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c©2006 Birkhäuser Boston
All rights reserved. This work may not be translated or copied in whole or in part without the writ-
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Preface

This edited volume contains a selection of chapters that are an outgrowth of
the 10th International Symposium on Dynamic Games organized by the ISDG,
in St. Petersburg, Russia, in July 2002, with a few additional contributed chap-
ters. These fully reviewed chapters present an outlook of the current develop-
ment of the theory of dynamic games and its applications to various domains, in
particular, energy and the environment, economics, and management science.

It is now well established that the paradigms of dynamic games play an impor-
tant role in the development of multi-agent models in engineering, economics,
and management science. The ability of the concepts in providing insight for
difficult real-life decision problems stems from their capacity to encompass sit-
uations with uncertainty, incomplete information, fluctuating coalition struc-
ture, and coupled constraints imposed on the strategies of all the players. The
twenty-one chapters grouped in the six parts that constitute this volume cover
these different aspects of modern dynamic game theory.

While the foundations of discrete dynamic game theory were laid down by
L. Shapley and D. Blackwell, the continuous case in the form of differential
games was initiated by R. Isaacs in the USA and by L.S. Pontryagin in Rus-
sia. Almost all of their efforts were directed towards the study of zero-sum
two-person games. Since the seminal papers by J. Case and A.W. Starr and
Yu chi Ho on nonzero-sum, m-player differential games, numerous applications
to management science, and economics have been presented, particularly in
the previous volumes of the Annals of the ISDG series. In this volume several
problems pertaining to pursuit-evasion, marketing, finance, climate and envi-
ronmental economics, resource exploitation, and auditing and tax evasions are
addressed using dynamic game models of various sorts. The volume also includes
some chapters on cooperative games, which are increasingly drawing dynamic
approaches to their classic solutions. The contributions are grouped in six parts.

Part I deals with zero-sum game theory and contains three chapters.

Rosenberg, Solan, and Vieille consider zero-sum stochastic games where play-
ers do not observe the progress of the game fully but only in bits and pieces. The
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key theorem is to show the existence of max-min and min-max for all zero-sum
stochastic games with imperfect monitoring which extends an earlier work of
Coulomb for imperfect monitoring zero-sum stochastic games with all but one
state absorbing. The zero-sum assumption is crucial, as a slight deviation from
imperfection for nonzero-sum stochastic games may fail to give any equilibrium
payoff.

Kumkov and Patsko consider a zero-sum linear differential game with fixed
terminal time. Given two sets A and B, the set A

∗
− B = {x : B + x ⊆ A}.

The set A is swept by the set B if A = B + (A
∗
− B). For any constant c,

the level set of a real-valued function f is the set Mc = {x : f(x) ≤ c}. The
function f is said to have the level sweeping property if for any c < d the
set Md is swept by the set Mc. The main result of the work is the proof of
the fact that if the payoff function depends on just two components of the
phase vector and also possesses the level sweeping property, then so does the
value function for the linear differential games. Such an inheritance of the level
sweeping property by the value function is specific for the case when the payoff
function depends on two components of the phase vector under very general
regularity conditions for such differential games. If it depends on three or more
components of the phase vector, this inheritance is generally lost. The latter is
shown by a counterexample.

Serov considers the game of the generalized shortest path problem, where the
task is to transit optimally from a fixed point through a system of intermediate
sets in Rd to a fixed destination point (or set), with the condition that no
point of the sets visited is visited again. The (combinatorial) cost to minimize
is assumed additive or bottleneck. It becomes a zero-sum dynamic game when,
say, player II decides to choose the order of the sets to visit or to terminate
at each stage while player I chooses a point of the set to be visited. For this
multistage game problem both open-loop and feedback settings are suggested.
The feedback problem is posed in the class of feedback strategies and these
strategies can change a route during a motion, depending on current moves of
the opponent. They provide, in general, a strictly better value of the problem
compared to the open-loop minimax setting. The author shows how to construct
an optimal feedback minimax strategy, and some heuristics are also proposed.

Part II is concerned with pursuit-evasion games. It contains three chap-
ters that address the now classical problems of pursuit-evasion and the related
domain of zero-sum differential games.

Shinar and Glizer take up the problem of pursuit-evasion where the pursuer’s
information about the evader’s lateral acceleration is delayed. The pursuer needs
to estimate this, essentially based on the available measurement history during
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this delay period. This approach reduces the uncertainty set of the pursuer, due
to the estimation delay, by considering in addition to the current (pure feed-
back) measurements also the available measurement history during the period
of the estimation delay. The reduced uncertainty set is computed by solving two
auxiliary optimization problems. By using the center of the new uncertainty
set’s convex hull as a new state variable, the original game is transformed into
a nonlinear delayed dynamics game with perfect information for both players.
The solution of this new game is obtained in pure strategies for the pursuer
and mixed ones for the evader. The value of this game (the guaranteed miss
distance) is substantially less than the one obtained in previous works by using
only the current measurements.

Chikrii extends the well-known Pontryagin sufficiency conditions of capture
in ordinary differential games to game problems for systems with fractional
derivatives of arbitrary order. These are games with evolution described by
equations with fractional derivatives, one for each player. Here player II strives
for the state variables to get closer to the state variables of the opponent to
within a specified distance. Player I wants them as far away as possible.

Petrov and Vagin study the problem of group pursuits and evasion. They pro-
vide necessary conditions for the capture of several evaders in a group pursuit
problem, where all evaders use the same control. Necessary conditions for cap-
ture in such a group pursuit problem are also obtained for a special case called
“soft” capture.

Part III contains four chapters concerned with games of coalitions.

Petrosjan introduces the notion of an n-person cooperative stochastic game.
The Shapley value for cooperative n-person transferable utility (TU) games and
the value in stationary strategies for zero-sum two person discounted stochas-
tic games are central to the study of cooperative games and dynamic games,
respectively. Petrosjan combines these two distinct value concepts: Players in a
given coalition S might join together and play the game as though the rest are
against them and treat this game as a zero-sum stochastic game. This game has
a value and this induced value can be taken to be the worth of the coalition.
This in turn determines its Shapley value. The subtree of cooperative trajecto-
ries maximizing the sum of expected players’ payoffs is defined and the solution
of the game along the paths of this tree is investigated. The new notion of coop-
erative payoff distribution procedure (CPDP) is introduced to show that the
resultant Shapley value constructed is time consistent.

Funaki and Yamato study the problem of consistency for the core as the solu-
tion of a cooperative game with transferable utility. While one can have many
reduced games using the same solution, not every one is capable of inherit-
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ing the solution for the reduced game. While an earlier characterization used a
specific reduced game and used three axioms on this reduced game that char-
acterized the core of a balanced game, here the authors provide a new set of
four axioms to characterize the core via a new reduced game.

Scheffran proposes a framework for analyzing the interaction between indi-
vidual players (actors) and collective players (coalitions) who mutually adapt
the allocation of investment to their values and each other’s decisions. The
dynamic process of coalition formation is described by a coupled evolutionary
game of allocation controls. An application to analyzing the management of
energy and carbon emissions is discussed in some detail.

Raghavan and Sudhölter survey the geometric and algorithmic aspects of solu-
tions, like the core and the nucleolus. While a cooperative TU game in general
is defined by its characteristic function, some special classes of cooperative TU
games are easily determined by a small amount of data. Assignment games
belong to this category. They are models of two-sided markets. Players on one
side, called sellers, supply exactly one unit of some indivisible good, say, a house
in exchange for money, with players from the other side, called buyers. Each
buyer has a demand for exactly one house. When a transaction between a seller
and a buyer takes place, a certain profit accrues. The worth of any coalition is
given by the total profit of an optimal assignment of players within the coali-
tion. Therefore, the characteristic function is fully determined by the profits of
the buyer-seller pairs. They study conditions for the core to be a stable set in
the sense of von Neumann and Morgenstern. Another solution, called the mod-
iclus, is a spin-off from the notion of nucleolus, taking into account the jealousy
between coalitions for any given payoff configuration. Unlike the nucleolus, the
modiclus is not in general a core element even when the core exists. However,
from a computational point of view, when the modiclus is in the core one has
hopes of computing the modiclus efficiently.

Part IV, which discusses new concepts of equilibrium, is composed of three
chapters proposing new interpretations of the interdependence between different
members of a social group.

Vasin shows that “natural” evolution of behavior in repeated games in human
populations is a very unstable process which may be easily manipulated by
outside forces. Any feasible and individually rational payoff of the game may
be converted into a globally stable outcome by arbitrary small perturbation of
the payoff functions in the repeated game. He shows that this result also holds
for a trembling-hand perturbation of the game, and proves a new version of the
Folk theorem for this case.

Morgan and Patrone study the Stackelberg equilibrium, which can be thought
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of as a subgame perfect equilibium in an extensive game when the leader makes
the first move in the leader-follower games. The problems here often stem from
the nonuniqueness of the best reply and the differences between weak and strong
Stackelberg equilibria. In particular, the authors study Tikhonov regularization
methods for seeking the so called weak or strong lower Stackelberg equilibria.

Hidano and Muto study the philosophical problem: What triggers two selfish
individuals to unite? They treat this as a two-stage decision process, namely to
unite or not to unite as the first-stage decision and in case one of the players
prefers not to unite, then their aims are simply to maximize their individual
utility levels. If they both choose to unite, then they both equally enjoy the max-
imum utility given by max{h(s, t) | (s, t) ∈ R}. The authors discuss subgame
perfect equilibria of the game in order to make clear under what conditions dif-
ferent selves unite. Since they have symmetric utility, symmetric equilibria are
natural topics to be studied.

In Part V four chapters address original applications to energy/environment
economics.

Kryazhimskii, Nikonov, and Minullin develop an explicit algorithm to approx-
imate Nash equilibria for an earlier model of one of the authors on nonzero-sum
games of timing for building gas pipelines. In the energy market, say for build-
ing gas pipelines, if there are no competitors, then any monopolistic pipeline
builder can concentrate on the right time to stop construction and venture into
supply that will maximize the rate of return on the initial investments on con-
structing pipelines. If there are no competitors, then when to start commer-
cialization (stop construction) is often an optimal control problem. But with
a competitor it is no longer an optimal control problem. These are games of
timing, specifically nonzero-sum games. The Nash equilibria for these games of
timing can be approximated. The key point in their approach is based on the
observation that the best response commercialization times for all players con-
centrate at two time points, one corresponding to a fast investment policy and
another corresponding to a slow investment policy.

McKelvey and Golubtsov study the dynamic fishery harvesting game in a
stochastic environment, in order to examine the implications of incomplete and
asymmetric information. The main emphasis is on a split-stream version of the
game: At the beginning of each harvest season the initial fish stock (or recruit-
ment) divides into two streams, each one accessible to harvest by just one of
the two competing fishing fleets. The fleets simultaneously harvest down their
streams, achieving net seasonal payoffs for the catch. After harvest, the resid-
ual sub-stocks reunite to form the brood-stock for the subsequent generation.
The strength of this subsequent generation is determined by a specified stock-
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recruitment relation, and the cycle repeats. In this cyclic process, both natu-
ral environmental factors (stream-split proportions and stock-recruitment rela-
tion) and economic factors (harvest costs and benefits) incorporate Markovian
stochastic elements. The implications of alternative knowledge structures are
explored through dynamic programming and simulation.

Haurie, Moresino, and Viguier propose a two-level hierarchical differential
game to represent the possible negotiations of GHG emissions quotas among
different nations in a post-Kyoto era. The players are countries with growing
economies. The quotas are determined noncooperatively but are globally con-
strained to satisfy a long-term limit on the discounted cumulative emissions.
Once the quotas are determined, an international emissions trading system per-
mits the country to realize the abatement program at the least global cost. The
set of normalized equilibria is proposed as the solution concept that could be
used to drive the negotiations in such a context. These equilibrium solutions
are characterized.

Haurie proposes a model of intergenerational equity to deal with the long-
term issue of climate change. The economic impacts of global climate change
are far-reaching for the nations of the world. The myopic gain for one genera-
tion has to be balanced with the welfare for future generations. In his paper on
a stochastic multigeneration game with application to global climate change,
Haurie models this problem as a continuous-time, piecewise deterministic game
where the players represent successive generations each with a random life dura-
tion. The intergenerational equilibrium concept is applied to a model of inte-
grated assessment of climate change.

Part VI contains four chapters that deal with management science applica-
tions.

Bernhard, Farouq, and Thiery investigate a differential game motivated by a
problem in mathematical finance, specifically in the theory of option pricing.
The nature of one of the players, called the pursuer, is quite impulsive, resulting
in unexpected jumps in the state variables. The authors’ approach is to rigor-
ously derive the optimal controls which consist of an initial impulse and a long
static coasting followed by finitely many controls later. They investigate the
convergence problem of an appropriate Isaacs equation for the discrete version
and its convergence to the value function via an equivalent but nonimpulsive
differential game.

Jørgensen, Taboubi, and Zaccour consider the problem of a manufacturer and
a retailer allocating their advertisement budgets in national advertising and
local advertising, respectively. It is modelled as a Stackelberg game with the
manufacturer acting as the leader and the retailer as the follower. The manu-
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facturer can create an incentive to influence the retailer’s promotional strategy
maximizing the total profit. He can also consider advertisement strategies to
maximize one’s own payoff. The authors study the Stackelberg equilibria for
the two distinct models.

Suzuki and Muto study Cournot and Bertrand duopoly markets from the
point of view of farsighted stability: players can alternately threaten to move
from strategy to strategy objecting to the most recent threat by the oppo-
nent, and in each such alternate suggestion the threatening player has utility
gain. When von Neumann and Morgenstern defined the notion of stable sets for
cooperative TU games, the external stability concept they had via the notion
of domination was somewhat of a myopic response by coalitions and was not
farsighted. Allowing for the indirect domination that captures farsighted behav-
ior, one can extend the stable sets definition to new stable sets via the indirect
external stability. The authors study the consequences of such indirect stability
notions for Cournot and Bertrand duopoly markets.

Raghavan concludes this volume by exploring the possibility of modeling tax
evasion as a zero-sum two-person generalized stochastic game with incomplete
information. The model incorporates the classical statistical classification pro-
cedures, the secrecy of the tax office, and the lack of information about the past
history of the taxpayer.

We conclude by expressing our thanks to the many persons who have con-
tributed to make this volume a success. First of all, we are indebted to the
referees who generously gave their time to ensure the high quality of these
Annals. Our special thanks go to Georges Zaccour, then President of the
ISDG and Director of GERAD (HEC Montréal), who has generously assisted
in dealing with the logistics of producing this edited book. We thank Jaime
Brugueras and Tara Raghavan for their help in improving the quality of several
manuscripts. Finally, we acknowledge the essential contribution of Francine
Benôıt, at GERAD, who produced the whole volume with considerable exper-
tise and grace.

Alain Haurie
Shigeo Muto

Leon A. Petrosjan
T.E.S. Raghavan
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Abstract
This chapter provides an introductory exposition of stochastic games with
imperfect monitoring. These are stochastic games in which the players
imperfectly observe the play. We discuss at length a few basic issues, and
describe selected contributions.

1 Introduction

Our objective in this paper is to provide an introductory exposition of some
recent work on zero-sum stochastic games with imperfect monitoring. We will
try to avoid many of the technical subtleties inherent in this type of work by
discussing at length some fundamental issues, before we introduce the basic
∗We acknowledge the financial support of the Arc-en-Ciel/Keshet program for 2001/
2002. The research of the second author was supported by the Israel Science Founda-
tion (Grant No. 69/01-1).
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insights of the known results. This introduction briefly recalls historical devel-
opments of the theory, discussed more extensively later, and describes the orga-
nization of the paper.

Stochastic games are played in stages. At every stage n ∈ N the players are
to play one matrix game, taken from a finite set of possible games, called states.
The matrix game played at stage n depends on the actions that were played at
stage n−1 and on the previous state. In the present paper, we limit ourselves to
zero-sum games, i.e., to the case where each component matrix game is a (two-
player) zero-sum game. Imperfect monitoring refers to a situation where past
moves of a player are imperfectly observed by his/her opponent, as opposed to
perfect monitoring. Most work on stochastic games assumes perfect monitoring.

Stochastic games were introduced in a seminal paper of Shapley [26]. Shapley
introduced discounted games in which each player i uses a discounted evalua-
tion, that is, he wishes to maximize the discounted sum λ

∑∞
n=1(1 − λ)n−1ri

n,
where λ ∈ (0, 1) is the common discount factor, and ri

n is the payoff to player
i at stage n. He proved that any λ-discounted zero-sum stochastic game with
perfect monitoring has a value vλ. In addition, he proved that each player has
an optimal strategy that is stationary: it depends only on the current state, and
not on past history. Blackwell [3] analyzed one-player stochastic games, better
known as Markov decision process or stochastic dynamic programming prob-
lems. For such games, Blackwell proved that there is a stationary strategy that
is optimal for every discount factor λ sufficiently close to zero. This robustness,
or uniformity, result was extended by Mertens and Neyman [18] to the class of
zero-sum stochastic games with perfect monitoring. Specifically, Mertens and
Neyman proved that, given any ε > 0, each player has a strategy that is ε-
optimal in the λ-discounted game, for every λ < λ(ε). Thus, a single strategy
is approximately optimal, whatever the discount factor being used, provided it
is sufficiently small. However, in contrast to Shapley’s and Blackwell’s results,
in general this strategy cannot be taken to be stationary.

The consequences of imperfect monitoring have been widely explored within
the framework of repeated games, see, e.g., Radner [19], Rubinstein and
Yaari [25] and Lehrer [14–17]. Most of the interest has been focused on trying
to provide a characterization of the set of equilibrium payoffs.

Stochastic games with imperfect monitoring were first analyzed in a series
of papers by Coulomb [7,9,10]. In these papers, Coulomb analyzes absorbing
stochastic games. These are stochastic games in which the state changes at
most once along the play. Coulomb provides an example where the value does
not exist, and proves that in this class of games the max-min and min-max
values always exist (see Section 3 for definitions). This existence result was
recently extended to all zero-sum stochastic games with imperfect monitoring
independently by Coulomb [11] and Rosenberg et al. [23]. Flesch et al. [12]
showed that a slight amount of imperfect monitoring in non-zero-sum games
can prevent the existence of equilibrium payoffs.
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This paper is organized as follows. In Section 2, we discuss a number of classi-
cal examples, in order to highlight a few fundamental issues related to imperfect
monitoring. In particular, we will argue that the issue of imperfect monitoring
is irrelevant both for zero-sum repeated games and for λ-discounted stochastic
games. Alternatively, it is relevant only for zero-sum stochastic games, in con-
nection with the uniformity property mentioned above. In addition, we illustrate
with three examples the consequences of imperfect monitoring. The discussion
in this section is mainly kept at a heuristic level. In Section 3, we will be more
specific in introducing a formal model and in stating existence results. Section 4
contains a discussion of the proofs. It first summarizes the main insights of the
proof of Mertens and Neyman [18]. It then explains how those insights are used
in the analysis of games with imperfect monitoring. We conclude by discussing
related work.

2 Basic Observations and Examples

2.1 Repeated Matching Pennies

We start with one of the simplest games, Matching Pennies. A version of the
strategic form of this game is given by the table

L R

T 0 1

B 1 0

in which player 1 and player 2 are respectively the row and column players, and
whose entries contain the payoff paid by player 2 to player 1.

The value of the one-shot Matching Pennies is 1/2. Each player has a unique
optimal strategy, which is mixed and assigns probability 1/2 to both actions.

Suppose that the game is repeated over time. Consider the strategy σ of
player 1 that tosses a fair coin at each stage, independent of previous tosses, and
that plays T or B depending on the outcome. Let τ be any strategy of player
2. Such a strategy specifies, for each n ∈ N, the mixed move (that is to say a
probability distribution over the set {L, R}) to be used at stage n, as a function
of all the information available at stage n. For each given n, the (conditional)
distribution of player 1’s move at stage n, given the information known to player
2, assigns probability 1/2 to each action. Therefore, the (conditional) expected
payoff at stage n under (σ, τ), given player 2’s information, is equal to 1/2. By
averaging over all possible information sets of player 2 at stage n, this implies
that the expected payoff under (σ, τ) at each stage n is 1/2.
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As a consequence, the strategy σ guarantees that the (expected) payoff to
player 1 in the repeated game is exactly 1/2, whatever be the weights assigned
to the different stages. A similar analysis holds true for player 2.

In other words, the value of the infinitely repeated Matching Pennies is the
same as that of the one-shot Matching Pennies. Moreover, the strategy in the
repeated game that repeats an optimal strategy of the one-shot game is opti-
mal. Plainly, these conclusions are not specific to the Matching Pennies game,
and hold more generally for every repeated two-player zero-sum game. Note
that the preceding observation holds, no matter what information about past
play is available to the players. Therefore, the nature of monitoring—perfect or
imperfect—is irrelevant for the analysis of repeated zero-sum games.

To conclude this example, it may be helpful to realize why the conclusions
are dramatically different for non-zero-sum repeated games. Let G be a given
strategic form game that is repeated over time. Generalizing upon the above
observation, the strategy profile that consists of repeating over time a given
equilibrium profile x of the game G is a Nash equilibrium of the repeated game,
whose payoff coincides with the payoff induced by x in G. In contrast to zero-
sum games, this need not be the unique equilibrium payoff of the repeated
game. When it comes to a characterization of the equilibrium payoffs in the
repeated game, the nature of monitoring is crucial. Typical proofs of the Folk
Theorem (see, e.g., Sorin [29] or Aumann and Shapley [2]) proceed along the
following lines: given a payoff vector, a play path is identified that induces this
payoff. A strategy profile is next designed, under which the players are required
to follow the play path, and to “punish” reciprocally in case of deviations from
this path. Clearly, whether or not this profile is an equilibrium depends on the
extent to which deviations are observed and deviators identified. A complete
characterization of the equilibrium payoffs is not yet available. A solution has
been provided by Lehrer [14–17] for various notions of undiscounted equilibrium
and/or under specific assumptions on the monitoring structure. Only partial
results have been established for discounted games, see, e.g., the January 2002
special issue of the Journal of Economic Theory, and the references therein.

2.2 The Big Match

We here recall well-known results on the Big Match game, an example of an
absorbing stochastic game introduced by Gillette [13] and later analyzed by
Blackwell and Ferguson [4]. Although the formal model of stochastic games
has yet to be introduced, this example will clarify why the issue of monitoring
is irrelevant for the analysis of the discounted games, but not if one seeks to
establish optimality properties which are uniform with respect to (w.r.t.) the
discount factor.

The Big Match is described by the table
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L R

T 0* 1*

B 1 0

Both players have two actions. As long as player 1 plays the Bottom row, his
payoff is given by this table. As soon as he plays the Top row, say at stage θ, the
payoff to player 1 at this stage and all subsequent stages is 0 or 1, depending on
whether player 2 played the Left or the Right column at stage θ. Equivalently,
at stage θ, the play moves to one of two possible trivial (absorbing) states, in
which the payoff is constant.

As proven in Shapley [26], the value vλ of the λ-discounted game satisfies
a dynamic programming principle. Indeed, vλ is uniquely characterized as the
value of the following one-shot zero-sum game Γ(vλ):

λ + (1− λ)vλ (1− λ)vλ

0 1

B

T

L R

Moreover, let xλ denote an optimal mixed move of player 1 in the game Γ(vλ).
Then the stationary strategy that plays xλ at every stage is an optimal strategy
in the λ-discounted stochastic game.1

Again, this property is not specific to the Big Match. More generally, the
existence of stationary optimal strategies in λ-discounted games ensures that
the λ-discounted value vλ is independent of the type of monitoring, as long
as both players are always informed of the current state. Hence the issue of
monitoring is irrelevant for the analysis of λ-discounted games.

We now discuss the existence of strategies that are ε-optimal in all λ-
discounted games, provided λ is close enough to zero. We shall discuss only the
problem faced by player 1, since the stationary strategy of player 2 that assigns
probability 1/2 to both actions is optimal for each λ > 0. Assume first that
the assumption of perfect monitoring holds, that is, at each stage n, player 1
knows the complete sequence of actions selected by player 2 up to stage n.

Blackwell and Ferguson [4] devised a parametric family (σN )N∈N of strate-
gies. For n ∈ N, define en to be the excess number of stages up to n in which
player 2 selected the Left column: en = ln − rn, where ln and rn are respec-
tively the number of stages up to stage n in which player 2 played the Left
and the Right columns. The strategy σN plays the Top row with probability
1One can check that for the Big Match, vλ = 1/2, player 1 has a unique optimal
strategy that assigns probability λ/(1 + λ) to the Top row, and player 2 has a unique
optimal strategy that assigns probability 1/2 to each column.
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1/(N + en)2 (assuming player 1 played the Bottom row in all previous stages).
Then there is a constant λN such that for every strategy τ , the λ-discounted
payoff induced by σN and τ is at least (N − 2)/2N , provided λ < λN ; for a
proof of this result see Blackwell and Ferguson [4] and Coulomb [8].

The intuition behind this strategy is as follows. Suppose that en > 0, so that
so far player 2 played the Left column more often than the Right column. In this
case player 1 does not want the game to terminate: as long as the frequency of
Left is higher, his payoff by playing the Bottom row is more than 1/2. Therefore,
player 1 decreases the probability of playing the Top row. If, on the other hand,
en < 0, player 1 would like the game to terminate, so he increases the probability
of playing the Top row. The effect of any given stage on the probability of
playing the Top row is small, so that any strategic manipulation of the future
behavior of player 1 by player 2 comes at the cost of being absorbed to a bad
payoff while the manipulation takes place. However, this effect is large enough
so that, if lim infn→∞(en) < 0, player 1 will eventually play the Top row.

We postpone the discussion of the strategies devised by Mertens and Ney-
man [18] to Section 4.1. In a nutshell, according to Mertens and Neyman, at
every stage n player 1 plays a stationary λn-discounted strategy xλn , where λn

is defined recursively as a function of λn−1 and of the choice of player 2 in stage
n− 1.

To contrast with the full monitoring case, we now assume that player 1
receives no information about past moves of player 2. Since the game stops at
the first stage θ in which player 1 chooses the Top row, a strategy of player 1
reduces here to a sequence x = (xn)n∈N, with the interpretation that xn is the
probability assigned to the Top row at stage n, assuming θ ≥ n.

Let such a strategy x be given. We shall now check that, given ε > 0, there is
a reply τ of player 2 such that the expected λ-discounted payoff under x and τ is
at most ε, provided λ is close enough to zero. Thus, by playing properly, player
2 can lower the expected payoff of player 1 as close to 0 as he wishes. This will
prove that player 1 cannot guarantee a positive payoff in all discounted games
with sufficiently low discount factor.

Let ε be given. As x is given, there is N sufficiently large such that the
probability that the game reaches stage N and player 1 plays the Top row at
least once after that stage is at most ε/2, that is, P(N ≤ θ < +∞) ≤ ε/2.
Let τ be the pure strategy that plays the Left column up to stage N , and the
Right column afterwards. If player 1 plays the Top row at some stage n ≤ N ,
the terminal payoff is 0. Since the probability that player 1 plays the Top row
after stage N is at most ε/2, and since after stage N player 2 plays the Right
column, the expected λ-discounted payoff from stage N on, when restricted to
the event that play reaches stage N , is at most ε/2. Therefore, if λ is sufficiently
small so that the contribution of the first N stages to the λ-discounted payoff is
at most ε/2, we deduce that the λ-discounted payoff under (x, τ) is at most ε.
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2.3 A Modified Big Match

We here discuss a striking example due to Coulomb [7], which is a modification
of the Big Match. The game is given by the matrix

B

T

1

0∗

0

1∗

γ

γ

L M R

where γ ≥ 1/2 is arbitrary. If either the action combination (T,L) or the action
combination (T,M) is played, the play moves to an absorbing state with con-
stant payoff. Note that the current state can change at most once along any
play, as in the Big Match. This game differs from the Big Match by the adjunc-
tion of the column R.

Assuming perfect monitoring, this extra column makes no difference, since
γ ≥ 1/2. Indeed, let σ be any strategy in the Big Match, and define a strategy
σ̃ in the present game as follows. Given a history h̃, σ̃ plays at h̃ the mixed
move that would be played by σ at h, where h is obtained from h̃ by deleting all
stages in which player 2 played R. It can be checked that σ̃ guarantees 1/2− ε
in the λ-discounted game, as soon as σ guarantees 1/2− ε in the λ-discounted
Big Match.

We shall now assume that player l is only imperfectly informed of player 2’s
past choices. Specifically, we shall assume that, whenever player 1 plays B, he
is “told” “L” if player 2 played L, and “M or R” otherwise. The information
received by player 1 upon playing T is irrelevant for the present analysis, as
well as the signals for player 2.

We now check that in this game player 2 can do much better than in the
Big Match. Specifically, given any strategy σ of player 1 and any ε > 0, we
shall exhibit a strategy τ of player 2 such that the expected λ-discounted payoff
under (σ, τ) is at most ε, for every λ close enough to zero. This result is striking
because the signalling structure and the payoffs are such that this game is a
Big Match with perfect monitoring with an additional column for which payoffs
can be as high as we want. Nevertheless, the highest quantity that player 1 can
guarantee in any discounted game with small enough discount factor decreases
from 1/2, which is the value of the Big Match with perfect monitoring to 0.

Define θ to be the first stage in which either (T,L) or (T,M) is played, so
that θ is the stage at which the game effectively terminates.

Let y be the stationary strategy of player 2 that plays L and R with prob-
abilities ε/2 and 1 − ε/2 respectively, and let y′ be the stationary strategy of
player 2 that plays L and M with probabilities ε/2 and 1− ε/2 respectively.

If the probability that under (σ, y) the game terminates in finite time is 1,
then the probability that under (σ, y) the game terminates by (T,L) is 1, so
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that for every λ sufficiently small, the λ-discounted payoff under (σ, y) is at
most ε, as desired.

So assume that this probability is strictly less than 1. Therefore, there is
N such that the probability that under (σ, y) stage N is reached and player
1 plays the Top row after stage N is at most ε/2. Let τ be the strategy that
coincides with y up to stage N , and with y′ afterwards. Since the signal to
player 1 is “M or R”, whether the action pair is (B, M) or (B,R), as long as
player 1 follows σ and does not play the Top row, he cannot tell whether he
plays against y or against τ . Since the probability that player 1 plays the Top
row after stage N is at most ε/2, the probability that player 1 can distinguish
between y and between τ is at most ε/2. This means that the probability that
under (σ, τ) player 1 plays the Top row after stage N is at most ε/2, while the
probability that player 2 plays L at any given stage after stage N is 1 − ε/2,
so that the expected λ-discounted payoff, restricted to the event that the game
is not terminated before stage N , is at most ε. If λ is sufficiently small so that
the contribution of the first N stages to the discounted payoff is at most ε, we
deduce that the expected λ-discounted payoff under (σ, τ) is at most 2ε.

The two phases in the definition of τ have a natural interpretation. In the
first phase, player 2 exhausts the probability that the play will end up in an
absorbing state. In the second phase, player 2 switches to a mixed move that
yields a low stage payoff. The fact that the mixed moves used by player 2 in
the two phases cannot be distinguished by player 1 (as long as he plays B)
guarantees that the probability that the play moves to an absorbing state in
the second phase is very low. This two-part definition of a reply of player 2 to
a given strategy of player 1 turns out to be a powerful tool; see Section 4.4.

3 The Model and the Results

3.1 Stochastic Games with Imperfect Monitoring

We proceed to the model of stochastic games with imperfect monitoring. Given
a finite set K, ∆(K) will denote the set of probability distributions over K.
An element k ∈ K will be identified with the element of ∆(K) that assigns
probability one to k.

A two-person zero-sum stochastic game with imperfect monitoring is
described by (i) a set S of states, (ii) action sets A and B for the two players,
(iii) a daily reward function r : S × A × B → R, (iv) signal sets M1 and M2

and (v) a transition function ψ : S × A× B → ∆(M1 ×M2 × S). The sets S,
A, B, M1 and M2 are assumed to be finite.

The game is played in stages. An initial state s1 is given and known to both
players. At each stage n ∈ N, (a) the players independently choose actions an ∈
A and bn ∈ B; (b) a triple (m1

n, m2
n, sn+1) is drawn according to ψ(sn, an, bn);

(c) players 1 and 2 are only told m1
n and m2

n respectively and (d) the game
proceeds to stage n + 1.
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We denote by ψ1 the marginal of ψ on M1. It stands for the distribution
of player 1’s signal, as a function of the current state and the current action
choices. Unlike the previous examples, note that we allow for the case where
the signal depends stochastically on (s, a, b). We will always assume that each
player always knows the current state and has perfect recall (i.e., remembers
his past choices and past information).

This implies that ψ1 is such that (s, a) = (s′, a′) as soon as ψ1(s, a, b) [m1] > 0
and ψ1(s′, a′, b′)[m1] > 0, for some m1 ∈M1.

We define accordingly ψ2 as the marginal of ψ over M2. We also denote by
q the marginal of ψ on S. Thus, q(s, a, b)[s′] is the probability of moving from
s to s′, if the players play a and b.

In a sense, ψ1 provides all the information player 1 has on player 2’s current
move. However, since the signals to the two players can be correlated, the pair
(ψ1, ψ2) does not fully describe the information available to player 1 on player
2’s signal. Therefore, our model is more general than a model in which, given
(s, a, b), the next state and the signals are chosen independently.

A behavior strategy of player 1 is a sequence σ = (σn)n≥1 of functions σn :
H1

n → ∆(A), where H1
n = S×(M1)n−1 is the set of “private” histories of player

1 at stage n. A stationary strategy depends only on the current stage. Hence,
a stationary strategy of player 1 is described by a vector (xs)s∈S in (∆(A))S ,
with the interpretation that xs is the mixed move used whenever the current
state is s ∈ S. Strategies τ of player 2 are defined analogously, with obvious
changes. We let H∞ = (S × A× B ×M1 ×M2)N denote the set of plays. For
i = 1, 2, Hi

n denotes the cylinder algebra over H∞ induced by Hi
n, and we let

H∞ = σ(H1
n,H2

n, n ∈ N) denote the σ-algebra generated by all cylinder sets.
A given strategy pair (σ, τ), together with an initial state s ∈ S, induces a
probability distribution Ps,σ,τ over (H∞,H∞). Expectations w.r.t. Ps,σ,τ are
denoted Es,σ,τ . The initial state s is used here as a parameter.

Given λ ∈ (0, 1), the λ-discounted payoff induced by a strategy pair (σ, τ)
starting from state s ∈ S is given by

γλ(s, σ, τ) = Es,σ,τ

[
λ

+∞∑
n=1

(1− λ)n−1r(sn, an, bn)

]
.

The seminal result of Shapley [26] asserts that the λ-discounted game has a
value vλ that does not depend on ψ. That is, for each s ∈ S, the zero-sum game
with payoff function γλ(s, ·, ·) has a value. We now introduce the definitions of
the uniform properties we will be dealing with.

Definition 3.1. Let φ ∈ RS . Player 1 can guarantee φ if for every ε > 0 there
exists a strategy σ and λ0 ∈ (0, 1) such that

∀s ∈ S,∀τ,∀λ ∈ (0, λ0), γλ(s, σ, τ) ≥ φ(s)− ε.

We then say that the strategy σ guarantees φ− ε.
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Definition 3.2. Let φ ∈ RS . Player 2 can defend φ if for every ε > 0 and
every strategy σ of player 1 there exists a strategy τ of player 2 and λ0 ∈ (0, 1),
such that

∀s ∈ S,∀λ ∈ (0, λ0), γλ(s, σ, τ) ≤ φ(s) + ε.

We then say that the strategy τ defends φ + ε against σ.

The definitions of a vector guaranteed by player 2, and defended by player 1,
are similar, with the roles of the two players exchanged.

Definition 3.3. A vector v ∈ RS is
• the (uniform) value of Γ if both players can guarantee v;
• the (uniform) max-min if player 1 can guarantee v and player 2 can defend

v;
• the (uniform) min-max if player 1 can defend v and player 2 can guarantee

v.

Assume that player 1 cannot guarantee φ. Then, for every strategy σ and
every λ0 ∈ (0, 1), there is a strategy τ such that γλ(s, σ, τ) < φ(s)− ε, for some
λ ∈ (0, λ0) and some s ∈ S. Plainly, it does not follow that player 2 can defend
φ. Therefore the existence of the max-min is not at all a trivial matter.

Note that the value coincides with limλ→0 vλ, as soon as it exists. Also, if
both the max-min and the min-max exist, one has max-min ≤ min-max.

3.2 The Results

We first quote two known results. A stochastic game has perfect monitoring if
the signal received by a player always reveals the current state and the action
choices. Formally, given (s, a, b) 	= (s′, a′, b′), the supports of the probability
distributions ψi(s, a, b) and ψi(s′, a′, b′) are disjoint, for i = 1, 2.

Theorem 3.1 (Mertens and Neyman [18]). Every two-player zero-sum sto-
chastic game with perfect monitoring has a value.

Actually, the proof of Theorem 3.1 is valid as soon as the signals the players
receive at each stage n contain the new state sn+1 and the payoff rn at stage n.

Let Γ be a stochastic game. A state s ∈ S is absorbing if q(s, a, b) [s] = 1, for
every (a, b) ∈ A×B. The game Γ is absorbing if all states but one are absorbing.

Theorem 3.2 (Coulomb [7,9,10]). Every two-player zero-sum absorbing sto-
chastic game has a max-min and a min-max. The max-min (resp. the min-max)
depends on ψ only through ψ1 (resp. through ψ2).

In the rest of this paper, we will report on the following theorem, obtained
independently by Coulomb [11] and Rosenberg et al. [23]. Our goal is to iden-
tify the main ideas of the proof and to strip the exposition from details. The
interested reader should consult Coulomb [11] or Rosenberg et al. [23].
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Theorem 3.3 (Coulomb [11], Rosenberg, Solan and Vieille [23]). Every
two-player zero-sum stochastic game with imperfect monitoring has a max-min
and a min-max. The max-min (resp. the min-max) depends on ψ only through
ψ1 (resp. through ψ2).

The proof of Theorem 3.3 is quite related to the proof of Theorem 3.1. It is
independent of the proof of Theorem 3.2.

W.l.o.g. we focus on the existence of the max-min value, and assume that
payoffs are non-negative and bounded by 1.

4 Existence of the Max-Min: Highlights

4.1 On Mertens and Neyman’s [18] Proof

The proof of Theorem 3.3 builds upon the proof of Theorem 3.1. We therefore
start by recalling the main insights of Mertens and Neyman [18] (hereafter MN).
We will next single out the main computational step in their proof, and discuss
the additional issues that arise in games with imperfect monitoring.

MN offer a wide class of ε-optimal strategies σ for player 1. All share the
following structure. The play is divided into blocks of random finite-length
Lk. On each block k, the strategy requires to play an optimal strategy in the
λk-discounted game. Both Lk and λk depend on an auxiliary parameter, zk:
Lk = L(zk) and λ = λ(zk). In a sense, zk ∈ R is a statistic that summarizes all
the relevant aspects of the play, up to the beginning of block k.

To be specific, given two functions L : [0,+∞) → N and λ : [0,+∞) → R,
and M ∈ R, the sequences (zk), (Lk), (λk) are defined recursively by

z1 ≥ Z, B1 = 1, λk = λ(zk), Lk = L(zk),

Bk+1 = Bk + Lk, zk+1 = max

⎧⎨⎩Z, zk +
ε

2
+

∑
Bk≤n<Bk+1

(rn − v(sBk+1))

⎫⎬⎭ ,
(1)

where v = limλ→0 vλ and rn = r(sn, an, bn) is the payoff in stage n. In a first
approximation, the new value zk+1 of the statistic is obtained by adding to the
previous value zk the excess of payoffs received over the values of the states
visited along the block.

MN provide sufficient conditions on the functions λ(·) and L(·) under which
the above strategy σ is ε-optimal, for M large. These conditions are in particular
satisfied for each of the two following simple functions.

Case 1: λ(z) = z−β and L(z) = 
λ(z)−α�, where α ∈ (0, 1) satisfies ‖vλ −
v‖∞ < λ1−α for every λ sufficiently close to 0, and β > 1 satisfies
αβ < 1;

Case 2: λ(z) = 1/(z ln2 z) and L(z) = 1.
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Given an appropriate choice for λ(·) and L(·), MN prove that γλ(s, σ, τ) ≥
v(s)− ε for each τ , and that Es,σ,τ [

∑+∞
k=1 λkLk] < +∞.

The proof relies on the semi-algebraicity of the map λ → vλ, due to Bewley
and Kohlberg [5], and on inequality (2) below, which holds for every τ , since
during block k, σ follows an optimal strategy in the λk-discounted game:

Es,σ,τ

⎡⎣λk

Bk+1−1∑
n=Bk

(1− λk)n−Bkrn + (1− λk)Lkvλk
(sBk+1)|HBk

⎤⎦ ≥ vλk
(sBk

).

(2)

We conclude this section by listing some standing issues that need to be
addressed in order to adapt MN’s proof to games with imperfect monitoring.
This list is not exhaustive.
• In games with imperfect monitoring, the max-min need not be equal to the

limit of the λ-discounted values. The above proof asserts that player 1 can
guarantee limλ→0 vλ. Therefore, we will have to define auxiliary discounted
games. The proof when imperfect monitoring is present will assert that the
max-min is equal to the limit of the solutions to these auxiliary discounted
games. The definition of these auxiliary games will take into account the
structure ψ of signals.
• The solution wλ of these auxiliary games will have to be semi-algebraic as

a function of λ.
• In (1), the updating formula for zk involves

∑
Bk≤n<Bk+1

rn, the payoffs
received in the previous block. Since this quantity is not available to player
1, we will have to estimate it using only the information that is available
to player 1. In effect, we will use a measure of the worst payoff that is
consistent with the distribution of the signals received in the elapsed block.
• Finally, the ε-optimality computation will have to be adapted.
As it turns out, the last issue is easy. Specifically, replace in (1) the term∑Bk+1−1
n=Bk

rn by an H1
Bk

-measurable variable Lkr̂k, and let λ → wλ be an RS-
valued semi-algebraic function, with w := limλ→0 wλ. Let λ(·), L(·) satisfy MN’s
sufficient conditions, and let M be large enough. A close inspection of MN’s
proof reveals that the following theorem holds.

Theorem 4.1. There exists λ0 ∈ (0, 1) such that the following holds. Let
(σ, τ) be a strategy pair such that

Es,σ,τ

[
λkLkr̂k + (1− λkLk)wλk

(sBk+1)|H1
Bk

]
≥ wλk

(sBk
)− ε

12
λkLk, (3)

Ps,σ,τ -a.s. for every k. Then for each λ ∈ (0, λ0),

Es,σ,τ

[
λ

+∞∑
n=1

(1− λ)n−1R̂n

]
≥ w(s)− ε, (4)
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where R̂n = r̂k for Bk ≤ n < Bk+1. Moreover,

Es,σ,τ

[
+∞∑
k=1

λkLk

]
< +∞. (5)

4.2 Auxiliary Discounted Games

We let a stochastic game Γ = (S, A,B,M1, M2, ψ, r) be given. We here define
an auxiliary family of stochastic games. The stage payoff of these games incor-
porates the structure of the signals.

A preliminary comment is in order. Consider first a repeated game with imper-
fect monitoring. Assume that player 1 and player 2 consider using mixed moves
x ∈ ∆(A) and y ∈ ∆(B) in some given stage. If player 2 replaces y by another
mixed move y′ ∈ ∆(B), this replacement can possibly have an effect on the
future behavior of player 1 only if it alters the distribution of signals to player
1 at that stage. In other words, if y′ is indistinguishable from y, in the sense
that the distributions ψ1(x, y) and ψ1(x, y′) of signals to player 1 coincide, then
switching from y to y′ while player 1 is using x has no incidence whatever on
player 1’s future behavior.2 This suggests that a proper modified payoff func-
tion for player 1 is r̃(x, y) = inf r(x, y′), where the infimum is taken over all
y′ ∈ ∆(B) that are indistinguishable from y given x. That is, r̃(x, y) is the
worst payoff to player 1, given that player 1’s signals are consistent with y.

This equivalence relation and the corresponding modified payoff function have
played an important role in the analysis of games with imperfect monitoring,
see Aumann and Maschler [1], Lehrer [14–17] and Coulomb [9,10].

However, this relation is not well suited for general stochastic games with
imperfect monitoring. Indeed, a mixed move y′ can be practically indistinguish-
able from y if the probability that player 1 can distinguish between y and y′ is
quite small compared to the discount factor. We therefore amend it as follows.
Given a discount factor λ ∈ (0, 1), a state s ∈ S, a mixed move x ∈ ∆(A) and
an additional parameter ε ∈ (0, 1), we say that y ∈ ∆(B) and z ∈ ∆(B) are
indistinguishable, written y ∼λ,ε,s,x z if

ψ1(s, a, y) = ψ1(s, a, z) for every a such that x[a] ≥ λ/ε.

Accordingly, we set

r̃ε
λ(s, x, y) = min

z∼λ,ε,s,xy
r(s, x, z). (6)

As above, it can be thought of as the worst payoff consistent with a given
distribution of signals to player 1. The specific role of the parameter ε will be
clarified later.
2This is equivalent to the requirement that ψ1(a, y) = ψ1(a, y′) for every action a ∈ A
that is played with positive probability under x.
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We briefly mention some basic properties of r̃ε
λ. Note first that r̃ε

λ ≤ r. Since
∼λ,ε,s,x is an equivalence relation, one has r̃ε

λ(s, x, y) = r̃ε
λ(s, x, z) whenever

z ∼λ,ε,s,x y. In addition, it can be checked that, for fixed λ, ε and s, the
function r̃ε

λ(s, ·, ·) is continuous with respect to y and upper semi-continuous in
the pair (x, y). Finally, the map (ε, λ, x, y) → r̃ε

λ(s, x, y) is semi-algebraic.
We now proceed to introducing a vector vε

λ, which will play the role of the
“value” of the auxiliary discounted game. Specifically, define vε

λ ∈ RS as the
unique solution to the fixed-point equation

vε
λ(s) := max

x∈∆(A)
min

y∈∆(B)

{
λr̃ε

λ(s, x, y) + (1− λ)Eq(s,x,y)[vε
λ(·)]
}

, w ∈ RS , (7)

where Eq(·|s,x,y) is the expectation w.r.t. q(s, x, y).3 It follows from this fixed-
point property that the map (λ, ε) → vε

λ(s) is semi-algebraic.
One can relate vε

λ to the sup inf of some non-standard λ-discounted game.
Indeed, define the (ε, λ)-game to be a λ-discounted game, in which the stage
payoff is r̃ε

λ. The (ε, λ)-game differs from standard stochastic games in several
respects. At each stage, the players choose mixed moves in ∆(A) and ∆(B)
(and not actions in A and B). In addition, the stage payoff function depends
on the discount factor being used. It can be checked that vε

λ coincides with the
supinf of the (ε, λ)-game, when players are restricted to pure strategies.

We conclude this section by offering a candidate for the max-min. Since the
map λ → vε

λ(s) is semi-algebraic for fixed ε, the limit limλ→0 vε
λ(s) exists for

every ε > 0. In addition, the auxiliary reward r̃ε
λ is non-decreasing w.r.t. ε,

hence so is limλ→0 vε
λ(s). As a consequence, the limit v := limε→0 limλ→0 vε

λ

exists. It turns out that v is the max-min of the game Γ, as we explain in the
next two sections.

4.3 Guaranteeing vvv

We here explain why player 1 can guarantee v. We shall rely on the tools
introduced in Section 4.1, and we first introduce the function wλ that will be
used. Using the theory of semi-algebraic sets, there is a semi-algebraic function
λ ∈ (0, 1) → ε(λ) ∈ (0, 1) such that λ ≤ ε(λ)2 for each λ, and limλ→0 v

ε(λ)
λ =

v. We set wλ := v
ε(λ)
λ . Besides, there is a semi-algebraic map λ ∈ (0, 1) →

xλ = (xs
λ)s∈S ∈ ∆(A)S , such that, for each s ∈ S, xs

λ achieves the maximum
in the definition of v

ε(λ)
λ , see (7). By semi-algebraicity again, the set A(s) =

{a ∈ A : xs
λ [a] ≥ λ/ε(λ)}is, for λ close enough to zero, independent of λ.

We now define the estimate r̂k that is used by player 1 at the end of block
k to update the statistic zk. At the end of block k, player 1 collects the signals
he received during the block. For each state s ∈ S, player 1 computes a mixed
move ŷs ∈ ∆(B) that is “most likely” given the signals he received in state s.
Specifically, for each state s ∈ S, and each action a ∈ A(s), player 1 computes
3The justification of why the max and min in (7) are achieved is omitted.
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the empirical distribution ρs,a of signals that he received in those stages in
which he played a while at state s (if there was no such stage, the definition of
ρs,a is irrelevant). The mixed move ŷs is chosen to minimize over y ∈ ∆(B) the
maximal discrepancy maxa∈A(s) ‖ρs,a − ψ1(s, a, y)‖∞. Finally, player 1 sets

r̂k =
1

Lk

∑
s∈S

Nsr̃
ε(λk)
λk

(s, xs
λk

, ŷs),

where Ns is the number of times the state s was visited during block k. In a
sense, r̂k is the worst (average) payoff in block k, given that player 2 played a
stationary strategy that is consistent with the signals to player 1.

The strategy of player 1 is defined as in Section 4.1, taking Case 1 specifica-
tions for λ(·) and L(·). To be precise, we first choose d > 0 such that ε(λ) ≤ λd

for λ close enough to zero. We next choose α ∈ (1− d, 1), β ∈ (1, 1/α) and we
set λ(z) = z−β , L(z) = 
λ(z)−α�.

We turn to the intuition of the proof. The crucial part is to show that the
inequality (3) is satisfied, provided M is large enough. To this end, we introduce,
for each s ∈ S, the average mixed move ys used by player 2 in state s.4 This
average mixed move y can be related to the strategy ŷ that is reconstructed
by player 1 at the end of the block. Indeed, fix a state s ∈ S, and some action
a ∈ A(s). By the definition of A(s), at any visit to the state s, the action a
is played with probability at least λ/ε(λ) ≥ λ1−d, which is much larger than
1/Lk, provided M is large enough. Thus, provided the number of visits to s
exceeds a small fraction of Lk, the action a will typically be played many times.
Since the action choices of the two players are independent (conditional on past
play), it is quite likely that the empirical distribution of signals ρs,a will be very
close to ψ1(s, a, ys). As a result, provided the state s is visited more than a
negligible fraction of Lk stages, the reconstructed strategy ŷ will be such that
‖ψ1(s, a, ys)−ψ1(s, a, ŷs)‖∞ is close to zero. By continuity, this will imply that
r̃

ε(λk)
λk

(s, xs
λk

, ys) is close to r̃
ε(λk)
λk

(s, xs
λk

, ŷs).5 On the other hand, states that
are visited less than a negligible fraction of Lk stages hardly contribute to r̂k.
Therefore, the expectation Es,σ,τ [Lkr̂k | H1

Bk
] of r̂k given the past history is

close to Es,σ,τ [
∑

s∈S Nsr̃
ε(λk)
λk

(s, xs
λk

, ys) | H1
Bk

].
Using the optimality of xλk

, it can be checked—although this is not a trivial
observation—that the difference

Es,σ,τ

[
λk

∑
s∈S

Nsr̃
ε(λk)
λk

(s, xs
λk

, ys) + (1− λkLk)vε(λk)
λk

(sBk+1)|H1
Bk

]
− v

ε(λk)
λk

(sBk
)

is bounded from below by an amount of the order ελkLk. As a consequence,
(3) holds.
4It is given by ys = (1/Ns)

∑
n:sn=s yn, where the summation runs over all stages of

block k, and where yn = τ(h2
n) is the mixed move used by player 2 in stage n.

5The formal proof involves many technical complications.
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4.4 Defending vvv

We here deal with the other side of the analysis. We will prove that player 2 can
defend vε := limλ→0 vε

λ for each ε > 0. Let ε > 0, and a strategy σ of player 1
be given. Generalizing upon the example of Section 2.3, we shall define a reply
τ in two steps.

First, we use the tools of Section 4.1 to construct a strategy τ1 that yields a
low discounted payoff against σ, when measured in terms of r̃ε

λ. It is convenient
here to use the specifications of Case 1 for the functions λ(·) and L(·): L(z) = 1
and λ(z) = 1/(z ln2 z). In effect, player 2 updates his summary zk at every stage.
We define simultaneously and inductively the strategy τ1 and the estimate r̂k.

Consider a given stage n ∈ N, and assume that τ1 has already been defined
for the first n − 1 stages, together with r̂1, . . . , r̂n−1. Consequently, player 2
has in mind a fictitious discount factor λn = λ(zn), as determined by (1). At
stage n, player 2 computes the conditional distribution of player 1’s action
choice in stage n, given the past sequence of states. To be specific, we set
ξn [·] = Ps,σ,τ1(an = · | s1, . . . , sn). Note that this distribution involves only the
restriction of τ1 to the first n− 1 stages, and the observation of past states, so
that player 2 is indeed in a position to compute ξn. The strategy τ1 recommends
playing a mixed move yn ∈ ∆(B) that satisfies

λnr̃ε
λn

(sn, ξn, yn) + (1− λn)Eq(sn,ξn,yn)

[
vε

λn

]
≤ vε

λn
(sn). (8)

We set r̂n = r̃ε
λn

(sn, ξn, yn). This completes the definition of τ1.
By the choice of yn and the definition of r̂n, (3) trivially holds (with the

inequality reversed), which implies that

Es,σ,τ1

[
λ

+∞∑
n=1

(1− λ)n−1r̃ε
λn

(sn, ξn, yn)

]
≤ vε(s) + ε, (9)

provided λ is close enough to zero.
The inequality (9) says that, if the payoff at every given stage were defined

as the worst payoff r̃ε
λn

, consistent with the actual choice of player 2, then
the discounted payoff would be low. Since r̃ε

λn
≤ r, it however fails to imply

γλ(s, σ, τ1) ≤ v(s) + 2ε. We now address this issue.
Given a stage n, we let zn ∈ ∆(B) be a mixed move such that zn ∼λn,ε,sn,ξn

yn and r(sn, ξn, zn) = r̃ε
λn

(sn, ξn, yn). Hence, zn achieves the minimal payoff
against ξn, among all the mixed moves that are indistinguishable from yn. By
the definition of the equivalence relation ∼λn,ε,sn,ξn , the probability (given the
sequence of states) that at stage n, player 1 plays an action that might possibly
distinguish yn from zn is at most |A|λn/ε. We next make use of the fact that

Es,σ,τ1

[
+∞∑
n=1

λn

]
< +∞
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(see Theorem 4.1) to choose N ∈ N such that Es,σ,τ [
∑+∞

n=N λn] < ε2/|A|.
Finally, we let τ be the strategy that coincides with τ1 up to stage N , and plays
zn rather than yn in each subsequent stage n ≥ N .

By the choice of N , the probability that player 1 will ever, from stage
N on, play an action that might possibly distinguish τ from τ1 is at most
(|A|/ε)Es,σ,τ [

∑+∞
n=N λn] ≤ ε. This implies that the probability distributions

Ps,σ,τ and Ps,σ,τ1 induced over the sequences of states differ by at most ε.
Therefore,

Es,σ,τ [rn] = Es,σ,τ [r(sn, ξn, zn)] = Es,σ,τ

[
r̃ε
λn

(sn, ξn, yn)
]

≤ Es,σ,τ1

[
r̃ε
λn

(sn, ξn, yn)
]
+ ε.

(10)

The first equality simply states that the payoff at stage n is the payoff function
evaluated at the current state, with current mixed actions. The second equality
follows by the choice of zn. The inequality follows from the previous claim.

Together with (9), (10) implies that γλ(s, σ, τ) ≤ vε(s) + 2ε, provided ε is
small enough.

Note that the strategy τ uses only the sequence of states, and not any addi-
tional signal that player 2 may receive. It is important to observe that zn need
not satisfy (8) since q(sn, ξn, yn) 	= q(sn, ξn, zn). Hence, the two-part definition
of τ cannot be avoided.

5 Concluding Comments

The results discussed in this chapter raise additional questions. We will mention
just a few.

Within the framework of this survey, it would be useful to characterize the
games that have a value. More precisely, given S,A, B,M1 and M2, it is inter-
esting to know for which signalling structures ψ the game has a value, for every
payoff function r.

The examples of Flesch et al. [12] suggest that the analysis of non-zero-sum
stochastic games with imperfect monitoring will need additional insights. This
field is yet unexplored.

Finally, challenging problems arise as soon as one drops the assumption that
the current state is observed. The one-player case has been investigated in
Rosenberg et al. [22]. They prove that the value exists, in the sense that the
player can guarantee limλ→0 vλ. However, they leave unanswered basic questions
on the nature of ε-optimal strategies.

In the two-player case, the model is related to stochastic games with incom-
plete information (see Sorin [27,28,30], Sorin and Zamir [31], Rosenberg and
Vieille [24] and Rosenberg et al. [22]). Most work in this area has focused on the
case where the state is a pair (k, ω), and (i) the k-component is fixed at the out-
set of the game and known to one player only, while (ii) the ω-component can
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change from stage to stage, but is observed by both players. A recent exception
is the paper by Renault [20], in which the state s follows a Markov chain, that
is, the evolution of s is unaffected by action choices, and is observed only by
one player. In this framework, Renault proves the existence of the value. This
paper assumes that actions are observed.
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Abstract
In this chapter one considers a linear antagonistic differential game with
fixed terminal time T , geometric constraints on the players’ controls,
and continuous quasi-convex payoff function ϕ depending on two com-
ponents xi, xj of the phase vector x. Let Mc = {x : ϕ(xi, xj) � c} be
a level set (a Lebesgue set) of the payoff function. One says that the
function ϕ possesses the level sweeping property if for any pair of con-
stants c1 < c2 the relation Mc2 = Mc1 + (Mc2

∗− Mc1) holds. Here,
the symbols + and ∗− mean algebraic sum (Minkowski sum) and geomet-
ric difference (Minkowski difference). Let Wc be a level set of the value
function (t, x) �→ V(t, x). The main result of this work is the proof of the
fact that if the payoff function ϕ possesses the level sweeping property,
then for any t ∈ [t0, T ] the function x �→ V(t, x) also has the property:
Wc2(t) = Wc1(t) +

(Wc2(t)
∗− Wc1(t)

)
. Such an inheritance of the level

sweeping property by the value function is specific to the case where
the payoff function depends on two components of the phase vector. If
it depends on three or more components of the vector x, the statement,
generally speaking, is wrong. This is shown by a counterexample.

Key words. Linear differential games, value function, level sets, geomet-
ric difference, complete sweeping
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1 Introduction

The central theme for this work is the operation of the geometric difference
(Minkowski difference). Its definition and basic properties are given, for exam-
ple, in [5]. At the early stage of developing the theory of differential games, the
geometric difference was applied in [13,14] to solve games with linear dynamics.
After that, the concept of the geometric difference was intensively used in the
theory of control and differential games (see, for example, [10,3,2,9]).

As usual, the algebraic sum (Minkowski sum) of two sets A and B is the set
A + B = {a + b : a ∈ A, b ∈ B}.

Definition 1.1. The geometric difference of two sets A and B, where B 	= ∅,
is the set A ∗− B = {x : B + x ⊂ A}. In other words, the geometric difference
of the sets A and B is the set of elements such that each of them shifts the set
B into the set A.

Let us give some planar examples (Figure 1). The example a) shows the
geometric difference of a large square and a small circle. The result is a square
with the sides shorter than the original ones by the diameter of the circle. The
example b) demonstrates the geometric difference of two circles. The result is
also a circle with the radius equal to the difference of the radii of the original
circles.

If the set A is convex, then the set A ∗− B is convex too. In general the
following relation holds:

B + (A ∗− B) ⊂ A,

that is, the subtrahend set after summation with the geometric difference gives,
generally speaking, only a subset of the original set. For instance, in the first

a) b)

Figure 1: Examples of geometric difference: a) the geometric difference of a square
and a circle; b) the geometric difference of two circles. The geometric difference is
shown by dashed lines. Thin lines denote some extreme lays of the subtrahend set.
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a) b)

Figure 2: Pictures of the summation of the geometric difference and the subtrahend
set for the examples in Figure 1.

of the above examples, after such a summation a square with round corners is
obtained (Figure 2a). In the example b), such a summation gives exactly the
original circle (Figure 2b).

Definition 1.2. The situation, when the equality

B + (A ∗− B) = A

holds, is called the complete sweeping of the set A by the set B.

The notion of “complete sweeping” was originally introduced in [4]. The pre-
ceding example a) shows the possibility of absence of the complete sweeping
property, whereas example b) shows its possible presence.

As a good illustrative analogy, one can imagine the set A as a room and the
set B as a broom. So, the situation of complete sweeping corresponds to a good
hostess who sweeps the whole room and does not miss any corner.

Let us give an equivalent definition of the complete sweeping.

Definition 1.3. A set A is completely swept by a set B if ∀a ∈ A∃x : 1) a ∈
B + x and 2)B + x ⊂ A.

Let Mc be the level set (the Lebesgue set) of a function f corresponding to
a constant c: Mc =

{
x : f(x) � c

}
.

Definition 1.4. A function f possesses the level sweeping property if for any
pair of constants c1 < c2 such that Mc1 	= ∅, the set Mc1 sweeps completely
the set Mc2 , that is, the relation Mc2 = Mc1 + (Mc2

∗−Mc1) holds.

Note that the convexity of a function is neither necessary nor sufficient for
presence of the level sweeping property. This is demonstrated by the example
shown in Figure 3. Here we consider a function whose graph is a hemisphere
cut by two planes such that some smaller level set is a circle and some greater
one is a circle with a “roof.” It is evident that the smaller level set does not
completely sweep the greater one: the corner of the latter cannot be covered.
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Figure 3: Example of a convex function which does not possess the level sweeping
property.

2 Description of the Main Result

Let us consider a linear antagonistic differential game

ẋ = A(t)x + B(t)u + C(t)v, t ∈ [t0, T ], x ∈ R
n, u ∈ P, v ∈ Q,

ϕ
(
xi(T ), xj(T )

)
→ min

u
max

v

(1)

with fixed terminal time T , convex compact constraints P , Q for controls of
the first and second players, and continuous quasi-convex payoff function ϕ
depending on two components xi, xj of the phase vector x at the terminal time.
(A function is quasi-convex if each of its level sets (Lebesgue sets) is convex.)
The first player minimizes the payoff, and the interests of the second one are
opposite. It is assumed that every level set Mc =

{
(xi, xj) : ϕ(xi, xj) � c

}
of

the payoff function ϕ is bounded in the coordinates xi, xj .
Using a change of variable y(t) = Xi,j(T, t)x(t) ([7, p. 354], [8, pp. 89–91]),

which is provided by a matrix combined of two rows of the fundamental Cauchy
matrix of system (1), one can pass to the equivalent game

ẏ = D(t)u + E(t)v,

t ∈ [t0, T ], y ∈ R
2, u ∈ P, v ∈ Q, ϕ

(
y1(T ), y2(T )

)
,

D(t) = Xi,j(T, t)B(t), E(t) = Xi,j(T, t)C(t).
(2)

Here, the new phase variable y is two dimensional. The right-hand side of the
dynamics does not contain the phase variable. The game interval, the con-
straints for controls, and the payoff function are the same as in the original
game (1) (except that the payoff function now depends on components of the
vector y).

Let (t, y) → V (t, y) be the value function of the differential game (2). The
function V is continuous. For any t ∈ [t0, T ], the function y → V (t, y) is quasi-
convex with compact level sets.

Suppose that the payoff function ϕ possesses the level sweeping property,
that is, for two arbitrary constants c1 < c2 the corresponding level sets Mc1
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and Mc2 of the function ϕ (such that Mc1 	= ∅) obey the relation

Mc2 = Mc1 + (Mc2
∗−Mc1). (3)

It turns out that the value function inherits the level sweeping property from
the payoff function. Namely, let Wc(t) =

{
y : V (t, y) � c

}
be a time section

at the instant t of the level set Wc =
{
(t, y) : V (t, y) � c

}
of the value func-

tion V . In the paper, it is shown that the relation (3) with an additional con-
dition Wc1(t) 	= ∅, t ∈ [t0, T ], gives

Wc2(t) = Wc1(t) +
(
Wc2(t) ∗−Wc1(t)

)
, t ∈ [t0, T ]. (4)

The main result can be reformulated in the following way.

