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Preface

Subject

This book covers recent advances in efficiency evaluation, most notably the Data
Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) methods. It
introduces the underlying theories, shows how to make the relevant calculations and
discusses some applications. The aim is to make the reader aware of the pros and
cons of the different methods and to train him or her on the proper usage of these
methods in both standard and non-standard cases.

Several software packages have been developed that can be used to solve some
of the most common DEA and SFA models. In this book, however, we rely on R, a
free software environment that can be used for optimization, statistical computing,
and graphics. This program enables the reader to solve not only standard problems
but also many other problem variants. Using R, one can focus on understanding
the business case and developing a good model. One is not restricted to predefined
models or to the use of a one-size-fits-all approach.

There are several R routines that support the use of DEA and SFA models. While
writing this book, we have also developed an R-package named Benchmarking that
makes applications easy without limiting the variations in the models and calcula-
tions that innovative researchers and practitioners seek to use.

Audience and style

The intended audience includes graduate students, advanced consultants and practi-
tioners with an interest in quantitative performance evaluation.

This book uses mathematical formulations of models, assumptions, etc. Un-
like original contributions on this subject, however, this book de-emphasizes for-
mal proofs, partially by placing them in appendices or by referring to the original
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sources. Moreover, this book emphasizes the use of theories and interpretations of
the mathematical formulations.

A series of small examples and graphical illustrations will be presented. This text
also combines formal models with less formal economic and organizational think-
ing. Moreover, it discusses numerous applications based on projects on which we
have worked. This includes some large projects with significant practical effects:
e.g., the design of benchmarking-based regulations for energy companies in differ-
ent European countries or the development of merger decision support systems for
competition authorities.
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Chapter 1
Introduction to Benchmarking

This chapter gives a overview of the questions and methods covered in this book.
What is the idea of efficiency analyses and benchmarking? Why do we benchmark?
What are the state–of–the–art methods that we shall discuss in this book?

The chapter is mainly conceptual and can be read with a minimum of technical
skills. The idea is to get an elementary and intuitive introduction to the subject. Still,
to get a flavor of the approach of the book, we do formalize a few simple production
economic models.

We first discuss why to benchmark, including learning, coordination and moti-
vation. We then sketch the economist’s ideal of a performance evaluation and the
practical problems of using this in real contexts. We also discuss a common prac-
tical approach of using one or a few Key Performance Indicators (KPIs). We ex-
plain the fallacy of such approaches and the need for more model based, systematic
benchmarkingwhere a technology is estimated and performance is measures hereto.
Lastly, we provide a brief introduction to the main methods covered in this book,
Data Envelopment Analysis (DEA) and Stochastic Frontier Analyses (SFA)

1.1 Why benchmark

Relative performance evaluations or—using modern terminology—benchmarking
is the systematic comparison of the performance of one firm against other firms.

More generally, it is comparison of production entities. The idea is that we com-
pare entities that transform the same type of resources to the same type of products
and services. The production entities can be firms, organizations, divisions, indus-
tries, projects, decision making units, or individuals. For convenience, we talk sim-
ply about the comparison of firms.

Benchmarking can be used in many different settings. It can be used to make
intra-organizational comparisons, as when a headquarters wants to promote costs
efficiency in its different subunits. Motivating a combination of profit and service
objectives in a chain of fast food outlets is an obvious example; the owners can

1P. Bogetoft and L. Otto, Benchmarking with DEA, SFA, and R, International Series  
in Operations Research & Management Science 157, DOI 10.1007/978-1-4419-7961-2_1,  
© Springer Science+Business Media, LLC 2011 

 



2 1 Introduction to Benchmarking

evaluate the individual managers by comparing the sales and cost measures of such
outlets. The owners can formalize the evaluations and introduce performance based
payment schemes to motivate appropriate behavior.

Benchmarking can also be—and most often is—used to make inter-organiza-
tional comparisons . A primary example that we shall often refer to involves a reg-
ulator seeking to induce cost–efficiency or to avoid the misuse of monopoly power
among a set of firms enjoying natural monopoly rights in different regions.

Lastly, benchmarking can be used to make longitudinal , panel, or dynamic com-
parisons, where the performance of one or more firms in different time periods are
compared. Such comparisons are of considerable interests to economists and politi-
cians since the development of productivity is an important driver of welfare im-
provements.

It is worthwhile emphasizing that the use of benchmarking is not restricted to for-
profit organizations. Modern benchmarking methods can handle multiple objectives
that are not explicitly aggregated. This opens the door for usage in non-profit / orga-
nizations, including most public organizations where there is no single objective or
success criterion like profit maximization. Indeed, the ability to handle multiple ob-
jectives is one explanation of the popularity and numerous applications of modern
benchmarking techniques.

In more general terms, the objectives of benchmarking can be related to one or
more of the basic issues in any economic system, namely learning, coordination and
motivation. Or using accounting terminology, benchmarking can be used to facili-
tate decision making (learning and coordination) and control (motivation). Although
the preliminaries of performance assessment exercises normally contain arguments
from all three categories, the design and execution of the model often reveals the
importance associated to each task.

1.1.1 Learning

The stated objective of most benchmarking studies is to learn or get insight per see.
This is certainly the case in scientific studies where researchers examine the rela-

tive efficiency of firms in an industry, the relative efficiency of one industry against
another, or the impact of some policy measure on industry performance.

Often, this is also the stated objective in industry applications. When several
firms compare their performance, the official objective is often to support the learn-
ing and efficiency improvement of individuals. Firms are interested to know how
well they are doing compared to others and which ones they can learn from. The
nonparametric (Data Envelopment Analysis DEA) approaches that we shall cover
in this book provide particular strengths in such cases as the peers or the dominat-
ing firms provide valuable and concrete information for performance improvement
targets. Moreover, the various decompositions of the overall efficiency can point
towards more specific means to improve efficiency, e.g. to change the scale of op-
eration or the mix of resources used if scale or allocative efficiency is low. Still, the
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actual operational changes will necessitate in-depth process benchmarking that may,
or may not, be promoted by the participating firms. Competition may for obvious
reasons limit the sharing of information about best practices.

Recent advances in interactive benchmarking is an attempt to push the learning
perspective by allowing individual firms in an benchmarking exercise to define the
comparison basis (potential peers), the objective (e.g. cost reduction or sales expan-
sion), the aspiration level (e.g. to be in the top-ten) etc. of the evaluations. It has
typically been used in industries where firms sees themselves as colleagues more
than competitors, e.g. among waterworks, energy–networks, and farmers.

Practical application: Danish Waterworks

In Denmark, the industry organization Danish Water and Waste Water Association
DANVA has for several years worked with benchmarking. In the early years, they
relied on a traditional Key Performance Indicators, cf. below. Later they started
undertaking more advanced benchmarking using Data Envelopment Analyses and
made yearly reports for the sector in general and for the individual water works. In
2007, they took a further step towards active use of data and benchmarking to sup-
port learning of best practices. They introduced an interactive benchmarking system
IBEN. The system enables individual waterworks to make multi-dimensional per-
formance evaluations that reflect their own focus, conditions, mission and aspiration
level. A series of pre-specified models cover both the totality of activities and sig-
nificant individual processes and supports both economic and technical efficiency
analyses, including energy-efficiency. Thus for example, individual managers can
choose which processes to focus at, which other waterworks to compare to and
which particular improvement strategies to explore, e.g. a cost reducing road to ef-
ficiency or a service expansion strategy. Similar applications have also been devel-
oped to support individual learning in several other industries, including the energy
sector, the financial sector, and the health sector.

1.1.2 Coordination

In some studies, the objectives of the benchmarking explicitly addresses the alloca-
tion of tasks and possibly the restructuring of firms or the industry. Such studies may
facilitate coordination, i.e. ensuring that the right firms are producing the right prod-
ucts at the right time and place. Coordination lies at the heart of much of traditional
microeconomic theory and management science.

In firms and industries, benchmarks, tournaments and bidding schemes are used
extensively to coordinate operations at optimal cost and performance. The head-
quarters of a bank for example may benchmark operations, not only to motivate
local managers, but also to allocate resources and staff according to their profile.
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Some coordination support requires noting more than ordinary benchmarking
models where the performances of different entities are evaluated. This holds for
example for tournaments. The use of the models in this book will allow these tour-
naments to be more effective by relying on more comprehensive performance anal-
yses.

Other coordination support requires the use of more advanced benchmarking
models to evaluate the structural efficiency of a set of entities. This may necessitate
calculations in networks of individual benchmarking models. The methods covered
in this book have been used for example, to evaluate the structural efficiency of
whole industries and the possible gains from reallocating production factors and
production rights across hundreds of production entities. They have been used also
to decompose aggregate inefficiency into inefficiencies in the production units with
given resources and the misallocation of resources among the units. They can be
used to estimate gains from reallocating pollution right, production right etc, and to
evaluate the possible gains from mergers as wee shall see in later chapters.

A interesting finding in such studies is that a better coordination may be just as
valuable as the learning of best practice. This is relevant since it may be optimistic
to suppose that all firms can adopt best practices. Also, for economic scholars, this
insight is interesting since the economic tool box contains many mechanisms to
facilitate better allocation, most notably the establishment of some sort of market,
and much less hard theory on the internal processes of firms and organizations, and
methods to boost the learning process.

Practical application: Reallocation of agricultural production

Estimates of structural efficiency have been used in Danish agriculture to inform
the restructuring of sugar beet production following a change in EU subsidies. The
new sugar regime led to dramatic price reductions: 36 per cent for white sugar and
40 percent for sugar beets over a four-year period starting in 2006. In collabora-
tion with the monopsonist sugar beet processor, Danisco, and the association of
sugar beet producers, we investigated the gains from reallocating production be-
tween the farmers. This involved the development of en sector model based on a
series of individual benchmarking models and the calculation of possible cost re-
ductions from reallocating production to take advantage of efficiency differences as
well as economies of scale and scope. As a result of the study, it was concluded that
sugar beet production could continue (although at a reduced scale) if appropriate
measures was taken in terms of reducing processing capacity and reallocating pri-
mary production. One of three factories was closed, and a new sugar beet exchange
was established in which more than 1200 farmers traded production rights to bet-
ter allocate primary production. This exchange has since been repeated annually to
ensure structural efficiency in a dynamic environment.
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1.1.3 Motivation

A last general application of benchmarking is to facilitate incentive provision. By
establishing the performance of an employee, a manager or a firm more precisely, it
is possible to better target the incentives.

There are as usual several aspects of this . One is the pre-contractual asymmetric
information or adverse selection problem of making it possible for better informed
agents to extract information rent by claiming too high costs. Another is the post-
contractual moral hazard problem arising from the inability of a principal to precise
monitor if an agent pursues private objectives and perhaps shirks. Benchmarking
can limit both of these incentive problems . Adverse selection can be limited by
extracting information about an agent’s type from past behavior. Moral hazard can
be limited by relative performance evaluations, i.e. by announcing ex ante that per-
formance based payments in the coming period will depend on the outcome of a
benchmarking study to be done ex post.

The relationship between the benchmarking model and the motivational aspect
may be implicit or explicit. An implicit or informal relationships is found when the
mere existence of a model improves behavior because the performance now gets
more attention in the minds of the agents. A more explicit and formalized relation-
ship is found when the model is used to calculate individual inefficiencies and com-
mon measures of technological progress that are incorporated in the general control
system. One can for example tie the budgeting rules, the salary plans or the tariff
regulations directly to the outcome of the benchmarking.

To illustrate the different ways a benchmarking exercise may link up with the
incentives, we may consider the regulation of electricity distribution in different
countries. We shall return to this case in several chapters and give a more extended
treatment in Chap. 10.

Practical application: Regulation of Electricity Networks in Europe

Electricity distribution is a natural monopoly industry with different firms serving
different concession areas. This means that any given consumer (household, firm)
can only buy the necessary distribution services from one provider, often referred
to as a DSO (distribution system operator). This may lead to excessive costs and/or
profits as well as to sub–optimal quality, since the DSO are not subject to a com-
petitive pressure to cut costs, lower prices and improve quality. In most countries,
a regulator appointed by the state is therefore allowed to interfere in the operations
and in particular in the tariffs these companies charge. Unfortunately, the regulator
lacks information about minimal costs. The asymmetric information can however
be undermined using benchmarking as part of the regulation.

Sweden in several years relied on light handed regulation where the regula-
tor only monitors performance and interferes on occasion. The development of a
model—like the DEA models developed since 2000—signals a commitment of the
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regulator to undermine the informational asymmetry and to keep up the pressure
from regulatory oversight despite of increased complexity in the industry.

In Norway, the regulator has long committed to a more heavy handed mechanic
approach relating allowed revenue to measures of general technological progress
and individual needs to catch up with best practice. Again, a series of DEA models
have been developed for these purposes since 1997. This route is now followed in
most European countries. Effectively it means that real competition, which is not
attractive since electricity distribution requires high infrastructure investments that
should not be done in parallel by several firms in a given area, is substituted for by
benchmarking; instead of competing directly, the DSOs compete via a benchmark-
ing model.

1.2 Ideal evaluations

To see some of the difficulties and intricacies of benchmarking, let us start with a
simple example. When we look at a firm or an organization, private or public, we are
often interested to know how well it is doing. One way to think of this is illustrated
in Fig. 1.1 below. We have a firm that has produced certain outputs using certain
costs as indicated by the bullet in the output–cost diagram. The question is if this is
a good performance?

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

..............

.................................................................................................................................................................................................................................................................................................................................................................................. ..............

Output

Cost

�
ı

..........................................
.............................

........................
....................

..................
.................

................
...............

..............
.............
............
...........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
..

Actual

Minimal

Fig. 1.1 An ideal evaluation

To evaluate the performance, we could use a cost function . It shows by definition
the smallest possible costs of providing different output levels. If the cost function
is as illustrated in Fig. 1.1, we can safely say that the firm has been inefficient. It is
possible to produce the same outputs with less cost, or more outputs with the same
cost, or some combination.

In fact, the excessive cost of the firm, i.e. the vertical distance between the actual
cost level of the firm and the minimal necessary costs is an absolute measure of the
inefficiency. The relative inefficiency could therefore be measure by
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InEfficiency D Actual cost � Minimal cost

Actual cost
:

The smaller the inefficiency, the better the performance.
Likewise, we could measure the relative efficiency directly as the ratio of minimal

cost to actual costs

Efficiency D Minimal cost

Actual cost
D 1 � InEfficiency:

The higher the efficiency, the better the performance.
We see that if we know the actual behavior of the firm, here represented by it

is output and cost numbers, and if we have an appropriate model of the ideal per-
formances, here represented by a cost function, we can easily make a performance
evaluation. We could call this the rational ideal evaluation . It is a rational evaluation
in the sense that we specify the preferences (e.g. to reduce costs) and possibilities
(as given by the cost function), and we seek the best ways to pursue the goals. It is
an ideal evaluation in the sense that we have all the relevant information.

More generally, the rational ideal evaluations can be described in the follow-
ing way: From a standard microeconomic perspective, the performance of a firm is
reflected in its ability to choose the best means (alternatives) to pursue its aims (pref-
erences). In Fig. 1.2 we provide an illustration. The alternatives available is given by
the technology T , here illustrated by the curved output isoquant. By definition the
output isoquant shows the largest possible outputs for given inputs. The preferences

The indifference curves shows the outputs combinations that are equally good.

Output 1

Output 2

Preferences U.�/
Higher U

T

�

�

�
�

�
� Ideal

A

Fig. 1.2 Rational ideal set-up

The rational ideal performance evaluation would therefore compare the actu-
ally attained utility level with the maximally attainable utility level. For firm A this
would be to compare U.A/ with U.Ideal/. This would capture the effectiveness of
firm A

given by a utility function U.�/ is represented here by linear indifference curves.
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Effectiveness D Actual performance

Ideal performance
D U.A/

maxy2T U.y/
D U.A/

U.Ideal/

Note that we talk about effectiveness when we have an objective function and there-
fore can talk explicitly about goal attainment. When this is not the case and we rely
on some proxy objective, we talk instead about efficiency.

In real evaluations, it is not entirely easy to apply this microeconomic cookbook
recipe. In the typical evaluation we lack clear priorities U as well as clear informa-
tion about the production possibilities T . In real evaluations, therefore, none of the
elements in the rational ideal evaluation are known up front. Despite of this it is a
useful conceptual idea. Basically, benchmarking is an attempt to approximate the
economic idea of the rational ideal evaluation. We need to collect data to describe
actual behavior, we need to estimate an approximation of the ideal relationship be-
tween inputs and outputs and we need to combine the actual performance with the
ideal performance to evaluate the efficiency. Performance evaluation and efficiency
analyses are basically concerned with these activities. Benchmarking is a way to
overcome these fundamental practical problems by moving from effectiveness to rel-
ative efficiency . In the next sections, we explain the main steps used to accomplish
this.

1.3 Key Performance Indicators and Ratios

A traditional way to overcome some of the difficulties of making rational ideal eval-
uations is to use what practitioners like to call Key Performance Indicators, KPIs.
These are numbers that are supposed to reflect in some essential way the purpose of
the firm.

Key Performance Indicators, KPIs, are widely used by firms, shareholders, reg-
ulatory agencies, researcher and others with an interest in performance evaluation.
Most industries have very specific indicators reflecting the details of their technol-
ogy. Network companies may for example consider maintenance costs per km of
lines. The accounting literature has a series of financial indicators that are used
across many industries to compare financial accounts. They include measures like
Return on Assets (= net income/total assets), Gross Margin (gross profit/net sales),
Debt Ratio (total liabilities/total assets), Price/Book (stock’s capitalization/book val-
ues) to give a few examples.

As the examples illustrate, a Key Performance Indicator, KPI, if often a ratio of
an output to an input. To see how this works, let us first assume that our firm only
uses one input to produce one output. If we have input–output data from several
firms, we can use this to determine who is doing best. We can simply compare what
is often loosely called productivity , i.e. output per input. When we put the input–
output combinations for each firm in a simple graph, it might look like the one in
Fig. 1.3. Note that in this picture, we have inputs on the x–axis while we had inputs
on the y–axis in the cost function example on page 6.
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Fig. 1.3 Input–output combinations for several firms

The firm with the highest productivity is the one with the highest ratio of output
per input, and that firm’s level of productivity is shown as the slope of the dashed line
in the figure. We can now compare the other firms to this special firm by comparing
them to the dashed line.

We can call the ratio of productivity for firm 1 compared to firm 2 the efficiency
ratio of firm 1 relative to firm 2, and we denote this ratio by E. Let .x1; y1/ and
.x2; y2/ be the input–output combinations of the 2 firms. Then the productivities of

the firms are y1

x1 and y2

x2 , and the efficiency ratio E is

E D y1=x1

y2=x2
D y1=y2

x1=x2
:

It is important to observe that the traditional use of Key Performance Indicators,
KPIs, are based on some implicit assumptions.

First, when we compare a firm with small output to a firm with large output in
this manner, we implicitly assume that we can scale input and output in a linear fash-
ion, i.e. we assume constant returns to scale . Thus even in this simple introductory
example, our comparison depends on some assumptions. If we assume instead di-
minishing or increasing returns to scale our comparison might end up differently.
In the ideal evaluation in Fig. 1.1 we did not make any such assumption—but then
again, we presumed there that we knew the true relationship between input and out-
puts.

A second limitation of the KPI approach is that it typically involves only partial
evaluations . One KPI may not fully reflect the purpose of the firm. We could have
multiple inputs and therefore form several output–input ratios like above. We may
for example be interested in the output per labor unit and the output per capital unit
used in the production. Hence we would have two KPIs like in Fig. 1.4. The problem
is now that the KPIs may not identify the same firm as the most productivefirm. Firm
2 in Fig. 1.4 is having high output per labor unit but low output per capital unit, and
firm 3 is having high capital productivity but low labor productivity. Of course, we
could then say that firm 1 should strive to have the labor productivity of firm 1 and
the capital productivity of firm 3. In many cases, however, this ideal is not feasible
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Fig. 1.4 Conflicting Key Performance Indicators (KPIs)

since there will be some substitution effect between labor and capital. Another way
to put this is to say that partial benchmarks make misleading comparisons and that
real firms may be compared to non-feasible, over-optimistic ideals.

A third and more intricate limitation of simple indicator approaches is known
as the Fox’s Paradox . It shows—in loose terms—that even if one firm are hav-
ing higher values of all its partial productivity measures, it might have lower total
productivity than another firm. The reason is that to do well in total, it is not only im-
portant to do well in the different sub-processes—it is also important to make use of
the sub-processes that have relatively higher productivities than others. To illustrate
this, consider the two firms in Table 1.1. Here we consider two firms serving patients

Table 1.1 Fox’s paradox: Comparing Unit Cost

Firm Cure UC Care UC Total UC

1
10

20
D :50

10

40
D :25

20

60
D 0:33

2
2

3
D :66

21

80
D :26

23

83
D 0:29

using either cure or (preventive) care. Firm 1 has provided cure to 20 patients at the
costs of 10. Its cure unit cost, Cure UC, is therefore 10/20=.50. Similarly, firm 1 has
provided care to 40 patients at the cost of 10. In total, they have therefore served 60
patients at a cost of 20. The interpretations of the numbers for firm 2 are similar. We
see that the unit costs, UC, i.e. cost per unit served, is smaller in firm 1 for both cure
and care. Still the total unit costs are higher than in firm 2. The reason is that firm 2
relies more on the relatively less costly treatment, care rather than cure.

We will now show how to overcome these limitations of KPIs. First we discuss
how to relax the assumption of constant return to scale and next how to handle cases
with multiple competing KPIs.
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1.4 Technology and efficiency

When we compared input–output combinations for several firms in Fig. 1.3, we
implicitly assumed that we can arbitrarily scale input and output up and down, i.e.
we assumed constant returns to scale. We will now relax this assumption. We will
look for an alternative definition of efficiency E with the same interpretation, but
without this scaling assumption.

We will define input efficiency for an input–output combination .x; y/ as the
smallest factorE by which we can multiply the input x so that Ex can still produce
the output y. If we were to use a smaller amount of input than Ex, it would be
impossible to produce y. Hence

E.x; y/ D minf e j ex can produce y g:
Another way to look at E is to say that it is possible to actually save .1 � E/x of
the input and still produce the same output y.

To determine whether or not an input can produce an output we need knowledge
of the technology. For this purpose, we introduce the technology set.

The technology set T is the set of combinations of input and output such that the
input can actually produce the output.

T D f .x; y/ j x can produce y g:
A main issue in benchmarking is to estimate what the technology set look like start-
ing with some actual input–output observations from several firms.

If there is no noise in the data, then the technology set consists at the very least
of our observations of input–output combinations for the observed firms; what they
have produced it is apparently feasible to produce. The smallest technology set that
contains all the observations is precisely the set of all the observations. But this is
not an interesting technology set for further analysis as every new observation might
bring another point or element into the set and thereby change it. We have therefore
not done much in terms of modeling the technology. We want a technology set
derived from the observations in such a way that not every new observation would
lead us to expand it. To fulfill this, we will make assumptions about the technology
set.

Our first assumptions is that we can dispense with any extra inputs and outputs:
if an input–output combination is a feasible production for a firm, then any input–
output where the input is larger and the output smaller is also a feasible production,
i.e. is also in the technology set. We call this assumption free disposability . Starting
from at set of observations numbered 1 to 6, the resulting free disposability technol-
ogy set is the dotted area shown in Fig. 1.5.

A second common assumption is that if two input–output combinations are feasi-
ble productions, then any mixture of the two is also a feasible production. A mixture
of two input–output combinations is called a convex combination, and we therefore
talk about this as the convexity assumption, or we say that the technology set is
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Fig. 1.5 Input–output combinations and free disposability

convex. If we assume both free disposability and convexity and have the six obser-
vations from Fig. 1.5, the technology set looks like in Fig. 1.6.
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Fig. 1.6 Input–output combinations, free disposability and convex

When we looked at Key Performance Indicators (KPIs), we compared a firm with
the best firm. With an estimated technology, we compare a firm with what is feasible
given the technology set, i.e. we will compare it to the boundary or frontier of the
technology set.

It can be seen from Fig. 1.6 that the frontier of the technology set is determined
by the firms 1, 3, and 6, and therefore, we compare any input–output combination
in the technology set with a mixture or convex combination of these firms.

Consider for example firm 2. We see that its input–output combination is an
interior point in the technology set, and it is possible to produce y2 by just using the
input x�

2 instead of the observed input x2 for unit 2. The input efficiency of firm 2 is
therefore

E2 D x�
2

x2

and we have x�
2 D Ex2.

When we compare firm 2 with the boundary we really compare it with a convex
combination of firms 1 and 3. Note also that the efficiency measured here is similar
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to the efficiency calculated in relation to Fig. 1.1. The only difference is that we
now use an estimated technology rather than one that was given a priori via a cost
function.

If, instead, we keep the input for firm 2 fixed at x2 then we can calculate the
output efficiency by

F D y�
2

y2

such that y�
2 D Fy2. For firm 2, using the input x2 it would be technically possible

to produce the output y�
2 and not just the smaller output y2; i.e. the possible increase

in output is .F � 1/y2.

1.5 Many inputs and outputs

Let us now turn to the problem of multiple inputs and multiple outputs.
Most firms use multiple inputs to produce multiple outputs. If we can combine

the inputs into one meaningful input aggregate, say costs, and all outputs into one
meaningful output, say revenue, then we can safely use a single indicator as in Sect.
1.3 or—if we want to avoid the assumption of constant return to scale—a simple
technology as in Sect. 1.4.

Unfortunately, such aggregations are often not possible. Just think a hospital us-
ing among others doctors and nurses to produce knee and heart operations. The ag-
gregation of different treatments is certainly controversial, but also the aggregation
of inputs may be problematic, e.g. if the labor market is not well-functioning.

Also, economist often refrain from measuring a systems (social) utility since it
involves delicate problems of weighing together the utilities of individuals. In such
cases, we are typically left with a multiple dimensional description of a systems end-
user utilities, and further measurement problems arise. One system may be superior
from the point of view of some individuals while another may be superior from the
point of view of other individuals.

In the benchmarking literature, therefore, the idea of comparing single inputs to
single outputs is abandoned. It is recognized that the multiple inputs and outputs ex-
ist and may interact and substitute for each others. Therefore, we use a more system
orientated approach to the firm. A firm is seen as a transformation of resources into
products and services. The transformation is affected by non-controllable variables
as well as non-observable skills and efforts in the organization. The idea is now to
measure the inputs, the outputs and the non-controllable variables and hereby to get
an idea of the non-measurable managerial characteristics, the skills and effort as
illustrated in Fig. 1.7 below.

In the evaluations, we shall therefore try to account for all the inputs, all the
outputs and all the exogenous factors simultaneously. Only this way can we avoid
the limitations of making partial evaluations.
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Fig. 1.7 Systems view

The systemic view, however, makes comparisons more complicated since we
have to handle the multiple dimensions, and firms may be good in some dimensions
and bad in others.

Let us consider some examples. In the case of two inputs we can draw the input
isoquant for given outputs, and with two outputs we can draw the output isoquant or
output frontier for given inputs as in Fig. 1.8. In the figure we have also marked an
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Fig. 1.8 Measuring Farrell efficiency

observed input combination x and an observed output combination y for which we
want to calculate the efficiency.

It is clear in both cases that the firm is inefficient. It is possible to save inputs
and still produce the same outputs since there are points to the south–west of x that
are still above the input isoquant. Likewise, it is possible to expand the products and
services represented by y since there are point to the north–east of y that are still
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below the output isoquant (transformation curve). In other words, there are many
possibilities to improve, and the question is how to summarize these possibilities.

To measure efficiency in such settings, the modern benchmarking literature has
relied in particular on the Farrell (1957) measures . The idea of the Farrell measures
is to focus on proportional changes—the same percentage reducing in all inputs or
the same percentage increase in all outputs. Such changes corresponds to move-
ments along the dashed lines in Fig. 1.8.

The Farrell input efficiency measures how much we can proportionally reduce the
input and still produce the same output. The input efficiency is therefore calculated
as the smallest number E such that x� D Ex where x� is the point of intersection
of the dashed line and the isoquant in the left part of Fig. 1.8. More formally, we
have

Farrell input efficiency D E D minf e j ex can produce y g D jx�j
jxj :

where jx�j is the length of the x� vector, i.e. of the line between 0 and x�. In
the same way we can define the output efficiency as the largest factor that we can
multiply on the output and still have a possible production for given input. The
output efficiency is therefore calculated as the largest numberF such that y� D Fy

where y� is the point of intersection of the dashed line and the transformation curve
in the right part of Fig. 1.8. More formally, we have

Farrell output efficiency D F D maxf f j x can produce fy g D jy�j
jyj :

For inputs on or above the isoquant and ouptuts on or below the output isoquant
curve we have E � 1 and F � 1, and the smaller is E and the larger is F , the more
inefficient is the firm.

1.6 From effectiveness to efficiency

To summarize our discussions so far, modern benchmarking tools addresses two
fundamental problems in practical evaluations. The lack of clear preference or pri-
ority information is handled by moving from effectiveness to efficiency and the lack
of a priori technological information is handled by making weak or flexible a priori
assumptions, by estimating the technological frontiers, and by evaluating efficiency
relative to the estimated frontier (best practices).

An illustration of this is provided in Fig. 1.9 below. Here we consider hospitals
that use the same resources to produce different combinations of operations. The
data available in a given context is therefore represented by the dots. Now how can
we evaluate a given hospital, say Hospital A.

We would ideally like to evaluate effectiveness as earlier, i.e.
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Fig. 1.9 A hospital example

Effectiveness D U.A/

maxy2T U.y/
D U.A/

U.Ideal/

However, this is not possible since we know neither U nor T .
The missing information about U is handled by focusing on efficiency instead of

effectiveness. Hence, we ask how much we could have proportionally expanded A
within the technology set T

Absolute Farrell output efficiency D QF D maxf f j f A 2 T g
We see that A is projected into the point QFA.

In reality, we also do not know T , so we approximate T by some set T � de-
termined from the performances of the other hospitals. In Fig. 1.9 we have used
the traditional assumptions of free disposability and convexity. We now measure
efficiency using the estimated technology T � as our benchmark. We call this the
relative efficiency since it is efficiency relative to the other hospitals in the sample
as approximated by T �, not relative to some absolute norm T , i.e.

Relative Farrell output efficiency D F D maxf f j f A 2 T � g:
We see that A is now projected into the point FA.

We see also that F � QF , i.e. relative efficiency is higher than absolute efficiency.
This reflects that the relative performance standards are easier to live up to than the
absolute ones. We can also say that we handle the lack of information about the
underlying true technology T by taking a cautious approach to the estimation of the
technology which in turn lead to a cautious (higher) estimate of efficiency.

A large part of this book is focusing on these two steps. We shall look for dif-
ferent ways to measure efficiency as opposed to effectiveness, and we shall look for
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different ways to estimate a technology from observed performances. We cover in
more depth the basics of technology estimation in Chap. 3 and the basics of effi-
ciency measurement in Chap. 2. We then turn to more advanced frontier estimation
methods and applications in the subsequent chapters. A first survey of the more
advanced frontier estimation approaches is provided in the next section.

1.7 Frontier models

Modern benchmarking analyses increasingly use best practice or frontier analysis
methods. The idea is to model the frontier of the technology rather than to model
the average use of the technological possibilities. This has methodological as well
as practical advantages. One very practical aspect is that it is often more interesting
to learn from the best than to imitate mediocre performances.

Frontier analyses in general and Data EnvelopmentAnalysis (DEA) and Stochas-
tic Frontier Analysis (SFA) methods in particular, are developing rapidly in theory
as well as in practice, and they will be our main focus of attention in the remainder
of this book. Before digging into the details of these methods, however, we give a
non-technical survey of the methods and their main pros and cons in this section.

1.7.1 A simple taxonomy

In the benchmarking literature—as in traditional statistical literature—it is com-
mon to distinguish parametric and nonparametric approaches. Parametric models
are characterized by being defined a priori except for a finite set of unknown pa-
rameters that are estimated from data. The parameters may for example refer to the
relative importance of different cost drivers or to the parameters in the possibly ran-
dom noise and efficiency distributions. Nonparametric models are characterized by
being much less restricted a priori. Only a broad class of functions, say all increas-
ing convex functions, or even production sets with broadly defined properties, are
fixed a priori and data is used to estimate one of these. The classes are so broad as
to prohibit a parameterization in terms of a limited number of parameters, and they
can therefore be termed non-parametric.

Another relevant distinction is between deterministic and stochastic models. In
stochastic models , one make a priori allowance for the fact that the individual ob-
servations may be somewhat affected by random noise, and tries to identify the
underlying mean structure stripped from the impact of the random elements. In de-
terministic models , the possible noise is suppressed and any variation in data is
considered to contain significant information about the efficiency of the firms and
the shape of the technology.

The two dimensions leads to a 2 � 2 taxonomy of methods as illustrated in ta-
ble 1.2 on the following page. A few seminal references are included. We emphasize
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Table 1.2 A taxonomy of frontier methods

Deterministic Stochastic

Parametric Corrected Ordinary Least Squares
(COLS)

Stochastic Frontier Analysis (SFA)

Aigner and Chu (1968), Lovell
(1993), Greene (1990, 2008)

Aigner et al (1977), Battese and
Coelli (1992), Coelli et al (1998a)

Non-
parametric

Data Envelopment Analysis (DEA) Stochastic Data Envelopment
Analysis (SDEA)

Charnes et al (1978), Deprins et al
(1984)

Land et al (1993), Olesen and
Petersen (1995), Fethi et al (2001)

that for each class of model, there exist a large set of model variants corresponding
to different assumptions about the production technology, the distribution of the
noise terms etc.

To illustrate the differences, consider a simple cost modeling context. In this
setting, we seek to model the costs that results when best practice is used to produce
one or more outputs. We have data from a set of production units as indicated in Fig.
1.10.

Now, Corrected Ordinary Least Squares (COLS) corresponds to estimating an
ordinary regression model and than making a parallel shift to make all firms be
above the minimal cost line. SFA on the other hand recognizes that some of the
variation will be noise and only shift the line—in case of a linear mean structure—
part of the way towards the COLS line. DEA estimates the technology using what
is known as the minimal extrapolation principle . It finds the smallest production
set (in the illustration the set above the DEA curve) containing data and satisfying
a minimum of production economic regularities. Assuming free disposability and
convexity, we get the DEA model illustrated in Fig. 1.10. Like COLS, the DEA cost
function it is located below all cost–output points, but the functional form is more
flexible and the model therefore adapts closer to the data. Finally, Stochastic Data
Envelopment Analysis (SDEA) combines the flexible structure with the possibility,
that some of the variations in data may be noise, and only requires most of the points
to be enveloped.

In Fig. 1.10 we have included a fifth frontier, termed Engineering. The idea is to
base the modeling on data from engineers about best possible performance, perhaps
in idealized settings. We will discuss engineering approaches in some examples in
this book, but since the approaches differs with the application area, no general
outline will be given.

1.7.2 Pros and cons

In the choice between DEA and SFA, a key question is whether one wants flexibility
in the mean structure or precision in the noise separation.
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Fig. 1.10 Alternative frontiers

An important property of a benchmarking approach is its ability to reflect and
respect the characteristics of the industry. This requires that it is a flexible model
in the sense that its shape (or its mean structure to use statistical terms) is able to
adapt to data instead of relying excessively on arbitrary text book assumptions. This
is particular important in attempts to support learning, individual motivation and
coordination. It is probably less important in models aimed at evaluating system
wide shifts, e.g. the impact of some policy change. The nonparametric models are
by nature superior in terms of flexibility.

Another important property of a benchmarking approach is its ability to cope
with noisy data. A robust estimation method gives results that are not too sensitive
to random variations in data. The stochastic models are particularly useful in this
respect.

In summary, the nonparametric models are the most flexible in terms of the pro-
duction economic properties that can be invoked while the stochastic models of
course are the most flexible in terms of the assumptions one can make about data
quality.

Ideally, then, we would like to use flexible models that are robust to random
noise. This would favor SDEA models. The problem however is the properties come
at a cost. The estimation task become bigger, the data need larger and still we can-
not avoid a series of strong assumptions about the distributions of the noise terms.
Coping with uncertainty requires us to dispense somewhat with flexibility and vice
versa. We would furthermore argue that a lack of stochasticity can be partly compen-
sated by a flexible mean structure—and a restricted mean structure can be somewhat
compensated by allowing for random elements. This means that DEA and SFA are
very useful methods and that we do not necessarily need to move to SDEA.

Besides these pros and cons, it is worthwhile to mention a general advantage of
DEA and SFA models compared to earlier and less advanced benchmarking meth-
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ods. Both methods require no or very little preference, price or priority information
and are able to cope effectively with multiple inputs and outputs. This is most likely
the general reason they have become so popular and may partially explain that sev-
eral thousand scientific papers and reports have used these methods since they were
first introduce some 30 years ago.

1.8 Software

There are by now several free software packages as well as commercial programs
that are useful when the methods of this book are put to work on real data sets.
We shall not cover these in any details, but we shall illustrate several of our models
and methods by showing how they can be implemented in one particular general
purpose, very powerful and free software called R. We provide a brief introduction
to this software in Appendix A.

In parallel to writing this book, we have developed our own R routines, an R-
package called Benchmarking , that makes it easy to implement both the standard
models that other software can handle as well, and other variants that users may find
interesting. Our aim with this R package is to make applications very easy without
limiting the variations of models and calculations that innovative researchers and
practitioners would seek to implement to get benchmarks that fit their particular
purpose the best.

1.9 Summary

The aim of this chapter has been to give an elementary and intuitive introduction to
the subject of this book.

Benchmarking was defined as relative performance evaluation of firms (or other
production entities) that transforms the same types of inputs (resources) into the
same type of outputs (services). This is useful in many contexts and can facilitate
both learning, coordination and motivation.

Benchmarking is simple if one can aggregate the objective of the firm into a
single criterion, a utility function, and if one has a perfect description of the possi-
bilities, the technology. In such contexts one can make a rational ideal evaluation by
comparing the attained utility value with the maximal value that is possible to obtain
in the technology set. Unfortunately, in real evaluations, one typically lacks infor-
mation about both the overall objective of the firm and of its possibilities. Bench-
marking is a way to overcome these fundamental practical problems by moving
from effectiveness to relative efficiency.

A common approach in practice in to define one or more Key Performance In-
dicators (KPIs) and to compare these among the firms. While this is useful in very
simple cases, this approach has the drawbacks that it presumes constant return to



1.10 Bibliographic notes 21

scale and that different KPIs may point to different ideal firms and that the combi-
nation of these typically is not feasible but rather too optimistic.

The approaches to benchmarking that we cover in this book therefore take a
different approach/view. We start from a system description of all inputs used, the
outputs produced and the contextual characteristics possibly affecting the transfor-
mation of input to output. We estimate the underlying technology using systematic
assumptions and methods and we measure how much a given firm can improve by
moving to the frontier of the estimated technology. The technologies we estimate are
usually presumed to have certain mild regularities like free disposability and con-
vexity, but otherwise the aim is to let the data define the technology to the largest
possible extent. The improvement possibilities can be captures in many different
ways but the most common approach to get a single efficiency measure is to rely on
the Farrell idea of proportional improvements in all inputs (or all outputs).

In a survey of methods, one can distinguish between parametric and non-para-
metric methods and between stochastic and non-stochastic methods. The two ap-
proaches that we shall mainly cover in this book are the non-parametric, determinis-
tic approach called Data Envelopment Analysis (DEA) and the parametric, stochas-
tic approach called Stochastic Frontier Analysis (SFA). They both enable us to work
with multiple inputs and outputs, and hereby to perform comprehensive evaluation
of many different production entities, including non-for profit firms and public orga-
nizations. DEA is advantageous by having a very flexible production structure while
SFA is advantageous by allowing a better separation of noise and inefficiency.

1.10 Bibliographic notes

Since they were first introduced some 30 years ago, the DEA and SFA methods
have become extremely popular and several thousand papers have been produced
extending and applying these methods. For a textbook introduction to DEA, see
Charnes et al (1995) or Cooper et al (2007). A popular introduction to both DEA
and SFA is Coelli et al (1998a).

The learning perspective using interactive benchmarking was first introduced
(under the name of internet based benchmarking) in Bogetoft and Nielsen (2005).
Software to support such exercises has since been developed and used in several
industries and countries, cf. e.g. www.ibensoft.com.

The coordination and reallocation perspective was early introduced into the DEA
literature. Lewin and Morey (1981) for example discuss the decomposition of inef-
ficiency in a hierarchical organization, and Brännlund et al (1995) and Brännlund
et al (1998) study the Swedish pulp and paper industry using a DEA model. They
estimate the cost of the existing transmission constraints at the individual firms and
the gains from reallocation. Extensions of these ideas to evaluate the possible gains
from reallocating fishery quota and agricultural production rights are given in An-
dersen and Bogetoft (2007) and Bogetoft et al (2007a), respectively. The sugar beet

http://www.ibensoft.com
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exchange is described in Bogetoft et al (2009). An variant of these ideas is used to
evaluate mergers in Chap. 9.

The motivation perspective has always been implicitly available in the bench-
marking literature. The formal modeling of how to tie budgeting, salary, allowed
revenues etc to the outcome of the benchmarking has however been more limited.
Notable early contributions are Banker (1980) and Banker et al (1989) while later
contributions include Dalen (1996); Dalen and Gomez-Lobo (1997, 2001); Resende
(2001); Sheriff (2001); Thanassoulis (2000); Wunsch (1995). Explicit combinations
with agency models has been initiated in a series of papers by Bogetoft and coau-
thors, cf. e.g. Bogetoft (1990, 1994b,a, 1995, 1997, 2000), Agrell and Bogetoft
(2001a), Agrell et al (2002), Agrell et al (2005b). Some of these models, in par-
ticular Bogetoft (1997), has subsequently been implemented in European regulation
systems as we shall discuss in Chap. 10.

The Fox Paradox and was first discussed in the literature by Fox (1999).



Chapter 2
Efficiency Measures

2.1 Introduction

In Chap. 1, we introduced efficiency as the use of the fewest inputs (resources)
to produce the most outputs (services). This idea is fundamental to much of mod-
ern benchmarking literature because it allows us to evaluate performance without
clearly defined preferences. That is, we avoid the difficult task of estimating prefer-
ence functions and deciding on exact priorities. We will expand on this below.

Although the notion of efficiency is simple and intuitive at first glance, there are
actually many different ways to conceptualize efficiency. We shall discuss some of
the most common concepts in this chapter. We will cover classical concepts from
production theory, including technical efficiency, allocative efficiency, and scale ef-
ficiency, as well as more advanced concepts like dynamic efficiency and structural
efficiency.

Moreover, several of these concepts can be operationalized in different ways. We
can, for example, measure technical efficiency in terms of input space, output space,
or both types of spaces. We can also measure it in specific directions, etc.

The aim of this chapter is to provide an overview of efficiency-related concepts
as well as bits and pieces of the relevant theoretical background.

2.2 Setting

In pursuing this aim, we will generally assume that the technology is given. We fo-
cus on a given firm and can therefore describe the setting in the following way:
A firm k has used m inputs xk D .xl1; : : : ; x

k
m/ 2 RmC to produce n outputs

yk D .yk1 ; : : : ; y
k
n / 2 RnC. The set of feasible production plans or input-output

combinations available to firm k is given by the technology or production possibil-
ity set T ,

T D f .x; y/ 2 RnC � RmC j x can produce y g:

23P. Bogetoft and L. Otto, Benchmarking with DEA, SFA, and R, International Series  
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There are many ways to construct the technology T . We have already illustrated
some of these methods in Chap. 1, and we will take a closer look at the basic assump-
tions that one can make about technologies in Chap. 3. Moreover, we shall spend
much of the book describing alternative methods like Data Envelopment Analysis
DEA and Stochastic Frontier Analysis SFA, which involve the construction of tech-
nologies based on actual observations. For now, however, it does not matter how we
estimate T . The same efficiency concepts are applicable to technologies estimated
in different ways.

2.3 Efficient production

Efficiency is generally a question of using few inputs (resources) to produce many
outputs (services).

To be more precise, let us consider two firms, .x1; y1/ and .x2; y2/. We say that
firm 2 dominates or is more efficient than firm 1 if it uses no more inputs to produce
no fewer outputs and is doing strictly better in at least one dimension.

Dominance. .x2; y2/ dominates .x1; y1/ if and only if x2 � x1, y2 � y1, and
.x1; y1/ ¤ .x2; y2/

Note that we require the dominating firm, firm 2, to use no more inputs to produce
no less outputs than firm 1 and to not be exactly similar to firm 1. Therefore, we
require the dominating firm to be strictly better in at least one dimension (to use
strictly less of an input or produce strictly more of an output).

Dominance allows us to partially rank firms. Some firms can be compared, while
others cannot. This is illustrated in the left panel in Fig. 2.1. firm 2 dominates firm
1, while firm 3 neither dominates nor is dominated by firm 1 or firm 2.
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Fig. 2.1 Dominance and efficiency

The dominance relationship is relevant because almost everyone would prefer a
more efficient or dominating production plan to the less efficient one that it dom-
inates. For this to hold, we need our preference to be increasing in outputs and
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decreasing inputs. Thus, dominance is a weak expression of preferences that allows
us to partially rank production plans.

In economics, the efficient firms are those that cannot be dominated by other
firms. To determine which firms are efficient, we thus need a description of all pos-
sible firms (e.g., a listing or a technology set). For a given technology set T , we
define efficiency as follows:

Efficiency. .x; y/ is efficient in T if and only if it cannot be dominated by some
.x0; y0/ 2 T .

The efficient subset of T , T E is

T E D f .x; y/ 2 T j .x; y/ is efficient in T g:
The efficient subset T E of T are the inputs-output combinations that cannot be im-
proved. They represent best practices. An illustration is provided in the right panel
of Fig. 2.1. Here the technology set T for 2 outputs is the shaded area, and the effi-
ciency set T E is the bold part of the frontier. In the production economics literature,
this notion of efficiency is sometimes called Koopmans-efficiency to distinguish it
from other types of efficiency.

The focus on efficiency is natural from a theoretical perspective. On the one
hand, efficiency is not too strong a requirement; under conditions of mild regularity,
one can always identify an optimal production plan from among the efficient ones.
On the other hand, we cannot generally strengthen the efficiency requirement; any
efficient plan may be the uniquely optimal plan given perfectly sensible underlying
but unknown preference functions.

The focus on efficiency is also convenient from an applied perspective. One of
the main obstacles to the evaluation of effectiveness is to select the objectives or
preferences against which we should gauge performance. Here, efficiency provides
an easy way out because it only requires that more outputs and fewer inputs are
preferable. Thus, instead of engaging in dead-end discussion about overall objec-
tives, we create a partial ranking that will be agreed on by almost everyone. It is
worth remembering, however, that this logic also means that while efficiency is a
necessary condition for effectiveness, it is not a sufficient one. In fact, in terms of
a particular technology, an inefficient firm may well be better than a fully efficient
one. We could rephrase this by saying that it is not sufficient to run fast; it is also
important to run in the correct direction—and it may be better to run at a moderate
speed in the right direction than at full speed off-course.

So far, we have defined and explained the relevance of efficiency. We have fo-
cused on which firms are efficient and which are not. Additionally, we have intro-
duced a partial ranking of firms in terms of dominance. In the following sections,
we will study how to measure efficiency levels. We want to go beyond the efficien-
t/inefficient dichotomy and measure degrees of (in)efficiency.
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2.4 Farrell efficiency

The single most widely used approach to measuring the degree of efficiency in a
general multi–input and multi–output setting is the strategy suggested by Debreu
and Farrell, usually referred to simply as Farrell efficiency. The idea is to ask if
it is possible to reduce the input without changing the output. Seeking to process
multiple inputs and outputs in a simple way, we look for a proportional reduction of
all inputs.

The input–based Farrell efficiency or just input efficiency of a plan .x; y/ relative
to a technology T is defined as

E D minfE > 0 j .Ex; y/ 2 T g
i.e., it is the maximal proportional contraction of all inputs x that allows us to

produce y. Thus, if E D 0:8, it indicates that we could have saved 20% off all
inputs and still produced the same outputs.

Likewise, output–based Farrell efficiency or output efficiency is defined as

F D maxfF > 0 j .x; Fy/ 2 T g
i.e., the maximal proportional expansion of all outputs y that is feasible with the

given inputs x. Thus, a score of F D 1:3 suggests that we could expand the output
by 30% without spending additional resources.

A small-scale example of this concept using one input and one output is provided
in Fig. 2.2. We see that we can reduce input x to x� without losing output and that
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Fig. 2.2 Farrell efficiency in one–input/one–output example

we can increase output y to y� without using more resources. Therefore, we have

E D x�

x
;

F D y�

y
:
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Table 2.1 Two–input, two–output example
Firm Input A Input B Output C Output D

1 10 20 20 20
2 20 10 40 20
3 20 30 60 80
4 30 30 80 60

Our 30 20 36 10

Figure 2.3 illustrates how Farrell efficiency is calculated when there are two inputs
and two outputs. In the left panel, we show the input isoquant corresponding to
the output level y that our firm is producing, and in the right panel, we show the
output-isoquant corresponding to the inputs x that our firm is using.

Proportional reduction and expansion correspond to movements along the dashed
lines in the two panels. Input efficiency is therefore calculated as the smallest num-
ber E that we can multiply on x and remain on or above the isoquant. Likewise,
output efficiency is calculated as the largest number F that we can multiply on y
and remain below or at the output isoquant. For inputs above and on the input iso-
quant and outputs below and on the output isoquant curve, we have E � 1 and
F � 1. The smaller E is and the larger F is, the less efficient the firm is.
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Fig. 2.3 Farrel efficiency

Numerical example

To better understand the logic of the Farrell measures, consider an example in which
the technology T is formed using free disposability on the four firms in the upper
part of Table 2.1. By this, we mean that any production plan dominated by one of
our observed plans is feasible. We are interested in evaluating ”our” firm as given in
the last row.
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Now we need to look for firms that are using fewer inputs to produce more out-
puts than our firm. In terms of input usage, we see that only firms 1 and 2 qualify
because firms 3 and 4 use too much of input B. At the same time, we see that that
firm 1 is not producing enough of output C but that firm 2 produces enough of both
outputs. Thus, in effect, firm 2 is really the only firm we can compare with using
only dominance (or free disposability).

Now consider the input efficiency of our firm compared to that of firm 2. We see
that compared to firm 2, our firm could reduce input A with a factor 20/30 and input
B with a factor 10/20. Because it has to decrease in both dimensions, the smallest
feasible reduction factor is 20/30. Therefore,

E D 20

30
D 0:67:

In a similar way, we see that in terms of output C, our firm could expand with a
factor 40/36 by imitating firm 2, and in terms of output D, it could expand with a
factor 20/10. Again, because we are looking for the largest possible expansion that
works in all output dimensions, we must settle on an expansion of 40/36, i.e.,

F D 40

36
D 1:11:

These results are illustrated in Fig. 2.4. In particular, we see that on the input
side, it is input A that becomes binding, whereas, on the output side, it is output C
that becomes the limiting product.
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2.4.1 Non-discretionary inputs and outputs

In applications, we often have situations in which some of the inputs or some of the
outputs are fixed and uncontrollable, at least in the short run or using the discre-
tionary power of the firm or unit that we seek to evaluate. A very simple but useful
way to handle such situations is to only look for improvements in the discretionary
(controllable) dimensions. In this way, if we divide the input and outputs into vari-
able (v) and fixed (f) inputs and outputs as in .x; y/ D .xv; xf ; yv; yf /, we can
define the input and output variants of the Farrell measures as follows:

E� D minfE > 0 j .Exv; xf ; yv; yf / 2 T g
F � D maxfF > 0 j .xv; xf ; Fyv; yf / 2 T g:

E� indicates that we can proportionally reduce all variable inputs xv with a factor
E� without using more of the fixed inputs xf and without producing fewer of the
outputs y D .yv; yf /. Likewise, the interpretation of F � is that we can proportion-
ally expand all variable outputs yv without reducing any of the fixed outputs yf and
without using more inputs than x D .xv; xf /.

2.4.2 Using Farrell to rank firms

The main outcome of many benchmarking studies is a list of the Farrell efficiency
values of the firms in an industry. Such lists or league tables are studied with interest
and care because they are often considered to provide firm rankings with the best
firms having the largest E and the worst having the lowest E (or vise versa for F ).

One can discuss whether efficiency measures can really be used to rank firms or
whether they solely provide individual measures of efficiency and thus improvement
potential.

Purists would argue that rankings using Farrell efficiency are only possible to
a very limited degree. A case can be made only for comparing firms where one
dominates the other. In such situations, the efficiency score achieved by comparing
one to the other is simply a way to quantify the amount of dominance.

One can also take a more pragmatic view and argue that even in cases in which
the two units are not comparable based on dominance, the Farrell measure still pro-
vides a performance measure, and that low Farrell efficiency is an indication of high
improvement potential. It is important to note, however, that this is not a simple
ranking in which everyone is competing with everyone. It is more similar to a golf
tournament or a horse race with handicapping. The technology defines the perfor-
mance standard for each of the firms, and only hereby can we compare firms that
produce different service mixes or use different input mixes.

Still, this use of efficiency scores presumes that the inputs and outputs correctly
characterize the available options and that we do not have any more information
about the relative importance of the different inputs and outputs.
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Additionally, in reality, the technology may be described more precisely in some
parts of the production space than others, and we shall talk at some length about
bias in DEA in Chap. 5. Such biases in our descriptions make it less reasonable
to consider the ranking as the result of a fair race. Indeed, in such cases, one can
argue that not all firms participate in the same race and that the rankings are not
fair because it is easier to be close to the winner in some races (with fewer or less
talented competitors) than in other races. These differences make it difficult to make
comparisons across races. (The second-best runner in Denmark is probably quite a
bit worse than the second-best US runner).

It is also worthwhile to note that Farrell efficiency is not exactly the same as
traditional (Koopmans) efficiency as introduced in Sect. 2.3. That is, E.x; yIT / D
F.x; yIT / D 1 does not imply .x; y/ 2 T E . This situation occurs when some
inputs can be reduced and/or some outputs can be expanded individually but there
is no option to contract or expand all inputs or outputs simultaneously (i.e., when
we are on a horizontal or vertical part of the isoquants). This is one drawback of the
Farrell measure.

2.4.3 Farrell and Shephard distance functions

Farrell efficiency depends on our starting point .x; y/ and the technology set T .
Instead of using E and F above, it would thus be more precise to use the longer
notation E..x; y/IT / and F..x; y/IT /. In many contexts, however, this would be
too cumbersome and we simply use E and F or perhaps E.x; y/ and F.x; y/.
In some cases, we also call these efficiency measures distance functions or, more
precisely, input distance functions and output distance functions. This nomenclature
emphasizes that they are not just numbers but are also procedures (functions) that
map technologies and observations into real numbers.

Some prefer to work with the so-called Shephard measures rather than the Far-
rell measures. For the sake of completeness, we note that the Shephard distance
functions are simply the inverse of the Farrell ones,

Di.x; y/ D maxfD > 0 j � x
D
; y
� 2 T g D 1

E.x; y/

Do.x; y/ D minfD > 0 j �x; y
D

� 2 T g D 1

F.x; y/
:

The function Di is called the (Shephard) input distance function and Do the (Shep-
hard) output distance function. Some computer programs calculate these functions
rather than the Farrell variants.
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2.5 Directional efficiency measures

In the Farrell (and Shephard) approach to efficiency measurement, all inputs are
reduced or all outputs are expanded by the same factor. This proportional adjustment
has been challenged by a series of alternative efficiency measurements approaches.
We cover a few of these here.

An early suggestion in the DEA literature was to consider simultaneous improve-
ments on the input and output side by basically combining the Farrell input and
output efficiency measures into one measure, sometimes referred to as the graph
hyperbolic measure of technical efficiency

G D minfG > 0 j .Gx; 1
G
y/ 2 T g:

In G, we seek to simultaneously reduce inputs and expand outputs as in the Farrell
approach. The input side is exactly as in theE measure, and the output side is in the
spirit of the F measure; when we reduce G, we expand 1=G, which is like the F
factor is in the Farrell output efficiency measures. Also note that for .x; y/ 2 T , we
have G � 1.

The interpretation of a graph hyperbolic efficiency G is that we can make due
with input Gx and simultaneously expand output to 1

G
y. This is illustrated in Fig.

2.5. The curve traversed by .Gx; 1
G
y/ when G takes all positive values is a hyper-

bola; this is indicated by the dashed line, and by comparing the intersection and the
original point, we can measure G on either the input or the output axis as indicated
in the figure.

x xGx

y

y

1
G
y

Fig. 2.5 Graph efficiency measure

In applications,G is not always easy to implement because of the non-linearities
involved.

A more profound alternative or generalization of Farrell’s proportional approach
is based on directional distance functions. We will discuss this approach now, and
to simplify the exposition, we initially focus on the input side.
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The purpose of directional distance functions is to determine improvements in a
given direction d 2 RmC and to measure the distance to the frontier in such d -units.
This process leads to a directional distance or excess function

e D e.x; yIT; d/ WD maxf e 2 RC j .x � ed; y/ 2 T g:
The excess e.x; yIT; d/ has a straightforward interpretation as the number of times
the input bundle d has been used in x in excess of what is necessary to produce y.
Therefore, a large excess reflects a large (absolute) slack and a considerable amount
of inefficiency. It shows how many times we can harvest the improvement bundle d
if we were to learn best practice.

An illustration is provided in Fig. 2.6 for 2 different directions .1; 0:25/ and
.:25; 4/ in addition to the usual Farrell direction. In the figure, we have also indi-
cated the projection points using circles. On this basis, the efficiency figures can be
calculated.
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Fig. 2.6 Input directional efficiency

The directional distances and the Farrell input efficiency in this case become

e..1; 4/I .1; 0:25//D 0:48

e..1; 4/I .0:25; 4//D 0:39

E..1; 4// D 0:75

We note that the directional distances are not comparable across different direc-
tions. Excess values depend on the directions in which we move, as this example
shows. This dependence means that we need to exercise care in interpreting the re-
sults and particularly in comparing excess values across firms and directions. On the
other hand, it is also a useful property because by measuring the excess in different
directions, one can get a picture of which particular resources a firm seems to have
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in excess. This approach is sometimes called multidirectional efficiency analysis,
MEA, and can be used to select improvement strategies, etc.

The excess values also depend on the length of the direction vector. Thus, for
example, if we double the length of the improvement direction d , the number of
times we can save the doubled vector is halved. More generally, for arbitrary � � 0,
we have

e..x; y/I �d/ D 1

�
e..x; y/I d/:

Again, this simply requires us to be explicit in interpreting the results and making
comparisons across different firms and in different directions.

The Farrell approach is, in principle, just a special variant of the directional dis-
tance function approach, where we use the firms own inputs as the direction vector.
Thus, it is straightforward to see that

e..x; y/I x/ D 1 � E.x; y/

That is, with direction equal to what is present in the existing input production plan,
the excess function is a measure of the inefficiency of the firm as determined using
the Farrell method. If Farrell efficiency is 80%, for example, the excess is 20%.
Likewise, the Farrell efficiency measures when some of the inputs or outputs are
fixed are special variants of the directional distance approach. We have, for example,

e..x; y/I .xv ; 0// D 1 �E�.xv; xf ; y/:

Rather than creating a direct dichotomy between controllable and non-controllable
elements, the directional distance function approach allows us to work with grades
of discretion—some dimensions can be controlled more easily than others, and some
dimensions are more desirable to change than others.

Like in the graph efficiency, we can combine the input and output efficiency
perspectives using the direction distance function approach. That is, we can examine
whether it is possible to use fewer inputs and produce more outputs. Thus, we can
look for changes in the direction .dx; dy/ 2 RmC � RnC and define the directional
excess e as

e D maxf e > 0 j .x � edx; y C edy/ 2 T g:
With one input and one output and the direction .dx; dy/ D .1; 1/, we have the
situation indicated in Fig. 2.7, where the arrow indicates the direction.

An important question, in theory as well as in practice, is which direction is
best. The correct (but also somewhat easy) answer at this stage is that it depends
on the application. We will return to this question in Sect. 2.9 below because it is
also related to the question of using input– or output–based efficiency measures,
technical or allocative efficiency measures, etc.
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Fig. 2.7 Input and output directional efficiency

Practical application: Benchmarking in waterworks

Rather than theoretically discussing the pros and cons of different directions, one
can take a pragmatic approach and see the direction as a steering instrument by
which a user can control the projection of a firm on the efficient frontier. This ap-
proach in used in the interactive benchmarking system called IBEN that is used by
Danish Waterworks, cf. also Sect.1.1.1, to support individual learning among wa-
terworks. An illustration is provided in Fig. 2.8. In the specific model (technology),
it is presumed that the evaluated waterworks have used two inputs to produce two
outputs. The inputs are the Opex (DC1000) and Capex (DB1750) measures, and the
outputs are the water distributed (DA1300) and length of the water lines (DA0320).
We see, for example, that Hørsholm has used 3.43 million DKK of Opex and 2.3
mio DKK of Capex to distribute 1.362 million m3 of water and maintain 149 km of
waterlines. 1 million DKK is approximately 150 thousand Euro.

In the illustration, we see that the user has chosen to look for improvements
in all directions (i.e., improvements to both inputs and outputs). The first output,
however, is emphasized less than the other outputs. The sliders work to choose the
direction and thereby steer the projection of the analyzed firm onto the efficient
frontier. The figures that indicate direction in IBEN are percentages, and the idea is
that they are percentages of the present values for the analyzed firm. Therefore, the
correspondence between the IBEN illustration and our framework here is as follows:

d D .100%3:42; 100%2:30; 50%1362; 100%149/D .3:42; 2:3; 681; 149/

The resulting benchmark is also shown in IBEN. In our notation, the natural bench-
mark would be

Benchmark D .x � edx; y C edy/
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Fig. 2.8 IBEN evaluation of Danish waterwork

but this is not exactly the same as what is shown in the illustration, except with
regard to Opex. The reason for this difference is that this benchmark may contain
slack and that the slack has been eliminated from the example, cf. also the ExSlack
checkbox.

Lastly, we note that IBEN shows the excess value e as InEff and the individual
inefficiencies on the different dimensions. Thus, for example, a value of 35% on the
Capex line shows that it is only necessary to use 35% of the present Capex level (i.e.,
0.81/2.30=35%). In addition, IBEN provides information about the peer units on the
lower part of the screen. In this way, the user can see which entities to learn from
and how this depends on the direction chosen. IBEN also allows the user to easily
remove peers and hereby to re-estimate the technology and directional efficiency on
a modified technology.

2.6 Efficiency measures with prices

So far, we have focused on performance evaluations in contexts with a minimum of
information. We have assumed that we have firms transforming multiple inputs x 2
RmC into multiple outputs y 2 RnC using one of several possible production plans T .
In addition, we have assumed that we prefer more outputs and fewer inputs. Except
for this assumption, we have made no assumptions about the relative importance of
inputs and outputs.

In some situations, however, we know a priori the relative weights, prices or pri-
orities that can naturally be assigned to the different inputs and/or outputs. Such
information allows us to make more focused evaluations. Moreover, it allows us to
decompose efficiency into technical efficiency, associated with the use of optimal
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Fig. 2.9 Cost minimum

procedures, and allocative efficiency, associated with the use of optimal combina-
tions of inputs or the production of optimal combination of outputs.

2.6.1 Cost and input allocative efficiency

Let us consider an example in which we have prices associated with the inputs. Let
w be the n–the vector of input prices, w 2 RnC.

In this situation, we can calculate the costs wx of a given production plan .x; y/,
and thereby evaluate the production plan .x; y/ via the cost output combination
.c; y/, where c D wx. In principle, we can conduct efficiency analyses of this,
more aggregated, model just as we did with the .x; y/ model.

It is now intuitively clear that it is easier to be efficient using the .x; y/ model
than the .c; y/ model because in the latter situation, the firm is responsible not only
for picking a technically efficient point on T E but also for picking the right one to
minimize the costs. We shall refer to the latter as the allocation problem and the
associated efficiency as allocative efficiency.

To formalize this idea, let us assume that a firm has used inputs x, as illustrated
in Fig. 2.9.

Ignoring the price information, we can measure Farrell efficiency in the usual
way. To distinguish it from other forms of efficiency here, we will now call this
the technical input efficiency of observation x. As we have seen, it is the maximal
contraction of the input bundle and can be calculated as

TE D k Qxk
kxk
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where Qx is the point on the isoquant obtained via proportional scaling for the ob-
served x along the dashed line in the figure.

In the same way, we can measure cost–efficiency CE as the ratio between the
minimal cost and the actual cost

CE D wx�

wx
:

The optimal minimal cost input combination x� is found by solving the cost mini-
mization problem

min w0x subject to .x0; y/ 2 T:
The solution to this optimization problem is well known to be the point x� where
the isocost line is tangent to the isoquant as shown in Fig. 2.9.

Cost–efficiency CE is actually also Farrell efficiency in the more aggregate
model that uses costs as inputs.

Before we proceed, let us rewrite technical efficiency, TE. It is clear that technical
efficiency is also equal to the cost of Qx compared to the cost of x because the two
vectors are proportional. That is, because Qx D TEx, we also havew Qx D TEwx, and
therefore

TE D w Qx
wx

If we can save 20% of all inputs from x to Qx, we can also save 20% in costs.
Now compare the costs of Qx and x�. The difference is the cost of having picked

the technically efficient plan Qx rather than another and less expensive input mix
x�. Thus, the difference represents an allocation problem, and we define allocative
efficiency as

AE D wx�

w Qx
We see that AE � 1. If, for example, AE is 0.8, it means that we could have saved
20% by better allocating our funds toward a less expensive but sufficient input mix.

In summary, we now have three different efficiency measures: technical effi-
ciency TE, cost efficiency CE and allocative efficiency AE. The relationship between
them is easy to derive:

CE D wx�

wx
D wx�

w Qx
w Qx
wx

D AE � TE

This decomposition emphasizes our initial intuition. To be cost–efficient, the firm
must be able to choose the right mix of inputs and use them in a technically efficient
manner. It must use the right resources, and it must use them in the right way.

In closing, we note that if we define Ox as the point on the dotted contraction curve
that has the same costs at x�, then we can also look at the relationship between
CE;AE and TE by comparing the length of x, Qx and Ox as follows:

TE D k Qxk
kxk ;AE D k Oxk

k Qxk ;CE D k Oxk
kxk
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Fig. 2.10 Technology for cost minimization example

i.e., by comparing the lengths of vectors on the dotted line. We see that all of these
efficiency measures are smaller than or equal to 1.

Numerical example

Consider a simple example in which six firms A – F have used two inputs to produce
one output. The data are provided in Table 2.2.

Table 2.2 Data for cost minimization

Firm x1 x2 y Costs wx
A 2 12 1 15.0
B 2 8 1 11.0
C 5 5 1 12.5
D 10 4 1 19.0
E 10 6 1 21.0
F 3 12 1 16.5

Price w 1.5 1.0

We see that all firms have produced the same output, so we can safely look at the
problem in the input space. Assuming free disposability and convexity (i.e., that we
can produce at least the same outputs with more inputs and that weighted averages
(line segments between observations) are feasible as well) we can construct a tech-
nology from these observations. The input isoquant (for y D 1) of this technology
is illustrated in Fig. 2.10 below. The assumptions of free disposability and convexity
will be discussed in detail in the next chapter.

The resulting efficiency values are shown in Table 2.3. We see that all firms
except E and F are on the frontier and thus are technically efficient; i.e., they have
TE D 1. The technical efficiency of firms E and F can be calculated by first noting



2.6 Efficiency measures with prices 39

Table 2.3 Economic efficiency

Firm CE TE AE
A 0.73 1.00 0.73
B 1.00 1.00 1.00
C 0.88 1.00 0.88
D 0.58 1.00 0.58
E 0.52 0.75 0.70
F 0.67 0.67 1.00

that they are projected onto 0:5C C 0:5D D .7:5; 4:5/ and B D .2; 8/ respectively.
Thus, for example, the TE of F is 2=3 D 8=12 D 0:66.

Although most of the firms are technically efficient, they have not been equally
good at selecting the cost-minimal input mix. These differences become clear when
we calculate costs in the last column of Table 2.2. We see that the firm with the
lowest costs is B, with a cost value of 11. This result is not surprising given Fig.
2.10, in which the isocost curve is tangent to the isoquant at B. Calculating cost
efficiency is now also straightforward. Thus, for example, the cost efficiency for
firm A is CE D 11=15 because cost efficiency is the minimal cost compared to the
actual cost. It is similar to the technical efficiency measure except that we make the
evaluation using a one-input (costs) framework.

Lastly, having calculated both TE and CE, we can easily determine allocative
efficiency, defined as AE D CE=TE.

We also note that F is allocatively efficient but not technically efficient. This is
the case because F is projected onto the cost minimal production plan B when we
remove technical efficiency. The classical approach to allocative efficiency that we
have introduced here requires one always to measure allocative efficiency at the
frontier.

2.6.2 Revenue and output allocative efficiency

A parallel treatment of allocative issues is possible on the output side. Here we look
at whether the output mix is optimal in terms of maximizing revenue for a given
input. This depends on the output prices p 2 RmC. An illustration is provided in Fig.
2.11.

As with cost efficiency, we can define revenue efficiency as

RE D py�

py

where y is the observed output and y� the optimal revenue output i.e., the solution
to the revenue-optimizing problem
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max py0 subject to .x; y0/ 2 T:

y1

y2

y

Qy
Oy

y�

�

Productioncurve

Isorevenue

Fig. 2.11 Revenue maximum

We can now rewrite revenue efficiency as

RE D py�

py
D py�

p Qy
p Qy
py

D py�

p Qy F D AF � F:

Here Qy D Fy, and F is the Farrell output technical efficiency. Therefore, Qy is
the technically efficient point that we obtain when we expand y radially along the
dotted line. Also note that we have introduced a shorthand AF for output-oriented
allocative efficiency:

AF D py�

p Qy :

Output allocative efficiency is the revenue obtained by choosing the best mix of
output relative to the revenue from simply being technically efficient.

To be fully revenue-efficient, a firm must demonstrate both full output technical
efficiency and full output allocative efficiency. It must use the best procedures to get
the most out of its resources, and it must produce the right mix of services. This
concept is sometimes summarized by saying that it is not enough to do things right;
one must also do the right things.

As in the analyses of the input side, we can also look at this decomposition of
revenue efficiency in terms of vector lengths. To see this, let us define Oy as the point
on the dotted expansion line that has the same revenue as y�. We then have

F D k Qyk
kyk ;AF D k Oyk

k Qyk ;RE D k Oyk
kyk

i.e., by comparing the lengths of vectors on the dotted line, we can calculate all three
efficiency values.
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2.6.3 Profit efficiency

If we have prices w and p on both the input and the output side, we can, of course,
also evaluate the firms ability to generate profit and use this as the benchmarking
focus. In such situations, we will naturally define profit efficiency as

PE D py �wx
py� �wx�

where .x; y/ is the observed production plan and .x�; y�/ is the profit- maximizing
production plan, i.e., the solution to

max py0 � wx0 subject to .x0; y0/ 2 T:
A small value of PE would be an indication that large profit potentials have been
foregone.

Again, one can decompose the inefficiency into different parts related to 1)
technical inefficiency, 2) input allocative efficiency and 3) output allocative effi-
ciency. All of these different forms of efficiency describe the firms ability to get the
most out of given resources, select a cost-minimal input mix, and select a revenue-
maximizing output mix. The decomposition will be somewhat arbitrary depending
on the order in which we identify the elements and particularly on the choice of
an input- or output-oriented technical efficiency measure. We will not discuss the
alternatives in any more detail here.

2.7 Dynamic efficiency

Over time, the behavior and performance of firms are likely to change. We need
measures that capture such changes. In addition, the technology is likely to change
due to technical progress. These changes make it relevant to measure not only how
firms change over time but also how many of these changes are caused by general
technological progress and how many can be attributed to special initiatives on the
part of individual firms that improve relative to the existing technology.

An example of these dynamic issues is provided in Fig. 2.12 below. We depict
the state of one firm during two periods: first, period s and then period t . Likewise,
we have two technologies that are relevant for the two periods. We see that the firm
has improved in the sense that from s to t , it has moved closer to the s technology.
On the other hand, the technology has also shifted, which has made it less costly to
produce. Therefore, the firm has not improved as much as we would expect from a
general technological development perspective. In period t, it has more excess costs
than in period s.

In the benchmarking literature, the most popular approach to dynamic evalu-
ations is the Malmquist index. It works without prices to aggregate the different
inputs and outputs.
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Fig. 2.12 Dynamic change of performance and technology

To explain the idea of the Malmquist index, let E i .s; t/ be a measure of the
performance of firm i in period s against the technology in period t . It might, for
example, be Farrell input efficiency, i.e., E i .s; t/ D minfE > 0 j .Exis; yis/ 2
T t g. However, it could also be other measures, including output-based ones, as long
as larger values reflect better performance (closeness to the frontier). Note that we
now distinguish the technology and the production data depending on the period
from which they stem. In this paragraph, we will focus on the performance of firm
i , and therefore, we can simplify the notation and use E.s; t/ instead of E i .s; t/.

To measure the improvement in firm i from period s to period t , we can look at
the changes in efficiency compared to a fixed technology. If we use time s technol-
ogy as our benchmark, we can look at

M s D E.t; s/

E.s; s/
:

If the firm has improved from period s to t , E.t; s/ � E.s; s/, and therefore,M s is
larger than 1. If, on the other hand, the firm is less efficient in period t than period
s, E.t; s/ � E.s; s/, the ratio is smaller than 1. Therefore,M s is larger than 1 when
the firm improves over time and smaller than 1 if it moves away from the frontier
over time. For example, if a firm is 40% efficient in period s and 80% efficient in
period t , then it has improved by a factor of 2. This is a natural way to measure
the change. If the firm is always producing the same outputs and if it is using the
same input mix in the two periods, then in the example, it must have halved its use
of resources in period t compared to period s to show this kind of change in its
efficiency score. Of course, real problems are more complicated because the input
mix and output mix are likely to change as well, but the interpretation of the ratio is
still basically the same.
M s measure the improvement relative to technology s. We might alternatively

have used technology at time t as the fixed technology, in which case we would
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then get

M t D E.t; t/

E.s; t/

Because there is no reason to prefer one to the other, the Malmquist index is
simply the geometric average of the two:

M.s; t/ D
p
M sM t D

s
E.t; s/

E.s; s/

E.t; t/

E.s; t/
:

The Malmquist index measures how much a firm has improved from one period
s to the next t . The change in performance may, however, be due to two reinforc-
ing or counteracting factors: the general technological progress (or regression) that
we would expect everyone to be affected by and special initiatives in the firm that
have enabled it to change its performance relative to that of the other firms. We can
decompose the Malmquist measure in these two effects by rewritingM as follows:

M.s; t/ D
s
E.t; s/

E.t; t/

E.s; s/

E.s; t/

E.t; t/

E.s; s/
D TC.s; t/ EC.s; t/

where

TC.s; t/ D technical change D
s
E.t; s/

E.t; t/

E.s; s/

E.s; t/

EC.s; t/ D efficiency change D E.t; t/

E.s; s/

The technical change index, TC is the geometric mean of two ratios. In both, we
fix the firm’s production plan at time t and use this as the fixed point against which
we measure changes in the technology. If the technology has progressed, we will
have E.t; s/ > E.t; t/ because the technology has moved further away from the
given observation (i.e., the first ratio in the geometric mean is > 1). The idea of the
second ratio is the same; here we just use the time s version of our firm as the fixed
point when we look at technological developments. In summary, the TC measures
technological change, and values above 1 represent technological progress in the
sense that more can be produced using fewer resources.

The other factor is the efficiency change index EC, which measures the catch-up
relative to the present technology. We always measure this factor against the present
technology, asking if the firm has moved closer to the frontier. If so, E.t; t/ >
E.s; s/, and the ratio is larger than 1.

The Malmquist measure is useful to us in understanding how benchmarking re-
sults change over time. A firm that has made improvements over the course of a
year may be frustrated to learn that it is actually coming out worse in a new bench-
marking analysis. The point is, however, that it is not sufficient for a firm to improve
compared to itself. The firm must also improve relative to others, and they have also
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benefited from general technological progress. Thus, the only way to improve is to
catch up to the best, i.e., to get closer to the frontier.

The Malmquist measure and its decomposition are useful in capturing dynamic
developments from one period to the next. One should be careful in interpreting
results from several periods. One cannot simply accumulate the changes because the
index does not satisfy what is called the circular test; i.e., we may not haveM.1; 2/ �
M.2; 3/ D M.1; 3/ unless the technical change is particularly well-behaved (Hicks-
neutral). This drawback is shared by many other indices and can be remedied by,
for example, using a fixed-base technology.

