermediate scales, scientific knowledge discov-
ery increasingly involves large-scale data management, data analysis, and computation.
With researchers now studying complex ecological systems, modeling global climate
change, and even reconstructing the evolutionary history of life on Earth via genome
sequencing and bioinformatics analyses, science is no longer “either physics or stamp
collecting”1. Instead, science is increasingly driven by new and co-evolving observa-
tional and experimental methods, computer simulations, and data analysis methods.
Today’s scientific experiments happen in large parts in silico, i.e., in the computer [8].
In the UK, the term e-Science [1] was coined to describe computationally and data
intensive science, and a large e-Science research program was started there in 2000.
Similarly, in the US, the National Science Foundation created a new Office for Cyberin-
frastructure (OCI) to advance computer science and informatics technologies in support

� This research was conducted while the second author was on sabbatical leave at UC Davis.
1 “All science is either physics or stamp collecting.” – Ernest Rutherford [11].

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 31–47, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

32 B. Ludäscher et al.

of e-Science. As a result, the new opportunities of data-driven and compute-intensive
science have introduced the new challenges of managing the enormous amounts of data
generated and the complex computing environments provided by cluster computers and
distributed Grid environments.

Given these developments, domain scientists face a dilemma. Scientific progress in
their fields relies ever more on complex software systems, high-performance computing
environments, and large-scale data management. For example, advanced computational
science simulations involve all of the above [46]. But employing all of these resources
is a time-consuming and labor-intensive task, made all the more challenging by the
high rate at which new technologies, services, and applications appear. Understandably,
many scientists would prefer to focus on their scientific research and not on issues
related to the software and platforms required to perform it. As a result, interest in the
area of scientific workflow management has increased significantly in recent years [25,
28, 30, 38–40, 49, 51], and many projects are now employing or developing scientific
workflow technology [5, 19, 26, 27, 37, 45].

One goal of scientific workflows is to support and whenever possible automate what
would be otherwise error-prone, repetitive tasks, e.g., data access, integration, trans-
formation, analysis, and visualization steps [39]. Thus, scientific workflows are often
used to chain together specialized applications and new data analysis methods. How-
ever, as is the case in business workflow management, scientific workflows are not
only about workflow enactment and execution; modeling, design, analysis, and reuse of
workflows are also becoming increasingly important in this area. The main goals of sci-
entific workflows, then, are (i) to save “human cycles” by enabling scientists to focus
on domain-specific (science) aspects of their work, rather than dealing with complex
data management and software issues; and (ii) to save machine cycles by optimizing
workflow execution on available resources.

In this paper, we provide an introduction and overview of scientific workflows, and
compare and contrast with the well-established, mature area of business workflows.
The outline and contributions of this paper are as follows. In Section 2 we provide
an overview of the scientific workflow life cycle and common use cases. Section 3
describes some key concepts and emerging approaches for addressing the technical
challenges encountered in developing and deploying scientific workflows. A family of
bioinformatics workflows is then used in Section 4 to further illustrate some of the use
cases and technical issues. In Section 5, we compare and contrast scientific workflow
concepts and issues with those in found in the business workflow arena. Finally, in
Section 6 we propose areas of future research and opportunities for cross-fertilization
between the scientific workflow and business workflow communities.

2 The Scientific Workflow Life Cycle

Figure 1 depicts a high-level view of the scientific workflow life cycle. Starting from
a scientific hypothesis to be tested, or some specific experimental goals, a workflow
design phase is initiated. During this phase, scientists often want to reuse pre-existing
workflows and templates or to refine them. Conversely, they can decide to share a (pos-
sibly revised and improved) workflow design, or make workflow products (derived data,

Scientific Workflows: Business as Usual? 33

Hypothesis,
Experiment
Goals

Experiment/
Workflow
Design

Workflow
Preparation

Workflow
Execution

Post-
Execution
Analysis

Provenance
Store

Workflow
Repository

Data
Sources

Project
Space HPC cluster

Runtime
Monitoring

Fig. 1. Scientific Workflow Life Cycle

new components, subworkflows, etc.) available via a public repository or shared project
space. Scientific workflow design differs significantly from general programming, with
analysis libraries, available web services, and other pre-existing components often be-
ing “stitched together” (similar to scripting approaches [48]) to form new data analysis
pipelines.

During workflow preparation, data sources are selected and parameters set by the
user. Workflows may require the scheduling of high-performance computing (HPC) re-
sources such as local cluster computers, or remote (Grid or cloud computing) resources;
also data may have to be staged, i.e., moved to certain locations where the compute jobs
running on the HPC cluster(s) expect them.

During workflow execution, input data is consumed and new data products created.
For large-scale computational science simulations (running on hundreds or thousands of
nodes; for hours, days, or weeks at a time), runtime monitoring is critically important:
intermediate data products and special provenance information are often displayed on a
web-based monitoring “dashboard” to inform the scientist about progress and possible
problems during execution. Depending on this information, the scientist may decide to
abort a simulation or workflow run.

Scientists often need to inspect and interpret workflow results in a post-execution
analysis phase to evaluate data products (does this result make sense?), examine execu-
tion traces and data dependencies (which results were “tainted” by this input dataset?),
debug runs (why did this step fail?), or simply analyze performance (which steps took
the longest time?). Depending on the workflow outcomes and analysis results, the orig-
inal hypotheses or experimental goals may be revised or refined, giving rise to further
workflow (re-)designs, and a new iteration of the cycle can begin.

The workflow life cycle typically involves users in different roles: Domain scientists
often act as the (high-level) workflow designers and as the workflow operators, i.e., they
execute and possibly monitor the workflow after having prepared the run by selecting
datasets and parameters. Depending on the complexity of the target workflows and the

34 B. Ludäscher et al.

skills required to compose these in a particular system, workflow engineers2 commonly
are also involved in implementing the workflow design.

Types of Scientific Workflows. There is no established scientific workflow classifica-
tion yet. Indeed, there seems to be no single set of characteristic features that would
uniquely define what a scientific workflow is and isn’t. To get a better grasp of the
meaning and breadth of the term ‘scientific workflow’, we have identified a number of
dimensions along which scientific workflows can be organized.

In many disciplines, scientists are designers and developers of new experimental pro-
tocols and data analysis methods. For example in bioinformatics, the advent of the next
generation of ChIP-Seq3 protocols and the resulting new raw data products are leading
to a surge in method development to gain new knowledge from the data these experi-
ments can produce. Scientific workflows in such realms are often exploratory in nature,
with new analysis methods being rapidly evolved from some some initial ideas and pre-
liminary workflow designs. In this context, it is crucial that scientific workflows be easy
to reuse and modify, e.g., to replace or rearrange analysis steps without “breaking” the
analysis pipeline. Once established, production workflows, on the other hand, undergo
far fewer changes. Instead, they are executed frequently with newly acquired datasets
or varying parameter settings, and are expected to run reliably and efficiently.

Scientific workflow designs can also differ dramatically in the types of steps being
modeled. For example, we may distinguish science-oriented workflows [42], in which
the named steps of the workflow spell out the core ideas of an experimental protocol or
data analysis method, from lower-level engineering (or “plumbing”) workflows, which
deal with data movement and job management [46]. Another category along this di-
mension are job-oriented workflows, typically expressed as individual compute jobs for
a cluster computer, whose job (i.e., task) dependencies are modeled as a DAG [22].

3 Scientific Workflow Concepts and System Features

In order to address the various challenges encountered throughout the scientific work-
flow life cycle, and in light of the vastly different types and resulting requirements of
scientific workflows, a number of concepts have been and are being developed. In the
following, we use terminology and examples from the Kepler scientific workflow sys-
tem [2, 37] (similar concepts exist for other systems, e.g., Taverna [3], Triana [4], etc.)

Integrated Workflow Environment. Many (but not all) scientific workflow systems
aim at providing an integrated ‘problem-solving environment’4 to support the workflow
life cycle illustrated in Figure 1. For workflow design, a visual programming interface
is often used for wiring up reusable workflow components (or actors). To facilitate
rapid workflow development and reuse, actor libraries (containing executable code)
and workflow repositories (e.g., myExperiment [31]) can be used. Similarly, a metadata
catalog may be used to locate relevant datasets from distributed data networks. The

2 i.e., software engineers with workflow system expertise.
3 Chromatin ImmunoPrecipitation with massively parallel DNA Sequencing.
4 A term that has been used earlier in the context of computational science simulations [47].

Scientific Workflows: Business as Usual? 35

Fig. 2. A Kepler scientific workflow for inferring evolutionary relationships using morphological
data. The windows labeled Drawgram and CollectionDisplay show the resulting phylogenetic
tree and reveal the nested data streaming through the actors, respectively.

screenshot in Figure 2 depicts the Kepler user interface, including the workflow canvas
and actor library.

Workflow Preparation and Execution Support. Many scientific experiments require
multiple workflow runs using different parameter settings, data bindings, or analysis
methods. In such cases, parameter sweeps [5] can be used to simplify these experi-
ments. When running workflows repeatedly with varying parameter settings, data bind-
ings, or alternative analysis methods, a “smart rerun” capability is often desirable [37]
to avoid costly recomputation. This can be achieved, e.g., by using a data cache and
analysis of dataflow dependencies (when parameters change, only downstream compu-
tations need to be re-executed [6]). For long-running workflows, some systems offer
capabilities for runtime monitoring, e.g., using web-based dashboards, which display
and visualize key variables (e.g., of large-scale fusion simulation experiments [34]).
Similarly, long-running workflows require support for fault-tolerance, e.g., in the case
of actor-, service-, or other workflow-failures, a “smart resume” capability avoids re-
execution of previously successful steps, either by a form of (application-dependent)
checkpointing [38, 46], or by employing suitable logging and provenance information
recorded by the workflow system [21]. In so-called “grid workflows”, workflow jobs
need to be scheduled and mapped onto the distributed computing resources [26].

Data-Driven Models of Computation. While scientific workflow designs visually
emphasize processing steps, the actual computation is often data-driven. Indeed, with-
out workflow system support, scientists often spend much of their time reading,

36 B. Ludäscher et al.

(a)

s1 a
b

c
ds2

s3

s4

s5

A
B

C
D

a
b

c
d

s1 s2

s3

s4

s5

(b)

(c)

(d)

Fig. 3. Basic workflow and provenance models: (a) workflow definition (here, a DAG) with four
actors A, . . . , D; (b) example flow graph with process invocations a, . . . , d and atomic data
s1, . . . , s5; (c) data dependencies and (d) invocation dependencies inferred from (b).

reformatting, routing, and saving datasets. Instead, dataflow-oriented and actor-
oriented models of computation [36] for scientific workflows [12] emphasize the cen-
tral role of data. What passes between workflow steps is not just control (the triggering
of a subsequent step in response to all prior steps having completed), but data streams5

that flow between and through actors (either physically or virtually [52]) and that drive
the computation.

Consider the simple workflow DAG in Figure 3(a). In a business workflow model
(and in some job-oriented scientific workflow models [22]), we would view A as an
AND-split, followed by two task-parallel steps B and C and an AND-join D. Dataflow
is often implicit or specified separately. In contrast, in a data-driven model of com-
putation, the tokens emitted by a workflow step drive the (often repeated) invocations
of downstream steps. Figure 4 illustrates that there are (often implicit) data queues be-
tween workflow steps to trigger multiple process invocations of an actor. Such dataflow-
oriented models of computation are also beneficial for (i) streaming workflows (e.g., for
continuous queries and window-based aggregates over sensor data streams [9]), and (ii)
pipeline-parallel execution of scientific workflows [46]; see Figure 4 and below.

Data Provenance. In recent years, research and development activities relating to data
provenance (or data lineage) and other forms of provenance information have increased
significantly, in particular within the scientific workflow community [13, 18, 23, 24, 43].
Information about the processing history of a data product, especially the dependencies
on other, intermediate products, workflow inputs, or parameter settings, can be valuable
for the scientist during virtually all phases of the workflow life cycle, including work-
flow execution (e.g., for fault-tolerant [21] or optimized execution) and post-execution
analysis (i.e., to validate, interpret, or debug results as described above).

Consider the flow graph in Figure 3(b). It captures relevant provenance information,
e.g., that in a particular workflow run, the actor A consumed an input data (structure s1)
and produced output data (s2); the linkage between inputs and outputs is given via an
invocation a of A. The data lineage graph in Figure 3(c) is a view of the graph in (b),
and shows how the final workflow output s5 depends on the input s1 via intermediate
data products s2, s3, s4. The invocation dependency graph in Figure 3(d) highlights
how actor invocations depended on each other during a run.

5 The so-called “information packets” in Flow-based Programming [44].

Scientific Workflows: Business as Usual? 37

A B

s1 a:1 s3 b:1 s5

s2 a:2 s4 b:2 s6

s1s2... s3s4... s5s6... s3

a:1 s4 b:1 s7

s2 a:2 s5 b:2 s8

s1

a:3 s6 b:3 s9

s1s2s3... s4s5s6... s7s8s9...

A B(a) (b)

Fig. 4. The process network (PN) model supports streaming and pipelined execution: (a) step A of
the workflow (top) yields two independent invocations (a:1, a:2) within the flow graph (bottom),
possibly executed concurrently over the input stream s1, s2, . . . ; (b) a variant of (a) where A is
stateful, preserving information between invocations a:i, resulting in additional dependencies.

Different Models of Computation and Provenance. The model of provenance (MoP)
to be used for a scientific workflow may depend on the chosen model of computation
(MoC) that is used to describe the workflow execution semantics [15, 41]. For example,
for a simple MoC that views a workflow specification as a DAG [22], the associated
MoP need not distinguish between multiple invocations a:1, a:2, . . . of an actor A, sim-
ply because each actor is invoked no more than once. For the same reason, it is not
meaningful to distinguish stateless from stateful actors. In contrast, in MoCs that (i)
allow loops in the workflow definition, and/or (b) support pipeline parallel execution
over data streams, multiple invocations need to be taken into account, and one can dis-
tinguish stateful from stateless actors. Consider Figure 4(a), which depicts a simple
workflow pipeline consisting of two steps A and B. In a dataflow MoC with firing se-
mantics [35], each data token si on a channel6 may trigger a separate invocation; here:
a:1, a:2, . . ., and b:1, b:2, . . . With the appropriate MoP, the provenance graph indi-
cates that two (or more) independent instances of the workflow were executing. This is
because the actors A and B are stateless, i.e., each invocation is independent of a prior
invocation (e.g., A might convert Fahrenheit data tokens to Celsius). On the other hand,
Figure 4(b) shows a provenance graph that reveals that the multiple invocations of A are
dependent on each other, i.e., A is stateful. Such a stateful actor might, e.g., compute
a running average, where a newly output token depends on more than one previously
read token.

Workflow Modeling and Design. Experiment and workflow designs often start out as
napkin drawings or as variants or refinements of existing workflows. Since workflows
have to be executable to yield actual results, various abstraction mechanisms are used to
deal with the complex design tasks. For example, Kepler inherits from Ptolemy II [17]
the capability to nest subworkflows as composite actors inside of workflows, possibly
adopting a different model of computation (implemented via a separate director) for the
nested subworkflow. Top-level workflows are often coarse-grained process pipelines,
where each step may be running as an independent process (e.g., executing a web ser-
vice or R script), while lower-level “workflows” might deal with simple, fine-grained

6 In the process network model [33] actors (processes) communicate via unbounded queues.

38 B. Ludäscher et al.

steps such as the evaluation of arithmetic expressions. Thus, it can be beneficial to em-
ploy different MoCs at different levels [46], e.g., Kahn process networks at the top-level
(implemented via a so-called PN director) and synchronous dataflow7 for lower levels.

Actor-oriented modeling and design of scientific workflows can also benefit from
the use of semantic types [10, 12], where data objects, actors, and workflows can be
annotated with terms from a controlled vocabularly or ontology to facilitate the design
process. Finally, collection-oriented modeling and design [14] can be seen as an exten-
sion of actor-oriented modeling which takes into account the nested collection structure
frequently found in scientific data organization to obtain workflow designs that are eas-
ier to understand, develop, and maintain [42].

4 Case Study: Phylogenetics Workflows in Kepler

Here we illustrate the challenges, use cases, concepts, and approaches described above
using concrete examples of automated scientific workflows implemented in the Kepler
scientific workflow system. The example computational protocols come from the field
of phylogenetics, which is the study of the tree-like, evolutionary relationships between
natural groups of organisms. While phylogenetics methods and data comprise a nar-
row sub-domain of bioinformatics, they are broadly relevant to the understanding of
biological systems in general.

The pPOD Extension to Kepler. The pPOD project8 is addressing tool and data inte-
gration challenges within phylogenetics through a workflow automation platform that
includes built-in mechanisms to record and maintain a continuous processing history for
all data and computed results across multiple analysis steps. Like many other science
domains, these steps currently are carried out using a wide variety of scripts, standalone
applications, and remote services. Our solution, based on the Kepler system, automates
common phylogenetic studies, routing data between invocations of local applications
and remote services, and tracking the dependencies between input, intermediate, and fi-
nal data objects associated with workflow runs [16]. The immediate goal of the current
version of the system is to provide researchers an easy-to-use desktop application that
enables them to create, run, and share phylogenetic workflows as well as manage and
explore the provenance of workflow results. The main features of the system include:
(i) a library of reusable workflow components (i.e., actors) for aligning biological se-
quences and inferring phylogenetic trees; (ii) a graphical workflow editor (via Kepler)
for viewing, configuring, editing, and executing scientific workflows; (iii) a data model
for representing phylogenetic artifacts (e.g., DNA and protein sequences, character ma-
trices, and phylogenetic trees) that can facilitate the conversion among different data
and file formats; (iv) an integrated provenance recording system for tracking data and
process dependencies created during workflow execution; and (v) an interactive prove-
nance browser for viewing and navigating workflow provenance traces (including data
and process dependencies).

7 Such subworkflows execute in a single thread, statically scheduled by an SDF director.
8 http://www.phylodata.org

Scientific Workflows: Business as Usual? 39

CipresRAxML

CipresClustal Gblocks

(a). Simple Kepler workflow for computing sequence alignments from a web service

(b). Simple Kepler workflow for refining sequence alignments via a local application

(c). A Kepler workflow that combines the steps in (a) and (b)

CipresClustal

CipresClustal Gblocks

(d). A Kepler workflow that computes phylogenetic trees using the RAxML application invoked on a remote cluster

CipresRAxML

(e). A Kepler workflow similar to (d) but where MrBayes is used in place of RAxML

CipresMrBayes

(f). A Kepler workflow similar to (d) and (e) but employing maximum parsimony components invoked locally

PhylipProtPars PhylipConsense

(g). A Kepler workflow combining the workflows in (c) and (d)

Gblocks

Fig. 5. Common data analyses used in phylogenetics implemented in the Collection-Oriented
Modeling and Design (COMAD) framework of Kepler, highlighting benefits of actor reuse and
workflow composition enabled through scientific workflow systems.

Figure 5 illustrates a number of workflows that can be constructed readily using the
actors included with the pPOD extension to Kepler. The workflow shown in Figure 5(a)
reads one or more files containing DNA or protein sequences in the FASTA file format.
Each sequence represents a different group of organisms (e.g., species). The workflow
then employs the Clustal application to align these sequences to each other (thereby
inferring which positions in each sequence are related by evolution to positions in the
other sequences). From this multiple sequence alignment, the workflow composes a
phylogenetic character matrix and saves it to the researcher’s disk in the Nexus format.
The final actor saves a record of the workflow run containing the provenance informa-
tion required to later reconstruct the derivation history of data products.

40 B. Ludäscher et al.

The Importance of Data Management in Tool Integration. The workflow in
Figure 5(a) defines a relatively simple computation protocol: only the CipresClustal
step performs a “scientifically meaningful” task, whereas the rest of the workflow sim-
ply automates the reading, reformatting, routing, and saving of data sets, and records
the provenance of new data. However, even in this case, scientific workflow systems
provide a number of critical benefits. In the absence of a framework such as this, re-
searchers must run the Clustal program by hand, supplying it input data and instruc-
tions in an appropriate (but highly idiosyncratic) manner. They must either install the
program on their own computers, have someone else install it for them, or else run
Clustal via one of several web-based deployments of the application. In any event, they
should (ideally) record precisely how they use the application each time they use it:
what parameters they used, what input data files served as input, and what the immedi-
ate outputs of the program were. Each of these steps is labor-intensive and error-prone.
Moreover, researchers typically carry out operations such as these many times on the
same input data sets, varying the values of parameters given to the applications, alter-
nately including or excluding subsets of input data sets, and repeatedly comparing and
evaluating the results of all these variations. Further, because a protocol such as this
occurs not in isolation, but as part of a larger set of workflows that comprise a scientific
study, these kinds of variations in the upstream computational protocols cascade to the
later protocols in a study, further multiplying the number of times a particular protocol
must be carried out on what is conceptually the same data set. Consequently, managing
data files, converting formats, and otherwise massaging scientific data in preparation
for use with particular tools takes considerable time and effort, and must generally be
done—again and again—by hand.

Immediate Advantages over Standard Scripting Approaches. Scientists typically
define programs for automating analyses using scripting languages, e.g., when manual
operation of tools such as these becomes too onerous. However, employing scripting
languages in this way has serious limitations that scientific workflow systems directly
aim to address. For example, a significant weakness of scripting languages is their lack
of built-in provenance recording facilities. Further, the use of scripting languages for au-
tomating scientific protocols often involves ad hoc approaches for wrapping and execut-
ing external applications, whereas scientific workflow systems can provide users with
uniform access to computational components (e.g., in Kepler through the actor model).
The result is that external applications are typically only incorporated, or wrapped, into
a workflow system once, making analyses easier to construct and components easier to
reuse and adopt in new protocols. The limitation that scientists run into the most, how-
ever, is the difficulty of using a single script to automate a process spanning multiple
compute nodes, heterogeneous communication protocols, and disparate job scheduling
systems. A scientist wanting to run a scripted protocol on a local cluster rather than on
her laptop must be ready to rewrite the script to take into account the associated job
scheduling software, and be prepared to manually move data to and from the cluster by
hand. To employ a web-based application to carry out one or more steps, she may also
need to develop additional, often custom programs to send data to the service, supply
it with the desired parameter values, invoke it, and wait for it to complete (which, e.g.,
often involves either polling or waiting for an e-mail message). Scripting languages

Scientific Workflows: Business as Usual? 41

are cumbersome platforms for this kind of distributed, heterogeneous process automa-
tion; and the situation becomes much harder when researchers wish to mix and match
different kinds of applications and service protocols in a single script.

For instance, when the CipresClustal actor in Figure 5(a) is invoked, it implicitly
calls a web service that runs the application remotely. By using systems such as Ke-
pler to invoke these services, a researcher can easily repeat a protocol on the same or
different data set, using all of the same parameter values used previously, or make vari-
ants of the workflows with different parameterizations. Furthermore, the researcher not
only may create workflows employing multiple such services in the same workflow,
but combine local applications and remote services in a single workflow. In this case,
e.g., Kepler automatically routes data to and from the underlying compute resources
as needed, waiting for services to complete, retrying failed service invocations, and
dealing transparently with the different ways applications must be invoked on a local
machine, on a Linux cluster, or at a supercomputer center.

As a further example, the workflow in Figure 5(b) can be used to refine a sequence
alignment produced by the workflow in Figure 5(a) using the (locally installed) Gblocks
application included with the pPod extension to Kepler. Both workflows can easily be
concatenated to yield a protocol that uses heterogeneous computing resources without
any effort on the part of the researcher (Figure 5c). Additional variants of workflows
can easily be created without regard to how and where the particular steps of a protocol
are carried out. For instance, the workflow in Figure 5(d) invokes the Cipres RAxML
service at the San Diego Supercomputer Center [20] to infer phylogenetic trees from a
provided character matrix, and a researcher can easily swap out this maximum likeli-
hood method for tree inference with one based on Bayesian methods simply by replac-
ing the CipresRAxML actor with the CipresMrBayes actor (as shown in Figure 5e). As
shown, no other actors need be reconfigured. Similarly, the researcher may modify the
workflow to employ a maximum parsimony method for tree inference by inserting two
actors into the workflow (Figure 5f). Again, the workflow of Figure 5(d) can easily be
concatenated with the workflow of Figure 5(c) to yield the workflow of Figure 5(g),
which invokes two remote services and runs two local applications in the course of its
execution. The ease with which new workflows can be composed, reused, repurposed,
and deployed on heterogeneous resources–and later redeployed on different resources–
is one of the major benefits of scientific workflow modeling.

5 Scientific Workflows vs. Business Workflows

In the following, we compare features of scientific workflows and business workflows.
Even within each family, there seem to be few (if any) characteristic features that would
yield a universally accepted, unambiguous classification without exceptions. Rather, it
seems that workflows are related via a series of overlapping features, i.e., they exhibit a
form of family resemblance [50]. Despite the fact that there are few sharp, categorical
bounderies, the comparison below should help in assessing commonalities and typical
differences between scientific workflows and business workflows.

Implementation vs. Modeling. The primary goal of business process modeling is to
develop a common understanding of the process that involves different persons and

42 B. Ludäscher et al.

various information systems. Once a business process model is developed and agreed
upon (and in many cases improved or optimized), it can serve as a blueprint for imple-
menting the process, all or in part, in software. Business workflows are the automated
parts of these business processes. Scientific workflows, on the other hand, are devel-
oped with executability in mind, i.e., workflow designs can be viewed as executable
specifications. In recent years, the modeling aspect in scientific workflows is receiving
some more attention, e.g., to facilitate workflow evolution and reuse [42].

Experimental vs. Business-Driven Goals. A typical scientific workflow can be seen
as a computational experiment, whose outcomes may confirm or invalidate a scientific
hypothesis, or serve some similar experimental goals. In contrast, the outcome of a
business workflow is known before the workflow starts. The goal of business workflows
is to efficiently execute the workflow in a heterogeneous technical and organizational
environment and, thereby, to contribute to the business goals of the company.

Multiple Workflow Instances. It is common that business workflows handle large
numbers of cases and independent workflow instances at any given time. For example,
each instance of an order workflow makes sure that the particular customer receives the
ordered goods, and that billing is taken care of. In scientific workflows, truly indepen-
dent instances are not as common. Instead, large numbers of related and interdependent
instances may be invoked, e.g., in the context of parameter studies.

Users and Roles. Business workflows (in particular human interaction workflows) usu-
ally involve numerous people in different roles. A business workflow system is respon-
sible for distributing work to the human actors in the workflow. In contrast, scientific
workflows are largely automated, with intermediate steps rarely requiring human in-
tervention. Moreover, the nature of these interactions is usually different, i.e., no work
is assigned, but runtime decisions occasionally require user input (e.g., to provide an
authentication information for a remote resource, an unknown parameter value, or to
select from multiple execution alternatives).

Dataflow vs. Control-Flow Focus. An edge A→ B in a business workflow typically
means B can only start after A has finished, i.e., the edge represents control-flow.
Dataflow is often implicit or modeled separately in business workflows. In contrast,
A→ B in a scientific workflow typically represents dataflow, i.e., actor A produces
data that B consumes. In dataflow-oriented models of computation, execution control
flows implicitly with the data, i.e., the computation is data-driven. The advantage of
“marrying” control-flow with dataflow is that the resulting model is often simpler and
allows stream-based, pipeline-parallel execution. The disadvantage is that certain work-
flow patterns (e.g., for conditional execution or exception handling) can be awkward to
model via dataflow.

Dataflow Computations vs. Service Invocations. In scientific workflows data is often
streamed through independent processes. These processes run continuously, getting in-
put and producing output while they run. The input-output relationships of the activities
are the dataflow. As a result, a sequence of actors A → B → C can provide pipelined

Scientific Workflows: Business as Usual? 43

concurrency, since they work on different data items at the same time. In business work-
flows, there are usually no data streams. An activity gets its input, performs some action,
and produces output. An order arrives, it is checked, and given to the next activity in
the process. In typical enterprise scenarios, each activity invokes a service that in turn
uses functionality provided by some underlying enterprise information system.

Different Models of Computation. Different scientific workflow systems support dif-
ferent models of computation. For example, Pegasus/DAGMan [22, 26] workflows
are job-oriented “grid workflows” and employ a DAG-based execution model with-
out loops, in which each workflow step is executed only once. Branching and merg-
ing in these workflow DAGs corresponds to AND-splits and AND-joins in business
workflows, respectively. Other workflow systems such as Taverna [3] and Triana [4]
have different computation models that are dataflow-oriented and support loops; Kepler
[2] supports multiple models of computation, including PN (Kahn’s dataflow process
network), SDF (Synchronous Dataflow, for fine-grained, single-threaded computations)
and COMAD (for collection-oriented modeling and design). Given the vast range of sci-
entific workflow types (job-oriented grid workflows, streaming workflows, collection-
oriented workflows, etc.) there is no single best or universal model of computation that
fits all needs equally. Even so, dataflow-based models are widespread among scientific
workflows. In business workflows, on the other hand, Petri nets are used as the under-
lying foundation; BPMN is the de facto standard of an expressive process modeling
language; WS-BPEL is used to specify workflows whose steps are realized by web
services.

6 The Road Ahead

In this paper we have given an introduction and overview to scientific workflows, pre-
sented a bioinformatics case study, and compared features in scientific workflows with
those in business workflows. Compared to the well-established area of business work-
flows, scientific workflow management is a fairly recent and active area of research and
development.

For example, workflow modeling and design has not yet received the attention it de-
serves in scientific workflows. Workflow designs should be easy to reuse and evolve.
They should be resilient to change, i.e., not break if some components are removed,
added, or modified [42]. Techniques and research results from the business workflow
community but also from the databases, programming languages, and software engi-
neering communities will likely provide opportunities for future research in this area.

The business workflow community has embraced Petri nets as the unifying founda-
tion for describing and analyzing workflows. The situation in scientific workflows is less
uniform. In addition to Petri nets (e.g., combined with a complex object model [32]),
there are other underlying models, e.g., well-established formalisms such as dataflow
process networks [33, 35, 36], and new, specialized dataflow extensions, e.g., for nested
data [42]. For optimizing streaming workflows, techniques from the database commu-
nity for efficiently querying data streams look promising as well.

44 B. Ludäscher et al.

A very active area of research in scientific workflows is provenance, in particular
techniques for capturing, storing, and querying not only data provenance [7] but also
workflow evolution provenance (a form of versioning for configured workflows) [29].
In this context, statically analyzable dependencies between steps in a workflow can be
used, for instance, to optimize data routing [52], or to check whether each step will
eventually receive the required data. This is interesting, since the business workflow
community has developed a set of soundness criteria for a given process model based
on control-flow, disregarding data dependencies to a large extent. The integration of
workflow analysis methods based on dataflow and on control-flow is a promising new
area of research and cross-fertilization between the communities that can yield new
results and insights for both scientific workflows and business workflows.

Acknowledgements. Work supported through NSF grants IIS-0630033, OCI-0722079,
IIS-0612326, DBI-0533368, ATM-0619139, and DOE grant DE-FC02-01ER25486.

References

1. Defining e-Science (2008), www.nesc.ac.uk/nesc/define.html
2. The Kepler Project (2008), www.kepler-project.org
3. The Taverna Project (2008), www.mygrid.org.uk/tools/taverna
4. The Triana Project (2008), www.trianacode.org
5. Abramson, D., Enticott, C., Altinas, I.: Nimrod/K: Towards Massively Parallel Dynamic

Grid Workflows. In: ACM/IEEE Conference on Supercomputing (SC 2008). IEEE Press,
Los Alamitos (2008)

6. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the Kepler sci-
entific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145,
pp. 118–132. Springer, Heidelberg (2006)

7. Anand, M., Bowers, S., McPhillips, T., Ludäscher, B.: Exploring Scientific Work-
flow Provenance Using Hybrid Queries over Nested Data and Lineage Graphs.
In: Intl. Conf. on Scientific and Statistical Database Management (SSDBM),
pp. 237–254 (2009)

8. Anderson, C.: The End of Theory: The Data Deluge Makes the Scientific Method Obsolete.
WIRED Magazine (June 2008)

9. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: PODS, pp. 1–16 (2002)

10. Berkley, C., Bowers, S., Jones, M., Ludäscher, B., Schildhauer, M., Tao, J.: In-
corporating Semantics in Scientific Workflow Authoring. In: 17th Intl. Confer-
ence on Scientific and Statistical Database Management (SSDBM), Santa Barbara,
California (June 2005)

11. Birks, J.B.: Rutherford at Manchester. Heywood (1962)
12. Bowers, S., Ludäscher, B.: Actor-oriented design of scientific workflows. In:

Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005.
LNCS, vol. 3716, pp. 369–384. Springer, Heidelberg (2005)

13. Bowers, S., McPhillips, T., Ludäscher, B., Cohen, S., Davidson, S.B.: A model for user-
oriented data provenance in pipelined scientific workflows. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 133–147. Springer, Heidelberg (2006)

Scientific Workflows: Business as Usual? 45

14. Bowers, S., McPhillips, T., Wu, M., Ludäscher, B.: Project histories: Managing data
provenance across collection-oriented scientific workflow runs. In: Cohen-Boulakia, S.,
Tannen, V. (eds.) DILS 2007. LNCS (LNBI), vol. 4544, pp. 122–138. Springer, Heidelberg
(2007)

15. Bowers, S., McPhillips, T.M., Ludäscher, B.: Provenance in Collection-Oriented Scientific
Workflows. In: Moreau, Ludäscher [43]

16. Bowers, S., McPhillips, T., Riddle, S., Anand, M.K., Ludäscher, B.: Kepler/pPOD: Scientific
workflow and provenance support for assembling the tree of life. In: Freire, J., Koop, D.,
Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 70–77. Springer, Heidelberg (2008)

17. Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H.: Heterogeneous Con-
current Modeling and Design in Java (Volume 3: Ptolemy II Domains). Technical Report No.
UCB/EECS-2008-37 (April 2008)

18. Cheney, J., Buneman, P., Ludäscher, B.: Report on the Principles of Provenance Workshop.
SIGMOD Record 37(1), 62–65 (2008)

19. Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor, I.,
Wang, I.: Programming Scientific and Distributed Workflow with Triana Services. In: Fox,
Gannon [28]

20. Cyberinfrastructure for Phylogenetic Research, CIPRES (2009), www.phlyo.org
21. Crawl, D., Altintas, I.: A provenance-based fault tolerance mechanism for scientific work-

flows. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 152–159.
Springer, Heidelberg (2008)

22. Directed Acyclic Graph Manager, DAGMan (2009),
www.cs.wisc.edu/condor/dagman

23. Davidson, S.B., Boulakia, S.C., Eyal, A., Ludäscher, B., McPhillips, T.M., Bowers, S.,
Anand, M.K., Freire, J.: Provenance in Scientific Workflow Systems. IEEE Data Eng.
Bull. 30(4), 44–50 (2007)

24. Davidson, S.B., Freire, J.: Provenance and Scientific Workflows: Challenges and Opportuni-
ties (Tutorial Notes). In: SIGMOD (2008)

25. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: An overview
of workflow system features and capabilities. Future Generation Computer Systems 25(5),
528–540 (2009)

26. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, G.B., Good, J., Laity, A., Jacob, J., Katz, D.: Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Scientific Programming 13(3), 219–
237 (2005)

27. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong,
H., Villazon, A., Wieczorek, M.: ASKALON: A grid application development and comput-
ing environment. In: IEEE Grid Computing Workshop (2005)

28. Fox, G.C., Gannon, D. (eds.): Concurrency and Computation: Practice and Experience. Spe-
cial Issue: Workflow in Grid Systems, vol. 18(10). John Wiley & Sons, Chichester (2006)

29. Freire, J.-L., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Managing
rapidly-evolving scientific workflows. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS,
vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

30. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M.,
Moreau, L., Myers, J.: Examining the Challenges of Scientific Workflows. Computer 40(12),
24–32 (2007)

31. Goble, C., Roure, D.D.: myExperiment: Social Networking for Workflow-Using e-Scientists.
In: Workshop on Workflows in Support of Large-Scale Science, WORKS (2007)

46 B. Ludäscher et al.

32. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., den Bussche, J.V.: DFL: A
dataflow language based on Petri nets and nested relational calculus. Information Sys-
tems 33(3), 261–284 (2008)

33. Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In: Rosenfeld,
J.L. (ed.) Proc. of the IFIP Congress 74, pp. 471–475. North-Holland, Amsterdam (1974)

34. Klasky, S., Barreto, R., Kahn, A., Parashar, M., Podhorszki, N., Parker, S.,
Silver, D., Vouk, M.: Collaborative Visualization Spaces for Petascale Simulations. In: Intl.
Symposium on Collaborative Technologies and Systems (CTS), May 2008, pp. 203–211
(2008)

35. Lee, E.A., Matsikoudis, E.: The Semantics of Dataflow with Firing. In: Huet, G., Plotkin,
G., Lévy, J.-J., Bertot, Y. (eds.) From Semantics to Computer Science: Essays in memory of
Gilles Kahn. Cambridge University Press, Cambridge (2008)

36. Lee, E.A., Parks, T.M.: Dataflow Process Networks. Proceedings of the IEEE,
773–799 (1995)

37. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M.,
Lee, E.A., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice & Experience 18(10), 1039–1065 (2006)

38. Ludäscher, B., Altintas, I., Bowers, S., Cummings, J., Critchlow, T., Deelman, E., Freire, J.,
Roure, D.D., Goble, C., Jones, M., Klasky, S., Podhorszki, N., Silva, C., Taylor, I., Vouk,
M.: Scientific Process Automation and Workflow Management. In: Shoshani, A., Rotem,
D. (eds.) Scientific Data Management: Challenges, Existing Technology, and Deployment.
Chapman and Hall/CRC (to appear, 2009)

39. Ludäscher, B., Bowers, S., McPhillips, T.: Scientific Workflows. In: Özsu, M.T., Liu, L.
(eds.) Encyclopedia of Database Systems. Springer, Heidelberg (to appear, 2009)

40. Ludäscher, B., Goble, C. (eds.): ACM SIGMOD Record: Special Issue on Scientific Work-
flows, vol. 34(3) (September 2005)

41. Ludäscher, B., Podhorszki, N., Altintas, I., Bowers, S., McPhillips, T.M.: From computation
models to models of provence: The RWS approach, vol. 20(5), pp. 507–518

42. McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific Workflow Design for Mere
Mortals. Future Generation Computer Systems 25, 541–551 (2009)

43. Moreau, L., Ludäscher, B. (eds.): Concurrency and Computation: Practice & Experience –
Special Issue on the First Provenance Challenge. Wiley, Chichester (2007)

44. Morrison, J.P.: Flow-Based Programming – A New Approach to Application Development.
Van Nostrand Reinhold (1994), www.jpaulmorrison.com/fbp

45. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M., Stevens, R.,
Wipat, A., Wroe, C.: Taverna: Lessons in Creating a Workflow Environment for the Life
Sciences. In: Fox, Gannon [28]

46. Podhorszki, N., Ludäscher, B., Klasky, S.A.: Workflow automation for processing plasma
fusion simulation data. In: Workshop on Workflows in Support of Large-Scale Science
(WORKS), pp. 35–44. ACM Press, New York (2007)

47. Rice, J.R., Boisvert, R.F.: From Scientific Software Libraries to Problem-Solving Environ-
ments. IEEE Computational Science & Engineering 3(3), 44–53 (1996)

48. Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, G.,
Gilbert, J.G., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C., Mungall, C.J., Osborne, B.I.,
Pocock, M.R., Schattner, P., Senger, M., Stein, L.D., Stupka, E., Wilkinson, M.D., Birney, E.:
The BIOPERL Toolkit: Perl Modules for the Life Sciences. Genome Res. 12(10), 1611–1618
(2002)

Scientific Workflows: Business as Usual? 47

49. Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.): Workflows for e-Science: Scientific
Workflows for Grids. Springer, Heidelberg (2007)

50. Wittgenstein, L.: Philosophical Investigations. Blackwell Publishing, Malden (1953)
51. Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid Computing. In:

Ludäscher, Goble [40]
52. Zinn, D., Bowers, S., McPhillips, T., Ludäscher, B.: X-CSR: Dataflow Optimization for Dis-

tributed XML Process Pipelines. In: 25th Intl. Conf. on Data Engineering (ICDE), Shanghai,
China (2008)

Graph Matching Algorithms for Business

Process Model Similarity Search

Remco Dijkman1, Marlon Dumas2, and Luciano Garćıa-Bañuelos2,3

1 Eindhoven University of Technology, The Netherlands
r.m.dijkman@tue.nl

2 University of Tartu, Estonia
marlon.dumas@ut.ee

3 Universidad Autonoma de Tlaxcala, Mexico
lgbanuelos@gmail.com

Abstract. We investigate the problem of ranking all process models in
a repository according to their similarity with respect to a given process
model. We focus specifically on the application of graph matching algo-
rithms to this similarity search problem. Since the corresponding graph
matching problem is NP-complete, we seek to find a compromise between
computational complexity and quality of the computed ranking. Using
a repository of 100 process models, we evaluate four graph matching al-
gorithms, ranging from a greedy one to a relatively exhaustive one. The
results show that the mean average precision obtained by a fast greedy
algorithm is close to that obtained with the most exhaustive algorithm.

1 Introduction

As organizations reach higher levels of Business Process Management (BPM)
maturity, repositories with hundreds of business process models become increas-
ingly common [18]. For example, the SAP reference model contains over 600
business process models. A similar number of process models can be found in
the reference model for Dutch Local Governments [6]. On a larger scale, tool ven-
dors distribute reference model repositories (e.g. the IT Infrastructure Library
– ITIL) with over a thousand process models each1. These models are used, for
example, to document and to communicate internal procedures or to enable the
re-design and automation of business processes. In order to effectively fulfil these
tasks, tool support is needed to retrieve relevant models from such repositories.

In this paper, we focus on the problem of similarity search in process model
repositories: Given a process model or fragment thereof (the search model), find
those process models in the repository that most closely resemble the search
model. The need for similarity search arises in multiple scenarios. For example,
when adding a new process model into a repository, similarity search allows
one to detect duplication or overlap between the new and the existing process
models. Meanwhile, in the context of reference process model repositories, such

1 See for example CaseWise’s ITIL repository (http://www.casewise.com/Gateway/)

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 48–63, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Graph Matching Algorithms 49

as ITIL, similarity search allows one to retrieve reference models that overlap
with an existing “as is” process model.

Answering a similarity search query involves determining the degree of simi-
larity between the search model and each model in the repository. In this context,
similarity can be defined from several perspectives, including the following.

– Text similarity: based on a comparison of the labels that appear in the pro-
cess models (task labels, event labels, etc.), using either syntactic or semantic
similarity metrics, or a combination of both.

– Structural similarity: based on the topology of the process models seen as
graphs, possibly taking into account text similarity as well.

– Behavioural similarity: based on the execution semantics of process models.

In previous work, we evaluated several similarity metrics across all three per-
spectives [5,19]. We found that a structural similarity metric based on graph
matching achieved the highest retrieval quality (precision and recall). However,
the operationalization of this metric is hindered by the fact that the underly-
ing graph matching problem, namely the graph-edit distance problem, is NP-
complete [14]. This is not only a theoretical limitation, but a practical one: our
experiments show that for real-life process models with more than 20 nodes, ex-
haustive graph matching algorithms lead to combinatorial explosion. Therefore,
heuristics are needed that strike a tradeoff between computational complexity
and precision. This paper presents and compares four heuristic algorithms for
calculating the similarity of business process models based on graph matching.

The rest of the paper is structured as follows. Section 2 formulates the problem
and introduces the structural similarity metric studied in the paper. Section 3
presents four algorithms that provide alternative operationalizations of the struc-
tural similarity metric. Section 4 presents an experimental evaluation of these
algorithms. Section 5 discusses related work and Section 6 concludes.

2 Preliminaries

This section defines the notion of business process used in this paper and formu-
lates the structural similarity metric used for comparing pairs of process models.

2.1 Business Process

A business process is a collection of related tasks that lead to a specified goal.
Many modeling notations are available to capture business processes, including
Event-driven Process Chains (EPC), UML Activity Diagrams and the Business
Process Modeling Notation (BPMN) [20]. In this paper, we seek to abstract as
much as possible from the specific notation used to represent process models,
to allow for measuring similarity of business processes modeled using different
notations. Accordingly, we adopt an abstract view in which a process model is
a directed attributed graph, as captured in the following definition.

50 R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos

Definition 1 (Business process graph, Pre-set, Post-set, Source, Sink).
Let L be a set of labels and T be a set of types of nodes. A business process graph
is a tuple (N, E, τ, λ), in which:

– N is the set of nodes;
– E ⊆ N × N is the set of edges; and
– τ : N → T is a function that maps nodes to types.
– λ : N → L is a function that maps nodes to labels.

Let G = (N, E, τ, λ) be a graph and n ∈ N be a node: •n = {m|(m, n) ∈ E} is
the pre-set of n, while n• = {m|(n, m) ∈ E} is the post-set of n. Source nodes
are nodes with an empty pre-set and sink nodes are nodes with an empty post-set.

Function τ serves to distinguish between types of nodes. The available types
of nodes depend on the notation. In EPCs we can distinguish between at least
three types of nodes: functions (’f’), events (’e’) and connectors (’c’). Similarly,
in BPMN we can distinguish between activities (’a’), events (’e’) and gateways
(’g’). We could also distinguish between different types of BPMN gateways
and events, but it is not the intention of this paper to be exhaustive in this
respect.

When abstracting a process model as a process graph, we may drop certain
types of nodes. Figure 1 shows two process models (one EPC and one BPMN
diagram) and two ways of abstracting them as process graphs. The left column
shows the original process models. The middle column shows the corresponding
process graphs after the events are abstracted away. Each node is annotated
with a pair indicating the node type and the node label. The right column
shows the process graphs after events and connectors/gateways are abstracted
away. As discussed later, this connector-less abstraction lifts one of the sources of
combinatorial explosion when comparing process models using graph matching.

Fig. 1. Two processes and their graphs

2.2 Business Process Similarity Metric

To compare pairs of process graphs, we define a metric based on on the no-
tion of graph edit distance [4]. The graph edit distance between two graphs is

Graph Matching Algorithms 51

the minimal cost of transforming one graph into the other. Transformations are
captured as sequences of elementary transformation operations. Each elemen-
tary operation has a cost, which is given by a cost function. Conceptually, a
graph-edit distance algorithm must try possible combinations of transformation
operations and return the one with the minimal total cost. We consider the
following elementary transformation operations.

– Node substitution: a node from one graph is substituted for a node from the
other graph.

– Node insertion/deletion: a node is inserted into or deleted from a graph.
– Edge insertion/deletion: an edge is inserted into or deleted from a graph.

We consider cost functions that return a constant value for insertion and deletion
of nodes and edges (e.g. a cost of 0.5 for edges and 0.2 for nodes). Meanwhile,
we assume that the cost of a node substitution is one minus the similarity of the
nodes. The similarity of nodes is determined by the similarity the node labels
and types. We introduce a predicate cs (‘can substitute’) that holds iff one type
of node can substitute another type of node (e.g. an EPC function can substitute
a BPMN activity). For a given pair of nodes, if cs does not hold, the similarity
of these nodes is undefined (⊥). If cs holds, their similarity is determined using
the string-edit distance of the node labels as defined below.

Definition 2 (String edit distance, Node similarity). Let s and t be two
strings and let |x| be the length of a string x. The string edit distance of s and
t, denoted ed(s, t) is the minimal number of atomic string operations needed to
transform s into t or vice versa. The atomic string operations are: inserting a
character, deleting a character or substituting a character for another.

Let G1 = (N1, E1, τ1, λ1) and G2 = (N2, E2, τ1, λ2) be two graphs and n1 ∈ N1

and n2 ∈ N2 two nodes. The similarity of n1 and n2 is:

Sim(n1, n2) =

{
1.0 − ed(λ1(n1),λ2(n2))

max(|λ1(n1)|,|λ2(n2)|) if cs(τ1(n1), τ2(n2))
⊥ otherwise

For example, if ‘f’ and ‘a’ can substitute each other, then the string edit dis-
tance between ‘Verify invoice’ and ‘Verification invoice’ from figure 1 is seven;
substitute ‘y’ for ‘i’ and insert ‘cation’. Consequently, the string edit similarity
is 1.0− 7

20 . Algorithms for computing the string edit distance are well known [9].
String-edit distance is only one possible similarity metric between labels. In

separate work, we studied other label similarity metrics based on word stemming
and synonym relations [5]. However, the purpose of the present paper is not to
evaluate label similarity metrics, but rather to evaluate algorithms that, given
a label similarity metric, compute a similarity measure between pairs of process
models. Therefore, the choice of label similarity metric is secondary.

Given the above, we define the graph edit distance as follows.

Definition 3 (Graph edit distance). Let G1 = (N1, E1, τ1, λ1) and G2 =
(N2, E2, τ1, λ2) be two graphs. Let M : N1 � N2 be a partial injective mapping

52 R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos

that maps nodes in G1 to nodes in G2. Let dom(M) = {n1|(n1, n2) ∈ M} be the
domain of M and cod(M) = {n2|(n1, n2) ∈ M} be the codomain of M .

Given an n ∈ N1 ∪N2, n is substituted iff n ∈ dom(M) or n ∈ cod(M). subn
is the set of all substituted nodes. A node n1 ∈ N1 is deleted from G1 (or inserted
in G2) iff it is not substituted. A node that is deleted from G2 (or inserted in
G1) is defined similarly. skipn is the set of all inserted and deleted nodes.

Let (n1, m1) ∈ E1 be an edge in E1. (n1, m1) is deleted from G1 (or inserted in
G2) if and only if there do not exist mappings (n1, n2) ∈ M and (m1, m2) ∈ M
and edge (n2, m2) ∈ E2. Edges that are deleted from G2 (or inserted in G1) are
defined similarly. skipe is the set of all inserted and deleted edges. An edge is
substituted if it is not inserted or deleted.

The graph edit distance that is induced by the mapping M is:

|skipn| + |skipe| + 2 · Σ(n1,n2)∈M (1 − Sim(n1, n2))

The graph edit distance of the two graphs is the minimal possible distance
induced by some mapping.

For example, given the two process graphs in figure 1.iii, we can create a mapping
from ‘Order’ to ‘Order’, and from ‘Verification invoice’ to ‘Verify invoice’. The
graph edit distance induced by this mapping is: 2.0+4.0+2.0 · (0.0+0.35) = 6.7
(2 inserted nodes, 4 deleted/inserted edges and 2 substituted nodes).

Finally, we define the graph edit similarity metric as follows.

Definition 4 (Graph edit similarity). Let G1 = (N1, E1, λ1) and G2 =
(N2, E2, λ2) be two graphs. Let M : N1 � N2 be a partial injective mapping
that maps nodes in G1 to nodes in G2 and let subn, skipn and skipe be the sets
of substituted nodes, inserted or deleted nodes and inserted or deleted edges as
defined in definition 3. Furthermore, let 0 ≤ wsubn ≤ 1, 0 ≤ wskipn ≤ 1 and
0 ≤ wskipe ≤ 1 be the weights that we assign to substituted nodes, inserted or
deleted nodes and inserted or deleted edges, respectively.

The fraction of inserted or deleted nodes, denoted fskipn, the fraction of in-
serted or deleted edges, denoted fskipe and the average distance of substituted
nodes, denoted fsubsn, are defined as follows.

fskipn = |skipn|
|N1|+|N2| fskipe = |skipe|

|E1|+|E2| fsubn = 2.0·Σ(n,m)∈M1.0−Sim(n,m)

|subn|

The graph edit similarity induced by the mapping M is:

1.0 − wskipn · fskipn + wskipe · fskipe + wsubn · fsubn
wskipn + wskipe + wsubn

The graph edit similarity of two graphs is the maximal possible similarity
induced by a mapping between these graphs.

For example, using the weights wsubn = 1.0, wskipn = 0.1 and wskipe = 0.3,
the graph edit similarity that is induced by the mapping that maps ‘Order’
to ‘Order’, and ‘Verification invoice’ to ‘Verify invoice’ in figure 1 is: 1.0 −
0.1·0.33+0.3·1.0+1.0·0.7

0.1+0.3+1.0 ≈ 0.73. This is also the maximal possible similarity induced
by a mapping and, hence, this is the graph edit similarity of the two graphs.

Graph Matching Algorithms 53

3 Algorithms

To compute the graph edit similarity of two process graphs, we must find the
mapping that induces the maximal similarity. We could construct all possible
mappings and return the one with maximal similarity. However, this approach
has factorial complexity. Accordingly, this section presents four possible heuristic
algorithms to address this problem.

3.1 Greedy Algorithm

We first propose a greedy algorithm (Algorithm 1) that incrementally constructs
a mapping between a pair of process graphs. The algorithm starts by marking
all possible pairs of nodes from the two graphs as open pairs. (For all algorithms
we assume that pairs of nodes that cannot substitute each other, as defined in
definition 2, are not considered.) In each iteration, the algorithm selects an open
pair that most increases the similarity induced by the mapping, and adds this
pair to the mapping.2 The selected pair consists of two nodes. Since each node
can only be mapped once, the algorithm removes from the set of open pairs, all
pairs in which one of the selected nodes appears. The algorithm iterates until
there is no open pair left that can increase the similarity induced by the mapping.

The algorithm is in O(n3) where n is the number of nodes of the largest
graph. Indeed, in the first iteration we consider up to n2 open pairs, in the
second iteration (n − 1)2 open pairs, etc. And Σn

i=1i = n(n + 1)(2n + 1)/6.3

Also, the algorithm has a quadratic space complexity (the set of open pairs).
Unfortunately, the algorithm may lead to a suboptimal mapping, because it
selects an open pair that most increases the similarity induced by the mapping
at a particular time, but in doing so, it may discard open pairs that would
increase the similarity induced by mapping at a later iteration.

For example, in figure 1 the open pair (‘Order’, ‘Order’) is chosen in the first
iteration, because adding this pair to the mapping increases the similarity score
most. All open pairs in which ‘Order’ appears are then removed from the set of
open pairs. In the second iteration, the open pair (‘Verification invoice’, ‘Verify
invoice’) is chosen. All open pairs in which either ‘Verification invoice’ or ‘Verify
invoice’ appears are removed. This leaves no open pairs and the algorithm returns
the mapping { (‘Order’, ‘Order’), (‘Verification invoice’, ‘Verify invoice’)}.

3.2 Exhaustive Algorithm with Pruning

The second algorithm (Algorithm 2) recursively explores all possible mappings,
but when the recursion tree reaches a certain size, the algorithm prunes it to keep
only the mappings with the highest similarity. In the extreme case, the algorithm
is thus exponential, but the pruning parameters will control its complexity.
2 The similarity induced by a mapping is given by function s as per definition 4.
3 Computing the graph edit similarity induced by a mapping can be done in constant

time (amortized), because when we add a pair we already know the graph edit
similarity induced by the existing mapping.

54 R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos

Algorithm 1. Greedy algorithm
input: two business process graphs G1 = (N1, E1, λ1), G2 = (N2, E2, λ2)

init
openpairs ⇐ N1 × N2

map ⇐ ∅
begin

while exists (n, m) ∈ openpairs, such that s(map ∪ {(n, m)}) > s(map) and
there does not exist another pair (o, p) ∈ openpairs, such that
s(map ∪ {(o, p)}) > s(map ∪ {(n, m)}) do

map ⇐ map ∪ {(n, m)}
openpairs ⇐ {(o, p) ∈ openpairs|o �= n, p �= m}

end
return s(map)

end

The algorithm starts by initializing the set of unfinished mappings to an empty
mapping, with all nodes from the two graphs mapped as ‘free’ to be mapped. It
repeatedly prunes the set of unfinished mappings and performs a step in which
finished mappings are added to the set of finished mappings and unfinished
mappings are extended with an additional pair of nodes. It repeats this until
there are no more unfinished mappings. It then returns the finished mapping
with the highest similarity score.

The pruning function (shown separately) tests if the set of unfinished map-
pings has reached the size ‘pruneat’ (a parameter of the algorithm). If it has, it
returns a set of mappings (of size ‘pruneto’) with the highest similarity score.

The recursion step is also shown in a separate function. The recursion step
takes each unfinished mapping. If the unfinished mapping has no nodes that
are free to be mapped, the mapping is added to the set of finished mappings.
Otherwise, the algorithm takes each possible combination of pairs of free nodes
and creates a new unfinished mapping in which that pair is added to the existing
unfinished mapping (and the nodes from the pair are removed from the sets of
free nodes). It includes pairs in which free nodes are not mapped (i.e. they are
removed from the sets of free nodes, but not added to the unfinished mapping).

For example, in figure 1 the set of unfinished mappings is initialized to
{(∅, {O, V }, {O, R, V, S})} (using the first letter of node labels as identifier).
In the first step, the algorithm takes this unfinished mapping and, since neither
{O, V } nor {O, R, V, S} is empty, it generates a mapping for each combination of
a node from {O, V } and a node from {O, R, V, S}, i.e. ({(O, O)}, {V }, {R, V, S}),
({(O, R)}, {V }, {O, V, S}), ({(O, V)}, {V }, {O, R, S}), It also generates one
mapping for each possible removal of a node from one of the two sets, generating:
(∅, {V }, {O, R, V, S}), (∅, {O}, {O, R, V, S}), (∅, {O, V }, {R, V, S}), The gen-
erated mappings form the new set of unfinished mappings. In the next step the
generation of new unfinished mappings is repeated for each of these mappings.

This example illustrates that the set of unfinished mappings increases expo-
nentially. Pruning will keep the size of the set within acceptable bounds. Suppose

Graph Matching Algorithms 55

Algorithm 2. Exhaustive algorithm with pruning
input: two business process graphs G1 = (N1, E1, λ1), G2 = (N2, E2, λ2)

function prune(unfinished)
begin

if |unfinished| < pruneat then
return unfinished

else
return a set pruned, such that pruned ⊆ unfinished, |pruned| = pruneto and
∀p ∈ pruned : ¬∃u ∈ unfinished : s(first(u)) > s(first(p))

end
end

function step(unfinished)
begin

newunfinished ⇐ ∅
foreach (map, free1, free2) ∈ unfinished do

if (free1 = ∅) ∨ (free1 = ∅) then
finished ⇐ finished ∪ map

else
newunfinished ⇐ newunfinished ∪

{(map ∪ {(f1, f2)}, free1 − {f1}, free2 − {f2})|f1 ∈ free1, f2 ∈ free2}∪
{(map, free1 − {f1}, free2)|f1 ∈ free1}∪
{(map, free1, free2 − {f2})|f2 ∈ free2}

end

end
return newunfinished

end

init
unfinished ⇐ {(∅, N1, N2)}
finished ⇐ ∅

begin
repeat

unfinished ⇐ prune(unfinished)
unfinished ⇐ step(unfinished)

until unfinished = ∅
return s(map), such that map ∈ finished and s(map) is maximal

end

that ‘prune at’ is set to 2 and ‘prune to’ is set to 1, then the set of unfinished
mappings will be pruned after the first step, because the set will have reached a
size of 2. It will be pruned back to a set the set {({(O, O)}, {V }, {R, V, S})} of
size 1, because this mapping has the highest similarity score.

3.3 Process Heuristic Algorithm

The third algorithm is a variation of the exhaustive algorithm. It also builds a
recursion tree of possible mappings, but it starts by mapping the source nodes
of the business process graphs, then mapping nodes that immediately follow

56 R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos

the source nodes, etc. Since it is plausible that nodes closer to the start of a
process should be mapped to nodes closer to the start of the other process (and
conversely), this should yield a higher-quality pruning. Indeed, the algorithm is
more likely to prune mappings with node pairs that are further apart in terms
of their distance to the starts of their processes.

Algorithm 3 shows only the initialization of the algorithm and the ‘step’ func-
tion. The ‘prune’ function and the algorithm itself are the same as for the ex-
haustive algorithm 2. The algorithm starts by initializing the set of unfinished
mappings to an empty mapping with all nodes marked as ‘free’ and all source
nodes marked as ‘current’. With each ‘step’ the algorithm takes an unfinished
mapping. If the unfinished mapping has no ‘current’ nodes, the mapping is added
to the set of finished mappings. Otherwise, the algorithm takes each possible
combination of pairs of ‘current’ nodes and creates a new unfinished mapping
in which that pair is added. The nodes from the pair are removed from the sets
of free nodes. The current nodes are set to include the post-sets of the nodes
from the pairs. Only free nodes are included in the sets of current nodes. Pairs in
which ‘current’ nodes are not mapped are also included. The algorithm assumes
that process graphs always have source nodes, an assumption that is valid for
common process modeling notations (e.g. EPC, BPMN, BPEL).

For example, in figure 1 the set of unfinished mappings is initialized to
{(∅, {O, V }, {O, R, V, S}), {O}, {O}} (using the first letter of the labels to iden-
tify each node). In the first step, the algorithm will take this unfinished mapping
and, because neither set of current nodes ({O} nor {O}) is empty. From this map-
ping, it generates one mapping in which the current nodes are mapped, generating

Algorithm 3. Process heuristic algorithm

function step(unfinished)
begin

newunfinished ⇐ ∅
foreach (map, free1, free2, curr1, curr2) ∈ unfinished do

if (curr1 = ∅) ∨ (curr1 = ∅) then
finished ⇐ finished ∪ map

else
newunfinished ⇐ newunfinished ∪

{(map ∪ {(c1, c2)}, free1 − {c1}, free2 − {c2}, (curr1 ∪ c1•) ∩ (free1 −
{c1}), (curr2 ∪ c2•) ∩ (free2 − {c2}))|c1 ∈ curr1, c2 ∈ curr2}∪
{(map, free1−{c1}, free2, (curr1∪c1•)∩(free1−{c1}), curr2)|c1 ∈ curr1} ∪
{(map, free1, free2−{c2}, curr1, (curr2∪c2•)∩(free2−{c2}))|c2 ∈ curr2}

end

end
return newunfinished

end

init
unfinished ⇐ {(∅, N1, N2, {n|n ∈ N1, •n = ∅}, {n|n ∈ N2, •n = ∅})}
finished ⇐ ∅

Graph Matching Algorithms 57

{({(O, O)}, {V }, {R, V, S}), {V }, {R}}. It also generates mappings for each pos-
sible removal of a current node, generating {(∅, {V }, {O, R, V, S}), {V }, {O}}
and {(∅, {O, V }, {R, V, S}), {O}, {R}}. The generated mappings form the new
set of unfinished mappings. This example illustrates that the set of unfinished
mappings explodes less rapidly for this algorithm than for the exhaustive algo-
rithm. It also illustrates that mappings of nodes closer to the start of the process
are explored first.

3.4 A-Star Algorithm

The fourth algorithm (Algorithm 4) is based on the well-known A-star heuristic
search, which has been applied to the problem of graph matching in [14]. In each
step, the algorithm selects the existing partial mapping map with the maximal
graph edit similarity. The algorithm then takes a node n1 from graph G1 that
has not yet been mapped, and creates a mapping between this node and every
node n2 of G2 such that n2 does not already appear in map. Let us say that m
such nodes n2 exist. The algorithm then creates m new mappings, by adding
(n1, n2) to map. In addition, one mapping is created where (n1, ε) is added to
map (ε is a “dummy” node). This latter pair represents the case where node n1

has been deleted. This step is repeated until all nodes from G1 are mapped. It
can be proven that the result is an optimal mapping.

The number of steps performed by the algorithm is bounded by O(n2m)
where n and m are the number of nodes in G1 and G2. However, O(mn) partial
mappings need to be maintained during the search [14]. To reduce the memory
requirements, we modified the algorithm so as to avoid mapping nodes with very
different labels. If the string-edit similarity between two node labels is less than
a cut-off value, we do not consider the possibility of mapping these nodes.

For example, if we consider the models in figure 1 and a cut-off value of
0.6, two mappings, {(‘Order’, ‘Order’)} and {(‘Order’, ε)}, are created in the
first iteration. Since other candidate node pairs have a string-edit similarity
smaller than the cut-off value, no mapping is created for them. In the second
iteration, the algorithm selects the mapping {(‘Order’, ‘Order’)} and creates
two new mappings {(‘Order’, ‘Order’), (‘Verification invoice’, ’Verify invoice’)}
and {(‘Order’, ‘Order’), (‘Verification invoice’, ε)}. The algorithm stops in the
third iteration with a complete mapping {(‘Order’, ‘Order’), (‘Verification of
invoice’, ‘Verify invoice’)} and with nodes ‘Receive goods’ and ‘Store goods’
being considered as insertions. Thus, the algorithm discards the two partial
mappings {(‘Order’, ε)}, {(‘Order’, ‘Order’), (‘Verification of invoice’, ε)}.

4 Evaluation

In this section, we present an experimental evaluation of the algorithms discussed
above in terms of quality of retrieval results and in terms of execution time.

4.1 Experimental Setup

We derived an experimental dataset from the SAP reference model. This is
a collection of 604 business process models (described as EPCs) capturing

58 R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos

Algorithm 4. A-star algorithm
input: two business process graphs G1 = (N1, E1, λ1), G2 = (N2, E2, λ2)
init

open ⇐ {{(n1, n2)}|n2 ∈ N2 ∪ {ε}, Sim(n1, n2) > ledcutoff ∨ n2 = ε}, for some
n1 ∈ N1

begin
while open �= ∅ do

select map ∈ open, such that s(map) is maximal
open ⇐ open − {map}
if dom(map) = N1 then

return s(map)
else

select n1 ∈ N1, such that n1 /∈ dom(map)
foreach n2 ∈ N2 ∪ {ε}, such that either n2 /∈ cod(map) and
Sim(n1, n2) > ledcutoff or n2 = ε do

map′ ⇐ map ∪ {(n1, n2)}
open ⇐ open ∪ {map′}

end

end

end
end

business processes supported by the SAP enterprise system. We randomly ex-
tracted 100 business process models from this collection and tagged them as
“document models”. On average each model contained 21.6 nodes with a min-
imum of 3 and a maximum 130 nodes. The average size of node labels was 3.8
words. From the 100 document models we randomly extracted 10 models. These
models became the “search query models”. We modified some of these models
to investigate the effect of certain types of changes (for example taking a sub-
graph) on the performance of the algorithms. We did not observe any noteworthy
effects. Therefore, we will only present overall averaged results.

Next, we manually compared each of the 1000 pairs (search model, docu-
ment model) and ranked their degree of similarity on a 1-7 Likert scale. This
manual comparison was done by three process modeling experts, including the
first author of this paper. For a given search model sq, we sorted the 100 pairs
(sq, document model) in descending order according to the human expert score.
Finally, for each algorithm, we applied it to each pair (“search query model”,
“document model”) and sorted the results (for each of the 10 queries) in de-
scending order according to the similarity score retrieved by the algorithm. The
resulting sorted lists were used to calculate the average precision.

The algorithms depend on several parameters:

– wskipn, wsubn and wskipe which denote the weight given to node deletion,
node substitution and edge deletion (see Definition 4).

– ledcutoff (label edit cut-off): a number between zero and one representing
the minimum similarity that two nodes must have so that we can consider

Graph Matching Algorithms 59

their substitution. For example, if the cut-off is 0.5 “Pay Invoice” and “Pay
Allowance” will not be mapped since their similarity is 0.3.

– pruneat is the maximum allowed size of the recursion tree. When the recur-
sion tree reaches this level, it is pruned, down to a size of pruneto.

In the experiments, we considered multiple variants of each algorithm corre-
sponding to different parameter settings. The implementation of the proposed
algorithms (and several others) can be found in the “Graph Matching Analysis
Plug-in” of the ProM process mining and analysis framework4.

4.2 Results

Table 1 shows the mean average precision and the average execution times of
the similarity search techniques under study. Average precision is a measure
commonly used to evaluate the quality of search techniques that return ranked
lists of results [3]. It is the average of the precision scores at each point where
a relevant document appears in the ranked list. Given a ranked list of results
of size n, the average precision is Σn

j=1(precision[j] × rel[j])/R, where R is the
number of relevant documents, rel[j] is one if the document of rank j in the list
is relevant, zero otherwise, and precision[j] = Σj

k=1rel[k]/j (i.e. the precision at
rank j). Intuitively, average precision is higher when relevant documents appear
earlier in the ranked list. The mean average precision of a search technique over
a given set of queries is the mean of the average precision of the technique over
each of the queries.

As explained above, each algorithm has a number of parameters. The mean
average precisions reported in the table correspond to the scores obtained for
the best possible settings of each algorithm. All four algorithms depend on pa-
rameters wskipn, wsubn and wskipe explained above. We varied each of these
parameters from 0 to 1 in increments of 0.1 and ran the experiments with all
possible combinations of parameter values in this range. By analyzing the mean
average precisions obtained for every combination of parameter values, we no-
ticed that the “Greedy”, “Exhaustive” and “Heuristic” algorithms give their best
results for settings such that 2 × (wskipn + wskipe) ∼ wsubn. One can notice
that the optimal parameter settings for these three algorithms (Table 1) closely
satisfy this condition.

The exhaustive and the process heuristic algorithm rely on parameters
pruneat and pruneto to determine when should pruning occur and to what ex-
tent. We tested different values of pruneat (50, 100, 200, etc.) and different ratios
pruneat/pruneto (0.1, 0.2, etc.). We found that a value of pruneat = 100 is suf-
ficient. Larger values do not improve the results significantly, but they degrade
performance. Similarly we found that a ratio pruneat/pruneto = 0.1 is sufficient,
larger ratios do not significantly improve the outcome. Accordingly, we settled
for pruneat = 100 and pruneto = 10.

The A-star algorithm relies on a parameter ledcutoff. Again, we experimented
with different values of this parameter and found that a value of 0.5 yields
4 http://prom.sourceforge.net

60 R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos

Table 1. Summary of results

Algorithm wskipn wsubn wskipe Mean avg. precision Execution time

Greedy 0.1 0.9 0.4 0.84 3.8 sec.
Exhaustive 0.1 0.8 0.2 0.82 53.7 sec.
Process Heuristic 0.1 0.8 0.2 0.83 14.2 sec.
A-star 0.2 0.1 0.7 0.86 15.7 sec.

optimal results among those that we were able to test. We could not experiment
with values significantly below 0.5, because if the threshold is too low, the mem-
ory requirements of the A-star algorithm grow substantially and the performance
degrades to the point of making the technique impractical. This is the reason
why this parameter is important for the A-star algorithm, whereas the other
algorithms rely on pruning. A side-effect of using the ledcutoff parameter is that
the algorithm favours insertions and deletions over substitutions. To compen-
sate for this effect, the values of wskipn and wskipe need to be set higher than
wsubn, in other words, deletions/insertions need to be given higher weight than
substitutions. For the A-star algorithm, we noticed that all settings of wskipn,
wskipe and wsubn that satisfy this condition given high average precisions.

The A-star algorithm slightly outperforms the others in terms of mean average
precision. Looking closer, we noticed that A-star outperforms all other techniques
in 6 out of 10 queries and yields equal results in a seventh query. It slightly
underperforms the others in queries 6, 8 and 10.

Table 1 also displays the average execution time of 5 runs of each algorithm.
For these measurements, we used the parameter settings giving the highest mean
average precision. In each run, we executed all 10 queries, i.e. 1000 pairwise
process model comparisons in total. All tests were conducted on a laptop with a
dual core Intel processor, 2.4 GHz, 4 GB memory, running Mac OSX and SUN
Java Virtual Machine version 1.6 (with 512MB of allocated memory).

Not surprisingly, the greedy algorithm is considerably faster than all others.
Its execution time per search query is less than half a second. The A* and
the process heuristic algorithms have comparable execution times – around 1.5
seconds per query. The exhaustive algorithm is significantly slower.

5 Related Work

To the best of our knowledge there exist eight other initiatives that address
algorithms for measuring the similarity between business process models or sim-
ilar models [1,7,10,11,12,15,16,21]. Of these initiatives five present algorithms
to measure the similarity between business process models [7,10,11,12,15], two
present algorithms to measure the similarity between state machines [16,21] and
one presents algorithms to measure the similarity between a business process
and a set of execution traces [1]. Our algorithms are the only ones that are val-
idated for use in similarity search. Nejati et al. [16] validate their algorithms,

Graph Matching Algorithms 61

Table 2. Comparison of related work

Paper Similarity of Validated Basis for similarity

This paper process models for similarity search edit distance

Nejati et al. [16] state machines for merging bi-similarity
state machines

Wombacher [21] state machines for correlation with process conformance
human judgement language construction

Li et al. [10] process models no change patterns

Minor et al. [15] process models no edit distance

Lu and Sadiq [11] process models no featues

Madhusudan et al. [12] process models no similarity flooding

Van der Aalst et al. [1] process model and no process conformance
execution traces

Ehrig et al. [7] process models no semantic similarity

Grigori et al. [8] service protocols for similarity search edit distance (A*)

but for suitability as a technique for merging state machines. Wombacher [21]
validates the correlation of the similarity scores found by his technique with
similarity scores assigned according to human judgement. We have done a simi-
lar validation in previous work [19]. The different initiatives have very different
bases for computing the similarity. Nejati et al. [16] use a combination of label
similarity, comparison of the depth of a state-machine fragment in a hierarchi-
cal state-machine and bi-similarity of the fragment. Wombacher [21] evaluates
three algorithms; one is based on conformance of a set of execution traces (first
generated from a process model) to a business process, similar to the work by
Van der Aalst et al. [1]; the other two are based on comparison of the language
that is represented by a state machine. Li et al. [10] compare process models by
‘counting’ the number of high-level change operations needed to transform one
process into another. This can be seen as a specialized case of edit distance, using
a specific set of transformation operations. Like this paper Minor et al. [15] use
graph edit distance as a basis for comparing process models. Lu and Sadiq [11]
measure the presence or absence of ‘features’ in proces models as a basis for
comparison. Madhusudan et al. [12] use an algorithm known as ‘similarity flood-
ing’ [13]. Ehrig et al. [7] use a combination of structural properties of process
models and similarity of labels of tasks, based on the distance of words in those
labels in terms of whether they are, for example, synonyms (which we called
‘semantic similarity’ in previous work [5]). Table 2 summarizes the related work
on business process model comparison.

The algorithms that we studied are based on graph edit distance [4]. How-
ever, the actual distance metric we used is different from traditional graph edit
distance metrics. Our metric considers the ratio between the actual graph edit
distance and the maximum possible distance. In addition, we added various pa-
rameters to the algorithms and fine-tuned these parameters for the computation
of similarity of business process models. Of the algorithms that we tested, the
greedy algorithm and the exhaustive algorithm with pruning are general algo-

62 R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos

rithms to solve recursive problems. The process heuristic algorithm is similar to
Neuhaus and Bunke’s planar graph matching algorithm [17]. The main difference
is that their algorithm starts with a random pair of graph nodes for comparison,
while we assume that business process models have source nodes and sink nodes
and we start by mapping source nodes. The A-star algorithm that we present
is due to Messmer [14]. We adapted it to exclude mappings of node pairs that
are deemed improbable based on the string edit distance of their labels. This
algorithm was also applied in [8] for similarity search of service protocol specifi-
cations captured in BPEL and WSCL. The authors showed that the algorithm
performs well on a small collection of service protocols (5 protocols and variants).

6 Conclusion

Among the four process similarity search techniques presented in this paper,
the greedy and the A-star ones offer the most interesting tradeoffs. The A-
star algorithm offers a slightly better mean average precision but is significantly
slower. Still, the execution times of the A-star algorithm can be acceptable for
repositories of a few hundred models. The other two techniques, based on an
exhaustive search with pruning, offer a less attractive quality/scalability tradeoff.

The graph matching algorithms studied in this paper attempt to establish
1-to-1 correspondences between nodes in the compared process models (i.e. a
node in a process model is related to at most one node in the other process
model). One can think of variants of these algorithms that would calculate 1-to-
N or N-to-M correspondences, e.g. algorithms that would consider the possibility
of a node being split into multiple ones or multiple nodes being merged into
one. Such graph matching algorithms have been considered in other application
domains [2]. We plan to investigate such variants in future work.

This paper focuses on similarity of business processes with respect to tasks
and control-flow relations between tasks. Other aspects of business processes can
be considered when determining similarity, e.g. data and resources. Also, process
models can be annotated with information that helps to determine the similarity
more precisely, such as ontological information [7] and textual documentation.
Exploiting such additional information is an avenue for future work.

Acknowledgments. This research was supported by the European Regional De-
velopment Fund through the Estonian Centre of Excellence in Computer Science.

References

1. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process
equivalence: Comparing two process models based on observed behavior. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
129–144. Springer, Heidelberg (2006)

2. Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and
merging, and its application to diatom identification. In: Hancock, E.R., Vento, M.
(eds.) GbRPR 2003. LNCS, vol. 2726, pp. 259–264. Springer, Heidelberg (2003)

Graph Matching Algorithms 63

3. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: Proc. of
the ACM SIGIR Conference, pp. 33–40 (2000)

4. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

5. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Working Paper 269, BETA
Research School, Eindhoven, The Netherlands (2009)

6. Documentair structuurplan, http://www.model-dsp.nl/ (accessed: Feburary 20,
2009)

7. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Proc. of APCCM 2007, pp. 71–80 (2007)

8. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service
retrieval: Application to conversation protocols. Inf. Syst. 33(7-8), 681–698 (2008)

9. Levenshtein, I.: Binary code capable of correcting deletions, insertions and rever-
sals. Cybernetics and Control Theory 10(8), 707–710 (1966)

10. Li, C., Reichert, M.U., Wombacher, A.: On measuring process model similarity
based on high-level change operations. Technical Report TR-CTIT-07-89, CTIT,
Enschede, The Netherlands (2007)

11. Lu, R., Sadiq, S.K.: On the discovery of preferred work practice through business
process variants. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.)
ER 2007. LNCS, vol. 4801, pp. 165–180. Springer, Heidelberg (2007)

12. Madhusudan, T., Zhao, L., Marshall, B.: A case-based reasoning framework for
workflow model management. Data Knowl. Eng. 50(1), 87–115 (2004)

13. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proc. of ICDE
2002, pp. 117–128 (2002)

14. Messmer, B.: Efficient Graph Matching Algorithms for Preprocessed Model
Graphs. PhD thesis, University of Bern, Switzerland (1995)

15. Minor, M., Tartakovski, A., Bergmann, R.: Representation and structure-based
similarity assessment for agile workflows. In: Weber, R.O., Richter, M.M. (eds.)
ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 224–238. Springer, Heidelberg (2007)

16. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of statecharts specifications. In: Proc. of ICSE 2007, pp. 54–63 (2007)

17. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for
attributed planar graphs and its application to fingerprint classification. In: Fred,
A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR
2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

18. Rosemann, M.: Potential pitfalls of process modeling: part a. Business Process
Management Journal 12(2), 249–254 (2006)

19. van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between busi-
ness process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

20. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Berlin (2007)

21. Wombacher, A.: Evaluation of technical measures for workflow similarity based on
a pilot study. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp.
255–272. Springer, Heidelberg (2006)

Controllability in
Temporal Conceptual Workflow Schemata

Carlo Combi and Roberto Posenato

Dipartimento di Informatica, Università degli Studi di Verona
strada le Grazie 15, 37134 Verona Italy

{carlo.combi,roberto.posenato}@univr.it

Abstract. Workflow technology has emerged as one of the leading technologies
in modelling, redesigning, and executing business processes. Currently available
workflow management systems (WfMS) and research prototypes offer a very lim-
ited support for the definition, detection, and management of temporal constraints
over business processes. In this paper, we propose a new advanced workflow
conceptual model for expressing time constraints in business processes and, in
particular, we introduce and discuss the concept of controllability for workflow
schemata and its evaluation at process design time. Controllability refers to the
capability of executing a workflow for any possible duration of tasks. Since in
several situations durations of tasks cannot be decided by WfMSs, even tough
the minimum and the maximum durations for each task are known, checking con-
trollability is stronger than verifying the consistency of the workflow temporal
constraints.

1 Introduction

A workflow management system (WfMS) fully takes over the responsibility for the co-
ordinated execution of tasks of a business process. Organisations use WfMSs to stream-
line, automate, and manage business processes that depend on information systems and
human resources (e.g., provisioning telephone services, processing insurance claims,
and handling bank loan applications) [1,2]. WfMSs provide tools to support the mod-
elling of business processes at a conceptual level, to coordinate the execution of the
component activities according to the model, to monitor the execution progress and to
report various statistics about business processes and resources involved in their enact-
ment. Many business processes have restrictions such as a limited duration of subpro-
cesses, terms of delivery, dates of re-submission, or activity deadlines. Generally, time
violations increase the cost of a business process because they lead to some form of
exception handling [3]. Therefore, a WfMS should provide the process manager with
the necessary information about a process, its time restrictions, and its actual time re-
quirements. In addition, the process manager needs tools to anticipate time problems,
to avoid consequent time constraint violations, and to take decisions about the relative
priorities of processes according to some predefined temporal constraints [4].

Currently, existing WfMSs offer only a limited support for modelling and manag-
ing time constraints associated to processes and their activities [5]. This support takes

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 64–79, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Controllability in Temporal Conceptual Workflow Schemata 65

place through monitoring activity deadlines: however, the consistency of these dead-
lines and the side effects of missing them are not considered [4]. In the last decade
some proposals have been presented to manage different temporal aspects of workflows
as temporal constraints and deadlines both at design-time and at run-time [4,6]. At the
best our knowledge, the concept of controllability has not yet been deeply considered
for temporal workflows: controllability refers to the capability of executing a workflow
for any possible duration of tasks. Since in several situations durations of tasks cannot
be decided by WfMSs, even tough the minimum and the maximum durations for each
task are known, checking controllability is stronger than verifying the consistency of
the workflow temporal constraints [3,4,5,6]: in other words, each task duration cannot
be imposed or decided by the WfMS that can only schedule all the tasks assuming that
task durations respect their allowed ranges; therefore, it is necessary to know if some
schedule is possible before to start the execution.

According to this scenario, in this paper we propose a framework for the conceptual
design of workflows, which takes into account the modelling and the management of
temporal aspects in WfMSs. Throughout the paper, we will use a motivating example
taken from the domain of healthcare to introduce and discuss our proposal. In particular,
we focus on the following specific features:

– Temporal conceptual modelling of workflows: we present a workflow conceptual
model capturing the temporal aspects of main workflow activities (e.g., minimum
and maximum durations of activities, delays and temporal constraints between
them, deadlines and other temporal constraints). The conceptual model we propose
is a block-structured one: in this way we are allowed to focus on temporal aspects
without considering possible inconsistencies in the workflow schema. Moreover,
further constructs as cycles or compound tasks are not considered at the current
stage, as they require further analysis based on the results we will present in this
paper.

– Checking the controllability of temporal workflow schemata: we propose a general
method to determine whether, given a workflow schema based on our conceptual
model, there may exist workflow executions where temporal constraints are satisfi-
able for any given duration of tasks. More precisely, in this paper we will focus on
controllability for basic workflow patterns, i.e., sequential and parallel patterns.

The paper is structured as follows. In Sect. 2 we consider proposals from the literature
having some relevance for workflow design with temporal features. In Sect. 3 we pro-
pose an extension of the Temporal Workflow model presented by Combi et al. [7] and
provide a motivating example taken from the cardiology domain. In Sect. 4 we show
how to check the controllability in common workflow patterns of a temporal workflow.
Finally, in Sect. 5 we provide some discussion on the algorithmic aspects of controlla-
bility for workflow schemata and sketch some concluding remarks.

2 Related Work

In this section we consider the main proposals in the literature dealing with temporal
constraints in workflow systems.

66 C. Combi and R. Posenato

Eder et al. in [3,4,8] specify the Timed Workflow Graph (TWG) to represent tempo-
ral properties of tasks named “activity nodes”. TWG is a directed acyclic graph (DAG),
in which nodes are activities and oriented edges are control flows. TWG provides a no-
tation indicating different kinds of execution flow, such as parallel or alternative ones,
but doesn’t provide the possibility of explicitly defining delays between activities: for
instance, if an industrial process includes several short tasks, the incapability of explic-
itly modelling delays between executions can lead to incorrect time evaluations. TWG
provides temporal constraints representing upper and lower bounds for ending the exe-
cution of a task with respect to either to the start of the workflow or to the end of another
previous task.

Marjanovic et al. define in [6] a conceptual model that classifies temporal aspects
of workflow schemata as: “basic temporal constraint”, “limited duration constraint”,
“deadline constraint” and “interdependent temporal constraint”. A basic temporal con-
straint limits the expected duration of one single task. A limited duration constraint is
an upper bound for the duration of the workflow execution. An interdependent tempo-
ral constraint limits the time distance between two tasks in a workflow model. Mar-
janovic et al.’s model does not permit any delay interval between consecutive activities:
the completion instant of a task corresponds to the starting instant of the subsequent
task. Moreover, they represent the kinds of flow by using connector nodes, which dif-
fer from task nodes as they do not require agents. However, the connector nodes have
no temporal features, such as minimum and maximum duration, and all the connector
nodes in the model correspond to instantaneous activities.

The model by Bettini et al. [5] is quite different from the previous ones. First of all,
nodes of a workflow graph are not tasks but correspond to temporal instants. Every task
is represented by two nodes: the starting instant and the ending one. Every edge in the
workflow graph represents the temporal distance between two nodes: any edge label
is an interval representing the allowed time distances between the connected nodes.
If a pair of nodes represents the starting and the ending instants of a task, the label
on the connecting edge represents the allowed durations of the task. In the same way,
if a pair of nodes represents the ending instant of a task and the starting instant of
another task, the connecting label edge represents the allowed delay between the first
task execution ending instant and the second task execution starting instant. By this
formalism, workflow edges can be used to limit the time distance between all the nodes
of a workflow schema: this approach is able to represent very complex processes. On the
other side, it makes no difference between edges representing execution flows and edges
limiting the time distance between nodes. In [5] a polynomial algorithm (O(n4) where n
is the number of nodes) is provided to check the existence of a free schedule: a schedule
is free when it is possible to statically fix, before the beginning of the execution, the start
times of all tasks without constraining their durations, and satisfying all the constraints.

A problem similar to the workflow controllability check has been studied in the AI
area of temporal constraint networks for planning [9,10]. Starting from the considera-
tion that a temporal planner has to manage the likely uncertainty about the duration of
processes, Vidal et al. propose an extension of the Simple Temporal Network, the Sim-
ple Temporal Network With Uncertainty (STNU), where the edges, i.e., constraints, are
divided into two classes, the contingent links and requirement links. Contingent links

Controllability in Temporal Conceptual Workflow Schemata 67

represent processes of uncertain duration, where finish timepoints (i.e., STNU nodes)
are decided by Nature within the limits imposed by the bounds defined on the contin-
gent links. Requirement links represent all the other processes whose finish timepoints
are controlled by the agents that execute processes. Morris et al. show that in the frame-
work of STNU the checking controllability algorithm is polynomial, i.e., O(n4), w.r.t.
the number of STNU nodes [10].

3 The Conceptual Temporal Workflow Model

Workflow modelling is an effective technique for understanding, automating, and docu-
menting business processes. A conceptual workflow model produces high-level specifi-
cations of workflows that are independent from the workflow management software.

Several workflow models have been developed based on different modelling
concepts (e.g., Petri’s Net variants, precedence graph models, precedence graphs with
control nodes, state charts, control structure based models, and so on) and on different
representation models (programming language style text based models, simple graphi-
cal flow models, structured graphs, and so on) [4,11,12].

The conceptual model presented in this paper focuses on formalising all the temporal
aspects related to single atomic activities (tasks) and to their temporally adaptive activa-
tion sequences. By using our model, temporal properties of workflow schemata can be
deeply modelled.

As for the basic atemporal concepts, our temporal conceptual model is based on the
atemporal one by Casati et al. [11], that we find quite general, it is not influenced by
any particular commercial WfMS, and it is one of the models closest to the recommen-
dations from the WfMC [1]. The graphical notation we introduce for the constructs
of the conceptual model is a straightforward extension of the widely adopted Business
Process Modelling Notation (BPMN) [2] to consider temporal aspects.

3.1 The Temporal Conceptual Model

Conceptual models allow designers to represent workflow schemata (process models)
which capture the behaviour of processes describing the activities and their execution
flow. A workflow schema defines the tasks to be performed, their order of execution,
and assignment criteria to agents [11].

In our model a workflow schema is a directed graph, called Workflow Graph. Nodes
correspond to activities and edges represent control flows that define the task dependen-
cies that a WfMS has to consider when managing the order of execution of tasks.

There are two different activity types: task and connector. Tasks represent the el-
ementary work units that collectively achieve the process goal. A task can be initial
(Start), final (End) or intermediate. Connectors are the elementary work units executed
by the WfMS to achieve a correct and ordered sequence for task execution. A path be-
tween two nodes represents an order of execution among the set of nodes of the path
and it is called flow.

In the following, we present the syntactic properties of all the workflow graph com-
ponents. We restrict ourselves to the main constructs; several other components, e.g.,
cycles, supertasks and multitasks, require a depth analysis with regard to their temporal
behaviour and this is beyond the scope of this paper.

68 C. Combi and R. Posenato

Task Name
Duration

Fig. 1. A task

T1
Duration

T2
Duration

Delay

Fig. 2. A control flow

Duration

Total

Duration

Alternative

condition
Duration

Conditional

true false

Fig. 3. split connectors

Duration

And

Duration

Or

Fig. 4. join connectors

Tasks. A task is the basic modelling object in workflow schemata and represents the
atomic unit of work to be executed. Tasks have many properties, represented by at-
tributes. Task Name and execution Duration are mandatory attributes. Duration specifies
the allowed temporal spans of the activity and its effective value cannot be set by the
WfMS. More details on temporal aspects are in Sect. 3.3. Every task has one incoming
edge and one outgoing edge (see Fig. 1).

Control Flows. Control flow is an oriented edge that connects two activities: the former
activity must be finished before starting the execution of the latter one (see Fig. 2). Every
edge has a temporal property, Delay, that denotes the allowed times that can be set by
the WfMS for its internal activities for possibly delaying the execution of workflows
according to the given temporal constraints. More details are given in Sect. 3.3.

Connectors. Connectors represent internal activities executed by the WfMS to achieve
a correct and coordinated execution of tasks. Differently from tasks, connectors are di-
rectly executed by the WfMS and do not need to be assigned to any agent; the manda-
tory Duration attribute of a connector specifies the temporal spans allowed to the WfMS
for executing the connector activity and the effective duration of the connector can be
decided by the WfMS. As in the WfMC Reference Model [1], in our model we have
two connector types: split and join. As depicted in Fig. 3, split connectors are nodes
with one incoming edge and two or more outgoing edges: after the execution of the
predecessor, (possibly) several successors have to be considered for the execution. The
set of nodes that can start their execution is given by the features of each split connector.
A split connector can be: Total, Alternative or Conditional. Join connectors are nodes
with two or more incoming edges and one outgoing edge only, as shown in Fig. 4: join
connectors merge more flows into one single flow. A join connector can be either And
or Or.

Start and End. Each workflow can contain exactly one Start and one or more Ends,
graphically represented by a circle with one ingoing/outgoing edge respectively. They
have no temporal property.

In the following we assume to deal with block-structured workflow graphs: check-
ing this property of workflow graphs has been deeply studied in the literature and an
effective algorithm, based on Petri Nets, has been proposed by van der Aalst et al. [13].

Controllability in Temporal Conceptual Workflow Schemata 69

T1 1

T2 T3

T4

(a)

T1 1

T2 T3

T4

(b)

T1 1

T3

T4

(c)

Fig. 5. Workflow graph (a) and its two wf-paths (b) and (c)

3.2 Workflow Paths (wf-paths)

Due to conditional and alternative flows, not all the cases (i.e., executions) of one work-
flow schema perform exactly the same set of tasks. We group workflow cases into work-
flow paths (wf-paths) in accordance with the activities actually executed. As in [6], a
wf-path refers to a set of workflow cases that contain exactly the same activities (i.e.,
for each alternative flow in the workflow graph, the same successor node is chosen; for
each conditional connector the same successor activity is selected). Therefore, a wf-
path can be regarded as a workflow subgraph in which every alternative or conditional
connectors have exactly one successor.

Figure 5 shows two wf-paths (b) and (c) of a workflow graph (a): the alternative
connector 1 leads to the creation of two possible flows. Thus, each of these subgraphs
represents the subset of workflow activities that are all executed for a particular wf-path .
If a workflow schema has no alternative or conditional connectors, only one wf-path
occurs.

3.3 Modelling Time and Temporal Aspects

Our model considers instants and durations as elementary temporal types [14]. Instants
are points on the time domain, while durations are lengths on the time domain. Intervals
are derived types and can be defined as the time span between starting and ending
instants. Instants are represented through timestamps: each timestamp is defined at a
given granularity. In this paper we adopt the approach proposed by Goralwalla et al. [14]
for modelling granularities: a (calendric) granularity is a unit of measurement for spans
of time. For example, the granularity of days (day) stands for a duration of 24 hours.
More generally, a granularity is a special kind of, possibly varying, duration that can
be used as a unit of time. Such granularities may thus be used as a unit of measure for
expressing durations and also for specifying time points; in the last case, granularities
are used for expressing the distance of a time point from a reference time point, chosen
as origin of the time axis. In the following, without loss of generality we adopt the

70 C. Combi and R. Posenato

granularities of the Gregorian calendar, i.e., year, month, week, day, hour, minute, as
units of measure for expressing durations.

In Sect. 3.1 we proposed two temporal properties: Duration for nodes and Delay
for edges. Moreover, we proposed to consider the task Duration as a constraint on the
effective duration of the task that cannot be modified by the WfMS while the connector
Duration as a constraint on the effective duration that can be adjusted by the WfMS.
As regards Delay, even if it could be simulated by a dummy task and this substitution
could simplify the workflow graph structure, we prefer to maintain the Delay concept to
underline that it represents a time span that could be spent by the WfMS to adaptively
coordinate the task executions instead of a time span that is available to a dummy agent.

In the real world, workflow designers cannot always use precise values for durations
of activities and edges. For example, tasks can be performed by human agents, and
generally the duration of a task cannot be precisely known at workflow design time.
Moreover, delays could be set by the WfMS to correctly manage the overall temporal
constraints the workflow execution has to satisfy. Therefore, allowed durations/delays
should be expressed by using ranges like “expected duration ± time tolerance”. Our
conceptual model describes all the durations/delays by an attribute having the form
[MinDuration, MaxDuration] Granularity where 0 ≤ MinDuration ≤ MaxDuration ≤ ∞, as
depicted in Fig. 6. Range bounds represent the minimum and maximum allowed dura-
tions. The minimum duration can represent either an estimate of the required time to
carry out the activity or a constraint to the necessary time to carry out it. The maximum
duration represents a deadline to the time to carry out the activity. Since each workflow
component has to have the Duration attribute, if the workflow designer does not set a du-
ration, we assume that there is no explicit temporal constraint and therefore we set the
attribute value to [1,+∞] MinGranularity, where MinGranularity is the finest granularity
managed by the WfMS. We do not admit [0,0] MinGranularity to underline that no activ-
ity can be executed without time consumption. A user can always set [0,n] Granularity
as a duration attribute to specify that an activity can last 0 Granularity, if Granularity is
not the minimal granularity used by the WfMS to measure the time.

Temporal Constraints. Besides the basic temporal constraints, expressed through du-
rations and delays as previously described, our conceptual model allows one to express
several other kinds of temporal constraints: from the business perspective they are de-
fined by laws and regulations, business policies, common practises, as well as mutual
agreements and expectations related to efficiency of business practise [6]. In general,
temporal constraints are complex enough to be captured separately as an aspect of work-
flow modelling rather than being covered by the workflow execution properties [3]. Dif-
ferently from the duration attributes, temporal constraints are not mandatory for each
workflow component: they model additional temporal properties and must be controlled
by the WfMS. In order to underline the difference between a temporal constraint de-
rived from a duration and a temporal constraint explicitly stated, we denote these last
ones as relative constraints. A relative constraint limits the time distance (duration)
between the starting/ending instants of two non-consecutive workflow activities. Our
model provides one type of relative constraint, expressed according to the following
pattern:

IF[MinDuration,MaxDuration]IS Granularity,

Controllability in Temporal Conceptual Workflow Schemata 71

T1-Admission
to E.D.

[2,4] min

T2-Initial patient
evaluation
[5,20] min

C1-STEMI cl. I?
[1,1] min

T3-Further
evaluation
[2,15] min

1
[1,1] min

T4-Reperfusion
Fibrinolytic th.

[1,1] hour

T5-Oral Beta
Blocker

[2,6] min

C2-Ischemic
discomf?

2

T6-Nitroglycerin
therapy

[18,22] min

3

[1,5] min [1,1] min

false
[4,16] min

true
[1,1] min

[1,1] min

true

false

E[1,30]S min

E[1,20]E min

S[−1,2]E min

Fig. 6. Workflow graph example of patient admission to an hospital. The dashed edges represent
relative constraints.

where (i) IF marks which instant of the first activity to use (IF = S<activity> for the start-
ing execution instant or IF = E<activity> for the ending one; the subscript can be omitted
if it is clear form the context.); (ii) IS marks the instant for the second activity in the
same way; (iii) [MinDuration, MaxDuration] Granularity represents the allowed range for
the time distance between the two instants IF and IS.

