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Foreword 

Towards the end of my stay as a postdoctoral fellow at the University of 
Pennsylvania, I asked my supervisor, Professor L. A. Girifalco, which 
are the topics, in his opinion, that would be good for research in the 
future. He suggested as one of the topics “small particles”, a term used in 
the early 1980s for an emerging field devoted to the study of small 
groups of atoms, or atomic clusters - nanoscience was not yet a 
fashionable term. This insightful advice was given a few years before the 
two key experimental discoveries in the field. One of those was the 
observation and explanation of electronic shell effects in metallic 
clusters in 1984. The second was the detection, only a few months later, 
of the fullerene cluster C ~ O  and the proposal for its peculiar cage 
structure. The First International Symposium on Small Particles and 
Inorganic Clusters (ISSPIC-1) had taken place in Lyon in 1976. With the 
passing of time this symposium established itself as the main joint 
activity in this field, and ISSPIC-12 took place in Nanjing in 2004. The 
advice I received from Professor Girifalco gave me the motivation to 
initially dedicate a modest fraction of my research effort to the study of 
atomic clusters, and this involvement later increased until it became my 
main research activity. Due to this interest I have been able to follow the 
development of the now mature cluster field. 

In this monograph I present some of the main developments in 
atomic clusters and the actual status of the field. The range of topics 
covered is broad, but evidently not comprehensive, and this is due to 
several reasons. One is my own interest, which is reflected in the 
selection of topics and illustrative examples. The second reason has to do 
with the limitations of my knowledge of the field. Third, I consider an 
in-depth presentation of a limited number of topics more adequate than a 
lighter presentation of an enlarged list of topics or systems. Finally, I 
have tried to achieve a proper balance between those considerations and 
the size of the monograph. 
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The book is intended to be useful to graduate students in the fields of 
Nanoscience, Molecular Sciences and Condensed Matter, and also to 
scientists interested in entering the field of Atomic Clusters. 
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1. Introduction to Clusters 

1.1 The Field of Clusters 

Atomic clusters are aggregates of atoms containing from few to a few 
thousand atoms. Due to their small size, the properties of the clusters are, 
in general, different from those of the corresponding material in the 
macroscopic bulk phase. The differences result from the fact that the 
number of atoms forming the surface is a substantial fraction of the 
number of atoms forming the cluster, while this fraction is negligible in 
the case of a macroscopic solid (of course the surface of a solid is 
relevant in itself, giving rise to the technologically important field of 
surface science). Many of the differences between clusters and bulk can 
also be viewed as arising from the small volume of the potential well 
confining the electrons in the clusters. In this case the electrons fill 
discrete levels, instead of having the continuous distribution (bands) 
characteristic of the solid. Of course the two views are inter-related. By 
studying the properties of clusters, scientists expect to obtain information 
on the early stages of growth of matter, and on the evolution of the 
properties towards the bulk. An interesting question which still lacks a 
convincing answer in many cases is the following: how many atoms are 
required for a cluster to show the properties of the bulk material? To 
make affairs more complicated, sometimes different properties of a given 
type of clusters appear to converge at a different rate. But, even more 
important, is knowing the precise behavior of a given property, like the 
cluster geometry, or the values of the ionisation potential, as the number 
of atoms increases one by one. These questions have motivated the 
development of experimental techniques for producing small clusters, as 
well as a series of experimental and theoretical studies of their structure 
and properties. The existence of especially stable clusters is sometimes 
advocated to construct models of amorphous materials. 

1 



2 Structure and Properties of Atomic Clusters 

Two discoveries, nearly simultaneous in time, stand at the top of the 
field of clusters, and have added strong impetus for its development. The 
first one, reported by Knight and coworkers in 1984, is the discovery of 
magic numbers in the abundance of clusters of the alkali metals [l]. 
These magic numbers are interpreted as reflecting an electronic structure 
characterized by the formation of discrete electronic shells separated by 
energy gaps, like electrons in atoms or nucleons in nuclei. In short, 
clusters with filled electronic shells are more stable and less reactive than 
clusters with open shells. This parallels the behavior of atoms across the 
Periodic Table: the inert gas atoms He, Ne, Ar, Kr, Xe and Rn have filled 
electronic shells, and consequently they are chemically unreactive. Also, 
some particular nuclei are specially stable because the nucleons (protons 
and neutrons) have a structure of closed shells in those nuclei. In 
summary, this is a general propcrty of fermions moving in a common 
potential well of finite size. In fact, the shape of the potential well 
confining the electrons in the alkali metal clusters (smooth and nearly 
constant inside the cluster and rising abruptly at the surface) is 
qualitatively more similar to the potential well binding the nucleons in 
the nuclei as opposed to the potential that the electrons feel in the atom, 
where the strong Coulombic attraction of the highly charged point 
nucleus, screened of course by the core electrons, dominates. The 
electronic shell effects become reflected in many properties of clusters of 
the simple metals (with sp electrons) and many examples are discussed 
throughout this monograph. The second key work was the discovery by 
Kroto et al. [2] of the c 6 0  hllerene in 1985 and the proposal of its 
peculiar cage structure. Those two discoveries were made possible by the 
efforts in many laboratories in developing experimental methods to 
produce clusters in the gas phase as molecular beams. Those 
experimental methods are described in Chapter 2. It is also worth noting 
that the experimental confirmation of the structure proposed for the 
fullerene was achieved five years after the discovery of C60, when a 
method was developed [3] to purify and separate c 6 0  in quantities large 
enough to allow spectroscopic studies to be performed. 

Close in importance to these two key discoveries are other findings 
that will be discussed at length in this volume: like the formation of 
shells of atoms in the clusters of the inert gases [4], the excitation of 
collective modes similar to the giant dipole excitation of nuclei, etc. The 
spatial arrangement of the atoms, that is, the geometrical structure, is the 
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source of the differences between the properties of clusters of similar 
sizes; sizes that can differ by just one atom. In contrast to bulk solids, the 
structure of clusters is difficult to assign. Even more, several (or many) 
low lying isomers (for a given cluster size) often exist with binding 
energies differing very little from that of the ground state. This means 
that different isomers may be populated under typical experimental 
conditions. On the other hand, the existence of many isomers makes the 
theoretical identification of the ground state difficult, even if one uses 
sophisticated computational methods based on first principles theory. 

1.2 Types of Clusters 

The clusters can be classified according to the type of chemical bonding 
between the atoms forming the aggregate. The types of clusters that are 
considered in this monograph are now briefly introduced. The list is 
broad but it may not be comprehensive, since it reflects the personal 
selection of the author, motivated by reasons like his own interest and 
experience. For the same reasons, a selection of examples, taken from 
the abundant literature, has been made for the different types of clusters, 
but it is hoped that the selection reflects faithfdly the relevant 
characteristics and properties of each type. 

1.2.1 Van der Waals clusters 
The interactions between inert gas atoms are weak and can be described 
accurately by central pair forces. The origin of the short-range repulsive 
part of the interaction is the quantum mechanical repulsion between 
cores with closed shell electronic configurations, and the attractive part 
is due mainly to the induced-dipole dispersion force. The strength of the 
binding is about 0.3 eV per atom or less. Due to the simple central force 
the most stable clusters are those with high atomic density, that is, with a 
close-packing of atoms. The weak binding leads to low melting and 
boiling points, and have made these clusters attractive to 
experimentalists. The simplicity of the interatomic forces makes them 
equally popular between theorists, who have used molecular dynamics 
techniques to simulate and enlighten the difficult problem of the solid to 
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liquid phase transition in systems with a small number of atoms. Van der 
Waals clusters are treated in Chapter 3. Molecular clusters, formed as 
aggregates of closed shell molecules, like (12)N, (N2)N, (CO& (SF,), 
also belong to this class. Aggregates of inert gas atoms also form in 
cavities in metals during ion beam mixing experiments [ 5 ] .  In those 
experiments, inert gas ions with high kinetic energies are used to induce 
the mixing of metallic multilayers to produce amorphous alloys. 

1.2.2 Metal clusters 
The interatomic forces in metals are not simple. Many metals have non 
close-packed structures because the interatomic forces are partially 
directional. One can distinguish between simple metals, like Na or Al, 
with valence electrons of sp character, and transition metals, like Fe or 
Co, where the localized d electrons play an important role. Some 
polyvalent nontransition elements like Pb form a group inbetween. The 
clusters reflect these characteristics. The strength of the binding in 
metallic clusters ranges from moderate to strong, say from 0.5 to 3 eV 
per atom. 

The main property of the clusters of the simple sp elements is the 
existence of electronic shell effects [ 11, discussed in detail in Chapter 4. 
There is a close connection between geometrical and electronic structure 
at the beginning of the growth staircase, when the addition of each new 
atom changes the properties of the system substantially. The simplicity 
of the sp clusters captured the attention of theorists and experimentalists, 
and a lot of progress has been made in the understanding of their 
electronic properties, which is reported in Chapter 5 .  In particular, the 
delocalized character of the electronic states allows for the occurrence of 
collective electronic excitations at relatively low energies. The induced 
fragmentation of these clusters, reviewed in Chapter 6, is also influenced 
by electronic shell effects. The solid to liquid phase transition, also 
considered in Chapter 6, is still an open problem. The observed trends 
are complex and the theoretical studies encounter two main difficulties. 
First, the interatomic potential is complex; strictly speaking it is a many- 
atom interaction as opposed to the simple two-body force of the Van der 
Waals clusters, and this makes designing potentials that could be used 
with confidence in molecular dynamics simulations a very difficult task. 
Of course, accurate first principles techniques are now available, but 
these become computationally very demanding as the cluster size 
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increases. Since the surface atoms represent a substantial fraction of the 
cluster, it is not surprising that the simulations seem to indicate the 
occurrence of steps in the melting transition. 

The variety of bulk metallic alloys is enormous because many 
different elements can be combined, and for a given A-B pair, there is an 
additional variable, the relative concentration of the two components. 
Similarly, many A,B, mixed bimetallic clusters have been produced and 
their variety is also enormous: the nature of the elements and their 
relative compositions are again the relevant variables. The properties of 
alloy clusters are studied in Chapter 7. Mixing two elements in the 
adequate proportion may be a way to produce highly stable clusters that 
could form the building blocks of future cluster assembled new 
materials. 

The d electrons present in the transition metals make the 
corresponding clusters substantially more complex than the clusters of 
the sp elements. Their structure and electronic properties are considered 
in Chapter 8. Part of the interest in these clusters comes from their 
potential use in catalysis, and in fact, their reactivity with different 
molecular species has been studied. Another topic of great interest deals 
with the magnetic properties, especially the nature of the magnetic 
ordering and its evolution with the size of the cluster. Chapter 9 presents 
a discussion of the trends in this evolution. 

1.2.3 Clusters of ionic materials 
Ionic materials are composed of closed shell ions, for instance Na' 
cations and C1F anions in the NaCl salt. In general these materials are 
formed from electropositive metals on the left side of the Periodic Table 
and electronegative elements on the right side. The cohesion in (NaC1)N 
and similar clusters can be described by potentials composed of an 
attractive part due to electrostatic monopole forces and a repulsive part 
from the quantum mechanical overlap of the electronic clouds of ions 
with filled electronic shells. The bonding is strong: 2 4  eV/atom. The 
structures of many of these clusters, described in Chapter 10, can be 
interpreted as having the shape of rectangular nanocrystals cut from the 
solid. This is in accordance with the brittle character of the bulk crystals. 
Some computer simulations of the assembling of clusters to form new 
materials suggest that it may be possible to assemble solids formed by 
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large anionic clusters separated by cations, with a structure similar to that 
of the typical ionic crystals. In fact, this is also the structure of some 
natural alloys. 

I .  2.4 Network clusters 
Covalent bonding leads to the formation of atomic networks in clusters 
of materials like Si, Ge and C. Networks also form in the corresponding 
solid crystals and in the amorphous forms of those elements. Since many 
atoms in small clusters are on the cluster surface, these surface atoms 
have dangling bonds and important structural reconstruction is expected, 
as in the case of the solid surfaces. The binding energy in network 
clusters is strong, typically between 1 and 4 eV per atom or more. 
Network clusters are studied in Chapter 11, taking as representative 
examples first carbon clusters, since the popular C60 fullerene belongs to 
this class, and then the so called metcars, formed by carbon and 
transition metal atoms. 

1.2.5 Cluster assembled solids 
The possibility of building highly stable and symmetrical nanostructures 
makes the class of network clusters the most promising one for the 
purposes of cluster assembling. In fact the self-assembling of C60 clusters 
to form the fullerite solid provides the best example [3], as discussed in 
Chapter 12. This chapter discusses the idea and the possibilities of 
building new materials by assembling very stable clusters. 
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2. Experimental Production of Clusters 

2.1 Formation of Clusters in Matrices 

2. I. 1 Chemical reaction in a liquid medium 
Several procedures have been used to obtain particles with sizes in the 1- 
50 nanometer scale through chemical reactions. Those procedures vary 
from simple precipitations to chemical reductions, including hydrolisis 
processes, thermal decompositions, etc. For example a procedure for 
obtaining amorphous NdFeB magnetic nanoparticles [ 11 consists of the 
reduction of Fe2+ and Nd3+ salts using borohydride ions in aqueous 
solution. The concentration and speed of addition of the reactants, the 
control of the pH, the temperature and the atmosphere under which the 
reaction is carried out are parameters affecting the characteristics of the 
particles obtained. In order to control the growth of the particles and fix 
their size so as to obtain a quasi-monodisperse distribution of particles, 
procedures have been developed based on carrying out the reaction in a 
microstructured medium. The use of microemulsions is particularly 
convenient because the system is thermodynamically stable and easy to 
reproduce, and the size of the microreactor (microdroplets) can be easily 
controlled. Semiconductor and metallic nanoparticles can be produced 
by injecting molecular precursors into a hot surfactant solution [2]. For 
instance, monodisperse cobalt nanoparticles are formed by the thermal 
decomposition of carbonyl dicobalt, CO~(CO)~ . This decomposes 
according to the reaction C O ~ ( C O ) ~  4 2Co + 8 CO, and an appropriate 
combination of surfactants and stabilizing ligands controls the growth 
and stabilizes the particles, also preventing their oxidation [3]. 

Gold clusters have been grown by a condensation process [4] starting 
from unstable AuSR stoichiometric molecules (SR indicates an alkyl 

7 



8 Structure and Properties of Atomic Clusters 

thiolate, where R = C,,H*&l and S is a sulfur atom binding to the gold 
atom), in the presence of excess RSSR 

N(AuSR) + Au, (SR), , N >> M .  (2.1) 

This process can be stimulated at room temperature by the action of a 
reducing agent, like dispersed Na 

Na + AuSR + NaSR + Au . (2.2) 

The liberated gold atoms combine to form the growing clusters, and 
coalescence of clusters is prevented by the presence of RSSR groups 
weakly bound to the cluster surface. 

X-ray irradiation has been used to induce the chemical reactions that 
lead to the formation of copper clusters in aqueous solutions of CuC12 
[5] .  The secondary radiation produced through scattering of the incident 
X-rays causes the formation of hydrated electrons ( eiq ), which in turn 

react with the Cu2+ ions in the solution and cause their reduction by a 
two step process 

e-oq + c u 2 +  + CU', (2.3) 

A distribution of Cu clusters with diameters ranging from 5 to 10 8, is 
observed, although the exact kinetics of agglomeration to form the 
clusters is not known. Radiolytic reduction of aqueous solutions of 
copper compounds and organic molecules leading to formation of Cu 
clusters has also been observed [6 ] .  

2.1.2 Irradiation of a solid 
Irradiation of an ionic crystal like LiF with neutrons produces interstitial 
Li atoms as well as other types of defects in the crystal. When the 
irradiation dose is large enough (higher than 3 x lo2' neutrons/m*), the Li 
atoms tend to agglomerate forming Li clusters. Irradiation of lithium 

(2.4)



Experimental Production of Clusters 9 

oxide (Li20) with electrons leads to the formation of Li nanoclusters 
with a few thousand atoms [7, 81. 

Another irradiation technique is ion implantation in glass matrices. 
Sequential implantation of two different elements, for instance Cu' and 
Au' , produces alloy clusters of nanometer size [9 ] .  The energy and dose 
can be tailored so as to control the relative concentration. 

2.1.3 Immersion OJ a porous glass in a liquid metal 
Some inorganic glasses related to Si02 contain near spherical cavities 
with diameters up to 30 nm. When the porous glass is immersed in a 
molten metal and pressures up to 7000 torr are applied, the metal atoms 
enter the small pores forming droplets. Zeolites are minerals that contain 
natural microscopic cavities which can easily accommodate metallic 
clusters. Fe aggregates trapped into the pores of zeolites and silica 
minerals form the active ingredient of some commercial catalysts used in 
the production of hydrocarbons starting with CO and Hz. Other clusters 
in zeolites catalyze the polymerization of ethylene to give polyethylene. 

2.1.4 Condensation on a substrate 
A metallic vapor obtained by heating a metal in an oven can be 
condensed on an inert solid substrate (NaCl or a metallic oxide). In this 
way clusters of nanometric dimensions are formed by difhsion- 
controlled aggregation [lo]. Thin films formed by clusters have also 
been prepared. On the other hand atomic manipulation with the STM 
(Scanning Tunneling Microscope) constitutes a well controlled route for 
nanofabrication, and arrays of clusters have been produced by moving 
the STM tip. The production of arrays and films of atomic clusters would 
be of great interest for the microelectronics industry [ 1 11. The possibility 
of building parts of circuits with nanosize clusters would allow the 
fabrication of electronic devices at a molecular scale. Applications are 
also envisaged in optical memories and image processing. Molecular 
Beam Epitaxy is employed nowadays to produce crystalline 
semiconductor superlattices of high quality. Use of a beam of clusters, 
instead of atoms, would allow the production of more complex 
superstructures. 
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2.2 Liquid Metal Ion Source 

This method has been used to produce clusters of metals with low 
melting points, like rubidium [12]. The metal is first placed in an oven. 
By differential heating, Rb is distilled into a tungsten capillary needle, 
which is itself heated to keep Rb in the liquid state. By establishing a 
high electric field between the tip of the capillary needle and an 
extraction electrode, copious field emission of cluster ions of different 
sizes results when the potential difference between the tungsten needle 
and the extractor electrode exceeds 2 kV. An assembly of electrostatic 
lenses is used to collimate the ion beam. Single charged and multiply 
charged clusters are produced in this way. 

2.3 Ion Bombardment 

A beam of inert gas ions with a high kinetic energy, for instance Xe+ of 
10 kV energy, directed towards the sample (spot size about 1 mm in 
diameter) removes cluster ions. In this way positively and negatively 
charged clusters of the noble metal and Zn groups have been obtained 
[13]. Sputtering by ion bombardment of solid surfaces is a relatively 
cheap method for the production of clusters even from materials with a 
high boiling temperature. The method has been used in particular to 
produce clusters of ionic materials, like alkali halides. 

Ion induced erosion of a solid is explained by the collision cascades 
originating from the impacts of single primary ions. There is the 
consensus that a cluster stems from atoms of a collision cascade excited 
by a single projectile. Disagreement exists, however, whether the atoms 
forming an emerging cluster originate from neighboring lattice sites in 
the solid or whether cluster formation is a statistical recombination 
process of independently sputtered atoms from one collision cascade. 

2.4 Supersonic Nozzle Sources 

Figure 2.1 shows the main chamber of a supersonic nozzle source used 
in obtaining alkali metal clusters. The nozzle is composed of a channel, 
typically 0.15 mm long, terminated in a hole aperture with a diameter 
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smaller than 0.8 mm. The nozzle is mounted at the end of a nozzle tube 
and the other end of that tube is connected to the reservoir [ 141. Metal of 
high purity is introduced into the reservoir through a heated inlet pipe. 
The source and nozzle are further heated so that the desired metal vapor 
pressure (50-300 Torr) is obtained, and the nozzle is kept about 100 K 
hotter that the reservoir to prevent plugging. The vapor exiting the nozzle 
then adiabatically expands into the vacuum, and the density and 
temperature of the jet decrease rapidly (typically, the density and 
temperature in an argon beam are reduced by about 25% and 13%, 
respectively, within one nozzle diameter from the nozzle exit [ 151). 
Clusters form both in the nozzle channel and in the region just outside 
the nozzle. 

Figure 2.1. Supersonic nozzle source chamber. Reproduced from W. A. de Heer 
et al., Solid State Physics 40,93 (1987) with permission of Academic Press. 

The product P&, where PO is the gas pressure just before it enters 
the nozzle channel and D is the nozzle diameter, is an important 
parameter controlling cluster formation. For small values of POD (larger, 
however, than a threshold value) most aggregates are produced in the 
throat. For larger values of P&, progressively more clusters are 
produced outside the nozzle. 

This pure vapor source is efficient to produce Van der Waals 
clusters. In the case of metallic clusters it produces mainly small clusters, 
and some medium size clusters but with very low abundances. This 
source is not well suited for the formation of large metallic clusters 
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because the process of atom aggregation leaves the cluster in an excited 
state and the metal vapor must act also as a heat bath to cool the clusters. 

2.4.1 Kinetics of coagulation 
When atoms begin to condense, the cluster growth first proceeds by 
successive addition of monomers, and when the supply of these 
decreases, fusion of larger clusters increasingly contributes. These two 
processes are characterized by typical size distributions. Nucleation 
theory predicts exponentially decreasing size distributions in the first 
case. On the other hand, growth of particles by coalescence leads to a 
Gaussian distribution for the logarithm of the size. Although both 
behaviors had been seen earlier, the transition from monomer addition to 
coagulation was only clearly demonstrated after the experimental work 
of Soler et al. [16] for the formation of CO2 clusters. Working at a 
temperature T = 225 K, an exponential intensity decrease was observed 
up to pressures of 700 mbar. The abundance distributions then became 
gradually peaked with increasing pressure, and for Po higher than 2000 
mbar, small clusters were absent. These experimental results were 
explained by a model that allows the size distribution to be fitted as a 
function of a single parameter which measures the degree of 
condensation. If evaporation processes are neglected, the kinetic 
equations for the concentration (per unit volume) of clusters of size k can 
be written [ 161 

(2 .5)  

The first term on the right hand side is the rate at which clusters of size k 
are formed by coagulation and the second is the rate at which these are 
lost by growth to larger sizes. Assuming thermal velocities for all the k- 
mers, the rate coefficients are 

(2.66)    )
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where T is the temperature, k~ is the Boltzmann constant and m is the 
mass (equal) of all monomers. A crucial feature is that Clj >> C, for 
i>>1. This means that monomer addition dominates the kinetics of the 
early stages of growth because of the fast thermal monomer motion. The 
cross section C T ~  = sl,cr,; is the product of a geometrical cross section 

CT; proportional to (i1'3 + j 1 /3 )2  and a sticking coefficient If the 

classical limit A, = 1 is assumed, then the kinetic equations can be 
integrated numerically. The solutions are specified by a parameter z 
related to a kinetically weighted average of T'12p, where p is the density 
of the gas. The result is that z determines the average cluster size, and 
( n k )  increases for increasing z, a prediction in agreement with 

experiment. 

2.4.2 Seeded nozzle sources 
In a seeded nozzle source [14], an inert carrier gas is mixed with a low 
concentration of the seed, for instance the alkali metal vapor (typical 
mixing ratios are 1-10 %), and the mixture is ejected through the nozzle. 
When the seed condenses, clusters are formed in the expansion. This 
process differs from the pure vapor expansion in that the carrier gas 
serves as a heat bath for the seed. The fact that the carrier is an inert gas 
guarantees that it does not react with the seed. When the vapor pressure 
is high enough, collisions between seed and seed facilitate establishing 
equilibrium among the cluster species in the nozzle channel. The carrier 
gas mediates the equilibration and absorbs most of the heat of 
condensation, which is transformed into translational kinetic energy of 
the beam. Although the seeded source is a simple and reliable method of 
producing small and medium size clusters, its operation requires rather 
high vapor pressures, and hence it is not suitable for metals with high 
boiling points. 

2.4.3 Gas aggregation sources 
In a nozzle source the metal vapor exists in a supersaturated state for 
only a short time, and large clusters do not form abundantly. The 
corresponding times in gas aggregation sources are longer and large 
clusters form easily. In a gas aggregation source the metal vapor from 
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the oven enters a condensation chamber, where it mixes with a stream of 
inert gas at pressures about 1 Torr and temperatures below 100 IS. 
Cluster growth continues in the condensation chamber until the mixture 
of gas and clusters is discharged through an orifice into a sourrounding 
vacuum chamber. The distribution of cluster sizes is controlled by the 
temperatures of the oven and condensation chamber and by the gas flow 
rate. The parameters can be adjusted to produce clusters up to sizes of 
105 atoms. 

2.4.4 Laser vaporization 
This method was developed in the groups of Smalley [ 171 and Bondybey 
[18]. This technique can produce aggregates with up to 100 atoms or 
more of any substance which exists in the solid state, even the most 
refractory metals. A pulsed laser beam hits a metallic rod or disk placed 
in a tube. The laser pulse evaporates atoms producing an extremely hot 
plasma. This vapor is cooled by a stream of inert gas flowing through the 
tube and condensation of the vapor produces clusters of different sizes. 
The flowing current carries the clusters to a vacuum chamber where the 
pressure difference induces a supersonic expansion of the beam. 
Collisions ocurring during the expansion cool the aggregates down to a 
Iow temperature. Both neutral and ionized clusters are obtained. 

2.4.5 Clusters in helium droplets 
In these experiments [19] a beam of helium clusters is first produced in a 
supersonic expansion and then reacted with a secondary beam of atoms 
(Ar, Kr, Xe) or molecules (H20, SF6). Large liquid 4He droplets (N > 
1000 atoms) capture up to 30 foreing particles (atoms or molecules) 
successively, and the foreing particles appear to coagulate to form 
clusters on the He droplets or inside. 

2.5 Mass Analysis 

When clusters are produced by any of the methods presented above, a 
distribution of sizes is obtained, that is, clusters with different numbers 
of atoms are generated in the same experiment. The first task of the 
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experimentalist is then to analyze the size distributions. This is done with 
the help of a mass spectrometer. But before entering the mass 
spectrometer, a laser or an electron beam are used to ionize the clusters. 
Some of the production techniques described above already produce 
ionized clusters. 

In a Time-of-Flight (TOF) spectrometer, a voltage V accelerates all 
singly charged cluster ions (q = +1) into the same kinetic energy qV = 
mv2/2. Clusters then acquire a mass dependent velocity v = ( 2 q V / ~ ) ”
and clusters of different sizes, that is of different masses m, can be 
distinguished by the different flight times 9 required to reach a detector 
placed at a distance L 

L 112 

t f v  = - = .( $) 
Since the fight time is proportional to m1I2, the heavier clusters reach the 
detector later than the lighter ones. 

Cluster growth in the supersaturated vapor occurs by sequential 
aggregation of atoms that collide with the clusters. Most colliding atoms 
are just scattered, and only a small part of those atoms stick to the 
cluster. This part of the process gives rise to a smooth population 
distribution. That is, the function p( N )  giving the abundance of clusters 
with N atoms, varies. smoothly with N. But the process of atom 
attachment to the clusters (condensation) is an exothermic process, and 
the clusters become vibrationally hot as they grow. One of the roles of 
the inert gas carrier mixed with the seed is, in fact, to help in the cooling 
of the growing clusters, but this cooling is only partially efficient. Then, 
after becoming sufficiently hot, the clusters cool down by evaporating 
atoms. This is a very efficient mechanism. For example, in NaN clusters 
initially at a temperature of 600 K, the evaporation of a single atom from 
a cluster with N about 50 cools the cluster by nearly 80 K; for a larger 
cluster, with N about 200, the corresponding temperature drop is smaller, 
only about 20 K. The difference is due to the lower heat capacity of the 
smaller clusters. The activation energy required to evaporate a single 
atom from a cluster X N  (X indicates a generic chemical element) through 
the process 

(2.7)        &)
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x, +X,q +x (2.8) 

that is, 

is usually a very sensitive function of N. In this equation E(XN-,) and 
E(XN) indicate the energies of the clusters with N-1 and N atoms, 
respectively, and E(X) is the energy of the free atom. Consequently, very 
stable clusters with large Evup evaporate atoms at a slower rate than less 
stable clusters, and this effect becomes reflected in the abundance mass 
spectrum, that gets a lot of non trivial structure. Mild differences in 
evaporation energies can lead to large differences in cluster abundance. 
Roughly speaking, very stable clusters will be characterized by large 
populations in the beam. A simple method has been devised to calculate 
the cluster population distributions in the beam under conditions of 
thermodynamic equilibrium [ 141. The equilibrium distributions are 
calculated by examining all the possible reactions of the form 

x, +x, +*.*+x, *x, +x, +x,. (2.J 0 j 

The method uses the mass-action law and a simple model for the 
partition functions fN of the N-atom clusters. Although the model is 
specifically aimed to describe metallic clusters, the assumptions have 
more general validity. The result for the relation between the densities 
p( N) of clusters of neighboring sizes is 

where the quantity 

(2.1 1) 

(2.9) ()

(2.12)12) )
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measures the relative energy of a cluster of N atoms compared to clusters 
with N+l and N-1 atoms. If the variations in the detection efficiency with 
cluster size are small, densities p( N )  can be replaced by intensities I(N). 
Relating A 2  (N) to the evaporation energies, Eq. (2.1 1) can be written in 
an alternative way 

This relation indicates that an enhancement of the population of clusters 
of size N is expected if there is a substantial drop in stability between X N  
and X N + I .  This concept is important to explain the abundance variations 
for types of clusters displaying atomic or electronic shell structure, a 
topic that will be treated in full detail in other chapters. 

The relation between abundances and binding energies has been 
studied by Hansen and Naher [20, 211 for the case of a purely 
evaporative ensemble using an statistical decay theory. Specifically, the 
following problem was analyzed: given a collection of free, hot clusters 
with a smooth and broad initial abundance distribution, what is the 
resulting abundance distribution at a later time if the evaporation 
energies vary with cluster size? The first result is that the rate constants 
for monomer evaporation can be expressed as 

2 1 3  -D,IT kN=cuN e (2.14) 

where w is a vibrational frequency, N2I3 accounts for the fact that the 
atoms evaporate from the surface, and DN is the activation energy, that 
can be identified with the evaporation energy. Then one obtains for the 
abundances 

(2.15) 

Here ADN = DN+, - DN is essentially the difference of evaporation 
energies, Cv is the heat capacity and B = N2I3tw, with t representing a 
typical inverse cooling time (the inverse of the rate constant). This result 

(2.13) 3)



18 Structure and Properties of Atomic Clusters 

is valid for small clusters, and also for large clusters under certain 
circumstances. The prefactor of the difference term is quite large, and for 
clusters displaying shell structure the second term often dominates the 
variations of the first one by a large factor. Under appropriate 
experimental conditions abundances reflect evaporation rates in an 
unambiguous way. Hence, variations in abundance will reflect variations 
in activation energy with cluster size. 

Consequently the study of the structure of the mass spectrum can be 
a usehl tool to get information on the local variations of cluster stability 
as a function of N .  The study of these effects will be the subject of other 
sections in this book. Also, a cluster beam can be intentionally warmed 
up by crossing the cluster beam with laser radiation, in order to enhance 
the population differences arising from the dependence of cluster 
stability with N .  In experiments for clusters of hllerene molecules (C60)N 
Hansen et al. [22] have found that the small difference of about 20% in 
the activation energies for evaporation of c 6 0  molecules from (c60)13 and 
clusters of nearby sizes (((&)I4 ...) is enough to induce a much higher 
abundance of (c60)13 as compared to the others in a laser heated cluster 
beam. These workers have suggested that the laser heating of cluster 
beams could provide a method to routinely produce macroscopic 
amounts of large, stable mass-selected clusters for nanoscale 
applications. 
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3. Van der Waals Clusters 

3.1 Structure of Van der Waals Clusters 

The mass spectrum of xenon clusters (Xe,) obtained by Echt, Sattler and 
Recknagel [ l ]  is given in Fig. 3.1. It is apparent that the abundance 
varies in a rather peculiar way as a function of size N, and this behavior 
is the same each time the experiment is repeated. The abundance is not at 
all a monotonic function of size. Certain particular sizes are formed with 
high abundance, while the sizes following those abundant ones are, 
instead, especially rare. Main breaks at sizes N = 13, 55 and 147 are 
particularly noticeable. These, so called magic numbers, are elements of 
a series 

n 

N = l + ~ 1 0 p 2 + 2  
p=l 

with n = 1, 2 and 3, respectively. Further elements in the series are N = 

309, 561 and 923, corresponding to n = 4, 5 and 6. This series describes 
the packing of spheres in a family of closed icosahedral arrangements, 
named after Mackay [2], and n gives the number of concentric atomic 
layers in the icosahedron. An icosahedron has 12 fivefold symmetry 
axes. It also has 20 triangular faces and each of these can be constructed 
with close-packed spheres. Atoms in the interior of the icosahedon are 
12-fold coordinated, just as in a close-packed lattice. Figure 3.2 shows 
the first five perfect Mackay icosahedra (n  = 1-5 layers). In subsequent 
experiments [3] the same group was able to show that main abundance 
breaks also occurred in the mass spectra of rare gas clusters at the magic 
numbers 309, 561 and 923. That coincidence between the experimental 
magic numbers and those from the series (3.1) is not accidental. Indeed, 

21 

(3.1)           . 11)
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diffraction experiments show that the diffraction patterns from argon 
clusters coming from a nozzle source agreed with an icosahedral packing 
for a broad size range [4]. Experiments for clusers of small molecules 
interacting by Van der Waals forces (CO, C&) show the same set of 
magic numbers [3]. CO and C& are molecules with closed electronic 
shells, which leads to a low anisotropy of their intermolecular interaction 
potentials. 

Figure 3.1. Concentration profile of xenon clusters produced by adiabatic 
expansion and ionized by an electron beam. Reproduced from 0. Echt, K. 

Sattler and E. Rechnagel, Phys. Rev. Lett. 47, 1121 (1981) with permission of 
the American Physical Society. 

According to the arguments in Section 2.5, the observed main breaks 
are due to the special stability of the clusters with 13, 55, 147 ... atoms. 
The enhanced stability of Van der Waals clusters with the structure of 
complete icosahedra is substantiated by theoretical calculations [ 5 ,  61. 
The interatomic interactions between inert gas atoms can be extremely 
well described by a simple central pair potential having a steep repulsive 
short-range wall, arising from the strong overlap repulsion between the 
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closed electronic shells when the atoms approach each other too closely, 
and a weakly attractive long-range term due to the attractive dispersion 
forces. This type of interatomic interaction leads to compact, high 
density structures. A Lennard-Jones (LJ) potential 

with parameters E and o fitted to gas phase data (see Table 3.1) 
describes well the interaction between inert gas atoms as a function of 
their distance r. The average binding energy per atom, Eb, of icosahedral 
clusters calculated with the Lennard-Jones potential shows local maxima 
(defining Eb > 0) for sizes N corresponding to icosahedra with filled 
shells [ 6 ] .  Those maxima are appreciated most clearly in the calculated 
evaporation energies. Molecular dynamics simulations of the evaporation 
of atoms from argon clusters confirm these ideas [7 ] :  at a given 
temperature, the magic cluster ATl3 evaporates less than clusters of 
neighboring sizes. 

Table 3.1. Lennard-Jones parameters for rare gas interactions. 

o ( A >  & / k B ( K )  

Ne-Ne 2.75 35.60 
Ar-Ar 3.40 120.0 
KI-Kr 3.83 164.0 
Xe-Xe 4.10 222.3 

The mass spectra of Ar, Kr, Xe, CO and CH4 clusters exhibit 
additional intensity anomalies between icosahedral shell closures [ 3 ] .  
Those anomalies, maxima or breaks in the abundance, are not defined as 
precisely as the main magic numbers, but are nevertheless common to all 
the Van der Waals materials listed above. Two of those anolamies, the 
abundance maxima at N = 19 and N = 23, can be seen in the mass 
spectrum of Xe clusters in Fig. 3.1,  and a complete list is given in Table 

(3.2)
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3.2. Those effects have been interpreted as steps towards the completion 
of a full shell, that is, as subshell closures of a partially decorated 
icosahedral shell [3]. The intensity maximum at N = 19, for instance, 
results from capping the N = 13 cluster with a pentagonal pyramid 
formed by six atoms. The resulting structure is often called a double 
icosahedron. 

Figure 3.2. Mackay icosahedra with increasing number of layers. The number of 
spheres in each cluster is 13, 55, 147,309 and 561, respectively. 

The full set of secondary magic numbers can be interpreted by 
assuming a particular model for the decoration of the underlying 
icosahedral core. A perfect icosahedron is formed by 20 triangular faces 
joined by 30 edges and 12 vertices. The smallest perfect icosahedral 
cluster (n  = 1) can be labelled Icol3. In this cluster, one atom occupies 
the central position and the other 12 atoms occupy the 12 vertices. 
Atoms can be added on top of this icosahedral core in two different 
ways, illustrated on the upper panel of Fig. 3.3. In a first type of 
decoration, atoms cover sites at the center of the triangular faces (F sites) 
and vertex sites (V sites, mono-coordinated to Ico13). Those F and V 
sites provide a total of 32 sites (20 + 12) to cover Icol3, and this 
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coverage produces a cluster with 45 atoms. This type of decoration will 
be denoted FC (face centered), as it emphasizes the coverage of the faces 
of the icosahedron. Alternatively, atoms can be added decorating edges 
(E sites, having coordination two with the atoms of the underlying 
Icol3) and vertices (V). Those provide a total of 42 sites (30 + 12) to 
cover Icol3, and completion of this layer leads to the next Mackay 
icosahedron, Ico55. These are called multilayer icosahedral (or MIC) 
structures. 

Figure 3.3. MIC and FC coverings of Icol3 and Ico55 icosahedral clusters. V, E 
and F sites indicate Vertex, Edge and Face sites, respectively. The upper panel 

shows the formation of FC and MIC caps. 

Starting now with Ico55, the FC covering can be generalized, by 
decorating the 12 vertex sites and covering the three pockets on each 
face with three atoms (sites F1, F2 and F3 in Fig. 3.3). This leads to a 
shell formed by 72 atoms (12 + 60), and then to a cluster with 127 atoms 
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(55 + 72). Instead, MIC decoration leads the next multilayered Mackay 
icosahedron, Ico147. This is obtained by covering the 12 vertex sites, 
placing two atoms on top of each edge (sites E l  and E2 in Fig. 3.3,  
giving a total of 60 E-type atoms), and one atom above the center of each 
of the 20 faces. The MIC covering corresponds to the series of Eq. (3.1). 

Table 3.2. Predicted and experimentally observed subshell closures of inert gas 
clusters with p complete icosahedral shells, plus an incomplete outermost layer. 
Observed magic numbers are given with respect to the predicted values, i e . ,  0 
means full agreement. Weak anomalies are bracketed. Data collected from [3]. 

p= 1 p= 1 p=2 p=2 
Predicted Exp. Predicted Exp. 

13 0 55 0 
19 
23 
26 
39 
43 
46 
49 
55 

0 
0 
0 

0 
0 
0 
0 

(0) 

71 
81 
88 
92 
101 
110 
116 
125 
131 
137 
147 

0 
0 
-1 
-1 
0 
-1 
0 
-1 
0 
-1 
0 

In the ideal MIC covering, there are two first neighbor distances of 
1.0 and 1.05 (short bonds), in units of the radius of the Icol3, and a 
second neighbor distance of 1.45. The distance 1.0 corresponds to first 
neighbors on different shells, and the distance 1.05 to first neighbors on 
the same shell. For ideal FC covering, there are more bond lengths of 
value 1.0 than in MIC, but some of the bond lengths of magnitude 1.05 
are replaced by larger ones with values 1.13 and 1.21 (the density of 
surface atoms for FC covering is lower). Consequently, FC growth 
becomes favorable at the begining of a shell up to a point when the MIC 
growth becomes preferred. This occurs because the atoms added give 
rise to more short bonds in the FC mode, as compared to the MIC mode, 
in the initial stages of covering, but the opposite occurs beyond a certain 
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size. The crossing point depends on the fine details of the interatomic 
interactions, so different materials have different crossing points [8, 91. 

Assuming that decoration of Icol3 begins with FC covering, the first 
six atoms added form a cap (or umbrella) as in the upper right panel of 
Fig. 3.3, giving rise to the double icosahedron structure for N = 19, with 
two inner atoms and 17 surface atoms. By decorating the surface with 
four additional atoms in appropriate positions, an adjacent FC umbrella 
is completed for N = 23. Those two umbrellas share two common faces, 
and this structure can be viewed as three interpenetrating double 
icosahedra. A third adjacent umbrella is completed for N = 26. If we 
consider the two pairs formed by those three umbrellas, each pair of 
umbrellas shares two faces. The structure for N = 23 can be viewed as 
composed of five interpenetrated double icosahedra. In this way, 
completion of FC umbrellas gives special stability for clusters with N = 

19, 23, 26, 29, 32, ... However, the strain accumulated by completing 
more and more umbrellas makes the FC structures eventually less stable 
compared to MIC covering, and a transition from FC to MIC structure is 
likely to occur around N = 27-28. For this, a complete reordering of 
atoms in the incomplete outer layer has to occur, since the FC and MIC 
lattices are mutually exclusive. Then, N = 28 contains three complete 
adjacent MIC umbrellas, and new MIC umbrellas are completed for N = 

32, 36, 39,43,46 and 49, until the shell is closed at Ico55. Again clusters 
become very stable with the filling of each new MIC umbrella. All the 
studies indicate that the FC and MIC decorations are competitive in a 
transition region, say N = 27-33, until the MIC decoration dominates 
with a further increase of N. The gain in stability by filling umbrellas 
(both of FC or MIC types) is explained by a particular enhancement in 
the number of bonds at the umbrella closing [lo]. The model presented 
here for the growth of clusters on inert gases finds full support from 
calculations using interatomic Lennard-Jones potentials [ 1 1, 121. The 
experimental features listed in Table 3.2 are in agreement with this 
model. The subshell closings at N = 13, 19, 23, 26 , and then at N = 39, 
43, 46, 49, have been seen in the experiments. The former subset is 
explained by FC decoration, and the later one by MIC covering. Also, 
the lack of magic numbers in the intermediate region is explained by the 
competition between the two decorations. 

Starting with the Ico55, the first FC umbrella of the third layer is 
completed by adding 16 atoms, that is at N = 71, and two additional 
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adjacent umbrellas at N = 81 and N = 88. Again those umbrellas share 
triangular faces. On the other hand MIC umbrellas form at N = 71, 83, 
92, 101, 110, 116, 125, 131 and 137, and the Mackay icosahedron is 
completed for N = 147. The FC fillings at N = 71, 81 and 88, as well as 
the MIC fillings at N =  92, 101, 110, 116, 125, 131, 137 and 147 have 
been observed (see Table 3.2). Calculations [13] indicate that the two 
decorations are competitive in the region N = 77-85, that agrees with the 
observed transition region. Other small features are observed at N = 95, 
104 and 1 19, and the stability of these three clusters can be explained by 
analyzing in detail the increase in the number of bonds as the cluster 
grows in the MIC mode [14]. The success of this interpretation extends 
to other shells, but the experimental subshell closing numbers are less 
sharply defined [3]. 

Magic Van der Waals clusters are characterized by a particularly 
stable structure. But there is also a less obvious property that makes 
those clusters special. A detailed investigation of the enormous amount 
of isomeric structures above the ground state for Lennard-Jones clusters 
with N between 25 and 60, shows that the magic clusters N = 26, 29, 32, 
36, 39, 43, 46, 49 and 55 have large energy gaps between their absolute 
energy minimum and their next low lying energy configuration, 
compared to their neighbor clusters [ l  11. This property is relevant to 
explain the thermal properties (see Section 3.3 ). 

In summary, growth of Van der Waals clusters by the packing of 
spheres occurs in stages; each stage terminates with the completion of a 
Mackay icosahedron. The five-fold symmetric icosahedra with layers 
arranged like onion skins around a central atom are not found in crystals. 
Regular macroscopic crystals do not have a shell structure around a 
central atom. The atoms in a crystal are, instead, packed as bricks in a 
three-dimensional periodic lattice (although the so called metallic 
quasicrystals have quasi-periodicity consistent with a local icosahedral 
structure [ 151). 

3.2 Transition to the Bulk 

The embrionic growth of rare gas clusters appears to continue beyond 
100 atoms with no sign of transforming to their regular, translationally 
invariant, macroscopic crystal structure. But, evidently, at some point 
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this transition should occur. Experiments suggest that the transition to 
the fcc (face centered cubic) crystal structure of the bulk rare gas solids 
occurs for cluster sizes of a few thousand atoms [4]. The reason is that 
hard spheres cannot really be packed into the icosahedral structure such 
that adjacent spheres are touching each other. The spheres have to be 
soft. Then the packing becomes possible, but the spheres in the inner part 
of the cluster will be closer to each other than the spheres in the outer 
layers. As a result, internal strain is stored in the cluster as it grows, and 
at some stage it becomes favorable to release the strain by a 
rearrangement of the atoms leading to the structure of the macroscopic 
crystal. In fact, with a small concerted displacement of the atoms it is 
possible to transform an icosahedron into a cuboctahedron, which is a 
polyhedron with triangular and square faces that can be cut from thefcc 
lattice. Molecular dynamics simulations have been performed for 
clusters composed of particles interacting via Lennard-Jones potentials 
[6]. The static energies of clusters with an underlying fcc structure and 
varying surface structures were compared with those having icosahedral 
structures, and the icosahedral family was found to have the lowest static 
energies for sizes up to a few thousand atoms. That work also 
demonstrated that the critical cluster size where the energy of the fcc 
clusters becomes lower than that of icosahedral clusters is not easily 
determined, because the energy of the fcc clusters is sensitive to the 
surface structure and this is difficult to determine for such large clusters. 
Smirnov et al. [ 161 have considered the same problem using Morse pair 
potentials 

where r, is the equilibrium distance between atoms in the diatomic 
molecule and D is the dissociation energy. The value of a was used as an 
adjustable range parameter to change the relation between the short- 
range and long-range parts of the interaction potential. It was found that 
a determines the critical cluster size N,, at which the transition from 
icosahedral tofcc structure occurs: N,, decreases as a increases, that is, 
as the repulsive part of the potential becomes harder. A value a re = 6 
makes the Morse potential similar to the Lennard-Jones potential, and 
for this case it predicts that N,, is larger that one thousand atoms, in 
agreement with works using the Lennard-Jones potential [6, 131. 

(3.3)
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Decahedral clusters form a family that can be competitive with the 
icosahedral one in the transition to the bulk. To understand the structure 
of decahedral clusters one may first notice that an icosahedron can be 
viewed as formed by 20 distorted tetrahedral units all meeting at the 
cluster center. Each tetrahedron shares three of its faces with neighbor 
units, and the last face is one of the external surface facets of the 
icosahedron. The crystallographic arrangement of atoms in each (1 1 1)- 
like face of the tetrahedron is fcc, and the plane of atoms that two 
neighboring tetrahedra share is a twinning plane; that is, the stacking 
sequence in the direction normal to this plane is mirrored in it. However, 
20 perfect tetrahedra cannot be assembled together to make an 
icosahedron, because if the surface vertices of neighboring units are 
aligned the units will overlap at the center of the icosahedron. To solve 
this problem, the tetrahedral units must be strained to make the three 
sides meeting at the central vertex about 5% shorter than the other three 
sides laying on the surface. Turning now to a classic decahedron, with 
the form of a pentagonal bipyramid, this is formed by five slightly 
distorted tetrahedral units joined at a common edge. Each unit shares two 
of its (111) faces as twinning planes with neighboring units and 
contributes the other two (1 11) faces to the surface of the decahedron. 
The ten faces of the classical decahedron are equilateral triangles. The 
strain energy in the decahedron is lower compared to the icosahedron. 
However, the decahedron is less spherical, so it results in a larger surface 
area and higher surface energy. Truncation of the five vertices in the 
mid-plane of the bipyramid exposes five rectangular (100)-like facets, 
making the structure more spherical [ 171. Additional truncations which 
create (1 1 1)-like reentrant facets stabilise further the decahedral structure 
[ 181. Calculations [ 191 for Lennard-Jones clusters predict a transition 
from icosahedral to decahedral structures at about N = 1700. Decahedral 
clusters with 35000 atoms are still more stable than crystalline fcc 
clusters. Fitting the binding energies of decahedral and fcc clusters to 
functions of N1’3 and extrapolation to very large sizes predicts that the 
decahedral + fcc transition occurs at about N = 200000. 

As indicated at the begining of Section 2.5, to discriminate the sizes 
of the different clusters present in the molecular beam it is necessary to 
ionize the c!usters when they enter the time-of-flight section of the mass 
spectrometer. But in clusters bound by weak Van der Waals forces the 
ionization process may induce evaporation of atoms. The arguments 
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discussed in that section indicate that such evaporative cooling would 
hrther enhance the population of magic clusters over neighboring sizes. 
The same effect may explain some curious anolamies sometimes 
observed in the measured intensities. It has been suggested [20] that 
about 1 ps after ionization the charge localizes in these clusters, leading 
to the formation of a dimer ion like Arg on the cluster surface, with a 
contracted interatomic separation with respect to that in neutral Ar2. The 
contraction, expressed by the ratio between the bond length d' of the 
ionized dimer and that of the neutral, is estimated as d' ld = 0.66 for Ar2 
and 0.75 for Xe2 [21]. Then the Ar: dimer occupies a volume not much 
larger than that of a neutral atom, and the structure of the cluster h 1 4 +  

may become similar to that of a neutral I3-atom icosahedral cluster, with 
perhaps a slight distortion. This may explain the observation in some 
experiments [3] of intensity peaks at Nel4 and Ne56 (instead of the usual 
Ne13 and Ne55), at ArI4 and Ar148 (instead of ATl3 and Ar147), and at 
(CH4)14 (instead of (CH4)13); that is, peaks shifted by one unit with 
respect to the usual magic numbers. 

3.3 Thermal Properties 

3.3.1 Solid to solid transitions 
A few small LJ clusters break the rule by having nonicosahedral lowest 
energy structures at T = 0 K. For N < 150 there are only eight such cases 
[22]: the global minimum is fcc for N = 38, decahedral for N = 75-77, 
102-104, and it has an unusual tetrahedral structure for N = 98. At those 
sizes the nonicosahedral morphologies have optimum shapes, whereas 
the icosahedral structures have an incomplete outer layer. But above 0 K 
the most stable structure is the one with the lowest free energy, and 
entropic effects make a contribution. Doye and Calvo [19] have 
predicted that entropic effects give rise to a solid to solid transition from 
the nonicosahedral to the icosahedral structure for all those clusters. The 
solid to solid transition temperature T,, occurs when the partition 
fimctions of the two competing structural types are equal, that is, Z, = 
ZB. In the harmonic approximation this gives 
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i c A  V i  

where p = 1/ kBT. The sums are restricted to the subsets of minima of 
types A or B in the potential energy surface, E; is the potential energy of 
minimum i, 7; is the geometric mean vibrational frequency, and nj is the 
number of permutational isomers of structure i. One contribution to the 
entropy arises from the number of energy minima of that type. This 
favors the icosahedra for the eight clusters considered, because there are 
many low energy icosahedral minima, corresponding to different 
arrangements of the atoms in the incomplete outer layer. Another 
contribution comes from the symmetry of the cluster. For the cases N = 

38, 75 ,  98, this again favors the icosahedral structures because the 
nonicosahedral global minimum has high symmetry. Finally, the 
vibrational entropy always favors the icosahedra for any size because 
these have a lower mean vibrational frequency. The predicted transition 
temperatures are given in Table 3.3, in units of E k i '  ( E is the parameter 
of the Lennard-Jones potential (3.2)). The transition temperature 
decreases rapidly with cluster size, which reflects the increasing 
dominance of the vibrational entropy. Ts, is equal to 0 . 1 2 1 ~ k i l  for N = 

38 and equal to 0 . 0 0 7 ~ k i '  for N = 104. For comparison we notice that 
melting temperatures have values around 0.3 E k i '  for those clusters 
(melting will be discussed in the next section). The use of Eq. (3.4) is not 
practical for very large clusters. By assuming that all the minima 
associated to a given morphology have the same energy EA(EB) and the 
same vibrational frequency FA(.,) ,  and that the number on minima is 
approximately the same for both subsets, the simple formula 

was derived [19], where AE=EA-EB . Predictions with this simpler 
formula are also given in Table 3.3 and the results improve as N 
increases. 

(3.4)

(3.5)
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Table 3.3. Estimates of the transition temperature T, (in units of zkg-') to the 
icosahedral structure for Lennard-Jones clusters with nonicosahedral ground 

state. Data collected from [19]. 

N Tss T S S  

Eq. (3.4) Eq. (3.5) 
38 0.121 0.316 
75 0.082 0.119 
76 0.046 0.053 
77 0.048 0.057 
98 0.004 0.006 
102 0.013 0.014 
103 0.016 0.018 
104 0.007 0.008 

Temperature also affects the predictions made in Section 3.2 for the 
icosahedral + decahedral + fcc transitions. The entropic effect favors 
the stability of LJ icosahedral clusters against decahedral ones, moving 
the phase boundary to larger N with increasing temperature. In an 
analogous way, temperature shifts the decahedral +fee transition even 
higher. 

3.3.2 Melting transition 
When a macroscopic solid material is heated slowly, the atoms first 
begin to vibrate around their equilibrium positions. In this regime, the 
internal energy of the system is a nearly linear function E(T) of the 
temperature. At some point the solid undergoes a first order phase 
transition and melts. This occurs at the melting temperature T,. At this 
temperature the internal energy experiences an abrupt jump. Its 
magnitude is the latent heat of fusion, which is the energy required to 
destroy the lattice of the crystal. The bulk heat capacity, which is defined 
as the partial derivative C(T)= dE l d T ,  is therefore only weakly 
temperature dependent, save for a delta function at T,,,. The case of small 
clusters is different. These do not have a sharp phase transition. Instead, 
melting occurs over a finite interval of temperatures, although the width 
of the interval becomes smaller as the cluster increases in size. A feature 
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that adds interest is that neither the width of the interval, nor its location 
are smooth functions of N. 

Understanding the melting transition of inert gas clusters has been 
possible mainly through the work of theorists, employing computer 
simulation techniques: molecular dynamics (MD) and Monte Carlo 
(MC) simulations. Cluster behavior in the phase-change region is 
complex: solid-like and liquid-like isomers dynamically coexist for some 
clusters [23], whose structure fluctuates back and forth between 
relatively long lived solid-like and liquid-like states, while other clusters 
show a smooth progression of isomerizations occurring through that 
region [24]. 

Several indicators can be used to elucidate cluster melting from the 
analysis of the results of computer simulations. Although a single 
indicator is sometimes enough, a proper characterization of melting is in 
general only possible by the combined use of several indicators. The first 
one is the equation of state of the cluster, also called caloric curve, which 
gives the thermal response to an increase in energy, i.e., the cluster 
temperature T as a function of the total energy. The total energy in a MD 
simulation is given as a sum of kinetic and potential energies 

where the symbol < > indicates the time average of the instantaneous 
values of the bracketed quantity over an entire simulation trajectory. For 
a given total energy, the cluster temperature is defined in MD 
simulations by the expression 

2 
(3N - 6)kB T =  (‘kin ) (3.7) 

That is, the time average (Ekin)  of the instantaneous kinetic energy of 
the cluster per degree of freedom equals half of the thermal energy, 
given by kBT. 

The simulations show that the clusters behave as a solid at low 
temperatures, with the atoms performing oscillations around their 
equilibrium positions without changing the overal shape of the cluster. 
The low temperature behavior is quasi-harmonic, and the temperature 

(3.6)
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increases linearly with increasing total energy at the rate given by the 
equipartition theorem. As the temperature is increased further, the caloric 
curve starts deviating from the harmonic limit. This indicates that the 
contribution from the anharmonic part of the potential is already 
significant. The cluster then reaches a transition region where the slope 
of the curve flattens; that is, a significant increase of the energy results in 
only a small (although higher that zero) increase in the temperature. This 
region corresponds to the melting transition. At the end of the transition 
region the slope of the caloric curve increases again in the liquid-like 
region. 

Figure 3.4. Caloric curve of ATl3 obtained by Monte Carlo simulations. Open 
circles are used outside the coexistence region, and dark symbols in the coexis- 
tence region. Triangles represent points calculated separately over each phase 
inside the two phase region and dark circles represent an average over coexist- 

ing forms. Adapted from H. L. Davis, J. Jellinek, and R. s. Berry, J. Chem. 
Phys. 86, 6456 (1987) with permission of the American Institute of Physics. 

Figure 3.4 shows the region of the caloric curve of A r 1 3  
corresponding to the phase change [25]. The interactions were 
represented by LJ potentials, and the potential energies, for temperature 
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T, were obtained from MC simulations. In this case ( U )  is the ensemble 
average of the potential energy over an entire MC simulation. To those 
energies a kinetic energy was added in the spirit of Eq. (3.6). The cluster 
exhibits sharp but unequal freezing and melting temperatures, and T, 
respectively. Tj is the lower bound of the stability of the liquid phase and 
T, is the upper bound of the stability of the solid form. In the transition 
region the potential energy and the total energy are two-valued functions 
of T. The temperatures Tj and T, define a finite coexistence region (26- 
37 K) where two stable forms of the cluster, one solid-like and one 
liquid-like, exist in stable equilibrium. The calculated points in this 
region are characterized in Fig. 3.4 by the dark symbols: the triangles 
correspond to points calculated separately over each phase, and the 
circles represent a combined average over coexisting forms. The 
dynamical coexistence is easily demonstrated using constant energy or 
constant temperature MD simulations. For constant-T simulations, 
averages of the potential energy over short time periods (times 
corresponding to a few breathing periods) can be obtained. When those 
short time averages ( U )  are plotted as a function of time, they separate 

into two bands corresponding to the solid-like and liquid-like forms. The 
simulation shows that the system frequently exchanges from one band to 
the other, although stays in a given form for times large compared with 
typical vibrational frequencies [25]. A similar way of separation is 
obtained by calculating a distribution for those short time averages of the 
potential energy. Outside the coexistence region the distribution presents 
a single peak, but for temperatures in the coexistence region the 
distribution is bimodal. Although the dynamical coexistence behavior is 
not a general feature, the MD simulations have shown that it occurs also 
for many other small inert gas clusters, especially for the magic number 
sizes [23,25]. An energy gap between a lowest energy structure, or more 
generally a band of low energy states, and another band of high energy 
states, as it occurs for the magic clusters, is considered to be necessary 
for dynamical solid-liquid coexistence [26,27]. 

The changes in slope of the caloric curve become reflected on the 
specific heat 

sa 

1 dE c =-- 
N ~ T ’  

(3.
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In MD simulations this can be calculated as 

(3.9) 

This magnitude is related to the fluctuations in the kinetic energy; it has 
peaks associated to the slope changes in the caloric curve. At low 
temperatures and for all cluster sizes, Cv goes to the classical (harmonic) 
limit Cv = kB. Plotted as a function of temperature, Cv for ArI3 begins to 
increase steeply near 26 K and has a broad peak centered at 35 K [25]. 
At this temperature Cv reaches a value five times its value at low 
temperature. The features of the peak (width and position of the 
maximum) are consistent with the position and shape of the coexistence 
region in the caloric curve. 

 

Figure 3.5. Heat capacity per particle as a function of temperature for A r 3 3  
and Ar55, obtained from Monte Carlo simulations. Solid and dotted lines are 

results from simulations with different sampling. The large ticks on the 
temperature axis indicate the temperatures where the r.m.s. bond length 

fluctuations rise sharply in MC simulations with walks of 107 and 108 passes 
per temperature. Adapted from D. D. Frantz, J.  Chern. Phys. 115,6136 (2001) 

with permission of the American Institute of Physics. 

A
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Franz [ 1 1, 121 has performed a systematic study for argon clusters 
with sizes up to N = 60 using Monte Carlo methods. The interactions 
were simulated by LJ potentials. In this case, instead of using Eq. (3.9), 
Cv is calculated from the alternative expression 

3(N - 6)k,  (u’) - (u)’ c, = + 
2 T 2  

(3.10) 

The CV curves change nonmonotonically with cluster size. For N =  4, 5 
and 8, Cv rises slowly with T until the clusters reach the dissociation 
region where Cv increases sharply. For N = 7 and N = 15-17, there is a 
shoulder in the solid-liquid transition region. All the other clusters have 
at least one peak in the heat capacity curves. There is agreement, 
concerning the position and width of the peak, for those clusters for 
which MD simulations have also been performed, although some 
discrepancies between the MC and MD simulations have been noticed. 
Although the MC simulations cannot display the dynamical coexistence, 
many of the results obtained by MC simulations are consistent with this 
view, specially for the magic number clusters. 

Selected examples are shown in Fig. 3.5. Ar27 shows a broad peak 
centered at T = 27 K. In addition to a similar broad peak, Ar33 has a 
smaller, but sharp peak, at T = 10 K. Finally, a single sharp peak appears 
for ArS5. Systematic trends on the number and magnitude of the peaks 
are evident in Fig. 3.6, showing that cluster sizes N = 13, 19, 23, 36, 39, 
43, 49 and 55 have peaks significantly higher than those of their 
neighbors, so the special stability of those magic clusters reappears in the 
behavior of Cy. Clusters with N < 30 have a single broad peak (shown 
for ArZ7 in Fig. 3.5). A second, sharp peak, emerges for Ar30, and its 
magnitude increases as the first peak gradually disappears. The two 
peaks coexist up to Ar36 (see the case of Ar33 in Fig. 3.5), and for Ar37 
and larger clusters only the sharp peak remains. The emergence of the 
sharp peak nearly coincides with the transition from FC to MIC 
covering, and the cluster sizes with two peaks correspond to those sizes 
having the greater density of low lying isomers [ 1 I]. Doye et al. [28] 
found that the high density of states in this size range is due to small 
energy differences between various structural types, FC, MIC, 
decahedral, etc. The presence of two heat capacity peaks makes the 
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determination of the melting temperatures ambiguous in that size range, 
and the use of other indicators is convenient. 

Figure 3.6. Reduced heat capacity peak values of ArN clusters. Results from 
Monte Carlo simulations. Adapted from D. D. Frantz, J. Chem. Phys. 115, 6136 

(2001) with permission of the American Institute of Physics. 

A measure and characterization of the movements of the atoms is 
given by the relative root mean square (r.m.s.) bond length fluctuation 

where r,. is the instantaneous distance between atoms i andj, and the sum 
runs over all the atom pairs. The interpretation of B is based on the 
Lindemann criterion. According to it, melting occurs in a bulk solid 
when S is about 0.1. However, care must be taken when interpreting 
r.m.s. bond length fluctuations obtained from computer simulations, 
since the choice S = 0.1 does not necessarily extend to finite clusters 
[29]. Also, S may depend on the length of the simulation runs. But in 
spite of these reservations r.m.s. bond fluctuation curves have a 
qualitative validity and provide insight. 

Figure 3.7 shows 6 as a function of temperature for N = 19, 20, 21. 
The temperature is given in reduced units P = kJ/&. A nearly linear 

(3.11)
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increase of the fluctuations occurs as the temperature is increased in the 
solid-like region. Then Srises sharply in the transition region as the 
clusters have enough energy to overcome potential barriers to 
rearrangement, and finally the fluctuations level off in the liquid region. 
N = 19 displays its special character by the higher temperature for the 
occurrence of the transition, and in the steepest rise of 8. The size 
dependence of the temperatures corresponding to a Lindemann-like 
threshold of S = 0.2 is shown in Fig. 3.8. That threshold was chosen 
because it was near the inflection point of the S curves in the transition 
region [ 1 13. For the size range plotted, there is first a general decrease of 
the melting temperature with increasing size, reaching a minimum near 
N = 37, then it increases reaching a maximum for N = 55, and decreases 
thereafter. Superposed to this behavior, local maxima are obtained for 
the magic clusters. 

Figure 3.7. R.m.s. bond length fluctuation as a function of temperature, obtained 
by Monte Car10 simulations for Lennard-Jones clusters with N = 19-21. 

Temperature is given in reduced units. Adapted from D. D. Frantz, J.  Chern. 
Phys. 102,3747 (1995) with permission of the American Institute of Physics. 
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Figure 3.8. Reduced melting temperatures (left axis) associated with a 
Lindemann-type threshold 8= 0.2 of the r.m.s. bond length fluctuations. Magic 
number behavior is observed as a function of cluster size. The results have been 

obtained by MC simulations. The right hand axis is representative of argon. 
Adapted from D. D. Frantz, J. Chem. Phys. 115,6136 (2001) with permission of 

the American Institute of Physics. 

A comparison with Fig. 3.5 shows that the melting temperatures of 
A r Z 7  and A r 5 *  predicted by S= 0.2, namely T, = 21 K and T, = 32 K, 
respectively, lie on the rising side of the Cv curves and not at their 
maxima. In fact, the peaks of Cv occur at temperatures such that 6 = 0.3 
or higher [ 1 I], that is, well in the liquid phase. This is a general feature 
for the clusters with a single peak in the Cv curve. However, there is a 
clear distinction between the two families: the Cv curve rises and reaches 
its peak over an interval of 10-20 K in clusters like Ar2,, while the 
interval is very narrow in the sharp-peak clusters like Ar55. In the cases 
of a double peak, like A I - ~ ~ ,  the melting temperature defined by S= 0.2 
lies in between the two peaks. Although the heat capacity curves of N = 
5 and 8 lack features suggesting a melting transition, the r.m.s. bond 
length fluctuation curves are similar to those for N = 6 and N = 7 
respectively, and show the sharp rise of S (7') characteristic of a 
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transition. The shape of the 6 (7) curve for N = 4 is consistent with the 
absence of a solid to liquid transition. This stresses the convenience of 
employing several indicators to study the melting transition. 

3.3.3 Mixed inert gas clusters 
Different inert gas atoms have different sizes and dimer binding 
energies. Consequently, mixing those atoms leads to clusters with 
structural and thermodynamic features different from those of the 
homogeneous clusters. Heterogeneous clusters with 13 atoms have been 
studied in detail. The homogeneous 13-atom clusters show a large Cv 
peak in the solid to liquid transition region that is a consequence of the 
large energy gap between the ground state icosahedral structure and the 
higher lying nonicosahedral isomers. The interatomic potentials for the 
Ar-Ar and Kr-Kr interactions are relatively similar, E A ~ - A ~  / E K ~ - K ~  = 
0.728, and o A ~ - ~  / q + K r  = 0.942, so only mild differences with respect to 
the homogeneous clusters are expected. Calculations for mixed ArpKr13.p 
clusters using pair interactions determined by the usual mixing rules, i.e., 
&AAr.fi = ( &Ar-Ar E K ~ - K ~  ) I”  and oAr.= = (OAr.Ar + 0fi-G) / 2, predict that all 
those clusters have icosahedral ground states, with the smaller Ar atom at 
the center, and that the structure of most low lying isomers is also 
icosahedral [30]. The shape of the heat capacity curves is similar to that 
for homogeneous clusters. There is a linear increase in the peak 
temperature from ArI3 to Ar7Kr6 followed by a steeper linear rise from 
Ar6Kr7 to Krl3. Peak heights are relatively similar, with the differences 
between the maximum and minimum values being only about 12% of the 
peak height of ATl3. An interesting difference with respect to the 
homogeneous clusters occurs: an additional very small peak at very low 
temperatures, arising from the low lying permutational isomers. 

In contrast to the Ar-Kr case, Ne-Ne and Ar-Ar potentials are rather 
different: & N ~ - N ~  / €A~.A~  = 0.298, ONe-Ne / OA~-A~ = 0.807. The structure of 
the ground state varies across the NepAr13, series. It is an icosahedron on 
the two composition extremes, Ne-centered for NelzAr and NellAr2, and 
Ar-centered for Ne4Ar9 to NeAr12. But the difference of atomic sizes 
affects negatively the stability of the icosahedral structure and the ground 
state is nonicosahedral for middle compositions NeloAr3 to NesArg. The 
low lying isomers are mostly nonicosahedral. By looking at the shape of 
the Cv curves, the clusters can be associated into three groups: Ne13 to 
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Ne10Ar3 have melting temperatures (identified with the temperature of 
the maximum of the Cv peak) in the range 5-10 K, much lower than the 
others, Ne9Ar4 to Ne4Ar9 , which have melting temperatures in the range 
22-26 K, and finally Ne3Arlo to A r 1 3 ,  whose peak temperatures rise 
linearly. The peaks are high for Ne13 , NeArlz and ArI3, that is, on the 
two extremes, because the energy gaps between the ground state and the 
band of low lying isomers arc high for those three clusters, but not for 
the others. Then, peaks are much lower for compositions in between. The 
peaks in the group Ne9Ar4 to Ne4Ar9 are broad. 

For Ar-Xe, E ~ - ~ /  E ~ ~ - ~ ~  = 0.540 and oAr.Ar I oxe-Xe = 0.829. All the 
Ar,Xe13, clusters have an icosahedral ground state. The stronger binding 
favors the Xe-centered structure, but this is disfavored by the loss of 
packing efficiency arising from having the larger atom at the cluster 
center, so the ground state is an icosahedron centered on an Ar atom. The 
lowest Xe-centered isomer is also icosahedral. The difference in energy 
between the lowest Ar-centered and Xe-centered states increases from 
Ar12Xe to Ar6Xe7 and then decreases, nearly vanishing for ArXeI2 [31]. 
In ArXe12 the two nearly degenerate icosahedral ground states form 
separate basins in the potential energy surface, separated by substantial 
energy barriers. Each basin has a set of low and high energy states. MD 
heating cycles starting from those two icosahedral states indicate that the 
two basins separately undergo substantial melting (in different regions of 
the configuration space, and to a larger extent within the Ar-centered 
basin) before merging. This melting whithin a particular basin can be 
interpreted as surface melting, since there are no exchanges between the 
central atom and the surface atoms. The complete melting occurs when 
the energy allows for frequent interbasin motion. Those liquid phases 
which access only a resticted region of configuration space have been 
called isomerization fluids [32]. Also for other compositions the 
configuration space is divided into two basins. The temperature for 
barrier crossing decreases when the number of Xe atoms decreases, so 
surface melting is only well separated from complete melting for the Xe- 
rich clusters. This particular basin structure does not seem to exist for 
Ne,Ar13, and Ar, C13.p .  

3.3.4 Liquid to gas phase transition in hydrogen clusters 
Gross and coworkers [33] have concluded that the best signature of a 
first or second order phase transition in a finite system is provided by the 
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specific shape of the caloric curve, that is, the thermodynamic 
temperature as a function of the total energy of the system. The caloric 
curve of size-selected hydrogen clusters has been determined in high 
energy collision experiments [34, 351 and has been interpreted as 
indicating the transition from a bound cluster to the gas phase. 

In these experiments, the mass selected hydrogen cluster ions are 
prepared by first forming the clusters in a cryogenic cluster jet expansion 
source and then using a high performance electron ionizer and an ion 
accelerator [36]. The neutral clusters are molecular clusters formed by 
H2 molecules weakly bound to each other by Van der Waals forces. 
Ionization of a molecule in the cluster or in a H2 crystal is followed by 
the exothermic ion-neutral reaction 

H l + H 2 + H J + H  (3.12) 

and the exothermicity (1.7 eV) usually ejects the H atom from the 
cluster. The H3+ cation is stabilized by the other H2 molecules, that form 
a solvating shell around it [37, 381. The cluster cations then have the 
composition H3+(H2),. The same effect occurs in hcp hydrogen crystals 
[39] where the stabilization of the cation trimer produces a microcrystal, 
evidently with a structure different from that of the gaseous cluster 
cations. In the experiments of Gobet et al. [34, 351, the collisions 
between size-selected ionized clusters H:(H2)m with m I 14, accelerated 
to kinetic energies of 60 keV/amu, and a helium gas target were 
analysed. A sophisticated multidetector device records for each collision 
event simultaneously the number (multiplicity) of each mass-identified 
fragment ion resulting from the reaction. The fragmentation reactions 
have the general form 

Hi(H2)m +He + H;(H2), + bHJ + cH; +A' + eH2 + JH (3.13) 

with a-f = O , l ,  ... (neutral species larger than the dimer are absent). 
Construction of the caloric curve requires the simultaneous 
determination of the energy and the temperature of the system. The 
cluster energy, that is the energy deposited into the cluster by the 
collision with a He atom, is determined by the nature and multiplicity of 
the products in the reaction (3.13). On the other hand, the temperature of 
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the cluster prior to decay is obtained using a relationship [40], tested 
successfully in nuclear physics, between the characteristic shape of a 
fragment mass distribution and the temperature of decaying nuclei [41]. 

Figure 3.9. Caloric curves for cluster fragmentation. Reduced temperature (with 
To the temperature in the plateau of the curve) is given vs the energy deposited 

on the clusters H3'(Hz), , with m = 6 (open squares), m = 8 (open circles), m = 9 
(triangles), m = 11 (diamonds), m = 12 (inverted triangles) and m = 14 (filled 
circles). Reproduced from F. Gobet et al., Phys. Rev. Lett. 89, 183403 (2002) 

with permission of the American Physical Society. 

The results [34, 351 for H3'(H2)m with rn = 6, 8, 9, 11, 12 and 14 are 
collected in Fig. 3.9. The caloric curves show three parts: after an initial 
rise, a plateau is present before the curve rises again. The curves show 
the typical prerequisites of a first order phase transition. According to 
Gobet et al. [35] the curves show backbending (this is more clear by 
plotting a curve with the geometric means for all the clusters), that is, a 
negative heat capacity, that has been predicted to be possible for small 
systems [33]. 
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3.4 Electronic Effects 

3.4.1 Delocalized electronic states of excess electrons 
Inert gas atoms have their last electronic shell filled and do not bind 
additional electrons due to the efficient screening of the positive core by 
the closed shells. On the other hand, the collective polarizability of rare 
gas atoms produces an effect that binds excess electrons in solid xenon, 
with the bottom of its conduction band lying about 0.6 eV below the 
vacuum level [42]. Experimental evidence for the existence of stable 
negatively charged (Xe,)- clusters was provided by Haberland [43]. 
From this work and theoretical calculations [44, 451 it is known that the 
minimal size for the stability of the negatively charged cluster is around 
6-7 atoms. The tiny small binding of the solvated electron in the inert 
gas clusters makes spectroscopic studies difficult, but those studies 
become easier for Xe clusters doped with a highly electronegative 
impurity like iodine [46, 471. (IXeN)- clusters have been produced by a 
supersonic expansion of a mixture of 5% Xe and 95% Ar passed through 
a cooled (-60 "C) reservoir of methyl-iodide. The clusters became 
negatively charged by crossing the expansion by an electron beam. In its 
ground state the extra electron of the cluster is localized on the iodine 
atom, which is solvated by the Xe cluster. That is, the cluster can be 
labeled as I-Xe,. Photons of 4.66, 5.01 and 5.27 eV were used to 
measure the photoelectron spectra (PES) of mass selected clusters. All 
the spectra are characterized by two peaks about 0.95 eV apart (see Fig. 
3.10). Those peaks are assigned to the vertical detachment transitions 
from the ground state of the solvated anion 1- to the J = 3/2 (ground state) 
and J = 1 /2 spin states, respectively, of the neutral I with the neutral IXeN 
cluster in the same geometrical structure of the negative one. The 
evolution of the lowest energy peak (J = 3/2) giving the vertical binding 
energies VBE, is reported in Table 3.4. The difference 

(3.14) 

given also in that Table, represents the stabilization of the ground state 
by the polarization interaction of the iodine with the xenon solvent. The 
dependence of with cluster size reflects the grouping of Xe atoms 
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around the iodine ion. increases fast until N = 12, and then increases 
more slowly for clusters containing more than 12 xenon atoms. This 
indicates that 12 atoms form the first solvation shell around the ion. 

Figure 3.10. Photoelectron spectra of I X e N  dusters with N = 0-54, obtained 
using photons of 5.01 and 5.27 eV. Reproduced from I .  Becker. and 0. 
Cheshnovsky, J. Chem. Phys. 110,6288 (1999) with permission of the 

American Institute of Physics. 