Theorem 2.1. If the payoff function of the game (2) is such that any of its
smaller level sets completely sweeps any larger one, then the time sections of
level sets of the value function at any fixed time instant t from the game interval
have the same property.

Since the sections of a level set of the value function in the original and equiv-
alent coordinates are connected by the relationWc(t) =

{
x ∈ R

n : Xi,j(T, t)x ∈
Wc(t)
}
, t ∈ [t0, T ], the statement about inheritance of the level sweeping prop-

erty by the value function from the payoff function is also true for the original
game (1). In this form, the fact was formulated in the abstract.

3 Backward Procedure for Constructing Level Sets

To prove the theorem, now a backward procedure will be described, which
constructs approximately a level set of the value function in game (2). A level
set corresponding to a number c is built as a collection of time sections

{
Wc(ti)

}
in a grid of instants {ti}. Here, the bold notation W is used instead of W to
emphasize that approximate sets are used. Construction is started from a level
set Mc of the payoff function taken at the terminal instant T . The set Mc is
processed by means of a procedure to the instant T − ∆ giving the section
Wc(T − ∆). Then by means of the same procedure on the basis of the set
Wc(T −∆), a new setWc(T − 2∆) is computed for the instant T − 2∆, and so
on until the given time t∗ ∈ [t0, T ) (Figure 4).

The procedure for constructing a section Wc(ti) uses the previous section
Wc(ti+1) of the level set, the matrices D(ti) and E(ti) from the game dynam-
ics (2), and the sets P and Q constraining the players’ controls. It is described
by the following formula [14,15,9]:

Wc(ti) =
(
Wc(ti+1) + ∆

(
−D(ti)P

)) ∗− ∆E(ti)Q. (5)
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Figure 4: Scheme of the backward procedure of constructing a level set of the value
function.

Suppose that intWc(t) 	= ∅ for any t ∈ [t∗, T ]. Here, intA means the interior
of a set A. It is known that when decreasing the step size ∆ of the discrete
scheme, the approximately built section Wc(t∗) of a level set converges to the
ideal one Wc(t∗) in the Hausdorff metric [12,1,11].

So, to prove the inheritance of the level sweeping property by the value func-
tion it is necessary to prove that the property of complete sweeping is conserved
after operations of algebraic sum and geometric difference and after passing to
the limit when decreasing the step size ∆.

4 Additional Properties of the Geometric Difference

The following statement concerns the conservation of the complete sweeping
property after the operations of algebraic sum and geometric difference.

Lemma 4.1. Let convex compact sets A, B, and C in the plane be such that
the set A is completely swept by the set B, that is, A = B + (A ∗− B). Then
1) (A + C) = (B + C) +

(
(A + C) ∗− (B + C)

)
;

2) if B ∗− C 	= ∅, then (A ∗− C) = (B ∗− C) +
(
(A ∗− C) ∗− (B ∗− C)

)
.

Proof. The first fact is proved directly with the help of equivalent Definition 1.3
of the complete sweeping. So, let us show that for any a′ ∈ A + C there is an
element x ∈ R

2 such that a′ ∈ (B + C) + x and (B + C) + x ⊂ (A + C).
Fix a′ ∈ A + C. Then one can find a ∈ A and c ∈ C such that a′ = a + c.

According to the complete sweeping of the set A by the set B, there is an
element x ∈ R

2 such that a ∈ B + x and B + x ⊂ A. Prove that this element
x is also acceptable for establishing the complete sweeping of the set A + C by
the set B + C.
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Since a ∈ B + x, it follows that a + c = a′ ∈ B + x + c ⊂ (B + C) + x.
Because B + x ⊂ A, then (B + C) + x ⊂ (A + C).
So, the conservation of the complete sweeping after the algebraic sum is

proved. Note that this proof does not demand any compactness, or convexity,
or dimension restriction of the sets A, B, and C. Therefore, statement 1) of
Lemma 4.1 also holds under more general conditions.

Let us proceed to statement 2) of Lemma 4.1. We use the support functions of
the sets under consideration. Recall that every convex compact set A produces a
finite positively homogeneous convex function by the formula ρA(l) = max

{
l′a :

a ∈ A
}
. This function is called the support function of the set A. And vice versa,

for any finite positively homogeneous convex function ρ, a convex compact set
can be found such that ρ is its support function [16].

Let us establish a correspondence between set operations and operations over
support functions. Let A↔ ρA, B ↔ ρB . Then ρA+B = ρA+ρB . It is also known
that if A ∗− B 	= ∅, then ρA ∗−B = conv {ρA − ρB} [2,9]. When A ∗− B = ∅, it
is supposed that ρA ∗−B ≡ −∞.

Let the set A be completely swept by the set B, that is, A = B + (A ∗− B).
Then ρA = ρB + conv {ρA − ρB}, or ρA − ρB = conv {ρA − ρB}. Hence, if the
set A is completely swept by the set B, then the difference of their support
functions is convex.

Using the language of support functions, the statement about conservation of
the complete sweeping property after the geometric difference can be formulated
as follows.

2∗) Let some convex compact sets A, B, and C be such that the difference
ρA− ρB is convex and the function conv {ρB − ρC} has finite value everywhere
in R

2. Then the difference conv {ρA − ρC} − conv {ρB − ρC} is also convex.
Assume f = ρA − ρC , g = ρB − ρC .
The function f − g = (ρA− ρC)− (ρB − ρC) = ρA− ρB is convex. Convexity

of the function conv f − conv g = conv {ρA− ρC}− conv {ρB − ρC} is shown in
the next lemma. �

Lemma 4.2. Let functions f and g : R
2 → R be positively homogeneous,

continuous, the difference f − g be convex, and the function conv g have finite
value everywhere in R

2. Then the difference conv f−conv g is a convex function.

Before the proof of Lemma 4.2, let us formulate some auxiliary propositions.
They are quite simple, so no proofs are given.

Let us denote the boundary of a set D by ∂D. Restriction of f to a set D
will be written as f

∣∣
D

. By conv
∣∣
D

f we mean the convex hull of the function f
computed in a convex set D.
1◦ Let f : R

n → R be a convex function. Also let D ⊂ R
n be a closed convex set

and let the function f̃ be convex in the set D. Let us suppose that f̃(x) = f(x)
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when x ∈ ∂D and f̃(x) � f(x) when x ∈ intD. Then the function

g(x) =
{

f̃(x), x ∈ D,
f(x), x 	∈ D

is convex in R
n.

2◦ Let f : R
n → R and D ⊂ R

n be a closed convex set. Let us suppose that
(conv f)(x) = f(x) when x ∈ ∂D. Then conv

∣∣
D

f = (conv f)
∣∣
D

.
3◦ Let f : R

n → R be a continuous, positively homogeneous function. Then for
any vector l∗ 	= 0 a vector p ∈

{
x : l′∗x � 0

}
exists such that f(p) = (conv f)(p).

4◦ Let f : R
2 → R be a continuous, positively homogeneous function, and let

C be a closed cone of angle not greater than π. Let us suppose that f(x) =
(conv f)(x) if x ∈ ∂C and f(x) 	= (conv f)(x) if x ∈ intC. Then the function
conv f is linear in the cone C.

Now, Lemma 4.2 will be proved.

Proof. 1) Let us denote g̃ = conv g, S =
{
x ∈ R

2 : g̃(x) = g(x)
}
. By virtue of

the continuity of the functions g̃ and g, the set S is closed. Thus, the set R
2\S

can be presented as at most a countable join of non-overlapping open cones C0
i ,

i = 1, m, m � ∞. Following proposition 3◦, each of these cones is of angle not
greater than π. Let Ci be the closure of the cone C0

i .
Using proposition 2◦, one can establish that for any i, the equality conv

∣∣
Ci

g =
(conv g)

∣∣
Ci

holds.

2) The process of constructing the convex hull of the function g can be consid-
ered as a stepwise one: g = g0 � g1 � g2 � . . . Here, each next function gi is
obtained from the previous one gi−1 by changing the latter in the cone Ci by
a linear function li. One has li(x) = gi−1(x) when x ∈ ∂Ci and li(x) < gi−1(x)
when x ∈ intCi. Also according to proposition 4◦, li = (conv g)

∣∣
Ci

.
Simultaneously, the function f is also corrected: f = f0 � f1 � f2 � . . .

such that fi

∣∣
Ci

= conv
∣∣
Ci

fi−1, fi

∣∣
R2\Ci

= fi−1

∣∣
R2\Ci

. That is, fi is obtained from
fi−1 by convexification of the latter in the cone Ci.
3) Let hi = fi − gi, i � 0. We will prove by induction on i that for any i the
function hi is convex.

When i = 0, the function h0 = f0 − g0 = f − g is convex by the condition of
the lemma.

Suppose that for any 0 � i − 1 < m, the function hi−1 is convex. We will
show that in this case the function hi is also convex.

When x ∈ R
2\Ci, one has gi(x) = gi−1(x) and fi(x) = fi−1(x). Therefore,

hi = hi−1 in R
2\Ci.

We have gi(x) � gi−1(x) when x ∈ Ci. Thus, in the cone Ci the relation
fi−1 − gi � fi−1 − gi−1 = hi−1 holds, and, therefore, fi−1 � gi + hi−1. Because
gi is linear in Ci, then the sum gi+hi−1 is convex in Ci. Consequently, it follows
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that in Ci the relation fi = conv
∣∣
Ci

fi−1 � gi+hi−1 holds, that is, hi = fi−gi �
hi−1.

Since in the cone Ci the function fi is convex and gi is linear, the function
hi = fi − gi is convex in Ci.

Applying proposition 1◦, one obtains that the function hi is convex in R
2.

4) The sequence of the continuous functions gi is nonincreasing. With that
lim gi = conv g. The sequence of the continuous functions fi is nonincreasing
and is bounded from below by the function conv f . Thus, this sequence has a
pointwise limit f̃ . The sequence of convex functions hi converges pointwise to
a convex function h̃ = f̃ − conv g. Hence, the function f̃ = h̃+conv g is convex.

Let us prove that f̃ = conv f . One has that f̃(x) = f(x) � (conv f)(x) when
x ∈ S. For any x ∈ R

2\S an index i � 1 exists such that x ∈ Ci, and, therefore,

f̃(x) = fi(x) =
(
conv
∣∣
Ci

fi−1

)
(x) =

(
conv
∣∣
Ci

f
)

(x) � (conv f)(x).

Hence, f̃ � conv f . Because f � f̃ and the function f̃ is convex, then f̃ =
conv f .

By this, it is shown that the difference conv f−conv g is convex in R
2. �

5 Counterexamples to Generalizations of Lemma 4.2

Note that Lemma 4.2 holds only for positive homogeneous functions of two
variables. Generally speaking, the lemma does not hold if the function does not
possess positive homogeneity or the dimension of its argument is higher than
two.

Let us show this by some counterexamples. At first, an example of convex
compact three-dimensional sets A, B, and C will be given such that the set
B completely sweeps the set A, but the difference B ∗− C does not completely
sweep the set A ∗− C. Let us take the set A as a hemisphere cut by two planes
(Figure 5). The set B is homothetic to the set A with coefficient of homothety
less than 1. The set C is taken as an interval, where the length is less than the
horizontal side of the cut part of the set A, but larger than the cut part of the
set B.

Since the set C is an interval, the geometric difference B ∗− C (A ∗− C) is the
intersection of two copies of the set B (correspondingly, A) shifted by the length
of the interval C. According to this, the difference B ∗− C looks like a cap: the
cut part disappeared. At the same time, the difference A ∗− C keeps the cut
part. The sections of the flat sides of the geometric differences are shown at
the right in Figure 5. It is evident that the sharp point of the “roof” of the set
A ∗− C cannot be covered by the circle B ∗− C. Therefore, there is no complete
sweeping between the sets A ∗− C and B ∗− C.

Thus, a counterexample for a possible generalization of statement 2) of
Lemma 4.1 is constructed for the case when the sets A, B, C are of dimension
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Figure 5: Counterexample for conservation of the complete sweeping after the oper-
ation of geometric difference of three-dimensional sets.

higher than two. Support functions of the sets considered give a counterex-
ample for a generalization of statement 2∗) and, therefore, for Lemma 4.2 in
the case when the positively homogeneous functions have their arguments of
dimension three or higher.

Violation of Lemma 4.2 in the case of functions of the general kind (not
positively homogeneous) is demonstrated by the following example.

Let the functions f and g be piecewise linear. The graph of the function f can
be obtained from a quadrahedral pyramid by cutting it by two planes parallel to
the diagonal of the base (Figure 6a). Something looking like a “chisel” appears.

a)

b)

c)

Figure 6: Graphs of the functions f (a), −g (b), and −conv g (c).
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a) b) c)

Figure 7: Sections of the graphs of conv f = f (a), −conv g (b), and
conv f − conv g (c).

The graph of the function −g (it is more demonstrative to imagine the func-
tion −g) looks like a “roof” having a cavity of the same form as the bottom of
the graph of f (Figure 6b). The origin is placed at the middle of the bottom
of the graph of f and at the middle of the cavity of −g. Then the graph of
f − g = f + (−g) looks like the graph of f . The slope of the bottom outshoot
becomes “sharper” and the slope of the side faces becomes, conversely, “flatter”
in comparison with the graph of f . The original slopes can be chosen such that
the graph of f − g will be convex. (Namely, it is necessary to take the side faces
of f quite “sharp” and the faces of g and the bottom outshoot of f quite “flat.”)

Let us consider the graph of the function conv f−conv g = f+(−conv g). The
convex hull conv f coincides with f itself because the function f is convex. The
graph of −conv g (or of the concave hull of −g) looks like a “roof” without any
cavities (Figure 6c). Let us take the sections of the graphs made by a vertical
plane containing the bottom line of “chisel” f . Since the section of the function
conv f − conv g is non-convex (Figure 7), the function conv f − conv g itself is
non-convex.

6 Conservation of Level Sweeping to the Limit

Fix an arbitrary instant t∗ ∈ [t0, T ) and choose a sequence {ϑk} of subdivisions
of the time interval [t∗, T ]: ϑk = {t∗ = t

(k)
∗ < · · · < t

(k)
Nk

= T}. With k → 0

diameter ∆k of subdivision ϑk goes to 0. Denote by W
(k)
c1 (t∗) and W

(k)
c2 (t∗)

the results of applying the backward procedure (5) on the subdivision ϑk with
starting setsWc1(T ) = Mc1 andW2(T ) = Mc2 .

Because the starting sets Wc1(T ) and Wc2(T ) have the complete sweep-
ing, then according to the results on conservation of the complete sweeping
after algebraic sum and geometric difference from Section 4, each pair of sets
W

(k)
c1 (ti) andW

(k)
c2 (ti) has the complete sweeping. Consequently, for any k the

setW(k)
c1 (t∗) completely sweeps the setW(k)

c2 (t∗).
1) Under the assumption that for any t ∈ [t∗, T ] the section Wc1(t) of ideal level
set Wc1 of the value function has a non-empty interior (that is, intWc1(t) 	= ∅),
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one has the following convergenceW(k)
c1 (t∗)→Wc1(t∗) andW

(k)
c2 (t∗)→Wc2(t∗)

in the Hausdorff metric with k →∞.
Therefore, to prove the complete sweeping of the set Wc2(t∗) by the set

Wc1(t∗) under the additional condition intWc1(t) 	= ∅, t ∈ [t∗, T ], it is neces-
sary to justify the following simple fact. Let two sequences {Ak} and {Bk} of
compact sets converge in the Hausdorff metric to compact sets A and B respec-
tively. Suppose that for any k the set Bk completely sweeps the set Ak. Then
the limit sets have the same property: the set B completely sweeps the set A.

Let us show that for the sets A and B, the properties, which stipulate the
complete sweeping of the first set by the second one, hold: 1) ∀a ∈ A ∃x : a ∈
B + x and 2)B + x ⊂ A (see Definition 1.3).

Fix an arbitrary element a ∈ A. Due to the convergence Ak → A, one can
choose a sequence {ak}, ak ∈ Ak, such that ak → a. Since the set Ak is com-
pletely swept by the set Bk, it implies ∀k ∃xk : ak ∈ Bk +xk and Bk +xk ⊂ Ak.

Consider the sequence {xk}. It is bounded. Therefore, a converging subse-
quence can be extracted from it. Without loss of generality, let us suppose that
the sequence {xk} itself converges to an element x. This limit is just the desired
element, which figures in the properties giving the complete sweeping. Let us
show this fact.

The first property: a ∈ B + x. We have that ∀k ak ∈ Bk + xk. Choose bk ∈
Bk : ak = bk + xk. Since ak → a and xk → x, it follows bk → b = a− x. Taking
into account the convergence Bk → B, one can obtain that b ∈ B. Therefore,
there is an element b ∈ B such that a = b + x. Consequently, a ∈ B + x.

The second property: B + x ⊂ A. Let us take an arbitrary element b ∈ B.
Due to the convergence Bk → B, one can take a sequence {bk}, bk ∈ Bk,
such that bk → b. Since Bk + xk ⊂ Ak, it implies bk + xk ∈ Ak. Therefore,
∀k ∃ ak ∈ Ak : bk + xk = ak. Because bk → b and xk → x, then ak tends to an
element ā = b+x. Taking into account the convergence Ak → A, one can obtain
that ā ∈ A. This shows that ∀ b ∈ B b + x ∈ A. Consequently, B + x ⊂ A.

Hence, the set B completely sweeps the set A.
2) Now let Wc1(t∗) 	= ∅, but intWc1(t̄) = ∅ at an instant t̄ ∈ [t∗, T ]. From
the continuity of the value function, it follows that intWc(t̄) 	= ∅ for c > c1.
Then also int Wc(t) 	= ∅ for c > c1 when t ∈ [t∗, T ]. According to the fact
proved above, the set Wc(t∗) completely sweeps the set Wc2(t∗) for c ∈ (c1, c2).
It follows from this that the set Wc1(t∗) completely sweeps the set Wc2(t∗).

7 Is It Possible to Weaken the Dimension Assumption?

Theorem 2.1 is formulated for the case when the payoff function ϕ depends on
two components of the phase vector at the terminal instant T . Let us show that,
generally speaking, the theorem does not hold if the payoff function is defined
by three or more components of the phase vector.



Level Sweeping 35

Let us consider a differential game

ẋ = u + v, t ∈ [t0, T ], x ∈ R
3, u ∈ {0}, v ∈ Q,

ϕ
(
x(T )
)

= min
{
c : x(T ) ∈ cM

} (6)

with fixed terminal time T , a fictitious first player (actually, the first player is
absent) and the payoff function, which is the Minkowski function of a compact
convex set M . The set M is taken as the set A shown in Figure 5. The pay-
off function depends on full a three-dimensional phase vector and, evidently,
possesses the level sweeping property. As the set Q constraining the control of
the second player, let us take the interval shown in Figure 5 and denoted there
by C.

Because the right-hand side of the game dynamics does not depend on time
and does not contain the phase variable, then for any t and any c the section
Wc(t) of the level set of the value function is defined by the formula Wc(t) =
Wc(T ) ∗− (T − t)Q. Let t = T − 1. Take c2 = 1 and c1 < 1 such that the set
Mc1 = c1M coincides with the set B drawn in Figure 5. Then Wc1(t) = Mc1

∗−
Q = B ∗− C and Wc2(t) = Mc2

∗− Q = A ∗− C. As described in Section 5 in
the text relating to Figure 5, the set A ∗− C is not completely swept by the set
B ∗− C. Therefore, the set Wc2(t) is not completely swept by the set Wc1(t).

Thus, the condition of Theorem 2.1 connected to the number of arguments
of the payoff function is essential.

8 Conclusion

In this chapter, a linear antagonistic differential game with fixed terminal time,
geometric constraints on the players’ controls, and continuous quasi-convex ter-
minal payoff function depending on two components of the phase vector is con-
sidered. A level sweeping property of a quasi-convex function is defined. This
property consists of the condition that any non-empty smaller level set com-
pletely sweeps any larger one. The term “complete sweeping” is based on the
concept of geometric difference (Minkowski difference) and is known in convex
analysis and in differential game theory. It is proved that, in the game class con-
sidered, the level sweeping property is inherited by the value function. That is,
if the payoff function possesses the level sweeping property, then the same prop-
erty is true for the constriction of the value function to any time instant from
the game interval. It is shown (by a counterexample) that this holds only when
the payoff function depends on at most two components of the phase vector.

The level sweeping property of the value function can be useful, for example,
when analyzing singular surfaces appearing in linear differential games with
fixed terminal time. Namely, under the presence of this property, the structure
of singular surfaces has some patterns absent in the general situation. In this
case, numerical algorithms for constructing and classifying singular surfaces
become essentially easier.
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Springer-Verlag, Berlin, 1957.

[6] Isaacs R., Differential Games, John Wiley & Sons, New York, 1965.

[7] Krasovskii N.N., Games Problems about Contact of Motions, Nauka,
Moscow, 1970 (in Russian); Transl. as Rendez-vous Game Problems, Nat.
Tech. Inf. Serv., Springfield, VA, 1971.

[8] Krasovskii N.N. and Subbotin A.I., Game-Theoretical Control Problems,
Springer-Verlag, New York, 1988.

[9] Kurzhanski A.B. and Valyi I., Ellipsoidal Calculus for Estimation and Con-
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Abstract
We consider the problem of generalized shortest path. The task is to
transit optimally from the origin through a system Mi, i ∈ 1, m, of inter-
mediate sets in R

d to a fixed destination point (or set), under conditions
that only one node in Mi can be chosen for passing. Any returns to the
sets that have already been passed, are prohibited. The (combinatorial)
cost function to minimize is either additive or bottleneck. The visiting
nodes xi ∈ Mi, i ∈ 1, m, are either governed by an antagonistic nature or
by a rational antagonist. For this multistage game problem both open-
loop and feedback settings are suggested. The feedback problem is posed
in the class of feedback strategies which can change route during motion,
depending on the current moves of the opponent. They provide, in gen-
eral, a strictly better value of the problem, with respect to the open-loop
minimax setting. The optimal feedback minimax strategy is constructed,
and some (polynomial) heuristics are given.

Key words. Game generalized shortest path problem, feedback strategy

1 Introduction

The shortest path problem (SPP) is one of the main problems of combinatorial
optimization, and it has many applications. The classical one-to-one SPP is
to find the shortest path from a fixed origin x0 to a fixed destination xf �
xm+1 through a network of given nodes xi, i ∈ 1, m (1, m � {1, 2, . . . , m}).
The cost of transition from xi to xj is denoted by cij . The cost functional
to minimize is usually

∑
i cri−1ri

(additive) or maxi cri−1ri
(bottleneck), where

(r0, r1, . . . , rs, m + 1), r0 � 0, is a route of size s, s � m. The SPP has a vast
literature (see, e.g., the surveys [5,12,14,15,22,23,28,64]).
∗This research was supported by the RF Ministry of Education under Grant E02-1.0-
232.
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We reformulate the SPP as an optimal open-loop (program) control problem
where the set of admissible controls is the set of all possible routes of all possible
sizes s, s � m. In [56] the generalized shortest path problem (GSPP) to transit
optimally from x0 to xf through a system Mi, i ∈ 1, m, of given intermediate
sets was considered. The nodes xi within given sets Mi ⊂ R

d (i ∈ 1, m) were
allowed to vary so as to minimize the total costs of transition. The GSPP can
be regarded as an optimal open-loop control problem where admissible controls
are pairs {r(s), (xi)i∈1,s}, xi ∈Mri , i ∈ 1, s, s � m.

In this chapter we introduce the game (GGSPP) as a variant of the GSPP.
Here, a control pair {r(s), (xi)i∈1,s} consists of controls: r(s) for player 1 and
(xi)i∈1,s for his antagonist, player 2 (who maximizes the cost). Further, for the
case of the dynamic GGSPP we pose this routing problem under conditions
of (set membership) uncertainties in the class of feedback strategies, analogous
to those suggested in [55] for the game of the dynamic generalized traveling
salesman problem (TSP). This formulation exploits ideas from control theory
and dynamic games ([2,4,19,20,24,27,30,31,33,44,46,49,58]), such as open-loop
control, feedback (positional) strategy, motion generated by strategy, multiple
minimax, and others.

2 GSPP

In this section we consider the GSPP [56], and give some notation.
Put M0 � {x0}, Mm+1 � {xf}. The directed graph of the problem is given

in the form of arc lists [7,12,23]. That is, for each number i of a set Mi, i ∈ 0, m,
the arc list FS(i) (“forward star” of i) is given of those arcs (i, j) for which the
transition from Mi to Mj or to xf is allowed. Let A be a set of (directed) arcs,
A ⊆ {(i, j) : i ∈ 0, m, j ∈ 1, m + 1}. Let n denote the cardinality |A| of A. For
sparse graphs (which are typical for applications), one has n� m2.

For x ∈ Mi, y ∈ Mj let cj(x, y) and cm+1(x, xf ) be the appropriate cost
functions. In general, cj(x, y) 	= ci(y, x). Note that the direct transition x0 → xf

is also possible. The sets Mi are assumed to be just arbitrary nonempty subsets
of R

d. The functions cj and cm+1 are any scalar functions (in particular, cj and
cm+1 may be discontinuous and may take negative values).

Revisiting sets Mi already passed is forbidden, and only one node in every
set Mi can be used. Let (r1, . . . , rs) be s distinct integers from 1, m (so s � m).
We call

r(s) � (0, r1, r2, . . . , rs, m + 1)

a route (of size s) from x0 to xf passing respectively through the sets Mr1 , . . . ,
Mrs

. A route r(s) is possible, if all arcs

(0, r1), (r1, r2), . . . , (rs−1, rs), (rs, m + 1)

are admissible (i.e., belong to A). Note that there are no loops in r(s). In every
set Mri choose some visit node xi, and determine a path along a possible route
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r(s) as a sequence
(x0, x1, . . . , xs, xf )

(for an example, see Fig. 1). The total transition cost along this path is

I(r(s), (xi)i∈1,s) =
s∑

i=1

cri(xi−1, xi) + cm+1(xs, xf ) (1)

or

I(r(s), (xi)i∈1,s) = max
{

max
i∈1,s

cri(xi−1, xi); cm+1(xs, xf )
}

. (2)

Denote by {r} the set of all possible routes r(s) of all possible sizes s through
the system of sets M1, . . . , Mm. The set {r} is determined by the graph of the
problem. Consider the problem

I(r(s), (xi)i∈1,s)→ min
r(s)∈{r}

inf
(xi)i∈1,s ∈

∏s
i=1 Mri

, (3)

where
∏s

i=1 Mri
= Mr1 × · · · × Mrs

is the Cartesian product. The value of
this problem (the “shortest path length”) is denoted by V . Note that since
x0 and xf are fixed, it is convenient to represent the minimization in paths
(x0, x1, . . . , xs, xf ) by an equivalent minimization in s-tuples (xi)i∈1,s.

So, (3) is the problem of joint minimization in all possible routes r(s) of all
possible sizes s � m, and in all possible s-tuples (xi)i∈1,s corresponding to these
routes. Problem (3) is a mixture of both discrete and continuous optimization
problems, and its decomposition into a discrete (combinatorial) subproblem (to
choose r(s)) and a continuous one (to choose x1, . . . , xs) is impossible because
the solutions to these subproblems depend on one another (r(s) and (xi)i∈1,s

are the bound variables: (xi)i∈1,s = (xi)i∈1,s(r(s))).
In problem (3) we seek an optimal open-loop control {r0(s0), (x0

i )i∈1,s0}, and
it can be calculated in advance, before a process starts. In [56] the generalized
Bellman–Ford–Moore (BFM) algorithm was proposed to solve this problem;
this algorithm is the analog of the BFM Label Correcting algorithm [3,17,37]
for the ordinary SPP.

The GSPP has applications to many areas including routing, location-
routing, information theory, communication, transportation, network design,
VLSI design, and robot motion planning.

In the Label Correcting methods (which originate from the BFM algorithm)
the labels of nodes are updated at each iteration until the last needed one. In
the BFM algorithm the number of intermediate nodes in a path is iterated.

Now consider briefly solving the GSPP. All functions ci, i ∈ 1, m + 1, are
assumed to be bounded below. Forget for a while the point x0, and consider
the following set of auxiliary generalized SP subproblems. For every fixed index
set H ⊂ 1, m such that 1 � |H| � m − 1, and fixed x ∈ Mi, i ∈ 1, m \ H,
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Figure 1: Example of a path (m = 7, s = 5, r = (0, 2, 4, 1, 5, 7, 8)).

consider the problem to find the shortest path from x to xf through the system
of intermediate sets {Mj , j ∈ H}. The value of this SPP is defined analogously
to (3) (where s � |H| and ∀i ∈ 1, s : ri ∈ H) with “initial conditions” (H, x)
instead of (1, m, x0). Denote this value by V (H;x). So, in every such auxiliary
problem we ignore the node x0, and pose the SPP only for possible paths within
the system {Mj , j ∈ H} that start at x and end at xf .

Let
WH �

⋃
j∈1,m\H

Mj (H : 0 � |H| � m− 1),

W1,m � x0

(|H| = 0 corresponds to H = ∅). In the case of cost (1), define the equation on
the space of admissible positions (H, x) (|H| � 1, x ∈WH):

J(H;x) = min
{

cm+1(x, xf ); min
i∈H

inf
y∈Mi

[ci(x, y) + J(H \ {i}; y)]
}

(4)

with the boundary condition

J(∅;x) = cm+1(x, xf ) (x ∈Mi, i ∈ 1, m). (5)

So, J(∅;x) is the value of the direct path from x to xf . When the graph of
the problem is not a complete one, then the minimization in i in (4) is taken
over the set F̃S(i∗) ∩H, where i∗ is such that x ∈Mi∗ , and

F̃S(i∗) � {j : (i∗, j) ∈ FS(i∗)}.

The solution to Equation (4) with condition (5) is obtained recursively [56]
with the recursion in layers of sets H of constant cardinality |H| = k, where k
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varies from 1 to m−1 (see Section 4, where an analogous procedure is described).
For any H : |H| = k, k ∈ 1, m− 1, and for any x ∈ WH the value J(H;x) is
the value V (H;x) of the shortest path from x to xf via at most k intermediate
sets (namely, {Mj , j ∈ H}). So, in this algorithm the number of intermediate
sets is iterated, and that is why it was named the generalized BFM in [56].

Practically all existing one-to-one SP algorithms are based on the implemen-
tation of some single origin (one-to-all) or single destination (all-to-one) SP
algorithm. We have the same situation here. Namely, at the last stage of the
above recursive procedure we have determined the optimal values J(H;x) for
H ⊂ 1, m with |H| = m−1, and for x ∈Mj , j ∈ 1, m \H. The set of these (aux-
iliary) SP problems can be considered as one generalized all-to-one SP problem
(in the sense that we find the shortest paths from every node of every set Mi to
destination xf through the system of intermediate sets {Mj , j ∈ 1, m \ {i}}).

Then, finally, calculate (again by (4)) the “full” value J(1, m;x0), and it
equals the value of the initial problem (3): J(1, m;x0) = V . So, we have cal-
culated (and stored) via the backward dynamic programming (DP) procedure
the values J(H;x) for all possible positions (H, x). Now we can calculate the
desired shortest path from x0 to xf . Namely, moving forward, step by step,
from x0 to xf , and choosing at each kth step the number r0

k and node x0
k ∈Mr0

k

which give the minimums in (4), obtain the optimal route (0, r0
1, . . . , r

0
s0 , m+1)

and the shortest path (x0, x
0
1, . . . , x

0
s0 , xf ), where x0

k ∈ Mr0
k
, k ∈ 1, s0. If at

some k∗th step the first of two compared values in (4) is lesser, then we go to
xf , and the procedure terminates (and so s0 = k∗ − 1); otherwise we continue
the procedure, going to the next intermediate set Mi.

Remark 2.1. The solutions to problem (3) cannot produce a path with cycles
(since repetitions are excluded a priori), and so the standard conditions of lack
of negative or zero cycles are of no importance for problem (3). The algorithm
is valid for any situation.

The time complexity of the algorithm is O(N2m22m), and the space com-
plexity is O(Nm2m), where N = |M̃i|, i ∈ 1, m, and M̃i is a grid on Mi (see
Section 5).

Note that the use of argument (H, x) instead of x for optimal function J is a
crucial point in the problem without returns. Indeed, let us define the optimal
function in the form Ji(x), x ∈Mi, i ∈ 1, m, i.e., without argument H, and let
x, . . . , y, . . . , xf be the above shortest path from x ∈ Mi to xf , where y ∈ Mk

is some intermediate node. Then, considering (independently of x ∈ Mi and
Ji(x)) the analogous SPP from y to xf , we can face the situation when the
shortest path with value Jk(y) from y to xf can pass through some node z ∈Mi.
So, the shortest path from x ∈ Mi to xf can return to the set Mi. Moreover,
the shortest path in such a problem can visit some sets Mi many times! The
corresponding examples are simple to construct. Thus, in order to formalize
properly our SPP without returns, we must consider the current argument of
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the optimal function J in the recursive equation as the pair (H, x), where H is
an index set of remaining possible sets to visit (or, equivalently, an index set of
all sets already passed). This leads to larger time and space complexities, but it
is a price to pay for our hard combinatorial restriction “each Mi can be visited
only once.” The set H is none other than the history (memory) of a process. So,
to produce every next step of a route, the solving procedure needs a preceding
history H. And it is well known that the prohibition of repetitive moves in
combinatorial problems can make the solution much harder ([50], [52]–[54], [60],
see also [11,16,26,34,57,63] on relative questions).

Consider, for comparison of complexities, the “degenerate” GSPP, when both
returns and intra-set arcs are allowed. In this case the GSPP becomes the ordi-
nary one-to-one SPP with origin x0, destination xf , and a large amount

⋃m
i=1 M̃i

of intermediate points (namely, mN points). Further, let the standard condi-
tion of lack of negative cycles be fulfilled. Hence, solving by the ordinary BFM
algorithm has the (worst-case) time complexity O(m3N3) (for sparse graphs
O(nmN3)), and memory space 4mN + 2nN2 (since there are now nN2 arcs
instead of n). So, one can see that this problem is far less expensive in compar-
ison with GSPP (and far less interesting and important for applications).

The advantage of generalized combinatorial optimization problems (COPs),
such as the GSPP, is that one obtains an additional freedom to vary the possible
locations of facilities within some preassigned sets, and so to improve the char-
acteristics of a system under design. Further, the generalized (set membership)
settings of COPs give a very convenient way to model and handle the game of
COPs with uncertainties, when nature or a real opponent plays against us, hav-
ing at its (his) disposal the errors, disturbances, noises, failures, or reasonable
controls. Namely, instead of a single fixed ith vertex in a graph of a problem
one uses a set Mi by which the possible realizations of an unknown ith distur-
bance or control are modeled. An example is the dynamic network problems
under set membership uncertainties in node locations or in edge lengths, when
the network administrator has the ability to make on-line corrections, and so
needs some mathematical algorithm to optimize a process.

3 The Feedback Problem

3.1 Problem Statement

Now consider the feedback setting of the game GSPP. As stated in the Intro-
duction, we divide the control {r(s), (xi)i∈1,s} in two parts. Recall that only
one node in every Mi can be chosen.

Consider the following antagonistic multistage positional game of two play-
ers. At the initial “time” k = 0 a path is at the state x0. Player 1 chooses the
number {m + 1}, and so ends the game, or r1, a number of the first intermedi-
ate set to go. After that, player 2 chooses a point x1 within a set Mr1 , and so
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a path comes to a point x1. Player 1 receives an information about x1 (“mea-
sures” it), and then, knowing r1 and x1, chooses {m+1}, and so ends the game,
or a number r2 of the second set to go. After that, player 2 chooses a point
x2 ∈Mr2 , and so on. At the (k + 1)th step player 1 on the basis of information
on r1, . . . , rk and xk ∈Mrk

chooses {m + 1}, and so ends the game, or a num-
ber rk+1 of the next set to go; then player 2 chooses a point xk+1 ∈ Mrk+1 , so
a path arrives at a point xk+1. At the mth step player 1 chooses {m + 1}, and
so ends the game, or the last remaining number rm to go; then player 2 chooses
a point xm ∈Mrm

. At the (m + 1)th step player 1 (automatically) chooses the
single remaining number {m+1}, i.e., the point xf , and the game is over. As a
result, obtain a route (0, r1, . . . , rs, m+1) and a path (x0, x1, . . . , xs, xf ), where
s, s � m, is a moment at which player 1 has decided to end the game. Under
such a game formalization, player 1 at each step, depending on what uncertainty
xk has been realized, can generate various continuations of the carved-out part
of a route until then. By receiving the above information on points xk he may
use the mistakes of the opponent to improve himself.

The two-person game has informational lag for the first player (in the sense
that at every step he “plays first” and does not know what will be the opponent’s
move at this step, while player 2, who “plays second,” knows the move of player
1 at this step). So, the players move alternately, with player 1 playing first.

It is assumed that the first player’s control at the (k + 1)th step is designed
on the basis of available information on the current state of the system. By
available information we mean the following. Locating at the set Mrk

, player 1
selects {m+1} or the next visit number rk+1 after he gets the value xk ∈Mrk

;
besides, he stores the numbers r1, . . . , rk of all sets Mi he has passed (which is
equivalent to him knowing the numbers rk+1, . . . , rm of all remaining sets Mj).
By position we mean a pair (H, x), where H is a set of indices j of all sets Mj

which remain to be visited, and x is a point at which a path locates. By feedback
control at the (k + 1)th step we mean a function Rk+1(H;x) defined for all H
and x which may arise at this step, and producing rk+1 or {m + 1}. All H and
x which may appear during a motion satisfy the conditions H ∈ 21,m ∪ {∅}
and x ∈ x0 ∪

{⋃m
j=1 Mj

}
.

Definition 3.1. A feedback (positional) strategy R of player 1 is any function
R : (H, x) → R(H;x) defined for all possible positions (H, x), and producing
for every current position a number of the next set to reach, or the number
{m + 1} to end the game.

Definition 3.2. A motion x(·) generated by strategy R from initial position
(1, m, x0) is any pair

x(·) = {(0, r1, . . . , rs, m + 1), (x0, x1, . . . , xs, xf )},
xk ∈Mrk

, rk = R(1, m \ {ri : i ∈ 1, k − 1};xk−1), k ∈ 1, s, s � m,

{m + 1} = R(1, m \ {ri : i ∈ 1, s};xs). (6)
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Here Definition 3.2 is correct, since (see Definition 3.1) any strategy R sooner
or later brings the corresponding motion to the destination xf ; this may occur,
e.g., at the first step of the game (s = 0), or at the last (possible) step (s = m),
or at some intermediate step (0 < s < m).

It is also convenient to represent R as a collection of functions R =
{R1, . . . , Rm}, where Rk(H;x) is determined for all H and x which may arise
at the kth step (k ∈ 1, m). Here k = m − |H| + 1. Note that for k = 1 in (6)
we have {ri : i ∈ 1, 0}= {ri : i ∈ ∅} = ∅ , so r1 = R(1, m;x0).

For these feedback motions use the notation I(x(·)) � I(r(s), (xi)i∈1,s). For
every strategy R denote by X(R) the bundle of all possible motions x(·) gen-
erated by R. So, to every motion x(·) from X(R) corresponds some fixed route
r(s) and ordered s-tuple of uncertainties. The value

sup
x(·)∈X(R)

I(x(·))

is the result which the first player can guarantee himself under strategy R. His
aim is to choose a strategy minimizing this guaranteed amount.

Problem 3.1. Find a strategy R̃ satisfying

sup
x(·)∈X(R̃)

I(x(·)) = min
R

sup
x(·)∈X(R)

I(x(·)) = γ0. (7)

The minimum in (7) is really attained (see Theorems 4.1–4.3). By ε0 denote
the value of the problem in the class of program controls r(s):

ε0 � min
r(s)∈{r}

sup
(xi)1,s∈

∏s
i=1 Mri

I(r(s), (xi)i∈1,s);

in this setting the first player is not allowed to change the route during a motion.
Note that, of course, one can transit from node x0 to node xf immediately (if

cm+1(x0, xf ) < ∞), but it may turn out that the value ε0 = ε0(1, m;x0) and,
all the more, the value γ0 = γ0(1, m;x0), are more profitable than cm+1(x0, xf )
(e.g., γ0 � cm+1(x0, xf )), and so it is natural to use the feedback setting.

Some combinatorial problems, such as the TSP, GTSP, SPP, and GSPP,
carry a certain duality as concerns their dynamic character. Formally, they are
dynamic problems, since one moves from one node to another. But in fact they
are static a priori problems for choosing a permutation or a route and a tuple
of nodes (for the GTSP and GSPP). Analogously, in the game case, one may
consider the program settings of the GGSPP and GGTSP as static problems as
well. In contrast, the feedback settings of the GGSPP and GGTSP [55] are really
dynamic routing problems, with nontrivial decision-making during a route.

Let us mention some possible applications of Problem 3.1.
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3.2 Examples in Communication Systems

Suppose we have to transmit a signal (message, packet, command, etc.) from
a device x0 to a remote device xf via the system of intermediate clusters Mi,
i ∈ 1, m, of receiving-transmitting devices (RTDs). The clusters Mi can be com-
pact zones (office buildings with many independent RTDs) or geographically
dispersed industrial areas of RTDs (say, clusters of relay stations). The trans-
mission can be wireless or cable (in this case, e.g., all RTDs y of a local area
network (LAN) Mi can terminate at the ports of the ith multiplexer, which
automatically parallelizes an external signal to all y in Mi, and transmits back
a signal from any y ∈Mi to the global backbone cable network). We can exploit
in each cluster Mi only one station y. Each station y ∈ Mi has its own tariffs
ci(x, y) for servicing the signal received from preceding stations x. We do not
know in advance which station y in Mi will service our signal (it can be any of
them), but all the above tariffs are known. The feedback transmission goes as
follows. We transmit the signal from supervising node x0 to some cluster Mr1 ,
and it is received by some station x1 ∈ Mr1 . Then RTD x1 gets in touch with
us, and we give it the next number r2 of the area to which our signal must be
sent. At area Mr2 the signal is received by some RTD x2 ∈Mr2 , which gets in
touch with us, and so on. Our aim is to minimize the total costs of transmis-
sion, and it makes sense to use the feedback setting (of course, if the a priori
value γ0 is satisfactory at all).

The variety of costs ci(x, y) can depend on wire length, physical types of
cables, speed of processing of information by a device, different tariffs, and so
on up to the human factors.

One particular case of this problem is that of finding the most reliable trans-
mission in a communication network [6,18,42]. Consider the generalized version
of this problem of finding the most reliable path between two given stations in
a communication system. Let Mi, i ∈ 1, m, be the clusters of relay stations.
The problem is to transmit a signal or a message from x0 to a remote point
xf via the system of intermediate areas Mi, i ∈ 1, m, in the most reliable way.
Only one RTD can be used in a cluster Mi, i ∈ 1, m. Let pi(x, y) be the relia-
bility of a link (channel) (x, y) from node x to node y ∈Mi, i.e., pi(x, y) is the
probability of a link (x, y) being operative (i.e., not destroyed or jammed). All
probabilities are independent, that is, links fail independently of one another.

If r(s), where s � m, is some route, and (x0, x1, . . . , xs, xf ), xi ∈Mri , i ∈ 1, s,
is some path along a route r(s), then its reliability is given by the product of
reliabilities of its links:

I(r(s), (xi)i∈1,s) =
s∏

i=1

pri(xi−1, xi) · pm+1(xs, xf ). (8)

The problem is to find a route and a path which maximize (8). Now reduce the
maximum reliability problem to the GSPP. Consider the same system of sets
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Mi, i ∈ 1, m, and let the cost of a link (x, y) be now ci(x, y) = − ln pi(x, y)
instead of pi(x, y). Then the maximization of (8) is equivalent to minimization
of the “path length”

s∑
i=1

cri
(xi−1, xi) + cm+1(xs, xf ).

We do not know in advance which relay stations in the sets Mi will be used,
and hence we pose the feedback problem in order to obtain a certain guaranteed
reliability γ0.

Another communication problem is the optimal wireless transmission via the
system of mobile retranslators. There is one mobile retranslator in every local
geographical area Mi, i ∈ 1, m. The costs ci(x, y) (e.g., power of a signal) depend
on geographical coordinates x and y because of landscape and atmospheric
factors. The signal is transmitted consequently from one retranslator to another.
The current locations of retranslators within Mi, i ∈ 1, m, are not known, so
it is supposed that at any time moment the ith retranslator can occur at any
point of Mi. Thus, to find a (guaranteed) shortest path, one can apply the above
feedback posing.

4 Optimal Minimax Strategy

In this section one designs the strategy which solves Problem 3.1 when the cost
is given as in (1). Assume that all functions ci, i ∈ 1, m, are bounded above.
On the set of all possible positions (H, x) define the Bellman equation

J(H;x) = min
{

cm+1(x, xf ); min
i∈H

sup
y∈Mi

[ci(x, y) + J(H \ {i}; y)]
}

,

or, equivalently, and more conveniently,

J(H;x) = min
i∈H∪{m+1}

sup
y∈Mi

{
ci(x, y) + J(H \ {i}; y)

}
(9)

(where ∀ H : J(H \ {m + 1};xf ) � 0) with the boundary condition (5).
If, e.g., the functions ci(x, y), i ∈ 1, m, are jointly upper semicontinuous

(u.s.c.) on R
d × R

d, the function cm+1(x, xf ) is u.s.c. on R
d, and the sets Mi,

i ∈ 1, m, are compact, then the maximum in (9) is always attained, since
∀ H ⊆ 1, m the function J(H;x) (9) is u.s.c. on R

d. This fact follows from the
well-known (see, e.g., [1]) u.s.c. property of functions ϕ(x) = supy∈Y ϕ(x, y) and
ψ(x) = mini∈H ψi(x), where ϕ is jointly u.s.c., ψi are u.s.c., and Y is compact.

The solution to equation (9) with condition (5) is obtained as follows. The
recursion (9) is in layers of sets H with constant cardinality |H| = k, where
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k varies from 1 to m. In view of the specificities of the problem, one should
calculate the values J(H;x) only for the pairs (H, x) such that

H ∈ 21,m ∪ {∅}, x ∈WH .

We begin at the boundary condition (5), and at the first stage calculate J(H;x)
for all single-element sets H = {k} and points x ∈ (

⋃m
j=1 Mj) \Mk (k ∈ 1, m).

At the second stage calculate J(H;x) for all two-element sets H = {k, q} and
points x ∈ (

⋃m
j=1 Mj

)
\
(
Mk

⋃
Mq) (k, q ∈ 1, m, k 	= q), and so on. At the last

but one stage calculate J(H;x) for all (m− 1)-element sets H = 1, m \ {k} and
x ∈Mk (k ∈ 1, m). At the last stage calculate the value J(1, m;x0). Note that
in comparison with Section 3 the reasoning “in steps” k is replaced by reasoning
“in layers” of sets H of cardinality m− k + 1 (so k = m− |H|+ 1).

In parallel with the calculation of J(H;x), we find and store the number

R0
k(H;x) � i0(H;x), (10)

which provides the minimum in (9), for all (H, x) which may occur at this step.
If such an i0(H;x) is nonunique, choose and store any one of them.

Theorem 4.1. The strategy R0 defined by (9), (5), (10) satisfies the condition

sup
x(·)∈X(R0)

I(x(·)) = J(1, m;x0).

Then, evidently, γ0 ≤ J(1, m;x0). In fact, R0 is an optimal minimax strategy.

Theorem 4.2. For every H ⊆ 1, m and y ∈ WH the equality γ0(H; y) =
J(H; y) is true. In particular, one has γ0 = J(1, m;x0).

Proof. Analogously to (7), define the value function γ0(H; y) for all H ⊆ 1, m,
y ∈WH :

γ0(H; y) � min
R

sup
x(·)∈X(H;y;R)

IH(x(·)),

where

IH(x(·)) =
s∑

i=1

cji
(xi−1, xi) + cm+1(xs, xf ),

xi ∈ Mji , i ∈ 1, s; x0 is y, (j1, . . . , js) are any s distinct integers from H
(so s � |H|); X(H; y;R) is the bundle of all possible motions generated by
strategy R from initial position (H, y). Surely, for (H, y) = (1, m, x0) one has
γ0(1, m;x0) = γ0 and X(1, m;x0;R) = X(R) (see Section 3). So, γ0(H; y) is the
minimal guaranteed result in the subgame starting from initial position (H, y).

Analogously to Theorem 4.1, one obtains the inequality

γ0(H; y) � J(H; y) (H ⊆ 1, m, y ∈WH). (11)
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Let us prove that in fact

γ0(H; y) = J(H; y). (12)

In view of (11) it is sufficient to prove that

γ0(H; y) � J(H; y). (13)

For the proof of (13) we proceed by induction in |H|. For H = {i} with |H| = 1
we have

γ0({i}; y) = min
{

cm+1(y, xf ); sup
x∈Mi

[ci(y, x) + cm+1(x, xf )]
}

= J({i}; y),

where i ∈ 1, m, so (13) holds. Now let (13) be true for all H such that |H| �
k∗ < m, k∗ � 1, and prove (13) for all H with cardinality |H| = k∗ +1. Fix any
position (H, y) with |H| = k∗+1, and fix any strategy R. According to Definition
3.1, we can check the exact number j1 ∈ H ∪ {m + 1} of the set Mj1 which
will be chosen first to visit by strategy R starting from initial position (H, y).
Namely, j1 = R(H; y). Consider the guaranteed result under the application of
strategy R (see Section 3). We have (x0 is y):

ϕ(H; y;R) � sup
x(·)∈X(H;y;R)

{ s∑
i=1

cji
(xi−1, xi) + cm+1(xs, xf )

}
= sup

x(·)∈X(H;y;R)

{
cj1(y, x1) +

s∑
i=2

cji
(xi−1, xi) + cm+1(xs, xf )

}
= sup

x1∈Mj1

sup
x(·)∈X(H\{j1};x1;R)

{
cj1(y, x1)

+
s∑

i=2

cji(xi−1, xi) + cm+1(xs, xf )
}

= sup
x1∈Mj1

{
cj1(y, x1) + ϕ(H \ {j1};x1;R)

}
� sup

x1∈Mj1

{
cj1(y, x1) + γ0(H \ {j1};x1)

}
� sup

x1∈Mj1

{
cj1(y, x1) + J(H \ {j1};x1)

}
� J(H; y).

The last inequality in this chain follows from (9), and the last but one inequal-
ity follows from the hypothesis of the inductive step. So, we have obtained the
inequality for the guaranteed result ϕ(H; y;R) under application of a fixed strat-
egy R. Since R was chosen arbitrarily, then (13) is true. The inequalities (11),
(13) imply the equality (12). �
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Figure 2: Feedback is better.

From Theorems 4.1 and 4.2 follows

Theorem 4.3. The strategy R0 is the solution to Problem 3.1 for the case of
cost (1).

Here is an example showing that, in general, feedback control is better than
open-loop control. The sets M1, M2, M3 are the arcs lying on a circumference
A of radius p and with center at x0 (see Figure 2).

Let the midpoint of M2 be b, and let the length of M2 be h. The terminal
point xf lies on A opposite to b. The dotted line indicates some possible path.
Let all the costs c1(x0, x), x ∈ M1, and c3(x0, x), x ∈ M3, and also the cost
cf (x0, xf ), be unacceptably high. Put c2(x0, x) = p for all x ∈ M2. Let the
costs cj(x, y) of transition from x ∈Mi to y ∈Mj , and also the costs c4(x, xf )
of transition from x ∈ Mi, i ∈ 1, 3, to xf = x4 be equal to the length of a
lesser arc of A between x and y or between x and xf respectively. Under these
conditions, the only reasonable routes from x0 to xf are r∗(2) = (0, 2, 1, 4) and
r∗∗(2) = (0, 2, 3, 4). For any of them the second player may choose at the first
step of the game the farthest point in M2 (d and a, respectively), and hence
the first player in the open-loop game can guarantee himself only the value

ε0 = p(1 + π) + h/2.

Now consider the feedback setting. If the second player chooses at the first step
some point x1 ∈Mr1 = M2 such that x1 	= b, then the first player goes along a
lesser arc to xf and takes the result γ < p(1 + π). If the second player chooses
x1 = b, then the first player takes the result γ = p(1 + π). Hence,

γ0 = p(1 + π) < ε0. �

By construction, R0 is a universal strategy (that is, it remains an optimal
minimax strategy for any intermediate position (H, x) considered as an initial
one), see [32,33,59,8,9,41]. If player 2 has selected an erroneous (i.e., nonworst)
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uncertainty, the strategy R0 self-dependently guarantees (in an optimal way)
the result strictly better than γ0. So, there is no need to readjust R0 into another
strategy in order to seize the opportunity of unsuccessful action of the second
player, and to improve the result. The universal strategy does not “forgive” any
mistake of the opponent, and automatically takes the mistakes (if they occur)
into account at each kth step. So, using the universal optimal strategy, one can
obtain at the end of the game a much better result than the initial optimal
guaranteed feedback result γ0, especially in the case when the second player
makes chaotic moves.

To realize the strategy R0, one may store, along with values J(H;x), the
values R0(H;x) on the whole array of possible positions (H, x). But then a
double memory space is needed. To avoid it, we suggest calculating the values
R0(H;x) currently, starting from the initial position. Namely, we do not tab-
ulate the values R0(H;x) during the “backward” DP procedure. Instead, we
calculate them only for those current positions (H, xk) which appear during the
“forward” real game process, according to current realizations of xk. Thus, we
are to produce (in the worst case) m− 1 additional local min sup operations to
find R0

k, k ∈ 2, m (the value R0(1, m;x0) we remember, and the last number is
(in the worst case) R0

m+1(∅, xm) = {m + 1}). The additional amount of time
to produce these operations is very small with respect to the running time of
the whole algorithm (see Section 5).

5 Computational Aspects

In this section we calculate the time and space complexities of our algorithm for
a sequential (one-processor) machine. For numerical computations replace the
sets Mi by finite grids M̃i, i ∈ 1, m. So, one should calculate the values J(H;x)
and R0(H;x) for nodes x ∈

⋃m
i=1 M̃i and sets M̃i instead of Mi, i ∈ 1, m.

Denote the cardinality of M̃i by Ni : Ni � |M̃i|, i ∈ 1, m.
The time complexity is evaluated in terms of a number of elementary steps

which are the basic operations (addition, multiplication, comparison, transfer
of a word from RAM to disk buffer and back, and executing subroutine calls to
calculate ci(x, y), i ∈ 1, m, and cm+1(x, xf )). By pi denote the number of basic
operations required to calculate the value ci(x, y) for fixed x, y by ith subroutine.
Without loss of generality, assume that Ni and pi are constants: Ni = N , pi = p
for any i ∈ 1, m; otherwise, putting N � maxi Ni and p � maxi pi, obtain the
upper bounds for both complexities.

Theorem 5.1. The time complexity of the optimal algorithm is

O(N2m22m),

and its space complexity is
O(Nm2m).
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Proof. At first find the space complexity. For every k ∈ 1, m the number of
distinct sets H of size |H| = k is Ck

m. For every k ∈ 1, m− 1 the number
of corresponding values J(H;x) (with |H| = k) that have to be computed is
N(m− k)Ck

m. Now, summing in k and using formulae

m∑
k=1

kCk
m = m2m−1,

m∑
k=0

Ck
m = 2m, (14)

we obtain
m−1∑
k=1

N(m− k)Ck
m = Nm2m−1 −Nm.

So, the (special) memory for storing the values J(H;x) is

Q = Nm2m−1 −Nm + 1

(one cell added for J(1, m;x0)). Thus, the space complexity is O(Nm2m).
Now find the time complexity. The number of basic operations to calculate

and store a single value J(H;x) (see (9)) with |H| = k (k ∈ 1, m) is Tk =
(p + 4)Nk + p + 2. The time to calculate and store all values J(H;x) with
|H| = 1, . . . , m is

T = Tm +
m−1∑
k=1

N(m− k)Ck
mTk.

Using formulae (14) and

m∑
k=1

k2Ck
m = m(m + 1)2m−2,

we obtain

T = (p + 4)N2m(m− 1)2m−2 + (p + 2)Nm2m−1 − 2Nm + p + 2.

Further, as was said above, to avoid a double memory array, we calculate the
values R0(H;xk) during a process, along a real motion. The additional amount
of time for this is no more than

Tadd =
m−1∑
k=2

Tk =
(p + 4)

2
N(m + 1)(m− 2) + (p + 2)(m− 2).

Finally, the total running time of the whole algorithm is Ttot = T +Tadd. Hence,
the time complexity is O(N2m22m). �
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6 Heuristic Strategies

As follows from Theorem 4.2, the optimal feedback guaranteed result γ0 is, in
fact, a multiple minimax:

γ0 = min
r1

sup
x1

. . .min
rk

sup
xk

. . .min
rm

sup
xm

I(r, (xk)k∈1,m) (15)

(where rk ∈ 1, m + 1 \ {r1, . . . , rk−1}, xk ∈ Mrk
, k ∈ 1, m), and so at the kth

step the local operation minrk
supxk

is calculated on the values of a specially
designed optimal function, see (9). For any intermediate position (H, x) the
optimal value J(H;x) is a multiple minimax as well.

Since the time and space complexities of the exact (optimal) algorithm are
large, a more pragmatic approach is to have approximate or heuristic solutions.
We present here some heuristic strategies. In view of (15), it is reasonable, under
designing a well-grounded feedback heuristic, to follow (as far as possible) this
multiple minimax principle. Recall (see Section 3) that any feedback strategy is
a rule which for every possible position (H, x) points out a number of the next
set to reach or the number {m + 1} to exit and end the game.

6.1 One Local Minimax Heuristic

For every current position (H, x) the first player goes to a set with a number
i0(H;x) which provides a minimum in i ∈ H ∪ {m + 1} in

J (1)(H;x) = min
{

cm+1(x, xf ); min
i∈H

sup
y∈Mi

[ci(x, y) + cm+1(y, xf )]
}

.

The total (worst-case) time complexity of the game under application of this
heuristic is O(Nm2).

6.2 Two Local Minimax Heuristic

The next number i0(H;x) to go provides an outer minimum in i ∈ H ∪ {m + 1}
in

J (2)(H;x) = min
{

cm+1(x, xf ); min
i∈H

sup
y∈Mi

{
ci(x, y) + min

{
cm+1(y, xf );

min
j∈H\{i}

sup
z∈Mj

[cj(y, z) + cm+1(z, xf )]
}}}

. (16)

The total time complexity of the game under this heuristic is no more than
O(N2m3).
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6.3 The lll Local Minimax Heuristic

A number i0(H;x) of the next set to reach provides an outer minimum in
i ∈ H ∪ {m + 1} for the function J (l)(H;x), which is written down analogously
to (16). Here l � m (the case l = m corresponds to the exhaustive search).
The total (worst-case) time complexity of the game under this heuristic is
O(N lml+1).

Note that if the functions ci(x, y), i ∈ 1, m, and cm+1(y, xf ) have good prop-
erties in y (differentiability, convexity, concavity), then the last max operation
in the above relations for J (1), J (2), J (l) can be implemented by numerical
methods (since the functions ci and cm+1 are given explicitly), and hence the
time complexities are reduced by N : O(m2), O(Nm3), O(N l−1ml+1).

In these heuristics we do not calculate and tabulate the arrays of values
of J (l)(H;x) or i0(H;x), but calculate only the current values i0(H;x) along
a particular real motion. Further, these heuristics give predictions for l steps
ahead and cut the last |H| − l steps (if |H| > l) in a corresponding multiple
minimax. In terms of graph theory, this is an exhaustive minimax (guaranteed)
search on a game tree, when a tree is cut off at the lth level in depth.

One may use the sharper heuristics, to play the last |H|− l steps of the search
as well. Namely, we insert some function h(H \{i1, . . . , il};x) which estimates a
result of the search on the last (undone) |H| − l steps of the exhaustive search.
For example, for l = 1 we have

J (1)(H;x) = min
{

cm+1(x, xf ); min
i∈H

sup
y∈Mi

[ci(x, y) + h(H \ {i}; y)]
}

.

Quite in the spirit of artificial intelligence theory (see [13,29,40,43,45,51,65]) we
call function h a heuristic estimator. If the calculation of its values is cheap
enough, we can calculate them on-line, during a real motion. In view of the
above principle of multiple minimax, h should be chosen of some minimax or
mean character (e.g., h can be the program minimax ε0(H \ {i1, . . . , il}; y) on
the last |H| − l steps of the game, or the generalized analog of the minimum
average arc length path [62]). The function h may be given tabularly, being
calculated sometime before. Surely, if h is the full multiple minimax on the last
|H| − l steps of a search, then this (l, h)-strategy coincides with the optimal
strategy R0.

By these heuristic search procedures player 1 at each kth step of the game
determines the next move he should make (i.e., the next number to go). As one
can see, any special memory (for storing the values J(H;x) or i0(H;x)) is not
needed at all. These are very cheap heuristic algorithms, and they avoid the
main difficulty of the exact algorithm: the necessity to calculate and store a
large amount of values J(H;x).

The l-heuristics are easy and transparent for computer coding, since they
consist solely of identical procedures of finding the minimal or maximal element
in a (given) linear list (in i) or in an array (in y) respectively. In fact, the
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problem is even easier, and we do not need any sorting procedures. Going along
a list H (or a grid Mi), we simply compare, node by node, the next calculated
value with the previous one, and store the minimal (or, respectively, maximal)
of them. So, at the last number i of H (or at the last node y of Mi) we obtain
the minimal value on H (or the maximal value on Mi). On the one hand, l-
heuristics are clever (since they imitate the optimal algorithm as far as your
computer allows) and reflect the serious theory; on the other hand, they are
simple to understand and can be easily programmed.

The time complexity of the optimal algorithm is O(N2m22m), and that of
the l-heuristics defined above is O(N lml+1). For l varying from 1 to m the
complexity O(N lml+1) varies from O(Nm2) to O(Nmmm+1). Let us find the
value l∗ after which the l-heuristic becomes more expensive (in the sense of time
complexity) than the optimal algorithm. Evidently, such l∗ = l∗(m, N) is the
root of equation

N lml+1 = N2m22m,

hence
l∗ = 1 +

log N + m log 2
log(Nm)

.

Let, for simplicity, N be fixed. The ratio θ(m) = l∗(m)/m is the ratio of lengths
of “time intervals” [1, l∗] and [1, m]. One has θ(m) → 0 as m → ∞ (though
l∗(m)→∞ as m→∞). In Table 1 the behavior of l∗ and θ is presented under
m→∞ (N equals 100).

Table 1: Comparison of time complexities.

m 15 50 100 500 104 1010 10100

l∗(m) 3 5 9 33 500 25× 107 3× 1097

θ(m) 0.2 0.1 0.09 0.065 0.05 0.025 0.003

7 Generalized Bottleneck SPP

Consider problem (3), (2) [56]. So, I is the maximum link value in a path
(x0, x1, . . . , xs, xf ) along a route r(s). This problem may be thought of as an
information security problem consisting of finding a route to transmit a signal
in a network so as to minimize its detectability or decipherability (e.g., (2) is
the maximal power of a signal on a whole path). The feedback Problem 3.1 for
this case is stated and solved analogously to the methods in Sections 3–6.

The recursive equation here is

J(H;x) = min
{

cm+1(x, xf ); min
i∈H

sup
y∈Mi

max [ci(x, y); J(H \ {i}; y)]
}
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(x ∈Mi for i ∈ 1, m \H) with the boundary condition (5). The corresponding
statements repeat literally as Theorems 4.1–4.3, and are omitted.

Also note that problem (3), (2) is equivalent to the generalized version of the
well-known maximum capacity path problem:

I(r(s), (xi)i∈1,s) = min
{

min
i∈1,s

cri(xi−1, xi); cm+1(xs, xf )
}

,

I(r(s), (xi)i∈1,s)→ max
r(s)∈{r}

sup
(xi)i∈1,s∈

∏s
i=1 Mri

,

where ci(x, y) is the capacity (throughput) of a link (x, y), and I is the capacity
of a whole path along a route r(s). This open-loop problem and corresponding
maxR infx(·) feedback problem are solved analogously to problem (3), (2) and
Problem 3.1 respectively, substituting everywhere all operations min, inf, and
max by max, sup, and min, respectively (and supposing all functions ci, i ∈ 1, m,
are bounded below).