A finite positive MaxDuration value models a deadline as defined in other workflow
models [4,6], since it corresponds to the maximum global allowable execution time
for the activities that are present on possible flows between the two activities of the
constraint. On the other hand, a finite positive MinDuration represents the minimum
execution time that has to be spent from IF before proceeding after IS: if the global
time spent to execute all activities between IF and IS is less than MinDuration, then the
WfMS has to dynamically manage a suitable exception (like to sleep, for example)
depending on the specific applications. Negative MinDuration and MaxDuration can be
interpreted similarly, assuming that in this case IS precedes IF. We assume therefore that
−∞ ≤ MinDuration≤ MaxDuration ≤ ∞.

3.4 A Motivating Example from Healthcare

As an example of a real workflow schema, in Fig. 6 we propose an excerpt from the
guideline to the diagnosis and treatment of ST-segment Elevation Myocardial Infarction
(STEMI), published by the American College of Cardiology/American Heart Associa-
tion in 2004 [15], represented as a temporal workflow.

The case starts as the patient is admitted to the Emergency Department (E.D.) (task
T1) that has not to require more than four minutes. After the admission, the patient is
examined by a physician (task T2) who can take a time between five and twenty minutes
to make the examination. If the diagnosis is a STEMI occurrence (connector C1), then a
well-know set of therapy and diagnosis activities has to be fired (true flow). Otherwise,
a further patient evaluation has to be done (false flow). Since the guideline considers
only STEMI patients, we have decided to close the false flow by a generic task (task T3)

72 C. Combi and R. Posenato

to represent a further evaluation. The true flow is composed by three parallel flows start-
ing from total connector 1. The uppermost flow refers to the main therapeutic action
in presence of a myocardial infarction: reperfusion is obtained through a fibrinolytic
therapy (task T4). The central flow refers to the complementary therapeutic action con-
sisting of the assumption of beta blocker drugs (task T5). The lowest flow contains the
(possible) activities related to therapies for ischemic discomfort: after the evaluation of
the presence of ischemic discomfort (conditional connector C2), a nitroglycerin therapy
is provided (task T6).

After all these therapeutic actions, the workflow ends. It is possible to observe that
there are different temporal constraints for tasks (if durations are not specified, then they
are set to the default value of [1,+∞] min since we assume that the minimum granularity
managed by the WfMS is that of minutes). The intertask constraint ET1[1,30]ST4 min
between the end of task T1 and the beginning of task T4 represents the most important
recommendation from the guideline to successfully apply the fibrinolytic therapy to
patients.

Relative constraints are conceptually more expressive than the deadline constructs
used in other models. In fact, relative constraints can model other temporal bindings, as
depicted by the T2-T3 relative constraint of Fig. 6. This constraint fixes to 20 minutes
the maximum time distance between the end of T2 and the end of T3 and it has to be
evaluated in the C1-false flow. Relative constraints cannot be set for activities belonging
to mutually exclusive flows. For instance, in Fig. 6, relative constraints cannot connect
T3 to T4 or T3 to T5.

Let us consider possible issues when executing a workflow instance according to the
given temporal constraints. A first problem is related to the existence of a suitable du-
ration/delay for each activity/edge within the allowed range satisfying all the specified
relative constraints, because the durations of tasks and delays of edges are not indepen-
dent. For example, considering the wf-path T1-T2-T3, if the delay of edge C1-T3 is set
to 16, the duration of task T3 must be set to 2 in order to satisfy the relative constraint
ET2[1,20]ET3 min and cannot be arbitrarily chosen in the range [2,15].

A second stronger issue is related to the existence of a suitable duration/delay for each
connector/edge such that the overall workflow satisfies the relative constraints without
fixing task durations (i.e., it is possible to choose the connector durations or edge delays
without knowing the duration of the following tasks). This is interesting because often
task durations cannot be set by the WfMS. For example, considering the wf-path T1-T2-
T4||T5, if the delay of edge T1-T2 is set to 5, the duration of task T2 can be arbitrarily
chosen in the allowed range still satisfying the relative constraint ET1[1,30]ST4 min. As
this property holds also for the other allowed values of the delay of edge T1-T2, we call
this wf-path controllable. It is worth noting that the wf-path T1-T2-T3 is not controllable
as there are no allowed delay values for C1-T3 that guarantee the satisfaction of the
relative constraint ET2[1,20]ET3 for any allowed duration of task T3.

Controllability arises another kind of constraint between activities. Let us consider
for the wf-path T1-T2-T4||T5 the constraint ST4[−1,2]ET5 min, describing the fact that
reperfusion (T4) neither can start more than 2 minutes before nor can start more than 1
minute after the end of oral therapy (T5). As we are not able to control the duration of
T5, the start of reperfusion (T4) must be explicitly related to both the end and the start

Controllability in Temporal Conceptual Workflow Schemata 73

of T5. To satisfy the relative constraint ST4[−1,2]ET5 min, T4 could start either after the
end of T5 or 4 minutes after the start of T5, even if this last one has not yet ended: in
next section we will discuss how it works.

4 Controllability of Workflows

The successful completion of a process often depends on the correctness of temporal
aspects modelled at design time. If relative constraints are such that any of them cannot
be satisfied, the process cannot be performed successfully. Therefore, preliminary tem-
poral evaluations are needed to state whether the specified relative constraints can be
satisfied by any case.

In general we say that a workflow schema is controllable if the WfMS is able to
perform any wf-path satisfying all relative constraints, all delays, all connector dura-
tions without any settings about the (allowed) task durations involved in the wf-path .
These preliminary temporal evaluations are exponential in the number of the alternative
connectors and conditional connectors because a workflow schema may represent many
wf-paths and therefore the evaluations have to be done for each flow separately.

In this paper we focus on how it is possible to check the controllability of a single
wf-path ; we will discuss how to deal with a workflow schema at the end of the paper.

In Sect. 3.2 we defined a wf-path as a workflow subgraph in which every alternative
or conditional connector has exactly one successor. Analysing the structure of workflow
schemata it is straightforward to verify that (i) if a workflow schema does not contain
any total connector, then each wf-path is represented as one graph-path (sequential
path) and (ii) if the workflow schema contains at least one total connector, then at least
one wf-path is represented as two or more graph-paths (parallel paths).

The problem of controllability checking arises when there is at least one relative con-
straint that involves two or more tasks. If relative constraints involve only connectors,
then there is no a controllability problem because the possible duration assignments are
independent of any task duration and the problem is more simple [16].

In the following we show how to check the controllability in sequential paths and in
parallel paths starting from simple patterns for them; more structured patterns can be
reduced to these simple ones. Hereinafter, we assume that all the temporal constraints
(activity durations, edge delays and relative constraints) have been mapped into equiv-
alent constraints at the finest granularity [14]. For sake of simplicity, we will omit the
specification of granularity in the considered constraints.

4.1 Controllability on Sequential Paths

Let us consider three simple sequential patterns each containing a relative constraint as
in Fig. 7, where in sub-figure (a) the constraint is between the start instants of the two
tasks, in sub-figure (b) it is between the end ones and in sub-figure (c) it is between the
start instant of the first task and the end one of the second. We do not consider a relative
constraint of the form ET1[p,q]ST2 because it is represented by the edge connecting the
two tasks. In all patterns the range [p,q] has to have p and q non negative because any
negative value would be meaningless.

74 C. Combi and R. Posenato

T1
[x1,y1]

T2
[x2,y2]

[u,v]

S[p,q]S

(a)

T1
[x1,y1]

T2
[x2,y2]

[u,v]

E[p,q]E

(b)

T1
[x1,y1]

T2
[x2,y2]

[u,v]

S[p,q]E
S[p′,q′]S

(c)

Fig. 7. Three sequential patterns with a relative constraint. In (c) the relative constraint S[p′,q′]S
(dotted) is induced by S[p,q]E.

In the pattern of Fig. 7-(a) the composition of the task duration and of the delays has
to comply with the relative constraint. Task duration cannot be modified, therefore the
WfMS can only decide the duration of delay, after the task T1 is executed. In order to
verify whether it is possible to guarantee that the relative constraint can be satisfied for
every possible T1 duration, it is sufficient to verify whether the range [p− y1,q− x1] ⊆
[u,v]. If so, the range of values that is permitted by the designer allows the WfMS to
control the pattern. Otherwise, the range [p− y1,q− x1] is either empty or it contains
some values that are possible as delay values but that are not permitted by the designer:
in the first case the relative constraint is inconsistent with the task duration, while in the
second one the pattern is not controllable. In detail, if [u′,v′] = [p− y1,q− x1] ⊆ [u,v]
is not empty, then at run-time the WfMS has to pick the delay value in the new range
[u′,v′] according to the T1 duration. The range [p− y1,q− x1] is determined observing
that the delay has to be minimum when T1 lasts its maximum allowed time and has to
be maximum when T1 lasts its minimum time so that the sum of times results to be in
[p,q] range.

As an example, if T1 duration is [6,8], the edge delay is [1,11] and the relative con-
straint is [10,12], then the new delay range is [2,6] ⊂ [1,11]. Therefore the pattern is
controllable and the new delay range is [2,6].

The same approach can be adopted when there is a relative constraint involving only
connectors and edges.

The pattern of Fig. 7-(b) is similar to the case (a), but the task duration is still un-
known when the WfMS has to decide the duration of the delay. In order to guarantee
that the relative constraint can be satisfied for every possible T2 duration, it is necessary
to impose a stronger condition on the delay range. The range [p−y2,q−x2] is not suffi-
cient because it is possible that a value chosen by the WfMS would be not suitable with
the effective duration of T2. For example, assuming that T2 duration is the same of T1
and all the other values are as above (considering the new restricted range [u,v] = [2,6]),
if the WfMS chooses to set the delay to 2 and the following T2 requires time 6, the to-
tal time is 8, lower than the allowed bound 10. Therefore, edge delay values have to
be calculated as values that can be used for any T2 duration value: the minimum re-
stricted valid range is [p− x2,q− y2] ⊆ [p− y2,q− x2]. The pattern is controllable if
[p− x2,q− y2] has the same relation with [u,v] as for the (a) pattern. In the example
above, the new delay range is [4,4] ⊂ [2,6], therefore the pattern is controllable.

The same pattern of Fig. 7-(b) is depicted in the healthcare-related example in Fig. 6:
the constraint on wf-path T1-T2-T4||T5 induces a relative constraint between the end
of T1 and the end of T2 with range [6,25] min. It can be derived by considering all
the delays, durations and relative constraints of tasks and edges between T1 and T4. A

Controllability in Temporal Conceptual Workflow Schemata 75

T1
[x1,y1]

A

S[p,q]A

A[u,v]E

(d)

T1
[x1,y1]

A

S[u,v]A

A[p,q]E

(e)

T1
[x1,y1]

A B[u,v]

〈ET1,t〉〈ET1,t −v〉

(f)

T1
[x1,y1]

T2
[x2,y2]

〈ET1,t −x2〉
〈ET1,t〉

(g)

Fig. 8. Four parallel patterns with a relative constraint. The dotted edges are induced relative
constraints by the composition of the given relative constraint and the T1 duration. For sake of
simplicity, we put A in the labels of relative constraints, as A could represent either a starting or
an ending instant of an activity. In (f) and (g) the relative constraints are wait constraints.

general method to deriving all the possible temporal constraints is given by reducing the
wf-path to a Simple Temporal Problem (STP) which is known to be solved in O(n3)
using an all-pairs shortest path algorithm as the Floyd-Warshall one [16]. As already
mentioned, this wf-path is controllable. Indeed, the range [p,q] is [6,25] and the range
[x2,y2] is [5,20]; thus, the minimum restricted valid range for [u,v] is [6−5,25−20] =
[1,5] as the range for the edge T1-T2 delay in Fig. 6.

On the other hand, the wf-path T1-T2-T3 is not controllable. Indeed, the induced
constraint range between the end of C1 and the end of T3 results to be [3,18]. This
constraint requires that the delay range of the edge C1-T3 should be [3−2,18−15] =
[1,3] to guarantee the controllability. Instead, the delay range in Fig. 6 is [4,16] and
therefore the wf-path is not controllable.

Finally, we analyse the pattern where the relative constraint has the ST1[p,q]ET2 form
as in Fig. 7-(c). The controllability check can be done in two steps. In the first step, a
new relative constraint between ST1 and ST2 is defined with temporal range determined
applying the rule of pattern (b). If the induced relative constraint is not empty, in the
second step, the controllability of the T1 duration together with the edge delay w.r.t. the
new constraint is verified applying the pattern (a). If all steps are successfully performed,
the pattern is controllable.

As an example, considering [6,8] as duration range for both T1 and T2, [2,6] as
delay range and ST1[17,19]ET2 as relative constraint, we obtain that the induced relative
constraint is ST1[11,11]ST2 and that this new constraint involves [3,5] as delay range.
Since [3,5] ⊂ [2,6], the pattern is controllable and [3,5] becomes the new delay range.

Any sequential path is a generalisation of the pattern (c).

4.2 Controllability on Parallel Paths

Let us consider four simple parallel patterns each containing a relative constraint as in
Fig. 8, where in sub-figure (d) the constraint is between the start instant of task T1 and
a generic instant A on a parallel flow (either start or end instant of an activity), in (e) it
is between a generic instant A and the end instant of task T1 on a parallel flow, in (f)
the relative constraint has a special label and is between the start of T1 and the instant
B that can be either the end point of an edge or the end instant of a connector and, in (g)
there is a pattern similar to (f) but with a task instead of points A and B. In the following,
we will determine new constraints and check the controllability of the pattern w.r.t. T1
duration.

76 C. Combi and R. Posenato

In the pattern of Fig. 8-(d) the composition of duration of T1 and of the relative con-
straint results in the derived constraint A[u,v]ET1 = A[x1−q,y1− p]ET1 as in sequential
pattern (a), although here the direction of A[u,v]ET1 is reversed. This pattern is useful
to propagate the original constraint for the overall evaluation of the wf-path .

The pattern of Fig. 8-(e) is the most interesting one. If we consider the T1 duration
and the relative constraint, it is possible to determine a new constraint between the
start instant of T1 and the instant A, that represents the most interesting information
for evaluating the controllability of the pattern. If q < 0 then A has to happen after the
end instant of T1. The controllability is sure because the duration of T1 is known: it is
sufficient to choose a suitable value in the range [x1 − q,y1 − p] (depending on the T1
duration) as delay between the start of T1 and A.

If p≥ 0, A has to happen before (or at) the end of T1. It is necessary to guarantee that
the constraint holds whatever T1 duration is. In similar way as done for the (b) sequen-
tial pattern (here the derived constraint has opposite orientation w.r.t. the corresponding
delay edge in pattern (b)), it is sufficient to fix the constraint between the start of T1 and
A to be [y1 − q,x1 − p] to have the controllability.

If p < 0 and q ≥ 0, then A may occur before or after the end of T1. In this case it
is not possible to set an unique range to guarantee the controllability; it is necessary to
set a new constraint (wait constraint) between the start of T1 and A that is conditioned
by the end of T1. The wait constraint has the special label 〈ET1,y1 − q〉 that means:
A could occur either when (1) “T1 has ended (and within |p| time units)” or when (2)
“y1 − q time units have elapsed since the start of T1 and T1 has not yet finished” (if A
does not occur when condition (2) holds, it will happen that the following end of T1 will
trigger the condition (1)). Indeed, if A could occur before y1 −q time units, there were
a constraint violation when T1 lasts y1 time units. Sometimes the wait constraint can be
simplified: if (y1 −q) ≤ x1, then a lower bound can be set because the condition (2) is
always verified before the end of T1 could happen: so the constraint can be represented
as [y1 − q,ET1 + |p|].

The constraint on wf-path T1-T2-T4||T5 of the healthcare-related example in Fig. 6
between T4 and T5 is an instance of the pattern of Fig. 8-(e) where the range [p,q] is
[−1,2] min and the range [x1,y1] is [2,6]; thus, the derived wait constraint between the
start of T4 and the start of T5 is 〈ET5,y1 − q〉 = 〈ET5,4〉.

In the pattern of Fig. 8-(f) we show how to propagate a possible wait relative con-
straint (possibly originated in previous steps of the analysis: see pattern (e)) to the link
that shares the same endpoint with the relative constraint. The instants A and B can
be either the endpoints of a edge or the start and the end instants of a connector (not
a task!), respectively. In the former case, [u,v] represents the delay range while in the
latter one the duration of the connector. The relative constraint between ST1 and B has
a wait condition 〈ET1, t〉: B can happen either after that ET1 is occurred or t time units
after ST1 are elapsed. In this case it is necessary to propagate the wait condition to the
instant A in order to guarantee the controllability of the whole pattern. The propagation
of the wait constraint ST1 carries another wait constraint between ST1 and A with con-
dition 〈ET1, t − v〉: if A could occur before time t − v, B could occur before t and this
determines a constraint violation if T1 were still running.

Controllability in Temporal Conceptual Workflow Schemata 77

T1
[3,4]

T2
[3,4]

E[−3,1]E

(initial)

T1
[3,4]

T2
[3,4]

E[−3,1]E〈ET1,3〉

(1a)

T1
[3,4]

T2
[3,4]

E[−3,1]E〈ET1,3〉

〈ET1,0〉

(2a)

T1
[3,4]

T2
[3,4]

E[−3,1]E

S[0,ET1 +3]S

(3a)

T1
[3,4]

T2
[3,4]

E[−1,3]E

〈ET2,1〉

(1b)

T1
[3,4]

T2
[3,4]

E[−1,3]E

〈ET2,1〉
〈ET2,−2〉

(2b)

T1
[3,4]

T2
[3,4]

E[−1,3]E

S[−ET2 −1,2]S

(3b)

T1
[3,4]

T2
[3,4]

E[−3,1]E
S[0,2]S

(final)

Fig. 9. Example of controllability check of a simple parallel wf-path T1-T2 (initial). (1a) is the
application of pattern (e) w.r.t. T1 duration. (2a) is the result of pattern (f) application and (3a) is
the simplification of the wait. (1b)–(3b) represent the applications of patterns w.r.t. T2 duration.
(final) is the combination of (3a) and (3b).

The pattern in Fig. 8-(g) seems to be similar to Fig. 8-(f): the only difference is
that instants A and B are now the start and the end instants of a task, respectively. It
is worth to note that this difference requires a more strict constraint propagation: in a
similar way as done for pattern (b), it is simple to show that applying the argument
made for pattern (f) is not sufficient because it is not possible to decide when ET1

occurs. Therefore it is necessary to set another wait constraint between ST1 and ST2

with condition 〈ET1, t − x1〉.
As a brief example, let us consider the parallel pattern of Fig. 9-(initial): two parallel

tasks with a relative constraint on their end instants. In general, all possible constraint
propagations have to be done to determine the ranges of delays, connector durations
and relative constraints to guarantee the controllability. Here, it is interesting to know
which is the more general relative constraint on start instants of tasks, induced by the
given constraint, that guarantees the controllability. In Fig. 9-(1a)–(3a), we report the se-
quence of propagation that starts from T1 duration and in Fig. 9-(1b)–(3b) the sequence
of propagation that starts from T2 duration. Starting from T1 duration, the new induced
constraint results to be ST1[0,ET1 +3]ST2 while starting from T2 duration it results to be
ST1[−(ET2 +1),2]ST2. Since −(ET2 +1) < 0 and ET1 +3 > 2, the composition of these
two new constraints yields the final constraint ST1[0,2]ST2 as depicted in Fig. 9-(final).

5 Discussion and Conclusions

As suggested by considering parallel patterns in the previous section, in order to verify
the controllability of a wf-path , the constraints propagation has to be made w.r.t. all
possible combinations of durations and delays applying the six basic patterns (a,b,d–g)
appropriately. The evaluation terminates when either a constraint violation is detected
or no new range restrictions are determined. In the former case, the wf-path is uncon-
trollable and the workflow schema too. On the contrary, if all wf-paths of a schema are
controllable, then we say that the workflow schema is controllable.

78 C. Combi and R. Posenato

It is possible to show that the algorithm proposed by Morris and Muscettola [10]
could be extended to deal with our temporal workflow model: task durations are repre-
sented as contingent links, while edges and temporal constraints are requirement links.
The controllability of each wf-path can be checked in O(n4) time w.r.t. the number n
of activities present on the wf-path [17]. Intuitively, the controllability is checked exe-
cuting the following actions: (1) the wf-path is reduced to a corresponding STP where
constraints between nodes can be the standard ones or the contingent ones; a contingent
constraint cannot be squeezed; (2) the STP is solved applying alternatively an all-pairs
shortest paths algorithm and an ad-hoc technique that propagates the contingent con-
straints in a similar way to the approach described in this paper, until a final state is
found. If the STP admits a solution, then the original wf-path is controllable and the
ranges induced by the STP solution are the new ranges for the connectors and edges
(task durations cannot be squeezed!). Otherwise, the wf-path is not controllable.

It’s worth to note that the number of wf-paths can be exponential w.r.t. the graph
order because in a workflow schema there could be an arbitrary sequence of alternative
or conditional operators. Despite of the exponential number of wf-paths, the control-
lability of a workflow schema can be evaluated in O(n4) on the graph corresponding
to a workflow schema obtained from the original one by substituting all Conditional
and Alternative connectors with Total ones and by substituting all the Or connectors
with the And ones. In this way all the possible constraints are considered together and,
therefore, the resulting controllability is checked against an over-constrained workflow
schema. All the partial workflow schemata corresponding to single wf-paths are control-
lable if the above over-constrained schema is controllable. Moreover, delays and con-
nector ranges determined by considering the over-constrained schema allow the WfMS
to choose a duration for them without preventing the execution of any wf-path that con-
tains the activities already done. Moving from design-time to run-time, controllability
can be reconsidered during the execution of a workflow schema by (1) considering the
actual values for duration of activities and for delays already done and (2) by removing
from the schema all wf-paths that have not been executed. This could produce a less
constrained workflow schema, i.e., with wider temporal ranges for not-yet-executed de-
lays and connectors.

The concept of workflow controllability seems to be closed to that of free sched-
ule [5]. A free schedule corresponds to a controllable wf-path , while it deserves further
investigations to verify whether any controllable wf-path corresponds to one or several
free schedules: indeed it seems that a controllable wf-path could correspond even to a
schedule where the starting point of tasks cannot be completely set when a workflow
execution starts.

As for the application of our temporal conceptual workflow model, since it is always
important to evaluate the goodness of a model on real-life cases, we are cooperating with
the YAWL [18] development group in order to develop YAWL extensions that manage
temporal aspects of YAWL workflow schemata both at design-time and run-time. A
prototype of such extended YAWL has been successfully used to manage some simple
(till now) healthcare processes [7].

In conclusion, in this paper we have proposed a new advanced workflow concep-
tual model for expressing time constraints and we have introduced the concept of

Controllability in Temporal Conceptual Workflow Schemata 79

controllability for workflow schemata that are block-structured and do not contain cy-
cles or compound-tasks. Currently, we are investigating on (1) extending these results
to a model that includes both cycles and compound-tasks and on (2) the possibility to
extend our approach to unstructured workflow models.

References

1. Workflow Management Coalition, Hollingsworth, D.: The workflow reference model (1995),
http://www.wfmc.org/standards/framework.htm

2. Object Management Group (OMG): Business process definition metamodel (bpdm), beta 1
(2007), http://www.omg.org/cgi-bin/doc?dtc/2007-07-01

3. Eder, J., Panagos, E., Rabinovich, M.I.: Time constraints in workflow systems. In:
Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 286–300. Springer,
Heidelberg (1999)

4. Eder, J., Panagos, E.: Managing time in workflow systems. In: Workflow Handbook 2001.
Workflow Management Coalition (WfMC), pp. 109–132 (2000)

5. Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in workflow systems. Distributed
and Parallel Databases 11, 269–306 (2002)

6. Marjanovic, O., Orlowska, M.E.: On modeling and verification of temporal constraints in
production workflows. Knowl. Inf. Syst. 1, 157–192 (1999)

7. Combi, C., Gozzi, M., Juárez, J.M., Oliboni, B., Pozzi, G.: Conceptual modeling of temporal
clinical workflows. In: TIME, pp. 70–81. IEEE Computer Society, Los Alamitos (2007)

8. Ede, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with conditional exe-
cution paths. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873,
pp. 243–253. Springer, Heidelberg (2000)

9. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from consis-
tency to controllabilities. J. Exp. Theor. Artif. Intell. 11, 23–45 (1999)

10. Morris, P.H., Muscettola, N.: Temporal dynamic controllability revisited. In: Veloso, M.M.,
Kambhampati, S. (eds.) AAAI, pp. 1193–1198. AAAI Press / The MIT Press (2005)

11. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Conceptual modelling of workflows. In:
Papazoglou, M.P. (ed.) ER 1995 and OOER 1995. LNCS, vol. 1021, pp. 341–354. Springer,
Heidelberg (1995)

12. Mangan, P.J., Sadiq, S.W.: A constraint specification approach to building flexible workflows.
Journal of Research and Practice in Information Technology 35, 21–39 (2003)

13. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W(E.): An alternative way to analyze
workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE
2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

14. Goralwalla, I.A., Leontiev, Y., Özsu, M.T., Szafron, D., Combi, C.: Temporal granularity:
Completing the puzzle. J. Intell. Inf. Syst. 16, 41–63 (2001)

15. Antman, E.M., et al.: ACC/AHA guidelines for the management of patients with ST-elevation
myocardial infarction. Circulation 110, 588–636 (2004)

16. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49, 61–95 (1991)
17. Morris, P.: A structural characterization of temporal dynamic controllability. In:

Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 375–389. Springer, Heidelberg (2006)
18. van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and implemen-

tation of the YAWL system. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084,
pp. 142–159. Springer, Heidelberg (2004)

Towards Algorithmic Generation of Business
Processes: From Business Step Dependencies to

Process Algebra Expressions

Márcio K. Oikawa1, João E. Ferreira1, Simon Malkowski2, and Calton Pu2

1 Institute of Mathematics and Statistics
University of São Paulo

{koikawa,jef}@ime.usp.br
2 Center for Experimental Research in Computer Systems

Georgia Institute of Technology
{zmon,calton}@cc.gatech.edu

Abstract. Recently, a lot of work has been done on formalization of
business process specification, in particular, using Petri nets and process
algebra. However, these efforts usually do not explicitly address complex
business process development, which necessitates the specification, co-
ordination, and synchronization of a large number of business steps. It
is imperative that these atomic tasks are associated correctly and mon-
itored for countless dependencies. Moreover, as these business processes
grow, they become critically reliant on a large number of split and merge
points, which additionally increases modeling complexity. Therefore, one
of the central challenges in complex business process modeling is the
composition of dependent business steps. We address this challenge and
introduce a formally correct method for automated composition of alge-
braic expressions in complex business process modeling based on acyclic
directed graph reductions. We show that our method generates an equiva-
lent algebraic expression from an appropriate acyclic directed graph if the
graph is well-formed and series-parallel. Additionally, we encapsulate the
reductions in an algorithm that transforms business step dependencies
described by users into digraphs, recognizes structural conflicts, identifies
Wheatstone bridges, and finally generates algebraic expressions.

Keywords: business process modeling, directed acyclic graphs, series-
parallel reductions, and process algebra.

1 Introduction

Today’s large enterprise applications typically include powerful workflow engines
as a central module in their information systems. Additionally, the paradigms
of web services and mobile computing require mapping flows of work among
humans, systems, or both as parallel control-flows that interact and communi-
cate among each other. Despite numerous approaches to formal control of these
workflows, there still exists a wide gap between complex business process model-
ing and workflow languages based on formal representation (e.g., graph-oriented

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 80–96, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards Algorithmic Generation of Business Processes 81

models [1], Petri nets [2], and process algebras [3]) [4]. The reason for this gap
lays in the difficult task of exhaustively capturing and modeling all dependencies
between all business steps (i.e., atomic activities) in complex business processes.
This task becomes even more difficult as the number of steps grows to stricter
business process requirements caused by the rapid evolution of markets, more
complex technologies, and shrinking time-to-market for new products. Although
some previous efforts have addressed business process modeling with precise
mapping of object relations and process dependencies, none of them has offered
explicit support for automated generation of business process representation.

This paper focuses on complex business process modeling, where automated
generation and accurate representation of business step dependencies becomes a
critical factor. We have applied graph transformation techniques to define algo-
rithmic derivations, which preserve algebraic properties and take advantage of
the topological characteristics of series-parallel digraphs. The input for our al-
gorithm are step dependencies described by users. Consecutively, the algorithm
generates acyclic directed graphs (DAGs), checks potential structural conflicts,
and implements a formal method for polynomial-time reduction of DAGs to build
algebraic expressions. In our methodology inconsistencies between corresponding
split and merge points identify structural problems such as deadlocks and lacks of
synchronization. Another output of our algorithm is the identification of Wheat-
stone bridges, which characterize regions in the graph where the generation of
algebraic expressions may be difficult or even unfeasible. Wheatstone bridge cir-
cuits are traditionally known from measuring instruments in electric circuits.
Recently, they have been employed as structural mechanism for reducibility in
PERT (Project Evaluation and Review Technique) stochastic networks [5].

The main goal of this work is to automatically generate equivalent algebraic
representations of DAG-based structures, which represent internal dependencies,
branching, as well as synchronizing rules in business processes. The main con-
tribution is the definition of a formal reduction system that recognizes a class of
DAGs (well-formed series-parallel DAGs) for what is possible to quickly define
an equivalent ACP algebraic expression. In the case of forming-rule violations,
our algorithm identifies regions of structural conflicts. These conflicts represent
topological structures, which cannot be expressed algebraically and have to be
translated into process algebra under relaxation of equivalence requirements. The
scope of this paper are DAG-based models; hence, internal process behaviors that
are not observable in DAGs (e.g., multiple instances, canceling patterns [6], and
mobile behavior [7]) are not addressed and remain potential future work topics.

The rest of this paper is organized as follows. After an overview of related work
in Section 2, we introduce some important concepts of the graph transformation
system, which has formed the basis of our work, in Section 3. In Section 4, we
define expression digraphs, build a reduction system, and present the algorithmic
generation of business processes and algebraic expressions from business step
dependencies. Section 5 discuss some aspects about Wheatstone bridges. We
conclude the paper in Section 6.

82 M.K. Oikawa et al.

2 Related Work

To this day, no definite consensus has been reached on the best way of represent-
ing business process models, and there exists a considerable body of work ad-
dressing the definition of a general purpose language for workflows and business
processes. For instance, XPDL, defined by the Workflow Management Coalition
(WfMC) [1], is a popular standard based on graph-oriented modeling. Petri net
based models [2] are another approach that provides a consistent framework
for derivation of workflow properties. Similarly, the JBoss community offers the
Java Process Definition Language (JPDL) [8], which allows process definition as
combination of declaratively specified process graphs with sets of Java classes.
Recently, process algebras [9] have been advocated by many business process
management efforts. Especially within the areas of service-oriented architec-
tures [10] and collaborative information systems [11, 12, 13], process algebras
have been successfully applied to represent and control the life cycles of complex
orders. Another important process algebra contribution is the Bigraphical Reac-
tive System [14], a meta model for global ubiquitous computing that generalizes
the process algebra approach for mobile environments [15]. Naturally, the ques-
tion which of these formalisms is most suitable remains subject to a controversial
discussion [16]. In our work, we have chosen the Algebra of Communicating Pro-
cesses (ACP) [17] as representative algebraic formalism. However, this paper
does not necessarily advocate a single formalism since there exist unidirectional
mappings of ACP to other formalisms such as pi-calculus or Petri nets.

From a workflow modeling perspective, many different approaches have been
devised that aid in the formulation of workflows in corporate information system
environments. For example, workflow patterns [18] are an important initiative
for identification of comprehensive workflow functionality and provide the basis
for an in-depth comparison of many workflow management systems. Recently,
the elimination of modeling errors through explicit support for pattern selec-
tion in user-determined contexts has been studied [19]. Moreover, data-driven
approaches [20, 21, 22] define a new paradigm for the integration of complex
data and process structures. Similarly, the concept of business artifacts [23, 24]
facilitates business process modeling through operational modeling. Conceptual
schemas, which represent rules and processes shared among complex collaborat-
ing information systems, are another approach to business process modeling [25].
However, all of these methodologies and tools neglect the need of automation
that results from growing complexity. Their formulations on how to generate
models often remain partly implicit, and consequently, significant aspects of the
modeling that are required for automation are unformalized.

In general, automated generation of algebraic expressions for (complex) busi-
ness processes from dependency sets remains a difficult problem [16], and it is
comparable to intractable problems on arbitrary DAGs [38]. Our work addresses
this problem, identifying a class of digraphs for what an algebraic expression can
be produced efficiently. However, there are some contributions that explore the
automatic manipulation of dependencies. In contrast to our work, their sole goal is
process characterization and control. For instance, in dataflow programming [26]

Towards Algorithmic Generation of Business Processes 83

dependencies are modeled explicitly to guide activity scheduling. The dependen-
cies are optimized for the generation of minimal dependency sets, which guar-
antees high concurrency and reduced maintenance cost for process execution.

Our approach is also related to work on graph transformation systems [27]. In
such systems, transformation rules are applied to specific sets of graphs, allowing
the observation of certain properties and behaviors. We take advantage of this
concept and use graph transformation systems to define a set of graph topological
transformations, which preserve algebraic properties and, at same time, compose
representative expressions for them.

3 Graph Reduction

In the following, we introduce some concepts of graphs and graph transformation
systems, which form the foundation of our approach. Interested readers should
refer to the cited sources (e.g., [29, 30]) for a more comprehensive discussion.
Readers familiar with these formalisms can skip to the next section.

Directed Acyclic Graphs. A directed graph (or digraph for short) is a pair
D = (V, A) of vertices and arcs, such that A ⊆ V × V [28]. If more than one
digraph is considered, we refer to the sets of vertices and arcs as V (D) and A(D),
respectively. Given two vertices u and v, an arc uv represents one relation, in
which v depends on u, and it is graphically represented by an arrow from u to
v. In this case, u is referred to be the head of uv, and v is its tail. A vertex u is
called source if it does not depend on any other vertex, and it is called sink if no
vertex is dependent on it. A path in D is a sequence of vertices v1v2. . .vk−1vk,
such that vivi+1 ∈ A(D), and all vertices vi are distinct, for i = 1, 2, . . . , k − 1.
A cycle is a path where v1 = vk. A DAG is defined as a digraph without cycles.

A line digraph of D is a digraph Q = L(D), such that V (Q) = A(D) and
A(Q) = {uv : u, v ∈ V (Q), the head of u coincides with the tail of v}. A series-
parallel digraph (or sp-digraph for short) is a special type of DAG, recursively
defined as follows [29, 30].

– A digraph formed by two vertices joined by a single arc is a sp-digraph,
called trivial;

– Let D1 and D2 be sp-digraphs, and si and ti be their source and sink vertices
for i = 1, 2. Then the result of either of the following compositions is also a
sp-digraph:

• parallel composition: identify s1 with s2 and t1 with t2.
• sequential composition: identify t1 with s2.

A sample sp-digraph is shown in Figure 1(a). An important property of series-
parallel DAGs is that they are a class of digraphs, for which there exists an
efficient identification algorithm based on topological reductions [31, 32]. Such
reductions are either sequential or parallel, and examples for each are provided
in Figure 1(b). Applying these reductions iteratively to a DAG G, one even-
tually obtains a reduced (i.e., minimal) DAG G′ with one of the following two
properties.

84 M.K. Oikawa et al.

(a) (b) (c)

Fig. 1. Sp-digraphs: (a) an example of a sp-digraph; (b) sequential reduction (top) and
parallel reduction (bottom); (c) Wheatstone bridge

– G′ is a trivial sp-digraph;
– G′ has a Wheatstone bridge inside its structure.

G is a sp-digraph if and only if G′ satisfies the first property. Otherwise, the
second property holds for G′. The topology of a Wheatstone bridge [30] is shown
in Figure 1(c).

Graph Transformation System. A GTS consists of a set of transformation
rules that can be applied to certain graphs to build other graphs. The main
purpose of a GTS is to formalize rules for a closed class of graphs. This allows
to analyze specific graph properties by examining the outcome of these transfor-
mations [33]. In particular, we are interested in two properties, confluence [34]
and termination, which are presented after the following basic concepts.

Definition 1. (Labeled graph [35]) Let ΩV and ΩA be alphabets for vertex and
arc labels. A labeled graph is a tuple G = (V, A, lv, la), such that V is the vertex
set, A is the arc set, and the functions lv : V → ΩV and la : A→ ΩA are labeling
functions for vertices and arcs.

A morphism graph f : G→ G′ is a pair f =< fv : V (G)→ V (G′), fa : A(G) →
A(G′) > of functions, which preserve sources, targets, and labels. A morphism
f is an isomorphism if both fv and fa are bijective. Two isomorphic graphs G
and G′ are represented as G ∼= G′.

Definition 2. (Production [35, 34]) A production p = (L l← K
r→ R) consists

of two injective graph morphisms l and r as well as three finite graphs L, K, and
R, called left hand side, interface, and right hand side, respectively.

A production defines a transformation rule, that transforms L into R. Digraph
K is the interface between L and R and represents all elements in L that will
be preserved in R. The transformation consists of deleting the elements L −K
from digraph L, and adding all elements in R−K. Operation L−K renders all
elements of L that are not in K, and the same analogy applies to R −K.

Definition 3. (Pushout [35,34]) Given a set of graphs X, Y , Z, W , W ′ and two
morphisms y : X → Y and z : X → Z, a tuple < W, f : Z → W, g : Y → W >
is called pushout of < z, y > if the following properties are observed.

Towards Algorithmic Generation of Business Processes 85

X Y

Z W

W ′

y

z g

f g′

f ′
w

(a)

p : L K R

p∗ : G D H

l r

m

l∗ r∗

m∗d

(b)

Fig. 2. Pushout examples: (a) graphical representation; (b) double pushout

– Commutativity condition: g ◦ y = f ◦ z;
– Universal property: for all graphs W ′ and morphisms g′ : Y → W ′ and

f ′ : Z → W ′, there exists a unique morphism w : W → W ′ such that
w ◦ g = g′ and w ◦ f = f ′.

A graphical representation of a pushout is provided in Figure 2(a).

Definition 4. (Direct Derivation [35,34]) Let G and H be digraphs, p = (L l←
K

r→ R) a production, and m : L → G an injective morphism. Then G directly
derives H through p and m, denoted by G

p,m
=⇒ H, if two pushouts exist such that

the notation in Figure 2(b) applies. In this case D is called context graph, and
we sometimes write G

p
=⇒ H if m is not relevant.

Intuitively, the left pushout corresponds to the identification of elements L in
G and the deletion of elements m(L) from G. The right pushout corresponds to
the addition of elements m∗ (R)−d(K) to m(G). A derivation from G to H is a
sequence of direct derivations G = G0 =⇒ . . . =⇒ Gn = H for some n ≥ 0 and
may be denoted by G

∗=⇒ H .

Independence and Confluence. Two direct derivations G
p1=⇒ G1 and G

p2=⇒
G2 commute if there is a graph H such that G1

p2=⇒ H and G2
p1=⇒ H . In the

double-pushout approach, this is the case if the occurrences of two steps do not
overlap in deleted nodes and edges. A graph transformation system is confluent if
for each pair of derivations G

∗=⇒ G1 and G
∗=⇒ G2 there exists a graph H such

that G1
∗=⇒ H and G2

∗=⇒ H [36, 34]. Confluence implies that every graph can
be transformed into at most one irreducible graph. One of the possible methods
for proving confluence is to show that (i) a transformation is terminating and
(ii) all overlapping direct derivations (i.e., critical pairs) converge to isomorphic
graphs (i.e., joinability). This method is known as Newman’s Lemma [34].

Let G, G1, G2 and H be digraphs, and let p1 and p2 be productions, such
that G

p1=⇒ G1 and G
p2=⇒ G2. The pair G1

p1⇐= G
p2=⇒ G2 is called critical if

the direct derivations G
p1=⇒ G1 and G

p2=⇒ G2 are not independent. The GTS is
confluent if there exists some H1 and H2, such that G1

∗=⇒ H1
∼= H2

∗⇐= G2.

86 M.K. Oikawa et al.

Termination. A graph transformation system is called terminating if infinite
derivations G1 ⇒ G2 ⇒ G3 ⇒ . . . are impossible [36]. Simple sufficient condi-
tions for termination are that each rule reduces the size of a graph or the number
of occurrences of a fixed subset of labels.

4 Algorithmic Generation of Business Process

Our methodology requires adding semantic values to arcs and vertices by as-
signing algebraic elements to their labels. Therefore, we define the concept of
expression digraphs, which combines elements of classical digraphs and alge-
braic expressions, in the following. Building upon this foundation, we present
our algorithmic procedure for automated generation of algebraic expressions.

4.1 Expression Digraph

Definition 5. (Expression graph) An expression digraph is a digraph D=(V ,A,
lv,la), such that V is a vertex set, A is an arc set, and the functions lv : V →
{·, +, ‖, s, t} and la : A → T (Σ) ∪ {λ} are labeling functions for vertices and
arcs, respectively.

An expression graph is a labeled graph, in which the labeling functions lv and
la assign algebraic features to vertices and arcs. Function lv maps each non-
terminal vertex to an algebraic composition operator (i.e., sequential, alternative,
or parallel). Terminal vertices are mapped to s (source) or t (sink) and do not
have any specific algebraic behavior. Function la maps each arc either to an
algebraic term or to λ (see explanation below). By joining all algebraic terms
inside a single arc, it is possible to obtain a global algebraic expression, which
is called term(D). Symbol λ has to be defined in order to cover specific cases,
in which an arc does not describe the execution of an algebraic term. Therefore,
λ represents an empty or neutral action without functional participation in the
execution of the process. The behavior of λ is shown in Figure 3 for an arbitrary
algebraic term x.

x · λ = λ · x = x
x ‖ λ = λ ‖ x = x

Fig. 3. Properties for action λ

In essence, an expression graph is a data structure that makes explicit all pro-
cess terms, their dependencies, and their internal compositional relationships.
Consequently, each vertex represents more than just a composition between
terms; it also represents an execution state of the business process. Vertices
with out-degree greater than one are called branching vertices and represent
split points of the business process. Vertices with in-degree greater than one are
similarly called synchronizing vertices and represent merge points of the busi-
ness process. The execution options for branching and synchronizing vertices are
illustrated in Figure 4.

Towards Algorithmic Generation of Business Processes 87

+
a

b

c

Terms a and b are enabled, but only
one of them will be executed.

‖a
b

c

Terms a and b are enabled and con-
currently executed.

+

a

b
c The execution of one term (a or b)

enables term c for execution.

‖
a

b
c Both terms a and b need to be exe-

cuted to enable term c.

Fig. 4. Graphical representations for branching and synchronizing vertices

Well-formed structures have to use the same operator in each pair of branching
and corresponding synchronization vertices. Given the algebraic terms a and b,
Figure 5(a) shows a well-formed alternative structure. Well-formed parallel struc-
tures are constructed analogously by using parallel operators in both vertices. In
all cases when the business processes does not satisfy this characteristic, a struc-
tural conflict (i.e., deadlock or lack of synchronization) is unavoidable. Deadlocks
are parallel synchronizations of terms triggered by alternative branching (Figure
5(b)). Notice the parallel synchronization for terms a and b after an alternative
trigger. Lacks of synchronization are unintentional multiple executions of one or
more terms after an alternative synchronization (Figure 5(c)). In the example it
is easy to see that terms a and b are concurrently triggered and not synchronized.

+ + + ‖ ‖ +

a

b

a

b

a

b

(a) (b) (c)

Fig. 5. Branching and synchronizing in expression graphs: (a) well-formed alternative
composition; (b) deadlock; (c) lack of synchronization

4.2 Reduction System for Generation of Algebraic Expressions

A reduction system is a GTS, in which all productions reduce the graph dimen-
sion. It is common to refer to these productions as reductions. This subsection
introduces reduction system G for expression digraphs. G is composed of the
three productions shown in Figure 6. We call reductions (a), (b), and (c) alter-
native reduction, parallel reduction, and sequential reduction, respectively. The

88 M.K. Oikawa et al.

G:

+ +

a

b

· ·a + b

‖ ‖
a

b

· ·a‖b

∗ · ∗a b

∗ ∗a·b
(a) (b) (c)

Fig. 6. Reduction system G: (a) alternative reduction; (b) parallel reduction; (c) se-
quential reduction, where character ’*’ indicates either an alternative (+) or a parallel
(‖) operator

purpose of G is to replace more complex graph regions with single arcs while
preserving the semantics through equivalent algebraic expressions in the new
arc labels.

Lemma 1. Let D and H be expression DAGs and r a reduction in G such that
D

r⇒ H. Then term(D) is equivalent to term(H).

Proof. Since we consider algebraic expressions, the equivalence criterion is bis-
similarity. Thus, the proof of this lemma may be restricted to proving bissimi-
larity between term(D) and term(H). For this purpose, we show that the gener-
ation of H does not modify the behavior of the process represented by D. Next,
we present a constructive proof for alternative reductions. The same approach
can be analogously applied to the other reductions as well.

Recall alternative reductions from Figure 6(a). According to the definition of
expression digraphs in Section 4.1, the original digraph represents the alternative
execution of terms a and b. Since the execution trees of all possible instances of
D and H are isomorphic, term(D) is bissimilar to term(H). ��

Once we guarantee the equivalence preservation in G, we proceed to prove that
any sequence of transformations leads to the same result (i.e., G is convergent).
This can done by showing that G is confluent and terminating. For proving
confluence, it sufficient to show that all critical pairs converge. In fact, G has
only one critical pair, that converges. It occurs where two overlapping sequen-
tial reductions share a single vertex of the digraph. With some observations,
we should confirm that the expressions produced from them are bissimilar, so
that G is confluent. Regarding the terminating, it is sufficient to show that any
transformation reduces number of elements of digraph.

The results of Lemma 1 guarantee the preservation of algebraic properties of
arc labels after the application of all reductions. Together with confluence and
terminating properties, G shows that any sequence of reductions leads to the
same final expression DAG. A direct consequence of these results is the genera-
tion of a single algebraic expression for each expression DAG—regardless of the
transformation sequence. This result is the core foundation for our algorithm,
which is described next.

Towards Algorithmic Generation of Business Processes 89

4.3 Algorithm

This subsection explains how to use expression digraphs for generating busi-
nesses processes represented in algebraic expressions from a set of predefined
dependencies.

Preparing input information. As previously discussed, our starting point is a
set of direct dependencies between activities in a business process. Therefore, we
assume our initial input to be a set of dependencies, such as shown in Figure 7. In
this phase vertices represent activities of the business process, which is common
in many software tools and intuitive for non-expert users.

A B

B C

B D

C E

C F

D H

D I

E G

F G

G K

H J

I J

J K

K L

Fig. 7. Initial set of dependencies for the business process

Figure 7 shows some activities that participate in more than one dependency.
For example, activities B, C, and D have two successors each, while activities G,
J, and K have two predecessors each. Therefore, it is necessary to provide ad-
ditional information concerning the branching and synchronizing. A refinement
of the previous set of dependencies leads to the identification of branching and
synchronizing vertices, as listed in Figure 8. For each branching and synchro-
nizing vertex, it is necessary to define the corresponding composition rule (i.e.,
alternative or parallel).

Dependency Refinement

B C

B D
B ‖ C

D

C E

C F
C +

E

F

D H

D I
D ‖ H

I

Dependency Refinement

E G

F G

E

F
‖ G

H J

I J

H

I
+ J

G K

J K

G

J
‖ K

Fig. 8. Refinement of dependencies by definition of branching and synchronizing rules

After this step the graph-based representation of the current specification
can be built. The resulting digraph is shown in Figure 9 (i). Note that this is
not an expression graph yet. For generating an expression digraph, we have to

90 M.K. Oikawa et al.

build a line digraph first. The activity labels are placed on all arcs, and all non-
terminal vertices are mapped to algebraic composition operators. Following this
steps, we create an expression graph (Figure 9(a)). The latter serves as input for
the algorithm. One of its requirements is that the expression digraph is acyclic
and has just one connected component. These two properties can be tested in
polynomial time by classical graph algorithms. The presence of cycles in this
structure prohibits the use of the algorithm, and identification of more than one
connected component indicates a possible failure of the original project.

Executing the algorithm. At its core Algorithm 1 relies on the successive
application of reductions over an expression DAG. These reductions are ap-
plied according to GTS G, illustrated in Figure 6. For each reduction, arcs and
algebraic terms are joined, generating ampler sets of algebraic terms. During
some reductions, the algorithm can also identify structural conflicts by com-
paring the coherence among vertices. The execution terminates when no more
reductions are applicable, returning a reduced expression DAG. For well-formed
sp-expression DAGs, the returned DAG is isomorphic to the trivial sp-digraph
and has the complete algebraic expression as its arc label. Algebraic expressions
are not generated if any of the following conditions is true:

– The expression DAG is not well-formed, which indicates the presence of
structural conflicts. Algorithm 1 returns a DAG, in which these conflicts are
identified;

– The expression DAG is not series-parallel, which indicates the presence of
one or more Wheatstone bridges. Algorithm 1 returns a reduced DAG with
explicit Wheatstone bridges.

Algorithm 1 uses the following functions:

– pred(v): returns a set with all of the predecessors of vertex v;
– suc(v): returns a set with all of the successors of vertex v;
– lv(v): returns the algebraic operator related to the vertex v;
– la(uv): returns the algebraic term related to the arc uv;
– ‖uv‖: returns the number of arcs between vertices u and v.

In general, sequential reduction replaces a sequence of two terms through a
composition of them. This step is included in lines 5–14 where a loop changes a
pair of consecutive arcs into a single one and updates the labels with an algebraic
sequential composition. The example in Figure 9 (b) shows the application of
many sequential reductions on the initial expression DAG (Figure 9 (a)).

After the sequential reductions, the expression DAG may have pairs of vertices
with redundant arcs, susceptible to parallel and alternative reductions. Similarly
to sequential reductions, parallel and alternative reductions simplify a DAG by re-
moving redundant arcs and updating arc labels to compositions of algebraic terms
(Figure 9 (c)). The latter step is carried out by the loop in lines 16–34. This step
is also responsible for the identification of structural conflicts, because the corre-
spondent branching and synchronizing vertices are compared in lines 19–21.

Towards Algorithmic Generation of Business Processes 91

Fig. 9. Graphic representation of our algorithm: the dependency graph (i), the initial
expression DAG (a), and its reductions (b)–(f)

The aforementioned procedure is repeated inside the loop in lines 4-35, which
exits when no more reduction is applicable. This condition can be easily tested
by comparing the previous and current number of arcs, for instance. Exemplary
loop cycles and the terminating condition are illustrated in Figure 9 by sub-
figures (d), (e), and (f).

Considering loops at lines 4–35 and 16–34, this algorithm takes O(|V |.(|V |+
|A|)) time, since the outer loop investigates all vertices and inner loops trace
vertices and arcs. In fact, as we have multi-digraphs, |A| ≥ |V |, so the algorithm
takes time O(|V |.|A|). Despite of this time consumption, some contributions
suggests that is possible to achieve a better time consumption, around O(|A| +
|V |), using strategies of identification of series-parallel graphs. These algorithms
consider the application of appropriate auxiliary data structures [29,37]. So, we
believe that the time consumption should be improved using some customized
data structures for digraphs.

The final result of the algorithm is a reduced expression DAG. If the original
expression DAG is well-formed and series-parallel, the reduced graph will be a
trivial series-parallel expression DAG, and the correspondent algebraic expres-
sion will be placed on its sole arc label.

92 M.K. Oikawa et al.

However, obtaining algebraic expression in some cases might be problematic.
If the original expression DAG contains conflicts, the algorithm can be used to
return an expression DAG with the explicit indication of the conflict point. This
may be done by inserting some information about the vertices during the execu-
tion of lines 19–21. An important case to be considered separately occurs when
the original DAG is not series-parallel. In this case the reduced DAG will con-
tain at least one Wheatstone bridge. Generation of algebraic expressions from
Wheatstone bridges causes difficulties, because of a lack of explicit correspon-
dence between pairs of split and merge points. Instead of being synchronized,
split points are shared with potentially many merge points and vice-versa.

5 Wheatstone Bridges

Wheatstone bridges indicate structures on which series-parallel reductions do
not work. The topology of Wheatstone bridges (Figure 1(c)) may be found in
any non sp-digragh (e.g., Figure 10(a)). When considering the semantics of split
and merge rules, the analysis shows that many of these configurations contain
structural conflicts. This can be illustrated with a short example. Consider the
simple Wheatstone bridge in Figure 10(b). All of the arcs have an algebraic sub-
term in ACP (a, b, c, d and e). This configuration contains a deadlock, which
occurs (over v3) when term b is executed, and a lack of synchronization, which
occurs (over v4) when term a is executed. In fact, it is possible to observe that
almost all combinations of these vertices have some conflict, which propagates
through the business process instance. The only two completely conflict-free
cases are when all of the rules are the same, either alternative or parallel. In
these two cases, it is possible to apply separate algorithms to generate local
ACP expressions and re-apply the Algorithm 1. For alternative vertices, the
algebraic expression for Wheatstone bridges can be built in polynomial time,
unlike the parallel vertices, which may require exponential time.

(a)

+v1

‖v2

‖
v3

+ v4

a

b

c

d

e

(b)

Fig. 10. Wheatstone bridges: (a) An arbitrary digraph with Wheatstone bridges. (b)
An isolate Wheatstone bridge with conflicts.

The presence of Wheatstone bridges within business process models compli-
cates certain aspects, such as execution control and system scalability. Execution
control concerns the efficient management of all possible instances of a business
process. Practical experience shows that many configurations of Wheatstone

Towards Algorithmic Generation of Business Processes 93

Algorithm 1. Algorithm for generation of algebraic expressions and identifica-
tion of structural conflicts and Whetstone bridges
Require: An expression digraph D
1:
2: has_conflict ← false
3:
4: while D can be reduced do
5: for all non-terminal v ∈ V (D) do
6: if d−(v) = d+(v) = 1 then
7: u← pred(v);
8: w ← suc(v);
9: A(D)← A(D) ∪ {(u, w)}

10: la(uw)← la(uv) · la(vw)
11: A(D)← A(D)\{(u, v), (v, w)}
12: V (D)← V (D)\{v}
13: end if
14: end for
15:
16: for all v ∈ V (D) and ¬has_conflict do
17: for all w ∈ V(D) e w ∈ suc(v) do
18: if ‖vw‖ > 1 then
19: if lv(v) �= lv(w) then
20: has_conflict ← true
21: end if
22: {Let a1, a2, . . ., ak be the arcs v → w in A(D).}
23: l′a(vw)← la(a1)
24: A(D)← A(D)\{a1}
25: for all 2 ≤ i ≤ k do
26: l′a(vw)← l′a(vw) lv(v) la(ai)
27: A(D)← A(D)\{ai}
28: end for
29: A(D)← A(D) ∪ {vw}
30: la(vw)← l′a(vw)
31: lv(v)← lv(w)← ·
32: end if
33: end for
34: end for
35: end while
36: return D

bridges contain conflicts, and their actions may propagated to the rest of busi-
ness process. Regarding the scalability, even for Wheatstone bridges without
conflicts, the addition of new future dependencies (involving their internal ver-
tices) will likely result in conflicts, unless these dependencies preserve the previ-
ous rule. For Wheatstone bridges with conflicts, new additions will preserve or
even increase the conflict influence in the entire model.

Solely during the modeling phase, there exists the opportunity of planning the
control flow of the business process to avoid future problems with Wheatstone

94 M.K. Oikawa et al.

bridges. When starting from an existing business process model, it should be
guaranteed that all new sub-processes will not generate new conflicts. Therefore,
Algorithm 1 can be used as a supporting tool for modeling and reviewing of
business processes. The algorithm identifies conflicts and Wheatstone bridges
and provides a correct algebraic expression for series-parallel regions.

6 Conclusion

This paper presented a technique for reducing acyclic digraphs to equivalent
ACP algebraic expressions with explicit handling of structural conflicts. Our
method required the extension of the classical definition of acyclic digraphs by
assigning labels to vertices and arcs. With the help of these constructs, we have
formalized the step-by-step generation of equivalent algebraic terms through
systematic digraph reduction. Based on these findings we developed an algo-
rithm, which is able to transform user specified business step dependencies into
algebraic business process specifications. Additionally, our algorithm identifies
conflicts in business process models through the comparison of corresponding
split and merge points during the reduction phase. Our method directly benefits
tasks that involve complex business process modeling and allows the automated
generation of business step dependencies in business processes. Since our solution
automatically identifies regions with deadlocks and lacks of synchronization, it
can also be used for evaluating models (e.g., constructed through process min-
ing). Our future and ongoing work include the adaptation of the algorithm for
the treatment of cycles and indirect dependencies. Our ultimate goal is to enable
the automated generation of algebraic expressions involving communication and
multiple instances in business processes.

Acknowledgement

This work has been supported by grant# 06/00375-0, from FAPESP (São Paulo
State Research Foundation). Additional support is provided by grant# 482139/
2007-2 from CNPq (Brazilian National Research Council).

References

1. Workflow Management Coalition (2008), http://www.wfmc.org
2. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the

IEEE 77(4), 541–580 (1989)
3. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press,

New York (1990)
4. Bergstra, J., Ponse, A., Smolka, S.: Handbook of Process Algebra. Elsevier, Ams-

terdam (2001)
5. Ghomi, S.F., Rabbani, M.: A new structural mechanism for reducibility of stochas-

tic PERT networks. European Journal of Operational Research (2003)

Towards Algorithmic Generation of Business Processes 95

6. Russell, N., Hofstede, A.H.M.T., Mulyar, N.: Workflow control-flow patterns: A
revised view. Technical report (2006)

7. Smith, H., Fingar, P.: Workflow is just a pi process (2003), http://www.fairdene.
com/picalculus/workflow-is-just-a-pi-process.pdf

8. jBPM (2008), http://www.packtpub.com/article/jboss-jbpm-concepts-jpdl-
jbpm-process-definition-language

9. Puhlmann, F.: Soundness verification of business processes specified in the pi-
calculus. On the Move to Meaningful Internet Systems, 6–23 (2007)

10. Woodley, T., Gagnon, S.: BPM and SOA: Synergies and challenges. In: Ngu,
A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE
2005. LNCS, vol. 3806, pp. 679–688. Springer, Heidelberg (2005)

11. Ferreira, J.E., Takai, O.K., Pu, C.: Integration of collaborative information system
in internet applications using riverfish architecture. In: CollaborateCom (2005)

12. Ferreira, J.E., Takai, O.K., Braghetto, K.R., Pu, C.: Large scale order processing
through navigation plan concept. In: IEEE SCC, pp. 297–300 (2006)

13. Braghetto, K.R., Ferreira, J.E., Pu, C.: Using control-flow patterns for specifying
business processes in cooperative environments. In: Cho, Y., Wainwright, R.L.,
Haddad, H., Shin, S.Y., Koo, Y.W. (eds.) SAC, pp. 1234–1241. ACM, New York
(2007)

14. Gualtieri, A., Dell’Armi, T., Leone, N.: Process representation and reasoning using
a logic formalism with object-oriented features. In: BPM Workshops, pp. 153–163
(2006)

15. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

16. van der Aalst, W.M.P.: Pi calculus versus petri nets: let us eat humble pie rather
than further inflate the pi hype. BPM Trends 3, 1–11 (2005)

17. Fokkink, W.: Introduction to Process Algebra. Springer, New York (2000)
18. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:

Workflow patterns. Distributed and Parallel Databases 14, 5–51 (2003)
19. Gschwind, T., Koehler, J., Wong, J.: In: Applying Patterns during Business Process

Modeling, pp. 4–19 (2008)
20. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of

large process structures. On the Move to Meaningful Internet Systems (2007)
21. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and dy-

namic adaptation of data-driven process structures. In: Advanced Information Sys-
tems Engineering, pp. 48–63 (2008)

22. Müller, D., Reichert, M., Herbst, J., Köntges, D., Neubert, A.: Corepro sim: A tool
for modeling, simulating and adapting data-driven process structures. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 394–397.
Springer, Heidelberg (2008)

23. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operation specificaiton.
IBM Journal 42, 428–445 (2003)

24. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-
centered operational modeling: Lessons from artifact-centered operational model-
ing: Lessons from customer engagements. IBM Journal 46, 703–721 (2007)

25. Zuliane, D., Oikawa, M.K., Malkowski, S., Alcazar, J.P., Ferreira, J.E.: The river-
fish approach to business process modeling: Linking business steps to control-flow
patterns. In: CollaborateCom (2008)

26. Wu, Q., Pu, C., Sahai, A., Barga, R.S.: Categorization and optimization of syn-
chronization dependencies in business processes. In: ICDE, pp. 306–315 (2007)

96 M.K. Oikawa et al.

27. Gadducci, F.: Graph rewriting for the π-calculus. Mathematical. Structures in
Comp. Sci. 17, 407–437 (2007)

28. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer, Heidelberg (2002)

29. Duffin, R.J.: Topology of series-parallel networks. J. Mathematical Analysis and
Applications, 303–318 (1965)

30. Valdes, J.: Parsing flowcharts and series-parallel graphs. Technical report 1978
(1978)

31. Valdes, J., Tarjan, R., Lawler, E.: The recognition of series parallel digraphs. SIAM
J. Comput., 298–313 (1982)

32. Schoenmakers, B.: A new algorithm for the recognition of series parallel graphs.
CWI Report CS-R9504 (1995)

33. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
34. Plump, D.: Confluence of graph transformation revisited. In: Processes, Terms and

Cycles, pp. 280–308 (2005)
35. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Loewe, M.: Algebraic

approaches to graph transformation, part i: Basic concepts and double pushout
approach. Technical Report TR-96-17, Corso Italia 40, 56125 Pisa, Italy (1996)

36. Andries, M., Engels, G., Habel, A., Hoffman, B., Kreowski, H.-J., Kuske, S., Plump,
D., Schürr, A., Taentzer, G.: Graph transformation for specification and program-
ming. Science of Computer Programming 34, 1–54 (1999)

37. Korenblit, M., Levit, V.E.: On algebraic expressions of series-parallel and Fi-
bonacci graphs. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS
2003. LNCS, vol. 2731. Springer, Heidelberg (2003)

38. Naummann, V.: Measuring the distance to series-parallelity by path expressions.
In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903,
pp. 269–281. Springer, Heidelberg (1995)

Extending BPM Environments of Your Choice

with Performance Related Decision Support

Mathias Fritzsche1, Michael Picht2, Wasif Gilani1, Ivor Spence3, John Brown3,
and Peter Kilpatrick3

1 SAP Research CEC Belfast, United Kingdom
mathias.fritzsche@sap.com, wasif.gilani@sap.com

2 SAP Product & Technology Unit Suite Core, Germany
michael.picht@sap.com

3 Queen’s University Belfast, United Kingdom
i.spence@qub.ac.uk, tj.Brown@qub.ac.uk, p.kilpatrick@qub.ac.uk

Abstract. What-if Simulations have been identified as one solution for
business performance related decision support. Such support is especially
useful in cases where it can be automatically generated out of Business
Process Management (BPM) Environments from the existing business
process models and performance parameters monitored from the exe-
cuted business process instances. Currently, some of the available BPM
Environments offer basic-level performance prediction capabilities. How-
ever, these functionalities are normally too limited to be generally useful
for performance related decision support at business process level. In this
paper, an approach is presented which allows the non-intrusive integra-
tion of sophisticated tooling for what-if simulations, analytic performance
prediction tools, process optimizations or a combination of such solutions
into already existing BPM environments. The approach abstracts from
process modelling techniques which enable automatic decision support
spanning processes across numerous BPM Environments. For instance,
this enables end-to-end decision support for composite processes mod-
elled with the Business Process Modelling Notation (BPMN) on top of
existing Enterprise Resource Planning (ERP) processes modelled with
proprietary languages.

1 Introduction

Business processes are the foundation of any enterprise. Their efficiency has an
important effect on the profitability and hence on the success of a company
regardless of its size or domain. Therefore, the goal of any enterprise is to con-
tinuously optimize business process execution and adapt it to changes within the
market environment or the company itself. Enterprise application vendors aim
to support this by the notion of “closed loop of continuous process optimiza-
tion” (see Figure 1). In this paper, all tooling related to this loop is bundled
under the term BPM Environment. One phase within this loop is the business
processs configuration and business process composition (see CONFIGURE and
COMPOSE in Figure 1). This phase enables business analysts to use tools like

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 97–112, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

98 M. Fritzsche et al.

�������

���	
��

���������

����

�������

������

Fig. 1. Decision Support integrated in a closed loop of continuous process optimization

NetWeaver BPM [1], JCOM [2] or EMC Documentum Process Suite [3] to com-
pose business logic, e.g. for Composite Applications, on top of services provided
by configured back-end processes, such as the ERP processes offered by SAP
Business Suite or Business ByDesign [4]. One example of such an extension is
provided in one of our previous works [5]. Additionally, the business execution
(see EXECUTE) needs to be supported by BPM Environments as well.

Tooling for the analysis of the business process history is provided by some
BPM environments (see ANALYSE) in order to enable business process mon-
itoring and analysis. This Analysis step provides performance data for already
executed business processes, and offers functionalities and UI capabilities to the
users such as sales unit managers, etc., to monitor and analyse the historic
process performance data. This monitoring is then interpreted by users into de-
cisions, such as organisational changes or modifications of the business process
itself, meant to improve the future business performance.

However, decisions deduced from monitoring and analysis tooling are not suf-
ficient in case of a high degree of complexity in resource intensive processes
(e.g. layered use of resources, complex workflows, etc.) or in the statistical dis-
tribution of the monitored performance data or of plan data. The monitoring and
analysis based decision making process, therefore, might not always be helpful
to completely eliminate performance issues caused by a suboptimal scheduling
of resource, under-utilization, bottle-necks, etc.

Thus, business performance related decision support is needed to deal with
such cases (see DECIDE). For such support, performance analysis models nor-
mally need to be manually built in order to deal with complex resource schedul-
ing problems, for instance, via what-if simulation. This task is time consuming,
expensive and requires simulation related skills. A user further needs to have
the required performance modelling expertise and the necessary skills to be able
to interpret simulation results properly. The same applies for modelling in order
to solve an optimization problem. Therefore, it is more appropriate to integrate
directly such decision support into the existing business process modelling tools
as part of BPM Environments. Integrated decision support is provided by a
number of BPM Environments, like the EMC Documentum Process Suite [3],
but based on basic level process simulation capabilities. Sophisticated business
performance decision support, such as simulation of resource sharing scenarios
among different departments or integration of optimization engines is missing
in most environments [6]. Finally, non of the existing BPM Engines enables

Extending BPM Environments of Your Choice 99

sophisticated end-to-end decision support spanning Composite Application as
well as back-end processes [5].

In this paper we define an architecture which enables non-intrusive integra-
tion of sophisticated performance related decision support into existing BPM
Environments and describe our industrial experiences with applications of this
architecture for processes provided by existing ERP software, processes modelled
with NetWeaver BPM and processes of the JCOM [2] environment.

The paper is structured as followed: The next section describes different kinds
of questions answered by performance related decision support for business pro-
cesses. Section 3 motivates the need for the integration of performance related
decision support into existing BPM environments in a way which abstracts con-
crete business process modelling. Section 4 describes the proposed architecture
which is then evaluated in Section 5. Section 6 provides an overview of the related
work. Finally, Section 7 concludes the paper.

2 Background: Performance Related Decision Support
for BPM Environments

We experienced that support is needed within complex business processes to in-
vestigate questions related to distribution of resources, working times, through-
put and utilization. This is especially required in cases where there is a high de-
gree of complexity in resource intensive processes (e.g. layered use of resources,
shared use of resources, complex workflows, etc.) or in the statistical distribution
of the history data or the plan data. Our business performance related decision
support addresses the following type of resource related questions:

1. Can available staff cope with the future business growth?
2. Would a change of business conditions (e.g. change in the lower boundary of

sales order approval request) improve the business performance?
3. Would a redistribution of resources between departments help to achieve

overall performance targets?
4. How many employees are needed at which point in time?
5. Where is the predicted bottle-neck of the process?

Questions 1-3 can be answered via discrete event simulations [7]. For such a
prediction, the control flow oriented business behaviour model, e.g. a Business
Process Modelling Notation (BPMN) conforming model, needs to be combined
with business process instance data indicating the resource related behaviour
data of business process instances over a period of time. This time period can
span historic process instances as well as future ones. Examples of resource
related behaviour are the time needed to execute a BPMN Activity by one
employee or the working time contingent of this employee.

Thus, Process Model Data (control flow related behaviour) needs to be com-
bined with Process Instance Data (resource related behaviour). In the litera-
ture, numerous transformations can be found [8,9] where process models, such
as UML Activity Diagrams are combined with process instance data in order to

100 M. Fritzsche et al.

generate input for a discrete event simulation tool. On the other hand, numer-
ous transformations can be found [10,11] as well where the same data is used
to generate models analysed analytically. Analytical performance analysis tools
produce results normally significantly faster than simulations but they are us-
ing mathematical assumptions which make the results less accurate. Also, they
can normally only be used up to a certain size of input model due to the state
space explosion problem. For instance, [10] transforms UML Activity Diagrams
to Layered Queuing Networks (LQN) which can be analytically solved with the
LQN solver (LQNS)[12]. LQN solver, as compared to other analytic approaches,
especially considers layered use of resources, for instance, in case one resource
needs to wait for another one in a rendezvous like communication scheme [13]
in order to process activities. Moreover, if business performance objectives, con-
straints and requirements are modelled as well, it might be useful to integrate an
optimization engine, such as that provided via the tool AnyLogic [14], in order
to automatically execute a number of what-if simulations in order to propose an
optimal solution. Such an approach can be used to answer question 4. Further-
more, additional computations can be done to answer requests like question 5,
which are based on the results from the analytical or simulation based analysis.

3 Motivation

Some BPM Environments already provide basic what-if simulation capabilities
[6]. Others turn to specialists to undertake simulation studies, and those special-
ists often prefer more sophisticated simulation tools [6]. Sophisticated simulation
tools, such as the AnyLogic simulation tool [14], enable simulation of resource
sharing scenarios among different departments. This functionality is normally
not supported by the integrated simulation capabilities of existing BPM tools,
such as the EMC Documentum Process Suite [3].

Furthermore, most BPM tools with simulation capabilities do not offer de-
cision support functionality besides simulation functionality. However, a com-
bination of different kinds of performance analysis techniques can help to turn
what-if simulation results into information that business domain experts bet-
ter understand. This is required as business domain experts are typically not
performance modelling experts [5]. For instance, the automated combination of
what-if simulations with an optimization engine might be useful in order to pro-
vide suggestions about, for example, how a perfect resource scheduling should
look like. Also a combination of a simulation or a analytic performance prediction
tool with a bottle-neck analysis based on the prediction results might be useful
for a user to know which process step should be improved to prevent a bottle-
neck in the future. Moreover, none of the existing BPM Environments enable
decision support spanning processes across numerous BPM Environments. This
would enable end-to-end decision support for composite processes modelled with
BPMN based modelling tools (e.g. NetWeaver BPM) on top of existing back-end
processes (provided by existing ERP software) modelled with proprietary mod-
elling tools. Concluding, an approach is required which enables the integration

Extending BPM Environments of Your Choice 101

of sophisticated performance related decision support into a number of exist-
ing BPM Environments, which don’t have this functionality yet or only offer
basic level functionality. This integration especially needs to abstract from the
business process modelling tool.

4 Proposed Architecture

Our proposed architecture for such an integrated performance related decision
support in shown in Figure 2. This architecture refines the so called Model-Driven
Performance Engineering architecture (MDPE) [15,16] which was originally de-
signed for rather hardware resource related performance decisions. However, per-
formance is a concept which cross cuts numerous domains. Thus, a performance
modelling approach such as MDPE can be used for the BPM domain as well.

In the following paragraphs we define the various actors involved in this ar-
chitecture which are bundeled within the MDPE Workbench:

The Decision Support Integrator extends the BPM Environment of choice with
performance decision support functionality. A Performance Modelling Actor is
a part of the Decision Support Integrator. It abstracts sophisticated Perfor-
mance Analysis Tools on the one hand and a BPM Environment of choice on
the other hand. Furthermore, the Performance Modelling Actor requires Perfor-
mance Parameter as input. Examples for such parameters are how many sales
order requests have occurred/will occur per day in the previous/next 12 months
(see History Data and Plan Data in Figure 2). A more detailed description of the
Performance Modelling is given in Subsection 4.1. A Decision Support Calcula-
tor, another part of the Decision Support Integrator, enables us to interconnect
a number of different Performance Analysis Tools and to use these to generate
a Decision Support Result as described in detail in Subsection 4.3.

The Instance Data Manager described by Subsection 4.2 is needed to provide
access to the Process Instance Data for all actors of the Decision Support In-
tegrator, and to enable editing and analysis of input and output data for the
decision support in a language which a business domain expert understands.

�����������

����� ! �

��"!��

������������

������#��

$! #������#�

���! !����%&&��#�

�� %�#

����� ��� #�������#�
����� ! �

�� %�#

����� ��%�'�!��

�������#�

���! !���

�%&&��#�

����%��#��

�()��#!*� +�

�,�� ,��� +�

��� #��!�#

������������

������!�"�

��#��

�� #�������#����#��
-�����*!������#

�

���! !����%&&��#�

��#�"��#��

�!�%��#!���

�����

����� �

�����

����� �������!�"

����

�����.��/(���,
������������

����� ! �����

000 000

������#���

��#����#!���

��

Fig. 2. Proposed Architecture as Block Diagram [17]

102 M. Fritzsche et al.

4.1 Performance Modelling Actor

The Performance Modelling Actor (see Figure 4) provides an abstraction layer
for sophisticated Performance Analysis Tools including the Process Runtime on
the one hand and Process Modelling Tools on the other hand.

The MDPE approach uses Tool Independent Performance Model (TIPM)
which has been designed based on the Core Scenario Model (CSM) [18] by
the TU Dresden, SAP Research and the simulation tool provider XJTech as a
generic performance analysis model representation. Each TIPM is transformed
to at least one Tool Specific Performance Model (TSPM) as shown in Figure 4.
A TSPM is specific for a given Performance Analysis Tool, such as the discrete
event simulation engine AnyLogic [14]. Compared to that, the TIPM is an inter-
mediate language between Performance Analysis Tools and Process Modelling
Tools. Thus, the TIPM helps to apply performance related decision support for a
number of BPM Environments. A description of the TIPM meta-model follows.

TIPM based Abstraction. A TIPM combines the behavioural information
from the Process Models with Process Instance Data. The behavioural informa-
tion is represented in the meta-model of the TIPM (see Figure 3) with the meta-
elements Step and PathConnections which are part of a Scenario. An example
for such a Scenario in the business process domain is “Sales Order Processing”
for a certain sales office in Philadelphia. Resources can be shared among multiple
Scenarios, such as the case that the Marketing department with 10 employees is
shared between the Sales Order Processing of a sales office in Philadelphia and
the Sales Order Processing of a sales office in Chicago.

Performance Parameters (see Figure 2) need to be collected by an automated
parameter importer out of the Process Runtime in the case of History Data
(see in Figure 4) as proposed by Rozinat et al. [19] or defined as Plan Data.
Performance Parameters are used to populate the following fields in the TIPM
(see Figure 3):

– Resource.multiplicity (called Capacity in this paper): This metric indicates
how many units are available in a pool of resources e.g. 10 employees in the
Philadelphia sales office.

�������	

	���	�

����

� resourceDemand
�probability

���	����

� operationTime
�multiplicity

�����	������	�

����
	��	�

�occurence

��	��
	���	�

� population

1..*
+resourceAcquire

1..*

+resorceRelease

+pre*

+post*

Fig. 3. Simplified Performance Analysis Model called TIPM

Extending BPM Environments of Your Choice 103

– Resource.operationTime: This metric indicates how much work can be done
by one resource unit in a period of time. For instance, it specifies the resource
efficiency of an employee.

– Step.resourceDemand: Indicates the net resource consumption of a Step, e.g.
how much net working time is needed in order to create a Sales Order.

– Step.probability: Indicates the probability that a step is reached from the
previous step.

– Resource Link: Is the reference between the Step and the Resource (see
ResourceRelease and ResourceAcquire in Figure 3). It specifies, for instance,
which process steps in Sales Order Processing have to be executed by the
Marketing department.

– Workload: Specifies the occurrence or the population of arriving requests
either in case of an OpenWorkload (occurrence), or a ClosedWorkload (pop-
ulation). An example of a open workload is the number of arriving sales
requests per day in a business process for sales order processing; a closed
workload example would be number of consultants starting a business trip
immediately upon return from the previous one.

In the following subsection a description is provided of how the TIPM intercon-
nects process modelling tools within BPM Environments with the Performance
Analysis Tools.

Modular Model Transformations. As shown in Figure 4, the TIPM induces
the need for a model automated transformation chain in order to first trans-
form Process Models and the Performance Parameters to a TIPM and then
to transform the TIPM to one or more TSPMs. The transformations are im-
plemented within so called source- and target adapters as shown in Figure 4.
These transformations are modularized into numerous transformation steps as
described in [20]. This, for instance, enables separation of the structural concern
of the TIPM2AnyLogic Sim transformation (see Figure 4) from the concern of
the actual XML representation of an AnyLogic simulation model. This decou-
pling further enables a high degree of reusability, as we are able to reuse some
transformation steps for a number of source- and target adapters [20].

�������%����

���&#��
��������"�#

���&#��

1�����

�����

����2

���	�"!�

3�&#

1����

2����

����

	�"!��

�!�

������������������#��

������������

������!�"�

��#��

-����

�����

����

���&0�

�����

-���

2����

����

2����

����

����2�

���	�"!�

3�!�

����2�

	4�
	4�

����

	�"!��

�&#

����
�����

�����

Fig. 4. Performance Modelling Actor as Block Diagram[17]

104 M. Fritzsche et al.

Figure 4 shows the source- and target adapters that we implemented. It can
be seen that we are able to extend three different BPM Environments. Each
of these environments is based on different modelling languages. We, therefore,
have to support as input for the Performance Modelling Actor: SAP propri-
etary models, employed for back-end processes delivered by Business Suite or
Business ByDesign; JPASS models for the extension of the JCOM environment;
and BPMN models to extend the NetWeaver BPM environment employed for
composite processes.

We added three different target adapters to our workbench. Thus, three dif-
ferent performance analysis methodologies can be used from the three different
BPM environments which shows the high degree of extensibility of our solu-
tion enabled by the TIPM. One target adapter contains the transformations be-
tween TIPM and the simulation tool AnyLogic that we currently use as discrete
event simulation engine (see TIPM2AnyLogic Sim in Figure 4). Another is used
for AnyLogic optimization experiments (see TIPM2AnyLogic Opt in Figure 4).
Moreover, we are considering analytic performance analysis. Therefore, the cur-
rent MDPE implementation also supports the transformation of the TIPM to
Layered Queuing Networks (see TIPM2LQN in Figure 4) in order to be used as
input for the LQNS tool [12].

Each transformation in the chain has not only the direct transformation result
as output but also, as a by-product, a Trace Model which stores the information
about which model element(s) a is transformed to which model element(s) b.
In [21] we described how this Trace Model is achieved as a by-product with-
out additional effort from the developer of a transformation via the so-called
Higher Order Transformations. The use of these trace models is described in the
following subsection.

4.2 Instance Data Actor

As shown in Figure 4, the transformations within the source adapters combine
Performance Parameters with the behaviour modelled within Process Models
in order to generate a TIPM. Most of the Performance Parameters need to be
extracted as History Data out of a business process history log provided by a
Business Process Runtime (see Figure 2). However, Plan Data can be defined or
modified by the user. Additionally, the user needs to specify the Target Values,
Objectives and Constraints and to understand the Decision Support Results
(see Figure 2). Thus, it is required that the user can set and view this Pro-
cess Instance Data (see Figure 2) based on the Process Models and by using a
vocabulary of his/her business process domain.

The following two subsections, therefore, describe how these Process Instance
Data (see Figure 2) are represented and managed through the automated model
transformation chain introduced by the abstraction provided by the TIPM; and
the high degree of modularity for the implementation of the TIPM related model
transformations.

Extending BPM Environments of Your Choice 105

Management of Process Instance Data. Decision Support Results (see Fig-
ure 2), such as a simulation based prediction that a threshold will not pass in
the future, are set based on a TSPM, but need to be visualized based on the
original Process Models. We therefore use the trace models generated as by-
products of the transformations within source-and target adapters to navigate
backward through the automated transformation chain, from the TSPM model
elements to the model elements of the original Process Model. However, we have
to deal with a high number of source and target adapters, and therefore a high
number of model transformations, trace models and intermediate models of the
different model transformation chains. Thus, a systematic solution was required
to represent the linkage between source and target models of the different model
transformations and the related trace models. This linkage is stored, as pro-
posed by Bèzivin [22], into a so-called megamodel, which is a specialized model
to represent relationship between modelling artefacts. A specialized version of
such a megamodel [23] together with the trace models enables us to modularize
the transformation chains between Process Models and TSPMs into as many
transformation steps as one wants, as shown in [24].

Representation of Process Instance Data. The representation of the Pro-
cess Instance Data has to be done in a way that the meta-model of the Process
Model is not polluted. This pollution leads to contradicting the separation of
concerns principle [25]. Additionally, it is not always possible to have access to
the meta-model of the Process Model [24]. Thus, an approach such as UML
profiles was not sufficient for our case.

In our approach all Process Instance Data is defined within separate anno-
tation models [24] which are conforming to annotation meta-models. Therefore,
for the definition of, for instance, Performance Parameters, Decision Support
Results and the Objectives, we had to define a number of separate annotation
meta-models [24]. Each of these meta-models is specific for the business domain
which enables the user of our architecture to view and edit the different an-
notation models via a specific Parameter Interaction UI (see Figure 5) [24] in
vocabulary he/she understands.

As described in [24], our annotation meta-models are refining the weaving
meta-model provided by the ATLAS group [26]. This meta-model enables the
definition of links to other models [27,28]. Thus, due to the fact that our anno-
tation meta-models are based on the weaving meta-model, our approach enables
annotation of additional information to Process Model of the BPM Environment
without polluting them.

Figure 5 shows the application of our annotation models for two different pro-
cess modelling tools: The BPMN based NetWeaver BPM editor and an editor for
back-end processes based on a SAP proprietary modelling language. The “Start
Process” node selected in the back-end process editor (see right side of Figure 5)
and the annotated workload for the sales office “Chicago” is visualized as “Pro-
cess Instance Occurrence” in the Parameter Interaction UI (see left side of Figure
5). Moreover, the bottom right of the figure shows a planned “Occurrence” of a
process instance, between 01.10.2009 and 31.12.2009, which is 2 tasks per day.

106 M. Fritzsche et al.

Fig. 5. Integration of the Parameter Interaction UI into two modelling tools: The
NetWeaver BPM editor (middle) and an editor for back-end processes (right)

The Parameter Interaction UI therefore encapsulates the functionality to en-
rich the Process Modelling Tool of the BPM Environment with capabilities to
visualize the annotated Process Instance Data based on the Process Model and
edit some of this data. The current implementation of this annotation editor is
Eclipse framework specific which restricts the application of our implementation
to BPM Environments, using Eclipse based Process Modelling Tools. The main
concepts can however be applied to any Process Modelling Tool.

For the non-intrusive integration of annotation models into a process modelling
tool it is necessary to notify about the currently selected graphical model element
to the Parameter Interaction UI. Therefore, it was required to implement a minor
extension (less than 100 lines of code) for the SAP proprietary counterpart of the
Eclipse Graphical Editor Framework (GEF) [29], to call the Parameter Interac-
tion UI if the selected process flow model element is changed. This extension can
be reused for numerous modelling editors. The JPASS tool is however not based
on a graphical framework like GEF. We therefore additionally developed a minor
extension for the JPASS tool. Hence, the only place where, in few cases, an Eclipse
based process model editor needs to be modified in order to extend it with perfor-
mance related decision support, is to notify about the currently selected graphical
model element to the Parameter Interaction UI.

4.3 Decision Support Calculator

In the previous subsection we described how the Process Instance Data is rep-
resented as annotation models, and how we interconnect different Process Mod-
elling Tools with multiple Performance Analysis Tools. The current subsection
describes how the Decision Support Results (see Figure 2), e.g. if thresholds will
be met in the future, are calculated based on the output of one or more

Extending BPM Environments of Your Choice 107

���! !����%&&��#�����%��#��
�!�%��#!������

����
.,�#'���

� � ���#
���! !����%&&��#�

�� %�#

������������

����� ! �

��"!��

�()��#!*� �,�� ,��� ��� #��!�#

�

Fig. 6. Decision Support Calculator as Block Diagram [17]

Performance Analysis Tools and user provided Objectives, Constraints and Thresh-
olds. This calculation is done by the Decision Support Calculator, which is de-
picted by Figure 6. This actor combines Performance Analysis Results with its
own logic in order to output a Decision Support Result.

Based on the currently available Performance Analysis Tools for our current
proposed architecture, a combination of different kinds of decision support is
enabled:

– A Threshold Checker either executes what-if simulations by calling the Any-
Logic discrete event simulation tool based on the history and plan data, or
triggers analytical predictions from the LQNS tool based on average calcula-
tions from these data. The performance analysis results are compared with
the user provided thresholds.

– An Optimization Engine executes automatically a number of what-if simula-
tions by calling the AnyLogic Optimization Engine in order to fulfil user pro-
vided threshold but also to have the best possible result with regard to user
provided Objectives. The possible configurations for the what-if simulations
are restricted via the user provided Constraints.

The final Decision Support Results are also represented as annotation models
which are used to enrich the original Process as described in the previous sub-
section. Hence, a user is, for instance, able to see which activities in a BPMN
process will not fulfil certain thresholds in case of future business growth.

5 Experiences Gained

From the architectural point of view, the high degree of modularity within the
proposed architecture enabled us to gain advantages in terms of extensibility and
reusability. Extensibility is demonstrated when we recently extended our solution
with the LQNS tool. This additional performance analysis methodology is us-
able for the users of all the BPM Environments which we have already extended.
Reusability has been demonstrated also: The JPASS modelling tool (within the
JCOM BPM Environment), has been recently extended with our architecture.
The effort of writing the required transformations took less than one week of de-
velopment effort. However, the effort of integrating the first Process Modelling
Tool in our architecture took us around six weeks of development effort. This is
due to the fact that all TIPM to TSPM transformations could be reused for the
JPASS integration including some transformation steps provided by the already
existing Process Model to TIPM transformation.

108 M. Fritzsche et al.

The cost for this high degree of reusability and extendibility, introduced with
our architecture, is additional memory consumption and performance footprint-
which is however, for current applications of our architecture, not yet critical.

In order to gain experiences with our tooling from the functionality point of
view, we applied it for the SAP demo company called Akron Heating. Akron Heat-
ing does not exist in reality but the business processes and data of this company
are maintained within SAP just as the data of a real one, for experimental pur-
poses. Below we discuss an example combination of different what-if questions
and an process optimization based on Akron Heating in order to demonstrate
that the current combination of Performance Analysis Tools provided by our ar-
chitecture is applicable for industrial usage.

Akron has three sales offices in the US (Denver, New York and Philadelphia).
To leverage business in the USA Midwest area the head of the company decided to
set up a new sales office in Chicago in September 2008. Based on the monitoring
and analysis tooling, the head of sales discovers that one of the processes has not
been executed with the expected efficiency across all sales units. Thus, based on
a process model he/she is able to investigate the source of this poor business pro-
cess performance based on predefined thresholds of Key Performance Indicators
(KPI) which are e.g. indicating the historic end-to-end processing times. Based on
a drilldown of these processing times, he/she finds out that especially the historic
performance of one process step executed in the Chicago office is not sufficient.

Since we extended a SAP proprietary modelling editor for back-end processes
with our tooling, the user is now able to investigate the impact of a number of
potential changes in the process execution with a combination of different auto-
matically generated what-if simulations (discrete-event simulations) and process
optimizations. For the what-if simulation, two Scenarios are annotated (see left
side of Figure 5) to the process model and transformed to the TIPM (see 4.1): one
for the process executed in Philadelphia and one for the Chicago business process.
It follows a description of a four step performance analysis:

– In a first step, the user does a what-if simulation in order to predict the out-
come of training by reducing the annotated planned working time consump-
tion (called Resource Demand in the TIPM) of one process step. A discrete
event simulation based prediction which utilizes the AnyLogic tool shows,
based on the process model, that if the training of the department in Chicago
made the employees as efficient as the employees in other departments, all
processing targets would be met.

– In a second what-if question the user wants to investigate, again via a discrete
event simulation, if the staff in the Chicago office can handle the future busi-
ness growth by increasing the planned Process Instance Occurrence (called
OpenWorkload in the TIPM). The result of the simulation demonstrates that
a business growth would lead to a resource problem within the department in
Chicago.

– A third what-if simulation shows how our decision support tooling can help to
identify if staff of other departments can compensate this resource problem in
the case that some resources are shared among the departments. This is done

Extending BPM Environments of Your Choice 109

by modifying annotated responsibilities of the Philadelphia staff for market-
ing related process steps of the Chicago office (responsibilities are represented
as Resource Links in the TIPM). In the TIPM the Philadelphia resource can
be linked between the marketing related Steps of the Chicago process. This
is possible as the staff of the two departments is represented in the TIPM
independent of the formerly mentioned Scenarios.

– In the fourth step, the application of the AnyLogic optimization engine shows,
via Optimization Assessment, what is the optimal sharing of resources among
the departments; e.g. how many working hours have to be provided for the
Chicago process related tasks by Philadelphia staff.

Additionally, we could have predicted the impact of changing a business condi-
tion, such as the lower boundary of an approval request. Also, in case the anal-
ysed process gets extended with a NetWeaver BPM process, our tool is still able
to support the head of sales at Akron heating.

Furthermore, we are able to combine simulations with a bottle-neck analysis
in order to indicate future bottle-necks. We anticipate to also gain industrial ex-
periences with this additional Performance Analysis Engine.

Concluding, the possibility to combine different sophisticated decision method-
ologies with a number of process modelling tools provided by different BPM En-
vironments has been identified as very beneficial. However, we identified the need
for an automated History Data import for our solution which we have not imple-
mented yet. Thus, History Data is currently annotated manually which is too time
consuming for industrial application. An automated History Data import would
calculate the historic Probabilities and Occurrences for a specific process, e.g.
by counting the number of executed process instances. Furthermore, the work-
ing time consumptions can be calculated based on the process step durations.
Additionally, resource Capacities and Resource Links can be calculated by inter-
preting those resources as part of the Capacity which has been used in the past.
This importer also needs to provide a way to systematically deal with uncertain-
ties in the History Data, for instance, due to a high variance or too few executed
process instances. This should especially enable users to provide assumptions for
cases where the confidence in the historic data is too low. Moreover, an integration
of additional data sources, such as Human Resource (HR) data from the organi-
zational management is required for future versions of our tooling. Especially, the
allocation of persons to projects or organisational units needs to be accessed from
HR data in order to calculate capacities. We, therefore, also require a mechanism
to enable import of such additional data sources.

6 Related Work

From the application point of view, the closest related work to our knowledge
is that concerned with BPM Environment such as EMC Documentum Process
Suite [3] which provides simulation capabilities which are normally simplistic [6].
Our approach enables one to benefit from the know-how and functionality con-
tained in a sophisticated performance decision support system, which enables,

110 M. Fritzsche et al.

for example, sophisticated model simulations, optimizations and static analysis
including a combination of them. The closest work to our knowledge from the
architectural point of view is the PUMA architecture [30] which is based on a
Core Scenario Model (CSM) [18], similar to the TIPM. However, the PUMA ap-
proach cannot be applied to BPM Environments as it is modelling Performance
Parameters as UML Profiles, which are applicable only when UML models are
employed as Process Models. Our approach is based on annotation models and
provides a significantly higher degree of flexibility. Our approach can therefore be
used to annotate any kind of Process Model, for instance, BPMN models used for
NetWeaver BPM, or numerous SAP proprietary models used in existing ERP so-
lution. Furthermore, we are able to support visualization of the Process Instance
Data, such as Plan Data and the Decision Support Results, in the language a do-
main expert can understand and based on the original Process Models. Finally,
our approach considers multiple views, namely: Objectives, Constraints and Re-
quirements, as proposed in [16]. This enables better decision support than that
provided by the PUMA approach, as we can, for instance, automatically propose
optimal solutions.

7 Conclusions and Future Work

In this paper we proposed a generic architecture which enables extension of exist-
ing BPM Environments, having basic-level or no decision support, with capabili-
ties for sophisticated performance related decision support. In case the proposed
solution is applied, this decision support is executed via a mouse click. It is espe-
cially useful for resource scheduling questions, which arise particularly in the case
of highly complex resource intensive processes (e.g. layered use of resources, com-
plex workflows, etc.) or where the statistical distributions of the history data are
complex. Thus, our approach helps to improve understanding of resource usages
within complex business processes.

Due to the integration of sophisticated decision support tooling, existing BPM
Environments can benefit from the know-how and functionality contained in such
tools, which enables, for example, sophisticated model simulations, optimizations
and static analysis. Furthermore, our architecture enables the integration and
combination of multiple sophisticated decision support tools in an efficient way
and without polluting original models with additional information for performance
analysis, which is sometimes not possible [24]. Our architecture further enables to
integrate sophisticated decision support tooling in such a way that it is straight-
forward to be used by business domain experts using the BPM Environments at
runtime and design time of a business process.

Additionally, we abstract the BPM Environment itself which enables us to ap-
ply our decision support for end-to-end processes which are possibly managed
with a number of BPM Environments.

We anticipate to extend our approach with a graphical indication of uncertain-
ties in the historic performance data, which is used as input for the automatically
generated performance analysis models. Such uncertainties, for instance, historic

Extending BPM Environments of Your Choice 111

resource demands with a high variance, etc., will be presented to the user to allow
input of available assumptions.

Disclaimer

The information in this document is proprietary to the MODELPLEX consor-
tium member SAP AG. The information in this document is provided “as is”,
and no guarantee or warranty is given that the information is fit for any partic-
ular purpose. The above referenced consortium members shall have no liability
for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials subject
to any liability which is mandatory due to applicable law. Copyright 2008 by
SAP Research.

References

1. Snabe, J.H., Rosenber, A., Molle, C., Scavillo, M.: Business Process Management:
The SAP Roadmap (2008)

2. JCOM (2008), http://www.jcom1.com/
3. Associates, B.S.: The BPMS Report: EMC Documentum Process Suite 6.0 (2007)
4. SAP AG (2009),

http://www.sap.com/solutions/sme/businessbydesign/index.epx

5. Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I.T.A., Kilpatrick, P., Brown, J.:
Towards utilizing model-driven engineering of composite applications for business
performance analysis. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 369–380. Springer, Heidelberg (2008)

6. Harmon, P., Wolf, C.: The state of business process management (2008)
7. Banks, J., Carson, J.S., Nelson, B., Nicol, D.: Discrete-Event Simulation.

Prentice-Hall, Englewood Cliffs (2005)
8. Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.J.:

Workflow Simulation for Operational Decision Support Using Design, Historic and
State Information. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 196–211. Springer, Heidelberg (2008)

9. Balsamo, S., Marzolla, M.: A simulation-based approach to software performance
modeling. In: ESEC/FSE-11th. ACM, New York (2003)

10. D’Ambrogio, A.: A model transformation framework for the automated building
of performance models from uml models. In: WOSP 2005. ACM Press, New York
(2005)

11. Bertolino, A., Marchetti, E., Mirandola, R.: Real-time UML-based performance en-
gineering to aid manager’s decisions in multi-project planning. In: WOSP 2002.
ACM Press, New York (2002)

12. Franks, R.G.: DISSERTATION: Performance Analysis of Distributed Server Sys-
tems (1999)

13. Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The Stochastic Ren-
dezvous Network Model for Performance of Synchronous Client-Server-like Dis-
tributed Software. IEEE, Los Alamitos (1995)

14. XJ Technologies: AnyLogic — multi-paradigm simulation software,
http://www.xjtek.com/anylogic/

112 M. Fritzsche et al.

15. Fritzsche, M., Johannes, J.: Putting Performance Engineering into Model-Driven
Engineering: Model-Driven Performance Engineering. In: Giese, H. (ed.) MODELS
2008. LNCS, vol. 5002, pp. 164–175. Springer, Heidelberg (2008)

16. Fritzsche, M., Gilani, W., Spence, I., Brown, T.J., Kilpatrick, P., Bashroush, R.:
Towards performance related decision support for model driven engineering of en-
terprise soa applications. In: 15th ECBS 2008, vol. 0. IEEE, Los Alamitos (2008)

17. Knöpfel, A., Gröne, B., Tabeling, P.: Fundamental Modeling Concepts: Effective
Communication of IT Systems. John Wiley & Sons, Chichester (2006)

18. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tems Modeling 6(2) (2007)

19. Rozinat, A., Wynn, M., Aalst, W., Hofstede, A., Fidge, C.: Workflow Simulation
for Operational Decision Support Using Design, Historic and State Information.
In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
196–211. Springer, Heidelberg (2008)

20. Fritzsche, M., Jouault, F., Lämmel, R., Gilani, W.: Model Transformation Chains
to integrated Performance related Decision Support into BPM Tool Chains. In: In-
vited submission fro the post- proceedings of the GTTSE 2009. LNCS. Springer,
Heidelberg (2009)

21. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application
of tracing techniques in model-driven performance engineering. In: 4th ECMDA
Traceability Workshop, ECMDA-TW (2008)

22. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the Large and
Modeling in the Small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003.
LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005)

23. Barbero, F., Jouault, J.: Model Driven Management of Complex Systems: Imple-
menting the Macroscope’s Vision. In: 15th ECBS 2008. IEEE, Los Alamitos (2008)

24. Fritzsche, M., Johannes, J., et al.: Systematic usage of embedded modelling lan-
guages in model transformation chains. In: SLE 2008. LNCS, vol. 5701. Springer,
Heidelberg (2009)

25. Mehr, F., Schreier, U.: Modelling of Message Security Concerns with UML. In: 9th
ICEIS (2007)

26. Fabro, M.D.D., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW
plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

27. Vara1, J.M., Castro1, M.V.D., Fabro, M.D.D., Marcos, E.: Using Weaving Models
to automate Model-Driven Web Engineering proposals. In: ZOCO 2008/ JISBD
(2008)

28. Voelter, M., Groher, I., Kolb, B.: Mechanisms for Expressing Variability in Models
and MDD Tool Chains. In: MDSD in Embedded Systems (2007)

29. Eclipse, C.: Eclipse graphical editing framework (gef) – version 3.4.2 (2009),
http://www.eclipse.org/gef

30. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.:
Performance by unified model analysis (PUMA). In: WOSP 2005. ACM Press,
New York (2005)

Business Process-Based Resource Importance

Determination

Stefan Fenz1, Andreas Ekelhart2, and Thomas Neubauer2

1 Institute of Software Technology and Interactive Systems
Vienna University of Technology, A-1040 Vienna, Austria

fenz@ifs.tuwien.ac.at

http://www.ifs.tuwien.ac.at
2 Secure Business Austria, A-1040 Vienna, Austria

{ekelhart,neubauer}@securityresearch.at
http://www.sba-research.org

Abstract. Information security risk management (ISRM) heavily de-
pends on realistic impact values representing the resources’ importance
in the overall organizational context. Although a variety of ISRM ap-
proaches have been proposed, well-founded methods that provide an
answer to the following question are still missing: How can business
processes be used to determine resources’ importance in the overall or-
ganizational context? We answer this question by measuring the actual
importance level of resources based on business processes. Therefore, this
paper presents our novel business process-based resource importance de-
termination method which provides ISRM with an efficient and powerful
tool for deriving realistic resource importance figures solely from existing
business processes. The conducted evaluation has shown that the calcu-
lation results of the developed method comply to the results gained in
traditional workshop-based assessments.