A tunable laser was then used to study the excitation spectrum of the 
1- impurity in mass selected clusters over an spectral range 3.0 - 4.95 eV. 
For this excitation, electron emission was the only observed decay 
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channel. The excitation spectra has an interesting evolution. Fig. 3.1 1 
shows that peaks appear at energies below the VBE3/2(N) and VBEln(N). 
Those peaks (bands) narrow with increasing N and the distance between 
these bands and V.E312(N) or VBEl12(N), respectively, increases with N. 
It is clear that electron detachment below VBE3/2 is connected with 
cluster geometric rearrangements. These bands, above the adiabatic 
detachment energy, correspond to transitions from the localized electron 
of the iodine ion to delocalized states on the Xe cluster. 

Table 3.4. Experimental vertical binding energies (VBE), stabilization energy 
Exrub= VBE(N)- VBE(O), vertical delocalization energy (VDE), and binding energy 

of the delocalized electron (VBE- VDE) of iodine in I-XeN clusters. Data 
collected from [46,47]. 

N VBE(eV) VDE(eV) Binding energy of Estab 

( k 2 0  (k 3 delocalized electron ieV) 
meV) meV) imev> 

( f 20 meV) 
0 3.06 
1 3.13 0.07 
2 3.22 3.255 -35 0.16 
3 3.29 3.295 -5 0.23 
4 3.35 3.339 11 0.29 
5 3.41 3.391 19 0.35 
6 3.46 3.440 20 0.40 
7 3.41 3.486 24 0.45 
8 3.56 3.532 28 0.50 
9 3.60 3.569 31 0.54 
10 3.65 3.608 42 0.59 
11 3.69 3.46 1 49 0.63 
12 3.73 3.675 55 0.67 
13 3.746 3.678 68 0.686 
15 3.763 3.690 73 0.703 
20 3.793 3.712 81 0.750 
30 3.848 3.757 91 0.788 
40 3.894 3.787 107 0.834 
50 3.935 0.875 
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Photon Energy (eV) 

Figure 3.11, Spectra of I-XeN clusters with N = 0-12. Arrows indicate vertical 
binding energies ( W E )  of iodine with final J = 3/2 and J = 112 spin state. 
Reproduced from I. Becker and 0. Cheshnovsky, J.  Chem. Phys. 110,6288 

(1999) with permission of the American Institute of Physics. 

The transitions to delocalized states are precursors of the impurity to 
conduction band transitions in the bulk. One of the bands was identified 
as giving the vertical delocalization energy (VDE) of the impurity 
electron, whose values are also given in Table 3.4. The difference VBE- 
VDE gives the binding energy of the delocalized electron; its value 
changes from negative to positive and the critical size for the binding of 
such states is N = 4. As N grows, the binding energy increases due to the 
confinement. The detachment of the delocalized electron takes place by a 
process similar to thermionic emission. 
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3.4.2 Core level spectroscopy 
The wave functions of core levels have atomic character and are highly 
localized, even in solids. But the small changes induced by the local 
atomic environment become reflected in the core level spectra. Of 
particular interest is the evolution of the electronic core levels with 
cluster size and their relation to the geometrical structure. The study of 
resonant X-ray absorption (XA) in neon clusters has provided useful 
information [48]. The electronic structure of the neon atom is ls2 2s2 2p6 
and its K shell excitation spectrum is characterised by a Rydberg series 
(1s- np). In the atom, the 1s += 3p and 1s -+ 4p transitions to 
unoccupied bound states are well resolved at 867.1 eV and 868.7 eV, 
respectively. The simple character is preserved for Ne clusters, but the 
lines are shifted and split into surface and bulk components. For small 
clusters (N < 100) the two observed resonances correspond closely to the 
atomic lines. The energy of the 1s -+ 3p line first increases a little with 
the cluster size due to the caging effect of the surrounding atoms. Then, 
for N around 100, that line becomes split in two. First, a low energy 
component continues the smooth evolution of the original line and can 
be identified as being associated to 1s -+ 3p transitions for atoms at the 
surface of the cluster. Second, a new feature emerges at 868.4 eV. This 
new feature, that becomes more prominent for increasing cluster size, is 
attributed to the 1s -+3p excitation of atoms having a bulk-like 
environment in the cluster. The 1s + 4p line also shows an interesting 
evolution. It first shifts downwards in energy. This cannot be explained 
by caging effects. Instead it indicates that the 4p is a Rydberg orbital 
located largely outside the cluster, so the energy required for that 
excitation will be reduced due to screening of the core hole by the other 
atoms. For clusters of about 300 atoms this line vanishes and a new line 
appears around 869.6 eV. The interpretation is that the Rydberg state no 
longer exists for large clusters, and that the new line at 869.6 eV is just 
the bulk-like 1s -+ 4p line. 

Combined X-ray absorption and X-ray photoelectron (XP) 
spectroscopies applied to the 2p core levels of argon clusters have also 
allowed to identify bulk and surface features [49]. In the free Ar atom the 
XA spectrum is due to transitions from the 2p core level to unoccupied 
Rydberg orbitals, and the lowest energy transition 2~312 3 4s is located 
at an energy of 244.39 eV. In the cluster this excitation is shifted to 
higher energy and splits into two components. The component line with 
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lower energy is dominant for small clusters and shifts upward in energy 
with growing cluster size with respect to the atomic line. It reaches a 
value of 244.70 eV for clusters with a few hundred atoms (a shift of 
+0.31 eV with respect to the atom). On the other hand the higher energy 
line, absent for very small clusters, has a nearly constant energy 245.24 
eV over the whole range of sizes studied (up to a few thousand atoms). 
The high energy line becomes dominant as the cluster sizes increases, 
evolving towards the core exciton observed for the solid, while the other 
line vanishes. The final 2 p312-I 4s Rydberg state has a substantially larger 
spacial extent than the ground state, but in a cluster it is a little bit 
compressed by the surrounding atoms, leading to a slight loss of binding 
of the Rydberg state with respect to the free atom. The excitation energy 
2p3/* -+ 4s then increases with increasing atomic coordination. 
Consequently, the size-independent high energy line was interpreted as 
corresponding to bulk-like atoms and the size-dependent low energy line 
as arising from surface atoms, since the coordination number of surface 
atoms (or effective confinement) increases with cluster size. 

More quantitative information about surface coordination is obtained 
from the XP spectrum, which measures the binding energy of the core 
electrons. In the spectrum of the Ar atom, the two 2 ~ 1 , ~  and 2pv2 spin- 
orbit lines are observed at 248.4 and 250.6 eV binding energies, 
respectively. For clusters, those lines are gradually shifted to lower 
energies. In the size range of thousand atoms the shifts are 0.62 and 0.95 
eV respectively. Furthermore, each line is split in two components. In the 
clusters, the ionized core polarizes the surrounding atoms, and this 
polarization screening lowers the binding energy of the 2p level with 
respect to the free atom. The nearest neighbors are the most efficient for 
screening and the two split components can be attributed to atoms in the 
bulk (low binding component) and surface (high binding component) of 
the cluster, respectively. The bulk-like component becomes the 
prominent one for large clusters due to the decreasing fraction of surface 
atoms. Extrapolation of the results to large N can be used to derive 
values for the binding energies of the 2p electrons in bulk and surface 
atoms in a macroscopic solid. Furthermore, a linear model for the shift as 
a function of the number of nearest neighbors (12 in the bulk solid) 
predicted effective coordination numbers at the surface of the cluster 
varying from five, for clusters of about 10 atoms, to eight for the largest 
clusters studied, N = 4000. 
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The decay of a core hole vacancy by electron emission is known as 
Auger decay. It is traditionally assumed that in molecules, atomic 
aggregates and bulk matter, only electrons at the excited site take active 
part in the decay, but a novel decay mechanism has been predicted to be 
possible in weakly bound Van der Waals clusters [50]. In this novel 
mechanism, electron emission from neighboring sites of the vacancy 
takes place. Experimental evidence for this new process has been found 
in small Ne clusters, with average sizes of 30 and 70 atoms [51].  Using 
sincrotron radiation to irradiate a beam of clusters, a hole was first 
created in the 2p inner valence subshell of one of the Ne atoms in the 
cluster. This atom then adopts the electron configuration Ne': 2s' 2p6. 
For a free Ne atom, the 2s vacancy cannot decay by an Auger process 
because the transition from Ne': 2s' 2p6 to the final state Ne2+: 2s2 2p4 by 
electron emission is not energetically possible. But in the cluster, the 2s 
vacancy can relax from the state Ne': 2s' 2p6 to me+: 2s2 2p5 )2 , that is, 
the two vacancies are distributed among neighboring atoms in the final 
state. The Coulomb repulsion between them is reduced, and then also the 
total energy. The process has been termed interatomic Coulomb decay 
1501. 

3.5 Clusters of SFs and C 0 2  Molecules 

The transition to the bulk structure for molecules interacting by Van der 
Waals forces involving some angular anisotropy occurs much earlier 
than for the simpler atomic Van der Waals clusters. This is the case for 
(SF,), and (C02), . The experiments that have revealed this transition 
use Electron Attachment Time-of-Flight (EA-TOF) mass spectrometry 
[52] and electron diffraction [53 ,  541. Negative cluster ions are formed in 
the molecular beam by directing a continuous electron beam along the 
TOF axis of the mass spectrometer. Electrons are readily captured by the 
SF6 molecule, since this molecule has a positive electron affinity. In 
contrast, the energy of the local minimum of (C0,)- is ~ 0 . 6  eV above 
the energy of the autodetachment products [55] ,  that is, the electron 
affinity is negative, so (C0,)- is not simple to detect; however, 
negatively charged dimers and larger clusters are bound. 
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The low mass spectrum of (SF& reveals, as its most prominent 
feature, the enhanced abundance of (SF& . Although N = 19 is not 
prominent, drops in the population occur after N = 23, 27 and 34 [52]. 
This gives evidence for icosahedral structures, since the above numbers 
correspond to the perfect icosahedron (13) and to clusters formed by 
interpenetrating icosahedra (23, 27, 34). The small differences with 
respect to the numbers for completing FC umbrellas given in Section 3.1 
are simply due to the way of constructing those capping umbrellas. For 
instance, N = 27 (instead of 26) is obtained when the third umbrella is 
adjacent to the first one but not the second. There is no evidence for 
icosahedral packing beyond N = 34, but the mass spectra for sizes up to 
about N = 600 showed characteristic intensity oscillations, indicating 
atomic shells. The analysis of those oscillations using a geometrical 
theory developed by Martin and coworkers [56] revealed a single 
packing motif in that size range. Molecular beam diffraction experiments 
had earlier provided diffraction patterns for clusters with 100-1000 SF6 
molecules [53, 541, and the comparison of the measured diffraction 
patterns to calculated ones for different structural models led to the 
conclusion that SF6 clusters are packed in the low-temperature 
monoclinic crystal structure (a distorted body centered cubic structure) 
observed in the bulk [57]. Since the size ranges covered by the electron 
diffraction and the EA-TOF experiments overlap strongly, this 
immediately suggests that the geometrical shell closing pattern detected 
by the EA-TOF experiments corresponds to the monoclinic crystal 
structure, and that this structure persists to very small clusters. The 
overall geometrical characteristics of the clusters, derived from the 
analysis of the oscillations in mass spectra are consistent with the 
monoclinic structure [52]. Two pronounced intensity maxima close to 
the transition region, namely (SF6)59 and (SF6)52 apparently correspond 
to nearly spherical clusters cut from the crystal, and this suggests that the 
transition for these clusters may be related to the size where nearly 
spherical clusters may be built out of the bulk crystal. 

C02 clusters are more weakly bound than SF6 clusters. The 
comparison of electron diffraction patterns to molecular dynamics 
simulations indicated that the CO2 molecules in large (C02)N clusters are 
packed in the face centered cubic vcc) structure of the bulk, and that this 
packing persists to clusters as small as N = 100 [58-601. The EA-TOF 
mass spectra show oscillations indicating shells [52], and the analysis 
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was performed in a similar fashion as for SF6 clusters. The data for 
clusters larger than (C02)75 is consistent with a distortedfcc packing. It is 
intriguing why clusters formed by SF6 and C02 molecules achieve the 
bulk packing so early. 

3.6 Interaction with Ultrafast Laser Pulses 

Experiments have been conducted to examine the interactions of intense 
ultrafast laser pulses with Van der Waals clusters. Laser pulses focused 
to intensities between 10l6 and lo’* W/cm2 have shown very bright X- 
ray emission in the 100 to 5000 eV range from the plasmas produced 
[61]. This indicates an efficient coupling of the laser light to the cluster. 
The coupling is very efficient compared to the irradiation of monatomic 
gases and is a consequence of the near solid density within the individual 
clusters. The dynamics of femtosecond laser interactions has also been 
examined. A remarkable observation is that clusters irradiated at 
intensities above 10’’ W/cm2 eject ions with high kinetic energies [62]. 

The irradiation of a dense beam of deuterium clusters has driven 
nuclear fusion [63]. The deuterium clusters are molecular clusters 
formed by D2 molecules. The dissociation energy of a D2 molecule in 
two deuterium atoms is 4.8 eV. On the other hand, the molecules are 
bound to each other in the cluster by weak Van der Waals forces. 
Irradiation leads to the multiple ionization of the clusters, which then 
explode under the action of the repulsive Coulomb forces between the 
ionized atoms. Using an intense and fast enough laser pulse (35 fs pulses 
were used in the experiments), the clusters can be stripped of almost all 
their electrons before exploding. This maximizes the Coulomb energy 
that is converted into kinetic energy of the exploding ions. The initial 
radius R of the cluster determines the maximum energy Em, produced in 
the explosion. A simple estimation gives 

(3.15) 

where nD is the initial ion density in the cluster ( = 3 x for D2), 
and q is the average charge state. From this formula one finds that h l ly  

10222 cm-3
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stripped deuterium clusters of radii greater than 25 8, are enough to 
produce the multi-keV ions necessary for fusion when fast deuterium 
ions ejected from the exploding clusters collide with ions ejected from 
other clusters in the plasma. In the experiments of Zweiback et al. [63] 
an inverse correlation has been found between the neutron yield and the 
temperature of the clusters before irradiation, that is, the neutron yield 
decreases when the temperature increases. The cluster beam is prepared 
at a specified temperature by passing the beam though a cooling jacket, 
and as a consequence the average cluster size in the beam decreases by 
increasing the temperature (in all cases the beams are prepared with 
temperatures between 80 K and room temperature). Then, the observed 
behavior of the neutron yield is a consequence of the variation of the 
average cluster size with beam temperature. Larger cluster sizes allow 
for larger electrostatic energies to be converted to ion kinetic energies. 
Measurable neutron yields start at cluster radii of about 25 A (molecular 
jet temperatures about 125 K) and rapidly increase, by more than an 
order of magnitude, until the radius reaches 50 A (temperatures of 100 
K). For larger radii, the neutron yield becomes a constant or even 
decreases because clusters are too large. 

Ions with kinetic energies of several 100 keV are ejected from the 
explosion of large Ar, and Xe, clusters with average sizes in the range 
1 . 8 ~  lo5 atoms for argon and 2 . 0 ~  lo6 for xenon, irradiated by 130 fs 
laser pulses and intensities of 5 x lo7 W cm-' [62]. The kinetic energies 
in the case of the Ar clusters fit well into a Coulomb explosion 
mechanism, in which the kinetic energies &(q) of the ions depend on 
their charge q as 

(3.16) 

where a is a constant ( a  = 160 for Ek in eV for Ar). For Xe, the cluster 
size is an order of magnitude larger. Also, the electron temperature is 
expected to be larger, since the electron heating rises proportional to the 
square of the atomic number 2'. Ions as highly charged as Xe3'+ have 
been detected in these explosions. The Xe explosions exhibit a behavior 
that is a mixture of Coulomb explosion and hydrodynamic expansion 
mechanisms. In the hydrodynamic expansion model the energy 
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(3.17) 

is determined by the electron temperature Te. However, the most 
energetic ions in the Xe cluster explosions arise from the Coulomb 
repulsion. 
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4. Electronic and Atomic Shells in Metal 
Clusters 

4.1 Experimental Observation of Electronic Shells 

Sodium vapor, or other alkaline vapors, can be expanded supersonically 
from a hot stainless steel oven with a fine exit nozzle, resulting in well 
focused cluster beams. Clusters form as a result of collisions between the 
atoms in the tiny expansion zone, terminating some tenths of a millimiter 
beyond the nozzle. The clusters warm up because the condensation is an 
exothermic reaction, so there is also a tendency for evaporation. As the 
expansion proceeds, collisions between Na atoms end, and the tendency 
to evaporate atoms from the hot clusters dominates. Each cluster loses 
mass and cools down. In the evaporation chains, clusters with low 
evaporation rates, i.e., with strong binding energies, tend to become 
abundant. In 1984, Knight and his coworkers made a remarkable 
discovery [ l ,  21. They found that the abundance distribution shows a 
nonmonotonic variation as a function of cluster size, with prominent 
maxima andor steps at cluster sizes N = 8, 20, 40, 58 and 92. Their 
original results are shown on Fig. 4,1, which has become one of the best 
known and most influential results in cluster physics. The arguments 
given above indicate that clusters of those sizes are especially stable. 
Similar experiments confirmed the same magic numbers in the mass 
spectra of other alkaline elements (Li, K, Rb, Cs). Furthermore, 
measurements of the ionization potential, ZP, as a function of cluster size 
shown in Fig. 4.2, indicate that the value of IP drops abruptly between N 
and N+l precisely at the values N = 8, 20, 40, 58 and 92, that is, at the 
magic numbers, as well as at N =  2 and 18 [2]. The ionization potential is 
the energy required to remove one electron from the cluster. That 
coincidence indicates a common underlying reason, related to the 
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behavior of the valence electrons. Since sodium is a monovalent element, 
the number of valence electrons in these clusters is 8, 20, 40, 58 and 92, 
respectively, and those experiments show that the electrons are bound 
more tightly in the magic clusters. Evidently, these magic numbers are 
different from those observed in the Van der Waals clusters. 

Figure 4.1. Mass spectrum of sodium clusters. Adapted from W. D. Knight et 
al., Phys. Rev. Lett. 52,2141 (1984) with permission of the American Physical 

Society. 

Cluster stabilities have also been deduced from dissociation energies 
in fragmentation experiments [3]. In a typical photodissociation 
experiment, cluster ions like Na,' are excited by a laser to a highly 
excited state (NaN+)*. The excited cluster can evaporate a neutral atom 

(Na,'). + NaN-,' + Na 

if enough excitation energy to overcome the binding energy D of the Na 
atom 

(4.1
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D = E(NaN-IC)+ E(Na)-E(Na,') 

61 

(4.2) 

is localized into a single vibrational mode. 

Figure 4.2. Measured ionization potentials of potassium clusters. Reproduced 
from W. A. de Heer et al., W. A., Solid State Phys. 40, 93 (1987) with 

permission of Academic Press. 

Statistical methods, together with experimental information on the 
fraction of dissociated clusters have been used [3] to obtain the binding 
energy in the case of the photodissociation of NaN+ and KN+. The most 
relevant conclusion is the occurrence of abrupt drops of the evaporation 
energy between Na3+ and Na2, between Nag+ and Nalo+ and between 
Nazi+ and Na22+. Similar behavior was observed for potassium 
clusters.The photodissociation experiments are performed for charged 
clusters in which the number of valence electrons is N, = N-1. Thus, high 
binding energies occur for clusters with 2, 8 and 20 electrons. The 
experiments indicate unambiguously that the magic character is 
associated with the number of valence electrons in the cluster, and 
corroborate the magic numbers observed in the abundance spectra. The 
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same conclusion can be deduced from the analysis of the mass spectra of 
clusters generated by the liquid metal ion source (LMIS) technique [4], 
in which nascent cluster ions are produced directly. 

4.2 Spherical Well Model of Metallic Clusters 

The free and nearly free electron models of simple metals are well 
known in solid state physics [ 5 ] .  The foundation of those models is the 
fact that the effective potential seen by the conduction electrons in 
metals like Na or K is nearly constant through the volume of the metal. 
This is so because (a) the ion cores occupy only a small fraction of the 
volume of the metal, and (b) the effective ionic potential (or, more 
properly, pseudopotential) is weak. Under these circumstances, a 
constant potential in the interior of the metal is a good approximation, 
even better if the metal is liquid. However, electrons cannot escape from 
the metal spontaneously; in fact, the energy required to extract one 
electron through the surface is called the work function. This means that 
the confining potential rises abruptly at the surface of the metal. If the 
metallic piece has microscopic dimensions and for simplicity we 
asssume its form to be spherical, like a classical liquid drop, then the 
effective potential confining the valence electrons will be spherically 
symmetric, with a form intermediate between an isotropic harmonic 
oscillator and a square well [I, 61. These simple model potentials can 
already give a faithful idea of the reason for the magic numbers in Na or 
K clusters: the formation of electronic shells. 

Energy levels for electrons bound in such a spherically symmetric 
potential can be characterized by a radial quantum number k (k- 1 is equal 
to the number of nodes in the radial wave function), and an angular 
momentum quantum number I. For fixed k and I, the magnetic quantum 
number rnl can take the values ml = I, I-1, ... -I, and the spin quantum 
number takes the two values m, = +1/2, -1/2. This gives a total 
degeneracy 2(21+1) for a (k,  I> subshell. It is well known from atomic 
and molecular physics that closed shell electronic configurations are very 
stable because of the existence of energy gaps between the electronic 
shells. The detailed form of the confining potential controls the precise 
ordering of the subshells, and also dictates which gaps are large and 
which are small. Only large gaps lead to enhanced stability. So, for a 
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precise explanation of the magic numbers of the alkali metal clusters, a 
realistic representation of the effective confining potential is needed. 

An accurate selfconsistent potential can be constructed by applying 
the Density Functional Formalism (DFT) [7, 81 within the context of the 
spherical jellium model (SJM) [2, 9, 101. In the jellium model the 
background of positive ions is smeared out over the volume of the 
cluster, to form a distribution of positive charge with density 

n,  (r) = nP O(R - r ) ,  (4.3) 

where 0 (R - r) is the step function, with values 1 for r < R and 0 for r > 
R . The radius R of the positive background is related to the number of 
atoms in the cluster by the equation 

4 
- z R 3 = N R  
3 (4.4) 

where R is the experimental volume per atom in the bulk metal. The 
constant n> is related to R and to the valence Z (Z = 1 for alkali 
elements) by 

The positive charge background generates an attractive external potential 
(using Hartree atomic units in this section) 

which is a parabolic potential indide the sphere of radius R and purely 
Coulombic outside. DFT is then used to calculate the ground state 
electronic distribution for interacting electrons subject to this external 
potential. This is achieved by solving the Kohr-Sham single-particle 
equations [8, 111 

(4.5

(4.6)
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From these equations one obtains the single-particle energy eigenvalues 
E~ and orbitals $i. The electron density is then constructed from the 
occupied orbitals 

(4.8) 

The effective potential Vedr) in Eq. (4.7) represents the combined effect 
of the attraction from the positive background and the repulsion from the 
other electrons. It is given by 

(4.9) 

V, (r) is the classical repulsive electrostatic potential of the electronic 
cloud 

(4.10) 

and Vxc(r) is the potential due to exchange and correlation between the 
electrons [S]. Exchange effects between the electrons come from the 
requirement that the many-electron wave function of a system of 
identical fermionic particles has to be antisymmetric. Two electrons 
cannot be simultaneously in the same single-particle state (characterized 
by orbital and spin quantum numbers) and this has the consequence of 
building a hole (Fermi hole) around an electron that excludes the 
presence of other electrons of the same spin orientation (up or down, in 
the usual notation for the z component). In addition, there are Coulombic 
correlations between the instantaneous positions of the electrons due to 
the fact that these are charged particles that repel each other. Because of 
this fact, two electrons cannot approach each other too closely, 
independently of their spin orientation. The sum of Fermi and Coulomb 
correlations can be described as an exchange-correlation hole around the 

(4.7)
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electron. In practice Vxc(r) is calculated using its definition in DFT, as 
the functional derivative of an exchange-correlation energy functional 
Exc[n], that is, 

(4.1 1) 

The local density approximation (LDA) [8] is often used to calculate 
Exc[n] and Vxc(r) . The LDA uses as input the exchange-correlation 
energy of a homogeneous electron gas. In that system the exchange 
energy per unit volume has the expression 

(4.12) 

where no is the constant density of the homogeneous gas. The exchange 
energy of an inhomogeneous system with density n(r) is then 
approximated by assuming that expression (4.12) is valid locally, that is, 

Application of Eq. (4.1 1) then leads to 

(4.13) 

(4.14) 

Well known expressions also exist for the correlation energy (per unit 
volume) ec(no) of a homogeneous electron gas [8], from which the 
corresponding LDA correlation potential 

(4.15) 
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is obtained. In other words, in the LDA, Vxy(r) at point r in space is 
assumed to be equal to the exchange4orrelation potential in a 
homogeneous electron gas with "constant" density, precisely equal to the 
l density n(r) at that point. 

L L 

Figure 4.3. Selfconsistent effective potential of a Nazo cluster in the spherical 
jellium model. The occupied Is, Ip, Id, and 2s electronic subshells are 

represented by the continuous lines. The lf is the lowest unoccupied subshell. 

The spherical jellium model has been applied to alkali metal clusters. 
Figure 4.3 shows the selfconsistent effective potential confining the 
electrons in a neutral sodium cluster with N = 20, that is, with 20 valence 
electrons. The Is, lp, Id and 2s subshells are filled. In a cluster with N = 
21, the last electron will be placed in the If subshell (the dashed line in 
the figure). That electron is less tightly bound than the electrons of the 2s 
subshell by at least 0.5 eV, and should be easier to remove by 
photoionization. This explains why the value of the ionization potential 
drops with the opening of a new shell. 
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The total energy E(N) of a cluster with N atoms is given by the usual 
DFT expression 

(4.16) 

The first term on the r.h.s. is the single-particle kinetic energy of the 
electrons [S], the second gives the classical electrostatic energy of the 
electronic cloud, and the third one gives the interaction between the 
electrons and the ionic background. EXc[n] is the exchange-correlation 
energy of the electrons and finally E s e ~  is the electrostatic self- 
interaction of the ionic background. The cohesive energy per atom can 
be written in terms of the energies of the free atom and the cluster 

(4.17) 

When plotted as a function of cluster size, EC,h(N) shows a local 
maximum for the magic sizes N = 8, 18, 20, 34, 40, 58, 92, ... [2]. 
However, the quantity 

A 2 ( N ) =  E ( N + l ) + E ( N - l ) - 2 E ( N )  (4.18) 

displays better the abrupt changes in the total energy. This quantity 
represents the relative stability of a cluster of N atoms in comparison 
with clusters of (N+1) and (N-1) atoms. If the highest occupied 
electronic subshell is filled in a cluster of N atoms, and the next 
available subshell is separated by a sizable energy gap, the cluster energy 
will jump from E(N) to E(N+l). This gives rise to a peak in A&V), 
indicating that the cluster of size N is very stable. As a consequence of 
the higher stability, this cluster will be more abundant in the mass 
spectrum than clusters of sizes N+1 or N-1 (see Chapter 2). A2(N) is 
shown in Fig. 4.4. Peaks appear at N =  2 (not shown), 8, 18, 20, 34, 40, 
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58 and 92. This is consistent with the measured mass spectra. The 
calculations confirm that the magic numbers are due to the closing of 
electronic shells: the subshells are filled in the order Is, lp, Id, 2s, 1J 
2p,lg, 2d, lh, 3s, ... Filling those subshells leads to the magic numbers 2, 
8, 18, 20, 34, 40, 58, 68, 90, 92 ,... The size N = 34, which appears after 
filling the If subshell, is a magic number of secondary importance also 
observed in the experiments. The numbers 68 and 90, which correspond 
to the filling of the 2d and lh subshells, are more difficult to observe 
because the gaps between the 2d and lh subshells, and between the lh 
and 3s subshells, are small. Only large gaps lead to observable 
consequences. 

Figure 4.4. Relative stability h 2 ( N )  = E ( N + l )  + E(N-1) -2E(N), of sodium and 
potasium clusters as a function of cluster size N .  

The ionization potentials of Li, Na and K clusters calculated by the 
spherical jellium model reproduce the drops associated with the closing 
of electronic shells [2], although exaggerating their magnitude. This is 
due to the spherical symmetry assumed by the model for both closed 
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shell and open shell clusters. For the same reason the spherical jellium 
model yields saw toothed curves which lack the fine structure between 
shell closings. 

Experiments for noble metal clusters (CUN, AgN, AuN) indicate the 
existence of shell effects, similar to those observed in the alkali clusters. 
These are reflected in the mass spectrum [6] and in the variations of the 
ionization potential with N .  The magic numbers are the same ones seen 
for the alkaline elements. Cu, Ag and Au atoms have an electronic 
configuration of the type ndLO(n+l)sL, so the spherical jellium model 
explains these magic numbers if one assumes that the s electrons (one 
per atom) move in the spherically symmetric, effective jellium potential. 

4.3 Electronic Shell Effects in Large Clusters 

When the size of an alkali cluster increases, the number of valence 
electrons in the cluster also increases, as well as the number of occupied 
shells. Since the depth of the confining potential remains approximately 
constant, the gaps between electronic subshells become narrower [9]. 
Eventually, for N sufficiently large, the discrete energy levels evolve into 
the quasi-continuous energy bands of the solid. When does this occur? 
Or, in other words, when are electronic shell effects no longer 
discernible? Experiments indicate that shell effects remain important for 
clusters with a few thousand valence electrons [12-151. As an example, 
Table 4.1 lists the shell closing numbers observed by Martin and 
coworkers [13] for sodium clusters with sizes up to about 850. The 
observed magic numbers appear at approximately equal intervals when 
the cluster abundances are plotted in a NL13 scale gives the linear 
dimension of the clusters). More precisely, AN"3 is approximalely 0.6 
between consecutive magic numbers. Before undertaking the explanation 
of this periodicity, an interesting feature of the experiments detecting the 
magic numbers in Table 4.1 is worth discussing. In those experiments, 
photons with energies hv very close to the ionization threshold were 
used to ionize the clusters in the beam before detection in the mass 
spectrometer. Since the magnitude of the ionization potential drops 
between clusters of sizes N and N+l when a shell is completed at size N,  
the measured cluster intensities show local minima at the magic numbers 
due to the lower ionization efficiency of those magic clusters, arising 
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from their larger IPS. This result is different from the picture in Fig. 4.1, 
where the spectrum reveals the intrinsic abundances in the beam, and 
then the intensities of the magic clusters are higher. Evidently, the two 
results are consistent: the closed shell clusters are the most abundant in 
the beam, because these are the most stable ones, and at the same time 
they have the largest ionization potentials. Consequently, in a mass 
spectrum obtained with photon energies near the ionization threshold, 
those clusters will be characterized by local intensity minima, as in the 
experiments of Martin [13, 161. But for photon energies well above the 
ionization threshold, the intensities reflect the intrinsic abundances in the 
beam, so the closed shell clusters are characterized by intensity maxima, 
as in the experiments made by Knight [ 11. 

Table 4.1. Total number of valence electrons in closed shell sodium clusters. 
Experimental results are compared to calculations for an inhomogeneous jellium 

model. Data collected from [13]. 

Shell Experiment Inhomogen. Jellium 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 

2 
8 
18 
20 
34 
40 
58 
68 
92 
138 

198f  2 
263 k 5 
341 k 5 
443 * 5  
557f  5 
700f  15 

2 
8 
18 
20 
34 
40 
58 
68 
92 
138 
196 
268 
338 
440 
562 
704 

Q 840f  15 854 

Returning to the AiV113 = 0.6 periodicity, one can understand why the 
shell closings should occur at approximately equal intervals on an N'13 
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scale [ 131. An expansion of N in terms of the shell index k has a leading 
term proportional to I?. One power of k arises because we have to sum 
over all shells up to k in order to obtain the total number of particles. A 
second power of k arises because the number of subshells in a shell 
increases approximalely linearly with the shell index. Finally, the third 
power of k arises because the number of particles in the largest subshell 
also increases with the shell index. Then 

Nk = k 3 .  (4.19) 

This qualitative argument is supported by theoretical calculations. When 
the number of electrons in the cluster increases, the number of electronic 
shells also increases. Nevertheless, for large clusters groups of energy 
levels bunch together, leaving sizable energy gaps separating those 
bunches. Although handling such a large number of electrons becomes 
more difficult, DFT calculations lead to the bunching effect, that is to the 
N”3 periodicity, and give magic numbers in close agreement with 
experiment [ 17-19]. The results of calculations within the spherical 
jellium model are displayed in Fig. 4.5. After calculating the cluster 
energy as a function of N , this energy can be conveniently separated into 
smooth, E,,(N), and oscillating, ESherI(N), parts 

which is in accord with the idea of the Strutinski Shell Correction 
Theorem [20]. The Liquid Drop Model allows to write E,,(N) as the sum 
of volume, surface and curvature terms [21] 

E , ~ ( N ) = ~ , N + ~ ~ N  x +a,N x . (4.2 1) 

The bulk energy per atom, eb, is obtained from the theory of the 
homogeneous electron gas [5] 

(4.20)

(4.22)
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As the electrostatic contributions cancel out in the model, eb, which is a 
function of the average valence electron density no, just contains kinetic 
(first term), exchange (second term) and correlation (third term) 
contributions. The jellium model for a planar surface [22] can be used to 
calculate a,. However, Genzken 1181 obtained a, from a plot of the slope 
of (E(N)/N)-f?b versus IV-~’~, to suppress the shell oscillations for large 
values of N. Finally, the curvature energy a, was fixed in a similar way 
by the slope of a plot of E(N) - eb N - a, N 2’3 as a function of N -1’3. 

Figure 4.5. The periodically varying contribution of valence electrons to the 
binding energy of spherical sodium clusters (Eshell in Eq. (4.20)). Magic numbers 
are indicated. Adapted from 0. Genzken, Mod. Phys. Lett. B 7, 197 (1991) with 

permission of World Scientific. 

Subtracting the average part E,,(N) from E(N) defines the shell 
correction term E,hel l (N)  in Eq. (4.20). This term is the energy plotted 
versus N1’3 in Fig. 4.5. The pronounced oscillations of E,h,J(N) exhibit 
sharp minima at the shell closing numbers. The differences between 
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these and the experimental magic numbers [14, 151 are small. One can 
notice that the amplitude of the shell oscillations varies with size. The 
shell oscillations are enveloped by a slowly varying amplitude, the 
supershell. That is, the shell effects vanish periodically, but with a much 
larger size scale, M I N  = 6 between consecutive supershell nodes. The 
first supershell node occurs in Fig. 4.5 near N = 850. Calculations by 
Nishioka et al. [17] give N = 1000. This node has been observed, 
although the experiments also show some discrepancies: the first node is 
located at N = 1000 in ref. [14], while it is found at N = 800 in [15]. 
The discovery of supershells confirms the predictions of nuclear 
physicists. However, supershells have not been observed in nuclei due to 
an insufficient number of particles. The existence of supershells is a 
rather general property of a system formed by a large number of 
fermions in a confining potential. The supershell structure of lithium 
clusters has also been studied [18, 191, and the agreement with 
experiment [23] is even better than for sodium. The experimental and the 
theoretical first supershell node are found at N = 820. 

The effect of temperature on the shells and supershells has been 
analyzed for sodium clusters. For this purpose calculations of the cluster 
free energy were performed by treating the valence electrons as a 
canonical ensemble in the heat bath of the ions [24]. The spherical 
jellium model for the ionic background is even better at finite 
temperatures. The amplitudes of shell and supershell oscillations 
decrease with increasing T. This is particularly important in the region of 
the first supershell node at N = 850, which becomes smeared out at a 
moderate temperature of 600 K. However, temperature does not shift the 
positions of the magic numbers. 

Similar shells and supershells have been observed for the clusters of 
the trivalent metals Al, Ga and In [25-271, but in order to explain the 
details it is necessary to go beyond the spherical jellium model. Another 
early example of the necessity to go beyond the jellium model is 
provided by the work of Lange et al. [ 161. These authors performed DFT 
calculations of the ionization potential of large sodium clusters with the 
purpose of understanding the drops in the measured ionization potentials. 
However, to reproduce the precise details, the homogeneous background 
model had to be relaxed by making the inner part of the clusters more 
dense. The results obtained with this inhomogeous spherical jellium 
model are given in Table 4.1. 
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4.4 Spheroidal Deformations of the Cluster Shape 

The spherical assumption for the ionic background explains the most 
prominent features of the mass spectrum and the ionization potential of 
simple metal clusters. However there is evidence of other features that 
the spherical jellium model is unable to explain. When a top shell is not 
completely filled (that is, for N # 2, 8, 20, ...), the electronic density 
becomes nonspherical, which in turn leads to a distortion of the ionic 
background. This Jahn-Teller type of distortion, similar to those 
observed for molecules and nuclei [28], leads to a splitting of the 
spherical shells into subshells. Deformed clusters are prevalent for open 
shell configurations. Deformations of the alkali clusters were first 
studied by Clemenger [29] by allowing the spherical shape to change to a 
spheroid with axial symmetry. For this purpose Clemenger used a model 
Hamiltonian based on a modified three-dimensional harmonic oscillator 
potential. The model allows for different oscillation frequencies w and 
w p  along the z axis (chosen as the symmetry axis) and perpendicular to 
the z axis. The Hamiltonian also contains an anharmonic term that serves 
to flatten the bottom of the potential well to make it more realistic; in the 
case of a spherical oscillator that term breaks the I-degeneracy of the 
single-particle energy levels in a (k, r )  shell. If the system is cylindrically 
symmetric, the energy levels are either two-fold (I = 0) or four-fold (I > 
0) degenerate. The model reminds the spheroidal model of nuclei 
developed by Nilsson [28, 301. Due to the deformation, the highly 
degenerate spherical shells split into spheroidal subshells. Denoting the 
semiaxes of the spheroid by a and b, a distortion parameter 7 can de 
defined 

(4.23) 

that describes the deformation, oblate or prolate, of the positive 
background. For each cluster, 7 is determined minimizing the total 
energy. The essential feature of the spheroidal model is to produce 
splitting in the shells which for small distortions are linear in 7 .  Alkali 
clusters with N = 3, 4 become prolate, and those with N = 5-7 oblate. 
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After the spherical cluster with N = 8, again clusters are prolate for N = 

9-13, and oblate for N =  14-19, and so on. 
In a more fundamental treatment of the same problem, Ekardt and 

Penzar [31, 321 have extended the jellium model to account for 
spheroidal deformations: the ionic background is represented by a 
distribution of positive charge with constant density and a distorted, 
spheroidal shape. The advantage over the Clemenger model is that the 
spheroidal jellium model is parameter-free and the calculation of the 
electronic wave functions is performed selfconsistently. Due to the 
cylindrical symmetry of the problem, the azimutal quantum number m is 
still a good quantum number for the electronic states, as is the parity 
with respect to reflection at the midplane. However the angular 
momentum I is no longer a good quantum number and, as a 
consequence, the problem is intrinsically two-dimensional. In addition to 
the usual peaks of the spherical jellium model, the stability fhnction 
A2(N) has smaller subshell filling peaks at N = 10, 14, 18, 26, 30, 34, 36, 
38, 44, 50, 54, etc. All these fine-structure peaks have been observed in 
the experimental mass spectra [2 ] .  In particular, one can notice that the 
four-fold patterns in the lfand lg shells appear correctly, as well as the 
two-fold pattern in the 2p shell, corresponding to the filling of a prolate 
subshell at N = 36 and an oblate shell at N = 38. 

Proceeding further along these lines, Manninen and coworkers [ 3 3 ,  
341 have introduced the Ultimate Jellium Model, in which the positive 
background charge is allowed to be completely deformable, both in 
shape and in density profile, in order to minimize the energy. The result 
is that the background adapts itself perfectly to the electronic charge, and 
the positive density n+(r) becomes everywhere the same as the electron 
density n(r). Consequently the Coulomb energy of the system cancels 
out and the electrons move in their own exchange-correlation potential 
Vxc(r), a model earlier used by Brown and March for the metallic surface 
[35]. Qualitatively the cluster shapes follow the pattern seen above for 
the spheroidal model, but the additional freedom adds richness to the 
variety of shapes. Clusters with N = 3, 4, 6, 7, 9, 14, 21 and 22 have 
axial and inversion symmetries. N = 10 has only axial symmetry, and N 
= 5 ,  1 1 ,  13, 15 have only inversion symmetry. N = 12, 16, 17, 18 are 
more complex: these have neither inversion nor axial symmetry. Shapes 
up to N =  8 can be simply understood in terms of the symmetries of the s, 
px,  p y  and pz single-particle wave functions of a spherical system. An 
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explanation in terms of the filling of d and s levels is still possible 
between N = 8 and N = 20, at least near the magic numbers, although it is 
more difficult in the middle of the shell, due to the strong deformation. 

Figure 4.6. Molecular interpretation of some ground state cluster geometries in 
the ultimade jellium model. Reproduced from M. Koskinen, P. 0. Lipas and M. 

Manninen, Z. Phys. D 35,285 (1995) with permission of Springer-Verlag. 

A striking new feature of the ultimate jellium model is the prediction 
of some cluster shapes that can be interpreted as molecules built from 
magic clusters. As shown in Fig. 4.6, the 4-electron cluster is formed by 
two dimers, with a separation energy of only 0.10 eV. The 10-electron 
cluster can be viewed as a dimer attached to an 8-electron sphere, with a 
separation energy of 0.15 eV. N = 12 can be interpreted as two dimers 
attached to an 8-electron cluster, and N = 16 as a composite of the 
strongly deformed, yet very stable 14-electron cluster, and a dimer. The 
clusters without inversion symmetry have symmetric isomers and are 
extremely soft against deformation. For instance, N = 10 has a pear- 
shaped ground state and a prolate isomer with axial and inversion 
symmetries, only 0.5 eV above the ground state in a region of the energy 
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surface that is extremely flat. Related softness of the pear shape has been 
observed in nuclear physics [36, 371. These molecular-like features are 
due to the high stability of the dimer. 

4.5 A Full Description of the Cluster Structure 

Experiments provide only indirect information on the geometric structure 
of metallic clusters. In contrast, ab initio calculations predict the 
structures directly. Those calculations require a substantial 
computational effort, in part because the number of isomers grows 
rapidly with N and the task of identifying the lowest energy 
configuration between those of isomers with similar binding energies is 
hard. For this reason the calculations are usually restricted to small 
clusters. For the prototypical case of sodium clusters, ab initio 
calculations [3843]  have been performed for sizes up to N = 20. Figures 
4.74.9 show the results of calculations by Solovyov and coworkers 
[43]. For N up to 8, both DFT and Moller-Plesset (MP) perturbation 
theory [a], and a basis of Gaussian functions, were used to optimize the 
geometries. The particular implementation of DFT employed by them 
was the so called B3LYP [45]. This hybrid method, introduced by Becke 
[45], expresses the exchange and correlation energies as a parameterized 
fimctional which includes a mixture of Hartree-Fock and DFT exchange 
along with DFT correlation. For larger clusters only the B3LYP method 
was used in the optimizations. 

The point symmetry group is indicated for each cluster in the figures, 
and several low lying isomers are given for N = 3, 4, 6, 10, 11, and 20. 
Small NaN clusters with N 1 5  have a planar structure. MP predicts the 
isosceles triangle, C2" symmetry, as the lowest energy structure of Na3, 
although the other CZv structure, with a broken bond, lies only 0.008 eV 
higher in energy. Na4 illustrates how the geometry can be influenced by 
the spin multiplicity of an electronic state. The rhombic geometry, 
corresponding to D Z h  symmetry, occurs for spin multiplicity one, while a 
multiplicity of three leads to the square, D 4 h  symmetry; the first one is, in 
fact, more stable. Three-dimensional structures begin to appear for Na6. 
The flat pentagonal pyramid is more stable than the planar isomer, but 
only by 0.02 eV. Na3 and Na4 have prolate shapes, and Na5 to Na, oblate 
shapes, in agreement with the deformed jellium models. 



78 Structure and Properties of Atomic Clusters 

Figure 4.7. Optimized geometries of sodium clusters with N = 2-10. Several 
isomers are given for N = 3,4,6, 10. Interatomic distances are given in 

angstroms. Reproduced from I. A. Solovyov et al., Phys. Rev. A 65,53203 
(2002) with permission of the American Physical Society. 
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Figure 4.8. Optimized geometries of sodium clusters with N =I 1-18. 
Interatomic distances are given in angstroms. Reproduced from I. A. Solovyov 
et al., Phys. Rev. A 65,53203 (2002) with permission of the American Physical 

Society. 
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B3LYP leads to some differences with respect to MP. The ground 
state of Na3 is the linear isomer, and the broken triangle lies 0.008 eV 
above. The planar isomer is the ground state of Na6. This shows the 
difficulties in predicting structures by total energy calculations. 

Figure 4.9. Optimized geometries of Sodium clusters with N =I 9-20. 
Interatomic distances are given in angstroms. Reproduced from I. A. Solovyov 
et al., Phys. Rev. A 65, 53203 (2002) with permission of the American Physical 

Society. 

A noticeable feature of the clusters with N 2  8, studied by B3LYP, is 
that Na8 and Na20 have higher symmetry (Td) than others. This is 
consistent with the formation of closed shells in the jellium model. The 
ground state of Nalo has the C2 symmetry, and the D 4 d  isomer lies 0.07 
eV above. The binding energies of the two isomers of Nal1 only differ by 
0.03 eV. Nalo, NalI and Nalz are approximately prolate, and Na14 is 
approximately oblate, again in agreement with the deformed jellium 
models. For other clusters the triaxiality is substantial. Nevertheless, 
Nal,, Nalg and Na19 appear close to prolate. This is at variance with the 
jellium models and originates in the underlying double icosahedron 
structure of these three clusters, complete for NaI9 and incomplete for 
Na17 and Na18. That structure, well known for inert gas clusters (see 
Chapter 3, Section 3.1) arises from atomic packing effects, which are not 



captured by the deformed jellium models. These packing effects are 
specially important for very large clusters (see Section 4.6). 

Ionization affects the geometries of the smallest clusters [43]. The 
structure of Nac  is an equilateral triangle. MP calculations predict that 
Na4f is a near equilateral triangle with the fourth atom attached to the 
apex, and that the rhombus is close in energy (by 0.01 eV); the order is 
reversed by B3LYP. Nag+ can bc viewed as formed by two oppositely 
oriented isosceles triangles sharing an atom along a common axis. The 
structure is planar, but one triangle can easily rotate in such a way that 
the planes of the two triangles become perpendicular to each other. The 
structures of N%+ and Nagf are also different from those of N% and Nag. 
The structural changes become less drastic for N 2 10. 

Figure 4.10. Calculated average bond distance of sodium clusters as a fimction 
of cluster size. Several isomers have been considered for some clusters. Those 
isomers are given in Figs. 4 .74.9.  Adapted from I .  A. Solovyov et al., Phys. 
Rev. A 65, 53203 (2002) with permission of the American Physical Society. 



82 Structure and Properties of Atomic Clusters 

An effect generally observed in most calculations is a characteristic 
evolution of the interatomic distances, illustrated in Fig. 4.10 [43]. The 
averaged interatomic distance < d > first grows fast from N = 2 to N = 5- 
6, that is, in the region characterized by planar structures. Then, after the 
transition to three-dimensional structures, < d > evolves slowly towards 
the value for the bulk material, approaching this value from below. The 
evolution is, however, full of small bumps. The structures in Figs. 4.7- 
4.9 show that the clusters have many atoms on the surface, so < d > can 
be expected to converge to the bulk value only when the fraction of 
atoms with a bulk-like environment begins to dominate. For the range of 
sizes plotted in Fig. 4.10, an even-odd oscillation of < d > is apparent, 
with even-N clusters having values of < d > smaller than their odd-N 
neighbors. Those oscillations, also appearing in the evolution of other 
properties with cluster size, have a quantum mechanical origin, and will 
be discussed in Chapter 5 .  

Some of the clusters in Figs. 4.7-4.9 have electric dipole moments, 
because the electronic and ionic charge distributions do not always 
match; that is, the center of gravity of those two charge distributions do 
not coincide. The calculations indicate that only clusters with C point 
symmetry groups have dipole moments with a magnitude up to 1 Debye 
or a little more [43]. For instance, the dipole moments of the D,, 
isomer and the two C2" isomers of Na3 (labelled a and b in Fig. 4.7) are 
equal to 0.0, 0.28 and 1.30 Debye, respectively. The sizable differences 
between the dipole moments of different isomers have led Solovyov and 
coworkers to propose a method for the separation of isomers, by passing 
a mass selected cluster beam through an inhomogeneous electric field. 
For a cluster with intrinsic dipole moment D, the force acting on the 
cluster in an inhomogeneous electric field E(r) is equal to [44] 

F(r) = V(DE(r)) . (4.24) 

If the cluster spends a time z passing through the inhomogeneous electric 
field, an estimation of the distance A by which the clusters are deviated 
during this period of time from its original direction of motion is given 
as A = F?/2rn, where m is the mass of the cluster. For typical values of 
the time period, z z seconds, and of the inhomogeneity of the 10-3
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electric field, V E z SO00 V/cm2, the isomers with N = 3 and dipole 
moment difference SD x 1 Debye become separated by A ~ 0 . 7  mm, 
which illustrates the capabilities of the proposed method. A similar 
analysis for clusters having quadrupole moments shows analogous 
promise. 

Other strategies have been proposed to indirectly infer the 
geometrical structure, based on comparing experiment and calculations 
of a given property for different isomeric forms with similar energies. 
The isomeric structure leading to the best agreement with experiment is 
then assumed to correspond to the experimental structure. Examples of 
this strategy will be reported in other chapters. The transition from planar 
to three-dimensional structures at N = 6, 7 is a robust property in clusters 
characterized by sp-bonding mainly. The structures of the CuN clusters 
[46] with N = 2-7 are similar to those in Fig. 4.7, although Cug is still 
planar and the first three-dimensional cluster is C U ~ .  

4.6 Shells of Atoms 

It was pointed out in Section 4.3 that if the abundance spectrum of large 
sodium clusters (sizes up to = 1500 atoms) is plotted as a function of 
N"3, the magic numbers appear at approximately equal intervals AN''3 = 

0.6. However, the period of appearance of these features changes 
abruptly at N=: 1500 [13, 471. The new periodicity, AN'" = 1.5, which 
persists up to the largest clusters studied, N=22000, is interpreted as 
reflecting the formation and the filling of shells of atoms. For small or 
medium size clusters the cluster shape changes every time an atom is 
added. However, when the cluster is large enough, changes in its global 
shape become more and more difficult and a new growth pattern 
emerges: large clusters grow by adding shells of atoms to a rigid cluster 
core. The magic numbers observed in the experiments suggest that as 
alkali metal clusters grow sufficiently large they form close-packed or 
nearly close-packed polyhedra with icosahedral or cuboctahedral Vcc) 
shapes (both structures are consistent with the sequence of magic 
numbers). The total number of atoms in icosahedral or cuboctahedral 
clusters containing K shells of atoms is [47,48] 
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10 11 
N ,  =-K3 - 5 K 2  +-K- l .  

3 3 
(4.25) 

The numbers obtained from this equation are in very good agreement 
with the magic numbers observed in the mass spectrum. Keeping only 
the leading term (K 3), Eq. (4.25) can be rewritten 

K = 1.5 N g 3 .  (4.26) 

The coefficient 1.5 is precisely the observed interval between magic 
numbers in a plot of the abundance versus An equivalent statement 
is that a plot of N i 3  against the shell index K gives a straight line. 

Similar features have been observed for the clusters of the alkaline 
earth elements Sr, Ca and Ba [47, 49-52]. In this group, the analysis of 
the weaker subshell structure ocurring between shell closings is possible. 
This analysis gives information about the progressive formation of each 
shell, and indicates a faceting process. The shell develops by the 
formation of umbrellas. Although not identical, this process is quite 
similar to the formation of umbrellas in the inert gas clusters discussed in 
Chapter 3 .  The experimental subshell structure unambiguously indicates 
the formation of icosahedral (and not fcc cuboctahedral) structures for 
the alkaline earths. A similar analysis for alkali clusters has not yet been 
performed. The structure in the mass spectra revealing the atomic shell 
structure [13, 49, 501 reflects size dependent variations of the ionization 
potential, a topic that will be discussed in the next chapter. 

This method of analysis of the mass spectra is powerful because not 
only the icosahedral or cuboctahedral arrangements, but also other close- 
packed arrangements like the tetrahedral, decahedral, octahedral 
structures, etc., can be constructed and the number of atoms for perfect 
structures with K shells can be written in a form similar to Eq. (4.25), but 
with different coefficients. For instance, the number of atoms for an 
octahedron with K shells is 

2 1 
3 3 

N ,  = - K 3  + - K .  (4.27) 



Electronic and Atomic Shells in Metal Clusters 85 

The octahedron can be cut out from anfcc crystal. This analysis has also 
been applied to induce the structure of A ~ N  clusters [47, 531. These 
clusters form octahedral structures. The octahedral structure requires 
coverage of only half of the surface to complete a new shell, and the 
oscillations in the mass spectrum indicate that formation of a new shell 
proceeds by first covering one of the triangular faces of the underlying 
octahedron, then a second, adjacent triangular facet, and so on. 

How can the transition from shells of electrons to shells of atoms be 
interpreted? Small sodium clusters are soft, and there is no difficulty for 
the atoms to arrange themselves into a spherical configuration if this is 
demanded by the closing of an electronic shell, or for the cluster to adopt 
a deformed shape in the case of open electronic shells. Small clusters 
then behave as soft droplets, but not necessarily liquid. When the size 
reaches about 1500 atoms, the electronic shell effects have become less 
intense and changes in the global cluster shape are more difficult. In this 
case, formation of close-packed symmetrical structures is more effective, 
and hrther growth takes place by condensation of atoms onto the surface 
of a rigid core to form new shells of atoms. 

The experiments for sodium clusters in the size range N = 1500- 
20000 are consistent with icosahedral (or fcc cuboctahedral) structures. 
But the structure of bulk Na and other alkali metals is bcc. Consequently, 
the transition to the bulk structure has not yet occurred for N = 20000. 
In the same way, inert gases crystallize in the fcc structure. So, the 
icosahedral structure of inert gas clusters and some metallic clusters can 
be considered as precrystalline. Precrystalline structures have also been 
observed for some metallic alloys in condensed units large enough to 
yield sharp electron diffraction patterns [54, 551. These are called 
quasicrystals. It has been proposed [56] that the reason why the bcc 
phase is not yet formed in the Sodium clusters at those large sizes is that 
the screening cloud n,,,(r) around a Na' ion in a finite Na cluster depends 
so strongly on cluster size, due to the presence of the surface, that n$,,.(r) 
has not converged to its bulk limit for clusters with ten thousand atoms. 
Since nscr(r) determines the effective interionic potential, which, in turn, 
determines the crystal structure of a metal [5], it is not surprising that 
much larger sizes appear to be required for the bcc structure of the bulk 
to develop. 



86 Structure and Properties of Atomic Clusters 

4.7 Approximate Treatment of the Geometrical Structure 

4.7.1 Spherically Averaged Pseudopotential Model 
Approximate descriptions of the cluster structure, intermediate between 
the simple uniform background model and the h l ly  unconstrained 
treatment of the geometry of the ionic skeleton, have been used to study 
some properties of the clusters. One of those is the Spherically Averaged 
Pseudopotential Model (SAPS) [57, 581. Consider a cluster with the ions 
at positions {Rj}, j = 1, .  .. N. If each ion is replaced by a local 
pseudopotential vps(lr-R,I), then the total external potential seen by the 
valence electron cloud is given by 

(4.28) 

Experience with the spherical jellium model (SJM) suggests that for 
clusters with a nearly spherical shape this external potential can be 
replaced by its spherical average about the cluster center 

vps (r) + Y'"' ( r ) .  (4.29) 

The simplification greatly reduces the computational effort of calculating 
the electronic levels since the electrons now move in a spherically 
symmetric potential well. However the SAPS model goes beyond the 
SJM, since: (a) the radial struchre of the cluster becomes reflected in the 
SAPS potential, and (b) the ion-ion interaction is calculated for the true 
three-dimensional arrangement of the ions [58]. One can set limits of 
validity to the SPAS model. The cluster cannot be too small, because 
small clusters substantially deform away from the spherical shape. On 
the other hand, very large clusters have a tendency to form planar surface 
facets. The range of intermediate sizes is then the most appropriate one. 
Calculations using this model have predicted a contraction of the cluster 
volume with respect to that of an equivalent piece of bulk metal [59]. 
This contraction, which is well documented experimentally [60], appears 
to be a general feature for small metallic clusters, and seems to explain 
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some trends in the measured polarizabilities of A1 clusters (see Section 
5.6). It was mentioned at the end of Section 4.3 that Martin and 
coworkers [16] had to modify the SJM in order to obtain the required 
sequence of magic numbers, reflected in the sudden drops of the 
ionization potential, for large clusters of alkali metals. Success was 
achieved by making the inner part of the cluster denser. SAPS 
calculations [6 11 have provided a microscopic interpretation for this 
change. An analysis of the calculated interatomic distances in CsN with 
sizes up to N = 80 shows that the distribution of interatomic distances is 
not homogeneous, those in the inner region of the cluster being shorter 
than in the outer region. Calculations for Mg clusters indicate the same 
effect [62]. 

In an extension of the SAPS model, Schone et al. [63] expand the 
external potential of Eq. (4.28) about the center of the cluster 

(4.30) 

where the first term in the expansion is the SAPS potential. The other 
part was included perturbatively up to second order on top of a SAPS 
calculation. Selecting several isomeric geometries taken from ab initio 
DFT molecular dynamics calculations they obtained the same ground 
state geometry of Nag as in the ab initio DFT calculations. Similar ideas, 
based on a perturbative introduction of geometrical efects beyond SAPS, 
were also applied by Rubio et al. to the C60 molecule [64]. In contrast, a 
simplified version of SAPS has been used by Spina and Brack [65].  
Their assumption was that the atoms in a given shell are at exactly the 
same distance from the cluster centre. As an additional simplification, 
the discrete point-like distribution of the ionic charges in a shell was 
replaced by a uniform continuous distribution. The number of atoms in 
each shell and their radii are variational parameters in this model. 

LermC et al. [66] have used SAPS to study shells and supershells in 
large clusters. Their first aim was to investigate to what extent the 
granularity of the ionic background modifies the electronic structure 
given by the SJM. Calculations for clusters having up to a few thousand 
electrons show that, in spite of the periodic radial distortions which 
modulate the effective potentials, the same strong level bunching 
observed in the SJM again occurs. However, there are some differences 
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in the electronic subshell structure. The details of the subshell structure 
are also sensitive to the use of the Spina-Brack simplification. Lerm6 
and coworkers then turned to study the supershells. The introduction of 
pseudopotentials shifts the supershell nodes to lower electron numbers 
compared to the SJM; the particular parameterization of the ionic 
pseudopotential is also of importance. The electronic shell structure is 
mainly controlled by the structure of the layers near the surface, and the 
non Coulombic short-range behavior of the pseudopotential results in an 
increase of the softness of the effective potential at the cluster surface. 

4.7.2 Cylindrically Averaged Pseudopotential (CAPS) Model 
The S A P S  model has limitations for small clusters because many of 
these have deformed shapes. But calculations using a deformed jellium 
background indicate that most metallic clusters still maintain axial 
symmetry and that truly triaxial deformations are rare. This provides a 
good reason to assume that the valence electron cloud is nearly axially 
symmetric. Taking up this idea Montag and Reinhard have developed the 
cylindrically averaged pseudopotential (CAPS) model [67], which is an 
extension of SAPS. Using cylindrical coordinates, the external ionic 
potential is substituted by its cylindrical average 

(4.3 1)  

(4.32) 

A proper choice of the z axis is critical for the success of the method. 
Montag and Reinhard considered the inertia tensor 1 of the ionic 
distribution and identified the z axis with the principal axis of I” whose 
momentum Ii deviates most from the average momentum 7 = (1, +I2+ 
4 ) / 3 .  Since the electrons see an axially symmetric potential, their wave 
functions separate accordingly as 

(4.33) 
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The calculation of the ground state geometry and electronic structure 
then proceeds by an interlaced iteration of the Kohn-Sham equations and 
the ionic stationary conditions. 

The results obtained show that the geometry of the small clusters can 
be characterized in slices of ions with the same cylindrical coordinates 
bj, 2,). The cluster can be classified by the sequence {nl ,  n2 , . . . nk}o,p of 
n, , the number of ions in a slice s, and the global shape, oblate (0) or 
prolate (p), of the configuration. The ions of a slice are arranged on a 
ring, with or without a central ion. The structures predicted for several 
neutral and charged Na clusters are: Na2 - { 1 I}, , Na3+- { 3 } 0  , Na4 - 
{121},,Na,5- {15},,Na,+- {151},,Na8- {2222},,Na10- {1441},. In 
all these cases there is agreement with the geometries predicted by ab 
initiu DFT [68, 691 and Configuration Interaction (CI) methods [40, 41, 
701. For Na; the CAPS ground state geometry is {122},, and a low 
lying isomer {212}, was also found. A b  initio DFT and CI methods also 
predict that these are the two lowest isomers, although in the opposite 
order. To summarize, CAPS provides an efficient method to calculate the 
structure of metal clusters. CAPS can be useful for studying the fission 
of doubly charged clusters, where the repulsion between the excess 
positive charges often leads to axial symmetry along the fission path (see 
Chapter 6). Also CAPS can be usehl in the study of metallic nanowires. 

4.8 Clusters of the Aluminum Group 

4.8.1 Aluminum clusters 
After the alkali clusters, aluminum clusters are among the best studied 
ones. Aluminum is a nearly free electron metal, so the electronic 
structure of these clusters is expected to be relatively simple. The 
electronic configuration of the valence electrons in the free atom is 3s2 
3p' and the s andp levels are separated by an energy gap of 4.99 eV. A1 
behaves as a monovalent atom in very small clusters, but experiments 
[71-731 and calculations [74] indicate that the gap is reduced as the 
cluster grows, and s-p hybridization begins to develop at Als. Already 
for All3 the s-p hybridization is complete and photoelectron spectroscopy 
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[71-731 confirms the validity of the jellium model for the electronic 
structure of AIN clusters for N 2 13. 

The calculated structures [75] are planar up to A15 and coincide with 
those of the alkali clusters, a result consistent with the monovalent 
character of the A1 atoms in those small clusters. The geometries become 
three-dimensional starting with A16 (see Fig. 4.11). The first cluster that 
develops a pentagonal arrangement of atoms is A&. Clusters with 11 
atoms or more contain at least one internal atom with a bulk-like 
coordination. In the small size range, the calculated evaporation energy 
(Eq. (2.9)) reveals that Al: is very stable. This is because the cluster has 
20 external electrons. The high stability is also a property of neutral Al,, 
and in fact, this has been identified as a magic cluster in the experiments 
of Jarrold [76]. In general, the geometries of small charged clusters are 
similar to those of the neutrals, with few exceptions. 

Figure 4.1 1. Calculated ground state geometries of neutral (a), cationic (b) and 
anionic (c) aluminum clusters with 6-10 atoms. Reproduced from B. K. Rao and 

P. Jena, J. Chem. Phys. 111, 1890 (1999) with permission of the American 
Institute of Physics. 
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Interest in A113 arises from the fact that this cluster has 39 electrons, 
excluding evidently the ionic cores, short of just one electron to form a 
40 electron closed shell cluster. For this reason, the doping of A113 has 
been proposed as a way to force the shell closure, and to obtain a highly 
stable cluster, possible candidate for cluster assembled solids. The lowest 
energy structure of All3 is a distorted icosahedron. A distorted 
decahedron, in which two pentagonal caps join to form square faces [75, 
77, 781, lies 0.2 eV above in energy. The distortions are a Jahn-Teller 
effect due to the open shell electronic configuration. This gives the 
icosahedral cluster a slighly oblate shape. The anionic Al, has closed 
electronic shells [79]. Consequently this cluster has a more regular 
icosahedral structure. In contrast, a larger distortion compared to the 
neutral and a small volume expansion are obtained for the cation Alr3 . 

4.8.2 Boron clusters 
Boron is a trivalent element with an external s2p' electronic 
configuration, similar to Al. However, this element is characterized by a 
short covalent radius and a tendency to form strong directional bonds 
that produce a semiconducting solid. Boron cluster cations, BN' , with N 
in the range 3-20 atoms, produced by laser ablation of the solid, show 
magic numbers at N = 5, 11 and 13 in the mass spectrum [SO, 811. 
Theoretical investigations of boron clusters with two and three- 
dimensional structures have shown that these can be classified into four 
topological groups: quasi-planar, tubular, convex and spherical [82, 831. 
One of the factors that determine the preferred structure is the curvature 
strain, that favors planar-like structures. But those structures have 
dangling bonds, and the elimination of those bonds is a second important 
factor that opposes the first one and favors tubular and cage-like 
structures. For small boron clusters, the curvature strain is very large and 
the clusters are quasi-planar [82-841. This is confirmed by photoelectron 
spectroscopy [84]. These clusters exhibit aromaticity and anti- 
aromaticity according to the Hiickel rules, like planar hydrocarbons 
(4n+2 n electrons lead to aromaticity and 4n to anti-aromaticity). Blo, 
B, and BI2 possess six n electrons each, and are aromatic. BL3and BI4 
both have eight n electrons and are anti-aromatic. With ten x electrons, 
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BY5 is again aromatic. The aromatic clusters have more circular shapes 
whereas the anti-aromatic ones are elongated. For medium size clusters, 
like B32, tubular structures become competitive [85 ] .  Although similar 
effects (curvature strain and elimination of dangling bonds) operate in 
carbon clusters, a key difference is that carbon clusters and nanotubes 
prefer atomic coordination 3 (allowing for sp2 hybrids) while the boron 
atoms prefer a higher coordination. 
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5. Electronic and Optical Properties of 
Simple Metal Clusters 

5.1 Ionization Potential and Electron Affinity 

The first ionization potential IP is the lowest energy necessary to remove 
one electron from a neutral cluster X, . In terms of the total energies of 
the neutral and ionized species, ZP is given as 

IP(X,) = E(X;)- E(X,).  (5.1) 

This energy can be determined from a photoionization efficiency 
spectrum. In this, the ion signal in the mass spectrometer is plotted 
against the photon energy of the ionizing light. The curves obtained have 
a smoothed step form and the ionization energy can be extracted from 
the analysis of that curve; for instance, by fitting the data with an error 
function. The maximum of the first derivative of that function is then 
identified with the average ionization potential of an ensemble of clusters 
with that mass [ 13. 

For a macroscopic solid the ionization potential is called the work 
function. In the uniform background model of a metal, the work function 
W can be expressed as the sum of three terms [2] 

where all contributions are taken to be positive. In this model, the 
electrostatic potential that the ionic background exerts on a electron and 
the classical potential due to the electronic cloud cancel exactly one 
another deep in the interior of the metal, so the only potential remaining 
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(5.2)
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is pxc(no), the sum of the exchange (x) and correlation (c) contributions to 
the chemical potential of a uniform electron gas with a density no equal 
to the average conduction electron density of the metal. pxc(no) is just the 
sum of the two potentials VxLDA and VcLDA of Eqs. (4.14) and (4.15) 
respectively, evaluated for the density no. But the metal has a surface and 
D, is an electrostatic contribution representing the surface dipole barrier 
resulting from the spilling of the electronic cloud beyond the ionic 
background. These two terms determine the depth of the potential well. 
The kinetic energy term EF is the Fermi energy of the metal, measured 
with respect to the bottom of the effective potential, so the difference in 
Eq. (5.2) gives the difference in energy between the Fermi level and the 
vacuum level outside the metal. Work functions obtained from this 
equation reproduce the qualitative trend for the alkali metals [2]. A 
perturbative inclusion of the ionic pseudopotentials lowers the calculated 
values by = 10% and leads to work functions in reasonable accord with 
experiment. Similar agreement is also obtained for other sp metals. 

When the size of the metallic piece is microscopic, a correction term 
is required. If this correction is calculated from simple electrostatic 
considerations as the energy required to remove an electron from a 
metallic sphere of radius R, the following result is obtained for the 
ionization potential [ 3 ]  

1 e2  IP=W+--  
2 R  (5.3) 

The electron affinity 
electron in the cluster, 

AE, which is the binding energy of one excess 

EA(X,)= E ( X , ) - E ( X i )  

has a corresponding expression 

(5.4) 

I e2 
2 R  

EA=W-- - .  (5.5)  
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Considerations based on DFT, which trascend the simple electrostatic 
arguments, indicate a more correct form of these equations [4] 

E A = W -  -+c -, (1 1: (5.7) 

where the leading terms neglected are O(R-2). The constant 1/2 comes 
from the classical electrostatic energy (see Eqs. (5.3) and (5.5)) and c is a 
material-dependent constant with a quantum mechanical origin, arising 
from the kinetic and exchange-correlation energies of the electrons. 
These equations are valid for R large compared to the atomic radius, that 
is, when electronic shell effects become negligible. The exact values of c 
are not known, but experiments and theoretical calculations indicate that 
c ranges between 0 and 0.14. DFT calculations within the Spherical 
Jellium model give c = 0.08 [ 5 ,  61. The Stabilized Jellium model [7] 
also gives c = 0.08 for alkali metal clusters [8]. This model starts from an 
expression for the total energy of a system of electrons and close-packed 
ions with the electron-ion interaction described by pseudopotentials. 
Only the first order term in the electron-ion interaction is retained and 
the second and higher order terms are neglected. That first order term, 
which amounts to a constant potential in the interior of the metal, is 
adjusted such that the total energy as a function of the bulk density is 
minimized at the experimental bulk density of that particular metal. A 
jellium calculation with an approximate treatment of the electronic 
kinetic energy (an extended Thomas-Fermi functional [9]) gives c = 
0.14 [ 101. The experimental ionization energies of sodium clusters [ 1 1, 
121 are fitted well with c = 0.08 [S]. Various experimental studies for 
medium size clusters, N I 100, of different metallic elements obtained 
good fits to the data using c = 0.125 [13-151. This is shown in Fig. 5.1 
for Fe, Hg, K, Na and Pb clusters. An empirical value c = 0.12 f 0.06 
was obtained from a photoemisssion study of very large Ag clusters 
containing 5000-40000 atoms [ 161. However, another experimental 
study of Ag clusters gave c very close to zero [ 171. 

(5.6)
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Figure 5.1. Ionization potentials for Fe, Hg, K, Na and Pb clusters as a function 
of the inverse cluster radius 1/R. The magnitude plotted is the difference 

between the measured ionization potential and the extrapolated bulk work 
function based on the spherical drop model of Eq. (5.6). Reproduced from M. 

M. Kappes et al., J. Chem. Phys. 84, 1863 (1986) with permission of the 
American Institute of Physics. 

The usual method to measure the electron affinity is the 
photoelectron spectroscopy of negatively charged clusters. In a 
photodetachment experiment a negatively charged cluster X, is 
irradiated with a laser of fixed photon energy h v. Imagine, for simplicity, 
that the corresponding neutral cluster XN has closed electronic shells, so 
the extra electron occupies the lowest unoccupied molecular 
orbital(LUM0) level. The photon then removes an electron from this 
level (this process corresponds to transition 3 in Fig. 5.2) or from deeper 
orbitals (transitions 1 and 2). The difference hv-Ekin, where Ekin is the 
outgoing kinetic energy of the detached electron, gives a direct measure 
of the binding energy of the corresponding orbital. The photoelectron 
spectrum is composed of a series of peaks. The threshold in the spectrum 
gives an estimate of the adiabatic electron affinity. This threshold energy 
corresponds to a transition from X i  into the ground state of the neutral 
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X N  . Often the ground state geometries of X i  and X N  are not the same. 
The consequence is that the maximum of the first photoelectron peak 
does not coincide with the threshold value. The maximum gives the 
vertical detachment energy, corresponding to a transition in which the 
cluster geometry does not change during the detachment process. 

Figure 5.2. Schematic view of electron photodetachment from a negatively 
charged cluster within a frozen orbital picture. A laser of photon energy h v 

ionizes an electron from the LUMO level (this is the level occupied by the extra 
electron in the anionic cluster) or from a deeper level. The difference hv-Eki, 
between the photon energy and the kinetic energy of the ejected electron is a 

measure of the binding energy of the electron. 

The electron affinities of clusters of nontransition metals like Ah, 
InN and TIN [18] have been measured by this technique and the data is 
consistent with Eq. (5.7). The general agreement of the spherical droplet 
predictions with the measured values of the ionization potential and the 
electron affinity has several implications: (1) The assumption of 
spherical symmetry is viable, except for very small clusters. (2) The size 
dependence of IP and EA is mainly determined by changes in curvature. 
(3) Valence electrons in metallic clusters are delocalized, even for small 
clusters. 
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Superimposed to the smooth behavior described by Eqs. (5.6) and 
(5.7), the experimental data on ionization potentials and electron 
affinities show two additional features. One, which has been discussed in 
Chapter 4, is the shell closing effect. Measurements [ 191 of the electron 
affinity of AgN clusters indicate agreement with the shell closing 
numbers of the spherical jellium model if one applies this model to the 
5s electrons of the Ag atoms. Another interesting case is aluminum. The 
valence shell configuration of the isolated A1 atom is 3s2 3p' and the 
energy separation between the atomic 3s and 3p levels is 3.6 eV. The 
solid is a nearly free electron metal [20] and this occurs because the 
original 3s-3p gap disappears in the solid. Photoelectron spectroscopy of 
Al, anionic clusters [21-231 has shown that the gap between the p and 
s bands is rapidly reduced as N grows and the two bands are completely 
mixed starting at A&. The jellium model should then be applicable for N 
2 9. The photoelectron measurements reveal, indeed, that the clusters 
Al,, , Al, , Al,, Al,, Al,, A l ,  , Al;, and Al, have closed shell 
configurations [21,24]: the binding energies of the first photodetachment 
peak are high in all those clusters, and exhibit large degeneracies, 
whereas clusters with one additional atom (AlN+,) show low energy 
features and an energy gap between the first peak and the next one (the 
HOMO-LUMO gap of the neutral). The number of valence electrons in 
those closed shell anionic clusters is 3N+1 = 34, 40, 58, 70, 106, 112, 
166 and 220, respectively. Also, the energy gaps detected in the spectra 
of Al,, , Al,, and Ali, indicate that the corresponding neutrals Al,, , 
Al,,, and Al,, have closed shells, with 3N = 138, 156 and 168 
electrons, respectively. All the shell closing numbers given above are 
consistent with the shell filling of the spherical jellium model for A1 
clusters: 1s (2), l p  (8), Id (IS), 2s (20), lf(34), 2p (40), lg (58) ,  2d (68), 
3s (70), l h  (92), 2f (106), 3p (112), l i  (138), 2g (156), 3d (166), 4s 
(168), 1j  (198), 2h (220), where the numbers acompanying the shell 
symbols give the accumulated number of electrons [25]. 

Equations (5.6) and (5.7) have been generalized to clusters in a 
charge state +q (this means that the cluster has already lost q electrons). 
In this case, the energy to remove an additional electron is [26] 
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IP(+q)=W+ q+--c  - ( : 1; 
Using photons of energy 6.42 eV in the ultraviolet range, Hoffman et al. 
[26] have employed photoelectron spectroscopy to determine several 
succesive ionization potentials of large aluminum clusters, A1iOo0 and 

A1~2000. The measured photoelectron intensity of each cluster first 
presents an onset which gives the electron affinity (3.9 eV and 4.1 eV for 
A12000 and A132000, respectively). At higher binding energies a series of 
steps appear, with the step width roughly of equal size (0.7 eV and 0.3 
eV for the two clusters, respectively). Those “Coulomb staircases” can 
be explained by the following argument: at the laser fluence used in the 
experiment the clusters absorb several photons. Emission of an electron 
results (almost) after the absorption of each photon, until a maximum 
charge state is achieved for which ZP(+q) is higher than the photon 
energy. The photoelectron spectra of all those ionizations add up and the 
recorded spectrum is a superposition of the spectra of several clusters 
(for instance, Al~ooo,  A12000, Allooo and A1iioo in the first case, and of 
seven charge states in the second). For a given cluster the positions of 
those steps give the succesive ionization potentials IP(+q). The measured 
values of IP(+q) plotted versus q display a perfect linear relationship, 
and the slope of that line gives e2/R , or in other words, the radius of the 
cluster, from which the atomic density can be deduced. On the other 
hand the crossing point of the two lines allows to calculate c and the 
work function W of the bulk metal. A value of 4.28 (f 0.03) eV was 
obtained for W, which equals the literature value for polycrystalline Al, a 
fact indicating that this technique may be an efficient alternative for 
measuring the work function of reactive metals. 