8 GGSPP with a Set of Terminal Nodes

The GSPP and GGSPP can be easily modified to the case when instead of
a single terminal point xf one has some multiport terminal set Xf ⊂ R

d of
technical endpoints of a process, and it is allowed to finish a route at any (one)
point (port) in Xf . The set Xf can be continuous or discrete.

The cost to minimize is either

I(r(s), (xi)i∈1,s) =
s∑

i=1

cri
(xi−1, xi) + inf

a∈Xf

cm+1(xs, a)

or
I(r(s), (xi)i∈1,s) = max

{
max
i∈1,s

cri
(xi−1, xi); inf

a∈Xf

cm+1(xs, a)
}

instead of (1) or (2) respectively. Problem 3.1 is stated as before. The recursive
equation is

J(H;x) = min
{

inf
a∈Xf

cm+1(x, a); min
i∈H

sup
y∈Mi

[ci(x, y) + J(H \ {i}; y)]
}

or

J(H;x) = min
{

inf
a∈Xf

cm+1(x, a); min
i∈H

sup
y∈Mi

max [ci(x, y); J(H \ {i}; y)]
}

(x ∈Mi for i ∈ 1, m \H) respectively, with the boundary condition

J(∅;x) = inf
a∈Xf

cm+1(x, a) (x ∈Mi, i ∈ 1, m).

The solving scheme and theorems are analogous to the previous ones, and are
therefore omitted.
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9 Conclusion

In [55] a new approach for solving dynamic combinatorial game problems was
suggested, and it was applied to solve the GGTSP. This approach is a sym-
biosis of combinatorial optimization and dynamic games. The global minimax
problem in the class of feedback strategies is reduced to a series of local min sup
operations. In this chapter the second dynamic game problem of this type is
considered, namely the GGSPP.

So, we have introduced and investigated the deterministic shortest path prob-
lem with set membership uncertainties. The problems similar to ours may be
observed in the stochastic branch of the SPP, where the arcs (x, y) of a net-
work have stochastic lengths (“travel times”), i.e., are random variables. In the
a priori least-expected time path problem the entire route is selected before a
process starts. No additional information during a motion is available, and no
rerouting is permitted. In this setting the actual values of arcs do not become
known until the arc is passed.

But in real problems it is of use to react on current information. For example,
a driver on the road network should adapt to the changing situation, and reroute
a path, if necessary, to get a better total travel time. In the time-adaptive route
problem [10,21,35,36,47,48,61] a decision-maker can reevaluate at each node the
remaining path on the basis of information obtained en-route, so at each node
x the rerouting is possible during a motion. Namely, the actual lengths of all
downstream arcs (x, y) become known to a decision-maker upon his arrival at x.
Now he knows the revealed costs of all downstream arcs (x, y) deterministically.
Besides, he knows the expected cost for each successor node y. Adding these
two values (for each y) and then choosing the minimum (in y), a decision-
maker obtains the next arc (x, y∗) to go. The initial ideas of this approach were
originated by R. W. Hall [25].

The adaptive (i.e., feedback) strategies are formalized as hyperpaths [38,39]
(a hyperpath is an acyclic subnetwork consisting of a set of paths between a
given origin-destination pair). The adaptive setting gives, in general, a better
result compared to the a priori one, and, clearly, is an attempt to fit the theory
to real-life problems (for example, the problems of urban traffic congestion and
the shortest-path protocols for data traffic in computer networks).
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Abstract
This chapter presents a new approach to improve the homing performance
of a pursuer with delayed information on the evader’s lateral acceleration.
This approach reduces the uncertainty set of the pursuer, created due to
the estimation delay, by considering not only the current (pure feedback)
measurements but also the available measurement history during the
period of the estimation delay. The reduced uncertainty set is computed
by solving two auxiliary optimization problems. By using the center of
the new uncertainty set’s convex hull as a new state variable, the original
game is transformed to a nonlinear delayed dynamics game with perfect
information for both players. The solution of this new game is obtained in
pure strategies for the pursuer and mixed ones for the evader. The value
of this game (the guaranteed miss distance) is substantially less than the
one obtained in previous works by using only the current measurements.

Key words. Pursuit-evasion games, imperfect information, estimation
delay, uncertainty set

1 Introduction

Interception end-game scenarios of maneuvering targets can be formulated as
zero-sum pursuit-evasion games with bounded controls and prescribed dura-
tion. The interceptor is the pursuer, the maneuvering target is the evader and
the cost function of the game is the miss distance. In most cases the use of a lin-
earized kinematical model with first-order acceleration dynamics of both players
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is justified. Using such a model and assuming perfect information allows one to
obtain a closed-form solution of the game [28]. The first step in the solution is
to reduce the dimension of the original game (four state variables in a planar
interception) by introducing a new (scalar for a planar interception) state vari-
able, called the zero effort miss distance. This is the miss distance that would
be obtained if both players used zero control until the end of the game. The
zero effort miss distance, being based on the homogeneous solution of the orig-
inal linear system, is the function of all the original state variables. The perfect
information game solution, using the time-to-go as the independent variable,
consists of the optimal interceptor guidance law (the optimal pursuer strategy),
the “worst” target maneuver (the optimal evader strategy) and the guaranteed
miss distance (the value of the game). This solution yields a decomposition of
the reduced game space into two regions of different optimal strategies. In the
regular region, the optimal strategies are unique and the value of the game is a
function of the initial conditions. In the singular region, where almost all prac-
tical initial conditions are located, the optimal strategies are arbitrary and the
value of the game is constant, depending on two nondimensional parameters,
namely the pursuer/evader maneuver ratio (denoted by µ) and the ratio of the
evader/pursuer (first-order) time constants (denoted by ε). If µ > 1 and the
product µε satisfies the inequality µε ≥ 1, the value of the game vanishes (a
most desired ideal interception outcome).

Unfortunately, a realistic interception scenario is one of imperfect informa-
tion. The evader has no information on the pursuer, while the pursuer has noise
corrupted measurements on the relative position of the evader. Due to the par-
tial and noisy measurements, guidance law implementation requires one to use
an estimator. The estimated state variables are the relative position, relative
velocity and the acceleration of the evader. The acceleration of the pursuer is
assumed to be measured with high accuracy. Based on the linearized kinemati-
cal model, only the components normal to the line of sight are considered. Even
if the accuracy and the convergence of the position estimate are satisfactory,
the velocity estimate is less precise and it converges more slowly. The accuracy
of the estimated acceleration is even worse and its convergence is the slowest.
Implementing the optimal pursuer strategy of the perfect information game as
the interceptor’s guidance law in spite of the information delay yields very dis-
appointing, but predictable, results [10]. A smart or lucky evader can execute
a maneuver that maximizes the miss distance, even if the perfect information
game solution guarantees a direct hit.

In simulation studies dealing with the interception of maneuvering targets
in noise corrupted scenarios, the delay caused by the slowly converging target
acceleration estimate was found to be the dominant source of miss distances.
Based on these observations, in earlier investigations [29,32,34] it was assumed
that the estimation process of the evader’s acceleration can be roughtly approx-
imated by a perfect information outcome delayed by the amount of ∆t, while
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the other variables can be considered as accurate. This approximation leads to
the formulation of the interception scenario with noisy measurements as a deter-
ministic pursuit-evasion game with delayed information of the pursuer, allowing
perfect information for the evader (the “worst case” situation for the pursuer).

The family of delayed information differential games is a part of the very
wide class of dynamic problems with delay either in the information or in the
state or in the control.

Differential equations with delay (with given inputs) have been studied more
extensively than the other families of dynamic problems with delay. In the mono-
graphs [2,9,12,14,17], existence and uniqueness of solution, stability, approxi-
mate solution, and many other important questions were studied for delayed
differential equations.

Control problems with delays were analyzed in many works in the open lit-
erature, see, for instance, the recent surveys [11,26,27]. Control problems with
information delay were considered in [1,7,8], where the stability of feedback
control was analyzed. H∞-control problems with delays were studied in the
monographs [3,37] as well as in numerous other works.

Various linear differential games with state delay were solved in [18,19,22,24].
In [23], a nonlinear differential game with state delay was analyzed. Zero-sum
differential games with state delay were solved in [13,21]. The linear-quadratic
game considered in [13] is a direct extension of the pursuit-evasion game solved
in [15]. The solution of this game with state delay is based, similarly to [15],
on its reduction to a game with much simpler dynamics which is independent
of the state variable. The game considered in [21] is an extension of the linear-
quadratic game solved in [13]. The cost functional in this game depends not
only on the terminal state of the game but also on a number of the intermediate
ones. Nevertheless, the approach to the solution is similar to those in [15,13].

Two-player differential games with a time delay in the information were ana-
lyzed in a number of works in the open literature. The works [6,25,35] consider
the case when each of the players controls his own differential system and the
first player gets the information on current values of all components of the state
vector of the second player with the same constant delay. In [35], the origi-
nal game is reduced to an equivalent perfect information game replacing the
state vector of the second player by a new state variable, namely by its delayed
state vector. An extension of the Hamilton–Jacobi theory and the main Isaacs’s
equation is presented in [6] under the assumption of separability of the integral
part of the cost functional. In [25], the game is solved by using the reachable
set concept under the assumption that the first player can ensure, by the final
time of the game, the capture of the center of a minimal sphere containing the
reachable (uncertainty) set associated with the second player’s motion and the
information delay (the Center Capture Assumption). The papers [4,5] consider
the case when both players control the same linear differential time-independent
system and the first player gets the information on current values of all compo-
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nents of the state vector with the same time-dependent delay. The objective of
the first player is to transfer the state of the game from a given initial position
to a given set in the game’s state space in the shortest possible time against
all admissible second player’s controls. This game is reduced to an equivalent
perfect information pursuit-evasion game by replacing the original state vector
with a new one. This new state vector is the solution of the original equations
of motion integrated during the delay assuming an arbitrary control of the first
player and no control of the second player. Such a reduction is obtained assum-
ing that the delay is a differentiable function of the time, and its derivative is
less than unity. The dynamics of the new game, as well as the terminal set,
become time dependent.

A more general case (from a theoretical viewpoint) that is also more reason-
able (from a practical viewpoint) is the situation where the different compo-
nents of the common state (or the state of the second player) are available to
the first player with different values of time delay. In this case, in order to derive
the optimal control, the first player can use not only the current (delayed) mea-
surements, but also the available measurement history. This approach can lead
to a considerable reduction of the information uncertainty. This general case
has not yet been treated in the open literature.

A particular situation of this general case has been studied by the authors in
several works (including this chapter). Namely, it has been assumed that the
pursuer obtains only the current value of the evader’s lateral acceleration with
a time delay (either constant or time dependent), while the other components
of the state vector are perfectly measured. In the earlier investigations [32,29–
31], applying the concept of reachable set, suggested in [25] and then developed
in [20] and some other works, the zero effort miss distance was replaced by the
center of the convex hull of the pursuer’s uncertainty set created by the delayed
information. The rigorous solution of such a delayed information game [29,31]
led to an interceptor guidance law that partially compensated for the estimation
delay, substantially improving the guaranteed homing performance. However,
due to the estimation delay, zero miss distance cannot be guaranteed even if the
conditions µ > 1 and µε ≥ 1 are satisfied. This (deterministic) improvement
was confirmed by a set of Monte Carlo simulations with noisy measurements
and a Kalman filter-type estimator in the guidance loop [33], but the residual
reduced guaranteed miss distances were not sufficiently small.

The objective of this chapter is to outline a new approach aimed towards
further improvement of the homing accuracy in interception scenarios against
maneuvering targets with noisy measurements. This approach is aimed to
reduce the uncertainty set of the pursuer due to its (constant) estimation delay,
by considering in addition to the current (pure feedback) measurements also
the available measurement history during the period of the estimation delay
and taking into account the bounds on the evader’s control. Using the addi-
tional measurements, the reduced uncertainty set of the pursuer is computed
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by solving two auxiliary optimization problems, which allows us to find a new
center of the uncertainty set’s convex hull, to serve as a new aim point. Based
on this approach a newly formulated pursuit-evasion game of delayed informa-
tion has to be solved, leading to a new game solution and to the synthesis of an
improved interceptor guidance law. The solution methodology of the new game
follows the steps of the earlier delayed information game solution [29,34]. How-
ever, there are substantial differences in the mathematical techniques due to
the different assumptions on the available information in the game formulation.

The structure of the paper is the following. In the next section the problem
of intercepting a maneuvering target is formulated, followed by brief outlines
of the perfect information game solution [28] and the earlier solution of the
delayed information game [29]. Section 3 is devoted to the description of the
reduced uncertainty set of the pursuer and the solution of the respective delayed
information game by transforming it to a perfect information game with delay
in the evader’s control. The problem of obtaining the optimal initial condition
for the evader’s control is formulated and solved in Section 4. In Section 5 the
game space decomposition is presented. Proofs are given in the Appendices.

2 Problem Formulation

2.1 Interception Dynamics

The mathematical model of the interception end game is based on the geometry
shown in Figure 1 and on the following assumptions:

Figure 1: Interception geometry.
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(A1) The interception end game starts when the interceptor missile (pursuer
“P”) is locked on the target (evader “E”).
(A2) The pursuit-evasion is planar.
(A3) Both players have constant velocities Vi and bounded commanded lateral
accelerations |ai| ≤ Ai, (i = P, E), where Ai are given positive constants.
(A4) The dynamics of each player is given by a first-order transfer function
with the time constant τi, (i = P, E).
(A5) The angles φi, (i = P, E) between the initial line of sight and the velocity
vectors of the players are sufficiently small, yielding the approximations cosφi ≈
1, sin φi ≈ φi.

Using (A3) and (A5), one can calculate the duration of the game end for a
known initial distance R0 between the players

tf = R0/(VP + VE). (1)

The state vector of the interception is

x
�
= (x1, x2, x3, x4)T , (2)

where
x1

�
= yE − yP (3)

is the relative position, x2 is the relative velocity, and x3 and x4 are the lateral
accelerations of the pursuer and the evader, respectively. All the variables are
normal to the initial line of sight.

The respective nondimensional controls of the pursuer and the evader are

u
�
= aP /AP , |u| ≤ 1, (4)

v
�
= aE/AE , |v| ≤ 1. (5)

Using these definitions and the assumptions (A1)–(A5), the mathematical
model of the interception is

dx1/dt = x2, (6)
dx2/dt = x4 − x3, (7)
dx3/dt = (AP u− x3)/τP , (8)
dx4/dt = (AEv − x4)/τE . (9)

The pursuit-evasion starts at t = 0. The cost function is the miss distance

J
�
= |x1(tf )| → min

u
max

v
. (10)
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2.2 Perfect Information Game

In [28], a zero-sum pursuit-evasion game, described by (4)–(10), was solved
under the assumption that the players have perfect information on the parame-
ters and state variables of the problem. This game is called the perfect informa-
tion game (PIG). The PIG solution has been obtained by reducing the system
(6)–(9) to a single equation using the following transformation:

z(t) = DF (tf , t)x(t), (11)

where z(t) is the new state variable (zero effort miss distance), D = (1, 0, 0, 0)
and F (tf , t) is the transition matrix of the system (6)–(9).

In the sequel, nondimensional variables will be used: the normalized time-
to-go θ

θ
�
= (tf − t)/τP , (12)

and the normalized state variable z̄(θ)

z̄(θ)
�
= z(tf − τP θ)/(AEτ2

P ), (13)

yielding [28]
z̄(θ) = z̄0(θ) + ε2Ψ(θ/ε)x̄4(θ), (14)

where
z̄0(θ)

�
= x̄1(θ) + θx̄2(θ)− µΨ(θ)x̄3(θ), (15)

x̄1(θ)
�
= x1(tf − τP θ)/(AEτ2

P ), x̄2(θ)
�
= x2(tf − τP θ)/(AEτP ), (16)

x̄3(θ)
�
= x3(tf − τP θ)/AP , x̄4(θ)

�
= x4(tf − τP θ)/AE , (17)

Ψ(θ)
�
= exp(−θ) + θ − 1, (18)

ε
�
= τE/τP , µ

�
= AP /AE . (19)

Note that Ψ(θ) is positive for all θ > 0.
Using (11)–(13), the PIG dynamics (6)–(9) becomes

dz̄(θ)/dθ = µΨ(θ)ū(θ)− εΨ(θ/ε)v̄(θ), (20)

where
ū(θ)

�
= u(tf − τP θ), |ū(θ)| ≤ 1, (21)

v̄(θ)
�
= v(tf − τP θ), |v̄(θ)| ≤ 1, (22)

and the cost function (10) becomes

J̄
�
= |z̄(0)| → min

ū
max

v̄
, (23)



72 J. Shinar and V. Y. Glizer

Figure 2: PIG space decomposition for µ > 1, µε < 1, (µ = 1.18, ε = 0.25).

The game starts at θ0
�
= tf/τP .

The PIG solution yields [28] a decomposition of the reduced game space (θ, z̄)
into two regions of different optimal strategies, as can be seen in Figure 2.

The pair of optimal trajectories z̄∗(θ) and −z̄∗(θ), which reach the θ-axis

tangentially at θ = θs (the single positive root of Γ(θ)
�
= µΨ(θ)− εΨ(θ/ε)), are

the boundary trajectories between the two regions. In the regular region

D1
�
= {(θ, z̄) ∈ (θ ≤ θs) ∪ (|z̄| ≥ z̄∗(θ))},

the optimal feedback strategies are

ū∗[θ, z̄(θ)] = v̄∗[θ, z̄(θ)] = sign[z̄(θ)], z̄(θ) 	= 0, (24)

and the value of the game is a function of the initial conditions.
In the singular region

D0
�
= {(θ, z̄) ∈ (θ > θs) ∩ (|z̄| < z̄∗(θ))},

the optimal strategies are arbitrary, satisfying the constraints (21) and (22).
Every trajectory starting in this region must go through the “throat” (θ, z̄) =
(θs, 0), which is a dispersal point dominated by the evader. Consequently, the
value of the game in this entire region is constant, denoted as Ms. Both Ms
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and θs depend on the parameters µ and ε. These two values (Ms and θs) are of
extreme importance, because almost all practical initial conditions are in D0.
If µ > 1 and µε ≥ 1, both θs and Ms vanish (a most desired ideal interception
outcome). In the sequel, the paper concentrates on this case.

2.3 Imperfect Information Game

In [29], the case of imperfect information was considered. Namely, it was
assumed that the pursuer has the information on the state variable x4 with a
constant time delay ∆t, but the other state variables are perfectly observed.
Thus, the information available to the pursuer at any instant t is described by
the vector

ws(t) = (x1(t), x2(t), x3(t), x4(t−∆t))T . (25)

The evader has perfect information on all the state variables of the game and
also knows that ws(t) is the pursuer’s information vector. This game is called
the simple delayed information game (SDIG).

The SDIG solution was obtained in [29] by using the concept of uncer-
tainty domain [25]. A current value of the nondimensional state variable x̄4 was
replaced by the center of its reachable (uncertainty) set, constructed by using
the information vector ws(t). For the nondimensional variables (θ, x̄4), this set
is an interval [x̄−

4s(θ), x̄
+
4s(θ)], the bounds of which are obtained as the outcome

of the following auxiliary dual optimal control problem:

x̄4(σ = θ)→ min
v̄

(max
v̄

) (26)

along trajectories of the equation

dx̄4(σ)
dσ

=
[x̄4(σ)− v̄(σ)]

ε
, x̄4(σ)|σ=θ+∆θ = x̄4(θ + ∆θ), ∆θ

�
=

∆t

τP
(27)

subject to the evader’s control constraint (22). The center [x̄4s(θ)]c of this simple
uncertainty set is given by

[x̄4s(θ)]c = x̄4(θ + ∆θ) exp(−∆θ/ε). (28)

The solution of the SDIG was obtained by transforming it to a perfect infor-
mation game using a new state variable

z̄c
s(θ) = z̄0(θ) + ε2Ψ(θ/ε)[x̄4s(θ)]c. (29)

As a consequence, the dynamics of the SDIG becomes

dz̄c
s(θ)/dθ = µΨ(θ)ū(θ)− εΨ(θ/ε) exp(−∆θ/ε)v̄(θ + ∆θ)

+ (θ/ε)
∫ 0

∆θ

exp(−σ/ε)v̄(θ + σ)dσ, (30)
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indicating a delay in the evader’s control and the perfect information nature
of the new game. In this game, in order to avoid ambiguity, the value of the
evader’s control v̄(θ) for θ > θ0 is assumed to be constant, equal to v̄(θ0).

The decomposition structure of the SDIG space (θ, z̄c
s) is qualitatively similar

to the PIG solution in the (θ, z̄) space shown in Figure 2. In the singular region
Dc

0, the pursuer’s optimal strategy is arbitrary, satisfying (21). The evader’s
optimal strategy is arbitrary subject to (22) for θ > θc

s + ∆θ, where θ = θc
s is

the coordinate of the “throat” in the SDIG. At θ = θc
s + ∆θ the evader must

choose (with the probability 0.5) either v̄(θc
s +∆θ) = 1 or v̄(θc

s +∆θ) = −1 and
keeps v̄(θ) = v̄(θc

s + ∆θ) for all θ ∈ (0, θc
s + ∆θ).

Due to the information delay, the value of θc
s and, hence, M c

s (the value of
SDIG in Dc

0) is never zero (even if µ > 1, µε ≥ 1). The resulting guaranteed
normalized miss distances are, however, much smaller than those predicted for
the case where the pursuer uses the optimal PIG strategy [10]. The perfor-
mance degradation of the pursuer in the SDIG, compared to the perfect infor-
mation game, is a monotonically increasing function of the normalized delay
δ

�
= ∆t/τE = ∆θ/ε. If δ → +∞, this function tends to the value of PIG in the

case where τE = 0 (x4(t) ≡ v(t)).

3 Improved Delayed Information Game (IDIG)

In this chapter, a new approach to the solution of the delayed information game
is proposed assuming that in addition to the current information vector ws(t),
the history of the “undelayed” state variables of the game during the period of
the delay ∆t is also available to the pursuer.

The pursuer has the following information at any instant t:

wim = {xi(σ), σ ∈ [t−∆t, t], (i = 1, 2, 3), x4(t−∆t)}. (31)

Thus, the IDIG consists of the dynamics (6)–(9), the control constraints (4),
(5), the cost function (10) and the pursuer’s information set (31). The evader
has perfect information.

3.1 Improved (Reduced) Uncertainty Set

Using the information (31), one can obtain an additional control constraint for
the dual optimization problem defined by (22), (26), (27).

Integrating the nondimensional form of Equations (9), (7) and (6) consecu-
tively on the interval [θ + ∆θ, θ] yields

x̄1(θ) = x̄1(θ + ∆θ) + ∆θx̄2(θ + ∆θ)− µ

∫ θ+∆θ

θ

(σ − θ)x̄3(σ)dσ

+ ε2Ψ(δ)x̄4(θ + ∆θ) + ε

∫ θ+∆θ

θ

Ψ((σ − θ)/ε)v̄(σ)dσ, (32)
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leading to the following additional integral control constraint∫ θ+∆θ

θ

Ψ((σ − θ)/ε)v̄(σ)dσ = q̄(θ), (33)

where

q̄(θ)
�
=

[
x̄1(θ)− x̄1(θ + ∆θ)−∆θx̄2(θ + ∆θ) + µ

∫ θ+∆θ

θ

(σ − θ)x̄3(σ)dσ

]/
ε

− εΨ(δ)x̄4(θ + ∆θ). (34)

Denote by v̄−im(σ) and x̄−
4im(θ) the solution (the optimal control and the optimal

cost) of the auxiliary problem (22), (26), (27), (33) minimizing the cost function.
The solution of this problem maximizing the cost function is denoted by v̄+

im(σ)
and x̄+

4im(θ). Denote also

q̄−
�
=
∫ θ+∆θ

θ

Ψ((σ − θ)/ε)v̄(σ)dσ|v̄(σ)≡−1 = ε[Ψ(δ)− δ2/2], (35)

q̄+ �
=
∫ θ+∆θ

θ

Ψ((σ − θ)/ε)v̄(σ)dσ|v̄(σ)≡1 = −q̄−. (36)

Since Ψ(δ)− δ2/2 < 0 ∀ δ > 0, one has q̄− < 0 < q̄+.

Lemma 3.1. If the pair of inequalities

q̄− ≤ q̄(θ) ≤ q̄+ (37)

is not satisfied, the auxiliary optimal control problem (22), (26), (27), (33) has
no solution. If (37) is satisfied, there is a unique solution in the following form:

v̄−im(σ) =
{

1, σ ∈ [θ + ∆θ, σ−),
−1, σ ∈ (σ−, θ], (38)

x̄−
4im(θ) = x̄4(θ + ∆θ) exp(−δ) + [2 exp((θ − σ−)/ε)− exp(−δ)− 1], (39)

v̄+
im(σ) =

{
−1, σ ∈ [θ + ∆θ, σ+),

1, σ ∈ (σ+, θ], (40)

x̄+
4im(θ) = x̄4(θ + ∆θ) exp(−δ)− [2 exp((θ − σ+)/ε)− exp(−δ)− 1], (41)

where the switch points σ− and σ+ of the optimal controls v̄−im(σ) and v̄+
im(σ),

respectively, are given by

σj = θ + εB(αj), (j = −,+), (42)

α− = q̄(θ)/(2ε) + β, α+ = −q̄(θ)/(2ε) + β, (43)

β = [exp(−δ)− δ2/2 + δ + 1]/2, (44)
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Figure 3: Graph of the function B(α).

and B = B(α) is an implicit function defined by the equation

exp(−B)− 0.5B2 + B = α. (45)

The function B(α) exists and is continuous for α ∈ [α0, 1], where α0
�
=

exp(−δ) − δ2/2 + δ. Its values vary from δ to 0 as α varies from α0 to 1.
Moreover, B(α) is differentiable on the interval [α0, 1).

The proof of the lemma is presented in Appendix A.
In Figure 3, the graph of the function B(α) is depicted. The values of δ =

2.115, 1.945, . . . , 0 correspond to the values of α0 = 0, 0.2, . . . , 1.
Based on Equations (39), (41) and (42) and using Equation (28), one directly

obtains the center of the improved uncertainty set as

[x̄4im(θ)]c = [x̄4s(θ)]c + exp(−B(α−))− exp(−B(α+)). (46)

Corollary 3.1. If the evader uses the control v̄ = 1 (−1) almost everywhere
on any interval [θ + ∆θ, θ], then [x̄4im(θ)]c = x̄4(θ).

The proof of the corollary is presented in Appendix B.
In Figure 4, time histories of x̄4(θ), [x̄4s(θ)]c and [x̄4im(θ)]c, corresponding
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Figure 4: Actual normalized evader’s acceleration and centers of respective uncer-
tainty sets (µ = 1.5, ε = 1.0, ∆θ = 1.5).

to an example where the evader’s control is switched from 1 to −1 at θ = 5, are
depicted. The parameters of the game are µ = 1.5, ε = 1.0, ∆θ = 1.5, θ0 = 10,
thus the evader starts its control at θ0 + ∆θ = 11.5. Moreover, x̄4(11.5) = 0.

As seen from this figure, the center of the improved uncertainty set [x̄4im(θ)]c
coincides with the evader’s true normalized lateral acceleration x̄4(θ) in the
interval θ ∈ [10, 5], where v̄(θ) = 1. During the period of ∆θ after the switch
point, [x̄4im(θ)]c lags behind the variations of x̄4(θ), but once the delay is over,
[x̄4im(θ)]c becomes equal again to x̄4(θ). The center of the simple uncertainty
set, used in [29], [x̄4s(θ)]c is quite different than x̄4(θ) on the whole interval
θ ∈ [0, 10].

Remark 3.1. By using the uncertainty set [x̄−
4im(θ), x̄+

4im(θ)] for x̄4(θ), one
can construct the uncertainty set [z̄−im(θ), z̄+

im(θ)] for the normalized zero effort
miss distance z̄(θ). The boundaries z̄j

im(θ), (j = −,+) of this uncertainty set
are obtained by substituting x̄4(θ) = x̄j

4im(θ) into Equation (14). It can be
directly calculated that z̄−im(0) = z̄+

im(0) = x̄1(0), i.e., the uncertainty set for
z̄(θ) vanishes at the final time θ = 0, becoming a point ([z̄−im(0), z̄+

im(0)] =
x̄1(0)). This implies that the Center Capture Assumption is not satisfied for
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the considered game. Otherwise, the pursuer could provide zero game value in
spite of the information delay, which is impossible.

3.2 Transformation of the IDIG

By introducing a new state variable, the center of the uncertainty set for the
normalized zero-effort miss distance,

z̄c
im(θ) = z̄0(θ) + ε2Ψ(θ/ε)[x̄4im(θ)]c (47)

and by using (29) and (46) one obtains

z̄c
im(θ) = z̄c

s(θ) + ε2Ψ(θ/ε)[exp(−B(α−))− exp(−B(α+))]. (48)

Differentiating (48) with respect to θ and using Equation (29) yield the dynam-
ics

dz̄c
im(θ)/dθ = µΨ(θ)ū(θ)− εΨ(θ/ε) exp(−δ)v̄(θ + ∆θ)

+ (θ/ε)
∫ 0

∆θ

exp(−σ/ε)v̄(θ + σ)dσ

+ ε[1− exp(−θ/ε)]Q(Φ−,Φ+) + E(θ, v̄(·)), (49)

where

E(θ, v̄(·)) �
= −(ε/2)Ψ(θ/ε)R(Φ−,Φ+)[Ψ(δ)v̄(θ + ∆θ)

+ (1/ε)
∫ 0

∆θ

(1− exp(−σ/ε))v̄(θ + σ)dσ], (50)

Q(α1, α2)
�
= exp(−B(α1))− exp(−B(α2)), (51)

R(α1, α2)
�
= −[exp(−B(α1))/Ψ(B(α1)) + exp(−B(α2))/Ψ(B(α2))], (52)

Φ− �
= −(1/2ε)

∫ 0

∆θ

Ψ(σ/ε)v̄(θ + σ)dσ + β, (53)

Φ+ �
= (1/2ε)

∫ 0

∆θ

Ψ(σ/ε)v̄(θ + σ)dσ + β. (54)

Based on (47), the cost function (10) becomes

J̄im
�
= |z̄c

im(0)| → min
ū

max
v̄

. (55)

Equation (49), describing the dynamics of the IDIG in the game space (θ, z̄c
im),

is linear with respect to ū but nonlinear with respect to v̄. Moreover, the evader’s
control v̄ is delayed. However, the information on the current value of the state
variable z̄c

im is perfectly available to the pursuer.
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Remark 3.2. Calculating Φ− with v̄(σ) = 1 and Φ+ with v̄(σ) = −1 for
almost all σ ∈ [θ, θ + ∆θ], one obtains

Φ− = Φ+ = 1. (56)

For any other form of v̄(σ), σ ∈ [θ, θ + ∆θ], satisfying (22), the values of the
functionals Φ− and Φ+ satisfy the inequality

α0 ≤ Φj < 1, (j = −,+). (57)

Since B(1) = 0 and Ψ(0) = 0, Equations (52) and (56) imply that the right-
hand part of Equation (50) becomes infinity if either v̄(σ) = 1 or v̄(σ) = −1
almost everywhere on any interval [θ, θ+∆θ]. In order to avoid it, one has to use
in the dynamics (49) a slightly more narrow constraint for v̄ than (22), namely,

|v̄| ≤ 1− ν, (58)

where ν > 0 is a small parameter (ν � 1).

Thus, based on (47), the IDIG is transformed into a new perfect information
game with the dynamics (49), the control constraints (21) and (58) and the
cost function (55). This game is called the nonlinear delayed dynamics game
(NLDDG). Since the evader’s control v̄ appears in the game dynamics (49)
with a delay, this control has to be specified on the interval [θ0 + ∆θ, θ0), as is
usually done in the case of a delayed control (see, for instance, [36] and the list
of references therein). One can set

v̄(θ) = v̄0(θ), θ ∈ [θ0 + ∆θ, θ0), (59)

where v̄0(θ) is some given piecewise differentiable function satisfying the
inequality (58).

3.3 Necessary Conditions of Optimality

Proposition 3.1. The candidate optimal controls in the NLDDG are

ū∗(θ) = −sign[ϕ(θ)], (60)
v̄∗(θ) = −(1− ν)sign[λ(θ, 0)]. (61)

The function ϕ(θ), defined on the interval θ ∈ [0, θ0], and the function λ(θ, σ),

defined in the domain (θ, σ) ∈ Ω
�
= [0, θ0] × [0,∆θ], satisfy the following equa-

tions:

dϕ(θ)/dθ = 0, (62)
∂λ(θ, σ)/∂θ − ∂λ(θ, σ)/∂σ = ϕ(θ)G(θ, σ, v̄∗(·)), (63)
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where

G(θ, σ, v̄∗(·)) �
= (θ/ε) exp(−σ/ε)

+ 0.5R[(Φ−
ξ )∗, (Φ+

ξ )∗]

× [(1− exp(−θ/ε))Ψ(σ/ε)− (1− exp(−σ/ε))Ψ(θ/ε)]

+ 0.25Ψ(θ/ε)Ψ(σ/ε)S[(Φ−
ξ )∗, (Φ+

ξ )∗][Ψ(δ)ξ∗(θ, ∆θ)

+ (1/ε)
∫ 0

∆θ

(1− exp(−σ/ε))ξ∗(θ, σ)dσ], (64)

S(α1, α2)
�
= ∂R(α1, α2)/∂α1 − ∂R(α1, α2)/∂α2, (65)

(Φ−
ξ )∗

�
= −(1/2ε)

∫ 0

∆θ

Ψ(σ/ε)ξ∗(θ, σ)dσ + β, (66)

(Φ+
ξ )∗

�
= (1/2ε)

∫ 0

∆θ

Ψ(σ/ε)ξ∗(θ, σ)dσ + β, (67)

ξ∗(θ, σ) =
{

v̄∗(θ + σ), 0 ≤ θ + σ ≤ θ0,
v̄0(θ + σ), θ + σ > θ0.

(68)

The transversality conditions have the form

ϕ(0) = −sign[z̄c
im(0)], (69)

λ(θ, ∆θ) = εΨ(θ/ε)[exp(−δ) + 0.5R[(Φ−
ξ )∗, (Φ+

ξ )∗]Ψ(δ)]ϕ(θ), (70)

λ(0, σ) = 0. (71)

The proof of the proposition is presented in Appendix C.

3.4 Solution of Equations (62)–(71)

Solving Equation (62) with the initial condition (69) yields

ϕ(θ) = −sign[z̄c
im(0)]. (72)

Substituting (72) into (63) and (70), one obtains

∂λ(θ, σ)/∂θ − ∂λ(θ, σ)/∂σ = −sign[z̄c
im(0)]G(θ, σ, v̄∗(·)), (73)

λ(θ, ∆θ) = −sign[z̄c
im(0)]εΨ(θ/ε)[exp(−δ) + 0.5R[(Φ−

ξ )∗, (Φ+
ξ )∗]Ψ(δ)]. (74)

Proposition 3.2. For any given v̄∗(θ), θ ∈ [0, θ0], satisfying the constraint
(58), the function

λ(θ, σ) = −sign[z̄c
im(0)]εΨ(θ/ε)[exp(−σ/ε) + 0.5R[(Φ−

ξ )∗, (Φ+
ξ )∗]Ψ(σ/ε)],

(75)

is a unique solution of the partial differential equation (73) with the boundary
conditions (71) and (74) in the domain Ω (introduced in Proposition 3.1).
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Proof. The proposition can be verified by direct substitution. �

Substituting (72) and (75) into (60) and (61), respectively, yields the following
unique pair of candidate optimal controls in the NLDDG:

ū∗(θ) = sign[z̄c
im(0)], θ ∈ [θ0, 0], (76)

v̄∗(θ) = (1− ν)sign[z̄c
im(0)] θ ∈ [θ0, 0], (77)

indicating that these unique candidate optimal controls are independent of the
initial function v̄0(θ), θ ∈ [θ0 + ∆θ, θ0) selected for the evader’s control. How-
ever, the cost function (55) may depend on this initial function, leading to the
following optimization problem: finding the initial function v̄0(θ) that maxi-
mizes the cost function (55) under the condition that the players apply their
candidate optimal controls (76), (77). This problem will be formulated precisely
and solved in the next section.

4 Optimal Initial Function for the Evader’s Control

Substituting (77) into (68), one has

ξ∗(θ, σ) =
{

(1− ν)sign[z̄c
im(0)], 0 ≤ θ + σ ≤ θ0,

v̄0(θ + σ), θ + σ > θ0.
(78)

Two cases can be distinguished: (i) θ0 ≥ ∆θ; (ii) θ0 < ∆θ. In this chapter only
the first case is considered in detail, because of its practical importance.

4.1 Formulation of an Extremal Problem for the Initial Function

For θ0 ≥ ∆θ, Equation (78) yields

ξ∗(θ, σ) =

{
(1− ν)sign[z̄c

im(0)], θ ∈ [θ0, θ0 −∆θ), σ ∈ [0, θ0 − θ],
v̄0(θ + σ), θ ∈ [θ0, θ0 −∆θ), σ ∈ (θ0 − θ, ∆θ],

(79)

ξ∗(θ, σ) = (1− ν)sign[z̄c
im(0)], θ ∈ [θ0 −∆θ, 0], σ ∈ [0,∆θ]. (80)

By substituting (76) and (79) into Equation (49) for ū and v̄, respectively, this
equation becomes on the interval θ ∈ [θ0, θ0 −∆θ)

dz̄c
im(θ)/dθ =µΨ(θ)sign[z̄c

im(0)]− εΨ(θ/ε) exp(−δ)v̄0(θ + ∆θ)

+ (θ/ε)
{∫ θ0−θ

∆θ

exp(−σ/ε)v̄0(θ + σ)dσ

− ε(1− ν)sign[z̄c
im(0)][1− exp(−(θ0 − θ)/ε)]

}
+ ε[1− exp(−θ/ε)]Q(Φ−

ν ,Φ+
ν ) + Eν(θ, v̄0(·)), (81)
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where

Eν(θ, v̄0(·))
�
= −(ε/2)Ψ(θ/ε)R(Φ−

ν ,Φ+
ν )

×
[
Ψ(δ)v̄0(θ + ∆θ) + (1/ε)

∫ θ0−θ

∆θ

(1− exp(−σ/ε))v̄0(θ + σ)dσ

− (1− ν)sign(z̄c
im(0))Ψ((θ0 − θ)/ε)

]
, (82)

Φ−
ν

�
= −(1/2ε)

{∫ θ0−θ

∆θ

Ψ(σ/ε)v̄0(θ + σ)dσ

+ (1− ν)sign[z̄c
im(0)]

∫ 0

θ0−θ

Ψ(σ/ε)dσ

}
+ β, (83)

Φ+
ν

�
= (1/2ε)

{∫ θ0−θ

∆θ

Ψ(σ/ε)v̄0(θ + σ)dσ

+ (1− ν)sign[z̄c
im(0)]

∫ 0

θ0−θ

Ψ(σ/ε)dσ

}
+ β, (84)

and R(·, ·) is defined by (52).
Similarly, by using (76) and (80), Equation (49) becomes on the interval

θ ∈ [θ0 −∆θ, 0]
dz̄c

im(θ)/dθ = Γim(θ, ν)sign[z̄c
im(0)], (85)

where

Γim(θ, ν)
�
= µΨ(θ)− (1− ν)[εΨ(θ/ε) exp(−δ)− θ(1− exp(−δ))]

+ ε[1− exp(−θ/ε)]Qν , (86)

Qν
�
= Q(Φ−,Φ+)|v̄≡1−ν , (87)

and Q(·, ·) is defined by (51).

Remark 4.1. It can be verified directly that

Γim(θ, ν)→ Γ(θ) = µΨ(θ)− εΨ(θ/ε) as ν → +0. (88)

From Equations (85)–(87), one can see that by using the candidate optimal
controls of the players the dynamics of the NLDDG is independent of v̄0(·)
on the interval θ ∈ [θ0 − ∆θ, 0]. However, due to Equations (81)–(84), this
dynamics depends on v̄0(·) on the interval θ ∈ [θ0, θ0 −∆θ). Thus, in order to
maximize |z̄c

im(0)| by choosing v̄0(·), it is necessary and sufficient for the evader
to maximize |z̄c

im(θ0 −∆θ)|. Therefore, one can consider the NLDDG only on
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the interval θ ∈ [θ0, θ0 −∆θ] via Equation (81), where z̄c
im is the state variable

and v̄0 is the control.
The control function v̄0(·) appears in Equation (81) with the argument θ+∆θ

and with the argument θ+σ, σ ∈ [θ0−θ, ∆θ]. When θ varies from θ0 to θ0−∆θ,
the argument θ + ∆θ varies from θ0 + ∆θ to θ0. Thus, θ + ∆θ must be taken
as the current argument of v̄0(·). Moreover, one has that θ + σ < θ + ∆θ for all
σ ∈ [θ0 − θ, ∆θ), i.e., the argument θ + σ of the control v̄0(·) appearing in the
integral is smaller than the current argument θ+∆θ of this function. Since both
arguments of v̄0(·) in Equation (81) refer to the time-to-go, one can directly
conclude that θ + σ represents an advance with respect to θ + ∆θ. In order to
transform this advance to a delay, one has to vary θ in the opposite direction,
i.e., from θ0 − ∆θ to θ0, and instead of maximizing |z̄c

im(θ0 − ∆θ)|, to solve
an equivalent problem of minimizing, for a given z̄c

im(θ0 − ∆θ), sign[z̄c
im(θ0 −

∆θ)]z̄c
im(θ0). Thus, one obtains an optimal control problem with a dynamics

described by Equation (81), θ ∈ (θ0 −∆θ, θ0], the control constraint

|v̄0(θ + ∆θ)| ≤ 1− ν, (89)

and the cost function

J̄in
�
= sign[z̄c

im(θ0 −∆θ)]z̄c
im(θ0)→ min

v̄0(θ+∆θ)
. (90)

We shall call this problem the evader’s optimal control problem (EOCP). Since
the upper bound of the integral in Equation (81) depends on θ, the delay in the
EOCP dynamics is not constant.

4.2 Necessary Conditions of Optimality

Proposition 4.1. The candidate optimal control in the EOCP satisfies the
equation for θ ∈ (θ0 −∆θ, θ0]

v̄∗0(θ + ∆θ)

= (1− ν)sign{χ(θ,∆θ)− εκ(θ)Ψ(θ/ε)[exp(−δ) + 0.5R((Φ−
ν )∗, (Φ+

ν )∗)Ψ(δ)]},
(91)

where (Φ−
ν )∗ and (Φ+

ν )∗ are obtained from Φ−
ν and Φ+

ν , respectively, by replacing
v̄0(·) with v̄∗0(·).

The functions κ(θ) and χ(θ, σ) satisfy the following equations:

dκ(θ)/dθ = 0, θ ∈ (θ0 −∆θ, θ0], (92)

∂χ(θ, σ)/∂θ − ∂χ(θ, σ)/∂σ = κ(θ)G1(θ, σ, v̄∗0(·)),
θ ∈ (θ0 −∆θ, θ0], σ ∈ (θ0 − θ, ∆θ], (93)
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where

G1(θ, σ, v̄∗0(·))
�
= (θ/ε) exp(−σ/ε) + 0.5R((Φ−

ν )∗, (Φ+
ν )∗)

× [(1− exp(−θ/ε))Ψ(σ/ε)− (1− exp(−σ/ε))Ψ(θ/ε)]

+ 0.25Ψ(θ/ε)Ψ(σ/ε)S((Φ−
ν )∗, (Φ+

ν )∗)

×
[
Ψ(δ)v̄∗0(θ + ∆θ) + (1/ε)

∫ θ0−θ

∆θ

(1− exp(−σ/ε))v̄∗0(θ + σ)dσ

− (1− ν)sign(z̄c
im(0))Ψ((θ0 − θ)/ε)

]
. (94)

The transversality conditions have the form

κ(θ0) = −sign[z̄c
im(θ0 −∆θ)], (95)

χ(θ0, σ) = 0, σ ∈ (0,∆θ]. (96)

Proof. The proposition is proved similarly to Proposition 3.1 with some tech-
nical differences arising due to the time-varying character of the delay in the
EOCP dynamics. These technical differences can be found in [31] for a much
more general case of variable delay. �

4.3 Solution of Equations (92)–(96)

First, note that due to Equation (85), Remark 4.1 and results of [28], one has
for a candidate optimal trajectory of the NLDDG

sign[z̄c
im(0)] = sign[z̄c

im(θ0 −∆θ)]. (97)

Solving Equation (92) with the condition (95) and using (97) yields

κ(θ) = −sign[z̄c
im(0)]. (98)

Substituting (98) into Equation (93) leads to

∂χ(θ, σ)/∂θ − ∂χ(θ, σ)/∂σ = −sign[z̄c
im(0)]G1(θ, σ, v̄∗0(·)),

θ ∈ (θ0 −∆θ, θ0], σ ∈ (θ0 − θ, ∆θ]. (99)

Proposition 4.2. For any v̄∗0(θ + ∆θ), θ ∈ (θ0 −∆θ, θ0], satisfying the con-
straint (89), the unique solution of the problem (99), (96) is given by the func-
tion
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χ(θ, σ) = sign[z̄c
im(0)][(ε− θ) exp(−σ/ε)− (ε− θ0) exp(−(θ + σ − θ0)/ε)

− 0.5εR((Φ−
ν )∗, (Φ+

ν )∗)Ψ(θ/ε)Ψ(σ/ε)
+ 0.5εR∗

ν0Ψ(θ0/ε)Ψ((θ + σ − θ0)/ε)], (100)

where
R∗

ν0
�
= R((Φ−

ν )∗, (Φ+
ν )∗)|θ=θ0 . (101)

Proof. The proposition is proved by direct substitution of (100) into the prob-
lem (99), (96). �

Substituting (98) and (100) into (91) yields after some rearrangement the
equation for the candidate optimal control in the EOCP

v̄∗0(θ + ∆θ) = (1− ν)sign[z̄c
im(0)]

× sign{εΨ(θ0/ε)[exp(−(θ − θ0)/ε) exp(−δ)
+ 0.5R∗

ν0Ψ((θ − θ0 + ∆θ)/ε)]}
= (1− ν)sign[z̄c

im(0)]sign[C(θ, v̄∗0(·))], (102)

where

C(θ, v̄∗0(·)) �
= exp(−(θ − θ0)/ε) exp(−δ) + 0.5R∗

ν0Ψ((θ − θ0 + ∆θ)/ε). (103)

From Equation (102), one can see that the candidate optimal control
v̄∗0(θ+∆θ) in the EOCP has a bang-bang structure. Moreover, the switch func-
tion C(θ, v̄∗0(·)) depends on v̄∗0(·), i.e., Equation (102) is a functional equation
with respect to v̄∗0(θ +∆θ). In the next subsection, we shall solve this equation.

4.4 Solution of Equation (102)

Proposition 4.3. Equation (102) has the unique solution

v̄∗0(θ + ∆θ) = (1− ν)sign[z̄c
im(0)]

{
1, θ ∈ (θ0 −∆θ, θsw),
−1, θ ∈ (θsw, θ0]

}
, (104)

where the switch point θsw is

θsw = θ0 −∆θ + σsw, (105)

and σsw is a unique positive solution of the equation

exp(−σsw/ε) + 0.5R∗
ν0Ψ(σsw/ε) = 0. (106)

The proof of the proposition is presented in Appendix D, yielding the candidate
initial optimal control function of the evader in the NLDDG.

Remark 4.2. Note that σsw is independent of θ0 as well as of sign[z̄c
im(0)].

Moreover, due to (104), (105), σsw satisfies the inequality σsw < ∆θ.

In Figure 5, the values of σsw normalized with respect to ε, i.e., σ̄sw
�
= σsw/ε,

are depicted as a function of δ = ∆θ/ε.
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Figure 5: σ̄sw as a function of δ (ν = 0.01).

5 NLDDG space decomposition

Based on the candidate optimal controls of the players and on the candidate
optimal initial function for the evader’s control, the game space decomposition
can be constructed.

Similarly to the previous section, it is assumed that θ0 ≥ ∆θ. In this case,
a candidate optimal trajectory of the NLDDG is described by Equation (81)
(with v̄0(·) = v̄∗0(·)) on the interval θ ∈ [θ0, θ0 −∆θ) and by Equation (85) on
the interval θ ∈ [θ0 −∆θ, 0].

The value of z̄c
im(θ0) can be expressed by z̄c

im(0). Integrating Equation (85)
from θ = 0 to θ = θ0 −∆θ yields

z̄c
im(θ0 −∆θ) = z̄c

im(0) +
∫ θ0−∆θ

0

Γim(θ, ν)dθ. (107)

Similarly, integrating Equation (81) from θ = θ0 −∆θ to θ = θ0, one has

z̄c
im(θ0) = z̄c

im(θ0 −∆) +
∫ θ0

θ0−∆θ

L(θ, v̄∗0(·))dθ, (108)

where L(θ, v̄0(·)) is the right-hand part of Equation (81).
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Substituting (107) into (108) yields the expression of z̄c
im(θ0) for a given value

of z̄c
im(0):

z̄c
im(θ0) = z̄c

im(0) +
∫ θ0−∆θ

0

Γim(θ, ν)dθ +
∫ θ0

θ0−∆θ

L(θ, v̄∗0(·))dθ. (109)

When θ0 varies on the interval [∆θ, +∞), Equation (109) describes a curve in
the plane (θ, z̄c

im). This curve, denoted in the sequel as the Locus, is the set of
all initial points (θ0, z̄

c
im(θ0)) of candidate optimal trajectories in the NLDDG

which arrive at the same final point (0, z̄c
im(0)). Thus, depending on z̄c

im(0), the
differential equation describing the family of all Loci can be obtained as follows.

Let (θ, z̄L(θ)), θ ∈ [∆θ, +∞) be an arbitrary point of the Locus. Denote

η(θ, s)
�
= (1− ν)

{
1, s ∈ (θ, ssw),
−1, s ∈ (ssw, θ + ∆θ]

}
, θ ∈ [∆θ, +∞), (110)

where the switch point ssw has the form

ssw = ssw(θ) = θ + σsw. (111)

Proposition 5.1. The family of Loci is described by the following differential
equation:

dz̄L(θ)/dθ = sign[z̄c
im(0)]ΓL(θ), θ ∈ [∆θ, +∞), (112)

where

ΓL(θ)
�
= µΨ(θ)− εΨ(θ/ε) exp(−δ)η(θ, θ + ∆θ)

+ (θ/ε)
∫ 0

∆θ

exp(−σ/ε)η(θ, θ + σ)dσ

+ ε[1− exp(−θ/ε)]Q(Φ−
η ,Φ+

η ) + Eη(θ, η(·)), (113)

Φ−
η

�
= −(1/2ε)

∫ 0

∆θ

Ψ(σ/ε)η(θ, θ + σ)dσ + β, (114)

Φ+
η

�
= (1/2ε)

∫ 0

∆θ

Ψ(σ/ε)η(θ, θ + σ)dσ + β, (115)

and Eη(θ, η(·)) is obtained from Equation (50) replacing there v̄(θ + σ) by
η(θ, θ + σ), σ ∈ [0,∆θ], Φ− by Φ−

η and Φ+ by Φ+
η .

Proof. The proposition is proved by differentiating (109) with respect to θ0,
and then replacing θ0 by θ. �

In Figure 6, one of the Loci is depicted. In this figure, the continuation of
the Locus for θ ∈ [0,∆θ) has been obtained by numerical calculation of the
candidate optimal initial function v̄∗0(θ) in the case when the initial value of θ is
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−

−

-

Figure 6: (Locus)+ and (Γ-line)+, (µ = 1.5, ε = 1.0, δ = 1.5, ν = 0.01).

less than ∆θ. The line, denoted as the Γ-line, is the trajectory of Equation (85)
for θ ∈ [0,+∞) beginning at the point (0, z̄c

im(0)). The points Ai (i = 1, . . . , 4)
are various positions of the initial point (θ0, z̄

c
im(θ0)) on the Locus. Each of

the points Bi (i = 1, . . . , 4) is the one where the candidate optimal trajectory
starting at Ai arrives to the Γ-line. From Bi to the end point (0, z̄c

im(0)), the
candidate optimal trajectory coincides with the Γ-line.

Numerical calculations show that for µ > 1, µε ≥ 1 the function ΓL(θ) has
a single root θ = θL on the interval θ ∈ [∆θ, +∞). Thus, there exist two
symmetric Loci with respect to the θ-axis, which reach this axis tangentially at
θ = θL. These lines, denoted in Figure 7 as (Locus)∗+ and (Locus)∗−, decompose
the (θ, z̄c

im)-plane into two regions. In this figure, the continuation of these Loci
for θ ∈ [0,∆θ) has been obtained similarly to the method used in Figure 6. The
lines (Γ-line)∗+ and (Γ-line)∗− correspond to (Locus)∗+ and (Locus)∗−, respectively.

In the regular region (Dc
1)im, the candidate optimal feedback pursuer’s strat-

egy is
ū∗[θ, z̄c

im(θ)] = sign[z̄c
im(θ)], z̄c

im(θ) 	= 0, (116)

while the candidate optimal feedback evader’s strategy is

v̄∗[θ, z̄c
im(θ)] = (1− ν)sign[z̄c

im(θ)], z̄c
im(θ) 	= 0, (117)
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Figure 7: NLDDG space decomposition for µ > 1, µε ≥ 1 (µ = 1.5, ε = 1, δ = 1.5,
ν = 0.01).

and the evader’s initial function is

v̄∗0 [s, z̄c
im(θ0)] = sign[z̄c

im(θ0)]η(θ0, s), s ∈ [θ0 + ∆θ, θ0), (118)

where η(·, ·) is given by (110).
The value of the game is a function of the initial position of the game

(θ0, z̄
c
im(θ0)).

Note also that the regions between the (Γ-line)∗+ and the (Locus)∗+ (including
the (Locus)∗+), as well as between the (Γ-line)∗− and the (Locus)∗− (including
the (Locus)∗−), belong to (Dc

1)im.
In the singular region (Dc

0)im, the pursuer’s candidate optimal strategy is
arbitrary, satisfying (21). The evader’s candidate optimal strategy is the follow-
ing: on the interval θ ∈ [θ0, θL + ∆θ), this strategy is arbitrary satisfying (58)
and the condition∣∣∣∣∣µΨ(θ)sign(z̄c

im)− εΨ(θ/ε) exp(−δ)v̄(θ + ∆θ) + (θ/ε)
∫ 0

∆θ

exp(−σ/ε)v̄(θ + σ)dσ

+ ε[1− exp(−θ/ε)]Q(Φ−,Φ+) + E(θ, v̄(·))
∣∣∣∣∣
v̄(·)=v̄∗(·)

≥ ΓL(θ), (θ, z̄c
im) ∈ ∂(Dc

0)im, (119)
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Figure 8: Guaranteed miss distance ratio (µ = 1.5, ε = 1.0, δ = 1.5).

where ΓL(θ) is given by (113) and ∂(Dc
0)im is the boundary of the singular

region.
Using such a strategy, the evader can keep the game’s trajectory in the closure

of the singular region, because, due to (49) and (112), the slope of the game
trajectory at points of ∂(Dc

0)im (the Loci depicted by the bold line in Figure 7)
is not less than the slope of these Loci.

At θ = θL + ∆θ the evader must choose (with the probability 0.5) either the
control v̄∗(θ) = η(θL, θ) or v̄∗(θ) = −η(θL, θ) on the interval θ ∈ [θL + ∆θ, θL],
where η(·, ·) is given by (110). Recall that η(θL, θ) has a bang-bang form with the
switch at θ = θL+σsw, where σsw is a unique positive solution of Equation (106)
and σsw < ∆θ.

Starting in the singular region, a candidate optimal trajectory of the NLDDG
arrives to either the (Γ-line)∗+ or the (Γ-line)∗− at the points B∗

+ and B∗
−, respec-

tively, and then it moves along the corresponding Γ-line until the game ends.
The value of the game in the singular region is constant, denoted as (M c

s )im.
The guaranteed normalized miss distance (M c

s )im obtained by the candidate
optimal strategies for initial conditions in (Dc

0)im is much smaller than M c
s (the

one obtained in the SDIG with the same delay), as can be seen in Figure 8.
The improvement due to the new approach is particularly rewarding for small
values of the normalized delay δ.
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Remark 5.1. Since the candidate optimal strategies of the players generate
trajectories that fill the entire (θ, z̄c

im) game space, they are indeed optimal.

6 Conclusions

In this chapter important additional progress has been made towards the syn-
thesis of a new guidance law that guarantees satisfactory interceptions of highly
maneuvering targets in a noise corrupted environment. The engagement is for-
mulated as a deterministic linear pursuit-evasion game with bounded controls.
The indispensable estimator of the pursuer’s guidance system is modeled by
a constant delay in observing the evader’s lateral acceleration, while the other
state variables are assumed to be perfectly measured. By taking into account
the measurement time history of these variables during the delay, the uncer-
tainty set of the pursuer created by the information delay is minimized. This
approach allows transformation of the original problem into a nonlinear dif-
ferential game with delayed evader control. The solution of this new game is
obtained in pure strategies for the pursuer and in mixed strategies for the evader.
The guidance law (the realization of the optimal pursuer strategy) provides a
substantial improvement in the guaranteed homing performance compared to
earlier results. The improvement is particularly significant for small normalized
estimation delays.

Appendix A: Proof of Lemma 3.1

The lemma will be proved for the problem (22), (26), (27), (33) with the mini-
mization of the cost function. The case of the maximization is proved similarly.
The proof starts with the case when the inequality (37) is satisfied.

Based on the results of [16], the problem has a solution. In order to obtain the
optimal control and to show it uniqueness, first, the constraint (33) is rewritten
in an equivalent form by introducing an auxiliary state variable x̄5(σ), σ ∈
[θ + ∆θ, θ] satisfying the following boundary-value problem:

dx̄5(σ)/dσ = −Ψ((σ − θ)/ε)v̄(σ), (A1)

x̄5(σ)|σ=θ+∆θ = 0, x̄5(σ)|σ=θ = q̄(θ). (A2)

It is clear that the boundary-value problem (A1), (A2) is equivalent to the
constraint (33). Thus, in the sequel the optimal control problem (22), (26), (27),
(A1), (A2), called the auxiliary optimal control problem (AOCP), is considered
instead of the equivalent one (22), (26), (27), (33).

The variational Hamiltonian for the AOCP has the form

H̄ = ψ̄4(σ)[x̄4(σ)− v̄(σ)]/ε− ψ̄5(σ)Ψ((σ − θ)/ε)v̄(σ), (A3)
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where the costate variables ψ̄4(σ) and ψ̄5(σ) satisfy the equations

dψ̄4(σ)/dσ = −∂H̄/∂x̄4 = −ψ̄4(σ)/ε, (A4)

dψ̄5(σ)/dσ = −∂H̄/∂x̄5 = 0. (A5)

The transversality condition is

ψ̄4(θ) = 1. (A6)

Due to Pontryagin’s maximum principle, the candidate optimal control in the
AOCP becomes

v̄(σ) = sign[S̄(σ)], (A7)

where
S̄(σ)

�
= −ψ̄4(σ)/ε− ψ̄5(σ)Ψ((σ − θ)/ε). (A8)

Solving Equation (A4) with condition (A6) yields

ψ̄4(σ) = exp((θ − σ)/ε), θ ≤ σ ≤ θ + ∆θ. (A9)

Similarly, solving Equation (A5) leads to

ψ̄5(σ) = c, θ ≤ σ ≤ θ + ∆θ, (A10)

where c is an arbitrary value independent of σ.
Substituting (A9) and (A10) into (A8), one has the switch function S̄(σ) as

follows:

S̄(σ) = − exp((θ − σ)/ε)/ε− cΨ((σ − θ)/ε), θ ≤ σ ≤ θ + ∆θ, (A11)

yielding
S̄(σ)|σ=θ = −1. (A12)

Based on Equation (A12), two different cases can be distinguished: 1) S̄(σ) <
0 ∀σ ∈ [θ, θ + ∆θ); 2) there exists σ− ∈ (θ, θ + ∆θ), such that S̄(σ−) = 0.

Case 1. In this case, one has a single candidate optimal control, namely,
v̄(σ) = −1. Due to the existence of the AOCP solution, this control is optimal.
Hence, Equations (A1), (A2) and (35) yield x̄5(σ)|σ=θ = q̄−, which is valid
iff q̄(θ) = q̄−. Thus, the first case occurs iff the left-hand inequality in (37)
becomes an equality. In this case, one can directly obtain from Equations (42)–
(45) that σ− = θ +∆θ, which proves the second statement of the lemma (when
the inequality (37) is satisfied).
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Case 2. Substituting σ = σ− into (A11) and solving the equation with
respect to c yields

c = − exp((θ − σ−)/ε)/[εΨ((σ− − θ)/ε)] < 0. (A13)

Differentiating (A11) with respect to σ and using (A13), one obtains

dS̄(σ)/dσ = exp((θ − σ)/ε)/ε2 − (c/ε)[1− exp((θ − σ)/ε)]
> 0, σ ∈ [θ, θ + ∆θ]. (A14)

The inequality (A14) implies that S̄(σ) monotonically increases on the interval
σ ∈ [θ, θ + ∆θ]. Hence, due to (A12), one has

S̄(σ) < 0, σ ∈ [θ, σ−); S̄(σ) > 0, σ ∈ (σ−, θ + ∆θ], (A15)

which yields by using (A7) the expression for the candidate optimal control coin-
ciding with the right-hand part of Equation (38). By substituting this expres-
sion into Equation (A1) and solving this equation with the boundary conditions
(A2), one obtains the following algebraic equation with respect to σ−:

exp[−(σ− − θ)/ε]− 0.5(σ− − θ)2/ε2 + (σ− − θ)/ε = α−, (A16)

where α− is given by Equations (43), (44).
Equation (A16) directly yields expression (42) for the switch point σ−. By the

implicit function theorem one can show the existence and the smoothness of the
function B(α) claimed in the lemma. Thus, the necessary optimality conditions
yield a single candidate optimal control of the AOCP given by Equation (38).
Since the AOCP has a solution, this control is optimal, which proves the main
statement of the lemma. The other statement of the lemma (when the inequality
(37) is not satisfied) is obvious.

Appendix B: Proof of Corollary 3.1

The proof of the corollary concentrates on the case where v̄ = 1 almost every-
where on an interval [θ + ∆θ, θ]. The case v̄ = −1 is analyzed similarly.

Using (33), (35) and (36), one has in the first case

q(θ) = −ε[Ψ(δ)− δ2/2]. (B1)

Substituting (B1) into (43) and using (44), one obtains

α− = 1, α+ = α0. (B2)

Using (45) and (B2) yields directly

B(α−) = 0, B(α+) = δ. (B3)
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Substituting (28) and (B3) into (46), one obtains

[x̄4im(θ)]c = x̄4(θ + ∆θ) exp(−δ) + 1− exp(−δ), (B4)

which coincides with the solution x̄4(θ) of Equation (27), the nondimensional
form of Equation (9), with v̄(σ) = 1 for almost all σ ∈ [θ + ∆θ, θ]. Thus, the
corollary is proved.

Appendix C: Proof of Proposition 3.1

The proposition is proved by adopting the idea proposed in [36] for obtaining the
optimality conditions in a linear-quadratic optimal control problem with delays
in state and control variables. The proof consists of four stages. At the first
stage, Equation (49) is transformed into a set of two equations, which no longer
contain the delay. At the second stage, applying a discretization, the set of two
equations is approximated by a set of K+1 ordinary differential equations of the
first order (K+1 is the number of the collocation points) describing a dynamics
of an auxiliary game. At the third stage, necessary optimality conditions for
this auxiliary game are derived. At the fourth stage, a transformation of these
conditions is carried out, and then the limit (as K → +∞) of these conditions
is calculated.