Lastly, let us mention that some of the ideas in the Malmquist approach can
also be used to determine the effects of other changes besides time. We could, for
example, let s and t represent two different ways to organize production, two differ-
ent countries, or two technologies, one with and one without advanced automation
(robots). The technological change (TC) in such situations would then reflect the
general impact of the technological opportunities created by using alternative or-
ganizational forms, operating in one or another country or introducing the use of
robots.

Numerical example

To give an example of how the formula is used, let us calculateM , TC and EC in
the example shown in Fig. 2.12. Using Farrell input efficiency and observing that the
inputs in the example are shown on the vertical axis, we can observe the following
directly from the graphs:

M.s; t/
(Malmquist index)

D
s
E.t; s/

E.s; s/

E.t; t/

E.s; t/
D
s
40=50

25=45

25=50

16=45
D
r
81

40
D 1:423

TC.s; t/
(Technical change)

D
s
E.t; s/

E.t; t/

E.s; s/

E.s; t/
D
s
40=50

25=50

25=45

16=45
D
r
5

2
D 1:581

EC.s; t/
(Efficiency change)

D E.t; t/

E.s; s/
D 25=50

25=45
D 0:9

This illustrates what can also be inferred from the graph: the firm has improved
from period s to t . If we fix the technology, we see that it has moved much closer
to the minimal cost curve. The Malmquist index suggests a 42.3% improvement.
What is also clear, however, is that this improvement should be expected simply on
the basis of the technological developments. In fact, the frontier shift generates a
58.1% improvement cost. So, the firm has not quite been able to follow the trend of
technological development but has instead fallen back an additional 10%. The EC
and TC effects are multiplicative, such that EC � TC D M .
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Practical application: Regulation of electricity networks

Most European distribution companies, DSOs, are regulated by competition author-
ities, cf. Sect. 1.1.3. The single most widely used type of regulation is the revenue-
cap regulation, in which the regulator defines ex ante the maximal allowed price
companies can change their consumers over the next 3-5 years. A typical scheme
would be

Ri .t/ D C i .0/Q.0; t/P.0; t/.1� x � xi /t ; t D 1; : : : ; 5

where Ri .t/ is the allowed revenue in period t for firm i , C i .0/ is the actual cost
of running the DSO in period 0, Q.0; t/ is a quantity index reflecting the increase
in services from time 0 to t , P.0; t/ is a similar index reflecting changes in prices
(inflation), and x is a general requirement imposed on all firms and xi is a specific,
additional revenue reduction requirement imposed on DSO i . Hence, the idea is that
the regulator allows the DSO to cover its costs but, on a yearly basis, requires it to
conduct a general cost reduction of x (e.g., 1.5%) and a specific cost reduction of
xi (e.g., 3% ). The advantage of this scheme is that it allows firms to keep what
they gain by cutting costs (at least beyond the x C xi requirement), thus providing
them with proper incentives. Also the scheme protects consumers against excessive
changes by ex ante requiring charges to fall (with x C xi ).

In the implementation of these schemes, a major issue is now how to determine
general and individual requirements, x and xi , respectively. In most cases, solving
this problem requires the use of advanced benchmarking. Indeed, x is often estab-
lished as the frontier shift in Malmquist analyses run on data from a period of some
3-5 years prior to the regulation. Thus, if TC D 1:02, the regulator will set x D 2%.
Likewise, the setting of xi is typically informed by a benchmarking model cover-
ing, for example, the period t D 0 or t D �1. The typical benchmarking study will
calculate the cost efficiency of each firm and then decide how many years the firm
should have to eliminate its incumbent inefficiency, i.e., how quickly it must catch
up to best practice. Thus, for example, if a firm has cost efficiency of CE D 0:80,
it might be asked to partially eliminate this advantage during the regulation period
via an extra yearly reduction in costs of, for example, xi D 3%.

Similar schemes are used to regulate many other sectors as well as to guide bud-
get allocation in public and private organizations.

2.8 Structural and network efficiency

Most of the benchmarking literature is concerned with evaluating the performance
of individual firms, i.e., the unit of analysis is firms. It is, however, also possible to
evaluate the efficiency of a collection of firms and thus to evaluate if we have the best
possible industry structure or if it would pay to move production around, perhaps
merging some of the firms and splitting up others. We will briefly illustrate how
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such analyses can be conducted and return to more comprehensive and complicated
cases in later chapters.

First, consider the possible impact of merging firms 1 and 2, which have used
similar inputs to produce similar outputs (i.e., a horizontal merger). Let their present
production be .x1; y1/ and .x2; y2/, respectively. We do not require that they use
exactly the same input and output types because we can always allow the value of
some of the dimensions of the x and y vectors to be 0.

If the two units become integrated but continue to operate as two independent
entities, they will transform the vector of inputs x1 C x2 into the vector of outputs
y1Cy2. To evaluate the potential efficiency gains from the merger, we can therefore
evaluate the efficiency of the latter transformation, i.e., the use of x1Cx2 to produce
y1 C y2.

Using a Farrell input approach provides us with the following measure of the
potential gains from merging firms 1 and 2:

E1C2 D minfE 2 RC j .E.x1 C x2/; y1 C y2/ 2 T g :
Here E1C2 is the maximal proportional reduction in the aggregated inputs x1 C x2

that allows the production of the aggregated output y1 C y2.
If E1C2 < 1, we can save via a merger. If E1C2 > 1, the merger is costly.

A score of E1C2 D 0:8 would suggest that 20% of all inputs could be saved by
integrating firms 1 and 2. Likewise, a score of E1C2 D 1:3 would suggest that
integration would necessitate 30% more of all resources. We shall investigate such
measures and conduct some useful decompositions in more detail in Chap. 9.

Practical application: Merger control in health care

The evaluation of potential gains from mergers is used in Dutch regulations to
shape the health authorities view of proposed mergers. If two hospitals merge, the
competition in the sector decreases, and this will generally decrease the quality of
care. Industrial economics models of imperfect competition are used to quantify
the likely negative market effects. On the other hand, a merger may also be suffi-
ciently efficiency-enhancing and cost-reducing to be attractive despite the reduced
competition. To quantify the possible efficiency gains, the Dutch health authority
has estimated models of hospital production and set up evaluations of gains like
E1C2 above. If E1C2 is sufficiently small, this will sway the evaluators in favor of
allowing the merger.

Rather than merging two or more firms, which may be costly—especially if the
technology shows decreasing returns to scale—we can also try to preserve the ex-
isting number of firms and simply reallocate production between them. The poten-
tial gains from this step can be calculated in the following way. Imagine that we
have 3 firms. Generalizations to more firms are straightforward. Let the firms be
denoted k D 1; 2; 3, and let their original productions be .xk ; yk/, k D 1; 2; 3.
Assume that we pick new production plans .x�k ; y�k/ for each k D 1; 2; 3 such
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that total inputs and outputs stay feasible; i.e., we do not use more aggregated input,
x�1 C x�2 C x�3 � x1 C x2 C x3, and we produce at least the same aggregated
output, y�1 C y�2 C y�3 � y1 C y2 C y3. All of the new production plans must
be feasible .x�k ; y�k/ 2 T for all k D 1; 2; 3. The largest proportional savings on
original input usage that we can achieve via such reallocation can be calculated by
solving the following program:

min
H;.x�j ;y�j /;jD1;2;3

H

s.t. H.x1 C x2 C x3/ � .x�1 C x�2 C x�3/;
.y1 C y2 C y3/ � .y�1 C y�2 C y�3/;
.x�j ; y�j / 2 T; j D 1; 2; 3:

Therefore, if H D 0:9, this means that we can save 10% of all resources used
in the three firms by simply moving production around to take advantage of best
practices, economics of scale, and economies of scope. So far, we have not made
any assumptions about the underlying technology set, T , but if we assume that it
is convex, we can actually show that the saving factor H shown above can also be
calculated via as simple Farrell input efficiency evaluation of the average firm

H D min
H

fH j .H 1

3
.x1 C x2 C x3/;

1

3
.y1 C y2 C y3// 2 T g :

Thus, to calculate H , we can simply form the average firm, i.e. a hypothetical firm
using the average of all input vectors to produce the average of all output vectors.
The Farrell efficiency of this entity is a measure of what can be gained by everyones
adjusting to best practices and by reallocating production between the 3 firms. We
shall investigate such programs and some useful variations in Chap. 9.

Numerical example

As an example of the reallocation issue, consider a case in which 3 firms have pro-
duced 1 output using 1 inputs. The production frontier is given by

y D p
x � 5 for x � 5:

The observed input–output combinations are

.10;
p
10� 5/ D .10; 2:23/;

.20;
p
20� 5/ D .20; 3:87/;

.30;
p
30� 5/ D .30; 5/:

We see that they all operate on the efficient frontier, i.e., on an individual basis
they cannot improve. However, if they collaborate and share resources and obliga-
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tions, they may be able to conserve some of their aggregated input and still pro-
duce the same aggregated output. Specifically, following the guidelines above, we
can measure the Farrell efficiency of the average firm. The average firm has used
(10+20+30)/3= 20 input units to produce (2.23+3.87+5)/3=3.70 output units. The
minimal input necessary to produce output of 3.70 is 3:702 C 5 D 18:71. The mini-
mal share of the average input that suffices to produce the average output is therefore

H D 18:71

20
D 0:94:

This result shows that via reallocation, this small industry could save 6 % of input.
The reason is quite obvious in this simple single–input, single–output case because
there are disadvantages to being small based on fixed costs and disadvantages of be-
ing large because of diminishing retursn to scale. Therefore, it is more advantageous
to operate average-size firms.

2.9 Choice between efficiency measures

The question naturally arises as to which of the many possible efficiency measures
to choose. There are several both applied and theoretical aspects of this.

One very important aspect is controllability. The inputs and outputs that can be
controlled by the entities to be evaluated are important because it is generally not
very informative or motivating to be judged on the basis of factors that you cannot
control. Therefore, the choice between input- and output-based evaluations, between
general evaluations or conditional evaluations where some factors are fixed, and
between allocative and technical efficiency depends very much on controllability.

The time perspective is relevant because in the long run, more factors are usually
variable. The level in a hierarchy that is evaluated is relevant. A divisional man-
ager may, for example, be evaluated for technical efficiency, while an officer at the
headquarters who is responsible for resource allocation may be more correctly eval-
uated based on allocative efficiency or, if prices are not available, using structural
efficiency measures. A hospital may not have much control over demand, and as
a result, input-based evaluations may be more relevant, while a farmer may have
many fixed resources (land, etc.) and, therefore, should be evaluated more in terms
of the output.

More generally, the intended use of the efficiency score is crucial. In a learn-
ing experience, the exact efficiency measurement is less important than the ability
to find relevant peers taking into account the firms own preference, strategies, etc.
The directional distance function approach may be particularly useful here due to
its flexibility. In an allocation application, the distinction between fixed and vari-
able inputs and outputs is often important, which might lead us to favor a Farrell
approach, with some inputs and outputs that are non-discretionary (or even a direc-
tional distance function approach). In an incentive application, the task is to find
an aggregation of performance that allows optimal contracting. We will see in later
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chapters that one can actually provide incentive rationales for radial measures like
the Farrell approach.

On a very specific level, ease of interpretation is also important. One of the ad-
vantages of the Farrell measure in applications is that it is very easy to interpret.
One can come up with many more or less ingenious ranking systems, and those that
do not perform well may have very strong objections as to how the ranking was
constructed and how the different performance dimensions were aggregated and
weighted. One important element of the Farrell measure, however, is that it does not
weigh the different dimensions. If a firm is not performing well according to this
measure, it is very difficult for that firm to explain away the results because it is
underperforming in all areas rather than just in one potentially overrated dimension.
This is because the Farrell measure uses proportional changes. This argument can
actually be given a game theoretical formalization, as we will show in Chap. 5.

As a last practical concern, let us mention data availability and computations
ease. The more we know about values (prices, priorities), the more focused the
evaluations can become. Prices for inputs, for example, enable us to conduct cost ef-
ficiency analyses that decompose efficiency into allocative and technical efficiency,
which will provide us with more information han a pure technical efficiency analy-
sis would. Likewise, using data from several years allows more robust evaluations
and may possibly allow us to separately consider general productivity shifts and
catch-up effects. Additionally, in more advanced applications involving, for exam-
ple, complicated structural and network models, computational issues shall be con-
sidered. It is less interesting to dream up complicated calculations if they are very
difficult to implement because the resulting programs become too non-linear, for
example.

From a more theoretical perspective, we may compare the general properties of
different measures using axiomatic theory. Some key results are given in Sect. 2.12.
As emphasize there, the Farrell measure has several advantages but suffers from one
problem: a lack of what is called indication. A firm may be efficient in the Farrell
sense even if it is in fact not fully (Koopmans) efficient.

It is also important to keep the rational ideal model in mind when considering
indices of technical efficiency. Ideally, efficiency should reflect utility effectiveness
because efficiency is a sort of proxy for utility effectiveness. We know that dom-
inance relationships are maintained under utility effectiveness in the sense that if
one firm dominates another, then it is also more utility effective. We cannot, how-
ever, be sure that inefficient firms are less utility-effective then some efficient ones.
Therefore, although efficiency provides a useful filter, efficiency is not a sufficient
condition for firm effectiveness, and one should not be too fixated on the ability to
make efficiency evaluations based on a minimum of assumptions. It is still important
to think of ways to elicit preferences and make evaluations that more closely cap-
ture our preferences. After all, small improvements of the right type may be more
valuable than large improvements to less important aspects.
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2.10 Summary

In this chapter, we have taken a somewhat closer look at the general problem of
evaluating and quantifying the performance of a firm by gauging it against a tech-
nology. We have defined efficiency as using the least resources to produce the most
services, and we have looked at different ways to measure efficiency levels. We have
covered the most widely used measure, the Farrell efficiency measure focusing on
proportional improvements to inputs or outputs, and we have discussed alternative
approaches like directional distance functions with excess, an additive measure of
the number of times a given improvement bundle is feasible. We have also discussed
how preference or price information allows more informative evaluations, includ-
ing decompositions spotlighting allocative and technical efficiency factors. We have
shown how one can distinguish between frontier shifts and catching up in a dynamic
context and how structural efficiency can be evaluated by looking at networks of
firms. Lastly, we have discussed some key concerns related to the choice between
alternative measures. Some more advanced material, including the axiomatic char-
acterization of some classical measures, is provided in Sect. 2.12 below.

2.11 Bibliographic notes

The notion of efficiency is used throughout economics and is perhaps most well-
known in the context of the Pareto efficiency concept, wherein the outcomes for
several individuals are compared using the efficiency criterion. A solution Pareto
dominates another if, and only if, it makes someone better off without making any-
one worse off. In multiple criteria decision-making, a main theme is how to find
and choose among efficient alternatives, c.f. e.g., Bogetoft and Pruzan (1991). In
a production economics context, the traditional reference is Koopmans (1951). The
idea behind all related concepts is the same, however: we avoid weighing different
persons, different criteria or different inputs and outputs together by using a more
is better than less approach and looking for improvements that occur in some area
without creating worse performance in others. In Bogetoft and Pruzan (1991), ap-
pendix 1, we formalize how efficiency is related to the rational ideal evaluations that
economists seek to make.

The focus on proportional improvements was suggested by Debreu (1951) and
Farrell (1957). The inverse of Farrell, the Shephard distance function, is due to Shep-
hard (1953, 1970). The use of discretionary and non-discretionary dimensions is
described in many textbooks: for example, Charnes et al (1995). However, this use
dates back at least to Banker and Morey (1986).

The graph hyperbolic efficiency measure was suggested in Färe et al (1985),
while basic work on the excess function was done by Luenberger (1992) and Cham-
bers et al (1998). The idea of constructing interactive benchmarking systems was
suggested in Bogetoft and Nielsen (2005) and Bogetoft et al (2006a) and commer-
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cialized in the Interactive Benchmarking IBTM software from www.ibensoft.com
used by Danish Waterworks.

The idea of allocative efficiency dates back to at least Debreu (1951) and Farrell
(1957), while the Malmquist index dates back to Malmquist (1953) and was made
popular by Caves et al (1982) and Färe et al (1994). There is a large body of lit-
erature on alternative modes of decomposition. Bogetoft et al (2006b) provides an
alternative definition of allocative efficiency that allows us to calculate allocative
efficiency without assuming that technical efficiency has first been eliminated.

The idea of structural efficiency dates back to at least Farrell (1957) on p.262.
He defined structural efficiency as “the extent to which an industry keeps up with
the performance of its own best firms” and suggested that it can be measured by
comparing the horizontal aggregation of the industry’s firms with the frontier con-
structed from its individual firms. A related approach is the average unit approach
suggested by Försund and Hjalmarsson (1979). In a recent study, Andersen and
Bogetoft (2007) developed a DEA-based reallocation model to study the potential
gains from redistributing fishery quotas among Danish vessels. An interesting result
was that the redistribution of production might be just as useful as the learning of
best practices. This is relevant because it may be optimistic to suppose that all units
can adopt best practices, at least in the short run, and reallocations off the frontier
should therefore be considered, cf. also Bogetoft et al (2006b) The idea of interpret-
ing this result as the possible effect of a reallocation program calculating H comes
from Bogetoft and Wang (2005). The application for merger control is developed in
Bogetoft and Katona (2008), while the application for the reallocation of agricul-
tural production is described in Andersen and Bogetoft (2007) and Bogetoft et al
(2009). We discuss structural efficiency and network models in more detail in Chap.
9, where we provide more references.

The link between efficiency and decision theory formalized in the appendix
builds directly on Theorem 1 in Bogetoft and Pruzan (1991), where a proof is also
provided.The axiomatic approach to efficiency evaluations was initiated by Färe
and Lovell (1978). They worked with axioms 2, 3 and 4 below. This was followed
by work by Russell (1985, 1987, 1990), Zieschang (1984), and others. Axiomatic
characterizations of special directional distance measures and discussions of their
relationship to bargaining theory are given in Bogetoft and Hougaard (1999).

2.12 Appendix: More advanced material on efficiency measures

As an appendix to this chapter on efficiency measures, we will now present some
more technical material that can be skipped during a first reading.

http://www.ibensoft.com


52 2 Efficiency Measures

2.12.1 The rationale of efficiency

It is of course possible to identify more precise and profound motivations for re-
liance on efficiency. To consider one such motivation, we will now look at efficiency
in a decision theoretical context.

The basic economic model of (individual) choice is the rational ideal model. The
rational ideal model depicts an economic entity (an individual or system) as seeking
the best means to his desired ends; it is defined by the set of alternatives available
and ones preferences regarding them.

Let us assume that a firm has transformed m inputs x� 2 Rminto n outputs
y� 2 Rn. Additionally, let the objective or preference function be given by

U W RmCn ! R

where U.x; y/ is the utility attached to a production plan .x; y/ Also, let us assume
that the set of feasible input-output vectors is

T � RmCn:

In this set-up, we have that .x�; y�/ is optimal if and only if it solves the basic
decision problem

max U.x; y/
s:t: .x; y/ 2 T (2.1)

i.e., if and only if the firm has made the best, most effective use of its potential.
In practice, this ideal evaluation can seldom be conducted. A common obstacle

is that the feasible production plans T are not known. Another is that the firm or the
evaluator may not have clear-cut expressions of the aggregate performance evalua-
tion criterion U.:/. In public sector contexts, for example, where the agent could be
a school, court or police station, it is often hard to imagine explicit delineations of
the production options. Additionally, the multiple outputs produced will be difficult
to aggregate, such that an explicit preference structure is usually not available.

One perspective on the modern theory of productivity analysis is that it allows us
to make evaluations in contexts with incomplete information about options T and
preferencesU.:/. This is done by focusing on efficiency instead of effectiveness and
by focusing on efficiency relative to a constructed technology rather than in relation
to the underlying true but unknown technology.

Let us now focus on the first problem, the lack of information about U.x; y/ and
the resulting need to shift our attention from effectiveness to efficiency.

As a matter of notation, recall that an input–output combination .x0; y0/ 2 T �
RmCn is efficient relative to the technology T if and only if

8.x; y/ 2 T W x � x0; y � y0 ) x D x0; y D y0:

The set of efficient plans is denoted T E .
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The focus on efficiency is natural. On the one hand, efficiency is not too strong
a requirement because one can always find an optimal production plan among the
efficient ones, and on the other hand, we cannot strengthen the efficiency require-
ment because any efficient plan may be the uniquely optimal plan based on one of
the underlying but unknown preference functions.

We formalize these reflections in the following proposition.

Proposition of Rational Efficiency. For a basic decision problem (2.1) where U
is weakly increasing in y and weakly decreasing in x, i.e., x � x0; y � y0 )
U.x; y/ � U.x0; y0/ , we have that

1. for any .x�; y�/ optimal in (2.1), there exists a .x; y/ 2 T E such that
U.x; y/ D U.x�; y�/ , and

2. for any .x�; y�/ 2 T E , there exists a U such that .x�; y�/ is a unique solution
to (2.1) .

This is a straightforward modification of a well-known result in decision theory.
According to the proposition, we do not lose anything by focusing on efficient

production plans. By the first bullet, an optimal alternative can always be found
among the set of efficient alternatives. However, the set that we consider to find the
optimal alternative cannot a priori be a smaller set than T E if all we know about
the preference function or the overall evaluation criteria U is that they are weakly
increasing. By the second bullet, any efficient alternative may turn out to be the only
optimal plan for a weakly increasing U . Thus, the efficient set T E is the smallest
sufficient set of alternatives to consider.

As noted in Sect. 2.4 and below in the axiomatic characterization, Farrell ef-
ficiency does not guarantee efficiency because there may be slack left when we
project a point onto the frontier of the technology. This should not, however, dis-
turb us too much. After all, when we use the radial measures, we simply find more
Farrell-efficient points than truly efficient points, i.e. we do not exclude any inter-
esting points a priori, but we may leave uninteresting points in the Farrell efficient
set.

2.12.2 Axiomatic characterization of efficiency measures

To understand the pros and cons of different benchmarking approaches, it is useful
to develop a basic understanding of the properties of the efficiency measures that we
use. Here we introduce some desirable properties of efficiency measures and then
record which of them the Farrell measures (and a few other measures) have.

To simplify the exposition, we focus on the input space. The technology can
therefore be defined as the input set L, i.e. the set of input combinations x 2 RmC
that can produce a fixed amount of output y 2 RnC. Formally, L.y/ D f y 2 RmC j
.x; y/ 2 T g and to simplify we just write L as y is fixed in what follows. With
standard regularity assumptions on T if follows that L 	 RmC has the properties
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of being non-empty, closed and free disposable, and every x 2 L can produce y.
Define the weakly efficient (Farrell efficient) subset of L (i.e., the isoquant of L;)
as I D f x 2 L j � 2 Œ0; 1Œ ) �x … L g; and the efficient (Koopmans efficient)
subset of L as LE D ˚

x 2 L
ˇ̌8x0 2 RmC W x0 � x ^ x0 ¤ x ) x0 … L

�
, in two

dimensions the part of the isoquant that does not contain vertical or horizontal parts.
To be of any general interest, an efficiency concept must be applicable to a rea-

sonably large class of technologies: for example, any technology in a set L with
the properties listed for L above. Note that an efficiency measure basically maps a
production plan and a technology into the real numbers. We can formally define it
in the following way. An efficiency measure or index is a function

� W RmC � L ! R

such that �.x; L/ 2 Œ0; 1� for x 2 L.
We see that the Farrell efficiency measure satisfies these conditions.
Another measure that has been around for several years is the Färe-Lovell effi-

ciency index.

EFL.x; L/ D

min
˚ 1

#fi jxi > 0g
mX
iD1

�i
ˇ̌
.�1x1; : : : ; �mxm/ 2 L; �i 2 Œ0; 1�; x 2 L � :

The idea of this measure is that we try to minimize the average of the input-specific
contraction factors; i.e. we conduct individual contractions of the different inputs.
Hence, this process does not necessarily lead to proportional reductions as in the
Farrell case. Graphically, and presuming that all xi > 0, i D 1; : : : ; m, the mea-
sure corresponds to comparing x to the point on L that minimizes a cost function
with prices .x�1

1 ; x�1
2 ; : : : ; x�1

m /. The reason is that minimizing
Pm
iD1 �i under the

restriction .�1x1; : : : ; �mxm/ 2 L is equivalent to minimizing
Pm
iD1 x�1

i Qxi over
Qx � x; Qx 2 L. Simply substitute using �ixi D Qxi .

A third measure combining the two is the Zieschang index defined as

EZ.x; L/ D E.x;L/EFL.Ex;L/

which corresponds to Farrell efficiency multiplied by the Färe-Lovell efficiency of
the Farrell projected input combination.

It is easy to see that

E.x;L/ � EZ.x; L/ � EFL.x; L/:

Now let us consider some general and desirable properties:

Commensurability / Invariance to permutations and rescaling (A1) For allm�m
matrices with exactly one non-zero and positive element in each row and column,
we have that �.x; L/ D �.Ax;AL/.

Indication (A2) �.x; L/ D 1 if and only if x 2 LE .
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Homogeneity of degree �1 (A3) �.�x;L/ D ��1�.x;L/ for all � where �x 2 L.
Monotonicity in inputs (A4) x0 � x; x0 ¤ x implies �.x; L/ > �.x0; L/.
Continuity (A5) �.�x;Le/ is a continuous function of � � 1 when Le D fx 2

RmC j x � eg and x 2 Le .
We interpret these properties as follows:
Commensurability (A1) means that efficiency is not affected by different permu-

tations of inputs, i.e. it does not matter in what order we list the inputs. Moreover,
efficiency is independent of linear re-scalings of the different inputs. Thus, for ex-
ample, it does not matter if we measure in kg or tons. Both E, EFL and EZ clearly
have this property.

Indication (A2) means that we only assign the value 1 to points that are efficient
(in the Koopmanns sense). The Farrell measure does not have this property because
the radial project may end at a vertical or horizontal part of the isoquant. This is
the major drawback of the Farrell measure and one of the motivations for the Färe-
Lovell and Zieschang indices.

Homogeneity of degree -1 (A3) means that if we double the inputs, we halve
the efficiency. Farrell efficiency and Zieschang efficiency satisfy this, but the Färe-
Lovell’s index does not.

Monotonicity of inputs (A4) requires that if we increase the usage of at least one
input, we lower the efficiency score.

Continuity (A5) requires that if we have a Leontief technology and vary the in-
put consumption proportionally for the technology, then the efficiency score will
vary continuously. This is a desirable property in practice because we do not want
small data errors to have dramatic impact on the efficiency score. Unfortunately, this
requirement is not easy to fulfill.

Although these properties seem reasonable, they are not easy to fulfill. As a gen-
eral non-existence theorem, we note that one cannot construct a measure that satis-
fies A2, A3 and A4 simultaneously for the ample class of technologies, L, that we
have considered here. In this sense there is no best efficiency measure to always be
used in efficiency and benchmark analysis.

Table 2.4 summarizes the properties of the Farrell, Färe-Lovell and Zieschang
measures. In the table, (Yes) means Yes as long as we only consider strictly positive
input vectors.

Table 2.4 Properties of efficiency measures

Property E EFL EZ
Commensurability (A1) Yes Yes Yes
Indication A2 No Yes Yes
Homogeneity A3 Yes No Yes
Monotonicity A4 No (Yes) No
Continuity A5 (Yes) No No





Chapter 3
Production Models and Technology

3.1 Introduction

In Chap. 1, we briefly introduced the concept of a production set or a technology
as a way to characterize the production possibilities in a given application. This
concept is crucial in advanced benchmarking because it defines the set of possible
performance outcomes against which we can evaluate the actual performance of a
given firm.

All analyses related to production depend in one way or another on technology.
Technology shows how inputs can be turned into outputs, how inputs can be sub-
stituted for each other, how outputs depend on inputs, and whether outputs are the
result of a joint or a united process.

In this chapter, we discuss the technology set in more detail. We emphasize some
common properties of technology sets: disposability, convexity and return to scale.
A good understanding and feel for these properties is important in benchmarking be-
cause they drive much of the comparison process. In the appendix to this chapter, we
also explain the relation between these ideas and related concepts such production
correspondences, consumption correspondences and cost functions. We also include
a brief introduction to duality. This more advanced material is less important for a
first reading.

3.2 Setting

A firm can be thought of as a decision-making unit that chooses a production plan
(i.e., a combination of inputs and outputs). From this perspective, a firm serves to
transform inputs into outputs. This is illustrated in Figure 3.1.

We assume that we haveK firms indexed k D 1; : : : ; K . Each firm usesm inputs
to produce n outputs. Some of these outputs may be zero; therefore, the setting is
not that restricted.
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Inputs

xk

Outputs

yk

Fig. 3.1 Simple firm

We generally denote the inputs for firm k as the m–vector

xk D .xk1 ; : : : ; x
k
m/ 2 RmC

and the outputs for firm k as the n–vector

yk D .yk1 ; : : : ; y
k
n / 2 RnC:

A production plan for firm k is thus a pair of input and output vectors

.xk ; yk/ 2 RmC � RnC:

Note how we use superscripts to denote firms and subscripts to denote the different
types of inputs and outputs. When we do not have subscripts, we consider all the
inputs or outputs in a vector format.

A final bit of common notation: we use RC D f a 2 R j a � 0 g and RCC D
f a 2 R j a > 0 g. Thus, we presume for now that both inputs and outputs are
nonnegative numbers, i.e., that they are positive or zero.

For easy reference, we list the common notation in used in this book in the
Acronyms and Symbol sheet.

Our starting point is therefore observations of data from K firms in the form
of outputs .y1; : : : ; yK/ and inputs .x1; : : : ; xK/. The inputs and corresponding
outputs for the different firms can be gathered into a table like Table 3.1.

Table 3.1 Data

Firm Input Output
1 x1 y1

2 x2 y2

:::
:::

:::

K xK yK
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3.3 The technology set

The general idea in benchmarking is that the firms we compare have a common
underlying technology as defined by the technology or production possibility set T ,

T D f .x; y/ 2 RmC � RnC j x can produce y g:
The technology is determined by the social, technical, mechanical, chemical, and

biological environment in which the production process takes place.
In many applications, the underlying production possibility set (i.e., the technol-

ogy) is unknown. It is therefore necessary to estimate the technology set based on
observed data points and then to evaluate the observed production of a firm relative
to the estimated technology.

Let us assume for now that data are precise and that no random elements are
involved in the production. This means that the actual observations must belong to
T , i.e.

.xk; yk/ 2 T k D 1; : : : ; K

It follows that the smallest set that contains data is

T D f.x1; y1/; : : : ; .xK ; yK/g:
To prepare for the following, we can express this differently also by saying that T
is the set of .x; y/ values for which there exists a k such that .x; y/ D .xk ; yk/; i.e.

T D ˚
.x; y/ 2 RmC � RnC j 9k 2 f1; : : : ; Kg W .x; y/ D .xk ; yk/

�
:

(3.1)

In general, this is not the most interesting technology.New data will almost certainly
enlarge the technology set, and if a firm wants to change its production process
within this technology set, it can only do what one of the other firms have already
dobe.

At the other extreme is the largest possible technology set,

T D RmC � RnC

under which anything can produce anything. This is also not a very interesting model
since it is not seldom realistic.

We will now look for a technology set that lies between the smallest possible and
largest possible technology sets containing data. We will still use observations as our
starting point, but we will add assumptions to enlarge the technology set sufficiently
to make it interesting but not enough to allow just anything. Put differently, we will
discuss ways to make interpolations and extrapolations of the observations.

Before we do so, however, we should note that there are situations in which the
smallest technology set is actually relevant.
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Practical application: Bulls

In 2005-2007, a group of Danish economists and quantitative geneticists experi-
mented with the use of benchmarking as breeding support. The data set included
more than 1500 Danish bull of a particular breed (SDM) that was described in terms
of 14 dimensions, cf. Table 3.2. Each dimension was summarized as an index be-
tween 1 and 100, with 100 being the best, and they could therefore be thought of as
outputs.

Table 3.2 Bull data

Output indices

Y-index, Total merit, Body, Feet and
legs, Mammary system, Milking
speed, Temperament, Calving index,
Daughter fertility, Mastitis resistance,
Birth index, Longivity, Other health
traits, Beef production

In this case, we did not have any inputs, although the cost of semen could have
been an obvious choice. We also did not use the bull data directly; instead, we used
predicted properties of the calves that would be born from a given cow (specified by
a user), having mated with each of the 1500+ bulls. In this case, the technology is
really the set of these 1500+ expected calves. It would not make sense, for example,
to take the average of two calves (unless perhaps one randomized the choice of
semen). However, due to the size of the set of potential calves, it is still possible to
make interesting comparisons.

3.4 Free disposability of input and output

Our first assumption is that we can dispose of unwanted inputs and outputs. Of
course, if prices are positive, we do not want to simply dispose of outputs if we can
actually sell them or buy inputs that we do not use, but for now, we only consider
the technological possibilities without considering anything that involves markets
or preferences.

Thus, the first idea is that if we can produce a certain quantity of outputs with
a given quantity of input, then we can also produce the same quantity of outputs
with more inputs. One way to interpret this assumption is to say that we can freely
dispose of surplus inputs. We call this assumption the free disposability of input. We
can formalize this idea by saying that if .x; y/ 2 T and x0 � x, then .x0; y/ 2 T ,
i.e.

.x; y/ 2 T; x0 � x ) .x0; y/ 2 T:



3.4 Free disposability of input and output 61

Likewise, if a given quantity of inputs can produce a given quantity of outputs,
then the same input can also be used to produce less output—we can dispose of
surplus output for free. We call this assumption the free disposability of output and
we can formalize it by saying that if .x; y/ 2 T and y0 � y, then .x; y0/ 2 T , i.e.

.x; y/ 2 T; y0 � y ) .x; y0/ 2 T:
When we combine the two assumptions, we derive the assumption of the free

disposability of input and output: when .x; y/ 2 T , x0 � x, and y0 � y, then
.x0; y0/ 2 T ; i.e.

.x; y/ 2 T; x0 � x; y0 � y ) .x0; y0/ 2 T
Let us draw a picture of this assumption. One observation (K D 1) yields the situ-
ation depicted in Fig. 3.2. The vertical dashed line below the observation illustrates
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Fig. 3.2 Free disposability: one firm

the production of lower output than y1 using input x1, and the horizontal dashed
line to the right of the observation illustrates the production of y1 with more input
than x1. The shaded area indicates the free disposability of both input and output.
Thus, based on one observation and this assumption, we have already developed a
(simple) technology set that will not necessarily be altered based on a new observa-
tion.

When we have more data points like .x1; y1/, .x2; y2/, .x3; y3/ and .x4; y4/ in
Fig. 3.3, the technology set is any input-output combination below and to the right
of the data points (i.e., the shaded area in the figure). We see that this set does not
really depend on observation .x4; y4/ because we can infer the feasibility of this
point based on the feasibility of .x3; y3/ and the assumption of free disposability.
Therefore, we have a technology that is somewhat more informative that the set of
observations.

The technology constructed from a set of observations and the free disposabil-
ity assumption is often called the free disposable hull (FHD) in the benchmarking
literature. We can formalize this concept by saying that .x; y/ 2 T if there is a
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Fig. 3.3 Free disposability

k 2 f1; : : : ; Kg such that x � xk and y � yk . Now we can write the tech-
nology set T in a manner similar to that indicated in Eq. (3.1) on page 59, not-
ing that an input-output combination.x; y/ is feasible if and only if there exists an
observation.x;k ; yk/ such that x � xk and y � yk ; i.e.,

T D ˚
.x; y/ 2 RmC�RnC j 9k 2 f1; : : : ; Kg W x � xk ; y � yk

�
: (3.2)

Free disposability means that inputs and outputs can freely be disposed off—or, to
put it differently, we can always produce fewer outputs with more inputs. In some
instances of joint production, this may not hold. It may not be possible to reduce
an unattractive type of output such as CO2 emissions without a corresponding re-
duction in attractive outputs like car transportation. Correspondingly, it may not be
possible to reduce an output like manure without also reducing the output of pigs.
To model such technologies, we use weaker types of disposability assumptions. For
example, we may assume that inputs or outputs can be reduced proportionally.

Still, in most cases, free disposability is a safe and weak regularity assumption
in the construction of an empirical reference technology. Moreover, this assump-
tion has considerable appeal in applications because the peer units can be directly
identified and are real units rather than units constructed via some mathematical
combination of many units. In Fig. 3.3, for example, it is clear that .x4; y4/ is doing
worse than .x3; y3/ because it is using more inputs to produce fewer outputs. If the
data set is sufficiently large (i.e., if the number of firms K is large relative to the
number of inputs m and outputs n needed to describe the activities), then free dis-
posability is also sufficiently powerful to create enough relevant comparisons. If the
data set is small, the discriminatory power of the analyses will tend to weaken in the
sense that almost all firms will be on the boundary of the constructed technology set
and will therefore be efficient, with no opportunity to learn better practices. A few
large-scale benchmarking projects based almost entirely on the FDH technology are
described in the next section.
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Practical application: Credit unions

In 2004-2006, an international team of benchmarking professors was engaged by
the Credit Union National Association (CUNA) in Madison, Wisconsin, to develop
a benchmarking environment. The set of available data was massive and involved
more than 700 variables from more than 10,000 credit unions in each of 6 periods.
The system that was designed and implemented, the Credit Union Benchmarker
(CUB), is still in use today; it took advantage of the large data sets by basing the
technology estimations primarily on the free disposability property.

The aim of the CUB was to generate relevant comparisons by taking into account
a multiplicity of inputs and outputs in accordance with the system view. Models for
whole credit unions and for different sub-processes were created. The aim was also
to give users flexibility in choosing a perspective and to allow users flexibility in
their choice of potential peers. More specifically, the user could choose m inputs,
n outputs and K credit unions to characterize the technology. A user could thereby
combine the power of observed data with subjective beliefs and preferences. For in-
stance, these beliefs and preferences might be reflected in the setK of credit unions
that the user found it worthwhile to compare. The credit unions K could be cho-
sen to ensure the use of similar technology (e.g., because industry-specific credit
unions are believed to have more similarities than industry-specific and regional
credit unions). The credit unionsK could also be chosen to reflect preferences (e.g.,
a preference for learning from credit unions in the same state or region rather than
those in a different one). Because of the large number of observations, free dispos-
ability was sufficient to generate interesting results in most cases. To support other
cases and provide a richer set of information, the system also included the option of
invoking restricted rescaling and fuzzy comparisons to enlarge the technology set
(see below).

Practical application: Universities

In 2006-2008, a benchmarking system using similar ideas was developed as part of
the Aquameth project under the EU Prime Network of Excellence. The focus of the
project was on the strategic steering of universities in Europe based on the collection
and integration of a large data set covering individual universities in the United
Kingdom, Spain, Italy, Norway, Portugal and Switzerland. This was the first dataset
available internationally that was based on time series of micro-based indicators
at the university level. The dataset included information on some 300 universities,
with the UK and Italy as the largest groups. Data from up to 10 years was combined,
yielding a total data set of some 2450 university-years and almost 60 variables used
as proxy inputs and outputs (see Table 3.3).

In a university context, using multiple years may be important because of the
considerable timelag in the production of research outputs.

It is clear from the list of variables that many model specifications are possible.
A highly aggregate model focused on both the teaching and the research mission
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Table 3.3 University data

Financial Inputs Physical Inputs Outputs

Total funds, Student
fees, Government
funding, EU funding,
Private funds,
Income from assets,
Other funds, Total
expenses, Academic
staff expenses,
Non-academic staff
expenses, Other current
expenses, Capital
expenses, Other
expenses

Total academic staff,
Full professors, Full
professors (female), Full
professors (male), Associate
professors, Associate
professors (female),
Associate professors (male),
Researchers, Researchers
(female), Researchers
(male), Other academic
staff, Other academic staff
(female), Other academic
staff (male), Technical
staff, Administrative staff,
Lecture rooms, Scientific
laboratories, Computer labs,
Linguistic labs, Libraries,
Total surface

Enrolled students, Enrolled
students from outside region,
Enrolled students (male),
Enrolled students (female),
Graduate students, Graduate
students from outside
region, Graduate students
(male), Graduate students
(female), PhD students,
PhD recipients, Masters
students, Masters degree
recipients, Publications,
Patents, Revenue from
patents, Spinoff, Cooperation
agreements, Co-publications
with industry

of a university could involve inputs like academic staff and non-academic staff and
outputs like graduate students and number of publications. It is also clear that dif-
ferent users want to focus on different sub-models, and the aim of our contribution
is therefore to enable the users to select the mission, as represented by the included
inputsm and outputs n, and the relevant set of universities believed to have the tech-
nological capacities relevant to this mission, i.e., theK . Despite of the large number
of observations, the fact that the panel dataset is not balanced means that in many
comparisons (i.e., for many choices form, n andK), the available dataset is consid-
erably smaller. Still, the basic technology set used to construct technologies is based
on the free disposability assumption. As in the case of credit unions, we also allow
some rescaling and fuzzy comparisons, which is even more important in the present
case because the data set is smaller.

3.5 Convexity

A very powerful property that is often assumed in economics in general and bench-
marking in particular is that of convexity. In fact, in economics, convexity is so
common that we often take it for granted. In benchmarking, convexity serves the
role of enlarging the technology, especially when there are only a few observations
available. In turn, convexity also creates technologies that are better able to distin-
guish between average performance and best practices. We will now explain the idea
of convexity and discuss when it is appropriate to introduce this concept and when
it is not.
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If we have two feasible production plans, it is often assumed that all weighted
averages of the two are also feasible. In geometric terms, this would mean that for
any two points in the technology set T , the plans on the line between them are also
in T . In mathematics, a set T with this property is referred to as convex. A common
assumption in benchmarking is can therefore be summarized as

T is convex:

Formally, the set T is convex if for any two points .x0; y0/ 2 T , .x1; y1/ 2 T , and
any weight 0 � � � 1, the weighted sum .1 � �/.x0; y0/C �.x1; y1/ is also in T ;
i.e.,

.x0; y0/ 2 T; .x1; y1/ 2 T; 0 � � � 1 ) .1 � �/.x0; y0/C �.x1; y1/ 2 T
The weighted sum of the two plans

.x�; y�/ D .1� �/.x0; y0/C �.x1; y1/ .0 � � � 1/

is called a convex combination of .x0; y0/ and .x1; y1/ with weight �. For � D 1
2
,

we get .x
1
2 ; y

1
2 / D .1 � 1

2
/.x0; y0/C 1

2
.x1; y1/ D 1

2
.x0 C x1; y0 C y1/. In Fig.

3.4, we illustrate the position of .x
1
4 ; y

1
4 / and .x

1
2 ; y

1
2 / in an example.
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Fig. 3.4 Convex combinations

When we have more firms and thus more observed data points, as shown in Fig. 3.5,
we can create not only convex combinations of the original points but also convex
combinations of those convex combinations and so on. This gives us the shaded area
in the Fig. 3.5.

We can think of any such convex combination of convex combinations as one
giant convex combination of more than two points. Let us examine an example with
3 points: .x1; y1/, .x2; y2/, and .x3; y3/, and two convex combinations given by

.x�; y�/ D .1 � �/.x1; y1/C �.x2; y2/

.x�; y�/ D .1 � �/.x2; y2/C �.x3; y3/
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Fig. 3.5 Convex hull

Now consider a convex combination of these combinations

.x� ; y� / D .1 � �/.x�; y�/C �.x�; y�/

We will now rewrite this convex combination of the convex combinations. fro sim-
plicity, we focus on the inputs x� . The combination can be rewritten as follows:

x� D .1 � �/x� C �x�

D .1 � �/
�
.1 � �/x1 C �x2

�C �
�
.1 � �/x2 C �x3

�
D .1 � �/.1 � �/x1 C .1 � �/�.x2 C �.1� �/x2 C ��x3

D .1 � �/.1 � �/x1 C �
.1 � �/�C �.1 � �/�x2 C ��x3:

Note that the sum of the coefficients of the x’es is

.1 � �/.1 � �/C �
.1 � �/�C �.1� �/

�C ��

D .1 � �/.1 � �C �/C �.1� �C �/ D 1 � � C � D 1:

We can therefore change the notation and write

x� D �1x1 C �2x2 C �3x3

where
�1 C �2 C �3 D 1; �1 � 0; �2 � 0; �3 � 0:

and say that x� is a convex combination of x1, x2, and x3.
We can therefore write the technology set T based onK observations from firms

and the assumption of convexity as

T D ˚
.x; y/ jx D �1x1 C � � � C �KxK and

y D �1y1 C � � � C �KyK for (3.3)

�1 C � � � C �K D 1 and .�1; : : : ; �K/ � 0
�
:



3.5 Convexity 67

or, even more simply, as

T D ˚
.

KX
kD1

xk ;

KX
kD1

yk/ j
KX
kD1

�k D 1; �k � 0; k D 1; : : : ; K
�
: (3.4)

This is the smallest convex set that contains the K obervations and is called the
convex hull of the data set f.x1; y1/; .x2; y2/; � � � ; .xK ; yK/g.

Convexity is a strong assumption that is often debated in applications and in the
theoretical literature. In the DEA literature, for example, several relaxations have
been proposed, some of which we will discuss later in the book.

One of the motivations for the convexity assumptions in microeconomics is math-
ematical convenience. Indeed, convexity is required for many of the microeconomic
key results that we often rely on. With convex sets, prices are useful controls and
offer a dual representation based on separating hyperplanes.

Other more basic motivations include the following:

• Convexity occurs naturally in some contexts. In particular, it occurs when differ-
ent processes are available and the organization can decide how much time and
other resources to allocate to the different processes.

• Convexity provides a reasonable approximation in some contexts. In particular,
if the data available on a given firm aggregate data on the processes used in dif-
ferent subunits or subintervals, convex combination can approximate alternative
but non-observed aggregations.

• Convexity is sometimes an operationally convenient but harmless assumption as
far as results are concerned. This is the case, for example, when we focus on cost
efficiency, revenue efficiency and profit efficiency in a setup with fixed prices. In
such cases, the results do not change if we invoke the minimal convex set.

From a theoretical and an applied point of view, however, the convexity assumption
is not unquestionable. The problems with global convexity assumptions include the
following:

• Convexity requires divisibility (because a convex combination is basically an
addition of down-scaled plans). This may not be possible when different invest-
ments are considered, for example, or when set-up times and switching costs are
taken into account.

• Convexity does not take into account the economies of scale and scope (special-
ization) that are present in many industries.

• Prices may depend on quantity, and thereby, the introduction of convexity is not
a harmless convenience.

From a benchmarking perspective, convexity allows us to interpolate from ob-
served firms to firms with input-output profiles between the observations. Convexity
thereby extends the technology, which in turn enables us to rely on fewer observa-
tions and still attain interesting results where not all firms are at the frontier with
nothing to learn. On the other hand, it also becomes less obvious which other firms
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a given firm can learn from, and we may end relying on a priori assumptions rather
than real observations. All of the classical DEA and SFA models presume convexity.

3.6 Free disposal and convex

When we combine the assumptions of free disposability and convexity, we obtain
the shaded area in Figure 3.6.
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Fig. 3.6 Convex technology set with free disposability

The convex and free disposal hull technology derived fromK observations can–
consistent with the Eq. (3.3)–be written as

T D ˚
.x; y/ j x � �1x1 C � � � C �KxK and

y � �1y1 C � � � C �KyK for (3.5)

�1 C � � � C �K D 1 and .�1; : : : ; �K/ � 0
�

or, in a more condensed form, as

T D ˚
.x; y/ j x �

KX
kD1

xk ; y �
KX
kD1

yk ;

KX
kD1

�k D 1; �k � 0; k D 1; : : : ; K
�
:

We see that we form convex combinations as in Eq. (3.3) but that we do not require
.x; y/ to precisely match this convex combination because we also have disposabil-
ity, which means that we only need weakly more input x and weakly less output y to
ensure feasibility. The set in Eq. (3.5) can be proven to be the smallest set containing
data that is both convex and free disposable.
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Numerical example

For readers who have never worked with convexity, the above formulations may
seem abstract. We therefore provide a small numerical example. Consider the ob-
servations in Table 3.4. The observations are plotted in Fig. 3.7. Here we have also

Table 3.4 Numerical input and output for 4 firms

Firm Input Output
1 100 75
2 200 100
3 300 300
4 500 400
5 400 200
6 400 375

shown the smallest possible convex and free disposable technology determined from
firms 1-4. Firms no. 5 and 6 are extra firms to which we will return. The formula for

x

y

1
2

3

4

5

6

0

0

10
0

100

20
0

200

30
0

300

40
0

400 500 600

Fig. 3.7 Technology for numerical input and output

the technology formed by Firms 1-4 by assuming convexity and free disposability
is as follows (cf. also Eq. (3.5)),

T D f .x; y/ j x ��1100C �2200C �3300C �4500

y ��175C �2100C �3300C �4400

�1 C �2 C �3 C �4 D 1; �1 � 0; : : : ; �4 � 0 g:
Firm 1 is in this technology set, as can be seen by letting �1 D 1 and all other �s
equal zero. Firm 2 is in the technology set based on a similar argument, but Firm
2 is also in the set for other values of �. For example, �1 D 0:6, �3 D 0:4, and
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�2 D �4 D 0 gives the (in)equalities

200 �0:6 � 100C 0:4 � 300 D 180

100 �0:6 � 75C 0:4 � 300 D 165

0:6C 0:4 D 1

that are fulfilled.
Firm 5, with x D 400 and y D 200, is also in the Technology set; for �3 D 1,

we get

400 �1 � 300
200 �1 � 300:

On the other hand, Firm 6, with x D 400 and y D 375, is not in the technology
set. To see this, consider the use of convex combinations of Firms 3 and 4. This is
our best chance of identifying inequalities that hold. We obtain

400 ��3 � 300C �4 � 500
375 ��3 � 300C �4 � 400

�3 C �4 D 1

�3 � 0; �4 � 0

It is clear that there are no values of �3 and �4 that fulfill these conditions. (For
example, one might use the equation to obtain �3 D 1 � �4 and substitute this
into the first inequality. Moving terms around, we find that �4 � 0:5. Now, we can
substitute �3 D 1 � �4 into the second inequality; again, a few manipulations give
us �4 � 0:75. These two requirements are inconsistent, and thus, the inequalities
are inconsistent; i.e., observation 6 is not in the technology set, as the graphical
illustration also shows.

3.7 Scaling and additivity

A last class of assumptions commonly introduced in both economics and bench-
marking concerns the option of scaling operations. It seems likely that if some pro-
duction plan is feasible, then we can also use somewhat fewer inputs to produce
somewhat fewer outputs and slightly increased inputs to produce slightly increased
outputs.

More formally, if .x; y/ 2 T , then we should also expect �.x; y/ 2 T for values
of � close to 1. Now, the question becomes what values of � we can use.

At one extreme, we have the assumption of constant returns to scale (crs) if any
possible production combination can arbitrarily be scaled up or down: that is, if
�.x; y/ 2 T for any .x; y/ 2 T and � � 0; i.e.,
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.x; y/ 2 T; � � 0 ) �.x; y/ 2 T:
Graphically, constant returns to scale mean that when .x; y/ is feasible, then any
point on a ray from .0; 0/ that passes through .x; y/ is feasible. When we also as-
sume free disposability, the result is the shaded area in Fig. 3.8.
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Fig. 3.8 Constant returns to scale

A less extreme assumption is that of non-increasing returns to scale (nirs) or (to put
it in a way that is slightly less precise but easier to say and to understand) decreasing
returns to scale (drs). This situation prevails if for any possible production process,
we can arbitrarily decrease the scale of the operation; i.e.,

.x; y/ 2 T; 0 � � � 1 ) �.x; y/ 2 T:
Decreasing returns to scale mean that the output will tend to increase less than the
input such that it will be possible to scale down but not up. Reasons to expect de-
creasing returns to scale include whether a firm can run a process at reduced speed,
reduce capacity utilization or reduce the amount of time that the process takes.

Graphically, this means that for a given production plan, all plans on the line
between zero (i.e., the origo) and this plan are also feasible. This is illustrated in
Fig. 3.9, where the technology based on three observations and the assumption of
non-increasing returns to scale is composed of the three line segments. If there is
also free disposability, the technology set is that indicated in the shaded area.

Instead of assuming that we can scale down but not up, we might assume that we
can scale up but not down. This leads to what we naturally might call non-decreasing
returns to scale (ndrs) or, slightly less precise, increasing returns to scale (irs). This
situation prevails if for any possible production process we can arbitrarily increase
the scale of the operation; i.e.,

.x; y/ 2 T; � � 1 ) �.x; y/ 2 T
Increasing returns to scale mean that the output will tend to grow faster than the in-
put. One reason for this is that a larger scale implies more experience, more efficient
processes and a better ability to utilize specialization possibilities.
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Fig. 3.9 Non-increasing returns to scale

Graphically, this means that for a given production plan, all plans on the line ex-
tending from the point but on the same ray compared to zero as the point are also
feasible. This is illustrated in Fig. 3.10, where the technology based on the same
three observations and the assumption of non-decreasing returns to scale is com-
posed of the three line segments. If there is also free disposability, the technology
set is that indicated by the shaded area.
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Fig. 3.10 Non-decreasing returns to scale

We close this discussion of rescaling by a slightly different assumption one can nat-
urally make, namely that of additivity or replicability. When we have two possible
production plans we can look at the sum of the two plans. If we do nothing else it
seems plausible that the sum of the two is also possible. This is the assumption of
additivity which formally can be expressed as

.x; y/ 2 T; .x0; y0/ 2 T ) .x C x0; y C y0/ 2 T
The role of additivity is illustrated in Fig. 3.11. Here, to simplify the picture, we
have called the two observed input–output combinations a and b rather than the
longer .x1; y1/ and .x2; y2/.
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Fig. 3.11 Additivity

Note that additivity also implies that if .x; y/ is feasible, so is 2.x; y/ D .x; y/ C
.x; y/ and therefore also 3.x; y/ D 2.x; y/C .x; y/ and so on. Likewise, if .x; y/
and .x0; y0/ are possible, so is h.x; y/ C k.x0; y0/ for arbitrary h and k values in
0; 1; 2; 3; : : : (i.e., arbitrary natural number h 2 N and k 2 N). We therefore get a
full grid of feasible production plans even if we have only observed two such plans
to begin with.

Additivity is an appealing assumption because one can think of the added plans
as having been executed by running two autonomous production lines or firms next
door, one following the first plan and the other the second. The additivity assump-
tion basically rules out positive or negative externalities between the two production
plans. Conceptually, therefore, additivity is an appealing assumption. Unfortunately,
models based on additivity is somewhat more difficult to implement. In a mathemat-
ical programming context, for example, we may have to use mixed integer program-
ming to represent this property.

Of course, there are some relationships between the different regularities that we
have introduced. Let us make a few observations that also show the potential power
of the additivity assumption. If we assume both non-increasing returns to scale and
additivity, then we can just as well assume convexity and constant returns to scale.
If we assume convexity and additivity, then we also have constant returns to scale.

Practical application: Waterworks

The interactive benchmarking system IBEN, implemented by the Danish Water and
Waste Water Association (see also page 3), allows the use of several technologies,
including all of the technologies discussed in this chapter. In addition, a special
variant of free disposability is assumed that is called FDH+. One way to look at
this assumption is to say that it combines the free disposability assumption with an
assumption of restricted constant return to scale in the sense that

.x; y/ 2 f.x1; y1/; .x2; y2/; : : : ; .xK ; yK/g; L � � � H ) �.x; y/ 2 T
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where L � 1 and H � 1 are two numbers that are not very far from 1. Thus, it
is assumed that if a production plan is feasible, then we can also use slightly fewer
inputs to produce slightly fewer outputs and slightly more inputs to produce slightly
more outputs.

The technology set resulting from our three observations in the previous figures,
when we assume restricted constant returns to scale and free disposability, is illus-
trated in Fig. 3.12. Here, we have assumed that L=0.8 and H=1.2, i.e. we assume
constant returns to scale as long as we only rescale with 20 % or less.
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Fig. 3.12 The FDH+ method allowed in Danish Waterworks

Theoretically, this property may not be appealing, and it may even seem internally
inconsistent because we do not fully use the rescaling option—we only allow the
rescaling of actual observations and not that of observations formed using the free
disposability of existing observations. Still, from the point of view of applications,
this property has considerable appeal. It allows the user to identify specific existing
firms to imitate under the plausible condition that a firm can be resized to a limited
degree without really changing the organization and the mode of operation.

3.8 Alternative descriptions of the technology

So far we have described the technology by the set T defined as the set of input–
output combinations that we consider to be feasible in the given business case

T D f .x; y/ 2 RmC � RnC j x can produce y g :
We have taken an empirical approach and illustrated how to get an idea of T by com-
bining given observations with simple interpolations and extrapolations from such
observations. The principles used are founded on production economics concepts
like free disposability, convexity, and return to scale.
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In the development of models, computational methods, and applications, it is
sometimes useful to use alternative ways to characterize the technology. We will
therefore close this chapter with a few observations on such alternatives.

It is sometimes convenient to describe the technology from the input or output
side. In such cases, we let the x ! P.x/ and y ! L.y/ be the corresponding
production and consumption correspondences

P.x/ D f y j .x; y/ 2 T g
L.y/ D f x j .x; y/ 2 T g:

The production correspondence is sometimes called the output possibility set or just
the output set, and the consumption correspondence is sometimes called the input
requirement set or just the input set.

It is clear that if we know P.�/ for all values of x, or L.�/ for all values of
y, we can also (re)construct T . Hence, the input and output correspondences give
alternative ways to describe the same technology.

In illustrations, we are often interested in isoquants, i.e. the upper and lower
boundaries of P.x/ and L.y/ respectively. Formally, they are defined as

IsoquantP.x/ D f y 2 P.x/ j �y 62 P.x/ for � > 1 g
IsoquantL.y/ D f x 2 L.y/ j �x 62 L.y/ for � < 1 g:

When we only have one output, n D 1, we can define a production function f as

y D f .x/ D maxf y j .x; y/ 2 T g :
If, on the other hand, we have a production function f .x/, we can define the tech-
nology set T by

T D f .x; y/ 2 RmC � RnC j y � f .x/ g:
For a Cobb-Douglas production function for example the technology set is

T D ˚
.x1; x2; y/ 2 R3C j y � x

˛1

1 x
˛2

2

�
:

Notice that this technology set fulfills the assumptions of free disposability if f is
weakly increasing, i.e. if x0 > x implies that f .x0/ � f .x/. In a similar way, we
can introduce properties of f that correspond to the other general properties of T
above. If for example f is concave, we get a convex production possibility set T as
illustrated in Fig. 3.13.

Thus it makes no difference whether we describe the technology by a technology
set or by a production function. We can use the representation that is most conve-
nient in the specific application.

If there is more then one output, n > 1, i.e. in a general multi-input multi-output
production structure, the production function approach is less useful since we have
to describe the substitution between the different outputs that can typically be pro-
duced by a given input vector. In such cases, we will either work directly with the
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Fig. 3.13 Production function and technology set

technology set or we will use a functional representation based on other function
types.

One such possibility is to use distance functions. In Chap. 2 we introduced the
Farrell and Shaphard distance functions as measures of efficiency, i.e. we used the
distance function to gauge performance. We can, however, also look at distance
functions as a way to describe the technology. The idea is simple. Productions plans
are feasible when they do not over-perform. Recall from Sect. 2.4 that the Farrell
input distance function E and output distance function F are defined as

E D E.x; y/ D minfE > 0 j .Ex; y/ 2 T g
F D F.x; y/ D maxfF > 0 j .x; Fy/ 2 T g

i.e., E is the maximal proportional contraction of all inputs x that allows us to
produce y and F is the maximal proportional expansion of all outputs y that is
feasible with the given inputs x. Now, these distance functions provide an alternative
description of the technology. Note in particular that if we knowE.x; y/ or F.x; y/
for all .x; y/ 2 RnC � RmC, we essentially know T as well. Thus, each of these
functions provides a complete characterization of the technology T because

E.x; y/ � 1 , .x; y/ 2 T
F.x; y/ � 1 , .x; y/ 2 T

or, to put it differently,

T D f .x; y/ 2 RmC � RnC j E.x; y/ � 1 g
T D f .x; y/ 2 RmC � RnC j F.x; y/ � 1 g:

In the case of the Shephard distance functions

Di.x; y/ D maxfD > 0 j � x
D
; y
� 2 T g

Do.x; y/ D minfD > 0 j �x; y
D

� 2 T g :

we of course get parallel results
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Di.x; y/ � 1 , .x; y/ 2 T
Do.x; y/ � 1 , .x; y/ 2 T

and

T D f .x; y/ 2 RmC � RnC j Di.x; y/ � 1 g
T D f .x; y/ 2 RmC � RnC j Do.x; y/ � 1 g:

We can also represent a general multiple inputs multiple outputs production
structure by other functional forms. Most notably, if the technology is convex, we
can use what is commonly called dual representations of the technology using cost
functions, revenue functions or profit functions. The details are given in Appendix
3.11.

3.9 Summary

One of the characteristics of advanced benchmarking studies is that they compare
observed performance against a systematic description of possible performances.
The latter is provided by what we call the technology set, and a good feel for the na-
ture of technologies is therefore important in benchmarking. The technology set is a
description of the input-output combinations that we assume are feasible in a given
context. To describe technologies, it is therefore important to understand which as-
sumptions one can reasonably make, explicitly or implicitly, in the construction of
technologies based on actual observations.

In this chapter, we have covered the three main classes of assumptions: dispos-
ability, convexity and returns to scale. Most importantly, we have defined and illus-
trated in some detail the following key properties:

Free disposability of input. We can produce the same output with more input, i.e.
.x; y/ 2 T; x0 � x ) .x0; y/ 2 T .

Free disposability of output We can produce less output with the same input, i.e.
.x; y/ 2 T; y0 � y ) .x; y0/ 2 T .

Free disposability. We can produce less with more, i.e. .x; y/ 2 T , x0 � x, y0 �
y ) .x0; y0/ 2 T

Convex. Any weighted average of feasible production is also feasible, i.e. .x0; y0/ 2
T; .x1; y1/ 2 T; 0 < � < 1 ) �

.1� �/x0 C �x1; .1 � �/y0 C �y1
� 2 T .

Constant returns to scale. Production can be arbitrarily scaled up and down, i.e.
.x; y/ 2 T; 0 � � ) �.x; y/ 2 T .

Non-increasing returns to scale. “decreasing returns to scale”. Production can be
scaled arbitrarily down, i.e. .x; y/ 2 T; 0 � � � 1 ) �.x; y/ 2 T .

Non-decreasing returns to scale. “increasing returns to scale”. Production can be
scaled arbitrarily up, i.e. .x; y/ 2 T; � � 1 ) �.x; y/ 2 T .
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Most benchmarking methods presume free disposability and convexity. In addition,
some assumption regarding economies of scale is commonly invoked. In applied
and less advanced benchmarking studies, it is not always explicitly stated which
assumptions are used, but this is important to investigate and understand because it
affects the plausibility of the benchmarks we derive.

In addition to the above assumptions, most methods invoke other regularities.
Some have economic content, whereas others are invoked for mathematical conve-
nience.

We also discussed alternative equivalent ways to model the technology. Instead of
using sets, we can use input and output correspondences. Also, we can use distance
functions and when there is only one output, production functions. In the Appendix
we will discuss dual representations based on cost functions, revenue functions, and
profit functions.

3.10 Bibliographic notes

The notions of disposability, convexity and returns to scale are standard in pro-
duction theory and benchmarking and are therefore covered in a large number of
textbooks. Good modern textbooks include for example Chambers (1988), Färe and
Primont (1995), Rasmussen (2010), and Varian (1992).

Additivity and replicability are less common, but have been emphasized by
Tulkens (1993), among others.

For more on the bull project see Bogetoft and Nielsen (2004), the credit union
project, see Bogetoft et al (2004) and Credit Union National Association (2010), the
university project, see Bogetoft et al (2007b), and the waterworks project, see e.g.
www.ibensoft.com.

The duality of directional distance functions is proven in Luenberger (1992),
which generalizes earlier formulations of Shephard’s input duality theorem as
shown by Chambers et al (1996)

3.11 Appendix: Distance functions and duality

As mentioned in Sect. 3.8, we can represent a general multiple inputs multiple out-
puts production structure by alternative functional forms. Most notably, if the tech-
nology is convex, we can use what is commonly called dual representations of the
technology using cost functions, revenue functions or profit functions. A few more
details are given in this appendix.

Initially, let us note that distance functions have some useful homogeneity prop-
erties. Thus, Farrell input efficiency functions E.x; y/ are homogeneous of degree
�1 in x, as can be seen in the following computations for t > 0:

http://www.ibensoft.com
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E.tx; y/ D min
E

fE j .Etx; y/ 2 T g

D min
e

f e
t

j .ex; y/ 2 T g .e D Et/

D t�1 min
e

f e j .ex; y/ 2 T g
D t�1E.x; y/ ;

and the Farrell output distance function is homogeneous of degree �1 in output y,

F.x; ty/ D t�1F.x; y/

as can be shown just like we did above for E .
In the case of Shephard distance functions, we have correspondingly that Di.x; y/

is homogeneous of degree 1 in x and that Do.x; y/ is homogenous of degree 1 in
outputs

Di.tx; y/ D tDi.x; y/ ; Do.x; ty/ D tDo.x; y : .t > 0/

The distance functions and the technology set are different ways to describe tech-
nological restrictions, and we have seen that they under certain assumptions are
equivalent. This might not be a surprise as both methods deal with input and output
quantities.

It might come as more of a surprise that the same kind of duality exists between
the cost, revenue and profit functions and the technology.

The cost function is defined as

c.w; y/ D min
x

fwx j .x; y/ 2 T g

where w 2 Rm is a vector of input prices. By use of separating hyperplanes from
convex analysis it can be shown that if T is convex then

T D f .x; y/ 2 RmC � RnC j wx � c.w; y/ for all w 2 RmCg :
By combining with the above we then also have the duality between distance func-
tions and cost functions

c.w; y/ D min
x

fwx j Di.x; y/ � 1 g
Di.x; y/ D min

w
fwx j c.w; y/ � 1 g :

The same kind of duality also exists for the revenue function

r.x; p/ D max
y

fpy j .x; y/ 2 T g

and profit function
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�.w; p/ D max
x;y

fpy � wx j .x; y/ 2 T g

where p 2 RnC is a vector of output prices. Thus, if T has free disposability and is
convex then

T D f .x; y/ 2 RmC � RnC j py � r.x; p/ for all p 2 RnC g
T D f .x; y/ 2 RmC � RnC j py � wx � �.w; p/ for all .w; p/ 2 RmC � RnC g:

Dual relationships exist also for the directional distance approach and the excess
function mentioned in Sect. 2.5. When T is convex and wd > 0, we have

c.y;w/ D min
x

fwx � e.x; y; d/dw j .x; y/ 2 T g
and

e.x; y; d/ D min
w

fwx � c.y;w/ j wd D 1 g

Hence, e.x; y; d/dw may be interpreted as the additional cost of producing y via x
rather than in the cost-minimal way.

From a theoretical perspective, the technology set is a purely descriptive con-
cept as are the distance functions and the related efficiencies. It is remarkable that
the technology set can be derived from a profit function that normally would be
considered a normative concept. The same goes for the efficiency terms; they are
descriptive by nature, and it is only by interpretation and introduction of prefer-
ences they become normative. Therefore the normative nature of efficiency is only
by an implicit introduction of preferences as was discussed in Sect. 1.6.



Chapter 4
Data Envelopment Analysis DEA

4.1 Introduction

In this and the next chapter, we cover the basics and some additional material on
Data Envelopment Analysis (DEA). DEA combines the estimation of the technol-
ogy with the measurement of performance as related to this technology. It thereby
integrates the two basic problems of a) defining a performance standard, the tech-
nology, and b) evaluating achievements against the established standard. There are
several DEA methods that differ in terms of the estimated technology and the ef-
ficiency concept used. We will cover the most important ones and emphasize what
unites the class of methods that make up DEA.

State-of-the-art benchmarking methods are a combination of two research tradi-
tions. One has its origins in management science, mathematical programming and
operations research. This is the class of approaches that we refer to as DEA mod-
els. The other research tradition has a more economics- and econometrics-oriented
background. These are the SFA approaches that we will discuss in later chapters.
The two lines of research have lived side by side for many years, each with its group
of proponents. The integration of the methods is still limited from a methodological
perspective, but researchers from both camps meet regularly at yearly conferences,
and more and more researchers and consultants use both types of methods in appli-
cations. As we have already indicated in Chap. 1, both approaches have their merits,
and it is better to see them as complements rather than as substitutes.

As an OR technique, the DEA approach has gained impressive momentum since
it was first proposed in the late seventies. There are now several thousand recorded
scientific contributions, some theoretical and some applied.

A short definition of DEA is that it provides a mathematical programming
method of estimating best practice production frontiers and evaluating the rela-
tive efficiency of different entities. In the DEA literature, these are typically called
Decision-Making Units (DMUs), but we will continue to refer to the evaluated en-
tities as firms.

81P. Bogetoft and L. Otto, Benchmarking with DEA, SFA, and R, International Series  
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4.2 Setting

Recall that our general setting involves K firms that use m inputs to produce n
outputs. Additionally, let xk D .xk1 ; : : : ; x

k
m/ 2 RmC be the inputs used and yk D

.yk1 ; : : : ; y
k
n / 2 RnC the outputs produced by firm k, k D 1; : : : ; K . We think of these

as columns vectors. If input factor prices and output product prices are available, we
denote these as wk D .wk1 ; : : : ; w

k
m/ 2 RmC and pk D .pk1 ; : : : : : : ; p

k
n/ 2 RnC for

firm k. Note that we continue to indicate a firm’s identity via a superscript and the
individual inputs and outputs via the subscripts.

To condense our notation, we will often write programs in vector form such that a
firm’s production plan, program, or action is written simply as .xk ; yk/. To simplify
the notation, we may drop the superscript when there can be no doubt as to which
firm we are considering. If we want to have the production plans for all firms, we
will write these in matrix format,X D .x1; x2; : : : ; xK / and Y D .y1; y2; : : : ; yK/

Finally, observe that we use RC to denote the set of non-negative real numbers.
When necessary, we denote the set of strictly positive real numbers as RCC.

Lastly, let us introduce the technology set or production possibilities set

T D f .x; y/ 2 RmC � RnC j x can produce y g:
The background of the DEA literature is production theory, and the idea is that the
firms have a common underlying technology T .

4.3 Minimal extrapolation

Now in reality, we seldom know the technology T . DEA overcomes this problem
by estimating the technology T* from observed historical or cross-sectional data
on actual production activities. The idea of substituting an underlying but unknown
production possibility set with an estimated one is of course not unique to the DEA
approach. It is also done in performance evaluations using traditional statistical
methods, accounting approaches, etc. What is particular about the DEA approach
is the way the approximation of the technology is constructed and the resulting
properties of the evaluations. Technically, DEA uses mathematical programming
and an activity analyses approach, while the statistical methods are generally based
on a maximum likelihood approach. We will return to the technical details and here
focus on the main conceptual idea instead.

In DEA, the estimate of the technology T , the empirical reference technology
T �, is constructed according to the minimal extrapolation principle: T � is the small-
est subset of RmC � RnC that contains the data .xk ; yk/, k D 1; : : : ; K and satisfies
certain technological assumptions specific to the given approach; for instance, free
disposability and some form of convexity. By constructing the smallest set contain-
ing the actual observations, the method extrapolates the least.
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To formalize the minimal extrapolation principle, we consider candidate tech-
nologies T 0 that are subsets of RmC � RnC and that .D/ contains data: .xk ; yk/ 2 T 0,
k D 1; : : : ; K , and .R/ satisfy the regularity assumptions. Let the set of such can-
didate technologies be denoted as

T D ˚
T 0 	 RmC � RnC j T 0 satisfy (D) and (R)

�
:

The minimal extrapolation principle means that we estimate the underlying but un-
known technology T by the set

T � D
\
T 02T

T 0:

Under the regularity assumptions, we see that T � is the smallest set that is consistent
with the data. Formally, this follows from the following contradiction argument: if
T � is not the smallest subset, then there exists a QT 	 T � that satisfies (D) and (R).
However, then QT 2 T , and therefore, T � D \T 02T T

0 � QT ; i.e. we have QT 	 T �
and T � � QT—a contradiction.

We can also see that as long as the true technology T satisfies the regularity
properties, then T 2 T . The approximation that we will develop will be a subset
of the true technology, T � � T . We refer to this as an inner approximation of the
technology.

It is worth stressing that the minimal extrapolation principle is not applicable
with any set of assumptions. It may be that there exist different subsets of RmC � RnC
containing the observed data and satisfying the assumptions without any possibility
of reducing the sets any further. Hence, when developing alternative DEA mod-
els, one must prove the existence of the smallest technology, strictly speaking. It
is straightforward, however, to do this for any model based on a combination of
free disposability, convexity and the standard return to scale properties discussed in
Chap. 3. For these properties, it holds that if two sets T 1 and T 2 satisfy all of the
conditions, so does T 1 \ T 2. Likewise, if two sets both contain the original obser-
vations, so does their intersection. Therefore, a minimal set can be constructed as
the intersection of all sets containing data and satisfying the assumptions, and this
set will inherit those properties.

Thus, our estimate of the technology set is the smallest possible set that contains
the data and fulfills the regularity assumptions. By choosing the smallest set, we are
making a cautious or conservative estimate of the technology set and therefore also
a cautious or conservative estimate of the estimated efficiency and the loss due to
inefficiency.

The reliance on inner approximations and the construction of cautious estimates
of inefficiency is important in applications. It acknowledges that no observed firm
may have reached the frontier of what is technologically feasible, and an approx-
imation based on best practices is therefore cautious. A popular understanding of
the property is also that we estimate the technology so as to present the evaluated
units in the best possible light—or, as consultants might put it, “we bend ourselves
backwards to make you look as good as possible”.
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Apart from the sales talk, it is important to understand that the estimated tech-
nology set that we use in DEA is founded on the minimal extrapolation principle. It
is also important to understand that it is based on the implicit assumption that there
is no noise in the data. If the data used are somewhat random—due to exogenous
chocks, bad reporting practice or ambiguity in accounting practices, for example—
the result will not be valid. This may give some substance to a common reaction by
firms after an evaluation: namely, that they have been evaluated against the hard-
est possible standards (possibly the most lucky firms) and not against a cautious
standard.

Numerical example

To illustrate why the minimal extrapolation principle only works sometimes, let us
consider a simple example in which 4 firms have used one input x to produce one
output y as illustrated in Fig. 4.1. Additionally, let us assume that we want to use
sets that are delineated by linear (in fact, affine) production functions in the sense
that

y � ˛ C ˇx

for some unknown constants ˛ and ˇ. This corresponds to the usual linear models
that we construct in the linear regression and the usual accounting view of produc-
tion and cost functions, where there may be some fixed costs and some variable
costs. (Note that the fixed costs here will be �˛

ˇ
, while the variable cost per unit of

y being produced is 1
ˇ
.)

This way of modeling the technology works well with the minimal extrapolation
principle. In the figure, we have illustrated three possible sets (below the dashed
lines) that have the desired linear regularity and contain the data (the data are below
the dashed lines). It is clear that there are many others and that if we take the inter-
section of all the possible sets, i.e. construct the T � set, then we get the shaded area.
This area, however, is not of the desired nature, i.e. it is not delineated by an affine
function.

The problem is that to get a tight fit for the different points, we must select differ-
ent lines, and there is no single line that simultaneously yields the most conservative
evaluation of all of the observations.

Practical application: Regulatory models

From the point of view of incentive provision, as in the regulatory models of DSOs
first introduced in Sect. 1.1.3, the minimal extrapolation principle is important as
well. Using an inner approximation of the technology and presuming no noise, the
regulated firms are able to do at least as well as we stipulate. We might arrive at too
high a cost estimate and too low an output estimate, and therefore, the firms might
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Fig. 4.1 Linear (affine) approximations

earn information rents because they might be able to cut down more on costs or earn
higher revenue than we stipulate. This is an important property because we want
regulatory systems that are individually rational, i.e. that ensure that the firms will
participate and not go bankrupt. This explains the tight relationship between min-
imal extrapolation and individual rationality that we encounter in Chap. 10, where
we cover some of the formal results of DEA-based incentive regimes.

4.4 DEA technologies

The basic DEA models mainly differ in the assumptions that they make about the
technology T . The most important assumptions are those that that we have already
discussed in Chap. 3, where we also provided small illustrations.