Classification: Static process analysis.

1 Introduction

As almost every business decision is based on data, reliable information tech-
nology (IT) is a prerequisite for business continuity and therefore crucial for
the entire economy [1,2]. The importance of information technology brought up
the urgent need to ensure its continuous and reliable operation and to protect
the processed and stored information respectively. Recent research has shown
the impact of security breaches on the market value of organizations. According
to [3] organizations lost on average approximately 2.1% of their market value
within two days surrounding security breaches. The interconnectedness of the
global economic system enables information security threats such as computer
viruses to proliferate in a very fast way. Due to the rising economic relevance of
IT risks, organizations should strive for adequately managing these risks.

Information security risk management (ISRM) is a process which allows IT
managers to balance the operational and economic costs of protective measures

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 113–127, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

114 S. Fenz, A. Ekelhart, and T. Neubauer

and achieve gains in mission capability by protecting the IT systems and data
that support their organizations’ mission [4]. The two main phases of this pro-
cess are Risk Assessment, which focuses on risk identification and evaluation,
and Risk Mitigation, which refers to prioritizing, implementing, and maintain-
ing the appropriate risk-reducing measures. Continual evaluation and assessment
are necessary to keep the required level of security and thus are cornerstones in
successful risk management. As we focus in this work on the Impact Analysis,
which is part of the Risk Assessment process, we will briefly state the theoreti-
cal groundwork. In the information security context risk is defined as a function
of the probability of a given threat-source exercising a particular potential vul-
nerability, and the resulting impact of that adverse event on the organization
[4]. According to NIST 800-30 the level of impact is determined by the poten-
tial mission impacts and in turn produces a value for affected IT assets and
resources. This description points out the information necessary for a successful
impact analysis, keen understanding and knowledge of the processes performed,
and secondly, system and data criticality values of connected resources (impor-
tance to an organization). The importance indicates the organizational impact
if the considered resource is not longer able to conduct its designated tasks
(we focus on the availability aspect). Even though a great deal of research has
been conducted and manifold ISRM approaches evolved in the past 30 years,
gathering this data is still mostly a manual and work intensive process, relying
on interviews and questionnaires with system and information owners. The fol-
lowing problems are connected with the determination of the importance of an
organization’s resources:

– Business processes are subject to constant change. While flexible workflow
design is a key factor in keeping pace with modern market trends [5,6,7], it
poses a major challenge for ISRM [8,9]. Changing or newly introducing busi-
ness processes requires a reevaluation of the current risk situation. Resources
could be used in a dangerous new context or new activities could introduce
critical vulnerabilities. Considering time consuming risk assessments, com-
panies often refrain from continuous risk evaluation.

– Detailed and correct knowledge about business processes and attached re-
sources is required, otherwise gained risk values will be incorrect. A consis-
tent and up-to-date documentation of processes and connected resources is
often not available and time consuming and error prone to create.

– While system and information owners should have a grounded knowledge
of the processes and resources in their domain, resources can be used by
various processes. Aggregating the resource importance from the process- to
the organization-wide level is, again, time consuming and error prone.

– Even if there are well defined rating criteria, due to the involvement of various
system and information owners (e.g., multiple departments) an objective
rating cannot be guaranteed.

Business Process-Based Resource Importance Determination 115

Determining the resource importance, based on business processes, is an el-
emental and reoccurring step in ISRM. With regard to the identified problems
our research aims at answering the following question:

– How can business processes be used to determine resources’ importance in
the overall organizational context?

First, we elaborate on the research question by analyzing existing approaches in
the field of business process analysis (cf. Section 2). Second, we aim at developing
concepts to determine the organization-wide importance of resources based on
business processes and the corresponding activities (cf. Section 4). Third, the
gathered research results are prototypical implemented (artifact-building) and
evaluated by comparing its output to a traditional workshop-based assessment
(cf. Section 5 and 6).

2 Existing Approaches

This section provides an overview how existing approaches address ISRM with
focus on the resource importance determination. Today, a collection of infor-
mation security risk management methods, standards and best-practice guide-
lines, such as CRAMM [10], NIST SP 800-30 [4], CORAS [11], OCTAVE [12],
EBIOS [13], and recently ISO 27005 [14] exist. High level standards such as
NIST SP 800-30 and ISO 27005 address the step of determining the importance
of an organization’s resources by recommending the collection of information
on business processes and system/data criticality and sensitivity. Should there
be no existing documentation available, such as business impact analysis (BIA)
reports, interviews should be conducted with system and information owners to
determine the impact level of IT systems and data in case of loss or degradation
of confidentiality, integrity, and/or availability. The magnitude of impact can be
assessed quantitative or qualitative.

The reference model for process-oriented IT risk management by Sackmann
[8,15] connects Business Processes, IT Applications and Infrastructure, Vulner-
abilities, and Threats to model IT security relevant risks and their effects on
each layer. Therefore, Sackmann’s reference model can be used for modeling
threat consequences on business processes. The main problem of the approach
is that it is not possible to describe how the modeled business processes and IT
applications/infrastructure interrelate in detail. IT applications and infrastruc-
ture are assigned on the process- and not on the activity-level. Therefore, it is
not possible to determine realistic importance values of the required IT applica-
tions/infrastructure, leading to biased risk values for the business process.

Another approach described in [16] uses the Tropos Goal Risk framework in
the context of business continuity management. Business objects are annotated
with utility values for the organization. Those high level goals can be achieved by
tasks which again can depend upon resources. Negative events affect resources
and thereby threaten the business goals. Utility values for goals are assigned
manually by business owners in advance. Resource utility can be calculated by

116 S. Fenz, A. Ekelhart, and T. Neubauer

summing up the values generated by a resource. While this approach offers a
possibility to determine resource utility the following open challenges remain:
(i) no standardized business process modeling language has been used, (ii) path
possibilities have not been taken into consideration, and (iii) multiple usage of
a resource in one process is not addressed.

In 2003 van der Aalst et. al. [17] point out that for information-intensive
products, such as insurances, loans, permits, and many other services, the rela-
tionship with the supporting workflow process is often neglected. They primary
goal was to support users in designing efficient and effective workflows based
on product information rather than on subjective interpretations of managers,
consultants, and IT experts. Their work is insofar important for our research
as they strive to provide a methodology to automatically calculate the value of
process elements. A Product/Data Model with nodes representing end-products,
raw materials, purchased products, and subassemblies, is the basis for their cal-
culations. In this tree-like structure various paths lead to the top element. Costs
and required throughput times of child elements define the parent’s character-
istics. After node characteristics (costs, flow time, probability, and constraints)
have been quantitatively defined, it is possible to provide insights, such as cost
or flow time, on paths to reach the top level product.

Important to mention is the approach in [18] which explicitly focuses on busi-
ness process-oriented resource evaluation. To improve accuracy of risk analysis
results, they argue that resources have different values according to their business
contribution, department utilization and user position, and are not sufficiently
defined by purchase costs or maintenance expenses. Delphi teams apply weights
for the ’business process-oriented classification factors’ for each resource and
thereby the resource value is calculated. While this approach offers categories
and a methodology to evaluate resource values it still depends on Delphi teams
to analyze business processes and resources, and to assign values accordingly to
their cognition and experience.

Our paper makes a first step towards addressing the shortcomings of existing
approaches and provides a business process-based resource importance deter-
mination method. Based on the organization’s business processes, their overall
organizational importance, and the resources required by their activities, the
proposed method automatically determines the organization-wide importance
of the involved resources. The advantages of the proposed solution are: (i) the
necessary input data is restricted to machine-interpretable business process rep-
resentations including required resources and the importance of the business
process, and (ii) assuming that the required input data is already available our
approach provides ISRM with fast results regarding resource importance, which
are based on the business processes’ structure and resource involvement.

3 Preliminaries

In this paper we use Petri nets to model business processes (cf. [19,20,21]). For
the purpose of this paper, places represent the current state and causal dependen-
cies of the business process whereas transitions represent the activities involved

Business Process-Based Resource Importance Determination 117

in the considered business process. According to [20] we use the building blocks
AND-split, AND-join, OR-split, and OR-join to model sequential, conditional,
and parallel routing. Sequential routing deals with casual relationships between
activities. Compare A1 - P2 - A2 in Figure 1 for an example. Parallel routing
uses AND-split and AND-join to model parallel activities (see the AND-split
at A4 and the AND-join at A12 in Figure 1). Conditional routing is modeled
by OR-split and OR-join building blocks to allow for routing which may vary
between cases [20]. Place P3 and P15 in Figure 1 show a typical OR-split and
OR-join. With regard to the stated research questions it is required that these
typical business process building blocks are supported by our contribution.

4 Business Process-Based Determination of the Resource
Importance

Based on any given business process structure, we developed a method to de-
termine the importance of a resource in the given organizational context. The
importance indicates the organizational impact if the considered resource is not
longer able to conduct its designated tasks (we focus on the availability aspect).
The unit which is used to express the resource importance depends on the unit
used to describe the importance of the overall business process. Monetary (e.g.,
Euros per hour) or qualitative (e.g., high, medium, and low) ratings are amongst
others an option to express the importance of the business processes and the re-
quired resources. Assigning a value for the overall business process importance is
usually done by the process owner in collaboration with the management. While
various factors, such as business process profit, reputation or service level agree-
ments, can influence the decision, the final figures depend on the organization’s
focus. Likewise, a decision for quantitative or qualitative ratings is based on the
focus and available information. This high level of flexibility allows organizations
to target their individual requirements. Despite this flexibility, once an organi-
zation has made a decision, it is necessary to follow a consistent rating process
throughout the organization over all processes to guarantee consistent results.
Our approach expects consistent process ratings, and calculates resource impor-
tance values, dependent on the resources’ business process involvement and the
business process structure.

4.1 Assumptions

Before going into the details of the proposed calculation model, we have to state
some requirements: the considered business process has to (i) indicate which
resources are required by the included activities, (ii) be correctly modeled so
that it can be mapped to a valid Petri net, and (iii) provide an importance
value for the considered organizational context. Each resource has (i) a busi-
ness process-wide, local importance value IL(Ri), and (ii) an organization-wide,
global importance value IG(Ri). The calculation model for these variables is
described in the following subsections.

118 S. Fenz, A. Ekelhart, and T. Neubauer

4.2 Determining the Resource’s Local Importance

Let Ai be Activity i, Pi Place i, Ri Resource i, EPiAj the Edge which connects
Place i and Activity j, and EAiPj the Edge which connects Activity i and Place
j. The local resource importance IL(Ri) refers to the resource’s importance in
the context of the analyzed business process. While IL(Ri) is expressed in either
quantitative or qualitative values, the local importance of an activity IL(Ai) is
always expressed by a value between 0 and 1. IL(Ai) is calculated by summing
up the local importance values of its ingoing edges EPAi and dividing it by the
amount of ingoing edges |EPAi |:

IL(Ai) =

∑|EPAi |
j=1 IL(EPjAi)

|EPAi |
(1)

Similar to IL(Ai), the local importance IL of place Pi is determined by summing
up the local importance values of its ingoing edges (how we calculate the local
importance values of edges is described in Equations 3, 4, and 5). Set EAPi

includes the ingoing edges E of place Pi. If |EAPi | is empty, IL(Pi) is set to one
(this would be the first place in the Petri net).

IL(Pi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 , EAPi = ∅

|EAPi |∑

j=1

IL(EAjPi) , EAPi �= ∅
(2)

According to the previous equations, we need the local importance of all ingoing
edges E of place Pi and activity Ai to calculate their local importance value
IL(Pi) and IL(Ai). If edge E connects an activity and a place (potential AND-
split) the local importance IL(EAiPj) equals the importance of the edge origin
element Ai:

IL(EAiPj) = IL(Ai) (3)

If edge E connects a place and an activity (potential OR-split) the local im-
portance IL(EPiAj) is calculated by dividing the importance of the edge origin
element Pi by the amount of outgoing edges |EPiA|:

IL(EPiAj) =
IL(Pi)
|EPiA|

(4)

The developed calculation model assigns each activity, place, and edge within the
considered business process a local importance value (IL(Ai), IL(Pi), IL(PiAj),
and IL(AiPj)). Basically these values reflect the probability that the process
passes through these elements. Currently, the model assumes an uniform distri-
bution regarding potential process execution flows at conditional routing (OR-
split) elements. Example: if there is an OR-split element with two outgoing edges,
each edge has a 50% chance of being used (compare Place P3 in Figure 1).

Business Process-Based Resource Importance Determination 119

To improve our business process-based resource importance results regarding
their fit to the real world, we introduce two additional edge parameters at each
OR-split: (i) pass probability for each outgoing edge PP (EPiAj), and (ii) value-
adding potential of each outgoing edge V AP (EPiAj). IL(EPiAj) is determined by
calculating the average of the pass probability PP (EPiAj) and the value adding
potential V AP (EPiAj) of edge EPiAj .

IL(EPiAj) =
PP (EPiAj) + V AP (EPiAj)

2
(5)

PP and V AP are expressed by a value between 0 and 1. The pass probability of
all outgoing edges has to sum up to 1. The value-adding potential of all outgoing
edges has to sum up to 1. By combining both values in IL(EPiAj) we are able
to express besides the pass probability the value-adding potential of potential
process execution flows. Each outgoing OR-split edge has to be assessed by the
business process owner in a manual manner to determine (i) its pass probability
based on historical process execution data, and (ii) its value-adding potential
based on available relevant data and/or the business process owner’s experience.

After determining the importance of each activity which is included in the
considered business process we can calculate the importance of the involved
resources. We assume that data about activities’ resource usage is available in
set MRi and that for each activity an ordered list L, containing all previous
edges originating from an OR-split place, exists. For example: in the context of
the business process shown in Figure 1, activity A15 would be associated with
the list LA15 = {EP3A3 , EP3A4 , EP16A15}. For any activity combination Ax and
Ay in MRi we check if LAx is included in LAy or if LAy is included in LAx . If
LAx is a subset of LAy or LAy is a subset of LAx we further inspect the last
element (edge) of the subset and keep the place P that it is connecting. If the
superset contains exactly one edge that connects place P we can infer that the
importance value of the superset is already included in the subset. Therefore, we
exclude the activity that corresponds to the superset from MRi . In the next step
we sum up in GRi the local importance values of those activities which share a
common starting pattern and contain exactly one edge starting from the same
place but differ in the targeted activity. Importance values of those activities
which do not comply with the above rule (share a common starting pattern and
contain exactly one edge starting from the same place but differ in the targeted
activity), are also added to GRi . The local importance IL of Resource Ri in
context of Process p equals the highest importance value e included in GRi ,
times the overall importance I of the considered business process p.

ILp(Ri) = max{e ∈ GRi} ∗ I(p) (6)

Consider the following example in the context of the business process shown
in Figure 1: MRi = {A3, A14, A15}, LA3 = {EP3A3}, LA14 = {EP3A3 , EP3A4 ,
EP16A14}, LA15 = {EP3A3 , EP3A4 , EP16A15}. According to the definition above,
we search for subsets but cannot find any in MRi . In the second step we build
new groups starting with LA3 ; LA3 does not share an edge only differing in

120 S. Fenz, A. Ekelhart, and T. Neubauer

its target activity and thus we create a new element in GRi with LA3’s impor-
tance value. Continuing with LA14 , we find in LA15 an identical starting pattern
(EP3A3 , EP3A4) and the same place with a differing target activity (EP16A14 and
EP16A15), thus we add a new element to GRi summarizing the local importance
values of LA14 and LA15 . As described in Section 4.1 the analyzed business
process has to provide an importance value for the considered organizational
context. This importance value can be quantitative (e.g. Euro per hour) or qual-
itative (e.g. high, medium, or low) and determines the way how the importance
of the involved resources is represented. The business process owner and the
management define the importance of the considered business process. Again,
the importance indicates the organizational impact if the considered business
process is not longer able to deliver the expected output (we focus again on the
availability aspect).

4.3 Determining the Resource’s Global Importance

Let P be the total number of business processes and ILp(Ri) the local importance
IL of Resource Ri in context of Process p. The global importance IG of resource
Ri is calculated by summing up its local importance values ILp(Ri) in the given
organizational context:

IG(Ri) =
∑

p≤P

ILp(Ri) (7)

Finally, IG(Ri) provides a comprehensible figure on the resource’s importance.
The following section demonstrates the developed approach by applying it to
three real-world business processes.

5 Proof of Concept

We use BOC’s ADONIS tool to model the business processes for the proof of
concept. ADONIS allows for attaching resource elements to business process
activities and provides an export functionality which is capable of exporting
the entire business process representation as an easily accessible XML file. Af-
ter parsing the ADONIS business process representation into a valid Petri net,
we were able to start the developed resource importance calculation. The busi-
ness processes, overall importance values, and involved resources which are used
in the course of the proof of concept are shown in Table 1. As an example
Figure 1 shows a Petri net representation of the Register Damage business
process. At each OR-split (Place P3 and P16) we used equally distributed
values for pass probability PP and value-adding potential V AP . Therefore
the local importance of each outgoing edge at the places P3 and P16 is 0.5
(e.g., IL(P3A3) = PP (EP3A3)+V AP (EP3A3)

2 = 0.5+0.5
2 = 0.5). The following ac-

tivity/resource combinations exist in the Register Damage business process:
MPCC ={A6, A7, A8, A9, A11, A12, A16, A17, A18}, MNS ={A16, A17},
MCD ={A6, A7, A18}, MPD ={A8}, MHD ={A9}, and MED ={A16, A17}.

Business Process-Based Resource Importance Determination 121

A1

A16 A17

A14 A15

A13

A5

A11

A6

A12

A10

A9A8

A7

A4A3

A2

A18

1

1

0.50.5

0.5 0.5

0.5 0.5

0.50.5

1

1

0.50.5 0.5 0.5

0.5

0.5

Start Register
Damage

P2

P6

P7

P9

P10

P11

P12

P8

P13

P14

P17 P18

P4

P5

P16

P19

P3

P15

End Register
Damage

Register
Damage

Classify
Damage

Start
Simple
Case

Start
Complex
Case

Check
Simple
Damage

Check
Simple
Policy

Check
Police
Records

Check
Historical
Records

Check
Complex
Policy

Check
Complex
Damage

Collect
Complex
Information

Collect
Simple
Information

Make
Decision

Accept Claim

Pay Damage

Reject Claim

Send Letter

Archive

P1

P20

Fig. 1. Petri net representation of business process ’Register Damage’ (taken from [21])

122 S. Fenz, A. Ekelhart, and T. Neubauer

Table 1. Business processes, their organization-wide importance and involved
resources

Business Process Importance Resources

Register Damage 300 e/h PC-Consultant (PCC)
Notification-Server (NS)
Client-Data (CD), Police-Data (PD),
Historical-Data (HD), Employee-Data
(ED)

Consultant Assignment 100 e/h PC-Reception (PCR)
Notification-Server (NS)
Client-Data (CD), Employee-Data
(ED), Appointment-Data (AD),
Historical-Data (HD)

Conclusion of Contract 200 e/h PC-Consultant (PCC)
Notification-Server (NS)
Client-Data (CD)

The XML-representation of each business process has been used as input data
for the prototype. According to the developed calculation schemes the local
importance of each resource is calculated. As an example we will show how
the importance of the Police-Data (PD) resource in the context of the Register
Damage business process is calculated.

1. Context Determination: According to Table 1 and MPD, the Police-Data
resource is used in activity A8 of the Register Damage process.

2. Local activity importance determination: The local importance of A8
is determined by its incoming edge IL(EP9A8) = IL(P9)

|EP9A| = 0.5
1 = 0.5. The

importance of place P9 has been calculated based on the importance of
activity A4, which has been calculated based on the importance of place
P3 and so on. As described in the previous paragraphs the outgoing edge
importance of P3 has been calculated based on equally distributed values
for pass probability and value-adding potential.

3. Local resource importance determination: After creating GPD on ba-
sis of MPD (cf. Section 4.2) the local, i.e. business process wide, importance
IL of the Police-Data resource PD in context of the Register Damage pro-
cess equals the highest importance value included in GPD, times the overall
importance I of the Register Damage process p: ILRD (PD) = max{e ∈
GPD} ∗ I(p) = 0.5 ∗ 300e/h= 150e/h.

4. Global resource importance determination: The global importance of
the Police-Data resource is calculated by summing up its local importance
values ILp(PD) in the given organizational context. Since the Police-Data
resource is only used in the Register Damage process the global importance
equals its local importance in the context of the Register Damage process:
IG(PD) =

∑
p≤P ILp(PD) = 150e/h.

Business Process-Based Resource Importance Determination 123

Table 2. Local Resource Importance Results

Business Process Local Resource Importance

Register Damage PC-Consultant (1)
Notification-Server (1)
Client-Data (1), Police-Data (0.5), Historical-Data
(0.5), Employee-Data (1)

Consultant Assignment PC-Reception (1)
Notification-Server (1)
Client-Data (1), Employee-Data (1), Appointment-
Data (0.5), Historical-Data (0.25)

Conclusion of Contract PC-Consultant (1)
Notification-Server (1)
Client-Data (1)

Table 3. Global Resource Importance Results

Resource Global Resource Importance

PC-Consultant 300e/h + 200e/h = 500e/h
PC-Reception 100e/h = 100e/h
Notification-Server 300e/h + 100e/h + 200e/h = 600e/h
Client-Data 300e/h + 100e/h + 200e/h = 600e/h
Police-Data 150e/h
Historical-Data 150e/h + 25e/h = 175e/h
Employee-Data 300e/h + 100e/h = 400e/h
Appointment-Data 50e/h

Table 2 shows the local resource importance value results in the context of
the given business processes. Each value (potential range: 0 - 1) is derived, as
shown in the previous example, from the business process activity involving the
considered resource and having the maximum activity local importance value.

The local importance values of each resource are used to aggregate them
to an organization-wide global resource importance value. Table 3 shows the
calculation results. Based on the structure and importance of the considered
business processes the results show the organization-wide impact if one of the
involved resources is not longer available to the organization.

According to the results, the notification server, client data, and consultant
PC are the most valuable resources in the organization (600e/h and 500e/h).
The unavailability of appointment data would cause the least impact on the
organization (50e/h).

6 Evaluation

To evaluate the developed concepts we compare the results of the corresponding
prototypical implementation to the results gained in the course of a

124 S. Fenz, A. Ekelhart, and T. Neubauer

Table 4. Global Resource Importance Evaluation Results

Resource Participant 1 Participant 2 Participant 3

PC-Consultant 500e/h (83%) 500e/h (83%) 114.55e/h (86%)
PC-Reception 100e/h (17%) 100e/h (17%) 19.3e/h (14%)
Notification-Server 600e/h (100%) 600e/h (100%) 133.85e/h (100%)
Client-Data 600e/h (100%) 600e/h (100%) 133.85e/h (100%)
Police-Data 150e/h (25%) 150e/h (25%) 22.5e/h (17%)
Historical-Data 175e/h (29%) 175e/h (29%) 23.6e/h (18%)
Employee-Data 400e/h (67%) 400e/h (67%) 75.55e/h (56%)
Appointment-Data 50e/h (8%) 50e/h (8%) 7.5e/h (6%)

traditional workshop-based assessment. Three business processes including their
organization-wide importance and required resources (see Section 5) have been
provided to the workshop participants. The following steps have been performed
at the workshop-based assessment: (i) introduction and definition of the work-
shop goal → business process-based determination of resource importance values,
(ii) definition of the importance term in the context of the workshop, (iii) man-
ual process analysis by workshop participants → each participant is required
to determine the importance of the resources involved in each business pro-
cess, and (iv) determination of organization-wide resource importance values →
the participants are required to aggregate the results of the previous step to
organization-wide resource importance values.

Table 4 shows the global resource importance results of each workshop par-
ticipant. Participant 1 and 2 intuitively use an approach similar to our proposed
solution. Since Participant 3 used another calculation model to determine the
global resource importance we related each global resource importance result
to the most important one. Although Participant 3 used a different calculation
model, the relative results differ only slightly from ours. It took every partic-
ipant about 9 minutes to calculate the importance values of each resource in
the local and global context. The subsequent discussion has been dominated
by the limitations of our proposed calculation model: (i) the model does not
incorporate down-time costs of activities; it ignores the fact that resource down-
times of later activities are normally associated with less costs than resource
down-times of early activities, (ii) the model does not incorporate the duration
of activities; similar to Limitation (i) the model ignores that resources required
by long activities are more crucial than resources required by short activities,
and (iii) it is not guaranteed that the calculation results reflect the real world
importance of the considered resources. Although, Limitation (i) and (ii) could
be easily incorporated into the existing calculation model, we decided to accept
these limitations at this stage of research since we want to keep the necessary
input data at a minimum. Limitation (iii) reflects the fundamental problem of
modeling the reality by business processes. As organizations and their work flows
are dynamic, business processes have to be continuously adapted to match re-
ality. Using business processes for the resource importance determination in the

Business Process-Based Resource Importance Determination 125

ISRM context requires up-to-date and realistically modeled business processes
to calculate realistic importance values for the involved resources.

7 Conclusions

ISRM heavily depends on realistic impact values representing the resources’ im-
portance in the overall organizational context. Business processes are widely
used as a structured flow of organizational activities, which support business
goals and are enabled by resources (cf. [22]). Therefore, the central research
question of this paper was: How can business processes be used to determine
resources’ importance in the overall organizational context? Our paper makes a
first step towards a business process-based resource importance determination.
Based on the organization’s business processes, their overall organizational im-
portance, and the resources required by their activities, the proposed method
automatically determines the organization-wide importance of the involved
resources.

The advantages of the developed solution are: (i) the necessary input data
is restricted to machine-interpretable business process representations including
required resources and the importance of the business process, and (ii) assuming
that the required input data is already available our approach provides ISRM
with fast results regarding resource importance, which are based on the business
processes’ structure and resource involvement. The conducted evaluation reveals
the following limitations of our contribution: (i) activity down-time costs are not
incorporated, (ii) activity duration is not considered, and (iii) it is not guaranteed
that the calculation results reflect the real-world resource importance, due to the
fundamental problem of business process modeling: reflecting the dynamic reality
by a model. Although, our model could be easily extended to address Limitation
(i) and (ii) we decided to accept the limitations at the current stage of research
to keep the necessary input data to a minimum.

Further research will empirically test our proposed solution by conducting case
studies in the Austrian social security insurance sector. The gathered research
results will be used to refine our approach for determining resource importance
values in the ISRM context. Second, we will address the identified limitations
and extend this approach to integrate the time factor (e.g., down-time costs and
activity duration). Third, we will research on how to express the importance of
business processes and resources. Although we used quantitative units in this
paper, we do not want to exclude qualitative rating schemes. Fourth, we will
extend our research from the availability to the confidentiality perspective. One
of the next research questions will be: How can business processes be used to
determine resources’ confidentiality in the overall organizational context?

Acknowledgment

The authors would like to thank Sigrun Goluch, Gernot Goluch, Stefan Jakoubi,
and Simon Tjoa. This work was supported by grants of the Austrian Govern-
ment’s FIT-IT Research Initiative on Trust in IT Systems under the contract

126 S. Fenz, A. Ekelhart, and T. Neubauer

813701 and was performed at the research center Secure Business Austria funded
by the Federal Ministry of Economy, Family and Youth of the Republic of Aus-
tria and the City of Vienna.

References

1. Gerber, M., von Solms, R.: Management of risk in the information age. Computers
& Security 24, 16–30 (2004)

2. Commission of the European Communities: Communication from the Commission
to the Council, The European Parliament, The European Economic and Social
Committee and the Committee of the Regions ’A strategy for a Secure Information
Society - Dialogue, partnership and empowerment”. COM (2006) 251 final (2006)

3. Cavusoglu, H., Mishra, B., Raghunathan, S.: The effect of internet security breach
announcements on market value: Capital market reactions for breached firms and
internet security developers. International Journal of Electronic Commerce 9(1),
69–104 (2004)

4. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for informa-
tion technology systems. NIST Special Publication 800-30, National Institute of
Standards and Technology (NIST), Gaithersburg, MD 20899-8930 (2002)

5. Voorhoeve, M., Van der Aalst, W.: Ad-hoc workflow: problems and solutions. In:
Proceedings of the Eigth International Workshop on Database and Expert Systems
Applications, pp. 36–40. IEEE Computer Society, Los Alamitos (1997)

6. van der Aalst, W.: Generic workflow models: How to handle dynamic change and
capture management information? In: Conference on Cooperative Information Sys-
tems, pp. 115–126 (1999)

7. Mills, S.: The future of business - aligning business and it to create an enduring
impact on industry. Technical report, IBM (2007)

8. Sackmann, S.: A reference model for process-oriented it risk management. In: 16th
European Conference on Information Systems, ECIS 2008 (2008)

9. Al-Mashari, M.: Business process management - major challenges. Business Process
Management Journal 8, 411–412 (2002)

10. Farquhar, B.: One approach to risk assessment. Computers and Security 10(10),
21–23 (1991)

11. Fredriksen, R., Kristiansen, M., Gran, B.A., Stølen, K., Opperud, T.A.,
Dimitrakos, T.: The CORAS framework for a model-based risk management pro-
cess. In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002. LNCS,
vol. 2434, pp. 94–105. Springer, Heidelberg (2002)

12. Alberts, C., Dorofee, A., Stevens, J., Woody, C.: Introduction to the OCTAVE
approach. Technical report, Carnegie Mellon - Software Engineering Institute,
Pittsburgh, PA 15213-3890 (2003)

13. DCSSI: Expression des Besoins et Identification des Objectifs de Sécurité (EBIOS) -
Section 2 - Approach. General Secretariat of National Defence Central Information
Systems Security Division, DCSSI (2004)

14. ISO/IEC: ISO/IEC 27005:2007, Information technology - Security techniques -
Information security risk management (2007)

15. Sackmann, S.: Assessing the effects of it changes on it risk - a business
process-oriented view. In: Multikonferenz Wirtschaftsinformatik (MKWI 2008),
pp. 1137–1148. GITO-Verlag, Berlin (2008)

Business Process-Based Resource Importance Determination 127

16. Asnar, Y., Giorgini, P.: Analyzing business continuity through a multi-layers model.
In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240,
pp. 212–227. Springer, Heidelberg (2008)

17. Reijers, H.A., Limam, S., van der Aalst, W.M.P.: Product-based workflow design.
J. Manage. Inf. Syst. 20(1), 229–262 (2003)

18. Eom, J.-H., Park, S.-H., Han, Y.-J., Chung, T.-M.: Risk assessment method based
on business process-oriented asset evaluation for information system security. In:
Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS,
vol. 4489, pp. 1024–1031. Springer, Heidelberg (2007)

19. van der Aalst, W., van Hee, K.: Business process redesign: a petri-net-based ap-
proach. Computers in Industry 29, 15–26 (1996)

20. van der Aalst, W.: The application of Petri nets to workflow management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

21. van der Aalst, W.: Process-oriented architectures for electronic commerce and in-
terorganizational workflow. Information Systems 24(8), 639–671 (1999)

22. zur Muehlen, M., Rosemann, M.: Integrating risks in business process models. In:
ACIS 2005 Proceedings (2005)

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 128–142, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Case Study and Maturity Model for
Business Process Management Implementation

Michael Rohloff

University of Potsdam, August-Bebel-Str. 89,
14482 Potsdam, Germany

michael.rohloff@wi.uni-potsdam.de

Abstract. This paper presents the implementation of Business Process
Management in a large international company. The business case illustrates the
main objectives and approach taken with the BPM initiative. It introduces a
process management maturity assessment which was developed to assess the
implementation of Business Process Management and the achievements. The
maturity model is based on nine categories which comprehensively cover all
aspects which impact the success of Business Process Management. Some
findings of the first assessment cycle are pinpointed to illustrate the benefits and
best practice exchange as a result of the assessment.

Keywords: Business Process Management Implementation, Maturity Model.

1 Introduction

Business Process Management is a management practice which encompasses all
activities of identification, definition, analysis, design, execution, monitoring &
measurement, and continuous improvement of business processes. Consequently
Business Process Management encompasses not only the analysis and modeling of
business processes but also the organizational implementation, leadership and
performance controlling [1, 2, p. 7f.]. Although it is a well-known and largely used
practice there is an ongoing discussion on how to best implement Business Process
Management. Due to the comprehensive nature of BPM a variety of different
approaches exist (e.g. Business Process Reengineering (BPR); Continuous Process
Improvement, Workflow Management, reference modeling and implementation of
standard enterprise applications).

Facing the importance and vital role of Business Process Management for the
transformation and organizational change of enterprises the question arises how
different organizations perform in their development of Business Process Management.
The notion of maturity has been proposed in other approaches to assess an organizations
state in terms of implementing a specific program or the quality of a process.

A prominent and widely used model is the Capability Maturity Model developed
by the Software Engineering Institute at Carnegie Mellon University [3]. This model
was originally developed to assess the maturity of software development processes.
Over the years it was extended to other domains. Today the Capability Maturity

 Case Study and Maturity Model for Business Process Management Implementation 129

Model Integration is an approach for the assessment and improvement of product
development processes in general. A number of additional maturity models were
developed which cover other areas like the CMMI Acquisition Model (CMMI-AM)
or the People Capability Maturity Model (P-CMM) for personal management and
development to name a few. Today, CMMI is widely used in practice to evaluate and
to improve (software) development processes [4, 5, 6, 7, 8].

CMMI uses standardized question catalogues and evaluation criteria to assess an
organizations product development process and to work out the strengths and
weaknesses. It helps to define improvement measures and to plan the implementation
in an organization. The CMMI introduces the concept of five maturity levels defined
by special requirements that are cumulative.

In recent years a number of maturity models for Business Process Management
have been proposed [9, 10, 11, 12, 13, 14, 15, 16, 17]. Most of the models focus on
only one dimension for measuring BPM maturity and very few applied studies are
known. Exceptions are the Business Process Management Maturity Model (BPMM)
of the OMG [9], the Process Audit of Hammer [11], and the maturity model of
Rosemann et al. [13, 14, 15, 16].

This paper presents the implementation of Business Process Management in a large
international company, undertaken as a corporate, company wide project within
Siemens AG.

The next section outlines the objectives and the overall approach for implementing
business process management. It introduces the process framework including the
reference process house and the overall structure and content of the BPM
implementation process.

Section 3 gives an overview of the process management maturity assessment model
which was developed in order to assess and to derive improvement measures for the
Business Process Management in the company. The assessment process and some
results of the assessments are presented to illustrate some benefits of the approach.

2 Implementation of Business Process Management

2.1 The Business Process Management Initiative at Siemens AG

The Siemens AG is engaged in different business sectors with a very broad and
diverse product and service spectrum. It is a global company with regional
representations in more than 190 countries (for a short overview see [18]). Over the
years the process and IT landscape has developed differently in the business units and
regions. With the Business Process Management activities a redesign, alignment and
optimization of business processes and a better process standardization and utilization
of synergies is intended.

Central element of the Business Process Management Initiative was the
development of a Siemens Process Framework [19] which consists of a reference
process house (RPH) and common methods for process management across the
company. These activities, with the development of a reference process house (RPH)
in its core, are part of a comprehensive process management initiative [18, 2, pp.
241-252]. The initial company wide activities for process standardization started in

130 M. Rohloff

2000 with the E-Business initiative “Generic Business Processes”. The primary focus
was on the definition of the Supply Chain Management processes based on the Supply
Chain Operational Model (SCOR). In the following years the process activities where
extended to the Customer Relationship Management and the Product Lifecycle
Management. Finally, the activities were taken up and consolidated under the
leadership of corporate CIO and the development of a comprehensive reference
process house covering all business processes was accomplished [19]. The primary
objective was to leverage synergies and cost potentials with a common organization
and process coordination, and the definition of reference processes.

Reference models are increasingly used in industrial practice and leave the area of
research ([20, 21], see the overview in [22, pp. 393f.], for reference modeling projects
see [23]). In practice reference models for processes have particular relevance, e.g.
[24, 25, 26, 27]. For the development of the Siemens Reference Process House the
Supply Chain Operational Model [24] was a fundamental basis.

The Siemens Process Framework (SPF, figure 1), with its binding set of principles
and definitions for the overarching management of processes, provides the basis for a
uniform implementation of process management within Siemens. The core
component of the SPF is the Reference Process House (RPH). It contains the
definitions of all processes and is structured into the following process categories:

• Management Processes
• Customer Relationship Management (CRM) Processes
• Supply Chain Management (SCM) Processes
• Product Life Cycle Management (PLM) Processes
• Support Processes

These reference process definitions are fundamental for process standardization and
provide a stable basis for process management. They are subject to a cascaded rollout
and refinement in the business groups and regions. Incorporating process definitions,
guidelines for documentation and modeling of processes, and a binding decision
structure for process standardization, the framework is the basis for:

• Configuration and design of specific business processes (e.g. CRM, PLM, SCM)
and end-to-end business process chains

• Redesign of processes based on commonly defined standards for to-be processes
• Common language and common understanding of processes
• Realization of the saving potentials identified through - faster implementation of

standard processes - alignment of applications - standardization and cost reduction
across matrix organization (synergy effects)

• Comprehensive benchmarking and best practice sharing.

The process management methods of the Siemens Process Framework represent a
comprehensive set of tools (including ARIS [27]), concepts, conventions, procedures,
and guidelines which are needed for any implementation and operation of process
management in the Siemens organization. With the description of all roles and
responsibilities required for effective process management on strategic and
operational levels the SPF provides a blueprint for process management organization
in the groups and regions. It ensures clear communication, decision, and escalation
processes.

 Case Study and Maturity Model for Business Process Management Implementation 131

Fig. 1. Siemens Process Framework (SPF)

The main objective of the introduction of Business Process Management is to
increase the effectiveness and efficiency of all business processes of the organization.
From an operational point of view, process management is about having defined
processes, measuring their performance, and improving them incrementally as part of
daily business. It is also about defining performance goals for processes “top-down”,
based on benchmarking results or strategic goals derived from corporate initiatives,
and performing major re-engineering activities on processes to close existing
performance or cost gaps. Process standards and a common process framework are a
fundamental basis for a systematic design and optimization of results, processes, and
resources.

Most efficiency and effectiveness problems in an organization have their origin in
non-mastered processes. A proper implementation leads to the mastery of processes
with regard to lower non-conformance, as well as to high reliability and safety, and
results in reduction of process costs, process cycle times, and improvement of quality.

Process standardization affects the strategic levers operational excellence and
active management of synergies and supports the vertical and horizontal strategies of
Siemens. This is achieved by the cascaded definition and rollout approach of the
Process Initiative based on the Reference Process House. The implementation of
Business Process Management based on the Siemens Process Framework results in a
number of benefits which where pursued with the Process Initiative.

• Establish a Process Management Community within the business units and regions
to coordinate and optimize local, regional, and headquarter process improvement
initiatives.

• Provide a common reference framework for supporting and coordinating all
process related projects in the business units and regions created by different
initiatives.

• Present a uniform appearance to customers and business partners through Siemens
wide standardized process implementation.

• Provide standard service levels to the global customers.

Reference Process House
Process Management

Roles &
Responsibilities

Level concept

Convention
& Modeling
handbook

Modeling Tools
& Services

Implementation
Guide

Maturity
Assessment

Roles

Committees

Process Management
 Methods

132 M. Rohloff

• Enable best practice sharing across all business units and regions.
• Provide opportunity for shared services and an improved lean IT landscape through

process standardization.

2.2 BPM Process and Implementation Topics

Experience shows that business transformations are often a consequence of good
process management. Thus, the implementation of process management itself has to
be organized as a business transformation program covering all relevant aspects of an
organization’s development. These aspects have to be addressed by implementation
topics which are dependent on each other with regard to their contents. All theses
issues are addressed by Business Process Management implementation guidelines
(see Process Management Implementation Guide [28]). The following gives a short
overview on the different implementation topics.

• Process Management Organization: Establish process management roles & bodies
according to the Siemens Process Framework and assign the responsible persons.

• Process Documentation & Standardization: Develop consistent and organization-
wide valid process definitions at least for the portfolio processes. Drive the
standardization and alignment of business processes. Establish a process house
based on the Reference Process House and where necessary more detailed process
definitions addressing at least the portfolio processes. Initiate process improvement
initiatives for relevant processes of the process portfolio covering: visualization of
as-is processes as required, derivation of improvement potentials & measures,
design & implementation of to-be processes.

• Process Portfolio & Optimization: Select, assess, and prioritize the processes
which have to be standardized and optimized.

• Target Setting & Incentives: Check and amend target setting and incentive
systems. Define process harmonization/ standardization and process performance
goals. Implement process target agreements, define related incentives.

• Methods & Tools: Provide standard methods and tools required for the operation of
process management and according to the Siemens Process Framework guidelines
(e.g. a RPH database and ARIS tools).

• Qualification & Training: Derive competency development measures for the
persons involved in process management. Define and conduct target group specific
qualification programs. Verify the success.

• Communication: Provide target group specific information about objectives,
content, roles & responsibilities, and progress of process management to create
awareness and support the implementation.

• Process Performance Controlling: Define key performance indicators (KPI) and
metrics for the portfolio processes derived from business goals and strategies.
Introduce a continuous KPI-based performance measurement and assessment for
the processes.

• Process Management Maturity Assessment: Conduct process management maturity
assessments of the organization. Derive & implement improvement measures.
Repeat process management maturity the objectives assessments periodically.

 Case Study and Maturity Model for Business Process Management Implementation 133

Only if each of these topics are planned and implemented to a certain degree and in
a coordinated way, the effects necessary for overall success are achieved. The overall
maturity degree of a process management implementation is therefore directly linked
to the maturity degree of each of the implementation topics (see next section). Of
course, the business situation, the cultural environment, and the readiness of an
organization are additional boundary conditions which have to be considered in the
setup of the contents and the timeframe of the implementation program.

3 A Maturity Model for Business Process Management

3.1 Process Management Maturity Assessment

The assessment of the maturity of all activities related to Business Process
Management is an essential element of the BPM implementation process. The so-
named “Process Management Maturity Assessment” (PMMA) has its focus on the
assessment of the organizational implementation of all Business Process Management
activities. In contrast most maturity models solely focus on the performance
assessment of a specific business process. The process performance of a business
process is addressed as a separate category in the implementation process. In this
respect the business process performance measurement is one category among others
to be addressed in a BPM maturity assessment.

The Process Management Maturity Assessment [29] provides a methodology for a
structured analysis and objective assessment of the achieved implementation status of
process management (process management maturity) and the compliance with the
Siemens Process Framework (SPF [19]) standards [18, p. 107 f., 2, p. 337 f.]. The
major objective of the PMMA is the identification of need for action and derivation of
measures for process management improvement, as well as the identification of
requirements for further support. It serves as a driver for the process initiative. The
following objectives are pursued with the PMMA approach:

• to assess the maturity of Business Process Management and the processes
• to monitor the advancement of the process initiative and to derive further fields of

actions
• to reveal the potential for best practice sharing
• to motivate and increase the awareness for process management among the

involved parties like management, process drivers, and users.

At the time of implementing the Process Initiative no holistic process management
maturity model existed which would cover all relevant BPM implementation issues
outlined in section 2.2. The BPMM model of the OGM, the maturity model of
Rosemann et al. and the Process Audit of Hammer evolved in parallel to the own
development of the Process Management Maturity Assessment.

The PMMA follows the principle structure of the Capability Maturity Model
Integration Method of the Software Engineering Institute at Carnegie Mellon
University (CMMI) but provides a holistic assessment of all areas relevant for BPM
based on a comprehensive set of criteria. As an indicator for process maturity, a five
step model is applied in the same fashion as the CMMI model.

134 M. Rohloff

The PMMA consists of nine categories with one to three sub-categories each. The
PMMA categories and sub-categories correspond to the implementation topics of the
Process Management Implementation Guide:

• Process Portfolio & Target Setting
• Process Documentation
• Process Performance Controlling
• Process Optimization
• Methods & Tools
• Process Management Organization
• Program Management, Qualification, Communication
• Data Management
• IT-Architecture

For every sub-category, each maturity level 1-5 is clearly defined in a to-be status by
a set of criteria. These descriptions, as well as examples for questions and possible
deliverables, are combined in worksheets. A tool based on MS-Office products was
developed to support the assessment process.

Figure 2 outlines the five overall PMMA maturity levels which consolidate the
detailed maturity levels of the categories.

For a sub-category, all defined criteria of a maturity level must be met to achieve
the respective level. The overall result of a PMMA will be stated in a maturity level
grade (e.g. 3,2). The pre-decimal position states that 100% of all sub-categories fulfill
the criteria of level 3 (bottleneck is the lowest value for a sub-category). The decimal
place states the percentage of fulfilled sub-categories of the successive level (e.g. 20%
of level 4). The achievement of higher levels in sub-categories (e.g. 5) is not reflected
in the overall grade.

1
“Initial”

2
“Managed”

3
“Defined”

4
“Quantitatively

managed”

5
“Optimizing”

Processes are not defined – ad-hoc approach
Success depends on certain specialists
Schedule, quality and costs are not predictable

Criteria CatalogueMaturity Level

Need for action identified/project manager entitled
particular processes in the GROC are harmonized/standardized
Deployment of process management as needed
Situation- and/or event-driven approach

The process landscape is derived from systematically ascertained major components of the value
chain, business strategy and binding internal/external guidelines.
In order to compile a process portfolio, a comprehensible assessment and prioritization of these
processes is conducted
The systematically ascertained and strategically relevant processes incl. KPIs are documented
according to the SPF in the reference process house of the GROC, a KVP is established
Responsibilities for processes are established (roles, committees)
Rules and methods of the process management are defined and implemented

Continuous measurement and adjustment of process performance (quality & quantity)
Process management is subject to a systematic maturity assessment (continuous PMMA)
Implementation controlling of initiatives with top+ degrees of implementation

Processes are analyzed, optimized and adjusted to changes in market requirements systematically
Benchmarking and Best Practice Sharing are used continuously in order to identify improvement
potential
Methods for mistake avoidance are used

Fig. 2. Overall PMMA maturity levels

 Case Study and Maturity Model for Business Process Management Implementation 135

While the maturity levels of figure 2 document the overall assessment and
consolidate the maturity assessment of the different categories, a more detailed look
on each of the categories is provided by radar screens (see figure 4). Detailed criteria
and a set of questions exist to assess the maturity level for each of the categories.
Table 1 summarizes on what needs to be accomplished for a maturity level 3 in each
category.

In general, most CMMI based maturity models define five maturity levels and
associate a higher level with a higher maturity and a better performing organization.
Crawford [30] argues that this can be a misleading interpretation. An organization
should aim for a particular maturity level in relation to its organizational strategies
and objectives. A detailed view on the implications of the current maturity level based
on the identified shortcomings and weaknesses is proposed in order to derive
strategies for improvement.

Table 1. PMMA categories and maturity level 3 achievements

PMMA Scope PMMA Content of Maturity Level 3

Process Portfolio
& Target Setting

In order to compile a process portfolio, a comprehensible
assessment and prioritization of these processes is
conducted

Process Documentation The systematically ascertained and strategically relevant
processes incl. KPIs are documented according to the SPF
in the reference process house.

Process Performance
Controlling

A systematic procedure to identify KPIs out of the
numerous metrics is defined.

Process Optimization Benchmarks are defined and improvement levers identified.

Methods & Tools The process landscape is derived from systematically
ascertained major components of the value chain, business
strategy and binding guidelines.

Process Management
Organization

Responsibilities for processes and process management are
established

Program Management,
Qualification,
Communication

The activities for introduction and further development of
process management are coordinated systematically by a
program and project management.

Data Management Harmonization/ standardization of data content and formats,
clearly defined responsibilities for data definition, content
and consistency.

IT Architecture Requirements from process management are definitive for
IT target architecture. The migration requirement for the IT
architecture is derived from deviations between as-is and
target architecture.

3.2 Maturity Assessment: Initial Study and Findings

In addition to the workout of the PMMA, a qualification and training program was set
up to build a pool of certified assessors who can conduct the PMMA. A roadmap was

136 M. Rohloff

defined when to assess each organizational unit, eventually covering the entire
organization. It is planned to repeat the PMMA once a year to track and drive the
improvement. Between two and three days are required to prepare, conduct, and
evaluate the process management assessment for a particular unit under review. The
PMMA will be conducted based on interviews with the management of the units, the
Process Owners/ Process Executives for the Business-, Management & Support
Processes, and the Process Framework Executive.

The initial assessment analyzed 22 organizational units in the business groups and
29 in the regions in 2006. The PMMA result can be documented in a radar chart
showing the level achievement for each category. Moreover, with the help of PMMA
highlights and lowlights for each category and suitable actions can be derived and
initiated to improve the implementation status of process management (process
management maturity).

The results for the analyzed units of the business groups in figure 4 show an
overall maturity level ranging below maturity level 3. Although all units participated
in the Process Initiative and have implemented Business Process Management it
shows that it is quite some effort in terms of time, resources, and people involved to
achieve organizational performance. Also, one has to keep in mind that due to the
method of measurement the overall maturity level cannot be higher than the lowest
maturity level in any category.

A more detailed view is provided by a radar chart showing the level of
achievement for each category. Figure 3 shows the assessment for two selected units
providing insights in strengths and shortcomings; e.g. one organizational unit is quite
strong in Process Portfolio & Target Setting (level 4) and in Process Management
Organization (level 5) and the other in Process Documentation (level 5).

PMMAs in Groups:

A&D PTD
COM SFS
I&S PG
TS

Conducted PMMAs

2

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

3

5 PM Maturity
Level

21 22

PMMAs in Groups:

A&D PTD
COM SFS
I&S PG
TS

Conducted PMMAs

2

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

3

5 PM Maturity
Level

21 22

Fig. 3. PMMA assessment for analyzed units (consolidated excerpt)

 Case Study and Maturity Model for Business Process Management Implementation 137

Program Management,

0

1

2

3

4

5

Process Portfolio & Target setting

Process
Documentation

Process Performance
Controlling

Process Optimization

Methods & Tools
Process Management
Organization

Qualification, Communication

Data Management

IT-Architecture

Fig. 4. Detailed PMMA of different categories (example for two units)

The assessment provides a detailed analysis which helps to identify strength and
weaknesses and allows comparing the performance of organizations. Thus, it provides
a sound basis for best practice sharing.

Table 2 summarizes some strengths and weaknesses for the different categories
revealed across the assessed organizational units.

Experiences with the first assessment cycle are promising in terms of acceptance,
ease of use, and coverage of BPM impact factors. The Process Management Maturity
Assessment is regarded by management and employees as an important part of the
overall BPM implementation process in the company. It underlines the importance of
coherent Business Process Management activities for company performance.

The assessment results gained with limited effort provided a reasonable
transparency on the BPM activities and performance of the assessed organizational
units. In general the assessment helps organizations to learn from one another in terms
of good and poor performance by understanding the performance of an organization
and the underlying reasons. In the case of Siemens it helped to identify best practices
in BPM within the company which could be adopted by other organizational units in
order to improve performance.

3.3 Comparison of Maturity Models

The proposed Process Management Maturity Assessment advances most of the
maturity models which are based on a limited set of criteria, Only the Business
Process Maturity Model of the OMG, the Process Audit of Hammer, and the maturity
model of Rosemann et al. cover also a broader range of BPM factors. All three
models were in progress of development at the time of PMMA development.

138 M. Rohloff

Table 2. Strengths and weaknesses in the BPM categories

Category Strength Weakness

Process Portfolio &
Target Setting
System

Specific tools, e.g.
scorecards, as basis for
deployment from business
strategy

No systematic deployment
of process portfolio
Individual Training
necessary
Objectives are often
monetary

Process
Documentation

Process description contains
all relevant information
(e.g. Input/Output,
Interfaces)

Sometimes lacking parts
(milestones, metrics or
interfaces)

Process Performance
Controlling

Milestones and metrics are
defined and used for
controlling of most
processes

No integrated measurement
system; focusing on process
cost drivers to be enhanced

Process Optimization

CMMI Assessments in
PLM
Process Benchmarking with
internal and external
partners

Organizational obstacles for
end-to-end process
optimization (interfaces!)

Methods & Tools

ARIS often in use
Several process
management methods are
used (e.g. six sigma)

Process description not
based on RPH or at least
level 4 processes not linked
to RPH or documented in
ARIS.
Level concept/ conventions
not used

Process Management
Organization

Process Management Roles
are defined; organization is
process oriented

Process responsibility not
clearly defined; no
systematic job rotation
between roles

Program
Management,
Qualification,
Communication

Process Management
reports directly to BU
Head; communication plan
regarding process
management

Roadmap for migration to
SPF is missing; no
qualification plan available
No internal communication

Data Management

Responsibility for data
content and format defined
Necessary measures are set
up

No mechanism to check
data quality or integrity
No alignment with process
landscape
Too few resources

IT-Architecture

Requirements of process
management are fully
covered
Migration measures derived

IT architecture not defined,
nor communicated – process
to derive the to-be it-
architecture not defined

End of 2007 the Object Management Group (OMG) released the Business Process

Management Maturity Model [9]. It is a model to assess the maturity of business
process management. The model is structured into five process area threats:

 Case Study and Maturity Model for Business Process Management Implementation 139

• Organizational Process Management: foundation and development of process
management

• Organizational Business Management: planning, steering and resource allocation at
enterprise level

• Domain Work Management: management of product & service deployment and
delivery

• Domain Work Performance: operational level of product & service delivery and
support

• Organizational Support: all supporting activities for controlling the core activities

BPMM defines objectives for each process area thread. This is supplemented by
practices how to reach these objectives. Overall the BPMM offers a variety of
recommendations for a Business Process Management implementation. On the other
hand it leaves some deficiencies in areas like process organization and process
accountability. The important role of IT support is not covered in the BPMM model.

The other two models cover a similar range comparable to the PMMA but with a
different clustering of the impact factors. Rosemann et al. identified five factors
which are perceived as covering and characterizing BPM [13, 14, 15, 16]. In the
progress of defining the model these factors have been restructured and renamed by
Rosemann et al. and are finally defined as

• Strategic Alignment: Alignment of process management to strategic objectives
• Governance: Organizational implementation of BPM and responsibilities for

assigned tasks
• Methods: Methods for all BPM relevant tasks
• Technology: Technologies e.g. I&C which supports and enables BPM
• People: Competencies of people involved in BPM
• Culture: Common values towards BPM and process change

Hammers Process Audit is based on the Process and Enterprise Maturity Model
(PEMM) which he developed in cooperation with a number of companies [11].
Hammer has identified two distinct groups of characteristics that are needed for a
good performance of business processes to perform exceptionally well over a long
period of time. Process enablers affect individual processes and determine how well a
process is able to function. The process enablers include:

• Design: how the process is to be executed,
• Performers: the knowledge and skills of the people involved
• Owner: the senior executive responsible for the process,
• Infrastructure: the systems that support the process
• Metrics: the measurements used to track the performance of the process

In addition a company must also possess or establish organizational capabilities that
allow the business to offer a supportive environment:

• Leadership: Senior executives who support the process
• Culture: Emphasis on a customer focus, teamwork, and willingness to change
• Expertise: Skills and methodology needed for process redesign
• Governance: Mechanisms for managing complex projects and change initiatives.

140 M. Rohloff

Process Portfolio
& Target setting

Program Management
Qualification & Training

Process Documentation

Methods & Tools

Data Management

Process Management
Organization

IT Architecture

Process Optimization

Performance Controlling

PMMA model

Leadership

Governance

Design

Infrastructure

Performers

Culture

PEEM of Hammer

Metrics

Owners

Expertise

Process enablers Enterprise capabilitiesStrategic Alignment

Governance

Methods

Technology

People

Culture

BPMM of Rosemann/ de Bruin

Program Management
Qualification & Training

Process Portfolio
& Target setting

Program Management
Qualification & Training

Process Documentation

Methods & Tools

Data Management

Process Management
Organization

IT Architecture

Process Optimization

Performance Controlling

PMMA model

Leadership

Governance

Design

Infrastructure

Performers

Culture

PEEM of Hammer

Metrics

Owners

Expertise

Process enablers Enterprise capabilitiesStrategic Alignment

Governance

Methods

Technology

People

Culture

BPMM of Rosemann/ de Bruin

Program Management
Qualification & Training

Fig. 5. PMMA Mapping to BPMM and PEMM Maturity Model

Figure 5 maps the nine categories of the Process Management Maturity Assessment
with the BPM Maturity Model of Rosemann/ de Bruin and the Process Audit of
Hammer. All five factors of the Rosemann et al. model can be mapped to the nine
categories of the PMMA. Rosemann/ de Bruin and Hammer explicitly address culture
as an impact factor which in the PMMA model is addressed in parts in terms of
qualification & training. Hammer emphasizes the process management organization
and people issue by addressing performers, owner and leadership as separate factors.
At least on the high level clustering of enablers and capabilities Hammer does not
identify the strategic alignment of processes to strategy and business as an issue. In
all, the comparison gives evidence that all three models cover the essential impact
factors for Business Process Management Success.

The mapping can be only a rough indication of the range of factors covered by the
models on a high level. A detailed analysis of the underlying criteria and questions for
assessment provided they are made public available would show the common ground,
possible differences, and additions.

4 Summary and Outlook

Business Process Management is an important management practice for business
transformation and organizational change. This paper outlined the implementation of
Business Process Management in a large international company, undertaken as a
corporate, company wide project within Siemens AG.

The paper introduced a Process Management Maturity Assessment (PMMA) which
was developed to assess the implementation of Business Process Management and the

 Case Study and Maturity Model for Business Process Management Implementation 141

performance of organizations in this respect. The maturity model is based on the
assessment of nine categories which comprehensively and entirely cover all aspects
which impact the success of Business Process Management.

Since the PMMA is based on the principal structure of CMMI using defined
maturity levels, structured questionnaires and work sheets, it is easy to use and an
assessment can be undertaken in a timeframe of 3 days. A limitation of the CMMI
approach is the consolidation of criteria to a single maturity level which may result in
misleading interpretations. It is recommended using a detailed view on the assessment
and maturity level of each of the nine categories in order to derive a more
differentiated picture for improvement measures and best practice exchange, like it
was outlined in the example from the business case.

The PMMA was developed to suit the BPM implementation approach which in
parts, like the Siemens Process Framework, is company specific. However, the
PMMA approach proved to cover all relevant factors for Business Process
Management and can be adapted with little effort to a maturity model for general use.
This could go in hand with a detailed cross check with the criteria and questions of
the maturity model of Rosemann et al., the Business Process Maturity Model of the
OMG, and the Process Audit of Hammer.

Overall experiences using PMMA for the assessments are promising in terms of
acceptance, ease of use, and coverage of BPM impact factors. The PMMA fits into
the overall BPM implementation process in the company and provides an important
link to Business Process Management success.

References

1. Becker, J., Kugeler, M., Rosemann, M. (eds.): Process Management: A Guide for the
Design of Business Processes, Berlin et al. (2003)

2. Schmelzer, H., Sesselmann, W.: Geschäftsprozessmanagement in der Praxis: Kunden
zufrieden stellen – Produktivität steigern – Wert erhöhen, Munich (2008)

3. Paulk, M., Weber, C., Curtis, B., Crissis, M.: Capability Maturity Model for Software,
Version 1.1. Software Engineering Institute, Carnegie Mellon, Pittsburgh (1993),
http://www.sei.cmu.edu (called 2009-01-31)

4. CMMI: Capability Maturity Model Integration (CMMI) of Carnegie Mellon University,
http://www.sei.cmu.edu/cmmi/ (called 2009-01-31)

5. Ahern, D., Clouse, A., Turner, R.: CMMI distilled: A practical introduction to integrated
process improvement. Addison-Wesley, Boston (2004)

6. Chrissis, M., Konrad, M., Shrum, S.: CMMI. Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Boston (2006)

7. Foegen, M., Solbach, M., Raak, C.: Der Weg zur professionellen IT. Springer, Berlin
(2007)

8. Hofmann, H., Yedlin, D., Mishler, J., Kushner, S.: CMMI for Outsourcing: Guidelines for
Software, Systems, and IT Acquisition. Addison-Wesley, Boston (2007)

9. BPMM, Business Process Management Maturity Model (BPMM) of OMG,
http://www.omg.org/docs/formal/08-06-01.pdf (called 2009-01-31)

10. Fisher, D.M.: The Business Process Maturity Model. A Practical Approach for Identifying
Opportunities for Optimization (2004), Business Process Trends:
http://www.bptrends.com/resources_publications.cfm
(called 2009-01-31)

142 M. Rohloff

11. Hammer, M.: The Process Audit. Harvard Business Review, 111–123 (April 2007)
12. Lee, J.-H., Lee, D.H., Kang, S.: An overview of the business process maturity model

(BPMM). In: Chang, K.C.-C., Wang, W., Chen, L., Ellis, C.A., Hsu, C.-H., Tsoi, A.C.,
Wang, H. (eds.) APWeb/WAIM 2007. LNCS, vol. 4537, pp. 384–395. Springer,
Heidelberg (2007)

13. Rosemann, M., de Bruin, T., Power, B.: A Model to Measure BPM Maturity and Improve
Performance. In: Jeston, J., Nelis, J. (eds.) Business Process Management, Butterworth-
Heinemann (2006)

14. Rosemann, M., de Bruin, T., Hueffner, T.: A Model for Business Process Management
Maturity. In: ACIS 2004 Proceedings of the Australasian Conference on Information
Systems (2004)

15. Rosemann, M., de Bruin, T.: Towards a Business Process Management Maturity Model.
In: Proceedings of the 13th European Conference on Information Systems (ECIS 2005),
Regensburg (2005)

16. Hüffner, T.: The BPM Maturity Model- Towards A Framework for assessing the Business
Process Management Maturity of Organisations, master thesis University of Karlsruhe.
GRIN Publishing (2007)

17. Smith, H., Fingar, P.: Process Management Maturity Models (2004), Business Process
Trends: http://www.bptrends.com/resources_publications.cfm

18. Feldmayer, J., Seidenschwarz, W.: Marktorientiertes Prozessmanagement: Wie Process
Mass Customization Kundenorientierung und Prozessstandardisierung integriert, Munich
(2005)

19. Siemens Process Framework, Siemens AG CIO internal documentation, Munich (2005)
20. Becker, J., Delfmann, P. (eds.): Reference Modeling - Efficient Information Systems

Design Through Reuse of Information Models, Berlin et al. (2007)
21. Fettke, P., Loos, P. (eds.): Reference Modeling for Business System Analysis. Idea Group

(2007)
22. von Brocke, J.: Internetbasierte Referenzmodellierung: State-of-the-Art und

Entwicklungsperspektiven. Wirtschaftsinformatik 46(5), 390–404 (2004)
23. RefMod. CC reference modeling,

http://www.ercis.de/ERCIS/research/competencecenter/refmod/
index.html (called 2009-01-31)

24. SCOR. Supply Chain Operations Reference Model, Version 9,
http://www.supply-chain.org/cs/root/home (called 2009-01-31)

25. Fettke, P., Loos, P., Zwicker, J.: Business process reference models: Survey
and classification. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812,
pp. 469–483. Springer, Heidelberg (2006)

26. Scheer, A.-W.: Business Process Engineering: Reference Models for Industrial
Enterprises, Berlin et al. (1994)

27. Scheer, A.-W.: ARIS – Business Process Modeling, Berlin et al. (2000)
28. Process Management Implementation Guide, V. 1.0., Siemens AG CIO internal

documentation, Munich (2005)
29. Process Management Maturity Assessment, V. 3.1., Siemens AG CIO, internal

documentation, Munich (2006)
30. Crawford, J.: Project Management Maturity Model, New York (2001)

Discovering Process Models from

Unlabelled Event Logs

Diogo R. Ferreira1 and Daniel Gillblad2

1 IST – Technical University of Lisbon
2 Swedish Institute of Computer Science (SICS)
diogo.ferreira@ist.utl.pt, dgi@sics.se

Abstract. Existing process mining techniques are able to discover pro-
cess models from event logs where each event is known to have been
produced by a given process instance. In this paper we remove this re-
striction and address the problem of discovering the process model when
the event log is provided as an unlabelled stream of events. Using a
probabilistic approach, it is possible to estimate the model by means
of an iterative Expectaction–Maximization procedure. The same proce-
dure can be used to find the case id in unlabelled event logs. A series of
experiments show how the proposed technique performs under varying
conditions and in the presence of certain workflow patterns. Results are
presented for a running example based on a technical support process.

1 Introduction

One of the fundamental principles of workflow and BPM systems is the ability
to execute multiple instances of a business process where the behaviour of those
instances is governed by a predefined process model [1,2]. The goal of process
mining [3] is to rediscover the process model from the run-time behaviour of
process instances, assuming that it is possible, namely: to record events as tasks
are performed, and to identify the process instance that produced each event.

These requirements are usually met when the run-time behaviour is recorded
in an event log containing a sequence of entries in the form <case id, task id>
where case id identifies the process instance and task id specifies the task that
has been performed [3]. Such event logs can be obtained from workflow and
case-handling systems, but in applications where there is limited support from
process-aware systems it may become difficult to retrieve log data in that form.

In general, it may be possible to record a vast array of events without being
able to correlate them to specific process instances. In this scenario, the case id
attribute is absent and the event log becomes an unlabelled stream of events.
Within this stream of events it becomes uncertain whether two events are related
or not, as consecutive events may come from different process instances. Also,
the number of process instances is unknown.

Our goal is to investigate whether it is possible to discover the process models
from such unlabelled event logs. Clearly, the problem of finding the process
model in these circumstances is under-defined. However, business processes have

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 143–158, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 D.R. Ferreira and D. Gillblad

distinctive sequential patterns [4] and process instances essentially repeat these
patterns over and over again. Based on these premises, it is possible to estimate
a probabilistic model that is likely to explain the observed behaviour. In this
paper we develop a probabilistic framework for that purpose (section 3).

Similar approaches are not common. In [4] the authors describe two experi-
ments where they had to deal with events without an associated case id. In both
experiments they resorted to application-specific techniques such as context and
data attributes to establish the connection between events. In [5] the authors
propose an iterative workflow mining approach that could be regarded as being
related to the expectation–maximization approach we describe here, but it is
used for a different purpose, which is to associate low-level events with high-
level tasks. In this work we focus on the specific problem of finding the case id
in unlabelled event logs (section 4). Section 5 discusses the working assumptions
and section 6 concludes the paper.

2 Running Example

Fig. 1 illustrates the technical support process for a software product, adapted
from a real case study [6]. Basically, the customer calls the vendor to report
a problem, the call-center checks if there is an existing contract and records
the complaint to be analyzed by the technical support team. The support en-
gineer that is handling the case may either provide a solution or request the
development team to fix some bugs. Should the latter become necessary, the
development team will have to schedule the release of the bug fix in one of
the forthcoming product versions.

Fig. 1. Technical support process

Discovering Process Models from Unlabelled Event Logs 145

Whenever the call-center receives a call, a new instance of this process is
created. For easier reference, the activities have been labelled with symbol letters
from A to H . Let us assume that these activities are recorded in such a way
that whenever an activity is completed, the corresponding symbol is recorded
in an event log. According to the process model depicted in fig. 1, there are
four kinds of possible behaviour: AB, ACDF , ACDEF and ACDEGH . Each
process instance will generate one of these sequences, and the sequences from
several process instances may become interleaved since, at any point in time,
there may be a number of cases running concurrently.

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456
ACDAEACCDDAEFFAFCCDFABAADACCCDDAFEDGABEGFCADEHBHACAGHACDEDECDAFAFAFCACDCDEAFCDFCGHDDFF

1 ACD.E..........F..
2 ...A...CD...F...
3AC..D.E.F..
4A.....C.DF..
5A..C......D.............EG.......H......................................
6AB..
7A.....C.D..E.G.........H..
8A..C..D..F...
9A.C......D.....F...

10A.....B..
11A....C.DE......GH.................................
12 ..A...B.......................................
13 ..AC.....DE.....F.......................
14 ..A........CD.....F...................
15 ...AC..DE.....F.....................
16 ...A.....C..D....F..........
17 ...A.....C..DE......GH....
18 ...A.....C.....DF.......
19 ..A.......C.....D.F.
20 ..A....C...D.F

ACDAEACCDDAEFFAFCCDFABAADACCCDDAFEDGABEGFCADEHBHACAGHACDEDECDAFAFAFCACDCDEAFCDFCGHDDFF
1 11 1111 1 11111111111111111111111111211112111212

11121332234323514544667859897870879710559121172533411553355446375846976877069880779090
11122333334443332222222334444445544455444344443222333333333334444443444444554443332221

Fig. 2. Events recorded for 20 instances of the technical support process

Fig. 2 shows the events recorded during the execution of 20 process instances.
A total of 86 symbols have been recorded, as shown in the first two lines. The
complete sequence – called the symbol sequence – is shown in the third line, and
again below the 20 separate instances. The last three lines display two distinct
features: the two lines before the last contain the instance number for each
recorded event – this is called the source sequence – and it refers to the same
set of numbers as printed in the leftmost column of the figure. The very last line
displays a count of the total number of instances running concurrently at the
time when each event was recorded. In this example it can be seen that there
were at most 5 instances running concurrently at different points in time.

If both the symbol sequence and the source sequence are known then we have
the equivalent of an event log with task id and case id, respectively, and it is
possible to discover the process model using existing process mining techniques.

146 D.R. Ferreira and D. Gillblad

What we want to investigate is whether it is possible to discover the process
model when only the symbol sequence is known.

The source sequence may be unknown for a number of reasons, including the
fact that the business process may lack an appropriate support system – this is
especially true for organizations with a fragmented IT infrastructure comprising
several disparate tools and applications. The source sequence may also have to be
removed from the event log for privacy reasons, for example to avoid identifying
customers, citizens or medical patients. Finally, it could be the case that the
event log is captured by systems that forward tasks without being aware of the
process logic. In these scenarios it becomes useful to have a technique that is
able to discover the hidden logic behind an unlabelled stream of events.

3 Probabilistic Approach

Let K be the number of sources1 that produce symbols according to the same
underlying process model. The output of all sources is recorded in a common
event log, where symbols produced by any source may become interleaved with
symbols produced by other sources. Let x = {x1, x2, . . . , xN} be the symbol
sequence of length N where each symbol xn comes from one of the available K
sources. Let s = {s1, s2, . . . , sN} be the unknown source sequence where each
element sn says which source produced the symbol xn.

For the purpose of estimating the process model from the symbol sequence x
alone, we will use a probabilistic approach based on a first-order Markov chain
augmented with special start (◦) and stop (•) states. Fig. 3 shows one possible
representation for the technical support process shown earlier. The transition
matrix M specifies the conditional probabilities for the transition between any
two symbols; for example, the probability of producing symbol E after symbol
D is given by p(E|D) = M(D, E) = 0.47. The conditional probabilities in each
row add up to 1.0 except in the last row that represents the stop state.

M = ◦ A B C D E F G H •
◦ − 1.0 − − − − − − − −
A − − 0.15 0.85 − − − − − −
B − − − − − − − − − 1.0
C − − − − 1.0 − − − − −
D − − − − − 0.47 0.53 − − −
E − − − − − − 0.5 0.5 − −
F − − − − − − − − − 1.0
G − − − − − − − − 1.0 −
H − − − − − − − − − 1.0
• − − − − − − − − − −

Fig. 3. Transition matrix for the technical support process

1 From this point onwards, we will refer to process instances as sources.

Discovering Process Models from Unlabelled Event Logs 147

The special start and stop states do not produce symbols; instead, they are
used solely for the purpose of representing the probability of the process begin-
ning or ending with certain symbols. Note that p(◦|...) = p(...|•) = p(•|◦) � 0,
i.e., there are no transitions to the start state, no transitions from the stop state,
and no direct transitions from the start to the stop state, respectively.

The following sections describe how to estimate the transition matrix M and
the source sequence s from a given symbol sequence x. Since the estimation
involves several steps, we proceed incrementally by first explaining how to com-
pute M from both x and s (section 3.1), then how to estimate s from x and M
(section 3.2) and finally how to use the two previous steps to iteratively estimate
both M and s from x alone (section 3.3). Note that when only x is given, there
must be some way to initialize M in order to get the procedure running. This
leads to the concept of M+ in section 3.3.

3.1 Estimating M Given x and s

If both the symbol sequence x and the source sequence s are given, it becomes
straightforward to estimate the transition matrix shown in Fig. 3. With both
x and s it is possible to separate x into the symbol sequences produced by
each source. We define y(k) = {y(k)

1 , y
(k)
2 , . . . , y

(k)
mk} of length mk as the symbol

sequence produced by source k alone, where y
(k)
1 = ◦ and y

(k)
mk = •. Each sequence

y(k) can be easily compiled by picking up the symbols xn for which sn = k and
adding the special start and stop states.

In its simplest form, the joint probability of x and s can be expressed as:

p(x; s) =
K∏

k=1

mk−1∏

i=1

M(y(k)
i , y

(k)
i+1) (1)

For any given pair of symbols a and b, it can be shown that the estimator M̂ (a, b)
that maximizes p(x; s) is given by2:

M̂(a, b) =
∑

k η(a,b)(y(k))∑
k

∑
b′ η(a,b′)(y(k))

(2)

where a and b are symbols and η(a,b)(y(k)) is the number of times that the
transition from a to b occurs in sequence y(k).

From the event log in Fig. 2 we have:

y(1) = y(3) = y(13) = y(15) = ◦ACDEF •
y(2) = y(4) = y(8) = y(9) = y(14) = y(16) = y(18) = y(19) = y(20) = ◦ACDF •
2 For this purpose it is convenient to use the log-likelihood L(M) � log p(x;s |M) =∑

k

∑
i log M (y

(k)
i , y

(k)
i+1). Maximizing this expression in terms of M (a, b) requires

the use of a Lagrange multiplier to find the solution of ∂L/∂M (a, b) = 0 subject to
the constraint

∑
b′ M (a, b′) = 1. The solution is the maximum likelihood estimator

(MLE) shown in equation (2).

148 D.R. Ferreira and D. Gillblad

y(5) = y(7) = y(11) = y(17) = ◦ACDEGH •
y(6) = y(10) = y(12) = ◦AB•

and therefore M̂(D, E) = 4×1+9×0+4×1+3×0
4×1+9×1+4×1+3×0 � 0.47 as before.

3.2 Estimating s Given x and M

If M would be known, then it would be possible to estimate the source sequence
s for a given symbol sequence x. In principle we would be interested in finding
the optimal source sequence ŝ = argmaxs{p(x; s)} that maximizes the joint
probability of x and s. Unfortunately, finding ŝ is a combinatorial optimization
problem where one would have to test all possible source sequences in order to
find the set of sequences y(k) that maximize p(x; s) according to equation (1).

In practice, it is possible to obtain an approximation of ŝ, denoted by s̃, by
following a greedy procedure to pick the most likely source for each symbol in
x. This procedure is based on the idea that if we know the previous symbol εk

for every source k, then symbol xn should be assigned to the source k that is
able to produce xn with the highest transition probability. That is, we choose
to make s̃n ← arg maxk{M(εk, xn)}.

After assigning symbol xn to source k, the previous symbol εk for source k is
updated to xn (i.e. εk ← xn) and we move on to the next symbol xn+1. We find
source s̃n+1 by the same procedure, i.e. s̃n+1 ← arg maxk{M(εk, xn+1)}, and so
on, until all symbols in x have been assigned to some source.

Whenever symbol xn is such that M(◦, xn) is higher than M(εk, xn) for every
source k, then a new source is activated and xn is assigned to that newly created
source. On the other hand, whenever symbol xn is such that the transition
probability to the stop state M(xn, •) is higher than the transition probability
to any other symbol, then source sn is deactivated and removed from the set of
active sources.

The following examples are based on the event log shown in Fig. 2 and the
transition matrix in Fig. 3:

– At position 40 there are four active sources whose previous symbols are
ε5 = E, ε7 = G, ε9 = D and ε11 = A. The present symbol is x40 = G and the
probabilities of each active source producing this symbol are M(E, G) = 0.5,
M(G, G) = 0, M(D, G) = 0 and M(A, G) = 0, respectively. Hence, symbol
x40 gets assigned to source 5, which sets s̃40 ← 5 and ε5 ← G. Note that
M(◦, G) = 0, so activating a new source is not an option at this point.

– At position 41 the present symbol is x41 = F and the best candidate is source
9 with M(D, F) = 0.53, which sets s̃41 ← 9 and ε9 ← F . After this, source
9 gets deactivated because M(F, •) = 1 and therefore it cannot produce any
additional symbols.

– At position 42 there are only 3 active sources with previous symbols ε5 = G,
ε7 = G and ε11 = A. Symbol x42 = C gets assigned to source 11 which has
the highest transition probability M(A, C) = 0.85. We have s̃42 ← 11 and
ε11 ← C.

Discovering Process Models from Unlabelled Event Logs 149

– At position 43 the present symbol is x43 = A and the transition probability
from the previous symbol to symbol A is zero for all active sources: sources
5 and 7 have ε5 = ε7 = G and M(G, A) = 0; source 11 has ε11 = C
and M(C, A) = 0. However, M(◦, A) = 1 and therefore a new source with
number 12 is created, setting s̃43 ← 12 and ε12 ← A.

More formally, this procedure can be described as shown in Algorithm 1. Note
that at line 4 the set of candidate sources becomes the set of all active sources
except those that have previously produced a symbol equal to xn. In other words,
we are assuming that each source does not produce the same symbol more than
once (this assumption will be discussed ahead in section 5).

Algorithm 1. Greedy algorithm to compute s̃ = {s̃1, s̃2, . . . , s̃N}
Input: symbol sequence x and transition matrix M

Let Ψ be the set of currently active sources
Let ψ be the set of candidate sources (ψ ⊆ Ψ)
Let K be the total number of sources used
Let Ω be the set of distinct symbols in x

1: Ψ ← ∅
2: K ← 0
3: for n = 1 to N do
4: ψ ← Ψ\{k : xn ∈ y(k)}
5: if (ψ = ∅) ∨ (∀k∈ψ : M (◦, xn) > M (εk, xn)) then
6: K ← K + 1
7: Ψ ← Ψ ∪ {K} // activate a source
8: y(K) ← {◦}
9: s̃n ← K

10: else
11: s̃n ← arg maxk∈ψ{M (εk, xn)}
12: end if
13: εs̃n ← xn
14: y(s̃n) ← y(s̃n) ∪ {xn}
15: if (∀b∈Ω : M (xn, •) > M (xn, b)) then
16: Ψ ← Ψ\{s̃n} // deactivate a source
17: y(s̃n) ← y(s̃n) ∪ {•}
18: end if
19: end for
Output: source sequence s̃ and separate source sequences y(1...K)

3.3 Estimating M and s from x Alone

Equipped with equation (2) and Algorithm 1 it is possible to devise an iterative
procedure to estimate both M and s when only the symbol sequence x is known.
Provided with an initial estimate for M we use Algorithm 1 to obtain s̃; then
we use s̃ to separate x into y(k) and by equation (2) we compute M̂ ; these two
steps complete one iteration. By repeating these steps, we continuously improve

150 D.R. Ferreira and D. Gillblad

M̂ and s̃ until finally none of them changes anymore; at this point a solution
has been found. This procedure is described in Algorithm 2.

Algorithm 2. Expectation–Maximization procedure to estimate M̂ and s̃

Input: symbol sequence x
1: initialize M̂ ←M+

2: repeat
3: (E-step) use M̂ in Algorithm 1 to obtain s̃ and y(1...K)

4: (M-step) use y(1...K) in equation (2) to update M̂
5: until (M̂ does not change)

Output: transition matrix M̂ and source sequence s̃

Algorithm 2 is essentially an Expectaction–Maximization technique [7] to es-
timate the model parameters M from the incomplete data x, where s is the
missing data. The question now is how to initialize M̂ in order to get the pro-
cedure running. The simplest way to do this is to randomize M̂ subject to the
stochastic constraints

∑
b′ M(a, b′) = 1. However, this random initialization will,

in general, lead to a sub-optimal solution as there are many local maxima of the
likelihood function where Algorithm 2 will converge. Instead, we need a better
way to initialize M̂ in order to have a starting point that is actually closer to
an optimal solution.

Let

M+(a, b) �
η(a,b)(x)∑
b′ η(a,b′)(x)

(3)

be the global model where η(a,b)(x) is the number of times that transition a
to b occurs in sequence x (i.e. where a and b are consecutive symbols). This
global model captures the transition probabilities as if the symbol sequence x
had been produced by a single source. Even if x is the result of interleaving
a number of sources, their underlying behaviour will be present in M+ since
consistent behaviour will stand out with stronger transition probabilities than
the spurious effects of random interleaving. Therefore, M+ is a good initial
guess for the estimation of M .

3.4 Example

From the process shown in Fig. 1, an event log of 300 sources was generated,
having at most 5 overlapping sources. The event log was generated via simu-
lation, using the same ratios as in Fig. 2, i.e. about 9/20 = 45% of ACDF ,
4/20 = 20% of ACDEF , 4/20 = 20% of ACDEGH , and 3/20 = 15% of AB.
After running Algorithm 2 on the symbol sequence, the transition matrix in
Fig. 4 was obtained3.
3 Source code for the algorithms and instructions for running examples similar to this

one can be found at: http://web.tagus.ist.utl.pt/~diogo.ferreira/mimcode/

Discovering Process Models from Unlabelled Event Logs 151

M̂ = ◦ A B C D E F G H •
◦ − 0.97 − − − 0.03 − − − −
A − − 0.16 0.84 − − − − − −
B − − − − − − − − − 1.0
C − − − − 1.0 − − − − −
D − − − − − 0.41 0.59 − − −
E − − − − − − 0.38 0.55 − 0.07
F − − − − − − − − − 1.0
G − − − − − − − − 1.0 −
H − − − − − − − − − 1.0
• − − − − − − − − − −

Fig. 4. Estimated transition from an unlabelled a symbol sequence

Also, from y(1...K) the algorithm estimates that 48.1% of sources produce
ACDF , 19.8% produce ACDEGH , 15.9% produce AB, 13.6% produce ACDEF ,
and there is a small fraction (2.6%) of a single-step sequence E. This last case
has some effects on M̂ , where M̂(◦, E) = 0.03 and M̂ (E, •) = 0.07; also, this is
the reason why the number of sources K = 308 was found to be slightly higher
than 300.

The transition matrix M̂ is shown in graphical form on Fig. 5, where the
width of each arc is made proportional to the transition probability. Except for
the arcs labeled 0.03 and 0.07 that involve symbol E, the graph depicts the same
behaviour as the process model in Fig. 1.

Fig. 5. Estimated model for the technical support process

4 Finding the case id in Unlabelled Event Logs

Up to this point we have focused on M as the main outcome of Algorithm 2.
However, it is clear that the separate source sequences y(1...K) represent, on
their own, a complete event log with both case id and task id. This suggests
that Algorithm 2 can be used as a means to find the case id for the activities
recorded in an unlabelled event log.

152 D.R. Ferreira and D. Gillblad

Let Z be the set of distinct sequences in y(1...K). We associate the proba-
bility q(z) of a sequence z ∈ Z with the number of times z occurs in y(1...K).
Basically, q(z) is the percentage of sequences equal to z in y(1...K). For exam-
ple, from the results in the example of section 3.4 we have: q(ACDF) = 0.481,
q(ACDEGH) = 0.198, q(AB) = 0.159, q(ACDEF) = 0.136 and q(E) = 0.026.

Let p(z) denote the actual distribution one would get if both x and the true
source sequence s were known. Then the following metric based on the geometric
mean of both distributions can be used to determine how good Algorithm 2 is
as a labelling mechanism:

G(p ‖ q) �
∑

z∈Z

√
p(z) · q(z) (4)

From the example in section 3.4 we have: G(p ‖ q) =
√

0.45× 0.481 +√
0.2× 0.198 +

√
0.15× 0.159 +

√
0.2× 0.136 +

√
0× 0.026 ∼= 0.98, i.e. in this

example the algorithm was able to achieve about 98% accuracy in labelling the
symbol sequence x with the estimated source sequence s̃.

Once the log is labelled, then it becomes possible to apply process mining tech-
niques such as the α-algorithm [8], the heuristics miner [9], the genetic miner [10],
the fuzzy miner [11], or other techniques available in the ProM framework [12].
In general, all these techniques require a labelled event log. If only an unlabelled
log is available, then Algorithm 2 can be used as a first pre-processing stage.
Also, Algorithm 2 is able to produce a model M̂ in the form of a transition
matrix but once the log is labelled other process mining techniques can be used
to extract other kinds of models such as Petri nets, heuristic nets, etc.

4.1 Accuracy and Performance

The metric G(p ‖ q) provides a scoring measure which evaluates the degree
of similarity between a complete event log, where both x and s are known,
and an incomplete event log x that has been labelled by the estimated source
sequence s̃. We will call this metric the G-score; it is a measure of the accuracy of
Algorithm 2 as a labelling mechanism for incomplete event logs. In general, this
accuracy will depend on the total number of sources in the event log, and on the
number of overlapping sources. In principle, the higher the number of sources,
the easier it becomes to discover consistent behaviour in the event log. On the
other hand, the higher the number of overlapping sources, the more difficult it
is to separate the events belonging to different sources.

Fig. 6 shows the results of running Algorithm 2 over symbol sequences with
varying number of sources, all having at most 5 overlapping sources. From
Fig. 6(a) it is clear that accuracy tends asymptotically to 1.0 as the number of
sources (and hence the length of sequence x) increases. Fig. 6(b) suggests that
execution time evolves quadratically with sequence length; however, it should be
noted that the average time per run is below 1 sec. in all experiments.

Fig. 7 shows the results of running Algorithm 2 over symbol sequences of
300 sources with varying number of overlapping sources. From Fig. 7(a) it is

Discovering Process Models from Unlabelled Event Logs 153

20 100 200 300 400 500 600 700 800 900 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of sources

G
−

sc
or

e

20 100 200 300 400 500 600 700 800 900 1000

0
20

0
40

0
60

0
80

0

Number of sources

tim
e

(m
s)

(a) (b)

Fig. 6. Average G-score (a) and average runtime (b) for input event logs with varying
number of sources and having at most 5 overlapping sources. Each point has been
obtained by averaging over 1000 synthetically-generated logs.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of overlapping sources

G
−

sc
or

e

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0

Number of overlapping sources

tim
e

(m
s)

(a) (b)

Fig. 7. Average G-score (a) and average runtime (b) for input event logs with 300
sources and varying number of overlapping sources. Each point has been obtained by
averaging over 1000 synthetically-generated logs.

apparent that accuracy is exceedingly good when there is little or no overlap
at all; it drops dramatically as the number of overlapping sources approaches
the length of the sequences produced by each source; but it remains fairly
constant and above 0.5 no matter how much the overlap is further increased.
Fig. 7(b) suggests that execution time is rather independent of the amount of
overlap.

154 D.R. Ferreira and D. Gillblad

Table 1. Estimation results on different patterns. In all experiments, symbol sequences
have been generated using 300 sources and at most 5 overlapping sources.

Pattern p(z)
No. symbol Average Best

Best q(z)
sequences G∗-score G∗-score

Parallelism
ABCEDF : 0.5
ABECDF : 0.3
ABCDEF : 0.2

1000 0.716 0.854

ABCEDF : 0.398
ABCDEF : 0.180
ABECDF : 0.158
ABCDF : 0.062
ABCDE : 0.037
ABEDF : 0.034
ECDF : 0.031
ABCE : 0.028
ABCEF : 0.025
EDF : 0.019
ABEF : 0.009
CDF : 0.006
EF : 0.003
CEDF : 0.003
E : 0.003
CDEF : 0.003

Loop-3

ABCDE : 0.5
ABCDBCDE : 0.25
ABCDBCDBCDE : 0.125
ABCDBCDBCDBCDE : 0.125

1000 0.503 0.539

BCDEA : 0.581
BCD : 0.400
A : 0.010
BCDE : 0.010

Loop-2

ABCDE : 0.5
ABCDCDE : 0.25
ABCDCDCDE : 0.125
ABCDCDCDCDE : 0.125

1000 0.500 0.538

CDEAB : 0.578
CD : 0.402
CDE : 0.010
CDAB : 0.006
AB : 0.004

Loop-1

ABCE : 0.5
ABCCDE : 0.25
ABCCCDE : 0.125
ABCCCCDE : 0.125

1000 0.498 0.537

CDEAB : 0.578
C : 0.401
CDE : 0.010
CAB : 0.006
AB : 0.002
EAB : 0.002
CDAB : 0.002

Non-local
dependency

ABCDE : 0.6
AFCGE : 0.4

1000 0.840 0.909

ABCDE : 0.507
AFCGE : 0.320
AFCDE : 0.087
ABCGE : 0.087

4.2 Parallelism, Loops and Non-local Dependencies

There are a number of workflow patterns [13] that business processes often con-
tain and that may be difficult to capture using process mining techniques. In
[14] the authors address the problem of discovering parallel behaviour; in [15] the
authors address the problem of mining short loops of length one and two; and
in [10] the authors present the drivers license example where there are non-local
dependencies between log events, i.e. where the current symbol depends on a
past symbol that has been produced before the immediately previous one.

These and other workflow patterns can become quite challenging to discover
since first-order Markov models capture behaviour in terms of the previous state
alone. However, experiments suggest that Algorithm 2 can still provide useful in-
sight into the behaviour of processes that contain such patterns. Table 1 presents
the results on simple experiments with these patterns.

Discovering Process Models from Unlabelled Event Logs 155

In models with parallelism it is possible to capture the behaviour by a set
of independent sequences. As shown in the last column of Table 1, the top
three sequences match the original behaviour in p(z). There is, however, some
amount of mislabelling in the remaining sequences. In particular, the algorithm
finds it difficult to establish a relationship between symbol E and the remaining
symbols. This explains why ABCDF becomes the fourth strongest sequence and
why there are so many sequence variations involving symbol E.

Models with loops pose special problems, as they involve a repetition of sym-
bols. Since Algorithm 1 does not assign repeating symbols to the same source,
the solution provided by Algorithm 2 tends to isolate loop behaviour into sep-
arate sources, i.e. each loop iteration is assigned to a different source. This is
apparent in the loop experiments reported in Table 1, where the second strongest
source corresponds to the loop body: BCD for the loop of length 3, CD for the
loop of length 2, and C for the loop of length 1.

As for the strongest source, this corresponds to the linear sequence without
looping. There is, however, a mismatch between this sequence and the first se-
quence in the original model: the sequence seems to have been shifted-left with
respect to the original behaviour. This can be explained by the fact that the
looping behaviour increases the probability of the start symbol being the first
symbol in the loop, hence all sequences tend to be shifted to that symbol.

By looking at p(z) and q(z) in the loop experiments, it becomes apparent
that G(p ‖ q) is zero, since there are no common sequences between both dis-
tributions. To be able to determine the best solution in these experiments, we
relax G(p ‖ q) in order to include the shifting of sequences in q(z). For exam-
ple, in order to match the sequences of both distributions in the loop-3 exper-
iment, we consider a new entity q∗(z) where q∗(BCDEA) = q∗(ABCDE) =
q∗(EABCD) = q∗(DEABC) = q∗(CDEAB) = 0.581. This leads to the defini-
tion of the G∗-score as

∑
z

√
p(z) · q∗(z) whose results are reported in Table 1.

For the parallelism and non-local dependency experiments, the G∗-score results
are equal to the G-score values.

For non-local dependencies, the algorithm is able to capture the most recurring
sequences with relative ease, with only a small percentage of incorrect sequences.

5 Working Assumptions

While choosing the source s̃n for each symbol xn Algorithm 1 considers all
active sources except those that have already produced symbol xn earlier on.
This means that no source is allowed to produce the same symbol more than
once, and therefore the solutions found by Algorithm 2 will have this same
characteristic. This restriction is intended to reduce the search space for the
source sequence s̃. Without this assumption, every active source remains as a
possible candidate for any given symbol, so it becomes more difficult to assign
the correct source to each symbol. Also, without this restriction there would be
much more local maxima of the likelihood function, making it extremely difficult
for Algorithm 2 to find to the optimal solution.

156 D.R. Ferreira and D. Gillblad

Table 2. Estimation results in an experiment involving log L3 of [16]. Symbol sequences
have been generated using 1000 sources and at most 20 overlapping sources.

Pattern p(z)
No. symbol Average Best

Best q(z)
sequences G-score G-score

Duplicate
tasks

BDE : 24 / 61 � 0.393
AABHF : 7 / 61 � 0.115
CHF : 15 / 61 � 0.246
ADBE : 6 / 61 � 0.098
ACBGDFAA : 1 / 61 � 0.016
ABEDA : 8 / 61 � 0.131

1000 0.196 0.591

BDE : 0.381
A : 0.355
CHF : 0.169
BHF : 0.056
BD : 0.010
B : 0.009
F : 0.009
G : 0.009
DE : 0.002
BE : 0.001

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of symbols truncated at both ends

A
ve

ra
ge

 G
−

sc
or

e

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of symbols truncated at both ends

B
es

t G
−

sc
or

e

(a) (b)

Fig. 8. Average G-score (a) and best G-score (b) for input event logs generated from
the technical support process with 300 sources, 5 overlapping sources, and varying
number of symbols truncated at both ends

Nevertheless, the algorithm can still capture behaviour in the presence of
repeating symbols, although it will forcefully disconnect a sequence when a re-
peated symbol occurs. Examples appear in the loop experiments in Table 1,
where loop iterations are captured as a separate source, contributing to the
overall probability of the second strongest sequence in all three experiments.

The same behaviour is due to happen in the presence of duplicate tasks [16],
i.e. when two different activities are represented by the same symbol. Table 2
shows the results of an experiment using an event log (L3) taken from [16]. Some
sequences in the original log have duplicate tasks. Algorithm 2 is able to capture
some recurring patterns such as BDE, CHF , and BHF but the remaining
sequences are broken due to the presence of repeating symbol A.

A second working assumption is that the symbol sequence x contains the
complete sequences, from the first to the last symbol, produced by each source.

Discovering Process Models from Unlabelled Event Logs 157

In practice this assumption may not hold, since the symbol sequence x may be
an excerpt of recorded behaviour during a period of time. It could be that at the
beginning of sequence x some sources were already active, so the first symbols
from these sources are missing; at the end of sequence x, the last symbols from
some of the active sources could also be missing.

To account for this possibility, we consider that x may be truncated at both
ends by a certain amount of symbols. Fig. 8 shows the results of running Algo-
rithm 2 on truncated symbol sequences. As the first symbols are truncated, the
average G-score drops sharply and then stabilizes around 0.18 when the tran-
sient behaviour has been removed and x is left with steady-state behaviour. On
the other hand, Fig. 8(b) shows that the best G-score attained remains fairly
constant no matter how many symbols are truncated. This means that truncat-
ing x makes it more difficult, on average, to find the source for each event, but
it does not diminish the ability of the algorithm to find the optimal solution.

6 Conclusion

In this paper we described an Expectation–Maximization approach to estimate
the transition matrix M that represents the process model extracted from an
unlabelled event log where the case id is missing. The probabilistic framework
used for this purpose comprises a set of sources that are instances of M and
that produce events which become randomly interleaved in the output symbol
sequence x. Finding the source for each event is a prerequisite for estimating
M , so the proposed approach can also be used as a labelling mechanism to find
the case id in unlabelled event logs.