Although an isolated atom cannot stabilize more than one extra 
electron because of the increasingly strong Coulomb repulsion, this 
number can be larger in a cluster. Using similar arguments to those 
leading to Eqs. (5.6) and (5.7), an equation has been derived [6, 81 for 
the energy of a charged spherical cluster having q excess electrons (that 
is, with net charge -4) 

(5.
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E(-q)=E(O)-q W - -  + q2 ( b) 2(R+6)’  (5 .9)  

where atomic units, e = 1, are assumed. The parameter Sis  a measure of 
the spillout of the electronic charge beyond the positive ionic 
background; this means that the effective cluster radius R+6 is a little 
larger than R. The charged particle will be stable as long as E(-q) < E(0). 
For Al, with 6 z 1.0 a.u., the predicted minimum sizes to stabilize one, 
two or three extra electrons are N,(-q) = 2, 86 and 434, for q = 1,2  and 3 
electrons, respectively [8]. The corresponding numbers for Na (S z 1.3 
a.u.) are N,(-q) = 1, 38, 185, and for Cs, N,(-q) = 1, 30, 145. These 
predictions have to be taken with caution, since the treatment of 
negatively charged particles is notoriously difficult for a theoretical 
treatment within the DFT framework. Nevertheless the trend of 
decreasing N,(-q), at fixed q, with decreasing conduction electron 
density no of the metal is clear (see also the analysis in ref. [6]). A 
decreasing no is equivalent to a larger volume per atom, so the trend can 
be explained by the larger cluster volume, which implies a smaller 
Coulomb repulsion between the excess electrons. 

5.2 Odd-Even Effects 

A second effect, which has been observed in clusters of monovalent s- 
electron metals (alkaline and noble metals), is an odd-even effect, also 
apparent in the mass spectrum. Some examples are now given: 
(i) The measured ionization potentials of N-even clusters of the alkali 
metals NaN and KN with N < 20 have values systematically larger than 
their N-odd neighbors [27,28]. 
(ii) The inverse effect is found for the electron affinities of the noble 
metal clusters, with N-odd clusters having larger electron affinities. Or, 

in terms of the quantities experimentally measured, anionic M, 
clusters (M indicates a noble metal element) with N odd have higher 
photodetachment thresholds [29]. Notice that a noble metal cluster M,- 
has N +I valence electrons (originating from the atomic s-electrons). 
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(iii) The mass spectra of positively and negatively charged noble metal 
clusters obtained by ion bombardment show an odd-even alternation in 
the abundances, with N-even clusters being less abundant than their N- 
odd neighbors [30, 311. This effect is observed up to N = 40. In the ion 
bombardment technique the nascent clusters are already charged. 
(iv) The odd-even alternation is observed in the dissociation energies of 
small alkali clusters [32, 331. This is the smallest energy to fragment the 
cluster in two pieces, which is usually the energy to evaporate one atom. 
(v) The dissociation energies of singly and doubly charged Cu clusters 
( Cuk and Cu? respectively) also display odd-even effects [34]. In the 
first case, for instance, the dissociation energies of N odd clusters are 
larger than the averaged values of their even size neighbors. 

DFT calculations using the local spin density approximation (LSDA) 
for exchange and correlation reproduce the odd-even effects in the 
ionization potentials and binding energies [35].  In those calculations the 
ionic cores are replaced by accurate pseudopotentials and the geometry 
of the cluster was optimized for each size. 

The odd-even effect results from the interplay between cluster 
deformation and spin effects. Figure 5.3 shows the evolution of the 
molecular orbitals for the calculated most stable conformations of alkali 
clusters [36] with sizes N I  14. A notation which reflects the nodal 
character of the molecular orbitals, and that allows to relate those orbitals 
to the orbitals of the jellium model, is employed here. There is a smooth 
increase of the binding energy of the 1s orbital (that is, more negative 
orbital energies in the Figure) with increasing N .  The binding energies of 
the manifold of lp levels also show an overall increase with N. However, 
contrary to the predictions of the spherical jellium model the lp,, lp, 
and lp, orbitals are, in general, nondegenerate. The splitting occurs 
because the cluster (and thus the potential acting on the electrons) is 
nonspherical. The characteristic shapes of the clusters, prolate (PE), 
oblate (OE) or spherical (S), are indicated at the bottom of the figure. 
The splitting of the p levels is a selfconsistent effect. When the p shell is 
not fully occupied, the electron density is not spherically symmetric. 
This induces a distortion of the cluster geometry away from the spherical 
shape that leads to a Jahn-Teller-like splitting of the p levels. The 
magnitude of the energy difference between ( lpx,  lp,) and lp, levels 
reflects the degree of distortion. The lp, level has a lower binding energy 
than (lp,, lp,) in oblate clusters, and the order is reversed for prolate 
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shapes. This splitting, combined with the fact that double occupancy of a 
p orbital increases its binding energy over that for single occupation 
(spin pairing effect), explains the odd-even effect observed in the 
ionization potentials, the electron affinities and in the cluster 
abundances. Similar arguments applied to the splitting of the d shell 
explain the odd-even effect in larger clusters. 

Figure 5.3. Evolution of the binding energies of the molecular orbitals of alkali 
clusters with cluster size. Orbital energies are given in arbitrary units. PL 

and S denote planar and spherical structures, and OE and PE indicate oblate 
and prolate ellipsoids, respectively. Redrawn from data in D. M. Lindsay et 

al., J.  Chem. Phys. 86,3500 (1987). 

The strong fluctuation of ZP is thus an electronic structure effect 
reflecting the global shape of the cluster. This is shown in Fig. 5.4, 
where the ionization potentials of sodium clusters obtained with the 
spheroidal jellium model [37] are compared to the experimental values 
[12]. The odd-even oscillations for low N are reproduced well by the 
calculations. The amplitude of these oscillations is exaggerated, but this 
is corrected [38] by using the local spin density approximation, instead 
of the simple LDA. The same occurs for the staggering of the mass 
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abundance and dissociation energies [39]. The LSDA [40,41] uses as an 
input the exchange-correlation energy Ex,[ nt ; nl ] of a spin polarized 

homogeneous electron gas where the densities nt and nJ for ? and 3- 
spins are different. Consequently, by applying the local density idea as in 

Section 4.2, one arrives at exchange-correlation potentials V,, (r) and 

V, (r) for the real system, that are different for electrons with ? and 

L spins. 

f 

l 

Figure 5.4. Comparison of the experimental ionization potentials [ 121 of sodium 
clusters, NaN, and those obtained with the spheroidal jellium model. Redrawn 

from data in Z. Penzar and W. Ekardt, Z. Phys. D 17, 69 (1990). 

It is noticeable that the noble metals behave like the alkali metals. 
This is not surprising for the ionization potential, but it is striking that 
the dissociation energies also display odd-even effects since the d- 
electrons contribute to the cohesion of the cluster. The explanation is that 
the localized d-electrons give a contribution that varies smoothly with 
cluster size and the odd-even effects arise from the contribution to the 
cohesion from the delocalized valence electrons. 
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5.3 Temperature Dependence of the Ionization Potential 

The experiments measuring IP are performed with the clusters at finite 
temperatures. Temperature leads to vibrations of the atoms, that is, to 
fluctuations of the cluster shape, and also to electronic entropy effects. 
The influence of the temperature on IP has been studied theoretically by 
Yannouleas and Landman [42] using a shell-correction method (see 
Section 4.3) corrected for finite temperature effects. The method 
incorporates several key ingredients: (1) static deformations of the 
cluster with respect to the spherical shape, (2) dynamic shape 
fluctuations due to temperature, and (3) electronic entropy. In this case 
the ionization potential is calculated as 

I -  = (F(T, N ,  4 = +1)) - ( F ( T  N, 4 = 0)) (5.10) 

where F( T, N, q = + 1) and F( T, N, q = 0) represent the free energies of 
the ionized and neutral cluster at temperature T and the symbol ( ) 
indicates that the free energies are averaged over the shape fluctuations 

The parameters p and y specify the triaxial shape of the droplet. These 
are also used in nuclear physics, where they are called Hill-Wheeler 
parameters [43]. Equation (5.1 1) indicates that the cluster explores the 
free energy surface F(T, N,  q; p , y) obtained by the finite temperature 
shell correction method with a probability 

where the denominator is the partition function. 
Yannouleas and Landman have compared the experimental 

ionization potentials of potassium clusters [27, 441 to calculations 
performed at T = 10, 300 and 500 K. The calculated IPS at T = 10 K 

(5.11)

(5.12)
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show steps at the major shell closings larger than the experimental ones, 
and also a detailed fine structure in between major shell closures that is 
not present in the experiments. The agreement is substantially improved 
for the calculations at T = 300 K. The fine structure features are smeared 
out above K21 and the calculated curve follows closely the smooth 
modulations of the experimental data, with rounded humps ending at the 
subshell closures at N = 26, 30 and 34. Also, the drops of IP at the main 
shell closures are reduced. The odd-even alternation for N I 20 remains 
well defined. Finally, for calculations at T = 500 K the smearing out of 
the shell structure is too drastic and the agreement seen at T = 300 K is 
now lost. Further analysis of the calculations for T = 300 K indicates that 
the shape fluctuations play a secondary role compared to the other two 
factors, static deformations and electronic entropy. Application of the 
same methods to silver clusters again shows that finite temperature 
corrections improve the agreement between measured and calculated 
IPS. 

The temperature dependence of the ionization potentials of large 
alkali clusters of nanometer size has been measured by Kresin and 
coworkers [45]. For this purpose a beam of clusters was generated in a 
metal vapor condensation source and the particles were ionized by near- 
UV light of variable frequency. The yield of positive ions was then 
measured. In the free flight towards the ionization zone, the collimated 
beam passes through a cylindrical thermalization tube and thermal 
equilibrium is established between the tube and the clusters. The tube, 
whose temperature is controlled by electrical heating, can be maintained 
at any temperature between 300 K and 500 K, with a difference of less 
than 2 K between the two ends of the tube. The experiment allows then 
to measure the ion yield as a function of the frequency v of the laser 
photons for different temperatures. The particles are not size-selected, 
having instead a broad size distribution. The time-of-flight spectra 
indicate a distribution with an average radius of = 3-5 nm ( = 2000- 
30000 atoms) and a full with at half maximum of = 2 nm. 

The yield of ionized particles can be analyzed by considering as a 
starting point the Fowler formula for the photoion yield from cold bulk 
surfaces [46] 

Y K ( h ” - W ) 2 .  (5.13) 
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Here h v  is the photon energy and W is the work function. In addition, 
this relation was successful in describing the photoion yield in a study of 
silver nanoparticle aerosols in gas suspension [47], and also for cold 
alkali nanoclusters [48]. A thermal smearing of the Fermi-Dirac 
distribution allows for an extension of the Fowler formula to finite 
temperatures 

(5.14) 

wherefis a known function [45]. A plot of ln(Y I T *) as a function of 
(hv-W)lkBT is called a Fowler plot. Fits of the measured yield as a 
function of the frequency for different temperatures were used to extract 
a temperature dependent work function W( T), or more properly IP( T), in 
the case of Li, Na and K nanoclusters [45]. This function is linear in the 
temperature range studied, 0-475 K for lithium, 0-450 K for sodium, 
and 0-370 K for potassium, and the slopes AIPIAT obtained from those 
fits are -1.9, -1.9 and - 2 . 7 ~  eVK. The extrapolation of the IP(T) to 
T = 0 K reproduces accurately the low temperature work functions of the 
bulk metals. From Eq. (5.6) one could expect a small difference of = 0.1 
eV between IP(T=O) of clusters with a radius of 5 nm and the work 
function of the bulk metal. The observed difference is actually smaller 
than this value because the cluster beam contains a broad distribution of 
particle sizes and the ion yield is dominated in the experiment by the 
largest clusters in the distribution. This is due to the scaling of the 
photoabsorption cross section with the surface area (or with the volume) 
of the particle, which supresses the contribution from smaller particles 
due to their smaller cross sections. Evidently this gas phase method 
provides an alternative for measuring the work hnction of highly 
reactive metals, since perfect, uncontaminated surfaces are difficult to 
prepare for these metals. 

5.4 Hardness and Reactivity 

Understanding the reactivity of metallic clusters is a complex subject. 
With regard to the reaction kinetics, there is a wide variability in 
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reactivity in terms of the nature of the metal and the size of the cluster. 
Insight into the effects of the geometry and electronic structure on the 
reactivity can have tremendous impact on such diverse areas as thin film 
coating and catalysis 

A concept used in discussing the reactivity of molecules is the 
Chemical Hardness K ,  a quantity that can be measured as [49,50] 

IP - EA 
2 

K =  (5.15) 

Its meaning can be understood by writing the change AE in the energy of 
the molecule, or cluster, due to a small change ANc in the number of 
electrons, maintaining the nuclei at fixed positions, 

(5.16) 
dE 1 d 2 E  

dNe 2 dN, 
AE = -me +-+me)2 + ... 

The coefficient dEldN,  of the first term can be identified with the 
electronegativity, or chemical potential of the system (atom, molecule or 

of the second term with its chemical 
1 d2E 

cluster), and the coefficient -7 
2 aNe 

hardness K [50, 5 11. Using a finite difference approximation to evaluate 
the derivatives in Eq. (5.16) 

E(N, ) -  E ( N ; ) - - ( ~ P +  1 A E X N ,  - N;)--(IP-  I A E X N ,  - N;)’ 
2 2 

(5.17) 

where N: is the number of electrons in the neutral species. The 
electronegativity is then given by p = (IP+EA)/2 and the hardness K by 
Eq. (5.15). K, which measures the curvature of the function E(N), gives 
the resistance of the molecule or cluster to a change in the number of 
electrons. From Eqs. (5.5) and (5.6), K = e2/R is obtained. This reflects 
the fact that IP and EA become closer and closer as the cluster size 
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increases, and that these two quantities approach a common value, the 
work function W of the metal, at the rate IIR, or N-'13 . This asymptotic 
behavior has been confirmed by calculations of ZP and EA for large 
clusters [52]. The predicted linearity of ZP-EA versus N-'13 is also 
confirmed by a plot using experimental results for aluminum [52], 
although deviations are observed for small N. Shell effects are relevant in 
the small size range and impart structure to the function K (N). The value 
of ZP(N) drops between N, and N,+l, where N, indicates a shell closing 
cluster size. On the other hand EA drops between N,-1 and N,. 
Consequently, a cluster of size N, has a large ZP and a small EA, and thus 
a large value of the hardness is expected. Calculations for Na clusters 
[52] predict local maxima of the hardness for the closed shell clusters. 
These are the less reactive clusters. The same argument leads us to 
expect even-odd oscillations in the cluster reactivity. 

In an exact DFT treatment IP is equal to the binding energy of the 
highest occupied molecular orbital (HOMO) of the neutral [53], that is, 
the energy eigenvalue with the opposite sign. For the same reason EA is 
the binding energy of the HOMO of the anionic cluster, that is, the 
lowest unoccupied molecular orbital, or LUMO, of the neutral (if the 
change of the energy eigenvalue due to charging is neglected). Then, 

K = SLUMO - &HOMO. (5.18) 

In the practical, but approximate, implementations of DFT the relations 
ZP = -€HOMO and EA = -EL(IMO are not exactly fulfilled but Eq. (5.18) 
preserves its semiquantitative utility. In this way, clusters having a large 
HOMO-LUMO gap are chemically hard. These are the clusters having 
closed electronic shells; the resistance to either donating or accepting an 
electron makes these clusters relatively inert. 

Examples of the experimental verification of this idea exist. 
Leuchtner et al. [54] have reacted anionic and cationic A1 clusters with 
oxigen in a flow tube reactor. An etching reaction was observed and rate 
constants were reported. The most striking feature was the negligible 
reactivity of Alf , AIL3 and Al,. These clusters are not only unreactive; 
they are produced by reactions of larger clusters. According to the 
jellium model those three species are closed shell clusters with 20, 40 
and 70 electrons respectively. Another feature observed is the even-odd 



Electronic and Optical Properties of Simple Metal Clusters 113 

alternation in the rate constants. For the cations this occurs for Al:8 and 

above, the even atom clusters showing higher reactivity. A cluster A1; 
has 3N-1 valence electrons. This number is odd for N even, and even for 
N odd. By applying the pairing arguments discussed in Section 5.2, we 
find that one electron is unpaired for clusters with N even, whereas all 
the electrons are paired for N odd. Cationic A1 clusters with even N can 
then be expected to be more reactive, as experimentally observed. For 
Al, anions the odd-even effect is also observed: anions with N even are 

more reactive. The explanation is the same by noticing that Al, has 
3N+1 valence electrons. 

The theoretical and experimental results discussed above are 
consistent with the principle of Maximum Hardness, proposed by 
Pearson [55] .  This principle states that molecular systems at equilibrium 
present the highest values of hardness. So, it is reasonable that the 
clusters with the highest hardness are those with closed electronic shells. 
Also consistent with this principle are the odd-even oscillations in the 
reactivity of A];. An odd-even alternation of the hardness of NaN and 
CuN clusters has been predicted from DFT calculations [56, 571, clusters 
having an even number of electrons being harder than neighbor clusters 
with an odd number of electrons. 

5.5 Mass Spectrum Obtained at Near-Threshold 
Ionization Energies 

When the photon energies employed to ionize the clusters in the beam 
are sufficiently high above the ionization threshold, the measured mass 
spectrum reveals the intrinsic cluster population in the beam as a 
function of cluster size. This is the usual situation. However, photons 
with energies near the ionization threshold have also been used, and the 
corresponding mass spectra have provided crucial information on the 
geometrical structure of sodium clusters with sizes between 1500 and 
20000 atoms. The same technique has been used to estimate the melting 
temperature of those large clusters (see Chapter 6). 
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Imagine that the value of ZP drops between two clusters of sizes N 
and N+1. If the laser photons have energies h v only slightly above IP(N), 
both clusters of sizes N and N+l can be ionized, but the cross section is 
smaller for size N. In the limiting case when h v is in between the two 
ionization potentials, that is, ZP(N) > h v > IP(N+l), only the cluster of 
size N+1 will be ionized. This is the physical basis underlying the 
experiments of Martin and coworkers which led to the discovery of 
shells of atoms in large sodium clusters (see Section 4.6). Two mass 
spectra [58, 591, taken at wavelengths 2 = 415 nm and /I = 423 nm, are 
shown in Fig. 5.5. The cluster abundance oscillates with size, and 
minima are observed for sizes N = 1980, 2820, 3800, 5070, 6550, 8170, 
10200, 12500, 15100, 18000 and 21300. The experiments do not allow 
for a higher precision, but this sequence of sizes reproduces the series N 
= 2869,3871,5083,6525,8217, 10179, 12431, 14993, 17885 and 21 127 
well. This is just the series that can be obtained from Eq. (3.1), that is, 
the series of icosahedral clusters with a number of shells ranging from p 
= 10 (N = 2869) to p = 19 (N = 21 127). The conclusion is that the 
clusters formed in those experiments have icosahedral structure (or a 
cuboctahedral structure, since the same shell closing numbers occur also 
for cuboctahedral clusters). The abundance minima occur in the size 
region of the closed shells and the maxima occur for sizes midway 
between two closed shells. This can be explained by the argument given 
above: the ionization potentials have maximum values for closed 
icosahedral shells and local minima in between [59]. Consequently, for 
mass spectra taken at photon energies near the ionization threshold, the 
lowest ionization cross sections occur for the clusters with closed 
icosahedral shells. 

Although it is clear why the ionization potential has a maximum 
value for a closed electronic shell followed by a drop to a substantially 
lower value, it is less evident why a similar drop occurs after the closing 
of a shell of atoms. Studies for solid surfaces offer a plausible 
explanation. The work function of a metal is lowered by the presence of 
steps on its surface, and the amount of lowering is proportional to the 
step density [60]. It is argued that the steps create a dipole moment that 
lowers the ionization energy. Icosahedral (or cuboctahedral) clusters 
with incomplete shells have atomic vacancies on the surface facets, 
which give rise to many surface steps, accounting for the observed 
lowering of ZP. 



Electronic and Optical Properties of Simple Metal Clusters 115 

Figure 5.5. Mass spectra of sodium clusters ionized with photons of 2.99 and 
2.93 eV. Minima occur at values of N corresponding to icosahedral 

(cuboctahedral) shell closings given at the top. Reproduced from T. P. Martin, 
Phys. Reports 273, 199 (1996) with permission of Elsevier. 

Density Functional calculations have been performed for model 
clusters with bcc structure and nearly spherical shape [61]. The clusters 
were modeled by starting with a central atom and adding a first 
coordination shell of 8 atoms around that central atom, then a second 
coordination shell of 6 atoms, etc. In this way the cluster can be viewed 
as built by concentric spherical atomic shells. In the calculation of the 
electronic wave functions a simplifying approximation was used: the 
total pseudopotential of the ionic background was spherically averaged 
about the cluster center. This is the so called SAPS approximation [62], 
described in Chapter 4. The fact that the model clusters are nearly 
spherical makes the SAPS approximation reasonable. The ionization 
potential P ( N )  was calculated as a function of cluster size in the 
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neighborhood of several atomic shell closing numbers, N = 169, 331, 
531, 941, 1243, 1807 and 2085. The calculations predict that IP 
experiences a drastic change after the completion of a shell of atoms: a 
change of slope was found in all cases, and often also a maximum. The 
clusters formed in the experiments have icosahedral or cuboctahedral 
shapes, that is, these have faceted surfaces and are less spherical than the 
model bcc clusters of the calculation. However, the idea of an 
appreciable change of IP after the completion of atomic shells can be 
expected to be a property valid for different types of atomic shells. 

5.6 Response to a Static Electric Field 

The net force acting on a cluster in the presence of a static (that is, time 
independent) inhomogeneous electric field E(r) can be expanded as 

F = E(ro)jAn(r)d3r+[V.El(ro)[An(r)(r - r 0 ) d 3 r + . . .  (5.19) 

where An(r) = n(r) - n+(r), and n(r) and n+(r) are the electronic and 
ionic densities, respectively. The point ro can be identified with the 
cluster center. The first term in (5.19) does not contribute for a neutral 
system, and the second is the product of [V . E1ro) times the induced 
dipole moment D. If the deformation of the ionic density due to the 
applied field is small, then the force on a neutral cluster is, in first order, 

F = [V . EXr,,)D (5.20) 

where the induced dipole moment can be written as D = aE(ro), that is, 
the product of the static polarizability a and the applied field. The static 
polarizability measures the charge redistribution in the cluster when a 
static electric field is applied. The electric dipole polarizabilities of 
clusters of alkali metals [63, 641, aluminum [65] and semiconducting 
materials [66] have been determined by measuring the deviation from the 
original trajectory of a mass selected cluster beam that travels along the 
axis of a pair of electrodes which produce an inhomogeneous transverse 
electric field. Since the deflection A z  is proportional to the product of 
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V - E and D, both of which are proportional to the applied field, A z is 
proportional to E2 (here E is the root mean square electric field over the 
path length L of the electrodes). 

The measurements for NaN and K N  showed that the polarizabilities 
per atom, dN, follow a downward trend toward the bulk value with 
some abrupt drops related to electronic shell closing (minima of dN for 
N = 2, 8, 18). Results for selected Na clusters are given in Table 5.1. The 
classical static polarizability of a metallic sphere of radius R is a = R 3  
[67], and the experimental results, given in the Table in units of R3, are 
higher than the classical values. The enhancement over the classical 
prediction is due to the spilling of the electronic charge beyond the 
classical cluster radius R in the field-free system. 

Table 5.1. Static electric dipole polarizability of neutral NaN clusters in the 
spherical jellium model, in units of the classical value R3, using different 

descriptions of exchange and correlation (LDA, WDA, SIC; see text). Results 
obtained for a jellium with a smoothed surface (DJM) are also given. R is the 

radius of the spherical positive background. 

N LDA-SJM LDA-DJM WDA- SIC-SJM EXP. 
[711 ~711 SJM [74] ~721 [63,641 

8 1.45 1.71 1.81 1.66 1.77 
18 1.33 1.53 1.59 1.55 1.71 
20 1.37 1.61 1.63 1.59 1.68 
34 1.27 1.46 1.47 1.47 1.61 
40 1.32 1.56 1.53 1.56 1.59 

The polarizability can be calculated using linear response theory in 
the framework of DFT [68]. If the small electric field is characterized by 
a multipole potential SV, = Eo Y ' K,(Q), where Eo is a small number and 
Ylo(Q) is a spherical harmonic, the cluster develops an induced moment 
PI of magnitude PI = al Eo in response to the field. To first order, the 
response of the system is characterized by a small change in the 
electronic orbitals: 4; (r) = 6; (r) + 64; (r ). Using first order perturbation 

theory a set of equations is obtained for the changes 64; (r) 
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v * + vefl (r) - si 64i (r) = --we# (r) 4; (r) . (5.2 1) I 
Here 6 are the one-electron energy eigenvalues associated to the 
unperturbed (field-free) wavefunctions bi and 

is the change in the selfconsistent potential. The second term on the r.h.s. 
represents the change in the electrostatic potential of the electronic cloud 
and the last one is the change of the exchange-correlation potential. The 
calculation of the polarizability proceeds by first solving the Kohn-Sham 
equations for the field-free cluster, and obtaining $i and E; . Solving then 
Eqs. (5.21) and (5.22) to get the hnctions @;(r), the density change 

Sn(r) can be evaluated, and from this the static polarizability 

1 a, = - /d3r  r'Y,,(Q)6n(r). 
EO 

In particular, for a dipole field (I = l),  6V= Eoz, and 

1 a,=, = - Id3r z Sn(r), 
EO 

(5.23) 

(5.24) 

that is, the electric dipole polarizability is the ratio between the induced 
dipole moment and the external field strength. 

Polarizabilities have also been calculated using a finite field 
approach [69]. In that method, a small electric field is applied and the 
Kohn-Sham equations are solved with and without field applied. The 
polarizability is then calculated in a finite difference approximation 

AD.(E) o , ( E ~ ) - ~ ( E  = 0) a.. =I - - (5.25) 
AEj Ej 

(5.22)
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In this equation, E, is the magnitude of the electric field applied along the 
j-axis. The average probability is then obtained as the average of the 
polarizability tensor aii , that is, (a)  = (axx + ayy + a,)/3 . 

The dipole polarizabilities of alkali clusters have been calculated 
using the LDA and the spherical jellium model [70-721. Results reported 
in the column LDA-SJM of Table 5.1 show the expected enhancement of 
a over the classical value. However, compared to experiment, the theory 
still underestimates the polarizability by about 20%. Different 
corrections have been applied. The first one consists of replacing the 
LDA with a better description of exchange and correlation. In a neutral 
cluster, the exchange-correlation potential V x y  (I-) goes to zero 
exponentially outside the cluster. However the exact asymptotic decay 
should be K -1 / r . An improved asymptotic behavior is achieved, for 
instance by a nonlocal description of exchange and correlation effects 
known as the Weighted Density Approximation (WDA) [73]. The slower 
decay of V,,(r) produces a more extended electron density tail, and a 
higher number of bound unoccupied states in the single-particle 
spectrum. Those effects lead to higher polarizabilities [74], improving 
the agreement with experiment. Self-interaction corrections (SIC) also 
include nonlocal effects beyond the LDA. In this approach, the spurious 
self-interaction of one electron with itself which is present in the Hartree 
potential (see Eq. (4.10)) is exactly removed. The polarizabilities also 
improve [72]. A different route for improvement consists in smoothing 
the sharp discontinuity of the jellium background at the cluster surface. 
For this purpose the abrupt step density (see Eq. (4.3)) has been replaced 
by a continuous function modeling a surface with a finite thickness. As a 
consequence, the electronic density is more extended in this diffuse 
jellium model (DJM) and the polarizability increases (column labeled 
LDA-DJM in Table 5.1). All this indicates that a better description of the 
polarizability per atom is obtained with the formula 

(R  + sy a =  
N 

(5.26) 

where 6 measures the spatial extent of the electronic spillout, and is 
nearly independent of R . 
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The static polarizabilities of AIN clusters with N up to 61 have been 
measured by de Heer et al. [65]. A comparison with the predictions of 
the SJM leads to the conclusion that the jellium predictions are 
successful for N larger than 40, but fail for smaller clusters. The 
discrepancies are, in this case, opposite to those found for alkali clusters. 
Namely, the calculated polarizabilities are higher than the measured 
ones. This over-estimation can be ascribed to an over-estimation of the 
radius R, which in the SJM is equal to the radius of a spherical piece of 
bulk matter. In contrast, a contraction of the interatomic distances seems 
to be a general feature in small metallic clusters [75]. Methods using 
pseudopotentials predict smaller polarizabilities [76]. 

The high stability associated to closed electronic shells is a robust 
feature also imprinted in the electric dipole polarizabilities of alkali 
clusters [63, 64, 691: similarly to the inert gas atoms, closed shell clusters 
have a weakly polarizable electronic cloud. Na2, Nag and Nals have low 
polarizabilities compared to neighbor clusters [63, 641. Not only those 
main features, but also the detailed variation of the polarizabilities with 
size N are reasonably reproduced by calculations including the cluster 
geometry [69, 77-79]. In fact, the polarizabilities provide information on 
the cluster structure. A comparison between measured polarizabilities 
and calculations for several isomeric structures of the cluster skeleton 
have been used to identify the most stable geometry [69, 78, 80, 811. For 
the typical temperatures at which polarizabilities are measured, there is a 
delicate interplay between geometry and electronic shell effects [69, 821. 

5.7 Dynamical Response 

5.7.1 Relation between theory and experiment 
The linear response theory can also be applied, within the DFT 
framework, to the case of the interaction between the cluster and a time 
dependent electric field characterized by a potential 

(5.27) 
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This leads to the time dependent Density Functional Theory [83-851. 
The external field induces a time dependent perturbation of the electron 
density 

6i?(r;t) = J’dw e-iw6n(r;w) (5.28) 

with Fourier components &(r;w). The key quantity to calculate the 
response of the system in the linear regime is the dynamical 
susceptibility dr,r’; w), which relates the individual components of the 
induced density to those of the external potential 

(5.29) 

Again the main interest arises in the case of a dipole field. The 
dynamical polarizability oI(w), which is the ratio between the induced 
dipole moment and the intensity of the applied field, becomes 

1 
a(w)  = - J’d3r ziin(r;w). 

Eo 
(5.30) 

The dynamical polarizability reduces to the static one of Eq. (5.24) for w 
= 0. Dissipation results in &(r;w) being a complex function, and its 
imaginary part represents the power absorption of the cluster, that is due 
to electronic excitations. Using the Golden Rule, one obtains the 
photoabsorption cross section 

47x0 a(w) = -Ima(w), 
C 

(5.31) 

where c is the velocity of light and ImoI(w) is the imaginary part of the 
dynamical polarizability. 

Experiments have been performed to measure the photoabsorption 
spectrum. The experimental configuration [64, 861 is shown in Fig. 5.6. 
The cluster beam is first collimated by a rectangular aperture. Further 
downstream the clusters are photoionized by the light of a ultraviolet 
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lamp and the resulting cluster cations enter a quadrupole mass analyzer 
(QMA). Then the cluster beam is illuminated by a collinear and counter- 
propagating laser beam. Upon absorption of light, the clusters warm up 
and fragment. The transverse recoil removes the daughter clusters away 
from the initial direction of motion of the collimated beam, and the ratio 
between the number of clusters of a given size arriving at the detector 
with and without light excitation present is proportional to the absorption 
cross section. 

Figure 5.6. Measurement of the photoabsorption cross section. The collimated 
beam is ionized with ultraviolet light and the ionized clusters enter a quadrupole 
mass analyzer (QMA). A colinear, counterpropagating laser beam heats up the 
clusters. Some clusters evaporate atoms and are removed from the beam. The 

ratio between the number of clusters of a given size arriving at the detector with 
and without laser excitation gives the absorption cross section. Reproduced from 
K. Selby et al., Phys. Rev. B 40,5417 (1989) with permission of the American 

Physical Society. 

The process responsible for the fragmentation of the clusters is the 
excitation of a collective plasmon, which is analogous to the surface 
plasmon excitation in solids. The valence electrons from all the atoms of 
the cluster participate together in this collective resonance, in which the 
electrons move back and forth uniformly against the positive ionic 
background [87]. For sodium clusters, for example, the excitation energy 
of the plasmon is about 3 eV. This energy is higher than the binding 
energy of an atom in the aggregate, which is below 1 eV, and the excited 
cluster decays by evaporating single atoms. Using statistical models, the 
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time required to evaporate an atom, if one assumes that the energy of the 
collective excitation is converted into atomic vibrations, turns out to be, 
for small clusters (say, smaller than N = 40), orders of magnitude smaller 
than the time-of-flight of the molecular beam in the spectrometer. 
Consequently, it can be confidently assumed that the photoabsorption 
and photofragmentation cross sections are equal. When the cluster size 
increases, the time required to evaporate atoms also increases and 
multiphoton absorption techniques have been used [28] .  The surface 
plasmons in metallic clusters are similar to the giant dipole resonances in 
nuclei [88] .  

The integral of 40) leads to the so called dipole sum rule 

e2A2 

0 me c 

m 

f o ( u ) d u  = 2?r2 - 2 ,  (5.32) 

where e and m, are the electron charge and mass respectively, A is the 
Planck constant divided by 2n, and 2 is the total number of electrons 
taking part in the collective motion. Consequently, the experimental 
determination of o(w) helps identifying the collective nature of a 
resonance. The observed resonances of alkali clusters typically account 
for = 60% of the total dipole strength. 

For spherical metal particles of a diameter 2R much smaller than the 
photon wavelength, the classical theory of the dynamical polarizability 
developed by Mie [67] predicts the following expression for the 
photoabsorption cross section 

(5.33) 

where wie and r represent the frequency and the width of the 
resonance, respectively. This relation assumes that all the dipole 
oscillator strength is exhausted by the surface plasma resonance at mie. 
The frequency of the single dipole resonance, representing the collective 
oscillation of the valence electrons with respect to the positive ions, is 
related to the cluster radius by 
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w,, = \i-. ZA 3c 
m,R3 

(5.34) 

This gives for aie a value equal to one third of the bulk plasma 
frequency q1. 

5.7.2 Sum rules 
The photoabsorption cross section is determined, through Eq. (5.31), by 
the imaginary part of the polarizability tensor a(@). Alternatively [89], 
one can use the strength function S(E), which is related to the 
polarizability a(@) by 

2 1  s(E)= CG(E-E~)~(~(Q~O)(  = --Ima(w), (5.35) 
n ?T 

where 10) represents the electronic ground state of the cluster and the 

sum is extended over the excited “many-body” states of the system. 

En are the excitation energies and E=A w. The operator Q represents the 
external field, the electric dipole operator in most cases of interest. For 
some applications the full response is not required and a knowledge of 
some moments of the strength function, 

n 

mk = J ~ E E ~ s ( E ) ,  (5.36) 

also called sum rules, is enough to have a correct picture of the physical 
processes (in this equation k is an integer number, positive or negative). 
For instance, the centroid (that is, the average energy E) and the 
variance o2 of the photoabsorption spectrum can be obtained from the 
knowledge of mo, ml and m 2 ,  as E = rnllmo and o2 = mdmo - (mllmo) 2. 
A direct evaluation of the moments is difficult because the whole 
spectrum of excitations is needed, but the odd moments can be obtained 
without much effort with RPA precision [89, 901. The RPA, or Random 

- 
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Phase Approximation [9l], can be derived as the small amplitude limit 
of the time dependent Hartree-Fock theory by linearizing the equations 
of motion. The characteristic feature of RPA is to construct excited states 
as a superposition of one particle-hole excitations. The linear moment 
ml for the electric dipole operator is model independent, and its RPA 
value 

A2e2Z 
m, =- 

2me 
(5.37) 

is exact, so one obtains the sum rule of Eq. (5.32). 
By defining mean energies as ek = (mk/mk.2)"2, the bounds el I E I e3 

and 025(e3' - eI2)/4 can be demonstrated. Another result is that the 
inverse energy-weighted sum rule m-1 is related to the static 
polarizability [92] 

m-, = a / 2 .  (5.38) 

Consequently, one may estimate the centroid and the variance of S(E) by 
evaluating the three RPA moments m.1, ml and m3. The physical 
significance of the upper limit e3 of B i s  that of a rapid oscillation 
(diabatic) of the valence electrons against the ions, whereas the lower 
limit el is connected with a slow adiabatic motion of the electrons 
adjusting their density at any moment to the external field. This lower 
limit turns out to be a good estimation of the experimental energy of the 
collective excitation for metallic clusters [28, 891. The moment m3 
represents the restoring force parameter for the collective translational 
oscillations of the electrons against the ionic background [89]. For a 
model of spherically symmetric densities m3 is given by an overlap 
integral of the electronic and ionic densities [93] 

(5.39) 
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This integral is easily evaluated for a cluster of radius R = ~ ~ 2 ’ ’ ~  in the 
spherical jellium model (Y, is related to the average electron density no of 
the bulk metal by r, = (3/4nn#3 ), giving 

(5.40) 

where 6z measures the net spillout of the electronic charge beyond the 
radius of the positive ionic background, that is 

m 

6~ = 4x J’r’n(r)cir. (5.41) 
R 

By neglecting the electronic spillout (6z=O), then 2m-l=R3, and 

e 3 = 4 A 2 e 2 2  I m,a = el gives the resonance frequency of the classical 
Mie surface plasmon. In general, if most of the absorption strength is 
concentrated in a narrow region, E is a good estimation for the 
resonance energy. This is the starting point of the plasmon-pole models. 
In those models el = e and the knowledge of the static polarizability 
determines the value of the dipolar plasma resonance energy as 

- 

(5.42) 

where a,, = ,/-’, is the bulk plasma frequency. For 6z = 0, 
e3 becomes equal to the classical Mie frequency. 

Table 5.2 gives the calculated bounds el and e3 of the dipole surface 
collective mode for some neutral and charged Na and K clusters [74]. 
LDA labels the results obtained using the local density approximation to 
exchange and correlation in the calculation of the density and the single- 
particle orbitals needed in the RPA formulas for mk and ek. On the other 
hand, NL corresponds to results using a nonlocal approximation [73]. 
The experimental energies of the surface plasma resonance are in 
reasonable agreement with el ,  in particular when the NL approximation 
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is used, and those experimental values are given in parenthesis under the 
calculated value of el(NL). The effect of the charge is to increase the 
resonance energy. The analysis of el and e3 for larger clusters shows that 
the resonance energy increases with size [74], a prediction in agreement 
with experiment [94]. The theory also allows to obtain an upper bound of 
the variance of the photoabsorption cross section, but the predicted 
widths of the resonances are, of course, larger than the experimental 
widths. The variance is found to decrease by charging the cluster. 

Table 5.2. Calculated RPA mean energies el and e3 (in eV) of the dipole surface 
collective mode of neutral and charged sodium and potassium clusters. LDA 

and NL refer to the local density and nonlocal approximations to exchange and 
correlation effects. The experimental surface plasma resonance energies are 

given in parenthesis. Data collected from [74]. 

LDA Na8 

NL Nag 

LDA NazO 

NL Na20 

LDA K8 

NL Kx 

LDA K20 

NL K20 

2.83 3.14 

2.53 2.81 
(2.53) 

2.9 1 3.14 

2.67 2.97 
(2.46) 

2.2 1 2.32 

1.96 2.12 

2.25 2.37 

2.06 2.24 

LDA Nag' 

NL Nag+ 

LDANaz,' 

NL Na2,+ 

LDA K g  

NL K g  

LDA K2,+ 

NL KZI' 

3.05 3.16 

2.79 2.93 

3.04 3.19 

2.77 3.03 

2.33 2.39 

2.13 2.22 
(1.93) 

2.32 2.40 

2.16 2.28 
(1.98) 

The general expressions for the odd moments corresponding to q- 
and 1- dependent external fields jl(qr)Ylo(Q) are given in [89]. This field 



128 Structure and Properties of Atomic Clusters 

represents the angular decomposition of an incident photon, described as 
a plane wave ei(qr-ot). With those operators one can analyze the multipolar 
response and also the inelastic scattering of electrons. In small metallic 
clustes, and for fields of high multipolarity, there is a competition 
between the Coulombic contribution to the response (diffusivity and 
collective excitations) and the kinetic energy contribution (single-particle 
excitations). The later dominates for large I or large momentum transfer 
q, indicating the vanishing of collective effects. The response of a 
metallic sphere to a photon of intermediate energy is dominated by 
dipolar excitations, and at large energies by electron-hole excitations 
[89, 95, 961. 

5.7.3 Calculation of the dynamical susceptibility 
Let us return to the calculation of the susceptibility dr,r';w), which is 
required to obtain &(r;w) and then a(@). In its Kohn-Sham formulation, 
DFT is a theory of independent particles moving in an effective 
selfconsistent potential. Thus Eq. (5.29) can be written in the alternative 
way 

sn( r; w ) = fd r ' xo (r , r I ;  w > W~ (r I ;  w ), (5.43) 

where xo(r,r'; w) is the noninteracting (or independent-particle) 
dynamical susceptibility and 6 Vedr; w) is the selfconsistent perturbing 
potential 

wef (r; w )  = v,, (r; w)+ J d 3 r f ~ ( r ,  r'; co)sn(r'; w), (5.44) 

sum of the external potential Vcxt(r;w) and the induced potential (the 
second term). The nonlocal kernel K(r,r';m) is the sum of the electron- 
electron Coulomb interaction and an exchange-correlation local field 
correction 

(5.45) 
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An adiabatic (frequency independent) approximation is usually taken for 
the local field correction 

(5.46) 

and, if the LDA is used for Exc[n], then Kxc becomes a local hnction of r. 
Since the results for &(r;w) from Eqs. (5.29) and (5.43) are the same, 
the following relation between the noninteracting and interacting 
dynamical susceptibilities is obtained [83-851 

This Dyson-type equation, which has to be solved iteratively, closes the 
calculation of &r,r';w), once xo(r,r';w) is known. The last quantity has 
the expression [83, 841 

occ 

Z[#:(rb;(r')G(r,r';&; + ho)+4,.(rk:(r')G'(r,r';Ei -hw)] (5.48) 
I 

where #i are the occupied single-particle orbitals of the Kohn-Sham 
Hamiltonian for the field free cluster, .g are the corresponding one- 
electron energy eigenvalues and G(r,r'; zi Ifr ho) are the retarded 
Green functions associated to the effective Kohn-Sham ground state 
potential 

[ E + i V 2  - Vefl (r) G(r,r'; E )  = S(r - r'). 1 (5.49) 

When the LDA is used all along for exchange and correlation, this 
formalism is known as TDLDA [83-851. 
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5.7.4 Spherical clusters 
Linear response theory can be applied to study the interaction between a 
cluster and a time dependent electric field. The TDLDA, in conjunction 
with the jellium model, follows the Mie result of Eq. (5.33) in a 
qualitative way, shown schematically in Fig. 5.7. The dipole absorption 
cross section of spherical sodium clusters usually exhibits a dominant 
peak, which exhausts 75-90 % of the dipole sum rule, and is shifted by 
10-20 % with respect to the Mie result. The centroid of the strength 
distribution tends towards the Mie resonance in the limit of a 
macroscopic metal sphere. Its red shift in finite clusters is a quantum 
mechanical finite size effect closely related to the spillout of the 
electrons beyond the jellium edge. About 10-25 % of the dipole strength 
is typically found at higher energies, and can be interpreted as a 
reminescence of a strongly fragmented volume plasmon. Often, the 
dominant peak is fragmented into two or more lines. For spherical 
clusters this can be attributed to the interference of specific particle-hole 
(or more complicated) excitations with the predominant collective mode, 
This fragmentation may be compared to the Landau damping in a solid. 

The results of a TDLDA calculation [97, 981 of the photoabsorption 
spectrum for Nazo within the spherical jellium model are shown in Fig. 
5 . 8 .  The dotted curve is the spectrum obtained using the independent 
particle susceptibility ~0 in Eq. (5.29), and the continuous line is the 
result for the interacting susceptibility x . The ground state electronic 
configuration of Na20 in the spherical jellium model is ls2 lp6 Id" 2s2. 
Above these occupied subshells there are other, unoccupied ones, If, 2p, 
l g ,  2d, 3s, 3p, and the peaks in the noninteracting spectrum represent 
allowed particle-hole excitations in which one electron is promoted from 
an occupied state to an unoccupied one. When electron-electron 
interactions are switched on (using the fully interacting x) some particle- 
hole transitions are shifted in energy, and others lose their individual 
identities, merging into a collective resonance. 

Compared to experiments, the LDA calculations for the spherical 
jellium [89, 981 yield an insufficient red shift of the collective Mie 
resonance. This is connected to the predicted low polarizability. It is 
evident for Nazo in Fig. 5.9, where the calculated resonance lines [98] 
have been broadened to simulate finite temperature effects [89, 991. The 
form of the LDA spectrum is similar to the experimental one [loo], but 
the main LDA peak is shifted 0.3 eV to higher energy. 
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Figure 5.7. Collective dipole spectrum of sodium clusters. S(W) is plotted as the 
percentage of the total dipole strength ml, normalized to 100% (see Eqs. (5.32) 

and (5.37)). The lowest panel represents the classical limit, where all the 
strength is concentrated in the surface plasmon, of frequency &ie,  and the 
volume plasmon (of frequency ql) has zero strength. For finite clusters the 

surface plasmon is red shifted and its missing strength is distributed over the 
remainder of the strongly fragmented volume plasmon. Reproduced from M. 

Brack., Rev. Mod. Phys. 65,677 (1993) with permission of the American 
Physical Society. 
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The physical process underlying the fragmentation of the spectrum 
of Naz0 is, however, not well described by the LDA. In this calculation, 
fragmentation occurs because of the proximity to the plasmon resonance 
line of a particle-hole excitation (2s -3p)  with energy AU = 2.8 eV. 
In addition, the 3p subshell is practically degenerate with the vacuum 
level, and the fragmented line is broadened by the proximity of one- 
electron transitions from the 2s states to scattering states in the energy 
continuum. In contrast, the experimental ionization threshold lies at an 
energy of 3.76 eV, more than 1 eV higher than the main plasmon peak. 
A calculation using a jellium with a smooth surface (the deformed 
jellium model of Table 5.1) improves the position of the dipole 
resonance [7 11. 

Figure 5.8. Imaginary part of the dynamical polarizability (per electron) of Nazo. 
The calculations employed the spherical jellium model and the LDA. Dotted 
and continuous curves are obtained using the noninteracting (xo) and fully 

interacting (x?, dynamical susceptibilities. Reproduced from A. Rubio et al., Znt. 
J. Mod. Phys. B 11,2727 (1997) with permission of World Scientific. 

Replacing the LDA by a nonlocal description of exchange and 
correlation provides a step in the correct direction. A calculation [97] 
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using the Weighted Density Approximation [73] (the continuous line in 
Fig. 5.9) shifts the plasmon resonance to lower energies, with the main 
peak now at 2.56 eV, substantially improving the agreement with the 
experiment. This effect arises from a better description of the asymptotic 
(large I-) region of the exchangexorrelation potential V,, and from the 
improvement of the local field correction in Eq. (5.46). The more 
accurate V,, also leads to an accurate ionization threshold, 3.27 eV, 
which does not interact with the plasmon because of the large separation 
between those two features. Instead, a shoulder develops at = 2.7-2.8 
eV, and a pronounced secondary peak appears on the low energy side of 
the resonance, at ~ 2 . 2  eV, both features being due to the interaction of 
the plasmon with particle-hole excitations. Three resonances observed 
[loll  at ~ 2 . 1 9 ,  2.41 and 2.76 eV, support the predicted spectrum in the 
region below 2.9 eV. Calculations including self-interaction corrections 
(SIC) also improve the results with respect to the LDA [102, 1031. 

Figure 5.9. Calculated (LDA, WDA) [97, 981 and experimental [ 1001 
photoabsorption cross sections (per electron) of Nazo. Arrows mark positions of 
observed peaks [ 1011. Reproduced from A. Rubio et al., Znt. J. Mod. Phys. B 11, 

2727 (1997) with permission of World Scientific. 
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Figure 5.10. Calculated photoabsorption crosss sections, per electron, of sodium 
cluster anions. The clusters are described by the spherical jellium model and the 
nonlocal WDA approximation was used for exchange and correlation. Arrows 

mark the binding energy of the least bound level. Reproduced from A. Rubio et 
al., Int. J. Mod. Phys. B 11, 2727 (1997) with permission of World Scientific. 

Interesting effects can be expected when the plasmon excitation 
energy is close to the ionization threshold. This is the case for large 
cluster anions [97, 1041. For small negatively charged clusters, the 
electron detachment threshold is low, and the energy of the collective 
resonance lies in the region of electronic excitations to the continuum of 
states, where Landau damping produces a broadening of the resonance. 
This is noticed by comparing the calculated spectrum of Na,$ given in 
Fig. 5.10 with that for neutral Nazo in Fig. 5.9 (both clusters have 20 
electrons). The electron detachment threshold of Na, is indicated by 
the arrow in the figure. As the cluster size increases, the plasmon 
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approaches the region of discrete states. Then, when the detachment 
threshold of the negative cluster lies in the region of the plasmon 
resonance, electron emission becomes a decay mechanism which 
competes with the usual one of atom evaporation. The calculated 
photoabsorption cross sections of Na;, and Na,, are also given in Fig. 
5.9. In those two clusters, the detachment threshold overlaps with the 
collective resonance. 

Reiners and Haberland [lo5 J have measured the photoabsorption 
cross section of Na,, and have found a broad collective resonance 
centered at 2.65 eV (its width is 0.92 eV), whose decay can lead to two 
final channels: atom and electron emission. They also state that the 
electron emission contributes an extra escape width. The calculated 
position of the collective resonance in Fig. 5.10 is 2.69 eV, in good 
agreement with experiment. Changing the net cluster charge, from 
anionic to neutral and then to cationic clusters, for a fixed total number 
of valence electrons, has the effect of shifting slightly the plasmon to 
higher energies. For instance, the maximum of the resonance occurs at 
2.65 and 2.77 eV for Na;, and Nai3 respectively; the corresponding 
width decreases from 0.92 eV to 0.5 1 eV. 

5.7.5 Effect of shape deformations 
In clusters with open electronic shells, a splitting of the dipole resonance 
is observed which is a consequence of the static deformation of the 
cluster shape. A double peak in the photoabsorption cross section has 
been observed for K and Na clusters [64, 106, 1071, and for Ag clusters 
in the region 10 INS 16 [108]. The two modes correspond to 
excitations along and perpendicular to the main axis of the spheroid. 

The results for cationic Sodium clusters [ 1071, shown in Fig. 5.1 1, 
reveal the systematics of cluster shapes when adding electrons to the N = 

8 and N = 20 spherical clusters. The observed trend goes: 
spherical -+prolate -+oblate spherical. This systematics is reproduced 
by total energy calculations within the spheroidal jellium model [37], 
and the splitting of the collective resonance is obtained by the TDLDA 
applied to the deformed clusters [109]. For larger clusters, it is difficult 
to disentangle the effects originating from static shape deformations 
from those due to the fragmentation mechanism discussed above. 
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A splitting of the dipole resonance into three peaks has been 
observed in some Na clusters [64, 1071. This is interpreted as 
corresponding to collective vibrations of the valence electrons in the 
directions of the principal axis of a triaxially deformed cluster and has 
motivated the extension of the jellium model to fully triaxial shapes 
[110-1131. Let us illustrate these ideas with two examples, Nal2 and 
Na14, taken from the work of Lauritsch et al. [ 1101. 

Figure 5.11. Experimental photoabsorption spectra of NaN cations. Lorentz 
functions are fitted to the data. Reproduced from J. Borggreen et al., Phys. Rev. 

B 48, 17507 (1993) with permission of the American Physical Society. 

The potential energy surfaces of those two clusters were calculated 
with the intention to study the splitting of the dipole resonance as well as 
the competition between possible isomers with different shapes. The 
triaxial deformation of the uniform background can be classified in terms 
of the Hill-Wheeler coordinates p and y [43]. p describes the overall 
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quadrupole deformation. y = 0", 120", 240" describe prolate 
deformations, and y =  60°, 180", 300" oblate ones; all other values of y 
give truly triaxial shapes, In addition to the shape deformation of the 
positive background, the jellium background was also allowed to have a 
diffuse density profile [71]. The ground state of Na12 is triaxial, with 
deformation parameters p = 0.54, y= 15", and is energetically well 
separated from competing prolate and oblate configurations. Nal4 is 
characterized by axially symmetric minimum energy structures: the two 
lowest configurations, prolate and oblate respectively, are almost 
degenerate in energy. The oblate minimum is rather soft in the y 
direction whereas the prolate minimum predicts stiffer y vibrations. The 
pronounced shape isomerism found for both clusters bears some 
resemblance to that found by fully microscopic quantum chemical [ 1 141 
and ab initio DFT calculations [ 1151. The resonance energies of the 
collective dipole excitations were obtained from the approximate 
expression 

(5.50) 

obtained from the RPA sum rules [SS]. In this equation, Vex, is the 
electrostatic jellium potential, and i runs over the spatial directions, i.e., 
r, = {x ,  y, z }  for the triaxial clusters and ri = {Y,  z }  for axial ones. 

Table 5.3. Surface dipole plasmon energies (in eV) for the triaxial ground state 
of Na12 and for the oblate (OE) and prolate (PE) isomers of Na14 , obtained from 

the RPA sum rule, Eq. (5.50). Data collected from [110]. 

Triax. OE PE 

hwx Am, Am, Aw, Awz Aw, Aw, 
2.857 3.238 2.313 2.531 3.401 3.102 2.313 

Na12 Na14 Na14
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The resonance energies, calculated for the ground state of Nalz and 
for the two degenerate minima of Na14 are given in Table 5.3. Three 
different resonances are obtained for Na12, reflecting its triaxial shape. 
The three energies are in qualitative agreement with the experimental 
peaks [107, 641, although the calculated energies are 10-15% too high 
due to the simple sum rule approximation used. Each of the two 
competing axial isomers of Na14 is characterized by a double peak 
structure where Am, has double weight compared to Am,. The actual 
strength distribution will be an incoherent superposition of the two 
isomeric minima. 

Kohl et al. [ 1 161 extended the calculations to a larger set of sodium 
clusters (N = 2-20). They confirm the results of the spheroidal jellium 
model: prolate clusters after the magic numbers N = 2 and N = 8, and 
oblate ones before N = 8 and N = 20. However, a transition region 
formed by triaxial shapes was found separating the prolate and oblate 
ends. The width of the transition regime is very small between N = 2 and 
N = 8, containing only the cluster N = 5, but comparatively large 
between N = 8 and N = 20. The triaxial minimum is well developed in 
Na5 but the others are extremely soft, such that thermal fluctuations will 
easily wash out the triaxial signatures in the dipole resonance energies. 
For cationic Na', clusters, Kasperl et al. [ 1 111 have concluded that the 
signal of triaxiality on the resonance energies is faint for clusters larger 
than N a i  . The mechanisms responsible for the width of the plasmon 

resonance have been investigated [ 1171 for the spherical clusters Na,' , 

Nail  andNai ,  in the framework of the structurally averaged jellium 
model [ 1 181. In this model the effects of the ionic structure are added in 
an averaged manner: first, as an additional potential on the electrons, 
second as an average Madelung energy in the volume, and third as an 
ionic surface energy. The two leading mechanisms for the line 
broadening are fragmentation of the resonance into nearby particle-hole 
transitions, and splitting through thermal quadrupole fluctuations [99]. 

5.7.6 Effect of the ion granularity 
The experimental photoabsorption cross section of the closed shell 
cluster Nai l  indicates a plasmon resonance in the region 2.65-2.74 eV; 
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more precisely, at 2.65 eV in [106], at 2.68 eV in [107], and at 2.74 eV 
in [119], with an averaged value of 2.69 eV. Although this cluster is 
isoelectronic with Naza , the plasmon resonance occurs at a slightly 
higher energy in Nal, , due to the stronger confining potential. A 
TDLDA calculation within the jellium model, shown in the upper panel 
of Fig. 5.12, gives 2.95 eV, overestimating the energy of the plasmon 
[120]. The introduction of nonlocal corrections to exchange and 
correlation improves the position of the resonance (2.63 eV), but a well 
separated fragmentation peak appears. This fragmentation has not been 
observed, although a shoulder has been detected by Borgreen et al. [lo71 
and by Reiners et al. [119] on the blue side of the peak. 

The cross sections obtained with the SAPS model are plotted in the 
bottom panel of the same figure. The structure of this cluster is rather 
spherical (Oh symmetry in a recent calculation [78]), so the use of the 
SAPS model is justified. The LDA again overestimates the experimental 
plasmon energy, but the nonlocal (WDA) calculation places the plasmon 
at 2.70 eV; this time the strong fragmentation has disappeared, and only 
small features remain at 3.0 eV and 3.5 eV, which correlate with the 
observed shoulders [107, 1191. The photoabsorption spectrum of Nai,  
has also been calculated [121] using SAPS and the WDA, and the 
position and shape of the plasmon resonance are again in good 
agreement with experiment. The TDLDA formulation has been applied 
[122] to calculate the optical spectrum of the closed shell clusters Na,' 
and Nals using the perturbative extension of the S A P S  model discussed 
in connection with Eq. (4.30). Quantitative agreement with experiment 
was obtained, but the method becomes difficult to apply to clusters with 
low symmetry. 

TDLDA calculations of the optical spectrum with a full account of 
the geometry of the cluster have also been performed. Apart from being 
more realistic compared to other calculations retaining only the overall 
shape characteristics, this can provide a method to determine the cluster 
geometries. Sometimes the differences in binding energy between the 
ground state and some low lying isomers obtained by ab initio 
calculations are so small as to cast doubts about the calculated lowest 
energy structure, and a comparison of the experimental optical spectrum 
and those calculated for different isomers with similar energies can help 
in the identification of the ground state. 
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Figure 5.12. Calculated photoabsorption spectrum of Na2,+ in the jellium and 
SAPS models. Dashed and continuous curves correspond to LDA and nonlocal 
WDA treatments of exchange and correlation. Arrows indicate the position of 
the plasmon, averaged over three experimental results. Reproduced from A. 
Rubio et al., Z. Phys. D 26,284 (1993) with permission of Springer-Verlag. 

A method based on a space and time representation of the response 
functions of large systems has been developed that takes advantage of 
the rather sparse Hamiltonian matrix in a coordinate representation [ 123, 
1241. The advantage is related to the localization range of the 
independent particle susceptibility xo (r, r ’; W )  and other response 
functions, since localized objects are easily described in real space. In 
practice, the response functions o f  nonmetallic systems decay rapidly as 
lr-r’l+ 0 0 ,  so that for each r, xo(r,r’;u) needs to be calculated only 
for r’ inside a region o f  radius R,, around r. However, for metals and 
small gap semiconductors the decay rate may be slow and R,,, may span 
many unit cells. This problem can be solved by a mixed space 
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representation xq (r,r’;u) of the response functions , where r and r’ are 
restricted to a single cell and q spans the irreducible part of the Brillouin 
zone [124]. The method, described in references [98] and [ 1241, has been 
adapted to clusters by using a supercell formalism, in which the unit cell 
is periodically repeated in space [125]. The unit cell volume has to be 
sufficiently large to avoid interaction between clusters in neighbor cells. 

Figure 5.13. Photoabsorption cross section of Li8. Jellium model (dashed line); 
full account of the geometrical structure (continuous line). The centroid of the 
experimental resonance is indicated by the arrow. The inset shows the cluster 

structure. 

The calculated lowest energy structure of Li8, given in Fig. 5.13, is a 
centered trigonal prism with an atom capping one of the lateral faces. 
The averaged value of the electric dipole polarizability (&, ,+q, ,+q,) /3  is 
97 A3 [125, 1261, which is larger than the SJM value of 63 A3. From 
classical arguments, a larger polarizability should correspond to a lower 
resonance frequency, so a red shift of the resonance with respect to the 
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jellium value of 3.5 eV should be expected (the jellium spectrum is given 
by the dashed curve in Fig. 5.13). Indeed, the effect of explicitly 
accounting for the cluster structure (the continuous curve spectrum) 
produces a redshift of 1 eV which leads to agreement between the 
calculated resonance at 2.45 eV and the experimental value of 2.5 eV 
[127]. The red shift can be tracked down to an increase of the electron 
effective mass, an effect of the Li pseudopotential. The nearly isotropic 
polarizability tensor explains the presence of a single resonance. 

Other authors have accounted for the cluster structure in TDLDA 
calculations using different methods. Vasiliev et al. [ 1281 have 
calculated the optical spectrum of Na,, Na4 and Nag. The TDLDA 
remarkably reproduces the experimental spectral shape [ 1291, and the 
peak positions agree with experiment within 0.1-0.2 eV. The calculated 
spectrum of Na2 exhibits three peaks in the 2-5 eV range. Na, has a 
rhombic shape and its spectrum consists of three peaks in the 1.5-3.0 eV 
range, and a broader feature at higher energy. The results are almost as 
accurate as the spectra calculated by the Configuration Interaction 
method [130]. For increasing cluster size the spacing between the 
discrete lines decreases, evolving towards the collective plasmon. For 
Nag a single peak is already obtained. Vasiliev et al. have stressed the 
importance of electronic screening, discussed above in connection with 
Fig. 5.8. Pacheco and Martins [ 13 13 have calculated the photoabsorption 
cross section of Li8, Li20, Nag and Nazo. 

Another efficient method has been developed to calculate the optical 
spectrum in finite systems. This is achieved by directly solving the time 
dependent Kohn-Sham equations of DFT after introducing a small 
(linear) perturbation to the ground state electronic wave functions. This 
method, originally used to study nuclear reactions [ 1321 has been later 
applied to clusters [133-1351. The linear dipole response is obtained 
from the time dependent induced dipole moment of the electron cloud 

i = l  

(5.51) 

More generally, as an output one obtains the induced density &(r,t) 
from which, by Fourier transformation to frequencies w, one can infer 
the optical spectrum. For instance, the dynamical polarizability 40) is, 
essentially, the Fourier transform of the dipole moment D(t). One 
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interesting aspect of the method is that it also allows to calculate the 
response of the system to a strong external field beyond the linear 
regime; for example, the reponse to intense ultrashort laser pulses. 
Marques et al. El341 have applied the method to Na2 and Na4, 
investigating the performance of several exchange-correlation 
functionals: the LDA, the generalized gradient approximation (GGA), 
and others. The agreement with experiment is quite good, but the 
calculated peaks are slightly shifted towards higher energies for all the 
functionals tested. This was explained by the competition between the 
Coulomb repulsion contribution to the response and the electron-hole 
attraction from the exchange-correlation part (see Eqs. (5.45) and 
(5.47)); that is, the electronic transition energies can be expressed [ 1341 

(5.52) 

for a given valence-conduction (v +- c) transition. For the usual adiabatic 
approximation of Eq. (5.46), AXc introduces only an effective static 
attractive electron-hole interaction. Dynamical effects may be needed in 
the kernel to recover this minor effect. 

Quantum chemical Configuration Interaction (CI) methods have 
been applied by Bonacic-Koutecky and coworkers [136], with an 
effective core potential. CI provides an accurate account of electronic 
correlations. A comprehensive study of cluster cations, NaN+, N = 2-9, 
1 1 ,  2 1, was performed, and the depletion spectrum was constructed from 
the oscillator strengths for the optically allowed transitions. The 
comparison between the experimental spectrum and those calculated for 
several isomers with competitive energies allowed to discriminate clearly 
between those competitive isomers. This capacity to determine the 
cluster structure of small clusters is one of the virtues of a detailed 
analysis of the optical spectrum. 

5.7.7 Vibrational structure of the optical response 
The calculated ground state structure of Li4+ is a rhombus [137] and the 
electronic wave function has 'BlU symmetry. The optical spectrum is 
given in Fig. 5.14. The spectrum calculated whithin linear response using 
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quantum chemical methods, shown by the vertical lines and the dotted 
curve in the lower panel of the figure, is in excellent agreement with the 
experimental spectrum at 105 K, given by the data points and the solid 
curve in the same panel [137]. The shape of the spectrum, with three 
large peaks, is remarkably similar to that of NQ+ [137]. The line near 2 
eV is due to a transition to the first electronic excited state of *Ag 
symmetry. This peak looks noisy. Using a laser frequency scan with 
higher resolution Ellert et al. [137] were able to resolve the noisy peak 
into two sharp peaks, with energies of 1.950 and 1.988 eV, respectively, 
and two (or possibly three) broad peaks. This fine structure has been 
interpreted as due to vibrational structure of the excited state. In a similar 
way, the peak at 2.8 eV is resolved into two sharp peaks and a broad one. 

Figure 5.14. Optical spectrum of L i l .  The calculated absorption spectrum is 
shown by vertical lines and Lorentzian broadening is indicated by dashed lines. 

Data points give the measured cross section. These have been fitted to 
Gaussians (solid lines). Peaks are resolved in the top panels. Two sharp peaks 
are labeled vl and three broad peaks as v2. Reproduced from C. Ellert et al., J. 
Chem. Phys. 117, 373 1 (2002) with permission of the American Institute of 

Physics. 



Electronic and Optical Properties of Simple Metal Clusters 145 

The distance between the two sharp peaks in the upper left panel is 
3 8 + 2  meV, a value in very good agreement with the calculated 
vibrational spacing (39.6 meV) of the totally symmetric vibration of the 
excited *Ag electronic state. The two broad peaks on the right side of the 
sharp ones are at a distance of 5-20 meV from these. Since there are 
several excited state vibrations in that energy range, the broad structure 
could be due to unresolved transitions into those vibrational states. 

5.7.8 Thermal line broadening 
When comparing the calculated optical spectrum to experiment, the 
spectral lines, calculated for a static geometrical configuration of the 
cluster, are broadened through convolution with Gaussian or Lorentzian 
functions [109, 1241. A precise description of absolute magnitudes, peak 
positions and line broadening can be achieved by calculating the 
photoabsorption cross sections along finite temperature molecular 
dynamics simulation trajectories. Moseler et al. [ 1381 have calculated the 
TDLDA optical spectra of Na3+, Nag+ and Nagf at finite temperatures by 
averaging the calculated cross sections for a propagation time of 10 ps. 
The results are shown in Fig. 5.15. Na3f has the form of an equilateral 
triangle, and its optical spectrum at 100 K, given in panel (a), shows two 
peaks. The low energy peak originates from two transitions, 
Am, = Aw, = 2.65eV, from the occupied s-like state to two empty p -  
like states with orbitals in the plane of the cluster. The three relevant 
orbitals are shown in the inset on the left of panel (a). The second peak, 
centered at an energy of 3.41 eV, is due to the excitation to the otherp- 
like orbital, perpendicular to the cluster plane (see inset on the right side 
of the same panel). The positions of the two calculated peaks agree well 
with experiment, given by the continuous line [139]. The intensity and 
width of the low energy peak are correctly predicted, but the measured 
high energy peak is less intense than the calculated one. The reason is 
that the experimental cross section is determined by measuring the 
photodepletion of the Na3+ intensity due to dissociation. The two p-like 
states in the cluster plane are antibonding, so excitation into these states 
promotes dissociation, but excitation into the p-like state perpendicular 
to the cluster plane does not have a direct destabilizing effect. Thermal 
motion distorts the symmetry and lifts the degeneracy of the wl and @ 

transitions. The mean bond distance is anticorrelated with the average of 
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y and a, and also with y. The experimental linewidth can then be 
explained by the combined effect of (1) the line splitting caused by 
symmetry breaking (called degeneracy lifting by Moseler et al., and (2 )  
breathing vibrations (or spectral sweeping mechanism). 

Figure 5.15. Theoretical (histograms) and experimental (solid curves) 
hotoabsorption cross sections of Na3+, Na5+ and Nag'. Insets in panel (a) show 
density contour plots for relevant electronic orbitals. Contour plots in panels (d) 

and (e) correspond to the total electron density. Insets on the right sides of 
panels (b), (c), (d) and (e) give the oscillator strength for cluster structures 
shown on the left. Reproduced from M. Moseler et al., Phys. Rev. Lett. 87, 

053401 (2001) with permission of the American Physical Society. 
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At a temperatute of 100 K the dynamics distorts the ground state DZd 
symmetry of Nag+ (compare structures a and p in the inset in panel (b), 
where the left triangle of structure p is more elongated) and fragments 
the absorption line at Aw = 2.8 eV into two spectral lines (compare the 
oscillator strengths given in the upper right inset in panel (b)). Increasing 
T to 300 K results in bent geometries (structure y in panel (c)). In this 
case the low energy line at 2 eV is fragmented. All the lines are further 
broadened by the effect of the breathing modes. For larger clusters, 
thermal isomerization leads to another line broadening mechanism, 
which adds to the other two discussed above. The ground state of Nag’ is 
oblate (the contours of constant electron density have the shape of an 
ideal oblate spheroid). Consequently the absorption lines at T = 100 K 
have a bimodal distribution, with further broadening arising from the line 
fragmentation and breathing mechanisms. By increasing the temperature 
to 450 K, the spectrum transforms to one with a single broad maximum. 
The main reason for the change in shape is the transformation between 
the low temperature ground state structure a (a tricapped trigonal prism) 
and the isomer labeled p. The static spectrum of this isomer is shifted to 
lower energies compared to that of the ground state, and the broad 
spectrum at 450 K is due to contributions from both isomers. 
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6. Melting and Fragmentation of Metal 
Clusters 

6.1 Melting Transition 

The melting transition of clusters of inert gas atoms has been discussed 
in Section 3.3.2. Apart from its scientific interest, the melting of small 
particles may have some technological implications. In sintering 
processes, fine powders are compressed and heated until the particles 
coalesce. A linear reduction of the melting temperature as a function of 
the inverse particle radius IIR has been observed. This is mainly due to 
the substantial fraction of atoms on the surface [ l ,  21. Consequently, 
lower sintering temperatures are required for particles with very small 
radii. In addition, given the present trend to nanoscale technologies, the 
extremely small size of the components will affect their electrical and 
mechanical stabilities at elevated temperatures. The case of metallic 
clusters presents specially interesting features. Since the melting 
temperatures are higher, compared to those of the inert gas clusters, the 
experimental problem of observing the melting transition is, in principle, 
more tractable. The vanishing of the electron diffraction pattern of the 
crystalline solid phase has been used to study the melting of small gold 
and tin particles supported on surfaces [ l ,  21. On the other hand, 
theoretical simulations become substantially more difficult because the 
interatomic potentials are more complex in metals. The alkali metal 
clusters represent a particularly intriguing case. 

6.1.1 Experiments for  large alkali clusters 
The observed magic numbers of alkali clusters with sizes between 1500 
and 22000 atoms indicate (see Section 4.6) that these clusters grow as a 
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solid polyhedron with the atoms arranged in an icosahedral or a 
cuboctahedral (fcc) structure (the set of atomic shell closing numbers do 
not distinguish between the two structures). The experiments show that 
the melting point of alkali metal clusters depends strongly on the cluster 
size. 

Figure 6.1. Difference mass spectra of sodium clusters using near-threshold 
photoionization. Abundance minima are compared with geometric shell closings 

(vertical lines). Reproduced from T. P. Martin el al., J.  Chem. Phys.lOO, 2322 
(1994) with permission of the American Institute of Physics. 

A method introduced by Martin and coworkers [3] and applied to 
sodium clusters is based on monitoring the disappearance of the 
geometric shell structure in the abundance mass spectra as the clusters 
are progressively heated. Sodium vapor was quenched in cold (100 K) 
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He gas having a pressure of 1 mbar, and the clusters formed were 
transported by the He gas stream through a nozzle. The nozzle, made of 
copper metal, was heated resistively. Carefully chosen dimensions of the 
length and inner diameter of the nozzle ensures that the clusters come 
into thermal equilibrium with the nozzle walls, and in this way the 
temperature of the clusters can be controlled. After leaving the nozzle, 
the heated clusters were ionized with a 415 nm laser pulse. These 
photons have energy close to the ionization threshold of the clusters. A 
known feature, not yet fully explained (see however, the discussion in 
Section 5.5) is that the ionization potential is a local maximum for large 
clusters with full geometrical shells (sizes N = NK),  and that ZP drops to a 
lower value for N = NK +l.  From this size and up to the next shell closing 
IP grows smoothly. Consequently, for photon energies near to the 
ionization threshold, the ionization cross section favors open shells and 
the intensity in the mass spectrum shows an oscillatory structure with 
minima at the geometrical shell closing numbers [4, 51. 

Table 6.1. Melting temperatures T, of NaN clusters, and ratio between T, and 
bulk melting temperature Tmh. R is the cluster radius. 

Shell N R @ )  T, T S m h  

6 
7 
8 
9 
10 
11 
12 
13 
14 

923 
1415 
2057 
2869 
387 1 
5083 
6525 
8217 
10179 

_I 

16.0 
18.4 
20.9 
23.3 
25.8 
28.2 
30.7 
33.1 
35.6 

288f  4 
288k 4 
288k4  
294k 2 
298k 2 
298f  2 
303f  3 
303k 3 
3032 3 

0.776 
0.776 
0.776 
0.792 
0.803 
0.803 
0.817 
0.817 
0.817 

Some of these spectra are shown in Fig. 6.1, where a smooth average 
function has been subtracted from the spectra in such a way that the 
spectrum oscillates around zero. Each spectrum has been marked by the 
corresponding nozzle temperature, that is, the temperature of the clusters. 
The spectrum at T = - 80" C shows seven oscillations for sizes between 
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2000 and 10000 atoms, and the minima correlate with the number of 
atoms required to fill icosahedral or cuboctahedral shells (indicated by 
the vertical lines) [6]. The minima only occur for a low intensity of the 
ionizing radiation (< 0.05 mJ/cm2). At 18" C the features for the smallest 
shells begin to disappear, and at the same time the minima for the larger 
shells shift to lower N .  The first effect indicates that the smallest clusters 
in the spectrum have melted and this erases the peculiar size differences 
in the ionization efficiency noticed for the lowest temperatures. The 
second effect indicates that the increasing temperature also affects the 
structure of the larger clusters. At 23" C, shells corresponding to shell 
numbers K = 6, 7, 8 and 9 have disappeared. Two more shells, K = 10 
and 1 1, disappear at 26" C. Finally, all the shells have disappeared at 34" 
C. The measured melting temperatures T, are collected in Table 6.1, as 
well as the ratio between T, and the measured bulk value Tmh = 371 K. 

A thermodynamic argument [7, 81 gives the following expression for 
the melting temperature of spherical particles as a function of its radius R 

1 T,  = l + c . - ,  
Tnh R 

where c is a constant. If the clusters are assigned the radius of a sphere 
into which N sodium atoms can be packed, assuming the filling factor of 
an icosahedron (that radius is given also in Table 6.1), and the ratio 
T,/Tmb is plotted versus 1/R , then the measured ratio does not 
extrapolate well to the value of 1. Two main factors might account for 
the discrepancy. Bulk sodium has the bcc structure while the structure of 
clusters with 1500-20000 atoms is most likely icosahedral. A transition 
to the bcc structure has to occcur for still larger sizes, and this indicates 
that the clusters studied in Fig. 6.1 perhaps are not yet in the asymptotic 
region, with respect to Eq. (6.1). A second possibility is that surface 
melting may occur before volume melting, with the surface disordering 
affecting the ionization cross sections. 

6. I .2 Calorimetric measurements of melting of medium size 
clusters 
A different way of measuring the melting temperatures has been 
employed for smaller clusters. The method introduced by Haberland and 

(6.1)
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coworkers [9-131 determines directly the caloric curve E = E(T), and 
melting is associated to a change in the slope of that curve. The basic 
process underlying this experiment is the temperature dependence of the 
photofragmentation pattern of a size-selected cluster 

That is, the cluster sequentially absorbs n photons of energy h a  and 
emits on the average x neutral atoms. 