We recall the following:

A1 Free disposability. We can produce less with more; that is, .x; y/ 2 T , x0 � x,
and y0 � y ) .x0; y0/ 2 T

A2 Convexity. Any weighted average of feasible production plans is feasible as
well: .x; y/ 2 T; .x0; y0/ 2 T; ˛ 2 Œ0; 1� ) ˛.x; y/C .1 � ˛/.x0; y0/ 2 T

A3 � -returns to scale. Production can be scaled with any of a given set of factors:
.x; y/ 2 T; 	 2 
.�/ ) 	 � .x; y/ 2 T

A4 Additivity, replicability. The sum of any two feasible production plans is fea-
sible as well: .x; y/ 2 T; .x0; y0/ 2 T ) .x C x0; y C y0/ 2 T

where for � D crs, drs, irs, or vrs and where the sets of possible scaling factors
are given by 
.crs/ D R0, 
.drs/ D Œ0; 1�, and 
.irs/ D Œ1;1�; 
.vrs/ D f1g,
respectively.

The free disposability assumption stipulates that we can freely discard unnec-
essary inputs and unwanted outputs. Except in some cases of joint production (for
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instance, where pollution is produced jointly with desirable outputs), this is a safe
and weak assumption.

As indicated, in using the term weak, we mean that it is safe to make this as-
sumption because it will most often be fulfilled but also that it contains less power
in the sense of extending the production possibility set. Strong assumptions are the
opposite.

The convexity assumption states that any weighted average (convex combina-
tion) of feasible production plans is feasible as well. This assumption is analytically
convenient, and some convexity is generally assumed in economic models. Indeed,
convexity is necessary for market systems with price-based coordination to work
efficiently. Still, convexity is not an innocent assumption, and many attempts have
been made in the DEA literature to use weaker-convexity assumptions: e.g., to only
assume the convexity of input consumption sets L.y/ and output production sets
P.x/ rather than to assume the convexity of the full set T . In small data sets, con-
vexity has significant power.

The return to scale assumptions suggests that some rescaling is possible. Dif-
ferent assumptions have been made regarding the extent and nature of the feasible
rescaling. The weakest assumption is that there is no rescaling possible, � D 1, and
the strongest is that there are constant returns to scale, � � 0. No rescaling is also
called variable returns to scale to produce a common terminology. In between, we
may assume that any degree of downscaling is possible but not any degree of up-
scaling, � � 1. This means that it cannot be disadvantageous to be small but that
it may be disadvantageous to be large, i.e. there may be decreasing returns to scale.
More precisely, this concept is sometimes referred to as non-increasing returns to
scale. The last and less commonly used assumption, which is actually quite natural
and appealing, is that of increasing (or non-decreasing) returns to scale, � � 1. The
idea here is that it cannot be a disadvantage to be large but that it may possibly be a
disadvantage to be small.

Lastly, the additivity assumption stipulates that when we have feasible production
plans, their sum will be feasible as well. Again, this is a natural assumption because
one might, for example, imagine that the two original production sites were build
next door and run under independent management. By using the original inputs, the
sites should therefore be able to produce the same output, and the firm should be
able to produce the sum. Unfortunately, additivity is also a difficult assumption to
work with and is therefore the least common of the assumptions.

As mentioned above, all DEA models share the idea of estimating the technology
using a minimal extrapolation approach, and they only differ in the assumptions
that they invoke. In Table 4.1 below, we summarize the assumptions invoked in six
classical DEA models: namely, the original constant return to scale (CRS) model;
the decreasing, increasing and varying return to scale (DRS, IRS and VRS) models;
and the free disposability and free replicability hull (FDH, FRH) models. The latter
are not always called DEA models, but we use this terminology because of the
common conceptual idea of minimal extrapolation. The last row of Table 4.1 defines
some parameter setsƒ that we will use in the construction of the technologies from
the actual sets below.
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Fig. 4.2 DEA technology sets under different assumptions

In Chap. 3, we have already provided small graphical illustrations of the different
assumptions and indicated what we can conclude from the given observations by
invoking them individually as well as in combination with one another.

Using the same approach here, we see that the six DEA models in the single–
input, single–output case generate technologies like the ones illustrated in Fig-
ure 4.2.

We see that the DEA approach involves looking for the smallest set that includes
or envelopes the input–output observations for all of the firms. This also explains
the name: Data Envelopment Analysis.
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Table 4.1 DEA model assumptions

A1 A2 A3 A4 Parameter set
Model Free disp. Convexity � return Add. � 2 RK

C

FDH X 	 D 1
P
�k D 1; �k 2 f0; 1g

VRS X X 	 D 1
P
�k D 1

DRS (NIRS) X X 	 � 1
P
�k � 1

IRS (NDRS) X X 	 � 1
P
�k � 1

CRS X X 	 � 0 �k � 0

FRH X 	 D 1 X �k 2 N0

It is relatively easy to prove, cf Sect. 4.11, that the minimal extrapolation tech-
nologies in the six models are

T �.�/ D ˚
.x; y/ 2 RmC � RnC j 9� 2 ƒK.�/ W x �

KX
kD1

�kxk; y �
KX
kD1

�kyk
�

where

ƒK.fdh/ D f� 2 NKC j
KX
kD1

�k D 1 g

ƒk.vrs/ D f� 2 RKC j
KX
kD1

�k D 1 g

ƒK.drs/ D f� 2 RKC j
KX
kD1

�k � 1 g

ƒK.irs/ D f� 2 RKC j
KX
kD1

�k � 1 g

ƒK.crs/ D f� 2 RKC j
KX
kD1

�k free g D RKC

ƒK.frh/ D f� 2 NKC j
KX
kD1

�k free g D NKC

and where we have used NC to denote the non-negative integers (natural numbers).
It is important to understand that the estimates of the technology, the T �.�/ sets,

are derived from the feasibility of the observations and the regularity assumptions
using the minimal extrapolation principle. That is, the mathematical set T �.�/ is
the smallest set containing data and fulfilling the assumptions that we have listed in
the model we call � .
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The way that we express the FDH model may look somewhat complex next to
the simplicity of the FDH technology. This complexity serves, however, to allow
us to express all of the models in a similar way and thereby to emphasize their
relationships. Thus, it is clear from the above formulations that the larger theƒK.�/
set, the larger the estimated technology. It follows that we can partially rank the
technologies from smaller to larger (indicated by arrows below) in the following
way:

FDH VRS

IRS

DRS

FRH

CRS............................................................................. ..............
...............

................
...............

................
................

................
...............

................
................

................
...............

................
................

..............................
..............

...............
................

................
...............

................
...................
..............

................................................................................................. ........
......

................................................................................................................................................... .......
.......

................................................................................................. ........
......

...............
................

................
................

...............
...................
..............

Thus, FDH is the smallest technology set. VRS is larger because we have ”filled out
the holes”. By allowing some scaling, we arrive at a larger set, either DRS (which
enlarges the set for small input values) or IRS, which enlarges the technology for the
large input values. Allowing full rescaling and convexity, we determine our largest
technology, the CRS technology. The FRH is somewhat less comparable to the oth-
ers, but it is larger than FDH and smaller than CRS. Of course, one can also see this
from Table 4.1.

These relationships are interesting because they suggest systematic differences
between the outcomes of benchmarking exercises depending on the assumptions
that we make a priori. The larger the 
K sets, the larger the estimated technology,
i.e. the more optimistic we are in estimating the improvement potential of a firm. The
flip-side of this is of course that the firms look less efficient in the larger models.
Ideally, then, the choice of assumptions shall be carefully argued and, if possible,
tested. We will show some such tests in Chap. 6.

Practical application: DSO regulation

In regulatory applications, it is always important to discuss which assumptions to
make a priori, and this discussion attracts a great deal of attention. This is not sur-
prising because it may have a huge impact on the revenues that companies are al-
lowed to charge.

Firms therefore normally unanimously prefer the FDH model. In regulations,
however, there are seldom enough data to avoid the convexity assumption. Of the
VRS, DRS, IRS and CRS models, the firms also tend to prefer the VRS models be-
cause they all have higher efficiency scores in this and thereby, for example, higher
cost norms. The choice between DRS and IRS is seen as favoring either the large or
the small, while the CRS is the worst alternative for most firms.

The regulator, however, should have different interests. To limit the firms’ in-
formational rents and as a (partial) representative of the consumers, the regulator
will tend to prefer large models to reduce the reasonable charges. However, this is
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not the regulator’s only concern. The regulator will also not wish to be too harsh
because this may reduce relevant maintenance, halt relevant new investments or, in
the worst case scenario, drive sound firms into bankruptcy. This may lead the reg-
ulator to favor a smaller model. A third concern for the regulator can be structural
development. Choosing a CRS model, for example, will give the firms incentives to
reorganize, merging ones that are too small and splitting ones that are too large to
adjust them to the optimal scale, as we will see in Sect. 4.8 below.

4.5 DEA programs

When we combine the idea of minimal extrapolation with Farrells idea of measuring
efficiency as a proportional improvement, we obtain the mathematical programs that
many consider synonym with the DEA approach.

On the input side, we measure the Farrell efficiency of firm o as the input effi-
ciency

Eo D E..xo; yo/IT �/ D minfE 2 RC j .Exo; yo/ 2 T � g
If we insert the formulation of T �.�/ from above, we get

min
E;�1;:::;�K

E

s.t. Exo �
KX
kD1

�kxk ;

yo �
KX
kD1

�kyk;

� 2 ƒK.�/:
For the sake of clarity, let us also write out this somewhat compact vector form

in coordinate form as

min
E;�1;:::;�K

E

s.t. Exoi �
KX
kD1

�kxki ; i D 1; : : : ; m

yo �
KX
kD1

�kykj ; j D 1; : : : ; n (4.1)

� 2 ƒK.�/:
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Hence, the DEA approach to efficiency measurement leads to a mathematical op-
timization problem. This explains why DEA is sometimes referred to as the mathe-
matical programming approach to efficiency analyses.

On the output side, we similarly measure the efficiency of firm o as the output
efficiency using

F o D F..xo; yo/IT �/ D max fF 2 RC j .xo; Fyo/ 2 T � g
and inserting the formulation of T �, we get the following linear programming prob-
lem:

max
F;�1;:::;�K

F

s.t. xo �
KX
jD1

�kxk

Fyo �
KX
jD1

�kyk

� 2 ƒk.�/:
In the case of constant returns to scale, we must confront an inverse relationship

between input and output efficiency: i.e. F D 1=E.
In all of the classical cases we have considered, the optimization problems are

relatively simple. They involveKC1 variables, a linear objective function,m linear
input constraints and n linear output constraints plus possibly an additional linear
constraint and possible integer constraints from the � 2 ƒK.�/ constraint. In the
CRS, VRS and DRS cases, the programs are simple linear programming (LP) prob-
lems, and in the FDH and FRH cases, they are mixed integer programming (MIP)
problems with integer � variables. We provide a brief introduction to some key lin-
ear programming results in the Appendix 4.11

Although we have formulated the FDH model similar to the other models above,
we should note that the FDH model will typically not be solved using MIP routines.
In fact, this would be overkill because it is possible to rewrite the program as a series
of simple minimax problems that can be solved using a well defined series of simple
comparisons. It is easy to see, for example, that the input and output efficiency of
.xo; yo/ relative to the FDH technology is

Eo.fdh/ D min
kWyk �yo

max
iD1;::;m

xki
xoi

F o.fdh/ D max
kWxk�xo

min
jD1;::;n

ykj

yoj

To understand these formulations, note that to find the input efficiency of a FDH
technology, we must look at all of the firms that are producing more of the outputs
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to find a relevant comparator. We are looking to find the comparator that makes firm
o look the least efficient, so we first minimize the outer optimization. Now, for a
candidate peer unit, we must determine which inputs lead to the highest performance
evaluation of firm o because this determine the largest proportional reduction that
we can make to all inputs at the same time. Then, in the second, inner optimization,
we maximize. The logic of the output-based measure in the FDH case is similar. As
a result of these formulations, one can easily write routines with two nested loops
that find FDH efficiency scores.

Practical application: DSO league tables

As mentioned in Sect. 1.1.3, many European countries routinely benchmark their
electricity distribution system operators or DSOs. In Sweden, for example, this
started in 2000, where a series of models were analyzed with the aim of estab-
lishing useful and reliable efficiency measurements for the more than 200 Swedish
DSOs. The results are published on a yearly basis and read with great interest by the
companies as well as local politicians and consumers.

An example of what the published results might look like is shown in Fig. 4.3
below. Such tables are the usual primary outputs of benchmarking exercises. In fact,
in Sweden, the regulator goes a step further by both offering the results of several
models and providing color coding for easy interpretation. The color coding use
green as an indication of fine performance, yellow as an indication of performance
that should be closer monitored, and red as an indication that performance is clearly
unsatisfactory.

In the Fig. 4.3, we see also four columns of efficiency scores. The first three are
traditional Farrell input efficiency scores, while the last is a scale efficiency measure
that we will return to below. The three Farrell efficiency scores are derived from
three different models. Each model describes the production in a DSO as a transfor-
mation of different costs types to 5 outputs: Delivered energy High Voltage (MWh),
Delivered energy Low Voltage (MWh), No of connections High Voltage, No of con-
nections High Voltage, and Maximum demand (MW). This is done while taking into
account 3 environmental conditions, including network length and climate.

The three models differ on the input side, where the short run model (SR) focus
on the reduction of the operating expenditures Opex while the long-run model (LR)
also focus on reducing Net-losses and capital expenditures, Capex. Lastly, the price-
efficiency model (PE) focus on the cost to consumers, which may differ from the
firms’ cost if the firms have different profit margins. The models also deviate in
terms of the assumed return to scale. In the short-run model, it is assumed that a
VRS specification is most relevant because the DSOs have limited opportunities to
reorganize in the short run. The LR model, the other hand, assume CRS because
different concession areas could possibly be integrated over a longer time span.
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Company
Hedesunda Elektriska AB

Karlsborgs Energi AB

Herrljunga Elektriska AB

Tibro Elverk
Kramfors Energiverk AB

KREAB Energi AB
Lerum Energi AB

AB PiteEnergi

SR PE LR SE
1.00 1.00 1.00 1.00
0.32 0.86 0.71 0.98
0.83 0.88 1.00 1.00
0.67 1.00 0.81 0.95
0.66 0.86 0.42 0.42
0.67 0.64 0.68 0.95
0.70 0.79 0.75 0.86
0.73 0.54 0.73 1.00
0.95 1.00 1.00 1.00
0.58 0.75 1.00 1.00
0.84 0.91 0.79 0.79
0.59 0.68 0.59 0.99
0.67 0.70 0.67 0.98
1.00 1.00 0.98 0.98
0.56 0.79 0.59 1.00
0.86 0.93 0.75 0.84
0.61 0.61 0.90 0.90
0.43 0.70 0.54 0.91
0.62 0.69 0.62 0.85
0.72 0.87 0.84 0.94
0.62 0.73 0.63 0.86
0.71 0.82 0.59 0.59
0.53 0.84 0.79 0.79
1.00 0.88 1.00 1.00
0.84 1.00 0.83 0.83
0.49 0.66 0.51 0.87
0.60 0.55 0.51 0.85
0.58 0.77 0.54 0.79
0.81 0.70 0.72 0.85
1.00 1.00 1.00 1.00
0.71 0.59 0.56 0.79
0.49 0.59 0.41 0.60
0.44 0.71 0.52 0.93
1.00 0.89 1.00 1.00
0.80 0.78 0.79 0.96

Fig. 4.3 Part of Swedish DSO performance table 2002 (test version)

4.6 Peer units

The right-hand sides in the DEA program Eq. (4.1) defines the reference unit

� KX
kD1

�kxk;

KX
kD1

�kyk
�

against which we compare firm o. We see that the DEA program identifies a spe-
cific reference unit, most often a weighted average of the existing units and that the
reference unit may vary with the evaluated unit. The units with positive weights are
typically called peer units, i.e.

Peer Units D ˚
k 2 f1; : : : ; Kg j �k > 0 �

and we can therefore say that DEA identifies explicit real peer-units for every eval-
uated unit.

Graphically, the reference unit is the unit on the technological frontier that firm
o is projected onto, and the peer units are the actual frontier units that spans the part
of the frontier where the reference unit is located. A numerical example is provided
in Sect. 4.6.1.

The reference unit and the associated peer units are usually interpreted as the
ones demonstrating how firm o can improve.
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Of course, this argument is most convincing when there is actually only one peer
unit because it is not clear exactly how to imitate a convex combination, especially
when the peers involved are very different in terms of the resource combinations
that they use and the service combinations that they deliver. This makes the FDH
approach particularly appealing. Additionally, the FRH approach can be thought of
in this way because the reference unit in this case can be understood as the sum of
existing firms, and this may guide strategic decisions intended to improve firm o.

Although the classical DEA models will typically produce combined reference
units, i.e. use weighted averages of figures for several firms, it is still the case that
the DEA models will use references based on a much reduced set of firms com-
pared to, for example, the parametric models. One can therefore argue that a distinct
advantage of DEA is that it provides explicit, real peer-units.

In the DEA models, the number of possible peer units for a given firm is equal
to the number of inputs plus the number of outputs except in the CRS case, where
there can generally be one less peer unit. This follows from the fundamental linear
programming results covered in the Appendix 4.11. According to LP theory, if there
exists an optimal solution, there exists a basis optimal solution for which the number
of positive variables is at most equal to the number of linear restrictions. In the VRS,
DRS and IRS programs, there are mC nC 1 rows andK C 1 variables, (� and E),
and because E is typically positive, there are m C n C 1 � 1 D m C n variables
left that may be positive. In the CRS model, we have one constraint less. Although
there may be mC n or mC n� 1 peer units for a given firm, there will typically be
less. This happens when there is slack in the solution. We will return to this below.

A result of the above is that the more inputs and outputs are included in an analy-
sis, the more firms are in the reference set and the more firms have an efficiency of 1.
Therefore, one ought only to include inputs and outputs that are definitely relevant.
Including too many inputs and outputs will tend to make many firms efficient, i.e.
the methods lose their discriminatory power or their ability to distinguish the high
performers from the rest. To put it differently, with few data points, we are unable
to estimate complex technologies of high dimensionality.

For these reasons, DEA researchers have suggested rules of thumb for the rela-
tionship between the number of firms and the number of inputs and outputs. The
traditional rules are that we need K > 3.mC n/ and K > m � n, i.e. the number of
firms must exceed 3 times the number of inputs plus the number of outputs, and the
number of firms must exceed the product of the number of inputs and the number of
outputs. These requirements are definitely at the low end, and one can propose other
rules: e.g., by comparing to the number of unknown parameters in the most flexible
parametric model, the translog model, which we will discuss in Chap. 8.

Practical application: Waterworks

This also explains why peer information is made explicit in several studies. An
example is IBEN, the interactive benchmarking approach used by the Danish water-
works, cf. section refsec:IBEN. In IBEN, the peer units and their relative weights,
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the � values, are illustrated by the bars in the lower part of the screen, and users can
learn by accessing all available information about the peer units via a separate tab.
In fact, on the main screen shown in Sect. 2.5, users can click on the bars to remove
peers units that they find less interesting and perform a new analysis of the reduced
set of observations. This case emphasizes the importance assigned to the peer units
in real applications.

More generally, the peer units for a given firm are often considered a signal of
the modeling quality. In real-life instances, we have therefore often had industrial
representatives on study steering committees examine a series of peers for different
firms to evaluate their relevance. Our practical experience is that if one uses reason-
able inputs and outputs, the peer units will most often seem natural for the industrial
partners as well.

4.6.1 Numerical example in R

Production data and the corresponding graphs for a case in which six firms have
used 1 input to produce 1 output are provided in Table 4.2.

Table 4.2 Data for six firms with one input and one output

firm input x output y
A 20 20
B 40 30
C 40 50
D 60 40
E 70 60
F 50 20

8080

A

B

C

D

E

F

CRS
VRS

x

y

0

0

0

0

20

20

20

20

40

40

40

40

60

60

60

60

Generally, we must formulate the mathematical program and then find a solver
to actually do the calculations. Let us illustrate how the general formulations above
look in the specific example. To find the input efficiency of firm B using the VRS
technology, we must solve the following program, cf. the general formulation in Eq.
4.1,
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min E

s.t. E � 40 � �A20C �B40C �C40C �D60C �E70C �F 50;

30 � �A20C �B30C �C 50C �D40C �E60C �F 20;

D �A C �B C �C C �D C �E C �F ;

�A � 0; : : : ; �F � 0;E � 0:

This example is sufficiently simple that we can easily determine the production
possibility set and calculate the efficiency figures by hand. However, with just a
few more observations and more inputs and outputs, calculations by hand become
tedious, and we must rely on computers.

DEA problems can be solved using any of the large number of general linear
programming routines available. Standard spreadsheets can even be used to solve
a fair number of simple problems. However, such an approach would of course
become tedious if not impossible when one had to solve several large problems. It
is therefore more convenient to use some of the specialized software programs that
have already been developed to solve DEA problems. The advantage in general is
that they are easy to begin using. The potential drawback is that one is limited to
whatever functions the developer has included.

The use of a free open-source software like that developed through the R project
can help overcome these limitations. In addition, it allows for easy integration into
other mathematical and statistical models. The downside is that coding takes a little
longer to learn. Still, with the packages that are available now, it is relatively easy to
begin. In this book, we therefore rely on R to illustrate both the DEA and the SFA
models.

Moreover, we have developed a package called Benchmarking that contains all of
the main DEA and SFA methods that we cover in this book. We must also note that
there are other DEA and SFA routines developed for R and that are available through
the R repository. Some of them are mentioned and compared in Chap. A, where we
also give a short introduction to R and the relevant benchmark packages. We note
in particular that Poul Wilson has developed an interesting package called FEAR,
Wilson (2008), which is available through his personal homepage. Paul Wilson was
a forerunner in the use of R for DEA problems, and his routines have the advantage
of conducting massive computations very quickly.

To estimate the input efficiency of the data in the above table, assuming vari-
able returns to scale, VRS, we can use our ”Benchmarking” package in R with the
following commands:

Output from these commands are

[1] 1.0000 0.6667 1.0000 0.5556 1.0000 0.4000

> library(Benchmarking) # load the Benchmarking library
> x <- matrix(c(20, 40, 40, 60, 70, 50),ncol=1) #define inputs
> y <- matrix(c(20, 30, 50, 40, 60, 20),ncol=1) #define outputs
> e_vrs <- dea(x,y, RTS="vrs", ORIENTATION="in")#solve LP problem
> eff(e_vrs) #select efficiency scores from the results in e
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showing that most of the firms are fully efficient, as we can also see from the figure
in Table 4.2.

Now, via obvious modifications, we can also make calculations under different
assumptions. Thus, for example, if we want to determine the Farrell efficiency of
the CRS model, we use

> e_crs <- dea(x,y, RTS="crs", ORIENTATION="in")
> eff(e_crs)
[1] 0.8000 0.6000 1.0000 0.5333 0.6857 0.3200

We see that in the CRS model, only firm C is fully efficient, as the figure also shows.
We can similarly and easily calculate efficiency under alternative assumptions

about the technology as well, using the RTS option with values ”drs”, ”irs”, ”fdh”
and ”add”, where the latter is what we have also called FRH. The results are sum-
marized in Table 4.3. We see how efficiency falls (or stays constant) when we move
towards a larger technology. Thus, FDH efficiency is always the largest and CRS ef-
ficiency the smallest for a given firm. Additionally, VRS efficiency is always weakly
larger than DRS and IRS efficiency.

Table 4.3 Efficiency for six firms

Firm Input Output EFDH EVRS EDRS E IRS EFRH ECRS

A 20 20 1.00 1.00 0.80 1.00 1.00 0.80
B 40 30 1.00 0.67 0.60 0.67 1.00 0.60
C 40 50 1.00 1.00 1.00 1.00 1.00 1.00
D 60 40 0.67 0.56 0.53 0.56 0.67 0.53
E 70 60 1.00 1.00 1.00 0.69 0.86 0.69
F 50 20 0.40 0.40 0.32 0.40 0.40 0.32

It is also very easy to determine the peers and weight information using the
peers and lambda functions in the efficiency calculations.

> e_vrs <- dea(x,y, RTS="vrs", ORIENTATION="in", NAMES=TRUE)
> peers(e_vrs)

[,1] [,2]
[1,] 1 NA
[2,] 1 3
[3,] 3 NA
[4,] 1 3
[5,] 5 NA
[6,] 1 NA
> lambda(e_vrs)

L1 L3 L5
[1,] 1.0000 0.0000 0
[2,] 0.6667 0.3333 0
[3,] 0.0000 1.0000 0
[4,] 0.3333 0.6667 0
[5,] 0.0000 0.0000 1
[6,] 1.0000 0.0000 0
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The peers function tells us that unit 1 (=A) is being compared with unit 1 (=A),
i.e. to itself. This is not surprising because unit 1 is efficient. Firm 2 (=B), however,
has two peers, 1(=A) and 3 (=C). The case is similar for the other firms. Note that
there are at the most two peers. This is in accordance with the theory we covered
above because we have 1 input and 1 output and use a VRS model, i.e. there can be
at most 1+1 peer units. The relative importance of the peer units—i.e. the � values—
is extracted with the lambda function. We see that there are 3 active peers in total.
The � values that are sometime strictly positive are L1.D �A/, L3.D �C /, and
L5.D �E /. We see also that, for example, Firm 4 (=D) is compared to a weighted
average of 1 and 3, with 3 accounting for 2/3 of the weight. This result is also
clearly depicted in Table 4.2 because firm D is indeed projected on the line segment
between A and C and closest to C.

To use the real names of firms instead of numbers, one can make use of the names
option in Benchmarking. Often, however, particularly with large data sets and long
names, it is convenient simply to number the units and then substitute in the names
in the final presentation.

4.7 DEA as activity analysis

Some authors like to conceptualize the DEA model as an activity analysis model
with reference to Koopmanns, the first Nobel Prize Winner in Economics (1975).
For people trained in linear programming, this makes perfect sense because activity
analysis is a very powerful modeling approach that has been used since the 1950s
to model real problems using LP problems.

In an activity analysis model, we basically start out by describing the different
activities in an organization: e.g., the different machines or processes. These pro-
cesses are represented by column vectors defining how inputs are transformed into
outputs. In a farm model, for example, each cow could be an activity transforming
different types of input: foodstuffs, labor and capital into different types of output:
milk, calves, manure, etc. Additionally, we could include activities representing dif-
ferent crops. The question asked in activity analysis is how intensely to use the
different activities: e.g., how to divide the foods among the cows and how to divide
the labor between animals and crops. The constraints in this case will therefore re-
flect the available resources: e.g., the amount of food available and the balance of
the different resources.

It is clear that the DEA problems are similar to such classical operation research
models. We just use realized input-output combinations as different columns in
the LP problem, and the question of activity intensity becomes one of finding the
� weights. Hence, DEA models are essentially activity analysis models with the
added feature that information about the activities is provided via actual observa-
tions rather than, for example, expert descriptions of what might be done.

This also points to another novel feature of DEA. In DEA, we use LP to evaluate
the past, while traditional OR uses LP to plan the future.
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Practical application: Quasi-activities in regulation

This analogy can also guide the combination of DEA with other techniques. If we
can make engineers or organizational specialists discover new ways to transform
resources into services, we can in principle include them as columns in the DEA
problem just in the same way that we do the input–output combinations that we
develop.We can than benchmark not only against best practices used but also against
possible improvements on best practices.

One area in which this has been done is regulation of network companies. In
several countries, regulators are experimenting with the use of engineering models
to supplement models derived purely from real observations. If we can predict what
a redesigned network using modern equipment may be able to accomplish and then
include some such quasi-networks as artificial observation, we may obtain a more
forward-looking benchmark.

So far, such efforts have only been experimental, and the main use of the engi-
neering models has been to identify potentially important inputs and outputs that
can guide empirical modeling. For example, this occurs in the German regulation of
transmission companies as a way to compensate for a small sample. In Chile, regu-
lation also involves some non-realized quasi-observations; there, however, they are
developed by different teams of management consultants that investigate different
subsets of the firms for possible improvements.

4.8 Scale and allocative efficiency

4.8.1 Scale efficiency in DEA

In the CRS model, and to some extent the DRS and IRS models, the return to scale
properties are fixed by assumption. This is not the case for the VRS model, and
one may therefore wish to know what will happen if we slightly rescale a firm. One
possibility is that the inputs and outputs will be scaled up and down with the same
proportions. This corresponds to local constant return to scale. Another possibility is
that we can scale the firm up at least slightly but not down based on local decreasing
returns to scale. The last possibility is that we can scale up slightly but not down,
i.e. there may be local increasing returns to scale.

In a single–input, single–output model VRS model, it is easy to see that as we
move along the frontier from smaller to larger inputs, the returns to scale is first
increasing, then constant and finally decreasing. Geometrically, this means that a
line from (0,0) to a frontier point has a slope that first increases, then stalls, and
finally decreases. Economically, it means that the average product—i.e. the number
of outputs per input unit–first increases, then is constant and then falls. We call the
input level at which we have constant return to scale the most productive scale size
(MPSS). At the most productive scale size, the average output is maximal, and in a
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single-input cost model, the average costs in minimal. If possible, all firms would
like to operate here.

In a multiple–input, multiple–output setting, we see a similar pattern as we tra-
verse the efficient frontier in a given direction in the input and output space, i.e.
when we look at the point .tx; F.tx; y/y/ as t increases.

Now, to measure the loss from not operating at optimal scale size, we use the
notion of scale efficiency SE. We calculate this as the ratio of input efficiency in a
CRS model to that in a VRS model, i.e.

SE.xo; yo/ D E.xo; yoI crs/
E.xo; yoI vrs/

We see that this measure is never higher than 1 and that it is precisely 1 when the
VRS and CRS technologies coincide, i.e. when a firm is operating at optimal scale
size. The smaller the value of SE, the more is lost from not having the high average
product that one would have at the most productive scale size.

To better understand SE, we can rewrite the above definition as

E.xo; yoI crs/ D E.xo; yoI vrs/ � SE.xo; yo/
This means that we can decompose the efficiency (related to a CRS technology)

into two components: 1) pure (technical) efficiency measuring the ability to use best
practices in the VRS technology and 2) scale efficiency measuring the ability to
operate where the average output bundle per input bundle is maximal. A graphical
illustration is provided in Fig. 4.4 below. We see that the size of SE can be calculated
by comparing the necessary inputs on the efficient VRS frontier and the necessary
inputs on the CRS frontier.

E.xo; yoI crs/ D kxcrsk
kxok D kxcrsk

xvrsk � kxvrsk
kxok D SE.xo; yo/ �E.xo; yoI vrs/
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Scale efficiency expresses how close the firm is to the optimal scale size: the
larger the SE, the closer the firm is to optimal scale. This is interesting informa-
tion because it indicates the likely gains from adjusting firm scale. Unfortunately, it
does not show to what extent an SE less than 1 is due to the firm’s being too small
or too large. This is easy to determine, however, by also calculating the efficiency
under DRS. Thus, if E.xo; yoI drs/ D E.xo; yoI crs/, the firm is below optimal
scale size because here the DRS and CRS technologies coincide. Alternatively, if
E.xo; yoI drs/ D E.xo; yoI vrs/, the firm is above optimal scale size. One can
of course arrange this test in different ways. One could for example just look at
E.xo; yoI vrs/ � E.xo; yoI drs/. If this is 0, the firm is on or above optimal scale
size and if it is equal to 0 the firm is on or below optimal scale size. An alternative
approach is to look at

P
k �

k . If this sum is less than 1, the firm is below optimal
scale size, and if it is above 1, the firm is above optimal scale size.

The idea of looking at scale efficiency is appealing because it provides a measure
of what could be gained by adjusting the size of the firm. In a firm, this can shape
the strategic planning process and help firms decide whether to choose an expansion
or a contraction strategy. For a regulator or researcher, it can indicate the structural
efficiency of the industry, i.e. to what extent we have the right number of firms of
the right size.

There are, however, some caveats. First, the idea of adjusting scale size may
not work in reality because the markets may not be competitive and some firms
may for natural reasons be unable to change their scale of operation: e.g., if they
serve a geographically isolated area of sub-optimal size. We will show how to deal
with such complications in Chap. 9. Secondly, the optimal scale size depends on the
exact direction in the input and output space. It is therefore not easy to derive simple
guidelines on this subject. The optimal size of a farm, for example, can usually not
be summarize in a single measure like the amount of acres or the number of cows
since it varies with the exact composition of inputs and outputs. A farm specializing
in crop productionmay need to be one size to minimize average costs, while a mixed
farm with animals and crops may need to be another size.

Numerical example in R

To illustrate the analysis of scale efficiency, consider the same six firms as in Sect.
4.6.1. We can analyzing their scale efficiencies with the follow R code:

> e_vrs <- dea(x,y,RTS='vrs')
> e_drs <- dea(x,y,RTS='drs')
> e_crs <- dea(x,y,RTS='crs')
> se <- eff(e_crs)/eff(e_vrs)
> se
[[1] 0.8000 0.9000 1.000 0.9600 0.6857 0.8000
> abs(eff(e_vrs)- eff(e_drs)) < 1e-4 #test if DRS eff = VRS eff
[1] FALSE FALSE TRUE FALSE TRUE FALSE

We see that firms A and B are below, firm C is at optimal, firm D is below, firm E is
above and F is below optimal scale size.
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4.8.2 Allocative efficiency in DEA

In Chap. 2, we also introduced the notion of allocative efficiency as useful for sup-
plementing pure technical efficiency. In terms of input, allocative efficiency AE is
related to the choice of the least costly resource mix; in terms of output, it is related
to the chosing a revenue-maximizing product mix. It is easy to use these concepts
with any specific technology, including the technologies used in DEA. In fact, in
DEA models, all resulting optimization problems become simple linear program-
ming problems.

To illustrate this, letw be the input prices. The cost minimal plan is developed by
minimizing the cost associated with producing a given output. Thus, as explained in
Chap. 2, we must solve the minimization problemallocative efficiency AE

minwx subject to .x; y/ 2 T
Using a VRS DEA technology yields the following LP problem

min
x1;:::;xm;�1;:::;�K

w1x1 C � � � C wmxm

s.t. xi �
KX
kD1

�kxki ; i D 1; : : : ; m

yj �
KX
kD1

�kykj ; j D 1; : : : ; n

KX
kD1

�k D 1:

This is a simple linear programming (LP) problem with m CK variables; we pick
m cost-minimizing inputs x D .x1; : : : ; xm/, and we ensure that they are able to
produce y by requiring that there be a convex combination of production plans that
(weakly) dominates .x; y/.

If we solve the above problem, we find the minimal cost of producing y. We may
denote this C �.y/, i.e. C �.y/ is the optimal value of the objective in the above
LP problem. Specifically, if we solve it for y D yo, we can therefore find the cost
efficiency of firm o as

CE.xo; yo/ D C �.yo/
wxo

i.e. as the minimal cost divided by the actual costs. Also, we can find the allocative
efficiency as

AE.xo; yo/ D CE.xo; yo/

E.xo; yoI vrs/
In a similar way, if we know the output prices, we can find the maximal revenue

production plan by solving a simple LP problem with n C K variables. From this
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we can evaluate revenue efficiency and hereby also the allocative efficiency on the
output side as explained in Chap. 2.

Numerical example in R

Consider the problem with six firms as detailed and illustrated in Table 4.4. We
analyzed the same problem in Sect. 2.6.1 using simple graphics and calculation by
hand, but we will now show how to do the calculations in R.

Table 4.4 Data for cost minimization

Firm x1 x2 y

A 2 12 1
B 2 8 1
C 5 5 1
D 10 4 1
E 10 6 1
F 3 12 1

Price w 1.5 1.0
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To solve the cost minimization problem using R, we first load the data and then
use the procedure cost.opt from the Benchmarking package:

> library(Benchmark)
> x <- matrix(c(2, 2, 5, 10, 10, 3, 12, 8, 5, 4, 6,12),ncol=2)
> y <- matrix(rep(1,6), ncol=1)
> w <- matrix(c(1.5, 1), ncol=2)
> te <- dea(x,y,RTS="vrs")
> te
[1] 1.0000 1.0000 1.0000 1.0000 0.7500 0.6667
> xopt <- cost.opt(x,y, w, RTS="vrs")
> xopt

[,1] [,2]
[1,] 2 8
[2,] 2 8
[3,] 2 8
[4,] 2 8
[5,] 2 8
[6,] 2 8
>
> cobs <- x %*% t(w)
> copt <- xopt$xopt %*% t(w)
> ce <- copt/cobs
> ae <- ce/te$eff
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> cbind(ce,te$eff,ae)
[,1] [,2] [,3]

[1,] 0.7333333 1.0000000 0.7333333
[2,] 1.0000000 1.0000000 1.0000000
[3,] 0.8800000 1.0000000 0.8800000
[4,] 0.5789474 1.0000000 0.5789474
[5,] 0.5238095 0.7500000 0.6984127
[6,] 0.6666667 0.6666667 1.0000000

We see how the values for technical efficiency (te), cost efficiency (ce) and al-
locative efficiency (ae) are all similar to those that we calculated by hand in Sect.
2.6.1.

Note also that the cost.min method takes the same options as the dea method
(except, of course, that it also requires a vector with input prices w). If the firms have
different prices for their inputs, then the input prices must be in the form of a matrix.
Because all of the firms have the same input prices and the same output, the optimal
input combination is also the same for all firms: .x�

1 ; x
�
2 / D .2; 8/ corresponding

to firm B in the figure. To calculate cost efficiency, we find the actual cost wx and
the optimal cost wx�, and we divide the latter by the former. This is calculated
in R by using the inner product %*%, or matrix multiplication where the function
t is matrix transposed. Note that firm B is fully technically efficient and displays
allocative efficiency; therefore, it is also fully cost efficient. Firms A, C and, D are
technically efficient but do not demonstrate allocative efficiency, whereas the reverse
is true for firm F, and firm E fails to demonstrate either of these types of efficiency.
That F is allocative efficient can also be seen from the figure in Table 4.4; F is on
the ray through Firm B, which displays allocative efficiency.

4.9 Summary

In this chapter, we have covered the basic Data Envelopment Analysis (DEA) meth-
ods. DEA essentially provides a mathematical programming method for estimating
optimal production frontiers and evaluating the relative efficiency of different enti-
ties.

The DEA methods can be used to estimate best-practice technologies based on
observed production plans using the minimial extrapolation principle. We find the
smallest production possibility set that contains data and has a minimum of produc-
tion economic regularities.

The different DEA methods differ in the ex ante assumptions that they involve.
The basic assumptions, as we have also discussed in Chap. 3, are free disposability,
convexity and decreasing, increasing or constant returns to scale. Another concep-
tually appealing assumption is additivity. We have discussed different combinations
of these assumptions as they have been made popular in the FDH, VRS, DRS, IRS,
CRS and FRH models. We have also shown what the minimal extrapolation tech-
nologies look like in these models.



4.10 Bibliographic notes 105

Most DEA studies use is the Farrells notion of efficiency measured as the largest
possible proportional contraction of all inputs or the largest possible proportional
expansion of all outputs. The combined technology estimation and measurement
problem can be formulated as separate simple linear programming problems in the
VRS, DRS, IRS and CRS cases. In the FDH and FRH cases, one needs to use more
advanced mixed integer programming, although the efficiency of the FDH model
can also be determined using simple enumeration techniques.

One of the popular features of DEA models is that they produce explicit peers
(i.e. an explicit list of a few firms that a given firm is benchmarked against). The
peer units are the firms with positive weights in the evaluation of a given firm. They
can guide the learning process and validate the model.

Lastly, we have discussed scale efficiency and allocative efficiency. Scale effi-
ciency is the ability to get the most outputs per input, and it is measured as the ratio
of CRS-based efficiency and VRS-based efficiency. Allocative efficiency is to use
a cost-minimizing input combination or to produce a revenue-maximizing output
mix. The cost-minimizing and revenue-maximizing reference plans can be found
by solving simple linear (or, in the FDH and FRH models, mixed integer) program-
ming problems.

In addition to covering the basic DEA models, we have illustrated the use of R
and the benchmark library to make actual calculations efficiently.

4.10 Bibliographic notes

DEA was originally proposed by Charnes et al (1978, 1979) and has subsequently
been refined and applied in a rapidly increasing number of papers. In his 1992 bib-
liography, Seiford (1994) lists no fewer than 472 relevant published articles and
Ph.D. theses. A 2002 bibliography by Tavaras (2002) includes more than 3000 con-
tributions. For alternative textbook introductions to DEA, see Charnes et al (1995),
Coelli et al (1998a), or Cooper et al (2007)

In the DEA literature, the CRS model is often called the CCR model, named after
the seminal papers Charnes et al (1978, 1979). The VRS model is often called the
BBC model after Banker et al (1984).

Convexity is a strong assumption that is debated in the DEA literature, and differ-
ent relaxations of the concept have been proposed: e.g., Bogetoft (1996), Bogetoft
et al (2000), Chang (1999), Kuosmanen (2001), Petersen (1990), Post (2001), and
Tulkens (1993). One reason for the appeal of the convexity assumption in microe-
conomics is mathematical convenience. With convex sets, prices are useful controls
and offer a dual representation based on the idea of separating hyperplanes. Other
more basic motivations include

The idea of most productive scale size was suggested by Banker (1984). The
concept of using

P
k �

k to determine firm size as compared to optimal scale size
has been discussed by Banker et al (1984), Banker and Thrall (1992), and Chang
and Guh (1991), among others.
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The R library FEAR for efficiency calculations with R is documented in Wilson
(2008). The R package Benchmarking that we generally rely on is introduced in
Bogetoft and Otto (2010)

The development of the Swedish DEA models for DSO regulation is described
in Agrell and Bogetoft (2000). Using the idea of quasi-observations in the German
regulation of transmission companies is discussed in Agrell and Bogetoft (2010a),
while the use of management consultants in the regulation in Chile is discussed in
Agrell and Bogetoft (2003).

Linear Programming, i.e. linear optimization, is the subject of a large number of
standard operations research and mathematical programming books. An early con-
tribution that also emphasize economic applications is Gale (1960). Another early
classic on LP and economics models, is Dorfman et al (1958). It is less mathemat-
ical. Other old but standard references are Hadley (1962), Hillier and Lieberman
(2010), and Luenberger (1984).

The characterization of DEA “cost” and production functions given in the ap-
pendix are developed in Bogetoft (1997), Bogetoft (1994b, 1996, 1997), where we
also cover some other cases.

4.11 Appendix: More technical material on DEA models

In this appendix, we cover some more technical material relevant to the DEA mod-
els. We first prove that the minimal extrapolation principle does lead to the DEA
estimated technologies formulated in the main text. Next, we cover a few funda-
mental results on Linear Programming (LP), and finally, we consider the special
cases of a simple cost function and a simple production function in the DEA frame-
work. We derive the properties (increasing, convex/concave, etc) of these functions
that corresponds to the properties (free disposability, convexity etc) we have used to
characterize the technology set in the main text.

4.11.1 Why the T �.�/ sets work

In this chapter, we have formulated the minimal extrapolation sets T � that result
from a set ofK observations when we invoke the assumptions of the different DEA
models. To actually prove that T �.�/ is the smallest set containing data and fulfilling
the assumptions we have listed for the model referred to as � , we need to show three
things: that the set contains the data, has the desired properties and is the smallest
set with these properties.

That the data is included is the easiest to prove. In all cases (i.e. for all the models
� ), if .xk ; yk/ 2 T �.�/, we can simply pick �k D 1; �k

0 D 0 for all k’ ¤ k.
To prove that the sets have the stipulated properties is somewhat more complex,

or at least, tedious. Consider, for example, the free-disposability property. We must
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show that
.x; y/ 2 T �.�/; x0 � x; y0 � y ) .x0; y0/ 2 T �.�/

Now, .x; y/ 2 T �.�/ means that there exists a � 2 T �.�/ such that x � P
�kxk

and such that y � P
�kyk . Now, because x0 � x; y0 � y, we can actually use the

same � for .x0y0/ and we get x0 � x � P
�kxk ; y0 � y � P

�kyk such that also
.x0y0/ is in T 
 .�/

Lastly, to show that the sets are the smallest sets containing data that have these
properties, we shall simply show that at least these sets must be possible because
we have already shown that they have the desired properties. Again, this process is
a little tedious but straightforward. Note that if the observed practices are feasible,
so is

. Qx; Qy/ D .
X

�kxk ;
X

�kyk/

for � 2 ƒK.�/. In the VRS case, this follows directly from the convexity assump-
tion; in the DRS case, it follows from the convexity assumption and decreasing
returns to scale (because if we multiple the convex weights by a factor slightly less
than 1, then we can simply redefine the weights and let them sum to slightly less
than 1). In the IRS case, this follows from the convexity assumption and DRS; in
the CRS case, it follows from convexity and CRS. In the FRH case, it follows di-
rectly because the right hand side will be one of the observations, and in the FRH
case, it follows from possibly repeated use of the additivity condition. Now, because
. Qx; Qy/ 2 T �.k/, so is .x; y/ with x � Qx and y � Qy based on the free disposability
property. This shows that T �.�/ � T �, and because we have shown that T �.k/ also
has the desired properties itself, it must be the minimal extrapolation set.

4.11.2 Linear programming

Linear programming means linear optimization and the general problem is to find a
non-negativem-column-vector x which satisfy a system of linear inequalitiesAx �
b for which the linear function cx has a maximum. We can write this as

max
x

cx subject to Ax � b; x � 0

where c is am-row-vector,A am�nmatrix and b a n-column-vector. The above is
often called the primal LP problem. We are thus seeking m non-negative variables
that maximizes cx subject to n linear restrictions. Without the use of matrices we
can formulate this LP problem as

max
x1;:::;xm

c1x1 C � � � C cmxm

s.t. ai1x1 C � � � C aimxm � bi i D 1; : : : ; n

xj � 0 j D 1; : : : ; m
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where s.t. is an abbreviation of subject to. We say that a linear program is feasible if
there exists a vector that satisfy all the linear inequalities. Any such vector is called
a feasible solution. If there exist an optimal solution x� we call cx� for the value of
the program.

Without further ado we list the main theorems of linear programming that we
use in the text. Readers interested in proofs can look in the referred literature or any
standard mathematical programming book.

The Fundamental Theorem of LP. If a LP problem with n restrictions has an op-
timal solution then there exists an optimal solution in which at most n variables are
positive.

A solution with the mentioned number of positive variable is called a basic solu-
tion. The theorem reflects that solutions to LP problems are corner solutions.

An important theme in LP is duality. We will make use of duality in Chap. 5. The
dual of the above (primal) LP problem is another LP problem, where the aim is to
solve:

min
y

yb subject to yA � c; y � 0

where y is a n-row-vector, which we typically interpret as prices on the n resources
in the b vector. If we look at the primal problem as one of maximizing the value of
a production plan, the dual problem is one of finding prices leading to the minimal
valuation of the b resources such that no feasible production is profitable.

The Duality Theorem of LP. If the primal has an optimal solution, x�, then the
dual also has an optimal solution, y� and vise versa. Moreover, when both have
optimal solution, the value of the programs are the same, i.e. cx� D y�b.

We can reformulate a LP problem as a Lagrange problem and interpret it as such.
The Lagrange function for the primal problem is

ˇ.x; y/ D cx C y.b � Ax/

where the dual variable y is the Lagrange multipliers. The economic interpretation
of a Lagrange multiplier is well-known as the marginal change in the optimal value
when we make a marginal change to the side condition, i.e. a marginal change in
b. We can also say that y is the shadow price of b. If a condition in optimum is
not-binding, i.e. there is a i for which

Pm
jD1 aij xj < bi , then the corresponding

optimal dual variable is zero, yi D 0. This result is the equilibrium theorem for LP
problems:

The Equlibrium Theorem. A feasible solution .x1; : : : ; xm/ for the primal problem
and a feasible solution .y1; : : : ; yn/ for the dual problem are optimal if and only if

yi D 0 when
mX
jD1

aijxj < bi i D 1; : : : ; n
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and

xj D 0 when
nX
iD1

yiaij > cj j D 1; : : : ; m

The conditions are also known as the complementary slackness conditions, and the
theorem is sometime called The Complementary Slackness Theorem. The first con-
dition conveys a fairly simple economic logic: If there is slack (leftovers) in a con-
strained primal resource, then additional quantities of that resource must have no
value. The second can be given a similar interpretation - if an activity (column in A
matrix) is non-profitable, then we should not use it.

4.11.3 DEA “cost” and production functions

The DEA technologies are usually characterized as sets in general input-output
space as we have presented them in this chapter. This is useful for general multi–
input multi–output settings. When the inputs or the outputs can be aggregated into
one dimension (e.g. a cost aggregate or a compound product), we can derive similar
representations in function space. Because many practical applications have only
one input or one output, it is useful to know which ex ante assumptions the DEA
approaches entail in these cases. This is one way to understand the weak ex ante
assumptions made under the DEA approach as opposed to those made based on
traditional statistical models.

The single input “cost” function

First consider the setting with a single input m D 1 interpreted here as costs. We
will talk about this as a “cost function”. It is a cost function in the sense that it maps
outputs into a single input (which we call costs) but deviates from the production
economics idea of a cost function as mapping the product of n dimensional output
space and m dimensional input price space onto real numbers. On the other hand,
the everyday use of the phrase “cost function” is consistent with the situation that
we consider here. In regulatory settings, for example, we routinely estimate cost
functions linking actual operating expenses to a series of cost drivers reflecting the
output services provided. Such cost functions are effectively mappings from n di-
mensional output space to 1 dimensional input space.

More formally, let there be K observations .xk ; yk/; k 2 K; associated with an
underlying but unknown technology T � R1Cn

C , and let us define a “cost function”
or input requirement function as

C.y/ WD minfx j .x; y/ 2 T g
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The regularitiesA1�A4 that we have used to characterize T in Sect. 4.4 are similar
to those for the cost function

A1� Increasing: y0 � y ) C.y0/ � C.y/

A2� Convex: C.˛y C .1 � ˛/y0/ � ˛C.y/C .1 � ˛/C.y0/;8˛ 2 Œ0; 1�
A3�.�/ � � returns to scale: C.	y/ � 	C.y/; 8	 2 
.�/
A4� Sub-additive W C.y C y0/ � C.y/C C.y0/

That is, if T satisfies any condition A, C.�/ satisfies the corresponding condition
A�. The equivalence is actually more involved than that. As long as we have free
disposability, we can also construct T from C ,

T D f.x; y/ 2 R1Cn
C j x � C.y/g

and the fact that C.�/ fulfills any A� now makes T fulfill A. The proofs are not
terribly involved, although they are tedious.

It follows that the initial uncertainty about the technology that the different DEA
models reflect can be expressed as uncertainty about what the cost function looks
like within one of the following broad classes of cost functions:

C.crs/ D fC W RmC ! RC j C is increasing, convex, crsg
C.drs/ D fC W RmC ! RC j C is increasing, convex, drsg
C.vrs/ D fC W RmC ! RC j C is increasing, convexg
C.frh/ D fC W RmC ! RC j C is increasing, sub-additiveg
C.fdh/ D fC W RmC ! RC j C is increasingg

Thus, in the DEA framework, there is considerable a priori uncertainty. In a � -DEA
model, we know that

C.�/ 2 C.�/

i.e. we know that C.�/ is increasing when � = fdh, for example, but otherwise,
we know nothing about the cost function. These results also emphasize why the
DEA approach has been termed non-parametric. Our a priori uncertainty does not
stem from a lack of information about a few parameters, as in a Coob-Douglas or
a Translog statistical model. Rather, we lack information about all of the charac-
teristics of the function except for a few general properties such as its tendency to
increase.

The minimal extrapolation principle for estimating T as the smallest set T �
containing data and satisfying the conditions imposed can now be translated into
function space. We estimate the DEA-based cost function as the largest function
with these properties that is consistent with data in the sense that xk � C.yk/;

k D 1; : : : ; K; :i.e. as

C �.y/ WD maxfC.y/ j C.�/ 2 C.k/; xk � C.yk/ k D 1; : : : ; Kg
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We see that this approach involves an outer approximation of the production possi-
bility set T D f.x; y/jx � C.y/g as opposed to the inner approximation we have
worked with above. The approximation is illustrated in the left panel of Fig. 4.5
below for a DRS technology.
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Fig. 4.5 DEA cost and production function estimations

The cost function approximation concept is an important alternative view of the
DEA cost function. Assume that a principal bargains with an agent regarding the
production of some output y. C �.y/ can be interpreted as the highest cost that the
agent can possibly claim when it is publicly known that xk can produce yk for all
k D 1; : : : ; K: If the principal has no information on any subject other than the
type of cost function and the K observations, he cannot pay less than C �.y/ if he
wants to be sure that the agent will accept the contract because there is always a
possibility that the true cost does coincide with C �.y/: Hence, paying anything less
than C �.y/ will involve the risk that the agent will quit the relationship.

An important feature of the class of cost functions considered in DEA is that a
largest function of this type actually exists–or, to put it differently, that the C �.�/
defined above inherits the properties from the C.k/ class. This is the functional ver-
sion of the discussion that we had above about which assumptions one can combine
with the idea of minimal extrapolation.

Now the largest cost function that is consistent with data and has the desired
regularity, C �.�/, is also the cost function that we would obtain by first doing min-
imal extrapolation in the input-output space (i.e. by first constructing T � and then
deriving the cost function). That is, we have C �.�/ D C ��.�/ where

C ��.y/ D minx;� x
s.t. x � P

k �
kxk

y � P
k �

kyk

� 2 ƒK.�/; x 2 RC
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This means that even though we use an outer approximation strategy, we end up
with the same estimated function as when we use an inner approximation strategy
on T .

In summary, in the single-input, multiple-output case, we may think of DEA in
the usual way using production sets with desired properties, or we may think of it in
cost function space where the cost function features related and natural regularities.

The single-output production function

The same equivalence can of course be established in the multi–input, single-output
case n D 1, where we can think of the production possibilities in terms of traditional
production functions. When T � RmC1

C is the production possibility set, we define
the production function in the usual way as the maximum possible output from a
given input

R.x/ WD maxfy j .x; y/ 2 T g
The regularities A1 � A4 that we have used to characterize T translate into similar
regularities of the production function

A1�� Increasing W x0 � x ) �.x0/ � �.x/

A2�� Concave W �.˛x C .1 � ˛/x0/ � ˛�.x/C .1 � ˛/�.x0/;8˛ 2 Œ0; 1�
A3��.�/ k � returns to scale W �.	x/ � 	�.x/; 8	 2 
.�/
A4�� Super-additive W �.x C x0/ � �.x/C �.x0/

That is, if T satisfies any condition A, R satisfies the corresponding condition
A�� and vice versa, as in the cost case. The classes of production functions corre-
sponding to the classical DEA models are now

R.crs/ D fR j R � 0 increasing, concave; crsg
R.drs/ D fR j R � 0 increasing, concave; drsg
R.vrs/ D fR j R � 0 increasing, concaveg
R.fdh/ D fR j R � 0 increasingg
R.frh/ D fR j R � 0 super-additiveg

That is, an alternative interpretation of the DEA framework in the single-output case
is that we know ex ante that the underlying production function belongs to a certain
wide class of functions

R.�/ 2 R.�/

but that we otherwise have no a priori information about which production function
prevails.

The minimal extrapolation principle in the production function representation
estimates the smallest function with these properties that is consistent with data in
the sense that R.xk/ � yk ; k D 1; : : : ; K;
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R�.x/ WD minfR.x/ j R.�/ 2 R.k/; yk � R.xk/ k D 1; : : : ; Kg
Conceptually, the idea is that the firms may have lost some of their potential output
and may therefore be working below the frontier. Minimal extrapolation approxima-
tion minimizes the potential productions and thereby the contemplated losses that
come as a result of being off the frontier.

We see that the production function approach, like the cost function approach,
involves the outer approximation of the production possibility set T rather than the
inner approximation (as in the models we used in the main text). The resulting ap-
proximations are the same as long as we choose the classes of production functions
appropriately. The approximation is illustrated in the right panel of Fig. 4.5 above
for a VRS technology.

Finally, we note that the lowest production function that is consistent with the
data and has the desired regularity, R�.�/, is also the production function that we
would obtain by first doing minimal extrapolation in the input-output space (i.e. by
first constructing T � and then deriving the production function from this). That is,
we have R�.�/ D R��.�/ where

R��.x/ D maxy;� y
s.t. x � P

k �
kxk

y � P
k �

kyk

� 2 ƒK.�/; y 2 RC
In summary, in the single output case, we may think of DEA in the usual way

using production sets with desired properties, or we may think of it in production
function space where the production function has related and natural regularities.





Chapter 5
Additional Topics in DEA

5.1 Introduction

We covered the basics of DEA in the previous chapter. In this chapter, we will cover
some additional topics that we find particularly relevant both to applications and to
our understanding of DEA.

We will first discuss the idea of super-efficiency. Next, we will relax the Farrell
idea of proportional improvements in all inputs or outputs. We will discuss situa-
tions in which only some of the resources or services are discretionary, and more
generally, we will discuss the use of directional distance measures in DEA. We will
close our discussion of alternative efficiency concepts in the DEA context by taking
a closer look at the slack problem.

The last half of this chapter considers more radical reformulations of the basic
problems. We will look at dual versions of our traditional DEA programs and con-
sider how they can be used to provide alternative interpretations of DEA measures
and to impose restrictions on the relative importance of different resources and ser-
vices. We will also discuss some minimax formulations and explain why such game
formulations can be useful. In the Appendix, we discuss different types of outliers
and how to identify and eliminate outliers in a frontier model.

Statistical inference in DEA models is covered in the next chapter.

5.2 Super-efficiency

What is now called super-efficiency and is routinely calculated using several soft-
ware programs was first suggested as a means of differentiating among frontier
units. In many applications, several firms are ranked as fully efficient, and it may
be interesting to consider ways of ranking them.

The idea of super-efficiencywas later proved crucial to regulation and contracting
applications of DEA. It is intuitively obvious that firms with an efficiency score of
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1 have little incentive to improve because it will not improve their score. We will
return to this in more detail in Chap. 10.

Super-efficiency measures are constructed by avoiding that the evaluated firm
can help span the technology. Let T �.� j �k/ be a DEA approximation of the
technology using the � assumptions and based on all observations but that of firm
k:

T �.� j �k/ D ˚
.x; y/ 2 RmC�RnC j 9� 2 ƒK�1.�/ W x �

X
j¤k

�jxj ; y �
X
j¤k

�jyj
�
:

Now the efficiency of .xk ; yk/ relative to T �.� j �k/ is called super-efficiency

ESUP k D E
�
.xk ; yk/I T �.� j �k/�;

F SUP k D F
�
.xk ; yk/I T �.� j �k/�:

Consider the data in Table 5.1. Assuming VRS, the input isoquant is graphed in
the figure to the right of the table. Based on the figure, we can see that the usual

Table 5.1 Super efficiency

Firm x1 x2 y

A 2 12 1
B 2 8 1
C 5 5 1
D 10 4 1
E 10 6 1
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input efficiency of firm C is 1, E1 D 1. If we leave C out of the set of firms that
generate the technology, then the isoquant corresponds to the dashed line. The super-
efficiency of firm C must be evaluated against this isoquant instead of the original
one, and we obtain ESUP C D 1:2. The corresponding projection of C becomesC �.

It is simple to set up the associated mathematical programs—they look just like
the usual ones except that one column has been eliminated that corresponds to the
�k variable.

The super-efficiency measures on the input and output sides are not restricted to
either below or above 1. Indeed, this is part of the motivation for using them—we
are interested in differentiating among the firms with traditional efficiency scores
of 1: The input super-efficiency score ESUP k may be larger than 1; firm k could
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have increased its inputs by a factor ESUP k and still not have been dominated by
a feasible reference unit. Likewise, F SUP k can be smaller than 1 if firm k could
have reduced all of its outputs by a factor F SUPERk without being dominated by a
reference unit.

It also follows from the definition that the traditional efficiency measures are
simply aggregates of the super-efficiency measures

Ek D minfESUP k; 1g and F k D maxfF SUP k; 1g:
Hence, the super-efficiency measures contain at least the same information and
sometimes also contain additional information. It is therefore obvious that they are
advantageous for decision-making and incentive purposes—at least as long as we
ignore possible information-processing costs.

The only drawback of the Farrell-based super-efficiency measures is that the
resulting programs may not have feasible solutions. In those cases, we define the
super-efficiencies as

ESUP k D 1 and F SUP k D �1
respectively. The presence of infinite super-efficiencies simply means that there are
no other units against which to gauge firm k with the given data and the imposed
technological regularities. Such firms are sometimes referred to as hyper-efficiency.
Using the usual Farrell measures, we can always find solutions to the LP-problems
and hyper-efficient firms would have be classified as fully efficient.

Mathematically, these definitions are natural because they correspond to inf and
sup over empty sets, meaning that min and max do not exist. What is important,
however, is the conceptual idea. Sometimes, we may not be able to find reference
firms to gauge the evaluated firm against, in which case we effectively put the eval-
uated firm in the best possible light using these definitions.

This is not to say that the existence problem is without practical relevance. In
practice, and particularly when we base decision-making and incentive procedures
on super-efficiency, the lack of solutions does create some complications in the sense
that the corresponding firms need special care. In a regulatory context, for example,
the extremely super-efficient units may be transferred to individual evaluation by
a regulator who has otherwise mechanized his decision-making. Of course, there
are many other ways to avoid such problems, and we will discuss some of these
as we consider more practical implementations of DEA-based incentive schemes.
For now, let us just mention a few more technical solutions. We could eliminate
or reduce the problem of infinite efficiencies by introducing a) other technologi-
cal assumptions (e.g., more re-scaling possibilities); b) full or partial aggregations
of some of the inputs and outputs (e.g., by using partial information about costs
and price elements, cf. below); and c) supplementary observation (e.g,. engineering
phantom observation used to supplement the observed best practices, cf. eg. Sect.
4.7).

Let us also emphasize that the idea of super-efficiency is not solely associated
with the Farrell measure. For other measures, including those introduced next, we
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can calculate super-efficiency in a similar way by avoiding that the evaluated firm
affects the technology against which it is gauged, i.e. by ensuring that a unit cannot
affect its own benchmark.

Numerical example in R

In R, we can calculate super-efficiency using the dea command where we distin-
guish between the firms that we wish to evaluate and the firms that define the tech-
nology. To further facilitate this process, the Benchmarking package includes the
function sdea in addition to dea. The function sdea calculates super-efficiencies
directly and includes the usual options.

Consider, for example, the data in Table 4.2 on page 95, and let us calculate
super-efficiencies using R.

> # Input super efficiency, vrs and crs
> sdea(x,y, RTS="vrs", ORIENTATION="in")
[1] 2.0000 0.6667 1.4375 0.5556 NA 0.4000
> sdea(x,y, RTS="crs", ORIENTATION="in")
[1] 0.8000 0.6000 1.2500 0.5333 0.6857 0.3200
> # Output super efficiency, vrs and crs
> sdea(x,y,RTS="vrs",ORIENTATION="out")
[1] NA 1.6667 0.7200 1.4167 0.8333 2.6667
> sdea(x,y,RTS="crs",ORIENTATION="out")
[1] 1.250 1.667 0.800 1.875 1.458 3.125

Note that the input super-efficiency in the VRS model for firm E has the value NA,
showing that there is no solution to the DEA program. This can also be seen in
Fig. 4.2 in which the observation for firm E is not in the technology set if E is not
included in the data set that generates the technology set; we can see that a horizontal
line through E never intersects the VRS technology set without E. In other words, if
we believe that the VRS technology set is valid, it seems that firm E could expand its
input consumption infinitely without becoming inefficient. Similarly, firm A could
reduce its outputs infinitely without becoming inefficient in the VRS technology set.

5.3 Non-discretionary variables

The DEA models considered so far all rely on the Farrell approach to efficiency
measurement; all inputs are reduced or all outputs are expanded by the same fac-
tor. This type of proportional adjustment is challenged by a series of alternative
efficiency measurement approaches that may be more useful for studying organiza-
tional learning, coordination and motivation. We cover a few of these in this section
and in upcoming sections. To simplify the exposition, we consider only input effi-
ciency. Parallel treatments of output, however, are straightforward.

An early suggestion is to consider the flexibility of the resources. In some set-
tings, certain improvements may be impossible. In extreme cases, the firm may only
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Fig. 5.1 Input efficiency E with fixed input

control some if its inputs, say the set VA of variable or discretionary inputs, VA 	
f1; : : : ; mg. Others, the fixed, non-discretionary inputs FI D f1; 2; : : : ; KgnVA D
f h 2 f1; : : : ; mg j h … VA g cannot be adjusted—at least not at the level of the firm
in which our production units operate or with the time horizon that we study. Let
x D .xVA; xFI / denote the variable and fixed inputs.

In such cases, a traditional and popular variation of the Farrell procedure is to
look for the largest proportional reduction in the variable inputs alone

E
�
.xo
VA; x

o
FI ; y

o/IT � D min
E

fE j .Exo
VA; x

o
FI ; y

o/ 2 T g:

This leads to simple modifications of the DEA program in which we only reduce in
the input rows where the inputs are considered to be variable.

min
E;�1;:::;�K

E

s.t. Exo
i �

KX
kD1

�kxki ; i 2 VA

xo
i �

KX
kD1

�kxki ; i 2 FI

yo �
KX
kD1

�kyk

� 2 ƒK.�/
We see that the DEA models that distinguish between discretionary (variable) and

non-discretionary (fixed) inputs lead once again to simple linear or mixed integer
programming problems. This variant of the Farrell measure is illustrated in Fig. 5.1.

Note that the above DEA program can be rewritten as
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min
E;�1;:::;�K

E

s.t. Exo
i �

KX
kD1

�kxki ; i 2 VA

� xo
i �

KX
kD1

�k.�xki /; i 2 FI

yo �
KX
kD1

�kyk

� 2 ƒk.�/
Hence, the fixed, non-discretionary input corresponds to a negative output. Thus,
if we have a problem with fixed inputs, we can still use the usual programs for
DEA models if we simply treat the fixed inputs as negative outputs. We should note,
however, that most software solutions assume inputs and outputs to be positive.
The R library Benchmarking, however, does not restrict the sign of the inputs and
outputs.

The approach that involves letting some variables be discretionary and some be
non-discretionary is also sometime referred to as a sub-vector efficiency approach.

Practical application: Fishery

In an analysis of the efficiency of Danish fishery, we used a representative sample
of some 288 Danish fishing vessels.

On the output side, we aggregated the available catch data into nine output groups
defined as follows: (1) cod, (2) other gadoids, (3) plaice, (4) other flat-fish, (5) her-
ring, (6) mackerel, (7) lobster and shrimp, (8) other consumption species and (9)
industrial species. On the input side, all costs in the dataset were categorized as
either variable (discretionary) or fixed (non-discretionary).

The variable costs are expenses for (1) fuel and lubricants, (2) ice and provisions,
(3) landings and sales and (4) the crew, whereas the fixed costs include that of (1)
maintenance and (2) insurance and various services. Note that because DEA models
are unaffected by linear transformations of a given variable, the insurance costs can
also be a proxy for the capital costs.

In addition to evaluating individual vessels, we also investigated the impact of
reallocation catch values for the different vessels. We will return to some this idea
in Chap. 9.
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5.4 Directional efficiency measures

One of the ways to generalize the methods used so far is to look for improvements
in some arbitrary direction d 2 RmC. This is the idea behind the directional distance
function approach discussed in Chap. 2.

Recall that efficiency in this approach is measured in an additive rather than a
multiplicative manner. We measure the distance to the frontier in d -units leading to
a directional distance or excess function

e D e.xo; yoI T; d/ WD maxf e 2 RC j .xo � ed; yo/ 2 T g:
The excess e.xo; yoI T; d/ is the number of times the input bundle d has been used
in xo in excess of what is necessary to produce yo. Hence, a large degree of excess
reflects a large (absolute) amount of slack and a considerable amount of inefficiency.

As usual, finding the directional distance or excess in a setting in which the tech-
nology is estimated using DEA involves solving a linear or mixed integer program:

max
e;�1;:::;�K

e

s.t. xo � ed �
KX
kD1

�kxk

yo �
KX
kD1

�kyk

� 2 ƒK.�/
A crucial question that emerges when we use directional distance is which direction
to choose. We mention four approaches here.

One is to choose d D xo, i.e. to look at improvements in the direction of the
actual input consumption. In this case, we obtain

E
�
.xo; yo/IT � D 1 � e.xo; yoIT; xo/:

In this sense, then, the traditional Farrell measure is a special instance of the direc-
tional distance measure

A second approach is to choose d D .1; : : : ; 1; 0; : : : ; 0/ such that the last part
of the input–vector is fixed. This is similar to the approach used in the last section,
in which we only introduced improvements to the discretionary variables.

A third method is to think of the choice of direction from the point of view of a
user—the firm or a principal or regulator—that has particular preferences regarding
the inputs.

A fourth way to guide the choice of direction is to think of efficiency improve-
ments as a bargaining process. The different input factors can be thought of as pro-
duction factors (e.g. different labor types), all of which seek to have excess amounts
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available so as to avoid having to invest too much effort and to gain access to the
benefits of slack at the workplace. This idea can be formalized along the lines of
what has been called potential improvements PI or multi-directional efficiency anal-
ysis MEA. The approach is based on axiomatic bargaining theory analogous to the
Kalai and Smorodinsky solution to a two-person bargaining problem and depends
not only on the actual consumption mix but also on the shape of the technology in
the neighborhood of actual production. This seems a natural property in the sense
that if there is significant opportunity to reduce one input and less of an opportunity
to reduce another input, then the direction of improvement should lean more toward
the first input and less toward the second.

To implement this idea, we first examine the possible savings in the individual in-
puts presuming that the other inputs are not reduced. That is, for firm o, we calculate
the minimal usage of input i when all other inputs are held fixed as

Oxo
i D min

xi

f xi j .xi ; xo�i ; yo/ 2 T g

where x�i D .x1; : : : ; xi�1; xiC1; : : : ; xm/ is the vector where the i th coordi-
nate is missing. Next, the Oxo

i values are combined into an ideal for firm o, Oxo D
. Oxo
1; : : : ; Oxo

m
o o

T . Movement in the direction of this ideal is possible, however, and represents the
potential improvement direction

xo � Oxo D .xo
1 � Oxo

1; : : : ; x
o
m � Oxo

m/

that can now be used to calculate the excess. In addition, the direction can also be
interpreted as indicating the improvement potential associated with the different di-
mensions. In applications, such multi-directional efficiency evaluations have proved
to provide useful, nuanced information. In a hospital with twice as many nurses as
doctors, for example, it might be interesting to know that there is limited opportu-
nity to reduce the number of nurses but a real opportunity to reduce the number of
doctors.

The approach and the hospital example are illustrated in Fig. 5.2, where the dot-
ted line corresponds to the Farrell direction and the dashed line is the potential im-
provement direction. To determine the potential improvement direction for a given
firm o, we solve m linear or mixed integer programming problems, one for each of
the inputs. For input h, the program to determine Oxo

h
looks like this:

.xO ; y / …/. This ideal is generally outside the production set; i.e., usually
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Fig. 5.2 Potential improvement direction

min
xh;�

1;:::;�K
xh

s.t. xh �
KX
kD1

�kxkh

xo
i �

KX
kD1

�kxki ; i D 1; : : : ; h � 1; hC 1; : : : ; m

yo
j �

KX
kD1

�kykj ; j D 1; : : : ; n

� 2 ƒK.�/
In addition, to calculate the excess for firm o in the potential improvement direction

eo D maxf e > 0 j xo � e.xo � Oxo/ 2 T g;
we must solve an additional linear or mixed integer problem, as on page 121, where
d D xo � Oxo. In this model, then, excess resources or slack is estimated as

zo
i D xo

i � �
xo
i � ek.xo

i � Oxo
i /
� D eo.xo

i � Oxo
i / � 0; i D 1; : : : ; m

which can also indicate strategies for improving performance.

Practical application: Bank branches

An application of MEA involved staffing decisions in 291 branches of a large Cana-
dian bank. The bank has well-developed staffing models, and the branches work in a
highly competitive environment. One would therefore expect limited ’inefficiency’
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Table 5.2 Relative saving potentials in bank branches

Inputs Mean Max
Teller 18% 48%
Typing 47% 91%
Accounting & Ledgers 24% 56%
Supervision 35% 76%
Credit 26% 67%

in the sense of wasted resources and over-staffing. Using DEA, we nevertheless
found considerable ’inefficiency’.

The model included 5 different inputs corresponding to full-time positions in
various employee groups: Tellers, Typing, Accounting & Ledgers, Supervision, and
Credit. The model also included 9 outputs: Counter Transactions, Counter Sales, Se-
curity Transactions, Deposit Sales, Personal Loan Sales, Commercial Loans, Term
Accounts, Personal Loan Accounts and Commercial Loan Accounts.

As part of the analysis, we compared the staffing profiles developed with the
ideal staffing profile as discussed above. For each branch, we therefore calculated
the sub-vector efficiency of each of the staff groups separately; i.e., we calculated
the relative savings that would accrue if only the number of tellers were adjusted,
if only the number of typists were adjusted, and so on. The average and maximum
values for the branches are given in Table 5.2 (the minimum values are obviously
0).

The natural question is if this inefficiency is best interpreted as waste or if the
apparent inefficiency may serve other purposes. To investigate this question, we
invoked the theoretical framework of rational inefficiency. Indeed, as the table il-
lustrates, a systematic pattern of slack consumption emerges, suggesting that the
allocation of slack between staff groups is far from random.

The systematic pattern seems natural from the point of view of employee value
and hierarchy and also when considering employee flexibility and substitutability.
Thus, for example, we find a relatively high level of over-staffing at the supervisor
level, which is natural given both the strong bargaining position of these individuals
based on their role in the branch hierarchy and the relative flexibility of supervisor
resources. It therefore appears that the location of the branches in production space
is in accordance with the predictions of the rational inefficiency hypothesis, which
suggest that slack is not allocated randomly but is rather distributed according to
organization preferences, bargaining power, etc.

5.5 Improving both inputs and outputs

As explained in Chap. 2, we can also combine the ideas of input and output effi-
ciency by examining to what extent we can simultaneously use less input and pro-
duce more output. Using the direction distance function approach, we can look for
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changes in the direction .dx; dy/ 2 RmC � RnC and define the directional efficiency
eo of firm o as

eo D maxf e > 0 j .xo � edx; yo C edy/ 2 T g:
as illustrated in Fig. 2.7.

The corresponding optimization problem when we use the DEA-estimated tech-
nology to evaluate .x; y/ is

max
e;�1;:::;�K

e

s.t. xo�edx �
KX
kD1

�kxk

yoCedy �
KX
kD1

�kyk

� 2 ƒ.�/
Again, this is a simple linear or mixed integer problem.

A slightly more complicated concept is that of graph or hyperbolic efficiency, as
discussed in Chap. 2. Recall that the graph hyperbolic efficiency measureGmeasure
of technical efficiency G for firm o is defined as

G D minfG > 0 j .Gxo;
1

G
yo/ 2 T g:

Inserting the DEA technology, we obtain

min
G;�1;:::;�K

G

s.t. Gxo �
KX
kD1

�kxk

1

G
yo �

KX
kD1

�kyk

� 2 ƒK.�/
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min
G;�1;:::;�K

G

s.t. Gxo
i �

KX
kD1

�kxki ; i D 1; : : : ; m

1

G
yo
j �

KX
kD1

�kykj ; j D 1; : : : ; n

� 2 ƒK.�/
We see that even in cases with a DEA-estimated technology, G is a solution to a
nonlinear programming problem; we reduce the inputs and expand the outputs by
factors G and 1

G
, respectively. Hence, the graph efficiency is slightly harder to find

than the other efficiencies we have defined because they all lead to simple LP or
mixed integer problems.

In connection with super-efficiency, the graph orientation offers the advantage
that there is always a solution to the non-linear programming problem, whereas
with the input and output orientation, there might not always be a solution.

Numerical example in R

We use the data in Table 4.2 on page 95 to calculate the graph efficiency. The calcu-
lated efficiencies are shown in Table 5.3, where the technology set with the relevant
graph hyperbola curves embedded is also shown.