Since M is a first-order Markov model it may be unable to represent certain
workflow patterns, but once the log is labelled it is possible to leverage the
use of existing process mining techniques to obtain other kinds of models. The
experiments reported in this paper show that the proposed approach is capable
of labelling log events even in the presence of workflow patterns that M is unable
to explicitly represent. This means that the proposed technique can become a
valuable aid in the discovery of process models when log data is available as an
unlabelled stream of events.

References

1. Hollingsworth, D.: The workflow reference model. Document Number TC00-1003,
Workflow Management Coalition (1995)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

3. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
and Knowledge Engineering 47(2), 237–267 (2003)

158 D.R. Ferreira and D. Gillblad

4. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process min-
ing with sequence clustering: Experiments and findings. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer,
Heidelberg (2007)

5. Buffett, S., Geng, L.: Bayesian classification of events for task labeling using work-
flow models. In: Proceedings of the 4th Workshop on Business Process Intelligence,
BPI 2008 (2008)

6. Ferreira, D., Mira da Silva, M.: Using process mining for ITIL assessment: a case
study with incident management. In: Proceedings of the 13th Annual UKAIS Con-
ference, Bournemouth University (April 2008)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society 39(1), 1–38
(1977)

8. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: Dis-
covering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

9. Weijters, A.J.M.M., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process min-
ing with the heuristics miner algorithm. BETA Working Paper Series WP 166,
Eindhoven University of Technology (2006)

10. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic
process mining: An experimental evaluation. Data Mining and Knowledge Discov-
ery 14(2), 245–304 (2007)

11. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

12. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W(E.), Weijters,
A.J.M.M.T., van der Aalst, W.M.P.: The proM framework: A new era in process
mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

13. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

14. Cook, J.E., Du, Z., Liu, C., Wolf, A.L.: Discovering models of behavior for concur-
rent workflows. Computers in Industry 53, 297–319 (2004)

15. Alves de Medeiros, A.K., van Dongen, B.F., van der Aalst, W.M.P.,
Weijters, A.J.M.M.: Process mining: Extending the α-algorithm to mine short
loops. BETA Working Paper Series WP 113, Eindhoven University of Technology
(2004)

16. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

Abstractions in Process Mining: A Taxonomy of

Patterns

R.P. Jagadeesh Chandra Bose1,2 and Wil M.P. van der Aalst1

1 Department of Mathematics and Computer Science, University of Technology,
Eindhoven, The Netherlands

2 Philips Healthcare, Veenpluis 5-6, Best, The Netherlands

Abstract. Process mining refers to the extraction of process models
from event logs. Real-life processes tend to be less structured and more
flexible. Traditional process mining algorithms have problems dealing
with such unstructured processes and generate spaghetti-like process
models that are hard to comprehend. One reason for such a result can
be attributed to constructing process models from raw traces without
due pre-processing. In an event log, there can be instances where the
system is subjected to similar execution patterns/behavior. Discovery of
common patterns of invocation of activities in traces (beyond the imme-
diate succession relation) can help in improving the discovery of process
models and can assist in defining the conceptual relationship between
the tasks/activities.

In this paper, we characterize and explore the manifestation of com-
monly used process model constructs in the event log and adopt pattern
definitions that capture these manifestations, and propose a means to form
abstractions over these patterns. We also propose an iterative method of
transformation of traces which can be applied as a pre-processing step for
most of today’s process mining techniques. The proposed approaches are
shown to identify promising patterns and conceptually-valid abstractions
on a real-life log. The patterns discussed in this paper have multiple appli-
cations such as trace clustering, fault diagnosis/anomaly detection besides
being an enabler for hierarchical process discovery.

1 Introduction

Process mining refers to the extraction of process models from event logs [1].
An event log corresponds to a bag of process instances of a business process. A
process instance is manifested as a trace (a trace is defined as an ordered list of
activities invoked by a process instance from the beginning of its execution to
the end). Process mining techniques can deliver valuable, factual insights into
how processes are being executed in real life.

Real-life processes tend to be less structured than expected. Traditional pro-
cess mining algorithms have problems dealing with such unstructured processes
and generate spaghetti-like process models that are hard to comprehend. One
reason for such a result can be attributed to constructing process models from
raw traces without due pre-processing. A majority of process mining techniques

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 159–175, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

160 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

in the literature are purely syntactic in nature. From the viewpoint of existing
process mining techniques all of the activities are different and unrelated. The
activity names are treated simply as strings that typically do not have any se-
mantics attached to them. However, in reality subsets of activities are related
in that their usage is confined to certain contexts, and cater to some function-
ality. Recent efforts in process mining on Semantic MXML try to address this
problem by incorporating semantics in the log specification [2]. It requires the
domain expert to come up with the ontologies describing the domain concepts
and relationships between them. Ontologies can assist in defining hierarchies of
concepts over activities and there by provide abstractions. Asking a domain ex-
pert to build this from scratch would at times be too much to ask for, especially
in real-life domains such as healthcare and finance where the complexity of the
system/domain is too high.

The discovery of process models is based on the dependency relations that
can be inferred among the activities in the log. More specifically, the dependency
that is often explored is the succession relation (activity B succeeds activity A);
process models are generated by assigning the control-flow links between tasks,
i.e., activities based on the succession relation. Considering activities in isolation
contributes to the “spaghettiness” of the discovered process models to a certain
extent. Moreover, the context in which the activity is executed is not considered
fully. In an event log, there can be instances where the system is subjected
to similar execution patterns/behavior (where the pattern can manifest as a
larger subsequence of tasks/activities), and instances where unrelated cases are
executed. Discovery of common patterns of invocation of activities in traces
(beyond the immediate succession relation) can help in improving the discovery
of process models and can assist in defining the conceptual relationship between
the tasks/activities.

In this paper, we first characterize and explore the manifestation of com-
monly used constructs (of building a process model) in the event log and pro-
pose pattern definitions that capture these manifestations. Some of these pattern
definitions have been in existence in the string-processing and bioinformatics lit-
erature. We adopt these pattern definitions to the process mining domain and
propose a means to form abstractions over these patterns. We propose a novel
iterative method of transformation of traces which can be applied as a pre-
processing step for most of the process mining analysis. The proposed approach
first identifies the looping constructs in traces and replaces the repeated oc-
currences of the manifestation of the loop by an abstracted entity (activity)
that encodes the notion of a loop. The second step involves the identification
of sub-processes or common functionality in the traces and replacing the sub-
processes/common functionality with abstract entities. We also present means
to deal with complex process model constructs involving combination of choice,
parallelism and loops. Fig 1 depicts two process models: one is obtained by min-
ing the original log (Fig 1(a)), and the other is based on the log with abstractions
(Fig 1(b)). We have used the heuristics miner plugin (with default settings) in

Abstractions in Process Mining: A Taxonomy of Patterns 161

(a) Process model mined from original
log

(b) Process Model mined from log with
abstractions over loop construct patterns

Fig. 1. Process models obtained by applying the heuristic miner to an event log of
Philips Healthcare

ProM1 tool to mine the models. The model mined on the orignal log had 141
activities and 2901 arcs and had the fitness measures of 0.295 and −0.693 for
the continuous semantics (cs) and improved continuous semantics (ics) metrics
respectively. On the other hand, the model mined on the abstracted log had 99
activities and 537 arcs with fitness measures of 0.344 and 0.443 for the cs and ics
metrics respectively. It is evident that the abstracted log is less spaghetti-like,
more expressive, and more comprehensible.

We evaluate the goodness of the patterns proposed in this paper on a real-
life log of Philips Healthcare. Philips Healthcare collates logs from their medical
systems across the globe. These logs contain information about user actions,
system events etc. The number of such log-recording systems in conjunction with
the fine grained nature of logging makes the dataset available extremely large
i.e., in the order of a few thousand logs per day. The patterns and abstractions
presented in this paper are shown to be quite effective in that they are able to
group activities pertaining to common functionality and also identify patterns
of abnormal usage.

The rest of the paper is organized as follows. In Section 2, we introduce the
notations used in the paper. Section 3 defines a few pattern definitions and
correlates these signatures with the process model constructs. In Section 4, we
propose one approach to form abstractions based on the patterns. Pattern defi-
nitions catering to the manifestation of complex process model constructs such
as choice/parallelism within loops and sub-processes are discussed in Section 5.
Approaches to discover these patterns from the event log are presented in Section
6. In Section 7, we propose an iterative approach of transforming traces which
can be used as a pre-processing step for process mining analysis. In Section 8,

1 ProM is an extensible framework that provides a comprehensive set of
tools/plugins for the discovery and analysis of process models from event logs. See
http://www.processmining.org for more information and to download ProM.

162 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

we present and discuss the patterns uncovered in a case study of a real-life log
of Philips Healthcare. We discuss related work in Section 9. Finally, we conclude
in Section 10.

2 Notations

Let A denote the set of activities. |A| is the number of activities. A+ is the set
of all non-empty finite sequences of activities from A. A trace, T is an element
of A+. For i ≤ j, T (i, j) denotes the subsequence from the ith position to the
jth position in the trace T . An event log, L, corresponds to a multi-set (or bag)
of traces from A+.

As an example, let A = {a, b, c} be the set of activities; |A| = 3. T =abcabb
is a trace of length 6. T (2, 5) =bcab is a subsequence of T from positions 2 to
5. L = {aba, aba, abba, baca, acc, cac} represents an event log.

3 Taxonomy of Patterns

In this section, we will introduce various definitions of patterns and correlate
them to the manifestation of process model constructs. Discovering such model
constructs would help in answering questions such as Are there loops within loops
in my process model?, What are the most commonly used functionalities in my
model?, and also can assist in mining models bottom-up from primitive model
constructs.

3.1 Loops as Tandem Arrays

Simple loops manifest as the repeated occurrence of an activity or subsequence
of activities in the traces. In other words, an activity or a sequence of activities
constituting a loop manifest themselves in a tandem fashion in a trace.

– Tandem Array: A tandem array in a trace T is a sub-sequence T (i, j) of the
form αk with k ≥ 2 where α is a sequence that is repeated k times. The
subsequence α is called a tandem repeat type. We denote a tandem array
by the triple (i, α, k) where the first element of the triple corresponds to
the starting position of the tandem array, the second element corresponds to
the tandem repeat type, and the third element corresponds to the number of
repetitions.

– Maximal Tandem Array: A tandem array T (i, j) of the form αk(k ≥ 2), is
called a maximal tandem array if there are no additional copies of α before
or after T (i, j).

– Primitive Tandem Repeat Type: A tandem repeat type α is called a primitive
tandem repeat type if and only if α is not a tandem array. i.e., α = βp, for
some non-empty sequence β only if p = 1.

– Primitive Tandem Array: A tandem array T (i, j) of the form αk (k ≥ 2), is
a primitive tandem array iff α is a primitive tandem repeat type.

Abstractions in Process Mining: A Taxonomy of Patterns 163

For example, consider the trace T=gdabcabcabcabcafica. (3, abc, 4),
(3, abcabc, 2), (4, bca, 4), (4, bcabca, 2), (5, cab, 3) are the tandem arrays in T .
The corresponding tandem repeat types are abc, abcabc, bca, bcabca, cab re-
spectively. The primitive tandem repeat types are abc, bca, cab.

3.2 Sub-processes as Conserved Regions

Finding similar regions (sequence of activities) common within a trace and/or
across a set of traces in an event log signifies some set of common functionality
accessed by the process. In other words, a region of high similarity shared within
a process instance or by two or more process instances might be evidence of
common functionality (often abstracted as a sub-process). In order to find these
commonalities across the traces in the entire event log, we first construct a single
sequence which is obtained by the concatenation of traces in the event log with a
distinct delimiter between the traces. Let us denote this concatenated sequence
by S. Multiple invocations of a sub-process within a trace can be detected by
finding similar regions manifested within a trace.

– Maximal Pair: A maximal pair in a sequence, S is a pair of identical sub-
sequences α and β such that the symbol to the immediate left (right) of
α is different from the symbol to the immediate left (right) of β. In other
words, extending α and β on either side would destroy the equality of the
two strings. A maximal pair is denoted by the triple (i, j, α) where i and j
correspond to the starting positions of α and β in S with i �= j.

– Maximal Repeat: A maximal repeat in a sequence, S is defined as a subse-
quence α that occurs in a maximal pair in S.

– Super Maximal Repeat: A super maximal repeat in a sequence is defined as
a maximal repeat that never occurs as a substring of any other maximal
repeat.

– Near Super Maximal Repeat: A maximal repeat α is said to be a near super
maximal repeat if and only if there exist at least one instance of α at some
location in the sequence where it is not contained in another maximal repeat.

Consider the event log, L = {aabcdbbcda, dabcdabcbb, bbbcdbbbccaa,
aaadabbccc, aaacdcdcbedbccbadbdebdc} over the alphabet A = {a, b, c, d, e}.
Table 1 depicts the maximal, super maximal and near super maximal repeats
present in each trace of the event log. For trace T1, the set of maximal repeats
= {a, b, bcd}. Since maximal repeat b, is subsumed in maximal repeat bcd,
b does not qualify to be a super maximal repeat. The occurrence of maximal
repeat b at position 6 in T1 does not overlap with any other maximal repeat.
Hence b qualifies to be a near super maximal repeat. Similarly for trace T3,
all occurrences of maximal repeats b and bb coincide with the maximal repeat
bbbc. Hence neither qualify for near super maximal repeat. The occurrence of
maximal repeat c at position 10 in T3 does not coincide with any other maximal
repeat. Hence, c qualifies to be a near super maximal repeat.

Table 2 depicts the maximal/super maximal/near super maximal repeats
present in the entire event log, L. These are the repeats in the sequence obtained

164 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

Table 1. Maximal, Super Maximal and Near Super Maximal Repeats in each trace of
the event log L

Id Trace Maximal Repeat Set Super Maximal
Repeat Set

Near Super Max-
imal Repeat Set

T1 aabcdbbcda {a, b, bcd} {a, bcd} {a, b, bcd}
T2 dabcdabcbb {b, dabc} {dabc} {b, dabc}
T3 bbbcdbbbccaa {a, b, c, bb, bbbc} {a, bbbc} {a, c, bbbc}
T4 aaadabbccc {a, b, c, aa, cc} {b, aa, cc} {a, b, aa, cc}
T5 aaacdcdcbedbcc-

badbdebdc

{a, b, c,d, e, aa, bd,
cb, db, dc, cdc}

{e, aa, bd, cb, db,
cdc}

{a, c, e, aa, bd,
cb, db, dc, cdc}

Table 2. Maximal, Super Maximal and Near Super Maximal Repeats in the Event
Log L

Maximal Repeat
Set

{a, b, c, d, e, aa, ab, ad, bb, bc, bd, cb, cc, cd, da, db, dc, aaa, abc,
bbc, bcc, bcd, cdc, dab, abcd, bbbc, bbcc, bbcd, bcda, dabc, bcdbb}

Super Maximal
Repeat Set

{e, ad, bd, cb, aaa, cdc, abcd, bbbc, bbcc, bbcd, bcda, dabc, bcdbb}

Near Super Max-
imal Repeat Set

{e, aa, ad, bb, bd, cb, cc, db, dc, aaa, bcc, cdc, dab, abcd, bbbc, bbcc,
bbcd, bcda, dabc, bcdbb}

by concatenation of all traces in the event log. Near super maximal repeats are
a hybrid between maximal repeats and super maximal repeats in that it con-
tains all super maximal repeats and those maximal repeats that can occur in
isolation in the sequence without being part of any other maximal repeat. Near
super maximal repeats can assist in identifying choice constructs in the process
model. Let us denote the set of maximal repeats, super maximal repeats and
near super maximal repeats by M , SM and NSM respectively. The following
relation holds between the three.

SM ⊆ NSM ⊆ M

The set NSM \ SM (the set difference) depicts all maximal repeats that occur
both in isolation and are also subsumed in some other maximal repeat. For any
repeat r ∈ NSM \ SM , a super maximal repeat rs which contains (subsumes)
r can be either of the form αr or rβ or αrβ (where α and β are subsequences
of activities). This indicates that r can be a common functionality which might
occur in conjunction with α and/or β. In other words, it indicates that α and β
can potentially be optional (sequence of) activities in the context of r.

3.3 Mapping Primitive Tandem Repeats and Conserved Regions
into Equivalence Classes

We consider both a primitive tandem repeat type and all variants of maximal
repeat as a repeat in this section. For a repeat, r, let repeat alphabet Γ (r),
denote the set of symbols/activities that appear in the repeat. For example,

Abstractions in Process Mining: A Taxonomy of Patterns 165

for the repeats abba, abdgh, and adgbh, the repeat alphabets correspond to
{a, b}, {a, b, d, g, h}, and {a, b, d, g, h} respectively. Different repeats can share a
common repeat alphabet. In the above example, the repeats abdgh and adgbh
share the same repeat alphabet {a, b, d, g, h}. We can define equivalence classes
on repeat alphabet.

[X] = {r | r is a repeat and Γ (r) = X}
For the above example, [{a, b, d, g, h}] = {abdgh, adgbh}. Furthermore, the equiv-
alence class under repeat alphabet will capture any variations in the manifesta-
tion of a process execution due to parallelism.

Reducing the number of features. Large data sets and data sets with large
alphabet might contain abundant repeats. But not all of them might be charac-
teristically significant. For example, there might be repeats which occur only in
a small fraction of traces. One way to tackle this is to filter the repeats. One can
retain only those repeats that are contained in a large fraction of traces in the
event log, i.e., repeats that have a high support in the event log. Other means
of feature reduction can also be thought of.

4 Abstractions of Patterns

Subprocess abstractions can be discovered by considering a partial ordering on
the repeat alphabet. Subsumption is used as the cover relation. A repeat alpha-
bet ra1 is set to cover another repeat alphabet ra2 if ra2 ⊂ ra1. For example,
consider the repeat types abcd and abd. It is most likely for activity c to rep-
resent a functionality similar to that of a, b, and d, since c occurs within the
context of a, b and d. By defining a partial order on the repeat alphabets and
generating a Hasse diagram on the partial ordering, one can form abstractions
by considering the maximal elements in the poset. Fig 2 depicts the partial or-
dering on the repeat alphabets as a Hasse diagram. {a,b,c} and {a,c,d} are
the maximal elements of the partial ordering. Maximal elements can be con-
sidered as abstractions of processes. Let us denote these two maximal elements
with abstract activities A and B respectively. Repeat alphabets under a maximal
element can all be represented with the abstraction of the maximal element.
Repeat alphabets that contribute to more than one maximal element can either
be put in one of the maximal elements or can define an abstraction in itself. It
can be considered as a (sub-)functionality that is used in a larger functionality.
In our example, let us assume that the repeat alphabet {a,c} is assigned to the
maximal element {a,b,c}. With this abstraction, all repeats with repeat alpha-
bets {a,b}, {a,c}, {b,c}, and {a,b,c} are represented by the abstract activity
A while the repeats with repeat alphabets {a,d} and {a,c,d} are represented
by the abstract activity B in all the traces. There can be instances where two
maximals of the parital ordering on the repeat alphabets share a lot in common.
In order to reduce the total number of abstract activities introduced, one can
define extended joins on the maximal elements. Fig 3 depicts the scenario where

166 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

{ a ,b } {a , c } { a ,d }{b , c }

{a ,b , c } {a , c ,d }

A
B

Fig. 2. Hasse diagram of the re-
peat alphabets

{ a ,b } {a , c } { a ,d }{b , c }

{a ,b , c } {a , c ,d }

{a ,b , c ,d }

C

Fig. 3. Hasse diagram of the repeat alphabets
with extended joins

an extended join has been introduced on the maximal elements of Fig 2. The
two maximal elements of Fig 2 viz., {a,b,c} and {a,c,d} are extended to join
at {a,b,c,d}. The extended join now covers all repeat alphabets. Let us denote
the extended join with abstract activity C. All repeats with repeat alphabets
{a,b}, {a,c}, {b,c}, {a,d}, {a,b,c} and {a,c,d} can now be represented by a
single abstraction viz., C in all the traces.

Let ram
1 and ram

2 be repeat alphabets corresponding to two maximal elements
in the Hasse diagram. Different criteria for extending the maximal elements can
be defined. For example, one can choose to extend two maximal elements pro-
vided they share a set of common elements above a particular threshold and also
when the differences between them is less. In other words, extend the maximal
elements only if |ram

1 ∩ ram
2 | ≥ δc and |(ram

1 \ ram
2) ∪ (ram

2 \ ram
1)| ≤ δd. δc cor-

responds to the threshold on the number of common elements which can either
be a fixed constant or a fraction of the cardinality of the participating maximal
elements such as 0.6×min(|ram

1 |, |ram
2 |). δd corresponds to the threshold on the

number of differences between the two maximal elements.

5 Patterns in the Manifestation of Complex Process
Model Constructs

The pattern definitions defined above (both tandem arrays, maximal repeats
and its variants) capture some important manifestations of the process model
constructs, but they are not sufficient enough to cater to complex model con-
structs where there is a parallelism or choice within other constructs. We call the
above pattern definitions to be exact. In order to deal with complex constructs,
the pattern definitions need to be more flexible and robust. In this section, we
address some of these pattern definitions and call these approximate.

5.1 Approximate Tandem Arrays

In a trace T , an approximate tandem array is a concatenation of sequences
α = s1s2s3 . . . sk for which there exists a sequence sc such that each si (1 ≤
i ≤ k) is approximately similar to sc. The notion of similarity can be defined in
multiple ways (such as Hamming distance, string edit distance). For example,

Abstractions in Process Mining: A Taxonomy of Patterns 167

two sequences with string edit distance [3] less than δ (for some threshold, δ)
can be considered to be similar. Here, sc can be different from each and every si;
alternatively, we may constrain that sc be equal to at least one si (1 ≤ i ≤ k).
sc is called as the primitive approximate tandem repeat type, and the approxi-
mate tandem array α is represented by the triple (j, sc, k) where j signifies the
starting position of α in T . Edit distance is defined as the minimum number of
operations required to transform one sequence into the other (where the opera-
tions correspond to substitution, deletion or insertion of activities). Generic edit
distance uses a cost function where different costs can be associated to the edit
operations. Levenshtein distance (LD) is a specific case of generic edit distance
where all the symbols are treated equally and the cost of each edit operation is 1.
Levenshtein distance might not be a good metric in most scenarios as it does not
consider the context for edit operations. We have discussed some of the pitfalls
of Levenshtein edit distance and proposed an automated approach to derive the
costs of edit operations in [4]. One can use the generic edit distance framework
[3] to define robust notions of similarity for approximate patterns.

– Choice within Loops: Approximate tandem arrays can be used to detect
choices within loops. For example, consider the process model construct de-
picted in Figure 4(iii). In this example, we have a choice construct over the
activities b and c inside the loop. S = abdacdacdabd is one manifestation
of the process model that constitutes an approximate tandem array with
abd or acd as an approximate primitive tandem repeat type. The similarity
criteria is Levenshtein distance, LD(sc, si) ≤ 1.

a

cb d

e

(i)

a b c d

(i i)

a

b

c

d

(i i i)

a

cb d

e

(iv)

Fig. 4. Few Examples of Complex Process Model Constructs

– Parallelism within Loops: Parallelism within loops can also be handled in a
similar fashion by approximate tandem arrays. However, defining an appro-
priate notion of similarity is crucial for the success of this approach. A too
lenient notion might generate too many false positives while a stringent no-
tion will miss certain constructs. This problem is compounded by the number
of activities involved in the parallelism construct. A more practical way is
to process the traces iteratively as would be discussed in Section 7.

5.2 Approximate Conserved Regions

Just like the approximate tandem arrays, we can define notions of approximation
for the non-tandem repeats (maximal repeats, super-maximal and near-super

168 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

maximal repeats). Approximate repetitions are specified by authorizing some
number of errors between repeated copies. The set of allowed errors can be
defined under the hamming distance and edit distance framework. If only re-
placements are allowed, this yields the classic Hamming distance, defined as the
number of mismatches between the two sequences; if both replacements and
insertions/deletions are permitted, then we are operating in the edit distance
framework.

A repeat pair (α, α′) is a k−approximate repeat if and only if the distance
between them d(α, α′) ≤ k. Consider Fig 4(i) which contains a parallelism con-
struct. T1 = abcde, T2 = acdbe, T3 = adcbe are some of the traces of the
construct. The pairs (abcde, acdbe), (acdbe, adcbe) and (abcde, adcbe) are all
2−approximate under the Levenshtein edit distance.

6 Approaches for Discovering the Patterns

Maximal, super maximal and near super maximal repeats can be efficiently dis-
covered in linear time using suffix trees for strings [5], [6]. Repeats that exist
across the traces in the event log can be determined by applying the repeat
identification algorithms on the sequence obtained by concatenating the traces
in the event log with a delimiter not present in the alphabet A. Such a con-
catenation of traces might yield a very long sequence. One can adopt efficient
suffix-tree construction techniques such as [7] to handle very long sequences.
Approximate repetitions can be found by first identifying exact repetitions and
searching for all sub-sequences within a distance of k with the exact repetitions.

Gusfield and Stoye [8] proposed a linear time algorithm based on suffix trees
to detect tandem repeats. Discovering tandem arrays takes O(n+z) time, where
n is the length of the trace and z is the number of primitive tandem repeat types
in the trace. Sokol et al [9] proposed an approach for a variant of approximate
tandem arrays under the edit distance in O(nk log k log(n/k)) time and O(n+k2)
space (where k is the threshold on the edit distance for similarity). The generic
problem of approximate tandem arrays is still an open research problem. We
have adopted Ukkonen’s algorithm [10] for the construction of suffix-trees in
linear-time.

7 Pre-processing Traces and Resolving Complex
Constructs

7.1 Pre-processing Traces with Abstractions

The discovery of process models is based on the dependency relations that can be
inferred among the activities in the log. More specifically, the dependency that is
often explored is the succession relation (activity B succeeds activity A); process
models are generated by assigning the control-flow links between tasks/activities

Abstractions in Process Mining: A Taxonomy of Patterns 169

based on the succession relation. Invocations of an activity in different contexts
are treated alike. The fan-in/fan-out of the control-flow links on an activity in-
creases by such a treatment thereby making the final model look spaghetti-like.
Spaghettiness of process models can be reduced by first mining common func-
tionalities/constructs, abstracting them and then discovering process models on
the abstracted log. By doing so, multiple invocations of an activity can be distin-
gushed based on the context of its occurrence. Algorithm 1 presents a single-phase
of the pre-processing. The basic idea is to first process for any loop constructs
(find patterns pertaining to loops viz., tandem arrays and approximate tandem
arrays) and replace the manifestation of loops with abstract entities. Subsequence
patterns that are conserved within a trace and/or across the event log (signifying
common functionality) are then discovered and abstracted. This can be iterated
over any number of times with the event log for iteration i + 1 being the output
event log of iteration i.

Algorithm 1. Single-phase preprocessing of traces

1: Given an event log L = {T1, T2, T3, . . . , Tm}.
2: Remove duplicate traces from L. Let the set of unique traces be

L′ ⊆ L = {T ′
1, T ′

2, . . . , T ′
n}; Each T ′

i ∈ L.
3: Let L′′ = φ
4: {Identify loop manifestations}
5: for all T ′

i ∈ L′ do
6: Identify all primitive tandem arrays, approximate tandem repeats in T ′

i. Let PTRi

denote the set of all primitive tandem repeat types in trace T ′
i.

7: end for
8: Let PT R =

⋃n
i=1 PT Ri.

9: Find abstractions over the set of repeat alphabets of PTR. Let A be the set of such
abstractions. For each abstraction ai ∈ A, there exist a set of repeats that constitute
the abstraction. Let f : PT R → A be the function defining the abstraction for each
repeat.

10: {Process the traces and replace the loop manifestation with abstract entities}
11: for all T ′

i ∈ L′ do
12: Let T ′′

i be an empty trace
13: for j = 1 to |T ′

i | do
14: if there exits a maximal primitive tandem array (j, α, k), α ∈ PT R, k ≥ 1 then
15: {check whether there exist any larger tandem array overlapping with this one}
16: if there exist another primitive tandem array (j′, β, k′) such that |β| > |α| and

j′ ≤ j + k ∗ |α| then
17: Set k =
(j′ − j)/|α|�.
18: end if
19: Append f(α) to T ′′

i
20: Set j = j + k ∗ |alpha|
21: else
22: Append T ′

i (j) to T ′′
i

23: end if
24: end for
25: L′′ = L′′ ∪ {T ′′

i }
26: end for
27: Find conserved regions across all traces in L′′

28: Let CR be the set of conserved regions
29: Find abstractions over the set of repeat alphabets of CR. Reuse abstractions already

defined over PT R for repeats that are common to both PT R and CR. Let A
′ be the set

of complete set of abstractions. For each abstraction ai ∈ A
′, there exist a set of

repeats that constitute the abstraction. Let g : CR → A
′ be the function defining the

abstraction for each repeat.
30: Process the traces and replace the conserved regions with abstract entities

170 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

The algorithm is straightforward but the steps 14 − 20 pertaining to the
treatment of overlapping loop manifestations deserve attention. Fig 5 depicts a
scenario. (1, ab, 5) and (9, abcd, 3) are two tandem arrays in the trace. The prefix
of the second loop manifestation overlaps with the suffix of the first loop. In this
case, we shorten the first tandem array to (1, ab, 4) and give preference to longer
patterns.

Fig. 5. Overlap of primitive tandem arrays

7.2 Iterative Approach to Resolve Complex Constructs

Consider the process model depicted in Figure 4(iv) which consists of a paral-
lelism construct within a loop. Consider two traces T1 = abcdeacbdeabcde and
T2 = acbdeabcde. r1 = abcde and r2 = acbde constitute the maximal repeats
present in the two traces (obtained in the concatenated sequence of T1 and T2).
Now, repeats r1 and r2 are equivalent under the repeat alphabet {a, b, c, d, e}.
Let us represent this equivalence class with an abstract entity, say A. Processing
traces T1 and T2 and replacing all occurrences of repeats within this equivalence
class with the abstract entity, we get the transformed traces T ′

1 = AAA and T ′
2 =

AA. In the second iteration of preprocessing, the loop construct can be discovered
in the transformed traces.

Loops within loops can also be discovered using a multi-phase approach. Con-
sider Fig 4(ii). T1 = abcdabcbcbcd, T2 = abcbcd are two of the traces pertaining
to the construct. (6, bc, 3) and (2, bc, 2) would be identified as tandem arrays
in traces T1 and T2 respectively. Let us assume that the tandem repeat type
bc is represented with an abstract entity A. Replacing all occurrences of tandem
arrays with tandem repeat type bc in the log with the abstract entity, we get the
transformed traces T1 = aAdaAd and T2 = aAd. Now in the second iteration, aAd
would be identified as a tandem array. Thus loops within loops can be uncovered.
Though this example relates to simple loops within loops, iterative approach of
identifying loops and conserved regions (both exact and approximate) alterna-
tively and performing consistent abstractions over them would help in realizing
more complex constructs.

8 Experimental Results and Discussion

We have analyzed the significance of the patterns described in this paper over a
large set of event traces (of real systems) with varying alphabet sizes. We present
one such study here where we have considered a set of 1372 event traces of a
health care system. The traces correspond to the commands of clinical usage
logged by the system. There were a total of 213 distinct commands (activi-
ties/event classes) in the event log (alphabet size, |A| = 213) and the entire
event log had 215, 623 events.

Abstractions in Process Mining: A Taxonomy of Patterns 171

In this study, we have done analysis only on the exact repetitions. The anal-
ysis of approximate repetitions (both for the manifestation of loop constructs
and conserved regions) is underway. Table 3 depicts a few examples of primitive
tandem repeat types identified in the log. It can be seen that the commands
involved in the loop manifestation all belong to a common functionality. The
primitive tandem repeat types 1 and 2 correspond to some image processing
functionality. The difference between 1 and 2 being that in the former, an image
reverse operation is performed where as in the latter an image forward operation
is invoked. The primitive tandem repeat type 3 corresponds to a functionality
of beam/detector movement while that of 4 corresponds to a wedge movement
functionality. Primitive tandem repeat type 5 corresponds to geometry function-
ality. There were a total of 826 primitive tandem repeat types in the event log.
The shortest primitive tandem repeat type is of length 1 (signifying a loop over
a single activity/command) while the longest spans over 13 activities. Under the
equivalence class of repeat alphabets, the number of distinct classes were 363.

Table 3. A few examples of primitive tandem repeat types

S.No Primitive Tandem Repeat Type Frequency

1 (SetReplayScope, SetReplayType, SetSpeedAndDirection, StartRe-
play, StartStepImgRev, StopStepImgRev, StartStepRunFwd, Stop-
StepRunFwd)

206

2 (SetReplayScope, SetReplayType, SetSpeedAndDirection, StartRe-
play, StartStepRunFwd, StopStepRunFwd, StartStepImgFwd, Stop-
StepImgFwd)

319

3 (MoveDetectorLateral.Move, AngulateBeamLateral.Move, Rotate-
BeamLateral.Move, AngulateBeamLateral.Move)

43

4 (BLWedge2RotateClockwise, BLWedge2TranslateIn,
BLWedge2TranslateStop, BLWedge2RotateStop)

51

5 (ResetGeo.Start, ResetGeo.Stop) 85

There were a total of 170 maximal elements in the Hasse diagram on the re-
peat alphabet over the primitive tandem repeat types. A lot of these maximal el-
ements were found to be similar. For example, the three maximal element repeat
alphabets, {StartStepImgRev,StopStepImgRev,AngulateBeamFrontal.Move},
{StartStepImgRev,StopStepImgRev,MoveDetectorFrontal.Move}and {Start
StepImgRev, StopStepImgRev, RotateBeamFrontal.Move} are all similar in that
there exist some beam limitation related movements in conjunction with
some image analysis. Using extended joins, these three maximal elements can be
combined to a extended repeat alphabet {StartStepImgRev, StopStepImgRev,
AngulateBeamFrontal.Move,RotateBeamFrontal.Move,MoveDetectorFrontal
.Move}. The number of abstractions can be reduced thus.

Table 4 depicts some of the examples of near super maximal repeats (nsm)
over the data set. It can be clearly seen that all image processing related com-
mands used as a functionality are captured in nsm 1. The nsm 2 pertains to

172 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

Table 4. Few examples of near super maximal repeats over the dataset

S.No Near Super Maximal Repeats

1 (StartStepRunFwd, StopStepRunFwd, SetSpeedAndDirection, StartReplay,
StartStepRunFwd, StopStepRunFwd, StartStepImgFwd, StopStepImgFwd,
StartStepRunRev, StopStepRunRev, SetSpeedAndDirection, StartReplay,
StartStepImgFwd, StopStepImgFwd, StartStepRunFwd, StopStepRunFwd,
SetSpeedAndDirection, StartReplay, StartStepRunFwd, StopStepRunFwd)

2 (BLWedge1TranslateIn, BLWedge1RotateClockwise,
BLWedge1RotateStop, BLWedge1TranslateStop, BLWedge1TranslateIn,
BLWedge1RotateCounterClockwise, BLWedge1RotateStop,
BLWedge1TranslateStop, BLWedge1RotateCounterClockwise)

3 (StartStepImgRev, StopStepImgRev, StartStepImgFwd, StopStepImgFwd,
SetZoomFactor, SelectView, SetZoomCentre)

wedge related movements while nsm 3 depicts the zoom functionality used in
succession/conjunction with the image processing functionality which can be
easily imagined from an application point of view. In the data set there were
a total of 26, 000 near super maximal repeats (5391 repeat alphabets) after the
first iteration. Though the numbers sound large, a lot of these are similar which
can be seen from the fact that there were only 1129 maximal elements in the
Hasse diagram on these repeat alphabets. Using (δc and δd) as parameters, these
can further be reduced using extended joins. Using one such parameter setting,
we were able to reduce the number of abstractions to 40.

Fig 6 depicts a process model mined using the heuristics miner in the ProM
tool on the abstracted log of Philips Healthcare. The original log was first fil-
tered to remove highly infrequent activities (frequency of occurrence less than
0.005%). This resulted in a log with 141 distinct event classes and 215, 399 to-
tal number of events. The abstractions are defined over the exact tandem array
patterns capturing the manifestation of loop constructs. For the abstracted log
we conducted only one iteration of pre-processing. The process model from the
original log (without the abstraction) is shown in Fig 1(a). It is evident that
the process model mined from the abstracted log is more comprehensible (less
spaghetti-like). Further, the abstractions were formed over activities that are re-
lated by a functionality. For example, all the shutter movement operations were
grouped to an abstract entity. Similarly, wedge related movements, commands
pertaining to image processing functionality have been grouped as an abstract
entity. In other words, we were to able to identify conceptually-valid abstractions.

The approximate notions of patterns induces the flexibility and thereby the
variety over the class of patterns. Another notion of flexibility is introduced in
the approach for abstraction over the repeat pattern alphabet. Recall that we
have introduced the notion of parameterized extended joins (over the fraction of
common/different elements between two repeat alphabets). By choosing different
thresholds for the approximation (similarity) between patterns, one can form a
multi-level abstraction. The assumption that we make over the definition of

Abstractions in Process Mining: A Taxonomy of Patterns 173

Fig. 6. Process model mined using heuristics miner on log abstracted with loop con-
struct manifestations

these patterns is that each functionality (process model construct, sub-process
etc) gets manifested at least twice in the event log (either within the same
trace or across traces), which is a reasonable assumption to make. While the
notion of approximate patterns induces the flexibility, it also acts as a weakness,
as choosing a right notion of approximation is non trivial. For the edit-distance
based approximation, choosing a right cost function for edit operations is critical.
However, it can be mitigated with approaches for automated derivation of costs
such as in [4].

9 Related Work

Greco et al [11], [12] proposed an approach to mine hierarchies of process mod-
els that collectively represent the process at different levels of granularity and
abstraction. The basic idea of their approach is to cluster the event log into
different partitions based on the homogeneity of traces and mine process models
for each of the clusters. Clustering induces a hierarchy in the form of a tree with
the root node depicting the entire log and the leaf nodes corresponding to traces
pertaining to concrete usage scenarios. Two kinds of abstractions over activities
viz., is-a and part-of is then done by traversing the tree bottom-up and consid-
ering every pair of activities and checking whether they can be merged without
adding too many spurious control flow paths among the remaining activities.
This approach tries to analyze the mined process models (post-processing) for
identifying activities that can be abstracted. However, for large complex logs, the
mined process models (even after clustering) can be quite spaghetti-like thereby
increasing the complexity of such analysis. In contrast, the approach proposed in
this paper analyzes the raw traces and defines abstraction (pre-processing) and

174 R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst

thereby reduces the spaghettiness of the mined process model. Our approach can
be used complementarily as a precursor to [11], [12]. It is conjectured that such a
hybrid approach will yield better results. Polyvyanyy et al [13] have proposed a
slider approach for enabling flexible control over various process model abstrac-
tion criteria (such as activity effort, mean occurrence of an activity, probability
of a transition etc.). The slider is employed for distinguishing significant pro-
cess model elements from insignificant ones. Taking cartography as a metaphor,
Günther and Aalst [14] have proposed a process mining approach to deal with the
“spaghettiness” of less structured processes. The basic idea here is to assign sig-
nificance and correlation values to activities and transitions, and depicting only
those edges/activities whose significance/correlation is above a certain threshold.
Less significant activities/edges are either removed or clustered together in the
model. Günther and Aalst [14] too have used a slider based approach to specify
the threshold and thereby alter the levels of abstraction. Approaches such as
[13], [14] looks at abstraction from the point of retaining highly significant infor-
mation and discarding less significant ones in the process model. In constrast,
the approach proposed in this paper looks at abstraction from a functionality
point of view. The approach proposed in this paper can be used as a preprocess-
ing step for the logs and can be seamlessly integrated with other approaches for
abstraction [11], [12], [14] as well as with approaches for process discovery.

10 Conclusions and Future Work

In this paper, we have presented a few pattern definitions and correlated them
to the manifestation of process model constructs. We have also presented an
approach to form abstractions of activities in the log based on the patterns. Fur-
ther, a multi-phase approach for pre-processing the traces with the patterns and
abstractions was presented. We have applied the proposed techniques on a real-
life log and the results are promising. The pattern definitions proposed in this
paper have multi-faceted applications such as enabling of hierarchical process
mining (thereby reducing the spaghettiness of mined models), trace clustering
and fault diagnosis.

Acknowledgments. The authors are grateful to Philips Healthcare for funding
the research in Process Mining.

References

1. van der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

2. de Medeiros, A.K.A., van der Aalst, W., Pedrinaci, C.: Semantic Process Min-
ing Tools: Core Building Blocks. In: 16th European Conference on Information
Systems, pp. 1953–1964 (2008)

3. Ristad, E.S., Yianilos, P.N.: Learning String-Edit Distance. IEEE Trans.
PAMI 20(5), 522–532 (1998)

Abstractions in Process Mining: A Taxonomy of Patterns 175

4. Bose, R.P.J.C., van der Aalst, W.: Context Aware Trace Clustering: Towards Im-
proving Process Mining Results. In: SIAM International Conference on Data Min-
ing, pp. 401–412 (2009)

5. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

6. Kolpakov, K.: Finding Maximal Repetitions in a Word in Linear Time. In: IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 596–604 (1999)

7. Cheung, C.F., Yu, J.X., Lu, H.: Constructing Suffix Tree for Gigabyte Sequences
with Megabyte Memory. IEEE Trans. Knowl. Data Eng. 17(1), 90–105 (2005)

8. Gusfield, D., Stoye, J.: Linear Time Algorithms for Finding and Representing all
the Tandem Repeats in a String. Journal of Computer and System Sciences 69,
525–546 (2004)

9. Sokol, D., Benson, G., Tojeira, J.: Tandem Repeats Over the Edit Distance. Bioin-
formatics 23(2), e30–e36 (2007)

10. Ukkonen, E.: On-Line Construction of Suffix Trees. Algorithmica 14(3), 249–260
(1995)

11. Greco, G., Guzzo, A., Pontieri, L.: Mining Hierarchies of Models: From Abstract
Views to Concrete Specifications. In: Business Process Management, pp. 32–47
(2005)

12. Greco, G., Guzzo, A., Pontieri, L.: Mining Taxonomies of Process Models. Data
Knowl. Eng. 67(1), 74–102 (2008)

13. Polyvyanyy, A., Smirnov, S., Weske, M.: Process Model Abstraction: A Slider Ap-
proach. In: Enterprise Distributed Object Computing, pp. 325–331 (2008)

14. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining - Adaptive Process Sim-
plification Based on Multi-perspective Metrics. In: Business Process Management,
pp. 328–343 (2007)

Aggregating Hierarchical Service Level

Agreements in Business Value Networks

Irfan ul Haq, Altaf Huqqani, and Erich Schikuta

Department of Knowledge and Business Engineering
University of Vienna, Austria

{irfan.ul.haq,huqqana3,erich.schikuta}@univie.ac.at

Abstract. Business scenarios such as Business Value Networks and Ex-
tended Enterprises pose new challenges for service choreographies across
heterogeneous Virtual Organizations. In such scenarios, services compose
together hierarchically in a producer-consumer manner to form service
supply-chains of added value. Service Level Agreements (SLAs) are de-
fined at various levels in this hierarchy to ensure the expected quality
of service for different stakeholders. Automation of service composition
directly implies the aggregation of their corresponding SLAs. But so far,
the aggregation of SLAs has been treated only as a single layer process
which is insufficient to complement the hierarchical aggregation of ser-
vices. In this paper we elaborate on the requirement of a hierarchical
aggregation of SLAs corresponding to service choreographies in Business
Value Networks. During the hierarchical aggregation of SLAs, certain
SLA information pertaining to different stakeholders is meant to be re-
stricted and can be only partially revealed to a subset of their business
partners. We introduce the concept of SLA-Views to protect such privacy
concerns. We, then formalize the notion of SLA Choreography and define
an aggregation model based on SLA-Views to enable the automation of
hierarchical aggregation of Service Level Agreements. The aggregation
model has been designed to comply with the WS-Agreement standard.

Keywords: Service Level Agreements, Business Value Networks, Value
Chains, SLA Management.

1 Introduction

Novel concepts such as Cloud Computing, Autonomic Computing, and Business
Grids pursue the same industrial goal: to enable consumers to access the shared
resources on demand. In the notion of commodity computing, services are the
basic building blocks of complex software systems. A Service Level Agreement
(SLA) is a formally negotiated contract between service provider and service
consumer that ensures the expected level of service for the service consumer.
The service consumer can be a client or another service.

In a service-enriched environment such as the Grid or the Cloud Computing
infrastructures, services scattered across various Virtual Organisations (VOs)
under multiple administration domains, can compose together in form of service

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 176–192, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Aggregating Hierarchical SLAs in Business Value Networks 177

choreographies. During such service choreographies, Service Level Agreements
(SLA) are made among different partners on various points of the choreography.
These partners may include the client, the Virtual Organizations (VO), or other
services. Service composition directly implies the need of composition of their
corresponding SLAs. So far, SLA composition has been considered [1] as a single
layer process. This single layer SLA composition model is insufficient to de-
scribe supply-chain business networks. In a supply-chain, a service provider may
have sub-contractors and some of those sub-contractors may have further sub-
contractors making a hierarchical structure. This suppy-chain network spanned
across various Virtual Organisations may emerge as a Business Value Network.
Business Value Networks [2] are ways in which organizations interact with each
other forming complex chains including multiple providers/administrative do-
mains in order to drive increased business value. NESSI (Networked European
Software and Services Initiative) , which is a consortium of over 300 ICT indus-
trial partners has highlighted the importance of Business Value Networks [2] as
a viable business model in the emerging service oriented ICT infrastructures.

In addition to the notion of Business Value Networks, NESSI has pointed out
various other possibilities for similar inter-organizational business models; Hier-
archical Enterprises, Extended Enterprises, Dynamic Outsourcing, and Mergers
to name a few. The process of SLA aggregation in such enterprizes is a hierarchi-
cal process. There is no SLA aggregation model till this date, which can describe
this type of hierarchical aggregation. To enable these supply-chain networks as
Service Oriented Infrastructures (SOI), the case of the Service Level Agreements
needs to be elaborated and its issues resolved. SLA@SOI [3]is a European project
that focusses on SLA issues in SOI. On its agenda is the provision of such Service
aggregators, that offer composed services, manageable according to higher-level
customer needs. In SLA@SOI’s vision, service customers are empowered to pre-
cisely specify and negotiate the actual service level according to which they buy
a certain service.

It is not sensible to expose the complete information of SLAs spun across the
whole chain of services to all the stakeholders. Not only because of the privacy
concerns of the business partners, but also for disclosing it could endanger the
business processes creating added value. To achieve this balance between trust
and security, we introduce the concept of SLA-views. The inspiration for this
concept comes from the notion of business process-views [4][5] and workflow
Views [6]. We apply the concept of views on SLA-Choreography. Each business
partner will have its own view comprising of its local SLA information. The
holistic effect of these views will emerge as the overall SLA-Choreography. In
this paper we present a formalized approach based on the concept of SLA-Views
and adherent to WS-Agreement standard, to automate the aggregation process
of hierarchical SLAs in Business Value Networks. The overall contribution of the
paper consists of:

– a privacy model based on the concept of SLA-Views,
– a formal description of hierarchical SLA-Choreographies based on SLA-

Views in Business Value Networks,

178 I. ul Haq, A. Huqqani, and E. Schikuta

– a formal model for SLA aggregation in hierarchal SLA-Choreographies, and
– the customization of WS-Agreement to support the hierarchical SLA aggre-

gation model

In section 2, we give a survey of the related work. Section 3 introduces the
hierarchical choreography of SLAs. Section 4 formalizes the concept of SLA View
and SLA Choreography. Section 5 describes the formal model of hierarchical
aggregation of SLAs and section 6 highlights some of its business applications.
Section 7 presents a motivational example based on this model. Finally, Section
8 concludes the paper with an overview of our achievements and strategy for the
future work.

2 Related Work

The related work spans across three dimensions: aggregation models of SLAs,
formal description of SLAs and the privacy of stake-holders in business cooper-
ations.

2.1 SLA Aggregation

Service Level Agreement is a contract between a service and its client; the client
being a person or yet another service. Service composition in workflow also de-
mands SLA composition. A little research [1] [7] has been done towards dynamic
SLA aggregation of workflows. Blake and Cummings [1] have defined three as-
pects of SLAs which are Compliance, Sustainability and Resiliency. Compliance
means suitability i.e the consumer receives what is expected. Sustainability is the
ability to maintain the underlying services in timely fasion. Resiliency directly
corresponds to the maintenance of services to ensure their performance over an
extended period of time. The authors then subdivide these three categories into
six aspects of SLA but this makes their approach rather specific because it does
not cover the whole range of SLA aspects. They put forth a model to compose
SLAs of services mapping to a workflow but they take into account the services
existing only at one level. Frankova [7] has also highlighted the importance of this
issue but has just described a vision and not any concrete model. Unger et al’s
work [8]is directly relevant to our focus of research. They focus on aggregation
of SLAs in context with Business Process Outsourcing (BPO). They synchronize
their work with Business Process Execution Language (BPEL) and WS-Policy.
Their model is based on SLO aggregation of SLAs on a single level. One of the
limitation of their approach is that they take into account services related to one
process in one enterprise because they focus on BPO. Our approach describes
corss-VO SLA aggregation and strictly adheres to WS-Agreement.

2.2 Formal Description of SLA

Aiello et al. [9] present a very nice formal description of SLA. Their approach
is based on WS-Agreement. They extend the WS-Agreement standard by intro-
ducing a new category of terms called Negotiation Terms. They build automata

Aggregating Hierarchical SLAs in Business Value Networks 179

representation of SLA states to describe the negotiation process. Their formal
model is too vague and they do not explain how this model will describe the sub-
entities in WS-Agreement. Unger et al. [8] present a rigorous formal model for
SLA aggregation. They follow BPEL and WS-Policy whereas our formal model
adheres to WS-Agreement standard.

2.3 Workflow Views

For privacy concerns we will coin the notion of SLA-Views, which is similar to the
concept of workflow views but is not formally based on it. The concept of Work-
flow Views is used to maintain the balance between trust and security among
business partners. Schulz et al. [10] have introduced the concept of view based
cross-organizational workflows and they call it as coalition workflows. Chebbi et
al. [11] provide a very comprehensive approach that is view based, web services
focused and is applicable to dynamic inter-organizational workflow cooperation.
This means that the cooperation across organizations is described through views
without specifying the internal structure of participating workflows. Their con-
cept of contracts is similar to that of SLA, however, SLAs are more dynamic due
to negotiation, renegotiation and fault tolerance features. Their is some very rele-
vant work done by Chiu et al. [12] interms of a contract model based on workflow
views. They demonstrate how management of contracts can be facilitated. They
start with an example, highlight domains of different participating organizations
and then develop a model to identify the corresponding workflow views. They
go on further to develop an e-contract model based on plain text format. Service
Level Agreements, represented in XML format are more structured and flexible
than the e-contracts. Furthermore their approach starts with defining views in
an inter-organizational workflow and then describing e-contracts to enforce the
obligatory communication links in the views. Our model allows SLAs to maintain
their individual identity. Therefore, we define views directly on the SLA aggre-
gation structure rather than on workflows. Moreover, our approach provides a
formal description of hierarchical SLAs and their aggregation model.

3 Hierarchical Choreography of SLAs

A service level agreement is a contract that defines mutual understandings and
expectations regarding a service between the service provider and the service
consumer. WS-Agreement [13], a standard SLA language from OGF (Open Grid
Forum) [14], defines the structure of agreement as depicted in figure 1. The con-
tract should bear an official name. Agreement Context contains information
about the initiator, the responder and the provider of the agreement; expiration
time of the agreement; and its template Id. Service Terms define the functional
attributes of the agreement whereas the Guarantee Terms contain the non func-
tional attributes. Guarantee terms further describe the conditions, service level
objectives and business value list related to the agreement. Business value list
may express the importance of meeting an objective as well as information re-
garding penalty or reward.

180 I. ul Haq, A. Huqqani, and E. Schikuta

 Terms

 Service Terms

 Guarantee Terms

Fig. 1. structure of an agreement in accordance with WS-Agreement specification

Referring to figure 1, we can formally define the Service Terms, and Guarantee
Terms as part of the encapsulating section Terms.

Definition 1 (Service Term). A service term denoted by terms is an element
of the set Service Terms denoted by STerms. A terms ∈ STerms is a tuple
such that,

terms =< name, value, typea >

where name and value denote the name and value of a service term and typea

describes its aggregation type.

We have taken the liberty to implant a new mandatory element to the WS-
Agreement standard, namely, typea. The typea element corresponds to the ag-
gregation function that helps us automate the aggregation of SLAs. We postpone
its definition to the latter part of the paper where we will discuss the aggregation
process.

Definition 2 (Guarantee Term). A guarantee term denoted by termg is an
element of the set Guarantee Terms i.e, GTerms. A termg ∈ GTerms is a tuple
such that:

termg =< SLO, conditionq, BV L >

where SLO represents Service Level Objectives, conditionq represents Qualifying
Conditions and BVL represents Business Value List. Combining the above two
definitions, now we can define the notion Terms in the WS-Agreement.

Definition 3 (Term). A term ∈ Terms is a pair such that

term = (terms, termg)

where terms ∈ STerms and termg ∈ GTerms

Following the above definitions, SLA can now be formally defined as:

Definition 4 (SLA). A service Level Agreement (SLA) denoted by sla is a
tuple

Aggregating Hierarchical SLAs in Business Value Networks 181

sla =< Name, Context, T erms >

where Terms = ∪n
i=1termi

and Context is a list of strings. Context defines the names of the SLA provider,
the consumer and the initiators. It also contains the duration of the SLA. The
parameter Name denotes the name of the SLA.

GSLA

SLA(cl b3)

Level 0 Level 2Level 1

SLA (X A) = SLA btween the service-consumer X and service-provider A

SLA(cl c4)

SLA(cl a2) SLA(a2 aj)

Level 3

SLA(cl a3)

SLA(i2 a1)

SLA(a3 i2)

SLA(i2 j2)

SLA(b3 b1)

SLA(b3 c3)

SLA(c3 b4)

SLA(c3 jj)

SLA(i2 i1)

a1

a3ai

aj

a2 b1b3

b4bj
b2 c1

c4

c3

ci

c2

i1
ii ij

i2 j1 j3

ji

jj

j2

VO-A VO-C

VO-I

VO-J

VO-B

(b) SLA-Choreography and SLA dependency levels(a) Service Choreography across VOs

Fig. 2. Hierarchical Aggregation of SLAs

A Virtual Organization (VO) in business context, is a temporary or perma-
nent, coalition of geographically dispersed organizations expressing high level
mutual trust to collaborate and share their resources and competencies in order
to fulfill the customers’ requests. Web services scattered across various admin-
istrative domains, when composed together, are said to form service choreogra-
phies. In these service choreographies, many service-to-service SLAs are formed.
The situation becomes even more complex in Business Value Networks, where,
services scattered across many such Virtual Organizations (VO) collaborate to
enable complex supply chain networks. One way to visulaize this hierarchy is in
terms of dependency layers. Deeper a service in this chain is, more dependent
its ancestors are. A hierarchy of corresponding SLAs pertains to this chain of
services. There is no multi-level SLA model that can describe the hierarchical
aggregation of SLAs in such Business Value Network. We will call this hierar-
chical aggregation of SLAs as SLA-Choreography with relevance to the Service
Choreography.

In figure 2, we have presented a simplified picture of a cross-VO choreogra-
phy. The client (that may be a workflow process) is directly connected to some
services, scattered across three VOs: VO-A, VO-B, VO-C. These services are
coordinating with other services to carry out their jobs. This coordination re-
sults into service chains, distributed across multiple Virtual Organisations. This
scenario can be compared with a simple Business Value Network. The partner
services play the producer-consumer roles in this service choreography. All of

182 I. ul Haq, A. Huqqani, and E. Schikuta

these services establish Service Level Agreements (SLA), thus giving rise to an
SLA-Choreography in connection with the underlying service choreography.

Another way to visualize this SLA-Choreography is in terms of hierarchical
organization of SLAs. There may be several dependency layers in this SLA-
Choreography. The dependency increases along the hierarchy. The aggregated
effect of this dependency travels from the very bottom towards the topmost.
This SLA aggregation is depicted in Fig. 2. In this hierarchy the SLAs, which
are connected to the client process, are said to exist on level 1. This hierarchy
indicates a supply chain type of correspondence among the services. These layers
also denote the visibility levels of service providers and the client. The client has
concern only with the services immediately connected to it and can not see
beyond. Similarly a service can see its coordinating services i.e its providers
and its consumers with which it is making service level agreements. It has no
information about the rest of the service choreography. Despite of its privacy
concerns, a service is dependent on its lower services. The effect of SLAs formed
among the services at lower levels is bubbled up through the upper layers.

There are many interesting questions that need answers: What trust model
will bind together the Business Value Networks? Who will manage this SLA-
Choreography? How to monitor and validate this SLA-Choreography? Although
these questions are related to our overall research agenda but are beyond the
scope of this paper. In this paper we focus on an even more basic problem: To
develop a formal model that can describe this SLA-Choreography and construct
an aggregation model for hierarchical SLAs while protecting the privacy concerns
of the stakeholders at the same time. For this purpose, we introduce the concept
of SLA-Views.

4 SLA Views

The concept of Views originates from the field of databases and has been success-
fully adapted in business workflows [11][5]. In workflows, a view can be a subset
of that workflow or can be a representation of that workflow in aggregated or
abstracted fashion. We have also employed the notion of views to represent a
subset of SLA-Choreography. As the matter of fact the notion of SLA-Views is
related to that of workflow views in a very general sense. In formal sense, SLA-
Views are absolutely different from the workflow views. SLA-Choreography is
not a workflow so the rules of workflows are not applicable on it. For instance, in
a workflow, rules such as: there should be a single start and single exit or every
split should have a join, do not apply on SLA choreography.

A view in an SLA-Choreography represents the visibility of a business partner.
Every service provider is limited only to its own view. A partner (for example
a service) makes two kinds of SLAs: the SLAs for which it acts as a consumer
and the SLAs for which it is a provider. For clarity, we name these two types as
the consumer-oriented SLAs and the producer-oriented SLAs respectively.

In figure 3, SLAs are connected to small circles, which we call aggregation
points, by certain edges called dependencies. There are two types of dependencies.

Aggregating Hierarchical SLAs in Business Value Networks 183

t1

(if t1< t2)

t1

(if t1> t2)

ap-c3

Cl-b3

Client’s

SLA

Cl-b4 Cl-a3 Cl-a2

c3-j1

b3-b1b3-c3 a3-i2 a2-aj

i2-a1i2-i1i2-j2c3-b4

ap-b3 ap-a3
ap-a2

ap-i2

Client

Client’s View of SLA Choreography

Service provider i2's View of SLA Choreography

ap-Client

Max

t1

t2

Mint2

t1

t1+t2

t2

t1

Neutral
{t1,t2}

t2

t1

Fig. 3. Different Views in the SLA-Choreography And Some Basic Aggregation
Function

Consumer-oriented SLAs are connected to the aggregation points from below
by the sink dependencies and the producer-oriented SLAs are connected from
above by the source dependencies. To understand the overall picture of the SLA-
Choreography, we need to formalize these concepts.

Definition 5 (Aggregation Point). An Aggregation Point ap is an object
such that

ap =< aggsla >

where aggsla is the aggregated SLA produced by aggregating the consumer-
oriented SLAs connected to it. In figure 3, ap-i2 is an aggregation point. An
aggregation point is the point where the consumer-oriented SLAs (of the con-
sumer service) are aggregated and on the basis of their aggregated content, the
service is able to decide what it can offer as a provider. The master-slave relation-
ships in Business Value Networks are directly translated to producer-consumer
model with one service provider (Enterprise) as a producer and other as a con-
sumer. So both the producer and the consumer enterprises will have their own
aggregation points connected together through their mutual SLA. However, for
peer-to-peer relationships, both peers act as producer and consumer of services.
This issue can be easily resolved by translating peer-to-peer relationships into
producer-consumer model. For this purpose, we device the concept of virtual ag-
gregation point (vap) to automate the aggregation process. Virtual aggregation
point is discussed in detail in section 6.

Now let us define dependencies which have been shown in figure 3(a) as edges
joining the aggregation point with the producer and consumer oriented SLAs.
The Aggregation Point ap-i2 is connected with three consumer-oriented SLAs
and one producer-oriented SLA through dependencies.

184 I. ul Haq, A. Huqqani, and E. Schikuta

Definition 6 (Source Dependency). A source dependency depsrc is a tuple

depsrc =< ap, sla >

where ap is the aggregation point and sla is the producer-oriented SLA. In figure
3(a), it is represented by the directed edge from the aggregation point ap-i2 to
the producer-oriented SLA, slaa3−i2 .

Each depsrc ∈ Depsrc, where Depsrc is the set of all source dependencies within
the SLA-Choreography. Let

source : (ap) → depsrc

source(api) is the unique s ∈ Depsrc, for which a unique producer-oriented
SLA exists with s = (api, slai). This means that the function source maps each
aggregation point api to a unique SLA through a unique source dependency s.

Definition 7 (Sink Dependency). A sink dependency depsink is a tuple

depsink =< sla, ap >

where ap is the aggregation point and sla is the consumer-oriented SLA. In
Figure 3, it is represented by the directed edge from the consumer-oriented SLA
i2-i1 to the aggregation point ap-i2. The aggregation point ap-i2 is connected
with three sink dependencies.

Each depsink ∈ Depsink, where Depsink is the set of all sink dependencies within
the SLA-Choreography. Let

sink : (ap) → P (depsrc)

where P (Depsink) is the power set of Depsink.
sinks(api) is the set Ssink ∈ P (Depsink), i.e. Ssink ⊆ Depsink such that for

each si ∈ Ssink a unique consumer oriented SLA exists with si = (slai, apj).
This means that the function sinks maps a set of consumer-orieted SLAs to a
unique aggregation point such that each consumer-oriented SLA slai is mapped
through a unique sink dependency si.

Definition 8 (Dependency). A dependency Dep is a set that is the union of
two sets namely Depsrc and Depsink which are pairwise disjoint, i.e.

Dep = Depsrc ∪ Depsink

Depsrc ∩ Depsink = φ

Based on these definitions, in figure 3, we see that the producer-oriented SLA
(a3-i2) is dependent on the terms of the corresponding consumer-oriented SLAs,
aggregated at ap-i2 . For example the bandwidth and space aggregated at ap-i2
would be the upper limit of what service i2 can offer to service a3. At the same
time service i2 will have to decide about its profit on the basis of the information
about total cost in the aggregated SLA. The aggregation point in this sense is
also a decision point for a service.

Aggregating Hierarchical SLAs in Business Value Networks 185

With having all the related concepts formalized, now we are in a position to
provide a formal definition of the SLA-View.

Definition 9 (SLA-View). An SLA-View denoted by slaview is a tuple such
that

slaviewi =< slap, depsr, api, SLAc, Depsn >

where slap = producer-oriented SLA, SLAc= Set of consumer-oriented SLAs,
depsr= source dependency, Depsn= set of sink dependencies, and api= aggre-
gation point. Each aggregation point api in the SLA-Choreography corresponds
to a unique sla-viewi.

In figure 3, the SLA-Views of the client and a service are highlighted.

Definition 10 (SLA-Choreography). An SLAchor is a tuple such that:

SLAchor =< SLA, APoints, Deps >

where SLA is set of all sla within an SLA-Choreography, APoints is set of
aggregation points ap, and Deps is set of dependencies dep. Another way to
describe the SLA-Choreography is in terms of SLA-Views, i.e.

SLAchor = ∪n
i=1slaviewi

This means that the whole SLA-Choreography may be seen as an integration
of several SLA-Views. In terms of Business Value Networks, it should be noted
that SLA-View defines boundaries of a stakeholder. The aggregation process
is performed at every aggregation point. Each aggregation point, which also
denotes a dependency level, belongs to one of the service providers. Although
each service provider is limited to its own aggregation information, but this
information is in fact dependent on the aggregation information at lower levels.
The sustainability of this business network requires all the stakeholders to trust
each other and their ability to maintain their privacy at the same time. SLA-
Views maintain a balance between this privacy and trust.

5 Aggregation Process

In the aggregation process, terms of the consumer-oriented SLAs are aggre-
gated. WS-agreement has no direct support for such an aggregation so we in-
troduced an attribute for aggregation type namely, “typea” in the Definition 1.
WS-Agreement gives the liberty to incorporate any external schema. Therefore
typea can be made an essential part of the service terms and will describe how
the corresponding service will behave during the aggregation process. We can
define typea in a formal way, as follows:

Definition 11 (The function typea). A typea ∈ Types is a function that
maps a set of tuples to a single tuple which is the aggregation of that set.

typea : tuples(term) → term

186 I. ul Haq, A. Huqqani, and E. Schikuta

typea(term1, ...termn) = termagg

We define typea as an aggregation function that aggregates n terms into one
term. Its result is aggsla in the aggregation point (please see Definition 5). Each
term in aggsla is computed by applying the type function for that term to
the values of the terms for all the dependent (consumer-oriented) SLAs which
define that term. In the present context, we define four types of terms namely
sumtype, maxtype, mintype and neutral but new types can be added according
to the situation, i.e.

Types = {sumtype, maxtype, mintype, neutral}
These functions have been depicted in figure 3(b). The function sumtype can

be formally defined as follows.

Definition 11.1 (The function sumtype)

sumtype ∈ Types(⇔ sumtype : tuples(term) → term

sumtype(term1, ...termn) =
∑n

i=1 termi

typea is an aggregation function that aggregates n number of terms into one
term. sumtype is of the type of typea and takes the summation of all terms.
Examples include terms for storage space, memory, availability and cost.

Definition 11.2 (The function maxtype)

maxtype ∈ Types(⇔ maxtype : tuples(term) → term

maxtype(term1, ...termn) = maxn
i=1 termi

maxtype is an aggregation function that aggregates n number of terms into one
term. It does so by picking up the maximum of these terms which represents the
aggregation of all the input terms.If several terms addressing the same utility
are being aggregated and their type has been declared as maxtype then only
the term pertaining to the maximum value will become part of the aggregated
SLA. Examples include latency, which may become a bottle neck for the whole
process and an activity with highest latency will directly contribute (though a
in negative sense) to the throughput of a workflow sequence.

Definition 11.3 (The function mintype)

mintype ∈ Types(⇔ mintype : tuples(term) → term

mintype(term1, ...termn) = minn
i=1 termi

mintype is an aggregation function that aggregates n number of terms into one
term. It does so by picking up the minimum of these terms which represents
the aggregation of all the input terms. Similar to maxtype, when several terms
addressing alike utilities are being aggregated and their type has been declared

Aggregating Hierarchical SLAs in Business Value Networks 187

as mintype then only the term pertaining to the minimum value will contribute
to the aggregated SLA. Its example can be the bandwidth. In a sequence of
activities the activity pertaining to the minimum bandwidth will become the
bottleneck for the whole sequence making other activities with higher bandwidth
ineffective.

Definition 11.4 (The function neutral)

neutral ∈ Types(⇔ neutral : (term) → term

neutral(termi) = termi

neutral is an aggregation function that includes all the input terms separately
without any processing. This function is applied on those terms which can not
be mixed with other terms and need to preserved in the aggregation process
as separate terms.The terms declared as neutral are unaffected through the ag-
gregation process and are just copied in the aggregated SLA. They represent
services which are independent from similar services, for example identity of
some valuable data in a certain organization or discount in a specific service etc.

So far we have defined only four types of terms but it is important to realize
that this enumeration can be extended without affecting the generic definition
of the typea function. In certain cases, for example calculating the reward and
penalty expressions, logical operations will also be required. On similar lines,
we can define logical functions such as AND, OR, XOR to integrate the service
level objectives or other constituents of Guarantee Terms to form rule-based
aggregation expressions.

6 A Case for Hierarchical Aggregation of SLAs in
Business Applications

NESSI, in their Grand Vision and Strategic Research Agenda (SRA) [2] defines
Value Networks as the ways in which organisations interact with each other
to drive increased business value. Figure 4 shows their example Business Value
Network (BVN) where the Enterprises A and D have been shown to collaborate
on the development of a new product. Enterprise A has subcontractors B and C
whereas the enterprise has E and F as subcontractors. The Enterprises A and D
form a peer-to-peer relationship between themselves.

So far, we have discussed the aggregation of SLAs in context with the com-
position of services in a producer-consumer manner, along service value chains.
This service level SLA aggregation model can be scaled up to enterprise level.
It can conveniently describe both master-slave and peer-to-peer relationships
in Business Value Networks. Master-slave relationship can be simply mapped
on the producer-consumer model where an SLA is formed between the service
provider and the client. However, in peer-to-peer relationships, the participating
enterprises are acting as the service provider and the client at the same time. To
form a WS-Agreement compliant SLA between them, one party can either be

188 I. ul Haq, A. Huqqani, and E. Schikuta

SLA

A-B

SLA

D-E

SLA

D-F

SLA

D-A

SLA

A-D

ap-A
ap-D

SLA

A-C

vap-[AD]

null

ap-B

null

ap-C ap-E ap-F

nullnull

B’s View C’s View F’s View E’s View

A’s View D’s View

AD’s View

Enterprise

A

Enterprise

F

Enterprise

B

Enterprise

C

Enterprise

E

Enterprise

D

Fig. 4. A Business Value Network and its corresponding SLA Choreography with dif-
ferent Enterprises’ Views

treated as a service provider or a service consumer in context with some service.
Therefore a peer-to-peer relationship needs to be dissolved into two producer-
consumer relationships with a separate SLA associated with each of them. Here
we would like to define a Virtual Enterprise Organisation (VEO). According to
NESSI’s definition [2] VEOs are formed when two or more administrative do-
mains (and hence their Enterprise Grids) overlap and share resources. It further
describes that the reality of VEO is that only a subset of the overall Grid within
an enterprise is likely to be contributed to this virtual organisation. The underly-
ing relationships among different enterprises within a VEO can be master-slave
or peer-to-peer or a combination of both. We will apply the concept of VEO to
peer-to-peer relationships in figure 4. If we consider the enterprises A and D to
form a Virtual Enterprise Organisations (VEO), their SLAs are aggregated at a
virtual aggregation point (vap) that represents this VEO. The virtual aggrega-
tion point is important to be represented because it in turn describes the SLA
view of the resulting VEO which is different from the SLA views of A and D. The
shared functionality of the VEO is described in the aggregated SLA computed
within the vap-[AD]. Note that the big brackets have been adopted to highlight
the jointly contained capabilities of enterprises A and D. The terms of services
are aggregated through aggregation functions described in section 5. The terms
marked as neutral are not merged and kept separate in the aggregated SLA. The
virtual aggregation point also denotes the decision point of the resulting VO and
policies such as distribution of revenue and cost of offered services will also be
decided inside it. From a practical perspective, there are numerous issues such
as trust, security, heterogeneity related to SLA aggregation among peer-to-peer

Aggregating Hierarchical SLAs in Business Value Networks 189

enterprises. We have provided a conceptual framework including a third party
trust manager to address these issues in [15].

Other NESSI models such as Hierarchical Enterprises and Extended Enter-
prises [2] can be easily described through our model. The concept of intercloud
or cloud of clouds [16] is becoming very popular these days, which realizes the
virtual collaboration of clouds. Such a virtual collaboration among clouds maps
straightforwardly on our SLA aggregation model.

7 Motivational Scenario

In the following section, we will present a motivational scenario of an ad-hoc
business value network which is enabled by the aggregation mechanism presented
above. Arfa is visiting ULM. She is shooting movies and capturing snapshots with
the camera, built in her mobile phone. The mobile device has limited storage
space but luckily she knows a web service that can archive, enhance and host
her movies online as soon as she completes a recording. She is also very much
excited to share her experiences with her family and friends. Therefore she wants
to update some blogs with images of the places and their historical description.
Her friend told her about an online service that can collect images from her cell
phone, print them and send them as postcards. So, she would like to do three
tasks: automatically store and host her movies to external storage from where
she and her friends can watch anytime using their mobile or static devices;
automatically print some selected images as postcards and mail them to her
family and friends through regular post; update some blogs with images and
their historical descriptions. The SLA-Choreography resulting from this simple
workflow is shown in figure 5. There are two services, namely the host-video
service and post-photo service. The host video service downloads the video from
the mobile device, enhance s it and archives it. Any authenticated user can
play the video in a youtube like style. The Post-Photo service makes SLAs
with two services: the Print&Post service and E-Post service. E-Post service
is able to do its task by contracting two service namely Blog-Service and MMS-
Service. The Blog service can automatically update the blogs with the images
and automatically generate stories about their historical significance on the basis
of their exact address. MMS service sends the selected images to friends on their
mobile phones.

The SLA-Choreography resulting from this scenario is depicted in figure 5.
We can see the aggregation functions described in figure 3(b) being applied in
the scenario shown in figure 5. It is evident that the resolution offered by Host-
Video service is the minimum of the three services below it. So at the aggregation
point ap-S1, the aggregation function Min will choose only minimum of the three
resolutions as their aggregation types have been declared “min”. On the same
grounds, the job completion time for E-Post service is the maximum of those of
Blog service and MMS service beause it is of “maxtype”. The total cost that the
client has to pay is the sum of the cost incurred on Host-Video service and the
cost spent on Post-Photo service because cost has been declared as “sumtype”.

190 I. ul Haq, A. Huqqani, and E. Schikuta

GSLA

Enhance
Image
SLA

Arfa

Arfa’s View of
SLA-Choreography ap-Arfa

Host
Image
SLA

Print&Post
SLA

E-Post
SLA

Host
Video
SLA

Post
Photo
SLA

ap-S1 ap-S2

S1's and S2's View of SLA-Choreography

Min{res1,res2
,res3}

Max{t1,t2}

{cost1+cost2}

Convert
Image
SLA

Blog
SLA

MMS
SLA

ap-S3

S3's View of
SLA-Choreography

Fig. 5. Different Partners’ SLA Views in Motivational Scenario

We take the liberty of importing external schema into WS-Agreement’s Service
Description Terms’ section. The following chunk of Schema allows this.

<xs:complexType name="ServiceDescriptionTermType">
<xs:complexContent>

<xs:extension base="wsag:ServiceTermType">
<xs:sequence>

<xs:any namespace="##other" processContents="strict"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

The above schema enables us to include an XML structure of elements adhering
to any external Schema. This makes it possible to incorporate the aggregation
type (typea) element inside a Service Description Term. A simple schema to
accomplish this can be written as follows.

<?xml version="1.0" encoding="utf-16"?> <xs:schema

xmlns:myns="http://schemas.xyz.com" xmlns="http://www.mynamespace.com"

targetNamespace="http://www.mynamespace.com"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="aggregationType">

<restriction base="xs:string">

<enumeration value="Mintype"/>

<enumeration value="Maxtype"/>

<enumeration value="sumtype"/>

Aggregating Hierarchical SLAs in Business Value Networks 191

<enumeration value="neutral"/>

</restriction>

</xs:simpleType> ...

<xs:element name="Resolution">

<xs:complexType>

<xs:sequence>

<xs:complexType name="ResolutionXY">

<xs:sequence>

<xs:element name="ResolutionX" type="xs:integer"/>

<xs:element name="ResolutionY" type="xs:integer"/>

</xs:sequence>

<xs:element name="aggregationType" type="xs:aggregationType"/>

</xs:complexType">

</xs:sequence>

</xs:complexType>

</xs:element>

... </xs:schema>

Then the service Description Term namely “resolution” for the Enhance-Video
service may be expressed as follows.

<wsag:ServiceDescriptionTerm wsag:Name=Resolution"
wsag:ServiceName="Enhance-Video">

<myns:ResolutionXY>
<myns:ResolutionX> 640</myns:ResolutionX>
<myns:ResolutionY>480</myns:ResolutionY>

</myns:ResolutionXY>
<myns:aggregationType> mintype</myns:aggregationType>

</wsag:ServiceDescriptionTerm>

The aggregationType (i.e. typea) declares Resolution as a minType term. When
it will be aggregated with other minType terms, only the minimum of these terms
will become part of the aggregated SLA. Other aggregation types listed in the
schema can be expressed and aggregated in a similar fashion.

8 Conclusion

We presented a view based formal model to describe hierarchical Service Level
Agreements in supply chain scenarios such as Business Value Networks. SLA-
Views help to maintain balance between trust and privacy. Our model identifies
basic aggregation constructs that are used in the aggregation of SLAs. The whole
aggregation process stays in compliance with the WS-Agreement standard. Due
to the limited scope of this paper we could not include various details of our
research related to different aspects of Business Value Networks such as flow
of value and business models. However, We plan to address these details in
context with the Cloud Computing, as a separate research paper. In future,
we will continue our work on implementing a secure aggregation and validation
framework for SLAs in heterogeneous Virtual Organizations.

192 I. ul Haq, A. Huqqani, and E. Schikuta

Acknowledgements

We are extremely thankful to the reviewers of BPM09 for their valuable guide-
lines regarding the application areas of our research and thus helped us to pro-
duce a much improved Camera Ready Version of our paper. This work was
partly supported by the project grant number IP395009, funded by University
of Vienna.

References

1. Blake, M.B., Cunnings, D.J.: Workflow composition of service level agreements. In:
International Conference on Services Computing, SCC 2007 (2007)

2. NESSI-Grid, http://www.soi-nwg.org/doku.php?id=sra:description (last ac-
cess: March 12, 2009)

3. Project, S.: (March 12, 2009), http://www.sla-at-soi.org/index.html
4. Liu, D.R., Shen, M.: Workflow modeling for virtual processes: an order-preserving

process-view approach. Information Systems 28, 505–532 (2002)
5. Liu, D.R., Shen, M.: Business-to-business workflow interoperation based on

process-views. Decision Support Systems 38, 399–419 (2004)
6. Eder, J., Tahamatan, A.: Temporal consistency of view based interorganizational

workflows. In: 2nd International United Information Systems Conference, Austria
(2008)

7. Frankova, G.: Service level agreements: Web services and security, pp. 556–562.
Springer, Heidelberg (2007)

8. Unger, T., Leyman, F., Mauchart, S., Scheibler, T.: Aggregation of service level
agreement in the context of business processes. In: Enterprise Distributed Object
Computing Conference (EDOC 2008), Munich, Germany (2008)

9. Aiello, M., Frankova, G., Malfatti, D.: What’s in an agreement?An analysis and
an extension of WS-agreement. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 424–436. Springer, Heidelberg (2005)

10. Schulz, K.A., Orlowska, M.E.: Facilitating cross-organisational workflows with a
workflow view approache. Data and Knowledge Engineering 51, 109–147 (2004)

11. Chebbi, I., Dustdar, S., Tata, S.: The view based approach to dynamic inter-
organizational workflow cooperation. Data and Knowledge Engineering 56, 139–173
(2006)

12. Chiu, D., Li, K.K.Q., Kafeza, E.: Workflow view based e-contracts in a cross-
organisational e-services environment. Distributed and Parallel Databases 12,
193–216 (2002)

13. Ludwig et al: Web service agreement (ws-agreement). gfd.107 proposed recommen-
dation (last access: July 12, 2008)

14. (OGF), O.G.F.: http://www.ogf.org/ (last access: March 12, 2009)
15. ul haq, I., Huqqani, A.A., Schikuta, E.: A conceptual model for aggregation and

validation of slas in business value networks. In: The 3rd International Conference
on Adaptive Business Information Systems, ABIS 2009 (2009)

16. Jha, S., Merzky, A., Fox, G.: Using clouds to provide grids with higher levels of
abstraction and explicit support for usage modes. Concurrency and Computation:
Practice and Experience 21(8), 2087–1108 (2009)

Set Algebra for Service Behavior:

Applications and Constructions

Kathrin Kaschner and Karsten Wolf

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{kathrin.kaschner,karsten.wolf}@uni-rostock.de

Abstract. Compatibility of behavior, i.e. the correct ordering of mes-
sages, is one of the core aspects for the interaction between services as
parts of an inter-organizational business process. In previous work, we
proposed formal representations for service behavior (including Petri nets
and service automata) and finite representations of sets thereof (operat-
ing guidelines).

In this article, we show how the basic set operations union, intersec-
tion, and complement, as well as membership and emptiness tests, can
be implemented on finite representations of (typically infinite) sets of
services. We motivate the operations by three examples of applications—
service substitution, selection of behavior, and navigation in a behavioral
registry.

1 Introduction

Correct interaction between services [1,2,3,4] requires compatibility in several
aspects. This includes semantics (compatible interpretation of message contents),
non-functional properties (compatible security levels, policies, latencies, etc.),
and behavior (compatible order of exchanged messages). We contribute to the
aspect of behavior. This aspect is particularly important if services implement
complex business protocols, for instance as participants in an inter-organizational
business process.

The behavior of a service can be formally described in various formalisms
including process algebra [5,6], state machines [7,8,9,10], and Petri nets [11,12,13].
There exist strong links from industrial languages like WS-BPEL [14] and BPMN
[15] to these formalisms. In previous work [16,17,18], we considered sets of service
behaviors, most prominently the set of all behaviorally compatible partners to a
given service (its operating guidelines). We showed that such a (generally infinite)
set can actually be finitely represented, using the concept of annotated automata
[19]. This way, we could provide solutions as well as tool support for several
interesting questions including controllability (a sanity check closely related to
the soundness of a workflow model) [20], substitutability of services [21,18], test
case generation [22], contract-based composition [23], and others.

This article is devoted to the implementation of basic set operations on an
extension of annotated automata. This means that, given extended annotated
automata representing sets M1 and M2 of services, respectively, we are able to

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 193–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

194 K. Kaschner and K. Wolf

compute extended annotated automata that represent the intersection M1∩M2,
the union M1 ∪M2, and the complement M1 of the given sets. We further study
the decision problems membership (S ∈M?) and emptiness (M = ∅?).

We motivate the relevance of the proposed operations by sketching three ap-
plications. The first application is a novel approach to checking substitutability
of services. In contrast to previous techniques [21,18], we obtain a natural coun-
terexample facility in the case of non-substitutability. The second application
concerns the joined use of operating guidelines and user-defined requirements in
the automated calculation of a partner service to a given service. This yields a
more systematic and more general approach than previous work [24]. The third
application provides an approach that permits the selection of a service from
a service registry according to a behavioral query. So far, behavioral specifica-
tions can only be queried in approximations where somehow the control flow for
implementing the behavior is “guessed” [25].

While several groups study service behavior, we are not aware of any compet-
ing approach that is centered around sets of service behaviors and their finite
representation.

We start with a presentation of the motivating applications in Sect. 2. In
Sect. 3, we introduce the basic formalisms for modeling the behavior of services
and sets thereof. Then we study a few preliminary operations in Sect. 4. The
actual implementation of set operations is discussed in Sect.5. In Sect. 6, we
revisit the motivating applications and discuss their complexity.

2 Motivation

In this section, we sketch a few approaches which all involve the use of set oper-
ations on sets of services. All approaches make sense as soon as it is possible to
finitely represent operands and results to the basic set operations union, intersec-
tion, and complement, and as soon as the problems membership and emptiness
are decidable. In subsequent sections, we shall show that these assumptions are
indeed valid.

Initial representations of operands may be constructed from scratch, or may
stem from the calculation of operating guidelines to a given service S [16,17].
Operating guidelines are a finite representation of the set Partners(S) of all
correctly interacting partners of the given service. The representation is based
on annotated automata which are introduced subsequently.

Substituting a service

If a service S is substituted by another service S′ (e.g., a new version as a result
of reorganizations or outsourcing), it may be desirable that the substitution is
somewhat invisible to the outside world. A valid requirement from the point of
view of behavior would be that Partners(S) ⊆ Partners(S′). This means that
any partner that interacts correctly with S will also interact correctly with S′.

The stated inclusion can be transformed into the emptiness problem as follows:
Partners(S) ⊆ Partners(S′) ⇐⇒ Partners(S) ∩ Partners(S′) = ∅.

Set Algebra for Service Behavior: Applications and Constructions 195

As we know from [16,17], the sets Partners(S) and Partners(S′) can be finitely
represented using annotated automata. Hence, an implementation of the set
operations intersection, complement, and the emptiness check would allow us to
decide substitutability.

The proposed solution is not the first approach to substitutability. Even op-
erating guidelines have been used before for this task [21,18]. However, these
approaches were not able to come up with a counterexample in the case of non-
substitutability. A counterexample would be any service in Partners(S1) but not
in Partners(S2).

In our case, the intermediate expression Partners(S) ∩ Partners(S′) repre-
sents the set of all valid counterexamples and our (subsequently presented)
implementation of the emptiness check will actually return an element of this
set. The returned counterexample may provide useful diagnostic information for
non-substitutability.

Querying a set of behaviors

Consider a setting where you want to use a service S without having your own
fixed partner service S′. The set Partners(S) of all correctly interacting partner
services contains all possible choices and can be finitely represented using the
approach of [16,17]. Consequently, it would be desirable to construct S′ by simply
selecting an element of Partner(S). Of course, S′ does only represent control
flow and communication events which must then be enhanced with actual code.
However, the communication structure is correct by construction and hence an
automated construction could indeed be desirable.

As the set Partners(S) is typically infinite, the finite representation is some-
what implicit. The selection of an element from Partners(S) is thus a nontrivial
task. A suitable way would be to specify constraints for “desired” behavioral
properties and then to compute an element that is in Partners(S) and satisfies
the constraints.

Examples for behavioral constraints could be exclusion of certain communica-
tion events (e.g., “I want a service where I do not need to send my credit card
number”), enforcement of communication events (e.g., “I want a service where
I eventually receive a delivered book message”), order of events (e.g., “I want to
pay only after having received the ordered item”) and, many more.

According to a fundamental principle in set theory, any behavioral constraint
can be identified with the set of services satisfying it. In [24], we demonstrated
that many elementary behavioral constraints, including enforcement, exclusion,
and a number of ordering constraints, can in fact be finitely represented using
the formalism of annotated automata used subsequently.

At this point, set algebra comes into play. Let P1 and P2 be behavioral
properties. Let Sat(Pi) be the set of services that satisfy Pi. Then Boolean
combinations of P1 and P2 obviously correspond to set operations as follows:
Sat(P1∧P2) = Sat(P1)∩Sat(P2) (conjunction); Sat(P1∨P2) = Sat(P1∪Sat(P2)
(disjunction); Sat(¬P1) = Sat(P1) (negation).

196 K. Kaschner and K. Wolf

In other words, any language for representing some behavioral requirements
can be extended to a language that naturally permits Boolean combinations
of these requirements. If the primitives of the language are chosen such that
they can be finitely represented then any Boolean combination can be finitely
represented as well.

Finally, consider a requirement P . For checking that a service S can actually
be used by a partner that satisfies requirement P , we simply need to select
an arbitrary element of Partners(S) ∩ Sat(P). If this intersection is empty, S
cannot be used correctly such that in addition P is satisfied. Otherwise the
behaviors in Partners(S)∩Sat(P) represent exactly the desired behaviors. If this
set contains more than one element, we can either select one element arbitrarily
or add more requirements. Using this approach, we can interactively choose a
correctly interacting partner for a given service S.

Navigating in a behavioral registry

Now, consider the same setting as in the previous subsection, but with a whole
service registry containing services S1, . . . , Sn instead of a single service S. We
assume that, for every Si, a finite representation of Partners(Si) is available. We
call such a registry a behavioral registry.

The considered problem is to find out whether the registry contains a service
Si which can be used by a partner that fits to a specified requirement P . In a
naive solution, we need to build the intersections Sat(P) ∩ Partners(S1), . . . ,
Sat(P) ∩ Partners(Si) where Si is the first service in the registry that yields a
nonempty intersection. Hence, we would need to perform up to n intersection
operations. Unfortunately, n may get intractably large.

Using set algebra, we show a way to reduce the number of intersection op-
erations to the much smaller number of at most logn. To this end, consider
sets Mi,j =

⋃j
k=i Partners(Si). These sets can be computed from the sets

Partners(Si) using the set operation union.
Consider now the following sequence of intersections. Start with Sat(P)∩M1,n.

If the intersection is empty, we know that no service in the registry can be
used such that P is satisfied. Otherwise, we know that there is some service S∗

that satisfies P and interacts correctly with one of the services S1, . . . , Sn. Our
implementation of the empiness check will actually return such a service S∗.

Continue checking S∗ ∈M1,n
2
. If the intersection is nonempty, we know that

a correctly interacting partner for S∗ is among the first n
2 entries of the registry.

Otherwise, such a service must be among the remaining services. Continuing
according to this pattern, every membership test divides the search space into
halves. After logn iterations, there is only a single service remaining and we are
done.

If we fill up the registry with dummy services such that n becomes a power
of 2, we actually only need to compute those Mi,j where k = j + 1 − i is a
power of 2 as well and j is a multiple of that k. For example, in a registry with
8 elements, we will only compare to M1,8 in the first round, to M1,4 or M5,8 in
the second, and M1,2, M3,4, M5,6, or M7,8 in the third round. The number of

Set Algebra for Service Behavior: Applications and Constructions 197

such sets is equal to n− 1, so the overhead of storing the Mi,j is linear as far as
the number of represented sets is concerned.

The proposed kind of querying a registry is orthogonal to other approaches
which cannot select a service according to its behavior. Semantic approaches
typically assume a trivial behavior (“stateless services”). Other approaches like
[25] try to approximate behavior with patterns in the WS-BPEL flow of control.
There are, however, many different control flow structures that implement the
same behavior, so this approach can only partially select a service by a behavioral
specification.

3 Behavior of Services

In the remainder of this article, we develop an approach for realizing the basic
set operations using finite representations of sets of service behaviors. We use
automata in different shapes for the various aspects of our approach. Generally,
transition labels correspond to communication activities such as sending or re-
ceiving a message from the environment. One of the labels may be the label τ
which shall always represent an internal (non-communicating) activity.

Definition 1 (Automaton). A = [Q,C, δ,Q0] is an automaton iff Q is a
nonempty finite set of states, C is a set of labels, δ ⊆ Q × C × Q is a tran-
sition relation such that every state q ∈ Q is reachable from q0 via transitive
applications of δ, and ∅ ⊂ Q0 ⊆ Q is the nonempty set of initial states.

We shall also write q x−→δ q
′ for [q, x, q′] ∈ δ. We generally use indices to distin-

guish ingredients of different automata whenever there could be ambiguities.
We describe the behavior of a service as a service automaton. Service automata

have only one initial state and extend general automata with a notion of final
states for modeling completion of a service instance.

Definition 2 (Service automaton). S = [Q,C, δ, q0, Ω] is a service automa-
ton iff [Q,C, δ, {q0}] is an automaton and Ω ⊆ Q is a set of final states.

Figure 1 shows four service automata. Initial states have an incoming arc from
nowhere. Final states are depicted bold. The edges are labeled with τ (non-
communicating activity) or with messages sent to (preceded with !) or received
from (preceded with ?) a partner service. The service automata S1, . . . , S3 can
be seen as simple online shops with the communication activities !o (for send
order), !s (for send special offer), !i (for send invoice), ?a (for receive accept
offer), and ?r (for receive reject offer). The service automaton S4 represents the
behavior of a buyer service: It receives an offer or a special offer. While special
offers are always accepted, standard orders may be rejected. Upon acceptance
of a (special) offer, an invoice is received and the service terminates. Note that
receiving events of S1, . . . , S3 are sending events of S4 and vice versa.

For the finite representation of a set of service automata, we employ the
concept of annotated automata [19]. An annotated automaton extends a general

198 K. Kaschner and K. Wolf

a

c

e

d

f

g

b?r

?r

?a

!o

?a?a

!o

!i

(a) S1

h

j

i′

i

k l

m

!o

!s?a
?a

?r

!i

τ

τ

(b) S2

n

o p

q

!s

!s

!o

?a

!i
r

(c) S3

s

t u

v

w

?s
?o

!a !a

!r

?i

(d) S4

Fig. 1. Four examples for service automata

automaton with Boolean annotations to states. We use the usual symbols ∧,∨,¬
for Boolean operations. ⊥ denotes the Boolean function that returns false to all
arguments. � denotes the Boolean function that returns true to all arguments.

Definition 3 (Annotated automaton). An annotated automatonAφ=[A, φ]
consists of an automaton A = [Q,C, δ,Q0] and an annotation function φ, where,
for all q ∈ Q, φ(q) is a Boolean formula with propositions in C ∪ {final}. Aφ is
deterministic if the following condition holds for all q1, q2 ∈ Q with q1 �= q2: If
{q1, q2} ∈ Q0 or there are a state q and a label x with {[q, x, q1], [q, x, q2]} ⊆ δ then
φ(q1) ∧ φ(q2) ≡ ⊥.

Figure 2 shows an example for a deterministic annotated automaton. Note that
an annotated automaton does not have final states. Instead, a proposition final
in its annotations may constrain final states of represented service automata, as
defined below. The notion of determinism generalizes classical automata theory.
We may start with, or move to, different states. However, the local annotations
of the possible states exclude each other and are subsequently used to resolve the
nondeterminism. Using this mechanism, subsequent concepts are well-defined.

9 9

8

6

5

73

4

2

1

?a,?r !s

?r

?a,?r
?a

?r
!o

?a

?r
!o

?a

!i

!i
!i

!i

?a

?a,?r

?a,?r

** ?r

!s

(1) = s o i

(9) =
(8) = final
(7) = a r
(6) = a
(5) = s o
(4) = i
(3) = i a r)
(2) = i a

Fig. 2. An annotated automaton A. Annotations are listed at the right hand. “*” means
that there is a transition for every element in the alphabet. For reducing the number
of edge crossings, we depicted two copies of state 9.

Informally, an annotated automaton Aφ represents all those service automata
S that can be structurally embedded and respect the annotations. This intuition
is formalized in the notion of a matching relation. Structural embedding is for-
malized in a matching relation which is actually a particular strong simulation

Set Algebra for Service Behavior: Applications and Constructions 199

relation. Respecting the annotations is checked by evaluating the annotations of
Aφ in an assignment that corresponds to outgoing edges in S. Determinism of
Aφ assures that the matching relation is uniquely determined. Throughout the
paper, we represent an assignment as a set of propositions with the following
meaning: Presence in the set represents the value true assigned to this proposi-
tion, absence represents the value false .

Definition 4 (Matching realation). Let S = [QS , C, δS , q0S , ΩS] be a service
automaton and Aφ = [QA, C, δA, Q0A, φ] be a deterministic annotated automa-
ton. We say that S matches with Aφ if there is a relation �S,A that satisfies the
following requirements:

(Initial) There is a q0A ∈ Q0A such that [q0S , q0A] ∈ �S,A.
(Communication) If [qS , qA] ∈ �S,A, and qS

x−→δS qS
′, then there is a state qA′

with qA
x−→δ qA

′ and [qS ′, qA′] ∈ �S,A.
(Annotation) If [qS , qA] ∈ �S,A then φ(qA) is satisfied in the assignment β(qS)
with β(q) = {x ∈ C | there is a state q′ with q x−→δ q

′ or (x = final and q ∈ ΩS)}.
If a relation �S,A satisfying the given requirements exists, we call the minimal
such relation (w.r.t. set inclusion) the matching relation between S and Aφ. In
this case, we further say that S matches with Aφ. Let Match(Aφ) be the set of
all service automata that match with Aφ.

If �S,A exists, it is indeed unique. In fact, the requirements can be seen as an
inductive definition where Initial is the base, Communication is the step, and
Annotation uniquely resolves the ambiguities in the other clauses (the choice of
a state in Aφ).

Among the services in Fig. 1, S1 and S2 match with the annotated automaton
in Fig. 2. The corresponding matching relations are �S1,A = {[a, 1], [c, 3], [d, 1],
[b, 3], [e, 4], [f, 8], [g, 9]} and �S2,A = {[h, 1], [i, 3], [i′, 3], [k, 4], [j, 1], [l, 2], [m, 8]}.
Examples for assignments are β(i) = β(i′) = {?a, ?r}, β(j) = {!s} and β(m) =
{final}. In contrast, S3 does not match. In state o, there is a transition with
label !s that is not present in the corresponding state 2 of A. In state p, the
assignment β(p) = {?a} does not satisfy φ(3) = i∨ (a∧ r). S4 does not match as
its alphabet does not fit (all receiving events in S4 are sending events in A and
vice versa). Consequently, for the states t and u there is no corresponding state
in A which fulfills the communication requirement of Def. 4.

In [16,17], we showed that, for each service automaton S, a deterministic
annotated automaton, named operating guideline OGS , can be constructed such
that the set of all service automata that match with OGS is exactly the set of
those service automata which interact correctly with S; that is, for the operating
guideline OGS it holds Match(OGS) = Partners(S). The annotated automaton
A in Fig. 2 is actually the operating guideline OGS4 of the service automaton S4

in Fig. 1. States 1, . . . , 4 and 8 in A describe the natural interaction of a partner
with S4. States 5, . . . , 7 are there due to our asynchronous model of message
passing. This means that the invoice may be sent at any time since it will stay
in the mailbox until it is received. State 9 describes useless but harmless behavior.
In fact, states corresponding to state 9 in a matching relation are unreachable

200 K. Kaschner and K. Wolf

but harmless. Transitions to state 9 just wait for messages that are simply not
sent by S4 at that time. As long as a partner has other opportunities to proceed
(as specified in the annotations), code for receiving such a message does not hurt.