Figure 6.2. Schematic photofragmentation mass spectra as a function of the 
temperature of the heat bath. The uppermost panel is the spectrum of the 

selected cluster without excitation. Reproduced from M. Schmidt et al., Phys. 
Rev. Lett. 79, 99 (1997) with permission of the American Physical Society. 

The first step in the experiment is to produce a beam of cluster ions 
of known temperature. This is achieved by passing the beam through a 
thermalization chamber containing He gas. After 105-106 collisions with 

(6.2)
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the buffer gas the clusters acquire a canonical distribution of internal 
energy. Next, a time-of-flight mass spectrometer is used to select a given 
size, for instance Nu,',, in the specific experiment now described [9]. 
The beam of clusters of selected size and fixed temperature is irradiated 
with a laser of fixed photon energy AU . The absorbed photons heat the 
clusters an these begin evaporating Na atoms, as in Eq. (6.2), when the 
cluster reaches its evaporation temperature. The photofragmentation 
spectrum is characteristic of the initial temperature of the clusters and the 
photon energy A u .  An example is shown in the second panel of Fig. 
6.2. The photon energy in that experiment was chosen shuch that an 
average of four neutral atoms are ejected per absorbed photon. At the 
temperatute TI the first three peaks to the left of the initially selected 
cluster result from absorption of n photons by the cluster. Those three 
masses correspond to Nu;, , and Nu;, , that is, to the emission 
of two, three and four Na atoms, respectively. The next group of three 
masses, Nu:,, , NuL2 and Nu:, , result from the absorption of n+l 
photons, etc. That is, different numbers of absorbed photons lead to 
separate groups of fragments with the distance between two groups 
corresponding to exactly one photon. The experiment can be repeated, 
but now thermalizing the initial cluster ion beam at a temperature 
different from T I .  The third and fourth panels of the figure show the 
measured photofragmentation spectra for temperatures T2 and T3 higher 
that T I .  The mass distributions shift to smaller cluster sizes. Temperature 
T2 is an intermediate case; however, for T, the intensity maxima occur 
for the same masses as for T I .  In other words, the first three peaks at T3 , 
similar to the first three peaks at TI, result from the absorption of n-1 
photons. 

Consequently, the effect of the temperature increment bT = T3-T, is 
the same as that of an energy increase & = AU due to the absorption of 
an additional photon. Figure 6.3 shows the measured intensity of the 
particular fragment Nu:&, corresponding to a loss of three atoms, as a 

function of the initial temperature of the parent Nu;, . A maximum of 
intensity means that one of the maxima seen in Fig. 6.2 has reached this 
photofragment, while a minimum in Fig. 6.3 indicates that the chosen 
photofragment is in between two such distributions in Fig. 6.2. The 
energy difference between maximum and minimum is therefore 
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dE = A U / 2 ,  so the mean heat capacity in the temperature range 
between maximum and minimum is 

with T = (TI - T2)/2. 

Figure 6.3. Intensity of fragment Na136+ as a function of the temperature of the 
selected parent NaI3;. Extrema are indicated by the vertical lines. Reproduced 
from M. Schmidt et al., Phys. Rev. Lett. 79, 99 (1997) with permission of the 

American Physical Society. 
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Repeating the procedure for all maxima and minima of the observed 
cluster fragments allows to generate the heat capacity curve C(T), plotted 
in Fig. 6.4. A peak is observed in that curve, and fitting the data to a 
Gaussian function in the neighborhood of the melting point 

-(T-T,)' /2A2 

gives q = 1.98 eV, A = 12.6 K, and T,,, = 267 K. For comparison, q = 
3.69 eV and T,,,, = 371 K for melting of the solid metal. The reduction in 
both quantities for clusters is understandable since a cluster has a 
substantial fraction of atoms on its surface. 

Figure 6.4. Measured heat capacity of NaI39+. The continuous line corresponds 
to solid sodium. Reproduced from R. Kusche ef al., Eur. Phys. J. D 9, 1 (2000) 

with permission of Springer-Verlag. 

Returning to Fig. 6.3, one can notice that the distance 8 between 
maximum and minimum decreases in the vicinity of the melting point. 
From Eq. (6.3) a smaller 6T gives a larger C(T). An improved method 
has been developed by the same authors that allows to obtain directly the 
caloric curve [ 101. 

The measured melting temperatures of clusters Nass to Na3s0 are 
given in Fig. 6.5 as a function of size [14]. T, lies in a band between 200 
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and 300 K and shows substantial oscillations. Most properties of clusters 
show a trend of quickly converging to their bulk values as the cluster 
size increases. However, that trend is absent in T,. This is not too 
surprising since the trend is not clear even for the very large clusters of 
Table 6.1. More surprising is the absence of a correlation between the 
maxima of T, and the magic numbers for the filling of electronic or 
geometrical shells. The electronic magic numbers control the size 
dependence of a number of properties of sodium clusters, and for the 
range of sizes in Fig. 6.5, the electronic magic numbers are N = 59, 93, 
139, 199, ... (notice that the clusters are singly ionized, so the number of 
valence electrons is N-1). On the other hand, the geometric magic 
numbers for icosahedral structures are N = 55, 147 and 309. 

Figure 6.5. Size dependence of the melting temperature (upper curve), latent 
heat of fusion per atom (middle curve) and the entropy change upon melting 
(lower curve) of NaN+. Error bars are given only for N above 200. The error 

bars for Tmelt have about the size of the symbol used. The solid lines overlapping 
partially with the entropy data result from a calculation using a hard sphere 

model. The upper panel indicates icosahedral growth pattern. Reproduced from 
H. Haberland et al., Phys. Rev. Lett. 94,035701 (2005) with permission of the 

American Physical Society. 
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The explanation for the behavior of T, has been provided by 
Haberland ef al. [ 141. In the heat bath used to therrnalize the clusters the 
ensemble acquires a canonical energy distribution [ 151, and this 
ensemble undergoes melting when the free energies ( E  - TS) of the solid 
(s) and the liquid ( I>  are equal. This gives E, - T,S, = El - T,S[, that is, 

4 s -- - E l - E  
Sl -S, A S I N  

T, = 

One can notice in Fig. 6.5 that the latent heat of fusion q and the entropy 
of melting per atom A S N  have almost the same size dependence: both 
display oscillations with the cluster size N and their maxima are clearly 
correlated with the filling of geometric shells, mainly icosahedral. Filling 
of complete icosahedral shells shows up at N = 55, 147, and icosahedra 
with “caps” added or subtracted are recognized at N = 116, 178, 216. 
However, due to the similar size dependence of q and ASIN, their ratio 
T, becomes a smoothed function of N where the effects of shell closing 
are hidden. 

The caloric curves of sodium clusters have some universal features 
independent of the cluster size: apart from the transition region, the 
values of the specific heat correspond well to bulk Na, as one can see in 
Fig. 6.4. Averaged over many cluster sizes C = 3.3 k 0.05 ke per atom for 
the solid phase and C = 4.08 f 0.05 kB for the liquid. Another interesting 
result is that backbending, that is, a negative heat capacity, has been 
discovered in the experimental caloric curve of Na147 [ 131, consistent 
with earlier predictions of the possibility of a negative microcanonical 
heat capacity for small systems (see also Section 3.3.4). 

6.2 Computer Simulation of Melting 

6.2.1 Computer simulations using approximate methods 
The computer simulations reveal a complex picture of the melting of 
alkali metal clusters. An essential difference with respect to the case of 
inert gases studied in Chapter 3 is that the potential energy giving the 
interaction between alkali atoms in the cluster cannot be expressed as a 

(6.5)
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sum of two-body terms, and the computer simulations become 
substantially more difficult. Calvo and Spiegelman [ 161 performed 
Monte Car10 (MC) simulations for Na clusters with 8 to 147 atoms using 
an empirical many-atom potential of the Embedded Atom Model (EAM) 
family [17], with an analytical form derived in the context of the tight- 
binding (TB) formalism [18]. The same authors also performed 
simulations using a TB Hamiltonian [ 191. The unification of DFT and 
molecular dynamics (MD) formulated by Car and Parrinello [20] allows 
for an explicit treatment of the electronic degrees of freedom, and 
Rytkonen et al. [21] have presented results for the melting of N Q ~ .  
However, the relatively large number of atoms required a fast heating 
rate in the simulations. The reason can be appreciated by writing the 
equations of motion for the ions 

where Ri indicates the ionic positions and F; the forces on the ions. The 
electron density n(r) and the energy E [ n ; { R j } ]  of the cluster have to be 
calculated at each step, that is, for each geometrical configuration of the 
atoms in a MD trajectory, and this becomes tedious when those quanti- 
ties are obtained by solving the Kohn-Sham equations of the DFT [22], 
that is Eqs. (4.7). Large computational savings can be obtained by using 
an orbital free (OF) energy functional in the Car-Parrinello MD simula- 
tions, that is, an energy functional in which the kinetic energy of the 
electrons is formulated as a functional of the valence electron cloud n(r). 
The expression 

d’r  (6.7) 
1 IVn(r)(’ 

72 n(.) 
T[n] = A ( 3 ~ ’  In(.)” d 3r  + A- 

is characteristic of such a family of energy functionals. The first term on 
the r.h.s. is the kinetic energy in the Thomas-Fermi model, obtained by 
using locally the expresion for a free electron gas [22], and the second 

(6.6)
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one is a correction accounting for the inhomogeneities of the electron 
density. The value of the constant 2. depends on the type of density 
variations in the system (notice that the orbital free functionals have been 
briefly introduced in Section 5.1). In this case the electron density n(r) 
corresponding to a given configuration of the atoms is obtained directly 
by integrating the Euler equation 

where ,u is the chemical potential, and the expression on the left hand 
side of this equation is the functional derivative of the total energy 
functional. E[n] is the sum of several terms. One of these is the 
electronic kinetic energy of Eq. (6.7) and the remaining terms are well 
known (see Chapter 4): electron-ion interaction, classical electron- 
electron interaction and electronic exchange and correlation. 

Using this functional for the kinetic energy of the valence electrons, 
with A = 1, which is adequate for a slowly varying density [22, 231, and 
replacing the ion cores by local pseudopotentials, the melting of Na 
clusters has been studied [24, 251 by constant energy MD simulations. 
The melting transition was identified in the simulations by an analysis of 
the usual indexes, namely the specific heat (Eq. (3.8)) and the bond 
length fluctuations d(Eq. (3.1 1)). For small clusters a melting transition 
in stages is predicted [24]. For Nag and Na20 the melting transition is 
spread over a broad temperature interval of = 100 K. The heat capacity 
of Nag presents a sharp peak at T = 110 K, coincident with an stepwise 
increase of 6. This is followed by a steady increase of s(T), until a 
leveling off occurs at T =: 220 K. The temperature T = 110 K marks the 
onset of isomerization transitions among the permutational isomers of 
the low temperature structure (a dodecahedron). With increasing 
temperature, those isomerizations become more frequent and carry 
progressively stronger distortions of the structure, until at T = 220 K all 
the atoms diffuse across the cluster volume and its shape changes 
continuously, indicating that the liquid phase is fully established. Since 
this effect is progressive, it does not result in a peak in the specific heat. 
The specific heat of Nazo presents two peaks at 110 and 170 K, 
correlating with abrupt increases of S at 110 and 160 K respectively. 

(668)
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Then 6 levels off at = 220 K. The peak at T = 110 K marks the onset of 
isomerization transitions between permutational isomers almost 
preserving the low temperature structure (a capped double icosahedron). 
The peak at T = 160 K arises from the transformation of the double 
icosahedron to a new structure with a single central atom. The exchanges 
of this atom with one of the 19 surface atoms occur at a slower rate than 
the interchanges between surface atoms. The 19 surface atoms are very 
mobile and the cluster shape fluctuates a great deal. Finally, at T = 220 
K the structure has become very fluid. 

Constant temperature MD simulations by Bulgac [26, 271 using a 
phenomenological interatomic potential found for Nag a transition at T -- 
100 K, from the solid-like phase to a phase characterized by occasional 
atom interchanges while the atoms stay for relatively long periods close 
to their equilibrium positions. Monte Carlo (MC) simulations by Calvo 
and Spiegelmann [ 161 using an empirical potential predicted melting at T 
= 80-100 K, while tight-binding MC simulations [28] predict T, -- 200 
K. In view of the complex behavior revealed by the orbital free 
simulations those early results are not surprising. For NaZo the tight- 
binding [28] and empirical potential simulations [16, 26, 271 predict 
melting in two steps, the first one involving the surface atoms only. The 
occurrence of melting in steps has been associated to a soft repulsive 
short-range (core-core) interatomic interaction [29]. This is, indeed, the 
case for sodium [24]. 

Direct calorimetric measurements of the melting temperature of such 
small clusters have not been performed , but the temperature dependence 
of the photoabsorption cross section has been reported [30, 311 for Na,', 
N =  4-16. Although the spectra do not show evidence for a sharp melting 
transition, encouraging comparison between theory and experiment can 
be established. The spectrum of Na8 does not change appreciably until T 
= 105 K, where it begins to evolve in a continuous way. One can notice 
that this temperature is close to the temperature (T = 1 10 K) predicted by 
the OF simulations for the beginning of a broad melting transition. 

The complex behavior of small Na clusters could be expected, 
because in those clusters most of the atoms lie on the surface. Only for 
larger clusters inner atoms begin to experience a bulk-like environment. 
The melting of NaS5, Nag2 and Na142 has been studied by MD simulations 
using the OF energy functional [25]. The precise low temperature 
structure of those clusters is not known. DFT calculations within the 
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CAPS model (see Section 4.7.2) for Na55 predict a structure close to 
icosahedral [32]. Calvo and Spiegelmann [ 161 also predicted icosahedral 
structures for NaS5, Na93, Na139 and Na147. Consequently, icosahedral 
structures (complete or incomplete) were taken as plausible candidates to 
start the OF simulations of the heating process for NaS5, Na92 and Na14z 
[25]. The specific heat of Nal42 displays a main peak at T -- 270 K and a 
smaller one at T = 240 K. Those two peaks are so close that only one 
slope change is distinguished in the caloric curve. After an analysis of 
the atomic motions the peak at T = 240K can be associated with surface 
melting. The diffusion coefficient 

D(T)=--(r2(t))T I d  
6 dt 

which is obtained from the long time behavior of the mean square atomic 
displacement 

n N  

( y 2  ( l ) )  = q [q (to + t ) -  l-; (to )] 2 , (6.10) 
Nn, j=1 ;=I 

shows a sharp increase of slope at this temperature. In the last equation nt 
is the number of time origins toj considered along a trajectory, and the 
average is taken over the whole trajectory. The peak at T = 270 K 
represents complete melting. At low temperatures the radial atomic 
density distribution (with respect to the cluster centre) displays the 
atomic shells characteristic of the icosahedron. Those shells broaden as T 
increases. Above the surface melting temperature, the shells disappear 
gradually, and further changes in the slope of D(T) are not detected. At T 
= 270 K the atomic density distribution is nearly uniform across the 
cluster. The experimental melting temperature of Na142 is near 270 K 
(see Fig. 6.5)), in excellent agreement with the theoretical prediction. 
Also the latent heats of fusion, q,(experimental) = 14 meV/atom, and 
q,(theoretical) = 15 meV/atom, are in good agreement. 

Two-step melting is also predicted for Na92, with a small peak in the 
specific heat at T = 130 K, and a large peak corresponding to 
homogeneous melting at T = 240 K. In this case the two features are 
well separated. The position of the high peak and the latent heat, qm = 8 

(6.9)
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meV/atom, are in excellent agreement with experiment, T -- 220 K and 
qm = 6 meV/atom. D(T) is again very sensitive to surface melting, when 
appreciable diffusive motion begins. The results of the MC simulations 
[16] for clusters with sizes in the range on 100 atoms are consistent with 
the OF simulations: two-step melting is predicted for Na139 and Na93, the 
two features being close in Na139 and well separated in Na93. 

The orbital free simulations predict that Na55 melts in a single step at 
T = 190 K. The single step melting is also predicted by the MC 
simulations [ 161. The experiments indicate a substantial enhancement of 
the size dependent melting temperature at N = 55 (see Fig. 6.5). The 
melting temperature of this cluster is even higher than that of Na142+
which is a local maximum. Neither the OF simulations discussed above 
or the MC simulations reproduce this feature. Blaise and Blundell [33] 
performed OF calculations for a value A = 1.44 in the functional of Eq. 
(6.7). The calculated melting points, shown in Fig. 6.6, show that T,,, of 
Na5: is a local maximum compared to clusters with similar sizes, but 
again this melting temperature is clearly smaller than those of clusters in 
the size range of about 140 atoms. Another observation from Fig. 6.6 is 
that the calculated melting temperatures are substantially smaller than 
the experimental ones. They are also smaller than the melting 
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temperatures obtained by Aguado et al. [24, 251, and the main reasons 
may be the different pseudopotential used and the different value of A in 
the kinetic energy functional; differences in the statistical mechanics 
technique used to obtain T,,, may also contribute. 

Improved results have been recently obtained [34] with a kinetic 
energy functional n n ]  = TW + Tp , where Tw is the second term in the 
r.h.s. of Eq. (6.7), with A= 9, and 

5 3 --2p - 
T - - k (r)2d3r, 

- 10 
(6.1 1) 

(6.12) 

where k(r) = ( 3 7 ~ ) ” ~  n(r)4 k; is the Fenni wave vector corresponding to 
the mean electron density no in the cluster and WAX) is a weight function. 
With this new functional, and p = 0.51, the predicted melting 
temperatures of NaN clusters with N = 55, 92, 147, 181, 249, 271, 281, 
and 299 differ from the experimental values by about 10 K only. 
Although very small clusters have not been studied, this OF functional 
leads to more compact heat capacity curves with a single maximum, in 
better agreement with experiment. A shoulder replaces the pre-peak 
obtained using the functional of Eq. (6.7) and this shoulder reflects the 
fact that melting begins at the surface 

6.2.2 Ab initio simulations 
The Kohn-Sham formulation of DFT has been combined with the MD 
methodology by Car and Parrinello [20], providing a powerful formalism 
to perform first principles dynamical simulations. The melting of small 
clusters of simple metals has been studied using this formalism. Blundell 
and coworkers [35] studied Nag and Nazo with the double objective of 
testing ionic pseudopotentials and of comparing the results with those of 
the OF simulations. The results of all models are qualitatively similar, 
but the precise positions of the peaks in the specific heat are sensitive to 
the pseudopotential. Nag, Nalo, Na14, Na20, NQ and Na55’ were studied 
by Rytkijnen et al. [21]. The simulations for each cluster started from a 
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low temperature structure known from other works, or expected. In the 
case of NQ a rather spherical structure, cut from the icosahedron, was 
assumed. At about 175 K this cluster transforms to an energetically more 
favorable structure characterized by an octupole deformation. This 
structure, evidently more stable than the starting one at low T, preserves 
the main features of the electronic structure, that is, the electronic shells 
well known from the jellium model, and has a wider HOMO-LUMO 
gap. The melting transition was explored with two traditional indicators, 
the caloric curve and the diffusion coefficient. Na20 was observed to melt 
in the region 235-275 K. Na40 melts around 300-350 K. Melting 
broadens the density of electronic states of this cluster, but the HOMO- 
LUMO gap remains open, approximalety 0.4 eV wide. The gap only 
closes at higher temperatures. Na5< melts around 310-360K. For clusters 
smaller than Na20 the melting region could not be identified. Liquid Naa 
also exhibits enhanced octupole deformation, and liquid Na20 and Na55+ 
are prolate. The predicted melting temperatures appear too large 
compared to the experimental ones of Fig. 6.5, and this may be due to 
the fast heating rate in the simulations, which prevents achieving true 
thermal equilibrium at a given temperature. 

The thermal behavior of All,- and A114 shows some differences 
[36]. A distinct transition does not show up in the heating simulations, 
and isomerizations between the starting icosahedral structures and other 
structures, mainly decahedral, are seen frequently. Those isomerizations, 
which are reflected as peaks in the potential energy as a function of 
temperature, occur by a mechanism where the atoms collectively twist 
between the different isomers and no diffusion is involved. For instance, 
in the case of AlI4 the outermost atom does not float around. Instead, this 
atom often inserts itself into the cluster, causing a “new” outer atom to 
pop out on the opposite side. Some of the isomerizations in Al,, 
involve more drastic structural changes, causing the cluster to depart 
from its low temperature quasi-spherical shape, and, in fact, the behavior 
at the highest temperatures studied (= 1500 K) is consistent with a 
molten phase. The vibrational density of states of Al,3- , obtained as the 
Fourier Transform (power spectrum) from the velocity-velocity 
autocorrelation function, shows a shift towards lower frequencies as T 
increases, and a gradual smearing out, supporting the interpretation of 
gradual melting above 1000 K. The melting of bulk aluminum metal 

- 
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occurs at 933 K, and it is likely that the difficulties for performing long 
simulations may account for the overestimation. 

6.3 Clusters with Abnormally High Melting Temperature 

The fact that the melting point of finite particles is lower than the 
melting point of the bulk material is well established, but the evolution 
of T, with the cluster size can be very intricate, as for the sodium clusters 
considered in Section 6.1.2. Small Sn clusters present even more 
surprising features, since melting temperatures higher than the bulk value 
have been reported [37]. Ion mobility experiments were performed to 
search for the melting transition. In an ion mobility experiment [38] 
mass selected cluster ions are pulled through a buffer gas by a weak 
electric field and the average collision cross section of the ion with the 
gas atoms is measured. The cross sections depend very sensitively of the 
cluster shape; that is, compact spherical clusters have lower collision 
cross sections than prolate or oblate clusters, so the mobility 
measurements in conjunction with theoretical simulations are able to 
provide information on cluster shapes. This approach has been used 1391 
to examine the room temperature structures of SnNf clusters with N up to 
68. Clusters with N between 25 and 35 adopt prolate geometries, and 
DFT calculations show that the structural growth pattern has similarities 
with the structures found for Si and Ge clusters [37, 391. A change to a 
roughly spherical shape is expected on melting, so this transition should 
be easily detected by the mobility experiments. 

Measurements were performed, using He as the buffer gas, for 
several temperatures up to 555 K, which is 50 K above the melting 
temperature of bulk Sn (505 K). Figure 6.7 shows the measured 
mobilities at 300, 378 and 555 K. The plot gives relative mobilities, 
obtained by dividing the measured mobility by the mobility calculated 
for a sphere of volume NV, , where V, is the volume per atom in the bulk 
solid. Values significantly less than 1 .O indicate that the geometries 
deviate substantially from sphericity The results for the three 
temperatures are nearly identical, indicating that the Sn clusters retain 
their prolate shapes up to at least T = 555 K, so the conclusion is that the 
clusters remain solid. It is intriguing if Si and Ge, belonging to the same 
column of the Periodic Table, would present similar features. However 
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the much higher melting temperatures of those two elements in the bulk, 
1687 K and 1201 K, respectively, makes experiments difficult. The high 
melting points of some clusters may have technological implications. 
Nanodevices built from those materials may retain their structural 
integrity and functionality at much higher temperatures than anticipated, 
and this may result particularly interesting in the case of Si and Ge. 

Figure 6.7. Mobilities of tin cluster cations at several temperatures. Values 
significantly less than 1 .O indicate geometries substantially deviating from 

spherical. Reproduced from A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. 
Lett. 85, 2530 (2000) with permission of the American Physical Society. 

Theoretical calculations have attempted to explain the peculiar 
behavior of the Sn clusters. DFT calculations for N < 20 have confirmed 
the prolate structures [40]. The calculated binding energies are 
exceptionally large. For instance, the binding energy of Snlo (2.77 
eV/atom) is only I 1 % lower than the calculated cohesive energy of bulk 
Sn (3.08 eV/atom). Taking into account that in small clusters most atoms 
are on the surface, the implication of the large binding energies is that 
the bonds between the Sn atoms in the clusters are stronger than in the 
bulk, and this was proposed as the main reason for the high melting 
points. It is useful to notice that the theoretical prediction for the bulk 
cohesive energy is rather good; the experimental value is 3.14 eV/atom. 
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However, the measured binding energies [41] of SnN with N c 8 are 
about 15-20% lower than the calculated values (these grow from 1.208 
eV/atom for Sn:! to 2.628 eV/atom for Sn8). So, if one assumes similar 
errors for clusters in the size range 9-20 atoms, the true binding energies 
may not be so high. 

Joshi et al. [42] have performed ab initio MD simulations of the 
heating of Snlo. The ground state structure at low temperature is a tetra- 
capped trigonal prism. This structure can be seen as the tricapped 
trigonal prism (TTP), that is a trigonal prism with atoms capping the 
three lateral faces, plus one additional atom capping one of the basal 
faces of the prism. The TTP unit is often found in the Sn clusters [40]. A 
first isomer of Snlo lies 0.06 eV above the ground state and retains the 
TTP unit. Other isomers lie about 1 eV or more above the ground state, 
and in those the l T P  unit is absent or highly distorted. The localization 
of the electron density in the ground state indicates that the bonding is 
significantly covalent. It may be useful to notice that the most common 
solid allotropic form of Sn below 286 K (a-Sn) is a semiconductor with 
covalent bonding, while the stable form above that temperature, P S n ,  is 
metallic. The DFT simulations of the heating produce an specific heat 
curve with a shoulder around 500 K and a main broad peak at a much 
higher temperature (2300 K). The position of the shoulder correlates 
with the temperature at which the root mean square bond length 
fluctuations significantly increase. Inspection of the atomic motions 
reveals that the shoulder is due to structural isomerizations between the 
ground state and the first isomer. Those isomerizations preserve the TTP, 
and the only effect is that the atom capping the triangular face moves 
towards one side of the triangle. The system can subsequently return to 
the lowest energy structure by a different route involving some 
interchange of atoms. Only at much higher temperature are other isomers 
visited. 

The same authors studied Snzo [43]. Its ground state structure is 
prolate, formed by two TIT units stacked end to end. Several low lying 
isomers were found, corresponding to different relative orientations of 
the two TTP units. Those isomers have excitation energies of order 0.01 
eV per atom. Other higher lying isomers are nonprolate, and have 
energies L- 0.1 eV per atom above the ground state. The DFT molecular 
dynamics simulations of the heating of Snzo predict a specific heat curve 
characterized by a small peak around 500 K and a broad main peak 
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centered at = 1200 K with a shoulder on its left side, at = 800 K. The 
small peak at 500 K is due to internal rearrangements within each TTP 
unit which do not distort their shape. The distortion of at least one TTP 
unit begins around 800 K, together with the interchange of atoms 
between the two units. Finally, the collapse of the prolate structure 
towards a more compact one occurs at =. 1200 K. This collapse will 
cause a change in cluster mobility in the experiments. The analysis of the 
rms bond length fluctuations 6(Eq. (3.11)) shows that the value 6= 0.1, 
that according to the Lindemann rule indicates melting in the bulk, is 
reached quite early, around 650 K. This arises from the atomic 
interchanges within the individual TTP units, but a full diffusive 
behavior of the atoms over the whole cluster only occurs at -- 1200 K 
and above, so the main transition at this temperature was identified as the 
melting of SnZo. A drastic reduction of the HOMO-LUMO gap also 
occurs at T = 1200 K. This is due to the disordering introduced in the 
system and not to a change in the nature of the bonding from covalent to 
metallic. In fact, the average number of nearest neighbors does not 
change after the collapse of the prolate structure. In conclusion, the fact 
that practically all the atoms in small Sn clusters are surface atoms, so 
that the atomic coordination remains necessarily low, helps to preserve 
the covalent bonding, and the persistence of the covalent bonding seems 
to be the reason for the high melting temperatures. 

Tin and lead nanocrystals offer similar surprises. Onion-like 
graphitic carbon cages containing Sn and Pb nanocrystals inside have 
been produced by Banhart and coworkers [44]. Figure 6.8 shows an 
electron microscopy image of a Sn nanocrystal with a diameter of 14 nm, 
with a spherical graphitic particle formed by several carbon shells firmly 
wrapped around the nanocrystal. Irradiation under the electron beam is 
required to produce a perfect encapsulation. The lattice fringes of the 
core of the particle show the presence of Sn in the solid crystalline phase. 
The spacing of the fringes is 0.29 nm, corresponding to the (200) lattice 
planes of P S n .  The specimen temperatures were varied between room 
temperature and 1100 K, and, in fact, the image of the figure was taken 
at 770 K. 

A striking observation is that the nanocrystal is solid at a temperature 
well above the usual melting temperature of solid p S n  (T, = 505 K). 
Further observations at higher temperatures of 920 and 1020 K indicated 
tha.t the encapsulated nanocrystals are molten at those temperatures. As 
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for Sn, superheating has also been observed for Pb nanocrystals [44]. 
Although the melting temperature of Pb is 600 K, encapsulated Pb 
nanocrystals were observed to be solid at 740 K. On the other hand, the 
encapsulated Pb nanoparticles are molten at 870 K, indicating that the 
melting occurred between those two temperatures. 

Figure 6.8. Sn nanocrystal with a diameter of 24 nm encapsulated by a graphitic 
particle with onion-like structure. The nanocrystal shows the lattice fringes of 
the crystalline structure of solid p S n ,  although the specimen is superheated to 

770 K. Reproduced from. F. Banhart, E. Hernandez and M. Terrones, Phys. Rev. 
Lett. 90, 185502 (2003) with permission of the American Physical Society. 

The mechanism proposed by Banhart et al. for the observed 
superheating is an increase of pressure inside the carbon onions. The 
observed self-compression of carbon onions and the nucleation of 
diamond crystals in their nucleus under irradiation [45] indicate that 
irradiation leads to a buildup of high pressure at the cluster core. This 
occurs because the electron irradiation causes the sputtering of carbon 
atoms from the outer graphitic shells. In parallel with this case, the 
superheating of the encapsulated nanocrystals could be due to the high 
pressures exerted by the graphitic shells. This proposal is supported by 
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the results of molecular dynamics simulations of the heating of Pb 
crystals under pressure [45]. No explicit encapsulating cage was modeled 
in those simulations, but the use of a large cell, with 256 atoms, and 
periodic boundary conditions, emulates the effect of encapsulation. The 
application of a small pressure (0.5 GPa) only raises the melting 
temperature by some 20 K. But at 2.5 GPa the crystal does not melt up to 
860 K. This is close to the temperature at which all the encapsulated Pb 
nanocrystals were observed to be liquid. Then, a pressure of 2-3 GPa 
was estimated for the effect of the graphitic onions of the nanoclusters. 
Evidently, this mechanism for raising the melting temperature is 
different from that operating in the small free Sn clusters, but it is 
intriguing that those effects have only been detected for Sn (and Pb). 

6.4 Optical Properties and Melting 

A comprehensive study of the temperature dependence of the optical 
spectrum of NaN+ clusters with N I 16 has been published by Haberland 
[30, 311. The optical spectra of all these clusters shows sharp features at 
low temperatures, and those features broaden as the temperature is 
increased, although the broadening is not accompanied by an overall 
shift. Between 35 and 105 K the number of peaks in each spectrum 
remains constant. At low temperatures the clusters have a definite 
geometrical structure and the atoms just oscillate around the equilibrium 
positions. The measured spectra agree well with those calculated by 
theoretical methods taking into account the structure of the clusters [46], 
although some small details are still not reproduced. For temperatures 
higher than 105 K the changes in the optical spectrum are significant. 
The peaks broaden, although for some clusters the number of peaks does 
not change. This is the case, for instance, for N a +  and Nag+. The line 
width for these two clusters increases linearly with TI'*. For other 
clusters, some peaks merge into a broader one. For instance, the low 
temperature double peak of Nag becomes one broad peak at higher 
temperature; for Na,,', six well resolved lines transform into two broad 
peaks. All those changes occur gradually as the temperature is increased 
and no special feature can be detected indicating melting. This is not 
surprising, since the melting transition in small Na clusters occurs over 
an extended temperature region, as discussed in Section 6.1.3. The 
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optical spectra measured at high temperatures, when the clusters are 
certainly molten, are consistent with the predictions of the jellium model. 

6.5 Fragmentation of Multiply Charged Clusters 

6.5.1 &$ace and Coulomb forces 

Multiply charged clusters Xi+ have been observed only above a critical 
size N ,  known as the effective appearance size [47], which depends on 
the metal X and on the charge state q+. In the case of alkali metals, the 
effective appearance sizes for the observation of doubly charged clusters 
are around 24 for LiN 2+ and NaN 2+ [48-5 11, 19 for KN 2+ [48, 5 13 and 19 
for CsN2+ [52]. Critical sizes of clusters as highly ionized as N a c  and 
C s c  have also been determined [53, 541. Those critical sizes are found 
by studying charged clusters produced by multi-step ionization of hot 
larger clusters that lose a sizable part of their excitation energy by 
evaporating neutral atoms. This causes the ionized clusters XNq' to shrink 
up to sizes N = N , .  For sizes around N, atom evaporation competes with 
another dissociation channel that we can call fission, in which two 
charged fragments, usually of different size, are emitted. However, 
multiply charged clusters have also been detected below N,. This occurs 
when those species are created in a multi-step ionization process starting 
from cold neutral clusters [49, 501, and indicates the existence of a 
stabilizing fission barrier. These experimental facts show that cluster 
fission is a barrier-controlled process. 

The process of cluster fission has close analogies to the fission of 
nuclei [47]. In both cases a charged droplet becomes unstable towards 
the division into two or more fagments. In simple terms, the multiply 
charged cluster can be viewed as a droplet, which due to the unbalanced 
excess positive charge tends to deform through elongated shapes keeping 
the total volume constant. But the shape deformation increases the 
surface and then the surface energy of the cluster. This decreases the 
cohesion and builds an energy barrier that prevents the spontaneous 
fission of the cluster for large cluster sizes, even when the sum of the 
energies of the fission products is lower than the energy of the multiply 
charged parent. For small clusters, on the other hand, the Coulomb 
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repulsion may be so strong that there is no barrier and fission becomes 
spontaneous. From the classic work of Rayleigh [55] for a charge 
droplet, it is known that the relative weight between the repulsive and 
cohesive forces can be expressed by the fissibility parameter 

sphere 
Ecoulomb 

X =  
2E:f', ' 

(6.13) 

and the physical picture is shown in Fig. 6.9. When the repulsive 
Coulomb energy equals twice the surface energy of the droplet, that is, 
when x = 1 ,  the barrier is zero. So, for x 2 1 the cluster is intrinsically 
unstable. For x smaller than I there is a barrier, and fission from 
internally excited clusters can be observed as long as the barrier remains 
smaller or comparable to the activation energy of other decay modes, 
such as the evaporation of neutral atoms. 

Figure 6.9. Fission of multiply charged clusters. The energy is given in units of 
the surface energy. The equilibrium shape is at a local energy minimum, but the 

nterplay between the short-range cohesive forces and Coulomb repulsion 
allows the system to separate after passing a deformation barrier. Fission occurs 

spontaneously for a fissibility parameter higher than or equal to 1. 
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Most experiments performed for metal clusters correspond to sizes 
close to N,. Electronic shell effects are manifested in the fission 
experiments. An early experiment of silver clusters produced by 
sputtering [56] analyzed the fission from parents containing 12 to 22 
atoms, finding evidence for a preference of products with an even 
number of electrons, and between these, those corresponding to electron 
numbers 2 or 8 were prominent. More recent investigations [57] 
performed with an ion trap indicate a strong preference for the emission 
of the charged trimer Ag?. In a study of doubly charged gold clusters 
produced by a liquid metal ion source [58, 591 the tendency of even- 
electron clusters to fission rather than to evaporate neutral atoms 
becomes clear, while the opposite occurs for odd-electron clusters. 
Superimposed to this odd-even alternation is a sizable increase of the 
fission to evaporation rate as the size decreases from AuI8 to AuI2’+. 
Also, Au; was observed to be the dominant fission channel, although 
not the only one. Preferential emission of singly charged fragments with 
2 and 8 electrons has also been observed for Li, Na and K [48, 60,611. 

Early theoretical studies of the fragmentation of doubly charged 
Sodium and Magnesium clusters [62] through the process 

2+ 

x; 4 +x; (6.14) 

based on a comparison of the energies of the parent (initial state) and the 
products (final state), calculated within the Spherical Jellium Model, 
correctly indicated that emission of closed shell fragments is likely to 
occur. However, consideration of the fission barrier is necessary in order 
to understand the nature of N, and to calculate its value. 

The preferred decay channel of hot large clusters is the evaporation 
of neutral atoms 

x; - + X Z I + X  (6.15) 

because the heat of evaporation AHe is lower than the barrier against 
fission. On the other hand, small hot clusters undergo fission, as in 
(6.14), because the fission barrier is, in that case, smaller than AHe. A 
schematic view of the two cases appears in Fig. 6.10. AHe is given by 
the energy difference 
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AH, = E ( X z , ) +  E ( X ) -  E ( X z )  (6.16) 

and the fission barrier height F,,, is the difference between the energies of 
the fissioning cluster at the saddle point and the parent cluster 

F,,, = E(sadd1e)- E ( x ~ ) .  (6.17) 

Figure 6.10. Competition between fission and evaporation from doubly charged 
clusters. AHc and Af+ are the heats of evaporation and fission, respectively. F,,, 
and B, are the fission and fusion barriers. The left and right panels correspond 

to situations below and above the effective appearance size N,. 

Methods for determining the fission barrier have been proposed [48], 
employing the branching ratio for fission to evaporation corresponding 
to the same doubly charged cluster, and the dissociation energy of that 
cluster singly ionized. Other attempts rely on theoretical calculations. 

6.5.2 Models and calculations of cluster fission 
Several theoretical approaches have been developed to understand the 
facts observed in the cluster fission experiments. One of the simplest 
methods to calculate the barrier heights is provided by the Liquid Drop 
Model (LDM), in which the metallic character of the fissioning system is 
taken into account by explicitly concentrating the charge on the surface 
[59,63]. The model has been applied to interpret the experimental results 
for the observation of multiply charged Na clusters NaNq' (q  I 10) 
produced in collisions between neutral clusters and multiply charged 
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inert gas ions [64]. Those experiments observed the spontaneous 
barrierless fission predicted for x 2 1, that for doubly charged alkali 
clusters corresponds to sizes smaller than N = 10. Electronic shell 
effects have been included in this model by applying Strutinsky’s shell 
correction method [65] to study the symmetric [66] and asymmetric [67] 
fission of doubly charged silver clusters and highly charged alkali metal 
clusters [54, 681. The basic expression for the total energy of a cluster in 
this model is given by 

which has to be compared to Eq. (4.20). The fact that the cluster has a 
positive charge q is explicitly indicated in Eq. (6.18), so a new term 
depending on the net charge (see Section 5.1) has to be added to the 
usual bulk and surface terms of Eq. (4.21). The variation of the shape of 
the cluster along the fragmentation path (see Fig. 6.9) is needed to 
calculate the fission barrier. Since the LDM does not consider the 
spillout of the electronic density at the cluster surface, Yannouleas and 
Landman have corrected the LDM to include spillout effects [69]. 

An accurate study of fission, employing molecular dynamics and the 
DFT formalism, has been performed for small doubly charged sodium 
and potassium clusters [70-721. These calculations, which use the Local 
Spin Density Approximation for exchange and correlation, confirm the 
influence of electronic shell effects on the fission energetics and barrier 
heights, and also indicate the predominance of an asymmetric fission 
channel and the appearance of double hump fission barrier shapes. Such 
microscopic calculations become difficult for large clusters, and the 
fission of large alkali metal clusters has been studied by the simpler 
Jellium Models. 

Jellium calculations based on an Extended Thomas-Fermi (ETF) 
functional (see Eq. (6.7)) have been performed for the symmetric and 
asymmetric fission of doubly charged sodium clusters [73, 741. Although 
the semiclassical ETF model does not account for electronic shell 
effects, it has the merit of incorporating the electronic spillout in a 
selfconsistent way. Fission barriers were first obtained using a Two- 
Jellium-Spheres Model (TJSM) [73, 751. This model is based on the 
reasonable assumption that, since the Coulomb force is long ranged, in 
many cases of interest the fissioning fragments are already preformed in 

(6.18)
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the cluster before overcoming the fission barrier. This situation is 
different from the nuclear physics case, where the short-range nuclear 
forces lead to compact fissioning configurations, and the fission products 
are rarely preformed even at the saddle point [76]. The cluster 
fragmentation path is then obtained by increasing the distance between 
the two jellium spheres. The simplifying approximations of the TJSM 
also allowed to calculate fission barriers using the Kohn-Sham 
formalism of DFT [75]. 

To go one step beyond the TJSM, an axially symmetric Deformed 
Jellium Model (DJM) has been used [74, 771. In that case, the path is 
described by a series of deformed jellium shapes connecting a spherical 
configuration associated to the parent cluster with the final configuration 
corresponding to the two separated fragments. More precisely, the 
positive background was modeled by axially symmetric shapes [78, 791 
corresponding to two spheres smoothly joined by a portion of a third 
quadratic surface of revolution. This family of shapes is characterized by 
the values of three parameters: the asymmetry A ,  the distance s between 
the centers of the emerging fragments, and a parameter A which takes 
into account the neck deformation. Evidently, asymmetric shapes are 
necessary to describe asymmetric fission. 

For a configuration characterized by a set of values of the parameters 
A ,  s and A, the electron density is calculated within the chosen scheme 
(Kohn-Sham or Orbital-Free). The density of the jellium background is 
constant, so its total volume is conserved during the scission process. 
Other parameterizations of the background have also been employed [go, 
811. To calculate the barrier for a selected fission channel within the 
DJM, for instance the emission of a singly-charged trimer, the results 
obtained following different fragmentation pathways, defined by 
relations between the parameters Aand s (the asymmetry A is fixed by 
the size of the final fragments) have to be compared. A simple choice is 
a parameterization based on two jellium spheres, firts intersecting, next 
touching and finally separated [82, 831, as in the example at the bottom 
in Fig. 6.11. This is just the TJSM. Other possibility is to start with a 
jellium sphere and then follow the path corresponding to a cone capped 
with spheres up to an arbitrary value of s where a concave neck starts to 
form; after that point one assumes the fastest variation of the neck and 
continues with two separated jellium spheres. 
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Figure 6.1 1. Total energy of Na2? in the emission of Na3' for two different 
parameterizations of the background: the dashed line corresponds to the jellium 
shapes shown at the top and the solid line to those at the bottom. The dotted line 
is the classical Coulomb barrier. Reproduced from J. A. Alonso et al., Fission 
Dynamics of Atomic Clusters and Nuclei, Eds. J. da Providencia et al., World 

Scientific, Singapore (2001), p. 163, with permission of World Scientific. 

As a first example of the calculation of the fission barrier in the DJM 
[77, 841, Fig. 6.1 1 shows the emission of Na; from Nai,' 

Nai,' Nal, + Nal , (6.19) 

using the Kohn-Sham formalism. The emission of the charged trimer is 
the most common fission channel observed for alkali metal clusters, and 
one could draw a loose parallel with the emission of an alpha particle in 
nuclear physics. In this particular example the other fragment, Na2,+, is 
also a closed shell cluster, which favors even more this fission channel 
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[50]. Two different parameterizations of the background are compared. 
The jellium shapes corresponding to the first one appear on the upper 
part of the figure. In this path the parent cluster is forced to elongate up 
to s = 18.3 a.u. and scission, that is, the formation of two disconnected 
jellium pieces, occurs at s = 23.0 a.u. After scission, the energy (dashed 
line) tends slowly towards the classical Coulomb barrier (the dotted 
curve). This parameterization leads to a barrier height of 0.44 eV, which 
originates from the deformation energy needed to elongate the parent 
cluster. This value is obtained as the difference between the energy at the 
maximum of the barrier, which occurs at s = 18.3 a.u., and the energy of 
the local minimum at s = 11.8 a.u. This minimum is, in fact, the ground 
state of the parent cluster for this particular jellium parameterization. 
That is, the ground state of Na:: is nonspherical because this cluster 
has the outermost electronic shell only partially filled. 

In a second parameterization of the background, with shapes given as 
interpenetrating spheres on the lower part of the figure, the neck starts 
forming at s = 6.1 a.u. Again the ground state of the parent cluster is 
deformed and occurs for s = 17 a.u. The configuration of two touching 
jellium spheres (s = 16.8 a.u.) is very close to the jellium scission point 
(s = 17.2 a.u.). The fissioning tendency of Nazi is apparent, since the 
Na2,+ and Na; fragments are preformed in the parent ground state. It 
was noticed in Section 4.4 that some neutral clusters can be viewed as 
supermolecules formed by smaller, particularly stable clusters. This is 
again the case for Na;: . In fact, since this cluster is doubly charged, the 
electrostatic repulsion between the two components enhances this effect. 

The evolution of the electronic single-particle energies along the 
fission path of interpenetrating spheres is given in Fig. 6.12. Starting 
with a fictitious spherical parent Nat,', the deformation first splits the 
highly degenerate levels and lowers the total energy. For the 
configuration corresponding to the ground state, s =  17 a.u., the 
electronic levels have reassembled in a configuration consistent with the 
interpretation of the cluster as a supermolecule Na2,+-Na3+. A similar 
fragment preformation is found, for instance, for Na:,' in the 
Cylindrically Averaged Pseudopotential Scheme (CAPS) [85], and for 
K:; in DFT molecular dynamics calculations [70]. 
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Figure 6.12. Evolution of the electron energies with fragment separation for the 
fission of Na242+. Jellium background shapes are given at the top. Solid and 

dashed curves correspond to filled and empty levels, respectively. The squares 
on the left give the energy levels of the spherical parent, and the symbols on the 
right give those of the separate fragments Na2,+ and Na3+. Reproduced from A. 
Rigo, et al., Sur$ Rev. Lett. 3,617 (1996) with permission of World Scientific. 

Other background parametrizations have been studied for the 
reaction (6.19) and it has been found that the path described in terms of 
jellium spheres leads to the minimum energy barrier. This is because the 
two fragments are magic. The energy difference between the maximum 
of the barrier at s =: 22 a.u. and the ground state at s = 17 a.u. gives a 
fission barrier height F, = 0.14 eV. This value can also be obtained from 
the relation 

F,,, = Bm +AH, (6.20) 

where B, is the fusion barrier height, that is, the barrier seen by 
approaching the fragments from large separation, and the heat of fission 
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mf is the difference between the energy of the fragments at infinite 
separation and the energy of the parent cluster in its ground state 
configuration (see Fig. 6.10). In this case (it is convenient to stress that 
the fragments are spherical but the parent is deformed), AHf = - 0.90 eV. 
The fusion barrier height B, has nearly the same value in the Orbital 
Free and Kohn-Sham approaches. From Eq. (6.20), this means that the 
influence of shell structure on the fission barrier height is essentially due 
to its effect on the heat of fission. 

At very large separations, the interaction between the fragments is 
just the pure Coulomb repulsion between point charges. The deviation 
from the simple Coulomb repulsion for small separations can be 
considered as a chemical effect of the electronic charge gluing the 
fragments [86]: the interacting clusters mutually polarize their electronic 
clouds, giving rise to a bonding contribution which is effective even if 
the two positive jellium pieces do not overlap. The fusion barrier can 
then be written [87] 

B(s )  = (4 - l)e2 + v(s) 
S 

(6.21) 

for the general case of a parent with charge +q and fragments with 
charges +(q- 1 )  and + 1 .  For the emission of a singly charged trimer, good 
agreement with the calculated fusion barriers of alkali metal clusters has 
been obtained with the form 

of the bonding potential V(s), where Vo = 0.008/r, and Ro= R1+R2 is the 
sum of the radii of the two fragments. A qualitative justification of the 
form of V(s)  has been given by Garcias et al. [87]. Crucial for that 
justification is the exponential decay of the electron densities of the 
separated fragments. A single value a = 0.2 describes the entire alkali 
group. Garcias et al. [87] combined the fusion bamers calculated in this 
way (assuming singly charged trimer emission) with the heats of fission 
calculated by a classical liquid drop model, to obtain fission barrier 
heights of alkali clusters with charges +q = 1-7. Evaluating the heat of 
evaporation of neutral monomers also using the liquid drop model, a 

(6.2
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comparison of AHH, and F,,, leads to the effective appearance sizes given 
in Table 6.2. The predictions are in good agreement with the 
experimental appearance sizes, except for Na clusters with very high 
charge (+q = 6 or 7). 

Table 6.2. Calculated [87] and experimental (in parentheses) [53,54] effective 
appearance sizes for the observation of multiply charged alkali metal clusters as 

a function of the charge +q. 

+4 Li Na K Rb c s  

+2 24 26 24 
(25 f 1) (27 f 1) 

+3 56 63 
(63 f  1) 

+4 103 117 
(123f2 )  

+5 164 185 
(206 f 4) 

+6 240 268 
(310f 10) 

+7 330 366 

(20 f  1) 

(55f 1) 
59 

110 
( l l O f 5 )  

173 

249 

337 

24 
(19 f  1) 

59 
(54+ 1) 

( l o s f  1)  
109 

172 

247 

335 

23 
(19f  1) 

57 
(49 f  1) 

(94 f  1) 
105 

165 
(155 f 2) 

236 
(230 f 5 )  

319 
(445f  10) (325f 10) 

As a second example of the application of the Deformed Jellium 
Model, let us consider the symmetric fission reaction 

Naa,' -+ Nail + Na;, . (6.23) 

The parent and the fragments are closed shell clusters, with 40 and 20 
valence electrons respectively, and consequently these adopt spherical 
configurations in the jellium model. In a Kohn-Sham calculation [75], 
the fission path was described by configurations corresponding to two 
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interpenetrating spheres up to the scission point and to two separated 
spheres afterwards. The resulting fission barrier height was F,,, = 0.37 eV 
and the heat of fission is Mf = - 0.58 eV, that is, the reaction is 
exothermic. 

The electron density corresponding to the saddle configuration is 
given in Fig. 6.13 and shows the fragments almost separated. The 
dramatic influence of shell effects is appreciated when the barriers 
obtained by KS and ETF methods are compared using the same jellium 
parameterization (spheres). The fusion barriers are similar, B,(KS) = 
0.95 eV and B,(ETF) = 0.84 eV, but the heats of fission are very 
different, Mf (KS) = - 0.58 eV and M H ~  (ETF) = 2.33 eV. In other 
words, the reaction is exothermic in the KS case and endothermic in the 
semiclassical case. The large value of AHf (ETF) is essentially a surface 
effect. Breaking the spherical parent into two fragments of equal size 
leads to a substantial increase in the surface area. This increases so much 
the energy that symmetric fission is very unfavorable. On the other hand, 
in the KS case the high stability provided by the closed shell 
configuration of the fragments is enough to compensate for the increase 
in the surface area. Adding B, and Afif leads to very different values for 
the fission barrier: F, (KS) = 0.37 eV and F, (ETF) = 3.17 eV. Taking 
into account that the energy necessary to evaporate a neutral Na atom 
from clusters or from the metal is approximately 1 eV, the KS 
calculation predicts the symmetric fission of a hot Na:; cluster as more 
favorable than the evaporation of a neutral atom. The difference between 
the KS and ETF fission barriers compared here is so large because the 
shell effects are strong, since both fragments have closed shell electronic 
configurations. In other cases, smaller differences between KS and ETF 
results are expected. 

In a parametrization of the DJM developed by Lyalin and coworkers 
[88, 891, the parent, with the form of an ellipsoid of revolution, splits 
into two independently deformed spheroids of smaller sizes. Before 
scission, the two small spheroids intersect each other as in the 
overlapping spheres model shown at the bottom part of Fig. 6.1 1 .  The 
parametrization by spheroids gives improved results when one of the 
fragments has an open shell configuration, for example in the reaction 
N a I T +  Na7+ + Na3+. In this case Naq is oblate. The calculated fission 
barrier is 0.16 eV for the ellipsoidal parametrization, and much higher 
for a parametrization with intersecting spheres. The study of the 
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dissociation of Nalg2+ allows to compare the symmetric and asymmetric 
channels, NaIg2++ NaI5+ + Na3+ and Na18 + Nag+ + Nag+, in a case 
when they are expected to be competitive because both involve magic 
fragments, Na; and Nagf respectively. Unsurprisingly, the fission 
barriers are nearly identical, F, = 0.50 eV for the asymmetric channel 
and F, = 0.48 eV for the symmetric one; the difference is not significant 
considering the accuracy of the model. 

2+ 

Figure 6.13. Valence electron density at the saddle point (maximum of the 
fission barrier) for the symmetric fission of N Q ~  2 + .  

Table 6.3 presents the fission barriers obtained for the asymmetric 
fission of Nal? and for the symmetric and symmetric fission of NaIg2+, 
compared to the results of molecular dynamics (MD) simulations also 
based on the DFT formalism. In addition, results of the two-center 
ellipsoidal parametrization of the DJM using the Hartree-Fock (HF) 
method are included. The MD calculation of Montag and Reinhard [90] 
employed the same exchange-correlation functional as in the DJM [89], 
so the difference of 0.51 eV between the respective barriers for Nalo2+ 
can be attributed to the effects of the ionic structure; the ionic structure 
in the MD calculation of Montag and Reinhard was described by the 
CAPS model (see Section 4.7.2). The influence of the ionic effects is 

descriptions of the ionic background, DJM and CAPS, produce barriers 
expected to decrease for larger clusters, and already for Nalg 2+ the two 
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in close agreement. One should also notice that different schemes in the 
MD simulations lead to some differences in the barriers. The HF method 
treats electronic exchange, that is the F e d  correlations arising from the 
antisymmetry of the total wave function, exactly, but neglects 
Coulombic correlations. This leads to discrepancies in the barriers. In 
particular Nalo is unstable in HF. 2+ 

Table 6.3. Comparison of calculated fission barriers heights (in eV). 

Parent HF[89] LDA[89] MD [90 ] MD [72 1 MD 1701 
(Channel) 

Na1o 2+ 0 0.16 0.67 0.50 0.7 1 

Na,s 2+ 0.36 0.50 0.50 
(asym.1 

NalB 2+ 0.63 0.48 0.52 

The early prediction that fission paths involving closed shell 
fragments are preferred was based on a comparison of the total energies 
of initial and final products [62]. Its success can be understood from the 
form of Eq. (6.20). For a given size N of the parent, the value of the 
fusion barrier B, vanes smoothly with the sizes (p, N-p) of the singly 
charged fragments. In contrast AHH~ is very sensitive to p ,  having the 
smallest values for those fission channels involving one or two magic 
fragments. Consequently, fission channels leading to magic fragments 
actually have lower fission barriers compared to other channels. 

Experiments pertaining to the low fissibility regime x << 1 have 
addressed the competition between the fission channel corresponding to 
the magic product X3+ and more symmetric channels involving the 
higher magic clusters X g  and X2,+. The results for the fission channels 
of doubly charged Li, Na and K clusters with sizes N = 24-27 are shown 
in Fig. 6.14 [61]. The clusters were ionized and warmed by a Nd-YAG 
laser, and after rapid sequential evaporation the doubly charged clusters 
reached evaporative ensemble (EE) temperatures [91] of 700k 100 K, 

(ASYM.)

(SYM.)
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400f  100 K and 300f  100 K for the Li, Na and K clusters, respectively. 
Only one fission channel is present for the smallest parent, N = 24. This 
is the double magic channel Na3+ + Nazi+ (notice that only the large 
fragments are shown in the figure, due to details of the experimental 
setup). An increase in the parent size opens new channels and leads to 
differences between the three elements. The charged trimer is still the 
dominant fission product for Li, while Nazi+ is the dominant one for K, 
and Na shows an intermediate behavior. That is, the asymmetry of the 
fission process is reduced for K, as compared to Li and Na. 

Figure 6.14. Fission channels in time-of-flight experiments for LiNZt, NaNZt and 
KN2+ with N = 24,26,28,30. The peak marked by an arrow corresponds to the 

parent and those on the left to the larger fragments. Reproduced from C. 
Yannouleas et al., Phys. Rev. Lett.17, 173403 (2002) with permission of the 

American Physical Society. 
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A trend is observed in this figure towards opening the channels 
involving heavier magic fragments (p = 9 and p = 21) both when going 
up vertically by increasing the size of the parent and going horizontally 
from left to right. These tendencies are explained by calculating the free 
energy differences 

Q,' = F,' + F i - p  - F F  (6.24) 

at the EE temperatures for all the possible @, N-p) fission channels, 
using the Liquid Drop Model with shell corrections [91]. The argument 
for using this equation is that for each species the Coulomb repulsion at 
the top of the barrier, measured by the kinetic energy release, is 
approximately constant for all the fission channels in the size range 
considered in these experiments. Consequently one can see from Eq. 
(6.21) that the preferred fission channels are controlled by QpT. In fact, 
the effect of the finite temperature is very important. If AHr is used 
instead of the finite-temperature OPT, then the trends observed at the EE 
temperature are not explained well, since a tendency for high magic 
fragments, p = 9 or p = 21, is obtained in many cases. By increasing the 
temperature the electronic entropy has the effect of quenching the shell 
effects and this affects the higher shells more, so the channels involving 
heavy magic fragments become disfavored with respect to the trimer. 
This is the reason why heavy magic fragments are observed in the case 
of K, which has a low EE temperature, while X3+ is mainly seen for Li, 
with a higher EE temperature. 

6.6 Optical Response Along the Fission Path 

We consider the symmetric fission of Na182+, that is, 

Na:; + Na,' + Na,' . (6.25) 

TDLDA calculations of the optical spectrum were performed [84] by 
employing the Cylindrically Averaged Pseudopotential model (see 
Section 4.7.2), and the results are given in Fig. 6.15. 
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igure 6.15. Symmetric fission of Nai8+*. Ionic and electronic distributions at 
various stages (B, C, D, E, F, G) of the fission process are shown in the right 

panels and the optical response is given in the left panel. The fission barrier is 
shown on the lower right panel. Reproduced from J. A. Alonso et al . ,  Fission 
Dynamics of Atomic Clusters and Nuclei, Eds. J. da Providencia et al.,  World 

Scientific, Singapore (2001), p. 163, with permission of World Scientific. 

The ground state configuration [89] hints at preformed subunits 
Na,; and Na3+. Its energy corresponds to the point in the energy curve 
labeled A. Nevertheless, the barriers for the asymmetric and symmetric 
fission channels are practically equal (see Table 6.3). Other 
configurations of the cluster along the symmetric fission channel are 
shown in the figure, together with the corresponding electronic 
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distributions. The structure changes between configurations A and B, 
where symmetry is established. This rearrangement corresponds to a 
large difference in energy between the two configurations. Ionic scission 
takes place at stage D only shortly before reaching the saddle point E, 
while the electron cloud breaks up rather late after the saddle point, 
around configuration F. 

The linear optical response, shown on the left of Fig. 6.15, gives an 
enlightening picture of the various stages along the fission path. The 
ground state configuration (A) exhibits a pronounced resonance between 
2 and 2.2 eV. With increasing deformation along the fission path we first 
observe, basically up to stage D, a gradual increase in the fragmentation 
of the spectrum, but still centered around 2 eV. The connectivity of the 
electron cloud still existing in stages C and D suffices to center the 
dipole spectrum around 2 eV, while the ions are already fully separated 
at stage D. A marked change occurs when the electron densities separate 
at stage F and beyond. The fragmentation disappears and is replaced by 
the clean plasmon resonance of free Nag+ around 2.7-2.8 eV. 

The optical response thus provides an enlightening tool of analysis of 
the various configurations along the fission path. It might be 
experimentally feasible to follow such a fission path by time-resolved 
recording of the electronic response following short laser pulses. One 
might even hope to have access to fission time scales and thus be able to 
estimate viscosity effects, in a way somewhat similar to the nuclear case. 

6.7 From Fission to Fragmentation to Coulomb Explosion 

In Sections 6.5 and 6.6 the fission process has been described 
adiabatically. This provides information on structural and dynamical 
properties of metal clusters. It can even address the competition between 
fission and evaporation, as discussed by Frobrich [92] to explain the 
observed effective appearance sizes, calculating the time scale of cluster 
decay by an evaporation theory similar to that used to describe the 
statistical deexcitation of compound nuclei [93]. However the dynamical 
situations accessible to metal clusters are not exhausted. 

Recent progress in laser technology has opened new avenues of 
research in the domain of nonlinear cluster dynamics. Lasers actually 
offer an ideal tool for spanning various dynamical regimes, ranging from 



194 Structure and Properties of Atomic Clusters 

the linear regime with plasmon-dominated dynamics (Section 6.5), to the 
semi linear regime of multi photon processes [94, 951 and the strongly 
nonlinear regime of Coulomb explosion [96, 971. From the theoretical 
side, only effective mean field theories based on DFT have up to now 
been able to deal with such different situations and dynamical regimes 
for clusters. These calculations [98] have exploited the experience 
acquired in Nuclear Physics. 

Let us first sketch the various steps in the response of highly excited 
metal clusters. Experimentally, one can consider two classes of rapid, 
intense, excitations: collisions with energetic highly charged ions [99] 
and irradiation by intense femtosecond laser pulses [95, 1001. In both 
cases the excitation takes place between tens of fs down to below 1 fs. 
This time is directly comparable to characteristic time scales of the 
valence electron cloud. And not surprisingly, the cluster response is 
primarily of electronic nature. The first stage of the reaction is thus a 
direct emission of electrons and a collective oscillation of the Mie 
plasmon. This stage is characterized by time scales of the order 1-10 fs. 
In a second stage, still of purely electronic nature, damping of the 
collective electronic motion takes place, both by means of Landau-like 
damping (excitation of resonances in the continuum) and by electron- 
electron collisions. The time scales associated to these effects are 
variable depending on the cluster size (Landau-like damping) and the 
deposited excitation energy (electron4ectron collisions). Landau-like 
damping takes 10-20 fs and collisional effects around 10-100 fs. After 
that, the electronic degrees of freedom slowly couple to the ionic motion, 
and may lead to the explosion of the charged cluster on long times 
(several hundreds of fs). Two mechanisms are at work here: i) the net 
charge of the cluster following ionization; ii) energy exchanges between 
the hot electron cloud and the still cold ions. The two effects interfere 
constructively to activate ionic motion and lead to evaporation, fission or 
fragmentation. Thermal evaporation of electrons proceeds on a very long 
time scale, usually slower than ionic processes (monomer evaporation, 
fragmentation). It can become competitive in the 100 fs range only for 
very hot clusters. 

In order to illustrate the various stages of the excitation and response 
of metal clusters in the nonlinear regime, two examples are considered, 
focusing first on the electronic response. Figure 6.16 represents the first 
stage (ie., electronic) in the response of Na93+ irradiated by an intense 
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laser pulse [84]. The cluster is treated in the jellium approximation and 
the laser pulse is modeled by a ramp pulse (trapezium form) with a total 
duration 100 fs. The intensity is 1 = 10'' W/cm2, and the photon 
frequency, AU = 3.1 eV, is slightly above the Mie resonance for this 
cluster. 

tirlrre Cfsl 
Figure 6.16. Electronic response of Nag3+ to a 100 fs laser pulse of peak 

intensity 10" W/crn2. The upper panel gives the dipole moment along the axis 
of laser polarization, and the lower panel the number of emitted electrons. 

Reproduced from J. A. Alonso et al., Fission Dynamics of Atomic Clusters and 
Nuclei, Eds. J. da Providencia et al., World Scientific, Singapore (ZOOI), p. 163, 

with permission of World Scientific. 

The response depends crucially on the actual laser frequency [98, 
1011. For laser frequencies sufficiently far away from the plasmon 
resonance, the dipole response follows closely the pulse profile and 
disappears when the laser pulse profile vanishes. On the contrary, for 
laser frequencies close to the Mie resonance, the laser may attach the 
resonance; this results in a sizeable electron emission and the dipole 
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response survives the laser pulse as it generated a true eigenfrequency of 
the system. The example considered in the figure corresponds to a 
situation in which the plasmon actually comes into play during the 
process. For the first 50 fs, the laser pulse remains above resonance and 
the electronic dipole moment D(t)  (upper panel) follows the profile of 
the pulse. Still, the intensity is enough to induce the ionization of the 
cluster. The electronic cloud of the ionized cluster is more compressed 
(the ionic background does not change in the model) and this shifts the 
plasmon resonance towards higher frequencies, and thus closer to the 
laser frequency. From about 50 fs on, the Mie plasmon couples 
resonantly with the laser, which leads to a jump in ionization. The 
process reaches a peak until the violent electron emission produces a 
further blueshift of the plasmon that detunes the plasmon from the laser. 
Still, even after the pulse has been switched off and electron emission 
has leveled off, the electron cloud continues performing collective 
oscillations at the actual plasmon frequency of the system (namely, for 
the net charge of the cluster). This example illustrates the role of the 
plasmon resonance in triggering ionization. For the short pulse 
considered, the ions remain fixed and do not interfere with the ionization 
process. However, this is not the case when longer pulses are considered. 
Indeed, experiments [97] for platinum clusters suggest that the highly 
charged cluster rapidly undergoes a Coulomb expansion, with a time 
scale around 100-500 fs. Interference can thus occur between the laser 
pulse and the ionic motion, which may produce an enhanced ionization. 

A second example shows how the ionic motion can interfere with the 
excitation process provided the latter is long enough. For this purpose, 
the excitation of NG~' subjected to a long laser pulse (240 fs) of 
frequency w~,,,, = 2.86 eV has been simulated using the TDLDA [ 1021. 
The results are given in Fig. 6.17. An explicit account of the ions is 
required and pseudopotentials were used to model the ion-electron 
interaction The third panel, giving the number of electrons emitted, N,,,,, 
shows that ionization proceeds in several steps. Again, in a first stage 
lasting for about 80 fs, the response is fully electronic, and is 
characterized by a low ionization. But the net charge of the cluster shifts 
the plasmon upwards until it comes into resonance with the laser. This 
results in a sudden increase in ionization around 100 fs, leaving the 
cluster in a state with a net charge 5+. Up to that stage, the situation is 
similar to the previous case of Nag3+. From then on, ionization proceeds 
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at a slower pace until another burst of electrons occurs around 250 fs 
stripping about 5 electrons. The lowest panel gives the electric dipole 
signal D(t). It is clear that large slopes in ionization (iVcsc) are correlated 
with large dipole amplitudes, which again reflects resonant conditions. 

Figure 6.17. Simulation of the excitation of NQ,’ with a laser of frequency 
colaser = 2.86 eV, intensity I =  9 X  10 W/cm2 and pulse length 240 fs. From top 

to bottom: global extension of the ionic distribution in z- (along laser 
polarization) and axial r-direction (transverse to laser polarization); average 

resonance frequency w,, ( t )  for the actual structure and charge state; number of 
emitted electrons N,,, and dipole signal. Reproduced from E. Suraud and P. G. 
Reinhard, Phys. Rev. Lett. 85, 2296 (2000) with permission of the American 

Physical Society. 
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An unambiguous link between the two observables is established by 
plotting in the second panel the instantaneous plasmon frequency we,(t), 
calculated for the instantaneous structure and charge of the cluster. The 
laser frequency is the dashed horizontal line in the same panel. The 
correlation between large slopes in N,,, and resonant conditions is 
striking. The first coincidence at time 100 fs reflects the blueshift due to 
the first stage of ionization and thus corresponds to an electronic effect. 
It also triggers the time at which a sizeable Coulomb expansion of the 
ionic distribution begins (see also uppermost panel). And it is 
noteworthy that this occurs rather soon (about 50 fs) after the violent 
initial charging. But the Coulomb expansion in turn leads to a redshift of 
the resonance (see Eq. (5.34)), which is responsible for the second 
coincidence at around 230 fs. The system thus acquires a much higher 
charge state and ends up in a violent Coulomb explosion. 

6.8 Caloric Curves of Fragmenting Clusters 

The multifragmentation of hydrogen cluster ions colliding with helium 
atoms produces a caloric curve with a shape in agreement with a bound 
cluster to gas transition generated by Coulombic forces (see Section 
3.3.4). Brechignac and coworkers have detected a bound cluster to vapor 
phase transition in Sr clusters using a different approach [103]. The 
neutral clusters are first produced in a gas aggregation source. Ionization 
(and excitation) with a first laser pulse produces an evaporative ensemble 
of S r i  cluster ions at a temperature To = 700 K f 50 K. The charged 
clusters are then accelerated before entering a time-of-flight mass 
spectrometer. There, a second laser with photons of energy hv excites the 
cluster packet of interest (that is, clusters of a selected size) inducing 
fragmentation. A retarding potential allows for the time dispersion of the 
fragments, showing that ion fragments result from the evaporation of 
neutral atoms, whose number is proportional to hv. For well defined 
excitation, the velocity of the emitted atoms has a Maxwellian 
probability distribution. 

The experiment measures the translational kinetic energy release of 
the ejected neutral atoms. For warm N-atom clusters ejecting a single 
neutral atom, the temperature of the evaporative clusters may be 
obtained from the kinetic energy release of the fragments. When the 
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ton energy is such that more atoms are emitted, the process can be 
considered as a series of sequential atom emissions. By increasing step 
by step the photon energy, the result of the experiment is a curve giving 
the cluster temperature (the translational temperature of the ejected 
neutral atoms) versus the energy deposited in the cluster by the laser 
prior to fragmentation. 

Figure 6.18. Caloric curves fo SrN+ determined from the kinetic energy release 
of emitted neutral atoms versus excitation energy per atom. For N = 10 (solid 

dots) and N = 11 (open dots) the caloric curves rise first and saturate to a 
limiting temperature, in agreement with a bound cluster to gas transition. N =7 
has not fully developed that behavior. Reproduced from C. BrCchignac et al., 
Phys. Rev. Lett. 89,203401 (2002) with permission of the American Physical 

Society. 

The caloric curves for Sr: , Sr& and Sr; are plotted in Fig. 6.18. 
For the two larger sizes, the caloric curves, after an initial rise with a 
slope 1/3, reach an almost constant value for kT about 85-1 10 meV. This 
indicates that a phase transition occurs at a temperature T = 1000-1300 
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K. This temperature is above the melting point (1050 K) and below the 
boiling point (1655 K) of bulk Sr, and has been interpreted as the 
temperature for a bound cluster to vapor phase transition. For the small 
clusters Sr,’ (not shown in the figure, but see ref. [lo31 ) and Sr;’ , 
evidence for the transition is not as clear. 
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7. Bimetallic Clusters 

7.1 Introduction 

Mixing two vapors and expanding the mixture [ 11 produces new clusters 
that, in the case of metals, are the microscopic analogue of the bulk 
alloys. In the case of bulk alloys, different stable phases appear for a 
given pair of metals, characterized by specific crystal structures and 
usually by fixed concentrations. Transitions to another phase can occur 
when a critical temperature is reached. Also, some of those phases can be 
stable over an extended range of atomic concentrations, specially for 
alloys very rich in one of the components. All this makes the simple 
book-keeping of the alloy phases of binary systems a whole subject, and 
compilations of phase diagrams exist. An additional variable enters the 
picture in the case of finite clusters; this is the number of atoms in the 
cluster. The field of heteroclusters is then very rich and broad. An 
example has been presented in Section 3.3.3, where the melting of mixed 
inert gas clusters was studied using computer simulations as a tool. In 
this chapter the interest is shifted to mixed clusters of metallic elements, 
and some representative topics have been selected from the abundant 
literature. 

7.2 Alloying Effects in Alkali Metal Clusters 

Supersonic beam expansions of a mixture of lithium and sodium vapors 
have produced mixed clusters [ 11. This is remarkable because Li and Na 
do not form solid alloys and also present a miscibility gap in the liquid 
phase. Other salient features are: (a) the magic numbers, corresponding 
to the most abundant cluster sizes, are the same as for pure Li and Na 
clusters; (b) Li enrichment, compared to the composition in the vapors, is 
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observed in the clusters. The fact that the magic numbers do not change 
is easily understood. The ions in the alkali metals are relatively small 
compared to the atomic volumes and the effective ionic pseudopotentials 
are weak. Then, a jellium with the concentration-averaged background 
density is a good description of the mixed clusters. But, evidently this 
simple model cannot account for the distribution of the atoms in the 
clusters. The SAPS  model allows to get some qualitative trends about the 
ionic distribution [2]. Although only relatively small clusters have been 
studied, a general feature obtained is that the Na atoms are at higher 
distances from the cluster center than the Li atoms. This can be viewed 
as a manifestation of the tendency to phase separation existent in solid 
and liquid Li-Na alloys. This phase separation tendency is less 
pronounced in small clusters, and this is corroborated by the calculated 
negative value of the heat of solution of a Li impurity in Na clusters (the 
negative value means that the process is energetically favorable). The 
negative value explains, in addition, why the mixed clusters form in the 
supersonic expansion experiments. The observed Li enrichment was 
explained by calculating the heat for the exchange reaction 

Li,Na, + Li + Li,,,Na,-, + Na . (7.1) 

The calculated reaction energies are negative, indicating that the 
replacement of a Na atom by a Li atom in an exchange collision in the 
beam is favorable. 

The tendency for the Na atoms to be on the surface in mixed Li-Na 
clusters has been confirmed by calculations [3, 41 for Li,Na and Na,Li 
with m up to 12, and for NaS.,Li,. The ground state structures of the 
Li,Na clusters are similar to those for the corresponding Lim+l pure 
clusters, and the Na atom occupies, in all cases, positions on the surface. 
In contrast, the Li impurity in the Na-rich Na,Li clusters, is located in 
internal positions for sizes N&i and higher. The different behavior was 
ascribed to the weaker binding between Na and Li atoms, as compared to 
Li-Li, and to the smaller ionic radius of Li compared to Na. The 
structures of the clusters with 8 atoms are given in Fig. 7.1. As the Na 
fraction increases, there is a transition from the C,, symmetry of Lig (also 
Li7Na and Li6Na2) to the DM symmetry of Nas (also LiNa7 and LiZNa), 
going through an intermediate T d  structure for intermediate compositions 
(LisNa3, Li4Na, and Li3NaS). Also in this case the tendency of Na atoms 
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for surface sites is evident. Na-rich clusters exhibit internal Li atoms, but 
there are no internal Na atoms in Li-rich clusters. The segregation is 
specially clear in the middle of the series, where the Na atoms are 
capping faces of an internal core formed by the Li atoms. 

Figure 7.1. Geometries of mixed Li-Na clusters with 8 atoms. Dark and light 
spheres represent Na and Li atoms, respectively. Reproduced from M. D. 
Deshpande et al., Phys. Rev. A 65,53204 (2002) with permission of the 

American Physical Society. 

The difference between the Wigner-Seitz radii of bulk Na and Li is 
0.72 a.u., and this difference increases to 0.87 and 1.81 a.u. for the K-Na 
and Cs-Na pairs, respectively. One might expect that the weak 
segregation tendency found in Li-Na clusters will be enhanced for Na-K 
and Na-Cs. Indeed, the atomic distribution in Na-K clusters [5]  obtained 
by the SAPS model differs drastically from the Li-Na case. For instance, 
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the Na and K atoms in NaloKlo form well separated layers, with K on the 
surface. Although the SAPS model cannot be used confidently to 
reproduce the fine details of the atomic distributions, the main features of 
the radial distribution can be trusted. In fact, the tendency for K to 
segregate at the surface of Na-K clusters, which is driven by the lower 
surface energy of the heavier element, is also predicted by molecular 
dynamics simulations using the Car-Parrinello DFT method [6]. A 
difference between the bulk Li-Na and Na-K alloys is that an ordered 
compound, of composition Na2K, forms in the second case. The 
calculated atomic distribution of large clusters like Na34K34 shows that 
not all K atoms segregate to the surface [5];  there is an alternation of Na 
and K atomic layers, which could be interpreted as a precursor of the 
ordering tendency in the solid at the equiatomic composition. 
Calculations for Na-Cs clusters also predict layer alternation, with Cs on 
the surface [7] .  The first feature is consistent with the existence of a bulk 
ordered NapCs compound. The second agrees with the results of Monte 
Carlo simulations of the liquid-vapor interface of Na-Cs alloys; those 
simulations yield segregation of Cs atoms to the surface [S]. In spite of 
the layering effects, the electronic structure of the mixed clusters remains 
simple and the calculated magic numbers (also the measured ones in the 
case of Li-Na) coincide with the well kown shell closing numbers of the 
unmixed clusters. 