C1. Transformation of Equation (49). Consider the following function
of two variables ξ(θ, σ) in the domain Ω:

ξ(θ, σ)
�
=

{
v̄(θ + σ), 0 ≤ θ + σ ≤ θ0,

v̄0(θ + σ), θ + σ > θ0.
(C1)

Under the reasonable assumption that v̄(s), s ∈ [0, θ0] is piecewise differen-
tiable, ξ(θ, σ) satisfies the equation

∂ξ(θ, σ)/∂θ = ∂ξ(θ, σ)/∂σ (C2)

almost everywhere in Ω, and the condition

ξ(θ, 0) = v̄(θ), θ ∈ [0, θ0]. (C3)

Substituting (C1) into (49) yields the equation

dz̄imc(θ)/dθ =µΨ(θ)ū(θ)− εΨ(θ/ε) exp(−δ)ξ(θ, ∆θ)

+ (θ/ε)
∫ 0

∆θ

exp(−σ/ε)ξ(θ, σ)dσ

+ ε[1− exp(−θ/ε)]Q(Φ−
ξ ,Φ+

ξ ) + Eξ(θ, ξ(θ, ·)), (C4)

where Φ−
ξ and Φ+

ξ are obtained from Equations (53) and (54), respectively,
replacing there v̄(θ+σ) by ξ(θ, σ); Eξ(θ, ξ(θ, ·)) is obtained from Equation (50),
replacing there v̄(θ +σ) by ξ(θ, σ), σ ∈ [0,∆θ], and Φ− and Φ+ by Φ−

ξ and Φ+
ξ ,

respectively.
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C2. Approximation of the NLDDG. Let us approximate the continuous
argument σ, varying on the entire interval [0,∆θ], by the discrete variable σi

given by
σ0 = 0, σi = σi−1 + ∆θ/K, i = 1, . . . , K, (C5)

where K > 0 is an integer. Using (C5), one can approximate ∂ξ(θ, σ)/∂σ and
all the integrals in Equation (C4) containing ξ(θ, σ) as follows:

∂ξ(θ, σ)/∂σ|σ=σi
≈ [ξ(θ, σi)− ξ(θ, σi−1]/(∆θ/K), i = 1, . . . , K (C6)

for almost all θ ∈ [0, θ0], and∫ 0

∆θ

exp(−σ/ε)ξ(θ, σ)dσ

≈ −(∆θ/K)
K∑

i=1

exp(−σi/ε)ξ(θ, σi) ∀ θ ∈ [0, θ0], (C7)

∫ 0

∆θ

[1− exp(−σ/ε)]ξ(θ, σ)dσ

≈ −(∆θ/K)
K∑

i=1

[1− exp(−σi/ε)]ξ(θ, σi), ∀ θ ∈ [0, θ0], (C 8)

∫ 0

∆θ

Ψ(σ/ε)ξ(θ, σ)

≈ −(∆θ/K)
K∑

i=1

Ψ(σi/ε)ξ(θ, σi) ∀ θ ∈ [0, θ0]. (C9)

By introducing new state variables

ξi(θ)
�
= ξ(θ, σi), i = 1, . . . , K, (C10)

and applying (C7)–(C10), one can approximate (C4) by

dz̄imc(θ)/dθ =µΨ(θ)ū(θ)− (δ/K)θ
K−1∑
i=1

exp(−σi/ε)ξi(θ)

− exp(−δ)[εΨ(θ/ε) + (δ/K)θ]ξK(θ)

+ ε[1− exp(−θ/ε)]Q(Φ−
Kξ,Φ

+
Kξ)

+ EKξ(θ, ξ1(θ), . . . , ξK(θ)), (C 11)

where

Φ−
Kξ

�
= 0.5(δ/K)

K∑
i=1

Ψ(σi/ε)ξi(θ) + β, (C12)
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Φ+
Kξ

�
= −0.5(δ/K)

K∑
i=1

Ψ(σi/ε)ξi(θ) + β, (C13)

EKξ(θ, ξ1(θ), . . . , ξK(θ))
�
= −(ε/2)Ψ(θ/ε)R(Φ−

Kξ,Φ
+
Kξ)

× [Ψ(δ)ξK(θ)− (δ/K)
K∑

i=1

(1− exp(−σi/ε))ξi(θ)].

(C 14)

Similarly, using (C6) and (C10), one can approximate (C2) as follows:

dξ1(θ)/dθ = (K/∆θ)[ξ1(θ)− v̄(θ)], (C15)
dξi(θ)/dθ = (K/∆θ)[ξi(θ)− ξi−1(θ)], i = 2, . . . , K. (C16)

Due to (58), (C1) and (C10), the state variables ξi(θ), (i = 1, . . . , K) must
satisfy the constraints

|ξi(θ)| ≤ 1− ν, i = 1, . . . , K, (C17)

and the initial conditions

ξi(θ0) = v̄0(θ0 + σi), i = 1, . . . , K. (C18)

It can be shown similarly to [30] that the solution of Equations (C15), (C16)
with the initial conditions (C18) satisfies (C17) as v̄(θ) satisfies (58). Hence,
(C17) can be omitted in the sequel. Equations (C11), (C15), (C16) with the
control constraints (21), (58) and the cost function (55) describe an auxiliary
game approximating the NLDDG.

C3. Solution of the auxiliary game. The variational Hamiltonian of the
auxiliary game has the form

H = ψ0(θ)

{
µΨ(θ)ū(θ)− (δ/K)θ

K−1∑
i=1

exp(−σi/ε)ξi(θ)

− exp(−δ)[εΨ(θ/ε) + (δ/K)θ]ξK(θ)

+ ε[1− exp(−θ/ε)]Q(Φ−
Kξ,Φ

+
Kξ) + EKξ(θ, ξ1(θ), . . . , ξK(θ))

}
+ ψ1(θ)(K/∆θ)[ξ1(θ)− v̄(θ)] + · · ·+ ψi(θ)(K/∆θ)[ξi(θ)− ξi−1(θ)]
+ · · ·+ ψK(θ)(K/∆θ)[ξK(θ)− ξK−1(θ)], (C 19)

where ψi, i = 0, 1, . . . , K, are costate variables. The necessary conditions of the
optimality for this game are

ū∗(θ) = arg min
ū

H = −sign[µψ0(θ)Ψ(θ)] = −sign[ψ0(θ)], (C 20)
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v̄∗(θ) = arg max
v̄

H = −(1− ν)sign[(K/∆θ)ψ1(θ)]. (C 21)

The costate variables satisfy the adjoint equations

dψ0(θ)/dθ = −∂H/∂z̄imc = 0, (C 22)
dψi(θ)/dθ = −∂H/∂ξi

=

{
(δ/K)θ exp(−σi/ε)

+ 0.5(∆θ/K)[1− exp(−θ/ε)]Ψ(σi/ε)R(Φ−
Kξ,Φ

+
Kξ)

+ 0.25(∆θ/K)Ψ(θ/ε)Ψ(σi/ε)S(Φ−
Kξ,Φ

+
Kξ)

×
[
Ψ(δ)ξK(θ)− (δ/K)

K∑
i=1

(1− exp(−σi/ε))ξi(θ)

]

− 0.5(∆θ/K)[1− exp(−σi/ε)]Ψ(θ/ε)R(Φ−
Kξ,Φ

+
Kξ)

}
ψ0(θ)

− (K/∆θ)[ψi(θ)− ψi+1(θ)], i = 1, . . . , K − 1, (C 23)
dψK(θ)/dθ = −∂H/∂ξK

=

{
exp(−δ)[εΨ(θ/ε) + (δ/K)θ]

+ 0.5(∆θ/K)[1− exp(−θ/ε)]Ψ(δ)R(Φ−
Kξ,Φ

+
Kξ)

+ 0.25(∆θ/K)Ψ(θ/ε)Ψ(δ)S(Φ−
Kξ,Φ

+
Kξ)

×
[
Ψ(δ)ξK(θ)− (δ/K)

K∑
i=1

(1− exp(−σi/ε))ξi(θ)

]

+ 0.5εΨ(θ/ε)R(Φ−
Kξ,Φ

+
Kξ)[Ψ(δ)− (δ/K)(1− exp(−δ))]

}
ψ0(θ)

− (K/∆θ)ψK(θ), (C 24)

and transversality conditions

ψ0(0) = −∂J̄im/∂z̄imc(0) = −sign[z̄imc(0)], (C 25)
ψi(0) = −∂J̄im/∂ξi(0) = 0, i = 1, . . . , K. (C 26)

C4. Transformation of Equations (C20)–(C26) and limit process as
KKK → +∞. Let the variables ψi(θ) in (C20)–(C26) be transformed into the
variables ϕi(θ), (i = 0, . . . , K) as follows:

ϕ0(θ) = ψ0(θ); ϕi(θ) = (K/∆θ)ψi(θ), i = 1, . . . , K. (C27)
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Due to this transformation, Equations (C20)–(C26) become

ū∗(θ) = −sign[ϕ0(θ)], (C 28)
v̄∗(θ) = −(1− ν)sign[ϕ1(θ)], (C 29)

dϕ0(θ)/dθ = 0, (C 30)

dϕi(θ)/dθ =

{
(θ/ε) exp(−σi/ε)

+ 0.5[1− exp(−θ/ε)]Ψ(σi/ε)R(Φ−
Kξ,Φ

+
Kξ)

+ 0.25Ψ(θ/ε)Ψ(σi/ε)S(Φ−
Kξ,Φ

+
Kξ)

×
[
Ψ(δ)ξK(θ)− (δ/K)

K∑
i=1

(1− exp(−σi/ε))ξi(θ)

]

− 0.5Ψ(θ/ε)R(Φ−
Kξ,Φ

+
Kξ)[1− exp(−σi/ε)]

}
ϕ0(θ)

− [ϕi(θ)− ϕi+1(θ)]/(∆θ/K), i = 1, . . . , K − 1,

(C 31)

(∆θ/K)dϕK(θ)/dθ =

{
exp(−δ)[εΨ(θ/ε) + (δ/K)θ]

+ 0.5(∆θ/K)[1− exp(−θ/ε)]Ψ(δ)R(Φ−
Kξ,Φ

+
Kξ)

+ 0.25(∆θ/K)Ψ(θ/ε)Ψ(δ)S(Φ−
Kξ,Φ

+
Kξ)

×
[
Ψ(δ)ξK(θ)− (δ/K)

K∑
i=1

(1− exp(−σi/ε))ξi(θ)

]
+ 0.5εΨ(θ/ε)R(Φ−

Kξ,Φ
+
Kξ)

×
[
Ψ(δ)− (δ/K)(1− exp(−δ))

]}
ϕ0(θ)− ϕK(θ),

(C 32)

ϕ0(0) = −sign[z̄imc(0)], (C 33)
ϕi(0) = 0, i = 1, . . . , K. (C 34)

By introducing a continuous function of two variables λ(θ, σ) having first-order
partial derivatives and satisfying

λ(θ, σi) = ϕi(θ), i = 1, . . . , K, (C35)

and substituting (C35) into Equations (C29), (C31), (C32) and (C34), one has,
respectively,

v̄∗(θ) = −(1− ν)sign[λ(θ, ∆θ/K)], (C36)
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∂λ(θ, σ)/∂θ − [λ(θ, σi+1)− λ(θ, σi)]/(∆θ/K)

=

{
(θ/ε) exp(−σi/ε) + 0.5R(Φ−

Kξ,Φ
+
Kξ)

× [(1− exp(−θ/ε))Ψ(σi/ε)− (1− exp(−σi/ε))Ψ(θ/ε)]

+ 0.25Ψ(θ/ε)Ψ(σi/ε)S(Φ−
Kξ,Φ

+
Kξ)

×
[
Ψ(δ)ξK(θ)− (δ/K)

K∑
i=1

(1− exp(−σi/ε))ξi(θ)

]}
ϕ0(θ), (C 37)

(∆θ/K)∂λ(θ, ∆θ)/∂θ

=

{
exp(−δ)[εΨ(θ/ε) + (δ/K)θ]

+ 0.5(∆θ/K)[1− exp(−θ/ε)]Ψ(δ)R(Φ−
Kξ,Φ

+
Kξ)

+ 0.25(∆θ/K)Ψ(θ/ε)Ψ(δ)S(Φ−
Kξ,Φ

+
kξ)

×
[
Ψ(δ)ξK(θ)− (δ/K)

K∑
i=1

(1− exp(−σi/ε))ξi(θ)

]
+ 0.5εΨ(θ/ε)R(Φ−

Kξ,Φ
+
Kξ)

× [Ψ(δ)− (δ/K)(1− exp(−δ))]

}
ϕ0(θ)− λ(θ, ∆θ), (C 38)

λ(0, σi) = 0, i = 1, . . . , K. (C39)

Next, the limit of Equations (C28), (C30), (C33) and (C36)–(C39) as K →
+∞ is calculated. The first three equations coincide with (60), (62) and (69),
respectively. Calculating the limit of (C37)–(C39) using (C10) and the fact that
the discrete variable σi tends to the continuous variable σ as K → +∞ yields
directly (63), (70), (71), respectively. Calculating the limit of (C36) yields (61).
Thus, the proposition is proved.

Appendix D: Proof of Proposition 4.3

First, note that v̄∗0(θ + ∆θ) satisfying Equation (102) must be of a bang-bang
structure. It has to be shown that this function has at least one switch point
on the interval θ ∈ (θ0 −∆θ, θ0). This is proved by contradiction. Assume that
v̄∗0(θ +∆θ) keeps its sign on this interval. In this case one obtains directly from
(83) and (84) that one of the values, either Φ−

ν |θ=θ0 or Φ+
ν |θ=θ0 , tends to 1 as

ν → +0, which yields together with Equations (52), (101)

lim
ν→+0

R∗
ν0 = −∞. (D1)
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Using Equations (103) and (D1), one has by direct calculation

C(θ, v̄∗0(·))|θ=θ0−∆θ > 0, C(θ, v̄∗0(·))|θ=θ0 < 0. (D2)

The inequalities in (D2) imply that v̄∗0(θ+∆θ), satisfying (102), has at least one
switch point on the interval θ ∈ (θ0−∆θ, θ0), which contradicts the assumption
made above. Thus, this function has indeed at least one switch point, and, due
to the first inequality in (D2), it equals (1 − ν)sign[z̄imc(0)] in a right-hand
neighborhood of θ = θ0 −∆θ.

Next, it has to be shown that there is no more than one switch point of the
function v̄∗0(θ + ∆θ) satisfying (102). For this purpose it is sufficient to show
that C(θ, v̄∗0(·)) is monotonic with respect to θ.

Since C(θ, v̄∗0(·)) has at least one root with respect to θ on the interval (θ0 −
∆θ, θ0), Equation (103) yields that

R∗
ν0 < 0. (D3)

Now, calculating the first-order derivative of C(θ, v̄∗0(·)) with respect to θ and
using (D3), one directly obtains

dC(θ, v̄∗0(·))/dθ < 0, (D4)

yielding a monotonic decrease of C(θ, v̄∗0(·)) with respect to θ on the interval
(θ0−∆θ, θ0). Thus, the switch point is unique. By denoting this point θsw, and

setting σsw
�
= θsw − θ0 + ∆θ, (105) is obtained for θsw. Substituting (105) into

(103), one directly obtains (106) for σsw. Thus, the proposition is proved.
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Abstract
Conflict-controlled processes for systems with Riemann–Liouville deriva-
tives of arbitrary order are studied here. A solution of such a system is
presented in the form of a Cauchy formula analog. Using the resolving
functions method, sufficient conditions for termination of the game are
obtained. These conditions are based on the modified Pontryagin condition,
expressed in terms of the generalized matrix functions of Mittag–Leffler.
To find the latter, the interpolating polynomial of Lagrange–Sylvester is
used. An illustrative example is given.

Key words. Fractional derivative, dynamic game, Mittag–Leffler func-
tion.

1 Introduction

A system described by equations with fractional derivatives [12] is one exam-
ple of systems which are not dynamic according to Birkhoff because of their
failure to meet the semigroup property. This feature is an essential obstacle to
the development of optimality conditions. However, such processes can be stud-
ied on the basis of the principle of guaranteed result [1]. It seems likely that
the paper of Eidelman–Chikrii–Rurenko [7] was among the first in which game
problems for systems with fractional derivatives were analyzed. The more thor-
ough studies of Chikrii–Eidelman [6] contain sufficient conditions for solvabil-
ity of the pursuit problem for systems with fractional derivatives of arbitrary
order α, 0 < α < 1. In so doing, both the systems with fractional deriva-
tives of Riemann–Liouville and those with Dzhrbashyan–Nersesyan regularized
derivatives are treated. Using Dzhrbashyan asymptotic formulas for functions
of Mittag–Leffler [5], sufficient conditions for the game termination are obtained
in the case of a simple matrix system. In Chikrii–Eidelman [3] these results are
developed in the case of arbitrary order α of Riemann–Liouville derivatives.
The generalized matrix functions of Mittag–Leffler, first introduced in Chikrii–
Eidelman [4], play a key role in this investigation.
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2 Problem Statement and Auxiliary Results

Let us consider the following conflict-controlled process with two players as
participants. The evolution of each of them is described, respectively, by the
following equations with fractional derivatives:

Dαx = Ax + u, x ∈ R
n1 , u ∈ U, k − 1 < α ≤ k, k ≥ 1, (1)

Dβy = By + v, y ∈ R
n2 , v ∈ V, m− 1 < β ≤ m, m ≥ 1. (2)

Here

Dαx =
dα

dtα
x =

1
Γ(1− {α})

(
d

dt

)[α]+1
t∫

0

x(s)
(t− s){α} ds,

[α], {α} are, respectively, the integer and the fractional parts of number α,
α > 0, Dα is the α-order left-side Riemann–Liouville derivative [12], and Γ(α)
is the γ-function. The fractional derivative Dβ is defined in a similar manner.
Evidently, there exist positive integers k and m, furnishing the inequalities (1),
(2) for α and β. The matrices A and B are square matrices of order n1 and n2,
and the players’ control domains U and V are compact sets in finite-dimensional
Euclidean spaces R

n1 and R
n2 , respectively, that is U ∈ K(Rn1), V ∈ K(Rn2).

The initial conditions for systems (1), (2) are given in the form

dα−i

dtα−i
x(t)
∣∣∣∣
t=0

= x0
i , i = 1, . . . , k,

dβ−j

dtβ−j
x(t)
∣∣∣∣
t=0

= y0
j , j = 1, . . . , m. (3)

Set x0 = (x0
1, . . . , x0

k), y0 = (y0
1 , . . . , y0

m).
For simplicity we assume that the terminal set is defined by the first s

components of x and y, s ≤ min{n1, n2}. Let us introduce orthoprojectors
π1 : R

n1 → R
s, π2 : R

n2 → R
s, extracting first the s components from vectors

x and y. Then the terminal set may be described by the inequality

‖π1x− π2y‖ ≤ ε. (4)

We will analyze the following game scheme. The first player, exerting control
over the process (1), strives in the shortest possible time to achieve fulfillment
of the inequality (4) while the second player, controlling the process (2), strives
to maximally delay this moment.

Standing on the pursuer’s side and choosing its control in the form

u(t) = u
(
x0, y0, vt(·)

)
, vt(·) = {v(s) : s ∈ [0, t]} , (5)
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we will orient ourselves to an arbitrary measurable function with values from
the set V as the second player’s control choice.

The purpose of this paper consists in the development of sufficient conditions
for the game termination in favor of the first player in some guaranteed time.

Consider the Cauchy problem for the system of equations (1), (2) under the
initial conditions (3). Following Chikrii–Eidelman [4], we introduce the gener-
alized matrix function of Mittag–Leffler

Eρ(C;µ) =
∞∑

k=0

Ck

Γ(kρ−1 + µ)

for arbitrary positive numbers ρ and µ and arbitrary quadratic matrix C of
finite order.

Lemma 2.1. Let the system of differential equations (1), (2) under the initial
conditions (3) be given. Then, under the chosen Lebesgue measurable functions
as players’ controls, the solution of the Cauchy problem is unique, and it has a
form

x(t) =
k∑

i=1

tα−iE1/α (Atα; 1 + α− i)x0
i

+

t∫
0

(t− τ)α−1E1/α (A(t− τ)α;α)u(τ)dτ,

y(t) =
m∑

j=1

tβ−jE1/β

(
Btβ ; 1 + β − j

)
y0

j

+

t∫
0

(t− τ)β−1E1/β

(
B(t− τ)β ;β

)
v(τ)dτ.

3 Method of Problem Solution

Following the resolving function’s method scheme of Chikrii [1,2] let us study
the following set-valued mappings:

W (t, v) = tα−1π1E1/α (Atα;α)U − tβ−1π2E1/β

(
Btβ ;β

)
C(t)V,

W (t) = tα−1π1E1/α (Atα;α)U
∗
− tβ−1π2E1/β

(
Btβ ;β

)
C(t)V, (6)

M(t) = εS
∗
−

t∫
0

τβ−1π2E1/β

(
Bτβ ;β

)
(E − C(τ))V dτ. (7)
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In the preceding formulas, C(t) is some bounded measurable matrix function,
∗
−

is the operation of geometric subtraction of sets [11], and E is a unit sphere from
space R

s centered at the origin. If there exists a function C(t), such that both
mappings W (t) and M(t) take nonempty values for all t ≥ 0, we will say that
Pontryagin condition holds. In the case C(t) ≡ E, the condition M(t) 	= ∅ is
readily satisfied, and the condition W (t) 	= ∅ appears as the regular Pontryagin
condition [11].

Let us pick a measurable selection γ(t) [10] and set

ξ
(
t, x0, γ(·)

)
=

k∑
i=1

tα−iπ1E1/α (Atα; 1 + α− i)x0
i

−
m∑

j=1

tβ−jπ2E1/β

(
Btβ ; 1 + β − j

)
y0

j +

t∫
0

γ(τ)dτ.

Then, the resolving function [1] for the problem (1)–(4) is

α(t, τ, v) = sup {ρ ≥ 0 : [W (t− τ, v)− γ(t− τ)]

∩ρ
[
M(t)− ξ

(
t, x0, y0, γ(·)

)]
	= ∅
}

. (8)

In its terms we define the set

T
(
x0, y0, γ(·)

)
=

⎧⎨⎩t ≥ 0 :

t∫
0

inf
v∈V

α(t, τ, v)dτ ≥ 1

⎫⎬⎭ . (9)

Theorem 3.1. Assume that, for the conflict-controlled process (1)–(4), there
exist a bounded measurable matrix function C(t), t ≥ 0, such that the modified
Pontryagin condition holds and a measurable selection γ(t), γ(t) ∈ W (t) such
that T

(
x0, y0, γ(·)

)
	= ∅, and T ∈ T (x0, y0, γ(·)), T < +∞.

Then the game (1)–(5) may be terminated at the instant T .

The proof can be constructed based on Chikrii–Eidelman [4] and Chikrii [1].
Let us illustrate the main theoretical statements on a model example. To find
the generalized Mittag–Leffler matrix functions E1/α (Atα;α), E1/β

(
Btβ ;β

)
we

will use the technique of Lagrange–Sylvester interpolating polynomials. This
makes it feasible to find the above-mentioned functions through the matrices A
and B.

4 Example

Let us consider the problem “Boy and Crocodile” [9,11] generalized to the
case of fractional derivatives. Then the motions of the players are described by
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equations

dkα

dtkα
x = u, ‖u‖ ≤ 1, x ∈ R

s, 0 < α ≤ 1, (10)

and

dmβ

dtmβ
y = v, ‖v‖ ≤ 1, y ∈ R

s, 0 < β ≤ 1, (11)

respectively, where k and m are arbitrary natural numbers.
The initial conditions for systems (10), (11) have the form

diα−1

dtiα−1
x(t)
∣∣∣∣
t=0

= x0
i , i = 1, . . . , k, (12)

djβ−1

dtjβ−1
y(t)
∣∣∣∣
t=0

= y0
j , j = 1, . . . , m. (13)

The game (10)–(13) is assumed to be terminated when

‖ x− y ‖≤ ε, ε ≥ 0. (14)

Let us reduce systems (10), (11) to systems of orders α and β, respectively. For
this purpose we set

x = x1,
dα

dtα
x1 = x2, . . . ,

dα

dtα
xk−1 = xk.

Then

dα

dtα
xk = u.

Denoting x̄ = (x1, . . . , xk) we rewrite equation (10) in the equivalent form

Dαx̄ = Ax̄ + ū,

where A = A′ ⊗ E,

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0︸ ︷︷ ︸

k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ū =

⎛⎜⎜⎜⎝
0
0
...
u

⎞⎟⎟⎟⎠ ,
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and ⊗ is the Kronecker matrix product [8]. Here A′ is a quadratic matrix of
order k, E is a unit matrix of order s, and ū is a k × s-dimensional vector.

Performing a similar substitution of variables in system (11) and setting ȳ =
(y1, . . . , ym), we obtain

Dβ ȳ = Bȳ + v̄,

where B = B′ ⊗E, B′ is a matrix analogous to A′ but of order m, and v̄ is an
ms-dimensional vector.

The orthoprojectors π1 and π2 extract components x1, y1 from vectors x̄ and
ȳ, respectively. Note that

E1/α (Atα;α) = E1/α (A′tα;α)⊗ E, E1/β

(
Btβ ;β

)
= E1/β

(
B′tβ ;β

)
⊗ E.

Let us find the matrix functions E1/α (A′tα;α) and E1/β

(
B′tβ ;β

)
. For this

purpose we study the matrices A′ and B′ in detail. The minimal polynomial
of matrix A′ is λk and its k-fold root is a k-fold characteristic number of the
matrix A′ [8]. Therefore, the values of the function f(λ) = E1/α (λtα;α) on
the spectrum of matrix A′ are numbers f(0), f (1)(0), . . . , f (k−1)(0) and the
interpolating polynomial of Lagrange–Sylvester [8], has the form

r(λ) = f(0) +
f ′(0)

1!
λ + · · ·+ fk−1(0)

(k − 1)!
λk−1.

Hence

r(A′) = f(A′) = E1/α (A′tα;α)

= f(0)E +
f (1)(0)

1!
A′ + · · ·+ fk−1(0)

(k − 1)!
(A′)k−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/Γ(α) tα/Γ(2α) t2α/Γ(3α) · · · t(k−1)α/Γ(kα)

0 1/Γ(α) tα/Γ(2α) · · · t(k−2)α/Γ((k − 1)α)

0 0 · · · · · · · · ·
· · · · · · · · · · · · · · ·

. . .

0 0 0 · · · tα/Γ(2α)

0 0 0 · · · 1/Γ(α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A similar reasoning leads to a similar presentation for E1/β(B′tβ ;β). Performing
the necessary calculations we have

W (t) =
tkα−1

Γ(kα)
S

∗
− tmβ−1

Γ(mβ)
C(t)S.
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Evidently, W (t) 	= ∅, C(t) ≡ E if and only if kα = mβ. Thus we introduce the
function C1(t) = c(t)E, t ≥ 0, where the scalar function c(t) has the form

c(t) =

⎧⎪⎨⎪⎩
1, tδ ≥ Γ(kα)

Γ(mβ)

Γ(mβ)
Γ(kα) tδ, tδ < Γ(kα)

Γ(mβ) ,

and δ = kα−mβ.
Therefore

W (t) =

⎧⎪⎨⎪⎩
[

tkα−1

Γ(kα) −
tmβ−1

Γ(mβ)

]
S, tδ ≥ Γ(kα)

Γ(mβ)

0, tδ < Γ(kα)
Γ(mβ)

⎫⎪⎬⎪⎭ 	= ∅ ∀ t ≥ 0.

Then

M(t) =

⎡⎣ε− t∫
0

τmβ−1

Γ(mβ)
(1− c(τ)) dτ

⎤⎦S.

Hence, M(t) 	= ∅ for all t ≥ 0, if

ε ≥
t∫

0

τmβ−1

Γ(mβ)
(1− c(τ)) dτ, t ≥ 0. (15)

It can be shown that for δ > 0 the inequality (15) takes the form

ε ≥

[
Γ(kα)
Γ(mβ)

]mβ/δ

Γ(mβ + 1)
−

[
Γ(kα)
Γ(mβ)

]kα/δ

Γ(kα + 1)
= σ(δ). (16)

Let us analyze the case when δ < 0. Set

∆(t) =
tmβ

Γ(mβ + 1)
− tkα

Γ(kα + 1)
− σ(−|δ|)

and denote

t∗ = max

{
t >

[
Γ(mβ)
Γ(kα)

]1/|δ|
: ∀τ ∈

([
Γ(mβ)
Γ(kα)

]1/|δ|
, t

]
ε−∆(τ) ≥ 0

}
.

Then

M(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εS, t ≤

[
Γ(mβ)
Γ(kα)

]1/|δ|

[ε−∆(t)] S, t >
[

Γ(mβ)
Γ(kα)

]1/|δ|

⎫⎪⎪⎪⎬⎪⎪⎪⎭ 	= ∅ ∀ t ∈ [0, t∗]
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and therefore for δ < 0 the modified Pontryagin condition holds only on the
interval [0, t∗].

Since 0 ∈W (t), t ≥ 0, we set γ1(t) ≡ 0. Then

ξ
(
t, x0, y0, 0

)
=

k∑
i=1

tiα−1

Γ(iα)
x0

i −
m∑

j=1

tjβ−1

Γ(jβ)
y0

j .

Upon completion of the required calculation, the resolving function (8) takes
the form

α(t, τ, v) = sup

{
ρ ≥ 0 :

∥∥∥∥ρξ
(
t, x0, y0, 0

)
− (t− τ)mβ−1

Γ(mβ)
c(t− τ)v

∥∥∥∥
=

(t− τ)kα−1

Γ(kα)
+ ρm(t)

}
,

and

min
‖v‖≤1

α (t, τ, v) =

(t− τ)kα−1

Γ(kα)
− (t− τ)mβ−1

Γ(mβ)
c(t− τ)

‖ξ (t, x0, y0, 0)‖ −m(t)
,

where

m(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tkα

Γ(kα+1) −
tmβ

Γ(mβ+1) + ε, δ > 0, t <
[

Γ(kα)
Γ(mβ)

]1/δ

−σ(δ) + ε, δ > 0, t ≥
[

Γ(kα)
Γ(mβ)

]1/δ

ε,

(
δ < 0, t ≤

[
Γ(mβ)
Γ(kα)

]1/|δ|
)
∪ (δ = 0, t ≥ 0)

ε−∆(t), δ < 0,
[

Γ(mβ)
Γ(kα)

]1/|δ|
≤ t ≤ t∗ .

The analysis of all possible cases shows that the least element of set (9) or, what
is the same, the moment of the game termination is to be sought as a solution
of the equation

tkα

Γ(kα + 1)
− tmβ

Γ(mβ + 1)
+ ε =

∥∥∥∥∥∥
k∑

i=1

tiα−1

Γ(iα)
x0

i −
m∑

j=1

tjβ−1

Γ(jβ)
y0

j

∥∥∥∥∥∥ . (17)

If at t = 0 the right side of (17) is greater than the left one, then this equation
has a solution due to the left part’s greater growth rate as t→ +∞.
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Note that from relations (16), (17) for k = 2, α = β = m = 1 the classic result
of L. S. Pontryagin [11] immediately follows for the regular problem “Boy and
Crocodile.” It consists in the fact that the corresponding equation (17) always
has a solution when ε ≥ 1/2.
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Abstract
Necessary conditions are obtained for the capture of several evaders in a
group pursuit problem, where all evaders use the same control. Necessary
conditions for capture in such a group pursuit problem are also obtained
for the special case of “soft” capture.

Key words. Differential game, group pursuit, capture, evasion.

1 Introduction

In B. N. Pshenichnij [1] necessary and sufficient conditions were obtained for
the capture of one evader in a group pursuit problem

with common dynamics (law of motion). The problem is similar to the one
treated by L. S. Pontrjagin [2] but with many participants and with an identical
law of motion and initial resources. In Ref. [3], the capture condition is given
in terms of phase coordinates. In this chapter we consider two problems. In the
first problem sufficient conditions for the capture of at least one evader in a
group pursuit problem à la Pontrjagin are obtained, with the assumption that
all evaders use the same control. In the second problem the conditions of “soft”
capture for the group pursuit problem à la Pontrjagin with a group of pursuers
and one evader are also obtained. The article is related to Refs. [4–15].

2 The Problem of Group Pursuit of Hard-United Evaders

In the space Rk, we consider an n+m-person differential game with n pursuers
P1, . . . , Pn and m evaders E1, . . . , Em. The law of motion of each pursuer Pi is
∗Supported by RFFI (project 03-01-00014) and by the Competition Centre of Funda-
mental Natural Science (project E02-1.0-100).
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given by

x
(l)
i + a1x

(l−1)
i + · · ·+ alxi = ui, ‖ui‖ � 1, xi ∈ Rk. (1)

The law of motion of each evader Ej is given by

y
(l)
j + a1y

(l−1)
j + · · ·+ alyj = v, ‖v‖ � 1, yj ∈ Rk. (2)

Here xi, yj , ui, v ∈ Rk, a1, . . . , al ∈ R1.
The initial conditions at t = 0 are

x
(α)
i (0) = x0

i,α, y
(α)
j (0) = y0

j,α, α = 0, . . . , l − 1. (3)

Here x0
i,0 − y0

j,0 	= 0 for all i and j.
Instead of systems (1)—(3) let’s consider the system

z
(l)
i,j + a1z

(l−1)
i,j + · · ·+ alzi,j = ui − v, ‖ui‖ ≤ 1, ‖v‖ ≤ 1, (4)

zi,j(0) = z0
i,j,0 = x0

i,0 − y0
j,0, . . . , z

(l−1)
i,j (0) = z0

i,j,l−1 = x0
i,l−1 − y0

j,l−1. (5)

Definition 2.1. In the game Γ there is a capture, if there exists a time T > 0
and measurable functions ui(t) = ui(t, x0

iα, y0
jα, vt(·)), ‖ui(t)‖ ≤ 1, such that for

any measurable function v(·), ‖v(t)‖ ≤ 1, t ∈ [0, T ] there exist τ ∈ [0, T ] and
numbers q ∈ {1, 2, . . . , n}, r ∈ {1, . . . , m}, such that

xq(τ) = yr(τ).

Let ϕq(t), q = 0, 1, . . . , l − 1 be solutions of the equation

ω(l) + a1ω
(l−1) + · · ·+ alω = 0 (6)

with initial conditions

ω(0) = 0, . . . , ω(q−1)(0) = 0, ω(q)(0) = 1, ω(q+1)(0) = 0, . . . , ω(l−1)(0) = 0.

Assumption 2.1. All roots of the characteristic equation

λl + a1λ
l−1 + · · ·+ al = 0 (7)

have non-positive real parts.

Assumption 2.2. ϕl−1(t) � 0 for all t � 0.

Note that Assumption 2.2 holds if equation (7) has real roots only. Let’s
designate by λ1, . . . , λs (λ1 < λ2 < · · · < λs) the real roots and by µ1 ±
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iν1, . . . , µp ± iνp (µ1 � µ2 � · · · � µp) the complex roots of equation (7). Let
ks be the order of the root λs.

Further denote

ζi(T, t) = ϕ0(T )xi(t) + · · ·+ ϕl−1(T )x(l−1)
i (t),

ηj(T, t) = ϕ0(T )yj(t) + · · ·+ ϕl−1(T )y(l−1)
j (t),

ξi,j(T, t) = ϕ0(T )zi,j(t) + · · ·+ ϕl−1(T )z(l−1)
i,j (t).

Since

ϕq(t) =
s∑

β=1

eλβtPq,β(t) +
p∑

α=1

eµαt(Qq,α(t) cos(ναt) + Rq,α(t) sin(ναt)),

ζi(T, 0), ηj(T, 0), ξi,j(T, 0) can be represented by

ζi(T, 0) =
s∑

β=1

eλβT P 1
i,β(T ) +

p∑
α=1

eµαT (Q1
i,α(T ) cos(ναT ) + R1

i,α(T ) sin(ναT )),

and

ηj(T, 0) =
s∑

β=1

eλβT P 2
j,β(T ) +

p∑
α=1

eµαT (Q2
j,α(T ) cos(ναT ) + R2

j,α(T ) sin(ναT )),

ξi,j(T, 0) =
s∑

β=1

eλβT P 3
i,j,β(T ) +

p∑
α=1

eµαT (Q3
i,j,α(T ) cos(ναT )

+ R3
i,j,α(T ) sin(ναT )).

We assume that ξi,j(T, 0) 	= 0 for all i, j and T > 0, because if ξp,q(T, 0) = 0
for some p, q and T , then pursuer Pp catches the evader Eq at time T . Also we
assume that P 3

i,j,s(t) is not equal to 0 for all i and j.
Let’s designate by γi,j the order of polynomial P 3

i,j,s(t), by γ the order of
polynomial Pl−1,s. We assume that γi,j = γ for all i and j.

Let

X0
i = lim

t→∞

P 1
i,s

tγ
, Y 0

j = lim
t→∞

P 2
j,s

tγ
, Z0

i,j = lim
t→∞

P 3
i,j,s

tγ
,

Cα,β(T, t) = ηα(T, t)− ηβ(T, t) = Cα,β(T + t, 0).

We first state the following obvious result.

Lemma 2.1. Let Y (t, 0) be the fundamental matrix of Equation (6), such that
Y (0, 0) = E. Then

Y (t, 0)Y (T, 0) = Y (t + T, 0). (8)
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Now we can establish the following.

Lemma 2.2. For roots ϕ0(t), . . . , ϕl−1(t) of Equation (6), we have

ϕ0(T )ϕα(t) + · · ·+ ϕl−1(T )ϕ(l−1)
α (t) = ϕα(T + t), α ∈ {0, . . . , l − 1}.

Proof. Let

Y (T, 0) =

⎛⎝ ϕ0(T ) . . . ϕl−1(T )
. . . . . . . . .

ϕ
(l−1)
0 (T ) . . . ϕ

(l−1)
l−1 (T )

⎞⎠
be the fundamental matrix of Equation (6), normalized at the point 0. Then

Y (T, 0)

⎛⎝ ϕα(t)
. . .

ϕ
(l−1)
α (t)

⎞⎠ = Y (T, 0)Y (t, 0)

⎛⎝ ϕα(0)
. . .

ϕ
(l−1)
α (0)

⎞⎠ .

If we use Lemma 2.1 and replace the terms Y (T, 0)Y (t, 0) by Y (T + t, 0), then

Y (T + t, 0)

⎛⎝ ϕα(0)
. . .

ϕ
(l−1)
α (0)

⎞⎠ =

⎛⎝ ϕα(T + t)
. . .

ϕ
(l−1)
α (T + t)

⎞⎠ = Y (T, 0)

⎛⎝ ϕα(t)
. . .

ϕ
(l−1)
α (t)

⎞⎠ .

The lemma follows from this last equality. �

Lemma 2.3. The function

χ(T, t) = ϕ0(T )ν(t) + · · ·+ ϕl−1(T )ν(l−1)(t),

where

ν(t) = χ(t, 0) +

t∫
0

ϕl−1(t− τ)f(τ)dτ

is the root of the equation

ν(l)(t) + a1ν
(l−1)(t) + · · ·+ alν(t) = f(t),

can be represented by

χ(T, t) = χ(T + t, 0) +

t∫
0

ϕl−1(T + t− τ)f(τ)dτ.

Proof. Let’s note that for all s = 1, . . . , l − 1 the function ν satisfies the
condition

ν(s)(t) = χ(s)(t, 0) +

t∫
0

ϕ
(s)
l−1(t− τ)f(τ)dτ.
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Therefore, the function χ(T, t) can be represented as

χ(T, t) = ϕ0(T )(χ(t, 0) +

t∫
0

ϕl−1(t− τ)f(τ)dτ) + ϕ1(T )(χ̇(t, 0)

+

t∫
0

ϕ̇l−1(t− τ)f(τ)dτ) + · · ·+ ϕl−1(T )(χ(l−1)(t, 0)

+

t∫
0

ϕ
(l−1)
l−1 (t− τ)f(τ)dτ)

= ϕ0(T )χ(t, 0) + ϕ1(T )χ̇(t, 0) + · · ·+ ϕl−1(T )χ(l−1)(t, 0)

+

t∫
0

(ϕ0(T )ϕl−1(t− τ) + · · ·+ ϕl−1(T )ϕ(l−1)
l−1 (t− τ))f(τ)dτ.

By Lemma 2.2

ϕl−1(T + t− τ)

= ϕ0(T )ϕl−1(t− τ) + ϕ1(T )ϕ̇l−1(t− τ) + · · ·+ ϕl−1(T )ϕ(l−1)
l−1 (t− τ).

Since
χ(t, 0) = ϕ0(t)χ(0) + ϕ1(t)χ̇(0) + · · ·+ ϕl−1(t)χ(l−1)(0),

we have

χ(s)(t, 0) = ϕ
(s)
0 (t)χ(0) + ϕ

(s)
1 (t)χ̇(0) + · · ·+ ϕ

(s)
l−1(t)χ

(l−1)(0).

Therefore,

ϕ0(T )χ(t, 0) + ϕ1(T )χ̇(t, 0) + · · ·+ ϕl−1(T )χ(l−1)(t, 0)

= ϕ0(T )(ϕ0(t)ν(0) + · · ·+ ϕl−1(t)ν(l−1)(0))

+ ϕ1(T )(ϕ̇0(t)ν(0) + · · ·+ ϕ̇l−1(t)ν(l−1)(0))

+ · · ·+ ϕl−1(T )(ϕ(l−1)
0 (t)ν(0) + · · ·+ ϕ

(l−1)
l−1 (t)ν(l−1)(0)).

Thus

χ(T, t) = ϕ0(T + t)ν(0)+ · · ·+ ϕl−1(T + t)ν(l−1)(0)+

t∫
0

ϕl−1(T + t− τ)f(τ)dτ

= χ(T + t, 0) +

t∫
0

ϕl−1(T + t− τ)f(τ)dτ.

�
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Let V = {v : ‖v‖ � 1}, λ(a, v) = sup{λ � 0 : −λa ∈ V − v}.

Lemma 2.4. Let Assumptions 2.1, 2.2 hold, with bi(t) : [0,∞) → Rk, i =
1, . . . , p,

inf
v∈V

max
i

λ(bi(T 0 + t), v) > δ > 0

for all t > 0. Then there exists a time T > 0, such that for any admissible
function v(·) there exists a number q, such that

1− e−λs(T 0+T )

T∫
0

ϕl−1(T 0 + T − τ)λ(bq(T 0 + T ), v(τ))dτ � 0.

Proof. Let T be given. We define the functions hi as

hi(t) = 1− e−λs(T 0+t)

t∫
0

ϕl−1(T 0 + T − τ)λ(bi(T 0 + T ), v(τ))dτ.

hi(0) = 1, hi is continuous and

∑
i

hi(T ) � p− e−λs(T 0+T )

T∫
0

ϕl−1(T 0 + T − τ) max
i

λ(bi(T 0 + T ), v(τ))dτ.

Since inf
v∈V

max
i

λ(bi(T 0 + t), v) > δ, we have

∑
i

hi(T ) � p− δe−λs(T 0+T )

T∫
0

ϕl−1(T 0 + T − τ)dτ = g(T ).

By Assumptions 2.1, 2.2 and by Lemma 2.2 of [3, p. 154],

lim
T→∞

g(T ) = −∞.

Therefore, there exists a time T that satisfies the condition of the lemma. �

Definition 2.2. We say that the vectors a1, . . . , as form a positive basis for
Rk, if for any x ∈ Rk there exist positive real numbers α1, . . . , αs, such that

x = α1a1 + · · ·+ αsas.

Lemma 2.5. Let a1, . . . , as be a positive basis. Then for any bl, l = 1, . . . , s,
there exists µ0 > 0, such that for all µ > µ0

a1, . . . , al−1, bl + µal, . . . , bs + µas

is a positive basis.
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Proof. Assume this is not true. Then there exist bl, . . . , bs and a sequence
µn →∞, such that

a1, . . . , al−1, bl + µnal, . . . , bs + µnas

is not a positive basis. Therefore, there exist {vn}, ‖vn‖ = 1, such that for all n

(ar, vn) � 0, r = 1, . . . , l − 1, (9)

(ar +
1
µn

br, vn) � 0, r = l, . . . , s. (10)

By the compactness of the unit sphere, we can assume without loss of generality
that the vn → v0, ‖v0‖ = 1. Going to the limit in (9), (10) we obtain (ar, v0) � 0,
which contradicts the positivity of the basis. This establishes the lemma. �

Corollary 2.1. Let a1, . . . , as be a positive basis. Then for any bl, . . . , bs (1 �
l � s) there exists µ0 > 0, such that for all µ > µ0 the systems of vectors

{a1, . . . , al−1, bl + µal, . . . , bs + µas},

{a1, . . . , al−1, aα0 , br + µar, r 	= α0, r = l, . . . , s}
form positive bases.

Lemma 2.6. Let xi, yj ∈ Rk and assume
(a) n + m � k + 2,
(b) in the set {xi − yj , yr − yq, r 	= q, xs − xl, s 	= l} there exist k linearly

independent vectors.
Then

rico{xi} ∩ rico{yj} 	= ∅, (11)

if and only if {xi − yj} form a positive basis.

Proof. Assume that (11) holds while the vectors {xi−yj} do not form a positive
basis. Then (see [16]) there exists p ∈ Rk, ‖p‖ = 1, such that (xi − yj , p) � 0
for all i, j. Hence the sets co{xi}, co{yj} can be separated by a hyperplane.

If this were not the case, there would exist a hyperplane H, such that

co{xi} ⊂ H, co{yj} ⊂ H.

Hence xi − yj ∈ L, yr − yq ∈ L, xs − xl ∈ L. (Here L is the linear subspace,
corresponding to H.) This contradicts the conditions of the lemma.

On the other side, let

rico{xi} ∩ rico{yj} = ∅.

Then the sets co{xi}, co{yj} are separable. Therefore, there exists a unit vector
p, such that (xi−yj , p) ≤ 0. Hence {xi−yj} ([16]) do not form a positive basis.

�
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Lemma 2.7. Let xi, yj ∈ Rk, n+m � k+2, be any k+1 affinely independent
points such that

co{x1, . . . , xn} ∩ co{y1, . . . , ym} 	= ∅.
Then there exist sets I ⊂ {1, . . . , n}, J ⊂ {1, . . . , m}, such that |I|+ |J | = k+2,
and the intersection

rico{xα, α ∈ I} ∩ rico{yβ , β ∈ J} 	= ∅
consists of one point only.

Proof. Let I = {1, . . . , n}, J = {1, . . . , m}, M1 = co{xi, i ∈ I}, M2 =
co{yj , j ∈ J}, x ∈M1 ∩M2. Then

x =
∑
i∈I

βixi =
∑
j∈J

λjyj ,
∑
i∈I

βi =
∑
j∈J

λj = 1, βi ≥ 0, λj ≥ 0.

Define the sets I1 = {i ∈ I, βi 	= 0}, J1 = {j ∈ J, λj 	= 0}. Then co{xi, i ∈
I1} ∩ co{yj , j ∈ J1} 	= ∅. Let x belong to this set. Now take as sets I, J the
sets I1, J1 and repeat this procedure until one obtains the sets I, J , such that
for any x ∈ M1 ∩ M2 one will have βi > 0, λj > 0 for all i ∈ I, j ∈ J .
Then M1 ∩M2 = riM1 ∩ riM2. It has been shown in [17] that this implies that
M1 ∩M2 = affM1 ∩ affM2 and the set M1 ∩M2 consists of one point only. It
follows that dimM1 + dimM2 = k. As dim M1 = |I| − 1, dimM2 = |J | − 1, we
have |I|+ |J | = k + 2 and the lemma is proved. �

Lemma 2.8. Let {x1, . . . , xn, y1, . . . , ym} be a set of points from Rk, n+m =
k + 2, any k vectors from the set {xi − yj, yr − ys, r 	= s} that are linearly
independent and satisfy

rico{xi} ∩ rico{yj} 	= ∅, xn+1 − yβ0 = µ(yβ0 − y1) = −µ(y1 − yβ0).

Here µ > 0, β0 ∈ {2, . . . , m}.
Then

rico{xi, i = 1, . . . , n + 1} ∩ rico{yj , j ∈ 2, . . . , m} 	= ∅.
Proof. By Lemma 2.6 the vectors {xi−yj} compose a positive basis. Therefore,
the vectors

{xi − yβ0 + yβ0 − y1, xi − yj , i = 1, . . . , n, j = 2, . . . m}
compose a positive basis. From this it follows that a positive basis is composed
of the vectors

{yβ0 − y1, xi − yj , i = 1, . . . , n, j = 2, . . . m}.
Replacing yβ0−y1 by the vectors xn+1−yβ0 , we get that a positive basis is also
composed of the vectors {xi−yj , i = 1, . . . , n+1, j = 2, . . . , m}. By Lemma 2.5

rico{xi, i = 1, . . . , n + 1} ∩ rico{yj , j ∈ 2, . . . , m} 	= ∅.
This establishes the result. �
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Let’s suppose that the vectors X0
i , Y 0

j are such that
(a) if n > k, then for any set of indices I ⊂ {1, . . . , n}, ‖I‖ ≥ k + 1

Intco{X0
i , i ∈ I} 	= ∅;

(b) any k vectors from the sets {X0
i − Y 0

j , Y 0
s − Y 0

t , s 	= r} are linearly
independent.

Theorem 2.1. Let n � k + 1 and

0 ∈ Intco{Z0
i,j}.

Then there is a capture in the game Γ.

Proof. Since n � k, n + m � k + 2. By Lemma 2.7 there exist I ⊂ {1, . . . , n}
and J ⊂ {1, . . . , m}, such that {Z0

i,j , i ∈ I, j ∈ J} form a positive basis and
|I|+|J | = k+2. We will suppose, without loss of generality, that I = {1, . . . , q},
J = {1, . . . , l}, q + l = k + 2.

If |J | = 1, then capture follows from [3, §2]. We will assume that |J | � 2.
By Lemma 2.4 of [3, p. 155] it follows that there exists a time T 0, such that

{ξi,j(T 0 + t, 0), i ∈ I, j ∈ J} (12)

form a positive basis for all t � 0. For all i ∈ I and for all α 	= α0, α ∈ J ,

ξi,α(T 0, t) = ξi,α0(T
0, t) + Cα0,α(T 0, t).

Then
{ξi,α0(T

0 + t, 0), i ∈ I, Cα0,α(T 0 + t, 0), α 	= α0, α ∈ J}
is a positive basis.

Suppose that α0 = 1. Let J1 = J \ {1}. Then

{ξi,1(T 0 + t, 0), i ∈ I, C1,α(T 0 + t, 0), α ∈ J1}

is a positive basis, and the number of vectors in a given set is |I|+|J |−1 = k+1.
According to our assumptions n � k+1, therefore, q+α−1 ∈ {q+1, . . . , k+1},

at α ∈ J1.
By Corollary 2.1 of Lemma 2.5 it follows that

{ξi,1(T 0 + t, 0), i ∈ I, ξq+α−1,1(T 0 + t, 0) + µC1,α(T 0 + t, 0), α ∈ J1}

is a positive basis.
Designate by βr

bi(t) = ξi,1(T 0 + t, 0), i ∈ I,

bq+α−1(t) = ξq+α−1(T 0 + t, 0) + µC1,α(T 0 + t, 0), α ∈ J1,
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and let

T0 = min

{
t

∣∣∣∣∣ t � 0, inf
v(·)

max
r

e−λs(T 0+t)

t∫
0

ϕl−1(T 0 + t− τ)λ(βr(T 0 + t), v(τ))dτ

� 1

}
.

Then by Lemma 2.4 T0 <∞.
Let v : [0, T0] → V be an admissible control of evaders and let t1 be the

smallest positive root of function h, such that

h(t) = 1−max
r

t∫
0

e−λs(T 0+T0)λ0
r(T0, v(τ))dτ.

Here

λ0
r(T0, v) = λ(e−λs(T 0+T0)br(T0), v), r ∈ I,

λ0
q+α−1(T0, v) = λ(e−λs(T 0+T0)bq+α−1(T0), v), α ∈ J1.

Suppose that λ(e−λs(T 0+T0)br(T0), v(t)) = 0 at t ∈ [t1, T0]. Define the controls
of pursuers as

ui(t) = v(t)− λ(e−λs(T 0+T0)bi(T0), v(t))e−λs(T 0+T0)bi(T0), i ∈ I,

uq+α−1(t) = v(t)− λ(e−λs(T 0+T0)bq+α−1(T 0+ T0), v(t))e−λs(T 0+T0)bq+α−1(T0),
α ∈ J1.

Then

ξi,1(T 0, t) = ξi,1(T 0 + t, 0) + ξi,1(T 0 + T0, 0)(hi(t)− 1),
i ∈ I

ξq+α−1,1(T 0, t) + µC1,α(T 0, t) = bq+α−1,1(t) + bq+α−1(T0)(hq+α−1(t)− 1),
α ∈ J1.

Here

hi(t) = 1− e−λs(T 0+T0)

t∫
0

ϕl−1(T 0 + T0 − τ)λ(e−λs(T 0+T0)bi(T0), v(τ))dτ,

i ∈ I,

hq+α−1(t) = 1− e−λs(T 0+T0)
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·
t∫

0

ϕl−1(T 0 + T0 − τ)λ(e−λs(T 0+T0)bq+α−1(T0), v(τ))dτ, α ∈ J1.

By Lemma 2.4 it follows that there exists an r, such that hr(T0) = 0. If r ∈ I,
we suppose that ui(t) = v(t), t ∈ [T0, T

0 + T0]. Then

zr(T 0 + T0) = ξr(T 0 + T0, 0)−
T 0+T0∫

0

ϕl−1(T 0 + T0 − τ)(ur(t)− v(t))dt

= ξr(T 0 + T0, 0)(1− e−λs(T 0+T0)

·
t1∫

0

ϕl−1(T 0 + T0 − τ)λ(e−λs(T 0+T0)br(T0), v(τ))dτ) = 0.

Therefore, there is a capture in the game Γ.
If hq+α0−1(T0) = 0 at some α0 ∈ J1, then

ξq+α0−1,1(T 0, T0) = −µC1α0(T
0, T0) = −µC1,α0(T

0 + T0, 0).

Let’s show that the vectors {ξi,j(T 0, T0), i ∈ I, j ∈ J} form a positive basis.
The selected time T 0 is such that {ξi,j(T 0 + t, 0), i ∈ I, j ∈ J} is a positive

basis for all t > 0. One has ξi,1(T 0, T0) = ξi,1(T 0 + T0, 0)hi(T0). Therefore,

{ξi,1(T 0, T0), ξi(T 0 + T0, 0) + C1,j(T 0 + T0, 0), i ∈ I, j ∈ J1}

forms a positive basis. Therefore, the positive basis contains the vectors{
ξi1(T 0, T0),

ξi1(T 0, T0)
hi(T0)

+ C1,j(T 0 + T0, 0), i ∈ I, j ∈ J1

}
.

Since
hi(T0) < 1, C1j(T 0 + T0, 0) = ξij(T 0, T0)− ξi1(T 0, T0),

the positive basis contains the vectors{
ξi1(T 0, T0), ξij(T 0, T0) +

1− hi(T0)
hi(T0)

ξi1(T 0, T0)
}

.

Therefore, {ξi,j(T 0, T0), i ∈ I, j ∈ J} forms a positive basis. Then

{ζi(T 0, T0)− ηα0(T
0, T0) + ηα0(T

0, T0)− η1(T 0, T0),

ζi(T 0, T0)− ηj(T 0, T0), i ∈ I, j ∈ J1}

forms a positive basis.
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Hence
{ξi,j(T 0, T0), i ∈ I, j ∈ J1,−C1,α0(T

0, T0)}

forms a positive basis. If we put ξq+α0−1,1(T 0, T0) instead of −C1,α0 (T 0, T0),
then

{ξi,j(T 0, T0), i ∈ I ∪ {q + α0 − 1}, j ∈ J1}

forms a positive basis.
Let α0 = 2, set q = q + 1, and renumber {2, . . . , l} as J = {1, . . . , l}, at

l = l − 1.
So, we now have an expression similar to (12), but the number of evaders |J |

was decreased by one. Let’s then assume the time T0 as the initial time and
repeat our reasoning (starting from (12)) until the number of evaders |J | in
expression (12) will be equal to one. So now have an an expression similar to
(12) with |J | equal to 1. Now we can apply the theorem of Pontrjagin (Theorem
2.1 [3, p. 113]) and the theorem is proved. �

3 “Soft” Capture in Pontrjagin’s Problem with
Many Participants

In the space Rk(k ≥ 2) we consider an n + 1-person differential game Γ: n
pursuers P1, P2, . . . , Pn and the evader E. The law of motion of each pursuer
Pi is defined by (1).

The law of motion of the evader E is defined by (2).
Here xi, yj , ui, v ∈ Rk, a1, . . . , al ∈ R1, V is compact. The initial conditions

at t = 0 are

x
(α)
i (0) = x0

iα, y(α)(0) = y0
α, α = 0, . . . , l − 1.

Here x0
i0 	= y0

0 , x0
i1 	= y0

1 . Everywhere we will assume that index i takes the
values i = 1, 2, . . . , n.

Definition 3.1. In the game Γ there is a “soft” capture if there exist T > 0
and measurable functions ui(t) = ui(t, x0

iα, y0
α, vt(·)) ∈ V , such that for any

measurable function v(·), v(t) ∈ V, t ∈ [0, T ] there exist τ ∈ [0, T ] and a number
q ∈ {1, 2, . . . , n}, such that

xq(τ) = y(τ), ẋq(τ) = ẏ(τ).

Instead of systems (1)–(3) we consider a system

z
(l)
i + a1z

(l−1)
i + · · ·+ alzi = ui − v, ui, v ∈ V (13)

zi(0) = z0
i0 = x0

i0 − y0
0 , . . . , z

(l−1)
i (0) = z0

il−1 = x0
il−1 − y0

l−1. (14)
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Assumption 3.1. All roots of the characteristic equation (7) are real and
non-positive.

Let’s designate the roots of Equation (7) as λ1 < · · · < λs, and their orders
as k1, . . . , ks.

Lemma 3.1. Let Assumption 3.1 hold with λs = 0. Then ϕl−1(t) ≥ 0,
ϕ̇l−1(t) ≥ 0 for all t ≥ 0.

Lemma 3.2. Let Assumption 3.1 hold and let λs < 0. Then
(1) ϕl−1(t) ≥ 0 for all t > 0;
(2) there exist τ0 > 0, such that ϕ̇l−1(t) > 0, t ∈ (0, τ0), ϕ̇l−1(t) < 0,

t ∈ (τ0,∞).

The assertions of Lemmas 3.1, 3.2 follow from the well-known results in ([18],
p. 136).

Let

ξi(t) =
l−1∑
k=0

ϕk(t)z0
ik.

Then ξi can be written as

ξi(t) =
l−1∑
j=1

eλjtPji(t).

Here Pji are polynomials. Let’s suppose that the deg Psi = ks − 1 = γ for all
i, for otherwise pursuers obtain the given conditions, first by selecting their
controls as ui(t) on a sufficiently small time interval such that the coefficients
for tγ in polynomials Psi are not equal to zero.

Let’s consider further

λs = 0, ks ≥ 2 (15)

and designate

M(t, τ) = min
{ϕl−1(t− τ)

tγ
,

ϕ̇l−1(t− τ)
γtγ−1

}
,

R(f, t, τ) =
s−1∑
j=1

eλj(t−τ)fj(t− τ)
γ(t− τ)γ−1

.

Lemma 3.3. Suppose that Assumption 3.1 and condition (15) are satisfied.
Then for any T > 0

lim
t→∞

t∫
T

M(t, τ)dτ =∞.
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Proof. The functions ϕl−1, ϕ̇l−1 can be represented as

ϕl−1(t− τ) = aγ(t− τ)γ [1 + g1(t− τ)],

ϕ̇l−1(t− τ) = aγγ(t− τ)γ−1[1 + g2(t− τ)].

Here

g1(t− τ) =
γ−1∑
l=0

al

(t− τ)γ−l
+ R(P, t, τ), g2(t− τ) =

γ−1∑
l=1

bl

(t− τ)γ−l
+ R(Q, t, τ).

Let ε ∈ (0, 1), τ ∈ [0, εt]. Then t− τ ≥ (1− ε)t and

|g1(t− τ)| ≤
γ∑

r=1

|aγ−r|
tr(1− ε)r

+ Σ1(t) = ∆1(t),

|g2(t− τ)| ≤
γ−1∑
r=1

|bγ−r|
tr(1− ε)r

+ Σ2(t) = ∆2(t).

Here

Σk(t) =
s−1∑
j=1

eλj(1−ε)tck
j (t),

where

c1
j (t) =

max
τ∈[0,εt]

|Pj(t− τ)|

tγ(1− ε)γ
, c2

j (t) =
max

τ∈[0,εt]
|Qj(t− τ)|

γtγ−1(1− ε)γ−1
.

Since ∆1(t), ∆2(t) → 0 at t → ∞, there exists T0, such that |∆1(t)| ≤ 1/2,
|∆2(t)| ≤ 1/2 for all t > T0. Therefore,

ϕl−1(t− τ) ≥ 1/2aγ(t− τ)γ , ϕ̇l−1(t− τ) ≥ 1/2aγγ(t− τ)γ−1

for all t > T0, τ ∈ [0, εt].
Hence for all (t, T ), such that T > T0, εt > T ,

t∫
T

M(t, τ)dτ ≥
εt∫

T

M(t, τ)dτ ≥
εt∫

T

aγ

2
(t− τ)γ

tγ
dτ →∞ at t→∞.

�

Let

z0
i = lim

t→∞
Psi(t)/tγ ,

λ(A, v) = sup{λ | λ ≥ 0, −λA ∩ (V − v) 	= ∅},
δ = inf

v∈V
max

i
λ(z0

i , v) > 0.
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Assumption 3.2. The functions λ(z0
i , v) are continuous at (z0

i , v) whenever
λ(z0

i , v) > 0.

Lemma 3.4. Let Assumptions 3.1, 3.2 and condition (15) hold, with δ > 0.
Then there exists a time T , such that for any admissible function v there exists
an index i, such that hi(T ) ≤ 0. Here

hi(t) = 1−
T∫

0

βi(T, τ, v(τ)) dτ ≤ 0, L(f(r), t) =
∥∥∥∥ f(r)/tγ

ḟ(r)/(γtγ−1)

∥∥∥∥ ,
βi(t, τ, v) = sup

{
λ|λ ≥ 0,−λL(ξi(t), t) ∈ L(ϕl−1(t− τ), t)(V − v)

}
.

Proof. Let’s note that

βi(t, τ, v) = min
{ϕl−1(t− τ)

tγ
λ(

ξi(t)
tγ

, v),
ϕ̇l−1(t− τ)

γtγ−1
λ(

ξ̇i(t)
γtγ−1

, v)
}

.

Since z0
i = lim

t→∞
ξi(t)
tγ = lim

t→∞
ξ̇i(t)

γtγ−1 , there exists a time T0, such that

max
i

λ(
ξi(t)
tγ

, v) ≥ 1/2δ, max
i

λ(
ξ̇i(t)
γtγ−1

, v) ≥ 1/2δ

for all t > T0, v ∈ V. Let’s consider continuous functions hi, such that

hi(0) = 1,
∑

i

hi(T ) ≤ n−
T∫

0

max
i

βi(T, τ, v(τ))dτ.

Let T > T0. Then

max
i

βi(T, τ, v(τ)) ≥ 1/2δM(T, τ).

Therefore,
T∫

0

max
i

βi(T, τ, v(τ))dτ ≥ 1/2δ

T∫
T0

M(T, τ) dτ = g(T ).

Therefore,
∑
i

hi(T ) ≤ n − g(T ). As lim
T→∞

g(T ) = +∞, there exists a time T1

and index i, such that hi(T1) ≤ 0. The lemma is established. �

Let

T̂ = inf{T ≥ 0 : inf
v(·)∈Ω(T )

max
i

T∫
0

βi(T, τ, v(τ))dτ ≥ 1}.

Here Ω(T ) is a set of all admissible functions v, defined on interval [0, T ] with
values from V. By Lemma 3.5, T̂ <∞.



130 N. N. Petrov and D. A. Vagin

Theorem 3.1. Let Assumptions 3.1, 3.2 and condition (15) hold, and δ > 0.
Then there is a “soft” capture in the game Γ.

Proof. Let v : [0, T̂ ]→ V be a random admissible control of evader E and let
t1 be a least positive root of function h. Here

h(t) = 1−max
i

t∫
0

βi(T̂ , τ, v(τ)) dτ.

Let ûi(τ) be the lexicographical minimum among the roots of system

−βi(T̂ , τ, v(τ))L(ξi(T̂ ), T̂ ) = L(ϕl−1(T̂ − τ), T̂ )(u− v(τ)).

Define the controls of pursuers Pi as ui(τ) = ûi(τ) and consider that the
βi(T̂ , τ, v(τ))0 at τ ∈ [t1, T̂ ]. Then

L(zi(T̂ ), T̂ ) = L(ξi(T̂ ), T̂ ) +

T̂∫
0

L(ϕl−1(T̂ − τ), T̂ )(ui(τ)− v(τ))dτ

= L(ξi(T̂ ), T̂ )hi(T̂ ) = L(ξi(T̂ ), T̂ )(1−
t1∫

0

βi(T̂ , τ, v(τ))dτ) = 0.