The matching situation with A = OG(S4) in particular means that S1 and
S4 as well as S2 and S4 compose to a correctly interacting system. The deadlock
state g in S1 is an example of a harmless problem since it is never reached in
the composition with S4. In contrast, S3 and S4 do not interact correctly. If S3

proceeds through states o and q, two messages of type s are sent to S4. However,
only one of them can be consumed by S4. If S3 passes to state p instead, then
the sequence s − u − s in S4 leads to a deadlock, i.e. a situation where neither
S3 nor S4 can proceed.

Unfortunately, set operations, particularly complement, cannot be imple-
mented using annotated automata as such. One of the intuitive reasons is that
the annotations represent constraints which hold whenever the corresponding
state is visited. For violating such a “whenever” constraint, it is sufficient to
violate it once. This more existential kind of requirement cannot be expressed
with annotated automata.

Consequently, we proceed with an extension of annotated automata that is
capable of implementing the set operations. The proposed extension has already
been used in [17] for expressing a certain type of behavioral constraints on com-
patible partners. The main idea of [17] is to add a global Boolean formula with
states as propositions.

Definition 5 (Extended annotated automaton). Let Aφ = [Q,C, δ,Q0, φ]
be a deterministic annotated automaton and χ be a Boolean formula with propo-
sitions taken from the set Q. Then, Aφ,χ = [A, φ, χ] is an extended annotated
automaton.

The Boolean formula χ is called the global constraint of Aφ,χ while the φ(qi) are
called local constraints. Propositions of χ evaluate to true if they are “touched”
by the matching relation �S,A. Fortunately, our matching relation is unique, so
this evaluation is well defined.

Definition 6 (Matching with Aφ,χ). Let S be a service automaton and let
Aφ,χ be an extended (and thus deterministic) annotated automaton. S matches
with Aφ,χ iff S matches with Aφ (the annotated automaton without extension)
using the matching relation �S,A and χ is evaluated to true by the following
assignment γS : γS = {qA | there is a state qS ∈ QS such that [qS , qA] ∈ �S,A}.
Let Match(Aφ,χ) denote the set of all service automata that match with Aφ,χ.

Adding the global constraint χ = 2∨6 to the annotated automatonA in Fig. 2, we
obtain an extended annotated automaton that matches only with services which
may send a special offer. Among the services of Fig. 1, only S2 matches with A
and the global constraint χ. It evaluates χ in the assignment γS1 = {1, 2, 3, 4, 8}
which contains state 2. In contrast, S1 evaluates χ in the assignment γS1 =
{1, 3, 4, 8, 9} which contains neither state 2 nor state 6. Indeed, S1 may not send
a special offer.

Set Algebra for Service Behavior: Applications and Constructions 201

Every annotated automaton Aφ can be canonically transformed into an ex-
tended annotated automaton Aφ,χ by setting χ ≡ true.

4 Preliminary Operations on Annotated Automata

In this section, we study three transformations on annotated automata. The
transformations bring an automaton into a normal form that simplifies subse-
quent constructions. First, we aim at making an annotated automaton total and
complete. An annotated automaton is total if every state has successors for all
labels. It is complete if the annotations of the successor states with same label
cover all cases.

Definition 7 (total, complete). An extended annotated automaton Aφ,χ is
total if, for all states q and all labels x, there is a state q′ such that q x−→δ q

′. Aφ

is complete if the following two conditions hold:

(1) (
∨
q∈Q0

φ(q)) ≡ �
(2) for all q ∈ Q and all x ∈ C, (

∨
q′:[q,x,q′]∈δ φ(q′)) ≡ �

In a sequel we shall show that an annotated automaton make total without
changing its semantics. In contrast, it is not possible to transform an arbitrary
annotated automaton into a complete one. However, we shall demonstrate, that
the transformation into a complete automaton is possible for extended annotated
automata. The advantage of a total and complete automaton is that the existence
of the matching relation is no issue. In this case, it is only the formula χ that
decides whether or not a service matches.

Corollary 1. If Aφ is total and complete then, for each S operating on the same
alphabet as Aφ, the matching relation �S,A exists; that is, i.e. all services with
the same alphabet as A match with Aφ.

This observation can be verified easily as, in each situation referred to in Def. 4,
there is an available successor in Aφ to satisfy the requirements.

Actually, every (extended) annotated automaton Aφ(,χ) can be transformed
into a total one without changing Match(Aφ(,χ)). The following construction
implements this transformation. The idea is to insert missing edges with label x
but to forbid their use by adding ¬x to the corresponding annotations:

– Invent a fresh “trap” state qt with annotation � and successors to itself,
i.e. let qt

x−→δA qt, for all x ∈ C.
– For each state q and each label x such that there is no state q′ with q x−→δ q

′,

• insert an edge q x−→δ qt;
• replace φ(q) with φ(q) ∧ ¬x.

Correctness of this construction can be easily verified by inspecting Def. 6. The
costs for the transformation are linear in the number of states of Aφ. In this
and all subsequent cost considerations, we treat the size of the alphabet C as

202 K. Kaschner and K. Wolf

(2) = (i a) ¬s ¬o4

9

6 2

?a
!i

?r

t *
!s

!o

(t) =

(a) making total

4

9

6 2

?a
!i

?r

4'

9'

6'

?a
!i

?r (9)' =

(6)' = a

(4)' = i
(4') = ¬i

(6') = ¬a

(9') =

t **

*

*

(b) making complete

Fig. 3. In (a), the procedure of making the automaton total is shown for state 2 of
A (from Fig. 2). (b) illustrates the procedure of completion for the same state. The
dashed parts are those that are inserted in the course of a transformation. “*” means
that there is a transition for every element in the alphabet.

a constant. This is supported by the observation that the interface of a service
tends to be very small in comparison to its number of states1.

Figure 3 (a) illustrates the procedure for state 2 of the annotated automaton
A in Fig. 2. The alphabet of A is {?a, ?i, !o, !r, !s}. State 2 has only three outgoing
edges labeled with ?a, ?i and !r. Therefore, it is not total and two new edges
(with the missing labels !s and !o) are added by the above algorithm. To avoid
that Match(Aφ(,χ)) is changed by this modification, we set the Boolean formula
of state 2 to φ(2) = (i ∨ a) ∧ ¬s ∧ ¬o.

The next transformation shows that every extended annotated automaton can
be made complete.

To this end, transform Aφ,χ as follows.

– If (
∨
q∈Q0

φ(q)) �≡ �, insert an additional initial state q∗0 with successors in a
trap state like in the previous construction, and replace χ with χ∧¬q∗0 . Let
the annotation of q∗0 be (

∧
q∈Q0

¬φ(q)).
– If, for some q and x,

∨
q′:[q,x,q′]∈δ φ(q′)) �≡ �, insert an additional successor

state q∗ with successors in a trap state as in the previous construction, and
replace χ with χ ∧ ¬q∗. Let the annotation of q∗ be (

∧
q′:[q,x,q′∈δ ¬φ(q′)).

The procedure can at most insert |Q| · |C| states, so the costs in space and time
are again linear. Observe that both transformations preserve determinism of the
involved annotated automaton.

In Fig. 3 (b), we illustrated the transformation of state 2 of the annotated
automaton A in Fig. 2. State 2 has only one ?a-labeled edge leading to state 4.
Since the annotation φ(4) �≡ � we add an edge labeled with ?a to a new state 4′.
State 4′ has for every label a transition to the trap state t. With the remaining
successor states of state 2 is proceeded in the same manner.

The purpose of the last transformation is to align the interfaces (the alphabet)
of two (extended) annotated automata. This transformation consists just of the
replacement of the alphabet C by some superset C′. In fact, Match(Aφ,χ) does
not change if the alphabet C is replaced with any superset C′ ⊇ C as there is no
edge in A with a label in C′\C. The only issue here is that the modified interface
1 In a project conducted under participation of an enterprise, we analyzed several real

WS-BPEL specifications. In average, such a service had about a dozen message types
whereas the service itself had some 100,000 states.

Set Algebra for Service Behavior: Applications and Constructions 203

typically turns a total automaton into a partial one as no state has successors
for the new messages in C′. However, the transformations presented above solve
this problem. For this reason, we shall assume throughout the remainder of this
paper that the involved annotated automata range on exactly the same alphabet.

5 Set Operations on Annotated Automata

In this section, we present approaches for the implementation of basic set oper-
ations on deterministic extended annotated automata. The result will again be
a deterministic extended annotated automaton. Each subsection is devoted to
one of the operations.

Complement

In this section, we aim at constructing an extended annotated automaton A′φ′,χ′

from a given extended annotated automaton Aφ,χ such that, for every service
automaton S operating on the alphabet CA, S ∈ Match(Aφ,χ) if and only if
S /∈Match(A′φ′,χ′

).
Thanks to the concepts coined in the previous section, the operation can be

implemented trivially. All we need to do is to negate the global formula χ.

Theorem 1 (Negation). Let Aφ,χ be a total and complete deterministic an-
notated automaton. Let S be a service automaton with CS = CA. Then S ∈
Match(Aφ,χ) if and only if S /∈Match(Aφ,¬χ).

Proof. As the matching relation is the same for Aφ,χ and Aφ,¬χ, the claim re-
duces to: An assignment γ satisfies the Boolean formula χ if and only if γ does
not satisfy ¬χ which is obvious. ��
Given a total and complete extended annotated automaton, negation can be
executed in constant time. If an arbitrary deterministic extended annotated au-
tomaton is given, we can still execute negation in linear time which is then
consumed for the transformation into a total and complete automaton.

A nice feature of our construction is that a double application of negation
yields the original automaton. While this is trivial for total and complete au-
tomata, it is actually true also for partial or incomplete automata as long as we
allow ourselves to

– remove a state q if χ implies ¬q;
– remove an edge q x−→δ q

′ if φ(q) implies ¬x.
Both transformations are safe in the sense that they do not changeMatch(Aφ,χ).
They can undo the effect of the transformations in the previous section.

Intersection

An intersection operation on annotated automata has already been proposed in
previous work [24,21]. Although we basically apply the same ideas, we present

204 K. Kaschner and K. Wolf

the approach again as we use a more general setting: we use extended automata
instead of plain annotated automata and we permit arbitrary Boolean annota-
tions rather than negation-free formulas only.

The idea of implementing intersection is to construct the product automaton
known from classical automata theory. A product automaton implements the
idea that both constituents run in parallel, in every step executing transitions
with the same label.

We annotate states in the product automaton with the conjunction of the
annotations of the constituents. The global formulas are connected by ∧. The
only just technical difficulty is that the global formulas of the input automata
A and B range over completely different alphabets (QA resp. QB) than the
product automaton (having QA ×QB as its set of states). As the meaning of a
proposition q in a global formula is that q is “touched” by the matching relation,
it is natural to replace a proposition qA in χA with

∨
qB∈QB

[qA, qB]. Likewise, a
proposition qB in χB should be replaced with

∨
qA∈QA

[qA, qB]. Other than this,
the construction is straightforward.

Definition 8 (product automaton). Let AφA,χA and BφB ,χB be extended an-
notated automata with CA = CB . Then the production automaton P = A × B
is the extended annotated automaton defined as follows:

– QP = QA ×QB;
– CP = CA(= CB);
– Q0P = Q0A ×Q0B;
– [qA, qB] x−→δP [q′A, q

′
B] if and only if qA

x−→δA q′A and qB
x−→δB q′B;

– for all [qA, qB] ∈ QP , φ([qA, qB]) = φ(qA) ∧ φ(qB);
– χP ≡ χ∗

A ∧ χ∗
B.

In the last item, χ∗
A and χ∗

B are obtained from χA and χB as explained in the
text above.

The construction of a product automaton preserves each of the properties deter-
ministic, total, and complete. Figure 4 shows an example for the construction of
a product automaton, applied to non-total and incomplete automata.

Theorem 2 (Intersection). Let AφA,χA and BφB,χB be extended annotated
automata with CA = CB . Then Match(A×B) = Match(A) ∩Match(B).

The result actually holds also for non-total and incomplete extended automata.
For better readability, however, we support our claim only for the total and
complete case.

Proof. (Sketch.) Let A and B (and in consequence P , too) be total and complete
extended annotated automata. By Cor. 1, the matching relations �S,A, �S,B, and
�S,P all exist and the local annotations are satisfied by every service. Let S be
a service with CS = CA. There is a transition in P if and only if there are
corresponding transitions in A and B. Using an inductive argument along the
lines of Def. 4, we can show the following relations between the various matching
relations which all exist by Cor. 1.

Set Algebra for Service Behavior: Applications and Constructions 205

!i
0

1

?a,?r,
!s,!o

(0) = s o i a r
(1) = final
=1

(a) B

[9,0]

[8,1]

[6,1]

[5,1]

[7,1][3,0]

[4,0]

[2,0]

[1,0]

?a,?r !s

?r

?a,?r
?a

?r!o

?a

!i

!i

!i

!i

([1,0]) = s o i

([9,0]) = s o i a r

([8,1]) = final
([7,1]) = a r final
([6,1]) = a final
([5,1]) = (s o) final

([4,0]) = i
([3,0]) = i a r)
([2,0]) = i a

?a,?r,
!s,!o

[9,1]

!i

([9,1]) = final

= (([2,0] [2,1] [6,0] [1,6]))
([1,1] [2,1] [9,1])

(b) A × B

Fig. 4. In the left part, we show another extended annotated automaton. The right
part depicts the product automaton A × B where A is the automaton in Fig. 2. The
global constraint of A is χ = 2 ∨ 6 for A. For simplifying the resulting automaton, we
could have set all propositions in local constraints to false where no corresponding edge
is present. This modification is safe as no service automaton having such a transition
can match. States [5, 1], [6, 1], and [7, 1] would be removed this way.

– If [qS , qA] ∈ �S,A then there exists a qB such that [qs, [qA, qB]] ∈ �S,P ;
– If [qS , [qA, qB]] ∈ �S,P then [qS , qA] ∈ �S,A.

From these facts, we may conclude that, for some qB, truth of proposition [qA, qB]
in the assignment to χP implies truth of proposition qA in the assignment to χA
and truth of

∨
q′A∈QA

[q′A, qB] in χ∗
A. In the other case, if [qA, qB] is false for all qB

in the assignment to χP , so is the assignment to qA in χA and
∨
q′A∈QA

[q′A, qB] in
χ∗
A. Consequently, χ∗

A and χA always get the same values. Arguing symmetrically,
χB and χ∗

B evaluate to the same value, too. In consequence, S satisfies χP if and
only if S satisfies both χA and χB . ��
The costs for executing intersection are in the magnitude of O(|QA| · |QB |) both
regarding space and time.

Union

Given the two operations of intersection and complement from the previous
subsections, the implementation of union is trivial using De Morgan’s rule:
M ∪N = M ∩N .

Given the efficiency of our approach to complement and intersection, and
further remembering that the operations preserve the properties of being total
and complete, there is most likely no significantly more efficient realization of
union.

In consequence, we have an implementation for union that costs O(|QA|·|QB |).

Membership

The membership problem is a decision problem, Given a service automaton
S and an extended annotated automaton Aφ,χ, we want to know whether
S ∈Match(Aφ,χ).

206 K. Kaschner and K. Wolf

Following the lines of Def. 4, we need to compute the relation �S,A. This can
be done in time O(|QS | · |QA|), using a coordinated depth-first search through
S and A. The evaluation of the local annotations can be done during this search
and does not require extra costs. After having computed �S,A, the value of the
propositions of the global annotation χ is determined, and the formula can be
evaluated in linear time.

Hence, the overall costs for membership amount to O(|QS | · |QA|).

Emptiness

Emptiness is the problem of checking whether, for a given deterministic extended
annotated automaton Aφ,χ, Match(Aφ,χ) = ∅.

Checking emptiness is significantly more difficult than emptiness checks in
previous approaches that involved plain annotated automata [16,18]. These ap-
proaches did not use negated propositions. Negation is, however, essential for
implementing complement.

As a first result, we show that emptiness is at least decidable. We prove this
by showing the following result.

Theorem 3 (Emptiness). Let Aφ,χ be a total and complete deterministic ex-
tended annotated automaton. If there is a service S ∈ Match(Aφ,χ), there is
also a service S∗ ∈ Match(Aφ,χ) which is a subautomaton of some automaton
M which can be computed from Aφ,χ.

The idea for building M is to separate the states of A into several copies. Each
copy [qA, β] of a state qA corresponds to a particular assignment β that satisfies
the local annotation φ(qA). Successors of [qA, β] are chosen such that state [qA, β]
produces exactly the assignment β in the matching procedure. In addition, we
take care that [qA, β] matches exactly with state qA in Aφ,χ. Then, a given service
automaton S that matches with Aφ,χ, can be transformed into the subautomaton
S∗ of M by restricting M to exactly those states and assignments that are
actually occurring in S.

Proof. (Sketch.) Let Aφ,χ be given. Construct M as follows. QM ⊆ QA ×
2C∪{final} where [qA, β] ∈ QM iff β satisfies φ(qA). Q0M = QM ∩ (Q0A ×
2C∪{final}). [[qA, β], x, [q′A, β

′]] ∈ δM iff [qA, x, q′A] ∈ A and x ∈ β(q). It can
be shown by induction that �M,A = {[qA, β], qA] | [qA, β] ∈ QM}.

Assume now that Match(Aφ,χ) �= ∅ and let S ∈Match(Aφ,χ). It is our task to
exhibit a service S∗ ∈Match(Aφ,χ) that is a subautomaton of M . We set QS∗ =
{[qA, β(qS)] | [qS , qA] ∈ �S,A}. δS∗ = δM ∩ (QS∗ ×QS∗). q0S∗ = [qA, β(q0S)], for
the unique qA with [q0S , qA] ∈ �S,A and qA ∈ Q0A. ΩS∗ = {[qA, β] | final ∈ β}.

For showing that S∗ is well defined it suffices to show that all states in QS∗

are reachable from q0S∗ . This can be verified by induction along the lines of the
definition of �S,A which proceeds along immediate successor states. For the same
reason, a state [q, β] in S∗ contains successors for exactly the elements in β. Next
it is obvious that S∗ is a subautomaton of M . From this fact, we conclude that
�S∗A ⊆ �MA. Thus, all local annotations are satisfied since they are satisfied in

Set Algebra for Service Behavior: Applications and Constructions 207

M as well. Since every state in M occurs in only one pair of �MA, and all states
in QS∗ are reachable, we obtain �S∗A = �MA ∩ QS∗ × QA. Consequently, S∗

touches the same states of A as S, so χ evaluates to the same value for both S
and S∗. This means that S∗ ∈Match(Aφ,χ). ��
Theorem 4 (Complexity of emptiness). The non-emptiness problem for to-
tal and complete extended annotated automata is NP-complete.

Proof. Theorem 3 shows that it is sufficient to “guess” a subautomaton of the
automaton M considered there. The size of M is linear in the size of A, so
guessing can be done in polynomial time. Checking whether the guess is correct
amounts to the membership problem for which we provided a polynomial solution
in the previous subsection. Hence, non-emptiness is in NP.

For showing NP-hardness, we reduce the satisfiability problem SAT for
Boolean formulas to non-emptiness. To this end, let ψ be a Boolean formula
with n propositions. Consider an extended annotated automaton with n + 1
states and a singleton alphabet where one state is the initial one and all others
correspond to the propositions of ψ. Insert transitions from the initial state to
all other states. Use ψ as the global constraint, let the local constraints all be
equal to �. This means that Match(Aφ,ψ) is non-empty if and only if ψ is sat-
isfiable. ��
Some time ago, NP-completeness was identified with “intractability”. Recent
results in several domains show, however, that NP-complete problems can very
well be solved for many problem instances of practically relevant size. For the
SAT problem, for instance, there exist solvers which deal with formulas having
more than 1,000,000 variables.

Whether or not emptiness can be decided quickly, can only be stated on the
basis of case studies using an actual implementation. We have to leave this
investigation to future work. We see, however, such strong links between our
emptiness problem and the Boolean SAT problem, that we believe that many of
the sophisticated techniques used there can be adapted to our setting.

6 Applications Revisited

We motivated the implementation of set operations by three applications
sketched in Sect. 2. Now, having seen our actual approach to set operations,
we may add a few remarks to each approach.

Substituting a service

We proposed to reduce substitutability (defined as partner preservation) be re-
duced to the check Partners(S1)∩Partners(S2) = ∅. Execution of our approach
amounts to executing a complement operation, an intersection operation, and
an emptiness check, that is two efficient operations and an NP-complete de-
cision. A previous approach in [21] can be implemented more efficiently, but

208 K. Kaschner and K. Wolf

only using plain annotated automata and negation-free local annotations. In
addition, the original approach did not naturally provide a counterexample for
non-substitutability which is the case in our approach. In fact, the emptiness
check returns a service S∗ in the case of non-emptiness which is a partner of the
first, but not of the second given service.

In [18], we proposed a substitutability check using extended automata, again
restricted to negation-free annotations. The construction used there is similarly
complex as the one used here, and again the old approach did not naturally
provide a counterexample facility.

Querying a set of behaviors

We proposed to represent behavioral properties by a finite representation of the
set of services that satisfy the property, and to realize Boolean connectives as
corresponding set operations.

The formalism of extended annotated automata is at least as expressive as
standard automata which have been used in [24] for expressing behavioral proper-
ties. Hence, our approach is capable of dealing with many interesting properties.
Moreover, it turns out that all constructions that correspond to Boolean con-
nective can actually be efficiently implemented. For the final check whether a
service has a correctly interacting partner that meets the given properties, only
a single NP-complete emptiness check needs to be performed.

Navigating in a behavioral registry

We proposed to iteratively cut the search space (a set of services) into halves,
using unions of the sets of partners of the given services.

The sets of correctly interacting partners of services can be represented as
annotated automata and thus fit into our framework. Moreover, union can be
implemented efficiently. In the case that the product automata constructions
involved in the union operation yield too big automata, it may well be possible
to overapproximate the result. Overapproximation means to represent a superset
of the originally intended set of services for the sake of obtaining a smaller
representation as extended annotated automaton. This idea needs to be detailed
out in future work but it demonstrates that there are options that can be used
in case of exploding results.

Concerning the actual search, only the initial step involved an NP-complete
emptiness check. In the subsequent steps of the procedure sketched in Sect. 2, we
may replace the emptiness check by the much more efficient membership check
since emptiness returns a suitable example service. This way, we do not need to
solve NP-complete problems repeatedly.

7 Conclusion

We provided constructions for the basic set operations on sets of service au-
tomata, represented as extended annotated automata. Negation, intersection,

Set Algebra for Service Behavior: Applications and Constructions 209

union, and membership can be implemented efficiently. The complexity of these
operations is actually comparable to implementations of other sophisticated and
successfully used representations of sets of objects, including finite automata
[26] for representing regular languages (i.e., sets of words) or binary decision
diagrams [27] for representing Boolean functions (i.e., sets of Boolean vectors).
In all mentioned cases, intersection and union require costs in the product of the
input sizes while negation is constant to linear.

Membership is solved in linear time in all approaches. It is remarkable that
we match the complexity of these formalisms although the elements of our sets
(service automata) are much more complex than the elements in the other ap-
proaches (words or Boolean vectors). To a large degree, the simplicity of negation,
intersection, and union is due to the carefully chosen formalism of deterministic
extended annotated automata.

The weakest link in our approach is certainly the emptiness check, which is
intrinsically non-polynomial, unless P = NP. However, present-day technology
for other NP-complete problems teaches us that NP-completeness is no longer
a reason for resignation. Moreover, all sketched application scenarios involve
only a single application of an emptiness check while the efficient operations are
applied frequently. Nevertheless, the performance of the emptiness problem must
be carefully evaluated in a forthcoming case study on realistic examples.

In the motivation part, we outlined the usefulness of our approach. We ac-
tually open the way to selecting a service from a registry by purely behavioral
specifications. Using our techniques, a query language used for this purpose
may freely use Boolean combinations of languages primitives. We also showed
that substitutability investigations can return counterexamples in case of non-
substitutability. We actually believe that there are more useful applications of
set algebra on sets of service automata. Consequently, we shall devote some our
our future efforts for looking into other behavioral problems and their potential
to be expressed in terms of set algebra on service automata.

References

1. Papazoglou, M.: Agent-oriented technology in support of e-business. Commun.
ACM 44, 71–77 (2001)

2. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the
curtain. In: Proc. PODS, pp. 1–14. ACM, New York (2003)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications. Springer, Heidelberg (2003)

4. Gottschalk, K.: Web Services Architecture Overview. IBM Whitepaper, IBM de-
veloperWorks (2000), http://ibm.com/developerWorks/web/library/w-ovr

5. Ferrara, A.: Web services: a process algebra approach. In: Proc. ICSOC,
pp. 242–251 (2004)

6. Rao, J., Kungas, P., Matskin, M.: Logic-based web services composition: From
service description to process model. In: Proc. ICWS, pp. 446–453 (2004)

7. Fisteus, J.A., Fernández, L.S., Kloos, C.D.: Formal Verification of BPEL4WS Busi-
ness Collaborations. In: Bauknecht, K., Bichler, M., Pröll, B. (eds.) EC-Web 2004.
LNCS, vol. 3182, pp. 76–85. Springer, Heidelberg (2004)

210 K. Kaschner and K. Wolf

8. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proc.
WWW, pp. 621–630 (2004)

9. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation of the
Business Process Execution Language for Web Services. In: Zimmermann, W.,
Thalheim, B. (eds.) ASM 2004. LNCS, vol. 3052, pp. 78–94. Springer, Heidelberg
(2004)

10. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: The negative Control
Flow. In: Proc. ASM, pp. 131–151 (2005)

11. Lohmann, N., Verbeek, H., Ouyang, C., Stahl, C.: Comparing and evaluating Petri
net semantics for BPEL. Int. J. Business Process Integration and Management
(in press, 2009)

12. Lohmann, N., Verbeek, H., Dijkman, R.: Petri net transformations for business
processes - a survey. In: ToPNoC II. LNCS, pp. 46–63 (2009)

13. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract BPEL processes. In: Proc. Modellierung. LNI, vol. P-127,
pp. 57–72. GI (2008)

14. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
OASIS Standard, April 11, 2007, OASIS (2007)

15. OMG: Business Process Modeling Notation (BPMN). Version 1.2, OMG (2008)
16. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.

In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

17. Stahl, C., Wolf, K.: Covering places and transitions in open nets. In: Dumas, M., Re-
ichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 116–131. Springer,
Heidelberg (2008)

18. Stahl, C., Wolf, K.: Deciding service composition and substitutability using ex-
tended operating guidelines. Data Knowl. Eng. (2009) (accepted for publication)

19. Wombacher, A., Fankhauser, P., Mahleko, B., Neuhold, E.: Matchmaking for busi-
ness processes based on choreographies. Int. Journal of Web Services Research 1,
14–32 (2004)

20. Wolf, K.: Does my service have partners? In: ToPNoC 2009. LNCS, vol. 5460,
pp. 152–171. Springer, Heidelberg (2009)

21. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding Substitutability of Ser-
vices with Operating Guidelines. In: ToPNoC II. LNCS, pp. 172–191. Springer,
Heidelberg (2008)

22. Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services.
In: ICSOC 2008. LNCS, vol. 5472, pp. 66–78. Springer, Heidelberg (2008)

23. van de Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: Agreeing and implementing interorganizational processes. Comput. J.
(in press, 2009)

24. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 271–287. Springer, Heidelberg (2007)

25. Mietzner, R., Ma, Z., Leymann, F.: An algorithm for the validation of executable
completions of an abstract bpel process. In: Multikonferenz Wirtschaftsinformatik
(2008)

26. Hopcroft, J.E., Ullman, J.: Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading (1979)

27. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers C-35, 677–691 (1986)

A Restructuring Method for WS-BPEL Business

Processes Based on Extended Workflow Graphs

Thomas S. Heinze1, Wolfram Amme1, and Simon Moser2

1 Friedrich Schiller University of Jena,
Institute of Computer Science,

07743 Jena, Germany
{T.Heinze,Wolfram.Amme}@uni-jena.de
2 IBM Software Laboratory Böblingen

Business Process Solutions
71032 Böblingen, Germany

smoser@de.ibm.com

Abstract. Much research effort has been spent on the provision of anal-
ysis methods for business processes specified by means of Web Services
Business Process Execution Language (WS-BPEL). Nevertheless, most
approaches neglect conditional control flow, though running the risk of
erroneous analysis results. In this paper, we present a restructuring ap-
proach for WS-BPEL processes, which helps to partly remedy conditional
control flow. We therefore use a combination of workflow graphs and Con-
current Static Single Assignment Form. Based on the hybrid format, we
are able to identify loops with static quasi-constant loop condition and
transform them in such a way, that conditional control flow is replaced
by unconditional control flow. Augmenting an existing analysis with the
proposed restructuring then enables more precise results, as is shown for
a compatibility analysis of WS-BPEL business processes.

1 Introduction

Automating business processes using an IT infrastructure has become increas-
ingly important throughout the last years. Business process management tech-
nology has been proven to be a suitable platform for consolidating distributed
information resources and thus promoting interoperability across cross-platform
systems. Moreover, the concept of loosely coupled (web) services, where a service
describes an individual distributed piece, has further augmented this technology
field. The Web Services Business Process Execution Language (WS-BPEL) [1]
offers a standards-based approach to build service-based business processes. A
WS-BPEL process therefore implements one service by orchestrating other ser-
vices. This can become problematic when two interacting services are imple-
mented in a stateful way, which would be the case with long-running business
processes. In this case, syntactical compatibility, i.e. that the WSDL interfaces of
both services match, is not sufficient since both services also have to comply with
a stateful interaction protocol in order to prevent invalid behavior at runtime, e.g.

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 211–228, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

212 T.S. Heinze, W. Amme, and S. Moser

Invoke Shipment

$index = $index + 1
$orderList[$index] = $order

Reply Confirmation

$doOrder = false()

Reply OrderList

$doOrder = true()
$index = 0

OrderProcessing

OnMessage Order OnMessage Complete

Termination

Pick

While($doOrder)

OrderingSequence

... ...

tEnter
tExit

...

...

pLoop

Pick

While

Order

Complete

Fig. 1. OrderingSequence (left) and part of its Petri net model (right)

deadlocks. Such potentially dangerous situations should already be detected in
a static fashion at design time. This so-called control-flow verification has been
a major subject of research within the last years [2]. One subject of control-
flow verification, the concept of behavioral compatibility of WS-BPEL processes,
has been introduced in [3]. Two interacting business processes are behavioral
compatible if and only if, for any case, both processes terminate properly, i.e.,
termination is guaranteed, there are no dangling messages, and deadlocks and
livelocks are absent. Behavioral compatibility can theoretically be verified using
various formalisms. In [3], Petri nets have been used, where behavioral compat-
ibility becomes equivalent to the soundness property [4] of the composed Petri
net representation of the two interacting services. However, using Petri nets as
a formalism for process model analysis requires an abstraction which omits its
data aspects, in order to allow for a feasible analysis (refer to the state space ex-
plosion problem). Thus, conditional control flow, i.e. conditions of branchings or
loops, is often neglected in the Petri-net-based process representation. Instead,
non-determinism is introduced, inducing a semantic gap between a process and
its model and thereby provoking erroneous analysis results.1

A process fragment that can not be accurately analyzed, if conditional con-
trol flow is neglected, is shown on the left-hand side of Figure 1. The depicted
activity is used as an example throughout this paper and may be part of a WS-
BPEL process modeling an online shop. Therein, a customer can order multi-
ple items by sending repeatedly Order, which triggers the shipment of the item
and an acknowledgment message. Having transmitted all orders, the customer

1 This approach seems to only weakly preserve properties like compatibility [5].

A Restructuring Method for WS-BPEL Business Processes 213

signals his orders to be finished by sending Complete, which is confirmed by
message OrderList. In order to implement this business protocol, activity
OrderingSequence embeds a loop whose execution is controlled by variable
doOrder: If the value of doOrder is true, the loop is executed, and not otherwise.
Initially, the value is set to true, and the loop will be executed. The Pick activity
in the loop either activates OrderProcessing, in case Order is received, or sets
the value of doOrder to false and replies OrderList, if Complete is received.

Consider a corresponding counterpart of OrderingSequence which succes-
sively sends and receives messages Order, Confirmation, Complete, OrderList
in this order. Obviously, in reality, both process fragments are behaviorally com-
patible, i.e. the composed system of both processes would be deadlock-free.
However, the use of Petri nets for the compatibility analysis and the asso-
ciated abstraction from data aspects yields a different outcome: The loop in
OrderingSequence is mapped to conflicting transitions tEnter and tExit, mod-
eling loop entry and exit non-deterministically, as shown in Figure 1. As Petri net
semantics state to solve the conflict arbitrarily, the loop may be (re-)entered more
than twice such that OrderingSequence still awaits messages after Complete
has been received. Consequently, a deadlock may occur in this model and the
analysis arrives at the result that both process fragments are not compatible.

Such erroneous situations can be avoided by defining a set of modeling rules
for WS-BPEL processes. A scenario as described above is out of question, if
the usage of interacting loops is restricted to such cases where the start of a
loop iteration is immediately communicated to the partner processes, e.g. by
a rule to define mandatory outgoing message activities at loop entry and exit,
respectively. Similar rules have been defined to ensure the soundness property
in [4]. Although they provide an easy to use criterion, erroneous situations cannot
be ruled out in practice, since such rules are only best practices and it cannot
be safely assumed that they are adhered to. Thus, we have chosen a different
approach to reduce the number of failures in compatibility analysis. We propose
to restructure WS-BPEL processes prior to their analysis. By the help of our
technique, we are able to identify a special class of loops: loops with static
quasi-constant loop condition, i.e. conditions where used variables are defined
over constant values only. Loops belonging to this class can be transformed such
that conditions are replaced with unconditional control flow. Thus, there is no
need to use non-deterministic structures for the representation of these activities
and this potential source of imprecision is avoided. The remainder of the paper
is structured as follows: Section 2 introduces extended workflow graphs, which
are used as our process representation format. The restructuring technique itself
is presented in Section 3. This is followed by a discussion of related work in
Section 4 and a conclusion in Section 5.

2 Extended Workflow Graphs

Precise analysis of business processes requires a representation format which is
able to reflect the control flow as well as data aspects. A number of excellent
representation formats have been established for this purpose, especially in the

214 T.S. Heinze, W. Amme, and S. Moser

field of compiler construction. Often used formats include abstract syntax trees,
control-flow graphs and program dependence graphs. The advantages of these
formats, especially those of control-flow graphs, have already started to attract
the area of business process analysis [6]. In our approach, we use extended work-
flow graphs as process representation format, driven by two major reasons: their
similarity to control-flow graphs and the existence of a Petri net mapping [7].

Workflow graphs have been commonly used in the analysis of business pro-
cesses [7,8], though also modeling control flow only. Extended workflow graphs
can be seen as an enrichment of ordinary workflow graphs by a notation of pro-
cess data. In principle, nodes in an extended workflow graph represent activities
and edges connect nodes according to control flow and synchronization, i.e. links:

Definition 1 (Extended Workflow Graph). An extended workflow graph
is a directed graph WFG = (N, E) with two special nodes Start, End ∈ N , such
that the set of nodes N = NAct ∪ NSplit ∪ NMerge ∪ NFork ∪ NJoin consists of

– NAct, i.e. nodes to represent activities,
– NSplit, i.e. nodes to split the control flow in branchings or loops,
– NMerge, i.e. nodes to merge the control flow in branchings or loops,
– NFork, NJoin, i.e. nodes to mark the begin and end of parallel sections.

The set of edges E includes control flow and synchronization edges.

In Figure 2, the extended workflow graph for our sample process fragment is
shown. Each basic activity is therein mapped to a single node (boxes), as done for
activity Reply Confirmation. Sequences of basic activities are then represented
by interconnecting these nodes one after another using control-flow edges. For
the representation of the structured activities While and Pick, further nodes
are added to indicate the divergence and convergence of control flow, i.e. Split,
Pick (diamonds) and Header, Merge (trapezoids), respectively. Outgoing edges
of the nodes that split the control flow are additionally labeled by corresponding
events, in case of the event-driven branching, or by True and False, denoting
the entry and exit of the loop. Finally, special nodes Start (circle) and End
(filled circle) are used to designate begin and end of the process fragment.

Process data and its manipulation is encoded in extended workflow graphs by
means of Concurrent Static Single Assignment Form (CSSA-Form). CSSA-Form
has been introduced in [9] for supporting the optimization of parallel programs.
It has also been adapted for the analysis of WS-BPEL processes and is able
to cover the more complex features of the language, e.g. links and dead path
elimination (refer to [6] for details). Its key advantage is that each variable is
defined exactly once, enforcing the direct representation of data dependences.
In order to guarantee this property, variables are renamed in such a way, that
each definition of a variable is assigned a unique name, typically denoted by
subscripts: Variable v becomes values v1, . . . , vn, one for each definition, and
uses are adjusted accordingly. The single-assignment property is considered as
static. Due to this, the definition of a variable inside a loop is regarded as single
definition, although, the loop, and therefore the definition, may be executed more

A Restructuring Method for WS-BPEL Business Processes 215

False

True

5: Pick

4: Split
?(doOrder)2

6: order = OnMessage Order1

7: Invoke Shipment(order)1

8: index = index + 123

9: setelem(orderlist, index , order)3 1

10: Reply Confirmation

Order

11: OnMessage Complete

13: Reply OrderList(orderList)

12: doOrder = false()3

Φ2 1 4
Φindex = (index , index)2 1 4

3: Header
doOrder = (doOrder , doOrder)

2: index = 01

1: doOrder = true()1

14: Merge
Φ4 2 3doOrder = (doOrder , doOrder)
Φindex = (index , index)4 3 2

Complete

Fig. 2. Extended workflow graph for activity OrderingSequence

than once. Special handling is required if multiple definitions of the same variable
reach a node via different branches or threads, i.e. at nodes of sets NMerge and
NJoin. In such cases, Φ-functions are inserted to merge the conflicting definitions.

Definition 2 (Φ-function). A Φ-function for variable v is of the form v =
Φ(v1, . . . , vn), where n denotes the number of incoming control-flow edges of the
node containing the function and thus the number of conflicting definitions of
variable v at this node. The value of the function is one of its operands, depending
on the actual control flow: vi, if the i-th incoming edge denotes the branch taken
at runtime or the thread whose associated operand is defined last.

A further special function is required to support concurrent read and write access
to variables. Often, such access to shared variables implies some kind of race
condition, i.e. if a definition of a variable may reach uses in another thread
depends on the interleaving of threads at runtime. In order to represent these
race conditions, π-functions are introduced.

216 T.S. Heinze, W. Amme, and S. Moser

Definition 3 (π-function). A π-function for variable v is of the form v =
π(v1, . . . , vn), where n denotes the number of reaching definitions of variable
v from the thread the function is located in and all other threads containing
definitions of this variable. The value of the function is one of its operands vi,
selected non-deterministically.

In the extended workflow graph of our sample in Figure 2, all used variables
have been renamed in order to ascertain a (static) single definition of each vari-
able, e.g. doOrder has become doOrder1, . . . , doOrder4. Furthermore, several
Φ-functions have been introduced in order to model the confluence of conflict-
ing definitions at nodes Header and Merge. As an example, the Φ-function
doOrder2 = Φ(doOrder1 , doOrder4) in Header models the confluence of the
values the variable doOrder takes before loop execution starts (doOrder1) and
after a single iteration of the loop (doOrder4). The latter value is thereby de-
fined by means of another Φ-function in Merge, which merges the values of the
variable on the two possible control-flow paths in the loop (doOrder2, doOrder3).

3 Restructuring Technique

Our restructuring technique can be applied to a loop only, if the conditional
branch of the loop can be statically evaluated for each iteration. As a conse-
quence, for each loop iteration, an execution or non-execution of the loop body
can always be derived from the incoming values of the condition variables, i.e.
variables used in the loop condition, directly. In our restructuring process we take
advantage of this property, by replacing conditional branches with unconditional
control flows to copies of the loop that are representing a certain state.

In principle, our restructuring technique can be seen as a simple unrolling
process, that divides a given loop into multiple copies of its loop body, where
each copy represents the execution of the loop for a certain assignment of values
to variables, i.e. its state. In our terminology, such kind of copies are called
loop instances. Conditional branches in these instances are redundant and are
replaced by mapping the outgoing control flows of a loop iteration to instances
that correspond to its outgoing assignment of variables. Figure 3 visualizes the
main concept of our approach applied to the process fragment in Figure 1.

In our sample, the condition of the loop exactly matches with boolean variable
doOrder2, whose value is defined by a constant in each iteration of the loop. If
the loop is entered for the first time, the value will be true(). This value will
not change until the right branch, including the assignment 12 : doOrder3 =
false(), is chosen for execution. As a consequence, we only need two copies of the
loop body for restructuring. In one copy, which we call InstancedoOrder2=true(),
occurrences of the variable are replaced by the value true(), and in the other
copy, which we call InstancedoOrder2=false(), by false().

In both copies, the conditional branch can be replaced by unconditional
control-flow edges, such that in InstancedoOrder2=true() the loop is always exe-
cuted and in InstancedoOrder2=false() the loop is exited immediately by jumping

A Restructuring Method for WS-BPEL Business Processes 217

doOrder = false()2
Instance

11: doOrder = true()

2: ...

doOrder = true()2
Instance

22 (doOrder = false())(doOrder = true())

Fig. 3. Restructuring applied to the loop in OrderingSequence

to the end node. The control flow of the restructured process is completed by in-
serting edges to corresponding copies, depending on the assignment of doOrder2 .
For example, since the value of doOrder2 is not changed on the left branch in
InstancedoOrder2=true(), an edge connecting the branch to the header of this
copy is introduced. On the other hand, the value is changed on the right branch
to false(), and therefore this branch is connected to InstancedoOrder2=false().

3.1 Static Quasi-Constant Loop Condition

In a more formal sense, restructuring of loops using our technique can always be
performed, if the conditional branch is defined by a static quasi-constant loop
condition. Static quasi-constant loop conditions are characterized by the use of
variables whose values are restricted to constants. As in other representation
formats, each of the variables may be defined by multiple, differing constant
assignments on varying control-flow paths, which are merged in CSSA-Form by
the help of Φ-functions. In order to verify whether a given loop condition satisfies
this property, definitions of the therein used variables have to be determined,
as well as definitions of variables used in these definitions, and so on. If all
definitions then represent assignments of constant values only, the condition
under consideration obviously forms a static quasi-constant loop condition.

Loops in WS-BPEL processes are always defined by using block-oriented ac-
tivities, i.e. While, RepeatUntil, and serial ForEach, because cyclic control flow
defined by links is not allowed [1]. Furthermore, since any for or do-while loop can
be transformed into an equivalent while loop [9], WS-BPEL activities ForEach
(serial) and RepeatUntil can be transformed into a While activity as well. We
are therefore able to restrict the presentation of our restructuring technique to
loops specified by means of the block-oriented While activity without loss of gen-
erality. In particular, we define the class of loops with static quasi-constant loop
condition to consist of those While activities whose conditional expression only
relies on variables defined by constants, however, exclusive of interleaving defi-
nitions in different threads of a Flow activity. The latter is due to the fact that

218 T.S. Heinze, W. Amme, and S. Moser

our technique is not applicable across the boundaries of threads, i.e. we are not
“serializing” parallel threads which would be necessary in this case. Therefore,
a condition which relies on variables defined by one or multiple constant assign-
ments embedded in different threads, without any detectable synchronization by
links, is not considered as static quasi-constant loop condition.

In principle, our restructuring technique can be applied to a single loop or
to a complete WS-BPEL process. In both cases, we need to identify loops with
static quasi-constant loop conditions, based on the variables used in the condi-
tions. In extended workflow graphs, the retrieval of this kind of loop conditions
is fairly simple, since relations of variable use and definition are directly reflected
due to the encoding of WS-BPEL activities by means of CSSA-Form [9]. Iden-
tifying loops with static quasi-constant loop condition can therefore be done by
traversing these relations. Starting with the variables used in the loop condition,
definitions of variables are inspected to be either constant assignments, ordinary
copy instructions, Φ-functions, or π-functions with one operand only, represent-
ing a parallel definition without interleaving definitions, i.e. race conditions. All
other kinds of definitions are excluded for variables of static quasi-constant loop
conditions. In case of a Φ-function, i.e. v = Φ(v1, . . . , vn), the traversal continues
with the definitions of the operands vi. In the presence of an ordinary copy in-
struction, i.e. v = v1, or a one-operand π-function, i.e. v = π(v1), the definition
of the source or operand v1 is further inspected, respectively.

As a second requirement of our technique, we furthermore have to guarantee
during the verification process, that the inspected Φ-functions are only included
in the header node of the loop under consideration, or in other merge nodes
which are postdominated by this node.2 This restriction does not tamper the
applicability of our restructuring technique in most cases, since nodes contained
in the body of a loop are always postdominated by the header node of the loop.
If one of the Φ-functions is defined in the header node of another loop, this loop
needs to be restructured first. We therefore propose a restructuring procedure,
where loops are processed from the inside to the outside of a loop.

3.2 Loop Normal Form

An arbitrary loop can always be transformed into an unconditional loop, if it has
been identified as a loop with static quasi-constant loop condition. In principle,
the restructuring of a loop is performed in two steps. In a first step, the loop is
converted into a normal form, and in a second step, the dividing of the normalized
loop into copies of the loop is performed. In fact, the normalization of a loop is
not absolutely necessary, but it eases requirements of the subsequent step.

One requirement for a valid loop transformation is, that a condition variable
has exactly one definition on each incoming control-flow edge of the loop header
node in an arbitrary iteration. However, this is not always the case for a loop
2 A node n dominates a node m, if every path from Start to node m contains n. A

node n postdominates a node m, if every path from node m to End contains n.
A node n is said to strictly dominate or postdominate a node m, if n �= m and n
dominates or postdominates m, respectively [9].

A Restructuring Method for WS-BPEL Business Processes 219

procedure resolve(WFG = (N, E), merge,header) is
Subgraph = (NSubgraph, ESubgraph) ⊆ WFG such that header ∈ NSubgraph

∧ ∀ n ∈ NSubgraph \ {header} : n is strictly dominated by merge;
foreach ei = (ni, merge) ∈ E do

Subgraphi = create copy of Subgraph;
substitutesi = ∅;
foreach Φ-function v = Φ(v1, . . . , vn) in merge do

let vi be the operand associated to edge ei;
substitutesi[v] → vi;

end for;
replace uses of variables in Subgraphi according to substitutesi;
let successori be the copy of successor(merge) in Subgraphi;
let headeri be the copy of header in Subgraphi;
WFG = WFG ∪ Subgraphi;
E = (E \ {ei}) ∪ {(ni, successori)};
update Φ-functions in headeri;

end for;
remove all unreachable nodes in WFG and adjacent edges;
merge header and copies of header into single node;
update CSSA-Form in WFG;

end.

Fig. 4. Algorithm for resolving a single merge node

with static quasi-constant loop condition. A condition variable may be assigned
multiple values on different control-flow paths, which are merged by the help
of Φ-functions. Determining and resolving these Φ-functions, except for those
contained in the header node, is the purpose of the normalization process.

In extended workflow graphs, Φ-functions, that are relevant for normalization,
can easily be identified by traversing the definitions of variables that are directly
or indirectly used in the loop condition. If in this traversal, a Φ-function is
observed, which is not contained in the loop header, this function is marked
for resolving. It should be pointed out, that Φ-functions need to be processed
in such a way, that no function which dominates another candidate function is
resolved prior to the dominated function. This is mainly due to the prevention of
unnecessary copying, but also required for the proper operation of the algorithm.

Actual resolving of Φ-functions is done in groups, broken down by the merge
nodes that contain marked Φ-functions. In principle, a single merge node merge
is resolved by inserting multiple copies of the subgraph, which immediately starts
after node merge and ends at the loop header node, into the workflow graph.
Thereby, one copy is created for each incoming control-flow edge of merge and
references to Φ-functions defined in node merge are replaced by the operands
associated to the corresponding edge. Eventually, operands of Φ-functions con-
tained in the loop header node are updated accordingly. As a result, all control-
flow paths which included confluent definitions of variables that had been merged
in node merge are now separated and explicitly modeled.

220 T.S. Heinze, W. Amme, and S. Moser

13: ...

12: doOrder = false()3

10: ...

...
...

13: ...10: ...

...
...

312: doOrder = false()

3: Header
Φ

...
2 1doOrder = (doOrder , doOrder)4

3: Header

...
ΦdoOrder = (doOrder , doOrder , doOrder)2 1 2 3

......

2: ...

1: doOrder = true()1 11: doOrder = true()

2: ...

14: Merge

...
Φ4 2 3doOrder = (doOrder , doOrder)

Fig. 5. Derivation of the normal form for the loop in OrderingSequence

In our normalization process, resolving a single merge node merge for a loop
with header node header within an extended workflow graph WFG can be done
by applying the algorithm denoted by procedure resolve shown in Figure 4. As
a result, a copy of the subgraph Subgraph ⊆ WFG, which contains header and
all nodes strictly dominated by merge, is created and inserted into the extended
workflow graph for each incoming edge ei of node merge. Uses of variables
defined by a Φ-function are therein replaced by the operands associated to the
respective edge ei. Furthermore, Φ-functions in copies of header node header are
appropriately updated. In a last step, all now unreachable nodes are removed
from the extended workflow graph (in particular merge), copies of the header
node are merged into a single header node, and CSSA-Form is re-established.
Note that the algorithm will merely alter the target of edges ei to header and
update Φ-functions, if the successor of merge matches with header.

The normalization process for our example is shown in Figure 5. As can be
seen, the performed transformation is quite simple, since we have only a single
merge node (labeled 14), which needs to be resolved, and this node is immediately
succeeded by the loop header (labeled 3). Therefore, in the normal form, the
merge node is removed by connecting its predecessor nodes (labeled 10, 13) to
the loop header node and updating Φ-functions’ operands accordingly.

For establishing the correctness of the normalization process, first, we have
shown in [10], that applying the resolving algorithm to a single merge node, which
is postdominated by the header node, does not change the execution semantics
of the process comprising the considered loop. An iteratively application of this
proposition then shows the correctness of the overall transformation process.

A Restructuring Method for WS-BPEL Business Processes 221

3.3 Loop Instantiation

In the loop instantiation pass of our approach, the actual restructuring process,
i.e. the replacement of conditional control flows by unconditional control flows,
is performed.3 In order to guarantee a proper transformation, two constraints
must be hold. On the one hand, the restructuring must not change the execution
semantics of the process containing the loop under consideration. Thus, the
original and the modified process should be semantically equivalent. On the
other hand, the technique needs to be effective, i.e. the condition of the loop
should be resolved in the restructured process.

A simplified restructuring is possible, if the loop condition is directly related
to the possible control-flow paths of the normalized loop. In principle, this can be
achieved by replacing the split node containing the loop condition with multiple
split nodes, which are positioned on each of the incoming control-flow paths of
the loop header node. But, in CSSA-Form, such a transformation could change
the execution semantics of the loop, since the copies of the split node are not
dominated by the header node of the loop anymore. One possible solution ad-
dressing this problem would be to combine the repositioning of the loop condition
with a simultaneously performed resolving of Φ-functions.

A Φ-function v = Φ(v1, . . . , vn) in the loop header node is replaced by inserting
assignments v = vi for each incoming edge of the loop header, assigning the
operand associated to the edge to the variable defined by the Φ-function. In
our approach, inserted assignments are grouped to so-called set blocks for each
incoming edge. The loop condition by itself can then be safely repositioned by
creating multiple copies of the split node containing the condition, each of them
positioned directly after each set block. A nice side effect of this repositioning
of the loop condition is, that we have derived a pattern which represents the
execution of an arbitrary loop instance. This instance pattern is used afterwards
as a kind of blueprint, when replacing the loop with its loop instances. Since
the copied and inserted split nodes control whether an instance is entered or not
during the instantiation process, we call them instance guards.

The result of this preprocessing step is shown for our sample in Figure 6.
As can be seen, three set blocks (labeled 15, 16, 17) have been inserted into
the extended workflow graph, one for the entry edge of the loop and one set
block for each of the two possible control-flow paths in the loop. The inserted
set blocks contain definitions of variables doOrder2 and index2, assigning the
values associated to the respective edges. Furthermore, each set block is followed
by an instance guard (labeled 18, 19, 20), i.e. a split node containing the loop
condition. The instance pattern of our sample is depicted by a dotted frame.

As mentioned above, in the instantiation process, instance guards are per-
manently evaluated, and replaced by edges to corresponding loop instances, if
evaluation results true, or by an edge to the exit node of the loop, in the other
case. In particular, an instance in this process stands for an execution of the
loop with respect to a certain assignment of condition variables. For such an
3 It shall be noted that our technique is not restricted to loops, since it can be easily

adopted to block-oriented conditional branchings as well [10].

222 T.S. Heinze, W. Amme, and S. Moser

9: setelem(orderlist, index , order)13

6: order = OnMessage Order1

7: Invoke Shipment(order)1

10: Reply Confirmation

8: index = index + 123

?(doOrder)2

19: Guard
FalseTrue

11: OnMessage Complete

12: doOrder = false()3

13: Reply OrderList(orderList)

17: Set Block

2 2index = index
doOrder = doOrder2 3

?(doOrder)2

20: Guard
False True

16: Set Block

2 3index = index
doOrder = doOrder2 2

3: Header

5: Pick
Order Complete

True

False

15: Set Block

2index = index
doOrder = doOrder2 1

1

?(doOrder)2

18: Guard

Pattern
Instance

...

Fig. 6. Instance pattern of the loop in activity OrderingSequence

assignment of values (v1, . . . , vn) to condition variables (var1, . . . , varn), we can
derive the corresponding loop instance by replacing all occurrences of condition
variables var1, . . . , varn in the instance pattern according to the assignment.

A description of our instantiation algorithm for an extended workflow graph
WFG and a normalized loop, given by its header node header and exit node
exit, is presented by procedure instantiate in Figure 7. The algorithm ini-
tially derives the instance pattern of the loop by inserting instance guards and
set blocks on each incoming edge of the loop header node header (procedure
prepareInstancePattern). Afterwards, instance guards are iteratively visited
and processed until no further guard exist (main loop in procedure instantiate)4.
Eventually, the algorithm terminates by removing all set blocks from the restruc-
tured extended workflow graph and re-establishing CSSA-Form.

4 Iterative processing is accounted to the permanent generation of instances, which by
themselves include new instance guards.

A Restructuring Method for WS-BPEL Business Processes 223

procedure instantiate(WFG = (N, E), header, exit) is
prepareInstancePattern(WFG,header, exit);
while (∃ guard ∈ N such that guard is instance guard) do

setblock = predecessor(guard) in WFG;
let [v1, . . . , vn] be assignment of condition variables defined by setblock;
if (condition(guard) == true) then

let Instance[v1,...,vn] be the instance for assignment [v1, . . . , vn];
let instanceheader be the copy of header in Instance[v1,...,vn];
if (Instance[v1,...,vn] ⊆ WFG) then

WFG = WFG ∪ Instance[v1,...,vn];
end if;
E = E ∪ {(setblock, instanceheader)};

else E = E ∪ {(setblock, exit)};
end if;
remove guard and adjacent edges from WFG;

end while;
remove set blocks from WFG and update CSSA-Form;

end.
procedure prepareInstancePattern(WFG = (N, E), header, exit) is

split = successor(header) in WFG;
foreach ei = (ni, header) ∈ E do

guardi = create copy of split as instance guard;
setblocki = create new node;
foreach Φ-function v = Φ(v1, . . . , vn) in header do

let vi be the operand associated to edge ei;
add assignment v = vi to setblocki;

end for;
E = E ∪ {(ni, setblocki), (setblocki, guardi),

(guardi, exit) with label False,
(guardi, header) with label True};

N = N ∪ {setblocki, guardi};
end for;
remove split and adjacent edges from WFG;
remove all Φ-functions in header;

end.

Fig. 7. Algorithm for the instantiation of a loop in normal form

During the traversal of instance guards, a new loop instance is only created for
an instance guard guard, if evaluation of its condition condition(guard) yields
true and an appropriate instance has not already been created. Such a loop
instance is generated by creating a copy of the instance pattern and replacing
therein all occurences of condition variables with their corresponding values.

Figure 8 contains the result of applying the instantiation algorithm to our
sample, prior to restoring CSSA-Form. Instantiation has been performed in
three iterations. In the first iteration, the instance guard from the entry of the
loop was replaced by creating and inserting a new instance for the assignment
doOrder2 = true. This instance itself contained two further guards (refer to

224 T.S. Heinze, W. Amme, and S. Moser

139: setelem(orderlist, index , order)

10: Reply Confirmation

8: index = index + 13 2

7: Invoke Shipment(order)1

6: order = OnMessage Order1 11: OnMessage Complete

12: doOrder = false()3

13: Reply OrderList(orderList)

index = index 22

17: Set Block

16: Set Block
index = index 32

3: Instance Header
doOrder = true()Instance

Order
5: Pick

Complete

15: Set Block
index = index 12

2: index = 01

1: doOrder = true()1

2

Fig. 8. Result of loop instantiation: Loop instance for assignment doOrder2 = true()

the instance pattern in Figure 6), that have been processed in subsequent it-
erations. Thereby, since the evaluation of the left guard of this instance also
resulted true, that guard has been replaced by an edge to the already created
instance InstancedoOrder2=true(). However, since the condition contained in the
right instance guard yielded false, this guard has been replaced by an edge to
the exit node of the loop. Thus, only a single loop instance has been created.

3.4 Restructured Loop

Figure 9 shows on the left-hand side the final restructured extended workflow
graph, after set blocks have been removed and CSSA-Form is re-established,
i.e. a Φ-function has been inserted to merge the confluent definitions of variable
index. Since the compatibility analysis in [3] utilizes a Petri-net-based model,
finally, the restructured extended workflow graph needs to be mapped to a Petri
net. This can be done quite easily, because an already existing mapping of or-
dinary workflow graphs to Petri nets can be adapted for that purpose [7,10].
The resulting Petri-net-based model for our sample is shown on the right-hand

A Restructuring Method for WS-BPEL Business Processes 225

Φ
3: Instance Header

2index = (index , index)1 3

2: index = 0

1: doOrder = true()1

1

7: Invoke Shipment(order)1

38: index = index + 12

6: order = OnMessage Order1

10: Reply Confirmation

order)1

11: OnMessage Complete

12: doOrder = false()3

13: Reply OrderList(orderList)

9: setelem(orderlist, index ,3

5: Pick
Order Complete

...

...

pPick

...

pEnd

pHeader

Order

Complete

Fig. 9. Restructured workflow graph (left) and part of its Petri net model (right)

side of Figure 9. As expected, the non-deterministic conflict included in the
original model could be avoided since the split node representing the condi-
tional branch of the loop is now removed. Consequently, compatibility analysis
of OrderingSequence and its counterpart, as described in Section 1, now yields
the correct result: both activities are behavioral compatible in terms of [3].

As can be seen by this sample, we are able to restructure a loop with static
quasi-constant loop condition such that the conditional branch is replaced by
unconditional control flow. Therefore, modeling the control flow of the loop can
now be done precisely without considering data aspects, i.e. data dependences of
the loop condition. In general, any WS-BPEL process that only contains loops or
conditional branchings with static quasi-constant condition can be restructured
using our technique and the resulting extended workflow graph provides a precise
model of the process with respect to control flow. For these reasons, we propose
to use our restructuring technique prior to existing control-flow verification anal-
yses. Any conditional branch defined by a static quasi-constant condition can
thus be resolved beforehand and will not interfere with the analysis. However,
any other conditional branch, not defined by a static quasi-constant condition,
remains unchanged and could still provide a potential source of imprecision.

Effectiveness and correctness of the restructuring technique is shown in [10].
The proof of effectiveness is fairly simple, since it must be only shown that the
algorithm terminates. However, this immediately follows from the fact that an
upper bound for the number of instances is given by the number of combinations

226 T.S. Heinze, W. Amme, and S. Moser

for possible values of condition variables, which is finite for a loop with static
quasi-constant loop condition. For the proof of semantically correctness of our
algorithm, we have shown that the set of possible executions of the original
loop and the set of possible executions of the altered loop are identical. In fact,
obviously, this claim holds via construction, but also can be proven formally
using complete induction over loop instances.

4 Related Work

Most of current approaches for control-flow verification of WS-BPEL business
processes do not consider process data, justified by the enabling of a feasible
analysis [2]. In general, when modeling WS-BPEL with Petri nets, a common
argument is to apply high-level Petri nets, if process data needs to be considered.
In contrast to our technique, such an approach is restricted to processes of finite
data domain, since an infinite data domain causes an infinite state space of the
model. However, except for this restriction, process features using data of finite
domain only, e.g. join conditions of links [1], can be mapped clearly and precisely
using unfolding techniques for high-level Petri nets [5].

Advanced techniques for the analysis of behavioral compatibility have also
been described in earlier works [6,11]. Both approaches emphasize the problems
of ignoring data dependences when analyzing WS-BPEL processes and therefore
propose the use of CSSA-Form as process representation format. In the first
approach [6], a data-flow analysis allows to determine inbound messages which
may reach a certain activity in a process. The thus discovered dependences can
be used to improve the Petri net model of the process.

The second approach [11] provides an automated method to enhance the
mapping of WS-BPEL processes to Petri nets. Therefore, data dependences of
branching or loop conditions are analyzed such that conditions of boolean data
domain are identified. Using data-sensitive Petri net patterns then allows to
precisely map these conditions, conjoined with their data dependences, and thus
improves the Petri net model. Other than the technique described in this paper,
the method is also restricted to conditions of boolean data domain.

Another method for enhancing control-flow verification of WS-BPEL pro-
cesses is proposed in [12]. The depicted approach addresses conditional control
flow and its implications for a Petri-net-based analysis. Therefore the Petri net
model is enhanced by means of effect places and predicate transitions. Process
information that controls the translation procedure in this technique is derived
by a simple simulation of the considered process. It is not clear to the authors, if
the technique is effectively feasible in the presence of loops, since in this case all
iterations of a loop have to be simulated. Furthermore, the addressed problem
seems to be in fact a classical control-flow problem and therefore should be solv-
able without an extension of the underlying Petri net model, using a combination
of control-flow expansion and dead code elimination.

In [13], a data-flow analysis is presented, which is able to determine reach-
ing definitions of variables in WS-BPEL processes. The derived information is

A Restructuring Method for WS-BPEL Business Processes 227

then used for process partitioning. If a process was split into fragments such
that a data dependence exists between two fragments, a message exchange is
required. In order to minimize the number of required message exchanges, the
described analysis has to yield precise results. Therefore, the analysis respects
dead path elimination [1] and provides a handling of complex data types [13]. In
extended workflow graphs, reaching definitions are already reflected due to the
use of CSSA-Form. However, since CSSA-Form provides an over-approximation
of reaching definitions, it may be refined using the proposed analysis.

A method addressing classical control-flow graphs and data-flow analysis in
general, is presented in [14]. The therein proposed approach identifies destructive
merges, i.e. nodes of a control-flow graph where data flow information is lost due
to the merging of differing incoming data flow facts. A subsequent restructuring
of the graph, duplicating nodes in such a way that destructive merges can be
eliminated, allows to increase the precision of the data-flow analysis. In a broader
sense, our technique can be seen as an application of this method to business
processes. However, the concept of loop instances, used in our technique, allows
to restructure loops in a single pass, without the need for an additional constant
propagation. Furthermore, the representation of process data in CSSA-Form
simplifies parts of the restructuring enormously, e.g. the identification of static
quasi-constant loop conditions, and also allows to handle parallelism.

5 Conclusion

In this paper, we motivated the use of a restructuring method for WS-BPEL busi-
ness processes, prior to an existing compatibility analysis [3]. Due to the coarse
representation of conditional loops or branchings by the use of non-determinism
in the Petri-net-based model, the analysis is often prone to erroneous results.
Therefore, resolving conditional control flow in WS-BPEL processes, whenever
possible, allows for a more precise analysis. To this end, we introduced extended
workflow graphs, as a combination of ordinary workflow graphs and CSSA-Form,
in order to represent WS-BPEL processes without loss of precision.

Building on that, we were able to identify block-oriented loop activities with
static quasi-constant loop condition, i.e. conditions where used variables are de-
fined over constant values only. Furthermore, we provided a safe algorithm which
enables the removal of such conditions by replacing conditional with uncondi-
tional control flow. Applying the Petri-net-based analysis of behavioral compati-
bility to such a restructured process results in more precise analysis results, since
the use of non-deterministic structures within the model can be reduced.

Main subject of future work will be the evaluation of our restructuring tech-
nique with respect to a set of real-world WS-BPEL processes, in order to assess
the practical relevance of our approach besides establishing its theoretical foun-
dation as conducted within this paper. Unfortunately, we are currently not aware
of such a “benchmark” for WS-BPEL and therefore require to firstly define a
set of realistic business processes which can be used for that purpose.

Another direction for future work is the extension of our technique to all
loops, whose conditions can be statically evaluated and removed by the help

228 T.S. Heinze, W. Amme, and S. Moser

of control-flow restructuring, rather than processing static quasi-constant loop
conditions only. In particular, we are interested in loops for which the values of
some condition variables can only be restricted to certain ranges of values, or
are even unknown at all. In principle, this can be done by introducing a more
abstract notion of loop instances, i.e. instances where assignments of condition
variables are described by means of intervals or predicates.

References

1. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Gúızar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business
Process Execution Language Version 2.0. Standard, OASIS (April 2007)

2. van Breugel, F., Koshkina, M.: Models and Verification of BPEL (September 2006)
3. Martens, A., Moser, S., Gerhardt, A., Funk, K.: Analyzing Compatibility of BPEL

Processes. In: Advanced Int. Conf. on Telecommunications and Int. Conf. on In-
ternet and Web Applications and Services, p. 147. IEEE, Los Alamitos (2006)

4. van der Aalst, W.M.P.: Structural Characterizations of Sound Workflow Nets.
Computing Science Report 96/23, Eindhoven University of Technology (1996)

5. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 and its
Compiler BPEL2oWFN. Techn. report 212, Humboldt University of Berlin (2007)

6. Moser, S., Martens, A., Görlach, K., Amme, W., Godlinski, A.: Advanced Veri-
fication of Distributed WS-BPEL Business Processes Incorporating CSSA-based
Data Flow Analysis. In: 2007 IEEE Int. Conf. on Services Computing. IEEE, Los
Alamitos (2007)

7. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W(E.): An Alternative Way
to Analyze Workflow Graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu,
M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

8. Sadiq, W., Orlowska, M.E.: Analyzing Process Models Using Graph Reduction
Techniques. Information Systems 25(2), 117–134 (2000)

9. Lee, J., Midkiff, S.P., Padua, D.A.: Concurrent Static Single Assignment Form and
Constant Propagation for Explicitly Parallel Programs. In: Carter, L., Ferrante, J.,
Sehr, D., Chatterjee, S., Prins, J.F., Li, Z., Yew, P.-C. (eds.) LCPC 1998. LNCS,
vol. 1656, pp. 114–130. Springer, Heidelberg (1999)

10. Heinze, T.S., Amme, W., Moser, S.: Resolving Conditional Branches in WS-BPEL
Business Processes. Report, Friedrich Schiller University of Jena (to appear)

11. Heinze, T.S., Amme, W., Moser, S.: Generic CSSA-based Pattern over Boolean
Data for an Improved WS-BPEL to Petri Net Mapping. In: Third Int. Conf. on
Internet and Web Applications and Services, pp. 590–595. IEEE, Los Alamitos
(2008)

12. Monakova, G., Kopp, O., Leymann, F.: Improving Control Flow Verification in a
Business Process using an Extended Petri Net. In: 1st Central-European Workshop
on Services and their Composition, vol. 438, 95–101. CEUR-WS.org (2009)

13. Kopp, O., Khalaf, R., Leymann, F.: Reaching Definition Analysis Respecting Dead
Path Elimination Semantics in BPEL Processes. Report 2007/04, IAAS (2007)

14. Thakur, A., Govindarajan, R.: Comprehensive Path-sensitive Data-flow Analysis.
In: 6th Int. Symp. on Code Generation and Optimization, pp. 55–63. ACM Press,
New York (2008)

The Triconnected Abstraction of Process Models

Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
{Artem.Polyvyanyy,Sergey.Smirnov,Mathias.Weske}@hpi.uni-potsdam.de

Abstract. Companies use business process models to represent their
working procedures in order to deploy services to markets, to analyze
them, and to improve upon them. Competitive markets necessitate
complex procedures, which lead to large process specifications with so-
phisticated structures. Real world process models can often incorporate
hundreds of modeling constructs. While a large degree of detail compli-
cates the comprehension of the processes, it is essential to many analy-
sis tasks. This paper presents a technique to abstract, i.e., to simplify
process models. Given a detailed model, we introduce abstraction rules
which generalize process fragments in order to bring the model to a
higher abstraction level. The approach is suited for the abstraction of
large process specifications in order to aid model comprehension as well
as decomposing problems of process model analysis. The work is based
on process structure trees that have recently been introduced to the field
of business process management.

1 Introduction

Business process modeling is a well-established technique for designing and com-
municating how work activities are related to each other, and how these activ-
ities contribute to a business goal. To provide a common understanding of the
language used, standard modeling notations are proposed, for instance, Business
Process Modeling Notation (BPMN) [1], Event-driven Process Chains (EPC) [2],
and Petri nets [3]. Business process models serve as a communication vehicle for
different stakeholders, e.g., business analysts and software designers. Moreover,
process models are used to analyze working procedures, to propose improve-
ments, and even to provide a blueprint for a software realizing the process.

With the increasing complexity of services which companies provide to mar-
kets, business processes fulfilling these services are getting more and more com-
plex, too. As a result, business process models often consist of dozens or even
hundreds of nodes, making these models hard to understand. There is a dilemma:
On the one hand, too much detail hampers the understanding of the overall pro-
cess. On the other hand, this level of detail might be required for process analysis
and for implementing the process in software.

There are two approaches to address the problem. Either different models
serving different purposes are developed, or different models, catering to differ-
ent process modeling needs, are generated from a detailed original model. If

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 229–244, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

230 A. Polyvyanyy, S. Smirnov, and M. Weske

the former approach is followed, consistency of the models is a severe problem.
Changes on one level need to be reflected on other levels as well, which is often
done manually. Experience shows that due to model evolution on different lev-
els of detail, the models become inconsistent quite soon. Therefore, we opt for
the latter approach: We generate different process models from a given detailed
model by introducing transformation rules. These rules abstract from details of
a process model and provide abstracted models that non-technical stakeholders
can understand. At the same time, any evolutionary changes will be taken into
account, since effectively there is only one process model, and the others are
generated from it on demand. Technically, the work is based on the program
parsing technique, known from the compiler theory of sequential programs [4].
The method was introduced to the business process management community in
the refined process structure tree (RPST) decomposition of workflow graphs [5].

While the results in this paper are of a conceptual and rather theoretical
nature, they emerged from an industry project conducted with a large health
insurance company, just like a previous study focusing on pattern-based process
abstraction [6]. In this initial endeavor, we developed an automated abstraction
control mechanism guided by the average execution time of tasks included in
a model. The proposed technique attempts to first abstract from tasks which
are rarely observed. Of course, in order to allow such an abstraction control,
models must be additionally annotated with with the tasks’ average execution
times. The main limitation of the pattern-based approach is the problem of
completeness, i.e., the necessity to have a full set of patterns which can support
the abstraction of arbitrarily structured process models. The idea of abstraction
control mechanisms is elaborated in [7], where an abstraction slider is presented.

The completeness of a set of reduction rules is a well-known problem in the
analysis of Petri nets. Berthelot proposed a set of rules which can be repeatedly
applied to reduce live and bounded marked graphs to a single transition [8,9].
Desel and Esparza, in [10], proposed a complete kit of reduction rules for free-
choice Petri nets. In [11], Murata presents reduction rules which preserve the
liveness, safeness, and boundedness properties. However, all the mentioned rules
are incomplete when operating on models of an arbitrary structure. The limita-
tions of the pattern-based abstraction and the impossibility of closing the gap
by adapting the existing reduction rules have inspired this work. We define and
utilize for abstraction purposes a notion of a process component which permits
achieving completeness when handling a process model of an arbitrary structure.

The rest of the paper is organized as follows: The next section sketches the
research field of business process model abstraction, its perspectives and its
challenges. In section 3, we provide definitions and a basic corollary that form the
basis for further discussion. The structural decomposition of process models into
triconnected components is presented in section 4. In section 5, the components
are used for process model abstraction, resulting in the triconnected abstraction
technique. The paper closes with ideas on future steps and conclusions that
summarize our findings.

The Triconnected Abstraction of Process Models 231

2 Business Process Model Abstraction

This section discusses the research field of business process model abstraction
(BPMA). The core aspects of BPMA are identified. Finally, we position the
contribution area of BPMA to be addressed in the rest of the paper.

Business process analysts often attempt to capture every detail of handling a
particular business case for inclusion in a process model, which leads to excessive
numbers of modeling constructs and sophisticated model structures. In order
to reduce the complexity and to allow for the faster investigation of process
logic, we started to look for automated techniques to abstract, i.e., to simplify,
process models. Abstraction is the result of the generalization or elimination of
properties in an entity or a phenomenon in order to reduce it to a set of essential
characteristics. Information loss is the fundamental property of abstraction and
is its intended outcome. When modeling, business process analysts abstract from
the complex reality by extracting important behavioral aspects of a process. In
BPMA, we investigate problems specific to the abstraction of process model
entities. The challenge lies in identifying what is a meaningful generalization of
process logic aimed at removing certain characteristics while at the same time
emphasizing others.

In BPMA, identified process fragments can be eliminated or replaced by con-
cepts of a higher abstraction level which conceal, but also represent, the logic
of the underlying fragments. In both cases, generalization as well as elimina-
tion, sophisticated handling mechanisms need to be proposed. We refer to such
mechanisms as abstraction steps.

Control mechanisms combine atomic abstraction steps into abstraction strate-
gies. One can envision manual strategies in which a user specifies tasks to be
abstracted, semi-automated, or automated control mechanisms.

Any process abstraction methodology aims at ensuring certain properties of
abstracted models. The properties should allow a semantic relation between the
original and abstracted models. The key property we pursue in our approach
of process abstraction is order preservation. An order preserving abstraction is
an abstraction that ensures that neither new task execution order constraints
can appear after abstraction, nor existing ones (except for generalized ones)
go away. For instance, assume that task A should be abstracted. Let fA be a
process fragment affected in the abstraction step (fA contains A). As a result
of abstraction, fragment fA gets replaced by task F . If task B belongs to fA,
information about execution order constraints between task A and task B is lost.
However, an order preserving abstraction ensures that between any pair of tasks
not in fA, e.g., task C and task D, execution order constraints are preserved.
Furthermore, an order preserving abstraction guarantees that execution order
constraints between any task not in fA, e.g., task E, and any task in fA, task
A or task B in our example, are the same as between task E and task F . In
the end, an order preserving abstraction secures the overall process logic to be
reflected in the abstracted model.

A business process model abstraction methodology is a compromised com-
bination of requirements and techniques picked out from all of the discussed

232 A. Polyvyanyy, S. Smirnov, and M. Weske

abstraction aspects. Usually, such a combination is guided by project specific
use cases. This paper primarily contributes to the BPMA aspects of discovering
fragments which are structurally suitable for abstraction and further performing
abstractions. Effectively, we define a structural fragment type which is accepted
as a unit of process logic abstraction, provide mechanisms for the discovery of
a complete set of process fragments suitable for abstraction, and specify the
algorithm which aims at abstracting from a given task in a process model by
utilizing the discovered fragments.

3 Preliminaries

In this section, we introduce basic definitions. We start with a process model
formalism adapted from [12] which is based on generic modeling concepts. A
process model consists of a set of tasks and their structuring using directed
control flow edges and gateway nodes that implement process routing decisions.

Definition 1. P = (N, E, type) is a process model if N = NT ∪ NG is a set of
nodes, where NT is a nonempty set of tasks and NG is a set of gateways; the
sets are disjoint. E ⊆ N × N is a set of directed edges between nodes defining
control flow. type : NG → {and, xor, or} is a function that assigns a control flow
construct to each gateway. (N, E) is a connected graph—a process graph. Each
task t ∈ NT can have at most one incoming and at most one outgoing edge
(|•t| ≤ 1 ∧ |t•| ≤ 1), where •t stands for a set of immediate predecessor nodes
(•t = {n ∈ N |(n, t) ∈ E}) and t• stands for a set of immediate successor nodes
(t• = {n ∈ N |(t, n) ∈ E}) of task t. A task t ∈ NT is a process entry if |•t| = 0.
A task t ∈ NT is a process exit if |t•| = 0. There is at least one process entry
task and at least one process exit task. Each gateway is either a split or a join.
A gateway g ∈ NG is a split if (|•g| = 1 ∧ |g•| > 1). A gateway g ∈ NG is a join
if (|•g| > 1 ∧ |g•| = 1).

To be able to refer to parts of a process model, we define a process fragment. A
process fragment is a connected part of a process model.

Definition 2. A process fragment F = (NF , EF , typeF) of a process model P =
(N, E, type), where NG ⊂ N is a set of gateways of P , consists of a connected
subgraph (NF , EF) of the process graph (N, E) of P and function typeF , which
is a restriction of the function type of P to a set NF ∩ NG.

Within a process fragment, nodes can be classified in regard to their structural
relation to the whole process model.

Definition 3. A node n ∈ NF is a boundary node of a process fragment F =
(NF , EF , typeF) in a process model P = (N, E, type) if n is a process entry of
P , a process exit of P , or there exist edges ei ∈ EF and ej ∈ E\EF adjacent
through n. A non-boundary node n ∈ NF of F is an internal node of F .

Boundary nodes of a process fragment can be distinguished as fragment entries
and fragment exits based on the directions of incident control flow edges.

The Triconnected Abstraction of Process Models 233

g1t1 g4

g2

g5

g3

t2

t3

t10 t12t11

t6

t7

t9

t8
t13 g6 t14

t4 t5

Fig. 1. A process model

Definition 4. Let n ∈ NF be a boundary node of a process fragment
F = (NF , EF , typeF) in a process model P = (N, E, type), then:

◦ A node n is a fragment entry of F if all the incoming edges of n are outside
of F (•n ⊆ N\NF) or all the outgoing edges of n are inside of F (n• ⊆ NF).

◦ A node n is a fragment exit of F if all the outgoing edges of n are outside of
F (n• ⊆ N\NF) or all the incoming edges of n are inside of F (•n ⊆ NF).

Finally, we recognize a special class of process fragments—process components.

Definition 5. A process component C = (NC , EC , typeC) is a process fragment
with two boundary nodes: one fragment entry and one fragment exit.

This notion of a component was first introduced in [4] as a concept of a proper
subprogram. A process component is a process fragment in which it is assured
that if control flows through a fragment’s edge, it has first entered the process
fragment through the fragment entry and will subsequently leave the process
fragment through the fragment exit.

Structurally, a process component is a self-contained block of process logic
with strictly defined boundaries. Semantically, a process component can be ad-
dressed as a detailed specification of task execution scenarios. Hence, any process
component can be formalized as a WF-net [13] of, potentially, an arbitrary struc-
ture. Therefore, in the triconnected abstraction approach, a process component
is accepted as a unit of meaningful aggregation of process logic, i.e., detailed
specifications get represented by a corresponding task concept. In the follow-
ing sections, we discuss issues relevant to the identification and abstraction of
process components in process models.

We require process models to be structurally sound [12], i.e., a process model
should have exactly one process entry, exactly one process exit, and each process
model node should be on a path from the process entry to the process exit.
The prerequisite introduces a minimal correctness notion for process models—
subjects for abstraction. Moreover, the stated structural requirement is crucial
when it comes to the discovery of process components in process models. Figure 1
provides an example of a process model suitable for abstraction.

234 A. Polyvyanyy, S. Smirnov, and M. Weske

4 The Triconnected Decomposition

This section explains how to discover process fragments that relate to the notion
of a process component as defined in section 3. First, we give the basic intuition
inherent in the algorithm. Afterwards, we show the relation of the discovery
process to the approach of SPQR-tree [14,15] decomposition. Finally, we discuss
SPQR-tree fragments in the context of process models.

4.1 Basic Approach for Process Component Discovery

A search for a process component in a process model is guided by its definition
(see Definition 5), which states that a process component is a process fragment
with two boundary nodes. Boundary nodes are the nodes that connect the frag-
ment to the model, i.e., if removed the fragment becomes disconnected from
the model. Thus, in order to discover a process component, one must first look
for a separation pair—a pair of nodes that disconnect a process fragment from
the rest of the process model. For instance, gateways g3 and g4 disconnect task
t9 in the process model from Figure 1. Afterwards, the boundary nodes of the
fragment need to be tested to give one fragment entry and one fragment exit.

A separation pair divides process model into two fragments. In order to find all
fragments with two boundary nodes, the rationale of the described discovery step
must be applied to each of the two fragments, resulting in a divide and conquer
algorithm design. Each recursive thread terminates once the problem cannot be
further subdivided, i.e., there is no separation pair in a process fragment.

The described algorithm is in fact the algorithm for the discovery of tricon-
nected components in a graph. Connectivity is a property of a graph. It is known
that a graph is k-connected if there exists no set of k − 1 elements, each a ver-
tex or an edge, whose removal makes the graph disconnected (there is no path
between some node pair in a graph). Such a set is called a separating (k−1)-set.
Separating 1- and 2-sets of graph vertices are called cutvertices and separation
pairs. 1-, 2-, and 3-connected graphs are referred to as connected, biconnected,
and triconnected, respectively. Each recursive thread of the algorithm terminates
once it encounters a triconnected component.

4.2 SPQR-Tree Decomposition

In order to discover process components, one can use SPQR-tree decomposi-
tion. SPQR-tree decomposition is a decomposition of an undirected biconnected
multigraph induced by its split pairs aimed at identifying its triconnected compo-
nents. A split pair is either a separation pair or a pair of adjacent nodes. Process
models are connected, but not necessarily biconnected. For example, the process
model from Figure 1 has cutvertex g1. However, it is always possible to make
a process model biconnected by adding a back edge connecting a process exit
with a process entry. The requirement of structural soundness ensures that every
process model has exactly one process entry and exactly one process exit.

The algorithm for the discovery of triconnected components of a graph was
first proposed by Hopcroft and Tarjan in [16]. Later, Tarjan and Valdes in [4]

The Triconnected Abstraction of Process Models 235

g1t1 g4

g2

g5

g3

t2

t3

t10 t12t11

t6

t7

t9

t8
t13 g6 t14

t4 t5
S8

S9

P2

S2

S5

S10

P3

S3

S4

S7

S1P1

R1

S6

(a) Undirected process graph, triconnected components

S1

P2

S10

P3

S3

R1

S8

P1

S2

S4 S5 S6 S7

S9

(b) SPQR-tree

Fig. 2. SPQR-tree process model decomposition

applied the algorithm for sequential program parsing to obtain the parse tree
(or the tree of the triconnected components). The tree was studied as SPQR-
tree in [14,15]. [16,17,18] show the path towards a linear time complexity algo-
rithm implementation of SPQR-tree decomposition. The decomposition results
in triconnected components of four structural types, in the following using the
SPQR-tree terminology, S, P , Q, and R types.

◦ Trivial case. A split pair is a pair of adjacent graph vertices—a fragment
consists of one edge—the Q-type fragment.

◦ Parallel case. A split pair is a pair of adjacent graph vertices in k distinct
edges (k ≥ 2)—the P -type fragment.

◦ Series case. A split pair is a pair of graph vertices giving a maximal sequence
of vertices and consists of k nodes and k edges (k ≥ 3)—the S-type fragment.

◦ Rigid case. If none of the above cases applies, a fragment is a triconnected
fragment—the R-type fragment.

SPQR-tree decomposition of the process model from Figure 1 is exemplified in
Figure 2. Each process fragment corresponds to a triconnected component of the
model and is defined by edges that are inside or intersect with a corresponding
region visualized with a dashed line in Figure 2(a). Fragment names hint at
structural fragment types, e.g., P1, P2, and P3 are all parallel case fragments.
Boundary nodes of a fragment are the nodes incident with edges crossing the
region borderline and are outside of the region.

Figure 2(b) shows an SPQR-tree that visualizes hierarchical fragment rela-
tions. Fragment P1 contains fragments R1 and S2 and is fully contained within
fragment S1. Each SPQR-tree node represents a fragment skeleton, i.e., basic
structure of a fragment and its relations with a parent and child fragments. Fig-
ure 3 shows fragment skeletons of SPQR-tree nodes from Figure 2(b). Boundary
nodes are highlighted with a thick borderline, e.g., nodes g1 and g6 in fragment
R1 (see Figure 3(b)). Each fragment skeleton can consist of edges of three types.

236 A. Polyvyanyy, S. Smirnov, and M. Weske

g1

g6

(a) P1

g1

g2

g5

g3 g6

(b) R1

g2

g6

(c) P2

g4

g3

g5

(d) S6

g3

g4

(e) P3

g3

g4

t9

(f) S10

Fig. 3. SPQR-tree fragment skeletons

Original graph edges are drawn with solid lines, whereas dotted and dashed
lines represent virtual edges. Each virtual edge is shared between two fragment
skeletons and hints at a parent-child relation. An edge visualized by a dotted
line shows a child relation of the fragment skeleton with another skeleton which
contains the same virtual edge; a dashed line signals a parent relation. For in-
stance, the fragment skeleton from Figure 3(f) contains one virtual edge (g3, g4),
which hints at a child relation with another fragment skeleton that contains the
same virtual edge—fragment skeleton P3 (see Figure 3(e)). In order to obtain
the graph fragment given by fragment skeleton P3, one must “glue” it together
with fragment skeleton S10 along virtual edge (g3, g4). Once the fragments are
combined, the virtual edge is removed. In general, a graph fragment represented
by an SPQR-tree node can be obtained by combining all its descendants.

SPQR-tree provides process model decomposition that ignores control flow
edge directions. At this point, there has still been no distinction made between
entry and exit boundary nodes; obtained fragments still cannot be classified as
process components.

4.3 SPQR-Tree Fragments in the Context of Process Models

In this section, we examine fragments obtained after the SPQR-tree decompo-
sition of a process model, i.e., edges of a process graph are directed and nodes
distinct as tasks and gateways.

In general, an SPQR-tree can be rooted to any node. However, in the context
of a process model it makes sense to root the tree to a node representing the frag-
ment containing the deliberately introduced back edge (node S1 in Figure 2(b)).
As a result, one obtains the structural hierarchical refinement of a process model.

Further observations are: Task nodes can only be present, but are not always
necessarily present (see Figure 3(d)), inside of S-type fragments, while boundary
fragment nodes are always gateways. The former property comes from the defini-
tion of the S-type fragment. Any sequence of nodes in a process graph can only
be formed by task nodes embraced by gateways. Thus, any maximal sequence,
also composed of one task (see Figure 3(f)), is recognized as the S-type fragment
with two boundary gateways: one at sequence entry and another at sequence exit.
This also means that other fragment skeletons are composed of gateways only,
which testifies the latter property.

The Triconnected Abstraction of Process Models 237

Until now, we have recognized sequences as S-type fragments. Q-type frag-
ments stand for original process graph edges, e.g., the edge (g4, g5) of fragment
skeleton from Figure 3(d). P -type fragments (see Figures 3(a), 3(c), and 3(e))
allow identification of block and loop structures within process models. The con-
trol flow of the process model from Figure 1 specifies fragments P1 and P2 as
blocks and fragment P3 as a loop (there exists a back edge between boundary
nodes g3 and g4). The fragment from Figure 3(b) is the triconnected fragment
that explicitly defines what makes the process model graph-structured. There
are no R-type fragments in a block-structured process model. A block-structured
process model can be inductively composed based on sequence, block, and loop
patterns (S-type and P -type fragments) [19].

Finally, we are ready to make the concluding proposition of section 4:

Theorem 1. Any process fragment obtained after SPQR-tree decomposition of
a structurally sound process model is a process component.

Proof. Any process fragment obtained after SPQR-tree decomposition of a pro-
cess model has two boundary nodes. A pair of boundary nodes of a process
fragment is a split pair of the process model. Thus, it is necessary to show that
one of the boundary nodes is a fragment entry and the other is a fragment exit.

First, we show that any boundary node of a process fragment induced by
SPQR-tree decomposition is either a fragment entry or a fragment exit. All the
edges incident with a boundary node are divided into two disjoint sets of those
inside and those outside the fragment. Definition 4 states that a boundary node
of a process fragment is a fragment entry or a fragment exit if either all the
incoming or all the outgoing edges incident with the node are either the edges
of the fragment or are outside the fragment. As explained above, any boundary
node is a gateway. For any gateway, either a set of all incoming edges or a set of
all outgoing edges consists of one element (see Definition 1). The relation of this
one edge, either belonging to the process fragment or not, defines the relation
of the whole set. Therefore, any boundary node can only expose the logic of a
fragment entry or a fragment exit.

The rationale towards a formal proof of the “pure” logic of a boundary node
of a process fragment can be approached as follows. Let P = (N, E, type) be a
process model, F = (NF , EF , typeF) be a process fragment of P . Let us define
auxiliary predicates:

◦ i : E × N → {true, false} is true if e ∈ E is the incoming edge of node
n ∈ N , false otherwise, and

◦ o : E × N → {true, false} is true if e ∈ E is the outgoing edge of node
n ∈ N , false otherwise.

One can now define predicates which check if a node n ∈ N can be an entry of
F—canEnter, or an exit of F—canExit:

◦ canEnter(n, F) = ∃e1 ∈ E\EF∃e2 ∈ EF : i(e1, n) ∧ o(e2, n),
◦ canExit(n, F) = ∃e1 ∈ EF ∃e2 ∈ E\EF : i(e1, n) ∧ o(e2, n).

238 A. Polyvyanyy, S. Smirnov, and M. Weske

(a) (b) (c) (d)

Fig. 4. All possible combinations for edge separation on internal and external fragment
edges for a boundary gateway connecting three edges

In order to show that any boundary fragment node cannot at the same time ex-
pose entry and exit logic, one must show that the logical statements
canEnter(n, F) |= ¬canExit(n, F) and canExit(n, F) |= ¬canEnter(n, F) hold.
Hence, one must show that canEnter(n, F)∧ canExit(n, F) is a false statement
on all interpretations which in a prenex normal form says:

∃e1 ∈ E\EF∃e2 ∈ EF∃e3 ∈ EF∃e4 ∈ E\EF : i(e1, n)∧o(e2, n)∧i(e3, n)∧o(e4, n)

If n is a split gateway, the statement might evaluate to true only if e1 and
e3 are bound to the same edge. This, however, is impossible, as e1 and e3 be-
long to different sets which are disjoint: E and E\EF . The same rationale ap-
plies for a join gateway and edges e2 and e4. Therefore, a logical expression
canEnter(n, F) ∧ canExit(n, F) always evaluates to false, which proves the
pure logic of any boundary node of F .

Figure 4 shows all possible combinations of internal and external fragment
edges incident with a boundary gateway which connects three edges. The dashed
line separates edges on fragment’s internal and external edges. Regardless of
a separation and a gateway type, control flow is only allowed to “penetrate”
a fragment’s boundary in one direction, either to enter or to leave a process
fragment.

Finally, it is necessary to show that only one arrangement of boundary nodes
is possible, i.e., one of the nodes is a fragment entry and the other is a fragment
exit. We show this by contradiction; the settings of two fragment entries or two
fragment exits are not possible under the correctness criteria imposed on a pro-
cess model—a process model is structurally sound. Two cases can be reduced to
one. For instance, in case of a fragment with two exits, one can discuss a two
entry fragment formed by the edges outside the two exit fragment. A process
fragment with two entries violates the requirement of a structurally sound pro-
cess model which states that each node in a process model is on a path from a
process entry to a process exit. Once we enter a two entry fragment, we never
leave it. Any node of a two entry fragment cannot be on a path from the pro-
cess entry to the process exit. Therefore, one of the boundary nodes must be a
fragment exit. If the process entry and the process exit are the boundary nodes
of a process fragment, the process entry is a fragment entry and the process exit
is a fragment exit. �

The Triconnected Abstraction of Process Models 239

5 The Triconnected Abstraction

This section presents the triconnected abstraction. The approach is based on the
decomposition technique described in section 4. First, we define abstraction rules.
Afterwards, we combine the rules into the process model abstraction algorithm.

5.1 Abstraction Rules

The triconnected process model abstraction technique is founded on the idea of
interchanging process fragments with process tasks of higher abstraction levels.
In this section, we present abstraction rules that utilize process components
obtained after SPQR-tree decomposition for this purpose. The approach assumes
abstraction control mechanism that delivers collection of tasks to be abstracted
in the process model.

Once a task to abstract is selected, it uniquely identifies the S-type fragment
that contains the task and its structural relation within SPQR-tree. There can
be seven types of SPQR-tree edges based on the types of adjacent nodes of S-,
P -, and R-type; Q-type fragments are not considered. Edges of (S, S)-type and
(P, P)-type are recognized as single fragments of S- or P -type, respectively. Edges
are proposed as (parent, child) pairs. Out of seven edge types, four connect S-
type nodes: (S, P), (S, R), (P, S), and (R, S). The abstraction rules we propose
operate within a single series case process fragment, or assume one of the four
stated structural relations of an S-type process fragment.

Sequential (Q-Type) Abstraction. A task in a process model can be struc-
tured in a sequence with other tasks. We implement abstraction of this task by
aggregation with one of its neighbors. Any maximal sequence of tasks is recog-
nized within an S-type process component. Thus, the abstraction is performed
locally, i.e., within one process component.

B

C

A

C

AB

Fig. 5. Sequential abstraction

Figure 5 shows an example of a sequential ab-
straction performed inside of the S-type process
component. The structure of the original pro-
cess component is given on the left of the figure.
The component is a maximal sequence of three
tasks. The example ignores boundary gateway
logic, which can be either split or join. In the
case task A or C should be abstracted, selec-
tion of the neighbor task to aggregate with is
obvious—it is task B. However, if task B trig-
gers abstraction, the selection is delegated to the abstraction control mechanism.
If structural process model generalization is of interest, abstraction control mech-
anism can allow nondeterministic task choice. In the example, task A is selected
to be aggregated with task B, the corresponding process fragment is enclosed in
the region with a dashed borderline and constitutes a single Q-type component.

240 A. Polyvyanyy, S. Smirnov, and M. Weske

The process component structure on the right of Figure 5 is the output of
the sequential abstraction step. As a result, tasks A and B are aggregated into
one task AB that semantically corresponds to the activity of first accomplishing
task A and then task B. The process component keeps its structural type—the
S-type. Sequential abstraction preserves SPQR-tree structure.

S-Type Abstraction. A maximal sequence of tasks in a process model can
consist of one task. The situation might occur in the original model or be a result
of the prior application of sequential abstractions. This task can be structured
in a sequence with process components of P -type or R-type. Within SPQR-
tree, such structural relations are captured by (S, P)- or (S, R)-type edges. If
it is necessary to abstract the task, aggregation with a neighbor component is
performed to result in S-type abstraction.

e

A

e

A[P]

Fig. 6. S-type abstraction

Figure 6 shows an example of S-type
abstraction. Task A is designed for ab-
straction (highlighted with a
thick borderline on the left in Figure 6).
Task A has no neighbor task—sequen-
tial abstraction is not possible. How-
ever, the task is in a sequence with the
P -type component to form the abstrac-
tion fragment in the region enclosed by
the dashed borderline. The result of S-

type abstraction is given on the right of the figure. Abstraction results in task
A[P], which semantically corresponds to the activity of first accomplishing task
A and then performing a process fragment captured by the P -type component. S-
type abstraction results in SPQR-tree transformation. The branch representing
the abstracted component gets removed. Abstraction leads to a restructuring
of the S-type component that contained the task which triggered abstraction.
However, the component retains its type—the S-type.

S-type abstraction is presented by means of a structural relation of an (S, P)-
type edge in SPQR-tree. The procedure for an (S, R)-type edge is analogous. In
the example, the boundary gateways of the abstracted component are reduced.
In general, if a boundary gateway of an abstracted component is shared with
some other process component, it must be preserved in the abstracted model.

P-Type Abstraction. Sequential and S-type abstractions tend to generalize
S-type components into simple components. A simple component is a S-type
component composed of a single task (see Figure 3(f)). Simple components are
structured by (P, S)- or (R, S)-type edges in SPQR-tree. If a task from a simple
component is selected for abstraction and its parent component is a P -type com-
ponent, P -type abstraction is performed. The task is aggregated with some other
child component of the parent component. The selection of the child component
to aggregate with is carried out by the abstraction control mechanism.

The Triconnected Abstraction of Process Models 241

e1 e1 A e2 e2 [P]A

Fig. 7. P -type abstraction

Figure 7 shows an example of
P -type abstraction. Task A is se-
lected for abstraction. The task is
highlighted with a thick border-
line and is the only task of the
simple component (shown on the
left of Figure 7). The simple com-
ponent is the child component of
the P -type component. It shares virtual edge e1 with its parent. The result of
the P -type abstraction step is given on the right of the figure. Two child compo-
nents of the P -type component are aggregated into one simple component that
contains task [P]A. This task semantically corresponds to the execution of two
abstracted branches following the type of the boundary gateways. The obtained
simple component shares virtual edge e2 with the parent P -type component.