Table 5.3 Graph efficiency for six firms

Firm x y Gvrs Gcrs

A 20 20 1.00 0.89
B 40 30 0.80 0.77
C 40 50 1.00 1.00
D 60 40 0.77 0.73
E 70 60 1.00 0.83
F 50 20 0.59 0.57

Note: Compare with Table 4.3 page 97
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The calculations are done in R with the dea function from the Benchmarking
package by using the option ORIENTATION="graph" as shown in the following
lines of code:

> x <- matrix(c(20, 40, 40, 60, 70, 50),ncol=1)
> y <- matrix(c(20, 30, 50, 40, 60, 20),ncol=1)
> dea(x,y,RTS="vrs",ORIENTATION="graph")
[1] 1.0000 0.7953 1.0000 0.7687 1.0000 0.5874
> dea(x,y,RTS="crs",ORIENTATION="graph")
[1] 0.8945 0.7746 1.0000 0.7303 0.8281 0.5657

5.6 Slack considerations

One of the drawbacks of the traditional Farrell approach is that a firm can have an
efficiency score of 1 and still be Koopmans inefficient in the sense that some inputs
could be reduced or some outputs could be expanded without affecting the need for
other inputs or the production of other outputs. This is called lack of indication in
axiomatic theory, cf. page 54.

This phenomenon is not only theoretically possible but is also rather common
in many DEA models and is associated with firms being projected on the vertical
or horizontal parts of the production frontier. For example, consider firm A in the
data set in Fig. 5.1 on page 116. The input efficiency is EA D 1 because we cannot
reduce both inputs proportionally and still be on the isoquant. However, it is obvious
from the graph that A is wasting input 2. We say that there is slack in input 2. We
can, in fact, reduce input 2 by 4 units without reducing output.

The slack problem has been clear since DEA was first developed, and two prin-
cipal solutions have been suggested. One is to penalize such slack using what is
known as an infinitesimal penalty factor, a factor that is large enough to recognize
the possible slack and small enough not to impact the numerical results. We will
formalize this method below. The other approach is to solve the dual problem using
strictly positive input and output prices. We will discuss the dual problem in the next
section. Technically, these two solutions are actually equivalent, or dual, as we say
in linear programming.

To penalize slack, we can consider the following reformulation of the Farrell
input efficiency program Eq. (4.1) on page 90
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min
E;�

E � ı

mX
iD1

z�
i � ı

nX
jD1

zC
j (5.1)

s.t. Exo
i C z�

i D
KX
kD1

�kxki ; i D 1; : : : ; m

yo
j � zC

j D
KX
kD1

�kykj ; j D 1; : : : ; n

� 2 ƒk.�/; z� � 0; zC � 0; E � 1:

Here we have introduced input slack variables z�
i ; i D 1; : : : ; m that measure any

excess resources in Exo as compared to the reference unit. Likewise, we have in-
troduced output slack variables zC

j ; j D 1; : : : ; n that measure any excess output
in the reference unit as compared to firm o. Finally, we have introduced ı > 0 as a
penalty for slack. For ı D 0, we return to our original program.

We see that we now have two concerns - we seek to minimize E and simultane-
ously maximize the slacks. The trade-off between the two depends on ı. The larger
ı is, the more we focus on the maximization of slack. It is not surprising that this
double concern will generally yield different results. If ı is sufficiently large, we
may just want to choose E=1 and then minimize the objective function by having a
lot of slack. Hence, what we are ideally looking for is a value of ı that is sufficient
small not to impact the choice of E but sufficiently large to create the maximum
possible slack. This is the idea of ı being infinitesimal.

The best way to conceptualize the above problem is therefore in lexicographic
terms. We first minimize E; then, having done this, we maximize the sum of the
slack values for the fixed value of E . This approach is known as a two-stage ap-
proach. We first conduct an ordinary Farrell input efficiency analysis, after which
we calculate the maximal slacks given the calculated efficiency level. If there is pos-
itive slack, we will say that the firm is Farrell efficient but that there is additional
saving potential associated with some inputs and/or the opportunity for expansion
associated with some outputs.

One way to look at this two-stage procedure is to select a good reference firm.
A projection that includes possible slack will not be entirely convincing in the real
world. Imagine that such projections are presented to a client and that he is somehow
able to find another reference firm with less slack. This may cast some doubt on the
whole analysis and make it difficult to argue that the analysis takes into account all
possible reference units in determining which will have the largest positive effect on
the firm in question. However, the two-stage approach has other drawbacks. Because
it maximizes slack, one might argue that it identifies a dominating, fully efficient
reference unit, the one farthest away from our firm. There are other ways to select
more similar reference firms, though they are more cumbersome.

Another problem with the two-stage approach is that it varies based on the units
of measurement used. If we measure an input in tons rather than kilograms, for
example, our choice will affect the resulting measures and, more importantly, the
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choice of reference firm that we might present to a client. One way to overcome this
problem is to look at slack in relative rather than absolute terms. We do this in the
following problem, where we measure slack relative to the corresponding input or
output:

min
E;�;z�;zC

E � 1

m

mX
hD1

z�
h

xo
h

� 1

n

nX
iD1

zC
i

yo
i

s.t.
KX
kD1

�kxkh D Exo
h C z�

h ; h D 1; : : : ; m

KX
kD1

�kyki D yo
i � zC

i ; i D 1; : : : ; n

� 2 ƒK.�/; z� � 0; zC � 0

Again, we can use this principle in a two-stage approach, i.e. we first minimize E
and then maximize the sum of the average, relative slack values. As a result, the
aggregated slack value does not depend on the measurement scale. Of course, one
can still argue that the weighting of the slack is somewhat arbitrary.

Before closing this discussion of slack with a numerical example, we note that
the issue of slack perhaps should be less concerned with the measurement task, and
more with the modeling task. Recent research suggests that slack may not just be a
function of the piecewise linear approximations in DEA. Excessive slack may also
indicate that the model specification is wrong and that what we are modeling as joint
production is in fact a combination of independent sub-processes in which some
inputs are used to produce particular outputs while other inputs are used to produce
other outputs. In such cases, genuine inefficiency in one process will appear to be
slack in the combined process even in cases in which we do not have vertical or
horizontal frontier segments in the underlying technologies. This research is still
not very well developed, but our results seem to see considerable amounts of slack
as a warning that our view of the production process may not be accurate.

Numerical example in R

Consider an example with six firms that have used two inputs to produce one output.
The inputs are given in Table 5.4, and we assume that they have all produced the
same output, which we will designate as y=1. If we use a VRS DEA model, we
obtain the Farrell input efficiencies shown in the E column. In addition, if we use
the slack-based modified efficiency score, we get the efficiency scores shown in the
E� columns when we use ı D 0:1.

Now, as noted above, the value of E� will depend on the size of ı, and it is
generally better just to report E and possibly the individual slacks. We can do this



130 5 Additional Topics in DEA

Table 5.4 Efficency is penalized by Slack in input

Firm x1 x2 E E�.ı D 0:1/

1 2 5 .50 .45
2 1 2 1.00 1.00
3 2 2 .83 .83
4 3 2 .71 .71
5 3 1 1.00 1.00
6 4 1 1.00 .90
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using the slack option in the (dea) function in benchmarking or, alternatively, the
slack function. The following R code illustrates the first approach.

> x <- matrix(c(2,1,2,3,3,4,5,2,2,2,1,1), ncol=2)
> y <- matrix(c(1,1,1,1,1,1), ncol=1)
> e_vrs <- dea(x,y,RTS="vrs",ORIENTATION="in",SLACK=TRUE)
> e_vrs$eff
[1] 0.5000 1.0000 0.8333 0.7143 1.0000 1.0000
> e_vrs$slack
[1] TRUE FALSE FALSE FALSE FALSE TRUE
> e_vrs$sx

sx1 sx2
[1,] 0 0.5
[2,] 0 0.0
[3,] 0 0.0
[4,] 0 0.0
[5,] 0 0.0
[6,] 1 0.0
> e_vrs$sy

sy1
[1,] 0
[2,] 0
[3,] 0
[4,] 0
[5,] 0
[6,] 0

We see that firms 1 and 6 have slack, whereas the other firms do not. These results
correspond to the graphical illustration; firms 1 and 6 are projected on vertical and
horizontal segments. We can derive the exact slack values on the input side from
the sx portion of the dea output. We see that firm 1 has half a unit of slack in the
second input, whereas firm 6 has one unit of slack in the first input. We also see that
there is no slack on the output side in this example.
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5.7 Measurement units, values and missing prices

DEA-based efficiency estimates do not depend on the measurement scale that we use
for the different inputs or outputs. It does not matter if we measure a variable in kg
or in tons or if we measure another variable in consumers or millions of consumers.
Essentially, the results are invariant to positive linear transformations; i.e. we can
transform any input xi with a positive number ˛i > 0

xi ! ˛ixi ; i D 1; : : : ; m

and any output by a positive number ǰ > 0

yj ! ǰyj ; j D 1; : : : ; n

without affecting the efficiency measure, the peers or any other essential information
extracted from the DEA programs. The set of feasible values .e; �1; : : : ; �K/ is not
affected by such transformation; i.e. the set of feasible solutions to

min
E;�1;:::;�K

E

s.t. E˛ix
o
i �

KX
kD1

�k˛ix
k
i ; i D 1; : : : ; m

ǰy
o
j �

KX
kD1

�k ǰy
k
j ; j D 1; : : : ; n

� 2 ƒK.�/
is the same as to

min
E;�1;:::;�K

E

s.t. Exoi �
KX
kD1

�kxki ; i D 1; : : : ; m

yoj �
KX
kD1

�kykj ; j D 1; : : : ; n

� 2 ƒK.�/
because we can simply divide through by ˛i and ǰ for the respective constraints.
Of course, for this to work, we must use the same transformation of a given variable
across all firms; i.e. we cannot measure production in tons for some firms and in kg
for others.

It is worth noting that it is only such linear transformations that have no impact.
We cannot generally add a constant without affecting the outcome. Moving from xi
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to aC bxi , for example, will affect the outcome if a is not equal to 0. In such cases,
we must use particular efficiency measures (e.g. directional distances) to obtain in-
variance.

One application of this observation is to the use of monetary values as op-
posed to physical values. When data come from accounting data, they are mostly
values. and therefore. quantities and prices will be missing. That is, instead of
physical inputs .xk1 ; : : : ; x

k
n / and outputs .yk1 ; : : : ; y

k
m/ and corresponding input

prices .w1; : : : ; wn/ and output prices .p1; : : : ; pm/, we have only values for in-
puts .w1xk1 ; : : : ; wnx

k
n / and values for outputs .p1yk1 ; : : : ; pmy

k
m/. Note that the

way we have written the values, we assume that the firms have the same prices.
Now, the results above show that we get the same results using .w1xk1 ; : : : ; wnx

k
n /

and .p1yk1 ; : : : ; pmy
k
m/ as inputs and outputs as we would if we used .xk1 ; : : : ; x

k
n /

and .yk1 ; : : : ; y
k
m/ as inputs and outputs.

It follows that we can in fact measure technical efficiency even if we just have
monetary values (e.g., cost values or shares and revenue values or shares) as long
as we can still distinguish between the cost values or shares of the different input
categories and the revenue values or shares from different outputs.

It is also clear that if we are working with cost shares and are looking to evaluate
allocative efficiency, then we should set all prices to 1 because they now give the
relative costs of the different cost shares and they are all the same because they are
already in monetary terms. Similarly, if we have revenue shares and want to evaluate
output allocative efficiency, we should also set prices to 1 because the “value” of
pjy

k
j is pjykj . Hence, if we want to calculate allocative efficiency, we should either

use the prices of the original inputs or outputs or use the unit prices for the cost
shares or revenue shares.

5.8 Dual programs

The mathematical programs that we use to evaluate DEA efficiencies can be refor-
mulated using duality theory. This method can provide us with alternative interpre-
tations that some users prefer and a useful perspective on the interaction between
the evaluator (i.e., the regulator or authority) and those being evaluated (the firms).
We will introduce the basics of such dualization here. We focus on the traditional
model, i.e. the VRS, DRS, IRS and CRS DEA models, because duality theory is
more complicated in the context of mixed integer problems. An introduction to lin-
ear programming duality is given in Appendix 4.11.2.

Recall that input-based Farrell efficiency in the DEA model E can be calculated
as the solution to the LP problem
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min
E;�1;:::;�K

E

s.t. Exo �
KX
kD1

�kxk ;

yo �
KX
kD1

�kyk ;

� 2 ƒK.�/:
which we may rewrite as

min
E;�1;:::;�K

E (5.2)

s.t. Exo �
KX
kD1

�kxk � 0

KX
kD1

�kyk � yo;

� 2 ƒK.�/:
In the VRS, DRS, IRS and CRS cases, this is a simple LP problem, and we can

therefore determine the dual LP problem. Moreover, the primal problems have a
finite solution, and therefore, so does the dual problem, and they coincide; cf. the
duality theorem of LP in Appendix 4.11.2.

To find the dual program, recall that the dual of an LP problem of the form
maxxfcx j Ax � b; x � 0g is minyfby j yA � c; y � 0g, where c and x are
n dimensional vectors, b and y are m vectors and A is a m � n matrix. Note that
we have used the most common symbols in LP theory, x; y; c; b; A; n, and m, as
generic vectors, matrices and numbers without any relationship to their meaning in
DEA. In addition, to help formulate the dual, some may find it useful to write the
above problem of finding E in the VRS case in the LP tabula as

E �1 � � � �K max

u xo �x1 � � � �xK � 0
v 0 y1 � � � yK � yo

� 0 1 � � � 1 = 1
min 1 0 � � � 0

Either way, the dual problem can be written as



134 5 Additional Topics in DEA

max
u;v;�

vyo C � (5.3)

s.t. uxo � 1

�uxk C vyk C � � 0; k D 1; : : : ; K

� 2 ˆ.�/
where ˆ.vrs/ D R; ˆ.drs/ D R�; ˆ.irs/ D RC; and ˆ.crs/ D f0g. For the
CRS technology in the DEA problem in Eq. (5.2), there are no restrictions on
.�1; : : : ; �K/, and therefore, � D 0 in the dual problem in Eq. (5.3) and the problem
become

max
u;v;�

vyo

s.t. uxo � 1

�uxk C vyk � 0; k D 1; : : : ; K

� 2 ˆ.�/:
These problems correspond to a classical pricing problem. We choose shadow

prices u and v for the inputs and outputs to make the output value of observations
.x; y/ look as good as possible, create as large a value of vyo as possible, and
stipulate that no firm can have generated a net profit vyk � uxk � 0. The uxk � 1

condition is simply a norming condition that prohibits infinite solutions that would
otherwise be possible by inflating the v values, i.e. making v equal to infinity.

The scalar � is the cost for only having access to convex combinations and not
having constant returns to scale. For, given a input x, the higher the value of �, the
lower the value of vy necessary to fulfill the restrictions.

We note that what we call the dual problem here is often called the multiplier
model, while what we have called the primal problem is called the envelopment
model. Moreover, we note that if we dualize the slack model in Eq. (5.1), then we
get a similar DEA except that the multipliers are restricted so that they are no less
than ı; i.e., in the multiplier version, ui � ı; i D 1; : : : ; m; vj � ı; j D 1; : : : ; n.

A geometrical interpretation of the dual programs is easiest if we think of a cost
function with input x on the vertical axis and outputs y on the horizontal axis. The
dual program estimates alternative affine cost functions where the realized costs are
higher for all firms than the estimated costs; i.e., uxk � � C vyk for all firms. That
is, we are looking at all possible affine functions that are below the observations and
attempting to pick the function that maximizes the cost level vyo C � that we can
assign to firm o. This is illustrated in the left panel of Fig. 4.5.

Let us return to the dual problem of Eq. (5.3). It is clear that we may choose
uxo D 1 without loss of generality and thus rewrite the program as the following
non-linear ratio problem:
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max
u;v;�

vyo C �

uxo
(5.4)

s.t.
vyk C �

uxk
� 1; k D 1; : : : ; K

� 2 ˆ.�/
In the CRS case with � D 0, this is, in fact, the original DEA problem suggested

in the seminal papers introducing DEA, as we will return to below. The idea is
that we seek to choose prices or priorities so as to aggregate the benefits (output)
and costs (inputs). We choose the priorities (prices, value) u and v to maximize the
evaluated firm’s benefit–cost ratio subject to the condition that no unit can have a
higher ratio than 1 with the selected weights. Technically, this program is not an LP
program but is rather a fractional linear program.

Although the primal formulation, the envelopment problem, is now used more
widely in the literature, the original formulation does have merits that benefit
economists, engineers and laymen alike.

From an economic perspective, we see that the evaluation problem is like a cost-
benefit analysis in which we seek to maximize the benefit-cost ratio. The challenge
of this approach is often to determine appropriate weights or values to assign to the
otherwise incompatible input and output dimensions. The DEA problem addresses
this issue by generating its own endogenous prices. Moreover, the value weights �,
u and v selected by the DEA program put the evaluated unit in the best possible
light compared to the other units. The dualization thus supports the popular view
that DEA puts everyone in the best possible light. We have already identified an-
other formal result that supports this perspective, the use of minimal extrapolation
technologies, as we have discussed at some length in Chap. 4.

From an engineering perspective, efficiency is usually a question of ensuring
that high outputs accrue from low inputs. Many measures developed by engineers
and economists in different sectors involve such ratios of outputs to inputs (see
our discussion of key performance indicators in Chap. 1). In our framework, this
concept does not work directly due the multiplicity of inputs and outputs; the ratio
will depend on which inputs and outputs are compared. However, we see that the
DEA model overcomes this problem by finding its own weights and making the
(compound) output to (compound) input ratio look as good as possible.

So far, we have focused on dualizations of the input contraction problem. How-
ever, we note that similar dualizations of the Farrell output measure are also possi-
ble. Thus, if we consider the Farrell output efficiency problem:
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max
F;�1;:::;�K

F

s.t. xo �
KX
jD1

�kxk

Fyo �
KX
jD1

�kyk

� 2 ƒk.�/:
we see that the dual, the multiplier version, becomes

min
u;v; 

uxo C  (5.5)

s.t. vyo � 1

uxk � vyk C  � 0; k D 1; : : : ; K

 2 ‰.�/
where ‰.vrs/ D R; ‰.drs/ D RC; ‰.irs/ D R�; and ‰.crs/ D f0g.

Here we find an affine approximation of the production function that makes the
least optimistic prediction regarding the feasible output when xo is used and such
that all observed production plans are still feasible. This corresponds to the illustra-
tion in the panel on the right side of Fig. 4.5.

Again, we can rewrite the multiplier version into ratio form by noting that we
may restrict output prices without loss of generality such that vyo D 1; we get

min
u;v; 

uxo C  

vyo

s.t.
uxk C  

vyk
� 1; k D 1; : : : ; K

 2 ‰.�/
In this book, we have introduced DEA based on production theory. We assume

some underlying technology T that we try to estimate based on the data and a few
basic assumptions from production economics. Indeed, we would consider this the
natural and standard mode of operation at this point. However, it is interesting to
note that DEA was originally developed using a ratio formulation intended to solve
a weighting problem. As such, it does not directly assume any underlying techno-
logical properties but rather simply compares existing units. The way in which we
construct the ratios, using only linear weightings, indicates that this has a natural
dual formulation as an activity analysis problem that is well-known from produc-
tion theory. When Charnes, Cooper and Rhodes first presented their methods, they
used the fractional programming ratio problem as the primary formulation and lin-
earized it. If the linearized problem is dualized, we obtain a problem equivalent to
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an activity analysis, the envelopment form, which is the problem we now consider
to be the primal one.

5.9 Maximin formulations

The DEA programs can also be reframed as maximin programs. This approach is
interesting because it may yield new interpretations and shed light on the nature of
the DEA measures and their possible use in strategic contexts.

In the ratio form of the Farrell input efficiency problem Eq. (5.4), it is clear that
the highest output-input ratio will also be 1. Otherwise, we can improve the objective
via a small proportional expansion of all the weights in .�; v/:We can therefore also
reformulate the program as the following equivalent maximin program

Ek D max
u;v;�

min
k

�Cvyo

uxo

�Cvyk

uxk

This suggests that we can look at the scoring problem as a game problem in
which the evaluated and the evaluator are the participants. The firm being evaluated
chooses the priorities (u; v and �) based what it wishes to be evaluated, and the
evaluator selects a comparator .k 2 f1; : : : ; Kg/. The firm being evaluated seeks to
make his benefit-cost ratio appear as high as possible, whereas the evaluator seeks to
make it look the least impressive by identifying better practices given the priorities
selected. In practice, the firm being evaluated does not really specify the priorities—
the DEA program does so endogenously—but this is only to the advantage of the
former because it could not have chosen the priorities in any better way.

If we assume that the technology is the DEA CRS model and that all units have
produced the same outputs y, the maximin program simplifies because � D 0 and
the output factors cancel out, such that

Eo D max
u

min
k

uxk

uxo

The focus of this program is the cost of the input xk in an alternative plan against
the cost of the input xo for the evaluated firm. The firm prefers this cost to be high,
whereas the evaluator prefers it to be low. We therefore see that the evaluation is like
a game in which the former seeks to maximize the cost ratio by picking appropriate
prices or priorities and the latter seeks to minimize it by choosing the appropriate
comparator k 2 f1; : : : ; Kg. Because the two parties have directly opposing inter-
ests, we can think of this as a zero-sum game.
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5.10 Partial value information

In the efficiency analyses we have discussed so far, we have either assumed that
no price information is available and focused on technical efficiency, or we have
assumed that exact prices are available, thereby measuring cost efficiency, revenue
efficiency or profit efficiency.

In some situations, however, we have partial value or price information; i.e., we
have some price information, but our information is imperfect. We will now discuss
how to incorporate such information into the efficiency programs.

Assume that we have some prior view regarding the relative worth of inputs
or and outputs. In a hospital setting, for example, we may know that the value of
one heart operation exceeds that of one knee operation, but we may not know the
more precise relative worth of the two treatments. Still, we may be able to use such
partial information to refine the efficiency evaluations. Imagine a situation in which
we only have two hospitals. Hospital A has conducted 100 knee operations, and
hospital B has conducted 150 heart operations. Both have the same total costs. Now,
in a single-input, two-output model, the two hospitals would both be considered to
be fully Farrell efficient. Introducing our partial value information, however, we can
say that the output value of hospital B exceeds the output value of hospital A by at
least 50%, and we can therefore say that the output efficiency of hospital A can be
at most 150

100
D 1:5.

The DEA literature makes several suggestions regarding how to include partial
value information in such evaluations. We will mainly focus on the most popular
approach, the use of assurance regions. The idea here is to introduce weight restric-
tions as part of the dual formulations, i.e. restrictions on dual prices.

The simplest way to do so, sometimes referred to as the creation of Type 1 assur-
ance regions, is to restrict relative input prices or relative output prices using simple
restrictions such as

˛h;i �uh
ui

� ˇh;i

˛�
h;j �vh

vj
� ˇ�

h;j

The first restriction indicates that the relative worth of input h to input i is at least
˛h;i and at most ˇh;i . The second restriction is similar on the output side; the relative
worth of output h to output j is at least ˛�

h;j
and at most ˇ�

h;j
. In a hospital setting,

for example, we could say that

0:5 � uphysician

unurse
� 4

1 � vheart

vknee
� 10
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That is, the cost of a physician relative to a nurse is at least 0.5 and at most 4, and
the value of a heart surgery is at least the same as that of a knee surgery and at most
equivalent to 10 knee surgeries.

We can also use more advanced versions:

mX
iD1

	iui � 0

nX
jD1

	�
j vj � 0

where we restrict the relative worth of more than two inputs or outputs at the same
time or create restrictions, sometimes called Type II assurance regions, that include
both inputs and outputs

Ǫi;j � ui

vj
� Ǒ

i;j

In general, these more complicated restrictions are more difficult to interpret and to
justify.

Assurance regions like the above can generally be interpreted in two different
ways.

One is as expressing preferences in terms of subjective values assigned to inputs
and outputs. We can also say that the partial values allow us to partially transform
the technical efficiency evaluation into a utility-based effectiveness analysis. This is
perhaps most clear from the maximin formulations. The restrictions on dual weights
restrict the objectives that the evaluated firm can possibly claim. In the example, a
hospital cannot reasonably claim that one knee operation is more valuable than one
heart operation, which restricts hospital A’s ability to make itself appear efficient.

This view on dual weight restrictions is also related to the literature linking DEA
and MCDM, Multiple Criteria Decision-Making. One relevant approach is value
efficiency analyses (VEA), in which a decision-makers preferences are partially re-
vealed through his preferred production plan. The preference function serves the
same purpose as market prices because it allows us to aggregate inputs and outputs.

Another interpretation of the dual restrictions is as an expression of technical
rates of substitution. Consider the dual version of the Farrell input efficiency pro-
gram, Eq. (5.3). We have

�uxk C vyk C � � 0; k D 1; : : : ; K

In optimum, at least one of these will be binding for firm o; at least one of the �
values will be positive. A facet or hyperplane will emerge that firm o is projected
against, namely, the set of .x; y/ values for which �ux C vy D k1 where k1 is a
constant. Fixing the values of x, we see that the hyperplane in the output space de-
fines the approximate output possibility set given by vy D k2, where k2 is another
constant. We can therefore determine the rate of technical transformation between
yh and yj as
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dyh

dyj
D �v

j

vh

Hence, if we want to increase yj by 1 unit, we will have to reduce yh by vj

vh .
We therefore see that assurance regions can be interpreted as restricting the rate of
technical transformation on the output side. Likewise, if we look at the input side,
we get ux D k3 such that

dxh

dxi
D � u

i

uh

which suggests that assurance regions on the input side restrict the rate of technical
substitution between the production factors. If we use one more of input i , we can
save ui

uh of input h. It follows that we can also consider partial restrictions on the
dual weights as extensions of the production possibilities.

In fact, one can take this last idea a step further and consider the introduction
of artificial observations into the primal space or the transformation of the primal
inputs and outputs before an efficiency analysis is undertaken. One set of results
along these lines is developed for cone ratio extensions of the CRS model.

Numerical example in R

Consider a situation in which four medical teams using nurses and physicians con-
duct knee and heart surgery. The inputs and outputs of the four teams are given in
Table 5.5.

Table 5.5 Medical teams

Team Nurses Physicians Knees Hearts
A 3 3 100 0
B 3 3 0 150
C 6 2 50 75
D 1 4 50 75

Now, using dea.dual, we can calculate the dual weights and we can also add
restriction on these as illustrated in the following R code. We use e for the result
from the ordinary DEA analysis and edr for the restricted dual DEA analysis.

> library(Benchmarking)
> x <- matrix(c(3,3,6,1,3,3,2,4), ncol=2)
> y <- matrix(c(100,0,50,50,0,150,75,75),ncol=2)
> e <- dea(x,y,RTS="crs")
> cbind(E=e$eff, e$ux, e$vy)

E u1 u2 v1 v2
[1,] 1 0.27777778 0.05555556 0.01 0.000000000
[2,] 1 0.11111111 0.22222222 0.01 0.006666667
[3,] 1 0.08333333 0.25000000 0.01 0.006666667
[4,] 1 0.11111111 0.22222222 0.01 0.006666667
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> dual <-matrix(c(0.5,1, 4,10),ncol=2)
> dual

[,1] [,2]
[1,] 0.5 4
[2,] 1.0 10
> edr <- dea.dual(x,y,RTS="crs", DUAL=dual)
> cbind(E=edr$eff, edr$u, edr$v)

E u1 u2 v1 v2
[1,] 0.6666667 0.16666667 0.1666667 0.006666667 0.006666667
[2,] 1.0000000 0.16666667 0.1666667 0.006666667 0.006666667
[3,] 0.8928571 0.07142857 0.2857143 0.007142857 0.007142857
[4,] 1.0000000 0.20000000 0.2000000 0.008000000 0.008000000

We see that without restrictions on the dual variables, they all emerge as efficient.
From the dual values, we can also see that this is explained in part by the zero value
that team D assigns to heart surgeries; this is clearly not realistic. In addition, we
can see that other medical team assigns a relatively lower value to nurses compared
to physicians than does team D.

Now, we can restrict the input and output values using the assurance regions
suggested above. We do this using the matrix dual, which indicates the input prices
in relation to the first input with the lower bound in the left column and the upper
bound in the right column. The assurance region for the output prices is similar. On
this basis, we see that team A is no longer efficient. The reason is that A must assign
at least the same weight to heart surgery that it does to knee surgery. In doing so,
team B has been able to produce 50% larger outputs with the same inputs. In CRS,
input efficiency is the inverse of output efficiency, and therefore, the efficiency of
team A becomes 100/150=0.667. Team C is also no longer efficient. It chooses to
make nurses four times more expensive than doctors. Thus, it cannot be dominated
by team D, but it can be dominated by team B. Using a weight of 1 for doctors, a
weight of 4 for nurses and equal weights for knee and heart surgery, teams B and
C have used inputs of 3 � 1 C 3 � 4 D 15 and 6 � 1 C 2 � 4 D 14 to produce output
values of 0 � 1 C 150 � 1 D 150 and 50 � 1 C 75 � 1 D 125. The input efficiency of
team C as compared to team D is therefore .15=150/=.14=125/D 0:893. Note that
in the calculations, we have used the dual variables for team C in accordance with
the interpretations above. The dual problem (with or without restrictions) is used to
find the values of the inputs and outputs that put the team in question in the best
possible light.

Note also that for ease of explanation, we did not use the dual values directly
but instead rescaled them. Thus, for example, we said that team C uses an input
weight ratio of 1 : 4 instead of 0.07142857 : 0.2857143. Such changes do not affect
the DEA programs because it does not matter which units we use for the different
inputs and outputs.

To avoid any confusion, however, let us also do the calculations using the dual
weights directly. Based on the dual weights for team C, the four teams have pro-
duced the aggregated inputs and outputs shown in Table 5.6.

If we do the efficiency calculations in a one-input, one-output model, team C
emerges as having an efficiency level of 1 before the weight restrictions and 0.89
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Table 5.6 Evaluation of Team C

Team Unrestricted Restricted
Inputs Outputs Inputs Outputs

A 1.00 1.00 1.07 0.71
B 1.00 1.00 1.07 1.07
C 1.00 1.00 1.00 0.89
D 1.08 1.00 1.21 0.89

= (1.07/1.07) /(1.00/0.89) after the restrictions. The efficiency scores of the other
teams can be explained in a similar way. We just have to use the specific dual weights
for each team, reflecting the idea that DEA chooses weights for the individual firms
that make them look as positive as possible.

5.10.1 Establishing relevant value restrictions

The challenge in applying this procedure is of course to establish restrictions on
the input and output weights that makes sense or to suggest hypothetical production
plans that can generally be accepted.

One approach is to use information on prices or costs. The relative worth of out-
puts may in some cases be estimated using existing market prices or market prices
for related services. Because prices often vary over time and based on location, and
because specific resources and services may not be priced individually, if is often
more realistic to extract price ratio intervals as used in the assurance region approach
than to extract relative prices as used in costs and revenue efficiency analysis.

Another approach is to use expert opinions. Again, these will typically vary, and
instead of averaging them, it is often safer to create a consensus based on some
interval estimates.

A third approach is to use models and methods from accounting, engineering
or statistics to determine possible aggregations of different services or resources.
Because such models are typically somewhat uncertain, the extracted information
may best be used as partial information.

Practical application: Regulation

To refine regulatory benchmarking models, a series of supplementary approaches
are typically used to at least partially establish input or output values that can be
used to aggregate the inputs and outputs. This step helps to combat the pressure to
include many details in models estimated based on relatively few data points.

We have already discussed the introduction of quasi-observations (i.e., hypothet-
ical production plans) in Sect. 4.7. Such observations can be derived from engineer-
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ing models, accounting analyses or management consultants in-depth analyses of
actual firms opportunities for improvement.

Another more common strategy is to estimate unit costs or cost equivalents. In a
network, the main cost drivers are typically the different assets (e.g., the km of lines
of different voltage classes and the different types of transformers). It is impossible
to estimate their contribution to costs directly using DEA or econometric techniques
because the number of observations is typically small (e.g., 20-200), whereas the
number of different asset types is large, (e.g., 20-1500). Instead, relative costs are
estimated using either cost allocation rules from accounting or engineering models
calibrated to projects where detailed cost information is available. Once the relative
weight, the unit costs or the cost equivalents are established, we can construct a few
cost-aggregated ”size of grid” or ”netvolume” measures, such as

Netvolume(g) D
X
kD1

K.g/vkNk; g D 1; : : : ; G

where k D 1; : : : ; K.g/ are the different assets in group g (say, lines), Nk is the
number of assets of type k, and vk is the relative costs of these assets compared
to that of other assets in the same group. In the DEA model, one can then use the
Netvolumes(g); g D 1; : : : ; G, as the main cost drivers. This means that we restrict
the relative prices inside the groups but let the DEA model determine the relative
weighting of the different groups.

A specific example involving this approach is the e3GRID benchmarking project
that was conducted for 22 national transmission system operators (TSO) from
19 different countries commissioned by Council of European Energy Regulators
(CEER) on behalf of the national regulatory authorities. The overall objective of the
project was to deliver static and dynamic cost efficiency estimates that would be ro-
bust and understandable and could be used with a variety of regulatory applications,
from comprehensive performance assessments to structured periodic rate reviews
(e.g., in setting X-factors). The efficiency estimation techniques used depended on
the character of the underlying functions in terms of homogeneity, cost causality and
production space. The most extensive assessment was made using a non-parametric
DEA frontier model under the assumption of non-decreasing returns to scale and
encompassing total expenditure for construction, maintenance, planning and admin-
istration (CMPA). More than 1,200 different assets were identified by the TSO, and
therefore, extensive aggregation was necessary with only 22 observations from each
of the 3 years. In addition to measuring grid volume, the model also included density
and decentralized generation capacity in the network as cost drivers.

5.10.2 Applications of value restrictions

The inclusion of partial value information has several applications. Let us mention
just some of them.
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One advantage (and perhaps the main advantage) is that including this infor-
mation allows efficiency analyses to contribute to effectiveness or value for money
analyses; i.e., it allows us to make rational ideal evaluations. This presumes, of
course, that the restrictions reflect the perceived relative worth of inputs or outputs.

One might also suggest that obvious information about substitution rates for in-
puts or outputs should be included because this allows a more fair and correct evalu-
ation. In this case, we need partial information reflecting technological possibilities
rather than values.

Another advantage is that including this information allows us to work with more
inputs and outputs even in cases with a limited number of observations. Studies have
shown that if primal information about inputs and outputs is supplemented with just
partial dual information about the relative importance of different types of inputs
and outputs, the number of inputs and outputs can be expanded considerably.

Another advantage might be the reduction of bias in the efficiency estimates. We
will discuss bias in more detail in the next chapter. The basic idea, however, is sim-
ple: the minimal extrapolation principle includes a bias because we develop an inner
approximation of the underlying true production possibility set. This means that the
true efficiencies are lower than the relative efficiencies we estimate. This bias is par-
ticularly large in those parts of the production space where we have relatively few
observations, and one might expect partial price information, such as more elaborate
rescaling possibilities, to reduce this problem.

Finally, such information can help us to evaluate what otherwise appear to be
hyper-efficient firms. By supplementing VRS DEA models with more general return
NDRS or CRS models or by including weight restrictions, we can eliminate some
of these problems.

In applications, the main disadvantage of the use of value restrictions is that inter-
pretations become less clear. The implicit targets that correspond to the projections,
i.e.

.E�oxo; yo/ or .xo; F �oyo/

whereE�o andF �o are the Farrell input and output efficiencies calculated in models
with partial value information,may lie outside the production possibility set spanned
by the original observations. There is no direct empirical evidence that they are
feasible, and there is no simple combination of best practices on which to rely.
Needless to say, this eliminates one of the most compelling merits of DEA compared
to other approaches: its reliance on minimal extrapolation from best practices and
its ability to point to a few peer firms.

We may also consider weight restrictions and dual problems with partial price
information in terms of sensitivity analysis. Under partial value information, we are
uncertain about the appropriate weighting of the inputs and outputs but we do know
something. In serious applied studies, it is common to investigate how sensitive
the results are to the main uncertainties. In practice, this may be difficult because
we need to allow for simultaneous uncertainty about many parameters. The dual
programwith such value restrictions is an advanced way to investigate the sensitivity
of the results. It is basically used to investigate all possible remaining combinations
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of prices so as to determine exactly the combination that puts each firm in its best
possible light.

5.11 Summary

In this chapter, we have introduced the idea of super-efficiency as firm efficiency
relative to the technology spanned by other firms. A super-efficient firm can increase
its inputs or reduce its outputs at least somewhat without appearing inefficient in a
traditional efficiency analysis. This concept helps us to discriminate among efficient
firms and can help to guide regulations that require incentives for even the most
efficient firms.

We have also introduced sub-vector efficiency as a way of addressing scenarios
in which only some of the inputs or outputs are discretionary. We have shown how
easily this process is implemented in the DEA models. Likewise, we have shown
how the idea of directional distance functions, where improvements are sought in
arbitrary directions, can be directly implemented in a DEA context using linear and
mixed integer programming.

We have briefly discussed possible slack in individual inputs and outputs for
firms that are Farrell efficient, and we have covered some possible modifications to
the efficiency measure. The slack problem is quite common in DEA models due to
the vertical and horizontal segments of the frontier. We have argued that it normally
works well to simply report the Farrell efficiencies and the possible slack determined
based on a second-stage maximization of the slack after radial improvements.

We have observed also that DEA problems, at least if we do not included slacks
adjustments, are invariant to positive linear transformations of the inputs and out-
puts. That is, the unit of measurement of any given variable does not matter. This
also means that when firms face similar prices, we can make the technical efficiency
analyses using values such as cost and revenue shares.

Finally, we have discussed the dual version (the multiplier form) of the usual Far-
rell efficiency programs in the VRS, DRS, IRS and CRS cases. The dual problems
have nice economic interpretations as pricing problems. They can also be rewritten
in ratio form and thus provide an alternative interpretation of DEA as a cost-benefit
analysis in which we lack ex ante priorities, prices or values to aggregate the costs
and benefits. Instead, we choose the priorities endogenously in the evaluation pro-
cess to make the evaluated firm look as good as possible. Lastly, the dual problem
can be rewritten as a minimax problem emphasizing the opposing interests of the
evaluated firm and the evaluator in a game-like scenario. The firm being evaluated
can be thought of as selecting the relative weights of the inputs and outputs so as
to appear as effective as possible. However, given these weights, the evaluator may
find alternative firms that are succeeding even better with the same priorities.

We have also shown how the implicit prices or values in a DEA analysis can be
extracted from the dual solution and how we can restrain the relative importance
of inputs and outputs by restricting the dual variables using assurance regions, for
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example. This may allow us to make more relevant evaluations and to better consider
best practices.
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lying in part on the rational inefficiency concept by Bogetoft and Hougaard (2003),
and the e3GRID project is reported in Agrell and Bogetoft (2009).
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and Chang (2006). The details of the data cloud methods can be found in Andrews
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and Pregibon (1978) and Wilson (1993). To fully understand the discussions herein,
however an advanced knowledge of statistics and distributions is needed.

5.13 Appendix: Outliers

Outliers are firms that differ to a large extent from the rest of firms and therefore
may end up being badly captured by the model or having too large an impact on
the model. Outliers are helpful when one is using most empirical methods, but they
are often thought to be particularly troublesome to DEA because an outlier helps to
span the frontier and may have a significant impact on the evaluation of several other
firms. We will therefore discuss outliers and ways to identify them in this section.

5.13.1 Types of outliers

There are several reasons a firm may be an outlier.

• First, there may be errors in the data. Inputs or outputs may have been lost, there
may be errors in typing or punching data values. Such outliers should ideally
be corrected or perhaps eliminated because they are do reflect a real production
process.

• Secondly, the observations may be potentially correct but highly atypical, some-
times called high leverage points. They may sometimes be identified and elimi-
nated so that the model is not distorted to fit these extreme observations.

• Thirdly, observations that suggest exceptionally low or high relative performance
in a parametric or non-parametric model are candidates for outlier detection in
benchmarking. In particular, regulatory benchmarking implies that observations
that influence the estimations for a large part of the reference set should corre-
spond to replicable firm-level performance for the same set and circumstances.
If the relative performance difference is extreme, the individual observation is
classified as an outlier in regulatory benchmarking for precautionary reasons,
which are not necessarily the same as the second types of outlier detection. On
the other hand, such observations could also represent an important phenomenon.
They could reflect the first introduction of new technology into a production pro-
cess or an innovation in management practice from which others would want to
learn.

The impact of outliers may also depend on the model. In DEA, particular empha-
sis is given on the quality of observations used to define best practices. The outlier
analysis in DEA can use statistical methods and dual formulation, in which marginal
substitution ratios can reveal whether an observation is likely to contain errors. In
SFA, outliers may distort the estimation of the curvature. They may also increase
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Fig. 5.3 Scatterplot matrix of the Charnes et al (1981) data set charnes1981.csv: 5 input and
3 outputs. Histogram of the variables on the diagonal.

the magnitude of the idiosyncratic error term, thus influencing average efficiency
estimates in the sample.

5.13.2 Identifying outliers

A simple way to see if there might be a problem with outliers is to make some simple
graphs of the data. A useful tool is the scatterplot matrix, which in R is available via
the function pairs.

A simple example with a data set for 70 firms with 5 inputs and 3 outputs from the
data set “charnes1981.csv available in the Benchmarking package is shown in figure
5.3. In this graph, there are signs of an outlier: one firm seems to have larger inputs
and outputs than the other firms, as on the bottom line, there is a single dot above
all the other grouped dots. This simple graphical method is a useful first method of
finding outliers, but such graphs are not useful if the extreme features are reflected
in a linear combination of more than two variables.

Outliers are also important in regression models, where they can have a large
influence on the estimates. Here, we are particular concerned with firms for which a
variable is extremely large, meaning that the firm has potential leverage in influenc-
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ing the shape and slope of the regression, and that the firm is off-center in the sense
that they actually exercise their leverage. There is a whole set of methods that can
be used to help identify such outliers. Most of the available methods builds on the
residuals from the regressions and are generally designed for normal linear mod-
els. They are mostly computational shortcuts used to see how the estimated residual
and parameters change when each of the individual observations is excluded one at
a time. This is especially true for measures like Cook’s distance, DFFITS, partial
leverage, conditional numbers, and other methods in which computation depends
on the projection or hat matrix. It follows that such methods are not directly rele-
vant to DEA analysis. Some of the methods might be relevant for SFA analysis, but
because the SFA estimates also differ from estimates in a normal linear model, they
are probably not ideal for SFA models either. Moreover, most of the methods only
consider the influence of a single firm, not a group of firms.

We therefore require an approach that is directly focused on identifying outliers
that to a large extent may influence frontier models and a method that can preferably
handle not only individual outliers, but also groups of outliers.

One approach that has been proposed for DEA models is to look at super-
efficiency (cf. subsection 5.2 on page 115) and classify firms as outliers if their
input-based super-efficiency is large (say, 3 or 4). The idea of using super-efficiency
is straightforward. High super-efficiency means that the firm is significantly pushing
out the frontier, and experiments have shown that the method actually works well in
practical applications. Unfortunately, its theoretical foundations are limited. More-
over, this method can only find a single-firm outlier and cannot zero in on groups of
firms.

Let us therefore turn to a more advanced—and complicated—method.

5.13.3 Data cloud method

Let X D .x1; : : : ; xK/ and Y D .y1; : : : ; yK/ be K �m and K � n matrices with
inputs and outputs for K firms. The combined matrix

�
X Y

�
then contains all of

our observations. These observations, the different rows in the combined matrix,
can be seen as a cloud of points in the RmC � RnC space, where each point represents
a firm. The volume of the cloud is proportional to the determinant of the combined
matrix

�
X Y

�0 �
X Y

�
:

Volume of data cloud ' D.X; Y / :

It is interesting to note that this determinant can also be interpreted as the general-
ized sum of the quadratic residuals from the linear model of Y conditioned on X ,
i.e. the model EV.Y jX/ D XB or

Y D XB C noise

where B is a m � n matrix with parameters.
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If we remove a firm from the data, then the volume of the data cloud may de-
crease. If the removed firm is in the middle of the cloud, the volume will be un-
changed. If, on the other hand, the firm is outside the remaining cloud, then the
volume will be much smaller, and we will have an indication that the firm is an out-
lier. To look for one or more outliers, we can therefore look at how the volume of
the cloud changes when we remove one or more observations.

Let D.i/ be the determinant after removing firm i , and consider the ratio of the
new volume of the data cloud to the old volume

R.i/ D D.i/

D
:

Note that R.i/ does not depend on the units in either the X or the Y matrix; i.e. it
is dimensionless. If firm i is not an outlier, then D will not change much and R.i/

will be close to 1. If firm i , on the other hand, is an outlier, then R.i/ will be much
smaller than 1. To look for outliers, we therefore must simply look for small values
of R.i/. In this approach, we are not restricted to deleting just one observation at a
time. We could eliminate firms 1,2 and, 5, for example, and let the resulting ratio of
volumes be denoted as R.1;2;5/.

To identify outliers or groups of outliers, we must therefore look for small values
of R. We do not need all of the small values to make inferences about outliers; we
just need to investigate the smallest R for each number of firms that we delete from
the data set. Because R is a stochastic variable, we could find its distribution, but
to find the distribution of the minimum of R is cumbersome. Let us therefore find
another way to look for small values of R.

If there is a group of s outliers and we look for outliers by deleting groups of
1; : : : ; r firms, then for r < s, we should not expect to find an R with a very small
value because there will still be outliers in the remaining data set. However, for s < r
we will get an R from which all outliers are deleted, and this R will presumable
be very small. When examining the values of R, we will therefore look for the
first single isolated small value. If such a value exists, we have found a group of
outliers. An isolated small value is an isolated minimum value, or, to fix it on a
scale, Rmin

Rmin
D 1 should be isolated from other values of R

.r/

Rmin
, or 0 should be isolated

from other values of log
�
R.r/

Rmin

�
. Instead of doing the distributional calculations, we

can therefore use a graphical method in which we plot the ordered pairs	
r; log

�R.r/
R
.r/
min

�

where r is the number of deleted firms. In this graph, we look for isolated low points;
the r with isolated low points gives an indication of r outliers.
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5.13.4 Finding outliers in R

The above calculations can easily be done in R. The following lines of R code
provide a straightforward way to calculate the determinants D and D.i/ and the
ratio R.i/. To illustrate the calculations, we use the data set charnes1981.csv
with 5 inputs and 3 outputs available in the Benchmarking package.

c81 <- read.csv("charnes1981.csv")
x <- with(c81, cbind(x1,x2,x3,x4,x5))
y <- with(c81, cbind(y1,y2,y3))
xy <- cbind(x,y)
D <- det(t(xy)%*%xy)
i <- c(3,17) # firms to remove
xyi = xy[-i,]
Di <- det( t(xyi) %*% xyi )
Ri <- Di/D

The above calculation corresponds to the removal of just one group of two firms,
namely firms 3 and 17. There are 70 firms in the data set, and therefore, there are�
70
2

� D 70Š
.70�2/Š 2Š D 2415 different ways to remove 2 out of 70 firms. Thus, the

above calculations should be done 2415 times simply to examine the possible impact
of eliminating two firms from the total of 70 firms. Examining other groups sizes
would soon make this direct approach impractical because the calculations would
become too massive. Instead, we recommend the use of the function ap from the
package FEAR. This function is coded in Fortran and unfortunately is only available
for Windows and Linux, but it is stunningly fast. The following lines show how to
use ap.

1 library(FEAR)
2 library(Benchmarking)
3 c81 <- read.csv("charnes1981.csv")
4 x <- with(c81, rbind(x1,x2,x3,x4,x5))
5 y <- with(c81, rbind(y1,y2,y3))
6 tap <- ap(X=x,Y=y,NDEL=12)
7 print(cbind(tap$imat,tap$r0), na.print="", digit=2)
8 outlier.ap.plot(tap$ratio)

Line 1 loads the FEAR package in R, line 3 reads the data, lines 4 and 5 create
input and output matrices in which the number of rows corresponds to the num-
ber of goods and the number of columns to the number of firms—note that input
and output matrices for the FEAR functions are transposed matrices compared to
standard use in R; we therefore use rbind instead of cbind . Line 6 calculates
the minimum value of the Rs when deleting up to NDEL firms simultaneously and
saves the result in the variable tap, line 7 prints the results as found in Table 5.7,
and line 8 plots the log ratios in Fig. 5.4—this could also by done using the FEAR
function ap.plot(RATIO=tap$ratio), in which case the plot would look a
little different. The details of the ap and ap.plot commands can be found in the
FEAR manual pages.

The rows in Table 5.7 show which deletions give the minimum value of R.r/;
this minimum value is also shown. Thus, the first row, r D 1, shows that deleting
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Table 5.7 The r removed observations corresponding to a minimum value ofR.r/ for the Charnes
et al (1981) data

r Deleted observations R
.r/
min

1 44 .4705

2 59 44 .2188

3 33 59 44 .1311

4 35 33 59 44 .0807

5 35 66 33 59 44 .0512

6 67 35 66 33 59 44 .0332

7 67 68 35 66 33 59 44 .0227

8 50 67 54 35 66 33 59 44 .0153

9 1 50 67 54 35 66 33 59 44 .0095

10 10 1 50 67 54 35 66 33 59 44 .0061

11 10 1 50 67 68 54 35 66 33 59 44 .0040

12 10 52 1 50 8 67 54 35 66 33 59 44 .0027
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Fig. 5.4 Log–Ratio Plot for the Charnes et al (1981) data

firm 44 from the data set results in a value of R.1/ at 0:4705 and that this value
is the minimum value of R.1/, i.e. the minimum R when just one firm is deleted
from the dataset. The second row, r D 2, shows that deleting firms 59 and 44 gives
a R.2/ value of 0:2188; this is the minimum R value when two firms are deleted
simultaneously. The same applies to the other rows.

To get a clear view of the minimum Rs and how they depend on the number
of simultaneously deleted firms, we can look at Fig. 5.4, derived from line 8 in
the above R listing of commands. In Fig. 5.4 we have plotted the ordered pairs�
r; log

�
R.r/

R
.r/
min

��
. To look for outliers, we look for points in the graph where there is a

gap between the points above 0 and the point at 0. A dashed line is drawn between
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Fig. 5.5 Frontier for the Charnes et al (1981) data, aggregate input and output. The firm number is
shown for the first 6 outlier firms and for the firm supporting the CRS line in the figure.

the points just above 0. We therefore have a group of outliers where the dashed line
is far above 0.

In Fig. 5.4 we can see that the dashed line peaks at 2 deleted firms, r D 2; i.e.
we have 2 outliers. From Table 5.7, we can see that these are firms 44 and 59. In
Fig. 5.5 we have graphed the technology for aggregate input and aggregate output,
which we have derived by simple summing inputs and of outputs. In this figure, one
can easily see that the outliers are firms 44 and 59.

Firm 58, a firm on the frontier in all the three models (VRS, DRS, and CRS)
marked with a filled circle in the frontier plot, is not considered an outlier based on
the above process, not even when we consider groups of 12 outliers. Thus, a firm
on the frontier is not necessarily an outlier if it is relatively close to other firms. The
outlier firms on the frontier, the fully efficient firms, are thus firms that are different
with regard to input and output size. The next peak in Fig. 5.4 shows that there might
also be a group of 5-6 firms that could be considered outliers. Here, outlier firms are
also among the worst firms, i.e. firms with low efficiency. They are numbered on the
frontier plot.





Chapter 6
Statistical Analysis in DEA

6.1 Introduction

DEA is often classified as a non-statistical or deterministic approach that does not
easily allow genuine hypothesis testing. Although DEA has not historically empha-
sized the use of traditional statistical tests, considerable progress has been made
in this respect over the last 15 years. We will cover some important results in this
chapter.

Initially, however, let us note that the background for DEA is operations research
and management science. Management science is concerned with use of scientific,
mostly mathematical, methods to solve real problems. This means that DEA stud-
ies have emphasized model-building as emphatically as they have model testing.
That is, a DEA model developed for evaluation purposes is not to be evaluated
solely based on its ability to explain and predict data in the best possible way. Basic
properties of production economics like free disposability, economies of scale and
convexity, the logic of the production structure from an engineering perspective, the
relevance of the identified peers to industry representatives, etc., serves to validate
the model just as statistical tests serve to validate a statistical model developed to
replicate some underlying data generation process as closely as possible. Therefore,
we maintain that interesting insights can arise from the use of DEA models without
in the heavy use of statistical testing.

There are, of course, particular situations for which we are interested in perform-
ing hypothesis tests and constructing confidence intervals based on DEA models.
Thus for example, we might wish to

• Test model-building assumptions like the returns to scale assumption
• Test for relevant and irrelevant inputs and outputs
• Test for differences between different groups of firms in terms of efficiency
• Test allocative and scale efficiency of a group of firms
• Test whether efficiency depends on external factors

In general, there are three ways to conduct such tests.
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One is to rely on general non-parametric tests, i.e. tests used when the underlying
distribution is unknown. We discuss some of these, including Kolmogorov–Smirnov
tests and Kruskal–Wallis tests.

Another way is to rely on parametric tests, making assumptions regarding the
underlying distribution of inefficiency and noise in the data. We will cover a series
of such tests based on asymptotic statistical theory. Relying on asymptotic theory
means that the theoretical properties are only established for large samples. How-
ever, simulation studies based on samples of moderate size, those including 50 firms
and above, do suggest that they can be used quite generally.

The third approach, and one that has become popular with the development of ef-
fective computer programs, is the use of the bootstrap. The bootstrap is a computer-
based method that can answer many statistical questions. The approach replicates
sampling uncertainty by creating repeated samples of the original sample. We will
spend most of this chapter covering bootstrap-based inference in DEA models.

In the appendix, we discuss the use of statistical methods in second-stage anal-
yses, i.e. analyses performed after the development of a benchmarking model, to
validate the model and to explore the possible causes of the variations in efficien-
cies. A common approach in such studies is tobit regression, and such analyses are
not only relevant for DEA based benchmarking.

6.2 Asymptotic tests

In this section, we will assume that firm’s efficiency is the realization of a random
variable and that this is the sole reason why observed performance deviates from the
underlying production possibility frontier; i.e. all deviations are efficiency-related,
and there is no noise in the data.

Specifically, let us consider a DEA setting and assume that the true Farrell output
efficiency �, i.e.

� D maxfF j .x; Fy/ 2 T g
is a random variable with values in Œ1;1Œ and a density function g. Also, we
assume that there is a non-zero likelihood of nearly efficient performance; i.e.R 1Cı
1

g.�/ d� > 0 for all ı > 0.
In the following, it is importing to note that we distinguish between the true but

unknown and unobservable technology T and a DEA estimate T � of T . Now, it is
clear that the estimated efficiency F in any finite sample of firms

F D maxfF j .x; Fy/ 2 T �
� g

where
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T �
� D ˚

.x; y/ 2 RmC � RnC j

x �
KX
kD1

�kxk ; y �
KX
kD1

�kyk ; .�1; : : : ; �K/ 2 ƒK.�/ �
is biased downwards; i.e. it is always weakly smaller than true (in)efficiency �,
F � �. Recall here that ƒK.�/ is the restrictions on � that depends on the returns
to scale assumptions, i.e. fdh, vrs, or crs, as discussed in Sect. 4.4. The reason is
that we have only observed a subset of practices, not necessarily the best practices,
and the estimate of T � of T is therefore an inner approximation, T � � T , meaning
that F measured against T � is less than � measured against T . Thus, estimated
efficiency values never make a firm look less efficient than it really is, only more
so. DEA-based estimates in this setting are cautious and puts the firms in a positive
light.

However, asymptotically (with the number of firms going to infinity), this bias
reduces to zero; that is, the DEA estimators are consistent. This holds as soon as
the probability of observing nearly efficient firms is strictly positive, as we assumed
above. Consistency is a nice statistical property because it means that for large sam-
ples, our evaluation is correct.

Additionally, one can show that if the density function g is monotonously declin-
ing (i.e. f 0 > f ) g.f 0/ � g.f /), then the DEA estimator F is the maximum
likelihood estimator for �.

The consistency results indicate that for large samples of firms, the distribution of
F is similar to the distribution of �. Therefore, in a large sample, the distribution of
a test statistic t.F / will be similar to the distribution of t.�/, and the distribution of
t.�/ can be found from the density g of �. This technique can be used to construct
a series of tests as we do in the subsections that follow.

6.2.1 Test for group differences

If the set ofK firms is divided into two groups withK1 andK2 firms,K D K1CK2,
we may be interested in testing whether there are significant differences between
the efficiencies of the two groups—note that we use K , K1 and K2 as both the
number of firms and the set of firms. This procedure may be relevant if we aim to
test whether one special ownership structure is more efficient than another, whether
one particular treatment is more effective than another, whether a specific region
offers more favorable conditions for firms than another, etc.

Letting the density of the distributions of the efficiencies in the different groups
be g1 and g2, respectively, we seek to test

H0 W g1 D g2 againstHA W g1 ¤ g2:
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As mentioned before, the distributions of t.F / and t.�/ are asymptotically the same.
If t.�/ is exponentially distributed, a chi-square distribution with 2 degrees of free-
dom, then

PK
kD1 t.F k/ is asymptotically �2–distributed with 2K degrees of free-

dom.
Under the null hypothesis, the two groups have the same distribution of effi-

ciency, and the ratio

TEX D
P
k2K1

t.F k/=K1P
k2K2

t.F k/=K2

is the ratio of two asymptotically �2–distributions and is therefore asymptotically
distributed as a Fisher distribution with 2K1 and 2K2 degrees of freedom, TEX

a�
F.2K1; 2K2/. Note that TEX might be greater or less than 1 such that the test is
two-sided.

If we assume that true efficiency is � D 1C � where � is exponential distributed,
then we should simply use t.F / D F � 1 such that

TEX D
P
k2K1

.F k � 1/=K1P
k2K2

.F k � 1/=K2
and reject the hypothesis if TEX is greater than the 95% quantile in the distribution
F.2K1; 2K2/.

Likewise, if t.�/ has a half-normal distribution, then t.�/2 is �2 distributed,
and therefore,

PK
kD1 t.Fk/2 is asymptotically �2–distributed with K degrees of

freedom. The test statistic

THN D
P
k2K1

t.F k/2=K1P
k2K2

t.F k/2=K2

is therefore distributed as F.K1; K2/. This will be the case if, for example, � � 1

has a half-normal distribution, and in this case, we should again use t.F / D F � 1.
Lastly, if we have no a priori assumptions about the distribution of �1 and �2, we

may use the non-parametric Kolmogorov– Smirnov test statistic

TKS D max
kD1;:::;K

˚ jG1.F k/ �G2.F k/j
�

where G1 and G2 are the empirical cumulative distributions in the two subsets such
that TKS is the largest vertical distance between the cumulative distributions. Large
values of TKS as evaluated via the Kolmogorov-Smirnov test as an indication that
H0 is false. Note that this test depends on the rank (i.e. the order) of F k only and
not on the individual values of F k .

Another non-parametric test based on ranks is the Kruskal–Wallis test used to
test groups of data. We will not show how to run this test but would like to note that
the test only depends on the rank of the observations. This test is helpful because it
can be used to test the hypothesis that several groups have the same distribution.
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Numerical example in R: Milk producers

We want to test data from a group of milk producers to determine if efficiency
depends on the breed of cow. The inputs are cost categories, and the output is milk.
Group 1 is comprised of farmers without jersey cows, whereas group 2 is comprised
of farmers with jersey cows.

Implementing the TEX and THN tests in R is easy; these tests are simply a matter
of summing the efficiencies with 1 subtracted. The commands qf and pf calculate
the quantile (.95 for 95% or 5% tail probability) and the probability in the Fisher
distribution. The calculated output efficiencies are split into two groups F1 and F2
based on the value of the two-level factor race, and the test evaluates whether the
efficiency of the two groups is identical.

The Kolmogorov– Smirnov and the Kruskal–Wallis tests are more complicated,
but R already contains special methods for those tests; therefore, it is easy to use
them in R.

The code and output for the tests are shown here:

> library(Benchmarking)
> cattle = read.csv("projekt.csv")
> attach(cattle)
> kgMilk <- milkPerCow * cows
> x <- cbind(unitCost, capCost, fixedCost)
> y <- matrix(kgMilk)
> FF <- eff(dea(x,y,ORIENTATION="out"))
> TEX <- sum(F1-1)/length(F1) / (sum(F2-1)/length(F2))
> TEX
[1] 1.989044
> qf(.025, 2*length(F1), 2*length(F2))
[1] 0.6369572
> qf(.975, 2*length(F1), 2*length(F2))
[1] 1.682756
> pf(TEX, 2*length(F1), 2*length(F2))
[1] 0.9947547
> THN <- sum((F1-1)ˆ2)/length(F1) / (sum((F2-1)ˆ2)/length(F2))
> THN
[1] 2.000593
> qf(.025, length(F1), length(F2))
[1] 0.5357977
> qf(.975, length(F1), length(F2))
[1] 2.148472
> pf(THN, length(F1), length(F2))
[1] 0.9628421
> # Kolmogorov-Smirnov test
> ks.test(F1, F2)

Two-sample Kolmogorov-Smirnov test
data: F1 and F2
D = 0.4893, p-value = 0.0006954
alternative hypothesis: two-sided

> # Kruskal--Wallis, 2 groups
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> kruskal.test(FF, race=="jersey")

Kruskal-Wallis rank sum test
data: FF and race == "jersey"
Kruskal-Wallis chi-squared = 11.6309, df = 1, p-value = 0.0006487

The value of the TEX is calculated to be 1.989044, and as the 97.5% upper critical
value (the size of the test is 5%) in the F distribution with 80 (the number of firms in
group 1) and 21 (the number of firms in group 2; breed “jersey” ) is 1.68, we reject
the hypothesis that the distribution of efficiency in the groups is identical. The THN ,
on the other hand, is 2.00, and the upper critical value is 2.148. Thus, we do not
reject the hypothesis that they are identical; rather, the groups could be identical.
The results of both the Kolmogorow–Smirnov test and the Kruskal–Wallis test lead
us to reject the null hypothesis. Based on the boxplot and densities in Fig. 6.1, it
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Fig. 6.1 Boxplot and densities for output efficiency of the two subgroups

does look as if group 2 (the “jersey” breed) has steeper density and mass closer to 1
than group 1. Most of our tests also show that the difference is significant, and what
we see in the figure is therefore most likely not a matter of chance. One result that
emerges is that the for group F2 (“jersey”), the average output efficiency is lower
than that for group F1 (“large”); i.e. F2 is more efficient than F1 on average. Note
that there is an outlier in group F2, indicated both at the top of the boxplot as a circle
and in the density illustration as a blip to the far right.

6.2.2 Test of model assumptions

In model development and model validation, we may want to test if an alternative
model specification better represents firm performances. We might, for example, be
interested in testing whether we can assume variable return to scale or whether some
outputs can be eliminated from the model specification.
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Here we will distinguish not between two groups of observations, but rather dis-
tinguish between two sets of model assumptions, or what accounts to the same,
distinguish between two technology sets. In Sect. 4.3, we argued that the estimated
technology set should be the smallest set containing the data and fulfilling certain as-
sumptions (the minimal extrapolation principle). The question we ask here is there-
fore whether an estimated technology set can be made even smaller by adding fur-
ther restrictions and still be in agreement with data. Let the technology set be T1,
and let the smaller technology set be T2. For example, we could have the same as-
sumptions regarding the technology sets but assume CRS in T1 and VRS in T2, with
the additional restriction

PK
kD1 �k D 1. Likewise, the technology set T1 could in-

clude n outputs, and the technology set T2 could include n0 > n outputs; the greater
number of outputs would result in the existence of more restrictions and therefore
yield a smaller technology set.

In both examples, and in general, a smaller technology set (i.e. one with more
restrictions) results in a better (or unchanged) efficiency level; for input efficiency,
we obtain E1 � E2 � 1, and for output efficiency, we obtain F1 � F2 � 1

where the subscript of the efficiencies E and F is a product of the corresponding
technology set T1 and the smaller set T2.

In statistical language, technology set T1 represents the null hypothesis and the
smaller technology set T2 the alternative. We test technology hypothesis T1 against
alternative T2.

If the efficiencies calculated under T1 are very different from the efficiencies
calculated under T2, the two technologies are not at all similar, and we should reject
the null-hypothesis technology T1 and opt for the alternative technology T2; the
extra restrictions in T2 are of real importance. If the efficiencies are more or less
the same, then the extra restrictions are of no importance, and we opt for the null-
hypothesis technology T1. Therefore, we can test the technology assumptions by
testing whether efficiency is the same under the two technologies.

Now, let the distribution of the efficiency scores for K firms under the two tech-
nology assumptions T1 and T2 be g1 and g2, respectively. We will then test the
hypothesis

H0 W g1 D g2 againstHA W g1 ¤ g2

using the same ideas as above, except that we now sum the figures for all firms in
both the numerator and the denominator. If we accept the hypothesis H0, we use
technology T1, whereas if we reject the hypothesis, we use technology M2. More
specifically, if t.�1/ and t.�2/ are exponentially distributed for some monotone
transformation t.�/, then just as before, the test statistic

TEX D
PK
kD1 t.F k1 /PK
kD1 t.F k2 /

;

where F k1 and F k2 are the output efficiency of firm k based on technologies T1 and
T2, respectively, will follow a F–distribution underH0 with 2K and 2K degrees of
freedom, F.2K; 2K/.
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The test is one-sided as TEX � 1, and therefore, the critical value for a test of size
5% is the 95% quantile in the F–distribution with 2K and 2K degrees of freedom,
F.2K; 2K/; i.e. for large values of TEX , we reject the null hypothesisH0 that model
M 1 is true.

Likewise, if t.�1/ and t.�2/ have a half-normal distribution for some monotone
transformation t.�/, then we can use the test statistic

THN D
PK
kD1 t.F k1 /2PK
kD1 t.F k2 /2

with large values in a F.K;K/ distribution as critical values for the test ofH0.
Lastly, if we have no a priori assumptions about the distribution of �1 and �2, we

can use the non-parametric Kolmogorov– Smirnov test statistic

TKS D max
kD1;:::;K

f jG1.F k/ �G2.F k/j g

where G1 and G2 are the empirical cumulative distributions in the two models such
that TKS is the largest vertical distance between the cumulative distributions. Large
values for TKS indicate that the distributions differ and therefore thatH0 is false; the
null hypothesisH0 is rejected.

Numerical example in R: Milk producers

Implementing the tests for model assumptions is just as easy as implementing the
tests of group differences. However, we present an example anyway to introduce yet
another example of a hypothesis.

So far, we have used two examples to test our model assumptions. Here, we
use a third example to test whether to include fewer inputs. The null hypothesis is
technology T1 withm inputs, whereas the alternative is technology T2 withm0 > m
inputs. Again, the alternative includes more restrictions and specifically more input
restrictions in the LP formulation. The test statistics are as previously described.

We use the same data set that we used to test group differences. We want to
test whether we really need capacity costs when we already include the number
of cows and whether veterinary expenses are important on their own even though
they are part of unit costs. Thus, the alternative technology set T2 includes among
its inputs the number of cows and veterinary expenses, whereas technology T2, the
null hypothesis, excludes these two inputs.

The input matrix x1 in the example below excludes the variables in question,
whereas the input matrix x2 includes them. The following code reads data, cal-
culates efficiency and makes graphs as shown in Fig. 6.2. The graphs are slightly
different from the ones we presented in the test for group differences.

library(Benchmarking)
cattle = read.csv("projekt.csv")
kgMilk <- with(cattle, milkPerCow * cows )
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Fig. 6.2 Efficiency when capacity cost and veterinary costs are excluded (F1) and included (F2) in
the inputs for milk production: comparing efficiencies and the empirical distribution of efficiencies.

The box plot shows that the two technologiesT1 and T2 are only slightly different
in terms of efficiency; the spread is slightly greater for F1 that for F2. The same
pattern is seen in the top right plot, where some of the efficiencies are identical
(i.e. on the diagonal line) and some for F1 are larger than those for F2 (below the
diagonal line). This is no surprise given that the number of inputs is smaller in F1;
firms will have unchanged or greater output efficiency, as discussed in Sect. 4.6 on
page 93. The bottom figure shows the empirical distribution. The distribution of F2
is above that of F1; for every level of efficiency, the proportion of firms at that level
or lower is larger for technology T2 than for technology T1.

The problem is whether the difference that we see is statistically significant. This
is where the test statistics come into play. Based on the above calculations for the
two efficiencies, the test statistics are calculated below.

> TEX <- sum(F1-1)/length(F1) / (sum(F2-1)/length(F2))
> TEX
[1] 1.211835
> qf(.95, 2*length(F1), 2*length(F2))
[1] 1.261131
> pf(TEX, 2*length(F1), 2*length(F2))

x1 <- with(cattle, cbind(unitCost, fixedCost, cows))
x2 <- with(cattle, cbind(unitCost, capCost, fixedCost, vet, cows))
y <- matrix(kgMilk)
F1 <- eff(dea(x1,y,ORIENTATION="out"))
F2 <- eff(dea(x2,y,ORIENTATION="out"))

plot(F1,F2, xlim=range(F1,F2), ylim=range(F1,F2))
abline(0,1)

K <- length(F1)
plot(sort(F1), (1:K)/K, type="s", ylim=c(0,1),

ylab="Probability", xlab="Output efficiency")
lines(sort(F2), (1:K)/K, type="s", lty="dashed")
legend("bottomright",c("F1","F2"),

lty=c("solid","dashed"),bty="n")
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[1] 0.9135035
>
> THN <- sum((F1-1)ˆ2)/length(F1) / (sum((F2-1)ˆ2)/length(F2))
> THN
[1] 1.381849
> qf(.95, length(F1), length(F2))
[1] 1.389417
> pf(THN, length(F1), length(F2))
[1] 0.9471316
>
> # Kolmogorov-Smirnov test
> ks.test(F1, F2, alternative = "greater")

Two-sample Kolmogorov-Smirnov test

data: F1 and F2
Dˆ+ = 0, p-value = 1
alternative hypothesis: the CDF of x lies above that of y

Warning message:
In ks.test(F1, F2, alternative = "greater") :

cannot compute correct p-values with ties
> # Kruskal--Wallis
> kruskal.test(list(F1, F2))

Kruskal-Wallis rank sum test

data: list(F1, F2)
Kruskal-Wallis chi-squared = 2.519, df = 1, p-value = 0.1125

The TEX and THN are estimated to be 1.21 and 1.38, and both fall below the crit-
ical value, the 95%–quantile. The results of the Kolmogorof–Smirnof test and the
Kruskal–Wallis test both support the same conclusion. Note that the probabilities
for these tests are tail probabilities. Therefore, we do not reject the null hypothesis
that we need to include capacity cost and veterinary costs among the inputs, and for
all uses of the technology, we should be using T 1 with the fewest input variables.

Practical application: DSO regulation

In the regulation of German electricity distribution operators, DSOs, a series of tests
were undertaken to ensure that models did not unintentionally favor or disadvantage
specific types of companies. We will discuss regulation in greater detail in Chap. 10.
The tests for the DSO technologies was conducted as second-stage tests of the best
of four scores that the regulation prescribed using non-parametric Kruskal–Wallis
tests, cf. also Chap. 10. However, we could also have used tests like those above to
directly evaluate the individual DEA models and test for the impact of such factors
as 1) whether the DSO is located in what was formerly West or East Germany or 2)
whether the DSO is also involved in gas distribution, water distribution etc.
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The same regulations also stipulate that no single DSO can have too large an
impact on average efficiency in the DEA models. This requirement was tested using
the test statistic P

h2Knk

�
E.h;K n k/ � 1

�2P
h2Knk

�
E.h;K/� 1

�2 :

Here, K is both the set and the number of DSOs in the data set, and k is a po-
tential outlier. Also, E.h;K/ is the efficiency of h when all DSOs are used to es-
timate the technology, and E.h;K n k/ is the efficiency when DSO k does not
enter into the estimation. The test therefore compares the average efficiency of the
other operators when DSO k cannot affect the technology with the average effi-
ciency of the other DSOs when DSO k is part of the evaluation process. Because
E.h;K n k/ � E.h;K/, this ratio is always less than or equal to 1, and the smaller
the ratio, the larger the impact of k; i.e. small values will be an indication that k is an
outlier. We see that this line of thought resembles the model specification test prob-
lems above, which suggests that we can evaluate the test statistic in aF.K�1;K�1/
distribution.

6.3 The bootstrap method

Bootstrap is a general computer-based statistical method for calculating the accu-
racy of statistical estimates. Generally, “pulling oneself up by one’s bootstraps”
means to succeed based on one’s own efforts despite very difficult circumstances
and without help from anyone. The statistical bootstrap method has some of this
flavor and recalls the story of Baron von Munchausen, who pulled himself and his
horse out of a swamp by pulling on his own hair while holding on to the horse with
his legs. In the following pages, we first give a short introduction to bootstrap as a
general method and then explore the details of bootstrap DEA models.

The basic idea of bootstrap is to sample observations with replacements from
one’s data set and thereby create a new “random” data set of the same size as the
original. Using this dataset, one can calculate the necessary statistics, called repli-
cates. This process is repeated to create a sample of replicates. Based on this sample,
we can draw conclusions about the distribution of the statistics in which we are in-
terested.

Let us consider a very simple example, a sample of n observationsx1; x2; : : : ; xn.
Imagine that we have observed 7 numbers 94, 197, 16, 38, 99, 141, and 23.
The mean is Nx D 1

n

Pn
iD1 xi D 86:86, and the (unbiased) standard error is

s D
q

1
n�1

Pn
iD1.xi � Nx/2 D 66:77. The estimate of the standard error of the

mean is sp
n

D 25:24. The standard error is very easy to estimate when we simply
wish to determine the variance of the mean because we can use an explicit formula.
Unfortunately, we do not always have an explicit formula for the standard error or
for variance.
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Table 6.1 The bootstrap algorithm for estimating standard errors

1. Select B independent bootstrap samples x1; x2; : : : ; xB , i.e. a sample
drawn with replacement from our data set.

2. Calculate the estimate for each bootstrap sample:

t.xb/ .b D 1; : : : ; B/ :

3. Estimate the standard error using the sample standard error of theB repli-
cations

OsB D
vuut 1

B � 1
BX

bD1

�
t.xb/� Nt�2

where Nt D 1
B

PB
bD1 t.x

b/.

If instead of investigating the mean we wish to find the median and the variance
of the median, we must undertake a much more complicated process because the
formula for calculating the variance of the median is not easily determined. This is
where the bootstrap method becomes key.

A bootstrap sample in this case is a random sample obtained by sampling 7
(the number of elements in the sample) elements or data points with replace-
ments from our original sample. Hence, the bootstrap sample could be xb D
.x6; x1; x4; x1; x3; x3; x5/, i.e. 141, 94, 38, 94, 16, 16, and 99. Based on this boot-
strap sample, we estimate the statistic t.xb/ we are interested in: here, the median.
Now, instead of trying to calculate the standard deviation of the estimated median,
we make B bootstrap replications. For each bootstrap replication b, we calculate
t.xb/, the median. As the bootstrap estimate of the standard error of t.x/ with B

replications, we use OsB D
q

1
B�1

PB
bD1.t.xb/� Nt /2 where Nt D 1

B

PB
bD1 t.xb/ is

the mean over the replications of the statistic we are interested in.
The idea of the bootstrap method is that if the empirical distribution of xb corre-

sponds more or less to the true distribution of x, then the empirical distribution of
t.xb/ will correspond more or less to the true distribution of t.x/. This means that
we can use the empirical distribution of t.xb/ as the true but unknown distribution
of t.x/. Thus, when we are interested in the variance of the median, t.x/, which is
difficult or impossible to determine, we can simply use the empirical variance of the
median of the bootstrap, t.xb/, which is much easier to obtain.

The bootstrap method can be described as the algorithm in Table 6.1. The limit
of OsB as B goes to infinity is the ideal bootstrap estimate.

Luckily, we do not have to program the algorithm in Table 6.1 ourselves; it is
part of the package boot in R, and now we show how to use it in the small numerical
example we have just seen.
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Table 6.2 Bootstraping the variance of the median in a sample with 7 numbers

library(boot)
treat <- c(94, 197, 16, 38, 99, 141, 23)
func <- function(d,i) { median(d[i]) }
B <- 200
boo <- boot(treat, func, B)
sqrt(var(boo$t))
mean(boo$t)
hist(boo$t,main=NULL)

Numerical example in R

Bootstrap is easy in R because the package boot contains the function boot, which
organizes the resampling and calculation of a statistic (function) we provide; this is
just an implementation of the algorithm in Table 6.1. In our example in which we
investigate the variance of the median, we use the R script in Table 6.2. The first line
is the command to load the library boot that contains the commands and methods
for bootstrap in R. The second line defines our data set, our original sample, as the
variable treat. To use the R function boot, we must define a function that cal-
culates the statistic of interest. In our case the function must calculate the median,
and it must be defined with two arguments, the first the original data and the second
a vector of indices, frequencies or weights that define the bootstrap sample. Here,
the function is called func, and the two arguments are d for data and i for the
indices, such that d[i] is a bootstrap sample and the return of the function is the
median of the bootstrap sample d[i]. Next, we define variable B as the number
of bootstrap replicates; in this case, we use 200 replicates. To actually generate the
bootstrap replicates, we use the R function boot. This function takes 3 arguments:
the original sample, the function we have defined to calculate the statistics of inter-
est, and the number of replicates (bootstrap iterations) we seek, here the defined by
the variable B.