7.3 Collective Electronic Excitations 

Surface segregation of one atomic species affects the collective 
electronic response. The ground state structure of Na20K20 obtained with 
the SAPS model is composed of three layers surrounding a central Na 
atom. All the Potassium atoms are on the surface and the two inner 
layers have Na atoms only. The photoabsorption spectrum [ S ]  calculated 
by TDLDA shows a resonance peak at 2.1 eV representing the collective 
oscillation of the electrons against the ionic background. The tail of the 
resonance extends up to 3 eV and concentrates a sizeable amount of 
oscillator strength. The position of the collective resonance is closer to 
the corresponding resonance of pure K clusters calculated with the same 
method, compared to pure Na clusters; this is a manifestation of the fact 
that the cluster surface, whose electron density contributes most to the 
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collective excitation, is formed by K atoms in NazoK20. A calculation of 
the photoabsorption spectrum for other isomers allows to analyze the 
sensitivity of the spectrum to the structural features [5]. When the 
positions of some Na and K atoms are interchanged, preserving other 
features of the cluster geometry, a shift of the resonance peak to higher 
energy occurs as Na replaces K on the surface. More drastic variations of 
the structure produce pronounced changes in the spectrum, like the 
broadening and fragmentation of the plasmon peak. The optical response 
of mixed Li-Na clusters has also been studied [9]. In summary, the shape 
of the photoabsorption spectrum is sensitive to the cluster geometry and 
to the degree of segregation of one component to the surface; so, a 
comparison between measured and calculated spectra may be useful to 
elucidate the structure of mixed clusters. 

Very small mixed clusters have been studied by ab initio methods. 
Motivated by the measurements of the optical absorption spectra of 
LiNa3 and Li2Na2 [ 101, Configuration Interaction (CI) calculations have 
been performed for those two clusters [ 111, as well as Hartree-Fock 
calculations for the whole family Li,N&-, [12]. The optical response was 
obtained in both cases from CI calculations for excited electronic states. 
The two studies give planar rhombic forms as the most stable structures: 
slightly distorted for LiNa3 and Li3Na, and undistorted for Li4, Na4 and 
LizNa2. The photoabsorption spectrum is sensitive to n. The spectrum of 
Na, resembles that obtained from the Mie-Drude theory for an 
ellipsoidal droplet with three different axes. But, as Li atoms replace Na 
atoms, the deviations from the Mie theory become increasingly large. 
The measured spectra of LiNa3 and Li2Na2 are explained by the ab initio 
calculations. The calculations discovered low lying isomers in each 
Li,Na4., case, corresponding to different ways of arranging the Li and Na 
atoms in the four vertices of the rhombus. The comparison between the 
experimental absorption spectrum of LizNa2 and the spectra calculated 
for the three isomers detected confirmed that the best agreement is 
obtained for the lowest energy isomer. On the other hand, the calculated 
spectra for the two singlet isomers of LiNa3 are so similar that it was not 
possible to distinguish which isomer or whether a combination of both 
singlet isomers contributes to the measured spectrum. 

TDLDA calculations for the whole Nag.,Li, family [4] obtained 
single plasmon peaks at both ends of the series, Lig and Na8, consistent 
with a spherically symmetric electron density of both clusters. The 
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replacement of one or two atoms in the homogeneous clusters produces 
an spheroidal deformation of the density and introduces extra shoulders 
in the spectrum. In the middle of the series, for Li5Na3 and L i p & ,  the 
resonance is fragmented in two close peaks. These two clusters have 
tetrahedral symmetry and, as a rule, the oscillator strength in the 
absorption spectra of clusters with nonspherical shape is spread over a 
wide energy range, thus leading to broader spectra. 

7.4 Divalent and Monovalent Impurities in Alkali Metal 
Clusters 

Supersonic expansion experiments with mixed metal vapors [ 13, 141 
have shown that some changes occur in the magic numbers of Na and K 
clusters when these are doped with divalent impurities: Ba, Sr, Eu, Ca, 
Yb, Mg and Zn dopants in Na clusters, and Mg, Hg and Zn dopants in K 
clusters. The results for clusters containing a single impurity are given in 
Table 7.1, which also includes some monovalent impurities. For some 
impurities a new magic number corresponding to ten valence electrons is 
found (clusters in the lower part of the table). Also, the magic number 
corresponding to 18 valence electrons vanishes in most cases (except for 
those systems at the top of the table). The single coordinate 

An+ = n: (impurity) - n: (host), (7.2) 

that is, the difference between the average valence densities in the pure 
host and impurity solids, allows to separate the doped clusters of the 
table into two subsets [15]. Values of An+ roughly higher than 0.008 a.u. 
induce changes in the magic numbers. This is the case for Mg and Zn 
impurities in Na, and for Mg, Hg and Zn impurities in K. In contrast 
there are no changes for An+ < 0.008 a.u. 

The success of this coordinate immediately suggests an extension of 
the Spherical Jellium Model, in which the impurity, located at the center 
of the host cluster, is modeled by a positive background with density 
nO+(impurity) and radius Rimp, embedded in a background with density 
equal to nO+(host), representing the host [15]. The radius of the doped 
cluster is determined by Rim, and the number of host atoms. Calculations 
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for this jellium-on-jellium model show that the binding energy of the s- 
type electrons ( I  = 0) increases in comparison to the undoped cluster 
because the presence of the impurity induces a more attractive potential 
in the central region of the cluster, whereas the binding energies of 
electrons with 1 > I  change little. Consequently, the magnitude of the gap 
between the 2s and Id shells (see Fig. 4.3 for the case of the pure Na20) 
decreases with increasing An+. When An+ becomes close to 0.008 a.u. or 
higher, reordering of these two subshells occurs, and the filling order 
changes to Is Ip 2s Id. Clusters with 10 valence electrons then adopt the 
closed shell electronic configuration ls2 lp6 2s2, which accounts for the 
experimental observation of the new magic number. The magic number 
corresponding to 20 electrons, associated to the configuration ls2 lp6 2s2 
Id”, is still present for clusters with It, 2 0.008 a.u., but evidently there 
is no shell closing for 18 electrons. 

Table 7.1. Abundance maxima observed in ANB clusters. Maxima are 
characterized by the number of valence electrons. Also given is the difference 

between the jellium background densities of A and B. Data collected from [ 151. 

A/B no+(B)-no+(A) (a.u) Maxima 
NaBa 0.0008 8, 18 
NdSr 
WNa 
NaEu 
Na/Li 
NdCa 
NaNb 
WLi 

N a g  
M g  
K m  
NdZn 

0.0014 
0.0018 
0.0023 
0.0029 
0.0029 
0.0033 
0.0047 
0.0088 
0.0 106 
0.01 06 
0.0155 

8, 18-20 
8, 20 
8, 18 
8, 20 
8, 20 
8,20 
8, 20 
8-10 
10,20 
10,21 
10,20 

WZn 0.0173 10,20 

These conclusions are confirmed by calculations [14] using a Wood- 
Saxon potential modified to account for the presence of the impurity. 
Zhang et al. [16] also noticed the 2s-ld inversion in their 
pseudopotential calculations. For larger clusters and strongly attractive 
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impurities Yeretzian [14] predited an inversion between the 2p and If 
shells, which would give rise to magic clusters with 26 electrons and 
would cause the magic number 40 to vanish. Experiments for the 
relevant host-impurity combinations in this size range have not been 
performed. 

Small anomalies have been observed [ 141 with respect to the general 
trends discussed, and these have been ascribed to structural effects 
beyond the jellium-type models [14, 171. Also, better agreement with 
experiment is achieved by relaxing one of the constraints of the jellium- 
on-jellium model: Yannouleas et al. [ 181 varied the impurity background 
density nO+(impurity), and then Rimp, while maintaining nO+(host) equal to 
its bulk value. An appropriate selection of the effective value of 
nO+(impurity) leads to a better matching of the calculated magic numbers 
with experiment. 

The optical response has been studied using the jellium-on-jellium 
model. The calculated optical spectrum of NagZn is characterized by two 
closely spaced lines at 2.87 eV, carrying 26 % of the total strength, and a 
stronger line at 2.57 eV which carries 42 % of the strength. This is in 
good agreement with the experimental double peak, formed by a higher 
energy component at 2.97 eV, which carries a smaller amount of strength 
than the lower energy component at 2.63 eV [18]. The fragmentation is 
due to the near degeneracy between the plasmon peak and the 2s + 2p 
and lp + 3s particle-hole transitions. This was obtained for an impurity 
background density corresponding to r,(Zn)= 1.15 a.u., a value 
substantially smaller than the standard value of r, = 2.31 a.u. for bulk Zn 
(see the definition of the electron density parameter r, in Section 5.7.2). 
The small value of r, indicates a strong attractive potential at the 
impurity site, which produces the downwards shift of those transitions 
required for the degeneracy with the plasmon to develop. The spectrum 
of Nag contains a single line at 2.53 eV, so the effect of the Zn atom on 
the optical response is evident. The need for such a small value of r, may 
be related to the application of the jellium model to an element like Zn, 
at the end of the transition metal group. As another example of the 
influence of impurities on the optical response one can consider the three 
related clusters KI9Rb, K20 and K19Na, all of them having 20 valence 
electrons [18]. The calculated optical spectrum of KZ0 shows a split 
plasmon due to a degeneracy between the collective excitation and a 
2s + 3p particle-hole transition. In the case of K19Na, the impurity shifts 
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the 2s level downwards, so the energy of the 2 s + 3 p  transition 
increases. At the same time the energy of the plasmon remains 
unchanged, and the consequence is that a single line dominates the 
spectrum. The opposite effect occurs for a Rb impurity. The energy of 
the 2s+3p transition is lowered and the plasmon splitting is more 
pronounced. 

Table 7.2. Binding energy E and character of the molecular orbitals in Na8Zn. 
Jellium model orbitals are given for comparison. Data collected from [ 181. 

Molecular Jellium 
orbitals 
E (eV) c/ E (eV> 

1 dt - 1.88 0.980 Id -2.02 
( 1 =2)  

2a1, -2.81 0.985 
( 1 =O) 

1 t l U  -3.89 0.985 
( 1 =1) 

2s -2.7 1 

IP -3.68 

lal, -7.41 0.995 1s -6.05 
(l=O) 

In order to test of the reliability of the model, Yannouleas et al. [18] 
have performed parallel jellium-on-jellium and molecular orbital 
calculations for K8Mg, Na8Zn and Kdvlg, comparing the electronic 
structures resulting from the two methods. In the molecular orbital 
calculations, the geometry was assumed to be a body centered cube for 
K8Mg and Na8Zn, and a centered octahedron for W g .  For the jellium- 
on-jellium calculations the densities nO+(impurity) and nO+(host) were 
assumed equal to the corresponding bulk values. For those two 
geometries the molecular orbital electronic configurations are of the type 
(lal,)* ( lt1J6 (2a1$, and (la1,)’ (1tlJ6, respectively. Comparison with 
the jellium calculations is based on the correspondence Is+ lal,, 
lp+It lu,  2s+2alg and ld+(ld,+ld,). To illustrate the validity of this 
correspondence, the molecular wave-functions were decomposed into 
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spherical harmonics with respect to the cluster center. The coefficient CI 
of the spherical harmonics with the maximum weight is given in Table 
7.2 for Na&, and the correspondence is very good. The table also gives 
the binding energies. Both calculations reproduce the downward shift of 
the 2s level below the Id level. The agreement between the electronic 
configurations extends also to K8Mg and &Mg. Ab initio calculations by 
for Li,Be, Li,Mg and Na,Mg are consistent with this conclusion [19- 
221. The ground state electronic configurations are (la1,)2 (lt1J6 for the 
A6X centered octahedron, ( l a  for the A7X 
regular pentagonal bypiramid and (la1J2 (lt1u)6(2a1g)2 for the A8X 
centered cubic form, respectively. 

In spite of the explanation of the new magic number corresponding 
to 10 electrons, both calculations (two-step jellium and molecular) have 
difficulties in accounting for the absence of a peak at N, = 8, that is, for 8 
electrons, when the peak at N ,  = 10 is present (the only case when both 
peaks are present in the experimental spectrum is Na,Mg). This is 
because both calculations exhibit comparable gaps between the lp and 2s 
subshells. The discrepancy suggests that the actual 2s level is probably 
closer to the lp subshell, that is more bound. In the two-step jellium 
model it suffices to increase the value of nO+(impurity) to produce the 
necessary downward shift of the 2s level, and this is the effect produced 
by the modification of rs(impurity) introduced by Yannouleas et al. [18]. 
The same effect can be obtained in the framework of the molecular 
calculations by relaxing the geometrical constraints. 

Ab initio molecular dynamics calculations for Na,Mg (rn = 6-9, 18) 
have found that, in general, the Mg impurity is not located at the cluster 
center, although it becomes increasingly surrounded by Na atoms as m 
increases [ 171. This produces electronic configurations that do not adapt 
as well to the two-jellium picture as if Mg is at the center: ld-2s mixing 
is present, reflecting the lowering of the symmetry. However, Na,Mg is 
probably one the most unfavorable cases to apply the two-step jellium 
model. An+ is small for systems in the upper part of Table 4.1 and the 
location of the impurity is unimportant because the perturbation that it 
produces is weak. On the other hand, when An+ is large, for systems at 
the bottom of the Table, the impurity defines the effective center of the 
cluster potential (see Section 7.5 for the case of a higher difference in 
valence between impurity and host), and again the location of the 
impurity becomes unimportant. 

(le ' I ) ~  ( l a  ';)2 (2a 
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The location of the impurity is an interesting question in itself, that 
has been studied by comparative calculations for Li,Be and Li,Mg with 
m I 12 [23]. The ground state geometries are rather similar up to m = 5 ,  
but the growth patterns differ significantly for m 2 6. The structure of 
Li6Be is an octahedron with the Be atom at the center, and the Be 
impurity is trapped in the interior of the cluster for m 2 6. In contrast, 
the Mg atom avoids internal positions and this affects strongly the 
structure of the clusters. Even for m = 12 the Mg atom resides on the 
surface of the cluster. The different behavior can be explained on the 
basis of the atomic size of the constituent atoms and the relative strength 
of the bonds between them. The ionic radius of Mg (1.36 A) is larger 
than the ionic radius of Li (1.25 A), while that of Be (0.89 P\) is 
substantially smaller. In addition, the Li-Be bond (0.391 eV) is stronger 
that the Li-Mg bond (0.263 eV), and both are weaker than the Li-Li 
bond. This makes difficult for Mg to go inside. That is, the cluster 
minimizes the energy by maximizing the number of Li-Li bonds. 

7.5 Higher Valence Impurities 

Impurities with a valence higher than two produce a stronger 
perturbation of the host cluster. The calculated equilibrium structures of 
Li,AI clusters [24] are three-dimensional for rn 2 3. This is in contrast 
with pure Li clusters, for which two-dimensional structures prevail up to 
Li6 [25]. For m 5 5,  the A1 atom does not occupy an internal position; 
however for larger clusters the A1 atom is internally located, surrounded 
by the Li atoms. The binding energy of the cluster, the evaporation 
energy of a Li atom hE,,(m) = E(Li,.lAl)+E(Li)-E(Li,A1), and the 
ionization potential IP display a monotonic increase for 1 I m 1 5  and 
then a drop at m = 6. This indicates the high stability of Li5AI, which has 
eight electrons. The structure of this cluster is roughly the same as that of 
NasPb shown in Fig. 7.2, with the A1 atom a little more distant from the 
plane of four Li atoms. The analysis of the orbital energy eigenvalues 
shows a doubly occupied orbital at = -7.5 eV with s character about the 
A1 site, and a manifold of three closely spaced and doubly occupied 
states with predominant p character at = -3.5 eV, that is, separated 4 eV 
from the s-like level. The charge density indicates that the bonding is 
covalent, with charge accumulation in the regions connecting A1 and Li 
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ions. The electronic structure of Li,Al clusters with m I 5 reflects the 
localized, atomic-like nature of the orbitals, and the properties of Li5Al 
are related to the closing of the A1 3p shell, albeit perturbed by the 
lithium environment by hybridization, bonding and crystal field effects. 
Further addition of Li atoms to LiSAl leads to a picture consistent with 
the delocalized shell model, with the ordering of the Id and 2s levels 
reversed from that corresponding to the homogeneous jellium model, 
just as in the case of the divalent impurities at the botton of Table 7.1. 

The tetravalent impurities of group 14, C, Si, Ge, Sn and Pb, form 
another interesting case. Supersonic expansion of lead-sodium vapor 
from a hot oven source led to the observation of an exceptionally 
abundant N%Pb cluster [26]. Several DFT calculations have investigated 
the nature of this species [27-291. A related cluster, Li6C, had earlier 
been studied computationally [30] and later observed as a product 
formed from the vaporization of solid C2Li2. The calculated ground state 
geometries of Na,Pb for m up to 7, are given in Fig. 7.2. Up to m = 7 
each new added Na atom binds directly to the Pb atom and the 
coordination of the Pb atom increases. Up to NasPb, the Pb atom is on 
the cluster surface, allowing the Na atoms to come in closer contact with 
one another and bind, albeit weakly. The lowest energy structure of 
N%Pb is an octahedron, which for the first time has the Pb atom in the 
interior of the cluster. A seventh Na atom also binds to Pb, but at this 
stage the Pb atom appears to be fully coordinated and an additional atom, 
in Na8Pb, is not directly bound to Pb, but begins forming a second Na 
shell [27]. 

The electronic configuration of the free Pb atom is 6s26p2 and the 
electronic structure of the occupied valence orbitals of NGPb is (la1J2 
(ltlJ6 (2a1,)* . The lal, cluster level, which is localized on the Pb atom 
and has dominant s character, is substantially more bound than the other 
levels due to the very attractive s-part of the Pb pseudopotential (the 
difference in binding energy between the la], level and the I t l ,  manifold 
is 7 eV). This lal, level can be identified with the 6s level of the Pb 
atom. The HOMO level 2 4 ,  is doubly occupied and there is a gap of 1 
eV between this level and the LUMO (of eg symmetry). The electron 
density is spherically symmetric, consistent with the closed shell 
character of N%Pb [28]. The bonding charge, defined as the difference 
between the cluster density and the superposition of the atomic densities, 
also has a spherically symmetric shape, and is maximal in the region 
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between the Pb atom and the shell of Na atoms. The filling of the It,, 
levels in the series Na,Pb ending with N%Pb can be viewed as the filling 
of the atomic 6 p  shell of Pb, perturbed evidently by the effect of the 
surrounding Na atoms. In summary, the electronic structure of small 
Na,Pb clusters is dominated by the presence of the Pb atom. 

3.00 

Oh 

Figure 7.2. Lowest energy structures of Na,Pb, m = 1-7. Small spheres 
represent Na atoms and the large one the Pb atom. Symmetries are indicated, 

and bond lengths are given in A. Reproduced from L. C. Balbfis and J. L. 
Martins, Phys. Rev. B 54, 2937 (1996) with permission of the American 

Physical Society. 

The closed shells structure of N%Pb is, of course, responsible for the 
observed high abundance of this cluster [26] but a full explanation 
requires considering other Na,Pb clusters. The energy to remove a Na 
atom from those clusters (or evaporation energy) is plotted in Fig. 7.3 
[31]. There is a pronounced odd-even oscillation of the evaporation 
energy as a function of m and the smallest value occurs for Na7Pb. The 
explanation proposed for the high abundance of N%Pb is based on a two- 
step mechanism [32]. Under the experimental conditions of a Pb 
concentration of the order of 10% in the mixed Pb-Na vapor, growth of 
mixed clusters containing a single Pb atom is favorable compared to 
other possibilities. Formation of pure Pb clusters is unlikely because of 
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the small concentration of Pb in the Na-Pb vapor mixture. The gain in 
binding energy in the step 

Na,-,Pb + Na + Na,Pb (7.3) 

that can be called the capture energy, can be read from Fig. 7.2; this is 
equal to the evaporation energy of Na,Pb. It is positive, that is, the 
process is exothermic, so the clusters tend to grow. This capture energy 
is higher than the capture energy for the growth of small pure Na 
clusters, and consequently mainly Na,Pb clusters will form if there is a 
supply of Pb atoms. The competition between different Pb atoms to form 
Na,Pb clusters and the fact that the capture energy of Fig. 7.2 quickly 
decreases as rn increases suggest that most clusters will not grow larger 
than Na7Pb or NasPb and this completes the first part of the argument. 

2.5 1 
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Figure 7.3. Energy required to remove an alkali atom from Li,Pb, Na,Pb and 
K,Pb. Reproduced from J. A. Alonso et al., Chem. Phys. Lett. 289,45 1 (1988) 

with permission of Elsevier. 

On the other hand, during the growth process the clusters become 
hot, and they can cool down by evaporating Na atoms. The evaporation 
energy increases by a factor of more than 2 between the two consecutive 
evaporation events Na7Pb + N%Pb +Na and NGPb + Na5Pb +Na, so it 
is reasonable to expect that the evaporation cascade stops after the first 
of those two reactions because of the high evaporation energy of the 
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second one, and in this way the population of N%Pb becomes highly 
enriched. Evidence for enormous differences in the abundance arising 
from relatively small differences in the evaporation energies is well 
documented in experiments for (C60)N [33]. The spectrum of cold (C60)N 
clusters is smooth. For laser heated clusters, the abundance of (c60)13, a 
compact cluster with the form of an icosahedron, is eight times larger 
than the abundance of (C~)14, even if the evaporation energy of (C60)14, 
that is, the energy to remove a c 6 0  molecule, is only 20% smaller than the 
evaporation energy of (c60)13. 

Li6C and N&Pb are just two clusters in a broad class M6X, where X 
= C, Si, Ge, Sn, Pb and M = Li, Na, K, Rb, Cs. This family has been 
studied by Marsden [34] and Schleyer [29]. Their structure is the 
centered octahedron of Fig. 7.1. The single exception is Li6Sn; in this 
case the Sn atom is on the surface, but coordinated to the six Li atoms 
[35]. The special location may be due to the similar atomic radii of Sn 
and Li. The bonding in the entire family is similar, having substantial 
ionic character. Most of the clusters are quite floppy, and the most rigid 
one is Li6C, which is exceptionally stable (1 108 KJ/mole, relative to 
separated atoms [34]). The binding energy increases as the alkali atom 
changes from Cs to Li, and this reflects the residual alkali-alkali 
bonding. On the other hand, by changing the tetravalent atom, the 
binding energies decrease in the order M6C > M6Si = M6Ge > M6Sn- 
&Pb, and this order follows the variation of the Allred-Rochow 
electronegativity scale [36] down group 14. This means that the stability 
of N&Pb is relatively low compared with other M6X clusters. Hence, a 
large number of clusters in this family await experimental synthesis. 

The charge transfer to the impurity induces a weakening of the bonds 
between the alkali atoms compared to the corresponding pure alkali 
clusters, and this affects their thermal properties. Comparative 
simulations of the thermal behavior of Li6Sn and Li7 indicate that Li7 
exhibits solid-like behavior at 100 K (showing only small atomic 
oscillations) whereas liquid-like behavior is observed for Li6Sn at that 
temperature [35]. The values of the r.m.s bond length fluctuation S (see 
Eq. (3.11)) for Li6Sn are 0.07 at 100 K and 0.17 at 300 K, which are 
much higher than the values 0.036 and 0.063 for Li7 at the same 
temperatures, respectively. 

The ionization potentials of Cs clusters containing oxygen impurities 
display pronounced drops at some particular sizes [37] that reveal the 
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occurrence of closed electronic shells. The electronic configuration of 
the oxygen atom is ls2 2s2 2p4. In the clusters, the 2p shell of the oxygen 
atom becomes filled by electrons donated by the Cs atoms forming 02- 
anions, and the remaining valence electrons of the cluster behave 
according to the shell model [38]. That is, Cs,O, clusters have m-2x 
nearly free electrons. The drops in the ionization potential are 
reproduced by the calculations [38]. 

Halogen impurities represent the extreme case of a large difference 
of electronegativity with respect to the alkali host. At the same time, only 
one extra electron is required to fill the external p shell of the halogen 
atoms, and experiments and calculations confirm this picture. Optical 
absorption measurements for Na9X (X = F, C1, Br and I) [39] and for 
NaloBr2 indicate that each halogen atom ties up one of the metallic 
electrons, leaving eight delocalized electrons in the cluster. The 
collective plasmon is red-shifted and broadened with respect to Nag. 
Quantum chemical calculations for Li9F have revealed where the F atom 
resides [40]. The ground state has low symmetry (CJ, and the F atom 
resides in an external position and has three close neighbors. The low 
lying isomers have low or not symmetry, with the atom again in external 
positions. This contrasts with the high symmetry of Lis and Li9+. For the 
ground state and the two lowest lying isomers of Li9F, the three highest 
occupied Molecular Orbitals and the LUMO are composed mainly of Li 
atomic orbitals, and the HOMO-LUMO gaps have a magnitude similar 
to the gap in Lig and Li9+. The optical spectrum of the doped cluster, 
calculated by the Configuration Interaction method taking into account 
single excitations only, shows a red shift with respect to that of Lig and a 
large spreading of the allowed transitions due to the substantially lower 
symmetry. 

7.6 Impurities in Aluminum Clusters 

Carbon exhibits different bonding behavior in A1 clusters depending on 
their size and charge [41]. Neutral A13C has a C2, structure. Addition of 
an electron leads to a D3h symmetry for A1,C- with an Al-C bond 
length of 3.61 a.u. A4C has a Jahn-Teller distorted planar structure with 
the carbon atom four-fold coordinated but somehow displaced from the 
center of a deformed square (one of the Al-A1 bonds is broken). A nearly 
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degenerate tetrahedral isomer also exists. Addition of an electron lifts the 
degeneracy favoring the planar structure and reducing the distortion in 
AI,C-. The structures of neutral and anionic A15C are planar, with the 
C atom four-fold coordinated to A1 atoms like in A4C. The fifth A1 atom 
is attached to the pair of A1 atoms forming one edge of the distorted 
square. A1-C bond lengths in all these small clusters are between 3.50 
and 4.04 a.u., similar to the bond lengths in the A1C dimer (3.78 a.u.). 
The energy to remove the C atom is larger for A14C (7.32 eV) compared 
to the other two clusters (6.78 and 6.88 eV for A13C and A15C, 
respectively). In addition, the adiabatic electron affinity of A14C (2.1 8 
eV) is lower. These two features can be justified if A1 acts as a 
monovalent atom, like in the pure small AIN clusters, and the electrons, 
one per A1 atom, go to fill the 2p shell of C in A4C. The bonding 
between C and A1 in these small AI,C clusters is covalent [41]. 

AlI3 has a very symmetrical (icosahedral) structure and 39 valence 
electrons, short of just one to become a magic cluster with 40 electrons. 
As expected the measured electron affinity of All3 is large, 3.6 eV [42], a 
value similar to that for C1 (3.61 eV), which has the highest affinity 
among the elements of the Periodic Table. Al, is then a very stable 
anion. The same number of electrons, 40, is obtained by replacing one A1 
atom by a tetravalent atom, C, Si, Ge, Sn or Pb, and it has been 
conjectured that icosahedral A112X clusters with X = C, Si, Ge, Sn or Pb, 
could become candidates for cluster assembled materials. Calculations 
for A1& have predicted an icosahedral structure with the C atom in the 
center of the icosahedron [41, 43, 441. Also, the electron affinity of 
AlI2C is smaller than for the clusters of neighbor sizes AlllC and All$, 
and the energy to remove an A1 atom is larger. A prediction of 
icosahedral structure was also made for All& and AlI2Ge, but for 
AlI2Sn the Sn atom was predicted to substitute an A1 atom on the surface 
of the icosahedron [44-46]. 

The electronic structure of this family has been probed by 
photoelectron spectroscopy (PES) [47]. The PES spectra of AlI2X- 
with X = C, Ge, Sn, Pb, measured at two photon energies, 193 nm and 
266 nm, are shown in Fig. 7.4, where the spectrum of AIL3 is also given. 

The spectrum of Al, is well understood. Starting with the shell model 
and reducing the symmetry by taking into account the icosahedral 



222 Structure and Properties of Atomic Clusters 

structure leads to the electronic configuration 
la: lt;, lh: 2u: It;, lg, 2t,,. Theoretical calculations suggest that the 
features labeled A and B in panels (a) and (b) of this figure correspond to 
electron detachments from the It,,, lg, and 2t,, orbitals, which are 
closely spaced in energy [48]. 

8 6  

193 nm 266 nm 

~ .i v 
1 2 3 4 5 2  3 4 

Binding Energy (eV) Binding Energy (eV) 

Figure 7.4. Photoelectron spectra of pure and doped A1 cluster anions taken at 
193 and 166 nm. The continuous and dotted spectra in panel (a) correspond to 

vibrational temperatures of about 260 K and 570 K, respectively. The bar 
symbols represent nonicosahedral features. Reproduced from X. Li and L. S. 

Wang, Phys. Rev. B,  65, 153404 (2002), with permission of the American 
Physical Society. 
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The extra electron of Al,,X- is expected to occupy the next level, 
lh,, and a large gap should be observed in the spectrum. The gap is 
observed in the spectrum of Al,,Pb-, with a weak feature (X) at lower 
energies followed by broad features, A and B, at higher energies. The 
close similarity with the A and B features of Al, indicates a rigid 
filling of the electronic shells for the icosahedral structure. Confirming 
this idea, features X, A and B are also evident in the spectra of All&- 
and Al,,Ge-. The weaker features observed in the spectrum of 

Al,,Pb- taken at 266 nm, and marked as solid bars, are interpreted as 
corresponding to a minor isomer, which is more prominent in the spectra 
of Al,,Sn- and Al,,Ge-. The relative intensities of the extra features 

in Al,,Sn- and Al,,Ge- strongly depend on the source conditions [47]. 
Calculations for AI12Sn had predicted a structure in which the Sn atom 
substitutes an A1 atom on the surface of the icosahedron. The shape of 
the PES spectrum indicates, probably, that both this isomer and the 
isomer with the Sn atom on the center of the cluster are present in the 
experiments. The PES of Al,,C- is completely different. It shows much 
higher adiabatic and vertical electron detachment energies and a smaller 
gap. The spectral features are not dependent on the source conditions, 
indicating that a single isomer is responsible for the spectrum. 
Calculations have consistently predicted the icosahedral structure for 
neutral AlI2C [41, 43451, but the anionic species appears to have a 
lower symmetry, C2" [41], accounting for the complexity of the 
spectrum. 

Another way of doping AlI3 in order to have 40 electrons is by 
attaching a hydrogen atom. AlI3H clusters have been produced and 
exhibit a HOMO-LUMO gap of 1 .4 f0 .2  eV, measured by 
photoelectron spectroscopy (PES) of the negatively charged species 
AlI3H- [49]. The calculated ground state structure of A113H [SO] 
preserves the icosahedral structure of A113. This icosahedron has a small 
oblate distortion with two triangular faces slightly closer to the central 
atom than the other faces, and the H atom sits in a hollow position above 
the center of one of those two special faces. The distance from the H 
atom to the cluster center is 5.68 a.u. and the distances between the 
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central and the surface A1 atoms range between 5.00 and 5.08 a.u. The 
density of electronic states [50] for the predicted structure is consistent 
with the measured photoelectron spectrum [49]. The binding energy of H 
to AlI3 is 3.4 eV [50, 511 and the barrier for diffusion to another hollow 
position in a neighbor face is 0.08 eV. The state of the H atom can be 
described as a negatively charged impurity screened by the surrounding 
electron gas [52], similarly to a H impurity embedded in a vacancy in the 
A1 metal. 

Replacing an A1 atom in an A1, cluster by an element of the same 
group, like B or In, does not change the number of valence electrons. In 
a mass spectrometric study [53], the intensity distribution of Al,-,B- 

was found to be very similar to that of Al,-, and magic numbers appear 

at N = 13 and N = 23. On the other hand, Al,,B, is not magic in the 

spectrum of clusters with two substituted atoms, that is, Al,-,B,. DFT 

calculations for Al,-,B- and Al,-,B show that the structures for N = 
12-14 are based on the icosahedron, and that the B atom occupies the 
central site of the cluster [54]. A112B is the most stable cluster of the 
series, both in the neutral and charged states, and this explains the 
observed high abundance of Al,,B-. Two effects contribute to this high 

stability: the number of electrons in Al,,B- is 40, a shell closing 
number; on the other hand the structure is complact and nearly spherical. 
Also the structures of neutral and charged AIN.,B2 ( N  = 12-14) are based 
on the icosahedron: the structures are only slightly distorted and again 
one of the B atoms occupies the central position. In addition Al,,B, is 
more stable than neighbor clusters: the gain in binding energy in the step 
Al, ,B~+AI-+ Al,,B, is larger than the gains in the steps 

AI,B,+Al+ A,,B, and Al,,B,+Al+ Al,,B,. Wan and Fournier 
[54] have proposed that the reason for the absence of a high abundance 
peak of Al,,B, resides on the relative stability of the neutrals AlN-,B2: 
the most stable of these is A112B2, so the lower abundance of the neutral 
precursor (AlI2B2) accounts for the absence of of a high abundance of the 
charged species Al,,B;. 
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8. Clusters of the Transition Metals 

8.1 Noble Metal Clusters 

8.1.1 Electronic shell effects 
The free atoms of the transition metals series have an incomplete d shell 
in the ground state or in low lying excited states. The d electrons are 
responsible for many properties of these elements as free atoms or in the 
bulk phase. In the same way, most properties of clcsters of the transition 
elements reflect the rather localized behavior of the d electrons. 

Cu, Ag and Au occupy a special place at the end of the 3d, 4d and 5d 
periods respectively. The d shell is filled with 10 electrons and the 
valence shell contains a single s electron. The d band is well buried 
below the Fermi level in the bulk metal and this leads one to expect some 
similarities between the electronic structure of noble metal clusters and 
the alkali metal clusters. Experiments for noble metal clusters [ I ,  21 
indicate the existence of shell effects similar to those observed in alkali 
clusters. For instance, the mass spectrum of cationic clusters obtained by 
bombarding the metal with inert gas ions shows two types of anomalies. 
The first one, observed for small clusters, is an odd-even alternation of 
the abundance, such that the population of o d d 4  clusters is higher than 
the population of even-N clusters. The other anomaly is that a steep drop 
of the cluster intensities occurs after the sizes N = 3,  9, 21, 35,41,  59, ... 
By focusing on the external s electrons, the experimental observations 
are explained by a model similar to that for alkali clusters, that is, 
assuming that the s electrons are confined in a smooth spherically 
symmetric potential well. In the bombardment experiments the clusters 
are born ionized, so the mass spectrum reflects the relative stabilities of 
charged clusters in which the number of electrons is N-1. From the list 
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given above, N-1 = 2, 8, 20, 34, 40, 58, ... which reproduce the shell 
closing numbers of alkali clusters. Negatively charged clusters can be 
produced by the same technique and their magic numbers again 
correspond to N + 1 = 8, 18, 34,40, ... electrons. The ionization potential 
shows the expected drops at the electronic shell closings [3]. 

Photoelectron spectroscopy (PES) studies of cluster anions X, give 
direct information on the structure of the spectrum of electronic energy 
levels (see Fig. 5.2). The structure of the spectrum is very rich and every 
cluster species has its own fingerprint. The photoelectron threshold can 
be taken as an estimate of the electron affinity. When the corresponding 
neutral cluster X N  has closed shells, the electron is extracted from the 
lowest unoccupied molecular orbital (LUMO) of X N  . Consequently the 
photoelectron threshold reflects the shell effects. Indeed, measured 
detachment energies of Ag; [4] and Cu, [5 ,  61 show drops between N 
= 7 and N = 8, and between N = 19 and N = 20, which again indicate 
major shell closings. Cha et al. [7] have analyzed the PES of Cu, 
clusters with N = 1-18, focusing on the region of the spectrum of that is 
predominantly of s-like character (that is, derived from the atomic 4s 
orbitals). The observed peaks can be qualitatively assigned to the 
electronic shells of the ellipsoidal jellium model if one takes into account 
additional effects like shake-up processes (the simultaneous excitation of 
bound electrons accompanying the photoemission process), multiplet 
splittings (caused by the spin-spin interaction of the electrons) and s - d  
hybridization (for orbitals located close to the 3d band). 

Chemical probes also point to electronic structure that can be 
undestood in terms of the spherical jellium model. Winter et al. [8] have 
recorded the mass spectrum of Cu clusters, generated by laser 
vaporization of copper metal, after the clusters have passed through a 
flow tube reactor with 0 2  added to the gas flow. The observed result is 
that Cu20, Cu34, Cum , CUSS and Cug2 are unreactive towards O2 and the 
lack of reactivity is ascribed to the closed shell electronic structure of 
these clusters. 

In spite of the successful description of some properties of noble 
metal clusters by a shell model that neglects the d electrons, these are 
required to explain a number of properties. The d electrons contribute to 
the bonding in a crucial way. The contribution of the d band to the 
cohesive energy of noble metals is also well documented [9, 101. 
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8.1.2 Interplay between d and s electrons 
The analysis in Section 8.1.1 provides information on the electronic 
structure in the energy region near the top of the occupied molecular 
states of the cluster. But one can probe deeper down into the structure of 
electronic levels. Ultraviolet Electron Spectroscopy (UPS) has been used 
[6, 111 to probe the 3d electrons of Cu, anions with N up to about 400. 
A large peak is found, roughly 2 eV deeper than the weak initial 
threshold, and this large peak moves smoothly with cluster size. For 
small clusters its position merges with the position of the d levels of the 
atom and for large clusters the peak matches well with the onset of the 
3d band of bulk Cu. This feature is attributed to the photodetachment of 
3d electrons. Unlike the large size-dependent variations of the UPS 
threshold, which is associated to the 4s electrons, the 3d feature shifts 
monotonously with the cluster size. 

In the band picture of the noble metals, with localized d electrons 
and extended s electrons, the s-d mixing is substantial [ 101. The picture 
is far from that of the free electrons in the alkali metals. It is, therefore, 
intriguing how well the shell model works in noble metals. Fujima and 
Yamaguchi [ 121 have performed DFT calculations for CuN clusters with 
sizes up to N = 19 and a variety of model structures. The analysis of the 
molecular orbitals (MO) shows that these are of two types. The first type 
is formed by MOs built from atomic 3d orbitals. These span a narrow 
energy range of a width comparable to that of the d band of the solid, and 
do not mix much with the second type of MOs, which are derived from 
atomic 4s and 4p orbitals. The 3d charge is localized around atoms, 
whereas the sp charge is extended over the whole cluster. Fujima and 
Yamaguchi related their results to the shell model. Disregarding the MOs 
with d-character on the atoms, the sequence of the remaining MOs can 
be reproduced rather well by considering a spherical model potential 
with a small anharmonic term. This is essentially the form of the 
effective potential in the spherical jellium model. However, when the 
cluster lacks a central atom, as is the case of the icosahedral structure of 
C U , ~ ,  a three-dimensional Gaussian potential barrier had to be added to 
simulate the missing atom. The good one-to-one correspondence 
between the energy levels of the full calculation and those of the model 
potential leads to the explanation of why the shell model is applicable to 
Cu clusters. For 3 I N < 8, the d band is located in the energy gap 
between the molecular levels with overall symmetries comparable to 
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those of the 1 s  and 1P jellium levels (here, the angular momentum 
quantum number of the delocalized jellium levels are labeled with capital 
letters, to avoid confusion with the atomic s, p and d orbitals), between 
the 1P and 1D levels for 9 I N < 18, between the I D  and 2s levels for 
19 I N < 20, and so on. The atomic d levels are always filled. 

8.1.3 Structure 
Massobrio et al. [13] have performed D l T  calculations optimizing the 
structures of Cu clusters with N 5 10. In general, the ground state and 
local minimum structures are similar to those of NaN, although the Cu 
clusters tend to prefer more compact arrangements. The angular 
decomposition of the molecular orbitals shows that these bear some 
relation to the shell model, although this character is significantly less 
pronounced than in Na clusters. The degree of s-d hybridization appears 
to be larger compared to the results of Fujima and Yamaguchi [12], and a 
likely reason is the fact that the later authors assumed more symmetric 
geometries. Massobrio et al. extended their calculations to cluster anions 
[ 141 and used the results to interpret the measured photoelectron spectra 
[7].  A linear chain was obtained for Cu,, a planar trapezoidal 

configuration (CZv symmetry) for CU, , two nearly degenerate isomers 
with C3v (capped octahedron) and DSh (pentagonal bipyramid) 
symmetries, respectively, for Cu; , and a bicapped pentagonal 

bipyramid (C2 symmetry) for Cu, . One-electron vertical detachment 
energies were calculated as a difference of selfconsistent total energies 

where Ejnitiul is the total energy of the initial state of Cu, , characterized 
by occupations (nl, ... nk, ... nM) of the M electronic eigenstates, and 
Ef,,,[(k) is the total energy when an electron has been removed from a 
given state k .  This energy is obtained in a constrained calculation for the 
electronic configuration (n l ,  ... nk- l ,  ... nM) in which the wave function of 
the k-th eigenstate is kept frozen whereas the other wave functions are 
allowed to relax. In this way screening is included, although the 
relaxation of the hole is not. With this procedure a consistent 

(8.1)
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interpretation of the photoelectron spectra of Cu;, Cu,, Cus and 

Cu, was achieved. The early interpretation [7] in terms of the 
ellipsoidal jellium model remains valid to a large extent. The comparison 
with experiment supports the C3" structure for CUT. Massobrio et al. 
were also able to account for finite temperature effects by running 
molecular dynamics simulations for CUT at T = 300 K and 400 K and 
taking temporal averages of the density of states and of the excitation 
energies. Thermal broadening led to a splitting of the first peak in the 
calculated photoelectron spectrum of this cluster, whose magnitude 
agrees well with the experimental splitting of 0.12 eV. 

Small AgN clusters and their positive and negative ions have been 
studied by Bonacic-Koutecky and coworkers [ 15, 161. Cluster 
geometries were optimized at the Hartree-Fock level, replacing the cores 
by an effective core potential. For the different isomers obtained in this 
way, a Configuration Interaction treatment of the 5s electrons was 
carried out to recalculate the energies. Concerning trimers, only the 
anionic one Agi is linear, whereas the neutral and cationic trimers are 
planar. All cationic clusters larger than tetramers assume three- 
dimensional geometries, starting with Ag;, which is a trigonal 
bipyramid. But the competition between two and three-dimensional 
structures is more pronounced for neutral and anionic clusters. Ag5 and 
Ag, are still planar and Ag6, that marks the transition to three- 
dimensional structures in the neutral case, is a rather flat pentagonal 
pyramid. Three-dimensional structures of anion clusters also begin with 
A&, which is a bicapped deformed tetrahedron. The net charge also 
influences the precise three-dimensional geometries adopted for N 2 7. 
Binding energies per atom increase with cluster size and indicate a 
sligthly higher stability of systems with eight valence electrons. This 
becomes confirmed by a large drop of ZP between Ags and Agg and also 
by the pronounced minimum of the electron affinity at Ags. The 
comparison of the measured photodetachment spectra [4, 171 of the 
anions with the calculated vertical detachment energies and with the 
energies of the excited states of the neutral species at the linear 
geometries of the anions allowed an assignment of the anionic cluster 
geometries that confirmed the results of the total energy optimizations. 
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8.1.4 Special properties of gold clusters 
Interest in gold clusters derives from their unusual catalytic properties 
for selective oxidation of CO [18, 191, their resistance to oxidation [20] 
and for enabling selective binding of DNA [21]. Also gold clusters have 
potential applications in nanoelectronics [22, 231. Gold clusters present 
peculiar differences with respect to the copper and silver clusters. 

Figure 8.1. Lowest energy and metastable structures of CUZO, Ag20 and AUZO, and 
their binding energies. Reproduced from J. Wang, G. Wang and J. Zhao, Chern. 

Phys. Led. 380,716 (2003) with permission of Elsevier. 

Au20 has a HOMO-LUMO energy gap of 1.77 eV, measured by 
photoelectron spectroscopy of the anion [24]. This gap is even larger 
than the gap in C60 (1.57 eV), suggesting that A u ~ ~  should have an inert 
chemical character and a symmetrical geometry. DFT calculations have 
predicted for the neutral and the anionic clusters a tetrahedral (Td) 
structure [24, 251, surprisingly similar to that shown for Na20 in Fig. 4.9. 
This is a small piece of bulk gold with a small relaxation. Each of the 
four surfaces represents a (1 11) surface offcc gold. Each planar surface 
of the cluster contains ten atoms, and all except one of those ten atoms 
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are shared by two or three facets. The binding energy of the neutral 
cluster is 51.63 eV (or 2.58 eV per atom). The comparison with Cu and 
Ag clusters of the same size reveals interesting differences [25]. The 
ground state structure of Cu20 has a compact C, structure given in Fig. 
8.1. Its total binding energy with respect to the separated atoms, is 49.85 
eV. The tetrahedral isomer of Cu20 has a binding energy of 49.72 eV, 
which is very close, only 0.13 eV lower. In the Au case the stability is 
reversed and the binding energy of the Td structure ( 5  1.63 eV) is 0.67 eV 
higher than the binding energy of the C, structure. As an intermediate 
case, the T d  and C, structures of Agzo are nearly degenerate. 

Table 8. I .  Minimum size for the onset of three-dimensional geometries in 
neutral and charged noble metal clusters. Data collected from [27]. 

Cation Neutral Anion 
c u  5 7 6 
Ag 6 7 6 

The ground state structure of neutral and anionic Au20 formed from 
planar facets is perhaps not too surprising in view of the fact that small 
Au clusters also tend to be planar up to larger sizes than the 
corresponding Cu or Ag clusters. Gas phase mobility experiments have 
provided evidence for two-dimensional structures of Au, extending up 

to Au, at least [26]. DFT calculations corroborate this conclusion, 
predicting that anionic Au clusters are planar up to N = 13 or 14 [26-281. 
Au is then the metallic element having the largest two-dimensional 
clusters. In contrast Cu, and Ag; become three-dimensional earlier 
[26, 271. Table 8.1 gives the predictions for the onset of three- 
dimensional geometries for cationic, neutral and anionic clusters of the 
three noble metals, from DFT calculations using scalar relativistic 
pseudopotentials and a basis of numerical pseudoatomic orbitals [27]. 
The early occurrence of three-dimensional structures for silver is also 
demonstrated by ion mobility experiments for AgN' [28]. 

The tendency of Au to favor planar structures is due to relativistic 
effects. The main factors are the stabilization of the atomic 6s orbital and 

Au 8 12 13
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the destabilization of the 5d orbitals, bringing them closer in energy [29]. 
This enhances the s-d hybridization. The relativistic contraction of the 6s 
orbital also contributes to a shortening of the interatomic bond distances, 
resulting in an increase of the d-d overlap between orbitals of neighbor 
atoms. Consequently the d electrons are more delocalized over the 
cluster volume and the d band is wider compared to Cu, and Ag, . 
These features have the effect of favoring planar structures [29]. 

The situation concerning the structure of medium size and large gold 
clusters is controversial. X-ray powder diffraction studies of clusters 
with sizes N = 38, 75, 101, 146, 200, 225 and 459 passivated with 
organic molecules have been interpreted as revealing ordered structures 
with an underlying fcc lattice: truncated octahedra for N = 38, 225 and 
459, and truncated decahedra for the rest [30]. But Garzon and 
coworkers [3 11 have performed calculations using semiempirical many- 
atom potentials whose results, corroborated by DFT calculations [32], 
suggest instead that the structures for many sizes between N = 38 and N 
= 75 are disordered. For two cases studied in detail, A u ~ ~  and Au?~
calculated structure factors for those disordered geometries agree equally 
well with experiment as the structure factors from the fcc ordered 
structures. 

8.1.5 Optical properties 
The core affects the valence electrons of atoms through the exclusion 
principle, its mean Coulomb potential, many-body core-valence 
correlations and core relaxation following atom aggregation. In contrast 
to alkali clusters, where the core electrons do not strongly affect the 
optical properties, a different situation is found for the noble metal 
clusters due to the s-d hybridization. The measured surface plasmon 
frequencies of negatively charged silver clusters are redshifted with 
respect to the free electron value, and the redshift increases with 
decreasing cluster size [33 ,  341; in contrast these are blueshifted for 
positive and neutral clusters, and the shift is larger for positive clusters. 
This behavior is connected with the 4d electrons. For example, the s-d 
polarization screens the electron-electron interaction and reduces the 
bulk plasma frequency of silver from the free electron value of 9 eV to 
the experimental value of 3.8 eV. 
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Figure 8.2. Experimental (points with error bars) and calculated (lines) 
photoabsorption cross section per electron of Ag5;. Continuous and short 
dashed curves are for bcc and fcc geometries, respectively, including core 

polarization. The long dashed curve is for anfcc cluster without core 
polarization. Reproduced from L. Serra and A. Rubio, Phys. Rev. Lett. 78, 1428 

(1997) with permission of the American Physical Society. 

Liebsch [35] has proposed a model in which the 5s electrons of Ag 
are described by a uniform jellium model and the effects associated with 
the polarization of the 4d electrons are included by means of a 
background with the experimental dielectric function w) of the bulk 
metal and a radius R d  slightly smaller than the radius R of the jellium 
background. The role of the nonpolarizable surface layer is important, 
since it accounts for the different screening in the interior of the cluster 
and at its surface. The TDLDA (see Chapter 5 )  for this model reproduces 
qualitatively the characteristic features of the static and dynamical 
optical response of Ag clusters [36]. The role of the nonpolarizable 
surface layer is reflected in the opposite behavior of the surface plasmon 
with increasing cluster size in positive and negatively charged systems: 
the induced density is located inside the polarizable background in the 
first case and outside in the second, and there is a reduction of the 
thickness R-Rd as the size of the cluster increases due to the progressive 
formation of an inner region of atoms with bulk-like coordination. The 
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model is supported by calculations of the dynamical polarizabilities of a 
Ag' core in different environments [36, 371. Ions in the interior of the 
cluster respond like ions in the metal, and ions at the surface respond 
much like free ions. The difference is a consequence of the more 
efficient electronic screening in the bulk. 

A generalized TDLDA for the optical response of metal clusters has 
been presented where both valence and core polarization responses are 
treated microscopically [38]. As in the dielectric model, the decrease of 
the plasmon frequency with increasing cluster size can be assigned to the 
evolution of the core polarizability from the free ion regime in small 
clusters to the fully embedded core in large ones (namely, to the building 
up of the polarizable background with increasing cluster size). The cross 
section of Ag,; obtained within that formalism is compared in Fig. 8.2 
with experiment [33] and with the normal TDLDA without core effects. 
Good agreement with experiment is only achieved for the full 
calculation. The specific structure assumed for the cluster cfcc or bcc) 
introduces only minor changes in the optical spectrum indicating that 
core polarization effects are more important than the particular structure 
of the cluster, and this supports the success of the dielectric continuum 
model. The theory reproduces the observed cluster size dependence of 
the surface plasmon frequency. 

8.2 General Bonding Properties in Clusters of Transition 
Metals 

One of the recurrent themes in the physics and chemistry of clusters is 
the analysis of the similarities and differences between the properties of 
clusters and those of the corresponding bulk material. The beauty of 
clusters stands from the fact that their properties are size-dependent and 
this size specificity has potential interest for technological applications. 
On the other hand one should also recognize that some trends along 
groups or across periods of the Periodic Table are already imprinted in 
clusters with few atoms. This is the case for the cohesive properties of 3d 
and 4d metals. Painter [39] has performed DFT calculations for model 
clusters of 3d elements, constraining the clusters to be formed by six 
atoms in an octahedral structure (this defines a lattice fragment of the 
fcc, bcc and hcp lattices), and allowing for interatomic bond length 
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relaxation. The 3d metals exhibit a broad spectrum of mechanical 
properties [lo]. The experimental cohesive energy E, of Sc is 3.90 
eV/atom. This quantity increases for Ti and has a maximum for V. After 
this maximum it decreases, showing a minimum of 2.92 eV/atom for 
Mn. E, increases again to the right of Mn, having a broad maximum for 
Fe, Co and Ni, and finally it decreases for Cu. The trend of the Wigner- 
Seitz radius Rws (the radius of an atomic cell in the metal) is simpler. Rws 
has a roughly parabolic behavior (lower values in the middle of the 
series) with Mn deviating although rather weakly, having a value of Rws 
slightly larger than the interpolated value. This small deviation reflects 
the minimum of E,. These trends have been reproduced by band 
calculations for the bulk metals [40], except for some weak deviations. 
Painter [39] demonstrated that the trends in the binding energy and 
interatomic distance of the octahedral clusters reproduce well the 
experimental trends for the solid metals, with small deviations that are, 
precisely, the same found for the bulk calculations. Of course, although 
the trend is well reproduced, the binding strength is lower for clusters 
and the interatomic distances are also smaller. The conclusion is that the 
trend in the cohesive energy originates largely from the localized near- 
neighbor interactions present within the primitive cluster itself. 

Table 8.2. Binding energy per atom, distance from atoms to the cluster center, 
and average magnetic moment per atom for octahedral six-atom clusters. Data 

collected from [41]. 

Cluster Eb (eV) D (a.u.) p ( p  ) 
Y 3.53 4.40 0.00 
Zr 5.23 3.96 0.33 
Nb 5.07 3.64 0.67 
Mo 4.05 3.40 0.33 
Tc 4.91 3.36 0.33 
Ru 4.70 3.40 1 .oo 
Rh 4.03 3.48 0.99 
Pd 3.14 3.50 0.00 
Ag 1.56 3.76 0.33 
Cd 0.39 4.48 0.00 

B 
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A similar study was done for clusters of 4d elements [41]. A model 
of a regular octahedral cluster with six atoms was again employed, and 
the structure was allowed to relax radially. The calculated binding 
energies per atom and the distance D from the atoms to the cluster centre 
are given in Table 8.2 (the magnetism will be discussed in Chapter 9). 
The binding energy Eb shows maxima at Zr and Tc, separated by a 
minimum at Mo. It also drops to small values near the end of the period 
for Ag and Cd. This is also the general behavior of the experimental 
cohesive energy of the bulk metals [lo]. The only small differences with 
respect to the bulk trend are that the first maximum for the bulk metals 
occurs for Nb (instead of Zr) and the second maximum for Ru. But it is 
useful to notice that Tc and Ru have very similar cohesive energies and 
Tc6 and Rug have also very similar binding energies, so the discrepancies 
are minor and one can conclude that a good qualitative correspondence 
exists between clusters and bulk metals concerning the variation of the 
binding energy across the 4d period. 

The Wigner-Seitz radius also shows a simple parabolic variation 
with a minimum around the middle of the period, and the calculated 
interatomic distances of the clusters (as well as D of Table 8.2) roughly 
agree to this behavior. The nearly parabolic behavior of Eh is a 
consequence of the change from bonding to antibonding character of the 
d orbitals as the d band filling increases. In the same way as for the 3d- 
clusters, binding energies and interatomic distances are smaller than in 
the bulk. There is also a striking correlation between the width of the 
occupied valence band in clusters and bulk metals. Although the 
bandwidth of the clusters is smaller, a parabolic variation between Y and 
Pd is found in both cases; Ag and Cd deviate from that trend because the 
4d band is filled in those two cases and the 5s-derived band of nearly 
free electrons is very broad. 

8.3 Electronic and Atomic Structure 

Diffraction techniques are not useful to elucidate the structure of very 
small clusters, but theoretical DIT calculations can be performed with 
some confidence. Some representative cases will now be discussed. 
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8.3.1 Nickel clusters 
Reuse and Khanna [42] have performed calculations for nickel clusters, 
NiN ( N  = 2-6, 8, 13). The local spin-density approximation (LSDA) was 
employed for exchange and correlation, and the inner cores were 
replaced by nonlocal pseudopotentials. Their main results are that the 
binding energy varies with size N in a non-monotonous way and that all 
the clusters have nonzero spin in their ground state (magnetic properties 
of the transition metals clusters will be discussed in Chapter 9). They 
found a bond length of 3.78 a.u. and a binding energy Eb of 3.32 eV (or 
1.6 1 eV/atom) for the ground state of Ni2 . The total spin is S = 1, and 
this value is consistent with early measurements on matrix isolated 
clusters [43]. The experimental bond length is between 4.07 and 4.16 a.u. 
and the estimated binding energy is 2.1 eV [44, 451. The errors are 
typical of the LDA: an overestimation of the binding energy and a 
contraction of the bond length. The geometry of Nij in a solid argon 
matrix is triangular with C2" symmetry. The apex angle is estimated 
between 90" and 120" [46]. The symmetry of the ground state found by 
Reuse and Khanna is also C2, (but near equilateral) with a binding 
energy of 1.96 eV/atom. The calculated spin was S = 1 ,  the same as in 
the experiment. They also found C2" ( S  = 2) and linear ( S  = 2) low lying 
isomers. Two degenerate structures with a binding energy of 2.34 
eV/atom coexist in the calculated ground state of Ni4: one is a deformed 
tetrahedron with D2d symmetry and the other is a square, and both have S 
= 3. The ground state of NiS, is a triangular bipyramid with S = 4 and Eb 

= 2.83 eV/atom. This structure is 0.2 eV/atom more stable than a square 
pyramid. For larger clusters the structural study was restricted. An 
octahedron was initially assumed for Ni6, although it was allowed to 
distort. The octahedron showed only minor distortions and the ground 
state has Eh = 3.27 eV/atom and S = 3. The geometries up to Ni6 have 
been later confirmed by other DFT calculations [47,48]. 

These results reveal the complexity of clusters of the transition 
metals: there are normally several low lying states with close energies. 
One of the reasons is the competition between (i) compact structures 
maximizing the number of bonds, and (ii) directional bonding 
compatible with the orientation and filling of the d orbitals. For example, 
the triangular configuration of Nig optimizes the number of bonds but 
forces d orbitals into a symmetry which is not optimal for their bonding 
(the d orbitals in an atom have a square symmetry). In contrast, the linear 
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geometry of Ni3 permits to form undistorted d orbital combinations, but 
it has fewer bonds. The DFT calculations indicate that the linear isomer 
is only marginally less stable. 

Using the binding energies, Reuse and Khanna have calculated 
fragmentation channels, that is, the energy required to break the NiN 
cluster into two fragments of sizes M and N-M. The channel requiring 
less energy is the loss of a single atom ( M  = 1) except for Ni4, that 
prefers to dissociate into two Ni2 fragments. The fragmentation energies 
amount to 3.21, 2.68, 2.92, 4.81 and 5.47 eV for Ni2, Ni3, Ni4, Nig and 
Ni6 respectively, so Ni3 has the lowest fragmentation energy. These 
results agree with collission induced fragmentation experiments [49]. 

Ni7 has been studied in detail. Experiments analyzing its reactivity 
with nitrogen (N2) were interpreted as suggesting that the structure is an 
octahedron with an atom capping one of the faces [50], while early 
calculations had predicted a pentagonal bipyramid [Sl]. Nayak et al. [52] 
first noticed that the pentagonal bipyramid is also consistent with a part 
of the reactivity data, and then optimized both structures using DFT, 
finding that these are nearly degenerate. The total binding energies are 
3.70 eV/atom for the capped octahedron and 3.65 eV/atom for the 
bipyramid. The magnetic moment is the same for both isomers, 1.14 
p B  /atom ( p ,  indicates the Bohr magneton), in fair agreement with the 
experimental result of 1.53 p B  [53]. Molecular dynamics simulations 
using a many body interatomic potential [54] allowed to obtain further 
insight into the stability of the two structures. The simulations showed 
that the catchment area for the capped octahedron is much wider than 
that for the pentagonal bipyramid. In summary, neither the chemical 
reactivity, nor the magnetic experiments, are inconsistent with the 
presence of the two isomers in a molecular beam. The results were 
confirmed by a more complete study of Ni7 (and Ni8 also) [55].  The 
ground state of Ni7 was the capped octahedron, and a pentagonal 
bipyramid (Jahn-Teller distorted) was found as the first low lying 
isomer, only 0.07 eV/atom above the capped octahedron. The ground 
state of Nig was a distorted bisdisphenoid structure with D2 symmetry (it 
can be seen as a rectangular Ni4 cluster with a dimer above the first 
diagonal of the rectangle and another dimer below the second diagonal), 
and several isomers (capped pentagonal bipyramid, bicapped trigonal 
prism, star, cube and square antiprism) lie close to each other within a 
narrow range of 0.07 eV/atom above the ground state. 



Clusters of the Transition Metals 243 

Ni13 was also studied in detail [56]. The radial sizes of clusters with 
perfect icosahedral and cuboctahedral shapes were first optimized for 
several spin configurations and the lowest energy was obtained for the 
icosahedral geometry and S = 4 ( E b  = 4.23 eV/atom). The HOMO has a 
degeneracy of 5 and is occupied by only 3 electrons; the cluster then 
prefers to undergo Jahn-Teller distortion. By allowing all the interatomic 
distances to vary independently the cluster distorts to a D3d symmetry, 
producing a gain in binding energy of 0.16 eV. The distortion is 
nevertheless, very small, and the total spin does not change. S = 4 
corresponds to a magnetic moment of 0.61 pB per atom. 

The isomerism that occurs in small Ni clusters may have a role on 
the interpretation of the photodetachment spectra of cluster anions. In the 
photodetachment process a transition occurs from the cluster anion in its 
ground electronic state to a state of the neutral cluster with the same 
geometry of the anion. According to the DFT calculations [57] Nii- has 
two isomers with only slightly different bond lengths (d = 2.19 A and 
2.21 A, respectively). Their binding energies are very similar (2.38 eV 
and 2.35 eV, respectively) but the spin multiplicities are different (2 and 
4, respectively). The study of neutral Ni2 with the same bond lengths as 
the anions gave triplet and singlet states for d = 2.19 8, and triplet and 
quintet states for d = 2.21 A. Four groups of electronic transitions are 
identified in the photodetachment spectrum of Nii- [45]: band X (0.9 
eV), band I(l.7-2.1 eV), band I1 (2.1-2.9 eV) and band I11 ( 2  2.9 eV). 
This spectrum was interpreted [57] as having contributions from the two 
nearly degenerate anionic states. Band I was assigned to transitions from 
Ni;- (doublet) to neutral Ni2 (triplet) and from Nii- (quartet) to neutral 

Ni2 (triplet). Band I1 was assigned to transitions from Nii- (quartet) to 
Ni2 (quintet) and band 111 was assigned to transitions from 
Ni;-(doublet) to Ni2 (singlet). Band I was left unassigned. Nii- also 
has two structures, linear and triangular, nearly degenerate (atomization 
energies of 5.04 and 5.01 eV respectively) and with the same spin 
multiplicity (both are quartets), although an energy barrier of 0.8 eV 
separates those two structures. Consideration of these two isomers and of 
different spin states of the corresponding neutrals helps to interpret the 
photodetachment experiments [58]. 
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The photoabsorption spectrum of NiN clusters has been calculated 
[59] for N = 2-6 and N = 13 using first order perturbation theory. The 
positions of the most intense transition and secondary peaks in the 
spectrum change with cluster size and the spectrum becomes richer as N 
increases. Two isomers were considered for Ni4: the square isomer has a 
main absorption peak at 3.09 eV and the Du isomer at 3.36 eV. This 
indicates that the photoabsorption spectrum can provide a fingerprint for 
the geometry. 

8.3.2 Iron clusters 
It is interesting to compare the structures of small iron clusters calculated 
by Ballone and Jones [60] with those of nickel clusters presented in 
Section 8.3.1. The ground state of Fe3 is an equilateral triangle (C3v 
symmetry) with S = 4, bond length d = 4.04 a.u. and binding energy E b  = 
3.04 eV/atom. For comparison we recall that the total spin of Ni3 is S = 1. 
Low lying isomers with the same geometrical structure and spins S = 3 
and S = 5 were also found, as well as a high lying C3” isomer with S = 0, 
and a linear, asymmetric form (the two bond lengths are different). So, 
similarly to the case of Ni3, a variety of isomers is found. The ground 
state of Fe4, with S = 6 and Eb = 3.55 eV/atom, can be viewed as a 
distorted tetrahedron opened up into a butterfly (Czv symmetry). Two 
low lying isomers were found with S = 7 (more open) and S = 5 (more 
compact), and also a square isomer lying 3.0 eV above the most stable 
C,, structure. The C2v structure of Fe4 is rather similar to the Dzd structure 
of Ni4, but the planar isomer is less stable for Fe. The lowest energy 
structure of Fe5 is a trigonal bipyramid, with Eh = 3.90 eV/atom and S = 
7. There are several low lying isomers with the same structure, although 
with different spin and interatomic distances. Isomers with the form of a 
square pyramid and a planar pentagon have smaller cohesive energies. 
Notice that the ground state of NiS is also a trigonal bipyramid. The 
ground state of Fe6, with E b  = 4.01 eV/atom and S = 10, results from 
capping the trigonal bipyramid. An octahedron compressed towards the 
mid plane, also with S = 10, is only 0.02 eV/atom higher in energy. 
Another isomer is a pentagonal pyramid with = 3.90 eV/atom. The 
lowest energy structure of Fe7 is a pentagonal bipyramid with S = 11 and 
E b  = 4.37 eV/atom. Two isomers with S = 11 and large binding energies 
also exist: one is a tetrahedron capped on three of its four faces 
(incomplete stellated tetrahedron), with Eb = 4.26 eV/atom, and the other 
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is a bicapped trigonal bipyramid (Eb = 4.23 eV/atom). A capped 
octahedron lies 0.25 eV/atom above the ground state. The multitude of 
isomers with energies close to that of the ground state could be present 
together with the ground state in experiments probing the reactivity or 
the magnetism of those clusters. 

Another DFT calculation [6 I] using linear combinations of 
numerical atomic orbitals as basis sets gives ground state structures in 
agreement to those of Ballone and Jones [60], The only difference is that 
the stability of the two lowest energy structures of Fe6 is inverted, but the 
binding energies are again similar. This calculation also predicted the 
structures of larger clusters. Fes is a bidisphenoid, Fe9 a tricapped 
trigonal prism and Felo a bicapped square antiprism. The structures of 
Fell, Fe12 and Fe13 are based on icosahedral packing, but Fe14 and Fe15 
have nonicosahedral symmetries (CzV and D6h respectively). Finally Fe16 
and Fe17 follow a growth pattern based on the structure of FeI5. A 
conclusion from the calculations for small Ni and Fe clusters is that 
compact structures are more stable than open structures, and that the 
ground state structures of small NiN and FeN clusters of the same size are 
remarkable similar. Spin plays a role in determining the most stable 
structures. The large spin energies that result from unpaired spins in 
transition elements often compensate for the lowered occupancy of 
bonding orbitals that this requires. 

8.3.3 Niobium clusters 
Nb is a nonmagnetic metal and Nb clusters are expected to be simpler 
than Ni or Fe clusters. Spin polarized DFT calculations with LDA and 
nonlocal GGA (Generalized Gradient Approximation) exchange- 
correlation functionals have been performed [62]. The dimer has a triplet 
ground state. The bond dissociation energies are 5.8 eV (LDA) and 5.4 
eV (GGA), and the last one is in good agreement with experiment (5.2 
eV). Bond lengths are very similar: 2.08 A (LDA) and 2.10 A (GGA). At 
the LDA level Nb3 is an isosceles triangle. The symmetry increases with 
ionization, and Nb3+ becomes an equilateral triangle. Nb4 is a perfect 
tetrahedron whose bond length expands upon ionization. Nb5 is a 
trigonal bipyramid, like Ni5 and Fe5. Ionization again expands the cluster 
and breaks the symmetry. Nb6 has the form of a planar rhombus with two 
atoms above the basal plane, aligned along the long diagonal, and Nb7 is 
a distorted pentagonal bipyramid. Some similarities with the structures 
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of Fe and Ni clusters then exist. Reoptimization of the structures of Nb3, 
Nb4 and Nb5 by performing GGA calculations led to small changes on 
the bond lengths and lowered the cluster symmetries. The ground state 
spin multiplicities were not affected, and the binding energies were 
reduced by some tenths of an eV, improving the comparison with 
experiment. A break in the slope of the binding energies versus N 
indicates that Nb4 is particularly stable, and the same conclusion is 
obtained from the energy to remove one atom, which has a maximum for 

The similar energies of structural isomers, discussed in some detail 
for the Ni and Fe clusters above, introduces some uncertainties in the 
theoretical prediction of the ground state geometry of small clusters. A 
reliable determination of cluster structures can be made by comparing 
the measured photoelectron spectrum with theoretical predictions for 
different isomers. The photoelectron spectra of Nb, with N = 3-8 have 
been compared [63] to spectra calculated using the LSDA. The binding 
energies of the electrons of the anionic cluster were calculated in two 
steps. These were first approximated by a generalized transition state 
(GTS) formula [64] 

Nb4. 

E G ~ ’  = - [ E ~  (I) + 3~~ (I / 3)]/ 4 

where ,$v) is the energy eigenvalue of orbital @f obtained in a 
selfconsistent calculation with the occupation number nj fixed equal to v. 
This formula can be viewed as an approximation to the A selfconsistent 
field method (ASCF), that evaluates the energy difference between the 
anionic ground state and an excited electronic configuration of the 
neutral. For the particular case of the lowest bound (Ib) electron, the 
binding energy, which is equal to the electron affinity EA of the neutral, 
can be obtained rigorously by subtracting the ground state energy of the 
neutral cluster at the anion equilibrium geometry from that of the anion. 
In the second step all the binding energies from Eq. (8.2) were shifted by 
the quantity 

A = EA - E ; ~ ~  (8.3) 

(8.2)
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with typical values of this shift being A = 1.25 eV. A number of isomers 
were obtained for Nb, and the ground state had a structure almost 
identical to that of the neutrals for N = 3-7. In general, the calculated 
spectrum corresponding to the lowest energy structure leads to better 
agreement with experiment, although the agreement is far from perfect 
due to the approximate treatment of the binding energies. Only in two 
cases the measured spectrum was asigned to a low lying isomer: to an 
isosceles triangle (instead of the equilateral triangle) for Nb3, and to a 
distorted trigonal bipyramid (instead of an ideal one) for Nbs. In both 
cases the energy difference between those isomers and the ground state 
is small. Evidence was also found for the coexistence of two isomers of 
Nb8 under some experimental conditions. 

The ionization potentials of neutral NbN [65] and the measured 
photoelectron spectra of Nb, allow to establish a correlation between 
electronic structure and reactivity [66]. The reactivities of the neutral 
clusters with H2 follow a simple pattern: Nbs, N b l o  and Nb16 are 
relatively unreactive while the other clusters readily chemisorb 
hydrogen. The measured vertical detachment energies (VDE) of Nb, 
display an even-odd alternation in the region N = 6-17, with high VDEs 
for odd N ,  low ones for even N ,  and specially pronounced minima for N 
= 8 and 10. For N > 16 the VDEs increase steeply, with no even-odd 
alternation [66]. Even-odd alternation in the behavior of different 
properties is usually observed in clusters of simple metals with an odd 
number of valence electrons per atom (see Section 5.2). The free Nb 
atom has five valence electrons in the electronic configuration 4 d  5s'. 
The observed even-odd alternation indicates that the even-numbered 
neutral clusters Nb8, Nblo, NbI2, Nb14 and Nblh have a closed HOMO 
level and that the aditional electron occupies the LUMO, giving rise to a 
small peak at low binding energy in the experimental PES spectrum. 
Instead, when the HOMO is half-occupied (odd N), the extra electron 
fills the HOMO and this results in a high VDE for the corresponding 
anionic clusters. 

If the neutral cluster has closed electronic levels, the HOMO-LUMO 
gap can be measured directly in the photoelectron spectrum of the 
anionic species. Large HOMO-LUMO gaps were found for N = 8, 10 
and 16, consistent with the pronounced local minima in the VDEs 
(approximately equal to the electron affinities). All the features discussed 
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above correlate precisely with the measured reactivities: the clusters with 
the largest gaps ( N  = 8, 10, 16) have the lowest reactivities with H2. The 
reactivity of N b l 0  with CO is also abnormally small [67]. In fact, large 
gaps are related to low reactivities through the chemical index hardness 
of Section 5.4: a chemically hard cluster is unreactive. Nbls has a 
photoelectron spectrum very different from those of neighbor sizes. This, 
plus the fact that the VDE increases steadily and without odd-even 
oscillations for N > 16, has been interpreted [66] as a possible indication 
of a geometrical shell closing at N = 15. 

8.3.4 Titanium and Vanadium clusters 
The outer electrons of the Ti atom are in the configuration 3d2 4s2. With 
only two d electrons, the electronic structure of the clusters is expected 
to be simpler than that for elements in the middle or in the second half of 
the 3d series. Discrete features are observed in the photoelectron 
spectrum of Ti, only for N I 8 [68]. In this range the photoelectron 
spectrum changes from N to N+1, reflecting their molecular nature. 
Starting with Ti, the spectrum becomes simple: a prominent feature 
appears near the detachment threshold whose width increases with N .  
The width is about 1 eV in the range Ti, to Ti,. This broad feature is 
similar to the single broad feature in the valence photoemission spectrum 
of the bulk metal, which has a width of 2 eV and is due to the 3d band 
[69]. The detachment threshold (or electron affinity of the neutral 
cluster) displays an even-odd oscillation below N = 8 and a monotonous 
increase for N larger than 8. For N larger than = 30 the affinities are 
fitted well by a relation like (5.7) with c = 0.125, that is 

5 e2 
8 R  

E A = W - - - .  (8.4) 

That relation shows that the convergence of EA towards the bulk is not 
fast; for instance EA(Ti64) = 2.6 eV, whereas the bulk work function is W 
= 4.33 eV. The evolution of the shape of the photoelectron espectrum 
was interpreted as an early metallization of the clusters [68], perhaps due 
to close packed structures. A pronounced narrowing of the PES feature 
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occurs for Ti,. This feature and the behavior of the dissociation 
energies of small TiN+ clusters [70] suggest that the structures of some of 
them could be icosahedral. 

The electronic configuration of the vanadium atom is 3d3 4s2. The 
characteristics of the PES spectra of V i  with N I 65 allow to separate 
those clusters in four size regions [71]. The spectrum is molecular-like 
up to Vli .  Then, Vli to Vli form a transition region from discrete 

spectra to a two-band spectra. For Vl; the first of those two features is 
narrow and peaks at 2 eV (near threshold) and the second band is broad 
and centered at a binding energy of = 3.2 eV. Between Vl; and V, the 
two features converge to a single broad feature, and finally, for N > 60 
the PES changes very little with N .  PES spectra recorded at a higher 
photon energy reveal a new peak at 5.2 eV for Vl; and larger clusters. 
This feature and the broad feature near 3.2 eV have been correlated [71] 
with similar broad features in the PES spectra of bulk vanadium. Wu et 
aE. [71] proposed that these bulk-like effects have their origin in the inner 
region of the clusters. Consequently they interpret the sharper peak that 
emerges from Vli and gradually merges with the broad peak as due to 

the cluster surface. This interpretation suggests that starting from V,; the 

cluster already has surface and internal regions, and starting from V,; 
the internal region has some similarity to the bulk. The sharp peak is 
most likely due to states derived from the s atomic orbitals and the broad 
feature due to the d states. As the cluster size grows the d band widens 
and the two features merge: the density of states of bulk vanadium near 
the Fermi level is mostly of d character [40]. In contrast to titanium, the 
electron affinity does not show odd-even effects. The electron affinity 
has local minima for V5 and V12 and maxima for V4 and Vlo. The 
affinities then become smooth for N 2 17 and are fitted extremely well 
by the metallic drop model of Eq. (8.4). 

The electronic structure of V,' has been studied by optical absorption 
spectroscopy [72]. The experiment measured the intensity depletion of 
the complex V4'Ar against the wavelength of the irradiation laser and the 
spectrum obtained was treated as the optical absorption spectrum of the 
underlying cluster V4f because the inert Ar atom is weakly attached and 
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does not significantly affect the geometry or the electronic structure of 
Vc .  The measured spectrum was compared to approximate calculations 
based on DFT. Several plausible geometrical structures were examined: 
a distorted tetrahedral structure with C2” symmetry, a tetrahedron (Td), a 
rhombus and a parallelogram, and only the first one was able to 
reproduce the experimental spectrum, although not perfectly. An 
extensive search for the lowest energy structure of V,‘ confirmed that the 
CZv structure is the ground state isomer. The relatively broad widths (0.2 
eV) of the measured absorption peaks were assigned to vibrations related 
to a specific deformation coordinate that connects the C2v and Td 
structures. 