P -type abstraction results in SPQR-tree transformation. The branch that
represents the abstracted component is completely removed. The number of child
components of the parent parallel component is reduced by one. If the P -type
component initially contains two branches, abstraction results in a single branch.
Afterwards, the boundary gateways must be reduced if they do not specify any
routing logic, i.e., have single incoming edge and single outgoing edge. In such
a case, the P -type component node is further reduced in the SPQR-tree to
represent a single task within the next level parent component.

R-Type Abstraction. A task intended for abstraction can be contained in a
simple component within a process model that is a child of a R-type component.
Such a structural relation is specified by a (R, S)-type edge within SPQR-tree.
R-type abstraction is proposed to handle this situation. As a result of the R-type
abstraction the task is aggregated with the whole parent component.

e
e A

[R]A

Fig. 8. R-type abstraction

Figure 8 shows an example of
R-type abstraction. Task A is
selected to be abstracted. The
task is highlighted with a thick
borderline and is the only task
of the simple component on the
left of the figure. The simple
component is the child of the R-
type component (the same com-
ponent as in Figure 3(b)). The

simple component shares the virtual edge e with its parent and corresponds to
fragment S7 from Figure 2. The result of R-type abstraction step is given on the
right of Figure 8. The abstraction results in the aggregation of the whole parent
R-type component into a simple component that has task [R]A and boundary
gateways of the R-type component. The task semantically corresponds to the
execution of the whole rigid component.

R-type abstraction results in SPQR-tree transformation. The abstracted R-
type component gets replaced by a simple component. The branch of the R-type

242 A. Polyvyanyy, S. Smirnov, and M. Weske

fragment is completely removed. Similar to P -type abstraction, the boundary
gateways can be skipped to further reduce the resulting simple component.

5.2 Abstraction Algorithm

Section 5.1 presented four abstraction rules. The rules cover all possible struc-
tural relations of a task in a process model. In this section, we organize them
into a procedure that handles a single abstraction step of a task. As input, the
algorithm obtains a process model, its SPQR-tree decomposition, and a task to
abstract. As output, the algorithm delivers a process model with the specified
task abstracted. Algorithm 1 formalizes the procedure in pseudo code.

g1t1

g2

g5

g3

t2

t3

t13 g6 t14

a1

a2

a3

a4

Fig. 9. An abstracted process model

The algorithm orchestrates ab-
straction rules and attempts to
aggregate a minimal number of
tasks at each abstraction step; em-
pirical insights for the proposed
solution were obtained in [6]. In
line 1, the component c which con-
tains task a is identified—it is a
S-type component. If c is not a
simple component (line 2), then
either it has a neighbor task (line
3) or a neighbor component (line 4) that can be aggregated with task a. Oth-
erwise (line 5), abstraction of task a depends on the parent component of c. If
c is the root component of SPQR-tree, then p consists of a single task a and
there is nothing else to abstract (line 6). Otherwise, get the parent component
of c—component cp (line 7). If cp is a P -type component (line 8) or a R-type
component (line 9), then P -type abstraction or, respectively, R-type abstraction
is performed.

Algorithm 1 provides a formal relation between an original model and an
abstracted one. The triconnected abstraction is the order preserving abstraction.
Figure 9 shows the abstraction example of the process model from Figure 1.
In the example, a collection of tasks selected for abstraction caused process

Algorithm 1. The Triconnected Abstraction
TriAbstraction(ProcessModel p, SPQRtree t, Task a)
1. c := component of process model p from SPQR-tree t containing task a
2. if c is not a simple component then
3. if a has neighbor task in c then perform sequential abstraction of a
4. else perform S-type abstraction of a
5. else // c is a simple component

6. if c is the root component in t then p is already abstracted to one task return
7. cp := get a parent component of c in SPQR-tree t
8. if cp is P -type component then perform P -type abstraction of a
9. if cp is R-type component then perform R-type abstraction of a

The Triconnected Abstraction of Process Models 243

components S2, S5, S6, S8, S9, S10, P2, and P3 to get abstracted. These tasks
can be t6, t8, t9, t10, and t12 (see Figure 1). After abstraction, aggregating tasks
a1, a2, a3, and a4, highlighted with grey background in the figure, conceal the
process logic of abstracted components. For instance, task a1 is the abstraction
of two branches: one composed of tasks t4 and t5, and the other of a single task t6.
The type of gateway g2 specifies the behavioral relation of both branches inside
the abstracted task. Task a1 can be derived using a single P -type abstraction
step triggered by task t6 or by a series of sequential then P -type abstractions
if first triggered by either t4 or t5. The only R-type component of the process
model, shown in the region enclosed by the dashed borderline in Figure 9, is not
abstracted. An algorithmic step aimed at abstracting any of the tasks contained
within the region will cause the whole component to aggregate into one task.

6 Conclusions

In this paper, we investigated how the SPQR-tree decomposition of process mod-
els can help the task of process model abstraction, in particular the discovery of
structurally meaningful process model fragments and their aggregation. We de-
fined abstraction rules based on the notion of a process component and proposed
their arrangement in the algorithm.

The triconnected abstraction technique defines structural model transforma-
tions and can be generalized to any process modeling notation which uses di-
rected graphs as the underlying formalism. Limitations of the triconnected ab-
straction technique come from restrictions on process model structure. Process
models must be free of self-loop structural patterns (should have no cutvertices),
and must contain no “mixed” gateways with multiple incoming and multiple out-
going edges (should decompose onto process components). The limitations de-
scribed above can be overcome by a preprocessing step which transforms mixed
gateways into a sequence of first a join, then a split. Alternatively, one can
generalize abstraction mechanisms to operate with the RPST decomposition [5].

While the results have proven very useful to our project partner, the abstrac-
tion mechanisms only take into account the structure of a business process. In
particular, the user of the abstraction might decide that certain activities need
to be present in several or even all abstractions. In this case, the application
of the mechanisms introduced in this paper needs to be restricted. Therefore,
studies regarding the methodology of abstractions need to complement the more
technical studies reported in this paper. In future works, we also plan to investi-
gate multiple entry multiple exit components; this should allow further decom-
position of rigid case fragments in process models. Theorem 1 gives promising
insights into the problem of RPST computation, which we plan to develop in
the following work. A promising research direction is to look into how the tri-
connected abstraction technique can be employed for decomposing problems of
process model verification—process model behavior analysis, and which model
properties are preserved by the abstraction rules.

244 A. Polyvyanyy, S. Smirnov, and M. Weske

References

1. OMG: Business Process Modeling Notation, Version 1.2 (January 2009)
2. Keller, G., Nüttgens, M., Scheer, A.: Semantische Prozessmodellierung auf der

Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, Uni-
versity of Saarland (1992)

3. Petri, C.: Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle
Mathematik, Bonn, Germany (1962)

4. Tarjan, R.E., Valdes, J.: Prime Subprogram Parsing of a Program. In: Proceed-
ings of the 7th Symposium on Principles of Programming Languages (POPL),
pp. 95–105. ACM, New York (1980)

5. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Proceedings of the 6th International Conference on Business Process Management
(BPM), Milan, Italy, September 2008, pp. 100–115 (2008)

6. Polyvyanyy, A., Smirnov, S., Weske, M.: Reducing Complexity of Large EPCs.
In: Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten (MobIS:
EPK), Saarbruecken, Germany (November 2008)

7. Polyvyanyy, A., Smirnov, S., Weske, M.: Process Model Abstraction: A Slider Ap-
proach. In: Proceedings of the 12th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), Munich, Germany (September 2008)

8. Berthelot, G.: Checking Properties of Nets using Transformation. In: Advances in
Petri Nets 1985, London, UK, pp. 19–40. Springer, Heidelberg (1986)

9. Berthelot, G.: Transformations and Decompositions of Nets. In: Advances in Petri
nets 1986, London, UK, pp. 359–376. Springer, Heidelberg (1987)

10. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press,
New York (1995)

11. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

12. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

13. Aalst, W.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) Applica-
tion and Theory of Petri Nets, Berlin, Germany, pp. 407–426. Springer, Heidelberg
(1997)

14. Battista, G.D., Tamassia, R.: Incremental Planarity Testing. In: Proceedings of the
30th Annual Symposium on Foundations of Computer Science, FOCS (1989)

15. Battista, G.D., Tamassia, R.: On-Line Maintenance of Triconnected Components
with SPQR-Trees. Algorithmica 15(4), 302–318 (1996)

16. Hopcroft, J.E., Tarjan, R.E.: Dividing a Graph into Triconnected Components.
SIAM Journal on Computing 2(3), 135–158 (1973)

17. Fussell, D., Ramachandran, V., Thurimella, R.: Finding Triconnected Components
by Local Replacement. SIAM Journal on Computing 22(3), 587–616 (1993)

18. Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In:
Proceedings of the 8th International Symposium on Graph Drawing (GD), London,
UK, pp. 77–90. Springer, Heidelberg (2001)

19. Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 268–284. Springer, Heidelberg (2005)

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 245–260, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Granularity as a Cognitive Factor in the Effectiveness of
Business Process Model Reuse

Oliver Holschke, Jannis Rake, and Olga Levina

Technische Universität Berlin, Fachgebiet Systemanalyse und EDV
FR 6-7, Franklinstr. 28-29, 10587 Berlin, Germany

{oliver.holschke,jannis.rake,olga.levina}@sysedv.tu-berlin.de

Abstract. Reusing design models is an attractive approach in business process
modeling as modeling efficiency and quality of design outcomes may be
significantly improved. However, reusing conceptual models is not a cost-free
effort, but has to be carefully designed. While factors such as psychological
anchoring and task-adequacy in reuse-based modeling tasks have been
investigated, information granularity as a cognitive concept has not been at the
center of empirical research yet. We hypothesize that business process
granularity as a factor in design tasks under reuse has a significant impact on
the effectiveness of resulting business process models. We test our hypothesis
in a comparative study employing high and low granularities. The reusable
processes provided were taken from widely accessible reference models for the
telecommunication industry (enhanced Telecom Operations Map). First
experimental results show that Recall in tasks involving coarser granularity is
lower than in cases of finer granularity. These findings suggest that decision
makers in business process management should be considerate with regard to
the implementation of reuse mechanisms of different granularities. We realize
that due to our small sample size results are not statistically significant, but this
preliminary run shows that it is ready for running on a larger scale.

Keywords: Business Process Model Reuse, Reuse Economics, Process
Granularity, Design for Reuse, Reuse of Non-Code Artifacts, Experiment.

1 Introduction

Reuse of concepts is a basic human psychological mechanism. Humans draw on
memory and knowledge represented in the brain, i.e. activation of neurons as a
reaction to specific input patterns, but also represented in other media, e.g. scripts and
other visual models. From an evolutionary perspective humans have been very
successful using reuse mechanisms. Efficient reuse of patterns, e.g. "Escape when
predator is spotted!" played a central role. It is a fundamental psychological activity.
Therefore the range of application areas is very wide: learning, training, knowledge
management, classification and others [1].

For specialized tasks such as designing and managing IS systems in enterprise
contexts, reuse mechanisms as well are very attractive because of the potential

246 O. Holschke, J. Rake, and O. Levina

economic benefits conveyed as time-savings, qualitative improvements and
economies of scale. There are many examples in system design and development that
focus on reuse drawing upon various artifacts settled in different enterprise contexts,
e.g. code reuse [2-6], component reuse [7, 8], reuse of (industrial) reference models
(e.g. enhanced Telecom Operations Map (eTOM) [9] and Supply Chain Operations
Reference Model (SCOR) [10]), reuse of architectural decision topics based on a
reference model [11], design patterns [6, 12-15], reuse of conceptual models [8], and
reuse of IS as distributed functionality in the form of, e.g. multi-tenancy platforms
and Software-as-a-Service (SaaS) [16].

Regarding the size and complexity of many enterprises, design artifacts on a
conceptual level (as opposed to, e.g. code) gain importance as their higher abstraction,
also referred to by the term granularity, allows decision makers to cope with new
requirements and exert control on the enterprise (artifacts of higher abstraction/
granularity are useful due to limited cognitive capacities of decision makers and
astronomic cost when controlling all parameters in an enterprise). The reuse of proven
conceptual models, such as methodological patterns or business process models may
provide an efficient means for successfully exerting that control.

However, successful reuse depends on various parameters, such as the variability
of the problem domain, the availability and applicability of a reusable design artifact,
and the human cognitive activities that are performed when identifying and, most
importantly, adapting an artifact for a present managerial challenge. Particularly the
latter is dependent on the size of informational building blocks – i.e. a specific
granularity – represented in the reusable artifact, which must be sufficiently aligned
with the designer’s cognitive structures in order to facilitate an economic reuse
process. Too fine granular representation of a reusable artifact may overwhelm the
respective user exacting high adaptation costs. Too coarse granular representation
may fail to exert necessary control of underlying relationships. While different
granularity levels of models all have their target audiences who can efficiently apply
them within their respective context, the question remains what the optimal
granularity (band) for conceptual models may be, so that decision makers can
successfully exploit the benefits of model reuse when managing the enterprise to
flexibly react to changes.

We explore these relationships by conducting two studies that make use of
conceptual models of different granularities. We believe that, given equal problem
complexities, equal similarity distances between problem and reuse artifact, and equal
reuse mechanisms (determined by the cognitive abilities of the designers), the model
granularity affects the outcome of the design (under reuse) process depending on how
well the designer’s cognitive reuse capabilities can cope with the respective model
granularity. Our findings are early indications of how the granularity of conceptual
models should be designed so that the IS management of enterprises employing
conceptual models as powerful tools can be improved.

Related works also concerned with behavioral aspects of business process
management in general and comprehension and complexity in particular, exist to a
limited degree. Impacts of modularity on business process understandability are
evaluated and discussed in [17]. [18] present experimental findings on decomposition
of UML models, considering the Wand and Weber Good Decompositions Conditions
[19], showing that better decomposition increases actual understanding of the models.

 Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse 247

However, although these works are concerned with different levels of granularity
relating to human understandability, issues of reusing artifacts of different granularity
have not been explored yet. The rest of this article is organized as follows. Section 2
introduces the concept of granularity and its quantitative measurement. In Section 3
the granularity concept is integrated into the design process under reuse and
propositions regarding granularity as an important factor are derived. Section 4
describes the two studies that we have conducted, and discusses the results. Section 5
summarizes the results and concludes with the limitations of this study and a brief
outlook on further research work.

2 Granularity: Concept and Quantification

2.1 Granularity as a Concept of Human Cognition

The term granularity has been discussed in various research areas such as Granular
Computing, Cognitive Informatics, Pattern Classification, and Conceptual Modeling.
Granularity is a fundamental concept in human cognition and deals with the
construction, interpretation, and representation of granules. A granule is a clump of
points (objects) drawn together by indistinguishability, similarity, proximity or
functionality [20]. Granules are the result of a granulation process. It is a process that
involves dividing some universe into subsets or the grouping of individual subjects
into clusters. Granules can be viewed as subsets of the universe, which may be either
fuzzy or crisp [1, 21]. Once granulation has been performed, it is necessary to label
granules. This can be done by classification, i.e. assigning a name to a granule such
that an element in the granule is an instance of the named category.

A partition of a universe U is a collection of nonempty and pair-wise disjoint
subsets of U whose union is U. Each subset in a partition is also called a block. In the
granulated view, partitions, being elements of the partition of U, are the basic
building blocks and are called elementary granules. They are the smallest nonempty
subsets that can be defined, observed or measured. From elementary granules, larger
granules can be constructed by taking unions of elementary granules [1]. Since
partitions are nonempty, they may have a cardinality bigger than 1. The parts or
blocks of the partitions are countable, but not observable because they cannot be
differentiated.

When applying the granularity concept to the context of enterprise systems and
their management and design, the whole enterprise including the entirety of business
processes, data structures, employees and other artifacts to conduct the business may
be regarded as the universe U. This generally is the viewpoint of an enterprise
designer/architect. Naturally, when incorporating relationships to other enterprises,
those artifacts also become part of the designer’s discourse and therefore enlarge the
universe. To simplify matters we refrain from including B2B relations in the universe.
In the enterprise context different partitions πi can be related to the different design
viewpoints that designers and developers in the organization may take. The
structuring of the whole enterprise into coarse service domains for instance, may be
seen as a coarse-granular partition π1. In contrast, the design of a specific end-to-end
business process with all the required data structures – this happening on a much finer

248 O. Holschke, J. Rake, and O. Levina

level – may be regarded as a fine-granular partition π2. A conceptual visualization of
different granularities of partitions π1 and π2 is presented in Fig. 1. The granularity of
different partitions is an important characteristic of design tasks that reside on a
specific level of granularity as it may affect how designs are planned and developed,
and how efficiently available design artifacts may be reused.

2.2 Measuring Granularity

In order to apply the granularity concept as a factor in reuse-oriented design tasks, a
quantitative measure has to be associated to granularity. For measuring the granularity
of a partition the Shannon entropy measure can be used as a basis [1, 22]. With
respect to a partition },,,{ 21 mAAA K=π the probability distribution is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

||

||
,,

||
||

,
||
|| 21

U

A

U

A

U

A
P mKπ (1)

where | ⋅ | denotes the cardinality of a set [1]. The Shannon entropy function of the
probability distribution is defined by

||

||
log

||

||
)()(

1
U

A

U

A
PHH i

m

i

i∑
=

−== ππ (2)

According to [1] the following function G can be used as a measure of granularity for
a partition π:

||log
||

||
)(

1
i

m

i

i A
U

A
G ∑

=

=π (3)

In contrast to the entropy function, for two partitions π1 and π2 with 21 ππ f (i.e. π1 is

coarser than π2, and/or, π2 is a refinement of π1, compare Fig. 1) we have now
)()(21 ππ GG ≥ . The coarsest partition }{U has the maximum granularity value

Fig. 1. Granularity of partition π1 (left) and partition π2 (right) of a universe U

 Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse 249

||log U , and the finest partition }|}{{ Uxx ∈ has the minimum granularity value 0.

We can use the measure G as defined here to distinguish different granularities of
different reuse-based process design tasks.

3 Granularity as a Factor in Effective Process Model Reuse

In order to analyze the effect of granularity on business process model reuse
effectiveness we can develop the following propositions: Given potentially reusable
business process artifacts of different granularities for system development tasks and
given a possible quantification measure for the granularity of the various available
information pieces in system development situations,

• If a reuse approach is chosen, then – independent of the granularity of the
reuse artifact and the design task – the effectiveness of the modeling
approach will be higher compared with the non-reuse approach.

• If two reuse approaches, that differ in granularity of design task and reuse
artifact, are compared, and let all other experimental parameters be
controlled, then there will be a difference between reuse effectiveness.

The literature review pointed to experience level of the designer, the phase in the reuse
process, the nature of the reuse artifact, and the context under which the reuse is
conducted [23] as factors relevant to understanding the impact of granularity in the
context of designing enterprise systems/architectures. Our comparative study varies

• The granularity of the design tasks and reusable business process artifacts:

o High granularity business process model in the form of process domains
(Study 1) vs.

o Low granularity business process model in the form of a business process
modeled in BPMN (Business Process Modeling Notation [24]) (Study 2)

4 Study 1: Process Domain Reuse

4.1 Task, Reuse Artifact and Participants

In the first study the granularity in the design task was set to a relatively coarse level.
The participating teams were asked to design process domains for the whole
enterprise rather than a particular fine granular workflow (see Study 2). Process
domains are clusters of business processes, functionality and/or data processing
capabilities that share a certain similarity (other clustering criteria are possible).
Structures of this type and granularity have been defined e.g., as industrial reference
models [25]. Here, one group of participants was provided with the eTOM model
(Levels 0 and 1, see Fig. 2) [9] as reusable artifact (Treatment group). The other
group of participants did not receive this artifact (Control Group). The problem
description for both groups consisted of data about the application landscape and the

250 O. Holschke, J. Rake, and O. Levina

individual applications’ functional and data processing characteristics. Based on this
information participants had to design a process domain model.

The participants in the experiment were graduate or master students majoring in
computer science, computer engineering, and business mathematics respectively. All
students had completed a semester-long Systems Analysis lecture incl. tutorials in
which several modeling methods, such as business process and class modeling for
enterprise design, were presented and practiced in various business contexts. Twenty-
three people participated in the study. Treatment groups (6) and Control groups (5)
were randomly selected. Students were used in this study for several reasons. The
concept of cognitive granularity relates to basic human psychological activities.
Further, the student subjects in this study are likely to be future enterprise or software
architects, at least be involved in process design activities of IT-supported businesses.
Findings from this sample would at least have applicability in design situations
involving inexperienced enterprise/software architects or consultants. Participants had
90 minutes to perform the task and deliver the designed process domain model.

4.2 Control of Experimental Setup

We controlled the experimental parameters a) problem complexity, b) the similarity
distance between the reuse artifact and the presented problem, and c) the adaptation
techniques, in order to isolate as far as possible granularity as a factor in business
process reuse effectiveness.

To quantify the problem complexities we used the McCabe complexity defined as
pneM 2+−= (M is the McCabe measure, e is the number of edges in a graph, n is

the number of all nodes, and p is the number of individual control graphs in the overall
graph structure) [26]. We considered both design tasks (Study 1: high vs. Study 2: low
granularity) as essentially going through the cycle of steps 1. Identify a design element,
2. Classify this element by certain attributes, 3. Match it to an element in the reuse
artifact, 4. Make decision whether to keep or omit it and 5. Enforce that decision. The
problem description consists in both tasks of 32 essential informational elements: In
study 1 it consists of the number of applications in the whole enterprise and their
functional attributes (to be arranged in process domains); in study 2 it consists of the
actual steps, decision logic, and data objects in the business process (to be designed).
McCabe complexity in both tasks is M = 4*32-5*32+2*32 = 96.

Also in both studies the similarity distances between the task and the reusable
artifact had to be controlled and kept equal. Otherwise the treatment group in the
study that is provided a reuse artifact closer to the solution of the task would have an
advantage. We used the syntactical similarity as the measure to determine the
“distance” between task and reuse artifact as defined in [27]. Structural similarity and
semantic similarity are also important dimensions to define overall similarity of
business process models, but for our purpose syntactical similarity sufficed. For the
study conducted with high granularity artifacts, structural considerations are not the
center of attention, as process domains in the form of procedural clusters have to be
identified. The study conducted with low granularity does consist of a reusable
business process with a specific sequentiality, but the sequence does not essentially
deviate from the structure demanded by the task. Potential semantic dissimilarities
between task and reuse artifact can also be overlooked as the language in both

 Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse 251

artifacts was set understandable and allocable to each other for bilingual participants
(German/English). The most outstanding differences we chose between tasks and
reuse artifacts, therefore, reside on the syntactical level. Out of possible syntactical
differences we decided the reuse artifacts foremost to have extraneous model
elements, i.e. model elements in the reuse artifact that exceed the required
functionality in the given task. As many repositories of reusable artifacts, such as
logical information models, e.g. UBL [28], OAGIS etc. intend to cover as many
problem cases as possible that could occur, the assumption that reuse artifacts will
bear ample extraneous functionality in many specific modeling tasks, seems plausible.
In both studies the reuse artifacts exceeded the design task by 77% - 81% of
extraneous information.

By far the most difficult parameter to control is the applied adaptation technique
when adapting the reuse artifact to fit the task. We tried to control these as best as
possible by choosing 23 students of similar academic background. It can be assumed
that there are certain similarities between styles of thinking regarding business
process modeling as they have studied this topic in one of our courses. Nevertheless
problem solving strategies may deviate between individuals. Moreover, all
participants are human, i.e. the brain structures available for problem solving, at least
on a most basic level, are the same. The actual usage of available conceptual models,
i.e. application of reuse patterns from a cognitive perspective, still remains outside of
our scientific realm, but will eventually have to be included. Here, we assume all
participants to possess very similar adaptation techniques to modify reusable artifacts.
We did not vary the factor of user experience here. At most the students’ performance
may be compared to novice modelers in enterprises. Experienced modelers are
expected to behave differently.

4.3 Independent Variable

The independent variable for both of our studies was the presence or absence of a
reuse artifact. One group of participants (Treatment group, 6 teams with two
members each, one had three) was given a common standardized process domain
model for the telecommunication industry. It was taken from the enhanced Telecom
Operations Map (eTOM) [9] and shows the first two levels of the process hierarchy.
The second group (Control group, 5 teams with two members each) did not receive
this model. The partitioning π1 and its corresponding granularity of the problem
space, and the reusable process domain model respectively, are presented in
formula (4) and Fig. 2.

The granularity here is 1,982 with 23 granules (m = 23) as the process domains and
an average cardinality of one granule, |Ai|, of 96 (i.e. assuming an average of three
processes of cardinality 32 per domain). We consider G(π1) in study 1 as high
granularity. Both reuse artifacts include extraneous elements of the same proportion
(see subsection above).

982,1||log
||

||
)(

1
1 ==∑

=
i

m

i

i A
U

A
G π , (4)

252 O. Holschke, J. Rake, and O. Levina

Fulfilment | CRM Assurance | CRM Billing | CRM

Customer Interface Management

Order
Handling

Marketing Fulfilment
Response

Problem
Handling

Customer
QoS / SLA
Management

Bill Payments & Receivables
Management

Bill Invoice
Management

Bill Inquiry
Handling

Retention & Loyalty

Service Configuration &
Activation

Service Problem
Management

Service Rating

Resource Data Collection & Distribution

Resource
Provisioning

Resource
Trouble Mgt.

Resource
Perform. Mgt.

Selling

Customer Interface Management Customer Interface Management

Retention & Loyalty Retention & Loyalty

Resource Data Collection & Distribution Resource Data Collection & Distribution

Fulfilment | Service Management Assurance | Service Management Billing | Service Management

Fulfilment | Resource Management Assurance | Resource Management Billing | Service Management

Fig. 2. Reusable eTOM process domain model provided to the treatment group in study 1

4.4 Dependent Variables

Overall, the dependent variable consisted of the solution to the problem and how
effectively this was done. We are interested in the main characteristic of how effective
the reuse of the design artifact is, given a design task and granularity. Various features
to characterize modeling effectiveness have been proposed. In [5] some relevant
variables have been defined, e.g. Reusing Unanticipated Components, Reducing
Locating Time, Snowball Effects of Deliveries, and Knowledge Augmentation.
References [29, 30] classify semantic, syntactic and pragmatic qualities of designed
conceptual models. We define effectiveness by a group of variables according to [6]
who regard the reuse task essentially as an information retrieval task, which therefore
can be measured by recall and precision, and according to [23], who identify
extraneous information in reuse artifacts that can impair the resulting design models.

We therefore define reuse effectiveness collectively by three variables:

• Recall: the relevant elements in a resulting list (here, the final designed
business process model) in relation to all potentially relevant elements (all
those available in the reuse model, as our reuse artifact fully covers the
design task).

• Precision: the relevant elements in a resulting list (here, the final designed
business process model) in relation to the size of the resulting list (here,
the final designed business process model). Precision is a measure for how
“clean” the final model is.

• Extraneous: those elements of the reuse artifact that were carried over into
the final solution, but which were not required by the original design task.
Too many carried over extraneous elements are an indicator of distorted
design models, therefore models of inferior quality.

 Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse 253

Fulfilment | CRM Assurance | CRM Billing | CRM

Customer Interface Management

Order
Handling

Problem
Handling

Customer
Data
Processing

Check of Bill Payments &
Receivables

Accounting Mapping
Contract to
Product

Resource Data Collection & Distribution

Resource
Provisioning

Resource
Trouble Mgt.

Customer Interface Management Customer Interface Management

Resource Data Collection & Distribution Resource Data Collection & Distribution

Fulfilment | Resource Management Assurance | Resource Management Billing | Service Management

Fig. 3. Exemplary result of a design team that was provided with the reuse artifact

4.5 Operational Hypothesis Study 1

Our operational hypothesis for study 1 is as follows. Given the described reuse
artifact and the design task of granularity G(π1), i.e. high granularity, and controlling
the experimental parameters, we expect the treatment group to significantly perform
better in terms of reuse effectiveness than the control group. Our null hypothesis
therefore is that the treatment group is expected to perform worse compared to the
control group. We will see if this null hypothesis can be falsified. In the following we
can analyze our results and relate them to our hypothesis.

4.6 Results and Discussion

In Fig. 3 an exemplary result of the process domain design is depicted. As can be seen
in Table 1 and 2 we can compare the control and treatment group in three
effectiveness variables and analyze whether the treatment effect was significant or
not. We conducted an independent samples t-test to analyze the equality of means.
For Recall the Levene test showed that equal variances could not be assumed,
therefore no student t-test could be performed. The t-test for unequal variances
showed a significance of .019. This value is below .05, therefore we can assume that
the average improvement of recall in the treatment group cannot be attributed to
random alone. Similar for precision, the t-test for unequal variances showed that the
precision improvement is unlikely to have occurred due to chance alone (significance
is .039 < .05). In the variable extraneous no significant effect in the treatment group
could be observed.

A general weakness in the control groups could be observed. The control groups
were not able to / or not willing to advance to a more fine granular level of modeling.
The process domains that were identified remained on a very coarse level, even
though plenty of information was provided on the application level. Control groups
also showed a tendency to cluster integration and mediation systems. This was
perceived as a self-contained functionality and seen as important with regard to the
business process. The actual functions and sub-processes that were required and to be
clustered in domains were mostly neglected.

254 O. Holschke, J. Rake, and O. Levina

The overall result of study 1 is that in two out of three effectiveness variables a
significant improvement could be observed. The null hypothesis can therefore be
partly falsified.

Table 1. Group statistics of Study 1 (high granularity)

 Treatmenta N Mean Std.
Deviation

Std. Error
Mean

0 5 0,215 0,034 0,015
Recall

1 6 0,577 0,261 0,106

0 5 0,393 0,040 0,018
Precision

1 6 0,664 0,239 0,098

0 5 0,40 0,548 0,245
Extraneous

1 6 2,50 2,588 1,057
a 0: Control 1: Treatment

Table 2. Independent samples test of Study 1 (high granularity)

 Levene’s
Test

t-Test for Equality of Means

 95% Confidence
Interval of the

Difference

 F Sig. t df
Sig.
(2-

tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Recall - - -3,4 5,21 0,019 -0,362 0,108 -0,635 -0,088

Precision - - -2,7 5,33 0,039 -0,271 0,099 -0,522 0,021

Extraneous 3,360 0,100 -1,8 9 0,111 -2,100 1,189 -4,790 0,590

5 Study 2: Business Process Model Reuse

5.1 Experimental Setup and Relation to Study 2

The 23 participants of study 1 were randomly reassigned to new treatment (5 teams)
and control groups (6 teams) for study 2. The task of study 2 was to design a business
process model of low granularity under reuse of an available artifact (Treatment
group) and without reuse (Control group). The provided reuse artifact is depicted in
Fig. 4 and Fig. 5. The partitioning π2 and its corresponding granularity of the problem
space, and the reusable business process model respectively, are presented as follows:

0||log
||

||
)(

1
2 ==∑

=
i

m

i

i A
U

A
G π , (5)

with all granules as the business process elements and an average cardinality of one
granule of 1 (i.e. assuming that the granularity of this partitioning of the problem is as
low as zero). We consider G(π2) in study 2 as low granularity. The reuse artifact

 Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse 255

C
us

to
m

er
 R

el
at

io
ns

hi
p

M
an

ag
em

en
t

Create customer

Check customer
existence

Verify and complete
customer data

Synchronize with
system

exists

not exist

CustomerPartyCustomerPartyCustomerPartyCustomerParty

CustomerParty
CustomerParty

Fig. 4. Provided reusable process model of low granularity in study 2

Customer Party

<BBIE>: CustomerAssignedAccountID: Identifier
<BBIE>: SupplierAssignedAccountID: Identifier
<BBIE>: AdditionalAssignedAccountID: Identifier
<ASBIE>: Party
<ASBIE>: DeliveryContact
<ASBIE>: AccountingContact
<ASBIE>: BuyerContact

Customer Assigned Account ID

Extension: Identifier

Supplier Assigned Account ID

Extension: Identifier

Additional Assigned Account ID

Extension: Identifier
Party

<BBIE>: MarkCareIndicator: Indicator
<BBIE>: MarkAttentionIndicator: Indicator
<BBIE>: WebsiteURI: Identifier
<BBIE>: LogoReferenceID: Identifier
<BBIE>: EndpointID: Identifier
<ASBIE>: PartyIdentification
<ASBIE>: PartyName
<ASBIE>: Language
<ASBIE>: PostalAddress
<ASBIE>: PhysicalLocation
<ASBIE>: PartyTaxScheme
<ASBIE>: PartyLegalEntity
<ASBIE>: Contact
<ASBIE>: Person
<ASBIE>: AgentParty

Address

<BBIE>: ID: Identifier
<BBIE>: Postbox: Text
<BBIE>: Floor: Text
<BBIE>: Room: Text
<BBIE>: StreetName: Name
<BBIE>: BlockName: Name
<BBIE>: BuildingName: Name
<BBIE>: BuildingNumber: Text
<BBIE>: Department: Text
<BBIE>: CitySubDivisionName: Name
<BBIE>: CityName: Name
<BBIE>: PostalZone: Text
<BBIE>: CountrySubentity: Text
<BBIE>: CountrySubentitiyCode: Code
<BBIE>: Country: Text
<BBIE>: Region: Text
<BBIE>: District: Text
<BBIE>: TimeZoneOffset: Text

Person

<BBIE>: FirstName: Name
<BBIE>: FamilyName: Name
<BBIE>: Title: Text
<BBIE>: MiddleName; Name
<BBIE>: NameSuffix: Text
<BBIE>: JobTitle: Text
<BBIE>: OrganizationDepartment: Text

Contact

<BBIE>: ID: Identifier
<BBIE>: Name: Name
<BBIE>: Telephone: Text
<BBIE>: Telefax: Text
<BBIE>: ElectronicMail: Text
<BBIE>: Note: Text
<ASBIE>: OtherCommunication

Contact_Delivery

<BBIE>: ID: Identifier
<BBIE>: Name: Name
<BBIE>: Telephone: Text
<BBIE>: Telefax: Text
<BBIE>: ElectronicMail: Text
<BBIE>: Note: Text
<ASBIE>: OtherCommunication

Contact_Accounting

<BBIE>: ID: Identifier
<BBIE>: Name: Name
<BBIE>: Telephone: Text
<BBIE>: Telefax: Text
<BBIE>: ElectronicMail: Text
<BBIE>: Note: Text
<ASBIE>: OtherCommunication

Contact_Delivery

<BBIE>: ID: Identifier
<BBIE>: Name: Name
<BBIE>: Telephone: Text
<BBIE>: Telefax: Text
<BBIE>: ElectronicMail: Text
<BBIE>: Note: Text
<ASBIE>: OtherCommunication

Fig. 5. Reusable Data model provided to participants in study 2

includes extraneous elements of the same proportion as in study 2 (see subsection
above). The granularity difference between study 1 and study 2 can clearly be seen:

0)()(982,1 21 =>= ππ GG , (6)

All remaining experimental parameters were controlled as in study 1.

5.2 Operational Hypotheses

Our operational hypotheses for study 2 are as follows.

• Given the described reuse artifact and the design task of granularity G(π2),
i.e. low granularity, and controlling the experimental parameters, we expect

256 O. Holschke, J. Rake, and O. Levina

the treatment group to significantly perform better in terms of reuse
effectiveness than the control group. Our null hypothesis therefore is that the
treatment group is expected to perform worse compared to the control group.
We will see if this null hypothesis can be falsified.

• Considering the study results of the treatment groups, i.e. the reuse groups,
of both studies, we expect a significant difference between the reuse
effectiveness which can be attributed to the varied artifact granularity. Our
null hypothesis therefore is: Comparing the final solutions of both treatment
groups does not show any significant differences in reuse effectiveness. We
will see if our hypothesis can be falsified.

5.3 Results and Comparative Analysis of both Study Results

The group statistics of the results of study 2 and independent samples t-test are
presented in Table 3 and Table 4 respectively.

We compared control group and treatment group in three variables. For the
variables recall and precision the Levene test for equality of variances showed that
equal variances could be assumed (significance of .118 > .100 and .200 > .100
respectively). Therefore the student t-test could be performed. Student t-test showed
for recall a significance of .718. This value is > .05, therefore we cannot rule out that
the recall differences in the treatment group have been due to chance alone. For
precision however, student t-test showed a significance of .030 which is below .05.
The precision drop in the treatment group can therefore be attributed to the effect of
reusing an available process model which did not perfectly match the task. The excess
information provided within the reuse artifact, i.e. the extraneous information, very
likely led to the distortion of the resulting model. This can also be seen in the obvious
difference between means of the variable Extraneous (0.00 vs. 8.40). Even though the
t-test for unequal variances did not show sufficient significance, the amount of
extraneous information that the treatment group was provided is evident. We can
therefore not falsify our first null hypothesis: reuse performed worse precision-wise.

We also compare the treatment groups of studies 1 and 2 to test our second null
hypothesis, as presented in Table 5 and Table 6. Only for Recall a significant impact
due to granularity could be observed. It seems that in our experiment Recall in the
high granularity case is significantly lower than in the low granularity case leaving all

Table 3. Group statistics of Study 2 (low granularity)

 Treatmenta N Mean Std.
Deviation

Std. Error
Mean

0 6 0,938 0,038 0,016
Recall

1 5 0,919 0,124 0,055

0 6 0,972 0,068 0,028
Precision

1 5 0,779 0,170 0,076

0 6 0,00 0,000 0,000
Extraneous

1 5 8,40 9,072 4,057
a 0: Control 1: Treatment

 Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse 257

Table 4. Independent samples test of Study 2 (low granularity)

 Levene’s
Test t-Test for Equality of Means

 95% Confidence
Interval of the

Difference

 F Sig. t df
Sig.
(2-

tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Recall 2,98 0,118 0,373 9 0,718 0,020 0,053 -0,1 0,139

Precision 1,91 0,200 2,564 9 0,030 0,193 0,075 0,023 0,363

Extraneous - - -2,07 9 0,107 -8,400 4,057 -19,66 2,864

Table 5. Group statistics of comparative study (high vs. low granularity)

 Treatmenta N Mean Std.
Deviation

Std. Error
Mean

H 6 0,577 0,261 0,106
Recall

L 5 0,918 0,124 0,055

H 6 0,665 0,240 0,098
Precision

L 5 0,779 0,170 0,076

H 6 2,50 2,588 1,075
Extraneous

L 5 8,40 9,072 4,057
a H: Reuse at high granularity L: Reuse at low granularity

Table 6. Independent samples test of comparative study (high vs. low granularity)

 Levene’s
Test t-Test for Equality of Means

 95% Confidence
Interval of the

Difference

 F Sig. t df
Sig.
(2-

tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Recall 1,944 0,179 -2,67 9 0,026 -0,342 0,128 -0,631 -0,522

Precision 0,946 0,356 -0,89 9 0,393 -0,115 0,128 -0,405 0,175

Extraneous - - -1,41 4,54 0,224 -5,900 4,192 -17,01 5,210

other parameters controlled. The mapping of high granularity concepts under reuse of
an available process domain model seemed to be a harder task than in the case when
low granularity concepts are involved, even though the problem complexity in both
studies was controlled. Our null hypothesis, that there would be no significant impact
on modeling effectiveness at different granularities, was therefore partly falsified.

258 O. Holschke, J. Rake, and O. Levina

6 Conclusion

We have conducted a comparative study in order to test our hypothesis on the impacts
of information granularity on the effectiveness of business process model reuse. We
designed an experiment in which experimental parameters such as problem
complexity, problem-reuse artifact similarity, and adaptation techniques were
controlled as best as possible to focus on information granularity as the only factor
affecting different modeling outcomes under reuse behavior. Our experimental results
show that there is a difference in one out of three defined modeling effectiveness
variables, i.e. Recall, partly falsifying our null hypothesis (no significant impacts
induced by different granularities).

However, limitations to our study have to be recognized. The number of perceived
concepts in both studies was probably not the same. Despite our effort to compensate
the higher number of concepts (all the fine granular data fields) of study 2, by
providing the same high number of applications in study 1, leading to the same
McCabe complexity, this can be criticized. In a following experiment the number of
granules in all treatment groups, independent of low or high granularity, should be
kept exactly the same to fully isolate cognitive granularity as the only affecting factor.
In our approach this aspect has not been fully considered yet. The assumption of equal
adaptation techniques of participants can also be criticized. This assumption may be
too simplifying. In our experiment we assumed a matching activity and a keeping
and/or omitting activity (of modeling elements) only. The complexity of the human
brain activity is surely much higher as we implied here, and also the decision
mechanisms and computation costs between individuals may vary immensely. These
topics are still under research in the areas of cognitive modeling, neural networks and
others. Lastly we realize that due to our small sample size results are not statistically
significant, but this preliminary run shows that the experimental set-up is ready for
running on a larger scale.

In future research work the aspects identified above should be considered.
Moreover, recall and precision measures could be extended to the dimension of
granularity, i.e. which concepts of what granularity can be retrieved from reuse
artifact with what success, to eventually gain more fine-grained knowledge of
cognitive reuse processes in business design work. Also, granularity concepts should
be investigated considering the different types of assistant artifacts, e.g. compare
reference models with patterns and other knowledge transferring approaches.

References

1. Yao, Y.: Probabilistic approaches to rough sets. Expert Systems 20, 287–297 (2003)
2. Frakes, W., Kang, K.: Software reuse research: status and future. IEEE Transactions on

Software Engineering 31, 529–536 (2005)
3. Frakes, W.B., Terry, C.: Software Reuse: Metrics and Models. ACM Comput. Surv. 28,

415–435 (1996)
4. Fischer, G.: Cognitive View of Reuse and Redesign. IEEE Software 4, 60–72 (1987)
5. Ye, Y., Fischer, G.: Supporting Reuse by Delivering Task-Relevant and Personalized

Information. In: International Conference on Software Engnineering (ICSE 2002). ACM,
Orlando (2002)

 Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse 259

6. Purao, S., Storey, V.C., Han, T.: Improving Analysis Pattern Reuse in Conceptual Design:
Augmenting Automated Processes with Supervised Learning. Information Systems
Research 14, 269–290 (2003)

7. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, New York (1998)

8. vom Brocke, J., Buddendick, C.: Reusable Conceptual Models – Requirements Based on
the Design Science Research Paradigm. In: Chen, H., Olfman, L., Hevner, A., Chatterjee,
S. (eds.) Design Science Research in Information Systems and Technology (DESRIST
2006), Claremont, CA (2006)

9. Kelly, M.: Enhanced Telecom Operations Map (eTOM) - The Business Process
Framework. TeleManagement Forum (2007)

10. Supply-Chain Council: Supply Chain Operations Reference-model Version 8.0. Supply-
Chain Council, Inc. (2006)

11. Zimmermann, O., Gschwind, T., Küster, J.M., Leymann, F., Schuster, N.: Reusable
Architectural Decision Models for Enterprise Application Development. In: Overhage, S.,
Szyperski, C.A., Reussner, R., Stafford, J.A. (eds.) Third International Conference on
Quality of Software Architectures, Software Architectures, Components, and Applications
(QoSA 2007), pp. 15–32. Springer, Medford (2007)

12. Buckl, S., Ernst, A.M., Lankes, J., Schneider, K., Schweda, C.M.: A Pattern based Approach
for constructing Enterprise Architecture Management Information Models. Internationale
Tagung Wirtschaftsinformatik. Universitätsverlag Karlsruhe, Karlsruhe (2007)

13. Coad, P., North, D., Mayfield, M.: Object Models: Strategies, Patterns, Applications.
Prentice-Hall, Englewood Cliffs (1996)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Design. Addison-Wesley, Reading (1995)

15. Zdun, U., Hentrich, C., Dustdar, S.: Modeling process-driven and service-oriented
architectures using patterns and pattern primitives. ACM Transactions on the Web 1(3)
(2007)

16. Sun, W., Zhang, X., Guo, C.J., Sun, P., Su, H.: Software as a Service: Configuration and
Customization Perspectives. In: IEEE Congress on Services Part II. IEEE, Los Alamitos
(2008)

17. Reijers, H.A., Mendling, J.: Modularity in process models: Review and effects. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 20–35. Springer,
Heidelberg (2008)

18. Burton-Jones, A., Meso, P.: How good are these UML diagrams? An empirical test of the
Wand and Weber good decomposition model. In: 23rd International Conference on
Information Systems, Barcelona, pp. 15–18 (2002)

19. Wand, Y., Weber, R.: A model of systems decomposition. In: Tenth International
Conference on Information Systems, Boston, MA, pp. 41–51 (1989)

20. Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in
human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)

21. Yao, Y.: A partition model of granular computing. In: Peters, J.F., Skowron, A.,
Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions
on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)

22. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of
Illinois Press (1963)

23. Parsons, J., Saunders, C.: Cognitive Heuristics in Software Engineering: Applying and
Extending Anchoring and Adjustment to Artifact Reuse. IEEE Trans. Software Eng. 30,
873–888 (2004)

260 O. Holschke, J. Rake, and O. Levina

24. Object Management Group: Business Process Modeling Notation Specification, Version
1.0 (2006)

25. Fettke, P., Loos, P.: Classification of reference models: a methodology and its application
Information Systems and E-Business Management 1, 35–53 (2003)

26. Latva-Koivisto, A.M.: Finding a complexity measure for business process models.
Helsinki University of Technology, Helsinki (2001)

27. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic
Business Process Models. In: Fourth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2007). Australian Computer Society, Inc., Ballarat (2007)

28. Bosak, J., McGrath, T., Holman, G.K.: Universal Business Language v2.0. OASIS (2006)
29. Lindland, I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modeling.

IEEE Software 11, 42–49 (1994)
30. Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality of process

models: Empirical testing of a quality framework. In: Spaccapietra, S., March, S.T.,
Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, p. 380. Springer, Heidelberg (2002)

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 261–277, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Artifact-Based Transformation of IBM Global Financing

Tian Chao1, David Cohn1, Adrian Flatgard1, Sandy Hahn2, Mark Linehan1,
Prabir Nandi1, Anil Nigam1, Florian Pinel1, John Vergo1, and Frederick y Wu1

1 IBM Research, 19 Skyline Drive, Hawthorne, New York 10598
2 IBM Global Financing, 1 North Castle Dr., Armonk New York 10504-1785

{tian,dcohn,flatgard,hahn,mlinehan,prabir,anigam,pinel,
jvergo,fywu}@us.ibm.com

Abstract. IBM Global Financing (IGF) is transforming its business using the
Business Artifact Method1, an innovative business process modeling technique
that identifies key business artifacts and traces their life cycles as they are
processed by the business. IGF is a complex, global business operation with many
business design challenges. The Business Artifact Method is a fundamental shift
in how to conceptualize, design and implement business operations. The Business
Artifact Method was extended to solve the problem of designing a global standard
for a complex, end-to-end process while supporting local geographic variations.
Prior to employing the Business Artifact method, process decomposition, Lean
and Six Sigma methods were each employed on different parts of the financing
operation. Although they provided critical input to the final operational model,
they proved insufficient for designing a complete, integrated, standard operation.
The artifact method resulted in a business operations model that was at the right
level of granularity for the problem at hand. A fully functional rapid prototype
was created early in the engagement, which facilitated an improved understanding
of the redesigned operations model. The resulting business operations model is
being used as the basis for all aspects of business transformation in IBM Global
Financing.

Keywords: Business Process Management, Business Artifacts, Business
Entities, Business Design, Business Architecture, Service-Oriented Architecture.

1 IBM Global Financing

IBM Global Financing [6] (IGF) is the largest IT financier in the world. This division
of IBM has operated for more than 25 years and boasts an asset base of nearly $38
billion, with 125,000 customers in more than 50 countries. For the last three years, it
has financed over $40 billion in IT assets per year. IGF is responsible for 9% of the
total profit of the IBM Corporation.

IGF business operations span the full, end-to-end process of financing hardware,
software and services in the IT industry. Once a financing opportunity is identified by

1 The “Business Artifact Method” is offered commercially by IBM as the Business Entity Life

Cycle Analysis capability pattern in the SOMA method [1].

262 T. Chao et al.

a sales team, IGF handles all aspects of the financing deal including validation,
contracts, negotiations, pricing, coordination with 3rd party suppliers, offer letters, and
credit verification. IGF is also responsible for lease management, end-of-lease
processing and finally, asset recovery, resale and disposal. The resale of refurbished
assets accounts for a large portion of IGF revenue.

2 Business Context and Challenges

By mid-2008, IGF worldwide business operations reflected 25 years of organic
growth, with many country organizations evolving and adapting to local business and
legislative forces. This effectively established each country as a “silo” with their own
unique processes that acted as an inhibitor to global integration and became a major
annoyance for IGF’s global clients who complained that, “It’s like we’re doing
business with different IGF companies around the world. Working with country
unique financing processes is an unnecessary cost to us.”

Multiple variations of processes meant that the same business function, (e.g.
pricing, supplier management, asset recovery) was performed differently by the
various geographies (“Geos”). A prime example of geographic variation in the IGF
process was how financing deals were priced. Over time, individual Geos developed
deep local expertise and frequently captured the expertise in tools and utilities which
were local in their scope and use. Opportunities to reuse business functions, and
hence achieve economies of scale, were missed. Some countries did not utilize any
technology to support pricing. Over a period of many years, the same local teams
created ad hoc utilities to price deals using general purpose software such as
spreadsheets. The result was that people in local geographies were highly invested in
and reliant on their local processes and tools, exacerbating the organizational barriers
to change.

In 2006, IBM initiated an internal transformation effort to become the world’s
premier Globally Integrated Enterprise (GIE) [9]. Not surprisingly, IGF was challenged
with globally integrating their operations in support of IBM’s GIE strategy. In a GIE,
business processes are integrated across the global operations of the enterprise and
specific functions are flexibly sourced, often at ‘centers of excellence’, based on a
variety of factors such as skills, availability, location, and cost.

Simultaneous with IBM’s transformation to a GIE, the IT industry underwent a
significant and continuing shift over the last few decades, characterized by fewer
large financing deals and a concomitant, steady decline in the average size of leasing
contracts. IGF naturally saw analogous changes to the size of their financing
arrangements as well. As the number of large financing deals decreased and the
volume of leasing requests increased, the need for efficiency and cost control grew in
importance. The emergence of increasing numbers of smaller, nimbler competitors
placed additional pressure on IGF to streamline and integrate their operations.

The variations in IGF’s business operations from one country to the next made it
very difficult to measure the performance of the business in a consistent way. This led
to two undesired outcomes. First, it was hard to compare the operational efficiency of

 Artifact-Based Transformation of IBM Global Financing 263

one geo to another. In addition, it was difficult to roll up metrics from across the
entire business (i.e. all countries) and produce a coherent and consistent view of how
the whole IGF business was performing over time.

Further complicating the challenge were typical organizational change factors. The
individual geos had operated autonomously for many years. They were reluctant to
change their operations to achieve global integration. Giving up control of their
processes and depending on other geos to provide critical functions carries risk and
requires trust that the end-to-end, globally integrated operation design is achievable.

It is important to note that IGF had significant process modeling efforts under way
at the time they started considering the artifact-centric approach. They were
employing Lean and Six Sigma (“Lean Sigma”) methods [10] in areas outside the
scope of standardization, as well as traditional process decomposition approaches.
The main challenges they were experiencing were that the modeling efforts were too
detailed, complex, and time-consuming, which prevented the key business
stakeholders from effectively designing a standard, end-to-end operation. It also
hampered IGF’s ability to identify the key business operations and challenges and,
most important, inputs and outputs across the end to end process. In the language of
one of their stakeholders, the artifact method “Gave us a tangible model (in terms of
touch and feel) to work with”. It was at the right level of granularity to support
effective collaboration among the stakeholders to re-design the business operation.
The process decomposition methods produced numerous, detailed functional process
fragments, but failed to support the creation of a single, business level, end-to-end
process model.

IGF executives also stated that the business was moving fast and they could not
understand why it took so long to build and deploy applications (i.e. there was a long
path from requirements to deployment). In the words of an IGF transformation
executive, the artifact method enabled them to "get an execution mentality” that was
not present with “process mapping”.

3 IGF’s Business Strategy

IGF senior management developed a simple strategy to address the challenges and
opportunities described above. Additional resources and increased funding were
unavailable and as result, a change to the business model was imperative. They
decided to standardize the end-to-end process for their client financing operations, but
to do so in a way that allowed for variations as demanded by legislation and other
business considerations through business rules (discussed below). Such a global
standard process needed to have a number of important characteristics in order to
succeed:

1. Fluent in describing financing operations at a high level of abstraction yet

capture the essential elements of the business operations across 50+
countries.

2. A way of defining a standard operation, with variations specified within the
scope of a task.

264 T. Chao et al.

3. Support for moving easily between the global standard and local instances of
the business operations

4. Expressed in a way that the business executives could easily work with as
they designed the new business operation. Has to be the “right” level of
granularity

5. Serve as an intuitive structure for identifying, organizing and measuring Key
Performance Indicators (KPIs)

Historically, the team utilized methods, such as hierarchical process decomposition
and Lean Sigma to document processes, identify opportunities for improvements and
to try and deliver an integrated and aligned end-to-end process definition. These
techniques were focused on sequencing activities, but country variations permeated
the education, training and execution of independent processes. The General Manager
of IGF Client Financing created a Single Operating Model team, a small matrix group
of subject matter experts focused on global process standardization and simplification
that was realized through the Business Artifact Method.

4 The Business Artifact Method for Business Process Design

We employed the artifact method, a business transformation method developed at
IBM Research [6] to address IGF’s business process management challenges. Given
a specific purpose, the artifact method provides a modeling approach that identifies
functional chunks (tasks) that are consistent with the purpose. This right-sizing of
tasks is accomplished by focusing on affecting a meaningful change to the artifact.
Activity-centered approaches tend to produce models that capture the details of how
an activity is performed. By contrast, we focus on results that are produced and
recorded on the artifact.

The goal of the project was to create a global standard business operation model
(BOM) with appropriate local variation to accommodate the legislative and business
requirements of individual geographies. There were two primary drivers of the
transformation effort: 1) the need to lower costs through standard operations end to
end across the globe and 2) IGF’s multi-national customers wanted a common
customer experience with the same "look and feel" in all countries. The redesigned
operations had to efficiently support a high volume of smaller deals and improve
customer satisfaction.

The Research team met with the IGF transformation team twice prior to launching
the project. The initial meetings, which lasted a total of 3 hours, were exchanges of
information and an initial assessment that the artifact method indeed had the potential
to address the challenges faced by the IGF business transformation team. The
Research team described the basic artifact method and discussed past applications of
the artifact method. Three of these case studies are thoroughly documented here [3].

We exited the initial meetings with a firm commitment from the IGF executive
leadership team to pursue an artifact-based solution, although some of the key IGF
executives were quite skeptical about the approach. What followed next was an in-
depth, 3 day workshop with 3 objectives:

 Artifact-Based Transformation of IBM Global Financing 265

1) Ensure the artifact-centric approach would meet the client’s needs for a
professional business modeling method for standardization, including
segmentation approaches for client/partner types, channel types and deal
types.

2) Explore how the artifact approach would lead to faster results in system
configuration and deployment in multiple countries.

3) Validate that the artifact approach enabled the rapid creation of a
workflow prototype.

The workshop was attended by 5 members of the Research team and by ~15
executives and senior business leaders from IGF who represented most aspects of
their global, end-to-end business process.

The workshop was a breakthrough in gaining IGF executive leadership to
understand and buy into the artifact-centric approach. Three factors were critical to
achieving buy-in. First, their business transformation executives were strong, vocal
champions of the artifact method. They were responsible for inviting and ensuring the
attendance of a large team of leaders from IGF who provided critical, deep subject
matter expertise during the workshop. More subtly, the general impression (as
evidenced by many comments during informal discussions) by Global Process
Owners (GPOs), project team members and stakeholders was that the method brought
clarity, simplicity and order to their complex business operations. Interestingly, there
were numerous occasions where people from different parts of the IGF business had
moments of insight into each other’s part of the business. The method gave the IGF
stakeholders a way to think about their end-to-end business that allowed them to
communicate much more effectively.

A second critical success factor was that the Research team was well staffed and
had the right set of skills for the task at hand. The key roles included “the artifact
lead”, who was the expert on the artifact method and led all the discussions in the
workshop. “The modeler” was dedicated to running the software tool that captured
the results of the workshop discussions. “The rules expert” captured the business
rules and mapped them to the artifact-based process model. “The metrics expert”
focused on identifying Key Performance Indicators (KPIs) and associated metrics.
“The organizer” kept the workshop focused on core activities, managed all logistics
and kept the workshop and the teams on track. Finally, there was “the prototyper”,
who was responsible for the creation of a “fast-path prototype”, which leads to the
third critical success factor.

Experience has shown that modeling is not always a successful technique for
wrestling with business problems. Often, the models themselves are difficult to
understand and manipulate by business people. The artifact method is supported by
tools that mitigate this problem through the creation of a “fast-path” rapid prototype.
In simple terms, once a BOM is captured in our modeling tool, we can create a
prototype application, literally at the push of a button. While the prototype is not
aesthetically sophisticated, it does reflect the functionality of the business operation
with a high degree of integrity. Instead of working with a graphical model, we were
able (after one day) to show a functioning prototype. As has been our experience

266 T. Chao et al.

with most clients, the prototype immediately helps ground the conversations,
enhances communication among workshop attendees and gives the client a strong and
clear sense how the redesigned “to-be” business operation will behave. One comment
from a workshop participant is that it was “a tangible model that we could touch and
feel”. The prototype enabled the business people to validate the operation model in a
way that simply reviewing a diagram could not. Certain parts of the automatically
generated prototype, such as the user interface, are not expected to be used beyond
this model validation phase and therefore were not extensively tested. However, the
core of the application generated from the BOM can serve as the harness that drives
or observes the operations, as described in the section on the future of the IGF
transformation.

The workshop included a focused effort to define what was meant by “global
standard”. The “unit of standardization” was defined to be the task in the BOM. As
mentioned earlier, a task affected business-sensible change to an artifact. The tasks also
provided the structure for specifying business rules. The business rules, in turn, served
as the mechanism to capture “local variations” in the business process which were
approved by the tax and legal compliance organizations. The variations from country
to country are quite significant, e.g. some countries were required to operate as a bank,
with all the associated myriad of regulatory requirements. Other dimensions of
variability were legal and tax requirements. Coming into the engagement, IGF knew
that they could not create a “one size fits all” model of their business operation, but
they did not have a fundamental approach that allowed for capturing, representing and
governing allowable variations. An artifact-based model augmented with business
rules provided a manageable solution.

The two month engagement started out with the results from the workshop viz. one
business artifact, some key states in its lifecycle, and a few business rules. The
lifecycle of this business artifact, the Deal, was fleshed out in detail and along the way
two other business artifacts were identified. In constructing the lifecycles of all the
three business artifacts, a great deal of deliberation went into consolidating the fine-
grain process steps into tasks that affected meaningful changes to the business artifact
they worked on. These tasks could be thought of as “process fragments” required to
transition the business artifact from one state to the next. Once we had a satisfactory
operation designed, the subject matter experts provided the business rules about the
information each task needed to start working and about constraints on the lifecycle
processing steps. Through these work sessions, the detailed information content,
lifecycle processing, and business rules of the three business artifacts were assembled.

During the course of the design work outlined above, numerous communication
and collaboration meetings were held with the 15 key stakeholders representing the
business, the geographies and the functions. These were meetings the business execs
found useful because the artifact centric approach ensured they were conducted in
business language and at a level of granularity such that the stakeholders could
understand and contribute to the design. As one business exec said after the first such
meeting, “I dreaded coming today because I thought I’d be subjected to conference
room walls filled with flow charts that I’d be expected to understand and then engage
in meaningful design discussions. The approach you’ve shown us was infinitely more
productive.”

 Artifact-Based Transformation of IBM Global Financing 267

In addition to the stakeholder meetings, the core team met 25 times in total, usually
two days per week over the course of the 2 month engagement. These meetings were
focused on executing the artifact based methodology to create the business
operational model (BOM) and process fragments that included:

o Identification of roles for the various tasks.
o Key Performance Indicators and metrics. Each metric was associated with

relevant parts of the BOM that will be instrumented to emit transaction
events. The output was an Excel spreadsheet used to create the observation
model.

o Business rules modeled with the SBVR syntax associating constraints to
different processing paths in the BOM. The output was a SBVR (Semantics
of Business Vocabulary and Business Rules) model.

o CRUDE matrix (Create, Read, Update, Delete, Execute), defining
information access, organized by each role player in each task in the BOM,
captured in an Excel spreadsheet.

When the design was near completion another prototype was run, reviewed by the
team and additional elements were identified and resolved. This iterative method of
“design – rapid prototype – design” gives confidence to the business design team that
they have addressed the business problem and to the IT team who no longer must
interpret the design.

5 The IGF Business Operation Model

The key to the artifact method is to identify the Business Artifacts whose lifecycles
represent the essential elements of the business process. When done properly, these
lifecycles present a clear picture of the business and help develop insight on operating
and improving the process. By the end of the first day of the initial workshop, the
IGF team agreed that the primary goal of their business was to create and complete
business deals with clients. They understood that although there was no specific
document which fully defined each deal, it was a well-defined notion, or abstraction,
and we defined the Deal artifact (Figure 1) as the overall arrangement with a client.

During the second phase of the artifact method, the team structured the lifecycle of
the Deal artifact. They agreed that a Deal was Created when a sales person identified
a client need that could lead to a financing opportunity. The deal remained in a Draft
state while the client’s credit was checked; while pricing was determined; while terms
and conditions were specified, and while other administrative tasks were performed.
It was possible for the Deal to become Failed if, for example, the client’s credit was
bad, but most Deals were eventually Offered to the client. These might become
Expired if the client did not act, or Lost if the client rejected the deal. However, if the
client Signed the deal, it became Active. For Active deals, IGF worked on Ordering,
Accounting, Billing, etc. Clients could ask that an Active deal come to an Early End
or return to Draft state, but most often, they were Completed. Thus, the diagram
below summarized the lifecycle of the Deal artifact.

268 T. Chao et al.

Credit Ordering, Acc’ting, Billing …

Created Draft Signed Active

Early End

Completed

Failed Expired

Offered

Lost

, Pricing, T&C …

Deal Deal Deal Deal Deal

Deal

DealDeal
DealDeal

Credit Ordering, Acc’ting, Billing …

Created Draft Signed Active

Early End

Completed

Failed Expired

Offered

Lost

, Pricing, T&C …

DealDeal DealDeal DealDeal DealDeal DealDeal

DealDeal

DealDealDealDeal
DealDealDealDeal

Fig. 1. The Deal artifact

The IGF team noted that although the lifecycle of the Deal artifact represented much
of what IGF did, it omitted certain important aspects. For example, when Ordering
was performed on an Active Deal, a separate part of IGF placed that order, received the
items, made certain that the vendor was paid and handled the accounting. This led to
the identification and definition of the Supplier Invoice artifact (Figure 2), so named
because the document containing much of this artifact’s information was the supplier
invoice. The figure below shows that the Ordering action on a Deal creates the
Supplier Invoice artifact which then goes through its own three-state lifecycle.

Fig. 2. The Supplier Invoice artifact

One final aspect of IGF that even the foregoing does not cover is the eventual
disposition of hardware assets which clients no longer need. This led to the definition
of the Asset artifact (Figure 3) which comes into existence when hardware has been
delivered by the supplier. This is shown below as occurring when the Supplier
Invoice lifecycle becomes Payable since at this point IGF takes title to the asset.
Assets remain Active until they are Concluded, Returned or Sold. After this, the
physical asset is no longer held by IGF and the Asset artifact becomes Inactive. Thus,
IGF’s complete Business Operations Model is as shown below:

 Artifact-Based Transformation of IBM Global Financing 269

Fig. 3. The Asset artifact

This diagram is a significant simplification of the business operations model
(BOM) produced during the two-month design effort. That model depicts ~65
individual tasks that define the work of the organization. However, the 18 artifact
states shown here have remained in the detailed BOM which IGF continues to use to
manage their operations.

A key aspect of the IGF global model development process was the identification
and analysis of business rules that govern aspects of the BOM. An example business
rule defines the information that must be available before the price quotation step:

"At minimum, a deal must have agreement type, credit reference number or
dummy reference number for the GRMG rating, billing type, Machine-Type-Model
(MTM), list and net prices, financial types, equipment source, term, payment
frequency, payment timing, payment method, planned install date."

The rules were captured in English in a spreadsheet, organized by processing step
(task) in the BOM. Rules constrain BOM processing steps. The rule given above says
that price quotation cannot be done if the required information is not available.
Documenting the rules in detail had several benefits: (a) it exposed many
requirements on the BOM; (b) it helped stakeholders from the previously "siloed" IGF
groups understand the business drivers that impact their activities; and (c) it created
credibility that the BOM model met the requirements of those groups.

Each rule is associated with a single business artifact type, and executes against
individual instances of that artifact at run time. The rules may reference any attributes
both of the instance and of other artifacts that are associated with the artifact type in
the information model.

Most rules constrain individual processing steps in the artifact lifecycle, but there
is a mechanism for some rules to constrain multiple processing steps that have
common semantics by labeling those steps with a common name. For example, if the
lifecycle has several ways to gain approval of a Deal, and some rules constrain all
those ways, the rules can be associated with all the ways via common use of the verb
"approve".

270 T. Chao et al.

Formally capturing the rules exposed systematic variations on two dimensions.
Geography formed one dimension. For example, one country might require specific
additional information as input to price quotation. Another dimension is the kind of
business deal, characterized mostly by deal value and complexity. Many business
rules that make sense for large, complex deals are overkill for small deals limited to
predefined choices. Structuring the rules by processing step, then by deal kind, and
ultimately by geography is a technique that both addresses the systematic variation
and helps manage a large number of rules in a natural and comprehensible way.

Capturing the rules in a spreadsheet was easy and natural for the IGF team.
Ideally, a further step would have converted the unstructured English statements to a
more formal format such as the Structured English used by the OMG's Semantics of
Business Vocabulary and Business Rules (SBVR) [8] specification. Benefits of
formalizing the rules could include automated consistency checking among the rules,
and direct execution of the rules in the generated application. Some promising work
has been done in this area [5], but the existing prototype tool needs extension in order
to support all the IGF needs.

One of the essential requirements for IGF’s business standardization and
transformation effort is to provide the end-to-end visibility to the business process
performance [4]. Thus, it is critical to identify the right KPIs that can provide the
measurements in an end-to-end view. Moreover, the KPI design approach described
hereafter ensures that KPIs are an integral part of the artifact-based business design from
the very beginning and not an add-on or afterthought. Throughout the transformation
effort, KPI design and business operation design teams worked in tandem.

The first step in KPI design was to analyze the vision and strategy of IGF and
identify an initial set of KPIs. What is measured is what gets done. Therefore, it is
extremely important to identify the KPIs that are aligned with the organizational
vision or strategy in the design phase. First, the objective statements of the IGF vision
and top level business goals were analyzed and categorized in terms of the four
Balanced Scorecard (BSC) perspectives: Financial, Customer, Process, and Learning
& Growth to identify an initial set of KPIs from the IGF vision. Next, the KPIs were
described using a KPI matrix template, categorized by each of the BSC perspectives
and organized in two ways: 1) by user roles or persons/stakeholders who use or need
the KPIs to design a role-based dashboard view (Figure 4), and 2) by dimensions
(Figure 5) – a set of qualifying or grouping criteria to view KPIs on business

Fig. 4. KPIs Matrix Organized by User Roles/Stakeholders. This matrix is illustrative, and
presents a small subset of all KPIs and GPOs.

 Artifact-Based Transformation of IBM Global Financing 271

Fig. 5. KPIs Matrix Organized by Grouping Dimensions. This matrix is illustrative, and
presents a small subset of all KPIs and grouping dimensions.

dashboard and/or On-Line Analytical Processing (OLAP) reporting to drill down on
lower-level data.

The draft list of KPIs was then reviewed with IGF business process owners to
prioritize into a set of agreed-upon high priority KPIs. The focus here was to ensure
these high priority KPIs are accurate, clear, well-defined, and simple to understand.
The goal was to identify a small number of “good” KPIs, not numerous, difficult to
measure, metrics. To that end, each KPI is described in precise definition using a KPI
Template, comprising several attributes: name, description, scope or business artifact
the KPI is created for (e.g. Deal, Supplier Invoice & Asset), definition, source or
referencing data in the business artifact and the exact computation expressions to
calculate the KPI, grouping dimensions, users or stakeholders, and usage example.
KPIs are defined with an end-to-end view in mind and not biased or sub-optimized for
a specific functional area such as pricing, credit, or proposal. Please see an example of
a KPI described in the KPI Template below.

In addition to displaying business performance on a dashboard, KPIs can also be
used for evaluating and triggering real-time alerts that warrant immediate attention
and corrective actions, thus providing feedback into the business process for
continuous improvement. For example, a credit overdue condition can be defined
based on “turn around time for Credit” (TAT4Credit) KPI (Figure 6), and an alert will
be triggered if the KPI value exceeds a predefined target duration.

Fig. 6. Detailed example of a single KPI, Credit turnaround time (TAT)

272 T. Chao et al.

The final step in the KPI design was to link the KPIs to the business operation
model. Once identified, the high priority KPIs needed to be reviewed early on with
the process team to ensure all source data needed to calculate KPIs and create the
grouping dimensions are properly identified and defined in the business operation
model. More important, the review uncovers any data that have not yet been
accounted for in the business operation model. This integrated view of both the
business processes and KPIs solidifies the overall design and avoids any surprises and
potential rework when measurement systems are put in place.

6 Impact on the Business

The BOM continues to be used as a living document that resulted in significant changes
to the way IGF operates and governs their business. Since the BOM captured a radically
simplified yet right-sized model of the IGF operation, it was easy to adapt it to changing
business conditions. Subsequent to the artifact centric design, dozens of work sessions
with global teams were held to explain the global standard model and to gain awareness
of potential country variations. Activities are currently underway to review and obtain
consensus on the implementation of country level variations to the standard process.
The artifact centric model, developed during the engagement, was subjected to many
implementation planning challenges, organizational challenges and technical challenges
from various departments of the IGF unit over the course of the ensuing 4 months. The
model was subjected to careful scrutiny and analysis from a wide range of
representative stakeholders in the IGF organization. It essentially stood intact and with
minor changes and enhancements from the initial design that emerged from the
engagement. The artifact centric model has become recognized as the fundamental,
standard business operations model for the IGF Client Financing business.

One significant result of the BOM has been its use in identifying tasks that are
global in nature and the assignment of GPOs to these tasks, resulting in increased
accountability in the fundamental transformation of the IGF organization. As the name
implies, GPOs “own” tasks of a global nature and are responsible for defining,
implementing and governing their tasks. There are approximately 65 tasks with
associated GPOs. Prior to our project and the creation of the BOM, IGF had identified
GPOs. However, the BOM model greatly clarified the role and scope of responsibility
of each individual GPO and GPOs were given much greater authority. Governance of
the end-to-end IGF process is accomplished through the GPOs, who have authority and
responsibility for standardizing their sub-processes and for approving deviations to the
established standards. One way the GPOs control their sub-process is by issuing
policies. Examples include the recording of Machine/Type/Models and serial numbers,
revenue recognition upon shipment, accruals, price quotes, and clip levels for deal size.
A member of the IBM CIO’s Enterprise Process Framework team that is responsible
for assessing process maturity, determined that Client Financing was well ahead of its
peers in terms of process definition and Global Process Owner engagement.

The BOM was used to identify new GPO roles, most notably an end-to-end GPO
who is responsible for ensuring the standardization and integrity of the full operation
and has authority to add or redesign the tasks in the BOM. The end-to-end GPO is also
accountable for the interlock of inputs and outputs across the process, from opportunity

 Artifact-Based Transformation of IBM Global Financing 273

management through to end of lease returns. The BOM was color-coded to help
visualize and communicate GPO ownership and scope of responsibility and authority.

The BOM is increasingly recognized as the lynchpin of IGF Client Financing
process standardization. The BOM links to job roles, business rules, descriptions of
the business operations, KPIs, Sarbanes-Oxley control points and training materials
(Figure 7).

Fig. 7. Notional diagram of the Business Operations model and associated elements of the IGF
operational specification

The General Manager of Client Financing recognized the results by saying,

“Team, congratulations on achieving the first milestone in establishing global
process standards. Global Process Owner sign-off on the initial set of
standards establishes the baseline from which to build and refine global
consistency in how we run the Client Financing business. In just two months
as a Model Driven Business Transformation team, you set an aggressive target,
established a date, scoped the deliverables... and delivered!

The Business Operations Model and 60 global process standards defined below
establishes the baseline, enabling us to expand globally, while allowing for
additional deal types with approved country, legal, tax and regulatory
requirements. A job well done!”

The VP of IGF Client Financing stated

"The MDBT2 initiative has brought structure and clarity to our
transformation work and will also bring the work flows to life for our
teams in the field and the international Centers of Excellence."

2 MDBT is an acronym for Model-Driven Business Transformation, the IBM Research internal

project name for the Business Artifact approach.

274 T. Chao et al.

7 The Future of the IGF Transformation

The IGF BOM is a blue print of their Client Financing business operation. As
discussed earlier, artifact tooling supports the creation of an executable prototype
application with a mouse click. The generated application enables role based
manipulation of the 3 key business artifacts (Deal, Supplier Invoice & Asset) through
their complete lifecycle. Although shallow-by-design, the application in essence
covers the end to end IGF operation, and more important, it is at the level desired by
the business to track the performance of their key objectives. However, the reality of
the IGF IT landscape is that it is comprised of both strategic and legacy applications
developed by functional areas to serve very specific functional needs. These
applications have grown over the years with varied technology bases. Some are
customized off the shelf products, while others are home-grown. Each serves a
definite functional need and is indispensable to the business.

This is a very common situation in most large enterprises where the end-to-end
processes are served by fragmented IT applications. End-to-end visibility to the
operations is practically impossible to achieve. It is likely to be highly time
consuming, bordering on impossible, to piece together the holistic metric information
from each of the applications and as such unlikely to keep up with the business
decision making cycles needed in today’s highly dynamic business world.

Interestingly, the “application” generated from the BOM does provide the end-to-
end perspective so eagerly desired by the business. But the reality is that we also
have a tremendous and continuing investment in existing IT systems. To bridge the
two, the concept of the business operation harness was born. The following figure
explains the concept in the context of IGF. Needless to say, the same concept can
easily be applied to other end-to-end business processes.

Fig. 8. End-to-end Harness solution architecture

 Artifact-Based Transformation of IBM Global Financing 275

The e2e Harness in the middle Figure 8 is the umbrella application enabled
(generated) from the BOM. It is responsible for managing the lifecycle and data
content of the 3 key business entities spanning the entire IGF business operations.
The harness application will operate in two modes. The observation mode delegates
processing to the legacy applications and periodically receives updates on the artifact
by either proactively polling the legacy application (pull) or exposing a service for the
legacy application to call (push). In the application mode, the harness is transformed
into a full fledged application, managing the artifacts and the workflows around it.

The Strategic Platform (Figure 8) is the set of strategic functional applications that
fulfill logical portions of the harness. In the observation mode, the harness delegates
processing to these applications. For IGF, International Customer Financing System,
Global Contract Management System and Global Asset Recovery Services are
examples of existing applications that are triggered from the harness at the
appropriate time with the relevant business artifact information. While the application
is running or in some cases after it has completed processing, updates to the business
artifacts are relayed back to the harness to update its own repository. For example,
when the Deal is ready to be priced in the harness application, the Financial Services
application is “kicked off”. The application runs its course; a price is calculated and
reported back to the harness. The harness updates the Deal with the pricing
information, marking the milestone as completed and triggers the next set of
processing activities.

In other cases, where the functionality cannot be mapped to an IT system, the
harness goes “deep”. This means that those portions of the harness will be developed
into a full-fledged application implementing the process workflow. An example from
IGF is the concept of a Sales’s Workbench as shown in the bottom left of the figure.
The Deal lifecycle starts with the sales cycle which hitherto has been carried out
manually by the business. The harness can be expanded to provide the full workflow
management for the sales team. As soon as the sales cycle is complete, the harness
reverts back to the observation mode, delegating control to an existing application.

The top layer shows the KPI dashboards and metrics running off harness data. The
KPIs are defined as a function of the BOM. The harness is the implementation of the
BOM and the harness data reflects the lifecycle status and content of the 3 key
business entities. Thus it is possible to get the complete end-to-end view of the entire
IGF business through the harness, although most of the actual work is happening via
the legacy applications.

In summary, a harness-like shallow application provides tremendous advantage to
drive the end-to-end visibility the business really cares about. The harness also
provides a single point of entry for all lines of business people so operations can be
standardized. It also provides a blueprint to map current IT infrastructure supporting
the business and further, a framework to evaluate future IT spending.

8 Conclusions, Discussion and Lessons Learned

IGF is a complex, global business operation. Re-designing the business model is a
daunting task because of the inherent complexity and the sheer global scale of the

276 T. Chao et al.

business which spans over 50 countries. The IGF executive leadership team
developed a strategy to standardize and integrate their operations globally.

Traditional approaches such as process decomposition were tried, but were
impeded by the rich variations that are inherent in IGF’s business operations.
Cultural, organizational change and governance issues further slowed the progress of
the teams. To address these issues, IGF executive leadership team utilized the
Business Artifact Method to redesign their business.

The Business Artifact Method starts with identifying the key artifacts of the
business, the “entities” that the business processes. For IGF, the key artifacts are the
“deal”, “supplier invoice” and “assets”. The design process is centered on the artifacts
and tracing the lifecycles of the artifacts as they are processed by the business. By
contrast, traditional business process design methods focus on activities, with of the
guidance provided by a focus on artifacts.

The business artifact provides the structure for capturing additional design
elements of the operation including business rules, key performance indicators, and
vocabulary. We were able to reduce the time and effort associated with modeling by
addressing all design elements during BOM development. The IGF team also
commented on the value of having an integrated model and how well the method
facilitated communication among IGF stakeholders.

The Business Artifact method was credited with a number of intangible benefits by
the IGF team. Of paramount importance is that the method yields an intuitive
perspective on complex business operations that is focused on the primary purposes
of the business. The method keeps the redesign team focused on the “right” level of
granularity of business operations, while establishing a vocabulary and method which
enhances stakeholder communication and consensus building. The BOM captures the
business level requirements of the redesigned operation.

One of the more tangible results is the ability to generate working code directly
from the BOM. This was important for two reasons. First, the “fast-path” rapid
prototype allowed business process owners to easily comprehend how a BOM will
behave when implemented. The ability to touch and operate the prototype grounded
the semantics of the BOM, facilitating understanding and communication. Second, the
generated code can serve as the skeletal code for a final application that realizes the
BOM, greatly accelerating the development process. Because the BOM is used in
generating a software solution, there is very low impedance between the intent of the
business and the actual implementation.

The BOM defined 220 business rules, allowing us to manage country variation due to
legal and regulatory requirements. This definition enabled the creation of 60 global
process standards, being deployed across all geographies within IBM Global Financing.
The BOM enables IGF to deploy the standards to all countries, resulting in significant
cost savings. Other approaches had no vehicle to capture approved variations in local
and regulatory country deviations to the standards.

We identified numerous enhancements to the tools which we used to capture the
BOM. As detailed in section 5, the fundamental concept behind business artifacts are
the information and life cycle of the artifact, and how the two relate to each other.
We plan to investigate new tool features which improve a practitioner’s understanding
how each task creates, accesses, modifies and deletes information in the business
artifact. Additionally, we see a need to help practitioners easily capture, visualize and

 Artifact-Based Transformation of IBM Global Financing 277

comprehend the full life cycle of a single business artifact, including business rules,
and KPIs. The tool needs to support large teams that work independently on parts of
the BOM and then integrate their results.

The business artifact method was found to be an innovative technique for
redesigning complex business operations. The redesigned BOM is being used as the
structural backbone and single source, pivotal reference point of the IGF Client
Financing business operation.

Acknowledgement

The authors gratefully acknowledge the thoughtful feedback provided by the Rick
Hull and the anonymous reviews of our paper.

References

1. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: A
method for developing service-oriented solutions. IBM Systems Journal 47(3), 377–396
(2008),
http://researchweb.watson.ibm.com/journal/sj/473/
arsanjani.html

2. Shapiro, B.P., Rangan, V.K., Sviokla, J.V.: Staple Yourself to an Order. Harvard Business
Review (July-August 2004) (Originally published in 1992)

3. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-centered
operational modeling: lessons from customer engagements. IBM Systems Journal 46(4),
703–721 (2007)

4. Hammer, M.: The 7 Deadly Sins of Performance Measurement [and How to Avoid Them].
Sloan Review, 26–27 (April 2007)

5. Linehan, M.H.: SBVR use cases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)
RuleML 2008. LNCS, vol. 5321, pp. 182–196. Springer, Heidelberg (2008),
http://www.cs.manchester.ac.uk/ruleML/presentations/
session5paper1.ppt

6. IBM Global Financing,
http://www.ibm.com/services/us/financing/index.html

7. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification.
IBM Systems Journal 42(3), 428–445 (2003)

8. Object Modeling Group (OMG). Semantics of Business Vocabulary and Business Rules
(SBVR), http://www.omg.org/spec/SBVR/1.0/

9. Palmisano, S.: The Globally Integrated Enterprise, Foreign Affairs (May/June 2006)
10. Wedgewood, I.: Lean Sigma: A Practitioner’s Guide. Prentice Hall, Englewood Cliffs

(2006)

Instantaneous Soundness Checking of Industrial
Business Process Models

Dirk Fahland1, Cédric Favre2, Barbara Jobstmann4, Jana Koehler2, Niels Lohmann3,
Hagen Völzer2, and Karsten Wolf3

1 Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099 Berlin,
Germany

fahland@informatik.hu-berlin.de
2 IBM Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{ced,koe,hvo}@zurich.ibm.com
3 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany

{niels.lohmann,karsten.wolf}@uni-rostock.de
4 EPF Lausanne, 1015 Lausanne, Switzerland

barbara.jobstmann@epfl.ch

Abstract. We report on a case study on control-flow analysis of business process
models. We checked 735 industrial business process models from financial ser-
vices, telecommunications and other domains. We investigated these models for
soundness (absence of deadlock and lack of synchronization) using three differ-
ent approaches: the business process verification tool Woflan, the Petri net model
checker LoLA, and a recently developed technique based on SESE decomposi-
tion. We evaluate the various techniques used by these approaches in terms of
their ability of accelerating the check. Our results show that industrial business
process models can be checked in a few milliseconds, which enables tight in-
tegration of modeling with control-flow analysis. We also briefly compare the
diagnostic information delivered by the different approaches.

1 Introduction

Various studies [1] show that many business process models contain control-flow er-
rors such as deadlocks. Such errors obstruct the correct simulation, code generation and
execution of these models. Therefore, detecting and removing control-flow errors be-
comes crucial in view of the increasing popularity of these use cases. Preventing errors
by using a restricted, for example a purely block-oriented modeling language is rarely
an option because a model typically needs to reflect the real causal process structures
present in an enterprise.

In this paper, we are interested in checking business process models for the clas-
sical notion of soundness [2,3], which entails the absence of deadlocks and lack of
synchronization, which are explained in more detail below. Our interest in soundness is
motivated by an increased need in creating business process models not only for doc-
umentation purposes, but for an input into a translation and code generation process
where, e.g., WS-BPEL code is generated. Soundness is necessary to translate a process
modeled in a graph-based language, such as UML Activity Diagrams or BPMN, to WS-
BPEL in a way that preserves the execution semantics and the structure of the process.

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 278–293, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Instantaneous Soundness Checking of Industrial Business Process Models 279

This use case requires a process to be checked in a relatively short amount of time, say
500 ms or less, because checks are to be performed on each major modification, that is,
at least on each save operation on the process model. Moreover, entire libraries of up
to several hundred processes have to be checked when models are exchanged between
modeling tools. Short response times make it possible to integrate control-flow analy-
sis tightly with modeling such that errors are found at the earliest possible time, which
would allow the user to relate an error to the latest change in the model. Furthermore,
use cases such as code generation from models also require that an analysis produces
sufficient diagnostic information to allow the user to locate and repair the detected er-
rors.

A variety of techniques for checking soundness exists in the literature. They differ
in their completeness, worst-case complexity, and quality of diagnostic information re-
turned. Most techniques can be easily combined to optimize performance. The most
flexible technique is state space exploration. It is most likely applicable to other similar
use cases, such as checking a relaxed notion of soundness or checking more expres-
sive languages supporting OR-joins and other advanced synchronization constructs. But
state space exploration suffers from the state space explosion problem, i.e., the fact that
the number of reachable states can be exponential in the size of the process model. On
the other hand, many business process models have a simple structure, for instance, they
are sequential to a large extent, hence they do not necessarily have a large state space.

At the onset of our project, it was not clear from the literature how large the state
spaces of control-flow models of realistic business processes are and hence which ad-
ditional techniques are needed to check their soundness as fast as required by our use
case. It was completely open whether such a check can be performed in the required
time and in such a way that sufficient diagnostic information is obtained. In addition,
given the variety of available approaches, it was unclear which would be the most suit-
able techniques.

In this case study, we investigated three approaches implemented in three different
tools as outlined in Fig. 1:

1. The Petri net model checker LoLA [4], from which we used CTL model checking
with partial order reduction.

2. The business process verification tool Woflan [3], which uses a mixture of Petri net
analysis techniques, most notably structural Petri net reduction and S-coverability
analysis, as well as a form of state space exploration based on coverability trees.

3. The process validation technique used in the IBM WebSphere Business Modeler,
which combines SESE decomposition [5] with heuristics and state space
exploration.

The data set for our case study was a large collection of process libraries available
in the IBM WebSphere Business Modeler tool. The first two approaches required a
translation of these models into Petri nets, whereas for the third approach, the models
were translated into workflow graphs.

We obtained the following results: Based on the 735 process models that we ana-
lyzed, soundness of industrial business process models can be decided in a few mil-
liseconds per process. Although many processes are simple enough that state space
exploration alone would be sufficient to decide soundness, this method is not sufficient

280 D. Fahland et al.

SESE
decomposition

liveness check
(reduced state space)

safeness check
(reduced state space)

soundness check
(plain state space)

matches
structural heuristics?

translation

translation

Petri net

SESE fragments analysis result

/

analysis result

workflow graph

A

B

C

choice depends on SESE fragment

always perform both checks

sound counterexample

/
sound counterexample

extension to
workflow net

structural
reduction

reduced workflow networkflow net

trivial workflow net?

soundness check
(structure and
state space)

analysis result

/
sound structural information

analysis result
sound

choice depends on net structure

for each SESE fragment

LoLA

Woflan

IBM WebSphere Business Modeler / SESE approach

Compiler

business process
model

Fig. 1. Three different approaches and tools to check soundness

in general. However, all three approaches perform similarly fast, meeting the above-
mentioned performance requirements. This implies that one can focus on different re-
quirements such as the quality of the returned diagnostic information when deciding
for a soundness-checking technique. Our study also shows that there is a high percent-
age of unsound models, confirming the need for better tool support for execution-aware
modeling.

Previous studies [6,7,3] on checking soundness or the similar notion of EPC sound-
ness of realistic business process models concentrate on error findings and error pre-
diction. These studies do not report runtimes for the analysis. Mendling [8] reports
an average analysis time of 1.8 secs and maximal time of 142 secs for checking the
EPC soundness of 604 processes. His technique of using structural reduction rules that
operate directly on the process model does not find all violations of soundness. A post-
processing with state space exploration is not included in these runtimes. The same set
of processes was also checked for relaxed soundness [9] with a reported runtime of
46 secs per process on average [8,1]; however, no maximal times are reported. Recent
work [10] extends control-flow analysis to more advanced synchronization constructs
such as OR-joins and cancelation regions, but so far no empirical results have been
reported. A preliminary and incomplete version of the SESE decomposition technique
that used heuristics only, but did not include state space exploration, was partially eval-
uated on a different set of data [5].

The remainder of this paper is organized as follows: In Sect. 2, we discuss the data
used in this study, their translation to workflow graphs and Petri nets, and the notion of
soundness. Sections 3, 4, and 5 present the three approaches together with the results
they achieved on the data. In Sect. 6, we review the results in a comparison of the three
approaches and draw conclusions.

Instantaneous Soundness Checking of Industrial Business Process Models 281

2 Selecting the Empirical Data and Preparing the Case Study

2.1 Sampling the Process Data

We scanned a large set of real-world data available to the IBM team for our practical
validation of the soundness-checking approaches and tools. These data mostly resulted
from modeling activities in customer projects within a SOA context, i.e., processes were
captured with the final goal of implementing them in a Service-Oriented Architecture.
The models covered various industry domains such as financial services, automotive,
telecommunications, construction, supply chain, health care, and customer relationship
management. We also looked at large collections of reference processes that were cre-
ated for the insurance and banking domain by users who explored different modeling
styles, i.e., different ways of capturing data and control-flow at varying level of gran-
ularity. All models were available in the IBM WebSphere Business Modeler tool rep-
resented in a language that currently combines elements from UML Activity Diagrams
and the Business Process Modeling Notation (BPMN), but some of them had originally
been created in other tools first and then imported into the IBM product.

It turned out that only some of the model collections considered are useful for our
purposes. Many process models are in fact quite small, as good modeling practice sug-
gests an appropriate structuring of processes into subprocesses, and are therefore not
a challenge for our soundness-checking approaches. Others, in particular those created
in other tools, might not have been created with the appropriate notion of soundness or
might have been created by non-experts and consequently turned out to be syntactically
incomplete and therefore flawed in such a way that it made no sense to consider them
further. In the course of our experimental studies, we therefore reduced our initial test
set of approx. 3000 models to 5 libraries of 735 different models in total from the in-
surance, banking, customer relationship, as well as construction and automotive supply
chain domains. We completely anonymized the data in these models, e.g., task names
would be replaced by enumerations t1, t2, . . ., and named these libraries A, B1, B2, B3,
and C. These anonymized libraries, which have been stripped off all semantics and rep-
resent only purely structural information, were the input for the tools LoLA, Woflan,
and the SESE approach. Libraries B1, B2, and B3 partially overlap as they represent a
series of models from the same domain created over a period of two years, in which a
library changed to the next by adding more process models and refining all models with
further detail. The number of 735 different processes therefore counts only the latest
library in this series, which is B3 with 421 processes, together with the 282 processes
from library A and 32 processes from library C.

Table 1. Static data

A B1 B2 B3 C

Avg. / max. number of nodes 14 / 46 17 / 69 16 / 67 18 / 83 27 / 118
Avg. / max. number of edges 33 / 127 29 / 147 31 / 202 33 / 195 33 / 145

Avg. / max. node inflow 2.52 / 13 1.76 / 15 1.90 / 69 1.86 / 27 1.84 / 4
Avg. / max. node outflow 1.03 / 8 0.94 / 13 0.99 / 15 1.05 / 30 1.83 / 4

282 D. Fahland et al.

Table 1 characterizes the data from our process libraries by measuring the number of
nodes that represent tasks, subprocesses, gateways, start and end events, and the number
of edges that represent control- and data-flow connections between nodes. The inflow
and outflow numbers capture the branching degree that occurs in the models. Note that
for libraries B1 and B2 the average outflow is smaller than 1, because many end events
occurring in these models have outflow 0.

Fig. 2. Structure of a
typical, average-sized
process model

To illustrate such a process model, we show a typical
average-sized example from library C in Fig. 2. We split the
flow into two parts: the end of the left flow continues at the
beginning of the right flow. This process model contains 21
tasks representing elementary, not further distinguished pro-
cess steps, 16 gateways to encode XOR-splits and -merges,
and 51 edges representing data- and control-flow connections.
A task can have multiple incoming and outgoing edges that
encode implicit AND-splits and -joins of the control and data
flows. The example model also contains several cycles: There
is a large cycle that spans almost the entire process and there
are three smaller cycles within this large cycle – two of them
are nested within each other, whereas the third occurs at the
end of the process.

2.2 Translation into Workflow Graphs and Petri Nets

Data-flow constructs in the language of the current version of
the IBM WebSphere Business Modeler are similar to UML
activity diagrams. Here, we only consider explicit data-flow
connections and no repositories, because each such connection
implies a control-flow connection. Control-flow constructs are
visualized in BPMN.

The translation of the process models into the format re-
quired by the soundness checkers focuses on the following
modeling elements: start and end events, tasks, subprocesses,
control flow, input and output sets, and gateways. Data flow
is ignored during the translation, i.e., each explicit data-flow
connection is replaced by a control-flow connection. Data flow
connections from and to repositories were not considered at all.
The current language supported by IBM WebSphere Business
Modeler contains XOR- and AND-gateways as well as an OR-
split, but no OR-join. The translation is well-known and there-
fore not repeated here; details are provided elsewhere [11].

A task can have multiple incoming and outgoing edges (in-
puts and outputs) that can be grouped into sets. Input and out-
put sets of tasks are translated into gateway logic as illustrated
in Fig. 3. In Fig. 3, task A has inputs a, b grouped into one set
and inputs c, d, e grouped into another set with the meaning
that A can execute if it either receives a and b as input or c, d,

Instantaneous Soundness Checking of Industrial Business Process Models 283

f
g
h

j
i

k

a
b
c
d
e

A �

�

�

�

�

�

�

	

�

�

�

�

�

���

����

����

������

�����

�

�

�

�

	

�

Fig. 3. Translation of a task with disjoint input and output sets (left) into the corresponding work-
flow graph (center) and Petri net patterns (right)

and e. The output (sets) of task A are f , g, h and i, j, k. The presence of an input or output
is expressed by placing a token on an edge between two nodes. Tokens move through
the process as a task or gateway executes, taking the process from one state to another
state in the usual way.

In the center of Fig. 3, we see the translation into a workflow graph [2,5], which
is a control-flow graph containing only gateways and tasks. To the right, we see the
resulting Petri net. In general, input and output sets can overlap, which would lead
to non-free-choice Petri nets as a result of the translation [12]. However, none of the
syntactically valid process models contained in our test set used overlapping inputs or
output sets, i.e., the translation will only return free-choice nets in our case study. This
makes it possible to benefit from fast analysis techniques for free-choice Petri nets, see
for example Sect. 4. Furthermore, users of the tool can specify which input set activates
which output set, but this information was not provided in any of the models. For the
translation, we therefore assumed that each input set can potentially activate each output
set. Two different translations into workflow graphs and Petri nets were implemented,
although the Petri nets could also be directly obtained from the workflow graphs by a
well-known construction [2]. The Petri net models are available at http://www.service-
technology.org/soundness in PNML format.

2.3 Soundness

Figure 4 shows a workflow graph without any tasks as it occurs in the middle part of the
process in Fig. 2 and to which we added a start and an end event. This process model
contains a lack of synchronization error as well as a local deadlock, which are not so
easy to spot in the first place.

F1

J1

M1

M2

Fig. 4. Workflow graph with deadlock and lack of synchronization errors

284 D. Fahland et al.

A local deadlock is a reachable state s of the process that has a token on an incoming
edge e of an AND-join such that each state that is in turn reachable from s also con-
tains a token on e, i.e., the token is ‘stuck’ on e. A deadlock arises for example, if two
alternative paths are merged by an AND-join or if an AND-join occurs as an entry to
a cycle. In the example in Fig. 4, a deadlock occurs when a token travels the Yes edge
leaving the XOR-split D1. Eventually, this token will reach the AND-join J1 via the
upper incoming branch. However, no other token will ever arrive at the lower incoming
branch of J1.

A reachable state s contains a lack of synchronization if there is an edge that has
more than one token in s. If such an edge contained a task, it would be executed twice.
A lack of synchronization arises for example, if two parallel paths are merged by an
XOR-merge or if the exit of a cycle is an AND-split. In the example in Fig. 4, a lack
of synchronization occurs when a token travels the No edge leaving the XOR-split D1.
This token will activate the AND-split F1, which leads to a token reaching the XOR-
merge M2 and another token traveling the cycle D2,M1,D1, F1. This can result in
multiple tokens on the edge from F1 to M2.

A process model that has neither a lack of synchronization nor a local deadlock is
said to be sound. This definition of soundness is equivalent to the classical definition
of soundness in free-choice Petri nets [3]. There are other equivalent characterizations
that are exploited by some of the tools used in our case study, see for example Sect. 5.
Their formal treatment can be found elsewhere [2,3,13,5].

Table 2. Dynamic data

A B1 B2 B3 C

Processes in library 282 288 363 421 32
sound 152 107 161 207 15
unsound 130 181 202 214 17

Avg. / max. concurrency 2 / 13 8 / 14 16 / 66 14 / 33 2 / 4

Processes with >1000000 states 26 19 29 38 7
Processes with >1000000 states (only sound) 0 1 4 4 0

Avg. number of states (only sound, <1000000 states) 26 71 322 4911 680
Max. number of states (only sound, <1000000 states) 213 2363 28641 588507 8370

Table 2 summarizes the results of our analysis for the libraries. On average, only 46%
of all process models are sound ranging from 37% for library B1 to 53% for library A.
The table also shows the degree of concurrency that can be found in a process model,
i.e., the maximum number of tokens that occur in a single reachable non-error state of
the process. Row 5 shows the number of processes with more than one million reachable
states, which include error states, and processes that have infinitely many reachable
states such as the process shown in Fig. 4. To exclude those, we measured the size of
the state space of each sound process, which is always finite, which still returned a few
processes with more than one million states. The average values, however, suggest that
such processes are rare.