The function boot can take many more arguments than we use here; see the
manual, >?boot, for others.

The output from the bootstrap function is put into the variable boo, a boot object.
Hereafter, we can gain access to the replicates of the 200 calculated statistics (me-
dians in our case) in the component t in the object/variable boo, i.e. the variable
boo$t. Now we can easily calculate the variance of the median as boo$t, and if
we want to determine the standard error, we can simply take the square root. The
resulting standard error of the median of our sample treat is

> sqrt(var(boo$t))
38.00217

showing that the standard error of the median of our 7 numbers is 38. A histogram
of the bootstrap replicas is shown in Fig. 6.3. The figure indicates that the most
common median is between 90 and 99, and based on the data set, we can see that
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Fig. 6.3 Histogram of bootstrap replicas for the median of the 7 numbers

Table 6.3 Bootstrap the median of numbers with different replications in R

library(boot)
func <- function(d,i) { median(d[i]) }
treat <- c(94, 197, 16, 38, 99, 141, 23)
Ber <- c(10,50,100,250,500,1000,5000,10000,1000000)
res <- NULL
for(B in Ber) {

boo <- boot(treat, func, B)
res <- c(res, format(sqrt(var(boo$t)), digits=3))

}
Ber # print Ber
res # print res, the results
rbind(Ber, res)

it must be 94 or 99—the median in the original data set treat is 94. The second
most common median is just below 50 and the actual number is 38.

If we make the same calculations again, we may obtain a figure for variance that
is somewhat different because we obtain another series of replications. However,
if the number of replications is very large, then each time we repeat the bootstrap
series of replications, the variance will be almost the same. The question is then how
many replications we should conduct to develop a stable estimate of the variance?

The calculated standard errors of the median from several bootstraps when the
number of bootstrap replicates B is ranging from 10 to 1 000 000 is calculated using
the R program in Table 6.3. The results achieved by running this code are shown in
Table 6.4; we have run the program several times and show the different standard
errors in the different rows. When the number of bootstrap replications is larger than
1000, there is hardly any difference between the levels of variance for the different
runs. Thus, the desired level of precision of the estimated variance determines the
number of replications.

For a bootstrap sample of size 10, one of the standard errors differs substantially
from the other bootstrap samples, as can be seen in Table 6.4. Based on considera-
tions like this one, it is suggested in the literature that bootstrap samples, B , ranging
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Table 6.4 Bootstrap estimates of standard error of the median

B: 10 50 100 250 500 1 000 5 000 10 000 1 000 000

Run 1: Std.err: 32.7 38.5 37.5 38.9 36.7 38.3 37.9 38.1 37.8

Run 2: Std.err: 38.7 44.5 40.4 39.7 38.4 37.9 37.8 37.4 37.8

Run 3: Std.err: 2.58 43.3 33.2 37.0 36.8 38.2 37.7 37.8 37.8

Run 4: Std.err: 35.9 37.8 41 37.3 38.6 38.7 37.6 38.0 37.9

from 50 to 200 usually make the bootstrap a good standard error estimator. As we
shall see later, however, these suggested numbers of bootstrap replications are to
small for DEA models.

If we want to find the variance of another function or statistic instead of the
median of our sample, we can simply redefine the function func to calculate the
new statistic, which may include very complicated calculations (as is the cace, for
instance, with DEA efficiency). If we want to consider another sample, we can just
change the contents of treat.

6.3.1 Confidence interval

Using the bootstrap sample, we can also directly determine the confidence intervals
for the statistic. This approach yields more precise results than do efforts to construct
the confidence intervals based on the estimated standard deviation because the latter
technique rests on the assumption that the distribution in question is symmetric and
can be reasonably approximated using a normal distribution. This is not the case for
the aforementioned example intended to determine the median of the 7 numbers.

To find a 50% confidence interval for the sample, we can use the command quan-
tile in R, as shown in Table 6.5. The results are shown in Fig. 6.4. In the figure, the
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Fig. 6.4 Confidence interval for median of 7 numbers based on 200 replicats
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Table 6.5 Calculating a 50% confidence interval for the median of 7 numbers

library(boot)
treat <- c(94, 197, 16, 38, 99, 141, 23)
func <- function(d,i) { median(d[i]) }
B <- 200
boo <- boot(treat, func, B)
sqrt(var(boo$t))
mean(boo$t)

quant <- .50 # 50% confidence interval
ci <- boot.ci(boo, conf=quant)
m <- mean(boo$t)
b <- m - median(treat) # bias
mu <- m -b # bias corrected median
sd <- sqrt(var(boo$t)) # std.error
quantile(boo$t,c((1-quant)/2, 1-(1-quant)/2) ) -b

7 numbers are shown in sorted order, and the median is marked with the solid line
through the point at 94. The 50% confidence interval based on a normal approxi-
mation is shown as a dashed line, and of course, it is symmetric around the median.
The dotted line is based on the command quantile, and this confidence interval
is not symmetric around the median. The upper line is a little lower that the normal
line, and the lower line is much lower than the normal line. This corresponds to the
histogram in Fig. 6.3, where the distribution does not seem to be symmetric. Based
on the actual numbers in the sample treat, the 50% interval for the median 94
is from 38 to 99. This corresponds to the histogram in which one can see that the
median in half of the replicas is between 35 and 100.

6.4 Bootstrapping in DEA

It does not make sense to compute variance as 1
n�1

PK
kD1.Ek� NE/2 because then

we would be assuming that all the firms have efficiencies based on a distribution with
the same mean and therefore that all differences in efficiency are purely random and
not systematic; firms with high efficiency would then be highly efficient by chance
and because they are good at what they do.

Instead, we use our observations as a sample X D f.x1; y1/; : : : ; .xK ; yK/g of
inputs and outputs from K firms that we can use to estimate the technology set T
via DEA assuming variable returns to scale (vrs)

1; y1/; : : : ; .xK ; yK/

and the corresponding Farrell input efficiency measures be E1; : : : ; EK , i.e. Ek D
minf � 2 RC j .�xk ; yk/ 2 T g. None of what follows would change if we consid-
ered Farrell ouput efficiency instead.

We will now discuss how to estimate the variance of efficiency measures for a sample
.xof firms using the bootstrap method. Let the observations be
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bT D f .x; y/ j x �
KX
kD1

�kxk ; y �
KX
kD1

�kyk ; �k � 0;

KX
kD1

�k D 1 g :

The DEA estimated efficiency scores are then

bEk D minf � 2 R j .�xk ; yk/ 2 bT g .k D 1; : : : ; n/

where we have used the estimated technology set bT for the technology set T .
We use this procedure to consider the sample X D f.x1; y1/; : : : ; .xK ; yK/g as

a realization of identically and independently distributed random variables .X; Y /
with a probability distribution P with support in T ; i.e. we assume that there is
no observational uncertainty in the sense that .xk ; yk/ 2 T with probability 1. In
Chap. 7, we introduce a parametric method that allows for this form of observational
uncertainty.

The distribution of bEk and bT depends on the distribution of the sample of ob-
servations X. However, this relationship is complex; the sample X is generated by
the probability distribution P , of which we have no direct knowledge. To derive a
reasonable estimate P � of P , we can use the bootstrap, i.e. a sample with replace-
ments from the original set of observations. Using this bootstrap estimate P � of
P , we can generate a sample X� from the distribution P �, then calculate a DEA
estimate T � for the technology and estimate efficiency as Ek� D minf � 2 R j
.�xk ; yk/ 2 T � g. When we repeat this sample generation process many times, we
obtain many estimates of Ek� and can then calculate the empirical variance of Ek

.k D 1; : : : ; n/.

6.4.1 Naive bootstrap

There are two ways to perform an ordinary bootstrap for the DEA model. Unfortu-
nately as we will see, neither of them is satisfactory, and we will therefore present a
better alternative.

The two simple but unsatisfactory methods are as follows:

1. Bootstrap the set directly fE1; : : : ; EKg as we did in Sect. 6.3 on the variable
treat. In using this method, we assume that all the E’s are independent and
identically distributed with a probability distribution PE . This implies that any
differences in efficiency are purely random because they all come from the same
distribution PE . On that basis, firm inefficiency appears to be related neither to
xk nor to yk . This outcome is not satisfactory.

2. We bootstrap the set X D f.x1; y1/; : : : ; .xK ; yK/g, and for each bootstrap
sample, b, we estimate the technology T b and the efficiency Ekb for firm k.
When we make B bootstrap samples, B replicas, we can calculate the mean
and variance of the efficiency of firm k using NEk� D 1

B

PB
bD1Ekb and

1
B

PB
bD1.Ekb � NEk�/2.
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One problem is that for some firm k, .xk ; yk/ may not be in a bootstrap
sample, a replica b, and .xk ; yk/ may not be in the technology set generated
by the bootstrap sample, .xk ; yk/ 62 T �b . This implies that we have a firm
outside the technology set, but one of our assumptions was that all observations
are inside the technology set with probability 1. If we calculate the efficiency
anyway, we find in this case that Ekb > 1.

This could easily happen for firms where Ek D 1 as a bootstrapped tech-
nology set T � will always be a subset of the technology set bT estimated on all
observations, T � 	 bT , and thereforeEk� � Ek. Essentially, we could in many
bootstrap samples find firms where Ekb > 1.

We could disregard the requirement that all observations be inside the tech-
nology set and just use Ekb D 1 if we obtained Ekb > 1. One problem with
this technique is that the probability of E near 1 will be underestimated be-
cause the method puts a positive probability mass at E D 1 and the estimated
distribution is therefore not a good estimate of the empirical distribution near
E D 1.

6.4.2 Smoothing

The bootstrap sample will nearly always contain repeated values, and if n is small,
then it will even contain values repeated several times. To avoid spikes in the distri-
bution like those that we saw in Fig. 6.3, it is advisable to use a smoothed boot-
strap method to smoothe the distribution. As before, we want to bootstrap the
sample .x1; : : : ; xK/. Here, the sample is constructed in the following way: For
r D 1; : : : ; K

1. choose k at random with a replacement from f1; : : : ; Kg,
2. generate � from a standard normal distribution,
3. set zr D xk C h� and call h the window or band width.

Our bootstrap sample is then .z1; : : : ; zK /, not a real sample from the original sam-
ple .x1; : : : ; xK /, but a smoothed sample. In this way, we smoothen the fixed num-
ber of points to imitate a continuous distribution function of the inputs x. The dis-
tribution for these smoothed points is a normal distribution with variance h2 and is
therefore symmetric around the observation points. When we use the bootstrap sam-
ple to calculate the efficienciesE , there might be a problem for efficiencies near the
boundary at 1 because they must be equal to or below 1. To handle problems related
to E near 1, we can use a reflection method, augmenting the dataset by adding re-
flections of all the points in the bootstrap; i.e. whenever we have efficiency E , we
augment the dataset with the reflection on 1, 2 � E, such that E and 2 � E are
symmetric around 1. Then, we simply use the value below or equal to 1.
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6.4.3 Bias and bias correction

In what follows we shall use the following terms:

�k The true efficiency based on the true but unknown technology T
O�k DEA-estimated efficiency and bT the estimated DEA technology
�kb The bootstrap replica b estimate based on the replica technology T b

�k� The bootstrap estimate of �k
Q�k The bias-corrected estimate of �k

The DEA estimate is upward biased: if there are no measurement errors, then all of
the observations in the sample are from the technology set bT 	 T . Then in OEk �
Ek , because we are minimizing over a smaller set (i.e. the estimated efficiency is
an upward-biased estimate of Ek,), the estimated efficiency may be larger than the
real efficiency. The size of bT depends on the sample, and therefore, Ek is sensitive
to sampling variations in the obtained frontier. If there are measurement errors, then
there is no direct subset relation between bT and T .

To eliminate the bias, we first estimate the bias and obtain a bias-corrected esti-
mate. We can estimate the bias as

biask D EV. O�k/ � �k :

Unfortunately, we do not know the distribution of �k , so we cannot calculate
EV. O�k/. This is where the bootstrap enters in. When �kb is a bootstrap replica
estimate of �k , the bootstrap estimate of the bias is

biask� D 1

B

BX
bD1

�kb � O�k D N�k� � O�k:

A bias-corrected estimator of �k is then

Q�k D O�k � biask� D O�k � N�� C O�k D 2 O�k � N�k�:

The precision of the estimates can be determined based on the variance of the boot-
strap estimate

O
2 D 1

B

BX
bD1

.�kb � N�k�/2:

6.5 Algorithm to bootstrap DEA

We have argued that the naive use of standard bootstrap methods is not satisfactory
for DEA models, and we have discussed how to improve by smoothing and bias cor-
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Table 6.6 Description of simplified version of boot.sw98

(1) Compute O�k as solutions to minf � j .�xk ; yk/ 2 OT g for k D 1; : : : ; n.
(2) Use bootstrap via smooth sampling from O�1; : : : ; O�K to obtain a bootstrap

replica �1�; : : : ; �K�. This is done as follows

(2.1) Bootstrap, sample with replacement from O�1; : : : ; O�K , and call the results
ˇ1; : : : ; ˇK .

(2.2) Simulate standard normal independent random variables �1; : : : �K .
(2.3) Calculate

Q�k D
(
ˇk C h�k if ˇk C h�k � 1 (Smoothing and reflection

2 � ˇk � h�k otherwise cf. page 172)

Note that by construction, Q�k � 1.
(2.4) Adjust Q�k to obtain parameters with asymptotically correct variance, and

then estimate the variance O
2 D 1
n

PK
kD1. O�k � NO�/2 and calculate

�k� D Ň C 1p
1C h2= O
2 .

Q�k � Ň/

where Ň D 1
n

PK
kD1 ˇk .

(3) Calculate bootstrapped input based on bootstrap efficiency xkb D O�k

�k� x
k .1

(4) Solve the DEA program to estimate �kb as

�kb D minf � � 0 j yk �
KX
jD1

�jyj ; �x
k �

KX
jD1

�jx
kb
j ;

�j � 0;

KX
jD1

�j D 1 g .k D 1; : : : ; n/

(5) Repeat the steps from (21) to obtain the bootstrap estimates

.�1b ; : : : ; �Kb/ .b D 1; : : : ; B/

(6) Calculate the mean and variance of .�1b; : : : ; �Kb/ to get the bootstrap estimate
�k�, the bias-corrected estimate Q�k�, and the variance.

rection. We now present present a simplified method with smoothing of the method
used in the R function boot.sw98.

It has been suggested that B D 1000 is suitable for calculating confidence inter-
vals.
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Table 6.7 Simplified version of boot.sw98 in R

y <- cbind(1,2,3,4,5)
x <- cbind(2,4,3,5,6)

B <- 1000
thetaboot <- matrix(nrow=B, ncol=dim(x)[2])
thetati <- matrix(nrow=B, ncol=dim(x)[2])
# (1)
theta <- 1/dea(x,y,RTS=1,ORIENTATION=1)
N <- length(theta)
h <- 0.014 # bandwidth

# (2.1)
for ( b in 1:B) {

beta <- sample(theta, N, replace=TRUE)
# (2.2)

eps <- rnorm(N)
thetatilde <- rep(0,N)

# (2.3)
for (i in 1:N) {

if ( beta[i]+h*eps[i] <= 1.0 ) {
thetatilde[i] <- beta[i]+h*eps[i]

} else {
thetatilde[i] <- 2.0 -beta[i] -h*eps[i]

}
}
thetati[b,] <- thetatilde

# (2.4)
v = var(theta)
thetastar = mean(beta) + (thetatilde-mean(beta))/(sqrt(1.+hˆ2/v))

# (3)
xstar = theta/thetastar * x
xstar = matrix(1,dim(x)[1],1) %*% theta/thetastar * x

# (4)
thetaboot[b,] <- 1/dea(xstar,y,RTS=1,ORIENTATION=1)

} # for b
# done, now let's see the results
# (6)
print(colMeans(thetaboot),digits=3)
print(colMeans(thetati),digits=3)
bias <- colMeans(thetaboot) - colMeans(thetati)
print(bias,digits=3)
print(sd(thetaboot),digits=3)
boxplot(data.frame(thetaboot),boxwex=.5,ylim=c(min(thetaboot)-.1,1.05))
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The DEA efficiency measures the radial distance in the input space from the
observation point to the boundary of the technology set. We make a premature
bootstrap of the efficiencies and use them to calculate the input vectors with this
bootstrapped efficiency; this is done in step 3 in the above description. These boot-
strapped input vectors are the inputs that determine the bootstrapped technology set
in step 4 from which the final bootstrapped efficiency estimates are calculated. Note
that xkb is on the same ray as xk . We could change this by also making the ray
a random variable in the form of angles to be bootstrapped —i.e. by using polar
coordinates to express xk instead of the usual rectangular coordinates.

Please note that boot.sw98 in FEAR bootstraps the Shaphard efficiency, and
not Farrell efficiency as the R program does in Table 6.7. This is not a problem
because the user has access to the individual bootstrap replica estimates in the com-
ponent boot and then can just use 1/boot for the Farrell bootstrap estimates.

6.5.1 Confidence intervals

As mentioned in Sect. 6.3.1, it is not advisable to calculate 95% confidence intervals
because Q�k˙1:96
� as the distribution might not be a normal or symmetric; rather, it
could be a skewed distribution or could have larger or smaller tails than the normal
distribution. Instead, it is advisable to use the R function quantile. That is, to
calculate a 95% confidence interval for firm 3, use

quantile(thetaboot[,3],probs=c(.025, .975),type=8)

If we do not include the firm index, here 3, then the interval is based on all firms.
This does not make any sense because the different firms have different efficiency
levels, and we must determine the confidence interval for one firm at the time. For
a 90% confidence interval, we just use probs=c(.05,0.95). To determine the
intervals for all firms, we can use

apply(thetaboot, 2, function(x) {
quantile(x,probs=c(.025, .975), type=8, na.rm=TRUE) })

In the R function boot.sw98 as part of the FEAR package, the confidence interval
is estimated for the bias-corrected distance function values.

6.6 Numerical example in R

We will use the small examples from Table 6.8 to estimate the standard errors of
the efficiency estimates and the confidence intervals for the input distance functions
with a variable return technology. The R program including the data using the func-
tion boot.sw98 is shown in Table 6.9.

The output is shown in Table 6.10. Note that if the aim is to obtain estimates
of variance, the number of replicates, the value of the parameter NREP, must be at
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Table 6.8 1 input og 1 output example

Firm x y

1 2 1

2 4 2

3 3 3

4 5 4

5 6 5

0

0

11

1

22

2

33

3

44

4

55

5

6

6 7

x

y

crs

vrs

Table 6.9 Bootstrap DEA, R program

library(FEAR)
# Data
y <- cbind(1,2,3,4,5)
x <- cbind(2,4,3,5,6)

# DEA, Shephard input distance function,
d <- FEAR::dea(x,y, RTS=1, ORIENTATION=1)
# Efficiencies
print(1/d,digits=3)
print(mean(1/d),digits=3)

# Bootstrap
b <- boot.sw98(x,y, RTS=1, ORIENTATION=1, NREP=2000)
print(b,digits=3)
print(sqrt(b$var),digits=3)

least 50; correspondingly, to obtain confidence intervals, at least 100 are required.
It might also be necessary for the number of replicates to be much larger to obtain
stable results for larger datasets; however, that relation has not been tested as of this
writing. Part of the output is the individual replications, returned as item boot. All
of the output items are described in the help file for boot.sw98 in the FEAR pack-
age; from inside R, we use the command ?boot.sw98. In the last line, we have
calculated the standard error of the input distance, the square root of the variance.

The above method is very simple to use in practice. However, it does have a
pedagogical drawback: everything is hidden in the function boot.sw98. To make
up for this, we mimicked the function in R statements to see the inner working of
bootstrap in DEA, just as we did for the traditional bootstrap procedure in section 6.3
on page 165.

The bias-corrected estimate is in item dhat.bc and can also be found by sub-
tracting the bias from the DEA estimate of the distance function value, item dhat;
i.e. b$dhat � b$bias. The confidence interval is estimated around the bias-
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Table 6.10 Output from bootstrap

> # Efficiens
> print(1/d,digits=3)
[1] 1.000 0.625 1.000 0.900 1.000
> print(mean(1/d),digits=3)
[1] 0.905
> # Bootstrap
> print(b,digits=3)
$bias
[1] -0.143 -0.151 -0.130 -0.101 -0.150

$var
[1] 0.00914 0.01061 0.00707 0.00538 0.01358

$conf.int
[,1] [,2]

[1,] 1.01 1.35
[2,] 1.61 1.99
[3,] 1.01 1.30
[4,] 1.12 1.42
[5,] 1.00 1.41

$dhat
[1] 1.00 1.60 1.00 1.11 1.00

$dhat.bc
[1] 1.14 1.75 1.13 1.21 1.15

$boot
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] ...

[1,] 0.560 0.565 0.565 0.572 0.572 0.576 0.590 0.591 ...
[2,] 0.983 0.986 1.027 1.037 1.086 1.092 1.107 1.119 ...
[3,] 0.569 0.602 0.611 0.614 0.622 0.626 0.628 0.631 ...
[4,] 0.662 0.701 0.702 0.708 0.713 0.713 0.723 0.727 ...
[5,] 0.533 0.537 0.541 0.543 0.544 0.545 0.550 0.551 ...
...

[,1997] [,1998] [,1999] [,2000]
[1,] 1.00 1.00 1.00 1.00
[2,] 1.60 1.60 1.60 1.60
[3,] 1.00 1.00 1.00 1.00
[4,] 1.11 1.11 1.11 1.11
[5,] 1.00 1.00 1.00 1.00

> print(sqrt(b$var),digits=2)
[1] 0.096 0.103 0.084 0.073 0.117
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corrected estimate. The default confidence interval is 95% but can be changed using
the option alpha. Either a scalar option or a vector option is available, indicating
the statistical sizes of the confidence intervals to be estimated. Thus, alpha=.1
will calculate limits corresponding to a 1:0 � 0:1 D 90% interval.

To explain the confidence interval further, let us recalculate the Shephard input
values to Farrell input values by calculating the reciprocal. This is done below where
the output from the R commands is also shown.

> 1/b$dhat
[1] 1.000000 0.625000 1.000000 0.900009 1.000000
> 1/b$dhat.bc
[1] 0.8764797 0.5707759 0.8855686 0.8228137 0.8705459
> 1/b$conf.int[,c(2,1)]

[,1] [,2]
[1,] 0.7439961 0.9932824
[2,] 0.5030548 0.6218341
[3,] 0.7764515 0.9935884
[4,] 0.7085692 0.8951720
[5,] 0.7082100 0.9940264

Because of the reciprocal property, the upper limit becomes the lower limit and vice
versa, and that is why the index in $conf.int is reversed. These numbers indicate
that the upper limit of the confidence interval 1/b$conf.int is very close to the
estimated efficiency 1/b$dhat, whereas the lower limit is far below. The close-
ness of the upper limits and the efficiencies means that the frontier corresponding
to the upper limit coincides with the DEA-estimated frontier. The lower limit in the
confidence interval for the efficiencies corresponds to a frontier to the left of the
DEA frontier; if we measure the efficiency of the observations against this frontier,
we get the lower limits of efficiency; this frontier is shown in Figure 6.5 on the next
page as a dotted frontier. This frontier corresponding to the lower limit of the effi-
ciencies is far from the efficiency estimates because a variation in inputs during the
bootstrap procedure in which the input gets smaller will enlarge the technology set
and move it to the left (as the new input can be outside the frontier) and will there-
fore create a new frontier. A larger input, on the other hand, will mostly leave the
frontier unchanged because it will be below the already existing frontier. Note that
bias-corrected efficiency is more likely to be in the middle of the confidence interval
because bias correction is intended to correct for the derived bias or skewness in the
DEA estimation.

6.7 Interpretation of the bootstrap results

To further example how to interpret the DEA bootstrap results, let us investigate two
special cases. The first contains just one input and one output, whereas the second
contains two inputs and one output.
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6.7.1 One input, one output

Let us take a closer look at the output in Table 6.10 on page 178 from the R com-
mands in Table 6.9. This is a small problem involving 5 firms, 1 input, and 1 output.
Bootstrap is conducted using the method boot.sw98, and the output includes sev-
eral components or items. The item named $dhat is the estimated Shephard input
distance Function, which is equal to the reciprocal of technical input efficiency, Far-
rell efficiency; i.e. TE D 1

b$dhat . We can see this by comparing lines 8, 13, and
34. The bias-corrected Shephard input distance function is found to be $dhat.bc
in line 37. The bias-corrected Shephard input distance functions can also be found
by subtracting the bias from the DEA estimates; i.e. as $dhat � $bias ; cf. our
discussion of this idea in Sect. 6.4.3 on page 173.

If the bias-estimated distance input function value is Q� , then a point on the bias-
corrected frontier is 1

Q� x where x is the observation of the input. Because we are
looking at input functions and input efficiency, the output y remain the same.

We can plot the observations and the input corresponding to the bias-corrected
Sheppard input distance function by

dea.plot.frontier(x,y,txt=1:N)
dea.plot.frontier(x/b$dhat.bc,y,lty="dashed",add=T)
dea.plot.frontier(x/b$conf.int[,2],y,lty="dotted",add=T)

The options lty specify the line type; the default is solid.
The resulting figure is shown in Fig. 6.5. If we were to draw a random sample
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Fig. 6.5 Bias-corrected frontier, input direction

to estimate the frontier, it would to the right of the 95% confidence frontier with a
probability of 95%.

Another way to demonstrate efficiency and confidence intervals is As shown in
Fig. 6.6, constructed using the following R commands:
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Fig. 6.6 Bias-corrected efficiency estimates (Þ), DEA estimates (ı) and 95% confidence limits—
one input, one output

plot(1/b$dhat,ylim=c(.45,1),main="Bias corr...",
xlab="Firm", ylab="Efficiency")

points(1/b$dhat.bc,pch=5)
for ( i in 1:5 )lines(rep(i,2),1/b$conf.int[i,],type="o",pch=3)

6.7.2 Two inputs

The isoquants for the two inputs are calculated using the following R program,
which is similar to the program for one input and one output in Table 6.9 on page 177
except that the isoquant is plotted instead of the frontier. To plot the isoquant, we
have normalized the inputs with the output and then used an output of 1 for all
firms because then all firms have the same isoquant and can be compared. Thus,
implicitly, we are assuming constant returns to scale.

# The data
y <- t(matrix(c(1,2,3,1,2)))
x <- t(matrix(c(2,2,6,3,6, 5,4,6,2,2), ncol=2))
N <- dim(x)[2]
x1 = x[1,]/y
x2=x[2,]/y
# The frontier for the technologies
dea.plot.isoquant(x1,x2,txt=1:N)
# The observations have dotted lines from origo
for ( i in 1:length(y) ) {

lines(c(0,x1[i]), c(0,x2[i]),lty="dotted")
}
# bootstrap
b <-
dea.plot.isoquant(x1/b$dhat.bc,x2/b$dhat.bc,lty="dashed",add=T)

boot.sw98(rbind(x1,x2),matrix(rep(1,N),nrow=1),NREP=2000,RTS=3)
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Fig. 6.7 Bias-corrected frontier, input direction, 2 inputs

The graphs are in Fig. 6.7. Again, we can see that the bias-corrected frontier is below
the Isoquant, making the technology set larger, and that the upper confidence limit
is increasing it even further.

The graph in Fig. 6.8 is made using the R program lines

plot(b$dhat,ylim=c(1,3),main="Bias corr...",
xlab="Firm",ylab="Distance function")

points(b$dhat.bc,pch=5)
for ( i in 1:5 )lines(rep(i,2),b$conf.int[i,],type="o",pch=3)

1 2 3 4 5

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Bias corr...

Unit

E
ffi

ci
en

cy

Fig. 6.8 Bias-corrected efficiency estimates (Þ), DEA estimates (ı) and 95% confidence limits –
two inputs

dea.plot.isoquant(x1/b$conf.int[,2],x2/b$conf.int[,2],lty="dotted",add=T)
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6.8 Statistical tests using bootstrapping

Let us finally illustrate how to use bootstrapping to test hypotheses. Specifically, we
will show how to tests a returns to scale hypothesis, but other tests can be developed
along the same lines.

We wish to test whether the technology set T from which our observations are
sampled exhibits constant returns to scale. Formally, we wish to test the hypothesis
that the technology exhibits constant returns to scale against the alternative, that it
is VRS:

H0 W T is CRS

HA W T is VRS

If we rejectH0, then we can test if the technology set is DRS, but we will leave that
project to the reader.

If the hypothesis is true, then the efficiencies calculated from the VRS technology
are the same as the efficiencies calculated from the CTS technology. If there is not
CRS, then at least one of the efficiencies will be different; i.e. CRS efficiency will
be smaller than VRS efficiency. One way to examine this is to see whether the scale
efficiency, cf. page 99,

SEk D EkCRS

EkVRS

.k D 1; : : : ; K/

is equal to 1 for all firms, meaning that the technology is CRS, or whether there is
at least one firm where it is less than 1, meaning that the technology is VRS. For a
given set of observations of K firms, we must therefore reject the hypothesis if at
least one of the estimated SE has a value less than 1. However, as the connection
between the technology set and the scale efficiencies is an uncertain or stochastic
connection, we must reject the hypothesis if at least one of the estimated SE has a
value significantly less than 1, i.e. if one of the estimated SE is less than a critical
value. The problem is then to compute this critical value.

Instead of looking at the scale efficiencies individually, we could look at the test
statistic

S1 D 1

K

KX
kD1

EkCRS

EkVRS

or the one that we are going to use in the following:

S D
PK
kD1EkCRSPK
kD1EkVRS

: (6.1)

If theH0 is true, then S will be close to 1, and if the alternative is true, then S < 1.
As S � 1 by construction, we will reject H0 if S is significantly smaller than 1.
We therefore seek a critical threshold for the statistic S ; if it is smaller than this
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value, then we will reject the hypothesis. Thus, we seek a critical value c˛ that
will determine whether we rejectH0, the hypothesis of constant returns to scale, if
S < c˛ and Pr.S < c˛ j H0/ D ˛ where ˛ is the size of the test, typically 5%
(˛ D 0:05). The size of the test, ˛ is the probability of rejecting the hypothesis even
though it is true. (This is a type I error.)

Unfortunately, we do not know the distribution of S underH0, and therefore, we
cannot calculate c˛ directly. One way to address this lack of distributional knowl-
edge is to use a bootstrap method, and we will now show that one can bootstrap
the distribution of S under H0. We show how this can be done using a very small
example: the data from Table 6.8 on page 177. First, we enter the data and calculate
the statistic S and its quantile using the following commands in R:

library(FEAR)
y <- cbind(1,2,3,4,5)
x <- cbind(2,4,3,5,6)
e <- 1/dea(x,y,RTS=3)
ev <- 1/dea(x,y,RTS=1)
sum(e)/sum(ev)
nrep <- 2000
Bc <- boot.sw98(x,y,NREP=nrep,RTS=3)
Bv <- boot.sw98(x,y,NREP=nrep,RTS=1,XREF=x,YREF=y,DREF=1/e)
s <- colSums(1/Bc$boot)/colSums(1/Bv$boot)
quantile(s,c(1,2,5,10,15,30,50)/100.0)

We calculate the CRS efficiency (RTS=3), the VRS efficiency (RTS=1), and the
test statistic S from (6.1). The following lines is the bootstrap. First, the variable
nrep is set to the number of bootstrap replications that we will use. Then, we
bootstrap under the null-hypothesis. Thereafter, we bootstrap under the alternative
while assuming that H0 is in fact true by using the option DREF=1/e where 1/e
is efficiency calculated under the CRS technology.

The output is shown in Table 6.11. The estimate of S is 0.802945,which seems to

Table 6.11 Output for test of constant returns to scale

> y <- cbind(1,2,3,4,5)
> x <- cbind(2,4,3,5,6)
> nrep <- 2000
> e <- 1/dea(x,y,RTS=3)
> ev <- 1/dea(x,y,RTS=1)
> sum(e)/sum(ev)
[1] 0.802945
> Bc <- boot.sw98(x,y,NREP=nrep,RTS=3)
> Bv <- boot.sw98(x,y,NREP=nrep,RTS=1,XREF=x,YREF=y,DREF=1/e)
> s <- colSums(1/Bc$boot)/colSums(1/Bv$boot)
> quantile(s,c(1,2,5,10,15,30,50)/100.0)

1% 2% 5% 10% 15%
30% 50%
0.7409859 0.7431850 0.7472870 0.7531393 0.7585869 0.7940538 0.8561436
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be far less than 1, but we only have 5 firms, and the output from quantile shows
that .80 corresponds to a little more than 30%. Therefore, there is a 30% probability
of observing a lower value of S than the one we obtained, and therefore, we do not
reject H0; i.e. we do not reject that there exist constant returns to scale. If we were
to make further calculations under this model, we would therefore assume constant
returns to scale and use a CRS technology.

Earlier, we introduced the idea of the critical value, which can be calculated using
the function critValue, which takes the bootstrapped statistics and the size of
the test as input. We also have at our disposal the function typeIerror, which
calculates the probability of type I error: the probability of rejecting the hypothesis
if it is true.

critValue <- function(s,alfa) {
ss <- sort(s)

}

typeIerror <- function(shat,s) {
reject <- function(alfa) {

quantile(s,alfa,names=F) - shat
}
uniroot(reject,c(0,1))$root

}

Both functions are part of the Benchmarking package. Using the two functions with
the data above yields the output

> shat <- sum(e)/sum(ev)
> shat
[1] 0.802945
> critValue(s,0.05)
[1] 0.7418619
> typeIerror(shat,s)
[1] 0.3337649

Thus, if the estimated value of S is less than the critical value 0.7418619, we reject
the hypothesis. Correspondingly, because the estimate of S , shat, is 0.802945,
we do not reject the hypothesis. The results obtained using typeIerro show that
there is a probability of 0.3337649 that one will obtain a lower estimate of S than
the one we found, or in other words, that we will be making a mistake if we reject
the hypothesis on the basis of our estimate.

6.9 Summary

DEA originates in the operations research and management science, and this means
that the evaluation of DEA models is not a purely statistical exercise. Indeed, histor-
ically the use of traditional statistical tests has not been emphasized. Considerable
progress has however been made in this respect over the last 15 years, and we intro-
duced some important contributions in this chapter.

mean( ss[floor(alfa*length(s))], ss[ceiling(alfa*length(s))] )
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One possibility is to use general non-parametric tests, i.e. tests used when the
underlying distribution is unknown, like Kolmogorov–Smirnov tests and Kruskal–
Wallis tests. Such tests can be used to evaluate a series of different assumptions and
hypothesis but as always they may suffer from limited power.

Another possibility is to rely on parametric tests. If we can make reasonable
assumptions regarding the underlying distribution of inefficiency and noise in the
data, a series of tests are possible. We discussed tests for group differences and tests
for model assumptions. To justify the distributional assumptions in a parametric
approach, we may rely on asymptotic theory, i.e. theoretical properties that can only
be established for large samples. Simulation studies based on samples of moderate
size suggests that such assumptions may well be justified in many applications.

A third approach, and one that has become particularly popular with the devel-
opment of effective computer programs, is the use bootstrapping. The bootstrap is
a computer-based method that can answer many statistical questions. The approach
replicates sampling uncertainty by creating repeated samples of the original sample.
We spend most of this chapter covering bootstrap-based inference in DEA models.
In particular, we showed how to make bias corrections and construct bias corrected
confidence intervals for the individual efficiencies. One advantage of R is that effec-
tive bootstrapping methods for DEA models have been made easily available, not
the least via the FEAR package.

In the appendix, we discuss the use of statistical methods in second-stage anal-
yses, i.e. analyses performed after the development of a benchmarking model, to
validate the model and to explore the possible causes of the variations in efficien-
cies. A common approach in such studies is tobit regression, and we discuss how to
perform and interpret such an analyses.

6.10 Bibliographic notes

Consistency of DEA estimates and asymptotic tests are based on Banker (1993) and
Banker (1996).

The bootstrap method was invented in 1979 and it is now a well established
statistical method. A good reference to the statistical theory of bootstrap with lot
of examples is Efron and Tibshirani (1993); the mathematical level of the book is
moderate. Our description of the bootstrap, and in particular Table 6.1 is taken from
that book. A more advanced text assuming a grounding in statistics is Davison and
Hinkley (1997). The reflection method is described in (Silverman, 1986, 30).

R is based on S, a language and an environment for data analysis. Bbootstrap
methods have been in S almost since the beginning (Chambers and Hastie, 1992).

Bootstrap of DEA model have a winding history, the first attempt was done
around 1992. The bootstrap method for DEA described in this book is from Simar
and Wilson (1998) and Simar and Wilson (2000). Their approch is implemented
in R as boot.sw98 as part of the FEAR library (Wilson, 2008). The simplified
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description of boot.sw98 in Table 6.6 by and large follows Simar and Wilson
(1998).

The tobit model covered in the Appendix was first used by Tobin in 1958 (To-
bin, 1958), is discussed in many textbooks, including Greene (2008) and Maddala
(1983). The tobit model is traditionally used with point of truncation at 0, which
makes the marginal impact relatively easy to calculate. Because efficiency scores
are truncated at 1, we have derived the marginal impact for this case. An impor-
tant critical paper on the tobit approach in benchmarking, Simar and Wilson (2007),
instead proposes the use of bootstrapping. Hoff (2007) also identifies a number of
theoretical issues associated with current practice, but she concludes after analyzing
an actual dataset that the tobit procedure does produce reasonable estimates and,
moreover, can be substituted for by a regular OLS approach under some conditions.
McDonald (2009) questions whether the DEA scores should be seen as a censored
distribution, arguing for the use of a “fractional” model, but he also concludes that
theoretical niceties are of little concern to “instrumentalists”, and that hundreds of
two-stage DEA studies have proven very useful in providing insight into real-world
production processes.

6.11 Appendix: Second stage analysis

When we have estimated the efficiencies of the firms in an industry, we often become
interested in understanding why some firms are more efficient than others. Is their
efficiency related to firm size, CEO age, the fraction of highly educated employees
at the firm, the use of ICT, the business environment in different regions, and/or
other factors?

We may also wonder if the variations in estimated efficiency really reflect vari-
ations in performance or if we may have left out important inputs or output (i.e.
we might be interested in validating the model). Should we have included a mea-
sure of soil quality in a farming model, a measure of socio-economic status of the
model examining students in a school, or a measure of quality in a hospital model?
In developing a benchmarkingmodel for German DSO regulation, cf. Sect. 10.3, we
did, for example, make a final evaluation of several hundreds of omitted candidate
variables.

Both aims are often pursued using what is commonly called second-stage anal-
ysis, i.e. post-efficiency analysis that aims to explain the variations and validate the
model. In this appendix, we discuss the use of statistical methods in second-stage
analyses. The relevance of such analyses and the corresponding methods is not re-
stricted to DEA studies. Other best-practice results can be analyzed using the same
methods.

To investigate if categorial variables like high/low, east/west, and low/medi-
um/high may explain some of the variation, we can use a number of non-parametric
tests: e.g. the Mann-Whitney-Wilcoxon rank-sum test. This is a non-parametric
test used to assess whether two independent samples of observations have equally
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large values. This process is largely equivalent to performing an ordinary parametric
two-sample t-test on the data after ranking the combined sample. We can also use
other non-parametric tests like the Kolmogorov-Smirnov and Kruskal-Wallis tests,
as demonstrated in Sect. 6.2.1. All tests can easily be undertaken in R.

The most common approach used to investigate if a set of continues variables
variables may explain the variations in efficiency is to conduct a tobit regression.
Tobit regression is similar to ordinary regression analysis except that the noise term
is truncated. The use of this method in a benchmarking context is the focus of some
debate in the literature (cf. below), but it is widely applied and is generally consid-
ered to be useful.

Let E be the Farrell input efficiency calculated in a DEA model, an SFA model
or some combination of models (cf. e.g. the combined use of several models in
regulatory benchmarking as explained in Chap. 10). We will return to models of
output efficiency later. We are now interested in modeling how E depends on other
variables z D .z1; z2; : : : ; zq/. That, is we would like to estimate a model

E D g.z; a/:

whereby efficiencyE is explained by the variables z and parameters a.

6.11.1 Ordinary linear regressions OLS

A model is a linear regression ,model

E D a11C a2z2 C � � � C aqzq C " D az C "

where " is a random error that reflects that the model does not completely explain
the efficiency levels. It is easy to estimate this model using OLS. In R, this can be
done using the function lm.

One advantage of this approach is that it is easy to find the marginal effect on
efficiency based on a marginal change in zj :

@E

@zj
D aj ;

Because this effect is independent of the value of all the variables, it is also easy to
interpret—it shows how much the efficiency tends to increase if aj is increased by
one unit.

Although ordinary regressions are widely used in practice, they suffer from a
theoretical problem in a benchmarking setting. They do not take into account that
efficiencies are greater than 0 and less than or equal to 1 and that many efficiencies
are typically at the upper boundary of 1. There is nothing in the method that ensures
that the fitted value, the expected value, or the mean will be less than or equal to 1.
The tobit model for censored regression can be used to solve this problem.
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6.11.2 Tobit regression

When the dependent variable is censored, we do not observe the underlying values
of this variable in all cases. Values in a specific range are reported as a single value.
In the case of E, we can see the underlying efficiencies as a stochastic variable and
the observation of efficiency E as a a censored version hereof where values below
0 are reported as 0 and values above 1 are reported as one. Therefore, the model
becomes

E D

8̂<̂
:
0; if az C " � 0

az C " if 0 < az C " < 1

1 if az C " � 1

Our challenge is to estimate a on the basis of the observed efficiencies Ek from K

firms k D 1; : : : ; K .
In general, we do not have any firms with reported efficiency of 0. Therefore, let

K1 be the number of firms for which E D 1 (i.e. the number of efficient firms) and
K0 be the number of firms for which E < 1. We then have K D K0 CK1.

The probability that E D 1 is the probability that az C " >D 1. Let F be the
probability distribution function for " and f the corresponding density function.
Then the probability of E D 1 is

Pr.E D 1/ D Pr.az C " � 1/ D 1 � Pr.az C " < 1/

D 1� Pr." < 1 � az/ D 1 � F.1 � az/;

and the probability that E D 0 is

Pr.E D 0/ D Pr.az C " � 0/ D Pr." < �az/ D F.�az/:
The case where in which 0 < E < 1 corresponds to E D az C " or " D E � az

such that the density is this case [ED21]is f .E � az/.
The likelihood function for K observations of efficiencies is then given as the

product of the K individual terms for the cases mentioned above.

L D
Y

kWEkD1
Pr.Ek D 1/

Y
kW0<Ek<1

f .Ek � azk/

D
Y

kWEkD1

�
1 � F.1 � azk/� Y

kW0<Ek<1

f .Ek � azk/:

We have here not taken into account that E in the theory could be equal to 0. Be-
cause the number of such observations is 0, the corresponding likelihood factor is 1
irrespective of the value of Pr.E D 0/.

To estimate the above model, we also need to choose a probability distribution
F . The most commonly used distribution is the normal distribution, and in this case,
the model is called the tobit regression model. We will not formulate the likelihood
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function in this particular case but will instead refer the reader to the literature men-
tioned in the bibliographic notes. The actual optimization process is conducted using
standard iterative optimization routines that are also available in R. As part of the es-
timation process using standard programs, the variance of the estimated parameters
is also calculated such that statistical inference is possible.

Now, in benchmarking applications, we are typically interested in knowing the
marginal effect of a marginal change in one of the explanatory variables z. In the
OLS framework, these effects are readily available as the parameter estimates a. In
the tobit framework, they are more difficult to determine, and we will provide them
here.

In the rest of this section, we use EV for the mean or expectation of a random
variable to be able to distinguish the mean EV from efficiency E . We are interested
in knowing how EV.Ejz/ varies with z, i.e. how a change in z influences efficiency
E on average. The conditional expectation consists of three parts corresponding to
the three parts of the model for E .

EV.Ejz/ D
Z
E dPr.Ejz/

D
Z
0 dPr.E D 0jz/C

Z
E dPr.0 < E < 1jz/C

Z
1 dPr.E D 1jz/

D
Z 1�az

�az
" dPr."jz/C 1 � Pr." < 1 � azjz/:

where there last equality can be verified by inserting the definition ofE and making
a few reformulations.

We now calculate the two probability terms separately. The last is simple to cal-
culate when we assume that the error term is normally distributed, i.e. " � N.0; 
2/.
The first term is slightly more complicated because it involves real integration. The
final result is that

EV.Ejz/ D az

	
ˆ
�1 � az




�
�ˆ

��az



�

C 


	
'
��az



�
� '

�1 � az



�

C 1 �ˆ

�1 � az



�
:

Although this process looks complicated, the terms can interpreted simply based on
the defining equation. The last two terms, 1 � ˆ, correspond to the effect of the
firms where E D 1 multiplied by the probability of this event. The first term is the
linear effect az multiplied by the probability that 0 < E < 1. The second term is
the effect of the error term ". In the linear model, the OLS model, this effect is zero
because the expected value of " is 0, but here, the mean of " is conditioned to the
interval where 0 < az C " < 1, i.e. �az < " < 1� az.

Based on the above, we can also find
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EV.Ej0 < E < 1; z/ D az C 

'
�

�az
�

�
� '

�
1�az
�

�
ˆ
�
1�az
�

�
�ˆ

�
�az
�

� D az C 
 M.az/

where the functionM.�/ is called the inverse Mills ratio.
Now we can determine how EV.Ejz/ varies with z by finding the derivative of

EV.Ejz/ w.r.t. z. To do so, we must find the derivatives of the individual terms in
EV.Ejz/. We will not present the details here, but we should note that they make
use of the chain rule and the fact that ˆ is the antiderivative of � such that ˆ0 D '

andˆ.t/ D R t
�1 '."/ d". By collecting terms and canceling out where possible, we

get
@EV.Ejz/

@zh
D ah

	
ˆ
�1 � az




�
�ˆ

��az



�

: (6.2)

Again, the results are easy to interpret: the term ah corresponds to the linear term
that we also found for the OLS model in Sect. 6.11.1, but here, it is corrected for the
probability that 0 < E < 1. If E D 0 or E D 1, then a marginal change in z will
not change E .

All of the above calculations can be easily done numerically; both ˆ and ' are
available as functions in R, as we shall see in the numerical example.

Output efficiency and tobit

For output efficiency F , we have F � 1; therefore, the model is

F D
(
az C " for az C " > 1;

1 otherwise,

where there is no upper bound; the bound that was an upper bound for input effi-
ciencyE is here a lower bound. To determine the expectation of F , we use some of
the same terms as before. However, we use them a little differently and derive

EV.F jz/ D ˆ
�1 � az




�
C az

	
1 �ˆ

�1 � az




�

C 
 '

�1 � az




�
;

and the derivative w.r.t. zh becomes

@EV.Ejz/
@zh

D ah

	
1 �ˆ

�1 � az



�

:

Again, this corresponds to the derivative of the expected figure for input efficiency
where the upper bound is now the lower bound and the upper bound is infinity. The
interpretation is also as before; the linear effect ah is multiplied by the probability
that F > 1, i.e. 1 minus the probability that F D 1.

mailto:@EV.Ejz
mailto:@EV.Ejz
mailto:@EV.Ejz
mailto:@EV.Ejz
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Fig. 6.9 Efficiency in Norwegian forestry
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Fig. 6.10 Explaining efficiency by the absence or
presence of a forest plan (z6 D 0; 1)

6.11.3 Numerical example in R

We use a data set for 113 farmers in forestry in Norway. The basic DEA model
is quite simple; it includes just two inputs and one output. The input variables are
the value of the woodland and variable cost, and the output is earned profit. The
variables that we will later use to explain efficiency, are secondary income from
ordinary farming (z1), owner age (z3), and whether there is a long-term plan (z6).

The input efficiencies in a variable-returns-to-scale DEA technology are shown
in sorted order in Fig. 6.9. We see that there is tremendous variation in efficiency
levels and that only a few firms are fully efficient. We may therefore ask what might
explain this variation and what additional variables we should perhaps have included
in the DEA model.

The efficiencies were calculated using the R script in Table 6.12 on the facing
page, where we have also included the second step: an OLS regression and a tobit
regression. The function tobit used to conduct tobit regressions is part of the AER
package. The tobit regression is the R method tobit called with an input formula
just like lm for linear regression. Numerical differences may affect the convergence,
and we therefore ended up rescaling the z1 variable by dividing the original values
by 106; this process yielded a maximal value of 2,49.

In Fig. 6.10, the empirical box plot indicates that firms without a plan are more
efficient than firms with a plan. However, the tendency is only vague, and in the
OLS regression, the parameter for the plan factor, z6 is estimated at �:016, which
indicates that a firm with a forest plan has an efficiency level that is 1.6 percentage
points lower. The standard error of the estimate is relative large, and the t-value of
0.76 shows that the parameter is not at all significantly different from zero. The same
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Table 6.12 Two-stage DEA in R

> library(Benchmarking)
> library(AER)

> x <- cbind(d$x,d$m)
> y <- d$y
> e <- dea(x,y)
> E <- eff(e)
> eOls <- lm(E ˜ z1+z3+z6, data=d)
> summary(eOls)

Call:
lm(formula = E ˜ z1 + z3 + z6, data = d)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.850e-01 1.503e-01 1.231 0.2210
z1 -1.023e-07 6.062e-08 -1.688 0.0943 .
z3 7.425e-03 2.962e-03 2.507 0.0137 *
z6 -1.635e-02 5.479e-02 -0.298 0.7659
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> zz1 <- d$z1/1e6
> eTob <- tobit(E ˜ zz1+z3+z6, left=-Inf, right=1, data=d)
> summary(eTob)

Observations:
Total Left-censored Uncensored Right-censored

113 0 100 13

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.165955 0.165135 1.005 0.3149
zz1 -0.125615 0.066745 -1.882 0.0598 .
z3 0.008456 0.003265 2.590 0.0096 **
z6 -0.010403 0.060475 -0.172 0.8634
Log(scale) -1.171818 0.073290 -15.989 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

estimated parameter in the tobit model is �0:01 with a t-value of �0:17 that is also
not significantly different from zero. Therefore, the tendency we see in the num-
bers is probably purely incidental; it is likely that having a plan does not influence
efficiency.

In Fig. 6.11, the efficiencies are plotted against the variable z1, secondary income
from ordinary farming. The tendency in the figure is that the larger the secondary

Call:
tobit(formula = E ˜ zz1 + z3 + left = -Inf, right = 1, data = d)z6,

> d <- read.csv("norWood2004.csv", header=T, comment.char = "#")
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Table 6.13 Tobit model with continuous age and age below 37 as an explanation

Model Intercept z1 Age z6

Age continuous Estimate 0.166 -0.126 0.008 -0.010

z value 1.0 -1.9 2.6 -0.2

Age < 37 Estimate 0.594 -0.127 -0.202 -0.000

z value 9.8 -1.9 -2.3 -0.0

income, the lower the efficiency level. This may be because farmers spend more
time on secondary work and therefore neglect wood farming to some degree, which
will lead to lower efficiency. The estimated parameter in the OLS regression for
variable z1, determined using method lm as indicated in Table 6.12, is negative.
This supports the impression, based on the figure, that higher secondary income is
associated with lower efficiency. The parameter is only significantly different from
zero at a 10% level; the t-value is only 1.77.

In Fig. 6.12, the age of the owner z3 is plotted against efficiency, and it emerges
that the effect of age is positive and significantly different from zero. The older the
owner, the more efficient the firm. This may indicate that forestry farming is learned
during the practice of forestry. From the figure, we can see that the increase only
occurs below the age of 37. Instead of using age z3 as a continuous variable, we
can also use it as a factor with levels under 37 and over 37. The command used to
estimate a tobit model, where age is this two-level factor, is

tobit(E˜zz1+as.factor(d$z3<37)+z6, left=-Inf, right=1, data=d)

and the results are shown in Table 6.13, where the estimates achieved using age z3 as
a continuous variable are also shown. The difference between the two tobit models

Fig. 6.12 efficiency by the age
3

Explaining
of owner z
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Table 6.14 Comparing marginal effects in the Norwegian forest model

z1 � 10�6 z3 z6
OLS -0.102 0.00742 -0.01635

Mean of effect for all firms -0.114 0.00769 -0.00946
Effect at mean value of z -0.116 0.00782 -0.00962
Effect at min -0.100 0.00673 -0.00828
Effect at max -0.111 0.00748 -0.00920

is minimal. The conclusion is that age matters, but only in the early years, and that
young owner are less effective than older ones.

Let us now turn to the effect of a change in a variable. What would be the effect
on efficiency if the secondary income from ordinary farming increased? As we can
see from the formula, (6.2) the marginal effect of a marginal change in z depends
on the value of the explanatory variables z. To calculate a marginal effect, it must
therefore be for a specific value of z. The value could correspond to a specific firm
or the mean firm. We could also calculate the effect for all firms and then take the
mean. We will show how to do this and then compare the results with those achieved
using the OLS model. In R, the value of the distribution function for a standardized
normal distribution at the point x results from the function pnorm(x), and the
calculations corresponding to (6.2) are shown below:

# The tobit model
eTob <- tobit(E ˜ zz1+z3+z6, left=-Inf, right=1, data=d)

s <- sqrt(var(residuals(eTob)))
# The mean at the effect for all firms
az <- fitted(eTob)
mean(coef(eTob)[2] * (pnorm((1-az)/s) - pnorm(-az/s)))
mean(coef(eTob)[3] * (pnorm((1-az)/s) - pnorm(-az/s)))
mean(coef(eTob)[4] * (pnorm((1-az)/s) - pnorm(-az/s)))
# the effect at the mean of az
az <- mean(fitted(eTob))
coef(eTob) * (pnorm((1-az)/s) - pnorm(-az/s))
# the effect at the min value of az
az <- min(fitted(eTob))
coef(eTob) * (pnorm((1-az)/s) - pnorm(-az/s))
# the effect at the max value of az
az <- max(fitted(eTob))
coef(eTob) * (pnorm((1-az)/s) - pnorm(-az/s))
# the OLS model
lm(E ˜ zz1+z3+z6, data=d)

The results are collected in the Table 6.14.
If we increase z1 with 1 000 000 and increase zz1 by 1, then efficiency E in the

OLS model will decrease by .102. In the tobit model for the firm with the lowest
expected efficiency level, the minimum az, the effect on E is �:100, whereas for
the firm with the highest efficiency level, the effect is �:111. If owner age increases
by 10 years, efficiency increases 10 � 0:0067 D 0:067 for the youngest owners and

# the standard error, needed for the use of standard normal dist.
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10� 0:0078 D 0:0784 for an owner of average age. Therefore, if the efficiency of a
young owner is 60%, then after 10 years, it will be 66.7% ceteris paribus.

Note that the effect of the mean firm is �0:116, whereas the mean of the effect is
�0:114. This is just a small difference, but it is sufficient to show that the change in
efficiency is not linear in the tobit model.

6.11.4 Problems with the two-step method

The tobit model has been used in hundreds of studies of efficiency and productivity
analysis but is also the focus of some recent debates.

An assumption in the model above is that z and " are independently distributed.
If that is not the case, the likelihood function might not factorize as the condi-
tional likelihood function given z. If z and u are not independent, then we may
have EV.ujz/ ¤ EV.u/, and many of our results above will not hold. For instance,
the estimates based on the above-proposed second-stage methods might be biased
and not inconsistent. An alternative is to use bootstrapping methods. Another option
is to use stochastic frontier analysis (SFA), in which the relationship of dependence
between efficiency and the other variables can be integrated into the model formu-
lation by letting the mean and possibly the variance of the half-normal inefficiency
term " depend on z.

Still, theoretical niceties are of little concern to “instrumentalists”, and there is
considerable evidence of the success of two-stage studies in which scores are treated
as descriptive measures.



Chapter 7
Stochastic Frontier Analysis SFA

7.1 Introduction

As explained in Chap. 1, there are two dominant approaches to modern benchmark-
ing. One is the non-parametric, deterministic DEA approach discussed in some de-
tail in the last three chapters; other is the stochastic frontier analysis (SFA), which
we will cover in this and the next chapter. In the subsequent chapters, we will dis-
cuss a series of major applications of both approaches and examine the underlying
benchmarking problem.

Moving from DEA to SFA, there are two main distinguishing features. One is
that SFA is a parametric approach. By this we mean that we will make quite a
few more a priori assumptions about the structure of the production possibility set
and the data generation process. In fact, the SFA approach presumes that both are
known a priori except for the value of a finite set of unknown parameters. While
this is an obvious disadvantage of the SFA approach, it does come with a benefit. It
allows us to assume a stochastic relationship between the inputs used and the output
produced. Specifically, it allows us to assume that deviations from the frontier may
reflect not only inefficiencies but also noise in the data.

In terms of methods, the DEA approach has its roots in mathematical program-
ming, whereas the SFA approach is much more directly linked to econometric the-
ory.

In this chapter, we commence our coverage of SFA by considering the simple
case of a production function, that is, a multi-input single-output case. In the next
chapter, we will extend our coverage to more general production settings. In this
chapter, we will also focus on the estimation of SFA models and the estimation of
individual efficiencies. The testing of various hypotheses is discussed in the next
chapter.
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7.2 Parametric approaches

Consider a production function f . Based on the technology set T , it is derived as

f .x/ D maxf y j .x; y/ 2 T g
where x is a n dimensional input vector and y is the m D 1 dimensional output.

In the non-parametricDEA approach, we start with very few a priori assumptions
about the production function. We may, for example, assume that f is increasing
corresponding to a FDH model or that f is increasing and concave corresponding
to the VRS model.

In the parametric approach, we assume a priori that the production function has
a specific functional form, but that the details of this function as defined by the
parameters ˇ are unknown. That is, we assume that

f .x/ D f .xIˇ/
for some unknown vector of parameters ˇ. We may, for example, assume that the
production function is a Cobb-Douglas function

y D ˇ0x
ˇ1

1 x
ˇ2

2 � � �xˇm
m

with unknown values of ˇ0; ˇ1; ˇ2; : : : ; ˇm. In the next chapter, we introduce other
parametrizations more general than the Cobb-Douglas function type.

In a parametric approach, as in the non-parametric approach, we use actual ob-
servations from different firms to estimate the production function, and we use the
estimated function to gauge the performance of the individual firms. More specifi-
cally, we estimate the unknown parametersˇ from the actual observations, .xk; yk/,
k D 1; : : : ; K . Let the estimated values be Ǒ. A major difference between the
parametric and the non-parametric approaches is the estimation principle. Whereas
the DEA methods relied on the idea of minimal extrapolation, the parametric ap-
proaches use classical statistical principles, most notably the maximum likelihood
principle. That is, we choose the value of Ǒ that makes the actual observations as
likely as possible.

To implement this idea, however, we need to specify one more aspect, namely
the data generation process, which can explain why the actual observations devi-
ate from the production function. In the parametric approach, three main processes
have been suggested. One is to consider any deviation as noise corresponding to an
ordinary regression model. Another is to consider any deviation as an expression of
inefficiency, much like in the DEA approach; this is called the deterministic frontier.
Finally, we may assume that deviations are the results of both noise and inefficiency.
This is the stochastic frontier approach.

The three approaches can be summarized as in Table 7.1, where v 2 R is noise
and u 2 RC is inefficiency. Consider first the additive specifications. We see that
the noise term v can make the observed output larger or small than f .xIˇ/,whereas
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Table 7.1 Parametric approaches to noise v and inefficiency u
Approach Additive Multiplicative

Regression y D f.xIˇ/C v y D f.xIˇ/ exp.v/

Deterministic y D f.xIˇ/� u y D f.xIˇ/ exp.�u/
Stochastic y D f.xIˇ/C v � u y D f.xIˇ/ exp.v/ exp.�u/

the inefficiency term u � 0 will always make the observed output smaller than
f .xIˇ/. Instead of having an additive impact, we can also think of the noise and
efficiency as having a multiplicative impact. This is often convenient, as the Farrell
and Shephard efficiency measures are multiplicative by nature. Again, we see that v
can both increase and lower the output, as exp.v/ � 1 when v � 0 and exp.v/ � 1

when v � 0, whereas u will always lower the output, because exp.�u/ � 1 when
u � 0.

Now, once we have estimated the parametric functional form, we can also mea-
sure the output efficiencies of the individual firms. Therefore, with a given produc-
tion function f .xI Ǒ/, we can evaluate the efficiency of a particular firm having used
xo to produce yo in the additive cases by the Farrell output efficiency, or, which, is
more common in the parametric literature, by its inverse, the Shephard output effi-
ciency

Do.x
o; yo/ D Actual output

Maximal expected output
D f .xoIˇ/ � uo

f .xoIˇ/ : (7.1)

If we use a multiplicative formulation instead, we retrieve similar results after a log
transformation. Put differently, in the multiplicative cases illustrated in Table 7.1,
we would get the Shephard output efficiency as follows:

Do.x
o; yo/ D Actual output

Maximal expected output
D f .xoIˇ/ exp.�uo/

f .xoIˇ/ D exp.�uo/ :

(7.2)
In the multiplicative cases, for values D0 close to 1, we have a particularly simple
interpretation of u as

1 � Do D 1 � e�u ' 1 � .e0 � ue0/ D 1 � .1 � u/ D u;

where the approximation is a first-order Taylor approximation. Using the Farrell
efficiency, the inverse of the Shephard efficiency, we would similarly get F � 1 D
eu�1 ' .e0Cue0/�1 D .1Cu/�1 D u. Therefore, the interpretation of u in the
multiplicative model is that it is the relative loss in output due to the inefficiency.

Before turning to the SFA models, let us comment briefly on the simple regres-
sion and deterministic frontier models.
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7.3 Ordinary regression models

When the starting point for empirical analysis is the production function, an ordi-
nary regression technique can be used to estimate the parameters of the production
function from

yk D f .xk Iˇ/C vk; vk
iid� N.0; 
2/; k D 1; : : : ; K:

If need be, we can also start from the multiplicative form and conduct the above
estimation in log-linear form. The regression approach interprets all deviations from
the frontier as measurement noise. The simplest way to estimate it is to assume that
deviations are symmetric around zero and follow a normal distribution.

The result of such an estimation, which could be a Cobb-Douglas production
function with just one input, is shown in Fig. 7.1. The estimated function in the
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Fig. 7.1 Ordinary regression (OLS)

figure is lying more or less in the middle of all the observations, as the sum of
the residuals is zero. This implies that some of the residuals are positive, where,
observations lie above the estimated line, and some are negative, where observations
lie below the estimated line. The estimation shown in the figure looks like one that
would satisfy any statistician. The model has a clear interpretation: it is a production
function, the estimated function seems to be in accordance with the observations,
and the relevant parameter, the output elasticity (i.e., the relative change in output
compared to the relative change in input), is apparently larger than zero. It therefore
seems that we do have a good model.

There is one problem, however. Some of the observations are above the estimated
production function, and this contradicts the definition of a production function that
is supposed to give the maximum possible output for a given input. About half of
our observations in Fig. 7.1 are above the maximum possible production.
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7.4 Deterministic frontier models

If we assume instead that all deviations are the result of inefficiency, we would, as
indicated above, use a model like the following:

yk D f .xk Iˇ/ � uk ; uk
iid� H; k D 1; : : : ; K;

whereH is some probability distribution with support only on RC.
We see that a deterministic parametric model assumes that there is no noise in

the data like the DEA model and that the functional form—if not the specific pa-
rameters ˇ—is given a priori. One can therefore argue that this approach comes
with the drawbacks of DEA without its advantages of having a very flexible frontier
specification a priori. Still, it is an interesting starting point. Historically, it can be
seen as preceding the SFA approach, and moreover, a particular variant, the COLS
approach, is still widely used, for example, in regulation, cf. Chap. 10.

If we assume that the functional form is linear or log-linear in ˇ, we can es-
timate such a deterministic frontier model using linear programming or quadratic
programming. Specifically, let us assume that

f .xIˇ/ D ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ˇmxm

we can then estimate ˇ by solving the following problems:

min
ˇ;u

KX
kD1

uk (7.3)

s.t. yk � ˇ0 C ˇ1x
k
1 C � � � C ˇmx

k
m � uk; k D 1; : : : ; K;

uk � 0; k D 1; : : : ; K

or

min
ˇ;u

KX
kD1

u2k (7.4)

s.t. yk � ˇ0 C ˇ1x
k
1 C � � � C ˇmx

k
m � uk; k D 1; : : : ; K;

uk � 0; k D 1; : : : ; K:

If we assume that the inefficiency terms are exponentially distributed the first pro-
gram leads to the maximum likelihood estimate ˇ, and if the inefficiency terms are
half-normal the quadratic programming problem leads to the maximum likelihood
estimate of ˇ; without any distributional assumption, the quadratic programming
problem corresponds to the least square estimate of ˇ.

A third estimation of a deterministic parametric frontier model and the one most
widely used is to do a corrected ordinary least square, COLS . This involves two
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Fig. 7.2 Deterministic frontier model COLS

steps. The first is to make an ordinary least square estimate of the value of ˇ,

min
ˇ

KX
kD1

�
yk � f .xk Iˇ/�2;

and the second is to find the smallest possible correction of the intercept ˇ0 to ˇ00
to ensure that all observations are below the production frontier, that is, adjust ˇ0
upward with the maximum error term:

ˇ00 D max f yk � f .xk I Ǒ/ j k D 1; : : : ; K g :
An illustration of this in a log-linear case is provided in Fig. 7.2. As suggested by
the theory, all of the observations are now below the estimated production function.
This is also in agreement with the minimal extrapolation principle in that the cor-
responding technology set is the smallest set of this parametric form that contains
all the data, cf. Sect. 4.6. Again, it can be shown that this leads to maximum like-
lihood estimates under special circumstances, namely when the inefficiency terms
are gamma distributed, that is, when uk � 
.�; ˇ/, where � > 0 is the shape pa-
rameter and ˇ > 0 the scale parameter; the parameter f D 2� is called the degrees
of freedom.

Numerical example in R

To illustrate the regressions and COLS procedures, we can use R and the data set
charnes1981 (Charnes et al, 1981). The data set is from an US federally spon-
sored program for providing remedial assistance to disadvantaged primary school
students. The firms are 70 school sites, and data are from entire sites. The variables
consists of results from three different kind of tests, a reading score, y1, a math
score, y2, and a self–esteem score, y3, which are considered outputs in the model,
and five different variables considered to be inputs, the education level of the mother,
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x1, the highest occupation of a family member, x2, parental visits to school, x3, time
spent with children in school-related topics, x4, and the number of teachers at the
site, x5. There is further information in the data set, that the first 50 firms/school
sites followed the program and that the last 20 are the results for sites not following
the program—we will not use this important information in this example.

To make a very simple model, we choose one input variable x1, the mother’s
education, and one output variable y1, the reading score, and we estimate a Cobb-
Douglas production function with a log-transformation

log.y1/ D log.ˇ0/C ˇ1 log.x1/:

The following R program estimates the model by assuming implicitly that the error
term is additive in the log formulation, that is, a multiplicative model in terms of
Table 7.1.

> library(Benchmarking)
> c81 <- read.csv("charnes1981.csv")
> x = c81$x1
> y = c81$y1
> ols <- lm(log(y) ˜ log(x))
> ols
Call:
lm(formula = log(y) ˜ log(x))

Coefficients:
(Intercept) log(x)

0.9467 0.6732
> max(residuals(ols))
[1] 0.7394274
> coef(ols)[1] + max(residuals(ols))
(Intercept)

1.686146
> plot(log(x),log(y))
> abline(coef(ols),lty="dashed")
> abline(coef(ols)[1] + max(residuals(ols)), coef(ols)[2])
> hist(exp(residuals(ols) -max(residuals(ols))), main=NULL)

The command read.csv reads the data file as a csv file, the command lm esti-
mates the model as a linear model by ordinary least squares and puts the result into
the object ols. Just entering the name of the object ols has the same effect as
printing the object. The largest residual in this plot is 0.73, found with the command
max(residuals(ols)). The estimate of ˇ0 C ˇ00 is 1.686.

The next three lines of code generate the graph to the left of Fig. 7.3. The first
of these lines plots the individual observations, the second adds the regression line,
and the last adds the COLS line.

The last line calculates the Shephard efficiencies and plots a histogram of them.
The Shephard efficiency Do was in Eq. (7.2) shown to be equal to exp.�u/. The
estimate of �u in R is residuals(ols) -max(residuals(ols)), and exp
of this is the efficiency. To show the distribution of the calculated efficiencies, a
histogram is plotted by the command hist acting on the calculated efficiencies.
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The results are shown in the right part of Fig. 7.3 below. From the left graph, we can

log(x)

lo
g(

y)

−1 0 1 2 3 4 5 6

0
1

2
3

4
5

exp(residuals(ols) − max(residuals(ols)))

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0
0

5
10

15

Fig. 7.3 Numerical example, COLS (solid) and OLS (dashed) lines, and histogram of COLS cal-
culated efficiencies

see that the COLS procedure works; the adjusted estimated line is going through the
upper part of the observed points.

From the right graph, we see that most firms have an efficiency value between 0.4
and 0.7. Therefore, they produce between 40% and 70% of the maximum attainable
output.

7.5 Stochastic frontier models

The stochastic frontier models combine the efficiency term u with the error term
v; that is, SFA models include both a stochastic error term and a term that can be
characterized as inefficiency.

The base model—possibly after a log transformation—looks as follows:

yk Df .xk Iˇ/C vk � uk; (7.5)

vk � N.0; 
2v /; u
k � NC.0; 
2u/; k D 1; : : : ; K:

The v term takes care of the stochastic nature of the production process and possible
measurement errors of the inputs and output, and the u term is the possible ineffi-
ciency of the firm. We assume that the terms v and u are independent. If u D 0 the
firm is 100% efficient, and, if u > 0, then there is some inefficiency. The NC de-
notes a half-normal distribution, i.e., a truncated normal distribution where the point
of truncation is 0 and the distribution is concentrated on the half-interval Œ0;1Œ (the
support).
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Fig. 7.4 Stochastic frontier model

An illustration of this in the usual log-linear case is provided in Fig. 7.4. If you
would like to think of the model in (7.5) as a model for a Cobb-Douglas function,
then y is the log of output, and x is a vector of logs of inputs including a 1 to take
care of the intercept.

To estimate the SFA models, that is, to determine the values of the unknown
parameters ˇ; 
2v and 
2u , we will use of the maximum likelihood principle. Thus,
we estimate the parameter values as the values that make the observations as likely
as possible. To do so, however, we must know the density of the combined error
term

� D v � u:
The distribution of the error term � is not a simple distribution but rather a convolu-
tion of a normal distribution, v, and a truncated normal distribution, u.

Also, although the estimated function may be of interest on its own, we are usu-
ally more interested in the resulting estimates of the individual efficiencies. That is,
we would like to estimate uk ; k D 1; : : : ; K . An important question is therefore
how to estimate them. When we estimate the model to find ˇ; 
2v and 
2u , we can
easily calculate the total error terms

�k D vk � uk D yk � f .xk I Ǒ/ ;
but we cannot directly obtain its components vk and uk .

We will now look further at the distribution of the combined error term �, derive
its density, and explain how to estimate the individual inefficiencies u. But first,
we provide some intuition and thereafter turn to a more formal discussion of the
densities and estimates.
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Fig. 7.5d �2
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Lines in the figures:
Normal error, v
Efficiency error, u
Total error, � D v � u

Fig. 7.5 The shape of the likelihood function depends on �2
v , �2

u , and �

7.5.1 Normal and half–normal distributions

Consider the combined error term � D v � u, where v � N.0; 
2v / and u �
NC.0; 
2u/, cf. Eq. (7.5) above.

If v dominates u, that is, the variance of v, 
2v , is much larger than the variance
of u, 
2u , then the distribution of � looks like an ordinary normal distribution; in fact,
it looks like the distribution of v. If, on the other hand, u dominates v, then the dis-
tribution of � looks like the distribution of u, that is, a truncated normal distribution.
Of course, there are intermediate states. A series of examples are illustrated in the
plots in Fig. 7.5.

In terms of parametrization, we use


2 D 
2v C 
2u and � D
s

2u

2v

:
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When 
2u D 0 and therefore � D 0, we have the ordinary regression case with error
terms like the top-left plot in Fig. 7.5.

When the variance for the inefficiency term u is positive, it follows a half-normal
distribution on the positive part, which is shown as the dashed line in the plots in
Fig. 7.5. The normal part is the full line, and the total error, that is, the normal error
minus the efficiency term, is shown as the bold line.

If the variance of the inefficiency term is very small, that is, � is close to 0, the
density of the inefficiency term u is very narrow as the dashed line in the top right
of Fig. 7.5. In such cases, it is hard to distinguish between the total error term � and
the normal error term v—the bold line and the normal line are almost identical in
this figure.

When the variance of the inefficiency term is getting larger relative to the vari-
ance of the normal error term, that is, � gets bigger, the density of the total error term
is broader and skewed to the negative part. This is shown in the plots in Fig. 7.5. If
� is large, u is dominating, and almost all of the error term is due to differences in
efficiency.

When we look at the combined error terms, we can say that a more skewed
distribution indicates a greater degree to which the efficiency term dominates the
normal error term. This explains how we can actually estimate the two error terms,
even though they do seem to be unidentified in Eq. (7.5).

To estimate � and 
2, we could therefore estimate the model as an ordinary
regression model, calculate the residuals, and plot their densities. We could then
compare this density plot with the plots in figure 7.5 and choose the values of � and

2 in these figures that look most like the plot.

Of course, this is a rather subjective method for estimating the parameters; it is
also an uncertain and slow method. Moreover, once we have chosen the values for
� and 
2, we might want to adjust the estimate of the ˇ values. Instead, we will use
a computer to make the comparisons and choose the value � and 
2 (and ˇ) that
makes the density curve look most like the empirical density curve of the estimated
combined error terms. This can be done by the maximum likelihood estimation
method. We will therefore provide a short introduction to the maximum likelihood
method before we develop it for the SFA function.

7.6 Maximum likelihood estimation

Up to now, we have based our estimation of the technology set on the minimal
extrapolation principle, as described in Sect. 4.3. The principle states that the tech-
nology set should be the smallest set containing all data and fulfilling certain tech-
nological assumptions such as returns to scale. We already saw in connection with
Fig. 7.4 that all the data points are not below the SFA line and thus that not all data
points are in the technology set derived from the parametric function. This implies
that the SFA method does not fulfill the minimal extrapolation principle. This is the
price we must pay to be able to handle uncertainty in the model. The consequence
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is that the estimation method of the SFA model must be based on a completely
different method and be motivated by other kinds of arguments.

This can be seen as a drawback of the SFA method, but it can also be seen as an
advantage of the method, as it represents a way to handle uncertainty. It allows us to
say that data outside the derived technology set are outside by pure chance and that
these random data points should not influence what the technology set should look
like.

The observations above the SFA line in Fig. 7.4 can be considered to be above
by chance; either they were lucky in the production process, or there might be some
measure errors of output. If we do not like observations above the estimated pro-
duction line we must stay with the COLS line, where by construction there are no
observations above the line. However, then we have abandoned the starting point,
where we wanted to introduce uncertainty in the parametric function.

7.6.1 Justification for the method

In this section, we give an informal description of the estimation method we plan to
use for SFA models.

Our stochastic frontier model has the form lny D lnf .xIˇ/ C � where � D
v � u, cf. Eq. (7.5). Our interest is in the unknown parameter ˇ and u, but the
parametrization in Sect. 7.5.1 shows that the parameters in the statistical model are
ˇ, 
2, and �—we will later show how to derive u from these parameters.

To make the writing simpler, we will only include ˇ in what follows; that is,
we make the parameters 
2 and � implicit in the rest of this section. And, to make
it even simpler, we will treat ˇ as if it was a scalar; readers familiar with matrix
algebra can still think of ˇ as a vector.

On the basis of our observations, we wish to decide for a value of the unknown
parameter ˇ—we want to estimate ˇ—and we will do that by choosing a value
for ˇ such that our model is brought into agreement with our observations. The
estimation of the parameter ˇ is to choose a value that in some sense will be a good
approximation of the true value of ˇ.