8.3.5 Chromium clusters 
Small chromium clusters show peculiarities that make them special 
compared to other 3d clusters. The electronic structure of the free atom, 
3d5 4s’, has six unpaired electrons. This half-filled electronic 
configuration leads to strong d-d bonding in Cr2 with an unusually short 
bond length of 1.68 A, compared to 2.50 A for the bcc solid metal. DFT 
calculations [73] show that the dimer is a closed shell molecule with a 
strong sextuple bond. The strong bonding arises from the filling of the 
3d-bonding molecular orbitals: aid x : ~  a:d 04‘, ( C i  ). This electronic 
structure is very robust and controls the growth of small clusters [73]. 
The optimized geometries of Cr3 to Crl l  are given in Fig. 8.3. Cr3 is 
composed of a dimer plus an atom: the electronic structure of the dimer 
is virtually unchanged and the third atom remains in its atomic electronic 
state, leaving six unpaired electrons in the cluster. An additional atom 
pairs up with the third one and Cr4 is formed by two dimers with strong 
internal bonds and weak inter-dimer bonding. The dimerization effect 
controls the growth up to N = 1 1 :  all those clusters are formed by dimers 
with short bond lengths and one (in Cr5, Cr7, Crg) or two (in Crlo) 
isolated atoms bonded to adjacent dimers. The strong dimer bonds are 
represented by the heavy lines in the figure. Crll  has a structure similar 
to that of Crlo with a third isolated atom at the cluster center. 

The dimer route stops at CrI2 : the Cr-Cr distances in the dimers 
suddenly become large and dimer-like bonds cannot be identified 
anymore for N > 1 I .  Cr12 reminds a small fragment of a bcc solid and for 
this reason the structures studied for N 2 13 were bcc fragments [74]. In 
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summary, the structures are controlled by the interplay between intra- 
dimer and inter-dimer interactions. For the smaller clusters the intra- 
dimer interaction dominates. The inter-dimer interaction becomes 
stronger as the cluster size increases leading to the transition from dimer 
growth to bcc-like structures. 

Figure 8.3. Photoelectron spectra of Cr; , N = 2-1 1, taken at a photon energy of 
3.49 eV. The structure of each cluster is shown. Strong dimer bonds are 

represented by thick lines. Reproduced from L. S. Wang et al., Phys. Rev. B 55, 
12884 (1997) with permission of the American Physical Society. 
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The dimer growth route implies an odd-even effect that has been 
observed as an alternation in the magnitude of the dissociation energies 
for N < 10 [75]. Odd-even effects are observed in the photoelectron 
spectra of Cr; [74]. The measured PES for N = 3-1 1 are shown in Fig. 
8.3. Those spectra are characterized for having several discrete features: 
clusters with even N have fewer features near the threshold and a distinct 
gap, while clusters with odd N show more complex spectra with 
congested features near threshold, in particular for N = 5,  7, 11. The 
even-odd alternation disappears above Cr,, [74]. The electron affinity 
also shows the odd-even alternation [75]. The closed shell electronic 
structure of Cr2 produces a large gap between the HOMO - 04,s and the 

LUMO - oiJ , as seen in the PES of Cr,: the two prominent peaks, 
labelled X and A in the figure, correspond to the removal of one electron 
from the o:,~ and 04$ levels, respectively. 

As indicated above the electronic structure of Cr3 can be described as 
(aid ?T:~ 8;'d ) 3d5 4s', that is, with the third atom in its atomic 
configuration having all its six electrons unpaired. The orbital 
degeneracy is lifted under the C2" symmetry of Cr3, so the 3d orbitals of 
the odd atom are split into five nondegenerate orbitals. The 4s orbital of 
the odd atom (weakly mixed with the orbital of the dimer) becomes 

the HOMO of Cr3 and the extra electron in Cr3- fills this level. The first 

feature in the PES spectrum of Cr3- at 1.4 eV corresponds to the 
removal of an electron from the atomic 4s orbital. The prominent peak at 
2.9 eV arises from the removal of an electron from the 04$ orbital of the 
dimer. This orbital has a larger binding energy than the corresponding 
04s orbital in Cr2 because of its interaction with the 4s orbital of the odd 

atom. All the features between the 4s and o ~ , ~  peaks are due to the 3d 
electrons of the odd atom. It should be noticed that all the features 
ascribed to the odd atom in Cr3 fall inside the region of the HOMO- 
LUMO gap of Cr2. The spectra of Cr; and C r i  show gaps of 0.48 and 
0.41 eV, respectively, suggesting that the neutrals have closed shells. 
The spectrum of Cr; is unusual, with an intense threshold peak and a 
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high electron affinity. All these features are explained by the DFT 
calculations, confirming that Cr4 and Cr8 are closed shell clusters. On the 
other hand Cr, has an open shell configuration, and the extra electron of 
the anion goes to the partially filled HOMO, in constrast to Cr; and 

Cr; , where the extra electron goes to the LUMO of the neutrals. This 
results in the large electron affinity of Cr6 compared to Cr4 and Cr,. 

The electronic structure of the odd clusters from Crs to Cr9 can be 
described, as for Cr3, as arising from the interaction between the levels of 
the even cluster of size (N-1) and the odd atom: the energy levels of the 
odd atom are bunched near the HOMO and in the region of the HOMO- 
LUMO gap of the luster of size (N-1). The larger electron affinities of 
the odd clusters compared to the even ones occur again because the extra 
electron goes to the open shell HOMO in the odd clusters. Crlo and CrlI  
deviate slightly from the dimer growth route since they have four dimers 
instead of five. Still their PES spectra resemble those of the even and odd 
clusters respectively. Finally the PES spectra of CrI2 to CrIs indicate that 
the even-odd alternation effects vanish. All the PES of large clusters 
have similarities, with a sharp feature near threshold that smoothly 
merges with other features as N increases. Beyond Cr24 a single broad 
band is observed near threshold (in experiments with photon energies of 
3.49 and 4.66 eV). In this size range the spectrum already resembles the 
first bulk feature [76] and further similarities appear for experiments at 
higher photon energies. It is convenient to stress that the odd-even 
alternation effects observed for Cr clusters have a different origin 
compared to those observed for alkali and noble metal clusters. 

8.4 Thermionic Emission from Refractory Metal Clusters 

The physical process underlying the PES spectra is the following 

that is, the absorption by a cluster anion of a photon of energy larger than 
the electron affinity of the neutral leads to the prompt emission of an 

(8.5)
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electron on a time scale of femtoseconds, leaving the cluster in its 
ground state MN or in an excited state M;. But this is not the only 
possible process. The absorbed energy can be rapidly thermalized by the 
internal vibrational degrees of freedom of the cluster anion, that then 
reaches a superheated state (MN)E, with internal energy E l ,  and 
subsequently the hot cluster anion can emit an electron, leaving the 
neutral cluster in a state with lower internal energy E2. That is 

It takes time to focus the energy back into the electron emission channel, 
so the emission of the electron by this process is delayed in time 
compared to the direct photoemission. Another difference between the 
two processes is that direct photoemission leads to a discrete spectrum 
while in delayed photoemission, that is related to the therrnionic 
emission of electrons from hot metal surfaces [77], the energy of the 
emitted electrons exhibits a quasicontinuous distribution. The spectrum 
of kinetic energies is a smooth exponential function corresponding to a 
“temperature” T = (El / k ,  )(3N - 6 ) ,  where El is the excitation energy 
(energy of the photon), and 3N-6 is the number of vibrational degrees of 
freedom. 

s) was first observed 
in neutral clusters of the refractory metals (W, Nb, Ta) [78-801. A 
detailed study has been performed for W to analyze the contributions 
from prompt and delayed ionization [81]. Starting from W, the PES 
spectrum shows sharp peaks at low binding energies (between 1.5 and 
2.5 eV) assigned to direct photoemission, and a smooth thermionic 
signal that increases monotonically with increasing binding energy. The 
overlap region between the two components of the spectrum goes from 
2.5 to 3 eV. The two components are also observed for larger clusters. 
The sharp peaks arise from direct photoemission from occupied 5d- and 
6s-derived molecular orbitals. The smooth signal is fitted well by a 
Boltzmann distribution for the intensity 

Delayed ionization (lifetimes greater than 

(8.6)

10-7

(8.7)
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where the temperature corresponds to a photon energy Aw = 4.025 eV 
used in the experiments. Evidently, when the time constant of the 
themionic emission (TE) is much longer than the time scale of the 
experiment (usually around 0.1 ps) only direct photoemission would be 
observed. This is the reason why the integrated TE intensity decreases 
with increasing N as the number of degrees of freedom increases, the 
photon energy is distributed over a larger number of vibrational modes 
and it takes longer to focus the energy back into the electron emission 
channel. 

Before the observation of thermionic emission from hot tungsten 
clusters, the standard cooling mechanism detected for different types of 
superheated clusters had been the evaporation of neutral fragments, 
mostly monomers. The faster of the two cooling mechanisms, delayed 
ionization or fragmentation, is going to dominate, and the time constants 
depend on the respective energy thresholds: these are the electron 
affinity in the case of TE and the binding energy of the atom for the 
evaporative cooling. For the refractory metal clusters the threshold for 
evaporation is larger than the electron affinity (3-4 times larger in WN) 
and TE dominates. This can already be predicted from the properties of 
the bulk metals: a small ratio between the work function W and the 
cohesive energy per atom E, and a small value of W are the conditions 
for good thermionic emitters, and these conditions are best satisfied by 
the refractory metals; in particular the ratio is 0.5 for tungsten. In 
contrast, when the magnitudes of the electron affinity and the 
evaporation energy are similar, the two cooling mechanisms are 
competitive. This is the case for alkali cluster anions: Reiners and 
Haberland [82] have observed atom and electron emission from Na,, . 
For neutral or positively charged clusters of most metals the cooling 
mechanism is atom evaporation since in this case the ionization potential 
is usually larger than the binding energy of an atom, even for the simple 
sp metal clusters. By storing the W, anions in a Penning trap, delayed 
electron emission on the millisecond time scale has been observed [83]. 

Delayed ionization attributed to a thermionic emission process is not 
specific of pure refractory metal clusters and has been also observed for 
metal carbide clusters, metal oxide clusters (Nb,O,) and 
metalcarbohedrenes and V8C12 . 

)Ti8Cc12
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8.5 Nonmetal to Metal Transition 

The characterization of metallic behavior is clear for bulk systems, 
where band theory concepts apply. This concept is more subtle for small 
clusters. Very small clusters can be considered nonmetallic, having a 
discrete distribution of electronic states, and a critical size N, is required 
before this distribution turns into a quasicontinuous one in the region 
around the Fermi level E, Scanning tunneling spectroscopy experiments 
of deposited clusters measure their conductance. Those experiments have 
been performed for transition and noble metal clusters [84-861 and probe 
the density of states at the Fermi level. The tunneling conductance 
decreases markedly with a decrease of the cluster size when the cluster 
diameter is smaller than 1 nm and shows the emergence of an energy 
gap, suggesting that small clusters are indeed nonmetallic. 

Kubo [87] has proposed that a cluster presents metallic character 
when the average level spacing becomes smaller than the thermal energy 
kBT, that is, when 

where D(E) is the density of states. A square d band model introduced by 
Friedel [88] within a tight-binding (TB) framework can be extended to 
clusters, and the density of states can be expressed (the model neglects 
sp electrons) 

I&-& <- W ( N ) ,  (8.9) 
2 d -  

W ( N )  , for -~ 
10N D(&) = ~ 

W ( N )  2 

and D(E) = 0, otherwise. Here the factor 10 is the total number of 
electrons in a full d shell and &d is the atomic d level. The band width 
W(N) can be related to the average atomic coordination Z(N) using a 
second-moment approximation [89] 

W ( N )  = W b [ Z ( N ) / Z , ] " *  (8.10) 

(8.8)
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where wb and z b  are the band width and the coordination number in the 
bulk, respectively. Using the last two equations, the condition given by 
Eq. (8.8) can be written in the form 

(8.1 1) 

This relation shows that the critical size N, is determined by the variation 
of Z(N). Zhao et al. [90] have used for Z(N) a simple approximation 

(8.12) 

that leads to the expression for the critical size 

N c  =[12G(T)+171]1'2 -6  (8.13) 

with G(T) = [(l/kBT)(Wb /10Zb)]2. Taking = 12, the value for an 
fcc crystal, and using known metal band widths [91], the following 
critical sizes are obtained for a temperature of 120 K: N,(Fe) = 50, 
N,(Co)= 39, N,(Ni)= 34, N,(Pd) = 50. 

The approximation for the coordination number in Eq. (8.12) 
depends only on N and takes no account of the cluster geometry. Z(N) 
has been evaluated exactly for Co, Ni and Pd clusters of two structural 
types: a) particles with an underlyingfcc lattice and cuboctahedral (CO) 
shape, and b) icosahedral particles [92]. In both cases the critical sizes 
for T = 110 K are N ,  (Co) = 31, N ,  (Ni) = 27, and N ,  (Pd) = 43, a little 
smaller than the values obtained using Eq. (8.12). For bcc Fe clusters 
with spherical or cube shapes, the critical sizes for T = 110 K are N ,  (Fe) 
= 33 and N, (Fe) = 35 respectively, again smaller than the value from Eq. 
(8.12). Tunneling experiments probing the density of states at the Ferrni 
level have been performed for Fe clusters supported on a substrate at 
room temperature [84]. Those experiments indicate that the nonmetal to 
metal transition occurs for N ,  = 35. The theoretical prediction [92] given 
above is consistent with this experimental value. 
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Figure 8.4. Calculated nonmetal-metal phase diagram of Ni clusters. The 
continuous line gives the result for a rectangular d band model. Squares and 

triangles give the boundary obtained from tight-binding calculations. The filled 
square is an experimental point obtained from the ionization potential. 

Reproduced from F. Aguilera-Granja et  al., Solid State Commun. 104,635 
(1997) with permission of Elsevier. 

X-ray spectroscopy indicates that the nonmetal to metal transition of 
Pd occurs for cluster radii in the range 7-10 A [93], while the theoretical 
model predicts a size range 5-8 A (40-120 atoms) depending on the 
temperature. N, can also be estimated from an analysis of the ionization 
potential. For a metallic droplet IP follows the relation (5.6), or in terms 
o f N .  

P ( N )  = w + m-”’ (8.14) 

where a is a material-dependent constant. In practice, IP follows this 
relation rather well except for small sizes, and N, can be identified with 
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the size when the measurements begin to deviate from (8.14). Employing 
measured ionization potentials [94] one obtains N,(Fe) z 28, N,(Ni) G 20, 
and N,(Co) E 17. The estimated temperatures in those measurements are 
225 k 50 K, and for those temperatures N, (Fe) E 18-21, N, (Ni) E 14 
and N ,  ( C O ) ~  15 are obtained from Eq. (8.11). The comparison is 
satisfactory considering the approximations in the square band model 
and the errors in determining N, from the ionization potentials. 

The theoretical model can be improved in a calculation without any 
assumptions about the shape of the density of states. Aguilera-Granja et 
al. [95] have solved selfconsistently a TB hamiltonian for the 3d and 4sp 
electrons of Ni clusters in a mean field approximation. The geometries 
for N I 14 were obtained using an interatomic many-body potential and 
for larger clusters the geometries correspond to a model of icosahedral 
growth (see Section 8.6). Using the Kubo criterion of Eq. (8.8) leads to 
the phase diagram of Fig. 8.4. The triangles delineate a boundary 
separating regions of nonmetallic and metallic character. The boundary 
is smooth for N 2 14 and it becomes steep and irregular for lower sizes. 
The figure also contains a number of squares, representing results for 
other plausible cluster geometries, and the phase boundary is not very 
sensitive to the geometries. The filled square (with error bars) is an 
experimental point estimated from the ionization potentials. This point 
fits well on the predicted boundary. 

Auss clusters covered by a (PPh3)&16 ligand shell consisting of 12 
triphenil-phosphine molecules and six C1 atoms have been prepared. The 
ligand shell helps to stabilize the gold cluster and to prevent the 
coagulation with other clusters. The ligand shell also has a strong 
influence on the electronic properties, giving the cluster a nonmetallic 
character. X-ray irradiation of the clusters induces damage of the ligands 
and reduces their influence on the gold clusters. As a result the cluster 
becomes metallic [96], as put in evidence by the finite density of states at 
the Fermi level measured by ultraviolet photoelectron spectroscopy 
(UPS). 

8.6 Atomic Shell Effects 

As discussed in previous chapters the mass spectrum of clusters formed 
in a supersaturated vapor arises as a consequence of a complex process 
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involving growth and evaporation that results in an abundance 
population IN which is a non-smooth function of the cluster size. Features 
like pronounced maxima of IN or pronounced steps are interpreted as 
revealing the existence of specially stable cluster sizes. The origin of this 
stability in the case of clusters of the alkaline elements is the filling of 
electronic shells (see Chapter 4), and for clusters of inert gases, the 
features in the mass spectrum are due to the formation of atomic shells 
(see Chapter 3). Magic number effects have been traditionally difficult to 
observe in the mass spectrum of transition metal clusters, although recent 
work [97] presents evidence of magic numbers in Fe, Ti, Zr, Nb and Ta 
clusters. Since the magic numbers appear in the mass spectrum mainly 
from the evaporative cooling step, the difficulty for observing magic 
clusters of transition elements may be due, at least in part, to their large 
binding energies, that would require stringent high temperature 
conditions to induce fragmentation in the cluster source. But a variety of 
alternative experiments on chemical reactivity, ionization potentials, 
photoelectron spectroscopy, fragmentation and magnetism have revealed 
the existence of specially stable clusters of transition metals [98]. The 
experiments have helped in many cases to infer the geometrical structure 
of those clusters. A large part of the experimental information on 
transition metal clusters is consistent with a pattern of icosahedral 
growth. 

8.6.1 Reactivity of Ni clusters 
Pellarin et al. [99] have analyzed the mass spectrum of Ni and Co 
clusters containing between 100 and 800 atoms. Those spectra were 
obtained using time-of-flight mass spectrometry and near-threshold 
photoionization. A highly stable cluster of size N,,, has a higher 
ionization potential compared to neighbor clusters of sizes N,,, + 1, N,,, + 
2, ... Then, when the photon energy is lowered just below the ionization 
potential of the cluster of size N ,  , only the clusters of sizes N ,  + 1, N ,  + 
2, ... present in the molecular beam will be detected in the mass spectrum, 
but not the size N,. This provides an efficient method for analyzing the 
variations in stability of clusters as a function of size. For nickel clusters, 
a sharp increase in the abundance was observed at some particular 
cluster sizes. The strongest effects occur after N ,  = 55,  147, 309 and 561. 
On intuitive grounds, the structure of these highly stable clusters could 
correspond to complete icosahedra or cuboctahedra. Additional evidence 
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for icosahedra instead of cuboctahedra comes from the fact that, above N 
= 200, enhanced stability was observed every time that a face of an 
icosahedron was covered in the process of building the next icosahedron. 
Chemical probe experiments [50, 100-1041 point to icosahedral 
symmetry of Ni clusters in some size regions (the results are discussed 
below). This conclusion is derived from the measured saturation 
coverages and adsorption free energies of H20, NH3 and especially Nz 
molecules. 

The experimental inferences have motivated a detailed study of a 
growth model based on the formation of icosahedral structures with an 
increasing number of shells [ 1051 and this model has been confronted in 
detail with the reactivity experiments. The icosahedral structure of Ni13 is 
supported by DFT calculations [56].  The competition between the FC 
and MIC coverings of the Ni13 icosahedron (see Section 3.1 for a 
description of the FC and MIC coverings) has been studied [lo51 by 
using the embedded atom method (EAM) [106, 1071 to model the 
interatomic interactions. The binding energy of the cluster is given in the 
EAM as 

Each contribution Fj b,!) represents the embedding energy of atom i in 

an effective uniform medium whose density p[k is approximated by the 
superposition of the atomic density tails of the atoms around site i. On 
the other hand gi(ri) is a residual core-core repulsion between atoms i 
and j separated by a distance ri that can be parameterized in terms of 
adjustable parameters. The function <. (p)  and the parameters in @q(rq> 
are obtained empirically from the properties of the bulk metal. 

The first six atoms added to Ni13 form an FC umbrella (see Fig. 3.3), 
leading to a double icosahedron structure for NiI9. This structure has also 
been found using the effective medium theory [ 1081 or other other many- 
atom potentials. Addition of more atoms completes the next two FC 
umbrellas at NiZ3 and NiZ6. Completion of the FC umbrellas leads to 
special stability for the Ni clusters with N = 19, 23 and 26. Then, a 
transition to MIC structures occurs after NiZ6. Before achieving full 

(8 .



262 Structure and Properties of Atomic Clusters 

coverage, MIC umbrellas fill up successively at N = 28, 32, 36, 39, 43, 
46 and 49, and the icosahedron is completed at N = 55. The cluster 
becomes very stable with the filling of each new umbrella. This is 
appreciated in Fig. 8.5 where the energy Evop required to remove one 
atom from NiN (see Eq. 2.9) is plotted versus N .  Peaks appear when FC 
umbrellas are completed for N c 28 and when MIC umbrellas are 
completed for N 2 28. The figure also shows the increase Ah$, in the 
number of bonds between NiN-1 and NiN. The magnitude of m b  shows a 
perfect correlation with Evup 

Figure 8.5. Difference in binding energy A E ~ ~ ~  and change  AN^ in the 
number of bonds between NiN.1 and NiN versus N .  The black circles indicate 

filled umbrellas. Reproduced from J. M. Montejano-Carrizales et al., Phys. Rev. 
B 54,5961 (1996) with permission of the American Physical Society. 

A similar pattern develops for N > 55. FC coverage is first preferred 
(see Fig. 3.3) and the first umbrella is filled for Ni7]. It is relevant to 
notice that the five faces of the umbrella are filled in order, and one, two, 
three, four and five faces are completed for N = 58, 61, 64, 67 and 71, 
respectively. An FC to MIC transition occurs at Ni74 and MIC decoration 
leads to the filling of umbrellas for N = 83, 92, 101, 110, 116, 125, 131 
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and 137, and to a complete icosahedral shell for Ni147. Enhanced stability 
is predicted by filling those MIC umbrellas (and the different faces of the 
FC umbrella), and also for other particular sizes, N = 77, 86, 95, 104 and 
119. The stability of the last ones has been explained by analyzing in 
detail the increase in the number of bonds as the cluster grows [ 1051. 

The interpretation of the chemical probe experiments of Parks and 
coworkers [50, 100-1041 is based on some rules for estimating the 
number of binding sites for nitrogen molecules: (1) N2 binds directly to 
individual nickel atoms in a standing-up configuration; (2) a Ni atom 
with a coordination number of four or less binds two N2 molecules; (3) 
Ni atoms with coordination five to eight bind one N2 molecule; (4) Ni 
atoms with coordination nine bind N2 molecules only weakly or not at 
all, and ( 5 )  Ni atoms with coordination ten or more do not bind N2 
molecules [102]. The analysis of the adsorption results points to 
icosahedral symmetry for N < 29 and N > 48. Those measurements 
indicate that Ni13 and Niss are perfect icosahedra, and that the growth is 
of the FC-type up to N = 26, whereas NiZ8 is a fragment of Ni55 with 
three MIC umbrellas. So, the coincidence with the theoretical 
calculations is good since these predict the FC to MIC transition at NiZ7- 
N&. The region 28 < N < 48 has not been studied in detail, although 
some results of N2 uptake shows some evidence forfcc packing for some 
clusters in this size region [50, 1041. On the other hand one can correlate 
a minimum in the experimental adsorption free energy of H20 on Ni32 
with the peak of Eyap corresponding to the filling of four umbrellas. 

The adsorption of nitrogen has been analyzed in detail for Ni38 and 
Ni39. The saturation coverages of different molecules (N2, H20, CO) in 
Ni38 suggest have that the structure of this cluster is a truncated fcc 
octahedron, and this is supported by calculations based on many-body 
potentials (see Chapter 9). Two saturation levels are evident in the 
uptake data of nitrogen on Ni39 at very low temperatures [109], one at 
Ni39(N2)27 and another at Ni39(N2)32 and these have been interpreted to 
represent the saturation of two separate isomers. With a long time for 
relaxation of the bare clusters before reaction the second isomer (isomer 
A) becomes favored over the first one (isomer B), and for this reason 
isomer A was considered to be the ground state of N&. This cluster has 
32 surface atoms with coordination between five and eight, according to 
the binding rules for adsorption. Then, the structure of Ni39 is not related 
to that of Ni38, which is an fcc octahedron that binds 24 nitrogen 



264 Structure and Properties of Atomic Clusters 

molecules at saturation. A candidate is the fragment of Ni55 obtained by 
removing a 16-atom cap. The surface of this cluster has 32 binding sites 
available for adsorption: 22 of those atoms have coordination six and the 
remaining 10 atoms have coordination eight. Another candidate is the 
most stable isomer calculated by Wetzel and De Pristo [ 1101 using an 
Effective Medium method: this isomer is composed of two 16-atom caps 
joined together along their symmetry axis, one staggered relative to the 
other, surrounding a 7-atom pentagonal bipyramid. The caps are formed 
by one apex atom surrounded by five atoms (like an apex of an 
icosahedron) and ten additional atoms forming the belt of the cap. This 
structure also binds 32 molecules: 12 surface atoms have coordination 
six and 20 surface atoms have coordination eight. A small rotation of one 
cap with respect to the axis of the internal pentagonal bipyramid leads to 
the next most stable isomer of Wetzel and De Pristo: this presents 27 
sites for N2 adsorption, 12 of those atoms have coordination six, 10 have 
coordination seven and 5 atoms have coordination eight. Parks et al. 
[ 1091 have proposed these two lowest energy isomers calculated by 
Wetzel and De Pristo to correspond to isomers A and B, respectively, in 
the reactivity experiments. This interpretation is further supported by the 
fact that the experiments show conversion of isomer A to isomer B with 
increasing nitrogen pressure in the reactor and retroconversion back to 
isomer A for even higher pressure. This reveals that the relative stability 
of isomers A and B changes with the number of adsorbed molecules. 
These changes can be explained by looking at the number of atoms with 
coordination six, seven and eight and noticing that the binding of N2 to 
atoms of coordination six is the strongest, so those atoms will be the first 
ones to be covered, then atoms of coordination seven (favoring isomer 
B), and finally atoms of coordination eight (favoring conversion back to 
isomer A). This dependence of isomer stability on the degree of 
adsorption introduces a warning concerning the interpretation of the 
cluster geometries inferred from reactivity experiments. 

After Ni55, the experiments are consistent with FC covering up to the 
formation of a 16-atom umbrella for Ni7,, although the structures of Ni66 
and Ni67 remain yet unidentified. The binding of water molecules [ 1 1 I]  
shows minima at N = 58, 61 and 64, that correspond to the filling of 
faces of the umbrella. But the icosahedral growth model does not explain 
the lack of a minimum in the binding energy for N = 67 and the existence 
of a minimum for N = 69. Results for the ammonia uptake and 
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measurements of the binding of water molecules [ l l l ]  reveal size 
oscillations correlating with the formation of MIC umbrellas for N > 7 1 
[98]. Other features, like the maxima in the water binding at N = 66 and 
81 are not explained by the model. Other group has studied the reactivity 
of small NiN+ clusters with CO [112]. The saturation limits can be 
explained by the icosahedral growth model, starting with a pentagonal 
bipyramid for Nicand capping this structure to build up an icosahedron 
at Nil; and a double icosahedron at Nil<. 

Other calculations have been performed for Ni clusters using many- 
body potentials [113, 1141, an effective medium theory [108, 1151 and 
the embedded atom method [ 113, 1 16-1221. The EAh4 calculations give 
support to the icosahedral structures, at least for sizes not far from shell 
closing. A semiempirical tight-binding method has been applied [ 123, 
1241 to compare the relative stabilities of Ni clusters with icosahedral 
and fcc-like structures for N = 13, N = 55 and a few sizes in between. 
The picture arising from the tight-binding calculations is that the 
icosahedral structures are preferred near the closed shell sizes and that a 
strong competition develops for open shell clusters in between. It is fair 
to conclude that uncertainties exists about the structure of Ni clusters for 
sizes in the region midway between closed shells. On the other hand, 
since the icosahedral clusters Ni13 and Niss turn out to be so much stable, 
a metastable growth of icosahedral clusters in some experiments may be 
conceivable. 

Knicklebein [ 1251 measured the electric dipole polaribility of Ni 
clusters in the size range N = 12-58. The relatively low polarizabilities 
observed for N = 19, 23, 26, 29, 32,43 and 55 can be correlated with the 
compact structure of clusters with filled umbrellas. On the other hand, 
clusters with N = 21, 22, 25 and 49-53 display anomalously high 
polarizabilities; in the icosahedral model, their structures are derived 
from closed shell icosahedra or poly-icosahedra by removing one or 
more atoms. 

8.6.2 Shell effects in other clusters 
The formation of clusters of Ti, Fe, Zr, Nb and Ta has been studied by 
time-of-flight mass spectrometry and for the first time magic numbers 
have been detected in the mass spectra of clusters of transition metals 
[126]. The reason for the difficulty in observing those effects could be 
the stringent high temperature conditions required for the evaporation of 
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atoms from clusters with a large binding energy. All the elements listed 
above have in common the observation of the magic numbers N = 7, 13 
and 15. In addition, N = 19 and 23 are seen for Fe, and N = 19 and 25 for 
Ti. The spectra of Nb and Ta shows N = 22 and 29. Ti7, Ti13 and Til5 
show substantially higher binding energy than the neighbor clusters in 
collision-induced dissociation experiments [49]. The magic numbers N = 
7, 13, 19 and 23 were interpreted as revealing icosahedral structure 
[ 1261. Although the calculations reported in Section 8.6.1 above pertain 
to Ni clusters, the binding is due mainly to the d electrons, like in other 
transition metals, so one can expect some similarities in the magic 
numbers of these elements. N = 7 also fits into the icosahedral picture 
[5,34]. It forms a pentagonal bipyramid, which is a fragment of an 
icosahedron. DFT calculations support the pentagonal bypiramid and 
icosahedral shell structure for Ti7 and Til3 respectively [127]. The 
calculations of Dieguez et al. [61] predict a local maximum in stability 
for Fels (with D6,, symmetry) compared to clusters of adjacent sizes. Also 
one may notice in Fig. 8.5 a local stability maximum at N = 15. The 
magic number N = 29 cannot be explained by Fig. 8.5, but we recall that, 
after N = 26, the next FC umbrella would become completed for N = 29. 
So it is conceivable that the FC to MIC transition might occur later in Nb 
and Ta clusters compared to Ni. 

8.7 Gold Clusters with Impurities 

The existence of electronic shells in noble metal clusters, derived from 
the outermost s electrons has been discussed in Section 8.1.1. Doping the 
clusters with impurities of the 3d period (Sc, Ti, V, Cr, Mn, Fe, Co and 
Ni) produces some changes in the magic numbers [ 1281. Table 8.3 gives 
the features observed in photofragmentation experiments. In those 
experiments the cluster beam was irradiated with a high fluence laser and 
the photo-fragments recorded showed a size distribution with an 
enhanced abundance of the clusters given in the table in the column 
labelled N .  The data corresponds to the case of a single impurity, that is 
AUNSC, AUNTi, ... The same table shows that the experimental results can 
be explained by a simple shell model in which the impurity contributes 
with n, delocalized electrons to the cluster, with n, also given in the 
table. For instance, for scandium-doped clusters the intensity drops occur 
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after Au~SC', Au&+ and Au&c+. If one assumes that the Sc atom 
contributes three electrons (two s electrons and one d electron) to the 
delocalized cloud, then those three clusters contain 8, 18 and 34 
delocalized electrons, respectively. Titanium doping produces abundance 
discontinuities at AuSTi' and AulsTi+, which match the magic numbers 8 
and 18 if the Ti atom contributes four electrons. The electronic 
configurations of the free Sc and Ti atoms are 3d' 4s2 and 3d2 4s2, 
respectively, so the experimental results indicate that all those 3d and 4s 
electrons become part of the delocalized cloud. 

Table 8.3. Observed shell features. Drops in the abundance pattern occur after 
Au,X+. n, is the number of delocalized electrons contributed by the impurity, 

and n, denotes the total number of delocalized electrons, corresponding with the 
observed steps. Data collected from [ 1281. 

X Valence N a" n, 

Au 4f45d"6s' 3,9, 19,21, 1 2, 8, 18, 20, 
35 34 

s c  3d'4s2 6, 16, 32 3 8, 18, 34 

Ti 3d24s2 5 ,  (151927 4 8, 18, (30) 

V 3d34s2 5 ,  7 2 ?  6, 8 

Ni 3ds4s2 2,8,18 1 2, 8, 18 

C             r                         3d54s1 1,5,7,  
(19), 333

1, 5, 7, 17
(19), 333

2, 6, 

Mn 3d54s2 2

2 18,
(20),34

2, 6,8, 18,
(20),34

Fe 3d74s2 1,5,7,17,
(19),33

2 2,6,8,18,
(20),34

Co 3d74s2 1,5,7, 17,
(19, 33

2 2,6,8, 18,
(20), 34
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The fragmentation pattern of gold clusters with Cr, Mn, Fe and Co 
impurities shows abundance steps at N = 1 ,  5,  7, 17, (19), and 33. 
Assuming that the dopant atom contributes two electrons, the observed 
drops correspond to 2, 6, 8, 18, (20), and 34 electrons. The features for a 
Ni impurity can be explained by assuming that just one electron is 
delivered. All the magic numbers seen above are well known from the 
electronic shell model (six electrons correspond to an oblate subshell 
closure in the deformed jellium model; see also Fig. 5.3). 

The values of n, can be justified by the difference in the spatial 
localization of the 3d orbitals. The large size of the d wave functions at 
the begining of the 3d series (Sc, Ti) facilitates the hybridization with the 
Au orbitals. In contrast, the d electrons are more localized for Cr, Mn, 
Fe, Co and Ni, and only the 4s electrons contribute to the delocalized 
cloud. 

8.8 Doubly Charged Clusters 

Very small doubly charged clusters of the sp metals are unstable against 
dissociation into singly charged species. However, the bonding between 
the atoms in transition metals is stronger and doubly charged dimers like 
M o p  have been detected in mass spectrometric studies [129]. Early 
theoretical calculations for the 3d series [130] have been followed by 
more accurate DFT calculations for Ni2*' [131], M n p  and C o p  [132]. 
Calculations at the GGA level predict for the ground state of neutral Ni2 
a triplet with a valence configuration lo2 in4 2n2 (?)202 164 302 2S4. 
This configuration can be referred to as (n@ to indicate where the 
unpaired electrons defining the triplet state are. Several quintet states of 
N i p  were found to be metastable against dissociation, that is, stabilized 
by a fission barrier. The binding energies (or, in other words, the height 
of the fission barriers) and the harmonic vibrational energies are given in 
Table 8.4. Those metastable states having at least one o unpaired 
electron (the first four states in the table) dissociate into Ni' (d 9, + Ni' 
(ds', quartet). On the other hand the configurations showing exclusively 
n and 6 unpaired electrons (the last four in the Table) dissociate into 
Ni' (d 's', doublet) +. Ni' (d 's', quartet). The binding energies in the 
second group range between 0.5 and 1.0 eV, and are smaller in the first 
group. The bond distance is, in all cases, larger than the bond distance of 
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neutral Ni2 (the calculated bond length of Niz using the same method is 
4.06 a.u., and the experimental value is 4.16 a.u. [131]). This fact 
suggests that the full occupancy of the 3 0  molecular orbital (MO) gives 
an additional stability that is not attained when this bonding MO is only 
partially occupied. Lifetimes can be calculated as 

(8.16) 

where v is the vibrational frequency (in seconds) and T is the 
transmission coefficient through the barrier. Using the semiclassical 
WKB approximation to calculate T predicts extremely large lifetimes. 

Table 8.4. Equilibrium bond distance re (in a. u.), binding energy BE (in eV), 
vibrational frequency w (in cm-I) and valence electronic configuration of 

metastable quintet states of N i p .  

Config. re B E  We Valence Configuration 

OOzn 4.57 0.29 173 1 dl 2 2 d 2 d l 8 2 8 3  d 

ooz6 4.93 0.14 131 1 d 1 x42 d 2 2 1 8 2  613 d 

0066 5.46 0.05 112 1 8 2 8 1  d 2 d  1 2 2 ~ ~ 3  d 

0 ~ x 6  5.12 0.06 102 1 2 1  22721 8261223d 

nzzz 5.27 0.57 176 1 dl 2 1  2 2 2 1  6‘283 d 
nzz6 4.99 0.73 181 l d 2 d l d 1 8 2 6 ’ 2 d 3 d  

nz66 4.71 0.96 203 1 82611 n41 2 1 d 2 d 3  2 

z66d 4.74 0.82 194 1 8 2 8 1  n41 d 2 2 2 d 3 d  

6666 4.91 0.69 184 1 8 2 8 1 k 1 d 2 z 4 2 d 3 d  
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Mn? is characterized by a relatively low density of low energy 
metastable states, about 2 states/eV. The lowest energy metastable state 
is a singlet in which the two Mn ions are antiferromagnetically coupled. 
The electronic configuration of this state is lo2 202 lz4 is4, its bond 
length is 5.56 a.u. and the barrier height is 0.16 eV [132]. Other 
metastable states present higher spin multiplicities. C o p  presents a 
density of low energy metastable states of about 7 states/eV, 
substantially denser than in Mn?. The lowest energy state is a septet of 

electronic configuration 10'20'(?)3o*'(?)lz~2z**(?)16
and a fission barrier of 0.95 eV. Lifetimes for low vibrational quantum 
states of both Mn? and C o p  are very large, suggesting that the 
corresponding metastable states could be detected by experimental 
measurements. 
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9. Magnetism 

9.1 Some Basic Concepts 

Since the clusters in a molecular beam are free from any interation with a 
matrix, it becomes possible to determine their intrinsic magnetic 
properties. The dependence of the magnetic properties on the cluster size 
can be determined in a Stern-Gerlach experiment, in which the clusters 
interact with an applied inhomogeneous magnetic field and are deflected 
from the original trajectory. The deflection of a cluster traveling with a 
velocity v transversally to the field gradient direction (defined as the z 
direction) is given by [ 1 ,  21 

(9.1) 

where rn is the cluster mass, aB I az is the magnetic field gradient and K 
is a constant which depends on the geometry of the apparatus. This 
equation indicates that the deflection is proportional to the cluster 
magnetization M(B).  The experiments [ 1-81 are normally analyzed 
assuming that the ferromagnetic clusters are single-domain particles 
following the super paramagnetic behavior [9], which is true under 
conditions such that the thermal relaxation time is much lower than the 
time required by the clusters to pass through the poles of the Stern- 
Gerlach magnet [lo]. In that case the atomic moments of a particle with 
N atoms are coupled by the exchange interaction, giving rise to a total 
magnetic moment ,UN that is free of the cluster lattice. This orientational 
freedom allows the magnetic moment to align with an external magnetic 
field. For an ensemble of particles in thermodynamic equilibrium in an 
external field B the magnetization (that is, the average projection of the 
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magnetic moment along the field direction) reduces, in the low field limit 
(,uN c< kB r )  and for large particles, to 

P 3  M ( B )  = - 
3kBT 

Equations (9.1) and (9.2) can be used to determine pN. The average 
magnetic moment ,B = PUN / N of the monodomain particle is analogous 
to the saturation magnetization of the bulk, but in zero field a 
monodomain particle has a magnetic moment different from zero. 

The magnetism is sensitive to the symmetry, atomic coordination and 
interatomic distances in the cluster. These three characteristics are inter- 
related. Let us consider the free atoms as an extreme case. Fe, Co and Ni 
have eight, nine and ten outer electrons, respectively, to be distributed in 
the 3d and 4s shells. Hund rules require the spin to be a maximum and 
this leads to electronic configurations 3dl' 4s' for Fe, 3dT 
3d.1 4s' for Co, and 3dl' 3d.1 4s' for Ni. The 3dl' and 3d-1 
subshells are separated by the exchange interaction. These atoms have 
nonzero spins, and since the spin magnetic moment of an electron is I 
Bohr magneton (,u~ ), the atoms have substantial moments. When the 
atoms come together in a cluster or a metal, the overlap between the 
atomic orbitals of neighbor atoms gives rise to energy bands. The levels 
corresponding to 4s electrons produce a free electron-like band with a 
width in the solid of W = 20-30 eV, while the d electrons stay localized 
on the atomic sites, and the d band width is much smaller, typically 5-10 
eV in the bulk. The crystal potential stabilizes the d and s states by 
different amounts. This, plus spd hybridization, leads to charge transfer 
from s to d states, and the number of s electrons for systems other than 
the atom is close to I .  Assuming that the 3d orbitals are atomic-like, the 
Hund rule requires the majority 3dT sub-band to be fully occupied with 
five electrons per atom while the minority 3d.1 sub-band has two, three 
and four electrons per atom in Fe, Co and Ni respectively. The difference 
in the number of spin? and spin.1 3d electrons per atom is nd(?) - 
nA.1) = 3, 2, 1 for Fe, Co and Ni respectively, and the magnetic 
moments per atom are ,B(Fe) = 3 pB, ,B(Co) = 2 p ~ ,  ,B(Ni) = lpB. 

3d.1 

(9.2)
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These values are quite close to the magnetic moments of very small 
clusters. The bulk moments, F (Fe) = 2.2 pB, ,Z (Co) = 1.7 pB, ,Z (Ni) = 
O.64pB, are smaller, and their noninteger values originate in the partial 
delocalization of the 3d electrons, which also contributes to the mutual 
alignment of the moments. This is known as itinerant exchange. 

The onset of delocalization of the d electrons has been studied by 
comparing the photoelectron spectra of Ni; and Pd, to those of Cu, 
[ l l ,  121. In small Cu clusters the orbitals of the 3d" shell are well 
localized and bonding is due to the 4s electrons mainly. The 
photoelectron spectra of Ni, with N16 is similar to the spectra for 

Cu, . The reason is that the 3d orbitals of Ni clusters ( N  < 7) are well 
localized and the interaction between the 3d cores is negligible. The 
spectra of larger clusters reflects the delocalization of the 3d electrons. 
Data for small Pd, clusters presents some similarities to Ni, . 

The variation of the average magnetic moment as a function of the 
cluster size is not smooth in general. The overal decay is due to the 
increasing number of nearest neighbors, an effect that enhances the 
itinerant character of the d electrons. On the surface of the clusters the 
number of neighbors is still low compared to the bulk, so only when the 
number of surface atoms becomes small compared to the total number of 
atoms in the cluster, ,EN converges to ,EbUbulk . Furthermore, small clusters 
have structures that are not simple fragments of the crystal. All these 
ingredients affect the detailed broadening of the electronic levels to form 
the d bands. So the exchange splitting between and L d sub-bands, 
the charge transfer from the s to the d band and the sd hybridization 
depend on the cluster size N ,  and control the evolution of ,EN . 

9.2 Size Dependence of the Magnetic Moments 

The magnetic moments of Fe, Co and Ni clusters with sizes up to 700 
atoms have been measured [ l ,  2, 7, 83 under conditions where the 
clusters follow superparamagnetic behavior, for low cluster temperatures 
(vibrational temperature Tyib = 78 K for Ni and Co clusters, and 120 K 
for Fe clusters). The results are shown in Fig. 9.1. The magnetic moment 
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per atom decreases for increasing cluster size and converges to the bulk 
value for a few hundred atoms; this convergence is faster for the Ni 
clusters. However, in the three cases weak oscillations are superimposed 
to the global decrease of p. 

Figure 9.1. Magnetic moments per atom of Ni, Co and Fe clusters. Reproduced 
from I. M. L. Billas, A. Chatelain W. D. de Heer, J. Mug. Mug. Muter. 168, 64 

(1997) with permission of Elsevier. 
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Experiments have also been performed for clusters of 4d and 5d 
metals, that are nonmagnetic in the bulk [13]. Rhodium is an intriguing 
case. Rh clusters with less than 60 atoms show magnetic moments, but 
larger clusters are nonmagnetic. Clusters with about ten atoms have 
magnetic moments ,E c- 0 . 8 ~ ~  , and ,E decays quickly between N = 10 
and N = 20 (,E(Rhzo) = 0.2 pB), showing, however, oscillations that 
produce large moments for Rh15, Rh16 and Rh19. Rhodium was the first 
case in which magnetism was observed in clusters of a nonmagnetic 
metal. This behavior is different from that shown by clusters of the 3d 
elements Fe, Co and Ni, where the variation of ,Z extends over a much 
wider range of cluster sizes. In contrast to Rh, Ruthenium and Palladium 
clusters with 12 to more than 100 atoms are reported nonmagnetic [13]. 

The decay of ,Z with cluster size can be explained using simple 
models [14]. Neglecting the contribution of the sp electrons and using 
the Friedel model of a rectangular d band [15], the local density of 
electronic states (LDOS) with spin o at site i can be expressed [ 161 

D , ~ ( E ) = -  5 for -- w, < € - & Y < -  wi 
Y 2 2 

(9.3) 

Here E: is the energy of the center of the o spin sub-band, and W, is the 

local band width (assumed equal for ? and 4 spins). The second 
moment approximation in tight-binding theory [ 161 gives Wj 
proportional to the square root of the local coordination number Zj 

w, = Wb(Zj /Zb)”* (9.4) 

where wb and zb refer to the solid. If the d band splitting A =
is assumed equal to the bulk value, the local magnetic moment 

&F 

p = I[.’(€)- 0; (€)Id€ (9.5) 

becomes 
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where 2, is the limiting coordination below which the magnetic moment 
of that atom adopts the value for the dimer. For instance, for Ni one can 

choose Z, = 5 [ 171. The average magnetic moment ,iiN = (1 / N ) x  pi 

strongly depends on the ratio of the number of surface atoms and bulk- 
like atoms in the cluster. The surface atoms have small Z j  and large f i ,  
while the internal atoms have 2; = and f i  = ,ub. For small clusters, 
most atoms are on the surface and jI is large. But as N increases, the 
fraction of surface atoms decreases and with it p. The simple expression 

N 

i=l 

where ,us is the magnetic moment of surface atoms, was proposed by 
Jensen and Bennemann [ 181. The formula displays the decrease of 
towards f ib  with increasing N .  However, the experiments indicate that ,E 
varies with N in an oscillatory way and its explanation requires detailed 
consideration of the geometry and the electronic structure. 

9.3 Magnetic Shell Models 

Since the transition metal clusters do not show the magic numbers 
associated to the closing of electronic shells characteristic of sp 
elements, it appears reasonable to expect the oscillations of ,ii to be 
associated to the development of atomic shells, and several magnetic 
shell models have been developed. In a first model [ l ,  2,  71 the clusters 
were assumed to be formed by several concentric atomic shells and the 
magnetic moment of an atom was taken to depend only on how deep the 
atom is located below the surface. Values pl, p2, p3, ... are assigned to 
atoms in layers 1 ,  2, 3, ... where layer 1 indicates the most external, or 

(9.7)

(9.6)
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surface layer, and so on. The moments ,u, were assumed independent of 
the cluster size. Then the observed trend of a decrease of jl with 
increasing N is reproduced by assigning the following empirical values 
for ,ul, ,u2, ,u3, h, ... : (1.2, -0.4,0.6,0.8,0.67,0.65,0.62,0.6) for Ni, (2.7, 
0.4, 1.6, 1.45, 1.9, 1.9, 1.9, 1.7) for Co, and (3, 3.2, 0, 0, 3.2, 3, 2.8, 2.5) 
for Fe, in units of pB. These values indicate that the moments of atoms in 
the surface layer are enhanced with respect to those on inner layers. This 
model, however, does not reproduce the intriguing oscillations of jl . 

Another shell model, proposed by Jensen and Bennemann [18] 
assumes that the clusters grow shell-by-shell and the atoms occupy the 
sites of an underlying bcc orfcc lattice. The global shapes assumed are 
the cube, octahedron and cuboctahedron. In addition to those regular 
shapes, another model of growth was considered assuming the 
successive occupation of coordination shells around the cluster center: 
each coordination shell is formed by those atoms at a common distance 
from the center, and this yields clusters with spherical shape. In order to 
assign magnetic moments to the atoms the general rule holds that the 
moments are different for different atomic shells, and even more, the 
moments may vary within the most external shells. The average 
coordination number Z is largest for almost filled atomic shells. Then 
maxima of Z should correspond to minima of ji, and oscillations of 
,Zi( N )  as a function of N are expected as a consequence of the formation 
of successive atomic shells. This oscillatory behavior modulates the 
decay of ,Z given by Eq. (9.7). Using these models, the number of atoms 
corresponding to clusters with closed atomic shells can be calculated and 
these numbers are given in Table 9.1 for fcc clusters with cube, 
octahedron and cuboctahedron shapes, and for bcc clusters with cube and 
octahedron shapes. For cubes and octahedrons the table also includes 
results for clusters with rounded edges, obtained by removing all edge 
atoms from the closed shell clusters. 

The numbers obtained are compared in the table with the meassured 
sizes [ l ,  2, 71 for which minima of j3 are obtained for Fe, Co and Ni 
clusters in the size range 30 < N < 700. The comparison is suggestive: 
the experimental minima ,iZfin roughly correspond to the growth of bcc 
cubes for Fe clusters, fcc cubes for Ni clusters and fcc octahedrons for 
Co clusters. Although the correlation is not quantitative enough to allow 
for a definite conclusion about the cluster structure, it provides some 
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support for the idea that the oscillations of ,ii are related to the 
formation of atomic shells. 

Table 9.1. Cluster size N for various cluster structures with closed atomic shells. 
The structures arefcc and bcc and the cluster shape is that of a cube, an 

octahedron (oct) or a cuboctahedron (cuboc). Asterisks refer to rounded clusters 
with edge atoms removed. Calculated N are compared to experimental sizes 
showing minima of the average magnetic moment. Data collected from [ 181. 

Closed shell cluster size N( Pm") 
shell 

n fcc fcc fcc bcc bcc Fe Co Ni 
cube oct cuboc cube oct 

2* 43 43 15 27 50 
2 63 85 55 35 57 45 85 72 

3* 140 165 59 89 173 131 
3 172 231 147 91 143 85 232 175 
4* 321 399 145 203 150 355 260 
4 365 489 309 189 289 191 483 381 
5* 610 777 285 385 273 625 
5 666 891 561 34 1 51 1 
6* 1031 1331 49 1 65 1 
6 1099 1469 923 559 825 551 

129 

The comparison can be made more quantitative by making proposals 
for the local moments that take into account the atomic environment. A 
statistical model has been proposed [ 181 in which the average magnetic 
moment per atom of the outermost shell (shell 1) is assumed to be 

where X I  is the concentration of statistically occupied sites in that shell. 
pat is the magnetic moment of an atom without nearest neighbors in the 
topmost shell, and ps is that for a surface atom surrounded by other 
atoms in the topmost shell, taken to be similar to p for a surface atom in 

(9.8)
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the solid. Next, the average magnetic moment of shell 2 below shell 1 
was taken to depend on the concentration XI of occupied sites on shell 1 : 

This means that the magnetic moment of an atom in shell 2 is equal to px 
if this atom has no nearest neighbors in shell 1 ,  and is equal to the bulk 
value ,ub if it is covered by atoms of shell 1 .  For shell 3, etc., magnetic 
moments are taken equal to A. From the last two equations, the 
magnetic moment per atom becomes 

(9.10) 

where N 1  and N2 are the number of sites in shells 1 and 2, respectively, 
Nb is the total number of atoms in the inner shells, and N = XINl + N2 + 
N b .  The magnetic moment from (9.10) yields oscillations with minima 
near closed shells and maxima for half-filled shells. The results are given 
by the solid curves of Fig. 9.2, with the following parameters: for Fe, pa, 

1.72 ,&; for Ni, pa, = 1.2 pB, p, = 0.7 ,uB, pb = 0.62 ,&. Consistently with 
Table 9.1, bcc cubes are assumed for Fe,fcc octahedrons for Co andfcc 
cubes for Ni. 

Another model [18] assumes that the magnetic moment at site i is 
determined by the local number of nearest neighbors, that is 

= 4.0 ,uB, ,u$ = 3.0 ,UB, = 2.21 ~6 ; for CO, ,u,, = 3.0 ,uB, ,u~ = 1.9 ,uB, f i  = 

A smooth dependence on Zi can be obtained from the magnetic moments 
for surfaces and thin films. For a bcc lattice the local atomic properties 
are affected by the second neighbors, so ,u, has to depended also on 2j2)
These can be taken into account by defining an effective coordination 
number Zi = 2;'' + p Z/2), where the coefficient p describes the 
effective contribution of second neighbors. A reasonable value for fcc 
clusters is p= 0.25 [14]. The results from the models of Eqs. (9.10) and 

(9.9)

(9.11)
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(9.1 l), with parameters p = p(u(z) given by Jensen [ 181, are compared to 
experiment in Fig. 9.2. The statistical model of Eq. (9.10) yields the 
minima and the more realistic model of Eq. (9.11) improves the 
magnitude of p . The comparison with experiment is encouraging, but a 
clear evidence for a distinct cluster structure cannot be claimed. 

Figure 9.2. Average magnetic moments of Fe, Co and Ni clusters. Solid curves 
are from the model of Eq. (9.10), dashed curves from Eq. (9.1 1) and dots are 

experimental results. Adapted from P. Jensen and K. H. Bennemann, Z.  Phys. D 
35, 273 (1995) with permission of Springer-Verlag. 
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Jensen and Bennemann [ 181 have also studied Rh clusters with N up 
to 40, because these clusters order ferromagnetically [ 131 although the 
bulk is nonmagnetic. They found that growing an fcc cuboctahedron by 
caps yields better agreement with experiment than a symmetrical 
occupation of sites in the topmost shell. The growth by caps is expected 
to give larger cohesive energies because it enhances the number of 
nearest neighbor contacts in the topmost shell. 

9.4 Temperature Dependence of the Magnetic Moments 

In the ferromagnetic ground state of a transition metal the spins are 
mutually aligned. Rising the temperature T introduces disorder and the 
net magnetic moment decreases. For the bulk, it vanishes at the Curie 
temperature T, . The behavior of ,E with T provides information on the 
strength and stability of the ferromagnetic order. Billas et al. [ l ,  2, 71 
have analyzed the variation of ,E for Ni, Co and Fe clusters. Ni and Co 
behave in the expected way. For a given size, ,ii decreases with 
increasing T, except for an initial plateau in Ni clusters or an initial rise 
of a magnitude no larger than 5% in Co clusters. As the cluster size 
grows up jI(7') approaches the saturation magnetization curve of the 
bulk metal. However, this convergence has to be qualified. Phase 
transitions are sharp only for very large systems, and in a finite system 
the transition becomes smeared out in temperature. The ,E(T) curve for 
Ni clusters of sizes N = 500-600 already follows closely the bulk curve 
at low T, but at higher temperature the behavior of P(7) is less sharp 
and it appears to approach zero much more slowly due to the finite size 
effects. This smearing out (that, of course, occurs also for smaller 
clusters) agrees with predictions using a finite Heisenberg model [ 191. At 
temperatures around the Curie temperature of the bulk, the measured 
magnetic moments of the clusters are still substantial, suggesting that 
magnetic ordering is still present at these elevated temperatures. In fact, 
neutron scattering experiments for bulk ferromagnets indicate that 
ferromagnetic correlations persist at temperatures higher than T,, leading 
to a short-range magnetic order with a correlation radius of the order of 
19 a.u. [20], which is a size similar to that of the free clusters in the 
experiments of Billas et uI. 
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For the Fe clusters ,Z(T) behaves in a different way. First, the 
temperatures for the occurrence of the magnetic phase transition are 
below T, (bulk), although again ,Zi does not go to zero. More important, 
the thermal behavior of P(T) differs a lot for different cluster sizes and 
there is not obvious convergence towards bulk behavior. Billas et al. 
have suggested this to be a consequence of a structural transition 
interfering with the purely magnetic transition, as in bulk Fe. The 
influence of short-range magnetic order (SRMO) on ,Z at high 
temperature has been analyzed by Pastor et al. [21]. They first noticed 
that ,ZN ( r )  decreases with increasing temperature in the experiments of 
Billas, reaching an approximately constant value above a temperature 
T,(N). This is expected for a magnetically disordered state [19]. 
However, the magnetization was significantly larger than the value 

,ZN (T = O ) / f i  corresponding to N randomly oriented atomic 
magnetic moments. If one assumes some SRMO in the cluster, 
characterized by the average number v of atoms in a SRMO domain, 
then the magnetization per atom of a cluster of N atoms at T > TJN) is 
given by 

pN (T > T, ) = pN (T = oq-  V 

N 
, (9.12) 

domains, each carrying a magnetic moment V,ZN (T = 0). The 
disordered local moment picture, without SRMO, corresponds to v=l .  
The actual value of v for 3d transition metal clusters can be estimated 
from known surface and bulk results. A value v =  15 (which includes up 
to next-nearest neighbors in a bcc lattice) seems a reasonable estimate 
for Fe clusters, whereas for Ni the SRMO is expected to be stronger, and 
values of v between 19 and 43 are reasonable. Using these values of v 
and Eq. (9.12), good agreement is obtained with experiment, providing 
evidence for the existence of SRMO in these clusters above T,(N). 

Heat capacities have been measured for the clusters in a beam [22]. 
For the Ni clusters the heat capacity Cv attains a maximum at 350 K and 

which represnts hte averge U2 of N/Vrandomly oriented SRMO 
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then decreases to the classical value. This feature is associated with the 
decrease in magnetic moment and indicates that the effect is due to the 
phase transition from the ferromagnetic to the paramagnetic state of the 
clusters. The heat associated to the transition is 0.022 eV per atom, that 
is comparable to the bulk counterpart, 0.018 eV per atom. The shape of 
the peak corresponds to what may be expected for a magnetic transition 
in a mean field model. In the same way, the mean field approximation 
accounts well for the peak of Cv observed in Co clusters. The results for 
Fe are again more difficult to interpret. Both for low and high 
temperature the heat capacity falls below the bulk value. And, although 
the position of the peak coincides with a strong decrease of jl, the shape 
of the mean field peak does not reproduce the experiment. 

9.5 Magnetic Moments of Nickel Clusters and their 
Interpretation 

Apse1 et al. have performed accurate measurements of the magnetic 
moments of size-selected Nickel clusters [8] and the results are plotted in 
Fig. 9.3. The experimental moments show an overall decrease with 
increasing cluster size, but oscillations are superimposed to this 
behavior. ,ii shows a deep minimum at Ni13, a small one at NiI9 and 
another minimum at Ni55-Ni56 , so one would guess that the clusters 
grow following an icosahedral pattern. Another minimun is observed 
near Ni34. Between Ni13 and Ni34, as well as between Ni34 and NiS6, ji 
goes through broad maxima displaying also fine oscillations. Finally, for 
N < 10, where ,ii decreases rapidly with increasing N ,  there is a local 
minimum at Ni6 and a local maximum at Ni8. 

9.5. I Tight-binding studies 
Most studies attempting to understand these results have used the tight- 
binding (TB) method. For this reason we present here a brief account of 
this formalism. For a given geometrical arrangement of the atoms in the 
Ni cluster the spin-polarised electronic structure can be determined by 
solving selfconsistenly a TB Hamiltonian for the 3d, 4s and 4p valence 
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electrons in a mean field approximation [24]. In the unrestricted Hartree- 
Fock approximation this Hamiltonian has the expression 

H = ~ ~ ~ ~ t ?+ 7 t:’clLucjpu (9.13) 
iau ij apu 

where cfLu is the operator for the creation of an electron with spin aand 

orbital state a (a= s, px  , py , p z  , dq, dyz , dxz , dX2-y2 , d3zZ-r2 at the 

atomic site i, cjau is the annihilation operator, and siahu = clLuciacT. The 

hopping integrals tf7’ between orbitals a and /3 at neighbor atomic sites i 
and j are assumed to be spin-independent, and are usually fitted to 
reproduce the first principles band structure of the metal at the observed 
lattice constant. The variation of the hopping integrals with the 
interatomic distance rij is often assumed to follow a power law 
(yo / qj)‘+r’tl, where ro is the bulk equilibrium distance and 1 and I’ are the 
angular momenta of the two orbitals involved in the hopping [25]. 

Figure 9.3. Calculated magnetic moments of Nickel clusters (empty circles) 
compared to the experimental results. Reproduced from J. A. Alonso, Chem. 

Rev. 100, 637 (2000) with permission of the American Chemical Society. 
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The spin-dependent diagonal terms contain all the many-body 
contributions, and can be written in a mean-field approximation as 

e 2  
izi r.. pa’ rl 

E ~ ,  =EL  + C U ~ ~ A v i P c ,  + C - A v j  +Z,Qz, . (9.14) 

Here, E~: are the bare orbital energies of the paramagnetic bulk metal. 
The second term gives the shifts of the energies due to screened intra- 
atomic Coulomb interactions, and A viPc = viPc - viPc, where 

vipa =< hiPa > is the average occupation of the spin-orbital ipa, and 

viPc is the corresponding occupation in the paramagnetic solution of the 

bulk. The intra-atomic Coulomb integrals UzF can be equivalently 
expressed in terms of two more convenient quantities, the exchange and 

respectively, and then the intra-atomic term of Eq. (9.14) becomes split 
in two contributions 

0 

0 

direct integrals, J ,  = U ,  71 - U ,  T7 and U ,  = (UaP 71 + U ,  77 ) /  2 ,  

where AvlP = AvlP, + A vlP1, plP = A - AvlP1, and za is the sign 

function ( z 7 =  -l ,zl= + I ) .  The first contribution in Eq. (9.15) arises 
from the change in electronic occupation of the orbital ip and the second 
from the change of the magnetization (spin polarization). Uap and J,p are 
usually parametrized. The difference between s and p direct Coulomb 
integrals is often neglected by writing Us, = U, = U,,, and i t  is also 
assumed that Usd = Upd. The ratio between the magnitudes of Us,, Usd and 
u& can be taken from atomic Hartree-Fock calculations, and the 
absolute value of one of them, for instance U d d ,  estimated by some 
means [26]. Typical values for these ratios are 0.32 : 0.42 : 1 for Fe and 
Udd = 5.40 eV [24]. All the exchange integrals involving s and p 
electrons are usually neglected and Jdd is determined in order to 

(9.15)
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reproduce the bulk magnetic moment. Typical values for Ni, Co and Fe 
do not differ much from Jdd = l e v .  

The third term in the Eq. (9.14) represents the Coulomb shifts 
resulting from charge transfer between the atoms Avj = V j  - V j  , where 0 

V j  = c (2 jPu)  =C (h ip?)  + ( niPL A 

) is the total electronic charge at atom 
Pn P 

j ,  and V :  is the corresponding reference bulk value. In Eq. (9.14) the 
interatomic Coulomb interaction integrals Vv have been approximated as 
VG = e2/rv. Finally, the last term in that equation takes into account the 
energy-level corrections due to nonorthogonality effects and to the 
crystal field potential of the neighboring atoms, which are approximately 
proportional to the local coordination number Z;. The spin-dependent 
local electronic occupations and the local magnetic moments 
p i  = c ((hiat) - (h jaJ) )  are selfconsistently determined from the local 

densities of states piao ( E )  

a 

(9.16) 
-m 

which can be calculated at each iteration by using a recursion method 
[27]. The Fermi energy EF is determined from the condition of global 
charge neutrality. In this way, the local magnetic moments 
p i  = c p i a  and the average magnetic moment ,Z = (c p i ) l N  are 

obtained at the end of the selfconsistent cycle. The theoretical framework 
presented here is general, although some of the calculations to be 
discussed below may incorporate slight changes with respect to the basic 
method. 

The results of TB calculations for the average magnetic moments of 
Ni clusters [28, 291 are compared in Fig. 9.3 with the experimental 
values of Apse1 et al. [8]. Two main ideas can used to interpret the 
results. The first one is that the local magnetic moments decrease when 
the local coordination around an atom increases. The second idea is that 
the average magnetic moment decreases when the interatomic distances 

a 



Magnetism 293 

decrease (the electronic d band becomes wider). In metallic clusters, the 
average coordination generally increases with increasing cluster size N ,  
and also the average nearest neighbor distance d,, increases with N,  from 
the value for the molecule to the value for the bulk. In a growing cluster 
the two effects oppose each other and the resulting behavior of 
P ( N )  can be very rich. For N 2 20 the geometrical structures employed 
to perform the electronic structure calculations were obtained from 
molecular dynamics (MD) simulations using a semi-empirical 
interatomic potential [30, 3 I]  based on TB theory, with parameters fitted 
to properties of Ni:! and bulk Ni. This potential, often called the Gupta 
potential [3 11, contains many-atom terms. The qualitative agreement 
between calculated magnetic moments and experiment is very good in 
the small cluster size range. The theory predicts pronounced local 
minima of ,Z at N = 6 and N = 13, and a local maximum at N = 8. The 
atomic structures for N = 5-16 are plotted in Fig. 9.4. 

Figure 9.4. Ground state geometries of Ni clusters with 5 to 16 atoms, obtained 
using the Gupta potential. Reproduced from S. Bouarab et al., Phys. Rev. B 55, 

13279 (1997) with permission of the American Physical Society. 
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The structure of Ni13 is an icosahedron (in agreement with the more 
accurate calculations reviewed in Chapter 8). The coordination of the 
surface atoms is 2 = 6. Either by removing or by adding one atom, the 
resulting clusters, Nil2 and Ni14, contain some atoms with coordination 
smaller than six. This leads to an increase of the local magnetic moment 
of those atoms. Consequently, the minimum of F at Ni13 is explained by 
its compact structure. Ni6 is an octahedron with atoms of coordination Z 
= 4. In Ni7, which has the structure of a pentagonal bipyramid, the 
coordination of two atoms increases to 2 = 6, remaining equal to four for 
the rest. Ni8 has four atoms with coordination 2 = 5 and four atoms with 
coordination Z = 4, which leads to a mean coordination slightly lower 
than in Ni7 ; then the coordination increases again for Nig . This would 
lead us to expect a maximum of ,E for Ni8 , which is indeed observed in 
the experiment, and a minimum for Ni7 . Instead, the observed and 
calculated minimun occurs at Ni6, and the reason is that the average first 
neighbor distance d,, has a local maximum at Ni7. The larger value of d,, 
works against the increase of the coordination number from Ni6 to Ni7, 
and produces the minimum of ,Zi at Ni6. In summary, the oscillations of 
,ii for small N can be explained by two purely geometrical effects: 
compact clusters have small values of ,Zi, and clusters with large 
interatomic distances have large ,E. 

In Fig. 9.5 the orbital-projected densities of states of Ni5, Ni6 and Ni7 
are compared [28]. The occupied states of the majority-spin sub-band 
have mainly d character with the exception of the peak at the Fermi 
energy, which has sp character; d holes are present in the minority-spin 
sub-band. Integration of the density of states gives d magnetic moments 
with values of 1.6 ,UB, 1.52 ,UB and 1.50 ,UB for Ni5, Ni6 and Ni7 
respectively. A comparison with the moments of Fig. 9.3 indicates that 
the sp electrons make an important contribution. The sp moments in Ni5 
(0.29 p ~ )  and Ni7 (0.21pB) reinforce the d moment, while for Ni6 the sp 
moment (-0.15,~~) points in the opposite direction. The sp contribution to 
,E decays rather quickly with cluster size. 

A conclusion from the geometries plotted in Fig. 9.4 is the pattern of 
icosahedral growth. Since icosahedral growth appears to be consistent 
with the reactivity experiments, as discussed in Chapter 8, Aguilera- 
Granja et al. [29] assumed icosahedral clusters also for N > 20. The 
structures obtained previously with the Embedded Atom method [32] 
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(see Chapter 8) were reoptimized, using the Gupta potential [31], to have 
consistency with the study for N I 20. In addition, extensive MD 
simulations were done for a few selected sizes. In all cases the 
hicosahedral structures were recovered as the ground state, except for 
Ni38r which is an exceptional case to be discussed later. 

I 

Figure 9.5. Density of states: sp (dashed lines) and d (continuous lines). Positive 
and negative values correspond to up and down spins, respectively. The Fermi 

level is at the energy zero. Adapted from S. Bouarab et al., Phys. Rev. B 55, 
13279 (1997) with permission of the American Physical Society. 

Returning to Fig. 9.3, the calculated magnetic moments reveal for N 
> 20 a broad trend of a decrease of ,E for sizes up to N = 28, followed 
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by a weak increase between N = 28 and N = 60. This behavior is mainly 
related to the variation of the average coordination number 2 ,  which 
grows smoothly with N up to N = 27 and then shows up a break. This 
explains the overall decrease of iT in that region. By extrapolating 

Z ( N )  to sizes larger than N = 27, it was found [29] that the actual 

values of Z ( N )  fall below that extrapolated curve for sizes N between 
27 and 54, and the same argument explains the behavior of p in that 

size region: the break in z at N = 27 suggests a flattening of F ,  which 
is confirmed by the calculations. The break in the behavior of the 
coordination number is due to the FC to MIC transition, occurring 
precisely at N = 28 (see Chapter 8). 

The calculated minimum of p at N = 55 has a clear correspondence 
with a minimum in the measured magnetic moment. Also the calculated 
minimum in the region Ni2~Ni37, associated to the FC to MIC transition, 
seems to correspond to the broad experimental minimum of piin that 
region. The experiments show also a weak minimum at Ni19, that can be 
tentatively associated to the double icosahedron structure of this cluster, 
although this local minimum does not show up in the calculations. 
Another weak feature, a drop of ,D between Ni22 and Nil3 has a 
counterpart in the calculation (NiZ3 is a triple icosahedron). One may 
conclude with some confidence that the minima displayed by the 
measured magnetic moments give additional support to a pattern of 
icosahedral growth. 

It was stated above that Ni3* is an exceptional case. The results of 
experiments [33] measuring the saturation coverage of Ni38 with different 
molecules (N2, H2, CO) indicate that the structure of this cluster is a 
truncated octahedron cut from an fcc lattice. Motivated by this result, a 
detailed comparison between the energies of fcc and icosahedral 
structures for a number of clusters was performed by Aguilera-Granja et 
al. [29]. N = 36, 37, 38 and 39 were selected to cover sizes in the 
neighborhood of Ni3*. For N = 13, 19, 43 and 55, one can constructfcc 
clusters with filled coordination shells around a central atom, and for N = 
14, 38 and 68, clusters with filled coordination shells around an empty 
octahedral site of thefcc lattice. Finally N = 23, 24 and 44 are of interest 
for comparison with other works. In all the cases the icosahedral 
structure was predicted more stable, except precisely for Ni38. The 
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difference in binding energy between the two structures is, however, 
small: lower than 0.2 eV between NiZ4 and Ni39, and it increases as N 
departs from this region. The geometry of Ni38 is a compact structure 
formed by three complete coordination shells around an empty 
octahedral site. The six atoms of the internal octahedron are fully 
coordinated ( Z  = 12). For this structure j3 = 0.99pu, ,  that cuts the 
difference between the experimental and theoretical results to one-third 
of the value reported in Fig. 9.3 for the icosahedral structure. The 
moderate increase of jl with respect to that for the icosahedral structure 

is due to the lower average coordination in the fcc structure (z (fcc) = 
7.58, and z (ico) = 7.74). ,ii is very similar for the icosahedral andfcc 
structures of Ni36 (0.87 and 0 . 8 6 ~ ~  respectively). Since energy 
differences between isomers in the region N = 24-40 are small (within 
0.4 eV), the possibility of different isomers contributing to the measured 
values of the magnetic moment should not be excluded. 

Explaining the observed maxima of ,E is a more difficult task. Those 
maxima are not seen in the TB results. One possibility, suggested by 
some calculations [34, 351, is that the structures are fcc instead of 
icosahedral in the regions corresponding to those maxima. Guevara et al. 
[34] then predict sharp maxima of ,Ti at NiI9 and Ni43 and minima at Ni28 
and NiSs. But the study of the reactivity experiments in Chapter 8 suggest 
that NiI9 is a double icosahedron. So the only clear prediction in favor of 
thefcc structure may be the maximum of ,Ti at Ni43. 

In order to further investigate the effect of the geometrical structure 
Rodriguez-L6pez et al. [36] have performed additional TB calculations 
for cluster structures proposed by other authors. The results were 
compared to experiment and to the icosahedral growth model. The main 
conclusion was that the differences in p produced by the different 
cluster structures are not large. For all sets of structures ,E shows an 
overal decrease with increasing N,  and the oscillations at small N are 
reproduced reasonably well. But all the calculations predict a faster 
approach to ,E. These results do not resolve the discrepancies between 
tight-binding calculations and experiment, indicating that a possible 
misrepresentation of the exact geometry is not the only missing 
ingredient. Another possibility that has been suggested is that the 
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treatment of the sp electrons in the TB model may not be accurate 
enough, and this idea is expanded in the next section. 

9.5.2 Influence of the s electrons 
An alternative for explaining the behavior of the magnetic moment of Ni 
clusters has been proposed by Fujima and Yamaguchi [37]. Although, in 
our opinion , the model is not adequate to explain the minima of P, it 
may well contain the additional ingredients required to explain the 
maxima. It is intriguing that the observed maxima of ji are located at N 
= 8 and N = 71 and near N = 20 and N = 40 [8]. These numbers remind 
us of some of the electronic shell closing numbers of the alkali and noble 
metal clusters ( N  = 8, 20, 40, 72). The model of Fujima and Yamaguchi 
in fact distinguishes between localized 3d-derived levels and delocalized 
molecular orbitals derived from the atomic 4s electrons, and neglects any 
hybridization between d and delocalized electrons. The delocalized 
electrons are treated as moving in an effective harmonic potential. The 
corresponding energy levels lie above the Fermi energy in very small Ni 
clusters. But, as N grows, the binding energy of these delocalized 
electronic states increases and the levels become successively buried 
below the 3d band. The model assumes that this occurs abruptly when 
the number of delocalized electrons is just enough to fill a shell in that 
harmonic potential. Associated to this step-wise effect there is a sudden 
increase of the number of holes at the top of the minority spin d band, 
since the total number of valence electrons per Ni atom is 10: the number 
of holes is equal to the number of unpaired electrons in the cluster, so an 
abrupt increase of ,Z occurs. The step-wise mechanism of transfer of 4s- 
derived levels from above the Fermi energy to below the d band is 
supported by density functional calculations [38]. Then the maxima of 
ji observed in the experiments for N I 100 could be related to this 
effect. However in the model the maxima and the minima of ji are too 
close due to the drastic assumption of the transfer of a whole shell at 
once when the conditions of electronic shell closing are met. This is in 
contrast to the experimental observation, where the maxima and minima 
are well separated and, furthermore, the minima appear to be due to 
structural effects. 
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9.6 Density Functional Studies for Ni, Fe and Cr Clusters 

9.6.1 Nickel clusters 
DFT calculations of the magnetic moments become difficult for large 
clusters, especially if one wishes to determine the lowest energy 
geometrical structure. For this reason only small clusters have been 
studied. Reuse and Khanna [39] have calculated ,D for NiN with N = 2- 
6, 8 and 13. In agreement with experiment, the calculations predict 
,ZI (Ni6) < p (Ni5) and p (NiI3) < p (Nig), but the magnetic moments of 
Ni6 and Ni8 were nearly equal, while the experiment gives a larger 
moment for Nig (see Fig. 9.3 ). The geometries employed were similar to 
those employed in the TB calculations of Bouarab et al. [28], except for 
Ni8. Bouarab et al. have performed additional TB calculations with the 
same structures and interatomic distances of Reuse and Khanna, and the 
magnetic moments differed by no more than 0.06 p B  from the TB values 
of Fig. 9.3, so the differences between the TB and the DFT results have 
to be ascribed to the different treatment of the electronic interactions and 
not to differences in geometry or interatomic distances [29], Desmarais 
et al. [40] have studied Ni7 and Ni8. The same value of ,Z= 1.14 p R  
was obtained for the ground state (capped octahedron) of Ni, and all its 
low lying isomers (pentagonal bipyramid, tri-capped tetrahedron and 
capped trigonal prism). Similarly, a moment ,U = l.OpR was obtained 
for the ground state and the low lying isomers of Ni8. The insensitivity of 
the magnetic moments to atomic structure in Ni7 and Nig, also found for 
Ni4 [39], is striking. Reddy et al. [41] have calculated the magnetic 
moments of NiN up to N = 21. For N I 6 they employed ab initio 
geometries (discussed in Section 8.3.1), and for N > 6 the geometries 
were optimized with the Finnis-Sinclair potential [42]. Compared to 
experiment, the calculations predict substantially lower moments, and 
important discrepancies occur in the detailed variation of p with cluster 
size. Those discrepancies are surprising. 