Instantaneous Soundness Checking of Industrial Business Process Models 285

3 State Space Verification with LoLA

LoLA [4] is a tool that decides numerous properties by an inspection of the state space
of a given Petri net. For making state-space inspection feasible, it offers several state-
space reduction techniques. The experiments were carried out with the current version
of LoLA 1.11 [14].

Soundness as a model-checking problem. The process models have to be translated
into Petri nets prior to the verification as sketched in Sect. 2.2. To verify soundness,
LoLA works in two runs on the resulting Petri nets. In the first run, it checks for local
deadlocks and in the second run for lack of synchronization.

A process has no deadlock iff a final state can be reached from every reachable
state; a state is final iff each token has reached an end node. The latter can easily be
expressed as a state predicate in LoLA. The former can be expressed as a CTL formula
over this predicate and checked by LoLA directly. LoLA checks the property on-the-fly,
i.e., while the state space is being generated. As soon as LoLA detects a violation, it
stops and returns the violating state. Once an error state has been found, a reachability
check is used to produce a trace to the error state.

LoLA has a switch that causes state-space generation to be stopped if an unsafe state
is generated. A state is unsafe if a single place contains more than one token, which
indicates a lack of synchronization in the original process model. This simultaneous
check for lack of synchronization in the first run prevents that LoLA tries to generate an
infinite state space and also optimizes performance for finite state spaces. If an unsafe
state is found, a trace leading to it is returned immediately. However, the test for unsafe
states cannot detect all lack of synchronization errors. Therefore, if no error has been
detected during the first run, LoLA is invoked a second time on each net, this time
explicitly checking for lack of synchronization.

Lack of synchronization, i.e., unsafeness of states, can be expressed in LoLA as the
state predicate

∨
p∈P m(p) > 1, where P is the set of places of the Petri net. As this

set can become very large, e.g., on our test data, a maximum of 275 places occurred,
we simplified this predicate to optimize performance. We can assert by construction for
several places in the Petri net that they cannot obtain more than one token unless a pre-
ceding place is also able to do so. In essence, only places that represent an XOR-merge
or an exit of a cycle need to be considered. The resulting state predicate is checked for
reachability by LoLA. If the predicate is satisfied, a lack of synchronization is identified
and LoLA produces a trace to the error state.

We used partial order reduction [15] for the results of this paper. This technique
suppresses insignificant orderings of concurrently enabled events. LoLA ensures that
the property to be checked is preserved by the reduction.

For the example depicted in Fig. 2, LoLA detects a lack of synchronization in the
first run, concludes that the net is unsound, and returns an error trace consisting of 36
states.

Experimental setup. After translating the process models into Petri nets with our com-
piler [11,16], we performed the two checks explained above. We ran the experiments on
a notebook with a 2.16 GHz processor and 2 GB RAM. We set a bound of one million
states for each net and classified a net as intractable if this bound was reached.

286 D. Fahland et al.

Table 3. Analysis statistics for LoLA

A B1 B2 B3 C

Intractable processes (no partial order reduction) 0 2 5 4 0

Avg. number of explored states (partial order reduction) 50.42 40.60 37.52 60.76 127.28
Max. number of explored states (partial order reduction) 187 1591 1591 6467 1469

Avg. length of error trace (partial order reduction) 30.24 10.81 12.12 11.21 53.17
Max. length of error trace (partial order reduction) 67 110 75 103 120

Analysis time for library (partial order reduction) [ms] 2680 2356 3184 3878 305
Analysis time for library (struct. reduced, partial order reduction) [ms] 2523 2192 3025 3575 275

Experimental results. Compared with the original models, the Petri nets that we ob-
tained have about 5.5 times as many nodes and edges, see Table 1, which is due to the
more fine-grained representation of the process logic in Petri nets as illustrated by Fig. 3.
The largest net results from a process model in library C and has 558 nodes and 607
edges.

Without partial order reduction, not all nets could be analyzed, see row 1 of Table 3.
When partial order reduction is used, there is no intractable process. In fact, the largest
state space explored consists of only 6467 states. Only around 100 states need to be
explored on average. During the experiments, LoLA never consumed more than 2 MB
of memory, which allows for an unobtrusive verification process, which was not clear
in advance. Table 3 summarizes the results.

In a variant of the experiment, we also applied structural Petri net reduction rules
[17] to each Petri net before checking it with LoLA. These rules reduce the size of
the net, while preserving soundness. The last row of Table 3 shows that structural net
reduction hardly has any effect on the runtime. Note that these runtimes do not contain
the time needed for structural reduction.

The longest error trace contains 120 Petri net states. When mapped to the original
process model, this trace corresponds to a sequence of 40 tasks.

4 Soundness Verification with Woflan

Woflan [3] is a tool for verifying the soundness of business processes modeled as Petri
nets. It poses syntactic restrictions on the Petri nets it can analyze, most notably, that
each net must have a unique terminal place. Such a net is called a workflow net.

Preparing the input for Woflan. Only a few process models from our libraries have
a unique terminal node, hence only a few of the resulting Petri nets would have a sin-
gle terminal place and thus be workflow nets. However, a multi-terminal net N can be
extended to a workflow net N′ using the algorithm of Kiepuszewski et al. [13, Proof of
Theorem 5.1]. This algorithm adds new edges to N that cause every terminal place of
N to be marked in every run. It then synchronizes all terminal places of N by a final
transition, which produces a token on a new unique terminal place. Kiepuszewski et
al. [13] show that soundness is preserved by the extension assuming that the original
net N is a free-choice Petri net. As we discussed in Section 2, our data set meets this

Instantaneous Soundness Checking of Industrial Business Process Models 287

assumption. It is also easy to see that the extension preserves unsoundness. Extending
N only requires a depth-first search in N for each of its terminal places.

The tool Woflan. Woflan implements a complex algorithm [3] to check soundness.
It uses various techniques from Petri net structure theory as well as state space explo-
ration. If the workflow net is a free-choice net, which is the case in our experiments,
Woflan’s algorithm reduces to the following procedure (recall also Fig. 1):

(1) First, soundness-preserving structural reduction rules from Petri net theory [17]
reduce the size of the input. If the resulting net is trivial, i.e., it has only one transition,
Woflan immediately concludes that it is sound. (2) Otherwise, Woflan checks the S-
coverability of the net [3] to exploit the following properties: (2a) A free-choice Petri
net that is not S-coverable is unsound, and Woflan quits; the unsoundness can be caused
by a deadlock or a lack of synchronization. (2b) A Petri net that is S-coverable has no
lack of synchronization, but may contain a local deadlock [3]. (3) If step (2b) applies,
Woflan searches for local deadlocks–in Petri net terms a dead or a non-live transition–by
state space exploration, i.e., by constructing the net’s coverability graph. The techniques
underlying steps (2) and (3) have exponential worst-case complexity in the size of the
net.

Woflan provides two kinds of diagnostic information in this setting: If step (2a) ap-
plies, it returns a list of places that are not S-coverable, i.e., that contribute to a deadlock
or a lack of synchronization. If Woflan detects a deadlock in step (3), it returns a list of
dead and non-live transitions that create this deadlock.

Experimental setup. We verified the workflow nets resulting from the translation with
a command-line version of Woflan in a batch on a notebook with a 1.66 GHz processor
and 2 GB RAM. We ran the experiments twice, the first time without applying structural
reduction, the second time with. Aiming at instantaneous verification, we interrupted
Woflan if the verification time exceeded 5000 ms. In these cases, we classified the pro-
cess as intractable for the analysis.

Experimental results. Table 4 summarizes the results of our Woflan experiments. Our
first analysis on the unreduced workflow nets was intractable for 46% of library A and
for 19%-28% of libraries B1 to B3. The size of these nets corresponds to the numbers
presented for LoLA in Sect. 3. Surprisingly, the analysis became intractable mostly
when Woflan checked S-coverability–the technique’s exponential worst-case complex-
ity explains this observation. If S-coverability completed successfully, proving absence
of deadlocks by state space exploration was tractable in all but 11 cases. Library C was
analyzed completely and fairly quickly, see Table 4, row 4. The structure of its models
seems to be more suitable for Woflan. We observed that without capping analysis after
5000 ms, Woflan’s analysis frequently required between 15 min to more than 1 h per
process.

In the second experiment, we let Woflan apply structural Petri net reduction rules
prior to analysis, which on average reduced nets in size by a factor 5. The largest net,
which resulted from a process in library B3, has 74 nodes and 232 edges. About a third
of all models were reduced to the trivial workflow net, see Table 4, row 5. Thus, struc-
tural reduction alone identified 53% (libraries A and C) to 80% (libraries B) of all sound

288 D. Fahland et al.

Table 4. Analysis statistics for Woflan

A B1 B2 B3 C

1) Without structural reduction
Intractable processes 129 54 77 119 0

due to S-coverability 129 53 74 112 0
due to state space exploration 0 1 3 7 0

Analysis time [ms] 860812 288218 429343 755875 2375

2) With structural reduction - no intractable processes
Sound by structural reduction 81 79 134 162 8
Unsound by S-coverability 130 176 197 210 11

Processes that required state space exploration 71 32 32 49 8
Max. number of explored states 8 7 8 8 12

Analysis time per library [ms] 1120 1305 1795 2315 165
per process [ms], avg. / max. 3.97 / 20 4.55 / 40 4.94 / 91 5.50 / 1142 6.11 / 90

processes. Woflan classified about two thirds of the remaining nets as unsound by prov-
ing that a net is not S-coverable and free-choice. These nets constitute almost 100% of
all unsound models. For example as Table 2 shows, library B3 has 213 unsound pro-
cesses, out of which 210 are not S-coverable. Only for the remaining nets–between 9%
(library B2) and 25% (libraries A and C) of the processes–was a state space of at most
12 states explored to complete the analysis. Woflan checks soundness of a process in
about 4 to 6 ms on average, with a maximum runtime of less than 90 ms. The one excep-
tion in library B3 ran into the exponential worst-case complexity of the S-coverability
check, see Table 4, row 10.

Interpreting Woflan’s diagnostic information on the original process model is not
trivial. For instance, in the workflow net that corresponds to the model of Fig. 4, Woflan
reports all places to be not S-coverable, hiding the concrete source or location of the
error.

We conclude that S-coverability checking alone does not sufficiently speed up the
analysis for instantaneous verification of free-choice Petri nets. However, this technique
becomes very powerful in combination with Petri net reduction rules. For up to 91% of
our examples, soundness or unsoundness was proven alone by these two techniques.
Only in the remaining cases, was a fairly simple state space exploration required.

5 The SESE Decomposition Approach

The SESE approach structurally decomposes a business process model into smaller
fragments, for which soundness is analyzed by heuristics and state space exploration.
If each fragment is sound, then the entire process is sound. The analysis is done on
a workflow graph, which is obtained from the original process model as sketched in
Sect. 2.2. The SESE approach combines the following three techniques.

State space exploration with SESE. The base technique for the SESE approach is
state space exploration. Soundness of a workflow graph can be decided by checking that
no explored state has more than one token on a single edge (lack of synchronization) and

Instantaneous Soundness Checking of Industrial Business Process Models 289

that each non-terminal state has a successor state (global deadlock). If a workflow graph
has no lack of synchronization, then every local deadlock manifests itself eventually in
a global deadlock in each execution. The workflow graph’s state space is explored by
depth-first search. The analysis terminates upon the first state that violates one of these
two properties and returns a trace leading to this state. If there is no error, the entire
state space must be explored.

SESE decomposition. To mitigate the state space explosion problem, we use a parsing
technique called the Refined Process Structure Tree (RPST) [18]. The RPST decom-
poses a workflow graph into a hierarchy of fragments with a single entry and single
exit (SESE) of control. A SESE fragment of a workflow graph is a subgraph that has a
single entry node and a single exit node. Fig. 5 shows an example of a workflow graph
that is decomposed into such fragments. Multiple end nodes can be handled by adding
a unique dummy end node as shown in Fig. 5. Soundness is compositional with respect
to SESE fragments, i.e., each fragment can be checked in isolation [5]. To verify the
soundness of a fragment, each child fragment can be treated as a task (node) of the
workflow graph.

A
B

C E F

G

Fig. 5. Decomposition of a workflow graph us-
ing the Refined Process Structure Tree

The soundness of a SESE fragment can
be checked using plain state space ex-
ploration. Because fragments are usually
considerably smaller than the entire work-
flow graph, the input to the state space ex-
ploration is smaller, in turn resulting in
smaller state spaces to be explored. The
decomposition is done in linear time and
the number of fragments is at most lin-
ear in the size of the workflow graph. The
time to analyze an entire workflow graph
is then dominated by the size of its largest
fragment.

The diagnostic information returned is a fragment showing the error as a trace rela-
tive to the fragment. This shows an error inside a smaller scope and shortens the error
trace. Moreover, the checker can detect multiple errors at once, up to one per fragment.
This includes ‘unreachable’ errors, such as a lack of synchronization in a fragment,
e.g., in fragment G in Fig. 5, that cannot be reached by plain state space exploration be-
cause this fragment is obstructed by another deadlock earlier in the process, e.g., frag-
ment A in Fig. 5.

Heuristics. In practice, many fragments have a simple structure that can be recognized
as sound or unsound in linear time using structural heuristics [5]. For example, if a
fragment contains only XOR-gateways, it is purely sequential and therefore sound. If
a fragment contains at least one XOR-split, but no XOR-join it must be unsound. In
this case, the XOR-split can be highlighted inside the highlighted fragment as diag-
nostic information. We implemented 14 heuristics, all of which can be evaluated based
on a single count of the gateway types within a fragment. Only a fragment that does

290 D. Fahland et al.

not match any of the heuristics becomes the subject of state space exploration; such
a fragment is said to be complex. Therefore, heuristics are expected to speed up the
analysis by bypassing the state space exploration.

Experimental setup. The SESE approach is implemented as part of the IBM Web-
Sphere Business Modeler, in which we also conducted the experiments collecting re-
sults from the debugging console. The analysis time reported also includes the produc-
tion of the regular error report in the tool.

We conducted three experiments to measure the impact of the SESE decomposition
and the heuristics: First, we used plain state space exploration only. Second, we decom-
posed each process into its SESE fragments, and all fragments were then analyzed by
state space exploration. In the third experiment, we used decomposition in combination
with heuristics and state space exploration, i.e., state space exploration was applied only
to complex fragments.

The analysis time is computed as an average over five runs. The overhead for loading
the process models from the hard drive into memory was measured separately and fac-
tored out from the analysis time. The SESE experiment was conducted on a notebook
with a 2 GHz processor and 3 GB RAM.

A process is intractable if more than 100000 states have to be explored. This threshold
value is based on the experience that the time needed would otherwise exceed a value
that is acceptable in the use case of instantaneous verification as described in Sect. 1.

Experimental results. Table 5 shows the results for the three experiments described
above. For plain state space exploration, we observe that at most 6 out of 363 processes
(all contained in library B2) are intractable, i.e., less than 2 percent. Analyzing library A,
which contains no intractable process, only requires 490 ms.

When using the decomposition into fragments, we observe that there no longer is
an intractable process. However, the analysis time of library B2 is dominated by one
particular process which took 25 sec to be analyzed. All other processes took less than
1 sec each. SESE decomposition reduces the size of the input to state space exploration
by an average factor between 1.5 and 4. The number of states that are explored for
a particular process is the sum of the number of states explored for each fragment of
the process. Table 5 shows that the number of states that have to be explored for a
process on average reduces by up to a factor of 13.8 with respect to experiment 1. After
decomposition, there is still a fragment that has 16403 states.

Library A shows that computing the decomposition does not always pay off: This
library is analyzed faster without decomposition. The analyses of the other libraries,
however, clearly benefit from the decomposition: Decomposition reduces the analysis
time by a factor between 5 and 67 with respect to plain state space exploration.

In addition, we recorded the length of the error trace in both experiments. Error
traces are notably smaller when they relate only to a fragment, rather than to the entire
workflow graph. The error trace lengths were reduced by a factor of 4.7 on average.
Note that the error trace using the decomposition into fragments starts at the start node
of the fragment and not at the start node of the workflow graph. The decomposition
allows us to detect multiple errors per process, at most one per fragment. For library B2,
we measured an average of 1.55 and a maximum of 7 unsound fragments per unsound
process.

Instantaneous Soundness Checking of Industrial Business Process Models 291

Table 5. Experimental results for the SESE decomposition approach

A B1 B2 B3 C

1) State space exploration - reference

Explored states per process (avg.) 42.8 826.4 1879.3 1508.1 149.7
Explored states per process (max.) 241 17176 28684 28688 2517
Intractable processes 0 2 6 5 0

Analysis time [ms]
library 490 30019 197670 135178 30019
process (max.) 16 13186 76700 24624 62

2) Using the decomposition - no intractable processes

Size reduction (workflow graph / largest fragment) (avg.) 4.1 3.8 3.9 4.7 2.7

Explored states

process (avg.) 52.4 31.6 86.7 38.4 61.7
reduction w.r.t. exp. 1 per process (avg.) 1.0 13.8 13.4 10.2 1.5
process (max.) 201 268 16534 311 356
fragment (max.) 53 117 16403 68 120

Analysis time [ms]
library 1587 1359 35495 2446 447
process (max.) 16 16 25286 32 32

3) Using the heuristics - no intractable processes

Portion of fragments analyzed by heuristics 97% 97% 98% 98% 99%

Explored states

process (avg.) 6.0 2.3 3.2 2.5 10.1
reduction w.r.t. exp. 2 per process (avg.) 28.3 22.9 78.4 29.6 34.1
process (max.) 53 36 165 24 120
fragment (max.) 53 36 165 20 120

Analysis time [ms]
library 1247 1390 1681 2303 318
process (max.) 16 31 16 31 62

The third experiment shows that the heuristics speed up the analysis further. For
all libraries, more than 97 percent of the fragments match some heuristic and only
the remaining ones have to go into state space exploration. We noted that a process
usually contains not more than one complex fragment, out of an average of 16 fragments
per process. Only the largest process, which has 122 fragments, contains two complex
fragments; no process contained more. The small number of complex fragments results
in a reduction factor of up to 78.4 for the average number of states that were explored
to analyze a process. The use of the heuristics reduces the analysis time of library B2
by a factor 21 with respect to experiment 2. For the other libraries, the differences in the
analysis times is not significant. The maximum analysis times per process range from
10 to 62 ms.

6 Conclusion

We showed that different techniques can be used to check the soundness of industrial
business process models reliably in fractions of a second.

For the state space approach using LoLA, we found that partial order reduction and
on-the-fly verification are the essential factors for success. Although many processes
could have been verified on a brute force state space, some state spaces exploded with-
out the use of partial order reduction. While it was difficult to handle full state spaces,

292 D. Fahland et al.

the exploration of erroneous state spaces up to the first error was efficient. Surprisingly,
the prior application of structural Petri net reduction has only a minor impact on per-
formance. This may be because many of the existing reduction rules address situations
that also partial order reduction on the state space is dealing with.

In the structural approach using Woflan, we saw that the original models can easily
be translated into the more restrictive notion of workflow nets with just one terminal
node. Another observation was that the performance of Woflan can mainly be attributed
to the structural Petri net techniques. In the few cases where Woflan had to explore a
state space, this state space was rather small because of prior application of structural
reduction. Here, structural reduction turned out to be beneficial as Woflan does not
provide partial order reduction.

In the decomposition approach using SESE fragments, we learned that the approach
did not suffer from severe state space explosion as the state space is only computed lo-
cally for a typically small fragment of the process model. Moreover, structural heuristics
are sufficient to handle most of the fragments, which allows one to bypass state space
exploration altogether.

While being similar in their performance, the three approaches chosen vary with
respect to the diagnostic information they provide. The state space approach used by
LoLA is able to return an error trace of manageable size that can be simulated or ani-
mated. The SESE approach can detect multiple errors in one analysis run and localizes
each error in a particular, typically small, fragment of the original model. This also re-
duces the length of the error trace by a factor of 4.7 on average. Moreover, the approach
can provide additional information depending on the heuristics applied. Woflan returns
some Petri-net specific information that needs to be interpreted carefully before it can
be shown to a business user.

Another notable difference between the three approaches is that Woflan is specifi-
cally built for checking soundness and the SESE approach is specifically designed to
check soundness instantaneously, whereas LoLA is a generic model checker for Petri
nets that could more easily be adapted to check other temporal properties of business
processes.

We would like to point out that there are other promising algorithms to check sound-
ness, especially polynomial-time algorithms exploiting the free-choice property [12].
We could not include those in our case study because we are not aware of available
implementations.

Finally, note also that the various techniques could easily be combined in differ-
ent ways. For example, one could apply SESE decomposition to break the model into
smaller fragments, then use heuristics and structural Petri net reduction to quickly sort
out sound fragments that have a simple structure, and then finally check the remain-
ing fragments with state space exploration based on partial order reduction to obtain
detailed localized error information.

Acknowledgements. We would like to thank Eric Verbeek for his substantial sup-
port in providing a Woflan version for our experiments. Dirk Fahland is funded by the
DFG-Graduiertenkolleg “METRIK” (1324). Niels Lohmann and Karsten Wolf are sup-
ported by the DFG project “Operating Guidelines for Services” (WO 1466/8-1). Jana
Koehler and Hagen Völzer were partially supported by the SUPER project

Instantaneous Soundness Checking of Industrial Business Process Models 293

(http://www.ip-super.org) under the EU 6th Framework Programme Information
Society Technologies Objective (contract no. FP6-026850).

References

1. Mendling, J.: Empirical Studies in Process Model Verification. Trans. Petri Nets and Other
Models of Concurrency (ToPNoC) 2, 208–224 (2009)

2. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W(E.): An alternative way to analyze
workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE
2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

3. Verbeek, H.M.W.E., Basten, T., van der Aalst, W.M.P.: Diagnosing Workflow Processes us-
ing Woflan. Comput. J. 44(4), 246–279 (2001)

4. Wolf, K.: Generating petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)

5. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models through SESE decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

6. van Dongen, B.F., Jansen-Vullers, M., Verbeek, H.M.W.E., van der Aalst, W.M.P.: Verifica-
tion of the SAP reference models using EPC reduction, state-space analysis, and invariants.
Comput. Ind. 58(6), 578–601 (2007)

7. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence of errors in
process models based on metrics. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 113–130. Springer, Heidelberg (2007)

8. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. PhD
thesis, Vienna University of Economics and Business Administration (May 2007)

9. Mendling, J., Verbeek, H.M.W.E., van Dongen, B.F., van der Aalst, W.M.P., Neumann,
G.: Detection and prediction of errors in EPCs of the SAP reference model. Data Knowl.
Eng. 64(1), 312–329 (2008)

10. Wynn, M., Verbeek, H.M.W.E., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Business
process verification: Finally a reality! Business Process Management Journal 15(1), 74–92
(2009)

11. Fahland, D.: Translating UML2 activity diagrams to Petri nets. Informatik-Berichte 226,
Humboldt-Universität zu Berlin, Berlin, Germany (2008)

12. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York (1995)
13. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of control

flow in workflows. Acta Inf. 39(3), 143–209 (2003)
14. LoLA v1.11, http://service-technology.org/lola
15. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) APN

1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)
16. UML2oWFN compiler, http://service-technology.org/uml2owfn
17. Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE 77(4), 541–580

(1989)
18. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M.,

Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer,
Heidelberg (2008)

Symbolic Abstraction and Deadlock-Freeness
Verification of Inter-enterprise Processes

Kais Klai1, Samir Tata2, and Jörg Desel3

1 LIPN, CNRS UMR 7030, Université Paris 13
99 avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

kais.klai@lipn.univ-paris13.fr
2 Institut TELECOM, CNRS UMR Samovar

9 rue Charles Fourier 91011 Evry, France
Samir.Tata@int-edu.eu

3 Department of Applied Computer Science
Catholic University of Eichstätt-Ingolstadt, 85071 Eichstätt, Germany

joerg.desel@ku-eichstaett.de

Abstract. The design of complex inter-enterprise business processes
(IEBP) is generally performed in a modular way. Each process is de-
signed separately from the others and then the whole IEBP is obtained
by composition. Even if such a modular approach is intuitive and fa-
cilitates the design problem, it poses the problem that correct behavior
of each business process of the IEBP taken alone does not guarantee
a correct behavior of the composed IEBP (i.e. properties are not pre-
served by composition). Proving correctness of the (unknown) composed
process is strongly related to the model checking problem of a system
model. Among others, the symbolic observation graph based approach
has proven to be very helpful for efficient model checking in general.
Since it is heavily based on abstraction techniques and thus hides de-
tailed information about system components that are not relevant for
the correctness decision, it is promising to transfer this concept to the
problem rised in this paper: How can the symbolic observation graph
technique be adapted and employed for process composition? Answering
this question is the aim of this paper.

1 Introduction

Business process composition and cooperation are two important research fields
in the business process domain. The questions, what properties of a process has
to be public so that potential partners can collaborate with the process with-
out risking to have an ill-designed composed process, and what is the minimum
necessary to be published, is a hot topic in the literature since many years (e.g.
[2,14,13,9]). Also, one has to make sure that the composition of the processes has
the desired behaviour. The importance of dealing with such inter-enterprise busi-
ness processes (IEBP for short) on one hand and business process composition on
the other hand is reflected in the literature by numerous publications [18,4,19,15].

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 294–309, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Symbolic Abstraction and Deadlock-Freeness Verification 295

In general, an IEBP can be considered as the cooperation of several local
processes designed separately. The activities of each process are formally of two
kinds: internal activities and cooperative activities (interface activities). IEBP
are often too large for formal analysis, and the details of the components are
hidden to the public so that no party knows the entire process definition. There-
fore, we defend the idea that the analysis should be on the local business process
and, if necessary, on an abstraction of the composition partner or of the IEBP.
In this paper, we propose a two steps abstraction technique: In the first step, an
abstraction of each local process is built locally using a new variant of symbolic
observation graphs (SOG for short) [6]. This abstraction has two advantages:
the analysis of the corresponding process can be reduced to the analysis of its
abstraction, and such an abstraction hides the internal structure and organiza-
tion of the process, which is a desired requirement in the IEBP context. In the
second step, the abstraction of the IEBP is obtained by composing the local
abstractions (SOGs), leading to a global abstraction on which the analysis can
be performed efficiently.

One of the most important properties an IEBP should enjoy is deadlock-
freeness. In other words, assuming that the components itself are deadlock-free,
it is undesirable that these components block each other. Taking the view of a
single component, we want to identify situations where the other component is
waiting for some message or action from this component while this component
is waiting for some message or action from the other component. In such a
situation, the other component does not do any visible action. However, since
only the interface behaviour is visible, it is possible that internal actions of the
other component do occur. So this behaviour, usually known as livelock, is as
bad as deadlock behaviour. Hence, in this paper, we extend the deadlock notion
by considering a deadlock state every state from which no cooperative action
is possible in the future. One can check the deadlock-freeness on each SOG
using efficient symbolic algorithms [6] (i.e. algorithms based on set operations).
Since the deadlock freeness property is not preserved by composition, we supply
a new algorithm for checking deadlock freeness of the synchronized product
of the local SOGs. This algorithm is based on local information that can be
made available once before the composition process. The deadlock freeness of
the product guarantees correct cooperation between the underlying processes
(i.e. a deadlock-free cooperation).

The composition of SOGs is immediately suitable for synchronous interorga-
nizational processes. It can moreover be used for checking whether a coopera-
tion between two processes, that communicate asynchronously, is deadlock-free.
To this end, one can define an additional component that represents the asyn-
chronous channel and has two observed actions: receive and send. Now the send
action of the first component synchronizes with the receive action of the channel
whereas the receive action of the second component synchronizes with the send
action of the channel.

This paper is organized as follows. Section 2 adapts the structure of the
symbolic observation graph in order to abstract business processes. Section 3

296 K. Klai, S. Tata, and J. Desel

constitutes the core of the paper and shows how to build the symbolic observa-
tion graph of an IEBP and how to establish whether processes can be composed
(or can collaborate) safely by checking the deadlock-freeness of the obtained
composition of SOGs. A case study is used throughout these sections in order to
illustrate our approach. Section 4 relates our work to other approaches. Finally,
Section 5 summarizes the results and mentions some aspects of future work.

2 Process Abstraction

In this section, we show how the structure of the symbolic observation graph [6]
(SOG) is used to abstract business processes. In [6], the authors have introduced
the SOG as an abstraction of the reachability graph of concurrent systems and
showed that the verification of an event-based formula of LTL \ X (Linear-
time Temporal Logic minus the next operator) on the SOG is equivalent to the
verification on the original reachability graph. The construction of the SOG is
guided by the set of actions occurring in the formula to be checked. Such actions
are said to be observed while the other actions of the system are unobserved.
The SOG is defined as a graph where each node is a set of states linked by
unobserved actions and each arc is labeled with an observed action. Nodes of
the SOG are called meta-states and may be represented and managed efficiently
using decision diagram techniques (BDDs for instance [1]). In practice, due to
the small number of actions in a typical formula, the SOG has a very moderate
size and thus the time complexity of the verification process is negligible w.r.t.
the building time of the SOG (see [6,8,7] for experimental results).

We propose to use a SOG to abstract a business process. The collaboration
actions are observed while the internal ones are not. We will establish that such
an abstraction is especially efficient for loosely coupled IEBPs.

2.1 Notations and Preliminary Results

The technique presented in this paper applies to different kinds of process models
that can map to labeled transition systems, e.g. workflow Petri nets (WF-nets).
For sake of simplicity and generality, we chose to present it for labeled transition
systems, since this formalism is rather simple.

Definition 1 (Labeled Transition System)
A labeled transition system (LTS for short) is a 5-tuple 〈Γ,Act ,→, I, F 〉 where:

– Γ is a finite set of states ;
– Act is a finite set of actions ;
– →⊆ Γ × Act × Γ is a transition relation ;
– I ⊆ Γ is a set of initial states;
– F ⊆ Γ is a set of final states.

In this paper, we distinguish LTS observed actions, denoted by a subset Obs ,
from unobserved actions, denoted by the subset UnObs (with Obs∪UnObs = Act

Symbolic Abstraction and Deadlock-Freeness Verification 297

and Obs∩UnObs = ∅). Observed actions can represent cooperative (or interface)
actions, while unobserved actions represent internal actions.

The following notations are used in this paper:

– For s, s′ ∈ Γ and a ∈ Act , we denote by s a−→s′ that (s, a, s′) ∈→.
– s a−→ means that ∃s′ ∈ Γ s.t. s a−→s′. If σ = a1a2 · · · an is a sequence of ac-

tions, σ denotes the set of actions occurring in σ, while |σ| denotes its length.
Moreover, s σ−→s′ denotes that ∃s1, s2, · · · sn−1∈Γ : s a1−→s1−→· · · sn−1

an−→s′.
s ∗−→s′ denotes that s′ is reachable from s (i.e. ∃σ ∈ Act∗ s.t. s σ−→s′) and
s ∗−→T s

′ holds if σ is included in some subset of actions T .
– The set Enable(s) denotes the set of actions a such that s a−→. For a set of

states S, Enable(S) denotes
⋃

s∈SEnable(s).
– π = s0

a1−→s1
a2−→· · · is used to denote a path of an LTS. π = s0

a1−→· · · an−→sn

is said to be a run if sn ∈ F (i.e. sn is a final state).
– A finite path C = s1

a1−→s2
a2−→· · · an−1−→sn is said to be a cycle if sn = s1.

If {a1, . . . an−1} ⊆ UnObs then C is said to be a livelock.
– s�→, for s ∈ (Γ \ F), denotes that s is a dead state i.e. �∃a ∈ Act : s a−→.
– s�⇒, for s ∈ (Γ \ F), denotes that no observed action can be enabled in the

future starting from s, i.e., �∃o ∈ Obs , τ ∈ UnObs∗ : s τ o−→.

If s �⇒, for s ∈ (Γ \ F), one can either reach a dead state using unobserved
actions only, or a livelock. Such a livelock is said to be a strong livelock. In this
paper we assume that a strong livelock behaviour is equivalent to a deadlock.
In contrast, a cycle with states from which one can execute an observed action
(possibly via an unobserved sequence) is said to be a weak livelock.

For checking LTL properties, livelock and deadlock behaviours have exactly
the same interpretation. However, in the context of inter-organizational pro-
cesses, we claim that only a strong livelock should be viewed as a deadlock, but
not a weak livelock.

The set of states Dead contains the states from which no action is enabled
or from which no observed action is enabled in the future, i.e., Dead := {s ∈
(Γ \ F) | s �⇒} (we distinguish "dead" and "Dead"). The following definition
characterizes deadlocks and strong livelocks in an homogenous way. We define a
particular mapping applied to states of an LTS called Observed behaviour.

Definition 2 (Observed behaviour mapping)
Let T = 〈Γ,Obs ∪ UnObs,→, I, F 〉 be an LTS. The mapping λT : (Γ \F) → 2Obs

is defined by: λT (s) = {o ∈ Obs | ∃s′ ∈ Γ s.t. s ∗−→UnObss
′ ∧ s′ o−→}. T is

Deadlock free iff λT (s) �= ∅ for each state s in (Γ \ F)

Informally, for each (non final) state s of an LTS T , the observed behaviour of
s, λT (s), stands for the set of observed actions which can be executed from s,
possibly via a sequence of unobserved actions. This set is empty for a state s if
and only if s is a Dead state.

The observed behaviour mapping can be extended to sets of states: Given a
set of states γ and a set of observed actions ψ, λ(γ) = ψ iff ∀s ∈ γ, λ(s) = ψ.

298 K. Klai, S. Tata, and J. Desel

The observed behaviour of a given state can be computed by the following
two steps. First, compute Sat(s), i.e., all the states reachable from s by exe-
cuting unobserved actions only. Once such a set is saturated (no new state can
be reached), the observed behaviour of s is Enable(Sat(s)) ∩ Obs. One can im-
prove the computation of Sat(s) by storing the observed behaviours of already
computed states.

2.2 Running Example

The example used in this paper is an adaptation of the one given in [18] which is
inspired by electronic bookstores. In [18], local processes are modeled by workflow
nets. Here, we use the "private" workflows of the involved models. Moreover, we
modify these models, by removing some internal behaviours, in order to get
manageable LTSs. There are four processes, modeling a customer, a bookstore,
a publisher and a shipper. c1 (resp. b1, p1, s1) is the initial state of the customer’s
(resp. bookstore’s, publisher’s, shipper’s) LTS.

The customer (Figure 1(a)) behaves as follows: First, he sends an order
to a bookstore (c_order). Then the customer may receive a negative answer
(c_reject) or be informed that his order is going to be handled (c_accept).
After order handling, either the customer receives from a shipper the ordered
book (ship) and from the bookstore a bill (c_bill), or he receives the bill first
and then the book. After receiving the book and the bill the customer makes a
payment (c_pay). Finally, the customer returns (c_init) to his initial state to
order other books.

Figure 1(b) illustrates the bookstore’s LTS that has no books in stock. There-
fore, when the bookstore receives an order for a book, it transfers it to a pub-
lisher (b_order) and updates the customer profile (update_c_profile). Then

c_order

c_accept

c_pay

c_reject

 (a)
(Customer)

s_order c_bill

(b)
(Bookstore)

(c)
(Publisher)

(d)
(Shipper)

b_notifys_reject

s_accept

c_bill

b_order

b_accept b_reject

c_accept

b_order

b_accept

b_reject

c_order

c_reject

ship

ship c_bill

c_init
b_order

update_c_profile

inform_marketing

update_c_profile

monitor

_paymnent

monitor

_shipment

c_pay

b_init

chek_warehouse

lock_inventory

replenish

mouve_book_to

_release_buffer

p_inform

send _book

chek_availiability

_trucks

assignment

routing

p_init

s_reject
s_accept

ship

b_notify

s_order

send _book

s_init

re-assignment

p_inform

c1

c2

c3

c4
c5

c6

c7

b1

b2

b3 b4

b5

b6

b7

b8

b9

b10 b11

b12

b13

b14

b15

p1

p2

p3

p4

p5

p6 p7

p8

p9

s1

s2

s3

s4

s5

s6

s7 s8

s9

Fig. 1. LTS of a customer, a bookstore, a publisher and a shipper

Symbolic Abstraction and Deadlock-Freeness Verification 299

it informs the marketing department. If the bookstore receives a negative an-
swer (b_reject), i.e. its order was rejected, then it sends a negative response to
the customer (c_reject). Otherwise, i.e. the bookstore receives a positive an-
swer (b_accept), the customer is informed (c_accept) and the bookstore sends
a request to a shipper (s_order). If the bookstore receives a negative answer
(s_reject), it searches another shipper. This process is repeated until a ship-
per accepts (s_accept). When this happens, the bookstore informs the pub-
lisher (p_inform). After that, the bookstore waits for the shipper’s notification
(b_notify) and sends the bill to the customer (c_bill). Hence, the bookstore
processes the payment (c_pay). Finally, after the payment or after an order
reject the bookstore returns to its initial state (b_init).

Figure 1(c) presents the publisher’s LTS. When receiving an order from a
bookstore, the publisher evaluates the order and can either accept it (b_accept)
or reject it (b_reject). After that, when the publisher is informed (p_inform)
that a shipper was found, he sends the book to the shipper (send_book). Fi-
nally, after shipment or a request reject, the publisher returns to its initial state
(p_init).

Figure 1(d) presents the shipper’s LTS. Notice that the original LTS contains
19 nodes and 31 arcs; here we present a reduced version of the graph. When
receiving a request from a bookstore (s_order), the shipper evaluates the request
and either accepts (s_accept) or rejects (s_reject) the shipping request. In case
the shipper receives a book from the publisher (send_book), he ships the book to
the customer (ship) and then notifies the bookstore (b_notify). After shipment
or request reject, the shipper returns to its initial state (s_init).

For each LTS of Figure 1, initial states are those having (no source) input
arcs while final states are represented with double circles. The observed actions
represent, for each component, the collaborative ones and are those labeling
dotted arcs. None of these LTSs contains a Deadlock state.

2.3 The Symbolic Observation Graph

In this subsection, we first define formally what a meta-state is, before providing
a formal definition of a SOG associated with an LTS and a set of observed
actions. Our definitions are different from those given in [7] because, first, we
do not distinguish deadlocks from strong livelocks (we do not pay attention to
weak livelocks). Then, we distinguish final meta-states from others and, finally,
the observed behaviour of the states belonging to a meta-state is stored in this
meta-state (as a set of sets of observed actions). Meta-states have associated
boolean attributes d and f which indicate whether a meta-state is Dead or not
and whether it is final or not.

Definition 3 (Meta-state)
Let T = 〈Γ,Act ,→, I, F 〉 be a labeled transition system with Act = Obs∪UnObs.
A meta-state is a tuple M = 〈S, d, f, λ〉 defined as follows:

1. S is a nonempty subset of Γ satisfying:
(a) ∀s ∈ S ∃i ∈ I, ∃σ ∈ Act∗ s.t. i σ−→s ;
(b) ∀s ∈ S, ∀s′ ∈ Γ, ∀σ ∈ UnObs∗ : s σ−→s′ ⇒ s′ ∈ S ;

300 K. Klai, S. Tata, and J. Desel

2. d ∈ {true, false}. d = true iff ∃s ∈ S \ F s.t.λT (s) = ∅;
3. f ∈ {true, false}. f = true iff S ∩ F �= ∅;
4. λ = {ψ ⊆ Obs} s.t. ψ ∈ λ iff ∃γ ⊆ S s.t. λ(γ) = ψ.

From now on, M.S, M.d, M.f and M.λ denote the corresponding attributes of
a given meta-state M . Moreover, we introduce the following set of output states
of M : Out(M)={s ∈ M.S | ∃o ∈ Obs : s o−→}. Notice that if the set Out(M) is
empty, then M necessarily contains a Dead state.

Definition 4 (Symbolic Observation Graph)
The symbolic observation graph (SOG(T)) associated with an LTS
T = 〈Γ,Obs ∪UnObs,→, I, F 〉 is a 4-tuple 〈Γ ′,Act ′,→′, I ′〉 such that:

1. Γ ′ is a finite set of meta-states;
2. Act ′ = Obs;
3. →′⊆ Γ ′ × Act ′ × Γ ′ is a transition relation such that:

(a) For M,M ′ ∈ Γ ′ and a ∈ Act ′ : M a−→
′
M ′ if and only if:

i. ∀s ∈M.S, s′ ∈ Γ : s a−→s′ ⇒ s′ ∈M ′.S,
ii. ∀o ∈ Out(M ′)∃s ∈M.S, ∃s′ ∈M ′.S s.t. s a−→s′ ∧ s′ ∗−→UnObso,
iii. M ′.d = true⇒

(∃l ∈ M ′.S s.t. λT (l) = ∅) ∧ (∃s ∈ M.S, ∃s′ ∈ M ′.S s.t. s a−→s′ ∧
s′ ∗−→UnObs l).

iv. M ′.f = true⇒
(∃f ∈M ′.S∩F s.t. ∀s ∈M.S, ∀s′ ∈M ′.S : s a−→s′ ⇒ s′ ∗−→UnObsf).

(b) ∀s, s′ ∈ Γ ∀a ∈ Obs
(s a−→s′ ⇒ ∃M,M ′ ∈ Γ ′ : s ∈M.S, s′ ∈M ′.S ∧M a−→M ′),

4. I ′ = {M0}, where the meta-state M0 satsifies I ⊆M0.S.

Point 3a of the above definition requires explanation. An edge, labeled a, in
the SOG is allowed between two meta-states M and M ′ iff: (3(a)i) each state
s′ ∈ Γ reachable from some state s ∈ M.S, by action a, belongs to M ′.S. If
S′ = {s′ ∈ M ′.S | ∃s ∈ M.S ∧ s a−→s′}, then (3(a)ii) implies that each output
state of M ′ is reachable from at least one state of S′ (using unobserved actions
only), while (3(a)iii) implies that when the Deadlock attribute of M ′ is true then
one state l satisfying λT (l) = ∅ in M ′.S is reachable from at least one state of
S′ using unobserved actions only. Finally, (3(a)iv) implies that if M ′ is a final
meta-state, then some final state s ∈ M ′.S is reachable from each state of S′

(defined below).
Figure 2 illustrates the SOGs associated with the LTSs of Figure 1. Final meta-

state are represented by dotted circles. The SOG of the customer is isomorphic
to its corresponding LTS (since all its actions are observed) while the SOG of
the bookstore contains 12 nodes and 14 arcs (versus 15 nodes and 21 arcs in
its corresponding LTS), the SOG of the publisher contains 5 nodes and 6 arcs
(versus 9 nodes and 10 arcs in its corresponding LTS) and the SOG of the shipper
contains 6 nodes and 7 arcs (versus 19 nodes and 31 arcs in its corresponding
LTS). All of these SOGs are Deadlock-free. We give below the composition of
some meta-states:

Symbolic Abstraction and Deadlock-Freeness Verification 301

- C1.S = {c1}, C2.S = {c2}, C3.S = {c3}, C4.S = {c4},
- B2.S = {b2, b3}, B3.S = {b4, b5, b6}, B4.S = {b8}, B6.S = {b9},
- P1.S = {p1}, P2.S = {p1, p3}, P3.S = {p4, p5, p6, p7}, P5.S = {p9, p1},
- S1.S = {s1}, S2.S = {s2, s3}, S3.S = {s4}, S4.S = {s5, s6, s7}.

Definition 5 (Deadlock-freeness property of a SOG)
An SOG 〈Γ,Act ,→, I〉 is said to be Deadlock-free iff �∃M ∈ Γ s.t. M.d = true.

The following result establishes that the Deadlock-freeness of a SOG is equivalent
to the Deadlock-freeness of the corresponding LTS.

Proposition 1. Let T = 〈Γ,Act = Obs ∪ UnObs,→, I, F 〉 be a labeled transi-
tion system and let SOG(T) be the corresponding SOG. Then T is Deadlock-free
if and only if SOG(T) is Deadlock-free.

Proof. The proof follows from Definition 3 and Definition 4: For each state s
of T there exists a meta-state M of SOG(T) containing s. Conversely, for each
meta-state M , all states s in M.S are reachable from some initial state of I in
the LTS T .

We claim that the SOG technique is suitable for abstracting processes for several
reasons: First, the SOG allows to represent the language of the process projected
on the cooperative transitions (i.e. the local behaviors are hidden) in addition
to some particular internal behavior which can be relevant for the environment
(Deadlock existence). It is a valid abstraction of a given process W because it
preserves its privacy while supplying sufficient and necessary information to be
known by a potential partner of W . The second reason is that this abstraction
is suitable for checking whether two process represented by their SOGs can be

c_order

c_accept

c_pay

c_reject

 (a)
(Customer’s SOG)

s_order

c_pay

c_bill

(b)
(Bookstore’s SOG)

(c)
(Publisher’s SOG)

s_reject

s_accept

ship

b_notify

(d)
(Shipper’s SOG)

b_notify

s_order

s_reject

s_accept

send _book

C1

C2

C3

C5

C6

C7

c_bill

b_order

b_accept

b_reject

B2

B3

B4

B5

B6

B7 B9

B10
c_accept

B11
b_order

b_accept

b_reject

P1

P2

P4

send _book

S1

S2

S3

S4

S5

c_order

B1

c_reject

ship

C4

ship c_bill

c_order

c_order B12

P5

b_order
s_order

S6

P3

p_inform

B8

p_inform

Fig. 2. A Symbolic Observation Graph

302 K. Klai, S. Tata, and J. Desel

interconnected (see Section 3). Moreover, given a process, its SOG is built once
and might be reused as long as local changes do not change its structure. Finally,
the reduced size of the SOG (in most cases) makes the building and verification
of the synchronized product of SOGs much cheaper than the building of the
synchronized product of the original LTSs, especially when the involved models
are loosely coupled.

3 Composition and Deadlock-Freeness Verification

This section constitutes the core of the paper. Starting from several LTSs which
synchronize over a common set of actions, it shows how to synchronize the cor-
responding SOGs so that the obtained graph is Deadlock-free if and only if the
synchronized product of the original LTSs is Deadlock-free.

We start with the standard method for synchronizing two LTSs, namely build-
ing their synchronized product. Each state of the resulting transition system is
a pair of states, the first component indicating the respective state of the first
LTS, the second component indicating the respective state of the second LTS.
Each LTS can still do its private activities autonomously, i.e., only one compo-
nent of the pair representing a state of the composed LTS is changed by such
an action. For common activities, however, both components of the state are
changed synchronously. Figure 3 shows a simple example of two LTSs (Module
A and Module B) and their synchronization A×B.

A1

A2 A3

A4

a b

c d

e

(a) Module A

×

B1

B2 B3

B4

a’ b’

c d

e

(b) Module B

=

A1B1

A1B3A3B1A2B1 A1B2

A2B3A2B2 A3B2 A3B3

A4B4

a
ba’

b’

a’
b’ a’ b’
a b

b
a

c d

e

(c) A×B

Fig. 3. Synchronized product of two LTSs

3.1 Synchronization of LTSs

In the following, we define the synchronized product of two LTSs. The synchro-
nized product of n LTSs (for n > 2) can be built by iterative multiplication.

Symbolic Abstraction and Deadlock-Freeness Verification 303

Definition 6 (LTS synchronized product)
Let Ti = 〈Γi,Act i,→i, Ii, Fi〉, i = 1, 2 be two LTSs. The synchronized product of
T1 and T2 is the LTS T1 × T2 = 〈Γ,Act ,→, I, F 〉 given by:

1. Γ = Γ1 × Γ2 ;
2. Act = Act1 ∪Act2 ;
3. → is the transition relation, defined by:

∀(s1, s2) ∈ Γ : (s1, s2) a−→(s′1, s
′
2) ⇔⎧

⎨

⎩

s1
a−→1s

′
1 ∧ s2 a−→2s

′
2 if a ∈ Act1 ∩ Act2

s1
a−→1s

′
1 ∧ s2 = s′2 if a ∈ Act1 \ Act2

s1 = s′1 ∧ s2 a−→2s
′
2 if a ∈ Act2 \ Act1

4. I = I1 × I2;
5. F = F1 × F2.

The set of states is reduced to reachable states only, i.e. Γ = {(s1, s2) ∈ Γ1×Γ2 |
∃(i1, i2) ∈ I1 × I2, ∃σ ∈ Act∗ : (i1, i2) σ−→(s1, s2)}. Similarly, the set of actions
is reduced to those that can effectively take place in the synchronized product:
Act = {a ∈ Act1 ∪ Act2 | ∃s, s′ ∈ Γ, (s, s′) a−→}.

It is well known that the Deadlock-freeness property is not preserved by com-
position. Given two Deadlock-free LTSs T1 and T2, their synchronized product is
not guaranteed to be Deadlock-free. Figure 3 illustrates such a situation, where
two modules (Figure 3(a) and Figure 3(b)) without Dead states lead, by synchro-
nization over the set of observed actions {c, d, e}, to a synchronized product
(Figure 3(c)) containing two Dead states ((A2, B3) and (A3, B2)).

We characterized Deadlock-freeness of an LTS by considering the observed
behaviour of its states. In the following proposition, given a synchronized product
T of two LTSs T1 and T2, we show how one can deduce the observed behaviour
mapping λT from λT1 and λT2 . This avoids the analysis of the paths of the
synchronized product when such an analysis was already done locally in each
involved LTS.

Proposition 2 (Observed behaviour mapping of an LTS synchronized
product). Let T = 〈Γ,Act = Obs ∪UnObs,→, I, F 〉 be the synchronized prod-
uct of two LTSs, Ti = 〈Γi,Act i = Obsi ∪ UnObsi,→i, Ii, Fi〉, i = 1, 2. Assume
that Act1 ∩Act2 = Obs1 = Obs2. Then the observed behaviour mapping, named
λT , satisfies ∀(s1, s2) ∈ Γ : λT (s1, s2) = λT1(s1) ∩ λT2(s2).

Proof. Let (s1, s2) be a state of T .
Let us demonstrate that ∀o ∈ Obs , o ∈ λT (s1, s2) ⇔ o ∈ λT1(s1) ∩ λT2(s2).

Let o ∈ λT (s1, s2). Then there exists σ ∈ UnObs∗ s.t. (s1, s2) σo−→(s′1, s
′
2). Let σ1

and σ2 be the projection of σ on UnObs1 and UnObs2, respectively. Knowing
that UnObs1∩UnObs2 = ∅, we get that (s1, s2) σo−→(s′1, s

′
2) means that in T1 and

T2, s1 σ1o−→s′1 and s2 σ2o−→s′2 hold respectively. Thus, o ∈ λT1(s1) ∩ λT2(s2).

The synchronized product of the LTSs of Figure 1 contains 111 nodes and 264
edges and is too big to be presented here. It is Deadlock-free, like the different
component LTSs.

304 K. Klai, S. Tata, and J. Desel

3.2 Synchronization of SOGs

The above result allows to define the meta-state product M = M1 × M2: a
meta-state obtained by synchronizing two meta-states M1 and M2. Especially,
the corresponding Deadlock attribute,M.d, can be computed by using the locally
computed observed behaviours. Again, the meta-state product between n (n > 2)
meta-states can be easily deduced.

Definition 7 (Meta-state product)
Let Ti = 〈Γi,Obsi ∪ UnObsi,→i, Ii, Fi〉, i = 1, 2 be two LTSs T = T1 × T2 =
〈Γ,Obs ,→, I, F 〉. Let Mi = 〈Si, di, fi, λi〉 be a meta-state of SOG(Ti). The prod-
uct meta-state M = 〈S, d, f, λ〉 = M1 ×M2 is defined by:

– S = S1 × S2,
– d =true iff ∃(s1, s2) ∈ Γ : (λT (s1, s2) = ∅),
– f =true iff f1 = true and f2 = true,
– λ = {ψ ⊆ Obsi ∪ UnObsi} s.t. ψ ∈ λ iff ∃γ ⊆ Γ : λ(γ) = ψ.

Apart from dealing with meta-states instead of singular states, the definition
of the synchronized product between two SOGs is identical to the synchronized
product of two LTS (Definition 6).

Figure 4 shows the synchronized product of the SOGs of Figure 2. It contains
21 nodes and 24 edges (versus 111 nodes and 264 edges in the original syn-
chronized LTS). The obtained SOG is not Deadlock-free (like each independent
SOG).

c_order

C1 B1 P1 S1

c_reject

b_order

b_reject b_accept

c_accept

s_order
s_reject

s_accept

send_book

ship

b_notify

c_bill

c_pay

c_order

C2 B2 P1 S1

C2 B3 P2 S1

C2 B5 P5 S1 C2 B4 P3 S1

C3 B7 P3 S2

C3 B6 P3 S1

C3 B9 P4 S3

C3 B9 P5 S4

C5 B9 P5 S5

C5 B10 P5 S6

C6 B11 P5 S6

C7 B12 P5 S6

C3 B6 P3 S6

C7 B12 P5 S1

C3 B6 P3 S6

s_order

C2 B2 P5 S6

C2 B3 P2 S6

b_order

C2 B4 P3 S6

C2 B5 P5 S6

b_accept

b_reject

c_reject
c_accept

s_order

c_order

C3 B8 P3 S3
p_inform

Fig. 4. Synchronized product between SOGs

Symbolic Abstraction and Deadlock-Freeness Verification 305

Algorithm 1. Synchronized product of 2 SOGs
Require: SOG(T1,Obs1) and SOG(T2,Obs2)
Ensure: SOG(T1,Obs1)× SOG(T2,Obs2)
1: Waiting ← metastate(I1 × I2)
2: while Waiting �= ∅ do
3: choose M = M1 ×M2 ∈Waiting
4: for all a ∈ Act ′1 ∩Act ′2 do
5: if M1

a−→1M
′
1 ∧M2

a−→2M
′
2 then

6: metastate(M ′
1 ×M ′

2)
7: arc(M, a,M ′

1 ×M ′
2)

8: end if
9: end for

10: for all a ∈ Act ′1 \Act ′2 do
11: if M1

a−→1M
′
1 then

12: metastate(M ′
1 ×M2)

13: arc(M, a,M ′
1 ×M2)

14: end if
15: end for
16: for all a ∈ Act ′2 \Act ′1 do
17: if M2

a−→2M
′
2 then

18: metastate(M1 ×M ′
2)

19: arc(M, a,M1 ×M ′
2)

20: end if
21: end for
22: Waiting ←Waiting \ {M}
23: end while

The construction of the symbolic observation graph of a synchronized product
of modules consists in first building the SOGs of the individual processes and
then synchronizing them. Notice that the construction of the synchronized prod-
uct of the SOGs aims mainly at establishing whether the underlying processes
can collaborate safely (without being in a Deadlock). Checking the Deadlock-
freeness of such a synchronized product is reduced to verifying that no (product)
meta-state contains a Deadlock (∀M : M.d = false) and that there exists a final
(product) meta-state (∃M : M.f = true).

Algorithm 1 implements the synchronized product of two symbolic observation
graphs. This algorithm is very similar to the construction of the synchronized
product of LTSs. Function metastate (M1 × M2) constructs the meta-state
product (M1×M2).S. It assumes that the attributes ofM1 andM2 are computed
locally as well as the observed behaviours of their states. Then, it computes
M.d following Definition 7. In Subsection 3.3 an efficient way of computing the
deadlock attribute of the product meta-state is discussed.

In the following, we establish the main result of this paper: given two LTSs,
checking the Deadlock-freeness property on their synchronized product is equiv-
alent to checking it on the synchronized product of the corresponding SOGs.

306 K. Klai, S. Tata, and J. Desel

Proposition 3. Let Ti = 〈Γi,Act i = Obsi ∪ UnObsi,→i, Ii〉 (i ∈ {1, 2}) be two
LTSs with Act1 ∩ Act2 ⊆ (Obs1 ∩ Obs2). Then SOG(T1 × T2) and SOG(T1) ×
SOG(T2) are isomorphic.

Proof. Follows from the construction.

Corollary 1. Let Ti (i ∈ {1, 2}) be two LTSs, let T be their synchronized prod-
uct, let SOG(Ti) be the SOGs of Ti and let G be their synchronized product. Then
the following property holds: T is Deadlock-free ⇔ G is Deadlock-free.

Proof. Consequence of Proposition 1 and Proposition 3.

3.3 Checking Deadlock-Freeness on a SOGs Synchronized Product

According to the above results, the verification of Deadlock-freeness in a meta-
state product is achieved by using the local observed behaviour mappings (i.e.
λT1 and λT2). If we assume that Γ1 and Γ2 are the sets of states of the original
LTSs T1 and T2 respectively, then the complexity of the Deadlock-freeness check-
ing is polynomial with respect to the number of states in Γ1 and Γ2. However, in
terms of efficiency, computing the value of these mappings for each state could
reduce drastically the application of the SOG technique. In fact, the efficiency of
this technique comes from the fact that it is suitable for symbolic implementation
(based on set operations).

In the following, we propose two sufficient conditions for the existence of a
Dead state within a meta-state product. Both conditions can be checked sym-
bolically.

Proposition 4. Let SOG(Ti), for i = 1, 2, be two SOGs corresponding to Ti =
〈Γi,Obsi ∪ UnObsi,→i, Ii〉. Let Mi = 〈Si, di〉 be a meta-state of SOG(Ti) and
let M = 〈S, d〉 = M1 ×M2 be the product meta-state obtained by synchronizing
M1 and M2. Then the following properties holds:

1. M1.d = true ∨M2.d = true⇒M.d = true
2. Out(M1) = ∅ ∨Out(M2) = ∅ ⇒M.d = true

Proof. Observe that both conditions imply ∃(s1, s2) ∈M1.S ×M2.S : λT1(s1) ∩
λT2(s2) = ∅.

In case the sufficient conditions of Proposition 4 are not satisfied, the follow-
ing proposition establishes that the Deadlock-freeness of a meta-state product
M = M1 ×M2 can be achieved by considering the projection of the λ mappings
on the output states of M1 and M2 only instead of all states in M1.S and M2.S,
respectively. The number of output states (states enabling observed actions) is
in general reduced with respect to the number of states of the system. This
does not change the worst complexity of the observed behaviour mapping com-
putation. However, in practice, it could significantly reduce the time and space
consumption during the computation.

Symbolic Abstraction and Deadlock-Freeness Verification 307

Proposition 5
Let SOG(Ti), be two SOGs corresponding to LTSs = 〈Γi,Obsi ∪ UnObsi,→i, Ii〉,
for i = 1, 2. Let Mi = 〈Si, di〉 be a meta-state of SOG(Ti) and let M = 〈S, d〉 =
M1×M2 be the product meta-state obtained by synchronizing M1 and M2. When
both conditions 1 and 2 of Proposition 4 are not satisfied, then the following
property holds:

M.d = true iff ∃(s1, s2) ∈ Out(M1.S) ×Out(M2.S) s.t. λT1(s1) ∩ λT2(s2) = ∅.

Proof. First, if M.d = true then ∃(s1, s2) ∈M1.S×M2.S : λT1(s1)∩λT2(s2) = ∅.
Otherwise Mi.d �= true (for i = 1, 2) whence from s1 (resp. s2) one can reach
an output state s′1 (resp. s′2) of M1 (resp. M2), with λT1(s′1) ⊆ λT1(s1) (resp.
λT2(s′2) ⊆ λT2(s2)). Then, λT1(s′1) ∩ λT2(s′2) = ∅, which proves the proposition.

To resume, the Deadlock attribute of a product meta-state can be deduced when
one of the involved meta-states contains a Dead state. Otherwise, we only need
to consider the observed behaviour of the output states.

4 Related Work

The importance of dealing with business processes on one hand and business
process composition on the other hand is reflected in the literature by several
publications.

In [17] the authors present various composition alternatives and their ability
to preserve relaxed soundness [3]. The aim of this work was to analyze a list
of significant composition techniques in terms of WF-nets and to prove that
the composition of relaxed sound models is again relaxed sound. Hence, using
these composition techniques does not preserve the deadlock-freeness property.
In order to verify this property one has to explore the composed model, even
though the component models are deadlock free. The approach we have presented
in this paper allows verifying the deadlock-freeness property on the composition
of abstract models (SOG).

In [5], the authors propose an approach for services retrieval based on behav-
ioral specification. The idea consists in reducing the problem of service behavioral
matching to a graph matching problem and then adapting existing algorithms for
this purpose. The complexity of graph matchmaking algorithm used is O(m2∗n2)
in the best case and O(mn ∗n) in the worst case where m is the number of nodes
of the request graph and n is the number of nodes of the advertised graph [5].
It is obvious that this approach is not suitable for workflow matching and com-
position when the number of advertised abstractions increases.

Another approach for workflow matchmaking was proposed in [10][11][12]. It
assumes that two workflows match if they are equivalent. To reach this end,
the author introduces the notion of communication graph c-graph and usabil-
ity graph. If the u-graph of a workflow is isomorphic to the c-graph of another
workflow, then the two workflows will be considered equivalent. However, the
complexity of c-graph construction is exponential [10] in terms of the number of

308 K. Klai, S. Tata, and J. Desel

nodes. Moreover, it is well known that the subgraph isomorphism detection prob-
lem is NP-complete (see for example [16]). It is also obvious that this approach is
not suitable for workflow matching when the number of advertised abstractions
increases whereas the complexity of our matching algorithm is O(m∗n∗ l) where
m and n are the number of meta-states of the corresponding abstractions to be
matched and l is the number of the common cooperative transitions.

5 Conclusion

This paper addresses the problem of the abstraction and verification of inter-
organizational processes. To preserve privacy of participating processes in an
inter-organization process and to enhance verification, we have used the notion
of symbolic observation graph to represent process abstractions. We have in
addition shown how to build the symbolic observation graph of a composite (or
inter-organizational) process and established whether processes can be composed
(or can collaborate) safely by checking the deadlock freeness of the obtained
symbolic observation graph. Our developed approach can be used for process
advertisement, discovery and interconnection.

Several future works are envisaged. The first one would be to implement a tool
for the abstraction and the Deadlock-freeness verification of inter-organizational
processes. The extension of this work to checking LTL \X properties is direct
since, by detecting divergent behaviours (Deadlocks) inside meta-state, the set
of maximal paths is preserved. Moreover, we already started working on devel-
opping a graph-based registry for abstract process advertisement and discovery.
We are going to extend process descriptions by ontology-based semantic descrip-
tions. Our developed algorithms for service matching will be coupled with our
presented algorithms to support semantic advertisement and discovery of pro-
cesses for process composition at design time and for intra-enterprise use and
for process cooperation to support inter-organizational processes.

References

1. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24(3), 293–318 (1992)

2. Bultan, T., Su, J., Fu, X.: Analyzing conversations of web services. IEEE Internet
Computing 10(1), 18–25 (2006)

3. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170.
Springer, Heidelberg (2001)

4. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: Crossflow: Cross-organizational
workflow management in dynamic virtual enterprises. International Journal of
Computer Systems Science & Engineering 15(5), 277–290 (2000)

5. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service
retrieval. In: ICWS 2006: Proceedings of the IEEE International Conference on
Web Services, Washington, DC, USA, pp. 145–152. IEEE Computer Society Press,
Los Alamitos (2006)

Symbolic Abstraction and Deadlock-Freeness Verification 309

6. Haddad, S., Ilié, J.-M., Klai, K.: Design and evaluation of a symbolic and
abstraction-based model checker. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299,
pp. 196–210. Springer, Heidelberg (2004)

7. Klai, K., Petrucci, L.: Modular construction of the symbolic observation graph. In:
Billington, J., Duan, Z., Koutny, M. (eds.) ACSD, pp. 88–97. IEEE, Los Alamitos
(2008)

8. Klai, K., Poitrenaud, D.: MC-SOG: An LTL model checker based on symbolic
observation graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS,
vol. 5062, pp. 288–306. Springer, Heidelberg (2008)

9. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting ws-bpel
processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54 (2008)

10. Martens, A.: On Usability of Web Services. In: Calero, C., Daz, O., Piattini, M.
(eds.) Proceedings of 1st Web Services Quality Workshop (WQW 2003), Rome,
Italy (2003)

11. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

12. Martens, A.: Simulation and Equivalence between BPEL Process Models. In: Pro-
ceedings of the Design, Analysis, and Simulation of Distributed Systems Sympo-
sium (DASD 2005), Part of the 2005 Spring Simulation Multiconference (SpringSim
2005), San Diego, California (April 2005)

13. Martens, A., Simon, M., Achim, G., Karoline, F.: Analyzing compatibility of bpel
processes. In: AICT-ICIW 2006: Proceedings of the Advanced Int’l Conference
on Telecommunications and Int’l Conference on Internet and Web Applications
and Services, Washington, DC, USA, p. 147. IEEE Computer Society Press, Los
Alamitos (2006)

14. Massuthe, P., Wolf, K.: An Algorithm for Matching Nondeterministic Services with
Operating Guidelines. Informatik-Berichte 202, Humboldt Universitat zu Berlin
(2006)

15. Pankratius, V., Stucky, W.: A formal foundation for workflow composition, work-
flow view definition, and workflow normalization based on Petri nets. In: APCCM
2005: Proceedings of the 2nd Asia-Pacific conference on Conceptual modelling,
Darlinghurst, Australia, Australia, pp. 79–88. Australian Computer Society, Inc.
(2005)

16. Read, R., Corneil, D.: The Graph Isomorphism Disease. Graph Theory 1, 339–363
(1977)

17. Siegeris, J., Zimmermann, A.: Workflow model compositions preserving relaxed
soundness. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 177–192. Springer, Heidelberg (2006)

18. van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational work-
flows. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS,
vol. 2068, pp. 140–156. Springer, Heidelberg (2001)

19. van Dijk, A.: Contracting workflows and protocol patterns. In: van der Aalst,
W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678,
pp. 152–167. Springer, Heidelberg (2003)

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 310–326, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Effect of Using Automated Auditing Tools on Detecting
Compliance Failures in Unmanaged Processes

Yurdaer Doganata and Francisco Curbera

IBM T J Watson Research Center, 19 Skyline Drive, Hawthorne NY 10532
{yurdaer,curbera}@us.ibm.com

Abstract. The effect of using automated auditing tools to detect compliance
failures in unmanaged business processes is investigated. In the absence of a
process execution engine, compliance of an unmanaged business process is
tracked by using an auditing tool developed based on business provenance
technology or employing auditors. Since budget constraints limit employing
auditors to evaluate all process instances, a methodology is devised to use both
expert opinion on a limited set of process instances and the results produced by
fallible automated audit machines on all process instances. An improvement
factor is defined based on the average number of non-compliant process
instances detected and it is shown that the improvement depends on the preva-
lence of non-compliance in the process as well as the sensitivity and the speci-
ficity of the audit machine.

Topics covered: BPM Governance and Compliance; Management Issues and
Empirical Studies; Non-traditional BPM Scenarios.

1 Introduction

The operations of many businesses depend on business processes that rely heavily on
human interactions, supported by collaboration software such as e-mail, calendar
systems, and others. These processes are highly unstructured, often lack proper
documentation and require human intervention as part of the process. The transitions
between such unmanaged process activities are not always automated by software
components; hence they cannot be fully controlled and monitored by utilizing process
execution engines. In the absence of process automation software that can control
and record resource and organizational access (who did what and when), compliance
check is a costly and time consuming task performed manually by auditors.

Business provenance technology is proposed in [1] to increase the traceability of
such unmanaged or partially managed processes. This technology provides for a ge-
neric data model, a middleware infrastructure to collect and correlate business events
and a query interface to inspect which tasks are executed, when and what resources
are involved. Information is selectively captured together with the context of in
which it is used, and is then applied to detect compliance violations, in an interactive
or automated way. Business provenance technology enables building automated

 Effect of Using Automated Auditing Tools 311

auditing systems and tools to detect compliance failures continuously and reduce the
cost of employing auditors significantly.

Automated continuous auditing systems provide for an almost cost-free auditing
opportunity if the initial cost of building such a system is excluded. Such a system can
run continuously and performs evaluation for all process instances without adding to
the cost of auditing. While continuous audit systems eliminate or reduce the depend-
ency on audit professionals, they are not infallible. The tools that are built to realize
automated continuous auditing rely on information extraction from process events and
information, including e-mail transactions between the people within the organiza-
tions. The extracted information about the processes may contain errors and due to
these errors the decision on the compliance may be faulty. Moreover, the testing of a
compliance condition may require a level of text analysis that is not yet available in
automated systems. Hence, the automated systems can perform fast and extensive
auditing of the internal control points at the cost of making mistakes. As a result,
some compliance failures may be missed while some other cases that are compliant
may be declared non-compliant.

There are many obvious reasons for organizations to worry about compliance in
general. A business that has not taken adequate steps to achieve compliance may of
course be subject to serious financial penalty as well as civil and penal consequences.
Still, compliance has broader and practical impacts. On a more practical level, com-
pliance ensures the quality of products and services and helps the organizations better
control their operations and remain competitive. In short, the impact of non-
compliance can be profound.

The cost of improving the status of compliance and reduce the risk of being non-
compliant could run into millions of dollars for many organizations [2]. Auditing is a
central component of compliance operations. Manual auditing involves the use of
subject matter experts, but typically covers only a small set process instances because
of time and cost constraints. Audits are performed in a quarterly or yearly basis, and
cases are selected through statistical sampling. There is thus a trade of between the
cost of sampling sufficient number of cases and the possibility of poor auditing which
may cause missing opportunities for corrective action. While traditional audits are
performed a few times a year, it is widely believed that compliance is an ongoing
process that goes beyond testing and evaluating the internal controls of a sampled
space. Thus many corporations focus on enhancing or implementing systems to en-
sure compliance on a continuous basis [3]. AMR Research survey reveals that the
spending of companies on governance, risk management and compliance will increase
7.4% in 2008 and exceed $32B [4]. As a result, companies invest on implementing
automated continuous audit systems [5] that would reduce the cost of compliance and
would not be limited to selected instances of business processes due to budget con-
straints.

In this article, we introduce and measure the effectiveness of an automated continu-
ous audit tool that is designed to detect compliance failures. We measure the effective-
ness of the tool by its capacity to detect compliance failures during the execution of an
unmanaged business process. This is accomplished by identifying a set internal control
points and compare the number of non-compliance instances detected in the presence
and in the absence of auditing tool. As a result of this comparison, we quantify how
much the traditional auditing process performed by auditors under a budget constraint

312 Y. Doganata and F. Curbera

can be improved by employing auditing tool. Our approach is based on inferring the
prevalence of non-compliance and the performance of the tool from a set of sample test
results. We then use the inferred results to calculate the improvement as detailed in
sections 5-7.

Next section briefly overviews the business provenance technology that we em-
ployed to implement the automated auditing tool. In Section 3, an e-mail based busi-
ness process is described which is used to evaluate the effectiveness of the tool. This
process is selected as a typical human centric process where an execution engine is
not used to control and manage the process. Hence, traditionally auditing is done by
employing subject matter experts. A set of internal key control points are defined to
determine the status of compliance and as a basis for our comparative study. In Sec-
tion 4, a mathematical model is presented for faulty auditing tools for which the statis-
tical performance measures are inferred in section 5. A methodology is proposed to
measure the effectiveness of the automated machines in Section 6 and the numerical
results are presented in Section 7. We conclude in Section 8.

2 Related Work

Key control points within the business process help identifying risks throughout the
organization before they cause integrity lapses. A risk classification associated with
BPM cycle provided in [6] and mentions CobIT framework as a set of audit-oriented
guidelines create control objectives aligned with the BPM life cycle concept. The key
control points that we used to measure the effectiveness of automated audit tools are
driven from the rules and regulations in business documents and specifications written
in natural language.

A formal representation of these key control points are not within the scope of this
paper, but we briefly mentioned the methodology we adopted below. Regardless,
there has been a number of works in the literature focusing on formal representation
of internal control points by using various rule languages. A compliance metamodel
for formally capturing key control points and managing them in systematic lifecycle
is presented in [7]. A formal system for business contract representation with reason-
ing about violations of obligations in the contacts is proposed in [10]. Various as-
pects of Business Contract Language (BCL) [9] are evaluated by using a logic-based
formalism called Formal Contract Language (FCL) in [11] and the need to ensure
compatibility between business processes and business contracts is addressed. In
[13], a rule language, RuleML, is proposed to express business rules explicitly as a
better alternative to other XML languages such as BCL and XrML [15]. In business
provenance technology [1] that is employed in this paper, key control points are
directly expressed in terms of the business provenance entities which are the nodes
and edges of the provenance graph formed during the execution of business opera-
tions. While our approach does not require logical analysis of the business rules and
is implemented by employing a simple SQL/XPATH based query interface to the
provenance store, the rule developers are expected to aware of the runtime opera-
tional environment. Hence, it lacks the reusability and the flexibility of formal repre-
sentation systems.

 Effect of Using Automated Auditing Tools 313

Similarly [12] proposes a framework to ensure semantic correctness of the process
when ad-hoc process instance deviations occur or when modeling process templates.
The domain knowledge is integrated into process management system as process
constraints and each constraint is expressed in terms of source and target tasks, their
orders and user defined parameters. The expressiveness of the presented constraints
is, however, limited to task level, data is not included. We use the attributes of all
business provenance data (data, task, resource, process) and their relation to express
key control points.

A number of works [8], [14] advocate addressing control objectives early in design
time and propose supporting mechanism for business process designers. A method is
proposed in [8] to help the process designers to measure the compliance degree of a
given process model against the set of objection. A language is introduced in [14] to
express temporal rules about the obligations and permissions In order to help the
designers at the process modeling time to validate and verify business contracts. In
measuring the effectiveness of compliance tools, we do not assume that the control
objectives were known at the time of process design. But the audit tools are designed
based on the control objectives over existing business operations.

The method presented in this paper to measure the effectiveness of automated audit
tools does not depend on a particular process tracking technology or control point
representation. The methodology could be employed to cases that use other formal
representations of control points and process tracking technologies.

3 Automated Auditing Tool

An automated auditing tool is a software system that captures information relevant to
the internal control points of a business process, puts them into context and computes
the compliance status for each control point. Auditing tools rely on correlating the
data extracted from the underlying IT system to the relevant aspects of business con-
trol points effectively. Hence, relating the business goals to IT level data constitutes
the core of this technology as described in [1]. Figure 1 outlines the step of building
such a system which starts with converting business rules and regulations into com-
pliance goals (Step 1). Compliance goals are identified by examining the business
rules and deciding what action steps are needed. In other words, from the business
rules expressed in the language of business people, compliance goals are identified
(Step 2). This lays the ground work for setting up IT rules for compliance. Once the
compliance goals are identified; tasks, activities, resources, artifacts and their rela-
tions that are relevant to the identified goal are determined and mapped onto a data
model (Step 3). Recording probes collect business artifacts from the underlying
information system and maps them onto provenance data (Step 4 and 6). A
“provenance graph” is then formed with the data objects constituting the nodes and
the relations among the data objects the edges. The data objects are correlated by
using the compliance goals and the underlying data model (Step 5). Business control
points are then expressed in terms of data entities extracted from the process execu-
tion trace as graph patterns (Step 7). Hence, control points provide a bridge between
various components of the business operations and the actual data that could be con-
sumed the IT system. A business control point that can be expressed in terms of the

314 Y. Doganata and F. Curbera

Fig. 1. Steps for compliance checking

data produced and consumed by the IT system can be computed to check compliance
in step 8. Root cause analysis of compliance failures can be done by querying the
provenance graph in step 9.

4 Sample e-Mail Based Unmanaged Business Process

In order to measure the effectiveness an automated auditing tool in detecting compli-
ance failures over an unmanaged business process, the following scenario is pre-
sented. An e-hosting company manages the customer machines over the internet
protected by a firewall and responsible for securing the information assets against
unauthorized entry. The company security policy dictates that a firewall manager
defines the firewall security controls and ensures on an ongoing basis that firewall
policies are implemented using an auditable process. The process is called Firewall
Rule Revalidation process and it involves in creating firewall rulesets and communi-
cating these rulesets to the customer and receives approval. The objectives of the
process are to ensure both the e-hosting account representatives and the customers
understand what rules exist in the customer environment and ensure customer is
aware of existing deviations from best practices defined by the e-hosting security
policy. If such a process is not implemented, the customer may be at risk due to no
longer needed protocols being available for transit traffic, or not being made aware of
what protocols are in place and required for support of their environment. The e-
hosting company may be held liable for insecure activities, if the customers is not
informed of and signs off on the risk involved.

Figure 2 depicts the Firewall Rule Revalidation process where there are three ac-
tors of the process, information security advisor, account team and customer.

The responsibilities of these actors are defined as below:

Information Security Advisor (ISA): Prepares firewall rulesets according to the best
security practices, modifies them as needed, sends them to the account team and copy
to e-mail archive database.

 Effect of Using Automated Auditing Tools 315

Fig. 2. Firewall Rule Revalidation Process flow

Account Team Member: Receives firewall rulesets from ISA and sends them to
customer, records customer response into the e-mail archive.

Customer: Receives firewall rulesets from the account team, reviews them and re-
plies with acceptance or change requests.

Firewall rule revalidation is done once a year. Before the revalidation cycle com-
pletes, ISA asks for the firewall rules from the network administrator and checks if
the rules are consistent with customer requests and security policies and make modifi-
cations if necessary. Once the new rulesets is created, ISA attaches the ruleset to an
e-mail and send the e-mail to the account team. Once the ruleset is ready for customer
review the process starts. ISA attaches the e-mail to the ruleset and sends to the ac-
count team, reminding that it is time for yearly revalidation and ask account team.

4.1 Key-Control Points

In order to assure proper revalidation every year, several internal control points are
defined. The compliance of key control points assures that firewall rule revalidation is
completed successfully. The description of these internal key control points (KCPs)
are described below:

KCP1: A process record exists with a copy of the email from ISA to account team
with firewall ruleset is attached.
KCP2: The new ruleset is prepared before the revalidation period ends.
KCP3: A revalidation email must be sent by the account team to the customer within
5 days after email from ISA was received.
KCP4: An acceptance email response from customer must be within 10 days after
the first email sent by the account team to the customer.
KCP5: The revalidation process completes within 30 days of being started
KCP6: The revalidation process was completed within the review interval after the
prior revalidation completion.

316 Y. Doganata and F. Curbera

Automated compliance checking process is based on analyzing all the emails in the e-
mail archive and classifying them based who sends the e-mail and for what purpose.
A data model is built that capture the relevant aspect of the process and according to
the description given in [1]. Relationships among data items are extracted by using
key control point definitions. As an example, in order to evaluate the status of KCPs,
all the e-mail sent by ISAs, Account Team members and customers are examined.
Text analysis is used to examine the unstructured parts of the e-mails such as body
and subject; the e-mail addresses are extracted from “to” and “from” fields. Based on
the extracted relations, each e-mail is scored and labeled as either “from ISA to Ac-
count Team” or “from Account Team to Customer” or “from Customer to Account
Team”. The relations between the e-mails, their context, receivers and senders are
established. The dates of the labeled e-mail are extracted to check the compliance
status of each control point.

5 Statistical Modeling Results

The problem of using automated audit machines to determine the compliance failures
is equivalent to determining the prevalence of a medical condition through screening
the population by using a medical diagnostic test which is not a gold standard [17].
The public health services in many cases use tests which are not 100 percent accurate
to estimate the prevalence of the disease. Similarly, the prevalence of non-
conformance in a business process can also be estimated by using automated auditing
systems which are fallible in making classification for compliance. This is a binary
classification problem where the instances of business processes are grouped into two
on the basis that they satisfy certain key control points as compliant or not. A practi-
cal approach to this classification problem needs to consider two parameters, namely,
quality of the classification decisions and cost. For the purpose of the work presented
in this paper, we will assume that audits performed by experts always result in a cor-
rect classification decision. There is of course a human error factor that we are not
factoring in the analysis presented here. On the other hand, there is a considerable
cost associated with manual audits, which limits the number of process instances that
can be audited this way. The cost of performing an evaluation of compliance by using
an automated audit machine can be assumed negligible, allowing in many cases for
full coverage of process instances. The results of automated classification, on the
other hand are fallible.

In modeling this problem, we define the prevalence as the total number of non-
compliant process instances in the population of all process instances. Mathemati-
cally, it is the probability that a case is marked as not-compliant by an audit expert, Pr
(I = 1). In medical field, this corresponds to the prevalence, p, of the disease. Preva-
lence cannot always be measured by using expert opinion because the cost of employ-
ing experts may be prohibitive. However, it is possible to draw inference about the
prevalence, p, of non-conformance in a set of execution traces of process instances by
using fallible automated auditing tool, if a measure of the auditing system’s perform-
ance in identifying non-compliant instances is known. The performance of such an
auditing tool is measured by its sensitivity and specificity. Sensitivity measures
the proportions of actual positives (that is non-compliant cases) which are correctly

 Effect of Using Automated Auditing Tools 317

identified, while specificity measures the proportions of negatives (compliant cases)
which are correctly identified. We will refer the probability that a randomly selected
instance is actually compliant as Pr (I = 0), the probability that a fallible auditing tool
labels an instance compliant as Pr (F = 0) and non-compliant as Pr (F = 1). Hence,

η , Sensitivity: TP/ (TP + FN) = Pr (F=1/ I=1) (1)

θ , Specificity: TN/ (TN+FP) =Pr (F=0/ I=0) (2)

where TP is the number of non-compliant instances labeled as non-compliant, FN is
the number of non-compliant instances labeled as compliant, TN is the number of
compliant instances labeled as compliant, FP is the number of compliant instances
labeled as non-compliant. The following joint probabilities of classification pif =
P(I=i, F=f), where i, f = 0, 1 can be verified easily

p00 = P(I=0, F=0) = θ .(1-p) (3)
p10 = P(I=1, F=0) = (1-η).p (4)

p01 = P(I=0, F=1) = (1-θ).(1-p) (5)
p11 = P(I=1, F=1) = η .p (6)

Here pif is the probability that a case is classified as f by an auditing tool when the
infallible classifier, i. e audit expert, determines the case as i where }1,0{, ∈if .

In this section we will use Bayesian approach to estimate the distributions of η , θ

and p based on the test results of the tool on a small set of process instances. Then, we
will approximate pif from equations (3) - (6) and compute the effectives of the tool by
employing these estimations in sections 6 and 7. Following the Bayesian approach in
the presence of misclassification, it is a common practice to assume that prior infor-
mation is in the form of a beta density for prevalence, specificity and sensitivity [17].
The reason for selecting Beta distribution is that it is a flexible family of distribution
and a wide verity of density shapes can be derived by changing the associated pa-
rameters of the beta distribution [21]. It is also a conjugate prior distribution for the
binomial likelihood which simplifies the derivation of the posterior distribution sig-
nificantly. The probability density function of a beta distribution with parameters
(βα ,) is given by

⎪⎩

⎪
⎨
⎧ ≤≤−

−=
−−

otherwise

and
Bf

,0

,0,,10,)1(
)1(

1
)(

11 fβαϕϕϕ
αϕ

βα

(7)

We will hence assume that the prior information on p, η and θ is expressed through

independent beta distributions as),(βαBeta ,),(11 βαBeta and),(22 βαBeta respec-

tively. Our purpose is to infer posterior distributions of p,η andθ after observing the

compliance evaluation results of the auditing tool. Let the auditing tool with sensitiv-
ity η and specificity θ evaluates the compliance status of a key control point for N

process instances, for which the truth values (actual compliance status) are known. As

318 Y. Doganata and F. Curbera

a result, let 01111 nnn +=• instances are marked as non-compliant (F=1) and

00100 nnn +=• instances are marked as compliant (F=0) where 11n , 10n , 01n and

00n are the number true positives, false negatives, false positives and true negatives

respectively as shown in Table 1.
In the presence of the observed data, the posterior distributions of p, η and θ are

still independent Beta distributions [21]. This can be shown directly by using the
Bayesian theorem that the posterior joint distribution is the product of the likelihood
function of the observed data (binomial) and the prior distribution (beta). Hence, the
joint posterior distributions of p, η and θ are found as

),(~ 01 NNBetap ++ βα

(8)

),(~ 101111 nnBeta ++ βαη

(9)

 ~θ),(012002 nnBeta ++ βα (10)

Equations (9) and (10) are the posterior distributions of the sensitivity and the speci-

ficity of the auditing tool that produced 11n true positives, 10n false negatives, `11n

true positives and 01n false positives in a business environment where the prevalence

of non-compliance is p. From these observed test results, inference about the mar-
ginal distributions for sensitivity and specificity is possible by using Gibbs sampler
algorithm [23] as will be shown next.

6 Inference of Marginal Densities p, η , θ .

Inference about prevalence p ~ Beta(),(βα , sensitivity η ~ Beta(11,βα) and speci-

ficity θ ~ Beta(
22 ,βα) can be drawn by running a test using the auditing tool and

observing true positives and false negatives as depicted in Table 1. The technique is
well known in the literature as Gibbs sampler algorithm [18]-[20], [23]. Gibbs sam-
pler is an iterative Markov-chain Monte Carlo technique developed to approximate

Table 1. Test results of N sample process instances

 Effect of Using Automated Auditing Tools 319

intractable posterior distributions. The algorithm uses the observed data to compute
the posterior distributions of prevalence, specificity and sensitivity by applying
Bayes’ theorem and conversely computes the distributions of the observed data by
using the prior distributions of prevalence, sensitivity and specificity as described in
[23]. Gibbs sampler derives posterior probability distributions that best fit given prior

distributions Beta),(βα , Beta(
11, βα) and Beta(

22 ,βα) and observed data, 11n , 10n ,

`11n and 01n . As described in [17], arbitrary starting values can be chosen for each

parameter. If no prior knowledge or data is available for the initial distributions,
α and β parameters are selected as 1 which corresponds to uniform distribution.

Gibbs sampler converges to the true values of the posterior distributions after running
tens of thousands of iterations.

Table 2. Input values for the prevalence calculator given in [22]

Input values for the prevalence calculator
Test Results:

Number of samples tested N
Number of samples positive:

0111 nn +

Alpha and Beta parameters for prior distributions:
Prior prevalence, alpha N1
Prior prevalence, beta N- N1
Prior sensitivity, alpha

11n

Prior sensitivity, beta
10n

Prior specificity, alpha
00n

Prior specificity, beta =
01n

Simulation details:
Number of iterations: 50K+
Number to discard: 5 5K+

Starting Values
Number of true positives

11n

Number of false negatives
10n

Reference [22] provides for an on-line calculator to estimate the true prevalence

based on testing of individual samples using a test with imperfect sensitivity and/ or
specificity. The input values required for the calculator are listed in Table 2. These
include the number of samples (process instances) tested, the number of samples
labeled positive (non-compliant), α and β parameters for prior prevalence, sensitivity

and specificity distributions, number of iterations to be simulated in the Gibbs sam-
pler, number of iterations to be discarded to allow convergence of the model and

320 Y. Doganata and F. Curbera

initial number of true positives 11n and false negatives 10n . Table 2 is generated by

using the notation given in Table 1. The initial α and β values for prior distributions

are selected by using the fact that α /(α + β) is the mean value of a beta distribution

and by using the observed data given in Table 1. As an example, the mean value of
the prior prevalence can be approximated as N1 /(N1+N0). Hence, the beta value for
prior prevalence is approximated as N0 and the alpha value is approximated as N1.

7 Numerical Results

We run our auditing tool over 135 instances of the sample e-mail based firewall rule
revalidation process to verify the compliance of the six key control points defined in
section 3. 1. By using the prevalence calculator described above and the number of
observed true positives, true negatives, false positives and false negatives for each key
control point, we inferred the distributions for p, η and θ . The test results of the

auditing tool and the associated mean values for p, η and θ are displayed for each

key control point in Table 3.

Table 3. Average prevalence, sensitivity and specificity values for the auditing tool inferred for
the six key control points

 KCP1 KCP2 KCP3 KCP4 KCP5 KCP6

11n (TP) 7 64 55 41 42 40

01n (FN) 1 5 5 12 5 9

10n (FP) 8 20 31 41 18 6

00n (TN) 119 46 44 41 70 80

E(p) 0.074 0.502 0.460 0.399 0.366 0.362
E(η) 0.826 0.924 0.847 0.759 0.790 0.793

E(θ) 0.934 0.892 0.555 0.496 0.758 0.910

Table 3 implies that the performance of the auditing tool varies for each key con-

trol point. This is expected since the data used to compute the compliance of each
control point is different. As a result, the effectiveness of the tool also varies for each
control point. The inferred prevalence of non-compliance for different key control
point shows that the rate of non-compliance is highest for KCP2 (E(p)=0.502) and
lowest for KCP1 (E(p) = 0.074). This information can be used to identify the prob-
lematic points in the process.

Once we measure the performance of the auditing tool with its sensitivity and
specificity values, we would like to understand how effectively we can use the tool
to increase the rate of detecting non-compliant processes. In the next section, we

 Effect of Using Automated Auditing Tools 321

will propose a method to measure the effectiveness of the automated auditing tool
with given sensitivity and specificity in an environment where the prevalence of
non-compliance is p.

8 Measuring the Effectiveness of Auditing Tool

Given a fallible auditing tool with sensitivity and specificity (η ,θ), and given a
fixed budget to fund the use of audit experts, we would like to find out how much we
can improve the detection of non-compliant process instances. As discussed before,
poor auditing may cause missing opportunities for corrective action. Hence, we would
like to maximize the number of non-compliant cases detected as a result of auditing.
On one hand we have a budget constraint which limits the number of cases we can
audit by using an expert. On the other hand, we have a fallible automated audit ma-
chine which can be used to evaluate every process instance without incurring extra
cost. The goal is to device a methodology for enabling to detect the largest number of
non-compliant instances possible under these constraints. One possible methodology
is to evaluate all process instances by using the automated audit machine and ask
experts randomly re-evaluate M1 cases among the ones marked as non-compliant
(Region N) and M2 among the ones marked as compliant (Region C) by the automated
audit machine. This way the sample space that the experts operate is reduced. We
assume that the budget permits the expert evaluation of only M =M1+M2 cases. The
effectiveness of the proposed methodology can be measured by comparing the ex-
pected number of non-compliant process instances detected. If the number is higher
than what experts would have determined under budget constraint without using the
methodology, then we can conclude that the methodology improves the auditing
process in general.

The probability that a randomly selected process instance is labeled non-compliant,
P(F=1), by the auditing tool is (p11 +p01). Given the condition that the auditors work
only on instances labeled as non-compliant by the tool (Region N), probability that
the auditors detect a non-compliant case is Pr(I=1/F=1) = Pr(I=1, F=1)/P(F=1) =
p11 /(p11 +p01). Similarly, the probability that an auditors detects a non-compliant cases
among the ones labeled as compliant by the tool (Region C) is Pr(I=1/F=0) = p10 /
(p00 +p10). Hence, the average number of non-compliant cases detected by using this
method can then be found as below where the function W is called the “worth” of this
method.

0010

10
2

0111

11
1 .

pp

p
M

pp

p
MW

+
+

+
= (11)

The worth function is maximized by making the experts work either in the region
labeled as compliant (Region C) or as non-compliant (Region N) depending on the
values of p11 /(p11 +p01) and p01 /(p00 +p01) provided that the budget constraint M is
less than the size of both regions. This is a reasonable assumption since the size of
process instances in both regions are usually much larger than M. Hence,

322 Y. Doganata and F. Curbera

⎪
⎪
⎩

⎪⎪
⎨

⎧

+++

+
≤

++=

0111

11

0010

10

0010

10

0111

11

0001

01

0111

11

}max{

pp

p

pp

p

pp

p
M

pp

p

pp

p

pp

p
M

W
f

 (12)

In the absence of auditing tool, we would only rely on the efforts of the audit experts.
The average worth of this practice would then be the product of M and the prevalence
of non-compliance, p. Let W0 be the worth of using only experts as auditors, the ex-
pected worth is then

MpW =0 (13)

Potential improvement of using auditing tool can then be measured by the ratio of
the worth functions max{W}and W0 . From (12) and (13) ,the improvement function
I is found as:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+++

+
≤

++=

0111

11

0010

10

0010

10

0111

11

0001

01

0111

11

)(

)(

pp

p

pp

p

ppp

p
pp

p

pp

p

ppp

p

I
f

, (14)

9 Numerical Results for Improvement

In order to simplify the calculations, we will approximate the variables p11, p01, p10,
p00 with their mean values by using equations (3)-(6) and the fact that prevalence,
sensitivity and specificity are independent beta distributions as Beta(βα ,),

Beta(11,βα) and Beta(22 ,βα) respectively as follows:

))((
))1.((~

22

2
00 βαβα

βαθ
++

=− pEp ,
(15)

))((
))1((~

11

1
10 βαβα

αβη
++

=− pEp ,
(16)

))((
))1).(1((~

22

2
01 βαβα

ββθ
++

=−− pEp ,
(17)

))((
).(~

11

1
11 βαβα

ααη
++

=pEp .
(18)

By using the expected sensitivity and specificity values displayed in Table 3 and
employing equation (15)-(18), the percentage improvement (I-1)x100 of using audit-
ing tool for each KCPs is calculated and the results are displayed in Table 4.

 Effect of Using Automated Auditing Tools 323

Table 4. Improvement obtained by using automated auditing tools for key control points

 KCP1 KCP2 KCP3 KCP4 KCP5 KCP6
E(p) 0.074 0.502 0.460 0.399 0.366 0.362
E(η) 0.826 0.924 0.847 0.759 0.790 0.793

E(θ) 0.934 0.892 0.555 0.496 0.758 0.910

I 6.75 1.49 1.34 1.25 1.79 2.30
% 575 49 34 25 79 130

From equation (14) we can conclude that the improvement depends on the preva-

lence and the probability that a randomly selected process instance is found
non-compliant by the expert within each particular region. Depending on the region
(labeled compliant or non-compliant) experts work, this probability is either p11 /
(p11 +p01) or p10 / (p10 +p00). It is clear from the equation that there is always going to be
improvement as long as the prevalence is less than the probability of detecting a non-
compliant process instance by using the tool. This is expected since the rate of detect-
ing non-compliant instances by employing only auditors cannot be greater than p.

In order to understand the effect of sensitivity and specificity on the improvement
as a function of prevalence, we approximate the improvement by using equation (15)-
(18) as follows:

ψψ +−
=

)1(

1

p
I , (19)

where

⎪
⎪
⎩

⎪⎪
⎨

⎧

++−

+
≤

+
−

=

0111

11

0001

01

0111

11

0001

01

1

1

pp

p

pp

p
if

pp

p

pp

p
if

f
η

θ
η

θ

ψ .
(20)

In Figure 3, the percentage improvement is plotted as a function of ψ for various

prevalence values changing between 0.1 and 0.9. The performance of the auditing tool
for each key control point is also mapped on the same figure. As seen in the figure,
the improvement is significantly greater in case of KCP1. On the other hand, using
the tools does not give the same improvement for KCP4. In general, the improvement
percentage is significantly higher when both the prevalence and ψ are small and it

converges to zero as ψ converges to 1. In order to explain this behavior, without lack

of generality, let’s focus on the case where experts are asked to examine only process
instances labeled as non-compliant (Region N) by the automated machine. Hence,
equation (20) becomes ψ = (1- θ)/η and indicates that as the specificity and the

sensitivity increases, the value of ψ decreases. In effect, the improvement percentage

increases. This is expected since as the sensitivity of an audit machine improves, the
likelihood of detecting non-compliant process instances by using the tool improves as

324 Y. Doganata and F. Curbera

Fig. 3. Percentage of improvement as a function of ηθ /)1(−

well. This is why the improvement percentage is higher for smaller ψ values. On the

other hand, as ψ approaches to 1, i. e., the sum of the specificity and the sensitivity

approaches to one, improvement disappears. The reason for this is that in this case the
likelihood of detecting non-compliant process instances approaches to, p, the preva-
lence. This can be explained as follows: When sensitivity is equal to (1 – specificity),
the likelihood of having false positives becomes equal to likelihood of having true
positives. In other words, the following holds

FPTN

FP

FPTN

TN

FNTP

TP

+
=

+
−=−=

+
= 11 θη . (21)

Equation (21) implies that

FPTN

FNTP

FP

TP

+
+= , (22)

where TP, TN, FP and FN are the number of true positive, true negative, false positive
and false negative observations respectively. Further manipulation of equation (22)
yields:

 Effect of Using Automated Auditing Tools 325

p
FNTPFPTN

FPTN

FPTP

TP =
+++

+=
+

. (24)

Here, TP, TN, FP and FN stand for the numbers of true positives, true negatives, false
positives and false negatives. Note that this is also equal to the likelihood of detecting
non-compliant instances in region N:

1
)(0111

11 =→=
+

≈
+

Ip
FPTP

TP

pp

p
 (25)

Equation (25) shows that working in region N does not give any advantage since the
detecting a non-compliant process instances in this region is equivalent to the preva-
lence. The same argument holds for the other region without lack of generality. This
means that labeling process instances with the auditing tool does not improve the rate
of detecting non-compliant instances if the sensitivity of the automated machine is
equal to 1 – specificity.