Let '.yIˇ/ be the density function for the probability distribution of y; we im-
plicitly assume input x to make the writing simpler at this point. The density '.yIˇ/
is normally considered to be a function of the stochastic variable y for a given pa-
rameter ˇ (and input x). The density function '.yIˇ/ for a given data set y can
also be considered a real function on the parameter space and interpreted as the
likelihood that it is the parameter ˇ that has produced the observations y: when y
is observed, ˇ1 is more reasonable than ˇ2 if '.yIˇ1/ > '.yIˇ2/. When we con-
sider '.yIˇ/ as a function of the parameter ˇ for a given y, we refer to it as the
likelihood function L.ˇ/ D '.yIˇ/. For each set of observations, we have a likeli-
hood function, and for each parameter, we have a density function. The likelihood
function can be interpreted as the likelihood or “probability” that the parameter ˇ
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Ǒ Q̌

L. Ǒ/

L. Q̌/
L.ˇ/ D '.yIˇ/

Fig. 7.6 Maximum likelihood estimate is Ǒ given y, the likelihood function L.ˇ/ D '.yIˇ/
has its maximum at Ǒ ; the alternative Q̌ has lower likelihood

has produced the observations .x; y/. We often look at the log likelihood function
`.ˇ/ D log

�
L.ˇ/

�
.

We choose as an estimate of ˇ the value that maximizes the likelihood func-
tion. This is the maximum likelihood estimation method. We choose as a value for
ˇ the value that makes our observations the most likely observations; we choose ˇ
such that we get high agreement between our model and our observations. In math-
ematical terms, we choose ˇ by maximizing L.ˇ/. We let Ǒ denote the solution to
this maximization problem such that for all values of ˇ we have L.ˇ/ � L. Ǒ/, or
L. Ǒ/ D maxˇ L.ˇ/.

We show this in Fig. 7.6, where the curve is the likelihood function given y and
at its maximum is the maximum likelihood estimate Ǒ. If, instead, we choose Q̌ in
the figure, we get a much lower likelihood.

One can show that the maximum likelihood estimates are unique and that in large
samples they are nearly unbiased, consistent, i.e. the estimated parameter value will
be very close to the true value of the parameter, and efficient, i.e., have variances
nearly equal to the lowest possible variance (the Cramér-Rao lower bound). One
can also show that maximum likelihood estimate Ǒ is approximately normally dis-
tributed; we return to this result in Sect. 8.5.

7.6.2 Numerical methods

Unfortunately, it is not always easy to maximize the likelihood function. For the
model we have described, there is no direct closed-form solution, and we have to
make use of numerical methods. We now describe the principle of such a numerical
methods, and even though it can be seen as a somewhat technical issue, there are
at least two reasons to be interested in this. First to understand that a SFA method
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may sometimes fail to find an estimate. Second to understand how we get variances
for the estimated parameters. We need the variances in the next chapter when we,
among other things, look at statistical tests in SFA models.

It turns out that it is frequently easier to maximize the log likelihood function than
it is to maximize the ordinary likelihood function. The solution of the maximization
problem can be found as a solution to the first order conditions, often called the
likelihood equations,

@`.ˇ/

@̌ i

D 0; i D 1; : : : ; m:

For the SFA model, there is no direct solution to these equations, so we have to solve
them numerically. This can be done by using a first-order Taylor expansion to the
likelihood equation to obtain

0 D @`. Ǒ/
@̌

' @`.ˇ0/

@̌
C . Ǒ � ˇ0/@

2`.ˇ0/

@̌ 2
;

such that

Ǒ ' ˇ0 �
	
@2`.ˇ0/

@̌ 2


�1
@`.ˇ0/

@̌
: (7.6)

This equation can be used in an iterative process to solve for ˇ

ˇnC1 D ˇn �
	
@2`.ˇn/

@̌ 2


�1
@`.ˇn/

@̌
:

Start with an initial guess ˇ0 and repeat the above formula by replacing ˇn with the
newly calculated value ˇnC1 from the left side.Repeat this process until ˇnC1 does
not change from ˇn, that is, jˇnC1 � ˇnj < " for some " > 0; typically, " could be

10�4. If the value of ˇ itself is very small, we could use the criteria jˇnC1�ˇnj
ˇnC1 < ".

The above method is called Newton’s method. As an initial guess, one can use the
parameters estimated by ordinary OLS or what we called COLS on page 201.

Because the likelihood function for the stochastic frontier model is non-linear in
its parameters, and no closed-form solution for the parameters exists, the estimation
is done by an iterative optimization algorithm, as described. Therefore, there is a
chance that the optimization algorithm does not converge or returns parameters that
do not correspond to the global maximum of the likelihood function.

7.7 The likelihood function

To be able to use maximum likelihood estimation in SFA, we need the likelihood
function.



7.7 The likelihood function 211

The density function for a single observation of one error term, v, is the normal
distribution

'v.v/ D 1p
2�
2v

e
�1
2
v2

�2
v ; (7.7)

and the density for the inefficiency term u is the half–normal distribution, which is
the normal distribution truncated at 0,

'u.u/ D

8̂<̂
:

2p
2�
2u

e
�1
2

u2

�2
u for u � 0

0 for u < 0

(7.8)

where the extra 2-factor is such that the total mass of the half–normal distribution is
still 1, that is,

R1
�1 'u.u/ du D 1.

When we look at a single observation .x; y/, we can not directly calculate the v
and u terms. We can calculate the total error term � D v � u as � D y � f .xIˇ/ or
� D logy � logf .xIˇ/. We therefore need to find the distribution function or the
density function of �. The total error � D v�u is the sum of v and �u and therefore
the distribution of � is the convolution of the distribution of v and �u, and this is
given by

'�.�/ D
Z 1

�1
'u.u/'v.� C u/ du D

Z 1

0

'u.u/'v.� C u/ du: (7.9)

Carrying out this integration is a somewhat tedious task, and the details are therefore
only given in the appendix to this chapter. The result is

'�.�/ D
p
2p
�
2

ˆ

	
� ��p


2



e

�1
2
�2

�2 ; (7.10)

where as before


2 D 
2v C 
2u ; (7.11)

� D
s

2u

2v

; (7.12)

and ˆ is the distribution function of the standard normal distribution with mean 0
and variance 1, that is, ˆ.z/ D 1p

2	

R z
�1 e� 1

2 t
2

dt . When the parameter � is 0,
there is no effect from differences in efficiency, and if it is very large, differences
are almost only due to differences in efficiency and not to other kind of uncertainty.

The log of this density is

log'�.�/ D �1
2

log
��
2

�
� 1
2

log 
2 C logˆ
�

� ��p

2

�
� 1
2

�2


2
: (7.13)

When we have K independent observations,K firms, the joint density is
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'.�1; : : : ; �K/ D
KY
kD1

'�.�k/ ;

and the log of the joint density is

log'.�1; : : : ; �K/ D
KX
kD1

log'�.�k/

D �1
2
K log

��
2

�
� 1
2
K log 
2 C

KX
kD1

logˆ
�

� � �kp

2

�
� 1

2
2

KX
kD1

�2k :

We can rewrite this equation to emphasize that the error term � depends on the
parameter (vector) ˇ, and then the log likelihood function looks like

l.ˇ; 
2; �/ D log'e
�
�1.ˇ/; : : : ; �K.ˇ/I 
2; �

�
D log'e

�
y1 � f .x1Iˇ/; : : : ; yK � f .xK Iˇ/I 
2; ��

D � 1
2
K log

��
2

�
� 1
2
K log 
2 C

KX
kD1

logˆ
�

� �
�
yk � f .xk Iˇ/�p


2

�

� 1

2
2

KX
kD1

�
yk � f .xk Iˇ/�2 : (7.14)

The function l.ˇ; 
2; �/ is the log-likelihood function, which depends on parameters
to be estimated (in this case ˇ, 
2, and �) and on the data .x1; y1/,. . . ,.xK ; yK/.

7.8 Actual estimation

We can estimate the parameters ˇ, 
2, and � of the basic SFA model in Eq. (7.5)
using the maximum likelihood method. maximizing the log-likelihood function Eq.
(7.14) with respect to the parameters ˇ, 
2, and �. This can be done automatically
by the function sfa from the R package Benchmarking.

Numerical example in R

We will illustrate the use of the function sfa on the school data that we also ana-
lyzed in Sect. 7.4.

Let us assume that data are already read into the matrices x and y and that the
package Benchmarking is loaded. The following commands will then estimate a
Cobb-Douglas production frontier, i.e. a log-linear production function, and display
the results.



7.8 Actual estimation 213

> msfa <- sfa(matrix(log(x)),matrix(log(y)))
> msfa
Coefficients:
(Intercept) x

1.2526 0.6555

Just as for the method dea, input and output to sfa should be in the form of matri-
ces. We have put the output from the estimation into a variable msfa to be able to
refer to the results at a later stage.

To compare the estimation results with the ordinary regression results from
Sect. 7.4, we repeat the results here.

> ols <- lm(log(y) ˜ log(x))
> ols
Call:
lm(formula = log(y) ˜ log(x))
Coefficients:
(Intercept) log(x)

0.9467 0.6732
> max(residuals(ols))
[1] 0.7394274

The estimates slope of the two are almost identical, the OLS slope is estimated at
0.6732, and the SFA slope is estimated at 0.6555. It is not always the case that the
estimated parameters from OLS and SFA are so similar, as is the case here. The
differences in the estimated curves is illustrated in the plot in Fig. 7.7.

The commands in Fig. 7.7 plot the observations as well as the production func-
tions estimated by OLS (dashed line), OLS plus max residual (dotted line), and SFA
(continues line). The production frontier estimated by SFA (the solid line) is clearly

> plot(log(x), log(y))

> abline(coef(msfa))
> abline(coef(ols),
+ lty = "dashed")
> abline(coef(ols)[1] +
+ max(residuals(ols)),
+ coef(ols)[2],
+ lty="dotted")
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Fig. 7.7 Plot of SFA line (solid); also OLS (dashed) and COLS (dotted) lines

above the function estimated by OLS (the dashed line) and also below the OLS line
plus the maximum residual (the dotted line), but the difference in the slope of the
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SFA line (the solid line) and the OLS line (the dashed line) do not clearly correspond
to the similarity in the slopes we mentioned above to a great degree. There are still
observations above the production frontier, but apparently these deviations are due
to random errors (v).

The estimate for � can be found by either msfa$lambda or the function
lambda.sfa(msfa).

> lambda.sfa(msfa)
lambda

1.191951

The percentage of total error variance due to inefficiency can be found from
�2

u

�2
uC�2

v

D �2
u=�

2
v

�2
u=�

2
v C�2

v =�
2
v

D �2

�2C1 . For O� D 1:192, we get �2

�2C1 D 0:5869, showing

that 59% of the total variation is due to inefficiency and that the remaining 41% is
random variation.

7.9 Efficiency variance

The estimation procedure generates estimates of � and 
2, but our interest is of-
ten rather in 
2u and 
2v . They can be found by solving for 
2u and 
2v in the Eq.

(7.11), 
2 D 
2v C 
2u , and Eq. (7.12), � D
r
�2

u

�2
v

. This can be done in a rather

straightforward manner:

� D
s

2u

2v

) �2 D 
2u

2v

) 
2u D �2
2v :

We now can find


2 D 
2v C 
2u D 
2v C �2
2v D 
2v .1C �2/ ) 
2v D 1

1C �2

2

and therefore


2u D �2
2v D �2

1C �2

2:

Applying these equations to our estimates O� D 1:1920 and O
2 D 0:1663, we get

2u D 0:099 and 
2v D 0:070. As O� is greater than 1, the variance for efficiency is
larger than the variance for random errors. The two variances can be found directly
in R:

> sigma2u.sfa(msfa)
sigma2u

0.09877588
> sigma2v.sfa(msfa)

sigma2v
0.06952391
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The two variances are also part of the output from the command summary(msfa)
where the variable msfa is the name of the sfa-object from the sfa-function. Note
that the variance for the inefficiency 
2u is around 42% larger than the variance
for the random error 
2v ; this corresponds to �2 D 1:19202 D 1:420 and then
1:420� 1 D 42%.

Practical application: Milk producers

We estimate a simple model for milk production, where output is kg milk and inputs
are veterinary expenses, energy and the number of cows. The commands below read
the data, which are in csv format, show a part of the data set, and estimate a Cobb-
Douglas production frontier using OLS (lm) and SFA.

> library(Benchmarking)
> milkProd <- read.csv( "milkProd.csv" )
> milkProd[ c( 1:3, 107:108 ), ]

farmNo milk energy vet cows
1 1 862533 117894 21186 121
2 2 605764 72049 43910 80
3 3 865658 158466 54583 95
107 107 983645 190440 73142 116
108 108 738916 156109 115209 92
> x <- with(milkProd, cbind(vet, energy, cows))
> y <- matrix(milkProd$milk)
> milkSfa <- sfa(log(x), log(y))
> summary(milkSfa)

Parameters Std.err t-value Pr(>|t|)
(Intercept) 7.52014 0.32197 23.357 0.000
xvet 0.06281 0.02496 2.517 0.013
xenergy 0.12156 0.03676 3.307 0.001
xcows 0.87879 0.06640 13.235 0.000
lambda 3.59708 0.89964 3.998 0.000
sigma2 0.045685
sigma2v = 0.003277507 ; sigma2u = 0.04240755
log likelihood = 67.82555
>
> # Percentage of inefficiency variation to total variation
> lambda <- lambda.sfa(milkSfa)
> 100*lambdaˆ2/(1+lambdaˆ2)
92.82587
> # variance for inefficiency
> sigma2u.sfa(milkSfa)

sigma2u
0.04240755
> # variance for random errors
> sigma2v.sfa(milkSfa)

sigma2v
0.003277507
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In this model, the estimated � parameter is 3.6, which means that the total error
variance is mainly due to inefficiency, whereas random errors are less important.
The percentage of total variation due to variation in efficiency is 93%.

The estimated variance for the variation in efficiency is 
2u D 0:0424 is consid-
erably larger than variation due to random errors 
2v D 0:0032.

7.9.1 Comparing OLS and SFA

The following lines of code compare the OLS and the SFA estimates of the param-
eters in the model.

> library(Benchmarking)
> milkProd <- read.csv( "milkProd.csv" )
> x <- with(milkProd, cbind(vet, energy, cows))
> y <- matrix(milkProd$milk)
>
> # sfa efficiency
> milkSfa <- sfa(log(x), log(y))
> ols <- lm(log(y) ˜ log(x))
> cbind(ols=coef(ols), sfa=coef(milkSfa))

ols sfa
(Intercept) 7.10341187 7.52014420
log(x)vet 0.09551563 0.06281416
log(x)energy 0.12132193 0.12156101
log(x)cows 0.85907831 0.87878814
> # ols variance
> sum(residuals(ols)ˆ2)/ols$df.residual
[1] 0.02046301
> max(residuals(ols))
[1] 0.2817728

The R command cbind writes the parameters for the two models, OLS and
SFA, and here one can see that the estimates are different. However, except for
the intercept, the differences are rather small. The corrected intercept for COLS is
the intercept plus the maximum of the residuals, that is, 7:10 C 0:28 D 7:38, and
this intercept is much closer to the SFA intercept. This is an often-found result, as
the OLS estimates differ only a little from the SFA estimates. On the other hand,
the OLS variance 0.02046 is much smaller than the total SFA variance of 0.04568
(sigma2); this is no surprise, as the OLS estimates are found such that the variance
is the lowest attainable variance, and this leads to its name as the least squares or
OLS approach.
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7.10 Firm-specific efficiency

So far, we have focused on the estimation of the functional form and whether the
deviations from the production function can be decomposed into noise and ineffi-
ciency. We have not, however, analyzed the efficiency of individual firms, which,
after all, is the major concern in benchmarking studies. We therefore turn to firm-
specific efficiency in SFA analysis.

The calculations in this section might look tedious, but they represent the foun-
dation for calculating the specific efficiency for each firm. We will show also how
it can be done in R; in fact, the R package contains specialized functions that can
calculate the specific efficiencies in one function call after the SFA estimation has
been done, just as for the DEA efficiencies.

The efficiency of the specific firm in both the additive and multiplicative model
depends on u. In the multiplicative model, the efficiency depends only on u,
Eq. (7.2), and, in the additive model, the efficiency also depends on the maximal ex-
pected output, that is, the output determined from the estimated function, Eq. (7.1).
The firm-specific efficiency is therefore given by

TEkadd.x
k ; yk/ D f .xk ; Ǒ/ � Ouk

f .xk ; Ǒ/ D 1 � Ouk
f .xk ; Ǒ/ ; (7.1’)

TEk D TEkmult.x
k; yk/ D exp.� Ouk/ : (7.2’)

where technical efficiency TE without a subscript refers to the multiplicative model.
Whatever model we use, we need an estimate Ouk to be able to calculate the spe-
cific efficiency. Unfortunately, it is not simple to get an estimate Ouk of uk . After
estimating the parameters, we can easily estimate the total error as

O�k D lnyk � lnf .xk I Ǒ/ ; k D 1; : : : ; K:

The total error is given by �k D vk � uk from Eq. (7.5), but even though we know
�k , this is one equation and two unknowns, vk and uk .

Still, the estimate of �k does carry some information on uk . If �k > 0, then
chances are that uk is not very large, as EV.vk/ D 0 and uk � 0, suggesting that
firm k is relatively efficient. If, on the other hand, �k < 0, then uk will tend to be
large, suggesting that firm k is relatively inefficient.

We will therefore look at the conditional distribution of uk given �k and use the
conditional expectation EV.uk j�k/ as an estimator of uk . The simultaneous density
of v and u—we drop the subscript k for a moment—is the product of the individual
densities, as they are independent 'u;v.u; v/ D 'u.u/ 'v.v/. Substituting � C u

for v, we get 'u;�.u; �/ D 'v.� C u/ 'u.u/. Therefore, using Bayes’ theorem, the
conditional density of u given � is

'.uj�/ D 'v.� C u/ 'u.u/

'�.�/
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where 'v , 'u, and '�.�/ are defined as in Eqs. (7.7), (7.8) and (7.10) respectively.
Unfortunately, the actual calculations are rather tedious, and as we simply aim to
find the conditional expectation, we will jump right to this result:

EV.uj�/ D �� C 
�
�.��=
�/
ˆ.��=
�/

; (7.15)

where

�� D �� 

2
u


2
D �� �2

1C �2
D ���;


� D
r

2u


2
v


2
D �

.1C �2/

 D

p
�.1� �/
2 ;

and �.:/ is the density function, and ˆ.:/ the distribution function of a standard
normal distribution. When we substitute the estimated values for �, 
2, and � then
we have an estimate of u, call it Ou, conditioned on the estimate of �.

For the multiplicative model, we now get an estimate of TE as cTE D e
� EV.ujO�/ D

e� Ou. The following commands extract the residuals �, 
2, and �.

> e <- residuals(milkSfa)
> s2 <- sigma2.sfa(milkSfa)
> lambda <- lambda.sfa(milkSfa)

Now, we can calculate the auxiliary variables �� and 
� and the specific technical
efficiency estimates of each firm.

> mustar <- -e*lambdaˆ2/(1+lambdaˆ2)
> sstar <- lambda/(1+lambdaˆ2)*sqrt(s2)
> teJ <- exp(-mustar

-sstar*( dnorm(mustar/sstar)/pnorm(mustar/sstar) ))

We can also note that

��

�

D �� 

2
u


22





u
v
D �� 
u


v

1



D �� �



where � D 
u


v

such that

EV.uj�/ D 
�
	

�.��=
/

1 �ˆ.��=
/ � � �





(7.16)

where we have used that �.�x/ D �.x/ and ˆ.x/ D 1 � ˆ.�x/. The above
equation can be simplified to

EV.uj�/ D 
�
	

�.��/
1 �ˆ.��/

� ��



where �� D �
�



: (7.17)

The following commands calculate the technical efficiency estimates using the
above formula and show that these estimates are equal to the estimates calculated in
Eq. (7.15).
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> estar <- e * lambda / sqrt(s2)
> euJ <- sstar * (dnorm(estar)/(1 - pnorm(estar)) - estar)
> teJJ <- exp(-euJ)
> all.equal(teJ, teJJ)
[1] TRUE

Another estimator is the mode of the conditional distribution, which also can be
interpreted as a maximum likelihood estimator:

M.uj�/ D
(
�� for � � 0;

0 for � > 0:
(7.18)

Because �� always has the opposite sign of �, we can change the above equation to

M.uj�/ D
(
�� for �� > 0;
0 for �� � 0:

(7.19)

so that we have
M.uk j�/ D max.0; ��i /: (7.20)

> teMode <- exp(pmin(0,-mustar))

As EV.TE/ D EV.e�u/ is generally not equal to e�EV.u/ yet another estimator
has been proposed

TE D EV.e�uj�/ D ˆ.��=
� � 
�/
ˆ.��=
�/

e

�
1
2
�2

� ���

�
: (7.21)

This estimator is optimal in the sense of minimizing the mean square error. This is
the one that is most often used and the one that we will also use.

> teBC <- pnorm(mustar/sstar -sstar)/pnorm(mustar/sstar) *
+ exp(sstarˆ2/2 -mustar)

The actual values of the efficiency estimates differ somewhat between the three
methods, but the estimates based on the three different methods are highly corre-
lated.

> cor(cbind(teBC=c(teBC), teMode=c(teMode), teJ=c(teJ)))
teBC teMode teJ

teBC 1.0000000 0.9955548 0.9999965
teMode 0.9955548 1.0000000 0.9957821
teJ 0.9999965 0.9957821 1.0000000

The average efficiency for the industry is the average over the individual produc-
tion firms TE D 1

N

PN
iD1cTEk .

> mean(teBC)
[1] 0.858807

However, it is worth consideration whether one should weight the average by the
output, that is, use
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NX
iD1

ykPN
jD1 yj

cTEk D
PN
iD1cTEk ykPN
iD1 yk

: (7.22)

> sum(milkProd$milk*teBC/sum(milkProd$milk))
[1] 0.8709019

The calculation of the efficiency estimates based on the above formulas can be

and teJ.sfa on objects returned by the R command sfa. The next couple of lines
show that the results are the same.

The following commands plot two graphs that visualize the efficiency estimates
calculated with the formula from (7.21). They are shown in Fig. 7.8.

hist(te, xlim = c(0.5, 1), main = "", xlab = "Efficiency",
col = "gray", cex.lab = 1.25, freq=F, breaks=10)

lines(density(te,from=0,to=1),lwd=2)

plot(sort(teBC), ylim = c(0.5, 1), ylab = "Efficiency", pch = 20,
cex.lab = 1.25)
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Fig. 7.8 Efficiencies: Histogram, density, and order

Finally, we look at the relationship between the production of milk and efficiency.
The following commands are used to plot the graph shown in Fig. 7.9.

[1] TRUE
>
[1] TRUE

[1] TRUE

all.equal(matrix(teMode),teMode.sfa(milkSfa),check.attributes=F)

> all.equal(matrix(teBC),te.sfa(milkSfa),check.attributes=FALSE)

> all.equal(matrix(teJ),teJ.sfa(milkSfa),check.attributes=FALSE)

simplified by applying the methodste.sfa or teBC.sfa for teBC, teMode.sfa,
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plot(milkProd$milk, teBC, xlab = "Kg milk produced",
ylab = "efficiency")

lines(lowess(milkProd$milk, teBC), lwd = 1.5)
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Fig. 7.9 Relationship between milk production and efficiency

This graph shows that efficiency increases with the production of milk for the firms
that are smaller than the average size but that efficiency is independent of milk
production for the firms that are larger than the average size.

7.10.1 Firm-specific efficiency in the additive model

For the additive model, the efficiency was shown to be

TEkadd.x
k ; yk/ D 1 � Ouk

f .xk ; Ǒ/ ; k D 1; : : : ; K; (7.1”)

and estimates of u were found in (7.16) and (7.18). We thus have all the ingredients
to calculate firm-specific efficiency in the additive model. The following lines of
code show how this is done in R. We continue to use the data set for milk production
we introduced in Sect. 7.9.

The first step is to estimate the additive model. This is almost like the estimate of
the multiplicative model; we just omit taking the log of the variables. In the second
step, we estimate efficiencies by the function te.add.sfa.

> library(Benchmarking)
> milkProd <- read.csv( "milkProd.csv" )
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Fig. 7.10 Efficiencies in additive model sorted and compared to efficiencies in the multiplicative
model

> x <- with(milkProd, cbind(vet, energy, cows))
> y <- matrix(milkProd$milk)
> milkAdd <- sfa(x, y)
> milkAdd
Coefficients:
(Intercept) xvet xenergy xcows

51156 1.1176 0.53837 6774.9
> lambda <- lambda.sfa(milkAdd)
> 100*lambdaˆ2/(1+lambdaˆ2)

lambda
89.04813
> teAdd <- te.add.sfa(milkAdd)
> plot(sort(teAdd))

> # Compare to the multiplicative model:
> milkSfa <- sfa(log(x), log(y))
> ran <- range(te.sfa(milkSfa), teAdd)
> plot(te.sfa(milkSfa),teAdd , xlim=ran, ylim=ran)
> abline(0,1, lty="dotted")
> lines(lowess(te.sfa(milkSfa),teAdd),lty="solid", lwd=2)
> # Efficiency and size of output
> plot(y, teAdd, xlab="Kg milk produced",
+ ylab="Additive efficiency")
> lines(lowess(y, teAdd))

The sorted efficiencies teAdd are plotted to the left in figure 7.10. The overall
impression is just like the one for the multiplicative model back in Fig. 7.8.

One cannot compare the estimates in the multiplicative model and the additive
model; the first parameters correspond to output elasticities, without dimensions,
and the other parameters correspond to marginal products, where dimensions de-
pend on the inputs. However, one can compare the estimated specific efficiencies.
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Fig. 7.11 Efficiency in additive model depends on size of production

This is done in figure 7.11. Here, one can see that there is a tendency that for low ef-
ficiencies, additive model efficiencies are larger than the multiplicative efficiencies
and that for high efficiencies, the multiplicative are somewhat larger.

In Fig. 7.11 the efficiency in the additive model is compared to the size of the
output, the production of milk. Here, it is clear that the dependence of size is more
pronounced than for the multiplicative model in figure 7.9. However, this is not just
a characteristic of the data; it actually is a characteristic of the model itself.

Efficiency in the additive model y D ˇ0 C ˇ1x1 C v � u, v � N.0; 
2v / and
u � NC.0; 
2u/ is given by TEadd D 1 � Ou

Oy . The assumption for the stochastic
model is that the distribution of u is identical for all firms. Therefore, for firms with
a large maximal expected output, large Oy, the term Ou

Oy will be small, and therefore
the efficiency will be close to 1. By construction, larger firms will therefore have a
tendency to have a higher efficiency. If the efficiency is independent of size, then 
2u
should increase with size, that is, u should be heteroskedastic.

7.11 Comparing DEA, SFA, and COLS efficiencies

We can now compare the efficiencies estimated in the SFA model with the corre-
sponding efficiencies in a DEA model. As we mentioned in Sect. 7.2, we should
compare the inverse output efficiency to the SFA efficiency. The following code
lines estimate efficiency under DEA and under SFA and make various graphical
comparisons.

> library(Benchmarking)
> milkProd <- read.csv( "milkProd.csv" )
> x <- with(milkProd, cbind(vet, energy, cows))
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> y <- matrix(milkProd$milk)
> # sfa efficiency

> milkSfa <- sfa(log(x), log(y))
> teSfa <- te.sfa(milkSfa)
> # dea efficiency
> milkDea <- dea(x,y,ORIENTATION="out")
> teDea <- 1/eff(milkDea)
> # COLS efficiency
> ols <- lm(log(y)˜log(x))
> cols <- -residuals(ols) + max(residuals(ols))
> teCols <- exp(-cols)
> # correlation between dea, sfa, and cols efficiencies
> cor(cbind(teDea, teSfa, teCols))

F te teCols
F 1.0000000 0.7790146 0.7981702
te 0.7790146 1.0000000 0.9699392
teCols 0.7981702 0.9699392 1.0000000
> plot(teDea, teSfa, xlim=c(.5,1), ylim=c(.5,1))
> boxplot(cbind(teDea, teSfa, teCols))

The correlation between the dea and sfa efficiencies as 0.78; that is, the two kind of
efficiencies are highly correlated, but they are not perfectly correlated. This can also
be seen in the left panel of figure 7.12, where there is a clear positive slope in the
connection in the points.
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Fig. 7.12 Comparing DEA (F) and SFA (te) efficiencies, and COLS (teCols)

However, it is also clear that there are several firms with a DEA efficiency of 1
that have much lower SFA efficiency. There is even a firm with an DEA efficiency
of 1.0 and a SFA efficiency of 0.6. In the graph, the diagonal is drawn (dotted line);
also, a smooth line through the points is drawn (solid line). From this, one can see a
tendency for the DEA efficiency to be higher than the SFA efficiency on the lower
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end of the efficiency scale and for the opposite to occur on the very high end of the
efficiency scale; from several data sets, this seems to be a general property and not
just one of this example; cf. figure 7.13, where plots such as the left plot in figure
7.12 are given for many data sets.
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Fig. 7.13 Compare DEA efficiency (F) and SFA efficiency (te) for many data sets

As long as it is only the firms whose efficiency we calculate that determine the
technology set, it is clear that at least one firm has a DEA efficiency of 1 and is
fully efficient, and often we have several firms with an efficiency of 1 dependent
on the total number of inputs and outputs in the model. This is not the case for
SFA efficiency where an efficiency of 1 only happens when u D 0, and as the
distribution of u is continuous, the probability of this is 0—there is no atom at 0 in
the distribution, and, as a result, we do not see a gathering of u’s at 0.

The firm with a DEA efficiency of 1 and a SFA efficiency of .59 is a firm with
a very low use of veterinary services, an input with a small weight compared to the
other inputs. Therefore, from the DEA point of view the firm is very effective in its
use of an input and is therefore considered to have a high efficiency. On the other
hand, this firm have a very low output milk per input cow and per input energy unit,
and as the cows and energy are the two important inputs, the SFA judge the firm to
be very inefficient. If veterinary services is removed from the inputs, then the DEA
efficiency of that firm changes to .55 and the SFA efficiency changes to .54, leading
the two to be almost the same; other differences remain more or less unchanged.
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This example shows that one should be very careful in selecting inputs and outputs
especially in DEA analysis—a result we also discussed in Sect. 4.6.

The right panel in Fig. 7.12 is a boxplot of the three efficiencies, F for the inverse
DEA output efficiency, te for the SFA efficiency, and teCols for the COLS efficiency.
Here, it is clear that even though the mean and median are pretty much the same for
DEA and SFA, the spread in the DEA efficiencies is much larger than the spread in
the SFA efficiencies. It is also clear that the median is lower for COLS efficiency
and that there are only a few with very high efficiency. The relation between SFA
and COLS efficiency is also shown in Fig. 7.14, where it is clear that for almost all
firms the COLS efficiency is lower than SFA efficiency except for a few with very
high COLS efficiency. This is not a surprise, as the COLS efficiency is constructed
such that at least one firm has an efficiency of 1, which corresponds to the firm with
the largest OLS error.
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Fig. 7.14 Comparing SFA and COLS efficiencies

Let us take another look at the relation between the size of output, the amount
of milk production and efficiency. In Fig. 7.9, we plotted the relation between kg
milk produced and SFA efficiency. In Fig. 7.15, we have repeated this plot but now
also include the DEA efficiency as both the input efficency (the dashed line) and
the inverse output efficiency (the dotted line). For the middle group, the relationship
is independent of how efficiency is measured. However, for the two ends of the
production range, we see a different pattern, where the DEA efficiency is larger
than the SFA efficiency and that DEA efficiency has a tendency to be higher at the
ends of the output range. This pattern should not come as a surprise, as at the ends of
the output range, there are typically fewer firms, there are few very small firms and
there are few very large firms. Therefore, when the technology is a VRS technology,
the firms at the ends are typically compared to very few firms, making it easier to
attain a higher efficiency.
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Fig. 7.15 Relationship between kg milk production and various efficiencies

Again, this seems to be a general property and not just a property for this ex-
ample, as can be seen in Fig. 7.16 When we use the CRS technology for DEA
efficiency, the pattern is quite different, as can be seen by comparing figure 7.16
with VRS technology with figure 7.17 with CRS technology. For the CRS plots,
there is no clear pattern; note that the SFA model does not assume CRS but that the
DEA and SFA efficiencies show the same pattern anyway. The conclusion is thus
that one should be careful and not draw any conclusion that does not depend solely
on the data but mostly on the method used.

We close this section by reminding the reader that the methodology differs be-
tween DEA and SFA, even though the two approaches yield efficiency measures. If
the input is changed for an inefficient firm then that will not change the efficiency of
other firms in DEA, but it might change the efficiency of other firms in SFA because
it might influence what is considered random error and what is considered a differ-
ence in efficiency. Also, if more firms are added to the data set, then efficiency in
DEA will only change if the new firms change the frontier; in SFA, efficiency will
surely change again because the distinction between random errors and inefficiency
will change. When more goods, inputs and/or outputs, are added, then an increasing
number of firms will get DEA efficiency of 1; this is not necessarily the case for
SFA.

7.12 Summary

In this chapter, we introduced the basics of the parametric approach to benchmark-
ing and briefly discussed two ways in which inefficiency can enter: the additive way
and the multiplicative way, which is more in accordance with the DEA approach.
We showed that the ordinary regression models (OLS) do not take inefficiency into
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Fig. 7.16 Relation between output (scaled) and DEA efficiency (E and 1/F, dashed and dotted line)
and SFA efficiency (te, solid line) using many data sets
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Fig. 7.17 Relation between output (scaled) and DEA efficiency (CRS technology, dashed line) and
SFA efficiency (solid line) using many data sets
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account at all but consider all deviations from the parametric function to be of a
purely random nature. At the other extreme, the deterministic frontier models as-
sume that all deviations are considered to be differences in efficiency; this leads to
corrected ordinary least squares (COLS).

When deviations from the parametric form are split into both random errors and
differences in efficiencies, we have the stochastic frontier analysis model (SFA). We
introduced the distribution of efficiencies as half-normal distributions and showed
what this implied for the whole stochastic model in a series of plots.

The nature of the SFA estimation problem is of a different type than the DEA
method because of both the parametric functional form and the stochastic in this
functional form. For estimation purposes of SFA, we introduced in a fairly informa-
tive way the maximal likelihood estimation method. We not only estimated param-
eters in the functional form but also showed how firm-specific efficiencies can be
calculated.

At the end of the chapter, we compared SFA efficiencies to DEA efficiencies and
found that almost no SFA efficiency was 1, where typically several DEA efficiencies
are 1. We also noted that the methodologies in DEA and in SFA are very different
and that is an important reason for the different results.

7.13 Bibliographic notes

The linear and quadratic programming approach to estimate a deterministic frontier
is due to Aigner and Chu (1968). The maximum likelihood interpretation under
exponential and half-normal distributions was first demonstrated by Smith (1976),
Afriat (1972) proposed a gamma-distributed inefficiency distribution and Richmond
(1974) noted the equivalence to a COLS approach.

A non-technical overview of maximum likelihood estimation can be found in
Silvey (1970), a more mathematical discussion is found in Lehmann (1983) and
Rao (1973), and a broader overview can be found in Cox and Hinkley (1974).

The use of truncated normal distribution has a long history. At the least, it is
described by Anders Hald in his Danish textbook Statistiske metoder from 1948,
translated to English in 1952 as Statistical Theory with Engineering Applications,
with a reference to R.A. Fisher from 1931. Its introduction to econometrics was in
the late seventies.

The two books, Coelli et al (1998b) and Kumbhakar and Lovel (2000), contain
further references and some historical remarks on their use in econometrics. The
first book is a broader description that also includes DEA. The second book is more
detailed and, specializing in stochastic frontiers, has much more theory and discus-
sion, but no empirical applications.

The book Eldén et al (2004) is a good modern introduction to numerical com-
putations; it does not have anything on optimization, but it does contains a lot that
is relevant in connection to numerical optimization as described in Frandsen et al
(2004). There is a collection of robust routines for optimization written in the pro-
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gramming language Fortran in Madsen et al (2002). A good discussion of numerical
optimization with lots of practical advice can be found in the book Gill et al (1981),
even though it might be a little old.

The derivation of (7.15) is in (Jondrow et al, 1982, 235 and Kumbhakar and
Lovel, 2000, 78). Equation (7.16) is from Jondrow et al (1982, 235). The mode
estimator for efficiency in (7.18) is from Jondrow et al (1982, 235), and Battese and
Coelli (1988, 392) proposed the estimator in (7.21).

7.14 Appendix: Derivation of the log likelihood function

We will now derive the density in Eq. 7.9 on page 211.
Before we do the integration let us work out the product of the densities
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Now, we can do the integration. This involves some lengthy and nasty steps,so either
skip it or sharpen your pen:
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Chapter 8
Additional Topics in SFA

8.1 Introduction

In this chapter, we continue our coverage of Stochastic Frontier Analysis (SFA). We
extend the use of SFA to the estimation of general multi-input, multi-output produc-
tions functions and show how to estimate cost functions rather than the production
functions that we focused on in Chap. 7. We also discuss hypothesis testing within
an SFA framework. We conclude with a more methodological discussion of possible
problems related to the use of SFA.

8.2 Stochastic distance function models

One limitation of standard SFA models is that they only allow for the analysis of
production functions: i.e. situations with one output. We would ideally also be able
to model situations with multiple inputs and outputs. There are two possible solu-
tions to this problem.

One is to use cost functions, as we will show in section 8.4 on page 244. However,
these require other types of data, namely information on costs, prices and output
quantities instead of input and output quantities. We return to this approach in Sect.
8.4 below.

Another option is to use distance or efficiency functions directly on the usual data
set: i.e. when we have data for multiple inputs and multiple outputs and no prices.
We begin with this approach.

We have defined Farrell input E and output F efficiency on page 26 as

E.x; y/ D minfE > 0 j .Ex; y/ 2 T g
F.x; y/ D maxfF > 0 j .x; Fy/ 2 T g:
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When we want to parameterize, i.e. use a specific function with parameters for
E.x; y/ and F.x; y/, it is easier to use the inverse distance, the Shephard input
Di and output Do distance functions

Di.x; y/ D maxfD > 0 j � x
D
; y
� 2 T g D 1

E.x; y/

Do.x; y/ D minfD > 0 j �x; y
D

� 2 T g D 1

F.x; y/
:

Distance functions can be thought of in a normative manner as a measure of per-
formance. Indeed, this is how we have used the concept throughout most of this
book. However, distance functions can also be considered a descriptive device that
indicates one of several equivalent ways to describe a technology. In this section, as
in Chap. 3, we mainly take the descriptive approach. We will model the technology
via a distance function. We can then derive the technology set

T D f .x; y/ 2 RmC � RnC j Di.x; y/ � 1 g
T D f .x; y/ 2 RmC � RnC j Do.x; y/ � 1 g:

if we need it. In many cases, however, we do not need to know T because we use
it only to gauge the performance of a given firm, which we can do equally well
directly via Di(x,y); the lower Di(x,y) is, the better .x; y) is performing.

Not all functions are distance functions and therefore can be interpreted as de-
scribing a technology. Thus, in our estimations, we must restrict the types of func-
tions we estimate from our data.

Consider an input distance Di.x; y/. For a fully efficient firm, we have Di.x; y/ D
1 on the boundary of T . For an inefficient firm, we have Di.x; y/ > 1 corresponding
to the interior of T .

Also, Di.x; y/ is homogeneous of degree 1 in x, as can be seen from the follow-
ing computations

Di.tx; y/ D max
�

f � j �t x
�
; y
� 2 T g

D max
�

f�t j .x
�
; y/ 2 T g ��

t
D �

�
D t max

�
f� j .x

�
; y/ 2 T g

D tDi.x; y/:

At this point, we do not need to know any further properties of Di.x; y/.
Let us now introduce a variable u � 0 such that

Di.x; y/ D eu

It follows that Di.x; y/ D eu D 1 and Di.x; y/ D eu > 1 when u D 0 and
u > 0. We can therefore interpret u as a measure of inefficiency. Taking logs, we
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can rewrite this as
log.Di.x; y// D u

We therefore get

logE D log
1

Di
D � logDi D �u

and
E D e�u:

Due to this homogeneity, we have

xmDi
� x
xm
; y
� D Di.x; y/

such that by taking the log, we get

logxm C logDi
� x
xm
; y
�D logDi.x; y/

or

� logxm D logDi
� x
xm
; y
� � logDi.x; y/

D logDi
� x
xm
; y
� � u:

We can turn this into a stochastic model by adding a random error v to get

� logxm D logDi
� x
xm
; y
�C v � u

or

log
� 1
xm

�
D log

�
Di
� x
xm
; y
��C v � u: (8.1)

We assume that the terms v and u are independent and normally distributed, v �
N.0; 
2v / and u � NC.0; 
2u/, where u is only half–normal to ensure u � 0.

Note that Eq. (8.1) uses precisely the same form as the stochastic production
frontier model from Chap. 7. We can therefore use the methods herein to estimate
this equation and estimate a model of a general multi-input, multi-output production
structure. If we insert a more parametric functional form for the distance function,
Di, we have an estimable stochastic distance function.

Numerical example in R: Single-output milk producers

Consider again the milk data that we used for the SFA production function in
Sect. 7.9 on page 215, where we estimated a simple model for milk production;
the output was kg milk, and the inputs were veterinary expenses, energy and the
number of cows.
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Next, we use the same data to estimate an input distance function in the simple
functional form of a Cobb-Douglass type function: i.e. a linear function using the
log of the variables. (Other functional forms are introduced later.) The estimable
function in Eq. (8.1) now becomes the estimable distance function for milk produc-
tion

log
1

cows
D ˛0 C ˛1 log

�energy

cows

�
C ˛2 log

� vet

cows

�
C ˛3 log.milk/C v � u :

The SFA production function is

log.milk/ D ˇ0 C ˇ1 log.vet/C ˇ2 log.energy/C ˇ3 log.cows/C v � u:
We estimate these two SFA function, the distance function and the production func-
tion, using with the following lines of code

library(Benchmarking)
milkData <- read.csv( "milkProd.csv" )
x <- with(milkData, cbind(vet, energy, cows))
y <- matrix(milkData$milk)
# Production function SFA
milkProd <- sfa(log(x), log(y))
teProd <- te.sfa(milkProd)
# Distance function SFA
Y <- 1/milkData$cows
X <- with(milkData, cbind("vet"=vet/cows, energy=energy/cows,

milk=milk))
milkDist <- sfa(log(X),log(Y))
teDist <- te.sfa(milkDist)

The correlation between the efficiencies estimated using the distance function ap-
proach, teDist and the former production function approach teProd is illus-
trated in Fig. 8.1. The difference between the production function and the distance
function approach is small, and this is no surprise given that the figures are estimated
for the same firms and the same technology in two different ways.

Numerical example in R: Multi-output pig producers

The previous example did not really capitalize on the potential of the distance func-
tion approach as compared to the production function because it also had only one
output. We now consider an example with 248 firms, pig producers that produce 2
outputs and using 6 inputs. The outputs are pig (y4) and crop (y2) production, and
the inputs are fertilizer (x1), feed (x2), land (x3), labor (x4), machinery (x5), and
other capital (x6). In raising pigs, most farmers also produce crops to feed the pigs.
Labor and capital are used not just directly for pig-raising but also on the field. The
data are in the csv file “pigdata.csv”.

library(Benchmarking)
d <- read.csv("pigdata.csv")
# SFA distance function
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Fig. 8.1 Efficiencies of milk producers based on production (teProd) and distance (teDist) func-
tions

X <- with(d,cbind(x2=x2/x1,x3=x3/x1,x4=x4/x1,x5=x5/x1,
x6=x6/x1,y2,y4))

Y <- matrix(d$x1,ncol=1)
dist <- sfa(log(X), -log(Y))
te <- te.sfa(dist)
# DEA
x <- with(d,cbind(x1,x2,x3,x4,x5,x6))
y <- with(d,cbind(y2,y4))
Dea <- dea(x,y,"ORIENTATION"="in")
E <- eff(Dea)
Fea <- dea(x,y,"ORIENTATION"="out")
FF <- eff(Fea)

Graphs of SFA distance efficiencies are shown in Fig. 8.2.
In Fig. 8.3, we compare the efficiency figures achieved using the distance func-

tion approach to those obtained based on DEA input efficiency for the same inputs
and outputs. The figure displays a pattern that we have seen before (Fig. 7.12 on
page 224); the range and spread of the DEA efficiencies are larger than the range
and spread of the distance function SFA efficiencies.

In these calculations, we have used x1 as the special input variable that we select
for the norming and left-hand side of the distance function expression. If we instead
used x6 for this purpose, we would get essentially the same estimates of the model
and the individual efficiencies; i.e. it does not matter which input we use as the
y-variable in the estimation.
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Fig. 8.2 Pig producer efficiencies based on SFA distance function—sorted and as distribution den-
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0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

E

te

te F E

0.
6

0.
7

0.
8

0.
9

1.
0

Fig. 8.3 Comparison of pig producer efficiencies according to SFA distance function (te), recipro-
cal Farrell output measure (F), and Farrell input measure (E)

8.2.1 Estimating an output distance function

We can repeat almost everything we have said about the input efficiency function for
the output efficiency function; the only difference is that we now divide all outputs
by one output and use that output as the explanatory variable, the variable on the
left-hand side.

The output distance function is homogeneous in terms of output
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Do.x; ty/ D min
�

f � > 0 j �x; ty
�

� 2 T g

D min
 

f t j �x; y
 

� 2 T g ��
t

D  
�

D tDo.x; y/

such that ynDo
�
x; y

yn

� D Do.x; y/ and logyn C log
�
Do.x;

y
yn
/
� D log

�
Do.x; y/

�
.

The resulting estimation equation can be written in the same way as the input dis-
tance function in Eq. (8.1) except that now the outputs are normalized with respect
to one of the outputs, whereas the inputs are left unchanged.

The estimable equation then looks like

logyn D � logDo
�
x;
yn

y

�C v � u

where the interpretation of yn

y
is
�
yn

y1
; : : : ; yn

yn�1
; 1
�
.

8.3 Functional forms

Thus far, we have considered only parametric functions of the Cobb-Douglas func-
tional form: i.e. linear or log-linear functional forms. However, stochastic frontier
analysis can be used with many other functional forms, and the sfa function of the
benchmarking package can estimate any functional form that can be made linear in
its parameters ˇ; it can also be used with many non-linear models. For instance, the
function can be linear, linear in logarithms (Cobb-Douglas), quadratic, quadratic in
logarithms (translog), or contain any higher-order exponents (cubic, . . . ). Further-
more, all of these functions can be estimated with partly log- and partly non-log
transformed variables and with other transformations of the variables (e.g. square
roots, exponentials).

In this section, we present a brief overview of the possible approximations that
are linear in their parameters and that have shown to be useful in empirical applica-
tions.

8.3.1 Approximation of functions

There are many methods for approximation of functions. Let us consider a simple
class of approximations known as Taylor expansions.

Consider a function f .z/ in which z is a number or a m–vector. The function f
can be a production function, in which case z D x represents the inputs, or it can be
a cost function, in which case z D .p; y/ represents input prices and outputs; it can
also be a distance function, in which case z D .x; y/ represents inputs and outputs.
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The simplest approximation is approximation using a constant

f .z/ D a0:

A more interesting approximation is the linear form

f .z/ D a0 C az;

and if z is a vector, then az is a vector product (inner product), and we can write it
as

f .z/ D a0 C
mX
iD1

aizi D a0 C a1z1 C � � � C amzm:

A Cobb-Douglas function y D Az
a1

1 : : : z
am
m is a linear function if we take the log

such that logy D a0 C a1 log z1 C � � � C am log zm where a0 D logA.
The linear function has its drawbacks; all first-order derivatives are constants,

and all second-order derivatives are zero.
An approximation without these drawbacks is the quadratic approximation, the

second-order Taylor expansion,

f .z/ D a0 C az C 1
2
Bz2:

When z is a m–vector, then B is a matrix, and

f .z/ D f .z1; : : : ; zm/ D a0 C az C 1
2
z0Bz

D a0 C
mX
iD1

aizi C 1
2

mX
iD1

mX
jD1

ziBij zj

D a0 C
mX
iD1

aizi C 1
2

mX
iD1

mX
jDi

.Bij C Bj i /zizj :

Often, the B matrix is considered to be symmetric. B is the second-order derivative
w.r.t. z. The order of differentiation makes no difference, and the approximation
becomes

f .z1; : : : ; zm/ D a0 C
mX
iD1

aizi C
mX
iD1

mX
jDi

Bij zizj :

The first-order derivative in this case is

@f .z/

@zh
D ah C

mX
jD1

Bhj zj

D ah C Bh�z

and as a vector first-order derivative, it is
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@f .z/

@z
D aC Bz:

Note that now, the first-order derivative is not a constant; instead, it is a linear func-
tion.

We often use the log of variables such that we consider

log.f .z// D a0 C
mX
iD1

ai log zi C 1
2

mX
iD1

mX
jD1

Bij log zi log zj : (8.2)

This function form, quadratic in logs, is called a translog function. When f .z/ is
a cost function, the translog function has some very nice properties that make it
very useful for empirical analysis, and it is one of the most used functional forms in
applied economics. We will return to this concept.

8.3.2 Homogeneous functions

A function is homogeneous if f .tz/ D tf .z/ for t > 0. When we require the
function to be homogenous, we cannot use all of the above approximations.

The constant approximation is not usable because

f .z/ D a0 ) f .tz/ D a0 6D tf .z/ D ta0;

and the linear approximation

f .tz/ D a0 C a.tz/ D a0 C taz 6D t.a0 C az/

is only usable if a0 D 0. Thus, the linear approximation is only homogeneous for
a0 D 0.

For the quadratic approximation, we find

f .tz/ D a0 C taz C 1
2
.tz/0B.tz/ D a0 C taz C 1

2
t2z0Bz:

This form is not homogeneous at all.
The homogeneity of log linear functions is equivalent to

log.f .tz// D log.tf .z// D logf .z/C log t: (8.3)

The log linear approximation is
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log.f .tz// D a0 C
mX
iD1

ai log.tzi /

D a0 C
mX
iD1

ai .log zi C log t/

D a0 C
mX
iD1

ai log zi C
� mX
iD1

ai

�
log t

D logf .z/C
� mX
iD1

ai

�
log t:

We can see from Eq. (8.3) that the log linear function is homogeneous whenPm
iD1 ai D 1.
The translog function is according to Eq. (8.3) homogeneoushomogeneity!translog

when the following equation is equal to translog function plus log t :

log
�
f .tz/

� D a0 C
mX
iD1

ai log zi C
� mX
iD1

ai

�
log t

C 1
2

mX
iD1

mX
jD1

Bij .log zi C log t/.log zj C log t/:

If we multiply the product in the last term, the equation emerges as equal to

a0C
mX
iD1

log zi C
� mX
iD1

ai

�
log t

C1
2

mX
iD1

mX
jD1

Bij log zi log zj

C1
2

mX
iD1

� mX
jD1

Bij

�
log zi log t

C1
2

mX
jD1

� mX
iD1

Bij

�
log zj log t

C1
2

mX
iD1

� mX
jD1

Bij

�
.log t/2:

For this equation to be equal to the translog function plus log t , the last three terms
should be zero, and the term

�Pm
iD1 ai

�
log t should be equal to log t . This is clearly

the case when
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mX
iD1

ai D 1 (8.4)

mX
iD1

Bij D 0; j D 1; : : : ; m; (8.5)

mX
jD1

Bij D 0; i D 1; : : : ; m: (8.6)

Note that if B is symmetrical, Bij D Bj i , and then the last condition is superfluous.
A nice feature of the translog function is that when we estimate the parametersB ,

we estimate the second-order derivative that determines how the inputs and outputs
interact. In this way, we let the data determine the latter, i.e. whether the inputs and
outputs are substitutes or complements.

8.3.3 The translog distance function

We can now use a translog function to approximate log
�
Di
�
x
xm
; y
��

. In the following
translog function, we omit the last input xm; it would have been xm

xm
D 1 and log 1 D

0,

log
� 1
xm

� Da0 C
m�1X
iD1

ai log
xi

xm
C

nX
jD1

bj logyj (8.7)

C 1
2

m�1X
iD1

m�1X
jD1

Aij log
xi

xm
log

xj

xm

C 1
2

nX
iD1

nX
jD1

Bij logyi logyj

C 1
2

m�1X
iD1

nX
jD1

Cij log
xi

xm
logyj C v � u:

The restrictions on the translog parameters from page 242 have many implications.
Equation (8.4) implies that we only need to estimate a1; : : : ; am�1 and then use
am D 1 � Pm�1

iD1 ai such that the sum restriction is automatically fulfilled. In the
same way, the other restrictions are also automatically fulfilled. It is not really a
surprise that the restrictions for a homogeneous translog are fulfilled because we
choose the estimating equation in (8.7) to make it homogenous by dividing all inputs
by input m, xm. When we are using maximum likelihood estimation, it does not
matter which parameter is estimated as a residual because the maximum likelihood
estimator is unique.
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A translog approximation of the output distance function looks like this:

log
� 1
yn

� Da0 C
mX
iD1

ai logxi C
n�1X
jD1

bj log
yj

yn

C 1
2

mX
iD1

mX
jD1

Aij logxi logxj

C 1
2

n�1X
iD1

n�1X
jD1

Bij log
yi

yn
log

yj

yn

C 1
2

mX
iD1

n�1X
jD1

Cij logxi log
yj

yn

C v � u:

Translog can also be used for production functions and cost functions.

8.4 Stochastic cost function

Having previously considered the production function, we will now address the cost
function.

Let us begin with the case of a single-input, multi-output technology; i.e. x is one-
dimensional and y is n-dimensional. In this case, inefficiency will lead to excessive
values of x, and we would therefore ideally like to estimate a stochastic frontier

x D c.yI˛/C v C u

where v is the symmetric noise term and u is the positive inefficiency term; e.g.,
v � N.0; 
2v / and u � NC.0; 
2u/. Note that this is almost equivalent to the case
of a SFA production function, and we would therefore ideally want to estimate the
stochastic frontier function

y D g.xIˇ/C v � u
where y is one-dimensional and x is m-dimensional. The only real difference is that
we add the inefficiency figure in a single-input (cost) setting, whereas we subtract
it in a single-output (production) setting. This difference reflects how inefficiency
increases the use of inputs or reduces the amount of output.

Now, we can rewrite the single-input equation as

�x D �c.yI˛/ � v � u
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The symmetric term is now �v but has the same distribution as v. The asymmet-
ric term is now �u, as in the production function equation. Hence, we can esti-
mate single-input stochastic frontiers in the same way as we estimate single-output
stochastic production function; we simply use the input with an opposite sign as
the dependent variable and the functional form also with an opposite sign as the
independent part.

Note also that in such cases, we are effectively measuring cost efficiency and
presuming that all firms face the same input prices. To be cost efficient, firms must
be both technically efficient and allocatively efficient, as explained in Chap. 2.

Single-input cost functions are quite comment in applications. It is often the case
that inputs are aggregated into total costs, whereas outputs are specified in more
detail and cannot be aggregated because we lack prices on the output side. For ex-
ample, this is the case in many public sector applications in which there are no
market prices associated with the services produced.

Another common situation arises when we know the services y, the price of
inputs w, and the total costs of production c D wx, but lack information about the
different physical inputs used. In such cases, we can instead estimate a general cost
function. A general cost function or simply a cost function explains total cost as a
function of input prices and output quantities. The function c.P/ above is a special
case corresponding to just one type of input (total costs) and therefore also only one
input price, 1.

An advantage of general cost functions as opposed to production functions is that
they can easily handle more than one output. All questions that can be answered by
a production function can also be answered by a cost function, often more easily by
using Shephard’s lemma directly or indirectly. However, the cost functions require
prices. In accounting, and in many other kind of data sources, quantities and value
are more often available than prices, and this makes the cost function less attractive
than the production function. However, much accounting data is in the form of value
figures, i.e. prices multiplied with quantities. The production function approach is
therefore also in need for prices to recapture the quantities, and in this way, data
requirement are the same whether we estimate production or cost functions based
on most types of accounting data—data availability rarely determines the mode of
analysis. If we only have accounting data, we can assume that all firms have the
same prices and the use the values from the accounts as quantities—or perhaps use
a price index from a stastistical bureau to deflate values to quantities. In this case, it
does not make sense to estimate a cost function because we assume that there is no
variation in input prices between the firms. Neither does it make sende to assume
that all firms use the same quantities and then calculate firm-specific prices.

The cost functions shows the minimum cost of producing the output combination
y when the input prices w and the technology set T are given:

c.w; y/ D min
x

fwx j .x; y/ 2 T g:

Therefore, the actual or observed cost is greater than or equal to the minimum cost
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wx � c.w; y/ for all .x; y/ 2 T (8.8)

Cost efficiency (i.e., minimal cost compared to actual costs)

CE D c.w; y/

wx
:

is therefore at the most 1; CE � 1, for .x; y/ 2 T . As before, we may parameterize
cost efficiency via an inefficiency term u; i.e., we may let

CE D e�u:

where u � 0 when CE � 1, for .x; y/ 2 T
We introduce a multiplicative error term v such that cost efficiency becomes

CE D c.w; y/ ev

wx

and therefore,

wx D c.w; y/ev

CE
D c.w; y/ ev

e�u D c.w; y/ eveu:

Estimations of CE can be based on this equation, which is just like the one that we
have been using in our stochastic frontier analysis. If we take the log, we find a
familiar-looking equation

log.wx/ D log
�
c.w; y/

�C v C u

Only the sign of u is different.
We illustrate the method based on a Cobb-Douglas cost function where we let

c D Pm
iD1wixi such that

c D ˇ0w
ˇ1

1 � � � wˇn
n e�

where � D vCu, and
Pn
iD1 ˇi D 1 to ensure that the cost function is homogeneous

in the input prices. In logarithmic form, the Cobb-Douglas function is

log c D ˇ0 C ˇ1 logw1 C � � � C ˇn logwn C �

D ˇ0 C ˇ1 logw1 C � � � C ˇn logwn C v C u (8.9)

where v is an ordinary error term and u is a non-negative term that reflects the
inefficiency level.

Cost efficiency can now be measured as

CE D e�u D ˇ0w
ˇ1

1 : : : w
ˇn
n ev

c
:
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The density of the error term � D v C u is asymmetrically skewed because u is
non-negative.

Apart from the restrictions on the ˇ’s because of the homogeneity of the input
prices and the direction of the skewness of the error term, the above Eq. (8.9) cor-
responds to Eq. (7.5) on page 204. We can thus use the earlier statistical method to
estimate the cost function and the level of cost efficiency.

We can see this more directly if we note that vi is symmetrical. We can rewrite
Eq. (8.9) as the statistically equivalent equation

� log c D �ˇ0 � ˇ1 logw1 � � � � � ˇn logwn C v � u:
If we just let x denote the vector of minus the logarithm of input prices and let y
be minus the logarithm of expenditure, then we can use the same statistical method
to estimate the cost function as we used to estimate the production function as de-
scribed in Eq. (7.5) on page 204.

A simple way to handle homogeneity in input prices is to use one of the input
prices as a numeraire: i.e. to use

� log

	
c

wn



D �ˇ0 � ˇ1 log

	
w1

wn



� � � � � ˇn�1 log

	
wn�1
wn



C v � u:

This is equivalent to

� log c D �ˇ0�ˇ1 logw1�� � ��ˇn�1 logwn�1�.1�ˇ1C� � �Cˇn�1/ logwnCv�u:
Therefore, in principle, we do not need a special function in R to estimate a cost
function because we already have one for the production function.

Numerical example in R: Pig producers

We continue with the data for pig producers both raising pigs and cultivating crops.
Now, however, we use input prices and output as the explanatory variables, the x–
variables, and the total cost as the explained variable, the y–variable. We can see
this in the following lines of code:

> library(Benchmarking)
> d <- read.csv("pigdata.csv")
> W <- with(d, cbind(w1,w2,w3,w5,w6))
> Y <- with(d, cbind(y2,y4))
> costSfa <- sfa(-log(cbind(W,Y)), -log(d$cost))
> summary(costSfa)

Parameters Std.err t-value Pr(>|t|)
(Intercept) 5.79486 1.56072 3.7129 0.000
xw1 -0.08552 0.43219 -0.1979 0.843
xw2 1.61290 0.79804 2.0211 0.044
xw3 0.10961 0.01751 6.2598 0.000
xw5 0.71253 0.43177 1.6503 0.100
xw6 0.01842 0.21881 0.0842 0.932
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xy2 0.08844 0.01006 8.7956 0.000
xy4 0.82091 0.01858 44.1827 0.000
lambda 1.53937 0.40795 3.7734 0.000
sigma2 0.033593
sigma2v = 0.00996922 ; sigma2u = 0.02362373
-log likelihood = -144.533
Convergence = 4
> teCost <- te.sfa(costSfa)
> colnames(teCost) <- "teCost"
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Fig. 8.4 Efficiency for pig procucers estimated from cost function (teCost) compared to DEA (E)
and SFA distance function estimates (te) of efficiency

Based on the resulting graph in Fig. 8.4, we see that in this example, the range of
efficiency figures is larger when estimated using the cost function than using the dis-
tance function. This might be because of the missing value for wages in the data; as
a result, labor price is not part of the input prices in the cost function, whereas labor
is accounted for directly under the distance function approach. That a larger spread
is derived using DEA than using the SFA approach is also demonstrated in Sect.
7.11. Here, as in many other studies, the lack of firm-specific prices complicates the
use of the cost function approach.

8.5 Statistical inference

In this chapter and in the previous one, we have estimated the various parameters of
stochastic frontier models. Often, we are not just interested in the parameters; rather,
we also wish to test hypotheses about the parameters. We will now investigate the
various ways in which we can do this depending on the specific form of hypothesis.
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8.5.1 Variance of parameters

Many tests take into account the variance of the estimated parameters. Therefore,
we will provide a brief description of how to estimate variance as part of the process
of optimizing likelihood as described in Sect. 7.6.2. (The material in this subsection
is more complicated and may be skipped during a first reading.)

Let f be a density function for a probability distribution such that
R
f dy DR

f .yI x; ˇ/ dy D 1. When we differentiate this equation, we get

0 D
Z
@f

@̌
dy D

Z
@ log f

@̌
f dy D

Z
@`.ˇ/

@̌
f dy D EV

@`.ˇ/

@̌

where `.ˇ/ D logf .yIˇ/ is the the log-likelihood function. It follows that we have

EV @`.ˇ/
@ˇ

D 0. Let Var
�
@`.ˇ/
@ˇ

�
D J where J is called Fisher’s information matrix.

Based on the central limit theorem, it now follows that

1p
n

nX
iD1

@ logf

@̌
D 1p

n

@`.ˇ/

@̌

is approximately distributed as N.0; J /. By differentiating
R
f dy D 1 twice w.r.t.

ˇ, one can also show that � EV @2`
@ˇ2 D Var @`

@ˇ
D J .

From Eq. (7.6) page 210, we find if we let ˇ0 be the true value ˇ that

Ǒ D ˇ �
	
@2`.ˇ/

@̌ 2


�1
@`.ˇ/

@̌
:

Based on the above results indicating that EV @`.ˇ/
@ˇ

D 0 and � EV @2`
@ˇ2 D Var @`

@ˇ
,

we now derive

EV Ǒ D ˇ (8.10)

and

Var Ǒ D Var

 
�
	
@2`

@̌ 2


�1
@`

@̌

!
D
	

EV
@2`

@̌ 2


�2
Var

	
@`

@̌



D J�2J D J�1 :

(8.11)

Therefore, Ǒ is approximately distributed as N.ˇ; J�1/; i.e.,

Ǒ a�N.ˇ; J�1/ :
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An estimate of J can be derived simply by subtracting the empirical mean of @2`
@ˇ2 ,

which we can derive during the iterative optimization process when we use New-
ton’s methods as we explained in Sect. 7.6.1.

For a straight line, the second-order derivative is zero, and for a curve that is al-
most straight (i.e., very flat with little curvature), the second-order derivative is very
close to zero; in this case, the parameter estimate is made with very little precision.
This is illustrated on the left side of Figure 8.5. The right part of the figure show
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4

Fig. 8.5 Examples of likelihood functions with small and large curvatures

a curve with high curvature where the parameter is therefore estimated with high
precision.

Another way to explain this is to note that as Ǒ a�N.ˇ; J�1/ where J is the
Fisher information matrix introduced on page 249 and J D � EV @2`

@ˇ2 , a little curva-
ture in the log-likelihood function corresponds to a small jJ j, the determinant of the
matrix J , and therefore to a large amount of variance J�1 of ˇ. Correspondingly
a large curvature corresponds to a small amount of variance and a high-precision
estimate. Again, this also follows intuitively from the figure.

8.5.2 Hypothesis testing using the t-test

Because Ǒ a�N.ˇ; J�1/, we can use the square root of the diagonal in J�1 as the
standard errors of the parameters. This is precisely what we do in the summary
for an sfa object. Then we can test all parameters to verify that they are signifi-
cantly different from 0 using the usual t-test that is also part of the summary; this
is just like the usual t-test in linear regression except that for linear regressions un-



8.5 Statistical inference 251

der standard assumptions, the distributions are the true distributions, whereas the
distributions under SFA are only asymptotic distributions.

8.5.3 General likelihood ratio tests

In ordinary regression models, we use the t-test to test whether a variable should
be included or not and the F-test to test for a group of variables. In non-standard
models like the SFA model, these tests are not always directly available because the
models and hypotheses are non-linear in nature.

A hypothesis H0 can often be formulated in the form of restrictions on ˇ (for
instance, indicating that some coordinates are zero or that some of the coordinates
sum to zero or one). The alternativeHA is that there are no such restrictions on ˇ:

H0 W Restrictions on ˇ

HA W No restrictions on ˇ

If the hypothesis is true, then the maximum value of the likelihood function L.ˇ/
does not depend on whether or not we estimate under the alternative hyphotesis.
However, if the hypothesis is false and we estimate the model as if it were true,
we put severe restrictions on the model, and therefore, the maximum value of the
likelihood function will be much smaller. Let L0 and LA be the maximum value of
the likelihood function under the hypothesis and under the alternative. The ratio

Q D L0

LA
D Max likelihood with restriction

Max likelihood without restriction

will therefore be close to 1 if the hypothesis is true and far less than 1 if it is false.
This test is called the likelihood ratio test.

Now

2 log
L0

LA
D 2.logL0 � logLA/ D 2.`0 � `A/ :

We now use a Taylor expansion, as we have previously done, to obtain

`0 D `A C .ˇ0 � ˇA/ @`
@̌

C 1
2
.ˇ0 � ˇA/2

@2`

@̌ 2
:

Now EV @`
@ˇ

D 0, as we have previously shown, and therefore, the first-order term
in the equation is close to zero. This leave us with

`0 D `A C 1
2
.ˇ0 � ˇA/2

@2`

@̌ 2

or
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2.`0 � `A/ D .ˇ0 � ˇA/2 @
2`

@̌ 2
:

On the right-hand side, we have � @2`
@ˇ2 ' � EV @2`

@ˇ2 D J where J is the Fisher

information matrix. Thus, �2.`0 � `A/ is distributed almost as .ˇ0 � ˇA/2J .
We have already found that Ǒ is distributed almost as N.ˇ; J�1/, and therefore

that ˇ0�ˇA is distributed almost likeN.0; J�1/. As a result, we have .ˇ0�ˇA/J 12
is distributed like N.0; 1/ ,and therefore .ˇ0 � ˇA/2J is distributed like a chi-
squared distribution. The number of degrees of freedom is the number of indepen-
dent restrictions in the hypothesis or the difference between the number of indepen-
dent parameters in the two hypotheses.

ForQ D L0

LA , we hence have that under the null-hypothesis �2 logQ is asymp-
totic distributed like �2.

8.5.4 Is the variation in efficiency significant?

One hypothesis that we may test is if there is actually any inefficiency in a sector
when the alternative is that variations in performance simply reflect noise. Specifi-
cally, we will test the null hypothesis that 
2u D 0 against the alternative that 
2u > 0:

H0 W 
2u D 0

HA W 
2u > 0
Toward this end, we can use both a t-test and a likelihood ratio test, as we will now
illustrate using the data on milk producers from Sect. 7.9 on page 215.

First, we will consider the t-test. We estimate the model under the alternative
hypothesis in which 
2u > 0; that is, we estimate the model as an SFA model. We
do this with the following commands and corresponding output

> library(Benchmarking)
> milkdata <- read.csv("milkProd.csv")
> y <- cbind("milk"=milkdata$milk)
> x <- with(milkdata,cbind(vet,energy,cows))
> m <- sfa(log(x),log(y))
> summary(m)

Parameters Std.err t-value Pr(>|t|)
(Intercept) 7.52014 0.32197 23.357 0.000
xvet 0.06281 0.02496 2.517 0.013
xenergy 0.12156 0.03676 3.307 0.001
xcows 0.87879 0.06640 13.235 0.000
lambda 3.59708 0.89964 3.998 0.000
sigma2 0.045685
sigma2v = 0.003277507 ; sigma2u = 0.04240755
-log likelihood = -67.82555
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Table 8.1 OLS and SFA parameter estimates

model (Intercept) xvet xenergy xcows log likelihood
OLS 7.103 0.096 0.121 0.859 58.81
SFA 7.521 0.063 0.121 0.879 67.83

Note: �2 logQ D �2.58:8� 67:8/ D 18:0

The parameter lambda is given by � D
r
�2

u

�2
v

, and our null-hypothesis is therefore

equivalent to � D 0. We can test this using a t-test. The t-value in the above summary
from the SFA estimation for lambda is 3.998, far above the critical value of 1.96.
Therefore, we reject the null hypothesis and accept that there are differences in
efficiency; the variance 
2u is significantly greater than 0.

The same test can be performed as a likelihood ratio test. Here we compare
the parameter estimates in an ordinary regression model, the null-hupothesis where
there is no difference between the firms in terms of efficiency, with the estimates
in a stochastic frontier model, the alternative hyphotesis where there is a differ-
ence; we compare OLS with SFA. The estimated parameters for the OLS and SFA
models are shown in Table 8.1. Here we see the from the calculations that the test
value is �2 logQ D 18:0. This figure must be compared with a chi-squared dis-
tribution with 1 degree of freedom, and the 95% the critical value can be found to
be 3.84. The test value is thus larger than the critical value and we therefore reject
the null-hypothesis. The conclusion is there that there are significantly differences
in efficiency between firms. This was the same conclusion we found above with a
t-test.

Based on the table, the parameter estimates are more or less the same, but the
parameter for veterinary expenses is smaller in SFA, and the parameter for cows is
larger.

8.6 Test for constant returns to scale

We will consider three different ways to test for constant returns to scale in a Cobb–
Douglas production function, taking differences in efficiency into consideration.
The methods themselves are not restricted to use with Cobb–Douglas functions or
constant returns to scale but instead carry over to a much broader field of applica-
tions.

We test for constant returns to scale in the model

y D Ax
a1

1 : : : xan
n ;

which we immediately rewrite as a log linear function

logy D a0 C a1 logx1 � � � C an logxn (8.12)
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where a0 D logA. We can now formulate our hypothesis as

H0 W a1 C � � � C an D 1

HA W a1 C � � � C an 6D 1 (two sided alternative)

Numerical example in R: Milk producers

To illustrate the tests in practice, we use a simple model for milk production in
which the output is kg milk and the inputs are veterinary expenses, energy and the
number of cows.

We use the data for milk production that we also used in section 7.9 on page 215
and again in section 8.2 on page 235.

We first estimate an SFA model using the following R code:

> library(Benchmarking)
> d <- read.csv("milkProd.csv")
> y <- log(with(d,cbind(milk)))
> x <- log(with(d,cbind(vet, energy, cows)))
> summary(sfa(x,y))

Parameters Std.err t-value Pr(>|t|)
(Intercept) 7.52014 0.32197 23.357 0.000
xvet 0.06281 0.02496 2.517 0.013
xenergy 0.12156 0.03676 3.307 0.001
xcows 0.87879 0.06640 13.235 0.000
lambda 3.59708 0.89964 3.998 0.000
sigma2 0.045685
sigma2v = 0.003277507 ; sigma2u = 0.04240755
log likelihood = 67.82555

First, we can see that all parameters are significantly different from 0. We find that
the sum of the relevant parameters is 0:063C 0:121C 0:879 D 1:063 such that we
do not have constant returns in the estimated parameters; the sum is larger than 1.
However, the question should be whether the sum is significantly larger than 1.

We consider three ways to test the hypothesis. They feature varying levels of
complexity and generality, meaning that the last methods can be used to test al-
most anything everywhere, whereas the first method is suited to a more restricted
hypothesis.

8.6.1 Rewrite the model: t-test

First, we rewrite the model so that we can test the hypothesis via a simple t-test
directly from the output of the estimation. We divide all variables in Eq. (8.12) by
xn, or we can substract logxn from both sides, remembering that to subtract the log
of a variable is the same as dividing by the same variable before taking the log, we
get
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log
y

xn
D a0 C a1 log

x1

xn
C � � � C an�1 log

xn�1
xn

C .Ca1 C � � � C an � 1/ logxn :

Based on this revision, we can see that the hypothesis that there are constant returns
to scale, testing for a1C� � �Can D 1, is equal to the hypothesis that the parameter for
the variable logxn is equal to zero. This hypothesis can be tested using an ordinary
t-test. In R, we do this as below, where we also show the results:

> y1 <- log(with(d,cbind(milkPerCow=milk/cows)))
> x1 <- log(with(d,cbind(vetPerCow=vet/cows,
+ energyPerCow=energy/cows, cows)))
> summary(sfa(x1,y1))

Parameters Std.err t-value Pr(>|t|)
(Intercept) 7.51865 0.31656 23.751 0.000
xvetPerCow 0.06284 0.02234 2.812 0.005
xenergyPerCow 0.12165 0.03527 3.449 0.000
xcows 0.06332 0.03120 2.030 0.044
lambda 3.59783 0.93046 3.867 0.000
sigma2 0.045691
sigma2v = 0.003276627 ; sigma2u = 0.04241401
-log likelihood = -67.82554
Convergence = 4

Note that the equation vetPerCow=vet/cows put a label on the results of the
calculations. If we compare these results with the original estimates in the previous
subsection, we can see that all parameters are the same except for that of cows. This
is no surprise given that the model is an equivalent form of the original equation. The
estimated parameter for cows, 0:063 is an estimate of Ca1 C � � � C an � 1, which
corresponds to the sum of the parameters 1.063 minus 1, which we calculated in
Sect. 7.9.

The t-value for the cows parameter is 2.03. This value is above the 97.5% quan-
tile (two–sided alternative) in the t distribution with 108 � 4 D 104 degrees of
freedom, 1.98. Thus, we reject the hypothesis of constant returns to scale.

This method of testing a hypothesis is very often easy to use; we can rewrite a
model such that the hypothesis can be tested using a t-test for an estimated parame-
ter.

8.6.2 Linear hypothesis

The next method is to formulate the hypothesis as a linear function of the parame-
ters. This is the scenario including constant returns to scale where the hypothesis is
that the sum of the parameters is equal to 1,

a1 C � � � C an D .1; : : : ; 1/ � .a1; : : : ; an/0 D 1:
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In general, we want to test the hypothesis gˇ D g0 where g is a vector and g0 a
number; in the above, g D .1; : : : ; 1/ and g0 D 1. Let V denote the variance matrix
of the parameters ˇ; then the variance of gˇ is Var.gˇ/ D gVar.ˇ/g0 D gVg0,
and the standard error is

p
gVg0. Under the hypothesis, the mean of gˇ is g0 and

therefore,

t D gˇ � g0p
gVg0 (8.13)

has a t distribution.
We can carry out the calculations using the following commands in R:

g = matrix(c(0,1,1,1,0),nrow=1)
# sum of parameters
g %*% o$par
# Variance of sum of parameters
g %*% o$vcov %*% t(g)
# t-value for parameters sum to 1
(g %*% o$par - 1) / sqrt(g %*% o$vcov %*% t(g))

In the first line, we estimate the model and save the results in the object o. The vector
g is defined as a matrix with 1 row that will indicate the sum of the parameters; the
first 0 in g is exclude the intercept and the last 0 to exclude � (lambda) in the sum.
The sum of the parameters is found as a matrix product because %*% is the inner
product and o$par is the parameters in the SFA object. The variance of the sum
of the parameters, gˇ, is calculated according to formula Eq. (8.13). The t-value,
not shown, is 2.00. Because this is larger than the critical value of 1.98, the 97.5%
quantile, we reject the null-hypothesis of constant returns to scale.

Note that the t-value calculated will be the same as that calculated in the previous
subsection where we found the t-value directly from the estimation output itself.

8.6.3 Likelihood ratio test

The most general method of testing a hypothesis is the likelihood ratio test. We
showed in Sect. 8.5.3 that we can test a hypothesis by comparing the value of the
likelihood function under the hypothesis with the value under the alternative. The
ratio between the two values was calledQ, and we showed that �2 logQ under the
hypothesis has a chi-squared distribution.