Fujima and Yamaguchi [43] have calculated the local magnetic 
moments of Ni clusters, that is, the magnetic moments at different 
atomic sites. Fcc structures and bulk interatomic distances were 
assumed, with an octahedron and a cuboctahedron for the shapes of NiI9 
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and NiS5, respectively. No significant differences were found between the 
magnetic moments of atoms at different surface sites, but the moments of 
atoms in the layer immediately below the surface are smaller by = 

0.2pu, .  The average magnetic moments ,iZ (NiI9) = 0 . 5 8 ~ ~  and 
,iZ (Nis5) = 0.73 pB are significantly smaller than the measured ones. 
Pacchioni et al. [44] calculated the electronic structure of Ni6, Ni13, NiI9, 
Ni38, NiU, Ni55r Ni79 and Ni147. The structures assumed were icosahedral 
(for Ni13, NiS5, Ni147) or with Oh symmetry (for Ni6, Ni13, Ni19, Ni38, NiM, 
Ni55, Ni79; in most cases fragments of an fcc crystal). The nearest 
neighbor distances were fixed equal to the nearest neighbors distance in 
the bulk (4.70 a.u.). Convergence of the binding energy and average 
magnetic moment to the bulk limit was not observed even for the largest 
cluster, Ni147. On the other hand the width of the 3d band is almost 
converged for N = 40-50. In summary, the explanation of the detailed 
variation of the magnetic moment of Ni clusters as a function of cluster 
size is still an open problem. 

9.6.2 Iron and and Chromium clusters 
Fujima and Yamaguchi [43] also studied Fe and Cr clusters with N = 15 
and 35, assuming a bcc structure: a rhombic dodecahedron. A low value 
of p for atoms on layer-2 is obtained for Fe (the notation used is that of 
Section 9.3; layer-1 is the surface layer and layer-2 is the first layer 
below the surface). For Cr, an alternation of the signs of the local 
moments as a function of the distance to the cluster center is found; the 
absolute values of the local moments decrease with increasing local 
coordination, and also decrease for decreasing interatomic distance. For 
Fe clusters, in contrast, the local moments are less sensitive to the local 
atomic coordination. The calculations of Cheng and Wang [45] show 
also that the Cr clusters are antiferromagnetic, and the dimer growth 
route discovered by these authors (see Section 8.3.5) leads to the 
prediction of an odd-even alternation of the average magnetic moments: 
small magnetic moments for clusters with even N and large moments for 
odd N .  The large moments arise from the quasiatomic character of the 
capping atoms; the dimer-paired even-N clusters have low ,D because of 
the strong intra dimer 3d-3d interaction. In most cases the calculated 
moments are within the upper limit of O.77pB imposed by the 
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experiments [46]. But for Cr12 and Cr13 the predicted 
this limit. 

is larger than 

9.7 Experiments and Calculations for Mn Clusters 

The properties of Mn are peculiar. This metal has the smallest bulk 
modulus and cohesive energy of all the 3d metals, and the most complex 
lattice structure, with several allotropic forms. Some of its bulk phases 
are antiferromagnetic, while monolayers [47] and supported clusters [48] 
exhibit nearly degenerate ferromagnetic and antiferromagnetic states. 
The bond length of the dimer, 6.43 a.u., is larger than the nearest 
neighbor distance in the bulk, in contrast to all other transition metals. 
Mn2 is considered close to a Van der Waals molecule, with an estimated 
binding energy between 0.1 and 0.6 eV [49]. This special character arises 
from the electronic configuration of the atom, 3d 4s2. The electrons of 
the half-filled 3d shell are more localized compared to other 3d atoms 
and do not interact with those of the other atom in the dimer, and 
consequently the binding arises from the weak interaction between the 
filled 4s2 shells. A nonmetal to metal transition is expected to occur for 
clusters of a certain critical size. From an analysis of the reactivity of the 
clusters with hydrogen, Parks et al. [50] have suggested that this 
transition occurs at Mn16, although the ionization potential does not 
display any special feature at that size. 

9.7.1 Clusters with less than ten atoms 
Interesting possibilities arise from the large magnetic moment of the free 
atom (5 p B  ) and the weak interaction between the atoms in Mn2. One 
could expect that the magnetic moments retain their atomic character in 
small Mn clusters. If these moments couple ferromagnetically, a MnN 
cluster would carry a remarkably large moment of 5NpU,. The only 
experiments measuring the magnetic moments of Mn clusters with less 
that ten atoms are for clusters embedded in matrices (experiments for 
clusters with more than ten atoms are discussed later in this section). 
Electron spin paramagnetic resonance (ESR) experiments of Mn2 in inert 
gas matrices yield an antiferromagnetic configuration, but Mn2f is 
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ferromagnetic with a total magnetic moment of 11 p B  [51]. Mn4 in a 

silicon matrix appears to have a moment of 20pB [52]. Mn5+ embedded 
in inert gas matrices has a moment of 25 p, although the cluster actually 
studied could be larger [53]. It is worth noting that neutral Mn2 is 
antiferromagnetic while the other clusters are ferromagnetic. 

The results of calculations are controversial. An early Hartree-Fock 
calculation [54] predicted a ground state for Mnz resulting from the 
antiferromagnetic coupling of the localized spins. Fujima and 
Yamaguchi used DFT and a LCAO (linear combination of atomic 
orbitals) description of the wave functions to study Mn2 to Mn7 [ S S ] .  The 
interatomic distances were optimized for constrained geometries, and all 
the clusters in that group were predicted to show antiparallel spin 
ordering. Nayak and Jena [56] have optimized the equilibrium 
geometries for N 5 5 at two levels of approximation: the local spin- 
density approximation (LSDA) and the generalized gradient 
approximation (GGA). The bond length and the binding energy of Mn2 
are sensitive to the treatment of exchange and correlation and only the 
GGA calculations explain some of the experimental results (the 
calculated bond length is 6.67 a.u. and the binding energy 0.06 eV). The 
use of diffuse functions in the basis set was found to be crucial to yield a 
weakly bonded molecule. Mn2 is predicted ferromagnetic with a 
magnetic moment of lopB The binding energy increases in Mn; and 
the bond length decreases, since the electron is removed from an 
antibonding orbital. The total magnetic moment of Mn; is 11 p B  , in 
agreement with the estimation from experiments for clusters in rare gas 
matrices. The predicted geometries of Mn3, Mn4 and Mn5 are compact: 
an equilateral triangle, a Jahn-Teller distorted tetrahedron and a trigonal 
bipyramid, respectively. The strength of the bonding increases 
significantly with respect to the dimer due to s-d hybridization, although 
it still remains small compared to other transition metal clusters. The 
predicted ground state geometries are consistent with those deduced 
from experiments in matrices. A hyperfine pattern of 21 lines was 
observed for Mn4 embedded in a silicon matrix [52], indicating that the 
four Mn atoms are equivalent (the four atoms are equivalent in a 
tetrahedron). The triangular bipyramid is one of the possible structures of 
Mn5 consistent with the ESR measurements [53]. The calculated 
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interatomic distances decrease substantially from Mn2 to Mn3, reflecting 
the onset of delocalization and hybridization between atomic orbitals at 
various sites. But, the most striking property of these clusters is their 
ability to retain their atomic moments. Mn3, Mn4 and Mn5 in their ground 
state are predicted to be ferromagnetic, with moments of ,D = 5 pB per 
atom in the three cases (low lying isomers are also ferromagnetic, with 
high magnetic moments). These large magnetic moments put small Mn 
clusters in a special place within the transition metal series and give 
expectations for using those molecular magnets in future high density 
information storage technology. Calculations for monolayers and 
supported clusters lead to the same conclusion, and recent experiments 
bear out the possibility of large moments [57, 581. Experiments on free 
Mn2 may clarify the discrepancy between experiment (on matrices) and 
theory concerning the magnetic character of this cluster. 

Table 9.2. Calculated average bond distance d, number of bonds per atom, Ns, 
magnetic moment per atom, p, and binding energy per atom, Eh , for Mn 

clusters. Also spin gaps A, and A * .  Data collected from [59]. 

N d(a.u.) N B  p(PU,> Eh A,(eV> A,(eV> 
(eV/at) 

2 4.927 0.5 5 .O 0.50 0.65 1.30 

3 5.093 1 .O 5.0 0.8 1 0.46 1.38 

4 5.162 1.5 5.0 1.19 0.62 2.31 

5 5.053 1.8 4.6 1.39 0.50 0.79 

6 5.002 2.0 4.3 1.56 0.90 1.13 

7 4.970 2.1 4.2 1.57 0.70 0.47 

8 4.957 2.2 4.0 1.67 0.93 0.37 
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Calculations by Pederson et al. [59] provide further insight on this 
discrepancy. They performed a detailed study of Mn;! using LDA and 
GGA functionals. Their conclusion is that this dimer is ferromagnetic 
with a total moment of lopu,,  an equilibrium bond length of 4.93 a.u. 
and a binding energy of 0.99 eV. An antiferromagnetic state was also 
found with larger bond length (5.13 a.u.) and smaller binding energy 
(0.54 eV). The characteristics of this isomer are closer to those of Mn2 in 
matrices. A plausible resolution of the discrepancies for the dimer is that 
the ferromagnetic state is the true ground state of free Mn2 but Van der 
Waals interactions between the dimer and the matrix may stretch the 
bond, leading to the appearance of an antiferromagnetic state in the 
embedded cluster. 

Larger clusters were also studied. Mn3 also has different magnetic 
states close in energy. The ground state is an isosceles triangle in a 
ferromagnetic configuration (total moment of 15 p ,  ). A frustrated 
antiferromagnetic state also exits with the atomic d spins of the shorter 
side of the triangle ferromagnetically coupled, while the third atom is 
antiferromagnetically coupled to the other two (the triangle is very close 
to equilateral). This state, with a net magnetic moment of 5 p B ,  is only 
0.014 eV above the ground state. Mn4 is a tetrahedron with a total 
moment of 2 0 p B  . For the intriguing case of Mn5 the calculations predict 
a trigonal bipyramid with a net spin of 2 3 p B ,  lower than the measured 
moment of 25 p ,  . Trigonal bipyramid and square pyramid states with a 
moment of 25 pus are 0.62 eV and 1.20 eV above the ground state, 
respectively. Pederson and coworkers then concluded that either the 
matrix influences the ground state multiplicity of Mn5 or the cluster 
formed in the experiment is other than Mn5; this later possibility had also 
been admitted in the original experimental work [53]. A square 
bipyramid and a pentagonal pyramid were investigated for Mn6. The 
total moments are 26pE and 2 8 p u , ,  respectively, and Mn6 was 
proposed [59] as a possible candidate for the cluster with p = 25p, 
observed in the ESR experiments [53]. The structure of Mn7 is formed 
by two eclipsed triangles with a single atom cap (C3” symmetry). Its 
ionization energy (ZP = 5.51 eV) is in good agreement with experiment 
(ZP = 5.44 eV) [60]. 
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To summarise the results, Table 9.2 gives the average bond distance, 
the number of bonds per atom, the average magnetic moment per atom 
and the binding energy for Mn2 to Mns. Also given are the two spin gaps 

- HOMO - E,,,, and A, - HOMO -EL,,, . These represent the 
energy required to move charge from the HOMO of one spin sub-band to 
the LUMO of the other. The two spin gaps have to be positive for the 
system to be magnetically stable. 

A - Ernajority minority - Eminority majority 

9.7.2 Clusters with more than ten atoms 
Using Stern-Gerlach deflection (see Section 9.1) Knickelbein [61] has 
measured the magnetic moments of MnN clusters for sizes between N = 
11 and N = 99. The results, given in Fig. 9.6, were obtained from Eq. 
(9.2) assuming the superparamagnetic behavior. 

Figure 9.6. Measured magnetic moments per atom of Mn, clusters as a function 
of cluster size. Reproduced from M. B. Knickelbein, Phys. Rev. Lett. 86, 5255 

(2001) with permission of the American Physical Society. 

Distinct local minima of ,E are obtained for Mn13 and MnI9, which 
suggest icosahedral growth in that size range. The minima are then a 
consequence of the higher atomic coordination in those species. Beyond 
MnI9 the magnetic moments oscillate with increasing size, showing a 
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minimum around Mn32-Mn37 and a broad maximum at Mn47-Mn56 
followed by a weak local minimum at MnS7. The maximum value of the 
magnetic moment found in that experiment was ,E = 1.4,LB, 
substantially below the calculated moments for small clusters given in 
Table 9.2, and this result is puzzling. 

The interpretation of the experimental results has been challenged by 
Guevara et al. [62]. They have performed TB calculations for clusters up 
to MnG2 using several model structures: icosahedral, bcc and fcc. For 
each cluster size and structure they find several magnetic solutions. In 
general the magnetic moments are not ferromagnetically aligned. From 
the comparison of the experimental and calculated moments they suggest 
that the structures are mainly icosahedral for N < 30, while for larger 
clusters bcc structures begin to compete with the icosahedral growth. 
Jena and coworkers [63, 641 arrived at a similar conclusion concerning 
the magnetic ordering. They propose that nonferromagnetic ordering is 
responsible for the small moments measured for the Mn clusters. In that 
case the ordering has to be ferrimagnetic, that is, the magnitude of the 
moments at the different atomic sites is different, or the number of atoms 
with spins 1' and \1 are unequal, or both. This proposal is supported by 
DFT calculations for Mn13 [63] and, more convincingly, by a combined 
experimental and theoretical analysis of Mn7 [64]. The measured 
magnetic moment of Mn7 is 0.72f: 0 . 4 2 , ~ ~  per atom, a reduction of a 
factor of 7 from the free atom. The calculations predict a distorted 
pentagonal bipyramid for the structure. The magnitude of the local 
moments, calculated by integrating the spin densities on spheres around 
the atoms, is about 5 p B ,  but the coupling is ferrimagnetic and the net 
magnetic moment is only 0.71 p B  per atom, in good agreement with the 
measured value. Two isomers nearly degenerate with the ground state 
were also discovered. Their structure is again a distorted pentagonal 
bipyramid and the coupling is also ferrimagnetic. 

9.8 Magnetism in Clusters of the 4d Metals 

All the 4d metals are nonmagnetic in the bulk phase. But, since the free 
atoms are magnetic due to the Hund rules, it should not be surprising that 
small clusters of some of these elements are magnetic. Experiments [13] 
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show that Rh clusters with less than 60 atoms are magnetic and that Ru 
and Pd clusters with less than 12 atoms are magnetic also. Several 
calculations have investigated the magnetic properties of those clusters 
assuming model structures. Trends across the 4d period have been 
studied by performing LCAO calculations within the frame of the DFT 
formalism for clusters formed by six atoms in octahedral arrangement. 
The binding trends have been discussed in Section 8.2 and the calculated 
magnetic moments per atom are given in Table 8.2. Each cluster, except 
Yg, Pd6 and Cd6, has a finite magnetic moment and the largest moments 
occur for Rug and R h 6  (l.OOpu, and 0.99pu,, respectively). The large 
moments of Rug and Rh6 can be understood from the shape of the total 
density of states (DOS), which is characterized for having a large peak in 
the energy region of the Fermi level [65]. The high DOS contributes 
strongly to the large moments because a small exchange splitting (that is, 
the shift between up and down spin sub-bands) results in a sizable 
difference between the population of up and down spin electrons. In fact 
Rug, Rh6 and Nb6 have the largest exchange splittings accross the 4d 
period. In contrast, the Ferrni levels of the bulk metals lie in a dip of the 
DOS. The main contribution to the DOS of the occupied valence band of 
the clusters is from the d electrons and this gives support to some models 
in which the sp electrons are altogether neglected. Two factors contribute 
to the large DOS near EF: first, the band width is narrower in the cluster 
than in the solid, due to the reduced atomic coordination, and second, the 
high symmetry (octahedral) assumed in the calculation. The last effect 
suggests that some of the magnetic moments of Table 8.2 may be 
overestimated. 

9.8.1 Rhodium clusters 
The experiments for Rh clusters [13] reveal an oscillatory pattern of 
,D( N )  with large values for N = 15, 16 and 19, and drops for N = 13- 14, 
17-1 8, and 20. A number of DFT calculations have been performed for a 
few selected clusters in that size range, assuming symmetric structures 
except for the smallest ones [66-711. The conclusion is that the clusters 
are magnetic, in qualitative agreement with experiment. However, the 
results for jI for the same N show a lot of dispersion. 

The selfconsistent TB method has been employed to study several 
clusters in the range 9 1  N 5 55 [72]. Only the 4d electrons were 
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included in the calculations, and mainly model structures (fcc, bcc or 
icosahedral) were considered, although atomic relaxation preserving the 
cluster symmetry was allowed (a Born-Mayer pair potential was used to 
account for core-core repulsion). Sizable contractions with respect to the 
bulk bond length were obtained (from 2 to 9 %), and these affect the 
magnetic moments. The calculated magnetic moments oscillate and tend 
to decrease with increasing N .  A twisted double-square pyramid yields 
the largest cohesive energy for Rh9 (2.38 eV/atom), and its magnetic 
moment, ,Z = 0.66 p B  , is in good agreement with experiment ( p  = 0.8 
f 0.2 p ,  ). For Rhll the icosahedral and thefcc structures are degenerate, 
although only the magnetic moment of the former isomer (,E = 0.73 p B  ) 
is consistent with experiment (@= 0.8 +O.2pu,). The most stable 
structure for Rh13 is bcc with ,Z= O.62pu,, in better agreement with 
experiment ( = 0.48 f 0.13 p B  ) than the other structures considered. 
In the range 15 I N 5 4 3 ,  fcc structures are predicted, and although the 
magnetic moments are larger than the measured ones, the trends of the 
size dependence are correctly reproduced: local minima at N = 13 and 17 
and maxima at N = 15 and 19. This suggests that the underlying structure 
in the range 15 5 N I 2 0  may be fcc, especially since the other structures 
fail to reproduce those oscillations. Finally the icosahedral structure is 
more stable for N = 55 and its nonmagnetic character is also in 
agreement with experiment. In summary, the structures predicted as most 
stable by the TB calculation give a consistent agreement with the 
measured magnetic moments. 

Considering the distribution of local magnetic moments in those 
calculations, the bcc isomers order ferromagnetically and the local 
atomic moments tend to increase from the cluster center to the surface. 
Compact structures (fcc and icosahedral) are more complex and the 
magnetic order is sometimes antiferromagnetic-like, with p changing 
sign between adjacent shells. A similar behavior has been predicted for 
Rh surfaces (fcc) and thin films [73]. The effect of the sp electrons was 
analyzed for Rh13. Those electrons contribute to the binding energy but 
the bond lengths, the relative stabilities between isomers and the total 
magnetic moments are not altered; although the local moments are more 
sensitive to sp-d hybridization. 
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In another TB calculation for RhN ( N  = 13, 19, 43, 55 and 79) with 
fcc structures, ferromagnetic order was found for Rh13, Rh19 and Rh43, 
and antiferromagnetic configurations for Rh55 and Rh79 [74]. The 
magnetic moments of the two largest clusters are very close to 
experiment, and this was interpreted as supporting& structures for N > 
40. The magnetic to nonmagnetic transition was estimated at N = 80. 

The relationship between the magnetism, topology and reactivity has 
been studied for Rh4 using DFT at the GGA level [75]. This cluster has 
two isomers: the ground state is a tetrahedron with a binding energy of 
2.41 eV/atom. The second isomer, a square, is 0.60 eV/atom less stable. 
The tetrahedron is nonmagnetic and the square is magnetic with a 
moment of 1 p B  /atom; the difference can be due to the different atomic 
coordination, three in the tetrahedron and two in the square. More insight 
is obtained from the analysis of the distribution of orbital energy levels. 
The square isomer has a larger number of states near the HOMO, and it 
is known from extended systems that a large density of states near the 
Fermi energy usually leads to magnetic structures. By simulating the 
reaction of the two Rh4 isomers with H2 the following conclusions were 
noted: (1) H2 dissociates and binds atomically to both isomers; (2) the 
binding energy of H2 to the nonmagnetic isomer is larger by a factor of 
2; ( 3 )  the spin multiplicity of both isomers changes. This indicates that 
the reactivity of transition metal clusters may depend sensitively on their 
magnetic structure and topology and, in fact, the existence of isomers has 
been detected in reactivity experiments. Only the magnetic isomer of Rh4 
can be deflected in a Stern-Gerlach magnet. On the other hand, the two 
reacted forms of Rh4H2 are magnetic and have different spin 
multiplicities. Consequently the two reacted clusters will be deflected 
differently in a Stern-Gerlach field. This provides a possible way to test 
the theoretical predictions. 

9.8.2 Ruthenium and Palladium clusters 
Tight-binding [72, 761 and DFT calculations [67, 771 have been 
performed for Ru clusters. The TB method predicts lower average 
magnetic moments, in better agreement with the experimental upper 
limits [13], but one has to bear in mind that the sp electrons were not 
included in the calculations. The magnetic to nonmagnetic transition is 
estimated to occur at N = 19, a value in satisfactory agreement with the 
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experimental bound N 2 13 [13]. Antiferromagnetic alignment of the 
local moments is preferred for most of the structures studied. 

The magnetism of small Palladium clusters is controversial. It has 
not been confirmed in the experiments of Cox et al. 1131, but these 
authors did not exclude the possibility of magnetism and set upper limits 
of 0 . 4 0 , ~ ~  /atom for Pd13 and 0.13 pB /atom for Pdlos. DFT calculations 
for Pd clusters support the existence of small magnetic moments [78- 
801. Calculations of Moseler et al. [80] for neutral clusters with N 1 7  and 
N = 13 predict a monotonic decrease of Ji between Pd2 (ii = 1 pu, ) and 
Pd7 ( p  = 0 . 3 , ~ ~  ), and an unexpected high value of 0 . 6 2 , ~ ~  for Pd13. 
Negatively charged clusters show more complex behavior. The average 
magnetic moment oscillates and has large values for N = 5,  7 and 13 (,D 
= 0.6, 0.7 and 0.54pB, respectively). The total magnetic moment arises 
from sizable local atomic moments of magnitude 0 . 3 - 0 . 6 , ~ ~ .  These 
couple antiferromagnetically in some cases (singlet states, S = 0) and 
align ferromagnetically in other cases. 

9.9 Effect of Adsorbed Molecules 

Ligand molecules induce perturbations on the electronic structure of the 
atoms forming the surface of the cluster. A striking effect is the 
quenching of the magnetic moments in Ni clusters caused by the 
adsorption of CO [81]. Nickel cluster carbonyl complexes like 
[Ni9(CO)18]2- display vanishing magnetic susceptibilities, indicating Ni 
moments of OpB. Electronic structure calculations for [Ni6(C0)12]2
[Ni32(C0)32]n-, [Ni44(C0)48]R- and other complexes predict low spin 
structures, consistent with the very low magnetic susceptibilities 
measured for macroscopic samples of these compounds [81, 821. The 
explanation is that ligands with CT lone pairs, like CO, interact 
repulsively with the diffuse 4sp electrons of the Ni atoms, inducing a 
transition 384s '  + 3d" that fills the 3d shell. The calculations show that 
this repulsive destabilization is produced even by a shell of He atoms 
[44]. Stern-Gerlach magnetic deflection experiments for N i K O  clusters 
with N = 8-18 reveal that the presence of a single CO molecule reduces 
the magnetic moment of most of those clusters [83]. The quenching 
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effect is particularly large for Nis, Nig, Nils and Nils. For instance, the 
total magnetic moment of Nis is reduced by = 5 p B  , that is, 0.63 p B  per 
atom. 

DFT studies of the adsorption of NH3 by small Ni clusters ( N  = 1-4) 
also indicate a significant effect on the magnetism [84]. Adsorption of 
NH3 leads to a decrease of the Ni moments, which are completely 
quenched when the number of NH3 molecules equals the number of Ni 
atoms. The nitrogen atom binds directly to a Ni atom and the quenching 
of the magnetic moment of Ni occurs because the Ni-N bond distance is 
short. When the number of NH3 molecules is larger than the number of 
Ni atoms, the Ni-N bonds are stretched due to steric hindrance, the Ni-N 
distances exceed the critical distance of 3.59 a.u. and magnetism 
reappears. 

Figure 9.7. Measured magnetic moments of FeN (circles) and FeNH, (squares). 
Adapted from M. B. Knickelbein, Chem. Phys. Lett. 353, 221 (2002) with 

permission of Elsevier. 

However, adsorbates can also increase the magnetic moments of 
ferromagnetic clusters. Figure 9.7 shows the measured magnetic 
moments of free and hydrogenated Fe clusters [85].  Under the conditions 
of the experiment the Fe clusters become saturated with a layer of 
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dissociatively chemisorbed hydrogen. For most of the sizes reported, the 
clusters FeNH, have larger magnetic moments than the corresponding 
pure FeN species. The enhancement is particularly large for N = 13-18. 
This finding contrasts with analogous studies for Ni clusters, in which 
hydrogenation quenches the magnetic moments [85]. 

9.10 Determination of Magnetic Moments by Combining 
Theory and Photodetachment Spectroscopy 

For very small clusters the total magnetic moment is also small and the 
deflection in the Stern-Gerlach magnetic field may be within the error of 
the experiment. For those cases a method has been proposed to 
determine magnetic moments that is based on combining theoretical 
calculations for the neutral and anionic species with electron 
photodetachment experiments [86]. The idea goes as follows. Let us 
imagine that a ferromagnetic anionic cluster has n unpaired spins, and 
then a magnetic moment n p ,  and multiplicity M = n+l.  When an 
electron is detached from the anion, the neutral cluster will have a 
multiplicity of M+1 if the electron was removed from the minority band, 
or M-1 if the electron was removed from the majority band. The 
measured photoelectron energy peaks can be compared to theoretical 
calculations where one first determines the ground state of the anion, 
including its spin multiplicity M ,  and the energy for the transition to the 
neutral species with multiplicities M+I and M-1 at the anion geometry. If 
there is quantitative agreement between the calculated energies and the 
observed peaks, one can conclude that the calculated multiplicity must 
be correct. 

The method has been tested for NiS [86]. The experimental 
photodetachment spectrum shows a prominent and broad peak at 10.80 
eV and a minor peak at 2.1 1 eV [87]. A detailed search was undertaken 
of the equilibrium structures of Ni; corresponding to spin multiplicities 
M = 2,4,  6, 8 and 10, and of neutral Ni5 with spin multiplicities M = 1 ,  3, 
5, 7 and 9, using DFT with the GGA for exchange and correlation. In the 
case of the neutral cluster the ground state is a nearly perfect square 
pyramid with multiplicity M = 7 (total magnetic moment of 6 p B  ). This 
state is nearly degenerate with a distorted trigonal bipyramid with M = 5 
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( p  = 4 p B ) .  In the case of Ni; the structure, for all the spin 
muliplicities studied, is a slightly distorted square pyramid. The ground 
state structure corresponds to M = 8, and this structure can only arise by 
adding an electron to the majority spin band of neutral Ni5 with M = 7 
(which is the ground state of NiS). The structure of Ni3 with M = 6 is 
only 0.05 eV above the ground state, so both isomers with M = 6 and 8 
are expected to exist in the beam. The calculated vertical transition 
energies from the anionic to the neutral cluster are plotted in Fig. 9.8. 

Figure 9.8. Transitions from the Ni, isomers with spin multiplicity M to the 

corresponding neutrals with multiplicities differing by k 1 from the anion. 
Adapted from S. Khanna and P. Jena, Chem. Phys. Lett. 336,476 (2001) with 

permission of Elsevier. 

The left side shows the transitions from the ground state of the anion 
(with M = 8) to the states of the neutral cluster with the anion geometry 
and M = 7 and 9 (the transition energies are obtained as a difference of 
the total energies of the corresponding clusters). These transitions yield 
energies of 1.64 eV and 2.21 eV; on the other hand, the transitions from 
the M = 6 state of Ni; yield energies of 1.58 eV and 1.79 eV. It is 
plausible that the broad peak reported in the experiments arises from 
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transitions from both isomers of Ni; , while the peak at 2.1 1 eV can only 

originate from the state of Ni; with M = 8. 

9.11 Noncollinear Magnetism 

The y phase of solid iron exhibits a spin-spiral structure. Noncollinear 
magnetic configurations occur easily in systems with low symmetry or 
disordered ones. Consequently one could expect noncollinear spin 
configurations in clusters of the transition metals. The usual DFT 
calculations described in previous sections assume spin alignment 
through the system. However some generalized LSDA calculations 
allowing for noncollinear magnetic structures have been performed for 
solids and this idea has been extended to clusters [88, 891. In this 
method, an LSDA scheme in which the local direction of the 
magnetization is fully unconstrained as a function of position is 
combined with ab initio molecular dynamics. In the LSDA [90] the one- 
electron states are described by spinors Y(r) = (@, (r),@* (r)) with two 
components. The electronic density matrix is defined 

(9.17) 

where a a n d  p a r e  spin indices andJ; is the occupation number of the ith- 
single-particle state. This density matrix can be written 

(9.18) 

where p(r) is the electronic charge density, oi, is the unit matrix, q ( k  = 
x, y ,  z )  are the Pauli spin matrices, and mk(r) are the Cartesian 
components of the spin-density vector m(r). In this scheme the spin 
quantization axis of each state can vary with position. Following the ab 
initio MD scheme the electronic wave functions'€', and the atomic 
positions R, are simultaneously optimized by minimizing the total energy 
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for noncollinear spin structures [90, 911. The magnetic moment of each 
atom in the clusters is then calculated by integrating the spin density 
within spheres of appropriate radius centered on the atoms. 

Figure 9.9. Character of the arrangement of the spin magnetic moments in 
pentagonal bipyramidal clusters with interatomic distances ranging from dhulk to 

80% & I k .  Reproduced from N. Fujima, Eur. Phys. J.  D 16, 185 (2001) with 
permission of EDP Sciences. 

Calculations for Fes [88] give a trigonal bipyramid (& symmetry) 
with a noncollinear spin arrangement for the ground state. The three 
atoms of the basal plane have magnetic moments of 2 . 7 2 , ~ ~  pointing in 
the same direction and the two apical atoms have moments of magnitude 
2.71 ,flu, tilted in opposite directions by approximately 30" with respect 
to the moments of the basal atoms. The binding energy of the cluster is 
Eb = 3.46 eV/atom and its total moment is 1 4 . 6 , ~ ~ .  An isomer with D3h 
structure was also found having a collinear spin arrangement with atomic 
moments of 2.58,flu, and 2 . 5 5 , ~ ~  for the basal and apical atoms, 
respectively. Its energy is only 0.01 eV/atom above the ground state. The 
ground state of Fe3 is an equilateral triangle with collinear spin 
arrangement. Its total moment is 8.00pu, and the binding energy Eh = 
2.64 eV/atom. A linear isomer with noncollinear arrangement was also 
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found: the central atom has a moment of 1.27 p B  oriented perpendicular 
to the linear axis and the two edge atoms have moments of magnitude 
2 .89pB,  tilted by k 10" with respect to the cluster axis. The total 
moment of the cluster is 2.04 p B  and its binding energy is Eb = 2.17 
eV/atom. Linear isomers were also found with collinear ferromagnetic 
and antiferromagnetic spin configurations. The total moments of those 
two isomers are 6 . 0 0 ~ ~  and 0.00 p B  and their binding energies 1.80 and 
2.15 eV/atom, respectively. Calculations for Fe2 and Fed gave also 
collinear ground states. 

The nature of the spin arrangement depends sensitively on the 
interatomic distances. A comparative study for Cr7, Mn7 and Fe7 with the 
pentagonal bipyramid structure, including the variation of the 
interatomic distance d from the bulk value dbulk to a value 20 % lower, 
appears summarized in Fig. 9.9 [89]. For c r 7  with db& the magnetic 
moments are arranged in a coplanar noncollinear configuration. When d 
decreases the magnetic moments change to parallel order. The situation 
is similar for Mn7 with d close to dbulk, that is, the cluster shows a 
coplanar configuration of the spins. However, for decreasing d, a non 
coplanar configuration first appears, and this changes to a collinear 
antiparallel one with further decrease of d .  Finally the spin arrangement 
in Fe7 is parallel for d-dbulk and d-0 .8  dbulk, and it is noncollinear for d 
in between the above two limits. 
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10. Clusters of Ionic Materials 

10.1 Nearly Stoichiometric Metal Halide Clusters 

A salt like NaCl is composed of closed shell ions, Na’ and C1- , with 
electronic configurations similar to those of the rare gas atoms Ne (ls2 
2s2 2p6) and Ar (ls2 2s2 2p6 3s2 3p6), respectively. The cohesion in the 
crystal is explained as a balance between attractive and repulsive forces 
between the ions. The attractive interaction comes from the Coulombic 
attraction between anions and cations, which tend to be nearest 
neighbors. In contrast, cationdation and anion-anion repulsion prevents 
these from being nearest neighbors. Although the electrostatic interaction 
between anions and cations is attractive, the overlap between the closed 
electronic shells leads to a strong short-range repulsion arising from the 
Pauli exclusion principle, and sets a minimal distance of approach 
between nearest neighbors. These effects can be taken 
interionic potential of the form 

2 
ZiZje + Ae-r,, / p  yJ (C j )  = - 

?J 

where rii indicates the separation between two ions i 
term represents the short-range repulsion between 
electronic shells, and the first one is the long 

into account by an 

(10.1) 

and j .  The second 
ions with closed 
range Coulombic 

interaction (attraction or repulsion) between point charges-of magnitudes 
Zie and q e  (Zi and 5 can be positive or negative). The parameters A and 
q are usually determined by a fit to the experimental cohesive 
properties of the solid [ 11. 
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When an intense beam of ions with high kinetic energy (for instance, 
5 kV Xe- ions) is directed against the surface of an alkali halide crystal, 
secondary ions are ejected from the surface and these can be detected by 
the usual mass spectrometric techniques. Those secondary ions include 
not only molecules, but also small and large clusters. The method of gas 
aggregation from material evaporated in an oven can also be used to 
produce the clusters. A mass spectrum of (CsI),Cs' clusters shows that 
the intensity peak corresponding to (CSI)~~CS' , that is [Csl4II3]+, is very 
strong [2], and analogous studies of NaCl and CuBr clusters show that 
[Nal4ClI3]+and [Cu14BrI3]+ also have enhanced abundances [ 3 ,  41. 

Figure 10.1. Mass spectrum of (NaI),Na+ clusters. Each oscillation corresponds 
to the completion of a face of a rectangular box. Some peaks corresponding to 

clusters with the structure of perfect cubes are identified. Reproduced from T. P. 
Martin, Phys. Rep. 273, 199 (1996) with permission of Elsevier. 

Total energy calculations using the interatomic potential of Eq. (9.1) 
indicate the higher stability of these clusters compared to neighbor sizes, 
which arises from a very symmetrical structure. That structure is a small 
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fragment of the rock salt (or NaCl) lattice with the shape of a perfect 
cube, and it can be denoted as (3X3X3), indicating that the number of 
ions along each of the three perpendicular edges of the cube is three, and 
consequently the total number of ions forming that tiny cube is 27. Other 
significant features in the mass spectrum are a sharp decrease of the 
intensity just after n = 22, 37 and 62. A similar analysis suggests that 
these additional features can also be explained by the enhanced stability 
of very symmetrical clusters with the shape of rectangular boxes, which 
are again perfect fragments of a rock salt crystal. With a similar notation, 
those rectangular boxes (often called cuboids) can be denoted as 
( 3 x 3 ~ 3 ,  ( 3 x 5 ~ 5 )  and (5X5X5), respectively, the last one being again 
a perfect cube. Figure 10.1 shows a mass spectrum of (NaI),Na' clusters 
[5]. The spectrum emphasizes the features for large cluster sizes. The 
interpretation of the oscillations in the intensity is that these clusters tend 
to grow as tiny nanocubes. The cluster intensity is a maximum for the 
perfect cubes (rnxrnxm), and then drops sharply after those clusters. 
The peaks corresponding to perfect cubes with rn = 5 (125 atoms), 7 (343 
atoms), 9 (729 atoms), 11 (1331 atoms) and 13 (2197 atoms) are 
explicitly indicated in the figure. There are more oscillations and peaks 
in between those of perfect cubes, and the interval between those 
oscillations corresponds to the number of atoms required to cover one 
face of cuboids formed in the growth from the cube (rnxrnxrn) to the 
next cube (m+ 1 X m+ 1 X m+ 1). What makes these results nontrivial is 
the fact that while many alkali halide crystals have the six-fold 
coordinated rock salt structure, others show a different crystal structure: 
for example, the CsCl, CsBr and CsI crystals show the eight-fold 
coordinated CsCl structure, which is related to a bcc lattice (the cations 
occupy the center of a cube formed by eight anions, and vice versa), and 
CuBr has a crystal structure of the Zinc Blende type. So a transition to 
the structure of the bulk is expected for still larger cluster sizes. 

The structure of cuboids cutted from the NaCl lattice has been 
assigned indirectly. Electron diffraction has allowed a more direct 
investigation of the structure of (CsI),Cs' clusters with n = 30-39 [6]. 
With this technique, size-selected cluster ions are injected in a radio- 
frequency (rf) trap, where the clusters are thermalized by exposure to He 
gas at the desired temperature (300 K in the experiment of Parks et al. 
[6]). After evacuating the He gas, an electron beam passes through the 
the rf trap chamber and the diffraction image is recorded. In the range of 
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sizes studied, n = 30-39, the similarity of the diffraction patterns is 
striking with the only exception of n = 32. The main difference is a shift 
in the diffraction peak at an electron momentum transfer s = 3.5 A-'. 

Figure 10.2. Fraction of CsCl structure present in the molecular diffraction 
studies of (CsI),Cs+. The CsCl and NaCl isomers are shown for n = 32. 

Reproduced from S. Kriickeberg et al., Phys. Rev. Lett. 85,4494 (2000) with 
permission of the American Physical Society. 

The mass spectrum indicates that (CSI)~~CS+ is a particularly stable 
cluster for which a (3X3X7) NaC1-type structure is expected, and the 
similarity of the diffraction patterns indicates that the other clusters, 
except n = 32, also have the NaCl structure. On the other hand a perfect 
rhombic dodecahedra1 fragment of the CsCl lattice, shown in Fig. 10.2, 
can be constructed for (CsI)&+. The measured diffraction data were 
fitted by a theoretical model in which the diffraction patterns are 
calculated for an ensemble of clusters with a fraction fcscl of them having 
the CsCl structure and the rest having the NaCl structure. The best fits 
are obtained for the fractions shown in Fig. 10.2. The results can be 
interpreted as indicating the coexistence of the two structures, although 
the population is dominated by the NaCl structure, except for n = 32. 
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10.2 Nonstoichiometric Metal Halide Clusters 

Now let us turn to the question of why in the previous section the 
attention has been focussed on clusters of composition (MX),M+, where 
M indicates the metal and X the halide element. The relative intensity of 
cesium subchloride clusters formed by quenching Cs vapor in a mixture 
of He and Clz is given in Fig. 10.3 [3]. The different spectra plotted are 
such that the number of C1 atoms is fixed in each particular spectrum and 
the variable is the number of Cs atoms. 

Figure 10.3. Intensity of cesium subchloride clusters formed by quenching Cs 
vapor in a mixture of He and Clz. Each spectrum contains a fixed number of C1 

atoms. Filled circles correspond to clusters containing ions with rare gas 
electronic configurations. Reproduced from T. P. Martin, Angew. Chem. Int. Ed. 

Ingl. 25, 197 (1986) with permission of Wiley. 
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The top spectrum indicates that only one C1 atom is incorporated into 
the cluster. The mass peaks corresponding to [Cs2Cl]+, [Cs4Cl]+, 
[cS6cl]+, [Cs&1]+, ... that is, with an even number of Cs atoms, are 
stronger than the peaks for odd number of Cs atoms. On the other hand, 
when two C1 atoms are incorporated into the cluster, an odd number of 
Cs atoms is preferred, that is, the peaks [Cs3C12]+, [Cs~C12]+, [Cs7Cl2]' ... 
are stronger. A look at the whole group of spectra reveals that, if the 
number of Cs atoms plus the number of C1 atoms is odd, the peak in the 
mass spectrum is strong. 

Considering first the top spectrum, corresponding to [Cs,&l]' 
clusters, the single C1 atom forms a C1- anion, and this leaves N-2 nearly 
free electrons in the cluster. This subsystem displays the usual odd-even 
features associated to pure alkali clusters discussed in Chapter 5. That is, 
clusters with N-2 even are more stable, and consequently more abundant 
than clusters with N-2 odd. The same argument explains the oscillations 
in the other spectra. For instance, for clusters of composition [Cs,,C12]+, 
the number of nearly free electrons is N-3; then clusters with N-3 even 
are more stable than those with N-3 odd. 

One can also observe that the most abundant cluster in each 
spectrum, namely [Cs2CI]+, [Cs3C12]+, [Cs4C13]+, [CssC14]+, [cs6clS]', 
contains exclusively cations and anions with rare gas electronic 
configurations. For instance, [Cs,CI]' contains two Cs+ cations and one 
C1- anion, and so on. Those are precisely the clusters of nearly 
stoichiometric composition discussed in Section 10. I .  As the partial 
pressure of C1 increases the mass spectrum simplifies considerably, 
becoming dominated by the nearly stoichiometric clusters (CsCl),Cs+. 

10.3 Small Neutral Clusters 

Quantum chemical calculations for small neutral alkali halide clusters 
[7-91 show that there is a competition between cuboid structures 
resembling fragments of a rock salt lattice and prismatic structures 
formed by a stacking of hexagonal rings. 

The results obtained from the calculations for (MX), clusters present 
well defined structural trends that can be parametrized in a map using the 
cation and anion radii as coordinates [9]. Figure 10.4 shows an example 
for clusters of the specific composition (MX)6: each cluster is 
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represented in the plot by a point of coordinates (rc, rA), that is, the 
cation (M') and anion (X-) radii. The two competitive structures are a 
hexagonal prism and a structure formed by two cubes sharing one face, 
that is a ( 3 x 2 ~ 2 )  cluster in the notation of Section 10.1. The two 
structures are characterized by different symbols: clusters whose ground 
state is the hexagonal structure are indicated by circles, and the cubic 
clusters are represented by squares. An empirical straight line can be 
drawn separating the two families. The same line separates the 
hexagonal prism and the rock salt fragments for ( M X ) g  clusters. In this 
case the hexagonal prism is composed of three stacked hexagonal rings, 
and the rock salt fragment can be labeled as (3 x 2 x 3). The boundary line 
actually depends a little on n. 

Figure 10.4. Structural stability map for (MX)6 clusters. Using as coordinates the 
cation and anion radii, a boundary has been drawn separating clusters with 

hexagonal structure (circles) from those with cubic structure (squares). Redrawn 
from data in [9]. 
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 Ergy difference between hexagonal and rock salt isomers of 
(LiX)6, (NaX)6, (=)6 and (RbX)6 clusters versus the ratio of the cation and 

anion radii. A ratio of 0.5 separates these structures. Redrawn from data in [9]. 

The competition between hexagonal and cubic structures can be 
further simplified to a one-parameter plot. In Fig. 10.5 the difference in 
energy between the two isomers has been hplotted as a function of the 
ratio of the cation and anion radii, rc / rA, again for n = 6. A correlation 
exists between these two magnitudes, and a critical ratio of 0.5 separates 
clusters whose ground state is a hexagonal prism from those with a rock 
salt structure. The hexagonal prism is the stable structure when a large 
disparity exists between the cation and anion radii, for rc/ rA < 0.5; on 
the other hand, the rock salt structure becomes more stable when the 
ionic radii are not so different (rc / rA > 0.5). The binding energy of the 
clusters can be written as a sum of the electrostatic Madelung energy of 
interaction between point-like ions and quantum mechanical 
contributions [9]. The Madelung interaction alone already produces the 
separation between structures shown in Fig. 10.5, provided that the 
calculation of the Madelung energy is performed for each isomeric 
structure with the interatomic distances predicted by the full quantum 
chemical calculation. 

salt isomers of
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10.4 Structural Transitions 

Isomerization transitions between alkali halide clusters have been probed 
by techniques like photoelectron spectroscopy [lo]; however, the most 
striking results have been obtained from ion mobility experiments. Those 
experiments have shown that the (NaCl),,Cl- clusters with more than 
30 molecules experience structural transitions between different GX k x  1)  
h
shows drift time distributions for (NaCl),, C1- measured at three 
different temperatures, taken with a fixed drift voltage of 7 1tV. 

Figure 10.6. Drift time distributions for (NaCl)&l- at 7, 33 and 67°C with a 
drift voltage of 7 kV. Labelsfand i indicate a cuboid with a vacancy and with 
an incomplete face, respectively. Reproduced from R. R. Hudjins et al., Phys. 
Rev. Lett. 78,4213 (1997) with permission of the American Physical Society. 

ctangular box-like structures [11]
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In the experiment the size-selected charged clusters enter a drift tube 
and are accelerated by an applied electric field, travelling through the 
tube that contains a helium buffer gas. Some ions then exit through a 
small hole and are focused into a mass spectrometer. The three peaks in 
the distribution in the upper panel of the figure correspond to three 
structural isomers that have been separated because their very different 
shapes lead to different mobilities through the buffer gas. These have 
been assigned to an incomplete ( 5 ~ 5 x 3 )  structure, that is, a cuboid with 
an incomplete face, an incomplete (5X4X4) structure, and a (8X3X3) 
structure with a single defect (a vacancy, or F center). These structures 
have been assigned by comparing the measured mobilities with the 
mobilities calculated for different structures optimized using an ionic 
interaction potential including polarization effects [ 121. At the lowest 
temperature (300 K) the three isomers are present, but as the temperature 
is increased in the drift tube the (8X3X3) and ( 5 x 5 ~ 3 )  structures 
convert into the (5X4X4). These transitions involve the relocation of 
many atoms in the cluster. 

Table 10.1. Activation energies for transitions between isomeric structures of 
NaCl clusters. The geometries are identified by their (jX kX  I )  dimensions. 

Letters c,  f and i indicate a cuboid, a cuboid with a vacancy (or F center) and a 
cuboid with an incomplete face, respectively. Data collected from [lo]. 

Activation energies E, for these transitions, obtained from the 
Arrhenius equation 
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(10.2) E,  I k,T k = Ae- 

are given in Table 10.1. In this equation A is the frequency factor and k is 
the rate constant for the thermally activated structural transformation. 
Rate constants are obtained from the measured drift time distributions 
[ 113. Activations energies for (NaCI),,Cl-, (NaCI),,Cl- and 

(NaCI),, C1- are also reported in Table 10.1. The activation energies for 
the whole group range between 0.3 and 0.6 eV. These values are smaller 
than the activation energy for the migration of an ion vacancy in solid 
NaCl [13], so it is likely that the mechanism for the structural 
transformations observed involves a sequence of surface diffusion steps. 

Figure 10.7. Photoelectron spectra of Cs,I, taken with 1.55 eV photons and a 
nozzle temperature of 300 K. The spectrum with the “predeplete” label is the 

reference spectrum. The other two are taken with delays of 10 and 980 ps after a 
0.60 eV depleting pulse. The lowest isomer (left peak) was substantially 

depleted, but becomes replenished at the expense of the other two. Reproduced 
from A. J. Dally and L. A. Bloomfield, Phys. Rev. Lett. 90,063401 (2003) with 

permission of the American Physical Society. 

Time resolved studies of the thermal isomerization have also been 
performed [ 141. Figure 10.7 shows some photoelectron spectra of Cs,I, 
taken with photons of 1.55 eV. The three peaks correspond to three 
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different isomers present in the beam, and the spectrum provides a 
measure of the relative abundances of those isomers. The spectrum with 
the “predeplete” label is the reference spectrum for a temperature of 300 
K. The other two correspond to the cases when, before the spectroscopic 
“probe” pulse a depleting pulse has been applied to selectively remove 
one of the isomers (the isomer corresponding to the left peak). The 
delays between the depleting pulse and the probe pulse are 10 ps and 980 
ps respectively, and those two spectra show that the initially depleted 
isomer progressively regains its population at the expense of the other 
two isomers. This is due to the isomerization of the two non depleted 
isomers into the depleted one as the cluster ensemble evolves to re- 
establish the steady state. 

References 

1. Kittel, Ch., Introduction to Solid State Physics, 7th Edition, Wiley, New 
York (1996). 

2. Campana, J. E., Barlak, T. M., Colton, R. J., De Corpo, J. J . ,  Wyat, J. R., 
and Dunlap, B. I . ,  Phys. Rev. Lett., 47, 1046 (1981). 

3. Martin, T. P., Angew. Chem. Int. Ed. Ingl., 25, 197 (1986). 
4. Martin, T. P., Phys. Rep., 95, 167 (1983). 
5. Martin, T. P., Phys. Rep., 273, 199 (1996). 
6. Kruckeberg, S., Schooss, D., Maier-Borst, M., and Parks, J .  H., Phys. Rev. 

Lett., 85,4494 (2000). 
7. Ochsenfeld, C., and Ahlrichs, R., Ber. Bunsenges. Phys. Chem., 98, 34 

(1994). 
8. Aguado, A,, Ayuela, A., Lbpez, J. M., and Alonso, J. A., J.  Phys. Chem. B,  

101,5944 (1997). 
9. Aguado, A., Ayuela, A., Lbpez, J. M., and Alonso, J. A,, Phys. Rev. B ,  56, 

15353 (1997). 
10. Fatemi, D. J. ,  Fatemi, F. K., and Bloomfield, L. A., Phys. Rev. B, 47, 7480 

(1 993). 
11. Hudjins, R. R., Dugord, P., Tenenbaum, J. M., and Jarrold, M. F., Phys. 

Rev. Lett., 78,4213 (1997). 
12. Dugord, P., Hudjins, R. R., and Jarrold, M. F., Chem. Phys. Lett., 267, 186 

13. Etzel, H. W., and Maurer, R. J.,  J.  Chem. Phys., 18, 1003 (1950). 
14. Dally, A. J., and Bloomfield, L. A., Phys. Rev. Lett., 90,063401 (2003). 

( 1  997). 



11. Carbon Clusters 

11.1 Carbon Fullerenes 

Carbon, with atomic number 6 and a ground state electronic 
configuration ls2 2s2 2p6, is the most versatile element of the Periodic 
Table. It gives origin to Organic Chemistry. The most stable solid form 
of pure carbon is graphite, formed by planar carbon layers bound to the 
neighbor layers by weak Van der Waals forces. So the layers can be 
exfoliated easily. On the other hand the binding of the carbon atoms 
within a layer is very strong. The atoms form a honeycomb-like two- 
dimensional lattice. In this lattice the electrons of the carbon atoms form 
sp2 hybrid orbitals that interact strongly with the three neighbor atoms 
leading to the formation of localized strong obonds at angles of 120" and 
delocalized weak z bonds. Another form of carbon, of interest in solid 
state physics, is diamond. In this case the formation of sp3 hybrid orbitals 
leads to tetrahedral coordination around each atom. In spite of the weak 
interlayer binding energy of graphite, this is the most stable form of 
carbon, that is, the phase with the highest binding energy. 

11.1.1 Discovery of the fullerenes 
In laser vaporization experiments Rohlfing et al. [ 13 observed carbon 
clusters in the range from 40 to 300 atoms. A remarkable feature was 
that only clusters with an even number of atoms appeared in the mass 
spectrum. The interest in carbon clusters had been enhanced by the 
detection in the interstellar medium of carbon molecules with a chain 
structure, HC5N, HC7N, HCgN, and HCIIN [2]. Those molecules were 
expected to form in the carbon-rich red giant stars [2, 31. 

333 
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Figure 1 1.1. Mass spectra of carbon clusters. The degree of clustering increases 
from (a) to (c). Reproduced from H. Kroto, Science 242, 1139 (1988) with 
permission of the American Association for the Advancement of Science. 

Kroto and coworkers [4] used laser vaporization of graphite to 
synthesize carbon clusters with the objective of simulating interstellar 
carbon chemistry in the laboratory. In the course of those experiments 
they noticed that some clusters were extremely abundant, un partucular
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c60, and to a lesser extent C70. This is evident from the mass spectra 
shown in Fig. 1 1 . 1 .  They proposed for c 6 0  a very symmetrical structure 
with the 60 atoms occupying the vertices of a truncated regular 
icosahedron. That structure is shown in Fig. 12.2. Each atom is bonded 
to three others along the edges of the truncated icosahedron. The 
molecule is then a skeletal version of the Archimedean polyhedron, 
much like the network in one of the geodesic domes built by the architect 
Buckminster Fuller. This result confirmed the early theoretical 
predictions that had given hints for the existence of molecules with 
icosahedral structure [ 5 ] ,  the highest symmetry in a molecular point 
group. In fact, Osawa [6] had proposed the c 6 0  molecule as a chemically 
stable molecule and a Hiickel-type electronic calculation had estimated 
its HOMO-LUMO energy gap [7]. 

Figure 1 1.2. Structure of C ~ O  showing the double and single bonds. 

The advance in the study of c 6 0  was initially slow due to the 
difficulty in obtaining samples. The original technique of laser 
vaporization of graphite films in a helium atmosphere gave a poor output 
of c 6 0  and CTO in gas phase. A breakthrough was the discovery by 
Kratschmer and coworkers [S] that an electric arc discharge between two 
graphite electrodes immersed in a helium gas at pressure of 200 torr 
could generate large quantities of c 6 0  and C70. The clusters were part of 
the soot produced in the discharge. The separation of the fullerenes from 
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the rest of the soot is possible using solvents (toluene) or sublimation 
techniques. The discovery of this efficient method to obtain fullerenes 
was followed by an avalanche of experiments studying dissociation 
channels, the optical and ultraviolet spectrum and the chemical reactivity 
with different atoms and molecules. In fact, the experimental 
confirmation of the geometrical structure proposed for c 6 0  was achieved 
when ultraviolet and Raman spectroscopy studies became possible due to 
the availability of samples in the amounts required for those 
experiments. 

The general name of fullerenes is used for the family of carbon 
clusters with the structure of a closed cage formed by an even number of 
atoms that form hexagonal and pentagonal rings. According to the Euler 
theorem, that relates the number of faces, edges and vertices of a 
polyhedron, this is possible only if the cage has 12 pentagonal rings and 
a variable number (f6 # 1 )  of hexagonal rings. It is then the number of 
hexagonal rings, f6, which distinguishes the different members of the 
fullerene family. The fullerenes with 60n2 atoms (n = 1, 2, 3 ...), that is, 
c 6 0 ,  C240, c540, . . . are the most spherical ones and present an electronic 
structure of closed shells. 

I I .  1.2 Electronic structure of C ~ O  
The 60 atoms of c 6 0  are placed on the vertices of a truncated 
icosahedron. The average distance between first neighbor carbon atoms 
is close to the bond distance in graphite (2.68 a.u.), and the radius of the 
spherical cavity is 6.71 a.u. The atoms are bonded forming 12 pentagonal 
rings and 20 hexagonal rings and each pentagon is fully surrounded by 
hexagons. Similarly to the case of graphite, three electrons of each atom 
in c 6 0  form sp2 hybrids which give rise to strong abonds with the three 
neighbors. But the curvature induced by the pentagons distorts a little 
those 0 bonds and introduces some sp3 character. The fourth electron 
fills an orbital perpendicular to the surface and forms a n bond with a 
neighbor atom. Each atom forms single bonds with two of its first 
neighbors and a double bond with the third one. Then, although all 60 
carbon atoms are equivalent, the bonds are not. The 60 single bonds are 
localized along the edges connecting pentagons and hexagons, and the 
30 double bonds along the edges joining hexagons. In this way a 
structure of alternated single and double bonds is formed that stabilizes 
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the structure. Nuclear Magnetic Resonance experiments [9] have 
estimated lengths of 2.75 a.u. and 2.63 a.u. for the single and double 
bonds, respectively. 

Figure 1 1.3. Single-particle energy level spectrum of C60 obtained from a tight- 
binding calculation. The lower panel is an expansion of the region around the 

Fermi level. Allowed transitions between states with even (g) and odd (u) parity 
are indicated by the arrows. Reproduced from G. F. Bertsch et al., Phys. Rev. 

Lett. 67, 1690 (1991) with permission of the America1 Physical Society. 

The structure of the electronic energy levels obtained from a tight- 
binding calculation is shown in Fig. 11.3 [lo]. The energy levels are 
grouped according to the different irreducible representations of the Zh 
symmetry group. The calculations considered four electrons per atom. 
The total width of the occupied band is 19.1 eV, very close to the values 
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obtained in DET calculations [ 1 13. The calculated HOMO-LUMO 
energy gap is 2.2 eV, close to the experimental value of 1.9 eV [ 121. 

The ostates are far from the Fenni level. The bonding astates are 
more than 7 eV below the HOMO, and the antibonding states are more 
than 6 eV above the LUMO. The transport and electronic properties are 
then determined by the xelectrons, which are closer to the Fermi level. 
Since the x electrons are moving in an effective potential with a 
symmetry which is roughly spherical, the occupied n states can be 
approximately classified in terms of the angular momentum quantum 
number 1. The lowest zstate, with A ,  symmetry, corresponds to 1 = 0 (s 
state). The next two groups of states belong to the irreducible 
representations T, and H ,  and have the character of 1 = 1 0, states) and 1 
= 2 (d states), respectively. The next group, with 1 = 3 (f states), 
experiences a small splitting in states with T, and G, symmetries, 
respectively. In the same way, the group with 1 = 4 splits into states with 
G, and H ,  symmetries. The highest occupied state (HOMO), with H ,  
symmetry, belongs to a group with 1 = 5 .  This subshell is occupied with 
ten electrons. The LUMO, with symmetry T,, is also part of a subshell 
with 1 = 5. The transition between the HOMO and LUMO states is 
optically forbidden because the two states have the same parity (u- 
states). The three lowest allowed transitions are h, + t, , h, 4 t, and 
h,+h,, with approximate excitation energies 2.9, 3.1 and 4.1 eV, 
respectively [lo]. An interesting feature of C60 is the high ionization 
potential, 7.6 eV; its electron affinity, 2.65 eV, is similar to that of 
typical electron-acceptor organic molecules (like TCNQ, whose electron 
affinity is 2.82 eV). 

11  . I  .3 Other fullerenes 
The smallest fullerene, C20, is a dodecahedron formed by twelve five- 
membered rings and no hexagonal rings. Any other larger even-atom 
fullerene can be formed, with the only exception of C22. As the number 
of atoms grows, the number of hexagonal rings also increases, reaching 
the value f6 = 12 for C60, which is the first fullerene in which the 
pentagonal rings do not share any edges. The carbon atoms in the 
fullerenes are then not equivalent, with the exceptions of C20 and c60. In 
general the strain generated by closing the cage concentrates on the 
vertices of the pentagons, and only for C2,, and c 6 0  this strain is 



Carbon Clusters 339 

uniformly distributed between all the atoms. The fullerene form is not 
necessarily the most stable isomeric form for some of the cfusters. In the 
case of C20 different theoretical calculations favor other geometries [ 13- 
151. Monocyclic and bicyclic rings, chains and tadpole (a ring with a 
small chain attached) structures have been detected in species produced 
by laser vaporization of graphite. This result appears reasonable in view 
of the large strain in the fullerene form of C20. Actually, calculations of 
the free energy of competing isomers [15] give the monocyclic ring as 
the most stable isomer at 2500 K (the temperatures in laser vaporization 
experiments are around 2000 K). Nevertheless, the hydrogenated C20H20 
species is known to exist because the presence of the H atoms allows for 
a substantial sp3 component in the bonding of each carbon atom with its 
environment (formed by three C atoms and one H atom), and by using 
C20H20 as a precursor the fullerene form of C20 has been produced and 
detected by photoelectron spectroscopy [16]. The bowl form of CzO, 
which is a fragment of Cm formed by a central pentagon surrounded by 
five hexagons has been produced starting with the same precursor. 

The observation that the cluster distributions originally produced 
only contained even numbers of carbon atoms may arise from the fact 
that only even-numbered clusters can close to form fullerenes. Odd 
number clusters can begin to curl so as to tie up all dangling bonds, but 
at least one atom will remain with an untied dangling bond. This makes 
the odd-numbered clusters too reactive to survive in a condensing carbon 
vapor. Reactivity experiments have confirmed this: all carbon clusters 
with odd N are highly reactive. 

The fragmentation behavior of fullerenes upon laser excitation has 
provided information about their structure [ 171. When CN + cations with 
N < 31 are irradiated with ultraviolet light the clusters dissociate by 
losing a C3 fragment [18]. But the dissociation channel changes 
drastically for larger clusters. The even-numbered clusters, that is, the 
fullerenes, are difficult to photodissociate and when irradiated with 
sufficient laser intensity they lose a C2 dimer. C6; is by far the most 
difficult to dissociate. In contrast, the odd-numbered clusters lose a 
single carbon atom. These results are consistent with the fullerene 
model: the loss of a dimer transforms the CN fullerene into the CN.2 
fullerene. Upon further loss of C2 fragments the cage becomes 
increasingly strained, until the strain is so large that the cage opens up 
when C32+ is irradiated. 
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Figure 11.4. Low mass portion of the daughter ion fragments produced by 
intense laser excitation of CG0K+. Reproduced from F. D. Weiss et al., J .  Amer. 

Chetn. SOC. 110, 4464 (1988) with permission of the American Chemical 
Society. 

The critical size when the cage opens changes if a large atom is 
encapsulated inside. Evidence for this effect is provided in Fig. 11.4, 
which shows the results of irradiating C6,K+ and a similar amount of the 
bare c64+ fullerene with an ArF excimer laser [19]. The distribution of 
bare fullerene fragments originates from c64+ and extends down to C3;. 
Similar to c60, c6&+ is highly photoresistant and dissociates by losing a 
carbon dimer, producing C5*K+, then G6K+ and so on. The CNK+ 
products terminate at C4K+. In a similar experiment for C~&S+, the 
CKs '  products terminate earlier, at C&+, due to the larger size of the 
Cs atom [19]. 

11.2 Fullerene Collisions 

The relatively easy production of fullerene beams has allowed the use of 
neutral and charged fullerenes, with positive and negative charges 
typically between -2e and +5e, either as targets or as projectiles in 
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collision experiments. An essential property in those studies is the 
capacity to store a substantial amount of energy in a high number of 
vibrational degrees of freedom. 

I I .2. I Collisions at medium to high energies 
Many experiments have been performed studying collisions in the range 
of energies between a few tens of eV and a few keV. The main purpose 
has been to shed light on the mechanisms of insertion of different species 
in the fullerenes and also on the mechanisms of the fragmentation 
induced by the collisions. The most frequent experiment is to send a 
beam of neutral or ionized fullerenes (C56+, C58f, c6,', C70+) against a 
gaseous target (He, Ne, Ar, Li', Na', K', 0 2 ,  C02, (CH2)3, C3H6, SF,). 
Endohedral complexes, that is, with the atom or molecule inside the 
fullerene cage, can only be produced when the collision energy is above 
a certain threshold which depends on the nature of the colliding species. 
Even under the best conditions, endohedral complexes occur only in a 
small fraction of the total number of collisions. The insertion mechanism 
is also sensitive to the nature of the colliding species. A small and light 
atom, like He and Li', penetrates inside the fullerene when the incidence 
trajectory goes precisely through the center of a hexagonal carbon ring 
[20-221. In contrast, heavier atoms or ions like Ne, Na' or K' do not 
enter directly [22, 231. In this case the impact breaks some of the bonds 
and opens up a window on the fullerene surface that allows the passing 
of the atom. The endohedral complex forms only if the fullerene is able 
to reconstruct its structure trapping the atom inside. Often the endohedral 
complexes formed are unstable due to the high energy absorbed in the 
collision, and fragment in a short time. The fragmentation of the 
complex may release the trapped atom or can lead to a smaller 
endohedral fullerene by loss of a few carbon atoms. 

The nature of the products formed in the collision-induced 
fragmentation of fullerenes depends mostly on the nature of the colliding 
species. The analysis of the mass spectra of the collision products reveals 
the presence of fullerenes CN' with N 2 32 and rings or linear chains 
with N < 32. These results are consistent with the photofragmentation 
behavior discussed in Section 1 1.1.3. A drastic case of fragmentation 
occurs when c 6 0  is irradiated with heavy ions. In this case the cluster 
disintegrates into individual carbon atoms [24]. 
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11.2.2 Collisions at low to medium energies 
When the collision energies are low, say lower than 150 eV, other 
processes become important instead of fragmentation: charge transfer 
between the colliding species, formation of substitutional complexes and 
formations of adducts (species adsorbed on the fullerene surface). 
However these collisions can also produce endohedral complexes. In the 
collisions with atomic cations the fullerene transfers one electron to the 
cation (except in collisions with the alkaline species Li', Na+, K'). The 
electron transfer actually occurs before the collision, when the two 
objects are approaching. One can say that the collision occurs between 
the neutral atom and the charged fullerene. Experiments studying low 
energy collisions (2-80 eV) between neutral fullerenes and different 
atomic cations have indicated that the tendency towards chemical 
reaction varies drastically from one species to another [25]. There is no 
activation barrier for the formation of some adducts XC6$, X = B, C, C2, 
and these complexes survive for at least a few milliseconds. Other 
species like N+ react to produce substitutional complexes. The collisions 
with some special cations like I? only lead to charge transfer between 
the flying objects, but not to other effects. 

11.2.3 Collisions with suifaces 
The collisions of C ~ O  with semiconducting surfaces are particularly 
interesting. Covalent bonds form in some cases between the surface 
atoms and the fullerene and as a consequence the fullerene may remain 
adsorbed on the surface or may leave the substrate with some defects on 
the cage. In other cases the fullerene breaks up, and the fragments may 
remain bonded to the substrate surface giving rise to the localized growth 
of carbon layers. Experiments [26, 271 and simulations [28] studying 
collisions of C6; with graphite and diamond surfaces have revealed that 
these are highly inelastic processes in which the incident fullerene loses 
a substantial fraction of its kinetic energy, that is employed in heating the 
surface. For impact energies up to about 200 eV fragmentation of the 
fullerenes is not observed. These rebound with a center of mass kinetic 
energy of about 15 eV, independent of the incident energy. The fullerene 
becomes highly deformed during the impact but is able to recover its 
structure. But for energies higher than 200 eV the fullerene fragments 
with the successive loss of Czunits. Collisions with the (100) surface of 
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Si show a behavior similar to that just described for graphite and 
diamond surfaces. When the substrate surface terminates as free radicals, 
such as H, CH3 or CF3, the exchange of energy is smaller and the 
fragmentation threshold is displaced to higher energies. 

11.3 Coating of Fullerenes 

11.3.1 Alkali metal coverage 
Early experiments [29] analyzed the photodetachment spectra of mass 
selected (C60Kx)- anions with x = 1, 2 and 3, produced by laser 
desorption from a c60& crystal (see Section 12.4.3 on alkali-doped 
fullerene solids). Those studies suggested that the K atoms are dispersed, 
and not clustered, on the cage surface. The linear decrease of the electron 
affinities with increasing x indicates that the external s electron of each K 
atom is transferred to the three-fold degenerate t, LUMO level of c60. 
Further studies achieved a more complete coating by Li, Na and K [30] 
by using two ovens to produce the fullerene and the metal vapors and 
mixing the two vapors in a low pressure inert gas condensation cell. For 
small coverage, the character of the mass spectra of (C6&,)+ and 
(C60Lix)+ changes at x = 7. There is a pronounced abundance peak at this 
size and an even-odd alternation develops for x > 7: cluster ions with an 
odd number of alkali atoms are more abundant (more stable) than those 
with an even number. For the Na case the alternation was observed up to 
x = 35; this cluster and also x = 21 appear to be special, being followed 
by abrupt abundance drops. 

Figure 11.3 gives the positions of the electronic levels of c 6 0  in the 
energy region near the HOMO. The first few metal atoms transfer their 
single valence electron to the t, LUMO level of Cm. This level becomes 
filled with six electrons, and this corresponds to the case x = 7. 
Consequently, the bonding of the alkali atoms to the fullerene appears to 
be ionic for x I 7, with the adsorbed atoms surrounding the cage while 
repelling each other. The filling of the t, level is corroborated by 
experiments for doubly-charged clusters (c60Kx)* and (C6&ix)++: in this 
case x = 8 dominates the spectrum. 
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Turning to higher coverage, the even-odd oscillations in the 
abundance for x > 7 suggest that the nature of the bonding changes after 
the t, level is filled: the charge transfer ceases and the alkali atoms are 
bonded not only to c60  but also to other alkali atoms. An explanation of 
the odd-even alternation in (c60&,)+ has been proposed based on the 
following growth model [30]. The first seven Na atoms arrange on the 
surface of the fullerene in a configuration such that they stay as far apart 
as possible in order to lower their mutual repulsion. The eight atom pairs 
with one of these ions to form a charged dimer Na2+. The ninth atom then 
joins the dimer to form a rather stable trimer cation Na3f. Following this 
type of growth all seven ions are successively converted into Na3+ 
trimers and the odd-even alternation in the stability develops. At the end 
of this process the fullerene is covered by seven Na3+ units and this 
stable configurarion correlates with the abrupt change in the mass 
spectrum for (C6&a21)+. However, the odd-even alternation continues, 
although somehow attenuated, until (C6fla35)+. It is now useful to recall 
the the odd-even oscillations observed in the ionization potential of pure 
alkali metal clusters (see Section 5.2) arise from two effects: the 
presence of delocalized electrons in the cluster, and the softness of the 
ionic background against shape deformations. These effects lead to a 
lifting of all the electronic degeneracies, except the two-fold degeneracy 
of each electronic level due to spin. The explanation based on the model 
of trimer ions, on the other hand, is based on the sequential filling of 
rather localized orbitals. The drops in the abundance after (C60Na2,)+ and 
(CmNa35)' are suggestive of closed shell effects (notice that 20 and 34 
are magic numbers of pure alkali clusters) and may support the 
delocalized picture. 

The mass spectrum of Li-coated fullerenes shows the usual 
characteristics of other alkali-coated fullerenes, but with a main 
difference: a strong peak appears for (C60Lil2)+ . The peak also appears 
for the doubly charge clusters (C60Li12)++ and this fact may indicate that 
the stability has a geometric origin. In fact, DFT calculations show that 
the lowest energy structure of C60Li12 preserves the icosahedral 
symmetry of the pure fullerene, with the Li atoms above the center of the 
twelve pentagonal rings, at a distance of 2.91 a.u. Due to the presence of 
the Li atom, the c 6 0  cage relaxes a little, reducing the difference between 
the lengths of the double and single bonds [31]. The lengthening of the 
double bonds arises from the transfer of electrons to the antibonding t, 
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and t, orbitals (see Fig. 11.3). The cluster has closed electronic shells and 
the binding energy of the Li atoms to the fullerene amounts to 2.6 eV per 
Li atom. An analysis of the spatial location of the tu and t, orbitals 
indicated that the charge transfer to c 6 0  is significant, with the highly 
charged fullerene stabilized by the surrounding cations. 

The configurations for lower coverage, calculated from a semi- 
empirical quantum chemical method are also interesting [32]. The Li 
atoms in C6&ix adopt positions above hexagonal rings for x = 1-8. For 
coverages x = 1-4 the Li atoms stay as far as possible. In C60Li8 the Li 
atoms above hexagons form a cube, and the structures for x = 7, 6 and 5 
are obtained by removing one, two and three Li atoms, respectively, 
from the vertices of the cube. The transition from hexagonal to 
pentagonal positions occurs for x = 9. Evidently the number of 
pentagonal rings available exhausts at x = 12, and the additional atom in 
C6&i13 sits on a hexagon. The intensity anomalies observed in the mass 
spectra correlate with the cluster stability, and more in particular with the 
calculated energy AEvu,, to remove a Li atom from the C60Lix cluster. 
This evaporation energy shows that it is much easier to evaporate one Li 
atom from C6aLi13 than from C60Li12. So, the population of C60Li12 
should be large when the clusters detected form after one or several 
evaporative steps from warm larger clusters. Substantial drops of AE,,,,, 
are also predicted after c6OLi6, (C60Li7)+ and (C6&&)++, that also correlate 
with peaks in the mass spectra of singly and doubly charged clusters, but 
these features are, instead, driven by electronic effects: the filling of the 
t, level. It is somehow surprising that a very stable c 6 f l 1 2  cluster only 
forms for Li but not for Na or K. The reason is probably the size 
difference between Li and the other alkali atoms. 

11.3.2 Coverage by other metals 
As discussed in the previous section, the stability of fullerene clusters 
coated by alkali atoms appears to be mostly determined by its electronic 
configuration with the main exception of C&iI2. On the other hand the 
coating by alkaline earth atoms like Ca, Sr, and Ba appears to be 
governed by geometrical rules, and more precisely by the completion of 
successive layers around a central core [ 3 3 ] .  The main feature in the 
mass spectrum of Ca-coated c 6 0  is a sharp drop in the intensity after 
C60Ca32. This is observed for singly and doubly ionized species, implying 
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that the origin of the high stability of C60Ca32 is geometrical. The 
obvious structure that can be proposed for this cluster has Ca atoms 
placed on top of each of the 12 pentagonal rings and the 20 hexagonal 
rings of the fullerene. This structure can be considered as the first 
metallic layer ( K  = 1) covering C6,,. To verify the validity of this model 
the experiment was repeated with C70, which has 12 pentagonal and 25 
hexagonal rings. Indeed the mass spectrum was found to have a strong 
peak at (C70Ca37)+. 

Figure 11.5. Arrangement of Ca atoms covering the C60fullerene with one, two, 
three and four layers. The Ca atoms represented as black spheres highlight the 

icosahedral shape. Reproduced from U. Zimmermann et al., J .  Chern. Phys. 101, 
2244 (1994) with permission of the American Physical Society. 

Other prominent features are observed at x = 104 for c 6 0  and at x = 
114 for C70. These appear to indicate the completion of the second metal 
layer ( K  = 2). Evidence for the formation of a third layer at x = 236 and a 
fourth layer at x = 448 has been found by the observation of edges in the 
spectrum of (C60Cax)+. 
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The structures proposed for these clusters [33] are shown in Fig. 
11.5. The first metal layer, formed by 32 atoms, has icosahedral 
symmetry, and the dark spheres correspond to the 12 atoms forming the 
vertices of the icosahedron. The second layer can be constructed by first 
placing one atom above each of the 12 vertices and then filling each of 
the 20 triangular faces formed with one inner triangle of three atoms. 
These inner triangles have length two, that is, there are two atoms along 
the edge. The number of atoms forming this second shell is 72. The 
structure that results can be viewed as an edge-truncated icosahedron. To 
form the third and fourth layers one atom is again placed above each of 
the 12 vertices, and the triangular faces are then covered with atoms 
forming equilateral triangles of lengths 3 and 4, respectively. By this 
construction, clusters C6&a32 , C6&alM , C6&a236 and C6oCaM8 are 
obtained, in agreement with the sizes corresponding to peaks or edges 
observed in the mass spectrum. 

I -  

Figure 11.6. Mass spectrum of photoionized C60 Tm, clusters containing singly 
and doubly ionized species. A strong peak is observed for x = 32.  Reproduced 

from N. Malinowski et al., Eur. Phys. J.  D. 9,41 (1999) with permission of 
EDP Sciences. 

C ~ O  has also been coated by thulium (Tm), a lanthanide metal [34]. A 
mass spectrum of (C60Tmx)+ and (C60Tmx)++ with x between 20 and 42, 
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given in Fig. 11.6, shows that the peak at x = 32 stands out strongly both 
for singly charged and doubly charged clusters. This unambiguously 
indicates a geometric origin of the stability, similar to the case of 
alkaline earth coating: namely, the covering of the twelve pentagonal and 
the twenty hexagonal faces of the fullerene. This is further confirmed by 
measurements of the spectrum of coated C70 clusters, (C70Tmx)+ and 
(C70Tmx)++, where a strong peak is detected for x = 37, corresponding to 
the covering of the 12 pentagonal faces and 25 hexagonal faces of C70. 
Adding an atom to a cluster with closed geometric shells leads to a 
decrease of stability of the cluster with only one atom in the new shell. 
This feature is not observed in Fig. 11.6, but it was observed in the 
coating by Ba [33]. The different behavior is due to the different atomic 
size. The 32 barium atoms form a symmetric layer that is also close- 
packed. Thulium atoms, on the other hand, are substantially smaller than 
the Ba atoms, and additional Tm atoms can still find places on the first 
coating layer without a great loss in stability. 