10 Conclusion

The level of compliance of a process, that is, the prevalence of non-compliant
instances, can typically be reduced through automation by introducing a business
processes management platform and other support middleware such as a content man-
agement system. A complementary approach is to increase the levels of compliance
monitoring. Processes with low levels of automation, which are essentially unman-
aged processes, must rely in an efficient auditing procedure as the only way to prevent
systemic non-compliance. Automated auditing tools can be used to complement man-
ual auditing by subject matter experts and expand the amount of process. In this arti-
cle, we provide a methodology to estimate the effectiveness of these tools. We
showed that the effectiveness depends on both the prevalence of non-compliant cases
as well as the performance of the tool. The approach is expected to help businesses
make smarter decision on employing subject matter experts and utilize automated
audit tools.

Our future work will focus on optimizing the use of auditors by taking into account
of all operational control points and their correlation.

References

1. Curbera, F., Doganata, Y., Martens, A., Mukhi, M., Slominski, A.: Business Provenance -
A Technology to Increase Traceability of End-to-End Operations. In: OTM Conferences
vol (1) , pp. 100–119 (2008)

2. Greengard, S.: Compliance Software’s Bonus Benefits. Business Finance Magazine
(February 2004)

3. Gartner.: Simplifying Compliance: Best Practices and Technology, French Caldwell,
(Business Process Management Summit (June 6, 2005)

326 Y. Doganata and F. Curbera

4. Hagerty, J., Hackbush, J., Gaughan, D., Jacaobson, S.: The Governance, Risk Manage-
ment, and Compliance Spending Report, 2008-2009, AMR Research Report, March 25
(2008)

5. Corfield, B.: Managing the cost of compliance,
http://justin-taylor.net/webdocs/tip_of_the_iceberg.pdf

6. Zur Muehlen, M., Ho, D.T.: Risk Management in the BPM Lifecycle. In: Bussler, C.J.,
Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 454–466. Springer, Heidelberg (2006)

7. Christopher, G., Müller, S., Pfitzmann, B.: From Regulatory Policies to Event Monitoring
Rules: Towards Model-Driven Compliance Automation. IBM Research Report RZ 3662,
IBM Zurich Research Laboratory (2006)

8. Lu, R., Sadiq, S., Governatori, G.: Compliance aware business process design. In:
ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 120–131. Springer, Heidelberg (2008)

9. Milosevic, Z., Gibson, S., Linington, J.C., Kulkarni, S.: On Design and implementation of
a contract monitoring facility. In: Benatallah, B. (ed.) First IEEE International Workshop
on Electronic Contracts, pp. 62–70. IEEE Press, Los Alamitos (2004)

10. Governatori, G., Milosevic, Z.: A Formal Analysis of a Business Contract Language. In-
ternational Journal of Cooperative Information Systems 15(4), 659–685 (2006)

11. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business proc-
esses and business contracts. In: Proceedings of the 10th IEEE Conference on Enterprise
Distributed Object Computing (2006)

12. Ly, L.T., Rinderle, S., Dadam, P.: Integration and verification of semantic constraints in
adaptive process management systems. Data and Knowledge Engineering 64(1), 3–23
(2008)

13. Governatori, G.: Representing Business Contracts in RuleML. International Journal of Co-
operative Information Systems 14(2–3), 181–216 (2005)

14. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations
and permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103,
pp. 5–14. Springer, Heidelberg (2006)

15. Lee, J.K., Sohn, M.M.: The eXtensible Rule Markup Language. Communications of
ACM 46(5), 59–64 (2003)

16. Egizi, C.: High cost of compliance,
http://www.cioupdate.com/career/article.php/3489431/
The-High-Cost-of-Compliance.htm

17. Joseph, L., Gyorkos, T.W., Coupal, L.: Bayesian estimation of disease prevalence and the
parameters of diagnostic tests in the absence of a gold standard. Am. J. Epidemiol (1995)

18. Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating marginal densi-
ties. Journal American Statistics Assoc. 85, 348–409 (1990)

19. Gelfand, A.E., Hills, S.E., Racine-Poon, A., et al.: Illustration of Bayesian Inference in
normal data using Gibbs sampling. Journal of American Statistics Assoc. 85, 972–985
(1990)

20. Tanner, M.A.: Tools for statistical inference. Springer, New York (1991)
21. Katsis, A.: Sample size determination of binomial data with the presence of misclassifica-

tion. Metrika 63, 323–329 (2005)
22. Pooled Prevalence Calculator, http://www.ausvet.com.au/pprev/
23. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Res-

toration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6,
721–741 (1984)

Divide-and-Conquer Strategies

for Process Mining

Josep Carmona1, Jordi Cortadella1, and Michael Kishinevsky2

1 Universitat Politècnica de Catalunya, Spain
2 Intel Corporation, USA

Abstract. The goal of Process Mining is to extract process models from
logs of a system. Among the possible models to represent a process,
Petri nets is an ideal candidate due to its graphical representation, clear
semantics and expressive power. The theory of regions can be used to
transform a log into a Petri net, but unfortunately the transformation
requires algorithms with high complexity. This paper provides techniques
to overcome this limitation. Either by using decomposition techniques, or
by clustering events in the log and working on projections, the proposed
approach can be used to widen the applicability of classical region-based
techniques.

1 Introduction

The goal of Process Mining [20] is to extract knowledge from event logs recorded
in information systems. Several researchers have provided algorithms to mine
formal models from logs, most of them included in the ProM framework [19].

The synthesis problem [10] is related to process mining: it consists in building
a Petri net that has a behavior equivalent to a given transition system. The
problem was first addressed by Ehrenfeucht and Rozenberg [11] introducing re-
gions to model the sets of states that characterize marked places. In the area
of synthesis, some techniques have been proposed to take the theory of regions
into practice. In [2] polynomial algorithms for the synthesis of bounded nets
were presented. These algorithms have been recently adapted for the problem of
process mining in [3]. In [7], the theory of regions was applied for the synthesis
of safe Petri nets with bisimilar behavior. Recently, the theory from [7] has been
extended to bounded Petri nets [6].

Process mining differs from synthesis in the knowledge assumption: while in
synthesis one assumes a complete description of the system, only a partial de-
scription of the system is assumed in process mining. However, synthesis can be
adapted for process mining in two ways: either the log is encoded as a transi-
tion system (introducing state information, as described in [18]) and state-based
methods for mining [5] are applied, or language-based methods are used directly
on the log [3, 21]. In this paper we follow the first approach.

Due to its complexity, it is clear that the theory of regions might become
impractical when dealing with large logs. In this paper, we present methods to

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 327–343, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

328 J. Carmona, J. Cortadella, and M. Kishinevsky

alleviate significantly the complexity of the region-based approach. Two tech-
niques are presented to this end:

– A decomposition method to find a set of components (conservative Petri
nets), each one describing a partial view of the log. This approach avoids the
exhaustive computation of regions and instead applies local search of regions
(inspired on the notion of allocation from Hack [13]) until a component is
detected. The set of components can either be composed to form a unique
Petri net or presented separately. It is described in Section 3.

– A divide-and-conquer method to split the log into pieces, by means of pro-
jection. The method selects groups of events tightly related in the log for
which the decomposition technique will be applied, projecting the log on
these events. When neither the classical region-based mining nor the decom-
position approach are able to handle a large log, this aggressive technique
has proven to be very successful. It is presented in Section 4.

In both approaches, the goal is to offer a set of partial views of the behavior
observed in the log, by means of a set of Petri nets whose parallel composition
can reproduce any trace observed in the log.

Log L
Events E

...PN PN PN PN PN
(cc) (cc) (cc) (cc)(cc)

L |En
L |E1

E = E1 ∪ . . . ∪ En

Let us illustrate the idea of the divide-
and-conquer approach (see figure on the
right): given a log L with set of events
E, using some ordering relations of the
events appearing in the log, derive a
causal dependency graph of the set of the
events. This graph is then cut into sev-
eral pieces, each piece representing a set
of events tightly related by causal depen-
dencies (in the figure, the sets E1 . . . En

are found). Finding a good partitioning
is a problem on its own, but several approaches can be used to this end, in-
cluding graph cut algorithms [14,12] or spectral graph theory [8]. Then the log is
projected for each one of the sets of events. The decomposition method of this
paper is then applied for each projection, obtaining a set of Petri nets (PN) that
covers the traces in the log.

2 Basic Theory

2.1 Finite Transition Systems and Petri Nets

Definition 1 (Transition system). A transition system (TS) is a tuple
(S, E, A, sin), where S is a set of states, E is an alphabet of actions, A ⊆
S × E × S is a set of (labelled) transitions, and sin ∈ S is the initial state.

We will use s
e→ s′ as a shortcut for (s, e, s′) ∈ A, and the transitive closure

of this relation will be denoted by ∗→. Let TS = (S, E, A, sin) be a transition

Divide-and-Conquer Strategies for Process Mining 329

system. We consider connected TSs that satisfy the following axioms: i) S and E
are finite sets, ii) every event has an occurrence and iii) every state is reachable
from the initial state.

The language of a TS, L(TS), is the set of traces feasible from the initial
state. When L(TS1) ⊆ L(TS2), we will denote TS2 as an over-approximation of
TS1. Given a trace σ ∈ L(TS) and a set A ⊆ E, σ |A is the trace resulting of
removing from σ all events in E − A. Analogously, TS |A is the TS that arises
after contracting all transitions of events in E − A.

Definition 2 (Petri net [15]). A Petri net (PN) is a tuple (P, T, F, M0) where
P and T represent finite and disjoint sets of places and transitions, respectively,
and F ⊆ (P × T) ∪ (T × P) is the flow relation. The initial marking M0 ⊆ P
defines the initial state of the system1.

The sets of input and output transitions of place p in PN N are denoted by •
Np

and p•N , respectively (we omit the subscript indicating the net if the context is
clear). The set of all markings reachable from the initial marking m0 is called its
Reachability Set. The Reachability Graph of PN (RG(PN)) is a transition system
in which the set of states is the Reachability Set, the events are the transitions
of the net and a transition (m1, t, m2) exists if and only if m1

t→ m2. We use
L(PN) as a shortcut for L(RG(PN)).

2.2 Regions and Region-Based Synthesis

We now review the classical theory of regions for the synthesis of Petri nets [11,
10,7]. Let S′ be a subset of the states of a TS, S′ ⊆ S. If s �∈ S′ and s′ ∈ S′, then
we say that transition s

a→ s′ enters S′. If s ∈ S′ and s′ �∈ S′, then transition
s

a→ s′ exits S′. Otherwise, transition s
a→ s′ does not cross S′.

The notion of a region is central for the synthesis of PNs. Intuitively, each
region is a set of states that corresponds to a place in the synthesized PN, so
that every state in the region models the marking of the place.

Definition 3 (Region). A set of states r ⊆ S in TS = (S, E, A, sin) is called a
region if for each event e ∈ E, exactly one of the three predicates (enters, exits
or does not cross) holds for all its transitions.

Hence, a region is a subset of states in which all transitions labelled with the
same event e have exactly the same “entry/exit” relation. This relation will
become the predecessor/successor relation in the Petri net. Examples of regions
are reported in Figure 1: from the TS of Figure 1(a), some regions are enumerated
in Figure 1(b). For instance, for region r2, event a is an exit event, event d is an
entry event while the rest of events do not cross the region.

1 For the sake of clarity, we restrict the region theory of this section to the class of
elementary net systems: 1-bounded Petri nets without loops. The theory for the
general case (k-bounded weighted Petri nets) is described in [6,5], and the theory of
the rest of the paper is applicable for the general case, as demonstrated in [4].

330 J. Carmona, J. Cortadella, and M. Kishinevsky

a b

c

d

r1r2

r3 r4

r5

a b

b a d

s1

c

(a) (b)

1

2r = { s1, s3 }

3r = { s2, s4 }

4r = { s3, s4 }
r = { s5 }

5

r = { s1, s2 }

(c)

s2 s3

s4

s5

(d)

a b

d

c

Regions

Fig. 1. (a) Transition system, (b) regions, (c) NTS, (d) Causal dependency graph

Algorithm. PN synthesis on the set of regions R

– For each event e ∈ E generate a transition labelled with e in the PN;
– For each region ri ∈ R generate a place ri;
– Place ri contains a token in the initial marking iff the corresponding

region ri contains the initial state of the TS sin;
– The flow relation is as follows: e ∈ ri• iff ri is a pre-region of e

and e ∈ •ri iff ri is a post-region of e, i.e.,

FR
def
= {(r, e)|r ∈ RTS ∧ e ∈ E ∧ r ∈ ◦e}
∪{(e, r)|r ∈ RTS ∧ e ∈ E ∧ r ∈ e◦}

Fig. 2. Algorithm for Petri net synthesis from [11]

Each TS has two trivial regions: the set of all states, S, and the empty set.
The set of non-trivial regions of TS will be denoted by RTS. A region r is a pre-
region of event e if there is a transition labelled with e which exits r. A region
r is a post-region of event e if there is a transition labelled with e which enters
r. The sets of all pre-regions and post-regions of e are denoted with ◦e and e◦,
respectively. By definition it follows that if r ∈ ◦e, then all transitions labelled
with e exit r. Similarly, if r ∈ e◦, then all transitions labelled with e enter r.

The algorithm given by [11] to synthesize a PN, NTS = (R, E, FR, Rsin), from
an elementary transition system2 TS = (S, E, A, sin) and a set of regions R, is
illustrated in Figure 2. An example of the application of the algorithm is shown
in Figure 1. The initial TS and a set of regions is reported in Figures 1(a) and
(b), respectively. The synthesized PN is show in Figure 1(c). When the TS is

2 Elementary transition systems are a proper subclass of the TS considered in this
paper, where additional conditions to the ones presented in Section 2.1 are required.

Divide-and-Conquer Strategies for Process Mining 331

1 r,s,sb,p,ac,ap,c
2 r,sb,em,p,ac,ap,c
3 r,sb,p,em,ac,rj,rs,c
4 r,em,sb,p,ac,ap,c
5 r,sb,s,p,ac,rj,rs,c
6 r,sb,p,s,ac,ap,c
7 r,sb,p,em,ac,ap,c

(a) (b)

r
s s s

sb

sb

sb

p

p

pem em em

ac

ac

rj

rj

ap

ap c

c

c

c

rs

rs

Fig. 3. (a) event log, (b) corresponding transition system

elementary, running algorithm of Figure 2 on the set of non-trivial regions RTS

derives a PN such that L(PN) = L(TS) [11].
Given an event e, ER(e) denote the set of states where event e is enabled

(Excitation Region), and SR(e) the set of states reached when firing e in a state
from ER(e) (Switching Region)3. These sets will be used to compute the ordering
relations between events (see below).

2.3 Deriving Transitions Systems from Logs

For a complete understanding of the approach presented in this paper, it is
necessary to show how to transform a log into a TS, which is the starting point
of our algorithms. The theory described in [18] presents many variants for solving
this problem. The basic idea to incorporate state information is to look at the
pre/post history of a subtrace in the log. Figure 3 shows an example, where
states are decided by looking at the set of common prefixes.

2.4 Trigger Relations and Its Graph

In this section we present a relation on events, similar to the log-based ordering
relation [20], but which is defined in the TS. It is based on the ER/SR sets.

Definition 4 (Causal Dependency Graph). Given a TS = (S, E, A, sin),
and two events a, b ∈ E:

1. a triggers b (a →TS b) if SR(a) ∩ ER(b) �= ∅ and ER(a) ∩ SR(b) = ∅, and
2. a is concurrent to (a ‖TS b) b if SR(a) ∩ ER(b) �= ∅ and ER(a) ∩ SR(b) �= ∅.

The causal dependency graph over TS, denoted CDG(TS), is the directed graph
(E,M), with M ⊆ E × E such that (a, b) ∈ M iff a →TS b or b →TS a.

For instance, the causal dependency graph of the transition system of Figure 1(a)
is depicted in Figure 1(d).

3 Excitation and switching regions are not regions in the terms of Definition 3. The
terms are used due to historical reasons.

332 J. Carmona, J. Cortadella, and M. Kishinevsky

3 Computation of Conservative Components

The goal of this section is, given a TS, derive a set of conservative components
whose parallel composition contains all the traces possible in the TS. For the
sake of simplicity, we will restrict the definitions for the case of conservative
1-bounded nets, known as state machines [15]. Formal proofs of the main results
of this section can be found in [4].

r5

r4

r1

r5

r2

r3

r4

r1

r5

r3

r5

r2

a b

b a d

s1

c

s2 s3

s4

s5

a b

b a d

s1

c

s2 s3

s4

s5

(a) (b)

(c)

(d)

b

a

d

c d

c

Fig. 4. Example of conservative components decomposition for the example of Figure 1:
(a) Partition of the transition system on regions r1, r4 and r5, and (b) for regions r2,
r3 and r5. The corresponding state machines are drawn in (c) and (d), respectively.

Let us illustrate the theory of this section revisiting the example of Figure 1.
From the set of regions reported (r1 . . . r5), there are two subsets that correspond
to partitions of the set of states in the transition system of Figure 1(a) (depicted
in Figures 4(a) and (b)). For instance, the subset r1, r4 and r5 forms a partition.
The main idea is: when a subset R of regions is a partition, then the synthesis
algorithm from Figure 2 applied on R will derive a conservative Petri net, i.e. a
Petri net where the number of tokens is preserved. Figure 4(c) and (d) show the
two Petri nets corresponding to each partition, respectively.

3.1 State Machines and Its State-Based Representation

First we define formally the concepts of subnet and state machine component:

Definition 5 (Subnet). A triple N ′ = (P ′, T ′, F ′) is a subnet of a net N =
(P, T, F) if P ′ ⊆ P , T ′ ⊆ T and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).

Definition 6 (State Machine Component). A state machine component
(SMC) N ′ = (P ′, T ′, F ′) of a net N is a subnet of N such that

1. for every t ∈ T ′ : |•N ′t| = |t•N ′ | = 1, and
2. for every p ∈ P ′, (•Np ∪ p•N) ⊆ T ′

An SMC of a PN (N ,M0) is a pair (N ′,M ′
0) such that N ′ is a SMC of N , for

every p ∈ P ′ : M ′
0(p) = M0(p) and

∑
p∈P ′ M ′

0(p) = 1.

Divide-and-Conquer Strategies for Process Mining 333

Algorithm 1. SMCComputation
Input: Transition system TS = (S, E, A, sin), event ev ∈ E
Output: Set of regions R forming a partition of S
begin1

R←− ∅2

Evs←− {ev}3

ri ←− PickOneRegion({r|r ∈ ◦ev})4

rj ←−PickOneRegion({r|r ∈ ev◦ ∧ r ∩ ri = ∅}5

PendingRegs←− {ri, rj}6

Part←− {ri, rj}7

repeat8

r ←− RemoveOneRegion(PendingRegs)9

forall e ∈ E − Evs : e ∈ ◦r ∪ r◦ do10

ri ←− PickOneRegion({r|r ∈ ◦e ∧ r ∩ Part = ∅})11

rj ←− PickOneRegion({r|r ∈ e◦ ∧ r ∩ Part = ∅})12

if ri �= ∅ ∨ rj �= ∅ then13

Evs←− Evs ∪ {e}14

R←− R ∪ {ri, rj}15

PendingRegs←− PendingRegs∪ {ri, rj}16

Part←− Part ∪ {ri, rj}17

end18

end19

until PendingRegs = ∅ ∨ Part = S20

if Part ⊂ S then R←− {S}21

end22

The following theorem states the main result of this section:

Theorem 1. Let TS = (S, E, A, sin), and consider the net
NTS = (RTS, E, FRTS

, RTSsin
) obtained by the algorithm of Figure 2 on RTS.

Given a set of regions R ⊆ RTS, if R forms a partition of S, then algorithm of
Figure 2 on R defines an SMC of NTS.

3.2 Allocation-Based SMC Computation

In Hack’s thesis [13], the idea of allocation was introduced to decompose a Free-
choice Petri net into a set of safe and conservative components (S-components).
The idea is to select a-priori, among the places in the pre-set of a transition, the
one that will be in the pre-set of the transition in the constructed S-component.

Following the idea of allocation from Hack’s thesis, we present a method to
derive an SMC from a given TS. Algorithm 1 describes the iterative process
of finding regions until a partition of the states in TS is computed. Due to
Theorem 1, the set of regions R forms an SMC. The idea of the algorithm is:
starting from an initial event ev and two arbitrary regions in ◦ev and ev◦ (lines
4-5 of the algorithm), keep growing a partition by iteratively including pre-post
regions of new events until the partition equals the set of states in TS or no more

334 J. Carmona, J. Cortadella, and M. Kishinevsky

Algorithm 2. SMCDecomposition
Input: Transition system TS = (S, E, A, sin)
Output: SMC1 = (R1, E1, F1, M0,1) . . . SMCn = (Rn, En, Fn, M0,n)
begin1

X ←− E2

i←− 13

repeat4

ev ←− RemoveOneEvent(X)5

Ri ←− SMCComputation(TS,ev)6

Ei ←− {e|e ∈ (◦r ∪ r◦) ∧ r ∈ SMCi ∧ r ⊂ S} ∪ {ev}7

Fi ←− {(r, e)|e ∈ r◦ ∧ r ∈ Ri ∧ e ∈ Ei} ∪ {(e, r)|e ∈ ◦r ∧ r ∈ Ri ∧ e ∈ Ei}8

M0,i ←− ∀r ∈ Ri : M0,i(r) = r(sin)9

X ←− X − Ei10

i←− i + 111

until X = ∅12

end13

regions can be found (lines 8-20). If the set of regions found are not enough as
to form a partition of S, the trivial region S is returned and therefore the SMC
will simply be the initial event with a self-loop place (line 21).

The general method to find a set of SMCs that cover every event of the TS is
described in Algorithm 2. At each iteration i, it tries to find a new SMC SMCi

that covers one of the events still not covered by any SMCj , for j < i. When
an event ev can only be covered by the trivial region S, then Ei = {ev}, and
therefore the SMCi derived will be a self-loop place on event ev.

Property 1. Algorithm 1 derives an SMC, and L(TS) ⊆ L(SMC).

Property 2. Given the set of regions R1 . . . Rn found by Algorithm 2,⋃
i=1...n Ri ⊆ RTS.

Property 2 ensures that the set of regions needed to cover the events is at most
the set of non-trivial regions. A complexity alleviation (with respect to classi-
cal synthesis methods) can be obtained when the set of regions computed by
Algorithm 2 is a proper subset. Section 5 shows examples of this.

Informally, the parallel composition of n PNs is a PN where every transition
with the same label in two or more components represents a synchronization
point for the components [22]. The following theorem can be proven:

Theorem 2. Let SMC1 = (R1, E1, F1, M0,1) . . . SMCn = (Rn, En, Fn, M0,n)
be the set of components found by Algorithm 2 on TS = (S, E, A, sin). Then
L(TS) ⊆ L(SMC1 ‖ . . . ‖ SMCn).

Algorithm 2 is nondeterministic: depending on the order of events selected, a
different set of state machines can arise. This has an impact both in the quality of
the overapproximation obtained and in the complexity of the method, measured

Divide-and-Conquer Strategies for Process Mining 335

in the number of regions needed. In the future, more elaborated strategies can
be build on top of the approach presented to address these concerns4.

3.3 Covering the Causal Dependency Graph

The causal dependency graph can be used to improve the quality of the generated
parallel composition: if some causal dependency between a pair of events is not
transferred to an SMC with a shared place of the corresponding transitions, one
can try to derive a new SMC that contains this relation.

Let a −→TS b be an ordering relation found in the TS. If the set
{r | SR(a) ∪ ER(b) ⊆ r ∧ r ∈ RTS} is not empty, then any region of this set may
be used to try to find an SMC covering the ordering relation a −→TS b. Al-
gorithm 1 can be adapted to search for some region in this set that derives
a non-trivial SMC (i.e. different from the self-loop place SMC) containing the
causality relation between a and b. This is done by adapting the PickOneRegion
predicates to search for regions r in the set above.

The theory presented in this section has been generalized to arbitrary k-
bounded PNs, as it is shown in [4] (Section 3.4). Due to the lack of space, we
only show the experiments on this extension in Section 5.

4 A Divide-and-Conquer Approach for Petri Net Mining

To face the complexity required for dealing with large TSs, an approach is pre-
sented to project the TS into tightly related events, obtaining smaller TSs. These
smaller TSs can then be handled by computationally expensive Petri net mining
methods. In this section we show how the decomposition approach of Section 3
can be applied on the TSs obtained by the projection technique to derive a set
of Petri nets. These nets can be combined to form a unique Petri net that covers
the traces of the initial log. Formal proofs of the main results can be found in [4].

4.1 Introductory Example

Let us illustrate the idea with the example from Figure 5, representing the behav-
ior (A; ((B; E) ‖ (C; F) ‖ (D; G)); H), in a TS having 28 states. In Figure 6(a),
we depict the causal dependency graph. Our goal is to find balanced partitions
of the causal dependency graph by means of cuts. Figure 6(b,top) reports a min-
imal cut from the graph of Figure 6(a), namely {C, F}. Notice that, provided
that we are interested in conservative components that are synchronized with
common events, when projecting the behavior of the initial TS into the set of
events found in the cut we include the events outside of the cut which are adja-
cent to vertices in the cut, e.g. events A and H in the figure (these events are
called border events). From each one of the sets of events found, the TS from Fig-
ure 5 is projected onto them and a conservative component covering the events
in the projection is found (this is shown in the bottom part of each cut).
4 Notice that the parallel composition might derive a general PN , i.e. no restriction

on the class of PNs after composition is assumed in this paper.

336 J. Carmona, J. Cortadella, and M. Kishinevsky

Fig. 5. Transition system

A B

EH

A C A D

FH GH

(a) (b) (c) (d)

A

H

B C D

E F G

A

H

B D

E F G

C B

E

A

H

D

G

A

H

D

G

Fig. 6. (a) Causal dependency graph, (b)-(d) (Top) Consecutive cuts of the causal
dependency graph, (Bottom) State machines covering each cut

4.2 Causal Dependency Graph Partitioning

There exist several techniques for the partitioning of a graph into a set of clus-
ters [14,12]. In this section we show one of these techniques, that does not have
to be the most efficient nor the optimal, but it was easy to implement. It consists
on iteratively finding bi-partitions until some halting criterion is reached.

In order to find a balanced partition of CDG(TS) = (E, M) into two sets, let
us use the well known RatioCut metric. Given a partition E1 . . . En of the set
E, the metric is defined as:

RatioCut(E1 . . . En) =
n∑

i=1

cut(Ei, Ei)
|Ei|

where Ei denotes the complement of set Ei, and
cut(A, B) = |{(i, j)|(i, j) ∈ M ∧ i ∈ A, j ∈ B}|. If only two sets (i.e. a bi-
partition) are used in the previous formula, the following optimization problem
can be considered:

min
A⊂E

RatioCut(A, A)

Divide-and-Conquer Strategies for Process Mining 337

Algorithm 3. DivideAndConquerMining
Input: TS = (S, E, A, sin), MaxSize
Output: Set of SMCs

SMC1 = (R1, E1, F1, M0,1) . . . SMCn = (Rn, En, Fn, M0,n)
begin1

Compute −→TS, ‖TS event relations2

(E1 . . . En)←− GraphPartition(CDG(TS),MaxSize)3

forall Ei do4

Ei ←− AddBorderEvents(TS,Ei,E)5

SMCDecomposition(TS |Ei)6

end7

end8

i.e. finding the best bi-partition for the given graph. A way to approximate the
optimal solution to this optimization problem is by using the Fielder vector,
which is the eigenvector corresponding to the second smallest eigenvalue of the
(unnormalized) Laplacian matrix L = D − A, where D is the degree matrix of
the nodes in the causal dependency graph, and A its adjacency matrix [8].

More concretely, if f ∈ R
|E| is the Fiedler vector, then a bipartition (E1, E2)

can be obtained as follows: e ∈ E1 if fe ≥ 0, and e ∈ E2 otherwise.
By iteratively finding bi-partitions, one can derive n partitions of the set of

events of the causal dependency graph, as it has been done for the causal depen-
dency graph from the example of Section 4.1. This iteration can be terminated
using a halting criterion: number of events in the projection, size of the log, CPU
time-limit for the region computation, among others. In our approach, provided
that we are interested in the mining of conservative components, the degree of
concurrency between the events and the maximal size allowed has been used to
decide if further partitioning is required.

4.3 Divide-and-Conquer Approach

Algorithm 3 presents the approach. First it computes the causal and concurrent
relations (see Definition 4) present in the TS (line 2). Then the causal depen-
dency graph is partitioned into n sets (n is an output of the method, and is
dependant on the MaxSize parameter). Finally, the computation of SMCs cov-
ering each projection is applied (lines 4-7). Notice that in order to avoid the
derivation of independent SMCs, i.e. SMCs without common events, each set Ei

is augmented with border events, i.e. events in E − Ei that are adjacent in the
causal dependency graph to some event in Ei (line 5). The following theorem
provides the main result of this section (see [4] for the formal proof):

Theorem 3. Let SMC1 = (R1, E1, F1, M0,1) . . . SMCn = (Rn, En, Fn, M0,n)
be the set of components found by Algorithm 3 on TS = (S, E, A, sin). Then
L(TS) ⊆ L(SMC1 ‖ . . . ‖ SMCn).

338 J. Carmona, J. Cortadella, and M. Kishinevsky

5 Experiments

The theory described in Sections 3 and 4 has been incorporated into the tool
Genet [6,5]. The first experiments were conducted to test the ability to rediscover
conservative components from well-structured descriptions, i.e. to apply Algo-
rithms 1 and 2, and its corresponding generalizations (as described in [4]). To this
end, the TS of some k-bounded Petri nets was used (see Figures 7(a)-(c)). Table 1
reports the first experiment: comparing mining (-pm) versus conservative com-
ponents derivation (-cc). For each benchmark, the size of the transition system
considered (states and arcs), together with the number of places and transitions
derived by the k-bounded mining method described in [5] is given. Finally, the
number of conservative components found by Algorithm 2 and the sum of all
the places found in the components is reported (the number of transitions in the
conservative components derivation is equal to the number of transitions in the
mining approach and is not reported). The CPU time is provided for each one
of the approaches. For each example, Figure 7 provides gray boxes with the
conservative components found (some of the boxes share transitions, i.e. they
will synchronize on the firing of the transition in the parallel composition of the
components). In conclusion, the derivation of conservative components might
overcome the complexity problems of the region-based method, sometimes with-
out the inclusion of extra behavior in the mined Petri net.

The second experiment was to have some confidence on the quality of the ap-
proach presented in Section 3. For that end, we used the fitness factor, described
in [17]. Fitness evaluates whether the mined net complies with the log, and
it is one of the main measures provided by the Conformance checker within
ProM. Numerically, fitness ranges from 1 (good) to 0 (bad). The table on

PnP1

m

...

(a)

Pm

P1

nn

n

...

(b)

Pn

P2

P1

2

2 2

2 2

2

...

(c)

Fig. 7. Parameterized benchmarks: (a) n processes competing for m shared resources,
(b) m producers and n consumers, (c) a 2-bounded pipeline of n processes. Each box
represents a conservative component found.

Divide-and-Conquer Strategies for Process Mining 339

Log α α++ DWS Heuristic Genet-cc

L1 0.83 0.80 0.84 0.84 0.85

L2 0.84 0.81 0.84 0.85 0.86

L3 0.63 0.55 0.62 0.62 0.58

the right reports the fitness of some miners
within ProM, and the fitness of the net cor-
responding the parallel composition of the
SMCs computed by Algorithm 2. The three
logs used are the illustrative logs described
in [17]. In summary, numbers in the table
are promising for our approach, and we believe they can improve if techniques
like the ones presented in Section 3.3 are additionally applied.

Table 1. Synthesis versus derivation of conservative components

Genet-pm Genet-cc

benchmark |S| |E| |P | |T | CPU |CC| |P | CPU

SHAREDRESOURCE(5,2) 918 4320 21 20 0s 5 20 0s

SHAREDRESOURCE(4,3) 255 1016 17 16 0s 4 16 0s

SHAREDRESOURCE(6,4) 4077 24372 25 24 18s 5 24 5s

SHAREDRESOURCE(7,5) 16362 114408 29 28 25m 7 28 47s

PRODUCERCONSUMER(3,3) 32 92 8 7 0s 4 8 0s

PRODUCERCONSUMER(4,3) 64 240 10 9 0s 5 10 0s

PRODUCERCONSUMER(6,3) 256 1408 14 13 0s 7 14 0s

PRODUCERCONSUMER(8,3) 1024 7424 18 17 2s 9 18 0s

PRODUCERCONSUMER(8,5) 1536 11520 18 17 1h10m 9 18 25m

BOUNDEDPIPELINE(6) 729 1539 12 7 6s 6 12 4s

BOUNDEDPIPELINE(7) 2187 5103 14 8 48s 7 14 40s

BOUNDEDPIPELINE(8) 6561 16767 16 9 12m 8 16 11m

BOUNDEDPIPELINE(9) 19683 54765 18 10 1h50m 9 18 1h30m

The third experiment was to test the divide-and-conquer mining approach de-
scribed in Section 4 (-rec). We have used two types of examples: logs from [1], and
a real-life system modelling a complex module that controls the operation of opti-
cal lithography process for mass chip production [16]. Both types of benchmarks
are difficult to mine using the region-based mining approach described in [5]. Ta-
ble 2 compares the classical region-based mining and divide-and-conquer mining
for these benchmarks. We report the size of the transition system, and columns
|P |, |[S]| report the number of places and size of the corresponding reachability
graph of the mined Petri net. For the divide-and-conquer mining, columns |Bis|,
k, |CC|, |P | and |TU | report the number of bisections performed on the causal
dependency graph (see Section 4.3), the bound used in the conservative compo-
nent generation, the total number of conservative components found, the total
number of places found and the number of events not covered by any place (the
less events uncovered, the better), respectively. We use mem to report that the
approach aborted due to memory problems. The conclusion from Table 2 is the
superiority to handle large systems for the divide-and-conquer approach when
compared to the classical region-based mining.

340 J. Carmona, J. Cortadella, and M. Kishinevsky

Table 2. Mining versus divide-and-conquer mining

Genet-pm Genet-pm Genet-rec

safe 2-bounded k-bounded

benchmark |S| |A| |E| |P | |[S]| CPU |P | |[S]| CPU |Bis| k |CC| |P | |TU | CPU

pn ex 10 233 479 11 13 281 0s 16 145 4s 3 2 3 9 0 0s

a12f0n50 1 78 77 11 17 80 0s 39 63 52s 3 2 4 23 0 0s

a12f0n50 2 151 150 11 21 92 0.5s 119 96 15m 3 2 8 19 0 5s

a12f0n50 3 188 187 11 21 92 0.5s 178 102 21m 1 2 4 13 0 5s

a22f0n00 1 1209 1208 20 16 78 9m – – mem 0 1 4 30 0 5s

a22f0n00 2 3380 3379 20 16 78 15m – – mem 3 1 6 24 1 4s

a22f0n00 3 5334 5333 20 16 78 32m – – mem 3 1 7 32 1 7s

WaferStepper 55043 289443 27 – – mem – – mem 3 6 9 28 5 5m

Table 3. Comparison for large logs from [21]

Parikh DWS Genet-rec

benchmark # cases # events |T | |S| |A| a′
B CPU a′

B CPU a′
B CPU

a22f0n00 5 900 16952 22 676 1469 0.949 37s 0.935 4s 0.979 1s

t32f0n00 1 200 16358 32 1590 2339 0.992 7m 47s 0.863 10s 0.858 6s

a32f0n00 5 900 23195 32 2517 5907 0.933 3m 0.935 6s 1.000 9s

a42f0n00 5 900 26169 42 11170 21528 0.715 59m 29s 0.889 10s 0.962 1m 33s

Finally, we compared the divide-and-conquer technique presented in this pa-
per with the DWS miner, also a clustering method presented in [9] (see Section 6
for a qualitative comparison). To this end, we used some of the largest logs that
were used in [21] for a numerical analysis of the Parikh miner. We also report
some other conformance measure, the advanced behavioral appropriateness, that
gives an estimation of the degree of accuracy in which the model describes the
log [17]. This measure ranges accuracy from 0 (low) to 1 (high). The results
are provided in Table 3, were columns report the benchmark, number of cases,
number of events, number of different tasks in the log, size of the corresponding
TS5, and for each approach we report the conformance estimation (a′

B) and the
cpu time . For the benchmarks considered, one can see that the approach of this
paper has similar complexity and appropriateness than the DWS miner.

6 Related Work

Together with the approach presented in [9], to the best of our knowledge there
is no other approach for Petri net mining like the one presented in this paper.
The differences are:
5 Although benchmarks in Table 3 and 2 are produced from the same family of logs

(being the benchmarks in Table 3 considerably larger), the settings of the FSM
miner [18] used to create in each table the TS were different.

Divide-and-Conquer Strategies for Process Mining 341

1. In this approach we give a special emphasis into the mining of conservative
components, i.e. Petri nets that describe sequential and conflict dependencies
between events. This sequential views can be good for visualization.

2. In [9] the partition is on the set of instances (traces) of the log, i.e. the log
is horizontally partitioned, whereas in our approach the separation is done
on the set of events hence the log is vertically partitioned.

3. The partition approach presented in this paper is related to the Petri net
derivation applied afterwards, in the sense that events tightly related by
causal dependencies are likely to become in the same conservative compo-
nent. In contrast, the partition approach presented in [9] uses a different
principle: each trace is projected into the most relevant features (computed
previously) and associated with a vector of values. Then the k-means algo-
rithm is used to partition the vectorial space defined by the traces.

The divide-and-conquer technique presented in this paper can be used in combi-
nation with the region-based approaches for Petri net mining [5,21,3] to improve
their applicability in two dimensions: firstly, to allow their application for large
logs, and second, to avoid the problem of overfitting: in our experiments the
resulting model (after the parallel composition) is often more general than the
one obtained from a single application of the mining approach. The technique
presented in this paper is suitable when the log contains a significant amount of
different tasks, thus allowing the partition phase to be applied extensively.

7 Conclusions

High-level and decomposition approaches are usually required to solve large
problems. This paper shows that the region-based technique for process min-
ing can also be solved using these type of approaches. First, the decomposition
approach enables the search for sequential views of the process that might be
more useful than the complete process itself. Second, when the size of the log for-
bids the application of classical or decomposition mining, the divide-and-conquer
method presented in this paper alleviates the complexity of computing regions
by projecting the TS into the events that are likely to be related, thus decreasing
considerably its size. Both approaches have been presented in combination with
theoretical results that guarantee a covering of the initial log with respect to the
parallel composition of the obtained nets.

Acknowledgements

We would like to thank A. Rozinat and E. Verbeek for the continuous help and
guidance on using ProM. This work has been supported by the CICYT project
FORMALISM (TIN2007-66523), and a grant by Intel Corporation.

342 J. Carmona, J. Cortadella, and M. Kishinevsky

References

1. Process mining, http://www.processmining.org
2. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-

thesis of bounded nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.)
CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–383.
Springer, Heidelberg (1995)

3. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Proc. 5th Int. Conf. on Business Process Management, September
2007, pp. 375–383 (2007)

4. Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-conquer strategies for
process mining. Technical Report LSI-08-35-R, Software Department, Universitat
Politécnica de Catalunya (2008)

5. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering Petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

6. Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L.,
Yakovlev, A.: A symbolic algorithm for the synthesis of bounded Petri nets. In:
29th International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency (June 2008)

7. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from finite transition systems. IEEE Transactions on Computers 47(8), 859–882
(1998)

8. Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Cambridge Uni-
versity Press, Cambridge (1997)

9. de Medeiros, A.K.A., Guzzo, A., Greco, G., van der Aalst, W.M.P.,
Weijters, A.J.M.M.T., van Dongen, B.F., Saccà, D.: Process mining based on clus-
tering: A quest for precision. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y.
(eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 17–29. Springer, Heidelberg
(2008)

10. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315
(1996)

11. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II. Acta Infor-
matica 27, 315–368 (1990)

12. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network
partitions. In: DAC 1982: Proceedings of the 19th conference on Design automa-
tion, Piscataway, NJ, USA, 1982, pp. 175–181. IEEE Computer Society Press, Los
Alamitos (1982)

13. Hack, M.: Analysis of production schemata by Petri nets. M.s. thesis, MIT
(Feburary 1972)

14. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
The Bell system technical journal 49(1), 291–307 (1970)

15. Murata, T.: Petri Nets: Properties, analysis and applications. Proceedings of the
IEEE, 541–580 (April 1989)

16. Pretorius, A.J.: Visualization of State Transition Graphs. PhD thesis, Technical
University of Eindhoven (2008)

17. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

18. van der Aalst, W.M.P., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E.,
Günther, C.: Process mining: A two-step approach to balance between underfitting
and overfitting. Technical Report BPM-08-01, BPM Center (2008)

Divide-and-Conquer Strategies for Process Mining 343

19. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S.,
de Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W(E.),
Weijters, A.J.M.M.T.: ProM 4.0: Comprehensive support for real process analysis.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494.
Springer, Heidelberg (2007)

20. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

21. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.)
PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)

22. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992)

Discovering Reference Models by Mining

Process Variants Using a Heuristic Approach

Chen Li1,�, Manfred Reichert2, and Andreas Wombacher1

1 Computer Science Department, University of Twente, The Netherlands
lic@cs.utwente.nl, a.wombacher@utwente.nl

2 Institute of Databases and Information Systems, Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract. Recently, a new generation of adaptive Process-Aware Infor-
mation Systems (PAISs) has emerged, which enables structural process
changes during runtime. Such flexibility, in turn, leads to a large number
of process variants derived from the same model, but differing in struc-
ture. Generally, such variants are expensive to configure and maintain.
This paper provides a heuristic search algorithm which fosters learning
from past process changes by mining process variants. The algorithm
discovers a reference model based on which the need for future process
configuration and adaptation can be reduced. It additionally provides
the flexibility to control the process evolution procedure, i.e., we can
control to what degree the discovered reference model differs from the
original one. As benefit, we cannot only control the effort for updating
the reference model, but also gain the flexibility to perform only the
most important adaptations of the current reference model. Our mining
algorithm is implemented and evaluated by a simulation using more than
7000 process models. Simulation results indicate strong performance and
scalability of our algorithm even when facing large-sized process models.

1 Introduction

In today’s dynamic business world, success of an enterprise increasingly depends
on its ability to react to changes in its environment in a quick, flexible and
cost-effective way. Generally, process adaptations are not only needed for con-
figuration purpose at build time, but also become necessary for single process
instances during runtime to deal with exceptional situations and changing needs
[11,17]. In response to these needs adaptive process management technology has
emerged [17]. It allows to configure and adapt process models at different levels.
This, in turn, results in large collections of process variants created from the
same process model, but slightly differing from each other in their structure. So
far, only few approaches exist, which utilize the information about these variants
and the corresponding process adaptations [4].

� This work was done in the MinAdept project, which has been supported by the
Netherlands Organization for Scientific Research under contract number 612.066.512.

U. Dayal et al. (Eds.): BPM 2009, LNCS 5701, pp. 344–362, 2009.
� Springer-Verlag Berlin Heidelberg 2009

Discovering Reference Models by Mining Process Variants 345

Fig. 1 describes the goal of this paper. We aim at learning from past process
changes by “merging” process variants into one generic process model, which
covers these variants best. By adopting this generic model as new reference
process model within the Process-aware Information System (PAIS), need for
future process adaptations and thus cost for change will decrease. Based on the
two assumptions that (1) process models are well-formed (i.e., block-structured
like in WS-BPEL) and (2) all activities in a process model have unique labels, this
paper deals with the following fundamental research question: Given a reference
model and a collection of process variants configured from it, how to derive a
new reference process model by performing a sequence of change operations on
the original one, such that the average distance between the new reference model
and the process variants becomes minimal?

…

Original reference process model S

customization & adaptation

Process variant S1 Process variant S2 Process variant Sn

mining & learning

Discovered reference process model S’

Control

differences

Fig. 1. Discovering a new reference model by learning from past process configurations

The distance between the reference process model and a process variant is
measured by the number of high-level change operations (e.g., to insert, delete
or move activities [11]) needed to transform the reference model into the variant.
Clearly, the shorter the distance is, the less the efforts needed for process adapta-
tion are. Basically, we obtain a new reference model by performing a sequence of
change operations on the original one. In this context, we provide users the flex-
ibility to control the distance between old reference model and newly discovered
one, i.e., to choose how many change operations shall be applied. Clearly, the
most relevant changes (which significantly reduce the average distance) should
be considered first and the less important ones last. If users decide to ignore less
relevant changes in order to reduce the efforts for updating the reference model,
overall performance of our algorithm with respect to the described research goal
is not influenced too much. Such flexibility to control the difference between the
original and the discovered model is a significant improvement when compared
to our previous work [5,9].

Section 2 gives background information for understanding this paper. Section
3 introduces our heuristic algorithm and provides an overview on how it can

346 C. Li, M. Reichert, and A. Wombacher

be used for mining process variants. We describe two important aspects of our
heuristics algorithm (i.e., fitness function and search tree) in Sections 4 and 5.
To evaluate its performance, we conduct a simulation in Section 6. Section 7
discusses related work and Section 8 concludes with a summary.

2 Backgrounds

Process Model. Let P denote the set of all sound process models. A partic-
ular process model S = (N, E, . . .) ∈ P is defined as Well-structured Activity
Net1[11]. N constitutes the set of process activities and E the set of control edges
(i.e., precedence relations) linking them. To limit the scope, we assume Activity
Nets to be block-structured (like BPEL). Examples are depicted in Fig. 2.

Process change. A process change is accomplished by applying a sequence of
change operations to the process model S over time [11]. Such change operations
modify the initial process model by altering the set of activities and their order
relations. Thus, each application of a change operation results in a new process
model. We define process change and process variants as follows:

Definition 1 (Process Change and Process Variant). Let P denote the
set of possible process models and C be the set of possible process changes. Let
S, S′ ∈ P be two process models, let Δ ∈ C be a process change expressed in
terms of a high-level change operation, and let σ = 〈Δ1, Δ2, . . .Δn〉 ∈ C∗ be a
sequence of process changes performed on initial model S. Then:

– S[Δ〉S′ iff Δ is applicable to S and S′ is the (sound) process model resulting
from application of Δ to S.

– S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ = Sn+1, and Si[Δi〉Si+1

for i ∈ {1, . . . n}. We denote S′ as variant of S.

Examples of high-level change operations include insert activity, delete activ-
ity, and move activity as implemented in the ADEPT change framework [11].
While insert and delete modify the set of activities in the process model, move
changes activity positions and thus the order relations in a process model. For
example, operation move(S, A,B,C) shifts activity A from its current position
within process model S to the position after activity B and before activity C.
Operation delete(S, A), in turn, deletes activity A from process model S. Issues
concerning the correct use of these operations, their generalizations, and formal
pre-/post-conditions are described in [11]. Though the depicted change opera-
tions are discussed in relation to our ADEPT approach, they are generic in the
sense that they can be easily applied in connection with other process meta mod-
els as well [17]; e.g., life-cycle inheritance known from Petri Nets [15]. We refer
to ADEPT since it covers by far most high-level change patterns and change
support features [17], and offers a fully implemented process engine.
1 A formal definition of a Well-structured Activity Net contains more than only node

set N and edge set E. We omit other components since they are not relevant in the
given context [18].

Discovering Reference Models by Mining Process Variants 347

Definition 2 (Bias and Distance). Let S, S′ ∈ P be two process models.
Distance d(S,S′) between S and S′ corresponds to the minimal number of high-
level change operations needed to transform S into S′; i.e., we define d(S,S′) :=
min{|σ| | σ ∈ C∗ ∧ S[σ〉S′}. Furthermore, a sequence of change operations σ
with S[σ〉S′ and |σ| = d(S,S′) is denoted as bias B(S,S′) between S and S′.

The distance between S and S′ is the minimal number of high-level change
operations needed for transforming S into S′. The corresponding sequence of
change operations is denoted as bias B(S,S′) between S and S′.2 Usually, such
distance measures the complexity for model transformation (i.e., configuration).
As example take Fig. 2. Here, distance between model S and variant S1 is 4, i.e.,
we minimally need to perform 4 changes to transform S into S′ [7]. In general,
determining bias and distance between two process models has complexity at
NP −hard level [7]. We consider high-level change operations instead of change
primitives (i.e., elementary changes like adding or removing nodes / edges) to
measure distance between process models. This allows us to guarantee soundness
of process models and provides a more meaningful measure for distance [7,17].

Trace. A trace t on process model S = (N, E, . . .) ∈ P denotes a valid and
complete execution sequence t ≡< a1, a2, . . . , ak > of activity ai ∈ N according
to the control flow set out by S. All traces S can produce are summarized in
trace set TS . t(a ≺ b) is denoted as precedence relation between activities a and
b in trace t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b.

Order Matrix. One key feature of any change framework is to maintain the
structure of the unchanged parts of a process model [11]. To incorporate this in
our approach, rather than only looking at direct predecessor-successor relation
between activities (i.e., control edges), we consider the transitive control depen-
dencies for each activity pair; i.e., for given process model S = (N, E, . . .) ∈ P ,
we examine for every pair of activities ai, aj ∈ N , ai 	= aj their transitive order
relation. Logically, we determine order relations by considering all traces the
process model can produce. Results are aggregated in an order matrix A|N |×|N |,
which considers four types of control relations (cf. Def. 3):

Definition 3 (Order matrix). Let S = (N, E, . . .) ∈ P be a process model
with N = {a1, a2, . . . , an}. Let further TS denote the set of all traces producible
on S. Then: Matrix A|N |×|N | is called order matrix of S with Aij representing
the order relation between activities ai,aj ∈ N , i 	= j iff:

– Aij = ’1’ iff [∀t ∈ TS with ai, aj ∈ t ⇒ t(ai ≺ aj)]. If for all traces containing
activities ai and aj, ai always appears BEFORE aj, we denote Aij as ’1’,
i.e., ai always precedes aj in the flow of control.

– Aij = ’0’ iff [∀t ∈ TS with ai, aj ∈ t ⇒ t(aj ≺ ai)]. If for all traces containing
activities ai and aj, ai always appears AFTER aj, we denote Aij as a ’0’,
i.e. ai always succeeds aj in the flow of control.

2 Generally, it is possible to have more than one minimal set of change operations to
transform S into S′, i.e., given process models S and S′ their bias does not need to
be unique. A detailed discussion of this issue can be found in [15,7].

348 C. Li, M. Reichert, and A. Wombacher

– Aij = ’*’ iff [∃t1 ∈ TS , with ai, aj ∈ t1 ∧ t1(ai ≺ aj)] ∧ [∃t2 ∈ TS , with
ai, aj ∈ t2∧ t2(aj ≺ ai)]. If there exists at least one trace in which ai appears
before aj and another trace in which ai appears after aj, we denote Aij as
’*’, i.e. ai and aj are contained in different parallel branches.

– Aij = ’-’ iff [¬∃t ∈ TS : ai ∈ t ∧ aj ∈ t]. If there is no trace containing
both activity ai and aj, we denote Aij as ’-’, i.e. ai and aj are contained in
different branches of a conditional branching.

Given a process model S = (N, E, . . .) ∈ P , the complexity to compute its order
matrix A|N |×|N | is O(2|N |2) [7]. Regarding our example from Fig. 2, the order
matrix of each process variant Si is presented on the top of Fig. 4.3 Variants Si

contain four kinds of control connectors: AND-Split, AND-Join, XOR-Split, and
XOR-join. The depicted order matrices represent all possible order relations. As
example consider S4. Activities H and I never appear in same trace since they
are contained in different branches of an XOR block. Therefore, we assign ’-’ to
matrix element AHI for S4. If certain conditions are met, the order matrix can
uniquely represent the process model. Analyzing its order matrix (cf. Def. 3) is
then sufficient in order to analyze the process model [7].

It is also possible to handle loop structures based on an extension of order
matrices, i.e., we need to introduce two additional order relations to cope with
loop structures in process models [7]. However, since activities within a loop
structure can run an arbitrarily number of times, this complicates the definition
of order matrix in comparison to Def. 3. In this paper, we use process models
without loop structures to illustrate our algorithm. It will become clear in Section
4 that our algorithm can easily be extended to also handle process models with
loop structures by extending Def. 3.

3 Overview of Our Heuristic Search Algorithm

Running Example. An example is given in Fig. 2. Out of original reference
model S, six different process variants Si ∈ P (i = 1, 2, . . .6) are configured.
These variants do not only differ in structure, but also in their activity sets. For
example, activity X appears in 5 of the 6 variants (except S2), while Z only ap-
pears in S5. The 6 variants are further weighted based on the number of process
instances created from them; e.g., 25% of all instances were executed according
to variant S1, while 20% ran on S2. We can also compute the distance (cf. Def.
2) between S and each variant Si. For example, when comparing S with S1

we obtain distance 4 (cf. Fig. 2); i.e., we need to apply 4 high-level change op-
erations [move(S, H,I,D), move(S, I,J, endF low), move(S, J,B, endF low) and
insert(S, X,E,B)] to transform S into S1. Based on weight wi of each variant Si,
we can compute average weighted distance between reference model S and its
variants. As distances between S and Si we obtain 4 for i = 1, . . . , 6 (cf. Fig.
2). When considering variant weights, as average weighted distance, we obtain
4×0.25+4×0.2+4×0.15+4×0.1+4×0.2+4×0.1 = 4.0. This means we need
3 Due to lack of space, we only depict order matrices for activities H,I,J,X,Y and Z.

Discovering Reference Models by Mining Process Variants 349

Process configuration

original

reference model

S1

S2

S3 S4

S5

S6

Average weighted distance = 4 change / instance

G

E B

I J

A

F

C D
H

E Y B J

G
I H

C Z D

A

F

X

G

E B

A

F

I

X J

D
C

H

G
H

C D

E B
I

J

A

F

X

G
Y H

C D

B

I

E J

A

F

X

Distance: d(S,S1)= 4

Distance: d(S,S3)= 4

d(S,S5)= 4 d(S,S6)= 4

d(S,S4)= 4

d(S,S2)= 4

insert(S, X, E, B), insert(S, Y, startFlow, B),

move (S, J, B, endFlow), move (S, H, I, C)
B(S,S6)=

insert(S, Y, {A,F}, B), insert(S, X, E, Y),

insert(X, Z, C, D), move (S, J, B, endFlow)
B(S,S5)=

move(S, J, {A,F}, B), insert(S, X, E, J),

Insert (S, Y, startFlow, I), move(S, I, D, H)
B(S,S3)=

insert(S, Y, E, B, con), move(S, C, startFlow, I),

move (S, J, B, endFlow), move (S, I, D, H)
B(S,S2)=

move(S, H, startFlow, I), move (S, I, B, endFlow),

insert(S, X, E, B), move (S, J, B, endFlow, con)
B(S,S4)=

D

A

F

I

E B

Y

J

G

C H

E

B

Y

J

G
I

H C D

A

F

X

AND-Split AND-Join XOR-Split XOR-Join

S :

Weight: w1 = 25%

Weight: w3 = 15%

Weight: w5 = 20%

Weight: w2 = 20%

Weight: w4 = 10%

Weight: w6 = 10%

move (S, H, I, D), move(S, I, J, endFlow),

 move (S, J, B, endFlow), insert(S, X, E, B) Bies: B(S,S1)=

Bies:

Bies: Bies:

Bies:

Bies:

Distance: Distance:

Distance:

Distance:

Fig. 2. Illustrating example

to perform on average 4.0 change operations to configure a process variant (and
related instance respectively) out of S. Generally, average weighted distance be-
tween a reference model and its process variants represents how “close” they are.
The goal of our mining algorithm is to discover a reference model for a collection
of (weighted) process variants with minimal average weighted distance.

Heuristic Search for Mining Process Variants. As measuring distance
between two models has NP−hard complexity (cf. Def. 2), our research question
(i.e., finding a reference model with minimal average weighted distance to the
variants), is a NP − hard problem as well. When encountering real-life cases,
“finding “the optimum” would be either too time-consuming or not feasible. In
this paper, we therefore present a heuristic search algorithm for mining variants.

Heuristic algorithms are widely used in various fields, e.g., artificial intelli-
gence [10] and data mining [14]. Although they do not aim at finding the “real

350 C. Li, M. Reichert, and A. Wombacher

No

constraint

Snc : Search result

without constraint

Si :Variants

d=1

d =
 2

d
 =
 3

S: Original

reference

model

Discovered

Reference Model

Original

Reference model

Process

variants

Intermediate

search result

Search

steps

Sc: Search result

with constraint

Force 1:

close to variants

Force 2:

close to reference

Fig. 3. Our heuristic search approach

optimum” (i.e., it is neither possible to theoretically prove that discovered re-
sults are optimal nor can we say how close they are to the optimum), they are
widely used in practice. Particularly, they can nicely balance goodness of the
discovered solution and time needed for finding it [10].

Fig. 3 illustrates how heuristic algorithms can be applied for the mining of
process variants. Here we represent each process variant Si as single node (white
node). The goal for variant mining is then to find the “center” of these nodes
(bull’s eye Snc), which has minimal average distance to them. In addition, we
want to take original reference model S (solid node) into account, such that we
can control the difference between the newly discovered reference model and the
original one. Basically, this requires us to balance two forces: one is to bring
the newly discovered reference model closer to the variants; the other one is to
“move” the discovered model not too far away from S. Process designers should
obtain the flexibility to discover a model (e.g., Sc in Fig. 3), which is closer to
the variants on the one hand, but still within a limited distance to the original
model on the other hand.

Our heuristic algorithm works as follows: First, we use original reference model
S as starting point. As Step 2, we search for all neighboring models with distance
1 to the currently considered reference process model. If we are able to find a
model Sc with lower average weighted distance to the variants, we replace S by
Sc. We repeat Step 2 until we either cannot find a better model or the maximally
allowed distance between original and new reference model is reached.

For any heuristic search algorithm, two aspects are important: the heuristic
measure (cf. Section 4) and the algorithm (Section 5) that uses heuristics to
search the state space.

4 Fitness Function of Our Heuristic Search Algorithm

Any fitness function of a heuristic search algorithm should be quickly com-
putable. Average weighted distance itself cannot be used as fitness function,

Discovering Reference Models by Mining Process Variants 351

since complexity for computing it is NP − hard. In the following, we introduce
a fitness function computable in polynomial time, to approximately measure
“closeness” between a candidate model and the collection of variants.

4.1 Activity Coverage

For a candidate process model Sc = (Nc, Ec, . . .) ∈ P , we first measure to
what degree its activity set Nc covers the activities that occur in the considered
collection of variants. We denote this measure as activity coverage AC(Sc) of Sc.
Before we can compute it, we first need to determine activity frequency g(aj)
with which each activity aj appears within the collection of variants. Let Si ∈ P
i = 1, . . . , n be a collection of variants with weights wi and activity sets Ni. For
each aj ∈

⋃
Ni, we obtain g(aj) =

∑
Si:aj∈Ni

wi. Table 1 shows the frequency
of each activity contained in any of the variants in our running example; e.g., X
is present in 80% of the variants (i.e., in S1, S3, S4, S5, and S6), while Z only
occurs in 20% of the cases (i.e., in S5).

Table 1. Activity frequency of each activity within the given variant collection

Activity A B C D E F G H I J X Y Z

g(aj) 1 1 1 1 1 1 1 1 1 1 0.8 0.65 0.2

Let M =
⋃n

i=1 Ni be the set of activities which are present in at least one
variant. Given activity frequency g(aj) of each aj ∈ M , we can compute activity
coverage AC(Sc) of candidate model Sc as follows:

AC(Sc) =

∑
aj∈Nc

g(aj)
∑

aj∈M g(aj)
(1)

The value range of AC(Sc) is [0, 1]. Let us take original reference model S
as candidate model. It contains activities A, B, C, D, E, F, G, H, I, and J,
but does not contain X, Y and Z. Therefore, its activity coverage AC(S) is 0.858.

4.2 Structure Fitting

Though AC(Sc) measures how representative the activity set Nc of a candidate
model Sc is with respect to a given variant collection, it does not say anything
about the structure of the candidate model. We therefore introduce structure
fitting SF (Sc), which measures, to what degree a candidate model Sc structurally
fits to the variant collection. We first introduce aggregated order matrix and
coexistence matrix to adequately represent the variants.

Aggregated Order Matrix. For a given collection of process variants, first,
we compute the order matrix of each process variant (cf. Def. 3). Regarding our
running example from Fig. 2, we need to compute six order matrices (see to

352 C. Li, M. Reichert, and A. Wombacher

0 1

* -

‘0’ : successor

‘1’ : predecessor

‘*’ : AND-block

‘-’ : XOR-block

O
rd

e
r m

a
tric

e
s

A
g
g
re

g
a
te

d

o
rd

e
r m

a
trix

V

S 1 :25% S2 :20% S3 :15% S 4 :10% S5 :20% S6 :10%

V H I = (0.65, 0.25, 0, 0.10)

‘0’ : 65%

‘1’ : 25%

‘*’ : 0%

‘-’ : 10%

Fig. 4. Aggregated order matrix based on process variants

of Fig. 4). Note that we only show a partial view on the order matrices here
(activities H, I, J, X, Y and Z) due to space limitations. As the order relation
between two activities might be not the same in all order matrices, this analysis
does not result in a fixed relation, but provides a distribution for the four types
of order relations (cf. Def. 3). Regarding our example, in 65% of all cases H
succeeds I (as in S2, S3, S4 and S6), in 25% of all cases H precedes I (as in S1),
and in 10% of all cases H and I are contained in different branches of an XOR
block (as in S4) (cf. Fig. 4). Generally, for a collection of process variants we
can define the order relation between activities a and b as 4-dimensional vector
Vab = (v0

ab, v
1
ab, v

∗
ab, v

−
ab). Each field then corresponds to the frequency of the

respective relation type (’0’, ’1’, ’*’ or ’-’) as specified in Def. 3. For our example
from Fig. 2, for instance, we obtain VHI = (0.65, 0.25, 0, 0.1) (cf. Fig. 4). Fig. 4
shows aggregated order matrix V for the process variants from Fig. 2.

Coexistence Matrix. Generally, the order relations computed by an aggre-
gated order matrix may not be equally important; e.g., relationship VHI between
H and I (cf. Fig. 4) would be more important than relation VHZ, since H and
I appear together in all six process variants while H and Z only show up to-
gether in variant S5 (cf. Fig. 2). We therefore define Coexistence Matrix CE
in order to represent the importance of the different order relations occurring
within an aggregated order matrix V . Let Si (i = 1 . . . n) be a collection of
process variants with activity sets Ni and weight wi. The Coexistence Matrix
of these process variants is then defined as 2-dimensional matrix CEm×m with
m = |

⋃
Ni|. Each matrix element CEjk corresponds to the relative frequency

with which activities aj and ak appear together within the given collection of

Discovering Reference Models by Mining Process Variants 353

Fig. 5. Coexistence Matrix

variants. Formally: ∀aj , ak ∈
⋃

Ni, aj 	= ak : CEjk =
∑

Si:aj∈Ni∧ak∈Ni
wi. Table

5 shows the coexistence matrix for our running example (partial view).

Structure Fitting SF (Sc) of Candidate Model Sc. Since we can represent
candidate process model Sc by its corresponding order matrix Ac (cf. Def. 3),
we determine structure fitting SF (Sc) between Sc and the variants by measur-
ing how similar order matrix Ac and aggregated order matrix V (representing
the variants) are. We can evaluate Sc by measuring the order relations between
every pair of activities in Ac and V . When considering reference model S as
candidate process model Sc (i.e., Sc = S), for example, we can build an aggre-
gated order matrix V c purely based on Sc, and obtain V c

HI = (1, 0, 0, 0); i.e., H
always succeeds I. Now, we can compare VHI = (0.65, 0.25, 0, 0.1) (representing
the variants) and V c

HI (representing the candidate model).
We use Euclidean metrics f(α, β) to measure closeness between vectors α =

(x1, x2, ..., xn) and β = (y1, y2, ..., yn): f(α, β) = α·β
|α|×|β| =

∑ n
i=1 xiyi√∑

n
i=1 x2

i×
√∑

n
i=1 y2

i

.

f(α, β) ∈ [0, 1] computes the cosine value of the angle θ between vectors α and
β in Euclidean space. The higher f(α, β) is, the more α and β match in their
directions. Regarding our example we obtain f(VHI, V c

HI) = 0.848. Based on
f(α, β), which measures similarity between the order relations in V (representing
the variants) and in V c (representing candidate model), and Coexistence matrix
CE, which measures importance of the order relations, we can compute structure
fitting SF (Sc) of candidate model Sc as follows:

SF (Sc) =

∑n
j=1

∑n
k=1,k�=j [f(Vajak

, V c
ajak

)·CEajak
]

n(n − 1)
(2)

n = |Nc| corresponds to the number of activities in candidate model Sc. For
every pair of activities aj , ak ∈ Nc, j 	= k, we compute similarity of corresponding
order relations (as captured by V and Vc) by means of f(Vajak

, V c
ajak

), and the
importance of these order relations by CEajak

. Structure fitting SF (Sc) ∈ [0, 1]
of candidate model Sc then equals the average of the similarities multiplied by

354 C. Li, M. Reichert, and A. Wombacher

the importance of every order relation. For our example from Fig. 2, structure
fitting SF (S) of original reference model S is 0.749.

4.3 Fitness Function

So far, we have described the two measurements activity coverage AC(Sc) and
structure fitting SF (Sc) to evaluate a candidate model Sc. Based on them, we
can compute fitness Fit(Sc) of Sc : Fit(Sc) = AC(Sc) × SF (Sc).

As AC(Sc) ∈ [0, 1] and SF (Sc) ∈ [0, 1], value range of Fit(Sc) is [0,1] as well.
Fitness value Fit(Sc) indicates how “close” candidate model Sc is to the given
collection of variants. The higher Fit(Sc) is, the closer Sc is to the variants and
the less configuration efforts are needed. Regarding our example from Fig. 2,
fitness value Fit(S) of the original reference process model S corresponds to
Fit(S) = AC(S) × SF (S) = 0.858 × 0.749 = 0.643.

5 Constructing the Search Tree

5.1 The Search Tree

Let us revisit Fig. 3, which gives a general overview of our heuristic search
approach. Starting with the current candidate model Sc, in each iteration we
search for its direct “neighbors” (i.e., process models which have distance 1 to
Sc) trying to find a better candidate model S′

c with higher fitness value. Generally
for a given process model Sc, we can construct a neighbor model by applying
ONE insert, delete, or move operation to Sc. All activities aj ∈

⋃
Ni, which

appear at least in one variant, are candidate activities for change. Obviously,
an insert operation adds a new activity aj /∈ Nc to Sc, while the other two
operations delete or move an activity aj already present in Sc (i.e., aj ∈ Nc).

Generally, numerous process models may result by changing one particular
activity aj on Sc. Note that the positions where we can insert (aj /∈ Nc) or move
(aj ∈ Nc) activity aj can be numerous. Section 5.2 provides details on how to
find all process models resulting from the change of one particular activity aj

on Sc. First of all, we assume that we have already identified these neighbor
models, including the one with highest fitness value (denoted as the best kid
Sj

kid of Sc when changing aj). Fig. 6 illustrates our search tree (see [8] for more
details). Our search algorithm starts with setting the original reference model
S as the initial state, i.e., Sc = S (cf. Fig. 6). We further define AS as active
activity set, which contains all activities that might be subject to change. At the
beginning, AS = {aj|aj ∈

⋃n
i=1 Ni} contains all activities that appear in at least

one variant Si. For each activity aj ∈ AS, we determine the corresponding best
kid Sj

kid of Sc. If Sj
kid has higher fitness value than Sc, we mark it; otherwise, we

remove aj from AS (cf. Fig. 6). Afterwards, we choose the model with highest
fitness value Sj∗

kid among all best kids Sj
kid, and denote this model as best sibling

Ssib. We then set Ssib as the first intermediate search result and replace Sc by
Ssib for further search. We also remove aj∗ from AS since it has been already
considered.

Discovering Reference Models by Mining Process Variants 355

SsibS
B

kidS
A

kid …

A B C

YZ

Best kid when

changing A

A B

Z

…

Best kid when

changing Z

Best kid when

changing Y

Best kid when

changing B

Best sibling of

all best kids

B

Best kid is better

than parent

Best kid is NOT

better than parent

Terminating condition:

No kid is better than

its parent

Start / End

Original reference model S

Search result

S
Z

kid S
Y

kid

Fig. 6. Constructing the search tree

The described search method goes on iteratively, until termination condition
is met, i.e., we either cannot find a better model or the allowed search distance
is reached. The final search result Ssib corresponds to our discovered reference
model S′ (the node marked by a bull’s eye and circle in Fig. 6).

5.2 Options for Changing One Particular Activity

Section 5.1 has shown how to construct a search tree by comparing the best kids
Sj

kid. This section discusses how to find such best kid Sj
kid, i.e., how to find all

“neighbors” of candidate model Sc by performing one change operation on a
particular activity aj . Consequently, Sj

kid is the one with highest fitness value
among all considered models. Regarding a particular activity aj , we consider
three types of basic change operations: delete, move and insert activity. The
neighbor model resulting through deletion of activity aj ∈ Nc can be easily de-
termined by removing aj from the process model and the corresponding order
matrix [7]; furthermore, movement of an activity can be simulated by its deletion
and subsequent re-insertion at the desired position. Thus, the basic challenge in
finding neighbors of a candidate model Sc is to apply one activity insertion such
that block structuring and soundness of the resulting model can be guaranteed.
Obviously, the positions where we can (correctly) insert aj into Sc are our sub-
jects of interest. Fig. 7 provides an example. Given process model Sc, we would
like to find all process models that may result when inserting activity X into Sc.
We apply the following two steps to “simulate” the insertion of an activity.

Step 1 (Block-enumeration): First, we enumerate all possible blocks the
candidate model Sc contains. A block can be an atomic activity, a self-contained
part of the process model, or the process model itself. Let Sc be a process model
with activity set Nc = {a1, . . . , an} and let further Ac be the order matrix of
Sc. Two activities ai and aj can form a block if and only if [∀ak ∈ Nc \ {ai, aj} :

356 C. Li, M. Reichert, and A. Wombacher

a) b) Step 1: Enumerate blocks

G
I J

C D

H

{C, D}, {J, H}

{C, D, G}

{I, C, D, G}, {C, D, G, H}

Blocks

containing n

activities

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

{I}, {G}, {C}, {D}, {J}, {H}

{I, C, D, G, J}, {C, D, G, J, H}

{I, C, D, G, J, H}

Blocks

Enumerate

blocks

Sc: a process model

Cluster X with

block {C, D}

by τ= “0”

Sc’: one possible resulting mode

after inserting activity X in Sc

C D G H I J

C

D

G

H

I

J

*

*

* *

0

0

0

0

0

00 0 0

0 0 0

1 1

0

1

1 1

1 1

1 11 1 1

X

1

X

* 01 1

*

0

0

1

0 0

1

1

τ= “0”

Copy

of

block

{C,D}

C D G H I J

C

D

G

H

I

J

1 1 1

1

1

1

1

1

1

11 1 1

0

0

0

0

0

0 00 0 0

0 0 0

*

*

* *

Same

order

relations

Ac: Order matrix of Sc

AS’: Order matrix of Sc’

Step 2: Clustering

G

I J

C D

H

X

56 potential

neighbors

Cluster X with block {I, C, D,

G, J, H} by τ= “1”

Cluster X with block {G}

by τ= “*”

XG
I

C D HJ

G

I J HX

C D

G
I J

C D

HX

Cluster X with block {J, H}

by τ= “-”

Some example neighboring models by inserting X into Scc)

Fig. 7. Finding the neighboring models by inserting X into process model S

Aik = Ajk] holds (i.e., iff they have exactly same order relations to the remaining
activities). Consider our example from Fig. 7a. Here C and D can form a block
{C, D} since they have same order relations to remaining activities G, H, I and
J. In our context, we consider each block as set rather than as process model,
since its structure is evident in Sc. As extension, two blocks Bj and Bk can merge
into a bigger one iff [(aα, aβ , aγ) ∈ Bj ×Bk × (N \Bj

⋃
Bk) : Aαγ = Aβγ] holds;

i.e., two blocks can merge into a bigger block iff all activities aα ∈ Bj , aβ ∈ Bk

show same order relations to the remaining activities outside the two blocks. For
example, block {C, D} and block {G} show same order relations in respect to
remaining activities H, I and J; therefore they can form a bigger block {C, D,
J}. Fig. 7a shows all blocks contained in Sc (see [8] for a detailed algorithm).

Step 2 (Cluster Inserted Activity with One Block): Based on the enu-
merated blocks, we describe where we can (correctly) insert a particular activity
aj in Sc. Assume that we want to insert X in Sc (cf. Fig. 7b). To ensure the block
structure of the resulting model, we “cluster” X with an enumerated block, i.e.,
we replace one of the previously determined blocks B by a bigger block B′ that
contains B as well as X. In the context of this clustering, we set order relations
between X and all activities in block B as τ ∈ {0, 1, ∗,−} (cf Def. 3). One exam-
ple is given in Fig. 7b. Here inserted activity X is clustered with block {C, D}
by order relation τ = “0”, i.e., we set X as successor of the block containing C
and D. To realize this clustering, we have to set order relations between X on
the one hand and activities C and D from the selected block on the other hand
to ”0”. Furthermore, order relations between X and the remaining activities are
same as for {C, D}. Afterwards these three activities form a new block {C, D, X}

Discovering Reference Models by Mining Process Variants 357

replacing the old one {C, D}. This way, we obtain a sound and block-structured
process model S′

c by inserting X into Sc.
We can guarantee that the resulting process model is sound and block-

structured. Every time we cluster an activity with a block, we actually add
this activity to the position where it can form a bigger block together with the
selected one, i.e., we replace a self-contained block of a process model by a bigger
one. Obviously, S′

c is not the only neighboring model of Sc. For each block B
enumerated in Step 1, we can cluster it with X by any one of the four order rela-
tions τ ∈ {0, 1, ∗,−}. Regarding our example from Fig. 7, S contains 14 blocks.
Consequently, the number of models that may result when adding X to Sc equals
14 × 4 = 56; i.e., we can obtain 56 potential models by inserting X into Sc. Fig.
7c shows some neighboring models of Sc.

5.3 Search Result for Our Running Example

Regarding our example from Fig. 2, we now present the search result and all
intermediate models we obtain when applying our algorithm (see Fig. 8).

The first operation Δ1 = move(S, J,B, endF low) changes original reference
model S into intermediate result model R1 which is the one with highest fit-
ness value among all neighboring models of S. Based on R1, we discover R2

by change Δ2 = insert(R1, X, E, B), and finally we obtain R3 by performing
change Δ3 = move(R2, I,D,H) on R2. Since we cannot find a “better” process
model by changing R3 anymore, we obtain R3 as final result. Note that if we
only allow to change original reference model by maximal d change operations,
the final search result would be: Rd if d ≤ 3 or R3 if d ≥ 4.

We further compare original reference model S and all (intermediate) search
results in Fig. 9. As our heuristic search algorithm is based on finding process
models with higher fitness values, we observe improvements of the fitness values
for each search step. Since such fitness value is only a “reasonable guessing”, we
also compute average weighted distance between the discovered model and the
variants, which is a precise measurement in our context. From Fig. 9, average

G

E B

I J

A

F

C D
H

G

E B

I H

A

F

C D

J

G

E B

H

A

F

C D

JX

I

G

E B

I H

A

F

C D

JX

S: reference model

Δ
1=
M
o
v
e
 (S
, J
, B
, e
n
d
F
lo
w
)

S
[Δ

1>
R

1

R1 : result after one change R2 : result after two changes

R3 : result after three changes

(Final result)

Δ2=Insert (R1, X, E, B)

R1[Δ2>R2

Δ
3
=
 M
p
v
e
(R
2
,
I,
 D
,
H
)

R

2

[Δ

3

>
R

3

1

2 3

4

Fig. 8. Search result after every change

358 C. Li, M. Reichert, and A. Wombacher

S R1 R2 R3

0.643 0.814 0.854 0.872

4 3.2 2.6 2.35

0.171 0.04 0.017

0.8 0.6 0.25

Fitness

Average weighted distance

Delta-fitness

Delta-distance

Fig. 9. Evaluation of the search results

weighted distance also drops monotonically from 4 (when considering S) to 2.35
(when considering R3).

Additionally, we evaluate delta-fitness and delta-distance, which indicate rel-
ative change of fitness and average weighted distance for every iteration of the
algorithm. For example, Δ1 changes S into R1. Consequently, it improves fitness
value (delta-fitness) by 0.0171 and reduces average weighted distance (delta-
distance) by 0.8. Similarly, Δ2 reduces average weighted distance by 0.6 and
Δ3 by 0.25. The monotonic decrease of delta-distance indicates that important
changes (reducing average weighted distance between reference model and vari-
ants most) are indeed discovered at beginning of the search.

Another important feature of our heuristic search is its ability to automatically
decide on which activities shall be included in the reference model. A predefined
threshold or filtering of the less relevant activities in the activity set is not
needed; e.g., X is automatically inserted, but Y and Z are not added. The three
change operations (insert, move, delete) are automatically balanced based on
their influence on the fitness value.

5.4 Proof-of-Concept Prototype

The described approach has been implemented and tested using Java. We use
our ADEPT2 Process Template Editor [12] as tool for creating process variants.
For each process model, the editor can generate an XML representation with
all relevant information (like nodes, edges, blocks). We store created variants
in a variants repository which can be accessed by our mining procedure. The
mining algorithm has been developed as stand-alone service which can read the
original reference model and all process variants, and generate the result models
according to the XML schema of the process editor. All (intermediate) search
results are stored and can be visualized using the editor.

6 Simulation

Of course, using one example to measure the performance of our heuristic mining
algorithm is far from being enough. Since computing average weighted distance
is at NP −hard level, fitness function is only an approximation of it. Therefore,
the first question is to what degree delta-fitness is correlated with delta-distance?
In addition, we are interested in knowing to what degree important change oper-
ations are performed at the beginning. If biggest distance reduction is obtained

Discovering Reference Models by Mining Process Variants 359

with the first changes, setting search limitations or filtering out the change opera-
tions performed at the end, does not constitute a problem. Therefore, the second
research question is: To what degree are important change operations positioned
at the beginning of our heuristic search?

We try to answer these questions using simulation; i.e., by generating thou-
sands of data samples, we can provide a statistical answer for these questions. In
our simulation, we identify several parameters (e.g., size of the model, similarity
of the variants) for which we investigate whether they influence the performance
of our heuristic mining algorithm (see [8] for details). By adjusting these param-
eters, we generate 72 groups of datasets (7272 models in total) covering different
scenarios. Each group contains a randomly generated reference process model
and a collection of 100 different process variants. We generate each variant by
configuring the reference model according to a particular scenario.

We perform our heuristic mining to discover new reference models. We do
not set constraints on search steps, i.e., the algorithm only terminates if no bet-
ter model can be discovered. All (intermediate) process models are documented
(see Fig. 8 as example). We compute the fitness and average weighted distance
of each intermediate process models as obtained from our heuristic mining. We
additionally compute delta-fitness and delta-distance in order to examine the
influence of every change operation (see Fig. 9 for an example).

Improvement on average weighted distances. In 60 (out of 72) groups we
are able to discover a new reference model. The average weighted distance of the
discovered model is 0.765 lower than the one of the original reference model;
i.e., we obtain a reduction of 17.92% on average.

Execution time. The number of activities contained in the variants can signif-
icantly influence execution time of our algorithm. Search space becomes larger
for bigger models since the number of candidate activities for change and the
number of blocks contained in the reference model become higher. The average
run time for models of different size is summarized in Fig. 10.

Correlation of delta-fitness and delta-distance. One important issue we
want to investigate is how delta-fitness is correlated to delta-distance. Every
change operation leads to a particular change of the process model, and conse-
quently creates a delta-fitness xi and delta-distance yi. In total, we have per-
formed 284 changes in our simulation when discovering reference models. We
use Pearson correlation to measure correlation between delta-fitness and delta-
distance [13]. Let X be delta-fitness and Y be delta-distance. We obtain n data
samples (xi, yi), i = 1, . . . , n. Let x̄ and ȳ be the mean of X and Y , and let sx

and sy be the standard deviation of X and Y . The Pearson correlation rxy then
equals rxy =

∑
xiyi−nx̄ȳ

(n−1)sxsy
[13]. Results are summarized in Fig. 10. All correlation

coefficients are significant and high (> 0.5). The high positive correlation be-
tween delta-fitness and delta-distance indicates that when finding a model with
higher fitness value, we have very high chance to also reduce average weighted
distance. We additionally compare these three correlations. Results indicate that

360 C. Li, M. Reichert, and A. Wombacher

Fig. 10. Execution time and correlation analysis of groups with different sizes

they do not show significant difference from each other, i.e., they are statistically
same (see [8]). This implies that our algorithm provides search results of sim-
ilar goodness independent of the number of activities contained in the process
variants.

Importance of top changes. Finally, we measure to what degree our algo-
rithm applies more important changes at the beginning. In this context, we
measure to what degree the top n% changes have reduced the average weighted
distance. For example, consider search results from Fig. 9. We have performed
in total 3 change operations and reduced the average weighted distance by 1.65
from 4 (based on S) to 2.35 (based on R3). Among the three change opera-
tions, the first one reduces average weighted distance by 0.8. When compared
to the overall distance reduction of 1.65, the top 33.33% changes accomplished
0.8/1.65 = 48.48% of our overall distance reduction. This number indicates how
important the changes at beginning are. We therefore evaluate the distance re-
duction by analyzing the top 33.3% and 50.0% change operations. On average,
the top 33.3% change operations have achieved 63.80% distance reduction while
the top 50.0% have achieved 78.93%. Through this analysis, it becomes clear
that the changes at beginning are a lot more important than the ones performed
at last.

7 Related Work

Though heuristic search algorithms are widely used in areas like data mining [14]
or artificial intelligence [10], only few approaches use heuristics for process vari-
ant management. In process mining, a variety of techniques have been suggested
including heuristic or genetic approaches [19,2,16]. As illustrated in [6], tradi-
tional process mining is different from process variant mining due to its different
goals and inputs. There are few techniques which allow to learn from process vari-
ants by mining recorded change primitives (e.g., to add or delete control edges).
For example, [1] measures process model similarity based on change primitives
and suggests mining techniques using this measure. Similar techniques for min-
ing change primitives exist in the field of association rule mining and maximal
sub-graph mining [14] as known from graph theory; here common edges between
different nodes are discovered to construct a common sub-graph from a set of
graphs. However, these approaches are unable to deal with silent activities and

Discovering Reference Models by Mining Process Variants 361

also do not differentiate between AND- and XOR-branchings. To mine high level
change operations, [3] presents an approach using process mining algorithms to
discover the execution sequences of changes. This approach simply considers
each change as individual operation so the result is more like a visualization
of changes rather than mining them. None of the discussed approaches is suf-
ficient in supporting the evolution of reference process model towards an easy
and cost-effective model by learning from process variants in a controlled way.

8 Summary and Outlook

The main contribution of this paper is to provide a heuristic search algorithm
supporting the discovery of a reference process model by learning from a col-
lection of (block-structured) process variants. Adopting the discovered model as
new reference process model will make process configuration easier. Our heuris-
tic algorithm can also take the original reference model into account such that
the user can control how much the discovered model is different from the original
one. This way, we cannot only avoid spaghetti-like process models but also con-
trol how many changes we want to perform. We have evaluated our algorithm by
performing a comprehensive simulation. Based on its results, the fitness function
of our heuristic algorithm is highly correlated with average weighted distance.
This indicates good performance of our algorithm since the approximation value
we use to guide our algorithm is nicely correlated to the real one. In addition,
simulation results also indicate that the more important changes are performed
at the beginning - the first 1/3 changes result in about 2/3 of overall distance
reduction. Though results look promising, more work needs to be done. As our
algorithm takes relatively long time when encountering large process models, it
would be useful to further optimize it to make search faster.

References

1. Bae, J., Liu, L., Caverlee, J., Rouse, W.B.: Process mining, discovery, and integra-
tion using distance measures. In: ICWS 2006, pp. 479–488 (2006)

2. Alves de Medeiros, A.K.: Genetic Process Mining. PhD thesis, Eindhoven Univer-
sity of Technology, NL (2006)

3. Günther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M.P., Recker, J.:
Using process mining to learn from process changes in evolutionary systems. Int’l
Journal of Business Process Integration and Management 3(1), 61–78 (2008)

4. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the pro-
cess lifecycle. In: Proc. 10th Int’l Conf. on Enterprise Information Systems (ICEIS
2008), pp. 154–161 (2008)

5. Li, C., Reichert, M., Wombacher, A.: Discovering reference process models by min-
ing process variants. In: ICWS 2008, pp. 45–53. IEEE Computer Society Press,
Los Alamitos (2008)

6. Li, C., Reichert, M., Wombacher, A.: Mining process variants: Goals and issues. In:
IEEE SCC (2), pp. 573–576. IEEE Computer Society Press, Los Alamitos (2008)

362 C. Li, M. Reichert, and A. Wombacher

7. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based
on high-level change operations. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.)
ER 2008. LNCS, vol. 5231, pp. 248–264. Springer, Heidelberg (2008)

8. Li, C., Reichert, M., Wombacher, A.: A heuristic approach for discovering refer-
ence models by mining process model variants. Technical Report TR-CTIT-09-08,
University of Twente, NL (2009)

9. Li, C., Reichert, M., Wombacher, A.: What are the problem makers: Ranking
activities according to their relevance for process changes. In: ICWS 2009. IEEE
Computer Society Press, Los Alamitos (to appear, 2009)

10. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem
Solving. Pearson Education, London (2005)

11. Reichert, M., Dadam, P.: ADEPTflex -supporting dynamic changes of workflows
without losing control. J. of Intelligent Information Sys. 10(2), 93–129 (1998)

12. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with ADEPT2. In: ICDE 2005, pp. 1113–1114. IEEE Computer Society Press,
Los Alamitos (2005)

13. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
CRC Press, Boca Raton (2004)

14. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley, Reading (2005)

15. van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: an approach to tack-
ling problems related to change. Theor. Comput. Sci. 270(1-2), 125–203 (2002)

16. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)

17. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering 66(3), 438–466 (2008)

18. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life cycle
support in process-aware information systems. Int’l Journal of Cooperative Infor-
mation Systems (IJCIS), 19(1) (2009)

19. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from
event-based data using little thumb. Integr. Com.-Aided Eng. 10(2), 151–162 (2003)

Author Index

Amme, Wolfram 211

Bowers, Shawn 31
Brown, John 97

Carmona, Josep 327
Chao, Tian 261
Cohn, David 261
Combi, Carlo 64
Cortadella, Jordi 327
Curbera, Francisco 310

Dayal, Umeshwar 1
Desel, Jörg 294
Dijkman, Remco 48
Doganata, Yurdaer 310
Dumas, Marlon 48

Eder, Johann 1
Ekelhart, Andreas 113

Fahland, Dirk 278
Favre, Cédric 278
Fenz, Stefan 113
Ferreira, Diogo R. 143
Ferreira, João E. 80
Flatgard, Adrian 261
Fritzsche, Mathias 97

Garćıa-Bañuelos, Luciano 48
Gilani, Wasif 97
Gillblad, Daniel 143

Hahn, Sandy 261
Heinze, Thomas S. 211
Holschke, Oliver 245
Hoogland, John 28
Huqqani, Altaf 176

Jagadeesh Chandra Bose, R.P. 159
Jobstmann, Barbara 278

Kaschner, Kathrin 193
Kilpatrick, Peter 97
Kishinevsky, Michael 327
Klai, Kais 294
Klueckmann, Joerg 15
Koehler, Jana 1, 278

Levina, Olga 245
Li, Chen 344
Linehan, Mark 261
Lohmann, Niels 278
Ludäscher, Bertram 31

Malkowski, Simon 80
McPhillips, Timothy 31
Moser, Simon 211

Nandi, Prabir 261
Neubauer, Thomas 113
Nigam, Anil 261

Oikawa, Márcio K. 80

Picht, Michael 97
Pinel, Florian 261
Polyvyanyy, Artem 229
Posenato, Roberto 64
Pu, Calton 80

Rake, Jannis 245
Reichert, Manfred 344
Reijers, Hajo A. 1
Rohloff, Michael 128
Romero, Heidi 1

Scheer, August-Wilhelm 15
Schikuta, Erich 176
Smirnov, Sergey 229
Song, Minseok 1
Spence, Ivor 97

Tata, Samir 294

ul Haq, Irfan 176

van der Aalst, Wil M.P. 159
Vergo, John 261
Völzer, Hagen 278

Weske, Mathias 31, 229
Wolf, Karsten 193, 278
Wombacher, Andreas 344
Wu, Frederick y 261

	Front matter
	Chapter 1
	A Collaboration and Productiveness Analysis of the BPM Community
	Introduction
	Methodology
	Data Collection
	Conceptualization
	Verification
	Network Generation

	Results
	Individual Level
	Institute Level
	Country Level

	Discussion and Conclusion

	Chapter 2
	BPM 3.0
	BPM Guerrilla vs. BPM Governance
	The Power of the Community
	Crowdsourcing – Making Products and Processes Democratic
	The Search Function – A Gateway to Everything
	BPM and the Cloud
	Sneak Preview: Semantic BPM
	Summary
	References

	Chapter 3
	Change in Control
	References

	Chapter 4
	Scientific Workflows: Business as Usual?
	Introduction
	The Scientific Workflow Life Cycle
	Scientific Workflow Concepts and System Features
	Case Study: Phylogenetics Workflows in Kepler
	Scientific Workflows vs. Business Workflows
	The Road Ahead

	Chapter 5
	Graph Matching Algorithms for Business Process Model Similarity Search
	Introduction
	Preliminaries
	Business Process
	Business Process Similarity Metric

	Algorithms
	Greedy Algorithm
	Exhaustive Algorithm with Pruning
	Process Heuristic Algorithm
	A-Star Algorithm

	Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusion

	Chapter 6
	Controllability in Temporal Conceptual Workflow Schemata
	Introduction
	Related Work
	The Conceptual Temporal Workflow Model
	The Temporal Conceptual Model
	Workflow Paths $(wf-paths)$
	Modelling Time and Temporal Aspects
	A Motivating Example from Healthcare

	Controllability of Workflows
	Controllability on Sequential Paths
	Controllability on Parallel Paths

	Discussion and Conclusions

	Chapter 7
	Towards Algorithmic Generation of Business Processes: From Business Step Dependencies to Process Algebra Expressions
	Introduction
	Related Work
	Graph Reduction
	Algorithmic Generation of Business Process
	Expression Digraph
	Reduction System for Generation of Algebraic Expressions
	Algorithm

	Wheatstone Bridges
	Conclusion

	Chapter 8
	Extending BPM Environments of Your Choice with Performance Related Decision Support
	Introduction
	Background: Performance Related Decision Support for BPM Environments
	Motivation
	Proposed Architecture
	Performance Modelling Actor
	Instance Data Actor
	Decision Support Calculator

	Experiences Gained
	Related Work
	Conclusions and Future Work

	Chapter 9
	Business Process-Based Resource Importance Determination
	Introduction
	Existing Approaches
	Preliminaries
	Business Process-Based Determination of the Resource Importance
	Assumptions
	Determining the Resource's Local Importance
	Determining the Resource's Global Importance

	Proof of Concept
	Evaluation
	Conclusions

	Chapter 10
	Case Study and Maturity Model for Business Process Management Implementation
	Introduction
	Implementation of Business Process Management
	The Business Process Management Initiative at Siemens AG
	BPM Process and Implementation Topics

	A Maturity Model for Business Process Management
	Process Management Maturity Assessment
	Maturity Assessment: Initial Study and Findings
	Comparison of Maturity Models

	Summary and Outlook
	References

	Chapter 11
	Discovering Process Models from Unlabelled Event Logs
	Introduction
	Running Example
	Probabilistic Approach
	Estimating M Given x and s
	Estimating s Given x and M
	Estimating M and s from x Alone
	Example

	Finding the $case id$ in Unlabelled Event Logs
	Accuracy and Performance
	Parallelism, Loops and Non-local Dependencies

	Working Assumptions
	Conclusion

	Chapter 12
	Abstractions in Process Mining: A Taxonomy of Patterns
	Introduction
	Notations
	Taxonomy of Patterns
	Loops as Tandem Arrays
	Sub-processes as Conserved Regions
	Mapping Primitive Tandem Repeats and Conserved Regions into Equivalence Classes

	Abstractions of Patterns
	Patterns in the Manifestation of Complex Process Model Constructs
	Approximate Tandem Arrays
	Approximate Conserved Regions

	Approaches for Discovering the Patterns
	Pre-processing Traces and Resolving Complex Constructs
	Pre-processing Traces with Abstractions
	Iterative Approach to Resolve Complex Constructs

	Experimental Results and Discussion
	Related Work
	Conclusions and Future Work

	Chapter 13
	Aggregating Hierarchical Service Level Agreements in Business Value Networks
	Introduction
	Related Work
	SLA Aggregation
	Formal Description of SLA
	Workflow Views

	Hierarchical Choreography of SLAs
	SLA Views
	Aggregation Process
	A Case for Hierarchical Aggregation of SLAs in Business Applications
	Motivational Scenario
	Conclusion

	Chapter 14
	Set Algebra for Service Behavior: Applications and Constructions
	Introduction
	Motivation
	Behavior of Services
	Preliminary Operations on Annotated Automata
	Set Operations on Annotated Automata
	Applications Revisited
	Conclusion

	Chapter 15
	A Restructuring Method for WS-BPEL Business Processes Based on Extended Workflow Graphs
	Introduction
	Extended Workflow Graphs
	Restructuring Technique
	Static Quasi-Constant Loop Condition
	Loop Normal Form
	Loop Instantiation
	Restructured Loop

	Related Work
	Conclusion

	Chapter 16
	The Triconnected Abstraction of Process Models
	Introduction
	Business Process Model Abstraction
	Preliminaries
	The Triconnected Decomposition
	Basic Approach for Process Component Discovery
	SPQR-Tree Decomposition
	SPQR-Tree Fragments in the Context of Process Models

	The Triconnected Abstraction
	Abstraction Rules
	Abstraction Algorithm

	Conclusions

	Chapter 17
	Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse
	Introduction
	Granularity: Concept and Quantification
	Granularity as a Concept of Human Cognition
	Measuring Granularity

	Granularity as a Factor in Effective Process Model Reuse
	Study 1: Process Domain Reuse
	Task, Reuse Artifact and Participants
	Control of Experimental Setup
	Independent Variable
	Dependent Variables
	Operational Hypothesis Study 1
	Results and Discussion

	Study 2: Business Process Model Reuse
	Experimental Setup and Relation to Study 2
	Operational Hypothese
	Results and Comparative Analysis of both Study Results

	Conclusion
	References

	Chapter 18
	Artifact-Based Transformation of IBM Global Financing
	IBM Global Financing
	Business Context and Challenges
	IGF’s Business Strategy
	The Business Artifact Method for Business Process Design
	The IGF Business Operation Model
	Impact on the Business
	The Future of the IGF Transformation
	Conclusions, Discussion and Lessons Learned
	References

	Chapter 19
	Instantaneous Soundness Checking of Industrial Business Process Models
	Introduction
	Selecting the Empirical Data and Preparing the Case Study
	Sampling the Process Data
	Translation into Workflow Graphs and Petri Nets
	Soundness

	State Space Verification with LoLA
	Soundness Verification with Woflan
	The SESE Decomposition Approach
	Conclusion

	Chapter 20
	Symbolic Abstraction and Deadlock-Freeness Verification of Inter-enterprise Processes
	Introduction
	Process Abstraction
	Notations and Preliminary Results
	Running Example
	The Symbolic Observation Graph

	Composition and Deadlock-Freeness Verification
	Synchronization of LTSs
	Synchronization of SOGs
	Checking Deadlock-Freeness on a SOGs Synchronized Product

	Related Work
	Conclusion

	Chapter 21
	Effect of Using Automated Auditing Tools on Detecting Compliance Failures in Unmanaged Processes
	Introduction
	Related Work
	Automated Auditing Tool
	Sample e-Mail Based Unmanaged Business Process
	Key-Control Points

	Statistical Modeling Results
	Inference of Marginal Densities $p, η , θ$
	Numerical Results
	Measuring the Effectiveness of Auditing Tool
	Numerical Results for Improvement
	Conclusion
	References

	Chapter 22
	Divide-and-Conquer Strategies for Process Mining
	Introduction
	Basic Theory
	Finite Transition Systems and Petri Nets
	Regions and Region-Based Synthesis
	Deriving Transitions Systems from Logs
	Trigger Relations and Its Graph

	Computation of Conservative Components
	State Machines and Its State-Based Representation
	Allocation-Based SMC Computation
	Covering the Causal Dependency Graph

	A Divide-and-Conquer Approach for Petri Net Mining
	Introductory Example
	Causal Dependency Graph Partitioning
	Divide-and-Conquer Approach

	Experiments
	Related Work
	Conclusions

	Chapter 23
	Discovering Reference Models by Mining Process Variants Using a Heuristic Approach
	Introduction
	Backgrounds
	Overview of Our Heuristic Search Algorithm
	Fitness Function of Our Heuristic Search Algorithm
	Activity Coverage
	Structure Fitting
	Fitness Function

	Constructing the Search Tree
	The Search Tree
	Options for Changing One Particular Activity
	Search Result for Our Running Example
	Proof-of-Concept Prototype

	Simulation
	Related Work
	Summary and Outlook

	Back matter