With same data as above, x and y as the general model from Sect. 7.9, and y2 and
x2 as variables under the hypothesis of constant returns to scale as in Sect. 8.6.1,
the R console looks like

> y0 <- log(with(d,cbind(milk/cows)))
> x0 <- log(with(d,cbind(vet/cows, energy/cows)))
> o0 <- sfa(x0,y0)
> # Under the alternative
> oA <- sfa(x,y)
> logQ <- (logLik(o0) - logLik(oA))[1]
> -2*logQ
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[1] 4.422103
> 1-pchisq(-2*logQ, oA$df-o0$df)
[1] 0.03547628
> # Critical value
> qchisq(0.95, oA$df-o0$df)
[1] 3.841459

The model is estimated under the hypothesis, and the results are saved in the object
o0; the results from the general model, the alternative, are saved in the object oA.
The log likelihood ratio is calculated, after which the test statistic �2 logQ is calcu-
lated and shown to be 4.4. The test statistic is compared to a chi-square distribution
whose number of degrees of freedom corresponds to the change in the number of
parameters. The change in the number of parameters is 1, so the critical value is
the 95% quantile in the chi-squared distribution with 1 degree of freedom, and that
quantile is 3.84. We, therefore, reject the null hypothesis because the calculated
statistic of 4.4 is larger than 3.84.

8.7 Other distributions of technical efficiency

What if the technical efficiencies are not half–normally distributed? When we use
the half–normal distribution, we implicitly assume that most firms have an efficiency
level near 1 because the mode of the distribution is 0 and the efficiency is e0 D 1.
What if the efficiency of most firms is below 1 and only a few firms have an effi-
ciency level of 1 or near 1? If this is the case, we must consider another distribution
of efficiencies. We will look for a continuous distribution with support on the pos-
itive axis and mode (peak) away from zero. There are many distributions with this
characteristic.

Truncated normal

We have used the half-normal distribution for efficiency. One could also use a trun-
cated normal distribution with an unknown point of truncation. If we use the latter
strategy, the SFA model becomes

yk Df .xk Iˇ/C vk � uk ;
vk � N.0; 
2v /; u

k � NC.�; 
2u/; k D 1; : : : ; K:

This formulation does have a nice feature: the mode of the efficiency distribution
does not have to be 0, and therefore, the mode of efficiency is not necessarily 1
but can be below 1. The cost of this feature is an extra parameter, the point of
truncation �, which might inflate the standard errors of other parameters because
the curvature of the likelihood function is flattened and the determinant of the Fisher
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matrix increases, cf. Sect. 8.5.1. Also, this model often results in problems with the
convergence of the iterative estimation process.

Exponential

The exponential distribution has been suggested, but its mode is 0. Therefore, it does
have the same central characteristics as the normal distribution. The density of the
exponential distribution with positive scale parameter ˇ is

'.u/ D 1

ˇ
e�u=ˇ ; .u � 0/:

The exponential distribution is a special instance of the 
-distribution (the gamma-
distribution).

The density of the exponential distribution is shown as the curve marked 1 in
Fig. 8.6. Even though the curvature is a little different, the exponential function
looks very similar to the half–normal distribution we used in Chap. 7, cf. Fig. 7.5 on
page 206. Thus, the implications of using the exponential distribution for efficien-
cies instead of the half–normal distribution are not noticeable in empirical applica-
tions. This conclusion is consistent with the results of related empirical studies.

Gamma

The 
-distribution with shape parameter � has the density

'.u/ D 1


.�/
u��1e�u

where the function 
 is defined by Eulers second integral


.�/ D
Z 1

0

x��1e�x dx; .� > 0/ :

The 
–function fulfills the functional equation


.�/ D �
.�/; .� > 0/ :

The parameter f D 2� is called the degrees of freedom. The distribution have
mode in 0 for 0 < � � 1 and in � � 1 for 1 < �. One can see that the exponential
distribution is a 
-distribution with shape parameter � D 1.

The 
-distribution with shape parameter � and scale parameter ˇ > has the
density

'.u/ D 1

ˇ�
.�/
u��1e�u=ˇ :
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The mean is ˇ�, and the variance is ˇ2�. The 
-distribution is a rather flexible
distribution. For small values of the shape parameter �, the density has a thick tale
to the right, and for large values of the shape parameter, the distribution looks like
the normal distribution with parameters .�ˇ; �ˇ2/.

A series of densities for the 
-distribution is shown in Fig. 8.6. Note that the
curve of the shape parameter � D 1 corresponds to the density of the exponential
distribution.
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Fig. 8.6 
 densities distribution for various shape parameters � (shown by curve)

It can be challenging to use the 
-distribution because the corresponding like-
lihood function does not have a closed form; i.e. we cannot write a function that
calculates the likelihood value. Therefore, this distributional assumption can only
be used by approximating the value of the likelihood function via numerical meth-
ods, and this turns out to be difficult and sometimes impossible.

What is the difference?

To compare the difference between the distribution of e D v � u using half-normal
distribution and the 
-distribution for u, we can consider the densities for e as
shown in Fig. 8.7, which corresponds to the plot in Fig. 7.5. However, here we
only plot the density for e and not that for v and u, such that we can draw them all
in one figure.

The overall picture of the figure on the left and right is the same, but if we look
carefully, we can see some differences. The differences are not of empirical rel-
evance, however; therefore it is advisable to use the simple model and the half–
normal distribution.
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Fig. 8.7 Densities for e D v�u for various distributions of u; the variances of u are the same in
each corresponding curve on the left- and right-hand side

8.8 Biased estimates

One of the assumptions in ordinary regressions that carries over to SFA models
is that the error terms must be independent of the regressors; i.e. u and v must
be independent of x. If this condition is not fulfilled, then the estimates might be
biased. This is well-known for ordinary regression models; for SFA models, we just
provide a graphical illustration of the problem if u and one of the inputs xi are
correlated. For instance, perhaps firms that extensively use use xi are more efficient
than firms that use xi on a more limited scale. This situation is shown in Fig. 8.8. The
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Fig. 8.8 Biased estimation when xi and u are correlated

production function is shown as a solid line and the observations as small circles.
For a small value of x, the circles are far below the solid line; these firms tend to
very inefficient. Large x firms are close to but still below the solid line; these firms
are very efficient. When we estimate the production line, we find the dashed line
because in our estimation, we assume that x and efficiency u are independent and
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therefore that the estimated line will follow the upper envelope of the circles except
in instances of random noise. Therefore, the estimated slope (the dashed line) is
different from the true slope (the solid line), and the estimated slope is biased.

This problem is a well known issue with models with random effects, and one
solution is to use a fixed effect estimator. However, for cross-section data, the fixed
effect estimator is of no use, and there is no solution to the problem except to remove
the dependence from the us. A solution is possible if the data set is a panel data set.

For the data set on milk production, there does not seem to be a problem as seen
from the scatterplot matrix in Fig. 8.9. The efficiency does not seem to depend on
any of the regressors (i.e. vet, energy, and cows). The mean value-lines in the three
middle plots in the lowest row is almost horizontal, showing that efficiency te does
not depend on any of the three inputs, vet, energy, or cows. It does depend on
the output milk, though, as seen in the bottom left plot; this was already discussed
in connection with Fig. 7.15 on page 227.
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Fig. 8.9 Scatterplot matrix of efficiency, output, and input for production of milk
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8.9 Summary

In this chapter, we have used distance functions descriptively and shown how we
can estimate general distance functions using different classes of functional forms as
part of an SFA approach. We have also included a brief review of general functional
forms and of the translog function in particular.

We have shown that we can use a simple reinterpretation of the SFA production
function model to also estimate cost functions.

As preparation for statistical hypothesis testing, we provided an informal overview
of statistical inference based on likelihood theory, and we related this information
to the numerical methods used to estimate the model. We showed how this can be
used for ordinary t-tests in SFA models, more general linear hypothesis testing, and
the most general form of test, the likelihood ratio test.

Lastly, we discussed the use of other distributions for the efficiency term, in-
cluding the Gamma distribution, but we concluded that it was difficult to use these
distributions in practical situations and recommended the continued use of the half–
normal distribution instead.

We closed the chapter by mentioning some problems with the SFA models that
are sometimes ignored in applications.

8.10 Bibliographic notes

The estimation of distance functions began after the appearance of translog func-
tions and was first conducted in connection with SFA connection by Färe et al
(1993). Since then, there have been many empirical applications of the method.

The translog function dates back to Christensen et al (1973) and has since been
one of the most used parametric forms in empirical economics, both as a production
function and as a cost function. Chambers (1988) has a chapter on the translog
function and its merits in light of dual production theory.

Once we know the SFA production function, it is straightforward to also estimate
the SFA cost functions.

The theory of statistical inference is the subject of many graduate courses in
statistics and can be found in many statistical textbooks, including Silvey (1970),
Rao (1973), Cox and Hinkley (1974), and Lehmann (1986).

The argument for using the half-normal distribution for efficiency over other dis-
tributions like the 
-distribution because of its simplicity is found in Ritter and
Simar (1997)

Panel data represent one way to handle some of the problems in SFA that we
have mentioned. This idea is considered from a theoretical point of view in the book
on SFA by Kumbhakar and Lovel (2000).

Duality in productions econonomic and Shephard’s lemma are dicussed capably
in Chambers (1988).



Chapter 9
Merger Analysis

9.1 Introduction

The quantitative literature on productivity has focused mainly on measuring the effi-
ciency of individual firms and organizations. The results demonstrate how much can
be gained by individual improvements, by learning best practices and by designing
appropriate incentive schemes at the firm level.

This chapter expands our perspective and generalize the analytical techniques to
the study of efficiency at the sector level. We will measure what can be gained by
improving the structure of a group of firms and discuss mechanisms to accomplish
this. We call this structural efficiency. It concerns the basic problem of coordination
in a structure of multiple firms, i.e., the extent to which the right firms at the right
locations are producing the right products at the right time. We concentrate first on
horizontal mergers and then on reallocations of resources and services across firms
and over time.

There are many reasons to be interested in structural efficiency. First, political
decisions often affect—directly or indirectly—structural aspects of a sector. Agri-
cultural policy, for example, has always affected structural development—and often
the structural implications have been important considerations in designing policy.
Second, the losses from suboptimal structures may be substantial. Analyses of sev-
eral sectors, from fishery to hospitals, show that inadequate allocations and struc-
tures may be just as costly as individual inabilities to reach best practices. Third, in-
struments designed to improve individual performance may have negative structural
impacts. In the energy sector, network companies with natural monopoly positions
are routinely regulated by so-called revenue cap schemes that calculate the allowed
revenue for a given company. This is a prime example of the use of state-of-the-art
techniques like DEA and SFA in high stakes environments, and we will discuss it in
details in Chap. 10, but it is also an example of possible negative structural impact.
Unless the regulator is careful, the regulation can have adverse effects on structural
development by making it unattractive for firms to cooperate or merge.
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For a more specific motivating example, consider a competition authority re-
sponsible for accepting or rejecting a merger between two major companies. The
decision requires careful examination of the pros and cons of the merger from a so-
cial point of view. The merger may limit competition and increase consumer prices.
Oligopoly models are often used to estimate such market aspects. On the other hand,
a merger may also lead to synergy effects that can reduce costs and improve quality.
The methods in this chapter can be used to quantify these potential gains. In fact,
some of the measures covered below are already in use by regulators and competi-
tion authorities in, for example, in Norway and the Netherlands.

9.2 Horizontal mergers

In this section, we develop models of the overall potential gains from the horizontal
integration of two similar firms. We then decompose the gains and discuss a few
refinements of the models.

Let us start by briefly recalling the idea of individual performance evaluation.
As we have seen again and again in this book, a simple way to think of an organi-

zation is as a transformation of multiple inputs .x/ into multiple outputs .y/. In the
case of a hospital, for example, we may think of the inputs as numbers of doctors
and nurses, while the outputs could be the number of treatments provided and the
capacity provided as a buffer against uncertainty.

To evaluate the performance of a specific organizationP 1, we need some bench-
mark against which to evaluate its production .x1; y1/. In general terms, we may
think of this benchmark as the technology T , alternatively described via the input
sets L.y/ or the output sets P.x/. To evaluate the performance of organization P 1,
we compare its resource usage and service provision against the technology T . If
it is possible to produce more outputs than y1 using fewer inputs than x1, we say
that P 1 is inefficient, and we may, for example, measure the amount of inefficiency
by the Farrell measure of the input efficiency E1 or the output efficiency F 1. The
larger the distance from the frontier of the technology, the smaller the value of E1

or the larger the value F 1 and the more inefficient the organization P 1 is.
We can use the same logic in evaluating merged entities as in evaluating individ-

ual entities. The larger the distance to the frontier, the more inefficient the merged
firm is. Being inefficient represents a loss. On the other hand, being inefficient also
suggests possibilities for improvement. This leads to the basic idea of this chapter.
Corporate synergy occurs when corporations, through their interactions, are able to
produce more services with a given set of resources, or to produce a given set of
services with less resources. We can therefore capture the synergies from a merger
by the increase in improvement potential when we move from independent to joint
operations.
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9.2.1 Integration gains

Figure 9.1 illustrates a classical horizontal merger. Two firms (or production enti-
ties) P 1 and P 2 individually transform vectors of inputs (resources), x1 and x2,
respectively, into vectors of outputs (services), y1 and y2. Observe that we do not
assume that they use exactly the same input and output types because we can always
allow the values of some of the dimensions of the vectors x and y to be 0.

If the two firms integrate but continue to operate as two independent entities,
they transform the vector of inputs x1 C x2 into the vector of outputs y1 C y2. To
evaluate the potential efficiency gains from the merger, we can therefore evaluate the
efficiency of the latter transformation, i.e., the use of x1 C x2 to produce y1 C y2.
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Fig. 9.1 Horizontal integration

Of course, the integration of more than two firms is also possible. Hence, in
general, we consider a situation where a collection of firms indexed by some set
H are integrated. The full set of firms about which we have information is denoted
K D f1; : : : ; Kg. In general, the setH is a subset of K , but this need not be the
case. Hence, K could be all Danish hospitals and H could be all hospitals in the
capital city of Copenhagen, orH could be all Swedish hospitals in Malmö, close to
Copenhagen. Note that we use K and H to denote both numbers of firms and sets
of firms in this chapter. This is a convenient notation, and the specific meanings of
K andH will always be clear.

The merged firm is denoted PH . Direct pooling of the inputs and outputs gives a
firm that uses

P
k2H xk to produce

P
k2H yk . This corresponds to having a com-

pletely decentralized (or compartmentalized) organization where the decentralized
firms correspond to theH -firms. The inefficiency of the directly pooled production
plan
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k2H

xk D combined inputs

X
k2H

yk D combined outputs

is a measure of the improvement potential in the merged firm and can therefore be
interpreted as the overall potential gains from the merger.

To illustrate this reasoning, consider Fig. 9.2. Two firms A and B have been
technically efficient in the past, as indicated by the fact that they are located on the
efficient frontier, the production function, ex ante. If they integrate but do not utilize
the new synergies (in the illustration, the economies of scale), they would spend
.x1 C x2/ to produce .y1 C y2/; as indicated by the point A+B. This is, however, a
technically inefficient combined production because there are feasible productions
to the northwest of AC B , i.e. it is possible to find alternative productions that use
fewer inputs to produce more outputs, as reflected by the Potential Improvement PI
set.
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Fig. 9.2 Overall gains from horizontal integration

The possibilities for improvement can be summarized in different ways.
The simplest way is to use the Farrell measure on the input side. The Farrell input

measure reduces to a simple comparison of the horizontal lengths of AC B and C ,
and we see that the aggregate input consumption can be scaled down by the factor
E .

Instead of focusing on the input (cost reductions), we could use the Farrell mea-
sure on the output side. This would stress the possibilities to increase outputs with
a factor F . A more complete picture of the savings potential is to consider all point
northwest ofACB , i.e. the set PI. Any such point can be generated, for example, by
a directional distance function approach, by varying the improvement direction. In
this case again, we obtain a score to measure the possible gains, namely, the excess
e. In applications, the exact measure may be less important than the ability to inves-
tigate the set of potential improvements. This is the approach taken, for example,



9.2 Horizontal mergers 267

in the interactive benchmarking approach used by Danish waterworks and Dutch
hospitals, cf. Sect. 2.5.

Formally, a radial Farrell like input based measure of the potential overall gains
from merging of theH -firms is

EH D minfE 2 RC j �E X
k2H

xk ;
X
k2H

yk
� 2 T g

such that EH is the maximal proportional reduction in the aggregated inputsP
k2H xk that allows the production of the aggregated output profile

P
k2H yk .

If EH < 1, the merger produces savings, and if EH > 1, the merger is costly.
A score of EH D 0:8 would suggest that 20% of all inputs could be saved by
integrating the firms in H . Likewise, a score of EH D 1:3 would suggest that an
integration would necessitate 30% more of all the resources.

So far, we have made no assumptions about the technology T . In practice, T
must be estimated, and we can use any of a number of methods to do so, including
the DEA and SFA approaches stressed in this book. We provide some illustrations
of this below, but it is important to emphasize that the conceptual ideas do not rely
on any specific estimation method.

In some situations, the above problem may have no solution at all. However, it
is always feasible if T satisfies additivity. In particular, it is therefore feasible in the
DEA models: CRS, IRS, and FDH.

One could of course measure the potential gains using many other indices. In
particular, one could perform all of the evaluations and decompositions below on
the output side.

Also, one can look at the potential improvements as a set, PI given by

PIH D ˚
.x; y/ 2 T j x �

X
k2H

xk and y �
X
k2H

yk
�
;

i.e. PIH is the set of feasible productions that use no more inputs to produce no less
outputs, as illustrated in Fig. 9.2. One could also use a directional distance function
approach by solving a problem like

eHd D max
˚
e 2 RC j � X

k2H
xk ;

X
k2H

yk
�C e.�dx; dy/ 2 T �:

Here dx 2 RmC is the direction in input space, and dy 2 RnC is the direction in output
space that we want to reduce and expand. The directional distance e is a measure of
the number of times we can introduce the improvement packages .�dx; dy/.

In the following, we restrict ourselves to the Farrell approach. We note, however,
that the decompositions developed below can be given a parallel treatment with
directional distance functions—the main difference is that we get additive instead
of multiplicative decompositions.

The overall potential gain from a merger, i.e.,EH , is an interesting starting point.
It represents a best case, an upper limit scenario, that can be used, for example,
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by competition authority as a first test to see if the efficiency gains can possibly
outweigh the competitive effects.

However, the overall measure is optimistic and crude and requires refinements in
several directions.

First of all, some of the gains could possibly be obtained without mergers, and
can therefore not be associated directly with the mergers. We decompose the gains
into learning, scope and scale effects to account for this.

Second, the overall gains may be too optimistic because there may be restrictions
on the controllability and transferability of the resources and services. We discuss
this below as well.

Third, one can question the assumption that the merged entity will be technically
efficient, given that firms even in highly competitive industries show inefficiencies.
We show also how to relax this assumption.

9.2.2 Disintegration gains

We have so far looked at the likely overall impact of merging two or more firms.
The existence of potential positive synergies depends on the details of the firms
being merges and the details of the underlying technology. This means that it is
sometimes less resource consuming to operate two independent firms rather than
one joint firm. This is not surprising because the coordination and motivation tasks
in large organizations may be considerable. This also explains why we sometimes
see different divisions of a joint enterprise operate independently, e.g., as individual
profit-centers.

In fact, we can use the same logic as above to investigate the potential gains from
the disintegration of large entities. For illustration, assume that we consider splitting
up a firm .xH ; yH / into two firms .x1; y1/ and .x2; y2/. Now, if it is possible to
find feasible plans for the individual firms, i.e.

.x1; y1/ 2 T

.x2; y2/ 2 T
such that the individual firms together use less resources to produce more services

xH � x1 C x2

yH � y1 C y2;

then we can look at these reduced inputs and expanded outputs as an indication of
the potential gains from disintegration. That is, we can measure the potential gains
from disintegration as
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E D min
.x1;y1/;.x2;y2/

E

s.t. ExH �x1 C x2

yH �y1 C y2

.x1; y1/ 2T

.x2; y2/ 2T:
In other words, we seek to find two feasible production plans .x1; y1/ and .x2; y2/
that together are able to produce at least the same output as .xH ; yH /, and to ensure
the largest possible proportional reduction of all inputs.

Note that ifE < 1, there is a potential saving involved. This would typically hap-
pen when .xH ; yH / operates somewhat above the optimal scale size. It is of course
also possible that E > 1; suggesting a net cost of forcing a disintegration. Such
analyses can therefore be used to make trade-offs between required disintegrations
to increase competition and losses in the economic efficiency of production.

9.3 Learning, harmony and size effects

Our measures of the potential overall merger gain from a merger encompass several
effects. We now decompose them into technical efficiency, scale, and mix effects
and discuss the organizational relevance of this decomposition. We first illustrate
the ideas before presenting more formal derivations of the effects.

We can identify at least three sources of improvement.
One is technical efficiency or learning and is associated with the ability to adjust

to best practices. Consider a horizontal merger of A and B illustrated in Fig. 9.3
below.
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270 9 Merger Analysis

If the organizations merge but operate as they have done in the past, we see that
there are considerable saving potentials, as represented by the distance of A C B

to the production possibility set. One can argue, however, that a considerable share
of these potential gains were also available on an individual basis if the individual
entities had optimized their businesses as represented by the dotsA� andB�. If busi-
nessesA� andB� integrate, this would lead to the aggregate dotA�CB�, where the
potential savings are considerably less than in ACB . We refer to this as a learning
or technical efficiency effect and say that this is not—at least not completely—
associated with the merger.

Another source of potential savings, called the scope or harmony effect, is asso-
ciated with the mix of resources used and the mix of services provided. To illustrate
this, consider two firms, e.g., hospitals, with the same levels of output and input
requirements corresponding to the L.y/ curve as illustrated in Fig. 9.4 below.
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Fig. 9.4 Harmony or scope effect

We see that A is quite Input 1 intensive while B is Input 2 intensive. It is clear,
however, that neither of the factor mixes may be optimal—at least, they cannot be
optimal simultaneously. We see that the rate of substitution between Input 1 and
Input 2 is different in the two firms. In A, a large amount of Input 1 is required to
compensate for the loss of extra Input 2, while in B , many Input 2 units are required
to compensate the loss of one Input 1. This means that there are possibilities to
improve by moving some Input 2 from B to A and some Input 1 from A to B . If we
move the factors as indicated with the dashed lines, both firms end up at .ACB/=2.
We see that there are now possibilities for each of the firms to save. Of course,
similar possibilities exist on the output side, i.e. by moving some obligations from
A to B and other obligations from B to A, we can get service combinations that
requires less resources to produce or that match the existing factor combinations in
a better way. We talk about this effect as the harmony or the scope effect. Again, the
point is that if independent enterprises just cooperated somewhat, they could gain
and improve their premerger performance, making the pure gains from a merger
less.



9.3 Learning, harmony and size effects 271

In addition to these effects, a merger will also have an impact on the scale of
operation. This leads to the so-called scale or size effect. We have already illustrated
this in Fig. 9.2. Note that in the illustration, both firms are fully efficient individually,
such that there can be no learning effect. Likewise, we have only one input and one
output such that there can be no harmony effect. In the case of a technology with
economies of scale, it is attractive for firms to be large since this allows them to
produce at lower average costs. Of course, the scale effect need not be positive—it
depends on the underlying technology whether the increase in scale is favorable or
not.

The three effects above, the learning, harmony and size effects, determine the
combined effect of a merger. We will now formalize these concepts and then return
to their interpretations and integration.

To adjust the overall merger gains for the learning effect, we can project the
original firms to the production possibility frontier and use the projected plans as the
basis for evaluating the remaining gains from the merger. Thus, we project .xk ; yk/
onto .Ekxk ; yk/ for all k 2 H , where Ek is the standard efficiency score for the
single kth Firm, and use the projected plans .Ekxk ; yk/, k 2 H , as the basis for
calculating the adjusted overall gains E�H from the merger:

E�H D min
˚
E 2 RC j �E X

k2H
Ekxk ;

X
k2H

yk
� 2 T �:

If we set

LEH D EH

E�H ;

we get EH D LEH � E�H , where LEH 2 Œ0; 1� indicates what can be saved by
individual technical efficiency adjustments in the different firms inH .

Assuming that individual technical inefficiencies have been dealt, we are left with
the scaling or size effect, on the one hand, and the harmony, scope or mixture effect,
on the other hand.

To formalize the harmony gains HAH we examine how much we can reduce the
average input in the production of the average output:

HAH D min
˚
HA 2 RC j �HA

1

H

X
k2H

Ekxk ;
1

H

X
k2H

yk
� 2 T

�
;

whereH is both the set and the number of elements in the set of firms in the merger.
We look at the average input and average output because we do not yet want the
expansion of size to come into play. Using the average is most relevant if the firms
in H are not too different in size to begin with. If the sizes differ considerably,
we may be picking up scale effects, for example, if some firms are larger than and
some are smaller than the most productive scale size. Note that HAH < 1 indicates
a potential savings due to improved harmony, while HAH > 1 indicates a cost of
harmonizing the inputs and outputs.
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Next, we capture the size gains SIH by asking how much could have been saved
by operating at full scale rather than average scale:

SIH D min
˚
SI 2 RC j �SI � HAH

X
k2H

Ekxk;
X
k2H

yk
� 2 T �:

The rescaling is advantageous, SIH < 1, if we have economies of scale, and costly,
SIH > 1, if the returns to scale property does not favor larger firms.

Using the above notions of learning LE, harmony HA and size SI effects, we get
our basic decomposition

EH D LEH � HAH � SIH :

The learning or technical efficiency measure LEH captures what can be gained by
making the individual firms efficient. The remaining potential savings, E�H , are
created by the harmony or scope effect HAH , and the size or scale effect SIH .

How to calculate the measures exactly in general multi-input multi-output tech-
nologies depends on how they are represented. We will return to this in the next
section, where we discuss both parametric and nonparametric implementations and
where we also provide R code to support the calculation.

We note that the learning effect is always weakly positive (nonnegative) in the
sense that LE � 1, such that there are potential savings 1 � LE.

To know the signs of the harmony and size effects a priori, we need more assump-
tions about the underlying technology. For example, if the technology is convex, the
harmony effect is always weakly positive HA � 1, while the size effect may or may
not favor a merger in a convex technology. In a convex technology that also satisfies
the assumption of constant or increasing returns to scale, the size effect is always
positive.

9.3.1 Organizational restructuring

The decomposition of the potential gains from merging firms into a technical effi-
ciency measure, a harmony measure and a size measure is important because full
scale mergers are typically not the only available organizational option, and alter-
native organizational changes may be easier to implement. In particular, we suggest
the following guidelines for organizational restructuring:

Low learning measure LE

One could let the inefficient firms learn from the practices and procedures of the
more efficient ones. If the problem is not a lack of skills, but rather a lack of motiva-
tion, one could improve the incentives, e.g., by using relative performance evalua-
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tion and yardstick competition based on the technical efficiency measures, cf. Chap.
10. Of course, if the problem is the scarcity of managerial talent, it may still be nec-
essary to make a genuine merger to transfer control to the more efficient administra-
tive teams and thereby improve the managerial efficiency (X -efficiency). Another
effect of a genuine merger emphasized by practitioners is the fact that a merger is
a change event where established rules and procedures are being re-evaluated and
improved. This is because every organization has some slack, which it is difficult to
reduce under normal conditions.

Low harmony measure HA

One could consider reallocating the inputs and outputs among the firms to create
more powerful input mixes and more easily produced output mixes. This can be
done (a) inside a hierarchy, (b) by long term contracts or, perhaps, (c) by creating a
market for key inputs and outputs.

Low size measure SI

In this case, full scale mergers may be the only alternative. If we need large amounts
of fixed capital, highly specialized staff, long run-lengths or simply a critical mass
to obtain sufficient returns from scale, it may be relevant to merge. In addition, and
perhaps most important, this may be relevant if reallocation through contracts or a
market is associated with too many transaction costs to make it attractive, cf., the
general discussion of optimal firm size in the industrial organization literature.

9.3.2 Rationale of the harmony measure

The decomposition developed above gives a natural way to define and distinguish
between the technical efficiency, the size and the harmony effects.

On the other hand, one must acknowledge that decompositions are in general
ambiguous in the sense that one can decompose them in different orders and get
different measures. It is therefore always important to look for more profound ratio-
nales.

An important such rationale for the harmony measure is that with a convex, free,
disposable technology, the harmony effect measure is the most that can be gained by
any kind of reallocation between the firms in H . Assume that we were to pick new
inputs and outputs .x�k ; y�k/ for each k 2 H such that the total inputs and outputs
stay feasible,

P
k2H x�k � P

k2H xk and
P
k2H y�k � P

k2H yk , and such that
all of the new productions are feasible, .x�k ; y�k/ 2 T . Now, the largest possible
savings, of

P
k2H Ekxk , is precisely the harmony effect. That is, assuming the free

disposability and convexity of the technology T , HA is also the solution to
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min
..x�k ;y�k//

k2H

h

s.t. h
X
k2H

Ekxk �
X
k2H

x�k

X
k2H

yk �
X
k2H

y�k

.x�k ; y�k/ 2 T:

9.3.3 Decomposition with a cost function

Before concluding this discussion of the basic decomposition, it may be useful also
to illustrate it in the single input (cost) multiple output context. Thus, let

c.y/ D minfx 2 RC j .x; y/ 2 T g
be the underlying cost function, which gives an alternative representation of the
underlying technology. We then have

EH D c
� X
k2H

yk
�. X

k2H
xk

E�H D c
� X
k2H

yk
�. X

k2H
c.yk/

LEH D
X
k2H

c.yk/
.X
k2H

xk

HAH D c
� 1
H

X
k2H

yk
�.	 1

H

X
k2H

c.yk/



SIH D c

� X
k2H

yk
�.	

H c
� 1
H

X
k2H

yk
�

:

As these expressions show, the learning effect LEH measures the reduction in costs
if everyone learns best practices but remains an independent entity, the harmony
effect HAH measures the minimal cost of the average output vector compared to
the average of the costs corrected for individual learning, and the size effect SIH

measures the cost of operating at the full (integrated) scale compared to the average
scale of the original entities.
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9.4 Implementations in DEA and SFA

Technically, to calculate the overall and decomposed measures of potential gains
from mergers, we simply need the ability to calculate the efficiency of different
input–output combinations .x�; y�/, namely, to do the following:

Overall potentialsEH : Evaluate the direct combination of the firms involved in
the merger, i.e. find the efficiency of

�P
k2H xk ;

P
k2H yk

�
Individual potentials Ek: Evaluate individual learning potentials, i.e. find the ef-

ficiency of .xk ; yk/; k 2 K

Pure merger potentialsE�H : Evaluate the merged firm after individual learning,
i.e. find the efficiency of .

P
k2H Ekxk ;

P
k2H yk/

Learning effect LEH : Compare the overall potential to the pure merger potential,
i.e. calculate LEH D EH=E�H

Harmony effect HA: Evaluate the average efficient firm, i.e., find the efficiency of�
1
H

P
k2H Ekxk; 1

H

P
k2H yk

�
Size effect SI: Evaluate the efficiency of the upscaled average efficient firm, i.e.,

find the efficiency of
�
HAH

P
k2H Ekxk ;

P
k2H yk

�
, or simply find the size as

a residual, SIH D E�H=HAH :

Therefore, we can use any benchmarking approach that allows us to calculate the
efficiency of firms against some fixed technology. Note that the underlying tech-
nology does not change in these calculations. The fact that we look at a combined
firm like

�P
k2H xk ;

P
k2H yk

�
does not mean that we assume that it is feasible

or inside the technology. It may be outside, suggesting that it would be costly to
undertake the merger.

This also means that by repeated use of any software able to calculate super-
efficiencies, we can do the calculations. We need super-efficiencies since the firms
we evaluate should not affect the technology.

A simple way to implement these calculations is to use the R programming en-
vironment. The principal steps are given in Table 9.1.

A few notes may help interpret these code lines.
The inputs and outputs of the firms whose mergers we want to analyze are given

in the matrices X and Y . The merge matrix M has one row for each of the merg-
ers we want to analyze, and the columns represent the initial firms. In a row, a 1
indicates that the corresponding column firm is included in the merger, while a 0
indicates that it is excluded.

The efficiency of any input output combination .x�; y�/ is calculated with the
function Eff.x�; y�/. This function can be defined as the solution to a linear pro-
gramming problem, as is done in DEA, or as a line search problem depending on
the underlying model of the technology. In the case of a single input technology
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Table 9.1 Schema for efficiency analysis of mergers in R

# Input data, K times m matrix
X <- Input data with firms in rows
# Output data, K times n matrix
Y <- Output data with firms in columns

# Merge matrix with K collums.
# Each row defines a merger, =1 to include the firm.

# Efficiency measure
# Mergers should be measured against a fixed technology set,
# defined via a DEA model or a parametric model
Eff(X*,Y*) <- function to calculate efficiency of (X*,Y*)

# Input and output of merged firms
Xmerger <- M \%*\% X
Ymerger <- M \%*\% Y

# Potential overall gains, efficiency after merger
E <- Eff(Xmerger, Ymerger)

# Individual efficiencies before merger
e <- Eff(X, Y)

# Inputs of individual firms projected on efficient frontier
Xeff <- diag(e) \%*\% X

Xmerger_proj <- M \%*\% Xeff

# Pure gains from mergers
E_star <- Eff(Xmerger_proj, Ymerger)

# Learning effect
LE <- E/E_star

# Inputs and outputs for merged firms in harmony calculation
Xharm <- diag(1/rowSums(M)) \%*\% Xmerger_proj
Yharm <- diag(1/rowSums(M)) \%*\% Ymerger_proj

# Harmony effect, compoared to original technology set
HA <- Eff(Xharm, Yharm)

# Size effect
SI <- E_star/HA

represented by the cost function C.y/, it could simply be C.y�/=x�. We will give
examples of how to define Eff.x�; y�/ in the numerical example below.

M <- aggregation matrix with on which mergers to analyzeinformation

# Inputs of merged firms after elimination of individual inefficiency
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Table 9.2 Data for numerical merger example

Firm x1 x2 y

A 2 12 1
B 2 8 1
C 5 5 1
D 10 4 1
E 10 6 1
F 3 12 1

0 2 4 6 8 10 12
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14
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x
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Note also that Xmerger proj <- M %*% Xeff are the inputs of the merged
firms after having eliminated individual inefficiencies. Here, %*% represents matrix
multiplication.

The same inputs, scaled down by dividing with the number of firms in the merg-
ers, are given in Xharm <-diag(1/rowSums(M)) %*%X merger proj,
and similarly for the outputs, except that, here, we do not make projections.

As the results of these calculations, we have in the E , LE, HA and SI vectors the
values of EH , LEH , HAH , SIH for all the mergersH corresponding to rows in the
M matrix.

9.4.1 Numerical example in R

Consider the same problem as in Chap. 2. For convenience, the data and a graphical
illustration are repeated in Table 9.2.

We now analyze three possible mergers, namely, H D fA;C g D f1; 3g,
H D fE;F g D f5; 6g and H D fA;C; F g D f1; 3; 6g. Assume that we mea-
sure efficiency using an IRS technology DEA model defined by the original six
observations. Using the code schema above, we can now proceed as follows:

> library(Benchmark)
> xobs <- matrix(c(2, 2, 5, 10, 10, 3, 12, 8, 5, 4, 6,12), ncol=2)
> yobs <- matrix(rep(1,6), ncol=1)
> cbind(xobs, yobs)

[,1] [,2] [,3]
[1,] 2 12 1
[2,] 2 8 1
[3,] 5 5 1
[4,] 10 4 1
[5,] 10 6 1
[6,] 3 12 1
# Individual efficiency before any merger
> dea(xobs,yobs,RTS="irs")
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> Eff <- function(X,Y){
+ e <- dea(X, Y, RTS="irs", ORIENTATION="in",
+ XREF=xobs, YREF=yobs)
+ return(e$eff) # $
+ }
> grouping <- list(c(1,3), c(5,6), c(1,3,6))
> M <- make.merge(grouping,X=xobs)
> M

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 1 0 0 0
[2,] 0 0 0 0 1 1
[3,] 1 0 1 0 0 1
> Xmerger <- M %*% xobs
> Ymerger <- M %*% yobs
> cbind(Xmerger,Ymerger)

[,1] [,2] [,3]
[1,] 7 17 2
[2,] 13 18 2
[3,] 10 29 3
> E <-Eff(Xmerger,Ymerger)
> E
[1] 0.8333333 0.6451613 0.7692308
> e <- Eff(xobs,yobs)
> e
[1] 1.0000 1.0000 1.0000 1.0000 0.7500 0.6667
> Xeff <- diag(e) %*% xobs
> Xeff

[,1] [,2]
[1,] 2.0 12.0
[2,] 2.0 8.0
[3,] 5.0 5.0
[4,] 10.0 4.0
[5,] 7.5 4.5
[6,] 2.0 8.0
> XmergerProj <- M %*% Xeff
> XmergerProj

[,1] [,2]
[1,] 7.0 17.0
[2,] 9.5 12.5
[3,] 9.0 25.0
> Estar <- Eff(XmergerProj,Ymerger)
> Estar
[1] 0.8333333 0.9090909 0.8823529
> LE <- E/Estar
> LE
[1] 1.0000000 0.7096774 0.8717949
> Xharm <-diag(1/rowSums(M)) %*% XmergerProj
> Yharm <-diag(1/rowSums(M)) %*% Ymerger
> cbind(Xharm, Yharm)

[,1] [,2] [,3]

[1] 1.0000 1.0000 1.0000 1.0000 0.7500 0.6667
> should be measured againstthe originale technology
> #
>

set,# Mergers
therefore we must use xobs and yobs to determine the technology set.

# InthedefinitionofEffbelowtheuseofXREFandYREFmakesthishappen.
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[1,] 3.50 8.500000 1
[2,] 4.75 6.250000 1
[3,] 3.00 8.333333 1
> HA <- Eff(Xharm,Yharm)
> HA
[1] 0.8333333 0.9090909 0.8823529
> SI <- Estar/HA
> SI
[1] 1 1 1

The above calculations can be simplified by using the function dea.merge from
the package Benchmark, which does all the above calculations in just one function
call:

> dea(xobs,yobs,RTS="irs")
[1] 1.0000 1.0000 1.0000 1.0000 0.7500 0.6667
> em <- dea.merge(xobs,yobs,M,, RTS="irs")
> em
$Eff
[1] 0.8333333 0.6451613 0.7692308

$Estar
[1] 0.8333333 0.9090909 0.8823529

$learning
[1] 1.0000000 0.7096774 0.8717949

$harmony
[1] 0.8333333 0.9090909 0.8823529

$size
[1] 1 1 1

We see that the overall efficienciesE (em$Eff) of the three mergersfA;C g, fE;F g
and fA;C; F g are 0.83, 0.65, and 0.77, indicating potential gains from the mergers
of 0.17, 0.35 and 0.33, respectively.

Now, for the two last mergers, part of these gains are learning effects because
E and F are both inefficient on an individual basis. If we eliminate their individual
efficiency before the merger, the pure merger efficienciesE� (em$Estar) are 0.83,
0.91, and 0.88, with corresponding potential gains of 0.17, 0.09, and 0.12. Hence,
what appeared to be the least promising merger, fA;C g , is now the most promising.
The reason is that the learning inefficiencies have been eliminated in the other two
mergers, and these inefficiencies are nontrivial because LE (em$learning) takes
values of 1.00, 0.71, and 0.87, with corresponding individual learning potentials of
0, 0.29 and 0.13.

Now, the decomposition of the pure merger efficiency into the harmony and size
effects is rather trivial in this example. Looking at the illustration in Table 9.2, it is
clear that the efficient frontier will look like a CRS technology above the iso-quant
(and that the estimated output for input combinations below the iso-quant will all be
0). Therefore, all mergers are operating at the CRS part of the frontier, and therefore,
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the size efficiencies will all be 1 and the pure gains will all come from the harmony
effect.

9.4.2 Mergers in a parametric model

If we used a different approximation of the technology, we would of course get
different measures of the potential gains from the mergers. To illustrate this, let us
assume that the underlying production possibilities are derived from a log-linear
(Cobb-Douglas) function

y D 0:35 x0:41 x0:42 :

The fully efficient output levels for the six firms in the example can therefore be
calculated as 1:25; 1:06; 1:27; 1:53; 1:80, and 1:47. It follows that all firms are now
initially inefficient, although B is close to efficient. Indeed, the input efficiency of a
firm using x� to produce y� can be calculated as the solution E to

y� D 0:35 .E x�
1 /
0:4 .E x�

2 /
0:4 D 0:35E0:8x�0:4

1 x�0:4
2

i.e., we can get a closed form efficiency expression

E D
� y�

0:35 x�0:4
1 x�0:4

2

� 1
0:8

:

Now, the R calculations should look like this:

> library(Benchmark)
> X <- matrix(c(2, 2, 5, 10, 10, 3, 12, 8, 5, 4, 6,12), ncol=2)
> Y <- matrix(rep(1,6), ncol=1)
> # Define Eff
> Eff <- function(X,Y){
+ e <- (Y/(.35*apply(Xˆ.4,1,prod)))ˆ(1/.8)
+ return(array(e))
+ }
> grouping <- list(c(1,3), c(5,6), c(1,3,6))
> M <- make.merge(grouping,X=X)
> Xmerger <- M%*%X
> Ymerger <- M%*%Y
> E <-Eff(Xmerger,Ymerger)
> E
[1] 0.8098954 0.5775565 0.8612268
> e <- Eff(X,Y)
> e
[1] 0.7582446 0.9286562 0.7429249 0.5873337 0.4795560 0.6191041
> Xeff <- diag(e)%*%X
> Xmerger_proj <- M%*%Xeff
> Estar <- Eff(Xmerger_proj,Ymerger)
> Estar
[1] 1.079122 1.066941 1.224352
> LE=E/Estar
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> LE
[1] 0.7505135 0.5413200 0.7034145
> Xharm <-diag(1/rowSums(M))%*%Xmerger_proj
> Yharm <-diag(1/rowSums(M))%*%Ymerger
> HA <- Eff(Xharm,Yharm)
> HA
[1] 0.9074296 0.8971869 0.9303062
> SI <- Estar/HA
> SI
[1] 1.189207 1.189207 1.316074

Note that as the technology is not a DEA technology the function dea.merge is
not applicable here. In this case, however, one can simply follow the general schema
from Tables 9.1 which is exactly what we did in the example.

We see that in this case, all mergers have learning potentials, but if we eliminate
these, the pure merger gains will be negative: the E�H values are in this case 1:08,
1:07, and 1:22, suggesting that it would require some 8% , 7% and 22% extra of both
inputs to make the mergers fA;C g, fE;F g and fA;C; F g, respectively. The decom-
position shows that we would in all cases save resources by the harmony effect. The
net cost of the mergers is due to the size effect. The production technology exhibits
decreasing returns to scale. If we double the inputs, we only get 20:8 D 1:74 times
the output, and this is of course a major disadvantage when we roughly double or
triple the firm size.

Before closing this section, let us make two remarks.

9.4.3 Technical complication

First, in the general case of multiple inputs and outputs being evaluated in a para-
metric model, the calculation of the merger efficiencies may require some numerical
estimation.

Without loss of generality, we may assume that we have estimated a Shephard in-
put distance function Di.x; y/ from the actual data. Using this, we can approximate
the technology as

T � D f .x; y/ 2 RmCn
C j Di.x; y/ � 1 g;

and the calculation of the the efficiency of .x�; y�/, i.e., Eff.x�; y�/, therefore re-
quires us to solve

Eff.x�; y�/ D minfE j Di.Ex
�; y�/ � 1 g:

With the usual Farrell measure E , this is particularly simple thanks to the relation-
ship between the Farrell and Shephard distance measures, i.e., E D 1=Di in this
case.

However, when we want to make other estimates, for instance, if we assume
some inputs to be discretionary (variable) and others nondiscretionary (fixed), the
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calculation of the efficiency is a little more complex because we must then solve

minfE j Di.Ex
�
v ; x

�
f ; y

�/ � 1 g;
and this equation may not have a closed form solution. Still, since Di is monotone
increasing (weakly increasing) in xv , and therefore in the scalar E , this problem
can be solved by a simple line search, e.g., by a bisection approach that does not
require any further assumptions about the functional form of Di. Similar methods
are necessary if we want to measure and decompose gains from mergers using a
direction distance function in the parametric case.

9.4.4 Methodological complication

Second, in the case of SFA, a further complication concerns the interpretation of
the efficiencies. If we estimate a SFA cost or production function, or even a more
general distance function, we know that actual observations will deviate from the
estimate for two reasons. One is random noise and the other is inefficiency.

If we use the estimated function as above, we will basically assign all deviations
from the cost, production or distance function to the inefficiency term. If we do so,
we get the measures and the decompositions above.

However, one could argue that this is not the correct way because it conflicts with
the underlying idea of SFA. Instead, to evaluate an observation .x�; y�/, one could
calculate the deviation � and then find the conditional expectation of the inefficiency
given this deviation. Although this would seem to be the correct approach, the inter-
pretation is not as simple as in the case of a pure inefficiency model. The reason is
that if we take a SFA model and estimate the efficiency of a given firm, and then we
create a new firm that is the same as the original firm except without the estimated
inefficiency, then this new firm would not necessarily be efficient in the sense that
the conditional efficiency would now be 1. Hence, we cannot say that E�H is the
efficiency of the combined firm after having eliminated the individual inefficiencies.

Therefore, it is not yet clear exactly how best to proceed in the SFA case.

9.5 Practical application: Merger control in Dutch hospital
industry

The evaluation of the potential gains from mergers and the decomposition of these
gains into learning, harmony and size effects are used by the Dutch health authority
NZa, among others, to decide whether to grant merger permissions and under which
conditions. The a priori assessment of mergers and agreements requires careful con-
sideration because the negative and positive effects of mergers stem from a number
of different sources, and they have to be weighed against each other. An additional
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complication lies in the fact that the calculations and estimates concern the future.
We often have to compare two hypothetical situations: (1) what are the probable
effects of the merger; (2) what would happen in the market without a merger?

The market impact has traditionally been estimated using models of imperfect
competition, e.g., industrial organization models of Cournot competition. There ex-
ists a relatively well-developed set of approaches for this purpose.

In 2008, NZa initiated a project to improve the estimation of the possible effi-
ciency gains. The aim was to develop methods to compute potential gains from hor-
izontal and vertical mergers. The mergers of primary concern to NZa were between
pairs of hospitals and between hospitals and insurance companies. In general, the
recent liberalization of the Dutch healthcare sector has led to a number of mergers
between healthcare and related institutions.

In this project, we therefore developed a series of new measures and software
programs to implement the ideas on real data. In particular, we developed a ver-
sion of interactive benchmarking that allows NZa easily to explore the full potential
improvement set PI from a merger.

As part of the study, we investigated the potential gains from the horizontal inte-
gration of Dutch hospitals. Specifically, we used cost and production data from 97
hospitals in 2006 to estimate best practice DEA and SFA models. We used physical
distance information to determine all potential pairs of merges of two hospitals with
a maximal distance of 10 km. There are 37 possible such mergers. For each of these
pairs, we then evaluated the total potential gain and its decomposition into learning
efficiency, harmony and size potentials.

In hospital models, detailed output descriptions are defined using diagnosis re-
lated groupings, DRGs. Most countries work with systems that distinguish some
700-1000 different DRG outputs. In the Netherlands, they use a special variant that
combines diagnosis and detailed treatment information to define close to 30,000
different products called DBCs. Each of these is assigned a price that is intended
to reflect the cost of the DBC. Of course, from the cost accounting perspective as
well as from the econometric point of view, one can naturally be skeptical as to the
possibility of creating a meaningful cost break down at this level of detail.

In one analysis. we considered a grouping of these outputs into six turnover val-
ues or group volumes. That is, we depicted a hospital as transforming costs into six
output categories. The categories are closely related to a Dutch proposal for how
to define economically homogeneous specialty clusters, although a few adjustments
were necessary to align with the available data. For each of the groups, we consid-
ered the total product of regulated DBCs. The value of this product, as evaluated
with the DBC weights in use, was calculated to determine the group ”turnover” at
regulated prices at a given hospital

yj D
X
h2j

phqh;
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where qh is the number of DBCh produced, ph is the regulated price of DBCh, and
where j is a group of DBCs. These turnovers are the outputs and cost drivers in our
model of hospital service production.

The use of such weighted combinations of underlying heterogeneous productions
is a common and useful way to reduce the number of degrees of freedom in any es-
timation approach. It basically implies that we accept the intra-group calibration,
i.e. the relative prices inside the groups. Of course, one could continue like this and
aggregate across the groups to obtain the total weighted output of a given hospital.
This would mean that we also accept a priori that the inter-group calibration, i.e.
the relative costs accross groups, implied by the DBC weights. Instead, we calibrate
the relative importance of the cost driver groups using frontier models and the data
available on total costs and total service productions from the 97 hospitals. A pos-
sible intermediate approach would be to add weight restrictions on the inter-group
calibration, e.g., using assurance regions as discussed in Chap. 5. A summary of the
data from the 97 hospitals is given in Table 9.3.

Table 9.3 Dutch hospital data in 1000 Euro

Statistics Cost x y1 y2 y3 y4 y5 y6

Average 124 891 66 986 15 230 4 375 16 454 1 539 131

Std.dev. 79 302 36 692 11 041 6 928 8 676 1 293 97

Min 23 598 8 115 1 771 2 1 804 129 2

Max 363 747 171 332 52 775 29 582 37 703 4 899 406

Using these data, we can estimate a linear average cost model as

ck D ˇo C
6X

jD1
ǰy

k
j C �k ;

where ck is the (relevant part of the) cost of hospital k, ykj is the production level

for group j in hospital k and �k is a random noise term. A simple linear regression
analysis gives an adjusted R-squared of 0.8656, i.e., the regression is able to explain
a large share of the variation of costs by the six cost drivers in the model. The
parameter estimates are given in Table 9.4. This simple regression suggests that it

Table 9.4 Average cost model

Statistics ˇ0 ˇ1 ˇ2 ˇ3 ˇ4 ˇ5 ˇ6

Estimate 13 600 000 0.779 1.660 3.060 0.436 6.370 89.3

Std.dev 6 890 000 0.3 0.6 0.6 0.8 3.3 37.

t value 1.97 2.82 2.65 5.23 0.53 1.92 2.42

Pr.ˇi > t/ 0.052 0.006 0.009 0.000 0.596 0.058 0.018

may be worthwhile to consider the calibration of the weights in the DBC system.
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If the weight system is well calibrated we would expect the ˇ values to almost the
same. In particular, the regression analysis suggests that the weights in groups 2,
3, 5 and, in particular, 6 may be set somewhat below the real costs while the other
groups have slightly boosted values. We acknowledge of course that the cost and
product definitions and the data set used here are not sufficient to determine final
conclusions as to the relevance of the actual DBC weights.

We next estimated a series of frontier models of the cost function, i.e., the costs
as a function of the 6 outputs or cost drivers, y1; : : : ; y6:

c D C.y1; : : : ; y6/:

The model specification, i.e., the inputs and outputs defined, was tested using both
SFA and DEA approaches. In each class, we estimated a range of possible specifica-
tions to get an impression of the sensitivity of the results to the specification of the
model. In the SFA framework, we estimated linear, log-linear, translog, normed lin-
ear and normed log-linear specifications of the mean structure and truncated normal
distribution for the inefficiency error term. In the DEA framework, we made esti-
mates using the scale assumptions CRS, DRS, IRS and VRS returns to scale. Spe-
cific runs were also made with a bias-corrected DEA model, including confidence
interval, Œc1; c2�, for the bias corrected efficiencies. A summary of the preliminary
results on the Farrell input efficiencies E for the sample data is provided in Table
9.5. For each estimation methods, the table gives information about the mean Farrell
efficiency, the standard deviation of the the Farrell efficiencies, the number of fully
efficient hospitals and the lowest Farell efficiency among all hospitals.

As we can see from the summary of different estimations, the level of cost ineffi-
ciency .1�E/ in the Dutch hospital sector is 10–20 percent in most specifications.
The interpretation of this result is that if everyone learned best practices, the total
costs could be reduced by 10–20% without changing the organization of the sector.

The scale inefficiency, dea-se, is approximately 7% in the DEA models, suggest-
ing that some 7% could be saved if everyone adjusted to optimal scale size.

Although our aim in producing these test models was not to develop an author-
itative cost model of Dutch hospitals, a few notes on these levels are useful. As a
first quantification of cost inefficiency, compared with other sectors, the estimated
cost inefficiency is not alarming. In fact, the results suggest considerable possibili-
ties to save due to the large underlying costs in absolute euros, but in relative terms,
one finds similar potential savings in many other sectors, both regulated and more
competitive. It should on the other hand be observed that this level of estimated in-
efficiency may also reflect the way the DBCs are priced. Because they are intended
to reflect actual costs, and because there are many more DBCs than cost pools (hos-
pitals), the DBC prices can easily be set to make everyone look efficient.

Now, as mentioned above, we have used these models to evaluate the 37 potential
mergers of pairs of hospitals with a maximal distance of 10 km. Consider first the
DEA CRS case. Summary statistics of the overall potential gain EH and its decom-
position into learning effects LEH , gains after individual learning E�H , harmony
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Table 9.5 Farrell input efficiency in alternative frontier models

Model Mean E St.dev. E #fE D 1g MinfEg
fdh 0.981 0.081 87 0.386
dea-vrs 0.887 0.137 34 0.227
dea-drs 0.865 0.151 32 0.136
dea-irs 0.848 0.133 17 0.227
dea-crs 0.825 0.141 15 0.136
dea-vrs-biascorr 0.829 0.119 0 0.213
dea-vrs-biascorr-c1 0.751 0.115 0 0.191
dea-vrs-biascorr-c2 0.884 0.136 0 0.226
dea-crs-biascorr 0.768 0.125 0 0.124
dea-crs-biascorr-c1 0.722 0.116 0 0.112
dea-crs-biascorr-c2 0.819 0.140 0 0.135
dea-irs-biascorr 0.788 0.118 0 0.205
dea-irs-biascorr-c1 0.740 0.109 0 0.188
dea-irs-biascorr-c2 0.842 0.132 0 0.225
sfa-linear 0.739 0.169 2 0.141
sfa-loglinear 0.819 0.145 0 0.083
sfa-translog 0.831 0.138 0 0.336
sfa-normedlinear-vrs 0.618 0.222 6 0.008
sfa-normedlinear-crs 0.623 0.187 0 0.158
dea-se 0.929 0.080 15 0.594

effects HAH and size effects SIH are reported in Table 9.6. With CRS, the size effect
SIH is 1, as there is no gain in resizing with constant returns to scale.

Table 9.6 Potential gains from mergers in DEA-CRS model

Statistics E E� LE HA SI
Average 0.82 0.97 0.84 0.97 1.00
Std.dev. 0.08 0.03 0.07 0.03 0.00
Max 1.00 1.00 1.00 1.00 1.00
Min 0.64 0.88 0.69 0.88 1.00

At an overall scale, we see that the average potential savings in the 37 mergers is
18% .1 � E D 1 � 0:82/. Indeed, in the detailed results, 17 out of the 37 pairs has
an improvement potential of more than 20%, and 32 out of 37 can save more than
10%.

An important part of this potential savings, namely, 16%, is accounted for by
learning potentials. Some of the learning potentials can no doubt be activated by
benchmarking across hospitals and by developing better incentive schemes relying,
for example, on cross hospital relative performance evaluations. However, a merger
may also have a positive effect on learning by increasing the scale of process de-
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velopment and by serving as a change event where past procedures are re-evaluated
and changed.

Ignoring the learning effect, however, the average potential savings is only 3%
(the harmony savings), and only 9 out of 37 (or about 24% of the mergers) can gen-
erate a savings of more than 5% by simply reallocating resources and tasks. Again,
this is theoretically possible without a genuine merger, e.g., by creating interhospi-
tal DBC markets, but the reallocation of resources and tasks may be easier inside a
merged hospital where problems of asymmetric information and competition over
profit shares may be reduced.

These results suggest that the underlying estimated technology is rather linear,
i.e., that not only do we have constant returns to scale by assumption but also the
output isoquants are rather linear, corresponding to approximately constant rates
of substitution between the outputs. This is not entirely surprising; the linear SFA
model gives average efficiencies that are quite similar to those of the DEA mod-
els, suggesting that the inability to have curved isoquants in this technology does
not lead to too much deviation of the actual performance from the estimated best
practice frontier.

If we assume instead a VRS technology, the corresponding results are given in
Table 9.7.

Table 9.7 Potential gains from mergers in DEA-VRS model

Statistics E E� LE HA SI
Average 1.00 1.12 0.89 0.93 1.20
Std.dev. 0.26 0.22 0.08 0.06 0.21
Max 1.94 1.94 1.00 1.00 1.94
Min 0.72 0.95 0.72 0.83 0.99

In the VRS calculations, several mergers lead to LP problems with no solutions,
i.e., several of the merged firms are outside the technology determined by the 97
hospitals. The explanation is that when two hospitals are merged, they will in many
cases become very large compared to the existing hospitals (with similar mix of
resources and services) and consequently be above the estimated optimal scale size
for this mix. In that cases, the existing best practices do not even show that the
resulting production plans are feasible.

If we believe firmly in the estimated VRS technology, the interpretation is that it
will be impossible to operate hospitals of that size, or, in the case where a solution
is found but its score is above 1, that it will be more costly to operate the hospitals
jointly than individually. In one specific merger, for example, we found that the
estimated net effect was a cost increase of some 19%. This cost increase is the
result of three effects. First, since the underlying units are technically inefficient,
there is a learning potential of 12%. Also, by reallocating resources and services,
some 2% can be saved. The return to scale, however, is rather unfavorable to this
merger, corresponding to a cost increase of 38%. The net effect—when correcting



288 9 Merger Analysis

for the fact that these different effects are multiplicative and not additive—is a cost
increase of 19%.

Another more likely explanation of these findings is of course that the estimated
technology is flawed or at least heavily biased for large units. The bias of the DEA
estimated technology is well know, cf. Chap. 6; DEA makes a conservative (cau-
tious) inner approximation of the production possibility set, and in the parts of the
production space where observations are more sparse , this bias is larger. Hence,
if there are only few large units comparable to the size of a merged one, the best
practice model is most likely too pessimistic—and more so the larger the merged
hospital. This may explain the rather modest improvement potentials identified in
the VRS case. Another indication of bias here may be that the confidence intervals
in VRS are broader than in CRS (and IRS), cf. Table 9.5.

Even more fundamentally, one may of course question the VRS assumption using
similar reasoning in a theoretical framework: a large entity must be able to do at least
as well as any two smaller units into which it could be decomposed because it could
simply be (re-) organized as two independently run divisions.

This suggests that we should either use the bias corrected technology or the IRS
technology, or both. Alternatively, we could make parallel evaluations using SFA
estimate models. The results (summary statistics) of doing this are shown below.

Table 9.8 Potential gains from mergers in DEA-IRS model

Statistics E E� LE HA SI
Average 0.82 0.96 0.85 0.96 0.99
Std.dev. 0.08 0.03 0.06 0.03 0.01
Max 1.00 1.00 1.00 1.00 1.00
Min 0.64 0.88 0.71 0.88 0.95

We see in Table 9.8 that the IRS case gives quite similar results on average to
the CRS case. The potential savings from individual learning is 15%, from scope
(harmony) 4% and from scale (size) 1%. It is interesting to see that even if we
acknowledge the possibilities of small units being disadvantaged by their scale, the
gains from the merged units operating at larger scales is generally limited, and only
about 1=4 of the gains arise from better economies of scope.

Table 9.9 Potential gains from mergers in bias corrected DEA-IRS model

Statistics E E� LE HA SI
Average 0.73 0.96 0.76 0.97 0.99
Std.dev. 0.06 0.03 0.05 0.03 0.01
Max 0.89 1.00 0.89 1.00 1.00
Min 0.58 0.89 0.63 0.89 0.95
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We see from Table 9.9 that the bias correction increases the overall potential
improvement E , but that it is in general the learning affect that picks up almost all
the changes in the cost frontier. The scope (harmony) and scale (size) effects are
largely unchanged.

In the VRS case, the impact is also mainly in the learning effect, although the
negative impact is also a little lower, as expected. Only under special circumstances
does boot-strapping eliminate the LP (no-solution) problem. This is illustrated in
Table 9.10.

Table 9.10 Potential gains from mergers in bias corrected DEA-VRS model

Statistics E E� LE HA SI
Average 0.89 1.11 0.80 0.93 1.18
Std.dev. 0.23 0.22 0.07 0.06 0.21
Max 1.73 1.94 0.92 1.00 1.94
Min 0.65 0.94 0.65 0.82 0.99

To illustrate the parametric approach, consider the log-linear model. Since we are
estimating a cost function and not a production function, the log-linear specification
may conflict with the usual convexity properties, i.e., the set T may not be convex.
Rather, the log-linear specification allows for gains from specialization as well as
potentially genuine global economies of scale. As an aside, these properties can
be interesting to allow for. Assuming a truncated normal inefficiency distribution
(with underlying mean �) and normal distributed noise, the maximum likelihood
estimates are as shown in Table 9.11 below.

Table 9.11 Loglinear parametric function

Parameter Coefficient Std.dev t-stat
ˇ0 0.696 0.923 0.754
ˇ1 0.651 0.141 4.608
ˇ2 0.204 0.089 2.297
ˇ3 0.006 0.006 1.048
ˇ4 0.149 0.103 1.456
ˇ5 0.000 0.005 0.011
ˇ6 0.005 0.004 1.198

2 0.476 0.105 4.538
� �1:370 0.313 �4:376

It is worthwhile to note that the sum of the beta values is 1.01 suggesting a more
or less constant return to scale technology. Of course, several of the parameter are
actually not significant which could suggest a re-estimation with fewer cost drivers,
but we leave this issue for now.
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Using the log-linear specifications we can calculate and decompose the gains
from mergers as in Table 9.12 below. The method used is the one described in Sect.
9.3.3 using the implementation described in Sect. 9.4.2 adapted for the cost function,
but come in mind out methodological concern in Sect. 9.4.4.

Table 9.12 Potential gains from mergers in loglinear SFA model

Statistics E E� LE HA SI
Average 0.77 1.03 0.75 1.02 1.01
Std.dev. 0.11 0.02 0.11 0.02 0.00
Max 1.00 1.10 0.92 1.09 1.01
Min 0.51 1.01 0.48 1.00 1.01

We see that the log-linear model suggests that the economies of scale are largely
neutral to the mergers, as are the economies of scope. In the loglinear specification,
even the scope economies mitigate (slightly) against the mergers, corresponding to
a cost increase of 2% on average. The log-linear model suggests that the gains arise
primarily from learning effects.

The lack of gains from larger scale, and in many cases even losses from the
merged units operating at larger scales, has been a consistent finding in the mod-
els above. Of course, it must be emphasized also that our analyses build on exist-
ing practices only. If a new merger leads to new facilities and new organizations
that have not been implemented in other hospitals in the data set, the estimated
models cannot capture the potential savings that these improvements may generate.
This would require a much more detailed organizational and engineering approach.
A network approach, cf. below, could potentially be developed in this direction.
Specifically, if one can define hospital processes and allocate not only activities but
also costs to these processes, then it is possible to create new pseudo-observations
by constructing new combinations of old processes.

We also note that the Spearman correlation between the individual efficiencies
calculated in the log-linear model and the DEA-IRS model is 0.62, while it is 0.68
in the DEA-IRS bias corrected model and 0.68 in the DEA-CRS model. In general,
then, these models suggest correlation but not perfect agreement in the individual
evaluations. This illustrates a point that was also emphasized above. The models an-
alyzed here cannot directly be used as authoritative cost models for Dutch hospitals.
In the analysis of specific merger cases, it is important to develop good underly-
ing production and/or cost models of the technology in place. It is likely, however,
that even after such efforts, there may be several reasonable model candidates. The
best approach in this situation may be to evaluate the merger gains in the differ-
ent models—as we have done here—and to look at the results as interval estimates
established in this way.



9.7 Controllability, transferability, and ex post efficiency 291

9.6 Practical application: Mergers of Norwegian DSOs

The Norwegian regulator of electricity networks, The Norwegian Water Resources
and Energy Directorate (NVE), has adopted the above framework in their determi-
nation of the conditions for mergers among concession holders.

Their procedures compares the sum of the cost norms to each of the involved
firms with the cost norms that result if they are treated as a single, merged entity.
This difference, which by the DEA based cost norm model used is in fact equiva-
lent to the harmony effect (and is so called), is then used to correct the cost norm
calculated for the merged firm. Specifically, the net present value of the harmony
effect over 10 years are calculated and paid as a windfall gain to the merged firm. In
effect, this means that the extra saving potential measured by the harmony effect can
be kept by the firms for the first 10 years. Hereafter, the savings must be transferred
to the end users.

From a regulatory point of view, this approach makes sense. A possible drawback
of a many regulatory systems is that they tend to freeze structural developments, i.e.,
changes in the industrial structure that can lower costs. With a convex cost norm
based revenue cap, the firms will always be better off in terms of allowed costs
before a merger than after a merger. Therefore, the firms must be compensated in
order to give them incentives to reduce costs via mergers.

9.7 Controllability, transferability, and ex post efficiency

In the estimates of potential merger gains above, we have assumed that all inputs and
outputs can be redistributed in the merged entityH . In many cases, this assumption
is too restrictive. At least from a short term perspective, some dimensions are easier
to change and reallocate than others. It may, for example, be easier to reduce the
labor input than the capital input, which is largely based on sunk investments. Also,
some services may have to be provided on location and can therefore not be trans-
ferred to another firm located elsewhere. In a hospital setting, for example, it may
be possible to transfer IT, accounting and HR to another location, but the provision
of emergency room services cannot easily be relocated. Lastly, some variables in
actual models typically describe context rather than choice variables, and they are
therefore not transferable. Population density, education level, and age distribution,
for example, have limited transferability.

We will now show how to calculate potential gains when only some of the in-
puts and outputs can be adjusted and transferred among the members of the new
merged entity. First, we consider the relatively straightforward case with restricted
controllability of inputs and outputs, and then we extend the model by introducing
restrictions on the transferability of some of the resources and services.

As discussed already in Sects. 2.4.1 and 5.3, it is common to account for the non-
discretionary character of some dimensions by only looking for improvements in the
other directions. Assume that we can split the inputs x and outputs y into two types,
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Fig. 9.5 Merger evaluation with restricted controllability

x D .xv; xf / and y D .yv; yf /, corresponding to the variable (controllable) v
and fixed f (non-controllable) dimensions. Focusing on input reductions, we would
now look for the largest reduction of all controllable inputs that, together with the
fixed inputs, allows the merged firm to produce the given outputs.

To illustrate, consider the case in Fig. 9.5 below. We assume that the integrated
firm AC B is using two inputs, e.g., doctors and nurses, in its production. Assume
also that the first input cannot be adjusted but that the second can. In an application,
for example, this may reflect a case where the doctors have more bargaining power
or are on more rigid contracts than the nurses. The efficiency of the merged unit will
therefore be measured by the possible reduction in the second input Ev alone.

To formalize the sub-vector approach to merger analysis, we measure the effi-
ciency of firm i as

E iv D minfE 2 RC j .Exiv; xf ; yi / 2 T g:
Likewise, the potential gross gain from a horizontal merger of theH firms is given
by

EHv D min
˚
E 2 RC j �E X

k2H
xkv ;

X
k2H

xkf ;
X
k2H

yk
� 2 T �

i.e., EHv is the maximal proportional reduction in the variable (discretionary) inputs
that, together with the fixed (nondiscretionary) resources, allows the production of
the aggregated output profile

P
k2H yk . If EHv < 1, we can save the proportion

.1 � EHv / of the variable inputs by merging. If EHv > 1, the merger is costly and
requires that the total usage of the variable resources be increased.

As previously observed, we may also filter out the effects of individual ineffi-
ciencies by determining the adjusted overall gains in the direction of the variable
inputs as

E�H
v D min

˚
E 2 RC j �E X

k2H
Ekv x

k
v ;
X
k2H

xkf ;
X
k2H

yk
� 2 T �;

and we can define the learning effect as the ratio
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LEHv D EHv
E�H
v

:

Likewise, we can calculate the harmony effect as

HAHv D min
˚
HA 2 RC j �HA

1

H

X
k2H

Ekv x
k
v ;
1

H

X
k2H

xkf ;
1

H

X
k2H

yk
� 2 T �;

and the size effect as

SIHv D min
˚
SI 2 RC j �SI � HAHv

X
k2H

Ekv x
k
v ;
X
k2H

xkf ;
X
k2H

yk
� 2 T �:

The interpretations and organizational implications of these scores are the same
as previously explained, except that they are now defined in terms of the savings
of only the controllable inputs, calculated conditional on the given levels of the
noncontrollable inputs. Thus, for example, rescaling is advantageous, SIHv < 1, if
we have economies of scale in .xv; y/ for given xf , and costly, SIHv > 1, if the
returns to scale do not favor larger firms for the given values of the fixed inputs.
Using the above definitions, we once again get a decomposition

EHv D LEHv � HAHv � SIHv :

This corresponds to a decomposition of the basic merger index EHv into a technical
efficiency index TEHv , a harmony index HAHv , and a size index SHv .

So far, we have dealt with the possibility that only some of the variables are dis-
cretionary within a given time horizon. Another obstacle to the reallocation among
firms may be nontransferable (local, l) resources and services as opposed to trans-
ferable (global, g) ones.

To illustrate this, consider Fig. 9.6. We have two service providers, and to sim-
plify the interpretation, they produce the same globally transferable outputs. Also,
we assume that they use the same technology. Now, if input 2, e.g., nurses, is trans-
ferable and input 1, e.g., doctors is not, we could move some x2 ( nurses) from B ,
where they have a rather low marginal value compared to x1 (doctors), to A, where
their marginal value is higher. In the end locations, B will have its output reduced
(from say yB to yA), but A will have its output increased from yA to some level
y� > yB . The net result is therefore positive even though we cannot reallocate the
factors as easily as in the usual harmony calculations.

Allowing for possibly restricted transferability and possibly restricted controlla-
bility, we get a 2� 2 taxonomy of all inputs and outputs: They may be lf (local and
fixed, e.g., buildings), lv (local and variable, e.g., cleaning personnel), gf (global
and fixed, e.g., specialized measurement equipment), and gv (global and variable,
e.g., different types of specialists). To simplify notation, we can in the usual way in-
dicate vectors of such variables by suppressing the subscripts. We will for example
refer to the l variables as the combination of the lf and lv variables, and to the f
factors as the combination lf and gf factors.
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Fig. 9.6 Restricted transferability

In such a setting, it is more complicated to measure the possible gains from a
reallocation of resources and services among the otherwise autonomous firms inH .

A harmony measure HA in this case could be calculated in the following way.
We consider what can be saved—after individual learning—by mere reallocations
of the global inputs and outputs among the firms in H. Let the new input and output
combinations after reallocation be .x�k; y�k/ for k 2 H . We then look for such
new production plans for all the firms involved that maximize the aggregate savings.
This leads to the pure reallocation problem:

min
HA;.x�k;y�k/k2H

HA

s.t. HA
X
k2H

Ekv x
k
v �

X
k2H

x�k
v W variable factors are reduced

x�k
l �xkl .k 2 H/ W local factors are saved locallyX

k2H
x�k
gf �

X
k2H

xkgf W global fixed factors are not reduced

y�k
l �ykl .k 2 H/ W local services are produced on-siteX

k2H
y�k
g �

X
k2H

ykg W global services can be prod. off-site

.x�k ; y�k/ 2T .k 2 H/ W all plans are technically feasible.

The choice variables in this program are the contraction factor HA and the new input
and output combinations .x�k; y�k/k2H . Because the original adjusted productions
.Ekv x

k
v ; x

k
f
; yk
l
; ykg / for k 2 H satisfy all the constraints, we always have HA � 1,

corresponding to a potential savings.
When all resources and services are global and variable, the above program leads

to the reallocation problem we discussed above as a rationale for the harmony effi-
ciency.

A potential drawback of most of the models in the literature, as well as the models
presented above, is that they assume that the reallocations take place at the frontier,
i.e., they presume ex-post efficiency. This means that all firms are assumed to adapt
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to the best practices before reallocation occurs. Although competition may work to
drive out inefficient firms, one can see it as naive to assume technical efficiency up
front. Empirical studies have shown that inefficiency is a persistent phenomenon in
many industries, and one can even find theoretical economic rationales for maintain-
ing some technical inefficiency. It may, for example, help to compensate employees
by making their job more attractive, or it may improve the strategic interactions with
other firms on the market by showing excess capacity. Alternatively, the idea of re-
allocations on the frontier presumes that all entities are profit maximizing, which is
certainly not the case in many of the sectors for which performance evaluation is
relevant, e.g., in the health care sector, where immediate short term adaption to best
practices may not be realistic.

In the discussion of more extended reallocation models it has been investigated
how to avoid the assumption of ex-post efficiency. That is, one can assume that if
firms have been inefficient in the past, it is likely that they will continue to be so in
the future. One can also assume that the level of future inefficiency may depend on
the extent to which the firms have to change the scale and scope of their operations.

9.8 Summary

In this chapter, we discussed how to measure a priori the potential gains from re-
structuring a set of firms. We have developed an overall measure of the potential
gains from mergers. The potential gains are simply 1 � EH ; where EH is the effi-
ciency of the aggregated firm using the sum of the original inputs of the firms in H
to produce the sum of the original outputs from theH firms.

We also decomposed the overall efficiency EH into the possible learning effect,
harmony effect and size effect. The relevance of this decomposition stems from the
fact that some of the gains can be realized using alternatives to full scale mergers.
The learning potentials may at least partially be captured by sharing information on
best practices, and the harmony effects can be realized by reallocating resources and
tasks among the firms inH . Such alternative measures are relevant because mergers
in many industries come with drawbacks as well. For example, the integration of
different organizational cultures may be cumbersome, and from a regulatory point
of view, mergers tend to lower the competitive pressure in the industry.

We have extended the basic measures in various ways. In particular, we have
discussed how to model the restricted controllability and restricted transferability of
resources and services.

In addition to the basic measures and decompositions, we have shown how to
implement the methods in R, and we have given some highlights from an application
to Dutch hospitals. Other applications are mentioned in the bibliographical notes
below.

It is worthwhile to compare the ideas of this chapter with the idea of allocative
efficiency discussed already in Chap. 2. Allocative efficiency is typically defined
as cost efficiency divided by technical efficiency. It therefore measures what can
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be gained by adapting to given prices in a complete and perfect market. Therefore,
allocative efficiency effectively ignores the matching issues in a finite economy. The
merger analysis explicitly takes such complications into account by measuring the
reallocation gains among a finite set of firms in cases where no market prices exist.

9.9 Bibliographic notes

The idea of structural and allocative efficiencies was introduced early in the quan-
titative literature. Farrell (1957) defines structural efficiency as the extent to which
an industry keeps up with the performance of its own best firms, and he suggests
measuring it by comparing the horizontal aggregation of the industry’s firms with
the frontier constructed from its individual firms. A related approach is the average
firm approach suggested by Försund and Hjalmarsson (1979). In this approach, the
structural efficiency is estimated by taking the average of each type of input and
each type of output and then measuring the distance from the associated average
firm to the frontier. This idea is clearly closely related to the way we measure the
gross potential gains from a merger of all firms—or the harmony effect of a merger
of all firms. Lewin and Morey (1981) discuss the decomposition of inefficiency in a
hierarchical organization into what can be attributed to inefficiencies in the produc-
tion firms with given resources and the misallocation of resources among the firms
at different levels of the organization. Färe and Grosskopf (2000) further develop
the idea of modeling efficiency in different types of network structures

The basic approach of this chapter was first suggested in Bogetoft and Wang
(2005) and Bogetoft et al (2003). There, we studied the potential gains from mergers
in different industries, in particular, Danish agricultural extension service and Dan-
ish forest organizations. The reallocations were restricted to taking place among ge-
ographical neighbors. Moreover, the gains were decomposed into learning, harmony
and size effects, and the corresponding organizational changes were identified. The
somewhat unusual term harmony is motivated by the idea that some factor com-
binations are more harmonious or in balance than others. When we developed this
idea, we were working on a problem of harmony requirements in Danish agriculture,
and the term later got used in several applications and in some regulation systems,
which is why we still use it. We introduced restricted controllability merger analy-
ses in an analysis of Norwegian DSO mergers, Bogetoft and Gammeltvedt (2006),
and we discussed the difference between local and global resources and obligations
in Bogetoft and Katona (2008). Decompositions of merger gains using a directional
distance function approach, which, as mentioned in the text, leads to additive instead
of multiplicative decompositions, are given in Bogetoft and Katona (2008).