This proves the theorem. �

Let’s consider a case

λs = 0, ks = 1 (16)

and designate

M1(t, τ) = min
{

ϕl−1(t− τ),
ϕ̇l−1(t− τ)e−λs−1t

tµ

}
,

L1(f(r), t) =
∥∥∥∥ f(r)

ḟ(r)e−λs−1t/tµ

∥∥∥∥ .
In that case

ϕ̇l−1(t) =
s−1∑
r=1

eλrtQr(t), ξi(t) =
s−1∑
j=1

eλjtPji(t) + z0
i , ξ̇i(t) =

s−1∑
j=1

eλjtQji(t).

Let deg Qs−1(t) = µ. We will consider that Qs−1i(t) 	= 0 and deg Qs−1i(t) = µ
for all i. Let z1

i = lim
t→∞

Qs−1i/tµ.
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Lemma 3.5. Let Assumption 3.1 and condition (16) hold. Then for all T > 0

lim
t→∞

t∫
T

M1(t, τ)dτ =∞.

Proof. The functions ϕl−1, ϕ̇l−1 can be represented as

ϕl−1(t− τ) = aγ + g1(t− τ),

ϕ̇l−1(t− τ) = eλs−1(t−τ)(t− τ)µλs−1bµ[1 + g2(t− τ)].

Here

g1(t− τ) =
s−1∑
j=1

eλj(t−τ)Pj(t− τ),

g2(t− τ) =
s−2∑
j=1

e(λj−λs−1)(t−τ)Q1
j (t− τ)

(t− τ)µ
+

µ−1∑
r=0

br

(t− τ)µ−r
.

Suppose ε ∈ (0, 1), τ ∈ [0, εt]. Therefore, the inequality t− τ ≥ (1− ε)t is true.
And therefore, if g1(t− τ), g2(t− τ), then

gj(t− τ) ≤ ∆j(t)

∆j(t)→ 0 at t→∞. Therefore, there exists T0, such that

ϕl−1(t− τ) ≥ 1/2aγ , ϕ̇l−1(t− τ) ≥ 1/2eλs−1(t−τ)(t− τ)µbµλs−1

for all t > T0 and τ ∈ [0, εt]. Hence

ϕ̇l−1(t− τ)e−λs−1t

tµ
≥ 1/2(1− ε)µbµλs−1.

Then for all T > T0

t∫
T

M1(t, τ)dτ ≥
εt∫

T

adτ →∞ at t→∞.

This establishes the lemma. �

Let further
δ = inf

v∈V
max

i
min{λ(z0

i , v), λ(z1
i , v)}.

Assumption 3.3. The functions λ(z0
i , v), λ(z1

i , v) are continuous at all points
(z0

i , v), (z1
i , v), such that λ(z0

i , v) > 0, λ(z1
i , v) > 0.
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Lemma 3.6. Let Assumptions 3.1, 3.3 hold with condition (16) and δ > 0.
Then for any admissible function v there exist time T and index i, such that
hi(T ) ≤ 0. Here

βi(t, τ, v) = sup
{

λ
∣∣∣λ ≥ 0,−λL1(ξi(t), t) ∈ L1(ϕl−1(t− τ), t)(V − v)

}
.

Proof. Since δ > 0 it follows that for any v ∈ V there exists i such that
λ(z0

i , v) > 0, λ(z1
i , v) > 0. By Assumption 3.3 and condition z0

i = lim
t→∞

ξi(t),

z1
i = lim

t→∞
ξ̇i(t)e−λs−1t/tµ we obtain that there exists a time T1, such that for

all t > T1 the inequality

inf
v

max
i

min{λ(ξi(t), v), λ(ξ̇i(t)e−λs−1t/tµ, v)} ≥ 1/2δ

holds. Let T > T1. Then

∑
i

hi(T ) ≤ n− 1/2δ

T∫
T1

M1(t, τ)dτ = n− g(T ).

By Lemma 3.5, g(T ) → ∞ at T → ∞. Therefore, there exist a time T0 and
index i, such that hi(T0) ≤ 0. The lemma is proved. �

Theorem 3.2. Let Assumptions 3.1, 3.3 hold together with condition (16)
and δ > 0. Then there is a “soft” capture in the game Γ.

Proof. Let v : [0, T̂ ] → V be a random admissible control of evader E and
t1 a least positive root of function h. Let ûi(τ) be a lexicographical minimum
among the roots of system

−βi(T̂ , τ, v(τ))L1(ξi(T̂ ), T̂ ) = L1(ϕl−1(T̂ − τ), T̂ )(u− v(τ)).

Let’s assign the controls of pursuers Pi, as ui(τ) = û(τ). We will consider
that the βi(T̂ , τ, v(τ)) = 0 at τ ∈ [t1, T̂ ]. Then

L1(zi(T̂ ), T̂ ) = L1(ξi(T̂ ), T̂ ) +

T̂∫
0

L1(ϕi(T̂ − τ), T̂ )(ui(τ)− v(τ))dτ

= L1(ξi(T̂ ), T̂ )hi(T̂ ) = L1(ξi(T̂ ), T̂ )(1−
t1∫

0

βi(T̂ , τ, v(τ))dτ) = 0.

This establishes the theorem. �
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Let

L2(f(r), t) =
e−λst

tγ

∥∥∥∥ f(r)
ḟ(r)/λs

∥∥∥∥ ,
M2(t, τ) = min

{ϕl−1(t− τ)e−λst

tγ
,
−ϕ̇l−1(t− τ)e−λst

tγ

}
.

Lemma 3.7. Let Assumption 3.1 hold, with λs < 0, ε ∈ (0, 1). Then there
exists T0, such that for any T > T0

lim
t→∞

εt∫
T

M2(t, τ)dτ =∞.

Proof. The functions ϕl−1,−ϕ̇l−1 can be represented as

ϕl−1(t− τ) = aγ(t− τ)γeλs(t−τ)(1 + g1(t, τ)),

−ϕ̇l−1(t− τ) = aγ(−λs)(t− τ)γeλs(t−τ)(1 + g2(t, τ)).

Here

g1(t, τ) =
s−1∑
j=1

e(λj−λs)(t−τ) Pj(t− τ)
(t− τ)γaγ

+
γ−1∑
l=0

al

(t− τ)γ−l
,

g2(t, τ) =
s−1∑
j=1

e(λj−λs)(t−τ) Qj(t− τ)
(t− τ)γaγ(−λs)

+
γ−1∑
l=0

bl

(t− τ)γ−l
.

Let τ ∈ (0, εt). Then t− τ ≥ (1− ε)t; therefore,

|g1(t, τ)| ≤ ∆1(t), |g2(t, τ)| ≤ ∆2(t).

∆1(t), ∆2(t)→ 0 at t→∞.
Therefore, there exists a time T0, such that |g1(t, τ)| ≤ 1/2, |g2(t, τ)| ≤ 1/2

for all t > T0, τ ∈ (0, εt).
Therefore,

ϕl−1(t− τ)e−λst

tγ
≥ aγ(t− τ)γe−λst

tγ
,

− ϕ̇l−1(t− τ)e−λst

tγ
≥ aγ(t− τ)γe−λst(−λs)

tγ

for all t > T0, τ ∈ (0, εt).
Let T > T0, εt > T , t(1− ε) ≥ τ0, τ ∈ (0, εt). Then

εt∫
T

M2(t, τ)dτ ≥
εt∫

T

c(t− τ)γe−λst

tγ
dτ →∞ at t→∞.

The lemma is proved. �



134 N. N. Petrov and D. A. Vagin

Let z0
i = lim

t→∞
ξi(t)e−λst/tγ , δ = inf

v∈V
max

i
λ(z0

i , v). and note that the

z0
i = lim

t→∞

ξ̇i(t)e−λst

tγλs
.

Lemma 3.8. Let Assumptions 3.1, 3.2 hold, with λs < 0, δ > 0. Then there
exists a time T , such that for any admissible function v there exists an index i,
such that hi(T ) ≤ 0. Here

βi(T, τ, v) =

{
β1

i (T, τ, v), if T − τ > τ0

0, if T − τ ≤ τ0

,

β1
i (t, τ, v) = sup

{
λ
∣∣∣λ ≥ 0,−λL2(ξi(t), t) ∈ L2(ϕl−1(t− τ), t)(V − v)

}
,

and τ0 is a positive root of function ϕ̇l−1.

The proof of this lemma is similar to the proof of Lemma 3.6.
We can now state our last theorem.

Theorem 3.3. Let Assumptions 3.1, 3.2 hold, with λs < 0, δ > 0. Then there
is a “soft” capture in the game Γ.

The proof of this theorem is similar to the proofs of the corresponding theo-
rems for λs = 0.
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Cooperative Stochastic Games
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Abstract
A cooperative stochastic n-person game on a finite graph tree is con-
sidered. The subtree of cooperative trajectories maximizing the sum of
expected players’ payoffs is defined, and the solution of the game along
the paths of this tree is investigated. The new notion of cooperative payoff
distribution procedure (CPDP) is defined, and the time-consistent Shap-
ley value is constructed.

Key words. Stochastic game, stage game, behavior strategy, Shapley
value, time-consistency.

1 Cooperative Game

Consider a finite graph tree G = (Z, L) where Z is the set of all vertices and L
is a point-to-set mapping (Lz ⊂ Z, z ∈ Z). In our setting each vertex z ∈ Z is
considered as an n-person simultaneous move (one-stage) game

Γ(z) = 〈N ;Xz
1 , . . . , Xz

n;Kz
1 , . . . , Kz

n〉 ,

where N = {1, . . . , n} is the set of players which is the same for all z ∈ Z, Xz
i

is the set of strategies of Player i ∈ N , and Kz
i (xz

1, . . . , xz
n) (with Kz

i ≥ 0) is
the payoff of Player i (i ∈ N, xz

i ∈ Xz
i ). The n-tuple xz = (xz

1, . . . , xz
n) is called

the situation in the game Γ(z). The game Γ(z) is called a stage game. For each
z ∈ Z the transition probabilities

p(z, y;xz
1, . . . , xz

n) = p(z, y;xz) ≥ 0,∑
y∈Lz

p(z, y;xz) = 1

are given, where p(z, y;xz) is the probability that the game Γ(y), y ∈ Lz will be
played next after the game Γ(z), under the condition that in Γ(z) the situation
xz = (xz

1, . . . , xz
n) was realized. We set p(z, y;xz) ≡ 0 if Lz = ∅.
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Suppose that the path z0, z1, . . . , zl (Lzl
= ∅) is realized during the game.

Then the payoff of Player i ∈ N is defined as

Ki(z0) =
l∑

j=0

K
zj

i (xzj ).

Due to the stochastic transition from one stage game to the other we consider
the mathematical expectation of the player’s payoff

Ei(z0) = expKi(z0).

The following relation holds:

Ei(z0) = Kz0
i (xz0) +

∑
y∈Lz0

p(z0, y;xz0)Ei(y), (1)

where Ei(y) is the mathematical expectation of a Player i payoff in the stochas-
tic subgame starting from the stage game Γ(y), y ∈ Lz0 .

A strategy πi(·) for Player i ∈ N is a mapping which determines for each
stage game Γ(y) which local strategy xi in this stage game is to be selected.
Thus πi(y) = xy

i for y ∈ Z.
We shall denote the stochastic game described above as G(z0). We denote

by G(z) any subgame of G(z0) starting from the stage game Γ(z) (played on a
subgraph of the graph G starting from vertex z ∈ Z).

If πi(·) is a strategy of Player i ∈ N in G(z0), then the trace of this strategy
πy

i (·), defined on a subtree G(y) of G, is a strategy in a subgame G(y) of the
game G(z0).

The following version of (1) holds for a subgame G(z) (for the mathematical
expectation of Player i’s payoff in G(z)):

Ei(z) = Kz
i (xz) +

∑
y∈Lz

p(z, y;xz)Ei(y).

As mixed strategies in G(z0) we consider behavior strategies [2]. Denote them
qi(·), i ∈ N , and denote the corresponding situation as

qN (·) = (q1(·), . . . , qn(·)).

Here qi(z) for each z ∈ Z is a mixed strategy of Player i in a stage game Γ(z).
Denote by π̄N (·) = (π̄1(·), . . . , π̄n(·)) the n-tuple of pure strategies in G(z0)
which maximizes the sum of expected players’ payoffs (cooperative solution).
Denote this maximal sum by V (z0)

V (z0) = maxE(z0) = max

[∑
i∈N

Ei(z0)

]
.
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It can be easily seen that the maximization of the sum of the expected payoffs
of players over the set of behavior strategies does not exceed V (z0).

In the same way we can define a cooperative n-tuple of strategies for any
subgame G(z), z ∈ Z, starting from the stage game Γ(z). From Bellman’s
optimality principle it follows that each of these n-tuples is a trace of πN (·) in
the subgame Γ(z). The following Bellman equation holds [1]:

V (z) = max
xz

i
∈Xz

i
i∈N

⎧⎨⎩∑
i∈N

Kz
i (xz

i ) +
∑

y∈Lz

p(z, y;xz)V (y)

⎫⎬⎭
=
∑
i∈N

Kz
i (x̄z) +

∑
y∈Lz

p(z, y; x̄z)V (y) (2)

with the initial condition

V (z) = max
xz

i
∈Xz

i
i∈N

∑
i∈N

Kz
i (xz), z ∈ {z : Lz = ∅}. (3)

The maximizing n-tuple π̄N (·) = (π̄1(·), . . . , π̄n(·)) defines the probability mea-
sure over the game tree G(z0). Consider a subtree Ĝ(z0) of G(z0) which consists
of paths in G(z0) having a positive probability under the measure generated by
π̄N (·). We call Ĝ(z0) the cooperative subtree and CZ ⊂ Z the set of vertices in
Ĝ(z0).

For each z ∈ CZ let us define a zero-sum game over the structure of the
graph G(z) between the coalition S ⊂ N considered as the maximizing player
and anti-coalition N \ S as the minimizing one. Let V (S, z) be the value of
this game in behavior strategies (the existence follows from [2]). Thus for each
subgame Ḡ(z), z ∈ CZ, we can define a characteristic function V (S, z), S ⊂ N ,
with V (N, z) = V (z) defined by Equations (2) and (3).

Consider now the cooperative version G(z), z ∈ Z, of a subgame G(z) with
characteristic function V (S, z). Let I(z) be the imputation set in G(z)

I(z) =

{
αz :
∑
i∈N

αz
i = V (z) = V (N, z), αz

i ≥ V ({i}, z)

}
. (4)

A solution to G(z) will be a particular subset C(z) ⊂ I(z). This can be any
classical cooperative solution (nucleous, core, NM-solution, Shapley value). In
what follows we suppose that C(z) is the Shapley value

C(z) = Sh(z) = {Sh1(z), . . . , Shn(z)} ∈ I(z),

but all conclusions extend automatically to any other cooperative solution con-
cept.
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2 Cooperative Payoff Distribution Procedure (CPDP)

The vector function β(z) = (β1(z), . . . , βn(z)) is called a CPDP if∑
i∈N

βi(z) ≤ max
xz

i
∈Xz

i
i∈N

∑
i∈N

Kz
i (xz

1, . . . , xz
n) = w(N, z). (5)

Here w(N, z) is the maximal total payoff of the players in a stage game Γ(z). In
each subgame G(z), with each path z̄ = z0, . . . , zm in this subgame we associate
the sum of βi(z) along this path z̄. Denote Bi(z) the expected value of this sum
in G(z).

It can be easily seen that Bi(z) satisfies the following functional equation:

Bi(z) = βi(z) +
∑

y∈Lz

p(z, y;xz)Bi(y). (6)

Calculate the Shapley value for each subgame G(z) for z ∈ CZ

Shi(z) =
∑
S⊂N
i∈S

(|S| − 1)!(n− |S|)!
n!

(V (S, z)− V (S \ {i}, z)), (7)

where |S| is the number of elements in S.
Define γi(z) by the formula

Shi(z) = γi(z) +
∑
y∈Z

p(z, y;xz)Shi(y). (8)

Since Sh(z) ∈ I(z) we get from (8)

V (N ; z) =
∑
i∈N

γi(z) +
∑

y∈Lz

p(z, y;xz)V (N ; y). (9)

Comparing (9) and (2) we get that
∑
i∈N

γi(z) =
∑
i∈N

Kz
i (x̃z) for some x̃z =

(x̃z
1, . . . , x̃z

n), x̃z
i ∈ Xz

i , i ∈ N and thus∑
i∈N

γi(z) ≤ w(N ; z). (10)

We have that γi(z) satisfies (5) and the following lemma holds.

Lemma 2.1. γ(z) = (γ1(z), . . . , γn(z)) defined by (8) is CPDP.

Definition 2.1. The Shapley value {Sh(z0)} is called time consistent in G(z0)
if there exists a nonnegative CPDP (βi(z) ≥ 0) such that the following condition
holds:

Shi(z) = βi(z) +
∑

y∈Lz

p(z, y;xz)Shi(y), i ∈ N, z ∈ Z. (11)
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From (11) we get

βi(z) = Shi(z)−
∑

y∈Lz

p(z, y;xz)Shi(y)

and the nonnegativity of CPDP βi(z) follows from the monotonicity of the

Shapley value along the paths of a cooperative subgame ˆ̂
G(z0).

As before, we call Bi(z) the expected value of the sums of βi(y) from (11),

y ∈ Z along the paths in the cooperative subgame ˆ̂
G(z) of the game ˆ̂

G(z0).

Lemma 2.2.
Bi(z) = Shi(z), i ∈ N. (12)

Proof. We have for Bi(z) Equation (6)

Bi(z) = βi(z) +
∑

y∈Lz

p(z, y;xz)Bi(y) (13)

with initial condition

Bi(z) = Shi(z) for z ∈ {z : Lz = ∅}, (14)

and for the Shapley value we have

Shi(z) = βi(z) +
∑

y∈Lz

p(z, y;xz)Shi(y). (15)

From (13), (14), (15) it follows that Bi(z) and Shi(z) satisfy the same func-
tional equations with the same initial condition (14), and the proof follows from
backward induction. �

Lemma 2.2 provides a natural interpretation for CPDP βi(z) which can be seen
as the instantaneous payoff which Player i has to get in a stage game Γ(z) when

this game actually occurs along the paths of the cooperative subtree ˆ̂
G(z0), if his

payoff in the whole game has to be equal to the ith component of the Shapley
value. So the CPDP shows the distribution in time of the Shapley value in such
a way that the players in each subgame are oriented to get the current Shapley
value of this subgame.

3 Regularization

In this section we propose a procedure, similar to the one used in differential
cooperative games [3], which will guarantee the existence of a time-consistent
Shapley value in the cooperative stochastic game (monotonicity of the Shapley
value).
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Introduce

β̄i(z) =
∑

i∈N Ki(x̄z
1, . . . , x̄z

n)
V (N, z)

Shi(z), (16)

where x̄z = (x̄z
1, . . . , x̄z

n), z ∈ Z is the realization of the n-tuple of strategies
π̄(·) = (π̄1(·), . . . , π̄n(·)) maximizing the sum of players’ payoffs in the game
G(z0) (cooperative solution) and V (N, z) is the value of the characteristic func-
tion for the grand coalition N in a subgame G(z). Since∑

i∈N

Shi(z) = V (N, z),

it follows from (16) that β̄i(z), i ∈ N , z ∈ Z, is a CPDP. From (16) it also
follows that the instantaneous payoff of the player in a stage game Γ(z) must
be proportional to the Shapley value in a subgame G(z) of the game G(z0).

We now define by induction the regularized Shapley value (RSV) in G(z) as
follows:

Ŝhi(z) =
∑

i∈N Ki(x̄z)
V (N, z)

Shi(z) +
∑

y∈Lz

p(z, y; x̄z)Ŝhi(y) (17)

with the initial condition

Ŝhi(z) =
∑

i∈N Ki(x̄z)
V (N, z)

Shi(z) = Shi(z) for z ∈ {z : Lz = ∅}. (18)

Since Ki(x) ≥ 0 it follows from (16) that β̄i(z) ≥ 0, and thus the RSV Ŝhi(z)
is time consistent.

Introduce the new characteristic function V̂ (S, z) in G(z) by induction using
the formula (S ⊂ N)

V̂ (S, z) =
∑

i∈N Ki(x̄z)
V (N, z)

V (S, z) +
∑

y∈Lz

p(z, y; x̄z)V̂ (S, y) (19)

with the initial condition

V̂ (S, z) = V (S, z) for z ∈ {z : Lz = ∅}.

Here V (S, z) is superadditive, so is V̂ (S, z), and V̂ (N, z) = V (N, z) since both
functions V̂ (N, z) and V (N, z) satisfy the same functional equation (2) with
the initial condition (3). Rewriting (19) for {S \ i} we get

V̂ (S \ i, z) =
∑

i∈N Ki(x̄z)
V (N, z)

V (S \ i, z) +
∑

y∈Lz

p(z, y; x̄z)V̂ (S \ i, y). (20)
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Subtracting (20) from (19), multiplying by
(|S| − 1)!(n− |S|)!

n!
and summing

upon S ⊂ N , i ∈ S we get∑
S⊂N
i∈S

(|S| − 1)!(n− |S|)!
n!

[
V̂ (S, z)− V̂ (S \ i, z)

]

=

⎧⎪⎨⎪⎩
∑
S⊂N
i∈S

(|S| − 1)!(n− |S|)!
n!

[V (S, z)− V (S \ i, z)]

⎫⎪⎬⎪⎭
∑

i∈N Ki(x̄z)
V (N, z)

+
∑

y∈Lz

p(z, y; x̄z)

⎧⎪⎨⎪⎩
∑
S⊂N
i∈S

(|S| − 1)!(n− |S|)!
n!

[
V̂ (S, z)− V̂ (S \ i, z)

]⎫⎪⎬⎪⎭ .

(21)

From (17), (18) and (21) it follows that the RSV Ŝh(z) is a Shapley value for
the characteristic function V̂ (S, z).

This can be summarized in the following theorem.

Theorem 3.1. The RSV is time consistent and is a Shapley value for the
regularized characteristic function V̂ (S, z) defined for any subgame G(z) of the
stochastic game G(z0).
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Abstract
In this paper, we examine the uniqueness of a reduced game in an axiomatic
characterization of the core of transferable utility (TU) games in terms
of consistency. Tadenuma [10] establishes that the core is the only solu-
tion satisfying non-emptiness, individual rationality, and consistency with
respect to a natural reduced game due to Moulin [6]. However, the core
satisfies consistency with respect to many other reduced games, including
unnatural ones. Then we ask whether there are other reduced games that
can be used to characterize the core based on the same three axioms. The
answer is no: the Moulin reduced game is the only reduced game such that
the core is characterized by the three axioms, since for any other reduced
game, there is a solution that satisfies the three axioms, but it differs from
the core. Many other unnatural reduced games cannot be used to char-
acterize the core based on the three axioms. Funaki [4] provides another
axiomatization of the core: the core is the only solution satisfying non-
emptiness, Pareto optimality, sub-grand rationality, and consistency with
respect to a simple reduced game similar to a so-called subgame. We show
that the simple reduced game is the only reduced game that can be used
to characterize the core by the four axioms.
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1 Introduction

One of the most fundamental conditions on solutions for cooperative games is
consistency, described as follows. Pick a payoff vector selected by a solution for
some game. Suppose that the members of some group S want to renegotiate the
payoff distribution among them, while all the members agree on the payoff dis-
tribution to the members outside S. A coalition in S may cooperate with some
members outside S and pay the agreed-upon payoffs for them. Such a situation
is represented by a reduced game. The solution is consistent if it recommends
the same payoff distribution for the reduced game as initially. If a solution was
not consistent, then a redistribution of payoffs would be necessary.1

This paper considers axiomatic characterizations of the core of transferable
utility (TU) games in terms of consistency. In a cooperative game situation,
there are several possibilities to make a reduced game from a given game. Differ-
ent reduced games have been used to characterize the core of TU games based
on consistency (e.g., see Peleg [7], Tadenuma [10], and Funaki [4]). Among them,
Tadenuma [10] employs a natural reduced game due to Moulin [6], described as
follows. Take a TU game, a payoff vector x in a solution, and a player j. The
player set of a reduced game is obtained by removing player j from the original
player set N .2 The worth of each subcoalition in N \ {j} is equal to the worth
of the subcoalition with player j minus the payoff xj , that is, each subcoalition
is required to involve player j and to pay him according to the original pay-
off xj . Moulin [6] proposes this reduced game in the context of cost allocation
problems with quasi-linear preferences. Tadenuma [10] establishes that on the
class of TU games for which the core is non-empty, the core is the only solution
satisfying non-emptiness, individual rationality, and consistency with respect
to the Moulin reduced game.

Besides the Moulin reduced game, however, the core satisfies consistency with
respect to many other reduced games, including unnatural ones. An example of
such a reduced game is as follows. The worth of the coalition N \ {j} is equal
to the worth of N minus the payoff xj . For a proper subcoalition S in N \ {j},
if the cardinality of S is odd, then the worth of S is the same as the original
game; and if the cardinality of S is even, then the worth of S is equal to the
worth of S with player j minus the payoff xj . The core satisfies consistency
with respect to this rather unnatural reduced game.

In this paper, we consider a large class of reduced games for which the core
satisfies consistency, containing the Moulin reduced game as well as unnatural
reduced games such as the one of the preceding example. Then we ask whether
1See Thomson [11] and Driessen [3] for surveys of consistency in game theory and
economics.
2A reduced game is usually defined by removing a subset of players from the original
player set. Our definition of a reduced game is identical to the usual one under a
suitable condition. See Remark 2.1.
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there are reduced games in the class, other than the Moulin reduced game,
that can be used to characterize the core based on the three axioms that Tade-
numa [10] employs. The answer is no: for any reduced game except the Moulin
reduced game, there is a solution that satisfies non-emptiness, individual ratio-
nality, and consistency with respect to that reduced game, but it differs from
the core, which recommends payoff vectors that do not belong to the core for
some games. In this sense, the Moulin reduced game is the only reduced game
such that the core is characterized by the three axioms. Many other unnatu-
ral reduced games cannot be used to characterize the core based on the three
axioms.

Funaki [4] provides another axiomatization of the core: the core is the only
solution satisfying non-emptiness, Pareto optimality, sub-grand rationality, and
consistency with respect to a simple reduced game similar to a subgame. This
simple reduced game belongs to the class of reduced games we consider. We ask
whether there are other reduced games in the class that can be used to charac-
terize the core based on the four axioms. The answer is no once again: for any
reduced game other than the simple reduced game, there is a solution that sat-
isfies non-emptiness, Pareto optimality, sub-grand rationality, and consistency
with respect to that reduced game, but it differs from the core. The simple
reduced game is the unique reduced game such that the core is characterized
by the four axioms.

In most work on an axiomatic characterization of a solution in terms of con-
sistency, given a reduced game, it has been examined which axioms characterize
the solution. The question that we ask is quite different. Given a set of axioms
including consistency, we investigate which reduced games can be used to char-
acterize the core. We find that only the Moulin or simple reduced game can be
employed.

The paper is organized as follows. In Section 2, we introduce notation and
definitions for TU games, reduced games, and corresponding consistency prop-
erties. In Section 3, we prove the uniqueness of a reduced game for the charac-
terization of the core of TU games due to Tadenuma [10] and for that due to
Funaki [4]. In Section 4, we make some concluding remarks.

2 TU Games, Reduced Games, and Consistency Properties

There is an infinite set of potential players indexed by the natural numbers,
N . A transferable utility (TU) game is a pair (N, v), where N is a finite set of
players drawn from N , and v is a function that associates with each subset of
N a real number. We assume that v(∅) = 0.

Let a TU game (N, v) be given. A coalition in N is a non-empty subset of
N . For each coalition S in N , the worth of S is v(S). A payoff vector for N
is a vector x ∈ RN , and for each coalition S in N , the restriction of x to RS

is denoted by xS ∈ RS . For x ∈ RN and S ⊆ N , let x(S) =
∑

i∈S xi and
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x(∅) = 0. The payoff vector x for N is feasible in (N, v) if v(N) ≥ x(N). The
set of all feasible payoff vectors for N in (N, v) is denoted by X(N, v).

A feasible payoff vector x ∈ X(N, v) is Pareto optimal for (N, v) if x(N) =
v(N). It is individually rational for (N, v) if for all i ∈ N , xi ≥ v({i}). Let
PO(N, v) and IR(N, v) be the set of Pareto optimal payoff vectors for (N, v)
and the set of individually rational payoff vectors for (N, v) respectively.

Let Γ be a class of TU games. A solution on Γ is a correspondence Φ which
associates with each game (N, v) ∈ Γ a subset Φ(N, v) of X(N, v).

We now consider one of the most important solutions in game theory and
economics.

Definition 2.1. For each (N, v) ∈ Γ, the core C(N, v) on Γ is defined by

C(N, v) ≡ {x ∈ X(N, v) | x(S) ≥ v(S) for all S ⊆ N,S 	= ∅}.

It is easily checked that C(N, v) ⊆ PO(N, v) ∩ IR(N, v) for each (N, v) ∈ Γ.
Next we give a general definition of a reduced game including the reduced

game due to Moulin [6] and a simple reduced game as special cases. Take a TU
game, a payoff vector x in a solution, and a player j. The player set of a reduced
game is obtained by removing player j from the original player set N . The
worth of the coalition N \ {j} is equal to the worth of N minus the payoff xj .
It is easy to show that any characteristic function in any reduced game satisfies
this property if the solution satisfies Pareto optimality and consistency. On the
other hand, there are two possibilities for the worth of a proper subcoalition in
N \ {j}: it is equal to either (i) the same worth of the original game, or (ii) the
worth of the subcoalition with player j minus the payoff xj . We assume that
whether (i) or (ii) holds depends on the cardinality of the subcoalition.

Definition 2.2. Let S be a mapping from {n ∈ N | n ≥ 3} into 2N such
that for all n ∈ N with n ≥ 3, S(n) ⊆ {1, 2, . . . , n − 2}. Given a TU game
(N, v) ∈ Γ, a player j ∈ N , and a payoff vector x ∈ RN , the S-reduced game
with respect to j and x is the game (N \ {j}, vSx ) where

vSx (S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if S = ∅,
v(N)− xj if S = N \ {j},
v(S) if |S| ∈ S(|N |),
v(S ∪ {j})− xj otherwise.

If the cardinality of a proper subcoalition S in the reduced game (N \{j}, vSx )
is in S(|N |) , the worth of the subcoalition is equal to v(S). Otherwise it is
equal to v(S ∪ {j}) − xj . Thus the mapping S determines the structure of a
reduced game definitively. Then we call S a reduced game structure.

In the following, we require a reduced game structure to satisfy the following
condition:

for all m, n ∈ N with m ≤ n,S(m) = S(n) ∩ {k ∈ N|k ≤ m}. (1)
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That is, the set S(m) for the smaller number of players is a restriction of the
set S(n) for the larger number of players. We cite some examples of reduced
game structures satisfying this condition.

Example 2.1. Let S(n) = ∅ for all n ∈ N with n ≥ 3. Then we get the
reduced game proposed by Moulin [6]:

vSx (S) =

{
0 if S = ∅,
v(S ∪ {j})− xj otherwise.

We call this game structure the M-reduced game structure.

Example 2.2. Let S(n) = {1, 2, . . . , n − 2} for all n ∈ N with n ≥ 3. Then
we get a simple reduced game:

vSx (S) =

{
v(S) if S ⊂ N \ {j},
v(N)− xj if S = N \ {j}.

We call this reduced game structure the SIM -reduced game structure.

Example 2.3. Let S(n) = {1, 3, 5, . . . , n − 2} if n is odd with n ≥ 3, and
S(n) = {1, 3, 5, . . . , n− 3} if n is even with n ≥ 3. Then we get the following
unnatural reduced game:

vSx (S) =

⎧⎪⎨⎪⎩
v(S) if |S| is odd,

v(S ∪ {j})− xj if |S| is even,

v(N)− xj if S = N \ {j}.

Remark 2.1. A reduced game (T, vT
x ) is usually defined by reducing N to a

subset T . In this case, all the members in N \T are supposed to go out at once.
If each person in N \ T goes out in an order, then we can make this type of
a reduced game from a reduced game structure S. In general, if the orders of
going out differ, then the corresponding reduced games derived from a reduced
game structure could differ. In this sense, our successive elimination approach
is not equivalent to the simultaneous elimination approach. However, for the
reduced game due to Moulin [6] and the simple reduced game, the eliminating
order does not matter, that is, for any order of going out, the same reduced
game is derived from a reduced game structure.

We provide a general definition of the consistency property of a solution
with respect to a reduced game structure. Let Φ be a solution on Γ and S be
a reduced game structure.

S-Consistency, S-CONS: For all (N, v) ∈ Γ with |N | ≥ 2, if j ∈ N and
x ∈ Φ(N, v), then (N \ {j},vSx ) ∈ Γ and xN\{j} ∈ Φ(N \ {j}, vSx ).
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S-CONS implies that given a TU game (N, v), if x is a solution payoff vector
for (N, v), then for every player j ∈ N , the payoff vector for N \ {j}, xN\{j},
must be a solution payoff vector for the reduced game Φ(N \ {j}, vSx ). It is
a kind of internal consistency requirement to guarantee that players respect
recommendations by the solution.

For any possible reduced game structure S including the Moulin reduced
game structure and the simple reduced game structure, the core satisfies S-
CONS as the following proposition shows. Let Σ be the class of all possible
reduced game structures.

Proposition 2.1. For all reduced game structures S ∈ Σ, the core C satisfies
S-CONS.

Proof. Let a reduced game structure S ∈ Σ and a TU game (N, v) ∈ Γc

be given. Take any j ∈ N and any x ∈ C(N, v). Then x(N) = v(N) and
x(N \ {j}) = v(N) − xj = vSx (N \ {j}). Consider any S ⊂ N \ {j}. Then
x(S) ≥ v(S). Also, x(S ∪ {j}) ≥ v(S ∪ {j}), i.e., x(S) ≥ v(S ∪ {j}) − xj .
These imply that x(S) ≥ vSx (S). Therefore, xN\{j} ∈ C(N \ {j}, vSx ), and
C(N \ {j}, vSx ) 	= ∅. Thus (N \ {j},vSx ) ∈ Γc. �

3 Characterizations of the Core

Let Γ be a class of TU games and Φ be a solution on Γ.

Non-emptiness, NE: For all (N, v) ∈ Γ,Φ(N, v) 	= ∅.

Pareto optimality, PO: For all (N, v) ∈ Γ,Φ(N, v) ⊆ PO(N, v).

Individual rationality, IR: For all (N, v) ∈ Γ,Φ(N, v) ⊆ IR(N, v).

Individual rationality for games of at most k persons, IRk: For all
(N, v) ∈ Γ with |N | ∈ {1, 2, . . . , k},Φ(N, v) ⊆ IR(N, v).

NE, PO, and IR are standard properties for solutions. IRk says that for any
TU game of at most n players, if x is a solution payoff vector, then it must be
individually rational. In this paper, we consider the individual rationality axiom
for k = 1, IR1, and the axiom for k = 2, IR2. IR1 requires Φ({i}, v) = v({i})
for any i in N . Under this weak condition, consistency implies Pareto optimality
for any S.

Lemma 3.1. For all reduced game structures S ∈ Σ, if a solution Φ satisfies
IR1 and S-CONS, then it satisfies PO.

Proof. By way of contradiction, suppose that Φ does not satisfy PO. Then
for some (N, v) ∈ Γ and some x ∈ Φ(N, v), x(N) < v(N). Since Φ satisfies
IR1, Φ({i}, v) = v({i}) for any i in N . Therefore, |N | ≥ 2. We denote the
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set of players by N = {1, 2, . . . , n} where n = |N |. For the game (N \ {n},
vSx ), vSx (N \ {n}) = v(N) − xn > x(N) − xn = x(N \ {n}). Next for the
game (N \ {n, n − 1}, (vSx )2) where (vSx )2 ≡ (vSx )Sx , (vSx )2(N \ {n, n − 1}) =
vSx (N \ {n})−xn−1 > x(N \ {n})−xn−1 = x(N \ {n, n− 1}). By repeating the
argument n− 1 times, we have

(vSx )n−1({1}) ≡ ((. . . (vSx )Sx )Sx . . . )Sx ({1}) > x1.

By S-CONS, x ∈ Φ(N, v) implies xN\{n} ∈ Φ(N\{n}, vSx ), xN\{n} ∈ Φ(N\{n},
vSx ) implies xN\{n,n−1} ∈ Φ(N \ {n, n − 1}, (vSx )2), and so on. By repeat-
ing the argument n − 1 times, we get x{1} ∈ Φ({1}, (vSx )n−1). By IR1, x1 ≥
(vSx )n−1({1}). Therefore, we have a contradiction. �

Let Γc ≡ {(N, v) | C(N, v) 	= ∅ } be the class of all balanced TU games.
Tadenuma [10] establishes that the core is the only solution on Γc satisfying
non-emptiness, individual rationality, and consistency with respect to the M -
reduced game structure specified in Example 2.1. We ask whether there are
other reduced game structures that can be used to characterize the core based
on the same three axioms. The answer is no, as the following theorem shows.

Theorem 3.1. There is a unique reduced game structure S ∈ Σ such that a
solution Φ on Γc satisfies NE, IR, and S-CONS if and only if Φ = C, and it
is the M -reduced game structure.

Remark 3.1. Theorem 3.1 states that there is no reduced game structure
other than the M -reduced game structure that characterizes the core by the
three axioms NE, IR, and S-CONS. However a more general result is shown
in the proof of the theorem:

For any reduced game structure S ∈ Σ other than the M -reduced game
structure, there is a solution Φ which satisfies NE, IR, and S-CONS such that
Φ(N, v) ⊇ C(N, v) for all games (N, v) ∈ Γc and Φ(N, v) ⊃ C(N, v) for some
game (N, v) ∈ Γc.

In other words, there is a super-solution of the core that satisfies the three
axioms except for the M -reduced game structure. Moreover this means that
those three axioms cannot be used to characterize any subsolution of the core
for any possible game structure.

We have the characterization due to Tadenuma [10] as an immediate corollary
of Theorem 3.1. Let us call the consistency property with respect to the M -
reduced game structure M -Consistency (M -CONS).

Corollary 3.1 (Tadenuma [10]). A solution Φ on Γc satisfies NE, IR, and
M -CONS if and only if Φ = C.

Proof of Theorem 3.1. We will prove Theorem 3.1 by using the following
auxiliary lemma. We first define some conditions on the solutions to describe
the lemma.
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Condition S: for all (N, v) ∈ Γ with |N | = n ≥ 3, for all x ∈ Φ(N, v),
x(S) ≥ v(S) for all S ⊆ N such that S 	= N and

|S| ∈
{
{1} ∪K(n) if 1 /∈ S(n),
K(n) if 1 ∈ S(n),

where K(n) ≡ {s | 2 ≤ s ≤ n− 1, s− 1 ∈ S(n), s /∈ S(n)}.

Lemma 3.2. Let a reduced game structure S ∈ Σ be given. A solution Φ on
Γc satisfies NE, IR2,S-CONS, and Condition S if and only if Φ = C.

The proof of Lemma 3.2 is provided in the Appendix.
It was Tadenuma [10] who first proved that the core is the unique solution Φ

on Γc that satisfies NE, IR, and M -CONS. Here we give a simple alternative
proof of this result by applying Lemma 3.2 to the M -reduced game structure.
Let S(n) = ∅ for all n ∈ N with n ≥ 3. Clearly, IR implies IR2. We prove
that IR implies Condition S. Let (N, v) ∈ Γc, j ∈ N , and x ∈ Φ(N, v) be
given. Note that since S(|N |) = ∅, 1 /∈ S(|N |) and K(n) = {s | 2 ≤ s ≤ n− 1,
s − 1 ∈ S(n), s /∈ S(n)} = ∅. If Φ satisfies IR, then x(T ) ≥ v(T ) for all
T ∈ {S ⊆ N | |S| = 1} = {S ⊆ N | S 	= N and |S| ∈ {1} ∪K(n)}, so that Φ
satisfies Condition S. By Lemma 3.2, we have the desired result.

Take any reduced game structure S ∈ Σ other than the M -reduced game
structure. We show that there is a solution Φ on Γc that satisfies NE, IR, and
S-CONS, but Φ 	= C. Consider the solution Φ defined as follows: for each
(N, v) ∈ Γc, Φ(N, v) ≡ {x ∈ PO(N, v) ∩ IR(N, v) | x(T ) ≥ v(T ) for all T ⊆ N
such that |T | /∈ K(n)}, where n = |N |. First of all, we prove that Φ 	= C. Since S
is different from the M -reduced game structure, S(n∗) 	= ∅ for some n∗ ∈ N with
n∗ ≥ 3. We show that K(n∗) = {s|2 ≤ s ≤ n∗−1, s−1 ∈ S(n∗), s /∈ S(n∗)} 	= ∅.
Suppose that K(n∗) = ∅. Then s ∈ S(n∗) for all s − 1 ∈ S(n∗). This and
S(n∗) 	= ∅ together imply n∗−2 ∈ S(n∗). Since n∗−1 /∈ S(n∗) ⊆ {1, 2, . . . , n∗−
2}, it follows that n∗ − 1 ∈ K(n∗), which is a contradiction. Therefore, Φ 	= C.

Clearly, Φ satisfies NE and IR. We prove that it also satisfies S-CONS. Let
(N, v) ∈ Γc with n = |N |, j ∈ N , and x ∈ Φ(N, v) be given. First we remark
that

{1, 2, . . . , n− 1} \K(n) = {s|1 ≤ s ≤ n− 1, s ∈ S(n)}
∪ {s ∈ N|1 ≤ s ≤ n− 1, s− 1 /∈ S(n), s /∈ S(n)}.

Since x ∈ Φ(N, v), x(T ) ≥ v(T ) for all T ⊂ N such that |T | ∈ {1, 2, . . . , n−1}\
K(n). Consider the S-reduced game (N \{j}, vSx ). We show that x(T ) ≥ vSx (T )
for any subset T ⊂ N \ {j} such that

|T | ∈ {1, 2, . . . , n− 2} \K(n− 1)
= {s | 1 ≤ s ≤ n− 2, s ∈ S(n− 1)}
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∪ {s ∈ N|1 ≤ s ≤ n− 2, s− 1 /∈ S(n− 1), s /∈ S(n− 1)}.

Consider any T such that |T | ∈ {s | 1 ≤ s ≤ n − 2, s ∈ S(n − 1)}. Because
{s | 1 ≤ s ≤ n− 2, s ∈ S(n− 1)} is included in {s | 1 ≤ s ≤ n− 1, s ∈ S(n)} by
the condition (1) and x ∈ Φ(N, v), vSx (T ) = v(T ) ≥ x(T ).

Next consider any T such that |T | ∈ {s ∈ N | 1 ≤ s ≤ n−2, s−1 /∈ S(n−1),
s /∈ S(n− 1)}. There are three cases to examine.

Case 1: |T | = n − 2 ∈ S(n). Since |T | ∈ {1, 2, . . . , n − 1} \ K(n),
x(T ) ≥ v(T ) = vSx (T ).

Case 2: |T | = n − 2 /∈ S(n). Since n − 1 /∈ S(n), |T ∪ {j}| = n − 1 ∈
{1, 2, . . . , n − 1} \ K(n), so that x(T ∪ {j}) ≥ v(T ∪ {j}). Moreover
vSx (T ) = v(T ∪ {j})− xj by |T | /∈ S(n). Thus x(T ) ≥ vSx (T ).

Case 3: |T | ≤ n− 3. In this case, since |T | − 1 /∈ S(n− 1) and |T | /∈ S(n− 1),
it follows from the condition (1) that |T | − 1 /∈ S(n) and |T | /∈ S(n). Therefore,
|T ∪ {j}| ∈ {1, 2, . . . , n− 1} \K(n), and so x(T ∪ {j}) ≥ v(T ∪ {j}). Moreover,
vSx (T ) = v(T ∪ {j})− xj by |T | /∈ S(n). Thus x(T ) ≥ vSx (T ).

Finally consider T = N \ {j}. In this case, vSx (N \ {j}) = v(N) − xj .
Moreover, x(N) ≥ v(N) by Pareto optimality of the solution Φ. Therefore,
x(N \ {j}) ≥ vSx (N \ {j}). �

For the SIM -reduced game structure in Example 2.2, Funaki [4] shows that
the core is the only solution on Γc satisfying non-emptiness, Pareto optimality,
consistency with respect to that reduced game structure, and the following
axiom.

Sub-grand rationality (SGR): For all (N, v) ∈ Γ, if x ∈ Φ(N, v), then
x(N \ {i}) ≥ v(N \ {i}) for all i ∈ N .

Sub-grand rationality requires group rationality for every coalition consisting
of all players except one. We ask whether there are other reduced game struc-
tures that can be used to characterize the core based on the same four axioms.
Again, the answer is no, as the following theorem indicates.

Theorem 3.2. There is a unique reduced game structure S ∈ Σ such that a
solution Φ on Γc satisfies NE, PO, S-CONS, and SGR if and only if Φ = C,
and it is the SIM-reduced game structure.

Remark 3.2. Theorem 3.2 states that there is no reduced game structure
other than the SIM -reduced game structure that characterizes the core by the
four axioms NE, PO, SGR, and S-CONS. However a more general result is
shown in the proof of the theorem.

For any reduced game structure S ∈ Σ other than the SIM -reduced game
structure, there is a solution Φ which satisfies NE, PO, SGR, and S-CONS
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such that Φ(N, v) ⊇ C(N, v) for all games (N, v) ∈ Γc and Φ(N, v) ⊃ C(N, v)
for some game (N, v) ∈ Γc.

In other words, there is a super-solution of the core that satisfies the four
axioms except for the SIM -reduced game structure. Moreover, this means that
those four axioms cannot be used to characterize any subsolution of the core
for any possible game structure.

We obtain the characterization due to Funaki [4] as an immediate corollary
of Theorem 3.2. Let us call the consistency property with respect to the SIM -
reduced game structure SIM -Consistency (SIM -CONS).

Corollary 3.2 (Funaki [4]). A solution Φ on Γc satisfies NE, PO, SIM -
CONS, and SGR if and only if Φ = C.

Proof of Theorem 3.2. Funaki [4] first proved that the core is the unique
solution Φ on Γc that satisfies NE, PO, SIM -CONS, and SGR. Here we
give an alternative simple proof of this result by applying Lemma 3.2 to the
SIM -reduced game structure. Let S(n) = {1, 2, . . . , n− 2} for all n ∈ N with
n ≥ 3. Clearly, PO and SGR together imply IR2. We prove that SGR implies
Condition S. Let (N, v) ∈ Γc with |N | ≥ 3, j ∈ N , and x ∈ Φ(N, v) be given.
Since S(|N |) = {1, 2, . . . , |N |−2}, 1 ∈ S(|N |) and K(|N |) = {s | 2 ≤ s ≤ n−1,
s− 1 ∈ S(|N |), s /∈ S(|N |)} = {|N | − 1}. If Φ satisfies SGR, then x(T ) ≥ v(T )
for all T ∈ {S ⊆ N | |S| = |N | − 1} = {S ⊆ N | S 	= N and |S| ∈ K(|N |)}, so
that Φ satisfies Condition S. By Lemma 3.2, we have the desired result.

Take any reduced game structure S ∈ Σ other than the SIM -reduced game
structure. We show that there is a solution Φ on Γc that satisfies NE, PO, S-
CONS, and SGR, but Φ 	= C. First of all, notice that by the condition (1), for
every S ∈ Σ, either (i) 1 ∈ S(n) for all n ∈ N with n ≥ 3, or (ii) 1 /∈ S(n) for
all n ∈ N with n ≥ 3. Let us consider the first case (i). Define the solution Φ as
follows: for each (N, v) ∈ Γc, Φ(N, v) ≡ {x ∈ PO(N, v)∩IR(N, v) | x(T ) ≥ v(T )
for all T ⊆ N such that |T | = n− 1 and |T | /∈ K(n) \ {n− 1}}, where n = |N |.
First, we prove that Φ 	= C. Since S is different from the SIM -reduced game
structure, S(n∗) 	= {1, 2, . . . , n∗ − 2} for some n∗ ∈ N with n∗ ≥ 4. (If n = 3
and 1 ∈ S(n), then there is only one possible S(n), that is, S(3) = {1}.) We
show that K(n∗)\{n∗−1} = {s | 2 ≤ s ≤ n∗−2, s−1 ∈ S(n∗), s /∈ S(n∗)} 	= ∅.
Suppose that K(n∗) \ {n∗ − 1} = ∅. Then 1 ∈ S(n∗) implies 2 ∈ S(n∗). Since
2 ∈ S(n∗) and K(n∗)\{n∗−1} = ∅, it follows that 3 ∈ S(n∗), and so on. Finally,
since n∗ − 3 ∈ S(n∗) and K(n∗) \ {n∗ − 1} = ∅, it follows that n∗ − 2 ∈ S(n∗).
Therefore, S(n∗) = {1, 2, . . . , n∗ − 2}, which is a contradiction. Accordingly,
Φ 	= C.

Clearly Φ satisfies NE, PO, and SGR. We show that it also satisfies S-
CONS. Let (N, v) ∈ Γc with n = |N |, j ∈ N , and x ∈ Φ(N, v) be given. Note
that

{1, 2, . . . , n− 1} \K(n) = {s | 1 ≤ s ≤ n− 1, s ∈ S(n)}
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∪ {s ∈ N | 1 ≤ s ≤ n− 1, s− 1 /∈ S(n), s /∈ S(n)}.

Since x ∈ Φ(N, v), x(T ) ≥ v(T ) for all T ⊂ N such that |T | ∈ {n − 1} ∪
{1, . . . , n−1}\K(n). Consider the S -reduced game (N \{j}, vSx ). By using an
argument similar to that in the proof of Theorem 3.1, it is easy to prove that
x(T ) ≥ vSx (T ) for T = N \ {j} and any subset T ⊂ N \ {j} such that

|T | ∈ {1, 2, . . . , n− 2} \K(n− 1)
= {s | 1 ≤ s ≤ n− 2, s ∈ S(n− 1)}
∪ {s ∈ N|1 ≤ s ≤ n− 2, s− 1 /∈ S(n− 1), s /∈ S(n− 1)}.

Next consider the second case (ii): 1 /∈ S(n) for all n ∈ N with n ≥ 3. Define
the solution Φ as follows: for each (N, v) ∈ Γc,

Φ(N, v) ≡ {x ∈ PO(N, v) | x(T ) ≥ v(T ) for all T ⊆ N such that |T | = n− 1
and |T | /∈ {1}∪K(n) \ {n− 1}}, where n = |N |. Clearly, Φ 	= C and Φ satisfies
NE, PO, and SGR. We prove that it also satisfies S-CONS. Let (N, v) ∈ Γc

with n = |N |, j ∈ N , and x ∈ Φ(N, v) be given. Note that

{2, . . . , n− 1} \K(n) = {s | 2 ≤ s ≤ n− 1, s ∈ S(n)}
∪ {s ∈ N | 2 ≤ s ≤ n− 1, s− 1 /∈ S(n), s /∈ S(n)}.

Since x ∈ Φ(N, v), x(T ) ≥ v(T ) for all T ⊂ N such that |T | ∈ {n − 1} ∪
{2, . . . , n− 1} \K(n). Consider the S-reduced game (N \ {j}, vSx ). By using an
argument similar to that in the proof of Theorem 3.1, it is easy to prove that
x(T ) ≥ vSx (T ) for T = N \ {j} and any subset T ⊂ N \ {j} such that

|T | ∈ {2, . . . , n− 2} \K(n− 1)
= {s|2 ≤ s ≤ n− 2, s ∈ S(n− 1)}
∪ {s ∈ N|2 ≤ s ≤ n− 2, s− 1 /∈ S(n− 1), s /∈ S(n− 1)}. �

4 Concluding Remarks

We have considered a class of reduced game structures that are dependent
only on the cardinality of a set of players. However, this class of reduced game
structures Σ does not contain the reduced game structure due to Davis and
Maschler [2]. We give a more general definition of reduced game structures
including the reduced game due to Davis and Maschler as a special case. In the
following definition, a reduced game structure depends on a set of players N,
a characteristic function v, a player j ∈ N, and a payoff vector x. For a finite
set of players N ⊂ N , let PN ≡ {S ⊆ N | S 	= N , ∅}, i.e., PN is the set of all
proper subcoalitions in N .

Definition 4.1. A reduced game structure is a mapping S from {(N, v, j, x) |
(N, v) ∈ Γ with |N | ≥ 3, j ∈ N,x ∈ RN} into ∪|N |≥3PN such that for all
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(N, v) ∈ Γ with |N | ≥ 3 and all (j, x) ∈ N ×RN , S(N, v, j, x) ⊆ PN\{j}. Given
a reduced game structure S, a TU game (N, v) ∈ Γ, a player j ∈ N , and a
payoff vector x ∈ RN , the S-reduced game with respect to j and x is the game
(N \ {j}, vSx ) where

vSx (S) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if S = ∅,
v(N)− xj if S = N \ {j},
v(S) if S ∈ S(N, v, j, x),
v(S ∪ {j})− xj otherwise.

Let Σ∗ be the class of all possible such reduced game structures.

Example 4.1. For all (N, v) ∈ Γ and all (j, x) ∈ N ×RN , let S(N, v, j, x) =
{S ∈ PN\{j} | v(S) ≥ v(S ∪ {j}) − xj}. Then we have the reduced game
introduced by Davis and Maschler [2]:

vSx (S) =

⎧⎪⎨⎪⎩
0 if S = ∅,
v(N)− xj if S = N \ {j},
max{v(S ∪ {j})− xj , v(S)} otherwise.

We call this reduced game structure S ∈ Σ∗ the DM-reduced game structure.

Our uniqueness results no longer hold for the class of reduced game structures
Σ∗ that is larger than Σ. Let us consider the following reduced game structure
that belongs to Σ∗, but not to Σ.

Example 4.2. Given N ⊂ N , denote the set of players by N = {1, 2, . . . , n}.
Consider a reduced game structure S1 ∈ Σ∗ defined as follows: for all (N, v) ∈ Γ
with |N | ≥ 3 and all (j, x) ∈ N × RN , S1(N, v, j, x) = {{j + 1}}, where we
regard player n + 1 as player 1 if j = n. Then the reduced game (N \ {j}, vS1

x )
takes the following form:

vS
1

x (S) =

⎧⎪⎨⎪⎩
0 if S = ∅,
v({j + 1}) if S = {j + 1},
v(S ∪ {j})− xj otherwise.

Proposition 4.1. A solution Φ on Γc satisfies NE, IR2, and S1-CONS if
and only if Φ = C.

The proof of Proposition 4.1 is in the Appendix.
Since IR implies IR2, it follows from Proposition 4.1 that the core is the only

solution satisfying NE, IR, and S1-CONS, that is, there exists a reduced game
structure, S1 ∈ Σ∗\Σ, other than the M -reduced game structure such that the
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core is characterized by non-emptiness, individual rationality, and consistency
with respect to it.

Moreover, since PO and SGR together imply IR2, it follows from Propo-
sition 4.1 that the core is the only solution satisfying NE, PO, SGR, and
S1-CONS, that is, there exists a reduced game structure, S1 ∈ Σ∗\Σ, other
than the SIM -reduced game structure such that the core is characterized by
non-emptiness, Pareto optimality, sub-grand rationality, and consistency with
respect to it.

For a set of axioms that is different from those we examine, however, a unique-
ness result on a reduced game in Σ∗ might hold. For example, Peleg [7] employs
the DM -reduced game structure, and he proves that the core is the only solu-
tion satisfying consistency with respect to it, non-emptiness, individual ratio-
nality, and super-additivity. It is an open question to investigate whether there
are other reduced game structures in Σ∗ that can be used to characterize the
core by the four axioms.3

5 Appendix

Proof of Lemma 3.2. By Proposition 2.1, the core satisfies S-CONS. Clearly,
the core satisfies NE, IR2, and Condition S on Γc.

Next we prove that if Φ satisfies NE, IR2, S-CONS, and Condition S, then
Φ = C. The proof consists of three steps:

Claim 5.1. If Φ satisfies IR2,S-CONS , and Condition S, then Φ(N, v) ⊆
C(N, v) for every (N, v) ∈ Γc.

Proof. Since IR2 implies IR1, it follows from Lemma 3.1, that Φ satisfies PO.
If |N | = 1, then Φ(N, v) ⊆ C(N, v) by PO. If |N | = 2, then Φ(N, v) ⊆ C(N, v)
by IR2 and PO. Assume that Φ(N, v) ⊆ C(N, v) for any (N, v) ∈ Γc with
|N | = k where k ≥ 2. Consider any (M,u) ∈ Γc with |M | = k + 1. Pick any
x ∈ Φ(M,u) and any j ∈ M . By S-CONS, xM\{j} ∈ Φ(M \ {j}, uS

x ). By the
assumption, Φ(M \ {j}, uS

x ) ⊆ C(M \ {j}, uS
x ). Therefore, for any S ⊆M \ {j}

with |S| ∈ S(|M |), x(S) ≥ uS
x (S) = u(S). Moreover, for any S ⊆ M \ {j}

with |S| /∈ S(|M |), x(S) ≥ uS
x (S) = u(S ∪ {j}) − xj , and hence x(S ∪ {j}) ≥

u(S ∪{j}). That is, x(S) ≥ u(S) for any S with |S| ∈ {t ∈ N | 2 ≤ t ≤ |M |−1,
t − 1 /∈ S(|M |) }. Thus, x(S) ≥ u(S) for any S ∈ {S ⊆ M \ {j} | |S| ∈
S(|M |)}∪{S | |S| ∈ {t ∈ N | 2 ≤ t ≤ |M |−1, t−1 /∈ S(|M |) }. Since Φ satisfies
Condition S, it follows that x(S) ≥ u(S) for any S ∈ {S ⊆ M | S 	= M, ∅}.
This together with PO implies that x ∈ C(M,u). �

3Funaki and Yamato [5] provide an axiomatization of the core for any given reduced
game structure in Σ∗. The axiomatization of the core due to Peleg [7] can be obtained
as a corollary of their axiomatization.
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Claim 5.2. Let (N, v) ∈ Γc and x ∈ C(N, v) be given. Then there exists
(M,u) ∈ Γc such that (i) M = N ∪ {i} where i /∈ N ; (ii) C(M, u) = {(x, 0)};
and (iii) (N,uS

y ) = (N, v) where y ≡ (x, 0) ∈ RN∪{i}.

Proof. Define (M, u) ∈ Γc as follows: u({i}) = 0, u(S) = v(S) and u(S∪{i}) =
x(S) for S ∈ S(|M |), and u(S) = x(S) and u(S∪{i}) = v(S) for S ∈ {S ⊆M \
{i} | S 	= M \{i}, ∅ and |S| /∈ S(|M |)}. First we show that y ∈ C(M,u). Clearly,
u(M) = v(N) = x(N) = y(M) and u({i}) = yi. Moreover, if |S| ∈ S(|M |), then
y(S) = x(S) ≥ v(S) = u(S) and y(S ∪ {i}) = x(S) = u(S ∪ {i}). Further, if
S ∈ {S ⊆M \{i} | S 	= M \{i}, ∅ and |S| /∈ S(|M |)}, then y(S) = x(S) = u(S)
and y(S ∪ {i}) = x(S) ≥ v(S) = u(S ∪ {i}). Thus y ∈ C(M,u). Next we prove
that C(M,u) = {y}. Let z ∈ C(M,u) be given. First, we claim that zi = 0. If
|N | ∈ S(|M |), then u(N) = v(N). If |N | /∈ S(|M |), then u(N) = x(N) = v(N).
Therefore, u(N) = v(N). Since z ∈ C(M,u), z(N) ≥ u(N) = v(N) = u(M) =
z(N) + zi and zi ≥ u({i}) = 0. Hence zi = yi = 0.

Take any j ∈ N . If 1 ∈ S(|M |), then zj = zi + zj ≥ u({i, j}) = yj . If
1 /∈ S(|M |), then zj ≥ u({j}) = yj . Therefore, zj ≥ yj for all j ∈ N . Further,
z(N) = z(M) = u(M) = v(N) = y(N). These imply that zj = yj for all j ∈ N .
Therefore, z = y.

Finally, we show that (N,uS
y ) = (N, v). Let S ⊂ N,S 	= ∅ be given. If

|S| ∈ S(|M |), then uS
y (S) = u(S) = v(S). If |S| /∈ S(|M |), then uS

y (S) = u(S ∪
{i})− yi = u(S ∪ {i}) = v(S). Moreover, uS

y (N) = u(M)− yi = u(M) = v(N).
�

Let Φ be a solution on Γc satisfying NE, IR2,S-CONS, and Condition
S. Let (N, v) ∈ Γc and x ∈ C(N, v) be given. By Claim 5.2, there exists
a TU game (M,u) satisfying (i), (ii), and (iii). Claim 5.1 and NE imply
that Φ(M, u) = C(M,u) = {(x, 0)}. By S-CONS, x ∈ Φ(N,uS

y ) = Φ(N, v).
Thus, C(N, v) ⊆ Φ(N, v). This fact and Claim 5.1 together imply that
Φ(N, v) = C(N, v). �

Proof of Proposition 4.1. It is easy to check that the core satisfies NE, IR2,
and S1-CONS on Γc.

Next we prove that if Φ satisfies NE, IR2, and S1-CONS, then Φ = C. In
the following, we denote the reduced game structure S1(N, v, j, x) simply by
S1(N, j) for all (N, v) ∈ Γ with |N | ≥ 3 and all (j, x) ∈ N × RN , since S1 is
dependent on a set of players N and a player j ∈ N , but independent of a
characteristic function v and a payoff vector x. The proof consists of three steps:

Claim 5.3. If Φ satisfies IR2and S1-CONS, then Φ(N, v) ⊆ C(N, v) for
every (N, v) ∈ Γc.

Proof. Since IR2 implies IR1 , it follows from Lemma 3.1 that Φ satisfies PO.
If |N | = 1, then Φ(N, v) ⊆ C(N, v) by PO. If |N | = 2, then Φ(N, v) ⊆ C(N, v)
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by IR2 and PO. Assume that Φ(N, v) ⊆ C(N, v) for any (N, v) ∈ Γc with
|N | = k where k ≥ 2. Consider any (M,u) ∈ Γc with |M | = k + 1. Pick
any x ∈ Φ(M,u) and any j ∈ M . By S1-CONS, xM\{j} ∈ Φ(M \ {j}, uS1

x ).
By the assumption, Φ(M \ {j}, uS1

x ) ⊆ C(M \ {j}, uS1

x ). Therefore, for any
S ⊆ M \ {j} with S ∈ S1(M, j), x(S) ≥ uS

x (S) = u(S). Moreover, for any
S ⊆ M \ {j} with S /∈ S1(M, j), x(S) ≥ uS

x (S) = u(S ∪ {j})− xj , and hence
x(S ∪ {j}) ≥ u(S ∪ {j}). That is, x(S) ≥ u(S) for any S ∈ T (M, j;S1) ≡ {S ∈
PM | S � j, S 	= {j}, S \ {j} /∈ S1(M, j)}. Thus, x(S) ≥ u(S) for any S ∈
∪j∈M (S1(M, j)∪T (M, j;S1)). Note that ∪j∈MS1(M, j) = {S ∈ PM | |S| = 1}.
Also, ∪j∈MT (M, j;S1) = {S ∈ PM | |S| ≥ 2}. These imply ∪j∈M (S1(M, j) ∪
T (M, j;S1)) = PM . Therefore, x(S) ≥ u(S) for any S ∈ PM . This together
with PO implies that x ∈ C(M,u). �

Claim 5.4. Let (N, v) ∈ Γc and x ∈ C(N, v) be given. Then there exists
(M,u) ∈ Γc such that (i) M = N ∪ {i} where i /∈ N ; (ii) C(M, u) = {(x, 0)};
and (iii) (N,uS1

y ) = (N, v) where y ≡ (x, 0) ∈ RN∪{i}.