11.4 Optical Properties of Carbon Clusters 

I I .4.1 Fullerenes 
A variety of experiments (photoabsorption, photoionization, X-rays and 
electron energy loss spectroscopies) [35-391 have detected two 
collective excitations in C60: a broad excitation at an energy above 20 
eV, with a linewidth of near 10 eV, that can be ascribed to the collective 
motion of electrons in 0 bonds linking neighbor carbon atoms in the c 6 o  

cage, and another excitation at = 6 eV, arising from the collective motion 
of the electrons in z orbitals extending in and out of the cage. Two 
similar resonances have been observed for graphite, and are explained in 
the same way [40], but not for diamond or amorphous carbon, where 
only the higher one is observed. The photoabsorption spectrum 
calculated by the direct solution of the time dependent Kohn-Sham 
equations within the DFT framework (see Section 5.7.6) is shown on the 
bottom panel of Fig. 11.7 [41]. 

Larger fullerenes are no longer spherical and their optical properties 
become more complex. For example, c 7 6  is chiro-optical [42, 431. The 
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upper panel of Fig. 11.7 illustrates for the fullerenes a fact well known 
for metallic clusters: the form of the collective resonance in a system 
with delocalized electrons is dictated by the shape of the cluster. 
Therefore the spheroidal shape of C ~ O  leads to a splitting of the low 
frequency 7c plasmon in two resonances, with the lower one occuring for 
the external field applied along the long axis direction (called z axis in 
the figure). The CT plasmon is much less sensitive to the specific cluster 
shape and its energy is similar for C ~ O  and C ~ O .  Furthermore, it does not 
depend on the direction of the applied field with respect to the symmetry 
axis of the cluster. 

Figure 11.7. Calculated photoabsorption cross section u( W) (in arbitrary units) 
of Cm (bottom panel) and C70 (top panel). O(W) for C70 is given along the two 

principal symmetry axes. Reproduced from A. Castro et al., J. Comput. Theoret. 
Nunoscience 1, 230 (2005) with permission of American Scientific Publishers. 
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1 I .4.2 Medium size clusters 
Medium size carbon clusters are predicted to have a wide variety of 
isomers with the form of cages, bowls, planar graphitic structures, rings 
and linear chains. The study of the different isomers may help to 
understand the way fullerenes form [44], a question still under study. 
The uncertainties about the most stable geometrical structure of C20 were 
pointed out in Section 11.1.3. Thus it is important to look for 
experimental methods to determine the structure that are sensitive 
enough to be usable with the available cluster beam intensities; optical 
spectroscopy appears to fulfill the requirements. 

The geometrical structures of six members of the C ~ O  family are 
given in Fig. 11.8: the smallest fullerene (cage), which is a Jahn-Teller 
distorted dodecahedron, the ring, the bowl, and three other cage 
structures, labeled as (d), (e) and (f) in the figure. Structures (d) and (f), 
related by a Stone-Wales transformation [45], are composed of four 
hexagons, four pentagons, and four four-membered rings. Those 
structures are the six isomers with lower energy as calculated by Jones 
using DFT within the LDA approximation [13]. Other structures, such as 
bicyclic rings, chains and tadpoles may be favored by entropy at high 
temperature and have been observed experimentally. However, neither of 
them seem to be a possible low temperature ground state. 

The results of TDDFT calculations [46] of the optical absorption 
spectrum are also shown in Fig. 11.8. The dipole strength functions 
shown have been averaged over all orientations of the system. In the case 
of the ring, the response in the direction perpendicular to the ring plane is 
almost negligible below 8 eV compared with the response within the 
plane. Also for the quasi-planar bowl isomer the perpendicular response 
is extremely weak in that energy range. While present molecular beam 
experiments are not able to discriminate between the different spatial 
directions, the averaged spectra are still sufficiently different to 
discriminate between the structures without ambiguity. 

Two regions can be distinguished in all the spectra: (a) the peaks in 
the near ultraviolet, and (b) a broad absorption that starts at around 7.5 
eV. Focusing attention on the lower energy peaks, the ring exhibits the 
largest optical gap and also the strongest collective transition. The bowl 
also shows a high optical threshold, larger than 5 eV, but the intensity of 
the first significant transition is an order of magnitude weaker than in the 
ring. The relative intensities of the peaks, the fact that the first excitation 
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is separated in two for the bowl, and the relative strength of the 
excitations in the 6-7 eV region, can all be used to distinguish the bowl 
from the ring. 

Figure 1 1.8.  Calculated dipole strength function, in eV-', for several isomers of 
C20. The absorption spectrum clearly discriminates between the different 

isomers. Adapted from A. Castro et al., J. Chem. Phys. 116, 1930 (2002) with 
permission of the American Institute of Physics. 

The spectra of the four three-dimensional isomers start at much 
lower energy and are more similar to each other, which is expected from 
their similar geometries. The fullerene isomer exhibits two peaks at 3.9 
and 5.1 eV. Most of the strength concentrates above the ionization 
threshold and has a broad plateau starting at around 7 eV. This is 
different from planar-like isomers, where an important fraction of the 
strength appears below 7 eV. Isomer (d) can be distinguished by the 
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presence of a transition at quite low energy, 2.5 eV, as well as by the 
fragmentation into many states going up to 6 eV. Isomer (e) differs from 
the fullerene by the presence of a transition (labelled B in the figure) 
between the transitions that would be seen in the cage. The spectrum of 
isomer (f) is similar to that of the fullerene up to the second peak, but it 
is shifted down by about 0.3 eV. However, isomer (f) also has a third 
peak near 6 eV, in a region where there is a gap in the spectrum of the 
fullerene cage, and that difference would be definitive. 

I I .  4.3 Coated jbllerenes 
The photoabsorption cross section of c60 coated by a layer of Na atoms 
has been calculated by using the TDLDA and a simple structural model 
[47]. The positive ionic background was modeled as two concentric thin 
spherical layers, one on top of the other, the inner one representing the 
fullerene cage and the outer one modeling the alkali metal coating. Since 
the collective plasmon excitation in pure sidium clusters lies at energies 
= 2-3 eV, only the n electrons of the fullerene were taken into account. 
The positive background charge density of the Na layer was fixed equal 
to its value for the bulk metal, and its thickness depends on the number 
of Na atoms forming the coating layer. The outer surface of the cluster 
resembles a lot the surface of pure Na clusters. The development of the 
metallic coating layer becomes reflected in the photoabsorption 
spectrum. 

For small Na coverage, the interaction between the valence electrons 
of the Na atoms and the unoccupied levels of the fullerene is strong and 
the calculation predicts the fragmentation and spreading of the n 
plasmon of c60 down to lower energies, and a reduction of its amplitude. 
This is mainly due to the fragmentation of the collective resonance 
caused by the interaction with particle-hole excitations. Then the 
characteristic features of the n plasmon progressively vanish as the size 
of the coating layer grows up. At the same time, a new feature develops 
at lower energies that can be related to the surface plasmon of pure Na 
clusters. For (C60Na93)+ the Na surface plasmon is well developed and 
the cluster responds much like a pure ionized Na cluster; however, the 
collective resonance has a broad tail extending at high energies. 

The fragmentation of the collective resonance may have relevance 
for the interpretation of experiments by Martin and coworkers [48]. 
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These authors have produced Cm clusters coated with Cs. For large 
coverage, say (C&s,)' with x = 300, the photoabsorption spectrum is 
very similar to that of large pure Cs clusters, except for a more intense 
tail. As x decreases a fragmentation of the plasmon occurs that resembles 
that obtained in the TDLDA calculations for (C,&i,)' . Thus, the simple 
model of two spherical jellium slabs appears to afford a plausible 
explanation for the optical absorption spectrum of alkali-coated Cm 
clusters. 

11.4.4 Multilayered fullerenes 
The study of carbon dust formation by stars led to the discovery of the 
fullerenes in the laboratory [4]. It was soon speculated that these clusters 
could form part of the carbon component in the interstellar dust. The 
ultraviolet (UV) absorption spectrum of interstellar dust contains a peak 
at 5.7 eV (4.6 pm-'), and since fullerenes also show strong absorption 
features around 6 eV, the stellar absorption band has been interpreted as 
due to the excitation of the z plasmon in fullerene-like particles. The 
possible contribution of multishell carbon particles was proposed [49] 
following the discovery of carbon particles with shell-like structures in 
the laboratory [50]. Hyperfullerenes formed by multiple concentric 
shells, sometimes called carbon onions, can be obtained by electron 
irradiation of carbon soot [51], and also by heat treatment and electron 
beam irradiation of nanodiamond [52]. The particles can have spherical 
or polyhedral forms and sometimes have an inner cavity at the particle 
center [53]. Recent measurements of the ultraviolet-visible (UV-VIS) 
absorption spectrum of well dispersed carbon onions closely match the 
interstellar feature [54]. The carbon onions were prepared by striking an 
arc discharge between two carbon electrodes submerged in water or in 
liquid nitrogen. Thin films dried in air were then prepared and 
measurements of the W-VIS spectra were performed for the as- 
prepared samples and also for samples annealed at 600 "C. 

The results are presented in Fig. 11.9: spectrum (d) corresponds to 
the samples before annealing, and spectra (e )  and (f) correspond to the 
annealed samples. Also shown are the spectra of polyhedral graphite (a), 
amorphous carbon (b) and the interstellar absorption feature (c). All 
spectra measured before annealing are similar to those reported by de 
Heer and Ugarte for carbon onions dispersed in water, having a 
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maximum centered around 4.0 pm-’ and large widths of 2.0-3.5 pm-’. 
The large widths are attributed to the contamination of the carbon onion 
film by polyhedral graphite particles and amorphous carbon. Annealing 
eliminates all contaminants and then the spectrum changes dramatically, 
showing the peak around 4.55 f 0.1 pm-’ (5.7 eV) with reduced width, in 
substantial agreement with the interstellar UV absorption spectrum. 
Carbon onions are then strong candidates for the origin of the UV 
interstellar absorption peak at 4.6 pm-’. 

Figure 1 1.9. Absorption spectra of different carbon materials and the interstellar 
absorption feature. (a) corresponds to polyhedral graphite powder and (b) to 
carbon soot. (c) is the interstellar absorption feature [55], (d) is a spectrum 

obtained from carbon onion films prior to annealing, and spectra (e) and (f) are 
taken after annealing. The light curves in (c), (d), (e) and (f) represent the Drude 

function used to obtain the peak position and width from the measured data. 
Adapted from M. Chhowalla, et al., Phys. Rev. Lett. 90, 155504 (2004) with 

permission of the American Physical Society. 
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11.5 Metalcarbohedrenes 

A class of very stable clusters with formula M8C12, where M is an early 
transition metal (M = Ti, V, Zr, Nb, Hf), was discovered by Castleman 
and coworkers in 1992 [56-581. The clusters of this family are called 
metalcarbohedrenes (or metcars for short). The first metalcarbohedrene, 
Ti8CI2 appeared as a totally dominant peak in the mass spectrum of 
titanium carbide cluster cations Ti,C,+. Immediately, interest in those 
clusters grew from the initial expectation that the geometrical structure 
could possibly be a pentagonal dodecahedron similar to that of a 20-atom 
fullerene. Production of macroscopic quantities of Ti8CI2 in the soots 
generated in arc discharges between two composite Ti-C electrodes has 
been reported [59, 601. The quantity of metcars in the soot is about 1% 
but attemps of purification, either in solution or as a solid material have 
failed so far. 

11.5.1 Structure and infrared vibrational spectroscopy 
The ground state structure of the metcars has generated a lot of debate 
[61]. Early studies [56-581 proposed the pentagonal dodecahedra1 
structure of Th symmetry for them. This structure, shown in Fig. 11.10, 
can be viewed as a fullerene cage formed by twelve pentagons and no 
hexagons. Each penthagon is formed by two metal atoms and three carbon 
atoms. This assignment was motivated by the reaction behavior of 
and V8C12 with NH3 molecules, ahnd by ligand titration experiments 
which suggested that the eight metal atoms had similar coordination. 

Based on DFT calculations, different authors have later proposed 
alternative configurations more stable than the Th structure. One of these 
is a tetracapped tetrahedron whose optimized structure is a small 
distortion of the ideal Td structure shown in the middle panel of Fig. 
11.10: four metal atoms form an inner tetrahedron with short metal- 
metal bond distances, and the other four atoms cap the faces of the inner 
tetrahedron, defining an outer tetrahedron [62-64]. This structure can be 
obtained from the Th structure by a concerted displacement of four metal 
atoms to give the inner tetrahedron, while the other four metal atoms 
move outward to give the outer tetrahedron and the six C2 units perform 
45" rotations (clockwise or anticlockwise). The calculations indicate that 
the Td structure is more stable in Ti8C12 by about 15 eV and that this 
transformation occurs essentially with no barrier, suggesting that the 

Ti8Cc12
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pentagonal dodecahedron is not a true metastable isomer. A low lying 
isomer with D2d symmetry [64-661, is shown in the lower panel of Fig. 
11.10. This is a true isomer and its energy lies closely above that of the 
distorted tetracapped tetrahedron for Ti8C12. These results for the T h ,  Td 
and DId structures were confirmed by Configuration Interaction 
calculations [67]. More recent DFT calculations have proposed a ground 
state with C3, symmetry [68], which appears to be essentially the same as 
the distorted tetracapped tetrahedron. The calculated ionization potential 
and electron affinity are in good agreement with the experiment, I = 4.4 
+_ 0.02 eV [69] and EA = 1.05 eV [70]. Work for other metcars, Zr8CI2, 
v8c12 and NbsCI2, arrived at similar conclusions: the distorted Td 
structure is the ground state, with the D 2 d  isomer lying 2 eV above [71]. 

Figure 11.10. Symmetric structures of Ti& exhibiting Th (upper panel), Td 
(middle panel) and D2d (lower panel) symmetries. Reproduced from G. K. 
Gueorguiev and J. M. Pacheco, Phys. Rev. Lett. 88, 115504 (2002) with 

permission of the American Physical Society. 

The infrared (IR) vibrational spectrum of the metcars in the gas 
phase has been measured [70]. Since the IR spectrum carries information 
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on the cluster structure, comparisons of the experimental spectra with 
those calculated for competitive structures have been performed [64, 68, 
711. The main feature in the spectrum of Ti8C12 is a broad high energy 
peak centered around 1395 cm-I, which reflects the vibrations of the di- 
carbon system. The position and width of this peak is best reproduced by 
assuming a high temperature mixture of the C3" and D2d isomers [68]. 

Figure 1 1 . 1  1 .  Comparison between experimental vibrational infrared spectra of 
v&Iz, Zr8C12 and Nb8CI2 metcars (dark lines through the experimental points) 

and spectra calculated for the (distorted) Td and D2d isomeric structures (vertical 
spikes). The solid light lines arise from a folding of the calculated peaks with 

Gaussians. Reproduced from G. K. Gueorguiev and J. M. Pacheco, Phys. Rev. 
A. 68, 241401 (2003) with permission of the American Physical Society. 

The analysis for the Zr8CI2, V8C12 and Nb8C12 metcars is shown in 
Fig. 1 1.1 1. The experimental IR spectra are represented by the dark lines 
joining the experimental points. The area under those lines is shaded. On 
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the other hand the vertical spikes correspond to the calculated spectra 
and the light continuous lines are obtained by folding the calculated 
absorption peaks with normalized Gaussian functions of width 50 cm-'. 
The left and right panels correspond to calculations for the (distorted) 
Td* and &* structures (the experimental spectra are plotted in both 
panels). For the three metcars the calculated IR spectrum corresponding 
to the Td* structure provides a better comparison with the experimental 
spectrum, but a detailed comparison suggests the possibility that more 
than one isomer may be present in the molecular beam. 

Figure 11.12. Calculated binding energies for the tetrahedral (Td symmetry) and 
dodecahedra1 (Thsymmetry) structures of the M&12 metcars of the first 

transition metal series. Those values are compared with the experimental M-C 
bond energies for M+-CH2 molecules. Reproduced from M. M. Rohmer, M. 
BCnard and J. M. Poblet, Chem. Rev. 100,495 (2000) with permission of the 

American Chemical Society. 

Most investigations of metcar clusters deal with the metcars of the 
early transition elements. However, magic peaks corresponding to the 
M8CI2 stoichiometry have also been observed for Cr and Mo [73]. In the 
case of Fe, that stoichiometry is followed by a truncation in the mass 
spectrum [73]. The results of a calculation of the bonding energies for 
the whole series of metcars across the 3d metal row are shown in Fig. 
11.12 [61]. The two structures Td and Th were considered. The highest 
stability occurs for the Ti and V metcars, in agreement with 
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photofragmentation experiments [73]. The behavior of the binding 
energies when the element M evolves across the 3d row is quite similar 
to the corresponding variation of the measured M'-C bond energies for 
the M'-CH2 molecules [74]; therefore the variation seen for the metcars 
arises from the general trend of the metal-ligand bond energies. 

One observation from this figure is that the binding energy of the 
metcar is not necessarily correlated with its observability: Sc8CI2 has a 
higher binding energy than Cr8CI2 but only the second metcar has been 
detected. The observability of the M8C12 then depends on the relative 
stabilities of this and other M,C, clusters. Another unexpected result 
concerns the competition between the tetrahedral and dodecahedra1 
structures. While the much higher stability of the tetrahedral 
conformation is well documented for metcars of the early transition 
elements, the situation is less clear for late transition metals. 

11 S.2 Other physical properties of metcars 
The laser vaporization of mixtures of metal and carbide powders easily 
produces binary-metal metcars [75, 761. In particular, this technique was 
used to produce a series of clusters Ti8.xzrxc,2. The mass spectra showed 
a series of peaks with a regular evolution of the intensities as a function 
of x, that has been interpreted as arising from the purely statistical 
substitution of Ti by Zr. This is made possible by two facts [77]: (a) the 
substitution of Ti by Zr either in the inner metal tetrahedron of the Td 
structure or in the outer tetrahedon produces only minimal changes of the 
binding energy, and (b) the binding energy varies smoothly with x. The 
ionization potentials of these binary-metal metcars have been 
determined from the photoionization efficiency curves near threshold 
[69]. The values obtained for the two pure metcars are 4.40 k 0.02 and 
3.95* 0.02 eV for Ti8CI2 and Zr8C12 respectively. Those values are in 
excellent agreement with computed ionization potentials for the Td 
structure [61]. 

Delayed ionization and delayed emission of Ti' and V+ ions has been 
observed following multiphoton absorption by the Ti and V metcars 
[78]. For delayed ionization to occur, with characteristic times in the 
microseconds range (in contrast to the femtosecond time scale of prompt 
ionization), the ionization potential has to be smaller than the 
dissociation energy of the cluster. In such a case, competition between 
prompt ionization and dissociation may lead to delayed ionization. This 
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condition is met by the metcars. In addition to this requirement, the 
cluster must provide its own “heat bath” allowing to store the excitation 
energy. The experiment also indicates delayed emission of Ti+ and V+ 
ions and that the ionization behavior is similar for the two different 
photon wavelengths used for the multiphoton excitation. This suggests 
that the “heat bath” has a broad region of closely spaced excited states at 
an energy close to the sum of the dissociation energy of the cluster and 
the ionization potential of the atom (Ti or V). This places that region at 
around 13 eV for the Ti metcar. Time dependent DFT calculations of the 
excitation spectrum of M8Cl2 predicted a broad collective excitation 
centered around 12 eV [79,80], a result which supports the interpretation 
of the experiment [78]. 

11.5.3 Chemical reactivity 
Ti8C1> reacts easily with polar molecules like H20, NH3 and CH30H 
(methanol) forming association products TiSC12f(P),, with n from 1 up to 
8. The reaction proceeds through succesive attachment of the reactant 
molecules to each metal center [81]. Stepwise association of n-bonded 
molecules without permanent dipole moment, such as benzene (C6H6) 
and ethylene (C2H4), has also been observed but in this case no more 
than four molecules can be attached [ S l ,  821. The termination of the 
association sequence at n = 4 has been interpreted as giving support to 
the tetrahedral structure of the metcar with two types of metal sites. 
Association reactions with pyridine also terminate at Ti8Cl;(piridine)4, 
but with acetone ((CH&CO) up to five adducts Ti8C12f(acetone)l-5 have 
been observed [83]. Reactions of neutral Ti8CI2 with methane (CH,) 
reveal binding of up to five molecules, with the most intense peak 
corresponding to n = 4 [84]. 

Replacement of Ti by Nb changes the reactivity of the metcar. 
Ti7NbC1> and NbsC12f react with acetone, giving adducts with one or 
two oxygen atoms (Ti7NbClC0, Ti7NbClg02, Nb&1;0, NbsC1;02). 
This indicates that the niobium-containing metcars can induce carbon- 
oxygen bond breaking [82]. The chemical stability of Ti8C1; is also 
evident by comparing its reaction pattern with acetone to the reaction 
pattern of the neighbor titanium carbide cluster Ti&Il’ [83]. The last 
cluster is able to break the chemical bonds of acetone to give 
Ti8ClI+(COCH3), but not the first one. 

O,
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Ti8C12+ breaks the I-C bond when it reacts with CH31 (methyl iodide) 
forming the single Ti8C1;I adduct [85] 

Ti8C,+, + CH,I + Ti8C:2(I) + CH,. (11.1) 

Again, substitution of Ti by Nb increases the reactivity. NbsC1; is able 
to bind up to five I atoms, forming Nb8C12+(I)1-5, and reaction with other 
methyl halides produces M ~ C , ~ + ( B T ) ~ - ~  and Nb&12+(C1)1.+ The V 
metcar produces V~CI;(X)~-~ with X = C1, Br and I. The distinct 
chemical behavior of the Ti metcar on one hand and the Nb and V 
metcars on the other, appears to be correlated to the number of weakly 
coupled metal electrons accommodated in the slightly antibonding set of 
metal orbitals. The calculations suggest that this number is two for 
neutral Ti8CI2. One of these is then available in the cationic metcar to 
give a strong covaleyhnt bond with I. In the V or Nb metcars eight mo
metal electrons become available, and four of them, accommodated on 
molecular orbitals localized on the outer tetrahedron, should be weakly 
coupled [61]. This accounts for the increased reactivity. At variance with 
Ti&12+, V8C1> reacts with oxygen to give first VgC1o+. This cluster 
reacts again with oxygen to give other metal-carbon clusters and 
oxidation products [86]. The difference in reactivity between TigC1; and 
V8C1; is again ascribed to the larger number of metal electrons in the V 
metcar, which tend to populate nonbonding orbitals. 

11.6 Other Metal-Carbon Clusters: from Small Clusters 
to Nanocrystals 

Small M,C, clusters can be obtained from the fragmentation of metcar 
cations, and the nature of the fragments depends on the metallic element 
M. The photodissociation of Ti8C1; and v&1> proceeds through the 
succesive loss of metal atoms, while ZrC2 fragments are also observed in 
the dissociation of Zr8C1; [87]. This indicates that the Zr-C bonds are 
stronger. Clusters smaller than the metcars, like V7C12f, V7Cll+ or 
V6CI1+, are also observed in the mass spectra of metal-carbon clusters 
obtained by arc-discharge techniques. In the region of large cluster sizes, 
strong peaks have been found for Zr1&,Zr14C23,Zr&9 and Z ~ Z ~Cc29
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corresponding to an approximate metal to carbon ratio 2/3 [88]. Those 
peaks were originally interpreted as fused metcar structures: for instance, 
Zr13C22 would correspond to two fused dodecahedra sharing a pentagonal 
face, with one metal atom substituted by a carbon atom (an alternative 
interpretation [89] is discussed below). Similar clusters have been 
produced for Nb. In the case of Ta, the clusters correspond to a metal to 
carbon ratio near 1/1 [90], and have been assigned to nanocrystals with 
the rock salt (NaCI) structure, like those plotted in Fig. 10.1. Clusters 
Tal4CI3 and Ta18C18 can be interpreted as (3X3X3) and (3X3X4) 
parallelepipedic cuboids. In fact, depending on the experimental 
conditions, the production of nanocrystals and clusters of stoichiometry 
2:3 can be competitive. The competition also becomes manifested in the 
dissociation of nanocrystals [91]: the main products of the laser 
dissociation of the Ti17C1; (3X3X4) nanocrystal are the Ti8C1< metcar 
and the Ti14C1< (3X3X3) crystallite. On the other hand the main product 
of the dissociation of Til4CI3+is Ti8CI3+, which has been interpreted as an 
endohedral metcar, C inside Ti8C1?. Other species have also been 
interpreted as endohedral metcars, like V8CI3+ and the more peculiar 
Ti8C1( (C2 inside Ti8C1?). 

Cluster anions of stoichiometry 2:3 have also appeared as magic 
peaks in the experiments of Wang and coworkers [92]: Ti,,C, and 

Ti,,C&. The first of these two clusters can be built starting with the 
TiI3Cl4 (3X3X3) crystallite, which has carbon atoms on the eight comers 
of the cube, and replacing each of these C atoms with a carbon dimer, as 
shown in the panel (a) of Fig. 11.13. Wang et al. have proposed that this 
is the most stable structure of Ti,,C,. To arrive at this conclusion they 
first optimized the structure of two fused dodecahedra using DFT, 
obtaining the structure shown in panel (b), that can be viewed as two 
fused tetracapped tetrahedra, differing only by 0.04 eV/atom from the 
optimized C2-decorated cubic structure. Although the energy difference 
between the two structures is rather small, two pieces of experimental 
information are in favor of the deccrated cubic structure: its calculated 
electron affinity and the simulated photoelectron spectrum agree closely 
with experiment. The theoretical density of states (DOS) spectrum was 
built by broadening the occupied single-particle energy levels with 
Gaussians of width 0.2 eV [89]. 
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Figure 11.13. Cubic-like structures with three and five layers, representing 
TiI3Cl2 (a) and Ti22C35 (c), and an alternative structure for Ti1& in the form of 

two fused tetracapped tetrahedra (b). Adapted from L. S. Wang and H. Chen, 
Phys. Rev. Lett. 78,2983 (1997) with permission of the American Physical 

Society. 

Then, a layer-by-layer growth based on the presence of C2 dimers at 
the periphery of a cubic structural framework accounts for most of the 
magic peaks [SS] earlier assigned to multicage structures. In the case of 
the Ti13C22 nanocrystal, the 3 ~ 3 x 3  structure is composed of three layers 
in an ABA configuration: two Ti4C9 layers sandwiching a Ti& layer. 
Stacking alternatively A and B layers in this way yields clusters of 
stoichiometries closely corresponding to the experimental magic sizes 

The optimized geometry of the five layer structure is shown in panel (c) 
of Fig. 11.13. 
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12. Assembling of New Materials from 
Clusters 

12.1 General Principles 

The assembling of atomic clusters opens the possibility of building 
materials with novel properties. Two main difficulties are encountered in 
synthesizing those materials. First of all, there is the production of large 
quantities of clusters of a specific size. Second, for the assembling to be 
successful, the clusters have to retain their character. Typical clusters can 
interact with each other and coalesce to form larger clusters, destroying 
the original properties. Unlike clusters, molecules do not lose their 
identity when they form molecular solids. This is because molecules 
have a high intrinsic stability, that is, they are magic species with a fixed 
number of atoms and a special composition. One can then expect that the 
so called magic chsters, with their specially unreactive electronic 
structure may be good candidates to form the builing blocks of new 
assembled materials. 

This condition of stability of neighbor clusters against coalescence 
has been analyzed [ 11 by studying a cluster dimer (X13)2 built from two 
icosahedral clusters formed by atoms interacting through Lennard-Jones 
potentials 

All the hard-sphere diameters CT, were assumed to be equal, a, = o, but 
the depth sii of the interaction potential between atoms in the same 

3 69 

(12.1)
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11 22 cluster, E ,  = E ~  , was assumed to be different from the depth &,: 

between atoms in different clusters of the dimer. Molecular dynamics 
simulations of the thermal heating of the dimer indicated that the 
condition 

12 1 1  Eii (12.2) 

improves the stability of the dimer against coalescence. The propotypical 
example of a clustered material is the fullerite crystal, formed by the 
self-assembling of C60 clusters [2]. In this material the condition given 
by Eq. (12.2) is precisely fulfilled because there are two well 
differentiated types of bonding in the system: a strong covalent bonding 
between the neighbor C atoms in each cluster and a weak Van der Wads 
bonding between different C60 clusters. 

The assembling of clusters of metallic elements has also been 
suggested in the early 1990s [3], although the requirement imposed by 
(1 2.2) is rather stringent in this case, because the interatomic interactions 
are more delocalized and these clusters are more reactive. The less 
reactive clusters are those which have an electronic structure of closed 
shells. The reactivity of the metallic clusters can be lowered by coating 
the clusters with organic molecules, and assemblies of passivated gold 
nanoclusters have been prepared [4], but much work remains to be done 
to discover the conditions required for a successful synthesis of cluster 
assembled materials. In general an assembled cluster-solid will be 
metastable (like the fullerite crystal, which is less stable than graphite), 
trapped in a deep minimum of the potential energy surface protected by 
sizeable energy barriers. 

In the usual solids assembled from atoms, there is only one 
characteristic length scale, that can be measured by the lattice constant. 
The bonding between those atoms is well defined: it can be either ionic, 
covalent, metallic or of Van der Waals type. The energy bands are due to 
the overlap between the atomic orbitals, and the vibrations of the atoms 
lead to acoustic and optical phonon modes. On the other hand, materials 
assembled from clusters have two length scales, characterized by the 
intra-cluster and inter-cluster distances, respectively, and the bonding 
between the atoms in a cluster may be different fom the inter-cluster 
bonding. Energy bands are due, in this case, to the overlap between 
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cluster molecular orbitals. Two kinds of vibrational modes appear: intra- 
cluster and inter-cluster modes. 

12.2 Crystalline Intermetallic Compounds Containing 
Clusters 

The equiatomic crystalline alloys of Pb and the alkali metals M = Na, K, 
Rb, Cs (but not Li) contain tetrahedral Pb4 clusters surrounded by the 
alkali atoms [ 5 ] ,  and the unit cell of the alloy, known from X-ray studies, 
is shown in Fig. 12.1. The same clustering occurs for alloys of the alkali 
metals with Si, Ge or Sn, which are elements in the same column as Pb 
in the Periodic Table. The study of this family of alloys provides useful 
insight on the problem of assembling clusters to form new materials. 

Figure 12.1. Unit cell of the crystalline ordered alloy NaPb. The tetrahedral Pb4 
clusters (dark structures) are surrounded by the alkali atoms (light spheres). 

Each Pb4 cluster in those alloys is surrounded by alkali atoms that 
cap the faces and the edges of the tetrahedron. The free clusters X4Pb4, 
having the stoichiometry 1:l of the solid, are relevant to understand the 
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structure of those alloys and have been investigated by DFT calculations 
[6]. The lowest energy structure of all the free XPb4 clusters consists of 
a Pb4 tetrahedron surrounded by another, oppositely oriented alkali 
tetrahedron. The atoms of the outer tetrahedron cap the faces on the inner 
one. The ground state of the free Pb4 cluster has the structure of a planar 
rhombus, and the change from the planar to the tetrahedral structure by 
adding the four alkali atoms results from a charge transfer effect. The 
electronic configuration of the Pb atom is 6s2 6p2, so Pb4 has 16 valence 
electrons. Although neutral Pb4 is planar, the cluster also has a low lying 
tetrahedral isomer with an interesting characteristic: the LUMO of that 
tetrahedral isomer is a four-fold degenerate level (including spin) and a 
large gap exists above this LUMO. In other words, 20 electrons would 
lead to a closed shell magic cluster for tetrahedral symmetry. The 
difference of electronegativity between the Pb and the alkali atoms leads 
to electron transfer from the alkali atoms to the Pb4 unit, and the 
transferred electrons go to fill the LUMO of Pb4. With four alkali atoms 
added to Pb4, this becomes a Pb:- poly-anion with closed electronic 
shells. The four cations sit on symmetrical positions above the four faces 
of the tetrahedron and play the role of stabilizing the negatively charged 
inner region of the cluster. 

Large HOMO-LUMO gaps have been calculated for this family of 
clusters: 2.54 eV for Li3b4, 1.92 eV for Pb4Na4 and 1.36 eV for &Pb4. 
However, the large HOMO-LUMO gap in the free clusters is not enough 
to explain the clustering observed in the alloys, since Pb4 clusters form in 
the alloy when the alkali partner is Na, K, Rb or Cs, but not when the 
partner is Li. This exception occurs, surprisingly, in the case of the 
largest gap. A cluster with a large gap should be less reactive than others 
with small gaps. Passivity is, nevertheless, difficult to achieve in metallic 
clusters because the molecular orbitals are substantially delocalized and 
the overlap between orbitals of different clusters may lead to strong 
cluster-cluster interaction. In these alloys the interaction becomes 
reduced when the size of the cations is large enough. This idea is 
illustrated by the map in Fig. 12.2, where the clusters are represented in 
terms of two coordinates, the HOMO-LUMO gap and the diameter of 
the alkali cation [7 ] .  In addition to the X 3 b 4  clusters, other closed shell 
clusters of compositions X a b  and X6Pb are included. 

The clusters X P b  are also very stable [S]. The structure of X4Pb 
clusters is a nearly perfect pyramid with the Pb atom in the apex and the 
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four alkali atoms forming the basal plane [6, 81, except for the case of 
L ipb ,  where the pyramid is distorted and the structure looks like a 
trigonal bipyramid with the Pb atom forming part of the common basis 
of the two pyramids. In spite of the high stability of the X p b  clusters, 
crystalline alloys with compositions near 20 atomic % Pb do not present 
any clustering features. The cluster NGPb was found extremely abundant 
in gas phase experiments [9]. Its structure is that of an octahedron 
enclosing the Pb atom (see Section 7 3 ,  and this cluster has been 
suggested as a candidate to form cluster-solids [ 101. 

Figure 12.2. Structural map for clusters in terms of two coordinates: the 
HOMO-LUMO gap and the cation diameter. Only the clusters on the upper 

right hand corner are related to solid alloys showing clustering effects. 
Reproduced from F. Duque et al., Int. J .  Quantum Chem. 86,226 (2002) with 

permission of Wiley. 
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The empirical curve drawn in Fig. 12.2 separates the two clusters 
related to stable cluster-solids, NaPb, and I(4Pb4, from the rest. The 
conclusion is that a large HOMO-LUMO gap and a large cation size are 
both required for the occurrence of clustering in the solid. In the case of 
Li4pb4, the reason preventing clustering in the solid is the small size of 
the Li+ cation. Clusters of composition X6Pb are, evidently, bad 
candidates, in spite of the early expectations. The emerging picture for 
the crystal compounds associated to the X4Pb4 clusters is that the alkali 
cations are not part of the cluster in the crystal. Strictly speaking, the 
closed shell Pb:- poly-anions are the clustered units, and the cations 
play an important coating role that allows for the survival of the poly- 
anions in the solid (the cations also play the evident role of contributing 
to the global electrical neutrality of the solid). For the coating to be 
effective, the size of the cations has to be large enough. On the other 
hand, clusters with compositions X4Pb and X6Pb do not lead to 
clustering in solid alloys. 

Those ideas have been confirmed by DFT computer simulations of 
the assembling of I(gb4, NQb4 and Li4Pb4 clusters [l I]. In the XPb 
crystals with X = Na, K, Rb and Cs, the Pb4 clusters form a body 
centered tetragonal (bct) lattice with axes ratio c/u = 1.676 (see Fig. 
12.1), and the simulations start by placing the Na4Pb4 clusters in a bct 
lattice with the same c/u ratio but with dimensions c and a multiplied by 
a factor f = 2. The factor f was then reduced in steps maintaining c/u = 
1.676. As f is reduced, the Na$b4 units cannot keep their independent 
identities and, in order to pack efficiently, two Na atoms of each cluster 
move from their original positions above faces of the Pb4 tetrahedron to 
positions above edges. More precisely, each Pb4 tetrahedron becomes 
fully covered by alkali cations capping the faces and the edges of the 
tetrahedron, and each cation is shared by two Pb4 units. The structure 
obtained at the end of the simulation is precisely the observed structure 
of the crystalline compound. The density of electronic states shows a 
small gap at the Fermi level, so the crystal is a narrow gap 
semiconductor. The binding energy gained by assembling the clusters is 
EussemhlinK = 4.09 eV per cluster, to be compared with a value of Eclusterrng 

= I  1.19 eV of the binding energy of the N Q b 4  cluster with respect to the 
separated atoms. EUssrmbling is nearly one third of Eclustermg. The results are 
similar for the simulation of the assembling of h P b 4  clusters, with the 
poly-anions even more efficiently isolated from each other because of 



Assembling of New Materials from Clusters 375 

the larger diameter of K+ compared to Na'. In this case EassembliflR = 4.14 
eV, and Eclusreriflg = 10.54 eV, so the ratio of the two quantities is again 
near one third. The cohesive energies of the two crystals with respect to 
the separated atoms, are given in Table 12.1. 

Table 12.1. Cohesive energy (eV/atom) for MPb solid compounds (M = Li, Na, 
K) with the CsCl structure and with the structure arising from assembling of the 

MdPb4 clusters. Data collected from [ l  11. 

Alloy Cluster- CsCl 
assembled 

LiPb 2.325 2.415 
NaPb 1.910 1.895 
KPb 1.835 1.545 

The simulation of the assembling of Pb4Na, clusters gave completely 
different results. As the lattice constant of the supercrystal is reduced the 
clusters interact strongly. Each Pb4 tetrahedron opens up taking a 
butterfly (bent rhombus) shape. Distances between Pb atoms in neighbor 
butterflies are similar to bond lengths inside the butterflies, and the 
strong interaction gives metallic character to the assembled solid. The 
assembled solid is metastable; its structure is based on an interconnected 
network of Pb4 butterflies which cannot be characterized as a solid 
containing clusters. Furthermore, calculations for the LiPb alloy with the 
experimental CsCl structure give a cohesive energy of 2.415 eV/atom, 
that is larger than the cohesive energy of the assembled metastable PbLi 
solid (see Table 12.1). Also in agreement with experiment Table 12.1 
shows that the body centered tetragonal NaPb and KPb clustered solids 
have higher cohesive energies than the CsCl phase. 

The conclusion is that a closed shell structure and a large HOMO- 
LUMO gap are necessary conditions, but these are not enough to 
guarantee a successful cluster self-assembling. The reactivity of metallic 
clusters is large and one has learned from the family of alloys formed by 
alkali metals and elements of the Si group that an efficient way of 
passivating the clusters is by using an appropriate coating. In fact, 
experimentalists have already used this tool to produce assemblies of 
size-selected gold clusters coated by organic molecules [4]. 
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12.3 Boron Clusters in Solids 

Some boron-rich solids exist that can be considered as assembled from 
clusters [ 12, 131. In particular, Fig. 12.3 shows the a-rombohedral phase 
of pure boron. Its basic unit is a 12-atom icosahedron where six of those 
12 atoms are bonded to atoms in neighbor icosahedral units. The 
formation of those icosahedral clusters is remarkable since gas phase B12 
clusters are not specially stable [14] and, furthermore, the most stable 
structures of free B12 are quasi-planar [15, 161 (see also Section 4.8.2). 
The stability of the icosahedral units in the crystal has been attributed to 
the formation of three-center bonds, where the three atoms bind by piling 
up charge in the center of the triangular faces. 

Figure 12.3. Structure of a-rombohedral boron. Notice the icosahedral B I 2  units. 

A super-icosahedral structure that can be denoted as B12(B12)12 forms 
in B56Y and B66Y crystals [17, 181. In this structure each vertex and the 
center of the super-icosahedron are ocuppied by icosahedral BI2 clusters, 
and the Y atoms occupy interstitial sites. Those discrete super- 
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hhicosahedral units have been directly observed by scanning tunneling 
microscopy 1171 and high resolution electron microscopy (HREM) [ 181. 

Figure 12.4. Mass spectrum of boron cluster anions obtained from laser 
vaporization of B@Y and pure boron solids. Reproduced from S. J. Xu et al . ,  

Chem. Phys. Lett. 379,282 (2003) with permission of Elsevier. 

Intriguing structures that appear to be related to the assembling of 
boron clusters have been produced by laser vaporization of the B66Y 
solid. A mass spectrum of cluster anions is shown in Fig. 12.4, and a 
spectrum obtained by the same method from a pure boron solid is shown 
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for comparison [19]. In the low mass range both spectra show local 
intensity maxima at BL, and Bi3, but at higher masses the spectra are 
completely different. The spectrum from the ablated B66Y solid repeats 
the main features observed in the low mass range, that is, local maxima 
are seen for B~3(B,2)2andB~3(B12),  , and it is also likely that 

BL3(B12) is a magic species. The periodic appearance of BI2 units was 
interpreted as originating from the direct ablation of B12 icosahedral 
cages from the super-icosahedral B66Y crystal. Less clear is the nature of 
the By, core in all those clusters and Xu et al. [19] speculated with a 
formation mechanism in which two BI2 units react and dissociate after 
electron attachment to give By3 + B,, . 

12.4 Assembling of Cs0 Fullerenes 

12.4. I (C60)~ clusters 
Apart from the geometrical shells of atoms seen in large metallic clusters 
(see Section 4.6) and inert gas clusters (see Chapter 3), another type of 
shells occurs in the clusters of c 6 0  molecules, that is, shells of clusters. A 
previous example of shells of clusters has been discussed in Section 
12.3; namely, the super-icosahedral B12(B12)L2 structures. The fullerene 
molecule c 6 0  has been studied in Chapter 11, and for our present 
purposes it is worth to notice that the interaction between different c 6 0  

molecules is weak compared to the C-C bonding in a molecule. In fact, 
the measured binding energy between the two c60 molecules in the dimer 
(c60)2 is only 0.275 f 0.08 eV [20]. This binding energy was determined 
by fitting an Arrhenius law to the measured temperature dependent decay 
rate for the dissociation reaction 

(12.3) 

In sharp contrast, the energy of the fragmentation reaction 
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‘60 ‘ 5 8  -k ‘2 (12.4) 

is about 10 eV [21]. This means that the structure of each fullerene 
molecule remains intact when these form ( C 6 0 ) ~  clusters. The method of 
production of these clusters is the usual one. A vapor of C60 molecules 
enters a low pressure inert gas condensation cell, the vapor is quenched 
by collisions with the cold He gas, and (CSO)Nclusters condense out of 
the vapor [22]. The clusters are then photoionized with an excimer laser 
without destroying them. Since the interest in the experiment was to 
investigate which clusters are particularly stable, it was necessary to heat 
the clusters up to a temperature at which these evaporate fullerene 
molecules (the heating is achieved with a second laser). The most stable 
clusters evaporate less, so the population of very stable clusters in the 
beam grows at the expense of the less stable ones. 

Figure 12.5. The icosahedral cluster (C60)13. 

Strong peaks appear in the mass spectrum of the (C60)L clusters for 
N = 13, 19, 23, 27, 35, 39,43, 46,49 and 55. Those peaks are consistent 
with an icosahedral structure (see Chapter 3). The high stability of ((&)I3 

was also demonstrated by the experiments of Hansen et al. [23]. Figure 
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12.5 shows the icosahedral structure of ( c 6 0 ) 1 3 .  Furthermore, other mass 
peaks were observed after N = 55 which are also consistent with that 
structure: a high mass peak appears each time three c 6 0  molecules are 
added to ( c60)55 .  In fact, one can appreciate in Fig. 3.3 that a particularly 
stable configuration is achieved every time three molecules cover one of 
the facets of the Ico55. 

The experimental situation is then quite clear, but subsequent 
theoretical calculations led to a puzzling situation. All the calculations 
[24-27] predict close packed or decahedral structures above a critical 
cluster size N, in the range N ,  = 13-16. This occurs for a variety of 
different potentials describing the c6&60 interaction. The reason for the 
disappearance of the icosahedral structures is that the intermolecular 
potential between two c 6 0  molecules is short-ranged, that is, its attractive 
minimum is too narrow. For a short-range potential, structures with high 
internal strain, like the icosahedron, become unfavorable because these 
involve nearest neighbor distances that deviate from the equilibrium pair 
separation of the potential [28]. It was first thought that the discrepancy 
could be due to the fact that the calculations were performed for neutral 
(C60)N clusters, while the experiments correspond to charged ( c60)N+ 

species. In order to test that hypothesis new experiments were performed 
for both neutral and charged clusters [20, 291. The new feature in those 
experiments is that the temperature of the clusters was carefully 
monitored. Instead of using a laser to warm up the clusters, heating was 
achieved by passing the cluster beam through a thermalization cell which 
is able to keep a constant temperature profile ( f 5  K) over a long 
distance of about 9 cm. The residence time of the clusters and the carrier 
He gas in this thermalization region can be varied between 0.5 ms and 1 
ms. For the purposes of studying neutral and charged clusters, the 
experimental set up allowed to ionize the (C60)N clusters either before 
entering the thermalization cell or after leaving the cell. 

Experiments for a heating temperature Th = 490 K and a residence 
time of 0.5 ms in the thermalization cell led to an important conclusion: 
the magic numbers, the same ones of the early experiment [22], are not 
sensitive to the charge state of the clusters (neutral, positive and 
negative1 clusters were studied). In addition, by extending the size range 
to larger clusters, the icosahedral structure was confirmed by the 
observation of the formation of umbrellas in between the main two peaks 
N = 55 and N = 147. Then, when the annealing temperature in the cell is 
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increased to 585 K, the icosahedral magic numbers begin to disappear 
and are replaced by other strong peaks. The new peaks, N = 38, 48, 58, 
61, 64, 68, 71, 77, 84, 89, 91, 96 and 98, shown in Fig. 12.6, mainly 
occur for N 2 35. On the other hand, some peaks remained unchanged in 
the low mass region, N =  13, 19,26,28,31,33 and 35. 

Figure 12.6. Mass spectra of (C,), clusters recorded at cell temperatures of 490 
K and 585 K, and heating times of 0.5 ms. Some representative structures are 

shown, where each Cm molecule is represented by a sphere. Structures obtained 
by heating at 490 K are icosahedral. Those at 585 K are close-packed, 

decahedral or octahedral. Reproduced from W. Branz et al., Phys. Rev. B 66, 
94107 (2002) with permission of the American Physical Society. 
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The new set of high peaks is consistent with the results of structural 
optimizations [27] using a c60<60 potential derived by Pacheco and 
Prates-Ramalho (PPR) from ab initio calculations [30]. This potential, 
which consists of a pair potential plus a three-body term of the Axilrod- 
Teller form [31] predicts that the global energy minima are based on the 
icosahedral structure up to N = 15. Above this size the structures are 
decahedral or close-packed. Highly stable cuboctahedral and decahedral 
structures are predicted for ( c 6 0 ) 3 8  and (c6&3,  respectively (see those 
structures in Fig. 12.6). The peaks at N = 64, 71 and 75 are explained by 
structures based on the 75-Marks decahedron [32]. Also the peaks at N = 
3 1, 33, 35 are compatible with small decahedra. 

The series of observed peaks N = 61,68,77, 84,91, 96 and 98, most 
likely correspond to a newly discovered structure, the 98-Leary 
tetrahedron [33]. This can be viewed as a stellated fcc-based tetrahedron 
of 56 molecules, whose six faces are covered by hexagonal arrangements 
of seven molecules (the hexagon and a molecule at its center). Then, by 
appropriate truncations and remotions of patches from the 98-Leary 
tetrahedron, the clusters with N = 91, 84, 77, 68 and 61 result. In 
addition, by restricting to structures based on the 98-Leary tetrahedron, 
the sizes N = 61, 68, 77, 84, 91, 96 and 98 have enhanced stability 
compared to other sizes. These Leary structures are not global minima 
for the PPR potential, but the energy difference compared to the optimal 
structures for those sizes is small: between 0.1 eV and 1 eV. N = 54 is 
observed as a peak at T = 585 K in Fig. 12.6, but it has not been included 
in the list given above because it is just a remnant of N = 55, and it 
disappears by a further moderate increase of temperature (at T = 610 K). 

In summary, the icosahedral structures are not the most stable 
structures at T = 0 K for N 2 13-16. At finite temperatures the 
vibrational entropy contribution to the free energy becomes relevant, but 
an analysis reveals that the icosahedral structures are again unfavorable 
with respect to competing structures at T = 490 K. So, the interpretation 
of the differences observed between the two panels of Fig. 12.6 is that 
the spectrum at 490 K corresponds to clusters kinetically trapped in 
metastable icosahedral configurations. Then, annealing at 585 K leads to 
a transition to the close-packed, decahedral and tetrahedral structures, 
lowest in free energy at that temperature (although the structures based 
on the Leary tetrahedron are not the global minima at T = 0 K, their 
vibrational entropy is larger than those for the alternative decahedral or 
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close-packed structures). Molecular dynamics simulations [20, 341 
produce the following picture of the kinetic trapping. First of all, one has 
to keep in mind that the icosahedral structures represent the minimum 
energy structures of small (Crn)~ clusters. In particular the icosahedron 
(C,& is very stable, so this cluster can act as an embryo for metastable 
growth following an icosahedral path. Something similar occurs for N = 
25. Its lowest energy structure is decahedral, but it is a fragment of 
Ico55, and an icosahedral pathway is again possible. Icosahedral growth 
is facilitated by the fact that, in the range of sizes of interest here, the 
potential energy landscape is such that the funnel leading to icosahedral 
structures is broad, i.e., easy to find. In contrast, the funnel leading to the 
global energy minimum is usually deep but narrow, and then difficult to 
find, and it is separated from the icosahedral funnel by high 
rearrangement energy barriers. This is a consequence of the sticky C60- 
C60 potential [27]. For this reason, trapping in the metastable icosahedral 
funnel occurs during growth at low temperatures, or by annealing at T = 
490 K. Once trapped, it takes long time, or high annealing temperatures, 
to escape from the metastable structure by overcoming the high potential 
energy barriers. The simulations confirm the metastable icosahedral 
growth at moderate temperatures [34], corresponding to the experimental 
features at 490 K, and the structural transition to the nonicosahedral 
structures at higher temperatures [20]. 

12.4.2 Fullerene solids 
C60 is soluble in aromatic solvents like benzene or toluene. This property 
is used to separate C60 from other carbon particles produced by an arc 
discharge between graphite electrodes [2]. As the solvent evaporates a 
crystal formed by C60 molecules is obtained. In fact, the production of 
gram quantities of Cm by this technique initiated an intensive 
experimentation with this material which, first of all, allowed for the 
confirmation of the buckyball structure proposed by Kroto et al. five 
years earlier [35]. X-ray and neutron diffraction experiments have 
indicated that the molecules are assembled in a close-packed fcc lattice 
with one molecule per primitive fcc unit cell, or four molecules per 
simple cubic unit cell. The lattice constant of thefcc lattice is a = 26.77 
a.u. [36]. The distance between the centers of neighbor molecules is 
18.93 a.u. and so the distance between the carbon shells is 5.52 a.u., 
smaller than the distance between layers in graphite (6.33 a.u.) but longer 
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than typical C-C chemical bond lengths. The C ~ O  solid, which has been 
called fullerite, is the prototypical example of a solid material assembled 
from clusters. The stability of the solid, similarly to the (C60)~ clusters, 
arises from the weakly attractive Van der Waals forces between the CW 
molecules. Due to this weak attraction and to the nearly spherical shape 
of the molecules, these are spinning rapidly with three rotational degrees 
of freedom about their positions in the fcc lattice for temperatures above 
TI = 261 K [37]. Due to the fast rotation, all the molecules are 
equivalent. When the solid is cooled below that temperature, an 
orientational ordering transition occurs [36, 381. The molecules lose two 
of their three degrees of rotational freedom and the structure is simple 
cubic with a lattice constant a = 26.78 a.u. and four molecules per unit 
cell, because the four molecules become inequivalent below TI. In the 
new phase the rotational motion occurs around four specific ( 1 1 1 )  
directions, and is a hindered rotation in which adjacent molecules 
develop strongly correlated orientations. The reduction of the degrees of 
freedom affects many properties of the solid phase. Due to the molecular 
nature of the fullerite solid, its electronic structure is determined by that 
of the C60 molecules: a clear correspondence exists between the 
electronic levels of the molecule and the energy bands of the solid. 
The (r states of the molecule remain almost unmodified when the solid 
forms. On the other hand the x states, which are closer to the Fermi 
level, experience a substantial dispersion. A semiconductor with 
relatively narrow valence and conduction bands (widths of about 0.4 eV) 
and a direct gap of 1.5 eV forms. 

The structure of solid C70 is more complex, and evolves through 
several different structures as a function of the temperature. At high 
temperatures, T >> TI = 340 K, the structure is close-packedfcc. In this 
phase the C70 molecules rotate freely. Then, at lower temperature but still 
higher than TI some authors [39] have reported the existence of a 
hexagonal close-packed (hcp) structure with an ideal lattice ratio c/u = 
1.63. However other authors [40] propose that thefcc phase is the only 
stable one above T I .  At intermediate temperatures between T2 = 280 K 
and TI the long axis of the molecules begins to align, and anisotropy 
develops in the crystal. Many groups have found evidence for a 
structural transition near TI [38]. Below this temperature, anisotropy 
appears. Some authors propose that this phase derives from the high 
temperature fcc structure by the elongation of the structure along a 
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unique (1 1 1) direction and the freezing out of the molecular rotation 
about an axis perpendicular to the long axis of the molecule [41]. The 
proposed structure is rhombohedral. But other samples have displayed a 
transition to an hcp structure with c/a = 1.82 [39]. The larger ratio is 
associated to the orientation of the molecules along their long axis, as the 
molecular motion freezes into rotations about the five-fold axis of the 
molecule. As the temperature is lowered below T2 the rotation about the 
long axis is also frozen. The structure below T2is monoclinic [39]. 

12.4.3 Alkali-doped fullerene solids 
Several stable crystalline phases have been prepared by doping the 
fullerene solid with alkali metal atoms. In those compounds the alkali 
atoms intercalate in interstitial positions between the c 6 0  molecules, 
forming solids of MxC60 composition. The alkali atoms donate the 
valence electrons to the fullerene molecules, which become negatively 
charged molecular anions C g  . The doped solids may retain the original 
fcc structure of the fullerite or may tranhsform to a different structure. The 
pure c 6 0  solid has no free carriers for electrical transport, but in the 
doped solid the electrons trasferred to the fullerene molecules gradually 
fill the three-fold degenerate tl, levels of c60. The electrical resistivity 
shows a minimum at x = 3 and this phase is observed to be metallic, 
corresponding to a half-filled tlu-derived conduction band [37]. 

The structures of stable phases that form at the compositions M1C60, 
M&, M4C60 and M6C60 are shown in Fig. 12.7. In the phase, 
observed for M = Na, K, Rb and Cs, the alkali ions occupy octahedral 
sites, thereby forming a rock salt (NaCl) crystal structure [40]. This 
phase is stable only in a limited range of temperatures (410-460 K). The 
reported lattice constants for K1 4 c 6 0  (26.59 a.u.), Rbo& (26.61 a.u.), 
and c S I c 6 0  (26.68 a.u.), are a little smaller than that for the pure C60 solid 
(26.78 a.u.). The rock salt structure becomes distorted to a pseudo body 
centered orthorombic phase when it is cooled below = 373 K. For 
RblC60 the lattice constants are a = 17.808 xu., b = 19.099 a.u. and c = 
26.896 a.u. The distance between Ci0 anions in the a direction is 

substantially reduced and the formation of polymeric chains of Ci0 
molecules along that direction has been proposed for K I C ~ O  and RblC60 
[42]. The importance of this polymerized phase derives from the fact that 

M1C60
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it is stable in air at ambient pressure, unlike all other alkali-doped Cm 
phases, which are highly reactive. 

Figure 12.7. Crystal structure of pristine c60 and of alkali metal fullerites with 
compositions M1C60, M2C60, M3CW, M4C60 and M6C60. 

Superconductivity with a relatively high T, has been discovered in 
the M3C60 compounds (Tc (K&) = 19 K, and T, (Rb&) = 30 K). The 
basicfcc structure of the M3C60 phase is given in panel (d) of Fig. 12.7. 
The alkali ions occupy either tetrahedral or octahedral sites. The 
tetrahedral sites are twice as numerous as the octahedral ones. The phase 
M2C60 results from the occupation of only the tetrahedral sites (see panel 
(c)), and the phase M1C60 from the occupation of the octahedral sites 
only. In the BCS theory of superconductivity the transition temperature 
is given as 

k,T, = 1.13 w Ph e-l”(EF)V (12.5) 
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where a,, is an average phonon frequency for mediating electron 

pairing, N(EF) is the density of electronic states at the Fermi level and V 
is the superconducting pairing interaction. This formula indicates that 
higher values of T, can be achieved by increasing N(EF). The high 
density of states at the Fermi level for doped fullerenes occurs because of 
the predominantly molecular nature of this solid, which results in narrow 
electronic bands in K3C6, in Rb3C60 (widths of 0.5-0.6 eV). By 
introducing NH3 molecules in the Na2CsC60 compound to form the 
ternary compound (NH3)4Na2CsC,j0 the lattice constant changes from 
26.705 a.u. to 27.350 a.u. As a result the density of states at the Fermi 
level increases and T, increases from 10.5 to 29.6 K [43]. 

The phase M4C60 is difficult to prepare and has a body centered 
tetragonal (bct) structure (see panel (f)). Theoretical calculations have 
predicted metallic character, but the experiments show semiconducting 
behavior. The maximum alkali content is achieved at M6C60. A bcc 
structure is found for M = K, Rb and Cs (see panel (g)). Six electrons are 
transferred to each C,, molecule, giving Czi anions. This leads to a 
filled tl,-derived band and a solid with semiconducting behavior, in 
agreement with experiment [44]. 

12.4.4 Melting in assemblies of C60 clusters 
There are numerous computer simulations devoted to clarifying the 
existence, or otherwise, of a liquid phase of the hllerite [45]. Most of 
those works have used a model of rigid fullerenes with intermolecular 
interactions described by the potential of Girifalco [46]. This potential 
was derived by assuming a Lennard-Jones (LJ) pair interaction between 
atoms on different C ~ O  molecules and averaging the carbon atom 
distributions so as to have a uniform density of carbon atoms over the 
fullerene surface. The intermolecular potential between two c60 units 
then takes the following analytical form 

+-1j3 s(s+1j3 s4 

+ P [  ' + 1 .1] 
s(s -1)9 s(s +1j9 slo 

(12.6) 
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where s = r/2R, r being the separation between the centers of the two 
interacting spheres and R their radius ( R  = 6.71 a.u.). The parameters Q= 

4.67735X eV were determined by 
fitting the sublimation energy and the lattice constant of the bulk crystal. 
The critical point thermodynamic constants T, (critical temperature), pc 
(critical pressure) and molecular number density pc obtained from Monte 
Car10 simulations using the Girifalco potential have the values T, = 1980 
K, p c  = 38 bar and pc = 0.44 molecules/nm3, and the triple point occurs at 
T, = 1880 K, supporting the existence of a stable liquid phase over a 
narrow range of about 100 K. The critical compressibility ratio 

eV and and p = 8.48526X 

(12.7) 

has a value of 0.32 [47], similar to the value 0.29 for the heavier con- 
densed rare gases Ar, Kr and Xe. This is not surprising, for it is well 
known that a Lennard-Jones potential describes realistically the weak 
interaction between rare gas atoms. In contrast 2, varies significantly 
through the five alkali metals [48], and for all of them the compressibil- 
ity ratio is substantially lower than the above value of 0.29. 

A further property of the liquid C60 phase is the shape of the 
coexistence curve. The high temperature phase diagram in the T-p plane 
is given in Fig. 12.8. Considering the difference pl - p, between liquid 

and gas densities, scaled with the critical density pc, along the 
coexistence curve, that is the variable 

PI -P,  
Pc 

rl= 

and also the average 

Pl +P,  
P C  

5 =  7 

(12.8) 

(12.9) 

a good fit is obtained by the relation 
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4: = 1 -t 0.0164 q3 (12.10) 

and one can notice a nearly perfect agreement of (12.10) with the em- 
pirical relation valid for insulating fluids like neon and ethylene [49]. 

c 6 0  molecules have internal degrees of freedom, and some account of 
this fact is made in the study of Broughton, Lill and Johnson [50], who 
used a model of non-rigid Cm spheres in which a low frequency 
breathing mode was introduced. Then the total potential energy of the 
system was written as the sum of c60<60 interactions, described by a 
potential similar to the Girifalco potential (but with c 6 0  spheres of 
variable radii), plus a term representing the breathing of non-rigid c 6 0  

molecules. No stable liquid phase was found in this model of non rigid 
spheres, but it proved possible to make predictions of some properties of 
a metastable liquid phase. 

Figure 2.8. High temperature phase diagram of liquid Cm. Filled circ es 
represent the stable phase boundary, open circles the metastable liquid-vapor 

binodal points and open triangles the mean density of the coexisting liquid and 
vapor. The cross in the middle is the liquid-vapor critical point. Adapted from 

M. Hasegawa and K. Ohno, J.  Chem. Phys. 111,5955 (1999) with permission of 
the American Institute of Physics. 
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The very question of the thermal stability of the c60 molecules has a 
crucial influence on the practical observability of a stable or metastable 
c60 liquid. Experiments [51] indicate that in the gas phase under 
equilibrium conditions, the stability of C60 is limited to 1100-1200 K. 
The characteristic time scales for decomposition at temperatures T = 
1720-1970 K are in the millisecond range [52]. The heating of solid 
fullerite [53, 541 also leads to the decomposition of the material into 
amorphous carbon and graphite at temperatures T = 1000-1300 K. In 
these solid state experiments the reaction took minutes to complete. 

Two physical processes are responsible for the decomposition of the 
solid C60. The first one is the reaction between neighbor molecules in 
solid fullerite, that becomes facilitated at high temperatures by the 
formation of local structural defects, like open windows, in the carbon 
cage [55].  The second physical process responsible for the thermal 
instability of fullerene materials in the gas or condensed phases concerns 
the isolated c60 molecules. The analysis of Matt et al. [21] has been able 
to reconcile the results of experiment and theory for the energy required 
to fragment the c60 molecule (into C5* and C,). This fragmentation 
energy is about 10 eV. For a'ghas of c60 molecules in equilibrium with a 
vibrational temperature of 2000 K, the energy stored in the molecule is 
about 29 eV (or 14.5 eV for a vibrational temperature of 1000 K). Those 
excitation energies are high enough to allow, in principle, for the 
statistical fragmentation of the molecule in sufficiently large time scales. 
The two physical processes just discussed point towards the practical 
difficulties of heating solid fullerite to temperatures in the range where 
the hypothetical liquid c60 phase could be stable (roughly between 1900 
K and 2000 K). If the fullerite solid could be fastly heated to those 
temperatures, the liquid phase will only be stable for a short time before 
the molecules begin to decompose. Those characteristics make that 
liquid certainly peculiar and difficult to observe. 

The melting temperatures of low dimensional systems, i.e., surfaces 
and clusters, are in general lower than those of the corresponding bulk 
materials. The open surfaces of the fcc fullerite, for instance the (1 ,  1,O) 
surface, and also small clusters of c60 molecules are then good 
candidates for exhibiting melting temperatures lower than that of the 
bulk fullerite, and, eventually, lower than the decomposition temperature 
of c60 molecules. Therefore, liquid c60 could perhaps be observed in 
those low-dimensional systems. Indeed, it has been shown through 
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molecular dynamics simulations using the Girifalco potential that (C6& 
clusters (where all the molecules are at the cluster surface) exhibit a 
solid-like to liquid-like phase transition with a melting temperature of 
about 600 K, well below the decomposition temperature of C60 
molecules [56]. 

12.5 Simulations of the Assembling of Doped Aluminum 
Clusters to Form Clustered Materials 

12.5.1 A112X clusters with 40 valence electrons 
It has been suggested that doped icosahedral clusters Al12X where X is 
an element of the carbon column in the Periodic Table, could be good 
candidates for forming cluster assembled materials [3]. As discussed in 
Section 7.6, the clusters of this family have 40 electrons in a closed shell 
configuration which is associated with high stability. Khanna and Jena 
[3] used DFT to construct the interaction potential curve between two 
tetrahedral Mg, clusters (the Mg4 cluster is also a closed shell species 
with 8 electrons). Partial relaxation of the tetrahedral geometry was 
allowed as the two clusters approached each other, although the 
condition of individuality of the two clusters was imposed. With these 
constraints a weak attractive potential well (0.2 eV deep) was found and 
based on this result Khanna and Jena speculated that stable and 
symmetrical Al12Si and A1& closed shell clusters might interact weakly 
when assembled into a solid. 

This suggestion was investigated by Nieminen and coworkers [57]. 
As a first step, Al12Si rigid icosahedral clusters were assembled on a face 
centered cubic lattice and the equiIibrium lattice constant was found by 
minimizing the total energy. A binding energy with respect to separated 
clusters of 6.1 eV per cluster was obtained for this minimum energy 
structure, but there was no energy gap in the density of states at the 
Fenni level and the system appeared to be metallic. In addition, the 
equilibrium lattice parameter was so small that the shortest intercluster 
A1-A1 distance was less than the intracluster Al-A1 bond length. Next, 
full relaxation of the atomic positions was allowed, and when 
equilibrium had been achieved the shortest Al-A1 bonds had increased to 
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5.12 a.u. and open regions of the unrelaxed cluster lattice were more 
filled. The clusters had merged and the short-range atomic order 
indicated that the atoms had moved towards a close packed arrangement. 
Similar conclusions were reached for simulations with AI12C: again it 
was found that although the isolated clusters were very stable, thefcc 
solid composed of AlI2C clusters was unstable against melting when the 
atoms were allowed to rearrange individually [58]. 

Figure 12.9. Relative orientation of neighbor clusters in the assembling of a 
solid of A1& clusters. The C atom is the small sphere at the center of each 
cluster. Reproduced from X. C. Gong, Phys. Rev. B 56,1091 (1997) with 

permission of the American Physical Society. 

A simulation which successfully achieved cluster assembled A1& 
and A112Si solids was reported by Gong [59]. The electron density of 
Al12C is not spherical; there are protrusions and indentations. Taking 
account of these asymmetries in the electron densities of the isolated 
clusters, Gong designed a cubic-like structure with eight clusters per unit 
cell in which each cluster is oriented 90" with respect to all its near 
neighbors. The orientation of the clusters is illustrated in Fig. 12.9 . In 
this structure the overlap of the electron densities of neighboring 
clusters, shown in Fig. 12.10, is reduced compared to the overlap for a 
fcc structure. The equilibrium structure was found by minimizing the 
total energy, and the resulting solid had a small cohesive energy of = 1.1 
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eV per cluster, implying that the AlI2C and AllZSi clusters are condensed 
by a rather weak force. 

Figure 12.10. Contour map of the electron density in a (001) plane for the solid 
assembled from A1& clusters. Reproduced from X. C. Gong, Phys. Rev. B 56, 

1091 (1997) with permission of the American Physical Society. 

The clusters retained their identity in the solid, with the shortest 
intercluster Al-A1 distance being much longer than the Al-A1 
intracluster bond length or the nearest neighbor distance in bulk 
aluminum. A molecular dynamics simulation of the solid at a 
temperature near 20 K provided a further check of the stability. Apart 
from vibrational motion of the atoms, the icosahedral structure of the 
A1& clusters was unchanged during the 1 . 1  ps duration of the MD run. 

12.5.2 Assembling of A113H clusters 
All3H, discussed in Section 7.6, is a very stable cluster having 40 valence 
electrons. The study of the (Al13H)2 dimer provides insight on the 
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assembling of these clusters [7, 601. Figure 12.1 1 shows two isomers 
characterized by different relative orientations of the two A113 units. On 
the left panel (isomer A) the clusters are oriented along a common C3, 
symmetry axis of the icosahedron, but one of them is rotated 180 degrees 
with respect to the other around that axis. That is, the two clusters have 
parallel faces in contact, rotated 180 degrees one relative to the other. 

Figure 12.1 1 .  Two isomers of the (A113H)2 dimer, characterized by different 
relative orientations of the two icosahedra. The binding energies with respect to 
the two separated AlI3H clusters are 1.74 eV and 3.03 eV for the isomers on the 

left and right sides, respectively. Reproduced from F. Duque et al., Inf. J. 
Quantum Chem. 86,226 (2002) with permission of Wiley. 

The potential energy of the dimer was calculated, for frozen cluster 
geometries, as a function of the cluster-cluster distance, and the energy 
minimum was obtained for a distance R,  = 15.74 a.u. between the 
centers of the clusters. For that minimum, the dimer was then subjected 
to a relaxation of all the atomic coordinates and the structure obtained, 
which is the one on the left panel in Fig. 12.1 1 ,  shows that the identity of 
the clusters is preserved in the dimer. The binding energy of the dimer 
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with respect to the separated clusters is 1.74 eV. Similar calculations 
were performed for the clusters in the configuration given on the right 
panel of the same figure (isomer B). In that case the orientation of the 
clusters is such that the C2, symmetry axis of each icosahedron coincides 
with the dimer axis and one of the clusters is rotated 90 degrees with 
respect to the other about that axis. In this configuration the clusters have 
edges in contact, perpendicular to each other. The equilibrium separation 
between the cluster centers is nearly the same for isomers A and B, but 
the interaction for isomer B is more attactive (the relaxed dimer structure 
has a binding energy of 3.03 eV) and at the same time the short-range 
repulsive wall rises more steeply. Thus, the relative orientation of the 
two clusters in isomer B appears to be more favorable for the purposes of 
cluster assembling. A similar structure with perpendicular contact edges 
was found to be the ground state of the pure (All& dimer in the pair 
potential calculations of Sun and Gong [l]. The stability of the dimer 
suggests to investigate the possibility of forming linear nanowires from 
those clusters. 

For the simulation of the self-assembling of a material from AlI3H 
clusters [7, 601, the optimal relative cluster-cluster orientation found in 
(A113H)2 suggests a favorable structure for the assembled solid similar to 
that in Fig. 12.9, such that neighbor clusters have edges in contact 
perpendicular to each other. This condition leads to a cubic lattice. The 
12 surface atoms of the icosahedron, joined in pairs, have been arranged 
in Fig. 12.9 on the six faces of a cube. Each cluster has six nearest 
neighbor clusters with the optimal orientation. The energy of the 
assembled solid was first calculated as a function of the lattice constant, 
maintaining the structure of the clusters frozen. A curve with two 
minima was obtained. The outer minimum occurs with a large lattice 
constant of 32 a.u. and a small binding energy with respect to the 
isolated clusters of only 0.35 eV per cluster. A similar minimum was 
found by Gong in the simulations of the assembling of AlI2C and AlI2Si 
clusters. The lattice constant for the more relevant inner minimum is 
24.2 a.u. and the assembled solid has metallic character, but the density 
of states is very different from that of bulk aluminum. In that 
arrangement the distances between A1 atoms in neighboring clusters are 
comparable to the intracluster AI-A1 distances. The gain in binding 
energy by the assembling is 15 eV per cluster, and this value is about one 
third of the internal binding energy of the free AlI3H cluster. This 
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fraction is similar to that found earlier for the assembling of the Pb- 
alkali clusters. In contrast, that ratio is one order of magnitude smaller in 
the fullerite. The stability of the assembled solid was tested by 
performing molecular dynamics simulations at 150 K and duration of 3 
ps and the results indicate that the assembled material is stable under 
those conditions, that is, the icosahedral units retain their structure with 
only moderate distortions. The main effect of the temperature is to allow 
for the migration of the H atoms to interstitial regions between the 
clusters. Similar dynamical simulations were performed for the 
assembling of the clusters in an fcc-type lattice, where each cluster is 
surrounded by twelve neighbor clusters and the optimal relative 
orientation is then lost. In this case the clusters do not retain their 
individual character and coalesce. These simulations support the idea 
that an optimized relative orientation of the clusters is a favorable 
condition for a successful assembling. This optimization can only be 
achieved for certain lattices. 

12.5.3 Assembling of superionic cluster-solids 
In the previous section it has been discussed how the attachment of a H 
atom to the AlI3 cluster produces a very stable closed shells cluster with 
40 electrons. Another way of achieving the same goal is by attaching an 
alkaline atom like K, Rb or Cs. The highly electronegative All3 cluster 
behaves as a halogen atom and the AlI3K, A113Rb or AlI3Cs species can 
be viewed as ionic supermolecules Aly3K+, AlF3Rb+ and Al,Cs', 
respectively. Since typical alkali halide molecules form ionic crystals 
with the NaCl (rock salt) or the CsCl structures, Khanna and Jena have 
proposed forming a new class of ionic crystals based on these 
supermolecules [6 11. Total energy calculations have been performed for 
an Al13K solid assuming a CsC1-like superstructure, that is, two 
interpenetrating cubic lattices where each Al, anion is surrounded by 
eight K' cations forming a cube, and vice versa [62]. For large lattice 
constants the internal structure preferred for the AlI3 was the familiar 
icosahedron but it changed to a cuboctahedron as the lattice constant 
approached to the energy minimum. Connecting with the ideas exposed 
in Section 12.2, the alkali cations can also be considered as playing the 
role of keeping apart the large anions. However, the separation between 
the anions is not large enough and the All3 units in different cages form 
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metallic bonds, indicating that the solid is less ionic than expected. In 
fact, due to the cuboctahedral structure of the A113 units, the metastable 
assembled solid ressemblesfcc Al. 

An improved proposal started with the cluster (BA112)Cs [63]. In the 
ground state of the BA112 cluster the B atom occupies the central position 
of the icosahedron. The choice of this cluster instead of AII3 was 
motivated by the fact that BAll2 is more stable (the binding energy per 
atom is 0.27 eV higher) because the smaller size of the B atom relaxes 
the surface strain in the icosahedron. In addition the ionic radius of Cs' is 
larger than the radius of K', so the anions are separated more efficiently. 
The calculated total energy of a solid with the CsCl structure built from 
(BAl,,)- and Cs' units shows a minimum as the lattice constant is 
decreased. Further reduction of the lattice constant induces a change of 
the internal structure of ( BA1,,)- from icosahedral to cuboctahedral 
and a new minimum appears, only marginally more stable than the other. 
An interesting feature is that the two minima are separated by an energy 
barrier of about 0.3 eV, and Jena and coworkers suggested that it might 
be possible to assemble a (BA112)Cs solid with icosahedral subunits. In 
the related case of (BAl12)Li the structure of the (BAlI2) unit is 
cuboctahedral (fcc) for all separation distances of interest [64]. At 
equilibrium, the assembled solid is metallic and can be considered as Al- 
like with B and Li impurities, and not as a solid of clusters. This could be 
expected from the small ionic radius of Li. On the other hand this result 
opens up a new possibility: the use of clusters to produce metastable 
crystalline or amorphous solids difficult to synthesize by standard 
methods. One may imagine extending the solid solubility of an impurity 
element on a host metal greatly over its equilibrium value, or even 
building new ordered intermetallic compounds. 
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computer simulations, 162 
condensation, 7,59 
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configuration interaction, 89, 143, 209 
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Coulomb barrier, 183 
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Moller-Plesset, 77 
momentum transfer, 128 
monocyclic ring, 339 
monodomain, 278 
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NaCI, 321,331 
Na-CI clusters, 322 
Na-K, 208 
nanocrystals, 362 
nanocubes, 323 
nanometer, 7 
nanowires, 395 
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Raman spectroscopy, 336 
random phase approximation, 125 
rare gas solid, 29 
rate constant, 331 
reaction, 206 
reactivity, 110,242, 247,264, 301, 

recursion method, 292 
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SAPS model, 86, 87, 115, 139, 206, 

saturation coverage, 296 
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superconductivity, 386 
superheating, 174 
supershell node, 73 
supershell oscillations, 73 
supershells, 73, 87 
supersonic expansion, 14 
supersonic nozzle, 10 
surface, 85,237, 285, 342 
surface atoms, 294 
surface diffusion, 331 
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