We have focused in this paper on horizontal mergers, but a parallel treatment of
the case of vertical integration of firms in a supply chains can be found in Bogetoft
and Katona (2008). We have also discussed additive decompositions resulting from
the use of directional distance functions.
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The Dutch hospital analyses are further developed in Bogetoft and Katona
(2008), and a recent application to Danish hospitals is presented in Bogetoft et al
(2010).

Studies applying the more extended reallocation models, where firms may not
adjust to best practice and where the level of ex post efficiency may depend on the
scale and scope of the reallocations are discussed in Andersen and Bogetoft (2007)
and Bogetoft et al (2007a).





Chapter 10
Regulation and Contracting

10.1 Introduction

One of the more prominent applications of state-of-the-art benchmarking is in the
regulation of natural monopolies in general and electricity and gas networks, in
particular. Benchmarking studies applied to inform such regulation has considerable
economic impact on firms and consumers alike.

In this chapter, we will describe some classical regulatory packages and explain
the role of benchmarking in these scenarios. Also, we will illustrate some of the
models that have been developed in a selection of countries. Regulation and bench-
marking theory have traditionally been two separate, although mutually supportive,
economic disciplines, but during the last 15 years, there has also been some novel
work done to integrate the two. We will cover some key results and an application
towards the end of this chapter.

10.2 Classical regulatory packages

Large infrastructure industries like the networks to distribute electricity and gas,
commonly referred to as Distribution System Operators DSOs, constitute natural
monopolies; there is considerable fixed cost and relatively low marginal costs. This
leads to market failure. Moreover, such networks are generally given licenses to
operate as legal monopolies. Monopolies have limited incentives to reduce costs,
and will tend to under-produce and overcharge the services provided since they are
not subject to the disciplining force of the market. For electricity distribution, the
monopoly characteristic is accentuated by the fact that there are no close substitutes
for the offered services and that demand is relatively inelastic.

Most countries therefore empower regulators to act as a proxy purchaser of the
services, imposing constraints on the prices and the modalities of the production.
The regulator is usually affiliated with the national competition authority. One of
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the instruments used in the regulation is benchmarking, which is facilitated by the
existence of different networks covering different areas that can be compared or, in
some cases, by international comparisons of such firms.

In modern economic theory, the regulatory problem is expressed as a game be-
tween a principal (the regulator) and a number of agents (the regulated firms). The
regulation problem is basically one of controlling one or more firms that have supe-
rior information about their technology and their cost reducing efforts as compared
to the regulator. The availability and access to information is a key issue in the reg-
ulatory game. With perfect access to information, the regulator can impose socially
optimal price and service quality.

The regulatory toolbox contains numerous more or less ingenious solutions to
the regulator’s problem. To illustrate, we will distinguish four approaches

• Cost-recovery regimes (cost of service, cost-plus, rate of return),
• Fixed price (revenue) regimes (price-cap, revenue cap, RPI-X),
• Yardstick regimes, and
• Franchise auction regimes.

10.2.1 Cost-recovery regimes

Taking for granted the cost information supplied by the agents, the regulator may
choose to fully reimburse the reported costs, often padded with some fixed mark-
up factor. To illustrate, the reimbursement in a given period t for firm k may be
determined as

Rk.t/ D C kOpEx.t/CDk.t/C .r C ı/Kk.t/

where C kOpEx is the operating expenses , Kk is the capital (rate base), Dk is the
depreciation reflecting capital usage, r is the interest rate reflecting the credit costs
of investments with similar risks and ı is a mark-up.

Unless subject to costly information verification (regulatory administration), the
approach results in poor performance with skewed investment incentives (no invest-
ment risk, yet fixed return on investment), perverse efficiency incentives (loss of
revenue when reducing costs) and insufficient managerial effort.

In reality, such schemes have involved considerable regulatory administration, in
an attempt to avoid imprudent or unreasonable operating expenditures and invest-
ments to enter the compensation and rate base. Some benchmarking approaches use,
for example, a few key performance indicators KPIs from similar firms. However,
even with large investments in information gathering, the information asymmetry
and the burden of proof in this regime rest on the regulator, and there are reasons to
doubt their ability to induce efficiency.

Regulatory authorities worldwide are gradually abandoning these regimes be-
cause they are administratively costly and technologically inadequate, especially in
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the United Kingdom (U.K.) and the United States of America (USA), where the
approach has been heavily used.

Cost recovery is often organized as negotiation and consultation based regimes.
Whether rate reviews are initiated by complaints or are planned, reviews are often
done as individual consultations. In contrast to the methods below, where a joint
framework is used to evaluate all DSOs, the consultations are typically case-specific
and they rely more on negotiations than on a comprehensive model estimation for
the entire sector.

An idea is to combine negotiations with systematic investigations and bench-
marking in such a way as to limit the negotiation space, In this way, the negotia-
tions become more structured. Such restrained negotiations have been proposed in
the Netherlands for the regulation of hospitals; the idea is that the regulator uses
benchmarking to constrain acceptable outcomes but leaves negotiations to industry
partners.

10.2.2 Fixed price regimes (price-cap, revenue cap, CPI-X)

In response to the problems of the cost-recovery regime, several countries have
moved to more high-powered regimes. These regimes typically allow the regulated
DSOs to retain any realized efficiency gains. In the price-cap regime, the regulator
caps the allowable price or revenue for each DSO for a pre-determined regulatory
period, typically 4-5 years. Based on the review period, a model of probable cost
developments is developed to fix the revenue or price basket. The base model is
usually quite simple, involving a predicted productivity development per year x
plus, perhaps, individual requirements on DSOs, xk , to reflect the level of histor-
ical costs and thereby the need to catch-up to best practice. The resulting allowed
development in the revenue for DSO k is then

Rk.t/ D C k.0/.1� x � xk/t ; t D 1; : : : ; T

where Rk.t/ is the revenue in period t and C k.0/ is the cost of DSO k in period
0. Note that x is used here not as input but as an efficiency requirement; this is
in accordance with the standards in regulations where the above model is often
referred to as CPI-x to reflect that there are adjustments for price developments and
productivity requirements. There are, of course, many modifications to this model.
Thus, there will typically be adjustments for changes in the volume supplied and for
general changes in the cost level due to inflation. We have already seen one such
example in Sect. 2.7, and will show another example from Germany below.

The crucial feature of the fixed price regime is that there is a fixed (performance
independent) payment. This means that, to maximize profit, the DSO will minimize
costs. This is key to the incentive provision.

Another important feature is the fixation of payments during a regulatory period
and the consequent regulatory lag in updating productivity development. The last
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feature is often emphasized by calling such schemes ex ante regulation as illustrated
in Fig. 10.1 below. Before a regulatory period starts, the regulator uses historical data
from a review period to estimate x and xk , and then commits to these values for the
regulatory period of T years. At the end of the regulatory period, new estimations
of x and xk are made to set the revenue conditions for the next regulatory period.

Year 1 Year T

.......................................................................................................................

.......................................................................................................................

Ex ante Ex ante

Fig. 10.1 Ex ante regulation

The idea of price or revenue fixation is simple but in practice the cap is regularly
reset, in hindsight, to the realized profits in the previous period. This limits the
efficiency incentives. Also, the initial caps have to strike a careful balance between
informational rents, incentives for restructuring and the bankruptcy risks. Further,
the price or revenue cap is usually linked to the consumer price index (CPI) or the
retail price index (RPI) as a measure of inflation. Therefore, in spite of its conceptual
simplicity, the challenges of fixing the initial caps, the periodicity of review and the
determination of the X-factor make this regulation a non-trivial exercise for the
regulator. In particular, since initial windfall profits are retained by the industry and
dynamic risks are passed on to consumers, there is a potential risk of regulatory
capture by consumer or industry organizations.

For now, however, the most important feature is that the price fixation regimes
generally involve some systematic benchmarking exercise, often based on DEA and
SFA, to guide the choice of individual requirements xk and the general requirement
x.

The general requirement x is often set by using a Malmquist-like analysis of
productivity developments over the years prior to the regulatory period. Thus, if the
analysis of past frontier shifts suggests that even the best are able to reduce costs by
2 % per year, the regulator has a strong case to set x close to 2%.

Individual requirements xk are typically linked to the individual efficiencies of
the DSOs in the last period prior to the regulatory period. There are no general rules
used by regulators to transform a Farrell efficiencyEk to an individual requirement
xk , except that the smaller Ek is, the larger xk is. Some countries require the DSOs
to catch-up very quickly. In the first Danish regulation of electricity networks, for
example, the electricity producers were required to eliminate the inefficiency in just
1 year. Others, like the Netherlands, used one regulatory period of 3-5 years. Ger-
many aims to have eliminated the individual efficiency differences in two periods,
i.e. 10 years, while Norway, a pioneer in the use of incentive-based regulation, al-
lowed for an even longer period of time in the initial implementation of a revenue
cap system. It is clear that the analyses of historical catch-up values can guide this
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decision. There is also a considerable element of negotiation in the rules that are
applied. Moreover, it is difficult to compare these requirements across countries.
A cautiousness principle would suggest that the requirements will depend on the
quality of data and the benchmarking model. Also, a controllability principle would
suggest that it should depend on the elements that are benchmarked. In particular, it
is important if it is Opex (operating expenses) or Totex (= Opex+Capex) that are be-
ing benchmarked and that become subject to efficiency improvement requirements.

In Denmark, for example, the first model from 2000 had very rigorous require-
ments on Opex - but still allowed new capital evaluations (opening statements),
which lead to increased Capex allowances. On average, the companies only used
80-85% of the revenue caps. This suggests that the regulation may not have been
as rigorous as it looked (with immediate catch-up requirement in a linear model),
nor was the importance of consumer preferences in the many cooperatively-owned
distribution companies foreseen. Either way, this led to immense accumulated re-
serves by the end of 2003. In return, this meant that adjustments in the regulation
could have only limited impact since the DSOs could always draw on past revenue
cap reserves. The regulation was, therefore, abandoned at the end of 2003 and a new
regulation was later established.

We will give some more detailed illustrations of some of the steps in regulatory
benchmarking for revenue cap regulation in Sect. 10.3 below, where we discuss the
recently developed German benchmarking model.

10.2.3 Yardstick regimes

The idea behind yardstick regimes is to mimic the market as closely as possible by
using real observations to estimate the real cost function in each period rather than
relying on ex ante predicted cost functions. Thus, for example, in its simplest form,
the allowed revenue for DSO k in period t would be set ex post and determined by
the costs in the same period of other firms h D 1; : : : ; k�1; kC1; : : : ; K operating
under similar conditions

Rk.t/ D 1

K � 1

X
h¤k

C h.t/; t D 1; 2; : : :

Observe that this is the revenue the firm could charge in a competitive environment.
Of course, if the DSOs are delivering different services under different contextual

constraints, the above revenue cap is not directly applicable. Instead, we use bench-
marking to account for these differences. Also, one can argue that the average is just
one of many ways to aggregate the performance of the other firms. One alternative
is to use best practice realized performance, i.e.

Rk.t/ D minfC h.t/ j h D 1; : : : ; k � 1; k C 1; : : : ; Kg; t D 1; 2; : : :
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The yardstick regime is attractive in the sense that the revenue of a given DSO is
not determined by its own cost but by the performance of the other DSOs. This fixed
price feature makes the firm a residual claimant, as in the price fixation regime, and
this is the key incentive property.

Another advantage of yardstick competition is that the productivity development
is observed rather than predicted. This provides insurance for the DSOs, and it limits
the information rents. It is accomplished by setting the revenue ex-post, i.e. after
each period. This is illustrated in Fig. 10.2. The allowed costs in period t is only
set after period t . Exogenous and dynamic risks will directly affect the costs in the
industry, lifting the yardstick. Innovation and technical progress will tend to lower
the yardstick. Thus, the regime endogenizes the ubiquitous x factor and caps the
regulatory discretion at the same time.

Year 1 Year T

...........................................................................................

...........................................................................................

...........................................................................................

...........................................................................................

...........................................................................................

Ex post Ex post Ex post Ex post Ex post

Fig. 10.2 Ex post regulation

Despite its theoretical merits, the pure approach of only considering the observed
cost in each period is linked to some risks in implementation. First, a set of com-
parators with correlated operating conditions must be established. Second, if the
comparators are few and under similar regulation, there is risk of collusion. Finally,
a yardstick system that is not preceded by a transient period of asset revaluation
or franchise bidding will face problems with sunk costs and/or bankruptcy. A cru-
cial question, in terms of yardsticks in electricity distribution, is, therefore, how to
preserve the competitive properties while assuring universal and continuous service.

In Sect. 10.4 below we will expand on the advantages of the yardstick idea and
we will show how to cope with cases of imperfectly correlated costs and variations
in output levels and mix by using DEA.

From the point of view of benchmarking, the yardstick regime requires the same
model types as price fixation regimes, only now benchmarking has to take place
more often, typically annually. A DEA-based yardstick scheme was introduced in
Norway 2007 and will be discussed later. Also, the Dutch regulation has yardstick
features.
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10.2.4 Franchise auctions

A simple means to elicit accurate cost information while assuring participation is to
arrange franchise auctions. The idea is to award the delivery rights and obligations
based on an auction among qualified bidders. Thus, for example, if each of K bid-
ders for a project demands Bh; h D 1; : : : ; K , we may award it to the bidder k with
the lowest bid Bk D minhBh and compensate him

Rk.t/ D min
h¤k

Bh.t/; t D 1; 2; : : :

Here, we have used what is often called a second-price approach, and we see that it
resembles a yardstick regime. We do, however, use bids rather than realized costs in
the auction scenario. One can extend this scenario to situations with heterogenous
bids by using, for example, DEA based auctions to cope with differences in the
projects offered in a one-shot procurement setting.

The second-price franchise auction regime conserves the simplicity of the fixed-
price regimes but limits the informational rent. It also offers perfect adjustment to
heterogeneity, since prices may vary across franchises. The problems for limited
markets with high concentration are that bidding may be collusive, that excessive
informational rents may be extracted and that competition may be hampered by
asymmetric information among incumbents and entrants. Even under more favor-
able circumstances, the problems of bidding parity, asset transition and investment
incentives must still be addressed, and the use of the franchising instrument in, for
example, electricity distribution is likely to be used sparingly in Europe in the near
future and then primarily for spatial and/or technical service extensions.

10.2.5 Applications

Table 10.1 below gives a summary of the regulations used for electricity DSOs in 15
European countries. Dynamically, the progression seems to be from a more heavy-
handed cost recovery regime, over a model-based price fixation towards a high-
powered market-based yardstick regime.

Most countries rely on some revenue cap model and have derived general pro-
ductivity and individual inefficiencies using benchmarking tools like DEA and SFA.

We see how some countries, like Sweden and Spain, have chosen to rely on
technical engineering norms, sometimes referred to as ideal nets, in an attempt to
identify not only best practice but absolute technological possibilities.
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Table 10.1 Some European regulations of electricity DSOs
Code Country Regulation Benchmark
AT Austria Revenue cap DEA-SFA, best-off
BE Belgium Revenue cap DEA
CH Switzerland Cost recovery Ad hoc
DE Germany Revenue cap DEA-SFA best-off
DK Denmark Revenue cap COLS-MOLS
ES Spain Revenue cap Engineering
FI Finland Revenue cap DEA w. SFA back-up
FR France Cost recovery Ad hoc
GB Great Britain Revenue cap COLS and Ad hoc
GR Greece Cost recovery Ad hoc
HU Hungary Price cap Ad hoc
IRL Ireland Price cap Ad hoc
NL Netherlands Yardstick comp DEA-OLS-MOLS
NO Norway Yardstick comp DEA
SE Sverige Revenue cap Engineering and DEA

10.3 Practical application: DSO regulation in Germany

In this section we will discuss the regulation of electrical DSOs in Germany. We will
explain some of processes leading to the regulation and go through some highlights
of the benchmarking models used.

10.3.1 Towards a modern benchmark based regulation

In 2005, it was decided to introduce new regulation of German electricity and gas
DSOs. Here, we will focus on regulation of electricity, but we note that gas regu-
lation and models are rather similar. Previously, regulation occurred solely through
competition law, and there was no regulator. With the new Electricity Act (EnWG),
effective July 13, 2005, it was decided that “Regulation should be based on the costs
of an efficient and structurally comparable operator and provide incentives based
on efficiency targets that are feasible and surpassable.”

The enactment of the Electricity Act marked the start of an intense and ambitious
development process by the regulatory authority, the Federal Network Agency, Bun-
desnetzagentur (BNetzA). BNetzA performs tasks and executes power, which under
the EnWG has not been assigned to the state regulatory authorities. The state regu-
latory authorities are responsible for regulating power supply companies with fewer
than 100,000 customers connected to their electricity or gas networks and whose
grids do not extend beyond state borders. In practice, the BNetzA approach has a
significant impact on the regulation of the DSOs under state regulation.
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Through several development projects and a series of consultations with indus-
try on the principles, BNetzA developed a specific proposal for how to implement
the Electricity Act. As one of several consulting groups, we undertook a series of
full-scale trial estimations of different model specifications. DEA and SFA models
were developed based on more than 800 DSOs in both sectors. This served several
purposes, some of which were to train the regulatory personnel in benchmarking
methodology, to guide future data collection, to define a detailed implementation
plan and to facilitate an informed discussion with industry members.

The final proposal and detailed implementation plan by the regulator was largely
transformed into the Ordinance that now provides specific guidelines for German
regulation of electricity.

During 2008, we developed a new set of results to implement the Ordinance.
Some highlights from this work are provided below. The new regulation became
effective in 2009 for the 200 DSO under federal regulation. Smaller DSOs, with
no more than 30,000 customers connected directly or indirectly to their electricity
distribution system, could, instead of efficiency benchmarking to establish efficiency
levels, take part in a simplified procedure. The efficiency level in the first regulatory
period for participants in the simplified procedure is 87.5 percent. From the second
regulatory period, the efficiency level for these DSOs is the weighted average of all
efficiency levels established in nationwide efficiency benchmarking.

The regulation is currently in place and working, although there are still some
aspects that are being tested in the court system by different operators.

From an international perspective, the German experience is remarkable because
of the large number of DSOs, the abundance of data, as illustrated by the presence of
about 250 variables for each DSO, and by the speed and efficiency with which new
regulation was established. Most other regulators have used a considerably longer
period of time to undertake considerably less ambitious prototyping and full scale
implementation.

10.3.2 Revenue cap formula

The German regulation is basically a revenue cap regulation. Each regulatory period
is 5 years and the content of the first two regulatory periods have been detailed,
giving the DSO more long-term forecasts on which to act.

It is also a Totex based regulation, i.e. both operating expenses (Opex) and capital
cost expenses (Capex) are subject to regulation. Capital costs are based on either
book values or standardized costs using replacement values and constant annuity
calculations of yearly cost using life times of different asset groups.

The revenue cap of an individual DSO k in the German regulation in year t is
determined by the formula

Rk.t/ D C knc.t/C .C ktnc.0/C .1�V.t//C kc .0//.
RPI.t/

RPI.0/
�x.t//ExFa.t/CQ.t/
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where Cnc is the cost share that cannot be controlled on a lasting basis (statutory
approval and compensation obligations, concession fees, operating taxes etc.), Ctnc
is the cost share that cannot be controlled on a temporary basis (essentially the
efficient cost level found as the total costs multiplied by the efficiency level, Cc
are the controllable costs, V.t/ is a distribution factor for reducing inefficiencies
(initially set to remove incumbent inefficiency after two regulatory periods, i.e. 10
years), RPI(t) is the retail price index in year t , RPI.0/ is the retail price index
in year 0, and x.t/ is the general productivity development from year 0 to year t
reflecting the cumulative change in the general sectoral productivity factor for year
t of the particular regulatory period relative to the first year of the regulatory period.
Also, ExFa is an expansion factor reflecting the increase in service provision in year
t compared to year 0 and determined as

ExFakj .t/ D 1Cmax.
Lkj .t/ �Lkj .0/

Lkj .0/
; 0/

where Lj .t/ is the volume of load at level j in year t of the particular regulatory
period. The expansion factor for the entire network is the weighted average of all
network levels. Lastly, Q(t) is the increase or decrease in the revenue cap from qual-
ity considerations. Revenue caps may have amounts added to or deducted from them
if operators diverge from required system reliability or efficiency indicators (quality
element). The quality element is left to the discretion of the regulator.

10.3.3 Benchmarking requirements

From a benchmarking perspective, the regulation is remarkable for being explicit
with respect to a series of technical aspects such as cost drivers, estimation tech-
niques, return to scale and outlier criteria.

The Ordinance is specific about a minimal set of cost drivers. Cost drivers such
as connections, areas, circuit length, and peak flow, were obligatory. Of course, this
leaves a series of available alternatives even within these groups and it does not
exclude cost drivers covering other aspects of the service provision.

The German incentive regulation is also explicit as to which estimation tech-
niques to use in benchmarking electricity and gas DSOs and how to combine the
results of multiple models. According to Section 12 of the Ordinance, the efficiency
level for a given DSO is determined as the maximum of four efficiency scores,
EDEA.B/;EDEA.S/; ESFA.B/; and ESFA.S/, where EDEA is the Farrell effi-
ciency, calculated with a NDRS-DEA model, ESFA is the Farrell input efficiency,
calculated using a SFA model, and the argument B denotes book value and S stan-
dardized capital costs. As such, the regulation takes a cautious approach and biases
the decision in favor of the DSOs in case of estimation risk. Entities demonstrating
particularly low efficiency are given the minimum level of 60 percent. In summary,
the efficiency of DSO k is calculated using this equation
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maxfEkDEA.B/;EkDEA.S/; EkSFA.B/;EkSFA.S/; 0:6g
It is worthwhile noting that the Ordinance does not prescribe any bias correction
for the DEA scores, nor does it rely on confidence intervals for the scores, as they
could be calculated in both the DEA model (via boot-strapping) or in the SFA model
(directly from the estimated variances of the noise and inefficiency terms).

The Ordinance is also specific about how to identify outliers. Indeed, it prescribes
two outlier criteria to be tested for each DSO, and if any of them is fulfilled, the DSO
cannot be allowed to affect the efficiency of the other DSOs. The two criteria can
be formalized in the following ways. LetK� D f1; : : : ; Kg be the DSOs is the data
set, and k be a potential outlier. Also, let, E.h;K�/ be the efficiency of h when
all DSO are used to estimate the technology and let E.h;K� n k/ be the efficiency
when DSO k does not enter the estimation.

The first outlier criterion is that a single DSO should not have too large of an im-
pact on the average efficiency. We can evaluate the impact on the average efficiency
by considering P

h2K�nk.E.h;K� n k/� 1/2P
h2K�nk.E.h;K�/ � 1/2

The test compares the average efficiency of the other operators when k cannot affect
the technology as compared to the average efficiency of the other DSOs when the k
is allowed to impact the evaluations. Since E.h;K� n k/ � E.h;K�/, this ratio is
always less than or equal to 1, and the smaller the ratio is, the larger the impact of k,
i.e. small values of the ratio will be an indication that k is an outlier. The asymptotic
distribution of the ratio is F.K � 1;K � 1/.

The second outlier criterion is that no DSO k will be extremely super-efficient
in the sense that

E.i;K� n k/ > q.0:75/C 1:5.q.0:75/� q.0:25//

where q.a/ is the a quantile of the distribution of super-efficiencies, such that e.g.,
q.0:75/ is the super-efficiency value, below which exist 75% of DSOs .

In addition to these outlier rules, the ordinance prescribes the use of common
econometric outlier detection methods like Cook’s distance.

The Ordinance also prescribes the return to scale assumption to be used in the
DEA models of the regulation, namely as a non-decreasing economy of scale, an
IRS technology.

The high level of technical specifications in the German Ordinance is remarkable
and uncommon in an international context. There are several reasons for this. One
is probably that it was considered a way to protect the industry against extreme
outcomes. The cautious approach of specifying a minimal set of cost drivers and of
using the best-of-four approach with an added lower bound of 60% clearly provides
some insurance ex-ante to the DSOs about the outcome of future benchmarking
analyses. The extensive pre-Ordinance analyses and full scale testing of alternative
models and techniques is, of course, also an important pre-requisite. Without such
analyses it would not have been possible to design the regulation in such detail nor
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to engage in qualified discussion with the industry about alternative approaches. It
is worthwhile to note that during the initial analyses leading to the Ordinance, no
information was revealed about the efficiency of individual DSOs. Only the general
level of efficiency and the distributions of efficiencies were public during this phase.

10.3.4 Model development process

The development of a regulatory benchmarking model is a considerable task due to
the diversity of the DSOs involved and the economic consequences that the models
may have. Some of the important steps in the German model development are:

Choice of variable standardizations: Choice of accounting standards, cost allo-
cation rules, in/out of scope rules, assets definitions, operating standards etc. are
necessary to ensure a good data set from DSOs with different internal practices.

Choice of variable aggregations: Choice of aggregation parameters, like interest
and inflation rates, for the calculation of standardized capital costs, and the search
for relevant combined cost drivers, using, for example, engineering models, are nec-
essary to reduce the dimensionality of possibly relevant data.

Initial data cleaning: Data collection is an iterative process where definitions are
likely to be adjusted and refined and where collected data is constantly monitored by
comparing simple KPIs across DSOs and using more advance econometric outlier
detection methods.

Average model specification: To complement expert and engineering model re-
sults, econometric model specification methods are used to investigate which cost
drivers best explain cost and how many cost drivers are necessary.

Frontier model estimations: To determine the relevant DEA and SFA models, they
must be estimated, evaluated and tested on full-scale data sets. The starting point is
the cost drivers derived from the model specification stage, but the role and signifi-
cance of these cost drivers must be examined in the frontier models, and alternative
specifications derived from using alternative substitutes for the cost drivers must be
investigated, taking into account the outlier detecting mechanisms.

Model validation: Extensive second stage analyses are undertaken to see if any
of the more than 200 non-included variables should be included. The second stage
analyses are typically done using graphical inspection, non-parametric (Kruskal-
Wallis) tests for ordinal differences, and truncated regression (Tobit regressions)
for cardinal variables. Using the Kruskal-Wallis method, we tested, for example,
whether there was an impact on 1) year of cost base, 2) the East-West location of
the DSO, and the DSO’s possible involvement in water, district heating, gas, or
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telecommunication activities. Using Tobit regressions, we tested a series of alter-
native variables related to cables, connections and meters, substations and trans-
formers, towers, energies delivered, peak flows, decentralized generation, injection
points, population changes, soil types, height differences, urbanization, areas etc...

It is worthwhile emphasizing, once again, that model development is not a lin-
ear process but rather an iterative one. During the frontier model estimation, for
example, one may identify extreme observations that have resulted from data error
not captured by the initial data cleaning or the econometric analyses and which may
lead to renewed data collection and data corrections. This makes it necessary to redo
most steps in an iterative manner.

The non-linear nature of model development constitutes a particular challenge in
a regulatory setting where the soundness and details of the process must be docu-
mented to allow opposing parties to challenge the regulation in the courtroom.

Also, since corrections of previous steps typically have to repeatedly and since
there is also typically a considerable time pressure in the regulatory setting, it is
important to organize work appropriately. Scripts to support this can be developed
using more advanced software, including R, and are very important and useful for
such purposes since they allow massive recalculations in a short period of time and
document the calculation steps in great detail.

10.3.5 Model choice

The choice of a benchmarking model in a regulatory context is a multiple crite-
ria problem. There are several objectives, which may conflict with one another. To
emphasize this, note at least the following four groups of criteria.

Conceptual: It is important that the model makes conceptual sense both from a
theoretical and a practical point of view. The interpretation must be easy and the
properties of the model must be natural. This contributes to the acceptance of the
model in the industry and provides a safeguard against spurious models developed
through data mining and without much understanding of the industry. More pre-
cisely, this has to do with the choice of outputs that are natural cost drivers and
with functional forms that, for example, have the right return to scale and curvature
properties.

Statistical: It is, of course, also important to discipline the search of a good model
with classical statistical tests. We seek models that have significant parameters of
the right signs and that do not leave a large unexplained variation.

Intuition and experience: Intuition and experience is a less stringent but important
safeguard against false model specifications and the over- or underuse of data to
draw false conclusions. It is important that the models produce results that are not



312 10 Regulation and Contracting

that different from the results one would have found in other countries or related
industries. Of course, in the usage of such criteria, one also the runs the risk of
mistakes. We may screen away extraordinary but true results (Type 1 error) and we
may go for a more common set of results based on false models (Type 2 error). The
criteria must therefore be used with caution. One aspect of this is that one will tend
to be more confident in a specification of inputs and outputs that leads to comparable
results in alternative estimation approaches, e.g., in the DEA and SFA model. The
experiential basis of this is that when we have a bad model, SFA will see a lot of
noise and therefore attribute the deviations from the frontier to noise rather than
inefficiency. Efficiencies will therefore be high. DEA, on the other hand, does not
distinguish noise and inefficiency, so in a DEA estimation, the companies will look
very inefficient. Therefore, results that deviate too drastically in the DEA and SFA
estimations may be a sign that the model is not well specified. However, it should
be emphasized that the aim is not to generate the same results using a DEA and a
SFA estimation. The aim is to find the right model; however, the high correlation
between the DEA and SFA results is an indication that the model specification is
reasonable. Therefore it also becomes an indirect success criterion.

Regulatory and pragmatic: The regulatory and pragmatic criteria perspective calls
for conceptually sound, generally acceptable models as discussed above. Also, the
model will ideally be stable in the sense that it does not generate too much fluctua-
tion in the parameters or efficiency evaluations from one year to the next. Otherwise,
the regulator will lose credibility and the companies will regard the benchmarking
exercise with skepticism. Of course, one will not choose a model simply to make
the regulator’s life easy, so it is important to remember that similar results are also
a sign of a good model specification, cf. the intuitive criteria above. The regula-
tory perspective also comes into the application of the model. If the model were not
good, a high powered incentive scheme, for example, would not be attractive since
it would allocate too much risk to the firms. Lastly, let us mention the trivial but
very important requirement to comply with the specific conditions laid out in the
Ordinance.

Since some of these objectives may conflict we need to make some trade-offs. As
an example, it may be that the Ordinance prescribes a cost driver group that in some
models is not significant. In that case, there will be a conflict between statistical
logic and the law, and we have to make a trade-off in favor of the latter.

Again, the multiple criteria nature of model choice is a particular challenge in
regulation. When we have multiple criteria, they may conflict. This means that there
is no optimal model that dominates all other models. We have to make trade-offs
between different concerns to find a compromise model, to use the language of
multiple criteria decision making. Again, such trade-offs can be challenged.
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10.3.6 Final model

The final German electricity DSO model used the input and outputs shown in Table
10.2.

Table 10.2 German model of electricity DSOs
Input Outputs (cost drivers)
Total costs: yConnections.hs.ms.ns
xTotex or yCables.circuit.hs.share.cor
xTotex.standard yLines.circuit.hs.share.cor

yCables.circuit.ms
yLines.circuit.ms
yNet.length.ns
yPeakload.HSMS.unoccupied.cor
yPeakload.MSNS.unoccupied.cor
yArea.supplied.ns
ySubstations.tot
yDecentral.prod.cap.tot

From an international perspective, this model specification is comparable in
terms of the cost driver coverage included. Regulatory models of electricity DSO
generally have cost drivers related to transport work, capacity provision, and service
provision. We do not have any transport work cost drivers, but this is in accordance
with engineering expectations and is confirmed by both model specification tests
and second stage testing. The number of cost drivers is at the high end of what we
have used elsewhere.

The DEA models were IRS (NDRS) models as prescribed in the Ordinance, and
with the outliers excluded using the two DEA outlier criteria above. In practice, only
the last outlier criterion was really effective.

In the SFA models, we used a normed linear specification where the norming
constant was yConnections.hs.ms.ns. The reason for norming (deflating) the data
was to cope with heteroscedasticity; the absolute excess costs, i.e. the u term, will
increase with the size of the company even if the percentage of extra costs are fixed.
Likewise, the noise term v is expected to have variance that increases with the size
of the DSO. Therefore, the estimated SFA model had the structure

xk

yk1
D b1 C b2

yk2

yk1
C � � � C b11

yk11

yk1
C uk C vk ; k D 1; : : : ; K

where uk is assumed to be truncated normal, vk to be normal, and where yk1 is yCon-
nections.hs.ms.ns. Note that the cost, i.e. multiplying through by yk1 , is assumed to
exhibit constant returns to scale.

We could, of course, have handled the heteroscedasticity problem using a log-
linear specification, but we did not do so to avoid the specifications curvature prob-
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lem ; the output-isoquants in a log-linear specification curve the opposite way than
do usual output-isoquants. This is not surprising since the log-linear model cor-
responds to a Cobb-Douglass model, which is really a production and not a cost
function. Besides, conceptually the normed linear model is easy to interpret.

To supplement the analyses, we made sensitivity evaluations of the impact of
using a normed linear or a log-linear SFA specification and investigated the impact
of using a linear with constant terms which would be more similar to a VRS model.
The end results were insensitive to these model variations.

A summary of the resulting efficiency levels are provided in the Table 10.3 below.

Table 10.3 Final efficiencies in German electricity model

Model Mean Std.Dev. Min #E < 0:6 #E D 1

BestOfTwoTotex 0.898 0.074 0.729 0 40
BestOfTwoTotex.stand. 0.920 0.058 0.795 0 43
BestOfFour 0.922 0.059 0.795 0 49

We see that the resulting efficiency evaluations are high and that with 10 years to
catch-up, the yearly requirements are modest. Of course, the catch-up requirements
will also be evaluated in terms of the cost elements involved, but there are consid-
erable non-benchmarked cost elements, as we will see below, and a relatively large
share of the total costs is Opex.

Although the resulting requirements may seem modest, this is not necessarily a
bad outcome for the regulator. First, it may reflect the fact that the German DSOs are
relatively efficient, and secondly it may facilitate the institutionalization of model-
based regulation. Also, despite the modest estimated average inefficiency of 7.8%,
the economic stakes are still considerable at a national level.

Of course, for most companies the stakes are relatively modest and for individual
consumers, the stakes are very modest indeed. This actually gives a rationale for
central regulation; the individual economic gains are small making it unlikely that
individuals will spend many resources challenging the DSO charges.

10.4 DEA based incentive schemes

We will now turn to some more formal integrations of regulation and benchmarking.
We first consider DEA based yardstick competition and then DEA based procure-
ment auctions.

The basic problem addressed in this line of research is the following: Given a
cross section, a time series or panel information on the multiple inputs and outputs
used by K firms

.xk ; yk/; k D 1; : : : ; K
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what should we ask the firms to do in the future and how should we motivate and
compensate them to do so?

The answer to these questions depends on the organizational context and in par-
ticular on the technological, informational and preferential assumptions of the par-
ties, i.e. the regulator (principal) and firms (agents).

In general, we consider the case where the principal (regulator) faces consider-
able uncertainty about the technology. In a single input multiple output cost setting,
the regulator may know that the cost function is increasing and convex, but other-
wise have no a priori information about the cost structure. In pure moral hazard
models, we also assume that the agents face a similar uncertainty.

The general case also empowers agents to take private actions, which the princi-
pal cannot observe. The action could be to reduce costs or increase the quality of the
work done. This leads to a usual moral hazard problem since the principal and the
agents may conflict as to which actions the agents shall take. The traditional setting
depicts the agents as work averse, tempted to rely on their good luck and to explain
possibly bad performances with unfavorable circumstances. In general, however, it
is simply one way to model the underlying conflicts giving rise to a motivation prob-
lem. The conflict might also be that, for example, the medical staff have diverging
preferences that induce them to work (too) hard, to treat (groups of) patients below
cost and to accommodate requests for multiple treatments .

In some models, we also consider the possibility that the agents have superior
information about the working conditions before contracting with the principal. A
hospital manager may have good information about the primary cost drivers at his
hospital while the Ministry of Health may have little information about what causes
the total bill to increase. This leads to the classical adverse selection problem where
an agent will try to extract information rents by claiming to be under less favorable
conditions.

Below we report some of the key findings in this literature. For simplicity, we
will focus on the single input multiple output case, and interpret the input as a cost
and the technology as described by a cost function. This ”cost function” case is the
situation that most directly resembles the regulatory problems we have discussed.
We note however that similar results are possible for multiple inputs single output
production functions as well as for general multiple inputs multiple outputs cases.

10.4.1 Interests and decisions

One of the basic questions is what the firm can decide and how it makes these
decisions. This raises a series of issues that are dealt with only superficially in the
performance evaluation and incentive literature.

It is common to assume that the principal is risk neutral and that the agent is
either risk averse or risk neutral. The principal’s aim is to minimize the costs of
inducing the agents to take the desired (hidden) actions in the relevant (hidden) cir-
cumstances. An agent’s aim is usually to maximize the utility from payment minus
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the dis-utility form private effort. In the combined moral hazard and adverse selec-
tion models, we usually make a simplifying assumption about the structure of the
agent’s trade-offs between effort and payment. We assume that his aim is to maxi-
mize a weighted sum of profit and slack:

U.yk; Bk/ D u.Bk/� v.y/

Firm k’s utility D Utility from payment � Cost of effort

or more specifically,

U.yk; Bk/ D .Bk � xk/ � �.xk � c.yk//

Firm k’s utility D Profit + �k � Slack

where yk is the outputs produced, Bk is the payment received, and slack is a mea-
sure of the extent to which input utilization xk exceeds the minimal possible c.yk/
and where 1 � �k � 0 is the relative value of slack.

We will rely on such assumptions in most of the results below, but we realize
that, although widely used in the agency literature, they constitute a stylized cari-
cature of intra-organizational decision making and conflict resolution. This is not
satisfactory and is in sharp contrast to the nuanced production description that state-
of-the-art performance evaluation techniques like DEA enables. Moreover, recent
applications have demonstrated that to derive regulation and incentive schemes with
a more sound theoretical basis, we need to know more about what goes on inside
the black box of the firm. Only thus can we study, in more detail, the combined
use of incentive regulation and regulation by rights and obligations that are used in
practice and only in this way can we make valid statements about the speed and
path of improvements that a new performance-based scheme may foster. A recent
idea of rational inefficiency is an attempt to provide a more nuanced view of the
preferences involved in the selection of multiple dimensional production plans and
slack elements. A discussion of this, however, is beyond the scope of the discussion
in this chapter.

10.4.2 Super-efficiency in incentive schemes

One of the first lessons, from the incentive perspective, is that the traditional Far-
rell score is not useful. The Farrell output efficiency F , for example, gives all units
on the relative efficient frontier a score of 1. This severely limits the ability to give
high-powered incentives based on Farrell measures. The Farrell measures can give
incentives to match others but not to surpass the norm and push out the frontier.
Combining this with the multiple dimensional characteristics of the typical DEA
model and thereby with the ability to be special in different ways, the Nash Equilib-
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ria (NE) that can implemented using the Farrell measure will often involve minimal
effort and maximal slack.

Figure 10.3 illustrates this. Here, we assume that the cost to the agents is propor-
tional to the length of the production vectors and that payment is decreasing in the
F score,

F k > F �k ) Bk.F k/ � Bk.F �k/

such that maximal payment is received when a firm is efficient with a score of F D
1. If Firm 1 planned to produce at A and moves from A to C, it would get the
same payment but use less effort. A is therefore not a best response. Next, Firm 2
could move from the planned B to an easier life in D, again reducing private costs
of effort without affecting its payment. This procedure can continue until they both
use minimal effort and receive maximal payment.

Output 1

Output 2

A

BC

D

Max Effort Output

�

�

Fig. 10.3 Nash equilibria under Farrell incentives

This somewhat discouraging outcome can easily be remedied by making the pay-
ment decreasing in the super-efficiency rather than in the usual output efficiency. In
Fig. 10.3, the output-based super efficiency for Firm 1 in A is approximately 0.6,
but if the payment is sufficiently decreasing in F SUP , it would not pay to reduce
the effort. It does not pay to reduce the effort if the marginal reduction in payment
exceeds the marginal decease in the cost of effort.

More generally, using super-efficiency, one can support the implementation of
most plans, even in so-called un-dominated Nash-equilibria.

10.4.3 Incentives with individual noise

Another fundamental result concerns a pure moral hazard context with ex post eval-
uations of the performance of the firms when there is

• Considerable technological uncertainty a priori,
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• Risk averse firms and
• Individual uncertainty (noise) in the firms’ performances.

Technological uncertainty is represented by a large class of a priori possible tech-
nologies, e.g., the set of production functions that are increasing and concave or
the set of functions that are increasing. One can now ask when the DEA frontier is
sufficient to write an optimal contract, i.e. when

B�k D Bk.xk ; yk ; CDEA.� j x�k ; y�k//
Optimal compensation D Bk(Own production, DEA model based on others)

This is the case where optimal relative performance evaluations can be made by
comparing the performance of a given firm against the DEA best practice frontier,
estimated from the performance of the other firms.

It turns out that i) DEA frontiers support optimal contracts when the distribu-
tions of the individual noise terms are exponential or truncated, and that ii) DEA
frontiers, based on large samples, support optimal contracts when noise is mono-
tonic, in the sense that small noise terms are more likely than large noise terms.
Hence, even when we have individual noise elements and not just the structural
uncertainty, which intuitively seems to favor DEA, DEA–based contracts will be
optimal for special distributional assumptions and for general assumptions, if the
sample is sufficiently large.

10.4.4 Incentives with adverse selection

Another set of results concern combined adverse selection and moral hazard prob-
lems with

• Considerable asymmetric information about the technology
• Risk neutral firms,
• Firms seeking to maximize Profit + � Slack utility.

The firms are supposed to have superior technological information. In the extreme
case, they know the underlying true cost function with certainty, while the regulator
only knows the general nature of the cost function. Thus, the regulator may know
that there are fixed unit costs of the different outputs but not the exact unit cost
because it is the firm’s private information. Alternative assumptions may be made
about the information available to the regulator. We may assume, for example, that
the regulator only knows that the cost function is increasing and convex.

The optimal solution in this case depends on whether the actual costs, i.e. the
minimal possible cost plus the slack introduced by the firm, can or cannot be verified
and therefore contracted upon.

If the actual costs x cannot be contracted upon, the optimal solution is to use
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B�k.yk/ D bk C CDEA.yk j x�k ; y�k/
Optimal compensation D Lump sum C DEA cost norm ex ante

The size of the lump sum payment depends on the firm’s alternatives, i.e. its
reservation profit, which in turn depends on profit potentials in other markets or
the surplus from contracting with other regulators, for example, private insurance
companies. One consequence of this result is that a best way to downsize an orga-
nization when there is considerable uncertainty about the cost drivers may be via a
lawn-mowing approach where all product types are downsized by the same amount.
This situation corresponds to a situation where the only ex ante data is the historical
production of the firm in question.

If, instead, we assume that the actual costs of the firm can be contracted upon,
the optimal reimbursement scheme becomes

B�k.xk ; yk/ D bk C xk C �k.CDEA.yk I x�k ; y�k/� xk/

Optimal compensation D Lump sum payment

C Actual costs

C �k. DEA estimated cost savings/

The structure of this payment scheme can be interpreted as a DEA based yardstick
competition model: Using the realized performances of the other firms, the regulator
creates a cost yardstick against which the regulated firm is evaluated. The regulated
firm is allowed to keep a fraction � of its saving compared to the yardstick costs as
his effective compensation. Fig. 10.4 illustrates this reimbursement scheme.
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Fig. 10.4 DEA based yardstick competition

These results provide an incentive rationale for using DEA-based revenue cap
and yardstick competition systems in contexts where the regulator faces consider-
able uncertainty about the underlying cost structure. Note that the performance of
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the other firms can, in both cases, be interpreted as either historical data, as it is
generally used in the revenue cap regulation, or as actual data, as is the idea in the
ex post yardstick regulation regime.

10.4.5 Dynamic incentives

In the previous section, we considered incentives for a single period based on his-
torical or current information. Dynamic cases with multiple periods are more com-
plicated since they give rise to new issues like the

• Possibility to accumulate and use new information from one or more firms,
• Need to avoid the Ratchet effect, i.e. deliberate sub-performance in early periods

to avoid facing too tough standards in the future and
• Possibility of technical progress (or regress).

The structure of the optimal dynamic scheme is similar to the ones developed
above. Thus, the optimal revenue cap for a firm is determined by a DEA-based
yardstick norm. Assuming verifiable actual costs and taking into account the gener-
ation of new information, the Ratchet effect and the possible technical progress, the
optimal scheme becomes

B�k
t .x

k
t ; y

k
t / D bkt C xkt C �k.CDEA.ykt j x�k

1�t ; y�k
1�t /� xkt /

Optimal compensation D Lump sum payment

C Actual costs

C �k. DEA estimated cost savings/

where CDEA.ykt j x�k
1�t ; y�k

1�t / � xkt / is the DEA-based cost norm that uses all the
information from the other firms generated in periods 1 through t . By relying only
on information from the other firms in setting the norm, we avoid the Ratchet effect,
and by relying on all previous performances, we presume that there is no technical
regress.

Of course, the dynamic case can be further extended, e.g. by including incentives
to innovate and to share innovative practices. Also, it could be extended to situations
where the catch-up capacity is somewhat constrained such that immediate catch-up,
as it is assumed here, is avoided.

10.4.6 Bidding incentives

The results summarized above all concern incentives and coordination of activities
in view of realized production plans. The realized production plans may be gener-
ated ex ante or they may be part of a future multiple agent production context.
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An interesting extension of these ideas concerns the possibility of using DEA and
related benchmarking techniques to select the winner of a procurement auction and
the compensation to provide to the winner. The results above can be extended in this
way, although the exercise is non-trivial. The DEA-based auction extends the idea of
a second price auction to a multiple output case where the services (outputs) offered
by the different agents are not the same and where the DEA serves to interpolate a
reasonable second price, even in cases where no other bidder is offering the same
output profile.

10.4.7 Practical application: DSO regulation in Norway

In 2007 the Norwegian regulator for electricity DSOs, the Norwegian Water Re-
sources and Energy Directorate (NVE), moved from an ex ante revenue cap reg-
ulation to a DEA-based yardstick competition regime as it is sketched above with
� D 0:6.

More specifically, the Norwegian revenue cap is determined as

Rk.t/ D 0:4C k.t/C 0:6C kDEA.t � 2/C IAk.t/

where Rk is the revenue cap, C kDEA is the DEA-based cost norm for companies
based on data from year t � 2 and IAk.t/ is the investment addition to take into
account the new investments from year t . The actual costs C k.t/ are calculated as

C k.t/ D .Opexk.t � 2/CQC k.t//
CPI.t/

CPI.t � 2/

C pNLk.t/CDEk.t � 2/C rCapk.t � 2/
whereQC is quality compensation by firm k to consumers as a consequence of lost
load, CPI is the consumer price index, NL is the net-loss, p is the price of power,
DE is depreciation, Cap is the capital basis and r is the interest rate on capital set
by the regulator.

The cost norm C kDEA is calculated in two steps. The main calculation is a DEA
CRS model with 8 cost drivers covering lines, net stations, delivered energy, num-
bers of ordinary and vacation users, forests, snow and coastal climate conditions.
The second stage is a regression-based second stage correction based on border
conditions, decentralized power generation and number of coastal islands in the
concession area.

NVE has internationally been a pioneer in the design of model-based regulation
of electricity DSOs. In 1991, they introduced Rate of Return Regulation (ROR)
and in 1997 they moved to a DEA-based revenue cap regulation that was in place
until the introduction of the yardstick regime in 2007. The movement to a yardstick-
based regime can be seen as a natural next step in the attempt to mimic a competitive
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situation in a natural monopoly industry. Still, the transition from a well-established
revenue cap system required careful planning.

One challenge was to convince the industry that a yardstick regime is less risky
than an ex ante revenue cap system. The latter enables the companies to predict the
future allowed income several years in advance. At first this may seem to be a big
advantage but, since it does not include the cost side (except for the use of a more or
less arbitrary inflation adjustment), it actually does not protect the companys profit,
which should be the main concern for the companies. The yardstick regime offers
more insurance because technological progress and costs are estimated directly us-
ing the newest possible data.

Another challenge was to calibrate the transition to avoid dramatic changes for
any individual firms moving from one benchmarking practice to another.

A third challenge was to enable the firms to close their financial accounts in
due time. This is a general challenge of the yardstick competition, and it is a very
practical, real challenge. A firm’s allowed income for period t can only be calculated
after data from all firms have been collected regarding year t . Assuming that the
firms are able to deliver this information sometime in the middle of year t C 1,
the regulator needs at least half a year to validate data and make the calculations.
This means that the allowed income for year t will only be known in year t C 2.
Therefore, in practice, such regulation often works with a time-lag such that the
cost norm for period t is based on data from period t � 2. This also means that the
difference between an ex ante revenue cap and a yardstick-based regime is reduced;
the latter becomes similar to a revenue cap with annual updating of the cost norms.

The structural properties of the energy industry (firm scale, scope, ownership)
may be more important than the details of the regulatory reimbursement schemes.
At the same time, the incumbent regulatory regime may have an impact on the struc-
tural adjustment, both very directly if the regulators refuse to approve changes in the
structure, and indirectly if the payment plans make socially attractive changes non-
profitable for the individual firms.

A good example of these problems is the question of how to treat mergers. When
payments are correlated with efficiency, the payment plans will tend to discourage
mergers in convex models, though they might lead to more outputs being produced
with fewer inputs. We have already discussed in Chap. 9 how NVE handles this,
by calculating the harmony effect and by compensating a merged firm for the extra
requirements corresponding to this effect. At the same time, mergers will tend to
affect the performance evaluation basis and may lead to more rents to the firms be-
cause the cost norm becomes less demanding by leaving fewer observations in the
dataset. The regulator, who considers allowing a merger, must therefore trade-off
the gains from improved costs to the firms with the losses from a shrinking infor-
mation basis. The latter is the regulatory equivalent of the negative market effects in
a merger case in a non-regulated sector.
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10.5 Summary

Benchmarking can be used to facilitate motivation and contracting. One of the areas
where modern benchmarking techniques like DEA and SFA are widely used for
motivation purposes is in the regulation of natural monopolies like local or regional
electricity and gas distribution systems. In regulatory contexts, the firms generally
have superior information about the cost structures, and benchmarking helps the
regulator to undermine the firms superior information and, thereby, their ability to
extract information rents.

In this chapter, we discussed how different regulations need benchmarking. We
saw that price fixation schemes, like a revenue cap system, need benchmarking at
least once before every regulatory period, i.e. at least once every 3-5 years, to eval-
uate the general productivity developments as well as individual incumbent ineffi-
ciencies that will determine how much cost reduction the regulator can reasonably
request. We also saw that a more advanced regulation like yardstick competition
will need yearly benchmarks to evaluate ex post the reasonable costs of the previous
year. Lastly, we saw that franchise auctions can make use of benchmarking of the
bids to compare different offers across service levels. We also surveyed the systems
used in 15 European countries.

As a more specific example, we covered the regulation of German electricity
distribution systems operators. We saw how the German approach is cautious. It
evaluates every DSO using four different models and relies on the most positive
evaluation in setting the allowed income. We also saw how outlier detection based
on super-efficiency was part of the regulatory set-up, and we covered the many dif-
ferent steps in a regulatory benchmarking model from the choice of variable stan-
dardizations and aggregations, over data cleaning to average model specification,
frontier estimations and extensive second stage analyses with the aim of developing
a model that is conceptually sound, adheres to general statistical principles, com-
plies with intuition and experience, as well as with regulatory requirements while
also taking into account what is feasible and not just desirable. The economic stakes
in a regulatory context may be considerable.

Having covered some practical applications, we turned to part of the theoretical
basis of DEA-based contracting. We showed that DEA-based contracts may be op-
timal in some settings, particularly when there is considerable uncertainty about the
underlying cost functions. With risk neutral firms, a DEA-based yardstick regime
may be the optimal regulation. A specific implementation of this is the new DSO
regulation introduced in Norway since 2007.

10.6 Bibliographic notes

Regulation economics was long considered a fairly uninteresting application of
industrial organization. Early regulatory theory largely ignored incentive and in-
formation issues, drawing heavily on conventional wisdom and industry studies.
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This kind of institutional regulatory economics was challenged in the seventies with
economists such as Friedman, Baumol, Demsetz and Williamson questioning the or-
ganization and succession of natural monopolies. However, the main breakthrough
came in the late eighties with the introduction of information economics and agency
theory. An authoritative reading in the area is Laffont and Tirole (1993). Littlechild
(1983) suggested the price-cap regime, while the idea of yardstick competition goes
back to Lazear and Rosen (1981), Nalebuff and Stiglitz (1983) and Shleifer (1985)
who show conditions for the implementation of first-best solutions for correlated
states of nature. The results carry over, even for imperfectly correlated states of na-
ture Tirole (1988), and as further analyzed using DEA in Bogetoft (1997). Hence,
the comparators do not have to be identical, but the relative difference in the exoge-
nous operating conditions has to be known or estimated. Franchise auctions were
discussed in, among others, Demsetz (1968) and Laffont and Tirole (1993). The
Dutch proposal to let the regulator use benchmarking to put constraints on the ac-
ceptable outcomes but to leave the negotiation to industry partners is described in
Agrell et al (2007).

Key references to the practical combination of benchmarking and regulation are
Agrell and Bogetoft (2001b), Agrell and Bogetoft (2010b) and Coelli et al (2003). A
comparison of regulation in the Nordic countries is provided in Agrell et al (2005a)

Relevant references to the German regulation are Agrell and Bogetoft (2007),
where we describe the pre-regulation analyses of a series of models to guide the final
implementation plan from the regulator as described in Bundesnetzagentur (2007),
which was largely transformed into an Ordinance, Government (2007). The 2008
analyses of a new dataset with the aim to serve in the first regulatory period is
described in the white paper Agrell and Bogetoft (2008) and the results are summa-
rized in Agrell et al (2008).

The connection between DEA and the formal literature on games was first sug-
gested by Banker (1980) and Banker et al (1989). Linkage with the formal perfor-
mance evaluation and motivation literature, most notably the agency theory and re-
lated regulation and mechanism design literature, has subsequently been the subject
of a series of papers including Agrell et al (2002, 2005b), Bogetoft (1994a,b, 1995,
1997, 2000) Bogetoft and Hougaard (2003), Bowlin (1997), Dalen (1996); Dalen
and Gomez-Lobo (1997, 2001), Førsund and Kittelsen (1998), Resende (2001),
Sheriff (2001), Thanassoulis (2000) and Wunsch (1995). DEA-based auctions were
suggested and analyzed in Bogetoft and Nielsen (2008).

The benchmarking model used in the Norwegian yardstick regulation was first
developed in Agrell and Bogetoft (2004). The 2010 version of the regulation is
summarized in Langset (2009)



Appendix A
Getting Started with R: A Quick Introduction

A.1 Introduction

Throughout this book, we use R to perform our calculations and applications. R is a
free software environment for data analysis and graphics. R is a scripting language
that provides a degree of control that a menu-based system cannot readily provide.
In R, a user can easily apply an output from a function or method as an input for
a subsequent function or method, and, therefore, it is always possible to perform
further calculations with the results of a benchmark function or statistical analysis.

In R, it is easy to combine existing methods and write new methods that can
simplify an analysis and can be shared with other users. These features have made it
possible for users to write functions that solve all of the benchmarking problems in
this book. These functions were then added to a documented add-on package called
Benchmarking, which is freely available for others to use.

This chapter is not an introduction to all of R, but to the selected parts of R
that we use in the book. For further introductions, see An Introduction to R, which

Moreover, many introductions to R also serve as introductions to statistics, for ex-
ample Dalgaard (2002). The A Beginners Guide to R (Zuur et al, 2009) is a detailed
introduction to the everyday use of R that contains more than enough information
for a new user to successfully implement the methods in this book.

A.2 Getting and installing R

Download the newest version of R from www.r-project.org. Manuals and
other materials are also available on this website.

the page, below Download, Packages.
2. In the list of CRAN mirrors click on the one nearest you.
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3. Click on your operating system under Download and Install R.
4. The next step depends on the selected operating system. In any case, choose and

download the latest binary version, which is almost 40 MB.
Windows users should choose base and then Download R 2.11.1 for
Windows, which is the version number at the time of writing. It is also possible
to choose the version r-patched snapshot build, which includes the
latest bug fixes, patches.

5. Download and run the file to install R. This step depends on each operating
system’s standards.

Once R is installed, it can be used.

A.3 An introductory R session

Start R, and a console windows in which you can write individual commands on the
lines. R uses “>” to prompt for an input, a new command and “C” to prompt for a
continued line with input. When a user enters a number into R, R writes the number
back on the console. When a user writes an expression, R calculates the result and
writes in on the console. It is also possible to assign values to variables with the
assignment operator.,“<-”:

> 3
[1] 3
> 3 + 5
[1] 8
> 2 * (3 + 5)
[1] 16
> a <- 3
> A <- 10
> b <- 5
> a + b
[1] 8
> A + b
[1] 15

It should be noted that the variables a and A are different, that is, R distinguishes
between lower and upper cases in all kinds of variables. Variables can also be vectors
or arrays. They can also be constructed by concatenation with the operator c and
used in calculations:

> x <- c(1, 3, 6, 8)
[1] 1 3 6 8
> y <- c(99, 3, 67, 103)
[1] 99 3 67 103
> x + y
[1] 100 6 73 111
> x + 10
[1] 11 13 16 18
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> xx <- c(x, x)
[1] 1 3 6 8 1 3 6 8
> xx + y
[1] 100 6 73 111 100 6 73 111
> z <- c(1, 2, 3)
[1] 1 2 3

> z + y
[1] 100 5 70 104
Warning message:
In z + y : longer object length is not a multiple of

shorter object length

Users can add arrays and can also add scalars to arrays. When a user adds arrays
of different lengths, R recycles the shortest, but, as the above example shows, it
provides a warning if the longer array is not a multiple of the shorter.

There is no end to the possible uses for concatenation and assignment.
> z1 <- c(x, 0, x)
[1] 1 3 6 8 0 1 3 6 8
> z2 <- c(x, y)
[1] 1 3 6 8 99 3 67 103

The result of concatenation is a long, one-dimensional array.
Data can be organized into a named list of variables, which is called a data frame

in R. The function to create a data frame is data.frame.
> xyDat <- data.frame(x,y, digits=c(1,2,3,4),
+ numb=c("one","two","three","four"))
> xyDat

x y digits numb
1 1 99 1 one
2 3 3 2 two
3 6 67 3 three
4 8 103 4 four

It should be noted that the variables (i.e., the columns in the data frame) are given
(new) names with = in the data.frame.

R can read data from a file and save them into a data frame. For instance, the data
in the file smallData.txt with the following contents

labor output industry
100 75 manufact
200 100 manufact
300 300 service
500 400 agricult

can be stored in the data frame d with the R commands
> d <- read.table("smallData.txt", header = TRUE)
> d

labor output industry
1 100 75 manufact
2 200 100 manufact
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3 300 300 service
4 500 400 agricult
> names(d)
[1] "labor" "output" "industry"
> d$labor
[1] 100 200 300 500

where header=TRUE says that the first line contains the variable names. Further-
more, d$labor refers to the variable labor, which is the component labor, in
the data frame d. The subsection A.5 presents several other methods for reading
data.

As can be seen from above, data are not limited to numerical data; they can in-

In R, such variables are called factors and are often useful for comparing or defining
groups in a benchmark analysis. For the data above, we can treat industry as a
factor. This factor, industry, has three levels - the three different factor values -
which are confirmed when the variable is printed and when the function levels
retrieves the levels.

> d$industry
[1] manufact manufact service agricult
Levels: agricult manufact service
> levels(d$industry)
[1] "agricult" "manufact" "service"
An index can be used to reference a specific part of a dataset, array, or matrix.

Indices are given in brackets. For example,
> d[3, 2]
[1] 300
> d[2, ]

labor output industry
2 200 100 manufact
> d$labor[2]
[1] 200

If one index is left out, the whole row or column is returned.
Matrix calculations are often useful in benchmarking. Numerical data can be

transferred into a matrix, to which all the known matrix functions apply. Categorical
values (i.e., factors), like string values, can also be part of a matrix, but in this case
the numerical matrix methods do not apply.

Several arrays of the same length can be turned into a matrix, as can a long
array:

> x <- 1:6
[1] 1 2 3 4 5 6
> X <- matrix(x, ncol = 2)

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
> Y <- matrix(c(11:16, 21, 22, 29), nrow = 3)

clude categorical data, such as strings of names or indications of data subcategories.
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[,1] [,2] [,3]
[1,] 11 14 21
[2,] 12 15 22
[3,] 13 16 29

[,1] [,2] [,3]
[1,] 11 12 13
[2,] 14 15 16
[3,] 21 22 23

It should be noted that 1:6 is shorthand for all the numbers from the first to the last
value (i.e., from 1 to 6). The option byrow=T denotes that the data for the matrix
should be filled by rows.

Matrices can also be created by combining columns and rows, respectively. For
example,

> cbind(d$output, d$labor)
[,1] [,2]

[1,] 75 100
[2,] 100 200
[3,] 300 300
[4,] 400 500
> rbind(output = d$output, newName = d$labor)

[,1] [,2] [,3] [,4]
output 75 100 300 400
newName 100 200 300 500

The results can be assigned to variables by the assignment operator “<-”, which can
also give the columns and rows names.

The inverse of a matrix can be found as
> solve(Y)

[,1] [,2] [,3]
[1,] -4.6111111 3.8888889 0.3888889
[2,] 3.4444444 -2.5555556 -0.5555556
[3,] 0.1666667 -0.3333333 0.1666667

For data in matrices, all the standard matrix operations are available, for example,
%*% for matrix multiplication. It should be noted that if A and B are matrices, then
A*B is an element according to element multiplication and A%*%B is a matrix mul-
tiplication (i.e., the inner product of matrices), as can be seen from the following

> Y * solve(Y)
[,1] [,2] [,3]

[1,] -50.722222 54.444444 8.166667
[2,] 41.333333 -38.333333 -12.222222
[3,] 2.166667 -5.333333 4.833333
> Y %*% solve(Y)

[,1] [,2] [,3]
[1,] 1.000000e+00 -9.381385e-15 -1.082467e-15
[2,] 8.382184e-15 1.000000e+00 -5.551115e-17
[3,] 4.468648e-15 -1.831868e-15 1.000000e+00

> Z <- matrix(c(11:16, 21, 22, 23), ncol = 3, byrow = T)
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where the non-zero values of the diagonal elements in the last matrix are due to
round-off errors in the calculations in R, which is one example of R’s precision.

Many other functions for matrices exist in R, but it is important to note that R
often offers a better, faster and more efficient method or function to handle a specific
problem than the calculations in a series of matrix operations do. For example, R
does not use solve(t(X)%*%X)%*%t(X)%*%y to obtain the parameters for a
linear regression; instead, it uses the method lm(y�X) for linear regression mod-
els. Most of these specific methods have a functionality to obtain frequently used,
derived variables.

The result of an evaluated expression, whether a simple expression or the result
of a function or method, is either printed on the screen (output file) or assigned to a
variable, as in the following example.

> matrix(1:6, nrow = 2)
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6
> x <- matrix(1:6, nrow = 2)
> x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

The result of executing the variable is a print-out of the variable’s contents. If the
variable is the result of a function, like dea or sfa, then the variable or object
might contain more information than what is printed. The user may access the other
parts of the object may be accessed with a method or a component.

The function dea in the add-on package Benchmarking produces a list of vari-
ables (for more on packages, see Sect. A.3.1). In the following commands, we show
the first four variables (names) in the object e and access the component eff both
with a function and direct access.

> library(Benchmarking)
> x <- matrix(c(10, 20, 30, 50), ncol = 1)
> y <- matrix(c(7, 10, 30, 40), ncol = 1)
> e <- dea(x, y)
> names(e)[1:4]
[1] "eff" "lambda" "objval" "RTS"
> eff(e)

E
[1,] 1.0000000
[2,] 0.6304348
[3,] 1.0000000
[4,] 1.0000000
> e$eff
[1] 1.0000000 0.6304348 1.0000000 1.0000000

Many functions in R produce structures or lists defined by components, and the
online-help gives information on accessing the different parts.

R performs impressively on graphics. For example:
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> plot(sort(rnorm(10)))
> plot(sort(rnorm(10)), type = "l")
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. The function rnorm(10) assigns 10 random, standard, normally distributed val-
ues; the function plot makes a plot; and the sort sorts the values.

The default plotting method is with points, but the option type="l" creates a
line instead. Most introductions to R contain a description of the plotting meth-
ods and explain how to annotate a plot. Adding points or lines to a plot uses
points, lines, and abline. There are many specialized plot functions. We
use dea.plot to plot technology sets, which can almost always be combined with
the standard plot options for line type, plotting character and size, and annotations
(see the documentation for dea.plot in the manual for package Bechmarking).

Online help and documentation for a method, function, or package can be
found with either help("name") or ?name. These methods only provide docu-
mentation for loaded packages. For unspecified information, the ??efficiency
searches for anything with efficiency installed but not necessarily in loaded pack-
ages.

To quit the R program, use the command
> q()

and select “no” in response to the prompt to save the workspace. It is of course also
possible to exit from the menu in the graphical user interface.

A.3.1 Packages

Not everything can be done in basic R, but, with add-on packages, almost every-
thing can. Users can find and download new packages from CRAN, which can be
accessed via the link on R’s homepage. For most users, it is probably easier to install
new packages in an R session, while connected to the Internet, using a submenu un-
der the Package menu. Installed packages can be kept up to date with the function
update.packages(), or, perhaps more easily, with the use of a submenu under
the Package menu. Of course, this menu can only be used when the computer is
connected to the Internet.
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Once a package is installed, it is saved to the computer’s hard-disk. However,
a package also has to be loaded to be used in a given R session, which can be
performed with the method library. For example:

> library(Benchmarking)
to load the installed package Benchmarking. In Windows and OS X, this task
can also be performed from the menu Packages, Load packages . . . . A user should
load the packages he wishes to use for each new R session.

A.3.2 Scripts

Scripts are R commands that are collected in a file so that the user can run them at a
later date without having to re-type the commands into the console window. A script
file is a pure text file, without any formation, that can be opened, edited, and saved
from within R. It is a good idea for users to take advantage of scripts, especially
those who do not plan to use R every day; they should keep old scripts that can be
used as a starting point for new scripts on new projects.

A.3.3 Files in R

Several kind of files that are relevant to R; here, we list those related to commands
and data, which are available under the File menu.

Script Opens a window with a file whose contents can be executed by the menu
Edit, Run line or by selection with a right mouse click or Ctrl+R in OS X.
Changes to a script must be saved via the menu File, Save or by Ctrl+S.

Workspace Saves variables and functions in a binary file that only R can read. The
commands themselves are not saved.

History Saves all the executed commands, even the faulty ones, but not the corre-
sponding output. It can be edited by any text editor, saved as a text-file, and then
opened as a script file. This file offers a way for users to make new scripts after
having found the right commands.

Using Word to edit R files is not recommended, but if you do be sure to save the file
a pure text file without any Word formatting, which R treats as errors.

The graphical window can be saved with a right click on the mouse or, when the
graphical window is the chosen window, via the menu File and Save As. Of the
many available graphical formats, encapsulated PostScript is suitable for LATEX, and
png is suitable for Word.
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A.4 Changing the appearance of graphs

As mentioned, the function plot plots points by default. To plot lines, add the
option type=’’l’’. To add further lines or points to an existing graph, use the
function lines or points. The function abline adds one or more straight lines
to the current plot.

The following options are available for the plot and the other graph functions:

lty Line type, either integer or string: 1: solid (default), 2: dashed, 3: dotted, 4:
dotdash, 5: longdash, 6: twodash; use lty=2 or lty="dashed".

lwd Width of line, default is 1.0.
pch Plotting symbol, a number from 1 to 25; use pch=16
cex The relative size of text and plotting symbols, the default is 1.0.
main The title of the plot, main="Heading"
xlab Label for the x axis, xlab="Label for x axis"
ylab Label for the y axis, ylab="Label for y axis"
col Specify plotting color (see documentation or the function colors())

R offers many other possibilities to control graphing and graph appearance (see the
documentation for plot and par).

A.5 Reading data into R

Users can transfer data into R using various formats. In Windows, the package
xlsReadWrite can be used to read Excel files directly; the method is read.xls.
An alternative for all operating systems when data is a csv file or can be saved as
one via Excel is the method read.csv,. Of course, the method read.table can
read ordinary numbers and text in a matrix or table in an ascii file.

The data are read and put into a data frame d with the commands

d <- read.table("filename")
d <- read.csv("filename")

For all the readingmethods, there is an option header—colNames in read.xls,
which indicates whether the file contains the names of the variables in its first line.
When the first line lists the variable names, header=TRUE should be performed;
users do not have to do so for read.csv because it is the default. The meth-
ods offer a series of other options that users can peruse by executing the command
?read.csv, ?read.table, or ?read.xls.
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A.5.1 Reading data from Excel

Data from an Excel file can be read into R using either the clipboard, a special
function for xls files, or a csv file.

To use the clipboard, Excel must be open. Choose the data and make a copy; the
data can then can be read into R by

read.table("clipboard",header=TRUE)

.
The package xlsReadWrite can read directly from an Excel file, even if Excel

is not open:

library(xlsReadWrite)
dat <- read.xls("filename.xls",sheet="data")

The first line in the Excel file should be a row of names; if it is not, the option
colNames=FALSE should be used.

R can also read data from a csv file. In Excel, save the file as a csv file and read
it into R with the command read.csv.

A.6 Benchmarking methods

Table A.1 lists many of the methods used in this book that are available in the pack-
age Benchmarking. The table only lists the main options for the methods; the re-
maining options and their descriptions are available in the R documentation for this
method.

A.7 A first R script for benchmarking

The following section presents an example of a small script for performing a bench-
mark analysis with a small data set. The main chapters discuss all the functions in
detail, especially Chapts. 4 and 5.

library(Benchmarking)
# Get the data, normally read from a file
x <- matrix(c(100,200,300,500,100,600),ncol=1)
y <- matrix(c( 75,100,300,400, 50,400),ncol=1)

# Plot of different technologies with a title
dea.plot(x,y, txt=1:dim(x)[1],main="Basic plot of frontier")

dea.plot(x,y,RTS="crs",add=TRUE,lty="dashed")
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Table A.1 Methods and main options in Benchmarking

Method Description

dea Calculates Farrell efficiency; the most important options are
shown below

sdea Super-efficiency, uses dea above

dea.plot General plot of technology for 2 goods

dea.plot.isoquant Plot technology for 2 inputs, isoquant—implicitly assumes that
outputs are the same for all firms

dea.plot.frontier Plots technology for 1 input and 1 output

dea.dual Calculates efficiency and handles dual restrictions

make.merge Calculates aggregation matrices and aggregate input and output
matrices

dea.merge Calculates efficiencies related to merger analysis

dea.boot Bootstrap of DEA models, not available; use boot.sw98 from
the package FEAR

sfa SFA, input and output as matrices

Main options
with defaults Description

X Input where efficiency is to be calculated; a K �m matrix of
observations ofK firms withm inputs

Y Output where efficiency is to be calculated; aK � n matrix of
observations ofK firms with n outputs

RTS=”vrs” Returns to scale assumption, fdh, vrs, drs, crs, irs, add

ORIENTATION=”in” Input, output og graph oriented efficiency; ’in’, ’out’, or ’graph’

Note: The options depends on the method; the main options for most of the methods are given
above. Each method has further options for its specialization; for details, see the online documen-
tation.

# Calculate efficiency,
dea(x,y, RTS="crs", ORIENTATION="in")
e <- dea(x,y, RTS="vrs", ORIENTATION="in")
e
# Show the peers
peers(e)
# Show the weights for the peers
lambda(e)

# Calculate how much input could be saved if all firms were
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# efficient, per firm
sav <- (1-e$eff)*x
sav
# and for all firms aggregated
sum(sav)
# The percentage that could be saved
100 * sum(sav)/sum(x)

# Taking care of slacks
# Phase one: ordinary dea
e <- dea(x,y)
# Phase two: calculate slacks
sl <- slack(x,y,e)
data.frame(eff(e),eff(sl),sl$slack,sl$sx,sl$sy,lambda(sl))

peers(e)
peers(sl)

# The two phases in one function call
e2 <- dea(x,y,SLACK=TRUE)
print(e2)
data.frame(eff(e2),e2$slack,e2$sx,e2$sy,lambda(e2))
peers(e2)

A.8 Other packages for benchmarking in R

The following table lists of some of the relevant methods in packages for efficiency
analysis that are available in R. This section only presents methods for handling the
problems that are mentioned in the main text; the packages include more methods
than are mentioned here.

FEAR

The FEAR package by Wilson (2008) is fast and easy to use. The interface that
is used for methods in Benchmarking is, approximately, an expanded version of
the FEAR package’s interface. The package is not freely available in R but can
be acquired from the author via the website, http://www.clemson.edu/
economics/faculty/wilson/Software/FEAR/fear.html. It is only
available for Windows and Linux. The efficiencies in FEAR are Shephard distance
functions, not the Farrell efficiencies that we use most frequently in this book. How-
ever, Farrell efficiencies can be easily generated via 1/FEAR::dea(X,Y). FEAR
does not provide peers for units or dual values. The source code is not available,
and therefore it is not possible to make corrections for missing methods. Input is in

http://www.clemson.edu
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Table A.2 Other packages and methods

FEAR Frontier Efficiency Analysis with R

dea Compute Shephard DEA efficiency estimates; only VRS, DRS,
and CRS

fdh Compute Shephard FDH efficiency estimates

boot.sw98 Homogeneous bootstrap for Shephard distance Functions

ap Outlier detection for non-parametric frontier models

ap.plot Produce log-ratio plot for outlier analysis

malmquist Malmquist productivity indices

frontier Stochastic Frontier Analysis based on Tim Coelli’s program
Frontier 4.1

sfa Maximum likelihood estimation of stochastic frontier production
and cost functions

the dimension firm � good, which is transposed compared to the ordinary use in R.
Therefore, it the data are in a data frame, then the input and output matrices must be
transposed after they are selected from the data frame.

To use FEAR and Benchmarking in the same R session, it is necessary to
use the packagename plus “::” as a prefix for the function dea. If FEAR is
loaded first, the FEAR::dea should be used; if Benchmarking is loaded first, the
Benchmarking::dea should be used. The other functions are not influenced.

frontier

This package is based on Tim Coelli’s program Frontier 4.1, which was written in
Fortran. Unfortunately, the program seems to use a substandard optimization routine
by todays standard because it occasionally fails or provides the wrong parameters
for problems that better optimization routines would deal with successfully. The
parameterization is different from the method that we use, and therefore some of
the parameters and the calculations of variance components differ. A good quality
interface corresponding to the interface for the linear models, lm and glm, is avail-
able and makes it possible to specify a linear component for the efficiency part. The
methods can handle panel data.

To use frontier and Benchmarking in the same R session, the same “::” procedure
should be implemented for the function sfa in the frontier package, as mentioned
above for the package FEAR.
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A.9 Bibliographic notes

Further documentation on R can be found in the manual section on the R homepage
http://www.r-project.org. An Introduction to R is a good way to start; we
advise skimming through the first section: Introduction and Preliminaries. Several
books, such as A Beginner’s Guide to R (Use R) (Zuur et al, 2009) deal with al-
most the same subjects as the Introduction to R but in more details. Furthermore,
several books offer an introduction to R and statistics, such as Dalgaard, Introduc-
tory Statistics with R, 2nd edition 2008 Dalgaard (2002) and the more advanced
Venables and Ripley (1999), which is available in many editions. Further informa-
tion on data manipulations, reading, databases, dates, factors, and reshaping data is
available in Spector (2008). Other books introduce specialized areas of R, such as
data manipulation, non-linear regression, and econometrics.

A complete survey of graphics in R is available in Murrell (2006), but it is not an
introduction to this subject.

http://www.r-project.org
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Brännlund R, Chung Y, Färe R, Grosskopf S (1998) Emissions Trading and Profitability: The
Swedish Pulp and Paper Industry. Environmental and Resource Economics 12:345–356

Bundesnetzagentur (2007) Bericht der bundesnetzagentur nach § 112a enwg zur einführung der
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Färe R, Primont D (1995) Multi-Output Production and Duality: Theory and Applications. Kluwer

Academic Publishers, Boston

benchmarker.html

http://advice.cuna.org/cu_


References 343

Färe R, Grosskopf S, Lovell CAK (1985) The Measurement of Efficiency of Production. Kluwer
Nijhoff Publishing
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