Proof. Define (M,u) ∈ Γc as follows: u({i}) = 0, u(S) = v(S), and
u(S ∪ {i}) = x(S) for S ∈ S1(M, i), and u(S) = x(S) and u(S ∪ {i}) = v(S)
for S ∈ PM\{i} \ S1(M, i). First we show that y ∈ C(M,u). Clearly,
u(M) = v(N) = x(N) = y(M) and u({i}) = yi. Moreover, if S ∈ S1(M, i),
then y(S) = x(S) ≥ v(S) = u(S) and y(S ∪ {i}) = x(S) = u(S ∪ {i}). Further,
if S ∈ PM\{i} \ S1(M, i), then y(S) = x(S) = u(S) and y(S ∪ {i}) = x(S) ≥
v(S) = u(S ∪ {i}). Thus y ∈ C(M,u). Next we prove that C(M, u) = {y}.
Let z ∈ C(M,u) be given. First, we claim that zi = 0. If N ∈ S1(M, i),
then u(N) = v(N). If N /∈ S1(M, i), then u(N) = x(N) = v(N). Therefore,
u(N) = v(N). Since z ∈ C(M,u), z(N) ≥ u(N) = v(N) = u(M) = z(N) + zi,
and zi ≥ u({i}) = 0. Hence zi = yi = 0.

Take any j ∈ N . If {j} ∈ S1(M, i), then zj = zi + zj ≥ u({i, j}) = yj .
If {j} /∈ S1(M, i), then zj ≥ u({j}) = yj . Therefore, zj ≥ yj for all j ∈ N .
Further, z(N) = z(M) = u(M) = v(N) = y(N). These imply that zj = yj for
all j ∈ N . Therefore, z = y.

Finally, we show that (N,uS1

y ) = (N, v). Let S ⊂ N,S 	= ∅ be given. If
S ∈ S1(M, i), then uS1

y (S) = u(S) = v(S). If S /∈ S1(M, i), then uS1

y (S) =
u(S ∪{i})− yi = u(S ∪{i}) = v(S). Moreover, uS1

y (N) = u(M)− yi = u(M) =
v(N). �

Let Φ be a solution on Γc satisfying NE, IR2, and S1-CONS. Let (N, v) ∈
Γc and x ∈ C(N, v) be given. By Claim 5.4, there exists a TU game (M,u)
satisfying (i), (ii), and (iii). Claim 5.3 and NE imply that Φ(M,u) = C(M,u) =
{(x, 0)}. By S1-CONS, x ∈ Φ(N,uS1

y ) = Φ(N, v). Thus, C(N, v) ⊆ Φ(N, v).
This together with Claim 5.3 implies that Φ(N, v) = C(N, v). �
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Abstract
This chapter develops a framework for analyzing the interaction between
individual players (actors) and collective players (coalitions) who mutually
adapt the allocation of investment to their values and each other’s deci-
sions. The dynamic process of coalition formation can be described by a
coupled evolutionary game of allocation controls. Potential fields of appli-
cations are outlined, and an example analyzing the management of energy
and carbon emissions is discussed in more detail.

1 Introduction

The theory of coalitions is well established in cooperative game theory and
appropriate for explaining a variety of phenomena dealing with the distribution
of coalition values and the stability of coalitions. In the following, we go beyond
the established theory to analyze dynamically changing situations and the for-
mation of coalitions with mixed individual contributions changing over time.
Related fields are cooperative dynamic games (e.g., [8]), evolutionary games [10]
and the concept of fuzzy coalitions, extending the assumption of strict mem-
bership by the level of participation of individual players in a coalition [1,2,16].
This takes note of the experience that there can be different levels of support
for different coalitions and a gradual shift between coalitions, leading to the
increase or decline of coalitions in the course of time.

In this regard, coalition formation can be defined as a process in which two
or more actors adjust their coalition support to the expected benefit from this
support. Each actor can join several coalitions by allocating a certain amount
of resources to each of them (mixed membership). Coalitions acquire resources
from the individual actors and invest them into actions to achieve coalition
benefits that are distributed to the individuals. Issue-based coalitions can be
formed to set targets and seek agreement on issues of common interest to under-
take joint actions. Assuming that coalitions can decide and act themselves and
thus adapt to changing circumstances, a dynamic framework for adaptive coali-
tion games is presented, building on previous efforts to analyze the interac-
tion and cooperation in dynamic games [17,14,13]. This chapter introduces a
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new concept of adaptive coalitions that links multiplayer interaction, coopera-
tive dynamic games, fuzzy coalition theory and evolutionary games. It provides
a framework to analyze phenomena of dynamic coalition formation in differ-
ent fields of application, using deeper mathematical analysis and application of
solution concepts.

2 Interaction between Actors and Coalitions

The framework of dynamic games and adaptive coalition formation includes
two types of players (see Figure 1):
• Individual actors (agents, players) Ai with i = 1, . . . , n at a given time have

an amount of resources C+
i (t) under their control which they can invest

within the resource limits directly to actions and/or to coalitions to take
joint action with others.
• Coalitions (collective players) AI with I = 1, . . . , N use the resources

acquired from the individual actors to allocate them to joint actions which
are evaluated by the individuals to reallocate their resources to the coali-
tions.

We assume that the actors allocate a fraction pI
i of their invested resources

(costs) Ci to each of the coalitions AI , such that
∑N

I pI
i = 1, which may include

Figure 1: The feedback cycle of multiplayer interaction and coalition formation.
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the coalition of each actor acting alone. Each coalition can use its accumulated
resources

CI =
n∑

j=1

pI
j · Cj

to act on various issues kI = 1, . . . , mI .1 The impact of coalition actions (mea-
sured by the change of system variables)

ak
I =

pk
ICI

ck
I

depends on the unit costs ck
I of each action, and the resource allocation pk

I of
each coalition AI . Then the value of actor Ai acquired from coalition actions
ak

I is:

Vi =
N∑

I=1

mI∑
k=1

vk
i ak

I =
N∑

I=1

mI∑
k=1

n∑
j=1

vk
i

ck
I

pI
jp

k
ICj , (1)

where vk
i is the unit value of actor Ai for action ak

I of coalition AI .
Using f I

i =
∑mI

k (vk
i /ck

I )pk
I as an indicator for the benefit-cost efficiency

of coalition AI for actor Ai with regard to the set of coalition actions k =
1, . . . , mI , the problem can be represented as an interaction between the indi-
vidual actors, where the value of each actor (i = 1, . . . , n)

Vi =
n∑

j=1

N∑
I=1

pI
jf

I
i Cj =

n∑
j=1

fijCj

is influenced by the invested resources Cj of all other actors. The mutual impacts
fij =

∑N
I=1 pI

jf
I
i depend on the allocation and efficiency associated with the

coalitions.
Coalitions can allocate their resources to various action paths and may have

their own value functions to evaluate them. An important factor for a coalition
are the total resources CI under its control which determine its power compared
to other coalitions and also with regard to the actors. In addition, a coalition
may be interested in the value generated which may be a function of its own
resources and the resources of other coalitions. A value generated by a coalition
can be either accumulated or distributed to the actors which may be required
to ensure continued support of the actors for the coalitions and to avoid their
withdrawal. It seems reasonable that an actor tends to support a coalition
as long as he/she is better off with it rather than with another coalition (in
particular, compared to acting alone).
1 Where possible, lower indices are used. Upper indices are required for two or more
sets of indices. To simplify notation we use k rather than kI if index I is already given.
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3 The Adaptation Process

3.1 Levels of Control

Both actors and coalitions can take decisions on resource allocation, and the
interaction between them can be treated as an interconnected decision-making
problem, considering three levels of control:

(1) Actors allocate to coalitions: Individual actors Ai (i = 1, . . . , n) control
their investment flows 0 ≤ Ci ≤ C+

i (with upper limit C+
i ) as well as their

allocation 0 ≤ pI
i ≤ 1 to coalitions AI (I = 1, . . . , N), which receive the

investment pI
i Ci.

(2) Coalitions allocate to issues: Coalition AI (I = 1, . . . , N) controls
its resources CI and the allocation 0 ≤ pk

I ≤ 1 to the coalition actions
k = 1, . . . , mI with

∑mI

k pk
I = 1.

(3) Coalition values are distributed to actors: Coalition actions ak
I gen-

erate unit values vk
i for the individual players, either directly as a result

of the action taken by a coalition and/or indirectly via a coalition value
vk

I which is then distributed to the actors Ai. Their unit value vk
i = pi

Iv
k
I

depends on the fraction pi
I assigned to actor Ai. For

∑N
I pi

I = 1 the coali-
tion value is completely distributed to the actors and nothing is spent on
other costs, an assumption that can be modified. For a given pi

I actor Ai

receives a total share V I
i = pi

IV
I of coalition value which can be distributed

in different ways to the individual actors.

With these three levels of control the interaction can be quite complicated
for a larger number of actors and coalitions. The dynamics will be essentially
determined by the rules for selecting or changing the allocation of resources
pI

i to a particular coalition, and from the coalitions to the actions pk
I which

are evaluated by the individual actors. The distribution of coalition values to
the actors is subject to negotiations between both, a field where established
cooperative game theory comes into play. Whether a distribution is seen as
fair or effective is widely debated. A special rule, which satisfies the condition∑

i pi
I = 1, is to have the fraction proportionate to the resource input of actor

Ai:

pi
I =

pI
i Ci

CI
.

If actor Ai incrementally changes the allocation by dpI
i = −dpJ

i from coalition
AI to coalition AJ , the value functions incrementally change by

dVi =
∂Vi

∂pI
i

dpI
i +

∂Vi

∂pJ
i

dpJ
i = (fJ

i − f I
i )Ci dpJ

i .
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For a complete transition from coalition AI to AJ for actor Ai we have dpI
i =

−1 = −dpJ
i and write ∆Vi = (fJ

i − f I
i )Ci. To maximize value, actor Ai would

adapt to the coalition AJ with the highest efficiency fJ
i , either in a single

optimizing time step or gradually through an adaptation process.

3.2 An Evolutionary Game

Such an adaptation process can be well represented by a dynamic system, anal-
ogous to the replicator equation in an evolutionary dynamic game for pI

i :

∆pI
i (t) = αi pI

i (t) (V I
i (t)−

N∑
J=1

pJ
i (t) V J

i (t)). (2)

Here V I
i = ∂Vi/∂pI

i =
∑mI

k pk
i vk

i Ci/ck
I is the value of actor Ai obtained from

coalition AI for pI
i = 1 and the second term is the mixed value for the current

allocation pJ
i (t) over all coalitions AJ . For continuous time, we have ∆pI

i (t) =
ṗI

i (t), for discrete time ∆pI
i (t) = pI

i (t + 1) − pI
i (t). In both cases, the dynamic

system satisfies the condition
∑

I ∆pI
i (t) = 0 and thus

∑
I pI

i (t) = 1 at all times.
As in standard evolutionary games ∆pI

i (t) increases with the “fitness” of a
coalition AI for actor Ai, compared to an average fitness. Thus those coalitions
that better serve the actors’ interests will grow more. The main difference is that
we have individual players rather than populations and pI

i represents a control
variable (allocation), not a probability. Using the evolutionary game formalism
allows us to apply the methodology from this field, including equilibrium and
stability concepts.2

The adaptation of coalition actions can be modelled in a similar way. First
of all, a coalition would be interested in increasing its power, measured by the
sum of acquired resources CI =

∑
j pI

jCj . Using the dynamical equation for
∆pI

j , the coalition power evolves according to

∆CI(t) =
∑

j

∂CI

∂pI
j

∆pI
j =
∑

j

αjp
I
j (t)Cj(V I

j (t)−
N∑

J=1

pJ
j (t)V J

j (t)). (3)

Thus, the power dynamics of coalitions is closely related to the values that these
coalitions provide to the single actors, weighted by the resource input pI

jCj that
these actors provide to the coalitions.

Actions taken by coalitions depend on the values these actions generate, for
the two cases mentioned before:
2 The concept of adaptive coalitions can be integrated into a probabilistic coalition the-
ory which makes the use of evolutionary games even more reasonable. This approach
defines the probability that an actor joins a coalition on a particular position, which
contributes to the aggregated probability that several actors join that coalition [5].
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(1) Coalitions which generate a coalition value V I =
∑mI

k=1 pk
IV k

I tend to take
action k with a maximum of

V k
I =

∂V I

∂pk
I

=
vk

I

ck
I

CI ,

where vk
I is the unit coalition value. This again corresponds to an evolu-

tionary dynamic game

∆pk
I (t) = αI pk

I (t) (V k
I (t)−

mI∑
l=1

pl
I(t) V l

I (t)). (4)

(2) Coalitions which do not produce a coalition value can still affect the value
of actor Ai with coalition actions kI according to V kI

i = (vkI
i /ck

I )CI .
Which action a coalition will take depends on an aggregated function
V̄ k

I =
∑

i wI
i V kI

i of the values of all actors Ai, weighted with a factor wI
i

according to the relevance for the coalition AI . In accordance with the pre-
vious case, the dynamics of coalition actions kI can be represented by a
replicator equation

∆pk
I (t) = αI pk

I (t) (V̄ k
I (t)−

mI∑
l=1

pl
I(t) V̄ l

I (t)). (5)

Which weights wI
i (t) a coalition assigns to the value of each actor Ai

depends on the coalition’s preferences. A natural choice would take into
account the coalition’s self-interest in increasing its power ∆CI which
according to Equation (3) depends on the value and contribution of each
actor. Thus with wI

i (t) = pI
i (t)Ci/CI a coalition would prefer those actors

which provide the strongest support due to interest in the coalition actions.

With changing allocations according to the replicator equations, the induced
value changes of the actors Ai (i = 1, . . . , n) are

∆Vi(t) =
∑

j

∑
I

V I
ij∆pI

j (t) +
∑

I

∑
k

V kI
i ∆pk

I (t) (6)

with V I
ij = ∂Vi/∂pI

j = f I
i Cj and V kI

i = ∂Vi/∂pk
I = vk

i /ck
ICI . This provides a

system of differential/difference equations describing the evolution of resource
allocation and values.

4 Limits to Growth of Coalitions

A coalition can potentially grow indefinitely, as long as the resource inputs and
the coalition values have no limits. Under certain conditions, however, the size
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of a coalition may be limited if there are no incentives for further support from
additional actors to join the coalition. Consider, for instance, a coalition value
function which is quadratic in resources

VI = aICI + bI(CI)2

with aI > 0, bI arbitrary contents. Assuming that actor Ai receives a share of
the coalition value

V I
i =

pI
i Ci

CI
· VI = pI

i Ci(ai + bICI)

proportionate to the resource input to the coalition, then Ai is indifferent to
further contributions to coalition AI for the optimality condition

vI
i =

∂V I
i

∂pI
i

= (bIp
I
i Ci + aI + bICI)Ci = 0,

which leads to the optimal allocation

p̄I
i =

aI + bICI

−bICi
.

We distinguish two cases:

(1) For bI > 0 (increasing returns), we have p̄I
i < 0 and thus an increasing

value vI
i > 0 of actor Ai for pI

i > p̄I
i which is always the case.

(2) For bI < 0 (decreasing returns), we have p̄I
i > 0 and thus an increasing

value vI
i > 0 of actor Ai for pI

i < p̄I
i . The condition 0 ≤ p̄I

i ≤ 1 corresponds
to an interval for coalition power within which an optimal allocation for
actor Ai exists:

aI

−bI
− Ci ≤ CI ≤

aI

−bI
.

For low CI actor Ai tends to increase support for coalition AI , for high CI there
is no incentive to do so. In between there is the optimal allocation threshold
p̄I

i which declines with coalition power CI and individual resources Ci in the
interval.

5 The Case of Two Coalitions and Two Issues

We now treat the special case of i = 1, . . . , n actors Ai and I = 1, 2 coalitions
AI which allocate their acquired resources CI to k = 1, 2 issues. Both actors
and coalitions have one control variable:
• Actors Ai control the allocation pi = p2

i = 1− p1
i to coalitions A2 and A1.

• Coalitions AI control the allocation pI = p2
I = 1− p1

I to actions a2
I and a1

I .
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Then the two coalitions have resources C1 = (1 − p1)C1 + (1 − p2)C2 and
C2 = p1C1 + p2C2. The value functions of i = 1, . . . , n actors Ai are given as

Vi = f1
i (p1) C1 + f2

i (p2) C2 = fiiCi + fijCj

with the efficiencies of the coalitions f I
i =

∑2
k=1 pk

Ivk
i /ck

I and the mutual
impacts

fij = pj [f2
i (p2)− f1

i (p1)] + f1
i (p1) (i, j = 1, . . . , n).

Actor Ai tends to increase the allocation towards coalition A2 if its action is
more efficient than for coalition A1

∂Vi

∂pi
= (f2

i (p2)− f1
i (p1))Ci > 0

until the upper bound pi = 1 is reached which is the case for

f2
i (p2) = f21

i (1− p2) + f22
i p2 > f11

i (1− p1) + f12
i p1 = f1

i (p1).

Both coalitions can influence this condition by adapting their allocation pI to
actor Ai’s needs, however at the cost of potentially losing other actors. Assuming
the case that the second issue offers higher efficiency for each of the coalitions,
f I2

i > f I1
i (otherwise the options can be renumbered), then coalition A2 would

gain support from those actors Ai for which

p2 >
p1(f12

i − f11
i ) + f11

i − f21
i

f22
i − f21

i

≡ p̄2
i (p

1).

Interesting cases are those for which the allocation threshold is within the
boundaries 0 ≤ p̄2

i ≤ 1 (otherwise one of the coalitions succeeds with regard to
actor Ai, whatever action is taken). This leads to the combined requirement

0 ≤ f21
i − f11

i

f12
i − f11

i

≤ p1 ≤ f22
i − f11

i

f12
i − f11

i

≤ 1,

which is satisfied for the order of factors

f11
i ≤ f21

i ≤ f22
i ≤ f12

i .

Under these conditions for each of the actors there is a dividing line (reaction
curve) in the allocation space of both coalitions. By crossing these lines a coali-
tions gains or loses support from the respective actor because he/she would gain
more value from the other coalition. The associated evolutionary game consists
of n×2×2 coupled dynamic equations which represent this competition among
coalitions for actors to support them.
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6 Examples of Adaptive Coalitions

6.1 Voting on Coalitions

Voting can be interpreted as an adaptation process between actors (voters) and
the coalitions (parties) they vote for. Each voter Ai (i = 1, . . . , n) has a number
of votes 0 ≤ Ci ≤ Ci+ which can be allocated to the different parties AI . Their
voting power CI =

∑
j pI

jCj is used to influence issues of interest for the voters:

ak
i =

N∑
I=1

pk
I CI

ck
I

(k = 1, . . . , m),

where ck
I is the cost of translating voting power into real action, such as efforts of

communication and negotiation to acquire a sufficient number of votes to exceed
a threshold (quota, critical mass) Ck∗ given for this issue. The art of negotia-
tion is to convince enough decision-makers to pass the threshold. Examples are
political decisions by governments on allocation of the State budget or taxes.
Coalition actions in return generate value for each of the actors Vi =

∑mI

k vk
i ak

I .
The typical voting situation is characterized by special conditions:
• One man, one vote: Ci = 1 for all i = 1, . . . , n.
• Ai can only vote for one party AI∗ at a time (no mixed vote): pI

i = 1 for
I = I∗ and pI

i = 0 for I 	= I∗.
• Issue ak

I can be pursued only if the combined voting power for this issue
exceeds the quota, i.e., for

∑N
I=1 pk

I · CI > Ck∗. In some voting situations
the fraction of votes supporting an issue depends on the issue pk

I (ak
I ), e.g.,

either increases or decreases with ak
I .

6.2 Production and Consumption in a Market Economy

The framework of adaptive coalitions is appropriate for analyzing the interplay
between consumers (individual actors) and producers (coalitions) of economic
goods in a market economy. Producers allocate their investment to the produc-
tion of economic goods, sold on a market to consumers who in return allocate
their income to the producers, raising their profit and thus the possibility to
invest in the next time step. Both are characterized as follows:
• Producers AI (I = 1, . . . , N) use their investment CI to produce k =

1, . . . , mI economic goods xk
I = pk

I ·CI/ck
I , where pk

I is the fraction allocated
to each good and ck

I is the unit cost. For a price qk
I for each good, the profit

V I =
mI∑
k=1

qk
I xk

I =
∑

k

qk
I pk

I

ck
I

CI

serves as the coalition value of AI .
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• Consumers Ai (i = 1, . . . , n) allocate their income Ci to buying kI =
1, . . . , mI goods xkI

i = Ci · pkI
i /qkI

i from the different producers AI , given
by allocation pkI

i and prices qkI
i . The value from all producers is

Vi =
N∑

I=1

mI∑
kI=1

vkI
i xkI

i =
N∑
I

mI∑
kI

vkI
i pkI

i

qkI
i

Ci,

where vkI
i is the value of Ai per unit of good xkI

i produced by AI .

Adapting allocation allows producers and consumers to maximize their value.
This process, which may be built on the outlined evolutionary game, is further
shaped by the price dynamics which continues until the demand-supply rela-
tionship achieves a balance, given by the market equilibrium for each product:

xk =
∑

i

xk
i =
∑

i

pk
i Ci

qk
=
∑

I

pk
ICI

ck
I

=
∑

I

xk
I ,

which corresponds to the equilibrium market price for each good,

qk =
∑

i pk
i Ci∑

I pk
ICI/ck

I

(k = 1, . . . , m).

With this price the value functions of producers and consumers become

Vi =
∑

I

∑
k

κk
i

vk
i

ck
I

pk
ICI

V I =
∑

i

∑
k

κk
Ipk

i Ci,

where κk
i = pk

i Ci/(
∑

j pk
j Cj) is the market share of consumer Ai for product

xk and κk
I = (pk

ICI/ck
I )/[(
∑

J pk
JCJ)/ck

J ] is the market share of producer AI

for product xk, both depending on the allocation of all actors to the different
goods. Both value functions show the interdependence of consumers (actors)
and producers (coalitions): If producers invest more, this generally increases the
consumer values and vice versa.

6.3 Energy Management and Carbon Emissions

Dynamic games have found a wide range of applications in environmental policy
and economics [3,4,7]. Using dynamic games can provide interesting method-
ological tools to understand and find cooperative solutions in energy and cli-
mate policy, including technology transfer and emissions trading [9,21]. Cli-
mate games deal with decision-making and interaction among multiple actors
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on global, regional and local levels of climate policy [6,12]. Including the con-
cept of adaptive coalitions extends previous efforts to apply dynamic games in
this field [11,18,19], as well as in fishery management [15,20].

In the following, we analyze energy production by I = 1, . . . , N energy
providers AI (coalitions) which receive investment from i = 1, . . . , n customers
Ai (such as consumers, companies, governments) to produce value (such as con-
sumption, wealth, profit) and we can select between kI = 1, . . . , mI primary
energy sources. The possible actions by the providers AI are the amounts of
energy produced of each type

ak
I = Ek

I =
pk

I

ck
I

CI

for a given budget CI , cost per energy unit ck
I and allocation pk

I . We assume
that each customer Ai receives a share pi

I = pI
i Ci/CI of energy, proportionate

to the investment given to this provider, and decides how much energy of which
type is consumed. Then the energy of type k received by customer Ai from
all providers AI is Ek

i =
∑

I pi
IE

k
I =
∑

I pI
i p

k
ICi/ck

I . This energy is used for
the production or consumption of economic output Qi and at the same time
generates carbon emissions Gi according to

Qi =
∑

k

qk
i Ek

i

Gi =
∑

k

gk
i Ek

i ,

where qk
i is the productivity for a primary energy unit of type k (which can

differ because of different energy efficiencies) and gk
i is the amount of carbon

emission per energy unit. Then the value of customer Ai is defined as

Vi = uiQi − di

∑
j

Gj =
∑

k

⎡⎣(uiq
k
i − dig

k
i )Ek

i −
∑
j �=i

dig
k
j Ek

j

⎤⎦ ,

where ui translates the economic output Qi into value (e.g., representing the
utility of consumers from a unit of production, the wealth created per unit of
GDP or the price of goods sold by firms) and di represents the damage/cost per
emission unit (e.g., damages related to climate change, energy taxes or costs
for emission trading). The customer values can be expressed as Vi =

∑
j fijCj

where fij =
∑

I

∑
k pI

jp
k
I (vk

ij/ck
I ) with vk

ii = uiq
k
i − dig

k
i and vk

ij = −dig
k
j .

Then the dynamic interaction between energy providers and customers can be
described by the evolutionary game outlined above.

Example 6.1. We apply the general methodology to a specific example with
two energy paths (called the “old” and the “new” path, marked in Figure 2 as A
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Figure 2: The interplay between energy providers and customers for different energy
paths (marked here by A and B).

and B), two energy providers and six customers. The second new energy path is
generally more expensive than the old one, where in addition the first provider
is cheaper in producing energy 1 and the second provider is cheaper in energy 2.
The customers differ with regard to the energy efficiency of production, where
the efficiency for energy 1 declines from customer 1 to 6 and the efficiency for
energy 2 increases from customer 1 to 6. The range both for unit cost and
efficiency is a factor of two. Carbon emissions for the new energy are half of
those for the old energy, which is g1

i = 1 for all i = 1, . . . , 6. Damages per
emission unit gradually increase from d1 = 0.2 for the first customer to d6 = 0.4
for the sixth customer. The benefit per unit of production is ui = 1 for all
actors. Finally, the customers are assumed to build capital; that is, they use
a fraction of their produced net value Vi(t) − Ci(t) in period t to increase the
stock of maximum investment C+

i (t+1) in the following period. The parameters
qk
i , gk

i , ck
i , ui, di can be functions of time, energy and investment, but will be

treated here as constants in a given moment of decision.

Applying the replication equations of the evolutionary game in pI
i and pk

I ,
we study an example for the evolution of actors and coalitions over time (see
Figure 3). The model runs, starting with the same initial condition for actors
and coalitions, show a growth in the resources of actors and coalitions, where
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actors A1 and A6 and coalitionA2 have the strongest growth rates. Coalition A1

specializes in the old energy path and coalitionA2 in the new energy path, where
both have cost advantages. While A1 and A6 show the strongest specialization
with regard to the coalitions by completely investing in either A2 or A1 after
an initial adjustment, customer A3 is largely indifferent between the coalitions,
with a slight tendency towards coalition A2. However, more customers (three
together) still prefer coalition A1 representing the established cheaper energy
path with higher emissions.

7 Summary and Outlook

The concept of adaptive coalitions developed in this paper provides a frame-
work for studying the interaction between individual and collective players and
the evolution of coalitions in various fields. First applications have been out-
lined, in particular in energy management and emission reduction. While the
concept offers further development potential and requires more mathematical
elaboration in the context of the established theory of dynamic and coopera-
tive games, its usefulness is to be demonstrated in future applications in social,
economic and environmental sciences.
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Abstract
This chapter surveys recent developments on some basic solution concepts,
like stable sets, the core, the nucleolus and the modiclus for a very special
class of cooperative games, namely assignment games with transferable
utility. The existence of a stable set for assignment games is still an open
problem.

1 Introduction

In this survey we concentrate on a subclass of transferable utility (TU) games
called assignment games and on some properties of their solutions. Assignment
games with side payments were introduced by Shapley and Shubik [23]. These
games are models of two-sided markets. Players on one side, called sellers, sup-
ply exactly one unit of some indivisible good, say, a house in exchange for money,
with players from the other side, called buyers. Each buyer has a demand for
exactly one house. When a transaction between seller i and buyer j takes place,
a certain profit aij ≥ 0 accrues. The worth of a coalition is given by an assign-
ment of the players within the coalition which maximizes the total profit of the
assigned pairs. Therefore the characteristic function is fully determined by the
profits of the mixed pairs.

Assignment games have a nonempty core and are simply dual optimal solu-
tions to the associated optimal assignment problem. It is known that prices
which competitively balance supply and demand correspond to elements in the
core. The nucleolus, lying in the lexicographic center of the nonempty core, has
∗Partially funded by N.S.F. Grant DMS 0072678.
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the additional property that it satisfies each coalition as much as possible. The
corresponding prices favor neither the sellers nor the buyers, and hence provide
some stability for the market.

To find the nucleolus for any general cooperative game, Kohlberg [11] pro-
posed a weighted sum minimization approach leading to a single, but extremely
large linear program (LP). In order to ensure that the highest excess gets the
largest weight, the second highest excess gets the second largest weight, and so
on, coefficients from a very wide range must appear in the constraints (causing
serious numerical accuracy problems even for 3-person games). Since all possi-
ble permutations of the coalitions must be present among the constraints, the
approach enlarges the size of the LP enormously. In Owen’s [16] improved ver-
sion, although one has to solve a somewhat simpler minimization problem, even
then the constraints grow exponential in terms of the number of players. Indeed
for an n-person game he reduces the problem to a linear programming problem
in 2n+1 +n variables with 4n +1 constraints, where n is the number of players.

When solving an optimal assignment problem, the ordinary primal simplex
method encounters high levels of degeneracy. It is clearly outperformed by
specifically designed algorithms, such as Kuhn’s [12] well-known Hungarian
algorithm. Also for assignment games a method based on general linear pro-
gramming is not well suited, since the combinatorial structure of the char-
acteristic function cannot be effectively translated into a continuous problem
formulation. In the spirit of combinatorial techniques for assignment problems
we apply graph-theoretic techniques to replace linear programming for locating
the nucleolus for assignment games.

We will survey properties that are unique for the core of assignment games.
Besides the nucleolus, as a point solution concept there is yet another point
solution concept for all TU cooperative games, called the modiclus. However,
it should be remarked that for assignment games another classical solution
concept, namely the bargaining setM(i)

1 , introduced by Davis and Maschler [5]
(see also [1]) simply coincides with the core for assignment games [25] (also see
[7]). While the nucleolus is defined by ranking imputations lexicographically
via excesses, the modiclus is defined by lexicographical ranking bi-excesses (for
definitions see the next section).

2 Preliminaries

A (cooperative TU) game is a pair (N, v) such that ∅ 	= N is finite and v : 2N →
R, v(∅) = 0. A coalition is a nonempty subset of N and v is the coalition
function of (N, v). A Pareto optimal payoff vector (pre-imputation) is a vector
x ∈ R

N such that x(N) = v(N), where x(S) =
∑

i∈S xi (x(∅) = 0) for every
S ⊆ N and every x ∈ R

N with
∑

i∈∅ xi = 0 by convention. A pre-imputation x
is an imputation if it is individually rational, that is, if xi ≥ v({i}) for all i ∈ N .
A game v is normalized if for any S ⊆ T ⊆ N, v(S) ≤ v(T ). Let X(N, v) and
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I(N, v) denote the set of pre-imputations and imputations, respectively. Thus,
X(N, v) is a nonempty polyhedral set and I(N, v) is a polytope. Moreover,
I(N, v) 	= ∅, if and only if

∑
i∈N v({i}) ≤ v(N). The core of (N, v), C(N, v), is

the set of all imputations x such that

x(S) ≥ v(S) for all S ⊆ N. (1)

Note that the core is always a polytope, but it may be empty even for games
that have imputations. We will assume that I(N, v) is nonempty.

2.1 The Nucleolus and the Modiclus

Let (N, v) be a game. If H = (hk)k∈D is a finite family of real-valued functions
on X = X(N, v) (the family of dissatisfaction functions) and x ∈ X, then let
θH(x) ∈ R

d (where d = |D| denotes the cardinality of D) be the vector whose
components are the numbers hk(x), k ∈ D, arranged in a nonincreasing order,
that is,

θH
t (x) = max

T⊆D,|T |=t
min
k∈T

hk(x) for all t = 1, . . . , d.

Let ≥lex denote the lexicographical ordering on R
d; that is, x ≥lex y, where

x, y ∈ R
d, if x = y or if there exists 1 ≤ t ≤ d such that xk = yk for all 1 ≤ k < t

and xt > yt. The nucleolus of H, N (H) is defined (see [9]) by

N (H) = {x ∈ X | θH(x) ≥lex θH(y) for all y ∈ X}. (2)

Let the class H be taken to be the dissatisfactions of coalitions at any x ∈ R
N

measured by e(S, x, v) = v(S)− x(S) called the excess of S at x. Now the pre-
nucleolus of (N, v) is defined to be the set N ((e(S, ·, v))S⊆N ). Indeed the pre-
nucleolus [19], N ((e(S, ·, v))S⊆N ), is a singleton, abbreviated by ν(N, v). It is
also called the nucleolus if the domain of excesses is restricted to the imputation
set.

In order to define the modiclus of (N, v) we proceed similarly. Instead
of the ordered vector of excesses we take the nonincreasingly ordered vec-
tor of bi-excesses. (Here the bi-excess of a pair (S, T ), S, T ⊆ N , at x is
the number eb(S, T, x, v) = e(S, x, v) − e(T, x, v).) The bi-excess can be seen
as the level of envy of S against T at x. The modiclus of (N, v) is the set
N
(
(eb(S, T, ·, v))S,T⊆N

)
. The modiclus denoted by ψ(N, v) is a singleton [28].

Recall that the dual game of (N, v), is defined by v∗(S) = v(N) − v(N \ S)
for all S ⊆ N . Also, recall that (N, v) is
• constant-sum if v(S) + v(N \ S)v(N) for all S ⊆ N ;
• convex if v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ) for all S, T ⊆ N ;
• zero-monotonic if v(S∪{i}) ≥ v(S)+v({i}) for all i ∈ N and all S ⊆ N\{i}.

The following relationships between the modiclus and the pre-nucleolus are of
interest. (See [14] and [28,29].)
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Proposition 2.1. Let (N, v) be a game.

(1) Let ∗ : N → N∗ be a bijection such that N ∩ N∗ = ∅. If (N ∪ N∗, ṽ) is
defined by

ṽ(S ∪ T ∗) = max{v(S) + v∗(T ), v∗(S) + v(T )} for all S, T ⊆ N,

then ψi(N, v) = νi(N ∪N∗, ṽ) = νi∗(N ∪N∗, ṽ) for all i ∈ N .
(2) If (N, v) is a constant-sum game, then ψ(N, v) = ν(N, v).
(3) If (N, v) is a convex game, then ψ(N, v) ∈ C(N, v).
(4) If (N, v) is zero-monotonic, then ψ(N, v) and ν(N, v) are individually ratio-

nal.

If ν(N, v) ∈ I(N, v), then ν(N, v) is the nucleolus of (N, v).

2.2 Assignment Games

Let N = P ∪Q where P, Q is a partition of the player set N into two types of
players called sellers and buyers respectively. The players could also be colleges
and students or even men and women dating. From now on we will stick to
calling them sellers and buyers. Neither sellers nor buyers have any interest in
mutual cooperation among themselves. Suppose each seller owns an indivisible
object, say, a house which he values as worth at least ci to him. Each buyer
j has a ceiling price bij for the house of seller i. For any i ∈ P, j ∈ Q the
coalitional worth of the seller-buyer pair {i, j} is taken to be v({i, j}) = aij =
max(bij − ci, 0). Any arbitrary coalition S ⊆ N decomposes into sellers S1 and
buyers S2. Here if |S1| 	= |S2| then by introducing either dummy sellers or
dummy buyers if necessary we can assume |S1| = |S2|. We will take aij = 0 if i
or j is a dummy player, namely a dummy seller or a dummy buyer respectively.
Thus assuming |S1| = |S2|, let σS denote any arbitrary bijection σS : S1 → S2.
Given the coalition S and matrix A for player set N = P ∪ Q we define the
assignment game with characteristic function given by

vA(S) = max
σS

∑
i∈S1

aiσS(i).

If S ⊆ T, vA(S) ≤ vA(T ) and vA({i}) = 0 for all i ∈ N . Thus the pre-nucleolus
is the same as its nucleolus. The following theorem is due to Shapley and Shu-
bik [23].

Theorem 2.1. The game (N, vA) has a nonempty core. The worth of the
grand coalition N of vA is given by the following linear program:

max
∑

k∈P

∑
�∈Q ak�xk�

subject to∑
�∈Q xk̃� ≤ 1,∑
k∈P xk�̃ ≤ 1,

xk̃̃ � ≥ 0, ∀ k̃ ∈ P, �̃ ∈ Q.

(3)
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The core of the game consists of dual optimal solutions to this linear program-
ming problem. The core of the subgame (S, v) (that is, defined by v(T ) = vA(T )
for all T ⊆ S) is the set of optimal solutions of the dual program. Hence,
(N, vA) is totally balanced, that is, (N, vA) and each of its subgames (S, vA),
∅ 	= S ⊆ N , have nonempty cores and thus ν(N, vA) ∈ C(N, vA).

The following observation was made by Sudhölter [30].

Proposition 2.2. Given an assignment game (N, vA) with sellers P and buy-
ers Q the modiclus of (N, vA) treats P and Q equally, that is, ψ(P ) = ψ(Q)
where ψ = ψ(P ∪Q, vA).

Example 2.1. [Glove Game] Let P = {1, . . . , p}, Q = {1, . . . , q}, p ≤ q,
let A = (ak�)k∈P,�∈Q be given by ak� = 1, and let v = vA. Then v(S) =
min{|S∩P |, |S∩Q|} for all S ⊆ N . Moreover, let ν = ν(N, v) and ψ = ψ(N, v).
If p = q, then νi = 1/2 = ψi for all i ∈ N . If p < q, then νk = 1 for all k ∈ P
and ν� = 0 for all � ∈ Q. Proposition 2.2 and the well-known equal treatment
property yield ψk = 1

2 for k ∈ P and ψ� = p
2q for � ∈ Q. Hence, ψ ∈ C(N, v) if

and only if p = q.

Let (P∪Q, vA) be an assignment game. As all our solution concepts satisfy the
strong null-player property, we shall always assume that |P | = |Q|. Moreover,
our solution concepts are anonymous. Hence, we shall always assume that

P = {1, . . . , p}, Q = {1′, . . . , p′}, and vA(N) =
p∑

i=1

aii′ , (4)

that is, an optimal assignment for N is attained at the diagonal {{i, i′} | i =
1, . . . , p}.

3 Core Stability and Related Concepts

It was von Neumann and Morgenstern [32] who first introduced the notion of a
stable set. Stable sets are characterized by the notions of internal stability and
external stability. The two definitions hinge on comparing pairs of imputations
for a game (N, v). We say imputation x dominates imputation y via coalition
S(x �S y) if xi > yi, i ∈ S, and

∑
i∈S xi ≤ v(S). Intuitively players in coalition

S object to their share according to y when they have a better share of the
grand coalitional worth according to x which is not a dream, but is within their
reach. A set V ⊆ I(N, v) is called internally stable if no imputations in V can
dominate another imputation in V . Further the set V is externally stable if any
imputation not in V is dominated by some imputation in V via a coalition. A
set V is called stable for a game (N, v) if V is both internally and externally
stable.
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Since the core when it exists is a polyhedral set, the problem of existence is
simply reduced to the existence of solution for a system of linear inequalities.
Using the duality theorem, the so-called Bondareva [4] and Shapley [20] the-
orem sharpens the problem to the existence of balanced collections. Thus the
existence is decidable via a simplex algorithm in a constructive fashion. Unfor-
tunately, there is no such constructive approach to the existence of a stable set
for an arbitrary game (N, v). In general games that are physically motivated
have been found to have a plethora of stable sets. It was Lucas [13] who sur-
prised game theorists by constructing a ten-person game with no stable set. In
this connection we have the following.
Open Problem: Do all assignment games admit nonempty stable sets?

There are special classes of games for which the stable set exists and is unique.
Perhaps the best-known such class is the class of convex games. In fact Shap-
ley [21] proved that for convex games the core is the unique stable set. Since
assignment games have a nonempty core, a natural question is to identify those
assignment games whose core is also stable, and hence is the unique stable set.
For assignment games we have two special imputations called the seller’s corner
and buyer’s corner. In the seller’s corner the seller takes away the full coali-
tional worth and the optimally matched mate receives nothing. In the buyer’s
corner, it is the buyer who takes away the coalitional worth, with the optimally
matched mate receiving nothing. Since domination of an imputation by another
imputation is possible only with buyer-seller coalitional pairs, the above two
extreme imputations cannot be dominated by any imputation. Thus for the
core to be a stable set, necessarily these two imputations must lie in the core.
Interestingly, that condition is also sufficient for core stability [27].

Several other sufficient conditions for the stability of the core have been
discussed in the literature.

Given an n-person game (N, v) with a nonempty core, the game admits a
Large core if and only if for any n-vector x with x(S) ≥ v(S), ∀ S ⊆ N , there
exists a core element y such that y ≤ x coordinatewise. In an unpublished paper
Kikuta and Shapley [10] investigated another condition, baptized to extendabil-
ity of the game in the work of van Gellekom et al. [31]. For a totally balanced
game (N, v) the core is extendable if and only if any core element x of any sub-
game (S, v), S ⊆ N is simply the restriction of some core element y ∈ C(N, v)
to the coordinates in S. The core of a game (N, v) is exact if and only if for any
coalition S, there is some core element x such that x(S) = v(S). Sharkey [23]
and Biswas et al. [3] proved the following.

Theorem 3.1. For any totally balanced game (N, v) we have the following:
Core is Large ⇒ Core is extendable ⇒ Core is exact.

A game (N, v) is called symmetric if for any two coalitions S, T with |S| = |T |,
v(S) = v(T ). In fact Biswas et al. [3] proved the following.
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Theorem 3.2. For any totally balanced symmetric game or for games with
|N | < 5 Core is exact ⇒ Core is extendable ⇒ core is Large.

Unfortunately, given the data of the game, (N, v) we have no easy way to
verify any of these conditions.

It turns out that for the class of assignment games, Largeness of the core,
extendability and exactness of the game are all equivalent conditions, but are
strictly stronger than the stability of the core. However for assignment games
(vA, N) many of these implications are equivalent and are easily verifiable via
the matrix A defining the assignment game.

Let A be a nonnegative real matrix such that (4) is satisfied. We say that
A has a dominant diagonal if aii′ ≥ aij′ and aii′ ≥ aji′ for all i, j ∈ P . Also,
we say that A has a doubly dominant diagonal if aii′ + ajk′ ≥ aik′ + aji′ for all
i, j, k ∈ P . Now we are able to state the following characterization [27].

Theorem 3.3. Let P = {1, . . . , p}, Q = {1′, . . . , p′}, let A be a nonnegative
real matrix on P ×Q satisfying (4), let N = P ∪Q, and let vA be the coalition
function of the corresponding assignment game.

(N, vA) has a stable core ⇔ A has a dominant diagonal.
(N, vA) has a Large core ⇔ (N, vA) has an extendable core ⇔ (N, vA) is
exact ⇔ A has a dominant and doubly dominant diagonal.
(N, vA) is convex⇔ A is a diagonal matrix (that is, aij′ 	= 0 implies j = i).

Despite Example 2.1, from the above theorem we may deduce the following
result for the modiclus [18].

Theorem 3.4. The modiclus of an assignment game is in the core, provided
the core is stable.

The authors present a 15-person game which is exact and has a Large core
and hence has a stable core and yet its modiclus is not a member of the core.

4 The Geometric Shape of the Core for Assignment Games

While Shapley and Shubik characterized the core of assignment games as dual
optimal solutions of (3), they made another key observation that given any two
core elements (u1, v1), (u2, v2), the elements (u1∨u2, v1∧v2), and (u1∧u2, v1∨
v2) are also core elements where ∨,∧ are the usual lattice operations, namely
for vectors u1, u2, (u1 ∨ u2) = max(u1, u2) where max is taken coordinatewise.

Interestingly, the dual inequalities that are used for determining the core as
the optimal dual allocations have a special geometric structure. The core is
obtained by starting with a cube bi ≤ ui ≤ ei, i = 1, . . . , p for some constants
bi, ei i = 1, . . . , p and then chopping off the 45-45-90 degree triangular cylinders
determined by inequalities of the type

ui − uk ≥ dik ∀ i, k ∈ 1, . . . , p; i 	= k
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for some constants {dik}. In fact the converse is also true, namely Quint [17]
proved the following.

Theorem 4.1. Let P be a polytope with elements (u1, . . . , up) ∈ Rp satisfying

ui − uk ≥ dik ∀ i, k ∈ 1, . . . , p; i 	= k

bi ≤ ui ≤ ei

for some constants {dik}, bi ≥ 0, ei ≥ 0 i = 1, . . . , p. Then we can always find
an assignment game with p sellers whose u space core coincides with P .

The extreme points of the core of assignment games can also be nicely rec-
ognized by the following graph-theoretic technique of Balinsky and Gale [2].
Given any core element (u, v) we can associate with the core element a graph
Γuv with vertices as P ∪Q and with edges (p, q) where up + vq = apq.

Theorem 4.2. A core element (u, v) of the assignment game vA is an extreme
point if and only if the graph Γuv is connected.

The extreme points of the cores of subgames of assignment games have the
following extension property [2].

Theorem 4.3. If (ũ, ṽ) is an extreme point of the core of some subgame on
P̃ ∪ Q̃ of an assignment game with sellers P and buyers Q and defining matrix
A, then there is an extreme point (u, v) of the polyhedron

X = {(u, v) : up + vq ≥ apq, up0 = 0, p ∈ P, q ∈ Q},

where 0 denotes the dummy buyer such that (u, v) agrees with (ũ, ṽ) on P̃ ∪ Q̃.

The cores of assignment games and convex games share the following common
properties [8,15].

Property 4.1. In each extreme point of the core allocations of an assignment
game (N, v) there is at least one player i who receives his marginal contribution
v(N)− v(N \ {i}).

Property 4.2. Every marginal contribution for any player is attained at some
core element.

5 An Algorithm to Compute the Nucleolus

Given a game (N, v) and an imputation x let f(S, x) = −e(S, x, v) (see Sec-
tion 2.1). Hence f(S, x) is the satisfaction of the coalition S at imputation x. As
we focus on assignment games, we shall henceforth always assume that (N, v)
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is zero-monotonic. Hence the nucleolus of the game is just its pre-nucleolus. We
now slightly modify our viewpoint. With H = (−f(S, ·))S⊆N the nucleolus of a
zero-monotonic game (N, v) is the unique member of the set given by the right-
hand side of (2) in which we may replace X by I(N, v) by Proposition 2.1. By
the lexicographic center of a nonempty closed convex subset D of the imputa-
tion set, we mean the unique point x∗ ∈ D which lexicographically minimizes
the vector θH(x) over D (that is, the set defined by the right-hand side of (2)
with X = D is a singleton as shown by Schmeidler [19]). Even though the deter-
mination of the nucleolus is quite difficult in general, it is possible to locate it
efficiently for special subclasses of games. We will describe an algorithm [26]
to locate the nucleolus for an assignment game. We will reinterpret the game
slightly differently as follows.

Stable Real Estate Commissions: House owners P = {U1, U2, . . . , Up},
each possessing one house, and house buyers Q = {V1, V2, . . . , Vq}, each want-
ing to buy one house, approach a common real estate agent. Not revealing
the identity of the buyers and sellers, the agent wants an up-front commission
aij ≥ 0 if he links seller Ui to buyer Vj . The sellers and buyers prefer fixed com-
missions u1, u2, . . . , up and v1, . . . , vq. The agent has no objection if they meet
his expectation for every possible link. He guarantees their money’s worth in
his effort and promises to take no commission from a seller (buyer) if he cannot
find a suitable buyer (seller).

We define P0 = P ∪ {0}, Q0 = Q ∪ {0}, ai0 = 0 ∀ i ∈ P0, a0j = 0 ∀ j ∈ Q0,
u0 := 0, v0 = 0, and all the constraints in (1) reduce to

fij(u, v) = ui + vj − aij ≥ 0 ∀ (i, j) ∈ P0 ×Q0). (5)

If σ ⊆ P ∪Q is an optimal assignment and D is the core we get

{i, j} ∈ σ ⇒ fij(u, v) = 0 ∀ (u, v) ∈ D. (6)

With the convention that (0, 0) ∈ σ we write (i, 0) ∈ σ ((0, j) ∈ σ) if in σ row
i ∈ P (column j ∈ N) is not assigned to any column j ∈ N (row i ∈ Q). Here
σ is extended to a subset of P0 ×Q0 so that (6) also expresses the fact that D
lies in the hyperplane ui = 0 (or vj = 0) for any unassigned row i (column j).
It is easily seen that

D = {(u, v) : fij(u, v) = 0 ∀ (i, j) ∈ σ, fij(u, v) ≥ 0 ∀ (i, j) 	∈ σ}. (7)

Here and from now on (i, j) 	∈ σ is written instead of (i, j) ∈ (P0, Q0) \ σ.
Among many vectors of commissions (u0, u1, . . . , um; v0, v1, . . . , vn) in D for

the agent, he wants to choose one that is “neutral” and “stable.” The lexico-
graphic center is a possible option that is neutral and stable for all pairs.

For every (u, v) ∈ D the first max(p, q) + 1 components (those coordinates
k = (i, j) corresponding to (i, j) ∈ σ) of θH(u, v) are equal to 0. Let

α1 = max
(u,v)∈D

min
(i,j)�∈σ

fij(u, v).
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Let

D1 =
{

(u, v) ∈ D : min
(i,j)�∈σ

fij(u, v) = α1

}
Let

σ1 = {(i, j) : fij(u, v) = constant on D1}.

The set σ1 can be regarded as an “assignment” between the equivalence classes
of the relation ∼1 defined on M0 and N0 by

i1 ∼1 i2 if and only if ui1 − ui2 is constant on D1,

j1 ∼1 j2 if and only if vj1 − vj2 is constant on D1,

respectively.

α2 = max
(u,v)∈D1

min
(i,j)�∈σ1

fij(u, v),

D2 =
{

(u, v) ∈ D1 : min
(i,j)�∈σ1

fij(u, v) = α2

}
,

σ2 = {(i, j) ∈ (M0, N0) : fij(u, v) is constant on D2}.

Let i ∼2 k if and only if ui−uk is a constant on D2. Observe that σ2 ⊇ σ1 ⊇ σ.
Therefore, after some t ≤ min(m, n) rounds the process terminates with

σt = {(i, j) = (M0 ×N0) : fij(u, v) is constant on Dt}.

This means that a subset of D is found that is parallel to all hyperplanes defining
D. Since they include ui = 0 for all i ∈M and vj = 0 for all j ∈ N , this subset
must consist of a single point. It can be proved [26] that this point is precisely
the lexicographic center of D.

Next we illustrate by an example how to implement the procedure leading to
the lexicographic center.

Example 5.1. We are given

A =

⎡⎣ 6 7 7
0 5 6
2 5 8

⎤⎦ ,

where P = {1, 2, 3} = Q. The unique optimal assignment for A is σ = {(1, 1),
(2, 2), (3, 3)}, i.e., the entries in the main diagonal. Starting with all commissions
collected entirely from sellers, one could use the procedure to be described below
to locate the u worst point (u1, v1) = (0, 6, 4, 6 : 0, 0, 1, 2) in D. Further with
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rows numbered 0, 1, 2, 3 and columns numbered 0, 1, 2, 3 we can read off
(u1, v1) from column 0, and row 0 of the matrix

[fij(u1, v1)] =

⎡⎢⎢⎣
0 0∗ 1 2
6 0 0∗ 1
4 4 0 0∗

6 4 2 0

⎤⎥⎥⎦ .

Even though the coordinates for the starred entries above are the next set with
higher fij values in the lexicographic ranking, they are still 0. However, from
now on there will be strict improvement with higher values when we follow the
iteration. We want to move in a direction (s, t) inside D with one end at the
extreme solution (u1, v1). Let the new point be (u2, v2) = (u1, v1) + β · (s, t)
for some β ≥ 0. Since the point (u1, v1) is the worst for all sellers in terms of
commissions in D, they would like their commissions reduced.

Since (u1, v1) is the farthest from the hyperplanes indexed by (0, 1), (1, 2) and
(2, 3) (indicated by a * in the above matrix) this translates to the requirements

s0 + t1 ≥ 1, s1 + t2 ≥ 1, s2 + t3 ≥ 1 (8)

with at least one inequality. Since we must remain in D we also have

si + ti = 0, i = 1, 2, 3. (9)

Combining (8) and (9) gives

t1 − t0 ≥ 1, t2 − t1 ≥ 1, t3 − t2 ≥ 1 (10)

with at least one equality to hold. Thus the direction for improvement for sellers
is (s, t) = (0,−1,−2,−3 : 0, 1, 2, 3). Next we determine how far we can move
along this direction inside D starting from the initial u worst corner of D. That
is

[fij((u1, v1) + β · (s, t))] =

⎡⎢⎢⎣
0 (0 + β)∗ 1 + 2β 2 + 3β

6− β 0 (0 + β)∗ 1 + 2β
4− 2β 4− β 0 (0 + β)∗

6− 3β 4− 2β (2− β)� 0

⎤⎥⎥⎦ ,

where ∗ refers to the worst satisfied coalition at the current imputation, and
# refers to the penultimate coalition. Compared to the worst satisfied mixed
coalition consisting of the dummy seller 0 with buyer 1 with satisfaction 0 + β,
the next worst hit coalition is the one with seller 3 and buyer 2 and with
satisfaction f32 = 2−β which is the first one to reach the same level as the worst
hit one when improved. To reach this common level we equate 2−β = 0+β and
we get β = 1 and (u2, v2) = (0, 5, 2, 3; 0, 1, 3, 5). It can be shown that (u2, v2) is
the u-worst corner (v-best corner) in D1.
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0 1∗ 3 5

5 0 1∗ 3 −1

2 3 0 1∗ −2

3 2 1∗ 0 −2

+1 +2 +2

β = 1.

The updated distance matrix is compactly represented by
Here the left-side border frame is the column vector u2 and the top border

frame is the row vector v2 for all the non-dummy players. We also have the
right-side frame with the column vector s = (−1,−2,−2)T and the bottom
frame with the row vector t(1, 2, 2).

They are derived from the following considerations: To improve further from
(u2, v2) = (0, 5, 2, 3; 0, 1, 3, 5) we need to find a direction to move inside D1.
Observe that the starred entries represent the worst hit coalitions at the current
point. If the rows and columns are numbered 0,1,2,3 as before, the satisfactions
of sellers with dummy buyers are given by the left-side frame. The satisfaction
of buyers with dummy sellers are given by the entries of the top frame. Thus
we have a starred value 1 at entries (0,1), (1,2), (2, 3) and (3, 2). This means
that f01(u, v) ≥ 1, f12(u, v) ≥ 1, f23(u, v) ≥ 1, f32(u, v) ≥ 1 for all (u, v) ∈ D1.
Since on D1 we have f22(u, v) = f33(u, v) ≡ 0, we have f23(u, v) = f32(u, v) ≡ 1
∀ (u, v) ∈ D1. Thus the new direction (s, t) must satisfy s0 + t1 ≥ 1, s1 + t2 ≥
1, s2 + t3 = 0, s3 + t2 = 0. Thus the direction is (s, t)(0,−1,−2,−2 : 0, 1, 2, 2).

Thus we notice that on the new set D2 ⊆ D1 not only the coalitions
(1, 1), (2, 2), (3, 3) of buyer-seller pairs have constant value for the satisfaction
at the imputations but also have constant satisfaction for the coalitions (2,3),
(3,2). Thus what were originally boxed coalitions for D1 are also boxed for D2

and so are (2, 3), (3, 2) coalitions. Now to determine the new step size β for the
new direction we proceed as follows. Consider the matrix

(1 + β∗) 3 + 2β 5 + 2β

5− β 0 (1 + β)� 2 + β −1

(2− 2β)� 3− β 0 1 −2

(3− 2β) (2− β) 1 0 −2

+1 +2 +2

β = 1

The decreasing distance f20 = 2−2β is the first to reach the increasing second
smallest distance 1 + β. It happens when β = 1/3. So the maximal distance in
this direction is β = 1/3, and the u-worst corner of the set D2 of points with the



On Assignment Games 191

second smallest distance 4/3 is (u3, v3) = (0, 14/3, 4/3, 7/3; 0, 4/3, 11/3, 17/3).
The updated distance matrix is

[fij(u3, v3)] =

0 4/3∗ 11/3 17/3

14/3 0 4/3∗ 7/3

4/3∗ 8/3 0 1

7/3 5/3 1 0

.

Again (u3, v3) is the u-worst corner (v-best corner) in D2. To move inside
D2, we look for direction (s, t). Using the starred entries, (s, t) must satisfy
s0 + t1 ≥ 4/3, s1 + t2 ≥ 4/3, s2 + t0 ≥ 4/3. Also since f23(u, v) = f32(u, v) ≡ 1
on D2, we easily find the above system of inequalities inconsistent. Thus no
more movement inside is possible. We have reached the lexicographic center.

Remark 5.1. Starting with the worst set of commissions for all sellers and
using Kuhn’s Hungarian method [12], the algorithm locates the unique set of
commissions that again favors all the buyers in the restricted new domain D
of commissions. The next step is to locate the unique direction (s, t) and the
unique step size β in finding the new set of commissions. We have not used
in our example any efficient procedure to find the direction (s, t). Solymosi
and Raghavan [26] develop an explicit graph-theoretic algorithm to find this
direction. The decomposition of the payoff space and the lattice structure of
the feasible set at each iteration are utilized in associating a directed graph.
If the graph is acyclic, the problem of finding the new direction (s, t) can be
transformed to determine the longest path to each vertex of the graph. Cycles
are used to collapse vertices so that the graph has fewer vertices. The algorithm
stops when the graph is reduced to just one vertex. The assignment game is the
simplest of cooperative games which are balanced and hence have a nonempty
core. The Real Estate Game was first considered by Shapley and Shubik [23].
The same problem was viewed in the context of competitive pricing of indivisible
goods by Gale [6]. Pooling peoples’ utility functions amounts to interpersonal
comparisons and hence has remained alien to mainstream economists. For a
version of the Real Estate Game without side payments see [22].
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Abstract
Proceeding from the latest versions of the Folk theorems, this chapter
shows that “natural” evolution of behavior in repeated games in human
populations is a very unstable process which may be easily manipulated
by outside forces. Any feasible and individually rational payoff of the game
may be converted into a globally stable outcome by an arbitrary small
perturbation of the payoff functions in the repeated game. We show that
this result also holds for a trembling-hand perturbation of the game, and
prove a new version of the Folk theorem for this case. This conclusion is
in contrast to the result of R. Axelrod, K. Sigmund and M. A. Nowak
and some other researches on the evolution of behavior in the repeated
Prisoner’s Dilemma. We discuss the reasons for these different results.

1 Introduction

The question: Does repetition lead to cooperation? has been widely discussed in
the game-theoretic literature since the publication of the book by Axelrod [1].
Until now the answer has been ambiguous. Computer simulations started by
this work and continued by Novak and Sigmund [9,10] confirm survival and
superiority of the behavior strategies which lead to cooperation. This result
was also supported by theoretic researches [4,3]. However, the Folk theorems
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International Symposium on Dynamic Games and Applications for their useful dis-
cussions.
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for repeated games (see Van Damme [13] for a survey of this field) show that
every individually rational outcome of a one-stage game can be supported at
some Nash equilibrium of the repeated game. With respect to the evolution
of cooperation, this means that cooperation is not distinguished among many
other equilibrium forms of behavior.

The possibility has still remained that the cooperative outcome is the only
stable one in some sense, or at least it has some robust domain of attraction.
In this context, the recent version of the Folk theorem for dominance solu-
tions [16,17] is of special interest. Besides other advantages, the concept of iter-
ated strict dominance elimination (see [7]) is very useful for investigation of
the game dynamics. For a wide class of game dynamical systems it is known
that the frequencies of all eliminated strategies converge to 0 as time tends to
infinity. This class includes, in particular, “Cournot tatonnement” [7], replica-
tor dynamics [14] and selection dynamics [8].

Our result [17] establishes that the set of strict dominance solution payoffs of
perturbed finitely repeated games converges to the set of individually rational
convex combinations of payoffs in the stage game as the number of repetitions
tends to infinity and the perturbation value tends to 0. With respect to evo-
lution of cooperation, this contradicts the conjecture on the special status of
cooperative behavior in game dynamics, at least for repeated games with com-
plete information and unbounded rationality of players.

In a typical case, the construction of the dominance solution corresponding
to a desirable behavior in the repeated game is similar to the recursive con-
structions of the subgame perfect equilibrium in Benoit and Krishna [2] and
Fudenberg and Maskin [5]. At every stage each individual has to either real-
ize the corresponding path or punish “the last disturber,” i.e., the last player
(with the smallest index) who deviated from the rule, if he has not already been
sufficiently punished.

The most important innovation we introduced is a special end-game construc-
tion. It may be interpreted as the perturbation of the repeated game payoffs by
some operating center (called the Manipulator), who rewards or penalizes play-
ers depending on their behavior during the game. The presence of such a cen-
ter interested in the outcome of the game is typical for social interactions. For
instance, recall the prosecutor in the original version of the Prisoner’s Dilemma.
He is obviously uninterested in “cooperative” behavior of the “players.” The
whole concept of cooperative behavior is doubtful in such situations involving
several persons with different interests and asymmetric positions.

The players’ behavior corresponding to subgame perfect equilibria in [2]
and [5] (as well as the dominance solution in our paper [17]) is rather sophis-
ticated. This chapter aims to provide a very simple construction of the domi-
nance solution for every outcome where payoffs to all players are not less than
their payoffs at some Nash equilibrium of the one-stage game. After any devi-
ation, players just switch to playing the Nash equilibrium until the end of the



The Folk Theorems in the Framework of Evolution and Cooperation 199

repeated game. The “last disturber” loses his/her award. Thus, the idea of the
solution is close to that of Radner [11], who considered the Nash equilibria
of a similar perturbation of the repeated oligopoly game. This case covers all
individually rational outcomes in the Prisoner’s Dilemma and in the Coordina-
tion game with one efficient equilibrium. Then we generalize this result for a
“trembling-hand” perturbation of a stage game according to Selten [12], that
is, for the case where players mistake in their actions with a small probability.
In conclusion we give a brief survey of results which confirm the convergence of
evolutionary dynamics to cooperative behavior strategies and discuss why they
differ from our results.

2 The Formal Definitions

Let Γ be a normal form game with the set of players I = {1, . . . , n}, the sets of
strategies X1, . . . , Xn and the payoff functions f1(x), . . . , fn(x), x ∈

⊗
i Xi. Let

(x‖yi) denote the result of substitution of yi for xi in the strategy combination
x = (xi, i ∈ I).

Strategy xi weakly dominates strategy yi on the set X ⊆ X if there exists
ε ≥ 0 such that for any z ∈ X

fi(z‖xi) ≥ fi(z‖yi) + ε. (1)

In contrast to the standard definition, we do not require the strict inequality
for at least one z ∈ X̄.

Strategy combination x̄ is a weak dominance solution if it may be obtained
by means of the weak dominance elimination procedure (see Moulin [7]). That
is, if there exists a sequence of sets X = X1 ⊃ X2 ⊃ · · · ⊃ Xk = {x}, where,
for every l = 1, . . . , k − 1, X l =

⊗
i X l

i , for any xi ∈ X l
i \ X l+1

i there exists
yi ∈ X l+1

i that weakly dominates xi on X l ; xi strictly dominates yi on X if
(1) holds for ε > 0; x is a strict dominance solution, if it can be obtained by
means of successive elimination of strictly dominated strategies.

Consider a T -fold repetition ΓT of a normal form game Γ. In order to avoid
confusion between strategies in the ΓT and strategies in the initial game, the
latter will be referred to as actions. At any time t every player knows the actions
of all participants at previous periods. Let xt ∈ X be the action combination
at time t, ht = (x0, . . . , xt−1) a history at this time, Xt the t-fold Cartesian
product of X, HT =

⋃T−1
t=0 Xt the set of all histories to time T (X0 def ={0}).

A strategy of player i is a mapping mi : HT−1 → Xi. This mapping determines
the choice of the action for every time t and any history ht. Each strategy
combination m = (mi, i ∈ I) induces the path of ΓT h(m) = {xt(m)}, where
x0(m) = 0, x1(m) = m(0), xt(m) = m(x0(m), . . . , xt−1(m)), t ≥ 1. The payoff
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function of player i is given by

Fi,T (m) = Fi,T (h(m)) =
T−1∑
t=0

fi(xt(m))/T.

For any game Γ with sets of strategies Yi and payoff functions ui(y),
i = 1, . . . , n, and for any ε > 0, let A(Γ, ε) denote the set of games with the
same sets of players and strategies and payoff functions u′

i(y) which differ
from ui(y) by less than ε. Since the repeated game ΓT is a particular case of
a normal form game, we may consider a set A(ΓT , ε) of its perturbations. Let
us stress that any perturbed repeated game Γ̂ ∈ A(Γ̃, ε) is obtained from Γ̃
by variation of its payoff functions. The set A(ΓT , ε) is wider than the set of
repeated games corresponding to the perturbed stage games Γ′ ∈ A(Γ, ε).

Our result in Ref. [17] describes the limit set of the dominance solution payoffs
of games Γ̂ ∈ A(ΓT , ε) as T tends to infinity and ε tends to 0. Let vi be the
minmax payoff of player i:

vi = min
x

max
xi

fi(x‖xi).

Let W = {f(x), x ∈ X} be the set of payoff vectors for pure strategies, let
CoW denote the convex hull of W and let Φ = {w ∈ CoW | w ≥ v} be the
set of individually rational convex combinations of payoff vectors in the stage
game Γ; M = maxx,z∈X |f(x)− f(z)|.

Theorem 2.1. The set of strict dominance solution payoff vectors of games
Γ̂ ∈ A(ΓT , ε) converges (in the sense of Hausdorff distance) to the set Φ as T
tends to ∞ and ε tends to 0.

Proof. The proof is given by Vasin in [17]. �

The construction of the dominance solution and the payoff perturbation are
rather sophisticated in the general case. The next section studies the problem
for a one-stage game Γ with a Nash equilibrium x̄.

3 The Dominance Solution Supporting an Outcome Which
Dominates Some Nash Equilibrium

For any sequence z(1), . . . , z(r) of action profiles such that
∑

k f(z(k))/r ≥
f(x̄) we describe a simple payoff perturbation and a strategy profile m∗ which
supports repetition of this sequence at the dominance solution of the repeated
game with the perturbed payoff functions.

In order to explain the construction of the dominance solution corresponding
to a sequence of action profiles, let us consider a version of the coordination
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game with the set of actions {1, 2, 3} and the payoff matrix

1 2 3
1 (5, 5, 0) (1, 0, 0) (0, 3, 5)
2 (0, 1, 0) (1, 1, 2) (0, 0, 0)
3 (3, 0, 5) (0, 0, 0) (0, 0, 0)

where the third component shows the gain of the Manipulator who does not
act but is interested in his payoff. More precisely, we assume that he would like
to maximize his average payoff in the T -fold repetition. Thus, action profiles
(1, 1) and (2, 2) are resp. the “cooperative” and the “bad” Nash equilibrium for
the active players, and alternation between (1, 3) and (3, 1) is optimal for the
Manipulator among sequences of action profiles which are individually rational
for players 1, 2.

If the Manipulator does not interfere then the natural outcome of the game is
repetition of the cooperative equilibrium. Our purpose is to describe a pertur-
bation of the payoff function in ΓT which supports alternation between (1, 3)
and (3, 1) at the dominance solution of the perturbed repeated game. The cor-
responding strategy of each player is to repeat his/her actions in this sequence
until the first deviation and to play constantly action 2 after the deviation if
it happens. The payoff function perturbation may be interpreted as “awards”
which the Manipulator pays to the players for “good behavior” in this game.
The value of the “award” is 6/T . If nobody deviates from alternating between
(1, 3) and (3, 1) then both players get their awards. Otherwise, the player who
is the last to deviate from the specified strategies is penalized. If the last devi-
ation involved both players simultaneously then only player 1 does not get the
award.

The weak dominance elimination may be realized as follows. At first we can
exclude any strategy such that the first player deviates at time T − 1 for some
history. If player 1 is the “last disturber” according to history and player 2 uses
action 2 at this time then this deviation is unprofitable. Otherwise, player 1
gains at most 5/T by deviation but loses 6/T because he/she either becomes
the last disturber or misses the chance to pass this label to player 2. At the
next stage every strategy which permits deviation by player 2 at time T − 2 is
eliminated in a similar way. Now we can continue this reasoning for the time
T−2, T−3, etc. After 2T stages of eliminations, we obtain the desirable solution.
Thus, by spending 12/T for awards, the Manipulator increases his average gain
from 0 to 5 in this example.

Now, consider a general case where desirable behavior corresponds to rep-
etition of z(1), . . . , z(r). Then the strategy profile is as follows. The players
repeat this sequence until at least one of them deviates from this choice. Then
they switch to playing x̄ at every repetition until the end of the game. In order
to define the payoff perturbation, consider the last disturber, that is, the last
player (with a minimal index) not to conform to the specified behavior rule.
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This player is penalized with the fine rM . More formally,

m∗
i (h

t) = zi({t mod m}+ 1) if xs = zi({s mod m}+ 1) for any s < t,

otherwise m∗
i (h

t) = x̄i. (2)

For any path hT , let

s(ht) = max{s < t s.t. xs 	= m∗(hs)}

denote the last time of deviation before t, and

i(ht) = min{i s.t. x
s(ht)
i 	= m∗

i (h
s(ht))}

denote the last disturber to time t. The fine for deviation is

ϕi(hT ) = rM/T for i = i(hT )

and is 0 for any other i. Finally, the perturbed payoff function is

F̂i(m) = Fi,T (m)− ϕi(h(m)), i = 1, . . . , n. (3)

Proposition 3.1. Strategy profile m∗ defined according to (2) is a weak dom-
inance solution of game Γ̂ with payoff functions (3).

Proof. The proof will repeat the arguments of the preceding example. Consider
the player 1 and any strategy m1 such that m1(h

T−1) 	= m∗
1(h

T−1) for some
hT−1. Let us show that strategy m̄1, s.t. m̄1(ht) = m1(ht) for any t < T − 1
and m̄1(hT−1) = m∗

1(h
T−1) for any hT−1, weakly dominates m1. Consider any

strategy profile m including m1. If hT−1(m) = hT−1(m∗) then deviating from
m∗

1(h
T−1(m)) is unprofitable since it makes player 1 the last disturber, and he

has to pay the fine rM/T while by deviating he gains at most M/T . Otherwise,
consider the last disturber to the time T−1. If i(m, T−1) 	= 1 or xj(hT−1(m)) 	=
x̄j for some j 	= 1 then by deviating player 1 is missing the chance to pass
the label of the last disturber to another player, and we can argue as in the
previous case. Otherwise, deviating brings nothing since x̄ is a Nash equilibrium.
We can continue this reasoning by induction for i = 2, 3, . . . , n and then for
t = T −2, . . . , 0. The only correction is that by deviating at time T −k a player
can gain at most min{k, r}M/T . �

4 The Theorem for a Trembling-Hand Perturbation
of the Model

Random mistakes introduce some difficulties in the proposed scheme of behavior
regulation. Consider a game GT,d which is a trembling-hand perturbation of the
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repeated game ΓT according to Selten [12]. In this game, for any history ht and
strategy mi, the action of player i in period t is mi(ht) with probability 1− d,
other action xi 	= mi(ht) with probability d/(|Xi| − 1). Thus m determines a
probability distribution Pd(hT | m) over the set of paths hT . Let each player
be interested in his/her expected payoff

gi(m) =
∑
hT

Pd(hT | m)Fi(hT ).

Assume that the desirable behavior of the players corresponds to action profile
x∗ such that f(x∗) ≥ f(x̄) for some Nash equilibrium x̄. Consider the strategy
profile m∗ corresponding to x∗ according to the definition of Section 3. Let us
define the perturbed payoff functions as follows. For every path hT , we can
identify the last disturber up to time T . Let him pay the fine ϕ̄ while other
players pay nothing. Formally, the value of the fine is given by the following
function:

ϕi(hT ) = ϕ̄ if i = i(hT ), otherwise ϕi(hT ) = 0. (4)

Consider a game ĜT with payoff functions

ĝi(m) =
∑
hT

p(hT | m)(Fi(hT )− ϕi(hT )).

Proposition 4.1. Let the value of the fine ϕ̄ > M/(TaT ), where a
def= (1−d)n.

Then m∗ is a strict dominance solution of the game ĜT if 1 − d > d/|Xi|,
i = 1, . . . , n.

Proof. Assume that for every i = 1, . . . , n we have already eliminated all
strategies mi such that mi(hτ ) 	= m∗

i (h
τ ) for some τ > t, hτ . Consider any

ht and m1 such that m1(ht) = z1 	= m∗
1(h

t). Let us show that m̄1, such that
m̄1(ht) = m∗

1(h
t), m̄1(h́τ ) = m1(h́τ ) for any other τ, h́, strictly dominates m1.

First consider the case where 1 is the last disturber after ht. Then, according to
m∗, the players have to play x̄ from t until the end of the game. Let ĝi(ht, m)
denote the expected gain of player i in Ĝ under history ht and profile m. Then,
for any d > 0,

ĝ1(ht, m || m̄1)− ĝ1(ht, m)

> min
x

((1− d)2 − (d/ | Xi |)2)(ĝ1(ht, x || x̄1, m
∗)− ĝ(ht

1, x || z1, m
∗)).

Consider the last difference. If x = x̄ then player 1 gains nothing by deviating
since x̄ is a Nash equilibrium, and behavior from time t+1 on does not depend
on xt

1. Othervise, by deviating from x̄1, player 1 gains at most M but increases
the probability to become the last disturber at time T and to pay the fine ϕ̄ in
a(T−t−1). Thus, m̄1 � m1.
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The same reasoning works if some other player is the last disturber at time t. If
nobody is, then the only difference is that the expected total gain in repetitions
since t + 1 decreases by deviation since the players will have to switch from x∗

to x̄. We can continue this argument for players 2, . . . , n and thus complete the
proof. �

Proposition 4.2. The mean time of playing x∗ in the game Ĝ under the
strategy profile m∗ is

τ(T ) = (1− aT )/(1− a)− TaT−1(1− a). (5)

Proof. The probability of playing x∗ t times, t < T , is at(1 − a), and for T

this probability is aT . Thus, the mean time is (1 − a)
∑T−1

1 τaτ + TaT which
coincides with (5). �

Proceeding from Propositions 4.1 and 4.2, the profile m∗ does not ensure the
desirable behavior for T > 1/d. Let T = k/d for some k > 1. Then, for d small
enough, a ≈ 1 − nd, aT ≈ e−nk, the mean share of the time of playing x∗ is
τ(T )/T ≈ (1− e−nk)/nk− n(1− nd)e−nk and tends to 0 as k tends to infinity,
while the necessary amount of the fine is about dMekn/k and tends to infinity.

One possibile way to improve the strategy is by partitioning the time of the
game into s intervals of the same length T̄ = k/d and playing the profile m∗

independently in each interval. Let m∗∗ denote this strategy combination. The
corresponding payoff perturbation assumes that, after each interval, the players
pay the fine (4) according to their behavior within this interval. Let ϕ∗∗(hT )
denote the corresponding perturbation of the total payoff. Then the maximal
value of the perturbation is about dMekn/k for any small d and k ∼ O(1/d1/s),
s ∈ Z. Under m∗∗, the mean time of playing x∗ related to T is the same as in
(5). Thus, for any game Γ with a Nash equilibrium x̄ , we obtain the following
result.

Theorem 4.1. For any ε > 0, there exist d́ > 0 and T́ such that for any
d < d́ and T > T́ , every action profile x∗ such that fi(x∗) ≥ fi(x̄), i = 1, . . . , n,
may be supported at the strict dominance solution m of game Ĝ ∈ A(GT , ε)
such that the mean share of the time of playing x∗ under m exceeds 1− ε.

Proof. Consider the game ĜT with the payoff perturbation φ∗∗. For d small
enough, the strategy profile m∗∗ is a strict dominance solution if the fine exceeds
dMekn/k. The mean share of the time of playing x∗ is given by (4). In order to
make this share more than 1 − ε, let us set k such that 1 − e−nk > nk(1 − ε).
Since e−nk < 1− nk + nk2/2 it suffices to set k = 2ε/n. Now, in order to make
the total payoff perturbation less than ε, choose d such that ndMe2ε/2ε < ε. It
suffices to take d̄ = ε2/nM . Finally, T should be large enough to divide it into
equal intervals of length k/d = 4M/ε. �
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Corollary 4.1. For any game Γ with Nash equilibrium x̄ such that vi = fi(x̄),
i = 1, . . . , n, consider a trembling-hand perturbation GT of a T -fold repetition
of Γ. The set of the strict dominance solution payoffs in games ĜT ∈ A(GT , ε)
converges to the set Φ of individually rational convex combinations of payoffs
in Γ as T tends to infinity and ε tends to 0.

Proof. The only difference in the proof of the theorem is that, instead of play-
ing x∗ in every repetition, the desirable behavior in this case is a repeated
sequence of action profiles z1, . . . , zr such that

∑
k f(zk)/r approximates a

given w ∈ Φ. The minor modifications include r-fold increasing of the fine.
Thus, we have proved the Folk theorem for the dominance solutions of games
in the specified class. �

5 Discussion

One important direction in studying the evolution of cooperation is computer
simulation of behavior dynamics in the iterated Prisoner’s Dilemma. Two play-
ers engaged in the Prisoner’s Dilemma have to choose between cooperation (C)
and defection (D). At any given round, each player receives R if both coop-
erate and payoff P < R if both defect; but a defector exploiting a cooperator
gets T points, while the cooperator receives S (with T > R > P > S and
2R > T +S). Thus in a single round it is always best to defect, but cooperation
may be rewarded in an iterated Prisoner’s Dilemma. Axelrod’s computer tour-
naments [1] have shown that the known “tit for tat” strategy which supports
cooperation wins the competition with other deterministic strategies where the
decision to cooperate or defect at each round depends on the outcome of the
three previous rounds. Nowak and Sigmund [9] have considered the case where
the decision depends only on the previous round, but is stochastic and not
deterministic. Each strategy consisted of two parameters, pC and pD. These
give the probability of cooperating after a C (cooperate) or D (defect) by the
other player. In these simulations Generous-TFT (pC = 1 and pD = 1/3 given
the usual payoffs) appeared to be a stable end state, as almost any starting
condition converged to it provided the run was long enough.

Later Nowak and Sigmund [10] extended this treatment to “two-step mem-
ory” strategies, in which players base their decision on the other player’s action
as well as on their own previous action. They found a different strategy domi-
nating the long-term behavior. They called this strategy “Pavlov” or “win-stay,
lose-shift”(WSLS) because if it receives a good payoff (either T or R) it repeats
its previous action (D in the former and C in the latter). Conversely if it receives
a low payoff (P or S) it prefers to change its behavior next time.

A general conclusion from these models is that strategies which support coop-
eration dominate in the long-run prospect. This proposition is supported by
several theoretical results. Fudenberg and Maskin [4] and Binmore and Samuel-
son [3] consider different variants of supergames with time-averaged payoffs,
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bounded rationality and symmetry of players and establish that the stable
behavior is connected with the “utilitarian” payoff vectors which maximize the
sum of player’s payoffs. The notion of a utilitarian outcome generalizes the con-
cept of cooperative behavior for symmetric two-player games. Thus, all men-
tioned papers give the impression that evolution of behavior in repeated games
leads to cooperation.

The main reason for this contrast to our conclusions is the bounded rationality
of players in the mentioned models. The strategy combinations specified in
Sections 3 and 4 become the dominance solutions only if the behavior of the
players is flexible with respect to the time until “the day of reckoning” T . If we
consider players with bounded rationality, according to Kalai and Stanford [6],
then m∗ is not a dominance solution for sufficiently large T . But the specified
flexibility seems to be typical for human behavior.

A reasonable question about the proposed scheme of behavior manipulation
is if the active players can withstand it in the case where the imposed behavior
is unprofitable for them, as in the example above. Of course, if some of them
are sufficiently intelligent and have enough free money then they can create a
“counter-manipulator” supporting cooperative behavior. One thing we would
like to stress is that the cooperation (as well as other nice things) needs some
regulation to support it.
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Abstract
In this chapter we consider a two-stage game with one leader and one (or
more) followers and we investigate the behavior of a Tikhonov regulariza-
tion when the best reply for the follower(s) is not uniquely determined.
More precisely, we show, under mild assumptions in the case of one follower
and sufficiently mild in the case of two followers, that a convergent sequence
of solutions to regularized two-stage games generates a subgame perfect
equilibrium (SPE) of the original game, providing a constructive way to
approach an SPE in a continuous setting. Various elementary examples
show that our results cannot be strengthened up to guaranteeing conver-
gence to a strong or a weak Stackelberg equilibrium and that the method
cannot be extended to all of the cases in which two followers play a mixed
extension of a finite game.

1 Introduction

A standard way to interpret a Stackelberg equilibrium for strategic form games
is to see it as a subgame perfect equilibrium (SPE for short: [22]) of a perfect
information game in extensive form where the leader moves first.

This interpretation is quite interesting, and is unambiguous when we have
uniqueness for the best reply of the follower. Also, in such a case, the assump-
tions needed to guarantee existence of the solution to the Stackelberg problem
and for its numerical computation are reasonably mild (see [16]).

In the cases in which the best reply for the follower is not uniquely deter-
mined, some problems may arise, however. One source of difficulty is that the
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leader cannot predict the follower’s choice simply on the basis of his rational
behavior. So, the choice of the best strategy from the leader’s point of view can
become quite problematic. Two approaches, introduced and called the gener-
alized Stackelberg strategies in [6], are the most common: to assume a “pes-
simistic” attitude for the leader (which leads to the weak Stackelberg problem),
or an optimistic one (leading to the strong Stackelberg problem). See also [1,2],
to which the terminology is due.

These approaches assume that the follower will choose the worst (respectively:
best) action for the leader, in case of indifference. They define unambiguously
the best choice for the leader in simple settings (e.g., in the case of finite sets
of actions available to the players). Of course, even in this very simple setting,
the predicted choice for the leader can be different (see Example 2.1).

However, as soon as one leaves this simple case, some problems remain.
A difficulty is due to the fact that, even under quite reasonable compactness

and continuity assumptions, existence (and continuity) of a solution to the weak
Stackelberg problem cannot be guaranteed (see [1], Remark 3, p. 178, for the
lack of existence) and for the strong Stackelberg problem, even if existence
holds, it does not display continuous dependence on the data of the problem ([9],
Remark 2.1). These issues have been considered and the difficulties partially
overcome using approximate solutions (see [8,9,11]). This approach, which can
be considered as very natural from a numerical viewpoint, does not solve the
uniqueness problem for the best reply, however. So, difficulties remain from the
point of view of the numerical solution of the problem. In fact, the algorithms
that have been proposed generally suffer from the already-mentioned lack of
continuity for the exact solutions to these Stackelberg problems.

To overcome the numerical difficulties due to the nonuniqueness of the best
reply, regularization methods have been suggested to tackle this problem, like
Tikhonov regularization [12], the approaches followed by Dempe [5] to solve the
strong Stackelberg problem and the approaches of Molodtsov [15], Soholovic [23]
and Loridan and Morgan [12,13].

The nonexistence of a solution to the weak Stackelberg problem imposes the
following question:

If the solutions of regularization methods converge somewhere when
the regularization parameter goes to zero, to what limit solution do
they converge?

It is easy to give examples showing that the resulting limit point can be a
weak Stackelberg, a strong one, or neither. A partial answer to this question
was given in [12] for Tikhonov regularization: these authors defined the “lower
Stackelberg equilibrium pair” and showed that any limit point obtained via
Tikhonov regularization, when the regularization parameter goes to zero, is
a lower Stackelberg equilibrium pair. Here we shall prove that for Tikhonov
regularization the limit points obtained admit a nice interpretation: they are
the SPE of the two-stage game referred to above. Note that the Tikhonov
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regularization method applies to a wider class of problems than Dempe’s and
Molodtsov’s approach, since it does not require any kind of strong convexity
assumption for the leader’s functional in order to obtain the uniqueness of the
best reply. Thus, it offers more options to the numerical solutions of Stackelberg
problems.

Notice that the result of more than theoretical interest since it provides first
of all a constructive way to get (approach) an SPE in a continuous setting. Of
course, any solution to the strong Stackelberg problem is also an SPE: but in the
case of nonuniqueness for the best reply, we recall that the strong Stackelberg
problem does not have a nice behavior from the point of view of stability, thus
provoking difficulties for its numerical solution.

We shall give versions of our results for both the unconstrained and the
constrained cases.

2 Problem Setting

Let U and V be two topological spaces, X, Y be two nonempty subsets respec-
tively of U and V and l and f be two functions from U×V to R∪{+∞}. First,
we consider the following problem, called the weak Stackelberg problem:

(w-S)

⎧⎪⎨⎪⎩
Minx∈X supy∈M2(x) l(x, y)

where M2(x) is the set of optimal solutions to the problem

P (x) : Miny∈Y f(x, y)

v = infx∈X supy∈M2(x) l(x, y) is called the value of problem (w-S).
The problem (w-S) may have no solutions even for nice functions l and f ,

so, for all ε > 0, the following regularized problem:

(w-S(ε))

⎧⎪⎨⎪⎩
Minx∈X supy∈M2(x,ε) l(x, y)

where M2(x, ε) is the set of ε-solutions to

P (x) : Miny∈Y f(x, y)

has been considered to obtain sufficient conditions ensuring existence and sta-
bility of the solutions to the regularized problem under data perturbations (Lig-
nola and Morgan [8,9], Loridan and Morgan [11]). In our opinion these theoret-
ical results offer an insight into the inherent difficulties of the problem and can
explain the lack of nonheuristic numerical methods in the continuous case.

Fortunately, the following problem, called the strong Stackelberg problem,
appears to be better handled:

(s-S)

⎧⎪⎨⎪⎩
Minx∈X infy∈M2(x) l(x, y)

where M2(x) is the set of optimal solutions to

P (x) : Miny∈Y f(x, y)
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Figure 1: An example of the weak and strong Stackelbeg approaches

In fact, for such a problem under inequality constraints, in addition to exis-
tence results and a few stability results [9] there are numerous papers on neces-
sary and sufficient conditions and numerical methods. But the method described
in Molodtsov [15], which approaches the weak problem (w-S) by a sequence of
strong Stackelberg problems, appeared to be a step towards the numerical res-
olution of the problem (w-S). Further results in this direction have been given
in Loridan–Morgan [13].

As far as the SPE is concerned, we recall that it is a pair (x0, y0), where:
x0 ∈ X and y0 : X → Y satisfy the following conditions:
SPE1: y0(x) ∈M2(x) ∀x ∈ X
SPE2: l(x0, y0(x0)) = infx∈X l(x, y0(x))

We recall that, under the assumption of uniqueness for the best reply of the
follower, an SPE identifies a Stackelberg equilibrium for the game (X,Y, l, f):
given (x0, y0) as before, the pair (x0, y0(x0)) ∈ X × Y is a Stackelberg equilib-
rium.

In the following examples the players are assumed to maximize their payoffs.

Example 2.1. It is easy to provide an example in which the predictions
offered by the weak and strong Stackelberg approaches differ. Just consider the
game in Figure 1, described in extensive form.

The weak Stackelberg approach drives the leader’s choice to T, with an
expected result for player 1 of 2, while the strong Stackelberg approach leads
to the choice of B, with an expected reward of 4.

Notice that this game has four Nash equilibria, all of which are also SPEs:
(T,Ll), (B, Lr), (T,Rl), (B,Rr).

3 Results for the Case of One Follower

We shall assume the following:
X is a sequentially compact subset of U and Y is a compact, convex and
nonempty subset of a finite-dimensional euclidean space V .

We are given:
l, f : X × Y → R ∪ {+∞}
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α ∈]0,+∞[.

Let M2(x) be the set of solutions to the minimum problem

P (x) : Min
y∈Y

f(x, y)

and ŷ(x) be the minimum norm solution to P (x). We consider the following
regularized second-level problem, assumed to have a unique solution denoted
as ȳα(x) :

Pα(x) : Min
y∈Y

f(x, y) + α‖y‖2

A solution to the regularized Stackelberg problem:

(Sα) Min
x∈X

f(x, ȳα(x))

is denoted as x̄α.
We recall that an SPE is a pair (x0, y0), where: x0 ∈ X and y0 : X → Y

satisfy the following conditions:

SPE1: y0(x) ∈M2(x) ∀x ∈ X
SPE2: f(x0, y0(x0)) = infx∈X f(x, y0(x))

We shall make the following assumptions:
(H1) l is sequentially lower semicontinuous on X × Y .
(H2) l(x, ·) is sequentially upper semicontinuous on Y for all x ∈ X.
(H3) f is sequentially lower semicontinuous on X × Y .
(H4) for all (x, y) ∈ X × Y and all sequences xn → x, there exists a sequence
(yn)n ∈ Y subject to (s.t.) lim sup f(xn, yn) ≤ f(x, y).
(H5) f(x, ·) is convex with nonempty domain, for all x ∈ X.

As shown by the following example, assumption (H4) is weaker than the
upper semicontinuity of the function x→ f(x, y) for all y ∈ Y .

Example 3.1. Let X = Y = [0, 1]; f(x, y) = −y2 + (1 + x)y− x if x 	= 0 and
f(x, y) = 0 if x = 0.

We shall prove the following theorem.

Theorem 3.1. Assume that assumptions (H1) through (H5) are satisfied. Let
αn ↓ 0+ and let {

x̄n be a solution to (Sαn
)

ȳn be the solution ȳαn(x̄n) to Pαn(x̄n)

If (x̄n, ȳn)→ (x̄, ȳ) ∈ X × Y , then (x̄, ȳ) generates an SPE (x̄, ỹ(·)), where ỹ(·)
is defined as {

ỹ(x̄) = ȳ

ỹ(x) = ŷ(x) ∀x ∈ X, x 	= x̄

(remember that ŷ(x) is the element of minimum norm in M2(x)).
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Proof. Under assumptions (H1), (H3), (H4) and (H5) the problem (Sα) has a
solution (see [16], Corollary 5.1).

Assume that (x̄n, ȳn) → (x̄, ȳ). We have to show that SPE1 and SPE2 are
satisfied.

For SPE1, to prove that ȳ ∈M2(x̄) it is enough to notice that under assump-
tions (H3) and (H4) the multifunction M2 is sequentially closed at x̄ [16]. That
ỹ(x) = ŷ(x) ∈M2(x), when x 	= x̄, is obvious by definition (simply notice that
M2(x) is closed, convex and nonempty, so that it has a minimum norm element).

For SPE2, we have to prove that l(x̄, ȳ) = l(x̄, ỹ(x̄)) ≤ l(x, ỹ(x)) ∀x ∈ X,
that is: l(x̄, ȳ) ≤ l(x, ŷ(x)) ∀x ∈ X, x 	= x̄.

We have that

(x̄n, ȳn) by definition satisfies l(x̄n, ȳn) ≤ l(x, yαn
(x)) ∀x ∈ X;

yαn(x)→ ŷ(x) for αn ↓ 0+.

Hence,

l(x̄, ȳ) ≤ lim inf
n→∞

l(x̄n, ȳn) for (H1)

≤ lim sup
n→∞

l(x, yαn(x))

≤ l(x, ŷ(x)). for (H2)

�

We now provide a few elementary examples to show that our result cannot be
strengthened up to guaranteeing convergence to a strong or weak Stackelberg
equilibrium.

Example 3.2. We are given l, f : [−1/2, 1/2] × [−1, 1] → R, with l(x, y) =
−(x + y), f(x, y) = xy.

The strong Stackelberg problem has the unique solution (0, 1), whereas the
weak Stackelberg problem does not have a solution. The pair (x̄n, ȳn), the solu-
tion of the regularized problem, converges to (0, 1), the solution of the strong
Stackelberg problem. Of course, according to our result, the pair (0, 1) can be
extended to an SPE.

Example 3.3. Let us modify f of the previous example as follows:

f(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
(x + 1/4)y if x ∈ [−1/2,−1/4]

0 if x ∈ [−1/4, 1/4]

(x− 1/4)y if x ∈ [1/4, 1/2]
.

The solution of the regularized problem converges to (−1/4, 1), which does not
coincide with the solution for the strong Stackelberg problem, which is (1/4, 1).



Stackelberg Problems and Tikhonov Regularization 215

Example 3.4. Let’s modify further the example. Assume that X = [−2, 2]
and let

f(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
(x + 7/4)y if x ∈ [−2,−7/4]

0 if x ∈ [−7/4, 7/4]

(x− 7/4)y if x ∈ [7/4, 2]
.

In such a case, the solution for the regularized problem converges to (7/4, 0),
which is different from the strong Stackelberg equilibrium (2,−1) and from the
weak Stackelberg equilibrium (7/4, 1).

Assume now that, for all x ∈ X, P (x) and Pα(x) we have the following
constrained minimum problems:

P (x) : Min
y∈K(x)

f(x, y);

Pα(x) : Min
y∈K(x)

f(x, y) + α‖y‖2,

where K is a set-valued function from X to V .
Then, we have the following theorem.

Theorem 3.2. Assume that assumptions (H1),(H2), (H5) and the following
are satisfied:
(H6) f is sequentially continuous on X × Y .
(H7) K is a sequentially closed and lower semicontinuous set-valued function.
Then, the results in Theorem 3.1 are true for constrained problems.

Proof. Assumptions (H6), (H7) and the Berge theorem guarantee that the set
M2(x) is sequentially closed and so, by assumptions (H1) and (H5), the problem
(Sα) has a solution.

To obtain the result, it is sufficient to proceed as in Theorem 3.1. �

4 The Case of Two Followers

For simplicity, we limit ourselves to the case of two followers playing a simul-
taneous move game, but the results can be easily extended to the case of more
followers.

Assume that X is a sequentially compact subset of a topological space and Yi,
for i = 1, 2, is a compact, convex and nonempty subset of a finite-dimensional
euclidean space Vi. Let Y = Y1 × Y2. Let l, f1, f2 be functions from X × Y to
R ∪ {+∞}, α ∈]0,+∞[ and N(x) be the set of parametric Nash equilibria [20]
for the game in normal form Γ(x) = (Y1, Y2, f1(x, ·, ·), f2(x, ·, ·)).
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Concerning sufficient conditions for the nonemptyness of N(x), see [20,3,7].
For stability results see, for example, [4,14,17,18].

As in the case of one follower, we are interested in an SPE, that is, a pair
(x0, y0) where x0 ∈ X and y0 : X → Y = Y1 × Y2 satisfy the conditions
(SPE1) y0(x) ∈ N(x) ∀x ∈ X
(SPE2) l(x0, y0(x)) = infx∈X l(x, y0(x)).

We now consider the following regularized normal form game:

Γα(x) = (Y1, Y2, J
α
1 (x, ·, ·), Jα

2 (x, ·, ·)),

where Jα
i (x, y1, y2) = Ji(x, y1, y2) + α||yi||2 for i = 1, 2.

When the parametric nonzero sum game Γα(x) has a unique solution, denoted
by ȳα(x) = (ȳ1,α(x), ȳ2,α(x)), a solution to the regularized two-level problem
(SNα): Minx∈X l(x, ȳα(x))
is denoted by x̄α (as in the case of one follower).

Unfortunately, the Tikhonov regularization does not always guarantee
uniqueness of the Nash equilibrium for the regularized problem, as shown by
the following example.

Example 4.1. The method that we use does not work in the case in which
we have (one leader and) two followers who play a strategic game. The reason
for this failure is that Tikhonov regularization does not guarantee uniqueness of
the Nash equilibrium for the regularized problem. Let’s consider the following
game:

L R
T −1,−1 0, 0
B 0, 0 −1,−1

Assume that the followers play its mixed extension (for consistency, we assume
that players minimize their payoff). The payoff for player I is as follows:
f I
2 (p, q) = −[pq + (1− p)(1− q)]. Tikhonov regularization for player I amounts

to considering the payoff f I
2α(p, q) = f I

2 (p, q)+αp2. An analogous result applies
for player II. It is easy to check that both the given game and its regularization
have three Nash equilibria in mixed strategies: (p1, q1) = (1, 1); (p2, q2) = (0, 0);
(p3, q3) = ([(1 + α)/2(1 − α2)], [(1 + α)/2(1 − α2)]). Thus, not only does
Tikhonov regularization not guarantee uniqueness of the Nash equilibrium, but
the two Nash equilibria in pure strategies are not affected in any way. Build-
ing on this, one easily gets a Stackelberg problem without solution: since the
Tikhonov regularization method does not eliminate the uniqueness problem at
the followers’ level, the regularized problem can still be without solution.

Nevertheless, when the functions fi are continuously differentiable with
respect to yi we can obtain, under sufficiently mild assumptions, uniqueness of
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the regularized Nash equilibrium and we can extend the results of Section 3 to
the case of more followers.

We assume in the following:
(A1) l is sequentially lower semicontinuous on X × Y1 × Y2.
(A2) l(x, ·, ·) is upper semicontinuous on Y1 × Y2, for all x ∈ X.
(A3)
• for all (x, y1, y2) ∈ Y1×Y2 and all sequences (xn, y2,n) in X×Y2 convergent

to (x, y2), there exists (ỹ1,n)n in Y1 such that

lim sup
n→∞

f1(xn, ỹ1,n, y2,n) ≤ f1(x, y1, y2).

• for all (x, y1, y2) ∈ X × Y1 × Y2 and all sequences (xn, y1,n) in X × Y1

convergent to (x, y1), there exists (ỹ2,n)n in Y2 such that

lim sup
n→∞

f2(xn, y1,n, ỹ2,n) ≤ f2(x, y1, y2).

(A4) f1 and f2 are sequentially lower semicontinuous on X × Y1 × Y2.
(A5)
• for all (x, y2) ∈ X × Y2 the function f1(x, ·, y2) is convex and f1(x, ·, ·) is

continuously differentiable with respect to y1 on Y1 × Y2,
• for all (x, y1) ∈ X × Y1 the function f2(x, y1, ·) is convex and f2(x, ·, ·) is

continuously differentiable with respect to y2 on Y1 × Y2.
(A6) For all (x, y, z) ∈ X × Y × Y we have〈

∂f1

∂y1
(x, y1, y2)−

∂f1

∂y1
(x, z1, z2), y1 − z1

〉
1

+
〈

∂f2

∂y2
(x, y1, y2)−

∂f2

∂y2
(x, z1, z2), y2 − z2

〉
2

≥ 0,

where 〈·, ·〉i denotes the scalar product on Vi, for i = 1, 2.

Remark 4.1. Assumption (A6) is weaker than the “diagonally strict convex-
ity” condition introduced by Rosen [21] which guarantees the uniqueness of the
Nash equilibrium.

It may be easily checked that the payoffs for the mixed extension of the game
used in the last example do not satisfy condition (A6).

Theorem 4.1. Assume that (A3) through (A6) are satisfied and αn ↓ 0+.
Then for all n ∈ N and all x ∈ X, Γαn

(x) has a unique Nash equilibrium,
denoted by yαn

(x) = (y1,αn
(x), y2,αn

(x)) and yαn
→ ŷ(x) for αn ↓ 0+, where

ŷ(x) = (ŷ1(x), ŷ2(x)) is the minimum norm Nash equilibrium in N(x), with

||(y1, y2)||2Y = ||y1||2Y1
+ ||y2||2Y2

.
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Proof. By (A3), (A4) and (A5), there exists at least a Nash equilibrium, for
all x ∈ X ([3] or [10], Theorem 2.1).

Moreover, due to (A6), the game Γα(x) is diagonally strictly convex [21] and
we can deduce that there exists a unique Nash equilibrium.

In fact, let hα(x, y) = ((∂fα
1 /∂y1)(x, y1, y2), (∂fα

2 /∂y2)(x, y1, y2)). Then,

〈hα(x, z), y − z〉Y + 〈hα(x, y), z − y〉Y

=
〈

∂f1

∂y1
(x, z1, z2), y1 − z1〉Y1 + 2α〈z1, y1 − z1

〉
Y1

+
〈

∂f2

∂y2
(x, z1, z2), y2 − z2〉Y2 + 2α〈z2, y2 − z2

〉
Y2

+
〈

∂f1

∂y1
(x, y1, y2), z1 − y1〉Y1 + 2α〈y1, z1 − y1

〉
Y1

+
〈

∂f2

∂y2
(x, y1, y2), z2 − y2〉Y2 + 2α〈y2, z2 − y2

〉
Y2

=
〈

∂f1

∂y1
(x, z1, z2)−

∂f1

∂y1
(x, y1, y2), y1 − z1

〉
1

+
〈

∂f2

∂y2
(x, z1, z2)−

∂f2

∂y2
(x, y1, y2), y2 − z2

〉
2

− 2α||y1 − z1||2 − 2α||y2 − z2||2 < 0

for all y ∈ Y1 × Y2 and z ∈ Y1 × Y2 such that y 	= z.
Now for all x ∈ X let yαn(x) be the unique parametric Nash equilibrium of

the game Γαn
(x). Due to the assumption (A5), yαn

(x) is the unique solution
of the variational inequality (VI)αn

(x) defined by the operator Aαn
(x) which

associates to every y = (y1, y2) ∈ Y1 × Y2 the element Aαn(x)y such that

〈Aαn
(x)y, z〉Y =

〈
∂f1

∂y1
(x, y1, y2), z1

〉
V1

+ 2αn〈y1, z1〉V1

+
〈

∂f2

∂y2
(x, y1, y2), z2

〉
V2

+ 2αn〈y2, z2〉V2 .

In light of Theorem C, page 574, in Mosco [19], for all x, yαn
(x) converges to

the solution ŷ(x) ∈ N(x) of the variational inequality

〈ŷ(x), z − ŷ(x)〉 ≥ 0 ∀ z ∈ N(x).

that is, ŷ(x) is the element of minimal norm of N(x) in Y1 × Y2. �

Theorem 4.2. Assume that (A1) through (A6) are satisfied and αn ↓ 0+.
Let x̄n be a solution to (SNαn) and ȳn be the Nash equilibrium ȳαn(x̄n) of

the game Γαn(x̄n) = (Y1, Y2, f
αn
1 (x̄n, ·, ·), fαn

2 (x̄n, ·, ·)). If (x̄n, ȳn) → (x̄, ȳ) ∈
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X × Y1 × Y2, then (x̄, ȳ) generates an SPE (x̄, ỹ(·)) where ỹ(·) is defined by

ỹ(x̄) = ȳ

ỹ(x) = ŷ(x) ∀x ∈ X, x 	= x̄,

where ŷ(x) is the element of minimum norm in N(x).

Proof. Assume that (x̄n, ȳn)→ (x̄, ȳ).
Due to assumptions (A3) and (A4), the set-valued function N is sequentially

closed at x̄ (Theorem 3.1 in [10]).
We can now easily conclude as in Theorem 3.1 of Section 3. �

5 Conclusion

Let us conclude with some remarks about the limits of our approach. The reg-
ularizations that we propose make an essential use of some convexity assump-
tions. For this reason, we expect that they cannot be extended in a straight-
forward way to cases like the three-level problems (incorporating the best reply
into the functionals will destroy, in general, their convexity properties).

A similar remark also applies to the case in which we have one leader and
two followers, the latter playing a simultaneous move game. In this case we
have provided a positive result along the same lines used for the classical bilevel
optimization problem. On the other hand, we have shown, through an example,
that the method cannot be extended to all the cases where the followers play a
mixed extension of a finite game.
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[4] Cavazzuti E. and Pacchiarotti N., Convergence of Nash equilibria, Boll.
UMI, 5B, 247–266, 1986.

[5] Dempe S., On an algorithm solving two-level programming problems with
nonunique lower level solutions, Comp. Opti. Appl., 6, 227–249, 1996.

[6] Leitmann G., On generalized Stackelberg strategies, J. Optimization The-
ory and Applications, 26, 637–643, 1978.



220 J. Morgan and F. Patrone

[7] Lignola M.B., Ky fan inequalities and Nash equilibrium points without
semicontinuity and compactness, J. Optimization Theory and Applications,
94, 137–145, 1997.

[8] Lignola M.B. and Morgan J., Topological existence and stability for Stack-
elberg problems, J. Optimization Theory and Applications, 84, 145–169,
1995.

[9] Lignola M.B. and Morgan J., Stability for regularized bilevel programming
problem, J. Optimization Theory and Applications, 93, 575–596, 1997.

[10] Lignola M.B. and Morgan J., Existence for optimization problems with
equilibrium constraints in reflexive Banach spaces, Optimization in eco-
nomics, finance and industry (Verona 2001), Datanova, Milano, 15–35,
2002.

[11] Loridan P. and Morgan J., New results on approximate solutions in two-
level optimization, Optimization, 20, 819–836, 1989.

[12] Loridan P. and Morgan J., Regularizations for two-level optimization prob-
lems, Lecture Notes in Economic and Math. Systems, 382, 239–255, 1992.

[13] Loridan P. and Morgan J., Weak via strong Stackelberg problem: new
results, J. Global Optimization, 8, 263–287, 1996.

[14] Lucchetti R. and Patrone F., Closure and upper semicontinuity results in
mathematical programming, Nash and economic equilibria, Optimization,
17, 619–628, 1986.

[15] Molodtsov D.A., The solution of a class of non antagonistic games, USSR
Comput. Maths. Math. Phys., 16, 1451–1456, 1976.

[16] Morgan J., Constrained well-posed two-level optimization problems, in F.
Clarke, V. Demianov, and F. Giannessi (eds.), Nonsmooth Optimization
and Related Topics, Ettore Majorana International Sciences Series, Plenum
Press, New York, 307–326, 1989.

[17] Morgan J. and Raucci R., New convergence results for Nash equilibria, J.
Convex Analysis, 6, 377–385, 1999.

[18] Morgan J. and Scalzo V., Pseudocontinuity in optimization and non-zero
sum games, J. Optimization Theory and Applications, 120, 181–197, 2004.

[19] Mosco U., Convergence of convex sets and solutions of variational inequal-
ities, Adv. Math., 3, 510–585, 1969.

[20] Nash J.F. Jr., Equilibrium points in n-person games, Proc. Nat. Acad. Sc.
USA, 36, 48–49, 1950.



Stackelberg Problems and Tikhonov Regularization 221

[21] Rosen J.B., Existence and uniqueness of equilibrium points for convex n-
person games, Econometrica, 33, 520–534, 1965.

[22] Selten R., Spieltheoretische Behandlung eines Oligopolmodells mit Nach-
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Abstract
The purpose of this chapter is twofold: (1) to bring a new concept of
extended self in philosophy into the analysis of conflict resolution, and (2)
to construct a game theoretic model with selves and extended selves as
players which depicts a conflicting situation and to find its resolution. We
find that extended selves could be a useful concept to unite players’ oppos-
ing ideas. We study a two-stage noncooperative game in which players are
given by selves or extended selves and find that, for each player, to unite
with another player is always a weakly dominant strategy when payoffs are
symmetric and costs for unification are negligible.

1 Introduction

Despite the fact that the situation in which different players may unite during
a game is discussed at length in game theory literature as a coalition formation
problem, few papers analyze situations in which utility functions of players
may change through the formation of coalitions. Of course, there is a school
of thought that allows for adjustment of individual utility, but not a utility
function, through an altruistic mechanism [1]. But our argument is different
from the argument of this school. We are interested in changes of a player himself
during the play of a game; and our focus is on a game in which players come
∗This research was partially supported by the Japan society for the Promotion of
Science through the Grants in Aid for Scientific Research (#16310107,2004). The
authors wish to acknowledge an anonymous referee for valuable comments. They also
wish to thank Mr. Ryo Kawasaki for editing the English.
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to share the same utility function when they form a coalition. In an ordinal
game theoretic formulation, every player retains an unchanged utility function
during the game because such a formulation assumes the basic unit of a player
is unchanged. This formulation is deeply rooted in the fundamental assumption
of game theory, i.e., methodological individualism.

But is it reasonable to construct a model on this assumption? We can list
several examples that may violate this assumption. In the case of a merger of
firms, the behavior of the united firm is different from the behavior of the firms
before the merger. The reason for this is not only due to quantitative factors
such as changes of scale, but also due to changes in the firm’s utility function.
The culture of the new merged firm is a mixture of those of the previous firms.
In international politics, we can see other examples, such as the unification of
European Union (EU) countries. The behavior of countries belonging to the
EU before the establishment of a common currency and the behavior after the
“euro” seem to be different. This is partly because the introduction of a common
currency changes the way of thinking of European citizens. As such, forming
a coalition will alter the utility function of players. We should reconsider our
assumptions about a player in a game when we suspect that utility functions
of the players who formed a coalition become more homogeneous.

Thus, the purpose of this paper is twofold: (1) to discuss the concept of a unit
of decision making that allows one individual to hold different perspectives in
a game, and (2) to formulate a model that incorporates a new idea of self for
an individual player, more precisely the model in which

each player alters his or her utility function during the game if he or she
unites in purpose with other players.

2 Concepts of Self

In the Western world, the self-concept has been discussed extensively as one
of the most important individual philosophical concepts. But in modern eco-
nomics and other social sciences, self is usually defined in the abstract as an
individual who can make decisions independently and whose body is his/her
own possession. In the non-Western world, however, there exist different views
of the idea of self. A notable example is the philosophy of Chu Hsi, which is
considered the most sophisticated and rational school of Confucianism.

In the English school of experientialism, Parfit [10] discussed the self-concept
comprehensively from a nonreligious viewpoint. He introduced the idea of
whether self-identity could be determined rationally, introducing new criteria:
psychological connectedness and physical similarity. He concluded that indi-
viduals could not be distinguished from other persons using these criteria and
that continuity from one person to another should be the rule. He applied this
concept to all human beings. But it is questionable whether we can really con-
sider all human beings as sharing identities with all others since people tend
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to be self-centered. In ecological philosophy, Naess and Rothenberg [9] advo-
cated the idea of an ecological self in which personal identity should expand
to include not only other human beings but also other living creatures. Naess
gave the example of a flea, saying that he felt pain when he saw a flea lying in
agony in acid. He even thinks that his ecological self can be expanded to non-
living creatures. But again, it is very difficult to distinguish which creatures we
should consider as our ecological selves. Iwata [6], a cultural anthropologist, has
studied for many years the lives of indigenous tribes in Southeast Asian coun-
tries, and Iwata describes the “kami” concept, i.e., a spirit, existing in living
creatures and some nonliving creatures Ito [7]. Iwata argues that this concept
is fundamental to any religion or religious experience. His idea of self is, then,
the coexistence of all beings in a world of synchronism. There may be many
arguments and disagreements, both from religious and nonreligious viewpoints,
about his idea. But it should be noted that value conflicts cannot be resolved
without paying attention to people’s views towards the environment and self in
religious and tribal society as well. Chu Hsi’s ideology argued that the world is
based on the activities of Heaven and Earth by the force of ch’i (vital energy).
Kuwako [8, p. 153] recently criticized the animistic aspect of ch’i and empha-
sized the material side rather than the vital side, purporting that Chu Hsi is a
more materialistic idea than is often appreciated. The concept of self in Chu
Hsi is that after a human body is shaped, the functions of the mind begin to
work as the result of reaction to ch’i outside of the body and to the ch’i of the
body. These functions stop after death. Since the body itself is created by ch’i,
the self is regarded as the continuity of all other existence. Environment and
self are considered identical. Iwata and Chu Hsi are two representative views
in East and Southeast Asian cultures, but we think they pay little attention to
the psychological aspects of human beings in the real world.

3 Extended Self and Unification of Extended Selves

Based on the discussions in the previous section, we propose and define the
extended self as a set of objects (basically human beings) which produce an
individual physically and are considered psychologically by the individual as his
or her parents, as well as objects (human and otherwise) which the individual
has and those he will produce, objects with which a person can feel psychological
identity after death (Hidano [3]). More precisely, we extend the concept of self
in two directions. The first is an extension related to time, namely past and
future beings, and the second is an extension related to the objects of identity
to nonhuman beings. The first extension is that we may add the concept of
“oneself” to one’s parents, grandparents, and other ancestors who produced
an individual physically, and we also may include children, grandchildren, and
other descendants whom one has produced and is able to produce, as a part of
oneself. The latter extension also includes nonhuman beings. As far as we can
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identify ourselves with any beings or existence, here we include the objects of
an extended self by which we have been produced and which we have produced
ourselves, and which may exist after our death. Even inanimate objects such as
art, novels, and information can be candidates for objects of the extended self.
Thus, also included are other subjects, which are considered psychologically
as our parental subjects. The idea of considering other living beings and even
nonliving objects and creatures as beings with spirits is based on animism,
which has recently been discussed by Iwata [6]. It should be noted that a person
or an object, which is considered as a part of the extended self, is chosen and
determined by the self. Thus, even a parent or child cannot be included as a
part of an individual’s extended self without the approval of the individual.
These extensions of the self-concept enable us to reconsider our value structures
related to the individual self, and to drastically lessen internal value conflicts by
thinking that in the future we (our extended self) will most probably confront
situations which we usually can ignore within our individual lives. One example
is this: In our children, grandchildren, and other descendants, we will exist as an
extended self. Thus, they do not have an existence isolated from our own. We
should automatically consider their existence and decrease the risk of affecting
them adversely. Our motivation is not based on altruism but on our own self-
centeredness. This idea of self-concept can lessen value conflicts between people
at this moment as well. For example, consider that Person “1” is confronting
value conflicts he or she has with Person “2”. In the future the descendent of
Person “1” (Person “n”) may become a descendent of Person “2” as well. Person
“1” coexists with Person “2” in Person “n”. The value conflict between Persons
“1” and “2” becomes an internal value conflict in one person specifically, Person
“n”. Person “1” and Person “2” should at least recognize that they exist in one
person. This expectation of the future inevitably changes the behavior of two
persons at this moment. It should be noted that this concept is easily accepted
as a conceptual vehicle by those who do not agree with the direct expansion
of their identity towards Naess’s ecological self. This idea of the extended self
can be applicable to all agents such as organizations (firms, nations, nonprofit
organizations, etc.) and even to the environment (forests, animals, landscape,
etc.).

4 Game Theoretic Formulations of Conflicts
among Extended Selves

4.1 Game Theoretic Model

We will study under what conditions two or more different selves unite. We
suppose that they have a common utility function when they unite, which may
differ from their original utility functions.

As an introductory step, we consider a case with two selves. Thus, we assume
a two-person game consisting of players 1 and 2. Selves are called players in the
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following. Let S and T be sets of strategies of players 1 and 2, respectively. If
they unite, they have a strategy set R given by S × T , the direct product of S
and T . Players 1 and 2 have utility functions

f : S × T → % and g : S × T → %,

respectively, where % is the set of all real numbers. It is supposed that if they
unite, they have an identical utility function h : R = S×T → % that may differ
from f and g. Further, when they unite, each player incurs a cost ε.

The game proceeds as follows. First players 1 and 2 simultaneously and inde-
pendently decide whether “to unite” or “not to unite” denoted by “U” and
“N”, respectively. Then unless both choose U , they play the strategic form
game ({1,2}, {S,T}, {f ,g}) where players 1 and 2 simultaneously and inde-
pendently choose their strategies in S and T , respectively. Their aims are to
maximize their own utility levels. If both choose U , they unite and take a
strategy pair that maximizes h over R. Both players enjoy the utility given by
max{h(s, t)|(s, t) ∈ R}.

Our aim is to study subgame perfect equilibria of the game in order to make
clear under what conditions different selves unite.

To simplify the discussion, we consider the case of symmetric 2×2 games, i.e.,
the players’ strategy sets S and T are given by S = {s1, s2}, T = {t1, t2} and
the payoff matrix is

1/2 t1 t2
s1 a, a b, c
s2 c, b d, d

where we assume for simplicity that a, b, c, d are all different and we let a > d
without loss of generality. We further suppose that the utility function h is given
by a convex combination of f and g, i.e.,

h(s, t) = αf(s, t) + (1− α)g(s, t) ∀ (s, t) ∈ R = S × T,

where 0 ≤ α ≤ 1. The parameter α uniformly distributes over the interval [0,1].
In what follows we will consider two cases with respect to information that

players have on the parameter α, i.e., (1) both players know α before they
unite, and (2) neither player knows α before they unite. Of course, the united
player knows α. Before studying subgame perfect equilibria in the two cases,
we examine what will come out in the second stage.

4.2 Equilibria in the Second Stage

We have two cases. Unless both choose “U” (to unite), two players do not
unite and play the noncooperative game; if both choose “U”, they unite and
choose the strategy pair that maximizes the utility function h. Reflecting the
fact that players are symmetric with respect to payoffs, we pick symmetric
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Nash equilibria. If there exist multiple symmetric Nash equilibria, we choose
the Pareto efficient one.

Symmetric, Pareto efficient Nash equilibria and their payoffs are given in the
following table.

Symmetric,
Pareto efficient
Nash equilibria Payoffs

1. a > b > c > d (s1, t1) a
2. a > b > d > c (s1, t1) a
3. a > c > b > d (s1, t1) a
4. a > c > d > b (s1, t1) a
5. a > d > b > c (s1, t1) a
6. a > d > c > b (s1, t1) a
7. b > a > c > d (s1, t1) a
8. b > a > d > c (s1, t1) a
9. b > c > a > d ((p, 1 − p), (p, 1 − p)) ap2 + (b + c)p(1 − p) + d(1 − p)2

10. c > a > b > d ((p, 1 − p), (p, 1 − p)) ap2 + (b + c)p(1 − p) + d(1 − p)2

11. c > a > d > b (s2, t2) d
12. c > b > a > d ((p, 1 − p), (p, 1 − p)) ap2 + (b + c)p(1 − p) + d(1 − p)2

where p = (b− d)/(c− a + b− d).
Strategy pairs maximizing h and their payoffs are given as follows.

Possible strategy pairs Payoffs
maximizing h

1. a > b > c > d (s1, t1) a
2. a > b > d > c (s1, t1) a
3. a > c > b > d (s1, t1) a
4. a > c > d > b (s1, t1) a
5. a > d > b > c (s1, t1) a
6. a > d > c > b (s1, t1) a
7. b > a > c > d (s1, t1), (s1, t2), (s2, t1) a, αb + (1 − α)c, αc + (1 − α)b
8. b > a > d > c (s1, t1), (s1, t2), (s2, t1) a, αb + (1 − α)c, αc + (1 − α)b
9. b > c > a > d (s1, t2), (s2, t1) αb + (1 − α)c, αc + (1 − α)b

10. c > a > b > d (s1, t1), (s1, t2), (s2, t1) a, αb + (1 − α)c, αc + (1 − α)b
11. c > a > d > b (s1, t1), (s1, t2), (s2, t1) a, αb + (1 − α)c, αc + (1 − α)b
12. c > b > a > d (s1, t2), (s2, t1) αb + (1 − α)c, αc + (1 − α)b

In cases 7–12, the maximum payoff is attained by one of these strategy pairs
depending on values of α.

We next find subgame perfect equilibria for the whole game.

4.3 Subgame Perfect Equilibria

As mentioned before, the following two cases are examined, i.e., (1) both players
know α before they unite, and (2) neither player knows α before they unite.



Extended Self, Game, and Conflict Resolution 229

I. Both players know ααα before they unite

In this case, when players decide whether to unite or not, they know which
strategy pair the united player will take.

Thus, in cases 7 and 8 above, if a ≥ (b + c)/2 (and thus b − a ≤ a − c), the
united player will take (s2, t1) when 0 ≤ α ≤ (b − a)/(b − c), (s1, t1) when
(b− a)/(b− c) ≤ α ≤ (a− c)/(b− c), and (s1, t2) when (a− c)/(b− c) ≤ α ≤ 1;
because the maximum payoffs αc + (1− α)b, a, and αb + (1− α)c are attained
by these strategy pairs. If a < (b+c)/2 (and thus a−c < b−a), then the united
player will take (s2, t1) when 0 ≤ α ≤ 1/2 and (s1, t2) when 1/2 ≤ α ≤ 1. The
maximum payoffs are αc + (1− α)b and αb + (1− α)c.

In cases 9 and 12, the united player will take (s2, t1) when 0 ≤ α ≤ 1/2
and (s1, t2) when 1/2 ≤ α ≤ 1. The maximum payoffs are αc + (1 − α)b and
αb + (1− α)c.

In cases 10 and 11, if a ≥ (b+ c)/2 (and thus c−a ≤ a− b), the united player
will take (s1, t2) when 0 ≤ α ≤ (c− a)/(c− b), (s1, t1) when (c− a)/(c− b) ≤
α ≤ (a− b)/(c− b), and (s2, t1) when (a− b)/(c− b) ≤ α ≤ 1. The maximum
payoffs are αb+(1−α)c, a, and αc+(1−α)b, respectively. If a < (b+c)/2 (and
thus c− a < a− b), then the united player will take (s1, t2) when 0 ≤ α ≤ 1/2
and (s2, t1) when 1/2 ≤ α ≤ 1. The maximum payoffs are αb + (1 − α)c and
αc + (1− α)b.

Comparing these maximum payoffs with Nash equilibrium payoffs, we obtain
the following subgame perfect equilibrium outcomes.
(1) Cases 1–6: Payoffs are the same in the two situations. Thus, taking into
account the cost ε of unification, players do not unite in equilibrium. Players
take s1 and t1 independently and each player gains payoff a.
(2) Cases 7 and 8: Suppose a ≥ (b + c)/2 (and thus b − a ≤ a − c). Then
the maximal payoffs when players unite are given by αc + (1 − α)b, a, and
αb+(1−α)c when 0 ≤ α < (b−a)/(b− c), (b−a)/(b− c) ≤ α < (a− c)/(b− c),
and (a− c)/(b− c) ≤ 1, respectively. Thus, when

αc + (1− α)b− ε > a, i.e., α < (b− a− ε)/(b− c)
or αb + (1− α)c− ε > a, i.e., α > (a− c + ε)/(b− c),

players unite, and taking (s2, t1) they gain αc + (1 − α)b − ε (in the former
case) and taking (s1, t2) they gain αb + (1− α)c− ε (in the latter case).

When
(b− a− ε)/(b− c) < α < (a− c + ε)/(b− c),

players do not unite and behave independently; each of them gains a taking
strategies s1 and t1. If α = (a− c− ε)/(b− c) or α = (b− a− ε)/(b− c), then
players may unite or may not unite.

In the case of a < (b + c)/2, similar results hold.
(3) Cases 9 and 12: In these cases, a simple calculation shows that the expected
payoff to each player in the Nash equilibrium is (bc − ad)/(c − a + b − d).
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Therefore, if

(b + c)/2− ε > (bc− ad)/(c− a + b− d)

or

ε < ((b− a)(b− d) + (c− a)(c− d))/2(c− a + b− d),

two players unite.
Suppose

ε ≥ ((b− a)(b− d) + (c− a)(c− d))/2(c− a + b− d).

Then in case 9, when

αb + (1− α)c− ε > (bc− ad)/(c− a + b− d), i.e.,
α > (d− c)(c− a)/(c− a + b− d)(b− c) + ε/(b− c),

or αc + (1− α)b− ε > (bc− ad)/(c− a + b− d), i.e.,
α < (b− a)(b− d)/(c− a + b− d)(b− c)− ε/(b− c),

they unite; and when

(b− a)(b− d)/(c− a + b− d)(b− c)− ε/(b− c) < α

< (d− c)(c− a)/(c− a + b− d)(b− c) + ε/(b− c),

they do not unite; and when

α = (d− c)(c− a)/(c− a + b− d)(b− c) + ε/(b− c)
or α = (b− a)(b− d)/(c− a + b− d)(b− c)− ε/(b− c),

they may or may not unite.
In case 12, when

α < (c− d)(c− a)/(c− a + b− d)(c− b)− ε/(c− b)
or α > −(b− a)(b− d)/(c− a + b− d)(c− b) + ε/(c− b),

they unite.
If the reverse inequalities hold in the cases above, players do not unite and

behave independently; and if the equalities hold, players may unite or may not
unite.
(4) Case 10: Suppose a ≥ (b + c)/2. Then if

a− ε > (bc− ad)/(c− a + b− d), i.e., ε < (c− a)(a− b)/(c− a + b− d),

the players unite.
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Suppose

ε ≥ (c− a)(a− b)/(c− a + b− d).

Then if

α < (c− d)(c− a)/(c− a + b− d)(c− b)− ε/(c− b)
or α > (a− b)(b− d)/(c− a + b− d)(c− b) + ε/(c− b),

they unite.
If the reverse inequalities hold in the cases above, players do not unite and

behave independently; and if the equalities hold, players may or may not unite.
In the case of a < (b + c)/2, similar results hold.

(5) Case 11: If a− ε > d, i.e., ε < a−d, then players unite. Suppose ε ≥ a−d.
Then if

αb + (1− α)c− ε > d, i.e., α < (c− d− ε)/(c− b)
or αc + (1− α)b− ε > d, i.e., α > (d− b + ε)/(c− b),

they unite.
If the reverse inequalities hold in the cases above, players do not unite and

behave independently; and if the equalities hold, players may unite or may not
unite.

Now we examine the second case, in which neither player knows α before
they unite.

II. Neither player knows ααα before they unite

(1) Cases 1–6: Exactly the same as in I.
(2) Cases 7 and 8: Suppose a ≥ (b + c)/2. The maximum payoffs are given by
αc+(1−α)b, a, and αb+(1−α)c when 0 ≤ α < (b−a)/(b−c), (b−a)/(b−c) ≤
α < (a − c)/(b − c), and (a − c)/(b − c) ≤ 1, respectively. Thus, the expected
maximum payoff is given by∫ b−a/b−c

0

[αc + (1− α)b] dα +
∫ a−c/b−c

b−c/b−a

a dα +
∫ 1

a−c/b−c

[αb + (1− α)c] dα

=
b2 + a2 − ab− ac

b− c
.

Hence, if (b2 + a2 − ab − ac)/(b − c) − ε > a, i.e., ε < (b − a)2/(b − c), then
two players unite. If the reverse inequality holds, players do not unite; and if
the equality holds, players may unite or may not unite.

Suppose next that a < (b+c)/2. In this case, the expected maximum payoff is∫ 1/2

0

[αc + (1− α)b] dα +
∫ 1

1/2

[αb + (1− α)c] dα =
3b + c

4
.
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Hence, if ε < (3b + c)/4− a, then two players unite. If the reverse inequality
holds, players do not unite; and if an equality holds, players may or may not
unite.
(3) Cases 9 and 12: The expected maximum payoff is given by (3b + c)/4.
Hence, if ε < (3b+ c)/4− (bc−ad)/(c−a+ b−d), then two players unite. If the
reverse inequality holds, players do not unite; and if an equality holds, players
may unite or may not unite.
(4) Case 10: Suppose a ≥ (b + c)/2. Then the expected maximum payoff
is (b2 + a2 − ab − ac)/(b − c). Hence, if (b2 + a2 − ab − ac)/(b − c) − ε >
(bc−ad)/(c−a+b−d), i.e., ε < (bc−ad)/(c−a+b−d)−(b2+a2−ab−ac)/(b−c),
then two players unite. If the reverse inequality holds, players do not unite;
and if an equality holds, players may or may not unite. Suppose next that
a < (b + c)/2. The expected maximum payoff is (3b + c)/4. Hence, if ε <
(3b + c)/4 − (bc − ad)/(c − a + b − d), then two players unite. If the reverse
inequality holds, players do not unite; and if equality holds, players may unite
or may not unite.
(5) Case 11: Suppose a ≥ (b + c)/2. If (b2 + a2 − ab − ac)/(b − c) − ε > d,
i.e., ε < (b2 + a2 − ab − ac)/(b − c) − d, then two players unite. If the reverse
inequality holds, players do not unite; and if equality holds, players may unite
or may not unite. Suppose a ≤ (b + c)/2. Then if ε < (3b + c)/4 − d, then
two players unite. If the reverse inequality holds, players do not unite; and if
equality holds, players may unite or may not unite.

It should be noted that a straightforward calculation shows that in the above
inequalities with respect to ε the right-hand side terms are all positive.

4.4 Summary of the Results

The results obtained in the previous subsection are summarized as follows.
If the payoff a is greater than off-diagonal payoffs b and c, then players never

have an incentive to unite. This holds whether the weight α is revealed before
unification or not.

Suppose a is less than off-diagonal payoffs b or c. If the weight α is revealed
in advance, then players are more likely to behave independently when they are
symmetric with respect to the weight α (i.e., α is close to 1/2). In other words,
players are more likely to unite when they are non-symmetric with respect to
α. If the weight is revealed after unification, then players always unite when the
cost for unification ε is not very large.

If ε is zero, the unification is a weakly dominant strategy for both players
independently from the payoffs.

On the basis of the observation, we may claim that (1) if players’ similarity
is high, then they are likely to behave independently, (2) if players are sym-
metric with respect to the united player’s utility, then they are likely to behave
independently, (3) if the information on the united player’s utility is accurate,
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then they are likely to behave independently, and (4) if the cost of unification
is zero, they should always unite.

4.5 Future Extension

The model on which we have worked is rather simple; there are only two players
and the game is played only once. We need further extensions of the model.
The following are possible ways of extending it.
(1) Introduce three or more players.
(2) Repeat the game finitely or infinitely many times.
(3) Introduce the possibility that coalitions may break up if the game is

repeated.
(4) Construct players’ utility functions based on socio-economic situations

behind the model.
(5) Find a more reasonable way to define a utility function of a united player.

In addition, we should study games with nonsymmetric players to obtain
more fruitful results.

5 Conclusions

In this chapter, we have explained how a concept of extended self can assist
us in solving current value conflicts, i.e., conflicts arising from different value
judgements among people. Most value conflicts seem to be based on very short-
sighted conceptions of people, which seldom consider their future. This study
tries to discuss possible results when we introduce the concept of extended self
into conflict situations. It shows that, in the symmetric payoff case, players will
follow a strategy of coalition even though the coalition includes an agent who
is currently opposed to them. We think that the extended self or the extended
organization should be considered now in the present, not as if it belonged only
to our grandchildren or a descendant organization. Considering of extended
selves right now can help us greatly in solving value conflicts in such areas as
global warming, other ecological issues, and conflicts among nations. We would
point out that the European Union is a notable example of a united entity.
After a tremendous number of conflicts among nations, they were able to form
a union. Thus, we hope that game theory and social sciences will devote much
attention to the notion of extended self.
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Abstract
Many models of energy market development and decision-making processes
take into account the competition between energy suppliers, and the theory
of games is an appropriate tool to study these problems.

This chapter is devoted to numerical analysis and modification of the
game-theoretical gas market model developed by Klaassen, Kryazhimskii,
and Tarasyev. We describe a software G-TIME elaborated for this purpose
and the results of a simulation and sensitivity analysis on the data of the
Turkish gas market. The last section deals with the notion of a generalized
Nash equilibrium, which seems to be useful for taking risk and uncertainty
into account. The research is based on approaches and methods developed
in [1–10].

1 Model Description

Most models of gas pipeline projects competition deal with investment plans of
large natural gas exporters to a specified gas market. Several papers are devoted
to the market of Western Europe, and some papers concern the Turkish and
∗Partly supported by RFBR Grants N 05-01-08034-ofi p and N 06-01-00483a, and
N 05-02-02118a.
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Asian gas markets. A game-theoretical model of competition between two gas
pipeline projects called the game of timing has been proposed in [10].

The pipelines are expected to operate in the same market. Players 1 and 2
are associated with the investors/managers of projects 1 and 2, respectively.
Assuming that the starting time for making investments is 0, we consider the
“virtual” positive commercialization times of projects 1 and 2 (i.e., the final
times of the construction of the pipelines), t1 and t2. Given a commercialization
time, ti, player i (i = 1, 2) can estimate the cost, Ci(ti), for finalizing project i
at time ti.

At any time t > 0, the gas price and cost for extraction, transportation,
distribution and transit fees determine a benefit rate for each player. When
one of the players solely occupies the market he gets an upper benefit rate, bi1.
When another player enters the market both of them get a lower benefit rate,
bi2, which is lower than the upper benefit rate since the appearance of another
competitor decreases the market price:

bi1(t) > bi2(t).

We stress the dependence of benefit rates on competitive commercialization
time and write

b1(t|t2) =
{

b11(t) if t < t2,
b12(t) if t ≥ t2

.

Similarly, a commercialization time t1 of project 1 determines the benefit rate
of player 2 as

b2(t|t1) =
{

b21(t) if t < t1,
b22(t) if t ≥ t1

.

The total benefit for each player is determined by the following equalities:

B1(t1, t2) =

∞∫
t1

b1(t|t2)dt, B2(t1, t2) =

∞∫
t2

b2(t|t1)dt,

and the total profit as

Pi(t1, t2) = Bi(t1, t2)− Ci(ti).

We assume that the functions bij(t) (1, j = 1, 2) are continuous and mono-
tonically decreasing and the above integrals are finite. Figures 1 and 2 illustrate
a typical behavior of the graphs of the functions introduced above.

According to the standard terminology of the game theory, a strategy t∗1 of
player 1 is said to be the best response of player 1 to a strategy t2 of player 2
if t1 maximizes the payoff to player 1, P1(t1, t2), over the set of all strategies of
player 1, t1:

P1(t∗1, t2) = max
t1>0

P1(t1, t2).
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Figure 1: Benefit rate of player 1, b1(t).

Similarly, a strategy t∗2 of player 2 is said to be the best response of player 2
to a strategy t1 of player 1 if t2 maximizes the payoff to player 2, P2(t1, t2),
over the set of all strategies of player 2, t2:

P2(t1, t∗2) = max
t2>0

P2(t1, t2).

The pair (t∗1, t
∗
2) is said to be a Nash equilibrium in the game if both of the

preceding conditions are satisfied.

Figure 2: Examples of total profit curves comparison for player 1: t22 > t21.
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Thus, we are modeling the decision-making process related to constructing
the new pipelines for the developing energy market as a competition between
two energy suppliers formalized in the form of a noncooperative two-person
game. The solutions that are to be found correspond to Nash equilibrium pairs
t∗1, t

∗
2 which define the rational commercialization times for the projects.

We call this game the game of timing. The information structure of such a
game is quite simple: each player (investor) knows the main characteristics of
both projects. That is enough to construct the Nash equilibrium point (if it
exists), and its components are treated as the rational choice for the partici-
pants.

2 Theoretical Study of the Model

A detailed study of the game of timing is given in the cited paper [10]. Here
we present the main assumptions and sketch the proofs of existence of Nash
equilibrium solutions.

The assumptions are the following. We assume the functions Ci(t) to be
smooth, and the functions ai(t) = −dCi(t)/dt to be positive and monotonically
decreasing. It is also assumed that for each player i, the graph of the rate of
cost reduction, ai(t), intersects the graph of the upper benefit rate, bi1(t), from
above at the unique point t−i > 0, called the fast choice, and stays below it
afterwards; similarly, the graph of ai(t) intersects the graph of bi2(t) from above
at the unique point t+i > 0, called the slow choice, and stays below it afterwards:

ai(t) > bi1(t) for 0 < t < t−i ,

ai(t−i ) = bi1(t−i ), ai(t) < bi1(t) for t > t−i ; (1)

ai(t) > bi2(t) for 0 < t < t+i ,

ai(t+i ) = bi2(t+i ), ai(t) < bi2(t) for t > t+i . (2)

Note that since ai(t) is monotonically decreasing and bi1(t) > bi2(t), we have
t−i < t+i .

A graphical illustration is given in Figure 3.
Despite the fact that any concavity property of P1(t1, t2) and P2(t1, t2) does

not follow from these conditions, it can be proved that Nash equilibrium points
do exist and may be either unique or consist of two pairs.

This is concluded by the following propositions.

Proposition 2.1. For every t1 > 0 the payoff to player 1, P1(t1, t2), increases
in t2; moreover, given a t21 > 0 and t22 > t21, one has P1(t1, t22) = P1(t1, t21)
for t1 ≥ t22 and P1(t1, t22) > P1(t1, t21) for t1 < t22.

This property can be derived from the explicit expression for the derivative
of the function P1(t1, t2) with respect to t1 and accepted assumptions.

Analogously, we have a similar property for the second player.
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Proposition 2.2. For every t2 > 0 the payoff to player 2, P2(t1, t2), increases
in t1; moreover, given a t11 > 0 and t12 > t11, one has P2(t11, t2) = P2(t12, t2)
for t12 ≥ t11 and P2(t11, t2) > P2(t12, t2) for t2 < t12.

A more detailed study of the payoff functions P1(t1, t2) and P2(t1, t2) and
their derivatives allows us to describe the best response of one player to any
given choice of another. Let us fix, e.g., t2—a strategy of the second player.
Then one can prove the following result.

Proposition 2.3. In the interval (t−1 , t+1 ), there exists a unique point t̂2 such
that

P1(t−1 , t̂2) = P1(t+1 , t̂2). (3)

If 0 < t2 < t̂2, then the unique best response of player 1 to t2 is t+1 (slow
choice). For t2 = t̂2 the set of all best responses is {t−1 , t+1 }. And finally, if
t2 > t̂2, then the unique best response of player 1 to t2 is t−1 (fast choice).

This proposition shows a particular role that points t−1 , t+1 play in the game
under consideration. Similar arguments are true for player 2.

Proposition 2.4. In the interval (t−2 , t+2 ), there exists a unique point t̂1 such
that

P2(t̂1, t−2 ) = P2(t̂1, t+2 ). (4)

If 0 < t1 < t̂1, then the unique best response of player 2 to t1 is t+2 (slow
choice). For t1 = t̂1 the set of all best responses is {t−2 , t+2 }. And if t1 > t̂1, then
the unique best response of player 2 to t1 is t−2 (fast choice).

We call the points t̂1 and t̂2 the switch points of the players.

Figure 3: Fast and slow choices of the players.
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From the last two propositions one can conclude that in the game of timing
the Nash equilibrium solutions do exist and such solutions are concentrated in
the set {t−1 , t+1 } × {t−2 , t+2 } of possible combinations of fast and slow choices of
the players. The type of equilibrium is completely determined by the reciprocal
location of the players’ fast and slow choices and the switch points. In particular,
the following theorem is true.

Theorem 2.1. In cases t−2 ≤ t̂2 < t+2 , t−1 < t̂1 ≤ t+1 and t−2 < t̂2 ≤ t+2 ,
t−1 ≤ t̂1 < t+1 the game of timing has precisely two (fast-slow and slow-fast)
Nash equilibria. Otherwise, in any possible situation, it has the unique (fast-
slow or slow-fast) Nash equilibrium.

In [10] one can find the complete classification of the equilibrium points.
We can obtain precise formulas for the introduced functions while using a

specific model of price formation mechanism and that of the cost for finalizing
the project at a fixed time. In Ref. [10] this has been done for the case when
prices are determined by a function of Cobb–Douglas type and costs of con-
struction are obtained as solutions of an optimal investment problem.

The main parameters that should be given for application of this version of
the model are listed in Table 1.

The indicated parameters are used in the price formation model taken in the
form

p(t) =
(

g(t)
y(t)

)β

, (5)

where g(t) is the consumer’s Gross Domestic Product (GDP), and y(t) denotes
gas supply which is supposed to be equal to gas demand. The cost for finalizing
the project i at time ti, Ci(ti), is defined as a solution to the special optimal
control problem, which describes the optimal investment process, and is deter-
mined by the relation

Ci(ti) = ρα−1 e−λtixα
i

(1− e−ρti)α−1
,

where α = 1/γ, ρ = (ασ + λ)/(α− 1).

3 Software G-TIME

For detailed research of the model, sensitivity analysis and econometric data
application, the software “G-TIME” has been elaborated. It allows the analyst
to:
• Perform simulations with various parameters of the model with numerical

and graphical results.
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Table 1: Parameters for specific price formation model.

Parameter Description Units Range Used

values

λ Discount coefficient Share 0 < λ < 1 0.05–0.4

β Integral coefficient
determined by gas
demand price elas-
ticity, gas demand
GDP elasticity and
scalable parameter

Share 0 < β < 1 0.3–0.8

γ Rate of investment
return (delay)

Share 0 < γ < 1 0.5–0.7

σ Obsolescence coeffi-
cient

Share σ ≥ 0 0–0.5

g0 Consumer’s GDP at
time 0

billions US$ g0 > 0 198

c10, c20 Cost for extraction,
transportation and
distribution and
transit fees for play-
ers 1 and 2 respec-
tively at time 0

US$ /1000m3 ci0 > 0 60–80

x1, x2 Prescribed com-
mercialization level
for players 1 and 2
respectively at time
ti

billions US$ xi > 0 2–6

• Obtain illustrations for the switch times definition process, and for profit
surfaces for both players and to analyze the profit functions with a fixed
opposite player time coordinate for both players.
• Calibrate the model on the basis of real econometric data.
• Provide sensitivity analysis of the model with respect to all parameters, and

to obtain distributions of results corresponding to the parameter changes
and related graphical illustrations.

The program has a user-friendly interface, designed to make the simulations
process and results observation more convenient. For convenience, everything is
compiled within one window so that the user can observe both the initial data
and the results and their illustration in one view. G-TIME consists of one main
window divided into 4 main parts:

(1) Input parameters section (Figure 4, A);
(2) Numerical results section (Figure 4, B);
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Figure 4: G-TIME: Graphical results illustration frame in 2D mode.

(3) Graphical results illustration frame (Figure 4, C);
(4) Sensitivity analysis results frame (Figure 4, D).

The different parts are described in more detail as follows.
Input parameters section: allows one to input the initial values for simu-

lation: input parameters of the model, λ, β, γ, σ, commercialization investment
levels, x1 and x2, and, for a theoretical approach, coefficients of GDP and costs
of extraction development. Note the checked “real data” (Figure 4, E)—if it is
chosen, the program uses a tab-given description for coefficients of GDP and
costs of extraction development. The “open file” function allows the user to
input an external file of special format where econometric data for functions
are located and to apply an approximation algorithm (Figure 4, F) that puts
the functions in the form appropriate for simulating process. The functions are
approximated by exponential or polynomial ones. In the bottom-right corner of
the section there is a “calculate” button—pressing on it causes the calculations
to be performed.

Numerical results section: the values of simulation results—t+i , t−i , t∧i and
equilibrium type—are displayed.

Graphic results illustration frame: divided into two parts, each for one
of two players. It works in three modes (Figure 4, G):
• 2D—in this mode diagrams illustrating rate of cost reduction, upper and

lower benefit rate functions and points of their crossing are displayed
• 3D—in this mode the profit surfaces of both players are displayed (Fig-

ure 5)
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Figure 5: G-TIME: Graphical results illustration frame in 3D mode.

• CUT—in this mode the profit functions with the fixed time coordinate of
the opposite player (P1(t1, t2 = const) for 1st and P2(t1 = const, t2) for
2nd player) are displayed (Figure 6).

Figure 6: G-TIME: Graphical results illustration frame in CUT mode.
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A right-click at any part of the main window leads to a pop-up menu where
a full-screen mode preview of the current-mode diagram can be chosen.

Sensitivity analysis results frame: activated when one chooses the spe-
cific parameter relative to which one needs to examine the model’s stability
(robustness) (Figure 4, H), initial and final values for this parameter (the pro-
gram takes the current value of the parameter which is being defined in A section
of Figure 4 as the initial value) and number of points (the program automati-
cally calculates the step). After one presses the “animate” (Figure 4, I) button,
the program starts simulations varying the parameter in a given interval and
putting the results at each step into the frame (Figure 4, D). In the chart the
first column reflects the change of the chosen parameter. While simulating with
the changing parameter, the animation of diagrams is displayed in the graphic
results illustration frame (only in 2D and CUT modes). A right-click at any
part of the main windows leads to a pop-up menu where one can choose to copy
the results to a clipboard or to a file (Figure 4, J).

4 Results of Simulations

The routing of oil and gas pipelines in Asia and especially the Caspian region
is at the center of the geopolitics of energy. One of the most promising markets
in the region is Turkey, not in the least because Turkey constitutes a gateway
from Asia to Europe. Official forecasts suggest that Turkey’s gas demand might
quintuple by 2010. Various countries in the Caspian region are interested in
exporting gas to Turkey. Russia’s Gazprom started to build the “Blue Stream”
pipeline under the Black Sea to expand its current gas deliveries to Turkey, and
Turkmenistan is heading for the Trans-Caspian gas pipeline to deliver gas to
Turkey. It seems that some of these countries are moving ahead fast to preempt
the investment decisions of others, i.e., making it unattractive to build a new
transmission pipeline since the market might not be big enough. Currently gas
(around 30% of demand in 1999) is being shipped to Turkey in the form of LNG
from Algeria and Egypt. The remaining 70% comes from Russia via Bulgaria.
For these reasons we focus on Turkey.

We associate a manager of the Trans-Caspian project with player 1 and a
manager of the Blue Stream project with player 2.

The main task in calibrating the model described in the first section is to
identify the value of β, which is the key parameter in the description of the
price formation mechanism, corresponding, in turn, to a demand model. The
demand model is taken in the form

d(t) = Ag(t)Egp(t)Ep , (6)

where d(t) is demand at time t, g(t) stands for GDP, p(t) is the price at time
t, Eg the GDP elasticity of demand, and Ep the price elasticity of demand.
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Using the values for Eg and Ep, taking into account the equilibrium condition
y(t) = d(t), econometric data and forecasts for g(t) and d(t), one can estimate
the value of β.

The software G-TIME allows one to realize the procedure described above
and apply the model described in Section 1 or to use the relation (6) directly.
In the last case we consider supply of each player as an exogenous variable and
use the price modeling relation derived from (6).

There were several goals pursued by the authors while calibrating the model:
to calibrate the original model described in [10] and, correspondingly, to identify
the β parameter; to calibrate the model with a modified price formation mech-
anism and, correspondingly, to identify elasticity and scale parameters; and to
compensate the inadequacy in the market capacity/agents supplies ratio due
to a reduced number of players. For these purposes, the three scenarios listed
below have been selected for the calibration.

Scenario 1. Further development of the gas market was modeled on the
basis of historical data for the 1988–1998 period by using G-TIME software.
The original price formation mechanism has been considered.

Scenario 2. Simulations were made with the modified model considering the
price modeling mechanism and forecasts obtained by (6).

Scenario 3. Same as scenario 2, but with different supply modeling. The
forecast for the total demand on the gas market for both agents plays a role of
an upper bound for the supply. The supply of each agent while occupying the
market solely equals the total demand; when the opponent enters the market,
the supply of each agent equals his share determinated by his marginal capacity.

The results of identification of the parameters are presented in Table 2.
Values of parameters used in simulations: λ = 0.1, β = 0.55 (only for sce-

nario 1), γ = 0.65, σ = 0.3, x1 = 2.5, x2 = 4. Time t = 0 corresponds to 2001
(year).

Results of the simulations are presented below.
The optimal values for players’ times for entering the market obtained as a

result of simulations in accordance with selected scenarios are also presented
below.

Table 2: Parameter for the three scenarios.

Scenario Identified Time period Coefficients

β value

1 0.55 1988–1998 A = 7 × 10−9, Eg = 4.2, Ep = −0.72

2 1.95 2000–2020 A = 0.47, Eg = 1.25, Ep = −0.7

3 1.63 2000–2020 A = 0.38, Eg = 1.25, Ep = −0.7
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Player 1: Trans-Caspian project. Player 2: Blue Stream project.

Scenario 1: Equilibrium type 2, fast-slow, slow-fast, (t−1 , t+2 ), (t+1 , t−2 )

t−1 = 1.183, t+2 = 3.708; t+1 = 4.142, t−2 = 1.799.

This case brought two equilibriums. According to the slow-fast choice (slow-fast
means that Player 1 enters the market later than Player 2), the Blue Stream
project should commercialize at the end of 2002 and the Trans-Caspian project
at in the beginning of 2005. This is economical evidence: when the market
capacity is not big enough for a concurrence and one of the suppliers has already
started operation on the market, it is not reasonable for a second supplier to
compete for a small share of the market.

Remark 4.1. When the research was still in progress, at the beginning
of 2001, PSG International Ltd. (an affiliate of GE Capital and Bechtel
Enterprises)—one of the major investors of the Trans-Caspian project—quit
the project and left it in a “frozen” state. A year after the research was fin-
ished, at the end of 2002, Blue Stream project managers announced the final
stage of construction. And at the beginning of 2003 the supply of natural gas
to Turkey started. After a year of operation, considering increasing natural gas
demand, which corresponds to forecasts used in simulations, interest in the
Trans-Caspian project has newly arisen, especially from the Shell Company—
also one of the investors of the project.

According to the fast-slow choice, the Trans-Caspian project should commer-
cialize in the beginning of 2002. This is almost a reversed situation, when the
Trans-Caspian project holds leadership on the market and Blue Stream man-
agers will have to postpone the construction until the “optimal time” when the
market capacity will exceed the marginal capacity (or current supply level, if
less) of the Trans-Caspian pipeline by a value enough to pay off the Blue Stream
project, considering operation and maintenance costs. G-TIME software defines
such an “optimal time” as the end of 2004 for the Blue Stream project.

Scenario 2: Equilibrium type 1, fast-slow, (t−1 , t+2 )

t−1 = 1.132, t+2 = 3.441

The results obtained during simulations for scenario 2 did not differ significantly
from the ones obtained for scenario 1. That proves the validity of the assumption
about parameter β as an integral coefficient reflecting the relation between gas
demand and GDP elasticity coefficients and demonstrates that β was identified
correctly over the indicated time period.

The main difference is in the uniqueness of the equilibrium, which means that
each player will have only one strategy for the choice of commercialization time
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in order to maximize the integral profit over the period of operation. For the
Trans-Caspian project such a strategy is the beginning of 2002, for the Blue
Stream project it is the beginning of 2004.

Scenario 3: Equilibrium type 1, fast-slow, (t−1 , t+2 )

t−1 = 1.069, t+2 = 6.381

In the results of simulations according to scenario 3 one can track an increased
gap between “optimal” commercialization times. This can be explained by the
specificity of demand modeling for each player. Since a fraction of the market
allocated to each agent was considered to be proportional to a marginal capacity
of the correspondent pipeline, and the cumulative supplies of both pipelines
were equal to the natural gas demand on the market, there was more time
needed for the Blue Stream project, whose “optimal” commercialization time is
the beginning of 2007, to get its fraction and to enter the market. The optimal
timing for the Trans-Caspian project, as in scenario 2, is the beginning of 2002.

5 Generalized Nash equilibrium

In previous sections we considered the Nash equilibria for two participants (play-
ers) who operate on a specific gas market. The profit functions P1(t1, t2) and
P2(t1, t2) for the 1st and 2nd players respectively were defined as deterministic
functions depending on commercialization times t1 and t2 for the corresponding
projects. In fact, the profit functions P1(t1, t2) and P2(t1, t2) depend on a set
of parameters: discount factor λ, elasticity coefficients and so on. Some of these
parameters can be considered as deterministic ones, but others are really uncer-
tain and not known in advance. Assume that these uncertain parameters can
be modeled using probabilistic techniques. In what follows we suppose them to
be stochastic variables with given distribution functions. Then, at least theoret-
ically, one can assume that the profit functions P1(t1, t2) and P2(t1, t2) for any
t1 and t2 are also stochastic variables with corresponding distribution functions.
Putting aside for the moment the problem of determining these distributions,
consider the two characteristics of these stochastic variables. Namely, denote by
µi(t1, t2) the mathematical expectation (mean value) of the variable Pi(t1, t2)
and by σi(t1, t2) the corresponding standard deviation.

Thus,

µi(t1, t2) = E[Pi(t1, t2)],

σ2
i (t1, t2) = E[(Pi(t1, t2)− µi(t1, t2))2], i = 1, 2.

According to the methodology of the mean-variance analysis one can associate
the value µi with an expected profit for the corresponding player, and the value
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σi with the evaluation of risk, which is to be minimized. Using this approach we
will define a generalized best reply t∗1 of the first player to a fixed strategy t∧2
of the second one as a strategy, which in some sense simultaneously maximizes
the mean value µ1(t1, t∧2 ) and minimizes σ1(t1, t∧2 ).

Definition 5.1. A strategy t∗1 of the first player is said to be the G-best reply
to the strategy t∧2 of the second player if there is no strategy t1 for which the
following inequalities hold simultaneously:

µ1(t1, t∧2 ) ≥ µ1(t∗1, t
∧
2 );

σ1(t1, t∧2 ) ≤ σ1(t∗1, t
∧
2 ),

where at least one inequality is strict.

This is nothing else than the well-known definition of the Pareto optimal
solution for a two-criteria optimization problem:

µ1(t1, t∧2 )
→
t1

max

σ1(t1, t∧2 )
→
t1

min

The set of the points t∗1 which satisfy the above definition is called GBR1(t2).
The same arguments allow us to define the set of best replies t∗2 of player 2

to a given t∧1 of player 1.

Definition 5.2. A strategy t∗2 of the second player is said to be the G-best
reply to the strategy t∧1 of the first player if there is no strategy t2 for which
the following inequalities are simultaneously true:

µ2(t∧1 , t2) ≥ µ2(t∧1 , t∗2);
σ2(t∧1 , t2) ≤ σ2(t∧1 , t∗2);

where at least one inequality is strict.

And again we introduce a set of points t∗2, each of which satisfies the definition,
denoting it by GPR2(t1).

Definition 5.3. A pair {t∗1, t∗2} is said to be a generalized equilibrium if

t∗1 ∈ GBR1(t∗2)

and
t∗2 ∈ GBR2(t∗1).

We will denote by GEP the set of all the points {t∗1, t∗2} which satisfy the above
definition.
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Remark 5.1. In a particular case, when the distributions for both functions
P1(t1, t2) and P2(t1, t2) are concentrated in unique points for every admissible
t1 and t2 (it means that both functions are determined), then the set GEP
coincides with the Nash equilibrium points.

A numerical algorithm has been developed to obtain the GEP points in the
framework of the computer model.

6 Conclusions

Approaches to energy infrastructure modeling based on game-theoretical
methods have been developed, resulting in a new prototype computer model
G-TIME, which combines game-theoretical and probabilistic (statistical)
approaches to reflect uncertainty. With the help of this software a model-based
analysis of Turkey’s gas market has been carried out. The sensitivity analysis of
the models showed that the results of simulations are very sensitive to changes
of some inputs. A standard way to overcome the difficulties connected with
risk and uncertainty caused by stochastic disturbances is the mean-variance
approach. A methodological background related to a generalized Nash equilib-
rium was developed, which allows one to combine the mean-variance approach
and the notion of Nash equilibrium.

REFERENCES

[1] Arrow K.J. and Kurz M., Public Investment, the Rate of Return and Opti-
mal Fiscal Policy, Johns Hopkins University Press, Baltimore, MD, 1970.

[2] Barzel Y., Optimal timing of innovations, Rev. Econ. and Statist., 50, 348–
355, 1968.

[3] Basar T. and Olsder G.J., Dynamic Noncooperative Game Theory, Aca-
demic Press, London, 1982.

[4] Friedman D., Evolutionary Games in Economics, Econometrica, 59, 637–
666, 1991.

[5] Gusev M.I. and Kurzhanskii A.B., Equilibrium situations in multi-criterion
game problems, Dokl. Akad. Nauk, 229, 6, 1295–1298, 1976.

[6] Hofbauer J. and Sigmund K., The Theory of Evolution and Dynamic Sys-
tems, Cambridge University Press, Cambridge, 1988.

[7] Intriligator M., Mathematical Optimization and Economic Theory,
Prentice-Hall, New York, 1971.

[8] Klaassen G., Roehrl R.A. and Tarasyev A.M., The Great Caspian Pipeline
Game, Proc. IIASA Workshops, May 2001.



252 A. Kryazhimskii, O. Nikonov and Y. Minullin

[9] Klaassen G., McDonald A. and Zhao J., The future of gas infrastructures
in Eurasia, Energy Policy, 29, 399–413, 2001.

[10] Klaassen G., Kryazhimskii A. and Tarasyev A., Multiequilibrium game of
timing and competition of gas pipeline projects, JOTA, 120, 1, 147–179,
2004.



The Effects of Incomplete Information in

Stochastic Common-Stock Harvesting Games∗

Robert McKelvey
Department of Mathematical Sciences

University of Montana
Missoula, Montana 59812, U.S.A.

RWMcKelvey@msn.edu

Peter V. Golubtsov
Physics Department

Moscow State Lomonosov University
Moscow, 119899, Russia

P V G@mail.ru

Abstract
Here the dynamic fishery harvesting game is generalized to a stochastic
environment in order to examine the implications of incomplete and asym-
metric information. The main emphasis is on a split stream version of the
game: At the beginning of each harvest season the initial fish stock (or
“recruitment”) divides into two streams, each one accessible to harvest by
just one of the two competing fishing fleets. The fleets simultaneously har-
vest down their streams, achieving net seasonal payoffs for the catch. After
harvest, the residual sub-stocks reunite to form the broodstock for the sub-
sequent generation. The strength of this subsequent generation is deter-
mined by a specified “stock-recruitment relation,” and the cycle repeats.
In this cyclic process, both natural environmental factors (stream-split
proportions and stock-recruitment relation) and economic factors (harvest
costs and benefits) will incorporate Markovian stochastic elements. At the
beginning of each season, both fleets know the current recruitment and
also have some (generally incomplete or delayed, and often asymmetric)
knowledge of the current values of the stochastic elements. The knowledge
structure of each specific game version is held in common by the competi-
tors. In the dynamic game each fleet sets its harvest policy with the objec-
tive of maximizing the expected discounted sum of seasonal payoffs, and
conditional on the extent of its current knowledge and of the anticipated
policy of its competitor.

The implications of alternative knowledge structures are explored,
through dynamic programming and simulation. Both information struc-
tures and the stochastic characteristics of bioeconomic parameters are
varied continuously to explore their interplay. The asymmetric trade-offs
among them are examined. The focus is on demonstrating the often unex-
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pected, and sometimes counter-intuitive, effects that knowledge enrich-
ment may have in these incomplete-information, common-property games.

Key words. Stochastic harvesting game, Asymmetric information, Fish
wars, Bioeconomic competition models, Stochastic dynamic programming.

1 Introduction

This chapter studies various types of stochastic dynamical harvesting games.
Following a long tradition [1, 2], the specific context is taken to be a marine
fishery.

Two independently operated fleets competitively harvest a fish stock. The
harvesting occurs annually, and each fleet chooses its harvest policy in such a
way as to optimize discounted long-run net returns—given the expected harvest
policies of its competitor. Thus, the projected outcome of the game is a dynamic
Nash equilibrium.

The classical version of the game has the two fleets harvesting simultaneously
from a common pool. But here we also consider situations where the fleets may
have access to different parts of the fish stock at different times and places
during the season. For example, the fish stock may be harvested sequentially by
the fleets, as it travels a migration route back from its adult feeding range to
its spawning grounds. Or the migrating stock may split into separate streams
as it returns, each stream being accessible to harvest by only one of the fleets.
Much of our focus here will be on the latter case, but our formulation of the
game in dynamic programming format will remain general, and thus applicable
to other possible situations.

Our primary focus is on fishery harvesting games which are played out in a
stochastic environment, and in which the fleets must formulate and implement
their policies under circumstances of incomplete information. The stochastic
character of these games will be expressed through a random Markov parameter
(which can be multidimensional).

We shall explore a wide range of information structures in our games. In par-
ticular, players may possess various levels of knowledge about the realization of
a particular random parameter, e.g., current or delayed information, or even no
information other than its Markov transition probability distribution. Alterna-
tively, they may have only partial information of a parameter value, informa-
tion obtained from imperfect observation. Moreover, the information structure
may be asymmetric, e.g., one player may possess full current information while
the other has only delayed or imperfect information. However, in all cases the
information structure of the game is common knowledge [3].
∗This material is based on work supported by the U.S. National Science Foundation
under Grant No. 9708475.
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For a related earlier study of incomplete-information stochastic harvesting
games, see [4] and [5].

In such games it may well happen that a refinement of information may have
unexpected, seemingly perverse, effects on the outcome of the game. For exam-
ple, simulations show that (unlike in a single-player game) enhanced information
may be harmful for both players. It may only lead them to harvest more aggres-
sively, and thus may result in destructive stock reduction which will adversely
affect future returns.

Other counter-intuitive situations may result when the information structure
is asymmetric. Usually the player who knows more will do better than his
competitor, but it will sometimes be to his advantage to reveal his private
information, with the result that both will then do better. Other, seemingly
counter-intuitive, simulation results are summarized in Section 2.4.

These situations run counter to those observed when players cooperate, by
sharing information and adopting a common policy, in order to maximize their
joint return. In this case not only do they both benefit from cooperation, but
the benefits never are decreased by gaining additional information.

The structure of this chapter is the following: after the description of basic
harvesting games and a brief problem statement we first present a collection of
striking simulation results. All the technical details of deriving Nash equilibrium
harvesting policies are given in the second half of the paper.

These involve reducing optimal reaction policies to the corresponding dynam-
ical programming algorithms, and generalizing the classical optimal control
technique, see, e.g., [6].

2 Informal Problem Description and Simulations for
Split Stream Harvesting

2.1 Split Stream Harvesting

In the split stock harvesting model we assume that each player harvests in
his own stream and that the random split of stock between streams may be
unknown or imperfectly known to the players. The split stock harvesting game
is illustrated by the following diagram:

R
����� Rα � Sα

�����
�����

Rβ � Sβ
����� S � R+

Here R is the current year’s harvestable stock level, or “recruitment,” and Rα

and Rβ are partial recruitments, in the separate streams, accessible to players α
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and β, respectively. Thus,

Rα = θαR, Rβ = θβR,

where
θα = θ, θβ = 1− θ,

and θ is a random split factor. The residual substream stock or “escapement,”
following harvest, is denoted by Sα or Sβ , respectively. These are determined by

Sα = σα(Rα, pα), Sβ = σβ(Rβ , pβ).

Here pα and pβ are players’ harvesting policies for this season. Typically, we
shall define policies as escapement fractions so that Sα = pαRα and Sβ = pβRβ .
Finally, the substream escapements combine to form the current year’s total
escapement

S = Sα + Sβ ,

which is the broodstock, for determining the following year’s recruitment R+,
through the “stock-recruitment relation” (or “growth function”):

R+ = F (S, ϕ),

where ϕ is a random disturbance of the growth function.
We will assume that θ and ϕ are random variables and denote a whole set

of random variables by a single symbol ν. Each player’s policy depends on
the mutually known information structure of the game, and on the specific
information that a player has when he makes his annual harvest decisions. We
will always assume that both players know the current total recruitment R,
and also that each one has some information ξα and ξβ about current and past
random disturbances. Thus,

pα = Pα(R, ξα), pβ = P β(R, ξβ),

where Pα and P β are the players’ decision strategies.
The situation would change in fundamental ways if the players did not know

the total recruitment, but each knew only that portion recruited to his own
stream. In this case the policies would depend on the respective stream recruit-
ments, i.e.,

pα = Pα(Rα, ξα), pβ = P β(Rβ , ξβ).

We will report on this alternative, less informationally rich situation in a sub-
sequent publication.

The extent of players’ knowledge about the random split fraction θ or ϕ may
vary. In all cases we assume that both players know at least the stochastic
properties of random parameters (e.g., transition probability distribution for a
Markov process). In addition a player may have additional information: e.g.,
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may have full current knowledge (this season’s value), or only delayed knowl-
edge (the previous season’s value), or may know the result of imperfect observa-
tion of a current parameter value. Alternatively, he may possess no additional
knowledge at all.

Furthermore, the structure of knowledge may be asymmetric; that is, the
players may have differing levels of knowledge.

In each season a player gets a net return (annual payoff) vα or vβ , which is
a function of his stream’s recruitment and his own policy, i.e.,

vα = vα(Rα, pα), vβ = vβ(Rβ , pβ).

The player’s payoff in the dynamic game is taken to be a discounted sum of his
seasonal returns over the time span of the game.

2.2 The Infinite Horizon Harvesting Problem

In all of our simulations we shall consider the infinite time-horizon risk-neutral
harvesting game, but only as the limit of a sequence of long finite time-horizon
problems.

Our numerical procedures (see Sections 3.2–3.3 and 4.1 for more details) are
based on a dynamic programming formulation of the game-theoretic equilib-
rium solution of each finite horizon game in such a convergent sequence. This
approach implies an exclusion of any infinite horizon equilibria other than those
arising through limits of such sequential processes.

Of course, the numerical procedure can only approximate the limit of equi-
libria of harvesting games with a long finite horizon—but this is, for practical
applications, what is of interest. It is well known that some infinite horizon
problems can have a great many equilibria that are not of this sort.

Denote a decision policy at time τ by Pα
τ and a sequence of decision functions

Pα
τ from the moment t until T by

Pα
t = 〈Pα

t , Pα
t+1, . . . , P

α
T 〉 = 〈Pα

t ,Pα
t+1〉.

Thus, the complete policy sequence for the player α from the season t = 0 until
the season t = T is the sequence Pα

0 .
Each player’s objective in the game with finite time-horizon T is to choose an

optimal policy to maximize the expected discounted sum of his annual payoffs,
given the policy of his competitor. Thus, player α will choose Pα

0 conditional
on Pβ

0 to maximize

Uα
0 (R0,Pα

0 ,Pβ
0 ) = E

[(
T−1∑
t=0

γt
αvα(Rα

t , pα
t , νt)

)
+ γT

α vα(Rα
T , p̃α

T , νT )

]
.

Here differing policies p̃α
T , p̃β

T are specified at terminal time T , to reflect differing
objectives for the status of the fish stock at time T + 1. The typical options
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are either to specify directly the substream escapements at time T or to assign
those escapements a positive “scrap value.”

To incorporate “scrap value” into the problem statement we alter the objec-
tive function adding the (discounted) term EγT+1

α Zα(RT+1), where Zα is mono-
tone increasing. The chosen policy will maximize the sum, trading off the payoff
for harvested fish through time T against the value of the stock retained at time
T + 1.

Thus we have a two-player game, which consists of finding a Nash equilibrium⎧⎪⎨⎪⎩
max
Pα

0

Uα(R,Pα,Pβ),

max
Pβ

0

Uβ(R,Pα,Pβ)

for all possible R and for all policy functions Pα
0 , Pβ

0 . Then, if the pair P̂α
0 , P̂β

0

constitute a Nash equilibrium,

Uα(R, P̂α
0 , P̂β

0 ) � Uα(R,Pα
0 , P̂β

0 ),

Uβ(R, P̂α
0 , P̂β

0 ) � Uβ(R, P̂α
0 ,Pβ

0 ).

We find, at least in the risk-neutral games which we simulate, that each of
these finite time-horizon games has a unique solution, in a pair of optimal poli-
cies, which will be non-stationary and will depend on the particular terminal-
time policies adopted. Furthermore, in the limit of the infinite horizon game
the sequence of finite time-horizon Nash equilibria policy pairs converges to a
common stationary policy, which optimizes the limit objectives

Uα(R0,Pα
0 ,Pβ

0 ) = E
∞∑

t=0

γt
αvα(Rα

t , pα
t , νt).

The Nash equilibrium formulation of the modified game, in which each player
has only information Rα or Rβ about recruitment in his own stream, may be
formulated in a similar fashion.

2.3 Results of Simulation

In this section we present the results of simulations for various game param-
eters and for various information structures. All the simulations are based on
dynamic programming algorithms for the corresponding harvesting problems,
as described in Sections 3.2 and 3.3.

The knowledge that each player has at time t always includes the current total
recruitment Rt. In addition he will have some information about the stochas-
tic parameter θ, which determines the split of flow between the two streams.
Knowledge of θ includes, at minimum, the probability transition matrix for
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this Markovian random sequence. In these simulations, the stock-recruitment
parameters are deterministic.

A player may have only this minimum knowledge θ or in addition may know,
at time t, historical values of θ up through the previous season’s value θt−1. He
even may know the current value of θt.

Alternatively, a player may obtain partial information of the flow-split from
the result of imperfect observation of the split fraction θ, through a measure-
ment parameter ξ. Measurement of ξt specifies only a known conditional proba-
bility distribution of the true value θt. When studying games with measurement
information we can augment measurement precision continuously, thus reveal-
ing the influence of the degree of knowledge on the outcome of competition.

The knowledge state may be symmetric, with both players having the same
information, or may be asymmetric, e.g., one player may have current knowledge
of θ while the other has only delayed knowledge, or one may have measurement
information while the other knows only the Markov transition function.

The other items that may be incorporated in simulations include various
classes of annual return function, incorporating adjustable parameters; e.g.,
the cost of unit harvesting effort may be varied. (See Section 4.2 for details.)
Finally, various classes of stock-recruitment growth functions, also incorporating
adjustable parameters, will be considered. (See Section 4.3.)

In the simulations displayed below we show time-averaged values (of, e.g.,
expected annual payoff, or seasonal escapement), averaged over sufficiently long
periods (typically 2000 time steps) to achieve stability.

2.3.1 Influence of Harvesting Cost on Competition

Here we examine the influence, on the outcome of the split stream harvesting
game, of alternative information structures, with a fixed (i.e., deterministic)
growth function F (S) and a range of levels of the constant unit harvesting cost
parameter c (see Section 4.2).

In the first set of simulations (Figure 1) we assume that F (S) is of “compen-
satory” type, i.e., is monotone increasing and concave, with a positive fix-point
at the “carrying capacity” S = K, where F (K) = K. Specifically, we utilize
the “cubic growth function” (see Section 4.3 and Figure 15 bottom), normaliz-
ing the carrying capacity to K = 1. The graphs displayed show predicted game
outcomes for five distinct circumstances: competitive harvesting with complete
symmetric current information about θ (“Cur”); competitive harvesting with
asymmetric (current vs. minimal) information, where the first player (“Cur-
Min 1”) has current information, while the second one (“Cur-Min 2”) has
only minimal knowledge; cooperative harvesting with current information (“Cur
Coop”); competitive harvesting with minimal symmetric information (“Min”);
and finally cooperative harvesting with minimum information (“Min Coop”).

The graphs in Figure 1 show, respectively, the average annual steady-state
payoffs to the players and the corresponding stock escapement levels. Unless
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Figure 1: Influence of harvesting cost for different types of knowledge. “Compen-
satory” cubic growth function, see Figure 15 bottom.

harvest costs are very low (c < 0.1), the result of increased harvesting costs is
to decrease individual payoffs and to increase separate-stream escapements.

Furthermore, provided the players possess identical knowledge, their individ-
ual payoffs increase as their information increases and, at a given information
level, are greater when the players cooperate than when they compete.

In the symmetric knowledge cases (solid lines) both players benefit from addi-
tional information, but the first player would still prefer the asymmetric case
(“Cur-Min 1”).

Finally, when the competing players’ information levels differ, then player 1
(“Cur-Min 1”), with more complete information, will do better than player 2
(“Cur-Min 2”), and better than he would have done even had he cooperated
fully (“Cur Coop”), assuming that the cooperating players’ goal was to set their
individual harvests to maximize the sum of their payoffs.

All of these results seem natural, and may be thought of as displaying a
certain baseline condition to be expected from compensatory growth.

The anomalous behavior in the competition models, seen when costs are very
low, is real: It is the result of competition driving stock escapements down into
a region of very slow growth, so that payoffs drop. With cooperation this low
escapement hazard is avoided.

These negative effects of competition become much more pronounced when
the stock-recruitment relation is depensatory, especially when it exhibits critical
depensation. This is demonstrated in Figures 2 and 3.

The second set of figures (Figure 2) result when one assumes, instead of
compensatory growth, that the growth function is assumed to display “non-
critical depensation.” That is, it remains monotone increasing, but is convex
for small S, but with S < F (S) remaining true on all of 0 < S < K. The effect
is that the recruitment gain remains small on an extended interval of low S.
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Figure 2: Influence of harvesting cost for different types of knowledge. Growth
function with “non-critical depensation,” see Figure 15 middle.

In Figure 3, where the growth function exhibits critical depensation, the
effects are even more pronounced. In this case, F (S) < S on an interval 0 <
S < S0 < K and should escapement drop into this region, stock extinction
would become inevitable.

The most obvious difference from the compensatory case, when the players
compete, is the reduction of mean payoff as well as expected escapement levels
when harvesting costs are low and thus harvest effort is large. This effect is not
seen when the players cooperate and hence are able to avoid the critical region.

It is seen again in Figure 3 (left) that an information advantage in an asym-
metric knowledge case is highly beneficial for the first player (“Cur-Min 1”).
Moreover, he would not wish to share his additional knowledge with his com-
petitor and thereby switch to the symmetric complete knowledge case (“Cur”).
Typically, the second player (“Cur-Min 2”) in the asymmetric case would pre-

Figure 3: Influence of harvesting cost for different types of knowledge. Growth
function with “critical depensation,” see Figure 15 top.
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fer to get current knowledge—but not for low cost (< 0.3) where asymmetrical
knowledge is more beneficial (even for him) than symmetrical complete current
knowledge (“Cur”). Furthermore, at low enough costs (< 0.35), minimal infor-
mation (“Min”) is more beneficial than complete current knowledge (“Cur”).
This is because, in the absence of precise knowledge, harvest levels must be
compromises, and hence extremely low escapements are avoided.

As noted above, competition becomes especially destructive, for low cost
of harvest, in the critical depensatory case where overharvest can completely
destroy the stock. However, if the players cooperate their return is significantly
higher, especially when the cost of harvest is low for complete information (“Cur
Coop”) and for minimal information (“Min Coop”). Cooperatively, in contrast
to the competitive case they are able to hold expected escapements at relatively
high levels.

2.3.2 Harvesting with Information from Imperfect Observations

In this set of simulations, information about current θ is obtained from imper-
fect measurements, so that its impacts can be compared along a continuum.
The measurement accuracy is a variable parameter, increasing from 0 (no infor-
mation) to 1 (complete information).

It is assumed once again that stock recruitment conforms to the “Cubic”
growth function (see Section 4.3), and thus may display compensation, non-
critical depensation or critical depensation, depending on the growth parameter
value. But now the unit harvesting cost c is fixed throughout.

Figures 4–6 show game outcomes for three types of games: competitive har-
vesting with imperfect measurement information about θ (“Meas”); competitive
harvesting with asymmetric (measurement vs. minimal) information, where the
first player (“Meas-Min 1”) obtains measurement information, while the second
one (“Meas-Min 2”) has only minimal knowledge; and cooperative harvesting
with measurement information (“Meas Coop”).

In the first set of simulations (Figure 4) stock recruitment is compensatory,
and the demonstrated effect of enhanced information is quite intuitive.

As always, when the players cooperate (“Meas Coop”) their total return will
be maximized, and the greater their (shared) information, the greater their
payoff will be—at the expense of a diminished fish-stock escapement.

In a competitive game, where the players retain the same level of knowledge
(“Meas”), both players still benefit from additional information, though to a
lesser degree than with cooperation, and the stock escapement is depressed even
more than with cooperation.

Finally, under asymmetric-knowledge competition (dashed lines), the
information-advantaged first player (“Meas-Min 1”) will do even better (at
high precision) than he would by cooperating and sharing knowledge, while the
second player (“Meas-Min 2”) will do much worse. As the first player’s knowl-
edge is enhanced, the total stock escapement level in the two streams will drop
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Figure 4: Compensatory harvesting with information from imperfect observation.

as precision increases—though not as rapidly as with cooperation, but to a
much lower level, and in fact, the stock escapement in the first player’s stream
(“Meas-Min 1”) will drop, while the stock escapement in the second player’s
stream (“Meas-Min 2”) will remain almost unchanged.

In the second and third sets of simulations (Figures 5 and 6) stock-recruitment
displays, with respectively, (non-critical) depensation (Figure 5; see also Fig-
ure 15 middle), and critical depensation (Figure 6, see also Figure 15 top) are
shown.

Note that if the players cooperate (“Meas Coop”), the usual pattern holds
that enhanced information yields better payoffs. As before, this result is corre-
lated with a drop in escapement levels, but escapement must, with high proba-
bility, be held above a critical level (here, around 0.35). The sum of payoffs here
necessarily will be superior to those in competitive situations, with or without
informational asymmetry.

Figure 5: Depensatory harvesting with information from imperfect observation
(“non-critical depensation”).
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Figure 6: Depensatory harvesting with information from imperfect observation
(“critical depensation”)

It is seen, especially for the “critical depensation” case (Figure 6), in com-
petitive games with symmetric (“Meas”) and asymmetric (“Meas-Min”) infor-
mation structures, that below a certain level additional information is benefi-
cial to both players, even for the player who does not possess the additional
information (“Meas-Min 2”). However, further increasing the knowledge level
degrades the situation dramatically, presumably by making harvesting policies
more aggressive.

In addition, for low measurement accuracy the situation when the second
player also has access to the measurement information is better for him then
when he does not (“Meas” vs. “Meas-Min 2”). However, for high enough accu-
racy levels (> 0.38) his additional knowledge does not benefit him.

At the same time cooperative management (“Meas Coop”) provides a much
higher return, which is constantly growing with the increase of measurement
accuracy.

Reduction of payoff at high precision of measurements is connected with
significant reduction of escapement. It is interesting that in the cooperation
case (“Meas Coop”) escapement also decreases with the increase of knowledge,
but very slightly, and always remains at a very high (compared to competition
cases) level.

2.3.3 Harvesting under Various Degrees of Compensation or
Depensation

In this set of simulations we show the interplay between the knowledge structure
and the level of depensation by continuously varying the degree of depensation
or compensation of the cubic growth function. The stock-recruitment parameter
b is fixed (b = 0), while A, which is equal to the derivative of the cubic growth
function at S = 0, varies from 0.5 to 1 (critical depensation, Figure 7) or from
1 to 3 (non-critical depensation and compensation, Figure 8).
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Figure 7: Harvesting at various degrees of depensation.

The graphs displayed show game outcomes for five types of games: competi-
tive with complete symmetric information (“Cur”), competitive with asymmet-
ric (current vs. minimal) information (“Cur-Min 1” and “Cur-Min 2”), coopera-
tive with current information (“Cur Coop”), competitive with minimal informa-
tion (“Min”), and finally cooperative with minimal information (“Min Coop”).

Since with the increase of A the cubic growth function uniformly increases it
is natural that payoffs also increase for all types of knowledge. However, the rate
of growth of payoff for different games is quite different. It is seen that while for
low A additional information leads to very low payoffs (and even zero payoff for
complete current symmetric knowledge “Cur”), at a high compensation factor
it becomes highly beneficial.

Figure 8: Harvesting at various degrees of compensation.
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2.3.4 Balancing Asymmetric Information against Asymmetric
Environmental Conditions

Here nature slightly favors the second player (Figure 9). Specifically, θ takes
the values 0.1 and 0.8 with equal probabilities (so the first player’s fraction of
total recruitment fluctuates between 0.1 or 0.8 of the whole recruitment, while
the second player receives the fraction 0.9 or 0.2). Thus, the mean recruitment
for the first player is lower than for the second one.

The graphs show game outcomes for three types of games: competitive with
imperfect measurement information (“Meas 1” and “Meas 2”), competitive with
asymmetric (measurement vs. minimal) information (“Meas-Min 1” and “Meas-
Min 2”), and finally cooperative with measurement information without side
payments (“Coop 1” and “Coop 2”) and with equal sharing (“Coop”).

As one would expect, when the players possess identical information, player 2
(“Meas 1”) will always do better than player 1 (“Meas 2”). But when player 1
(“Meas-Min 1”) has a strong informational advantage (here when MP > 0.3),
this can overbalance player 2’s (“Meas-Min 2”) environmental advantages.

On the other hand, the sum of the players’ payoffs will be greatest with
cooperation: players sharing information, and with the common objective of
maximizing the sum of their returns. In this case, and because of the environ-
mental asymmetry, the direct harvest returns in the two substreams (“Coop
1” and “Coop 1”) will not be equal. This can be considered as a pure “good-
will” cooperation. Alternatively, the two players can negotiate a different split
of this total return, an outcome achievable through negotiation of a compen-
sating “side-payment,” from one player to the other. The case of equal sharing
(“Coop”) is shown on the graph as well.

We will get qualitatively similar results if we consider an asymmetry, not
in nature but in the economic environment. Figure 10 corresponds to the case
where the only asymmetry is cost of harvest (see Section 4.2). It is equal to

Figure 9: Influence of measurement precision in asymmetric natural environment
case.
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Figure 10: Influence of measurement precision in asymmetric economic environment
case.

0.2 for the first player and 0.15 for the second one. Thus, economic asymmetry
again slightly favors the second player.

2.3.5 The Influence of Environmental Variability

In this set of simulations (Figure 11) we change the variance of the stock-split
factor θ. Specifically, θ randomly takes two values: θ1 and θ2 = 1 − θ1, where
θ1 may be any fraction between 0 and 0.5. So, the standard deviation sθ of θ
may take any value between 0 and sθ max = 0.5. We define “variability” of θ as
variability = sθ/sθ max. Thus, for θ1 = 0.5 there is no variability (θ = 0.5 always,
variability = 0), while for θ1 = 0 variability is highest (θ jumps randomly
between 0 and 1, variability = 1). All the simulations are performed for the
same depensatory growth function (specified by A = 0.6, b = 0, see Figure 15
top).

Figure 11: Influence of the level of environmental variability.
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The graphs show game outcomes for five types of games: competitive with
complete symmetric information (“Cur”), competitive with asymmetric (cur-
rent vs. minimal) information (“Cur-Min 1” and “Cur-Min 2”), cooperative
with current information (“Cur Coop”), competitive with minimal information
(“Min”), and cooperative with minimal information (“Min Coop”).

For cooperative harvesting with complete knowledge (“Cur Coop”), the
increase of the payoff with an increase of θ variability is quite natural. Indeed,
with high variability of θ almost the entire fish stock goes into just one of two
streams, and this leads to reduction of harvesting cost per unit (cf. Section 4.2).
Because this cooperative game is fully symmetric, the average annual payoffs
to the two players will be identical.

It appears that the increase of payoff in competitive games with an increase
of variability from 0 to 0.2 may have the same explanation. However, at higher
variability values the effect of competition (especially for complete knowledge,
“Cur”) becomes dominant. Indeed, if all the stock is in one stream, the corre-
sponding fleet can harvest almost all of it at relatively low cost.

2.3.6 From Competition to Cooperation

In Section 3.4 we describe a simple way to introduce “cooperation” into the
competitive harvesting game. In Figure 12 we can see that the average imme-
diate payoff constantly increases with the increase of “degree of cooperation”
for both complete (“Cur”) and minimum (“Min”) types of knowledge.

Here a zero degree of cooperation means purely competitive behavior, with
each player maximizing his own discounted payoff, while degree 1 cooperation
means both players maximize the total discounted payoff. For intermediate
values of cooperation, each player will maximize a convex linear combination of
his own and his competitor’s discounted payoffs.

Simulation is performed for a depensatory (cubic, see Section 4.3) growth
function (A = 0.6, b = 0, see Figure 15 top). It is clearly seen on Figure 12 that

Figure 12: Increasing degree of cooperation. Current vs. minimum knowledge.
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Figure 13: Increasing degree of cooperation in asymmetric environment case. Current
and minimum knowledge. Critical depensation case.

additional information (“Cur”) is beneficial only when there is a high degree of
cooperation. At low degrees of cooperation, and especially in the case of pure
competition, additional knowledge leads to a critical drop of average escapement
and to zero average payoff.

Of course, total cooperation implies sharing all private knowledge, as well as
taking into account both players’ conflicting objectives.

Figure 13 displays a case of asymmetric nature conditions, where players
get different average payoffs. Here, θ takes the values 0.1 and 0.8 with equal
probabilities, so nature slightly favors the second player.

Note that, at all levels of cooperation, the difference between average payoffs
is much higher for minimal (“Min 1” and “Min 2”) than for complete (“Cur
1” and “Cur 2”) knowledge. In this simulation (critical depensation, A = 0.6)
minimum knowledge is always more beneficial for the second player (“Min 2”)
than complete knowledge (“Cur 2”). However, this is not invariably true: In
simulations corresponding to a higher compensation factor A (see Figure 14 for
A = 3), the curve “Cur 2” (and even “Cur 1”) rises above “Min 2.”

2.4 Summary of simulation results

The simulations demonstrate the trade-offs that harvesters face when there
is a potential for gain from risk-taking, but under circumstances of limited
information and destructive competition.

One such situation arises when a low harvesting cost index c encourages large
harvests, but depensatory biological growth carries a risk that any overharvest
may trap the stock permanently in the range of lowest biological productivity
and highest harvesting costs.

Supposing full symmetry between players, it is found (e.g., Figures 2–8) that
cooperative management is able to take advantage of low c to achieve high
returns, and that the returns improve significantly with enhanced knowledge of
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Figure 14: Increasing degree of cooperation in asymmetric environment case. Cur-
rent and minimum knowledge. Compensatory growth function.

the current stock-split fraction θ. But a competitive harvest, under those same
conditions of low c and high information precision, will result in a depleted stock
and much lower returns—lower even than when information precision is minimal
(e.g., Figure 6 (also Figures 2, 3, 5)). Indeed, the best returns under competition
are achieved when both the cost index and the precision of information are in
the midrange.

The competitive results under information asymmetry also are interesting.
Typically, the player with the greater information precision will do better than
his opponent, by strategically increasing his harvest modestly without unduly
reducing mean subsequent recruitment. It will seldom be advantageous for him
to reveal his private information to his opponent. In most circumstances his
mean payoff would decrease, should he reveal private information—only mildly
when the growth function is compensatory (Figure 4), but quite significantly in
the presence of depensation (Figures 5 and 6).

In this asymmetric information case the player with less information typically
will gain either if he knows more or his opponent knows less; that is, by a
return to the circumstance of symmetric information. However, in rare cases (see
Figure 11, 0.225 < θ < 0.3) he may prefer unfavorable knowledge asymmetry
to either of the two symmetric alternatives.

Another case where added risk carries a potential for higher returns occurs
when the stream-distribution factor θ has high variance, as illustrated in Fig-
ure 11. Indeed, with cooperation and accurate tracking of θ, the harvest in a
given year can then be concentrated within the stream with higher recruitment,
and hence the lower costs. And the higher the variance of θ, the higher will be
the return (Figure 11).

But with symmetric access, the high precision of knowledge of total recruit-
ment size intensifies destructive competition, and mean returns decline. Analo-
gously to the critical depensation-low c case, payoffs peak with mid-level envi-
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ronmental variance, and at high variance are higher for minimal information
than for full current information of θ.

In asymmetric information cases, the player with greater information is much
better off, except at very high levels of fluctuation, to withhold his private
information, while the player with less information would gain from additional
information for small θ-variance, but would lose thereby when variance is large.

3 General Study of Dynamical Fishery Games

3.1 Games with Common Knowledge of Recruitment

The primary focus of this chapter is on dynamic competitive harvesting games
where, prior to each harvest season, both players are informed of the current
joint recruitment R, as well as some, generally incomplete, information con-
cerning current random system parameters.

We assume that the subsequent season’s recruitment R+ and the players’
current seasonal payoffs vα and vβ all depend on initial recruitment R, on
players’ policies pα, pβ , and on random factors ν, i.e.,

R+ = ρ(R, ν, pα, pβ),

vα = vα(R, ν, pα, pβ), vβ = vβ(R, ν, pα, pβ).

Furthermore, players’ policies depend on their common recruitment R and some
additional information ξα and ξβ , about random disturbances ν:

pα = Pα(R, ξα), pβ = P β(R, ξβ).

Thus, at this level of generality the transition of the system from one har-
vesting stage to the next may be represented schematically as

R �R+

ρ(R, ν, pα, pβ)

Many specific structural patterns of fishery can be represented in this way.
Here we indicate only a couple of them.

3.1.1 Split Stream Harvesting

The simulations described in Section 2.3 all concern split stream harvesting.
It is easily seen that such split stream harvesting (for the case when players

know their common recruitment) can be considered as a particular case of a
common-stock harvesting. Indeed, recalling the notation of Section 2.1, in the
split stream case ν = (θ, ϕ), the function ρ has a form:

ρ(R; θ, ϕ; pα, pβ) = F
(
(θpα + (1− θ)pβ)R, ϕ

)
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and the functions vα and vβ are expressed through the corresponding functions
vα
spl and vβ

spl (for the split case) as follows:

vα(R; θ, ϕ; pα, pβ) = vα
spl(θR, pα), vβ(R; θ, ϕ; pα, pβ) = vβ

spl((1− θ)R, pβ).

In what follows we assume that random vectors θt constitute a Markov chain
with known stochastic properties. In particular, if θt takes a finite number n of
states, its stochastic behavior is completely determined by a certain stochastic
n× n matrix.

3.1.2 Sequential Harvesting

In this case the player α harvests first, then the player β harvests, and then the
fish spawns.

R = Rα
σα(Rα, να, pα)−−−−−−−−−−−−→Sα = Rβ

σβ(Rβ , νβ , pβ)−−−−−−−−−−−→Sβ = S
F (S, ϕ)−−−−−−→R+

Here each player’s escapement depends on his recruitment, his policy, and
some random factors at this step,

Sα = σα(Rα, να, pα), Sβ = σβ(Rβ , νβ , pβ),

and it is natural to assume that each player knows his respective recruitment
Rα or Rβ and has some knowledge ξα or ξβ of the stochastic state parameters
να or νβ , respectively.

Then his policy will be of the form, e.g.,

pα = Pα(Rα, ξα), pβ = P β(Rβ , ξβ),

and

R+ = F

(
σβ
(
σα(R, να, pα), νβ , pβ

)
, ϕ

)
.

In general, this sequential model cannot be thought of as a special case of
our general formulation, unless the second player is assumed to also know R.
But, if such additional knowledge (and some information about random factors
να and νβ) is assumed, then the sequential harvesting case can be subsumed
within the general formulation, with

R+ = ρ(R; να, νβ , ϕ; pα, pβ) = F

(
σβ
(
σα(R, να, pα), νβ , pβ

)
, ϕ

)
.
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3.2 Finite Horizon Problem with Simple Types of Knowledge

Let us consider the finite horizon game with the final season T . Here we will not
restrict ourselves to stationarity, so the functions vα

τ and vβ
τ may be different at

different moments τ . Denote a decision policy at time τ by Pα
τ and a sequence

of decision functions Pα
τ from the moment t until T by

Pα
t = 〈Pα

t , Pα
t+1, . . . , P

α
T 〉 = 〈Pα

t ,Pα
t+1〉.

The knowledge that each player has at time t is the current common recruit-
ment Rt and some information about stochastic parameter ν. Knowledge of ν
includes, at minimum, the probability transition matrix for this Markovian ran-
dom sequence. In this section we consider the simplest cases: a player may have
only this minimum knowledge ν or, in addition, may, at time t, know historical
values of ν up through the previous season’s value νt−1, or even also know the
current value of ν, i.e., νt. The knowledge state may be symmetric, with both
players having the same information or may be asymmetric, e.g., one player
having current knowledge of ν while the other has only delayed knowledge.

3.2.1 Current Information

Assume that the information held by both players at time t includes the current
value of the random vector νt.

Then, at the moment t, the expected discounted payoff for the player α is

V α
t (Rt, νt,Pα

t ,Pβ
t ) = E(νt+1,νt+2,...,νT |νt)

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ ) (1)

with a similar expression for player β, where

pα
τ = Pα

τ (Rτ , ντ ), pβ
τ = P β

τ (Rτ , ντ ).

A pair 〈P̂α
t , P̂β

t 〉 provides a Nash equilibrium for a pair 〈V α
t , V β

t 〉 if for all
possible values of Rt and νt⎧⎪⎨⎪⎩

V α
t (Rt, νt, P̂α

t , P̂β
t ) = max

Pα
t

V α
t (Rt, νt,Pα

t , P̂β
t ),

V β
t (Rt, νt, P̂α

t , P̂β
t ) = max

Pβ
t

V β
t (Rt, νt, P̂α

t ,Pβ
t ).

In what follows we will denote the corresponding Nash equilibrium discounted
payoffs as ⎧⎨⎩ V̂ α

t (Rt, νt) = V α
t (Rt, νt, P̂α

t , P̂β
t ),

V̂ β
t (Rt, νt) = V β

t (Rt, νt, P̂α
t , P̂β

t ).
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Since the random parameter ν is a Markov process, completely determined by
its current value and single-stage transition distribution (i.e., the distribution
of νt+1 for any given νt), the mathematical expectation E(νt+1,νt+2,...,νT |νt) can
be presented as a sequence of conditional expectations:

E(νt+1,νt+2,...,νT |νt) = E(νt+1|νt)E(νt+2|νt+1) · · ·E(νT |νT−1).

It follows that V α
t can be expressed through immediate payoff vα

t and V α
t+1:

V α
t (Rt, νt,Pα

t ,Pβ
t ) = vα

t (Rt, νt, p
α
t , pβ

t )

+ γαE(νt+1|νt)V
α
t+1

(
ρ(Rt, νt, p

α
t , pβ

t ), νt+1,Pα
t+1,P

β
t+1

)
.

(2)

Note that we can also use expression (2) as an alternative (recursive) defini-
tion of the discounted payoff.

This leads to the following dynamic programming solution for this prob-
lem. Suppose that 〈P̂α

t+1, P̂
β
t+1〉 are Nash equilibrium policies starting from the

moment t+1 and 〈V̂ α
t+1, V̂

β
t+1〉 are the corresponding optimal discounted values.

Define
Ṽ α

t (Rt, νt, P
α
t , P β

t ) = Ṽ α
t (Rt, νt, 〈Pα

t , P̂α
t+1〉, 〈P

β
t , P̂β

t+1〉),

i.e., the discounted payoff corresponding to arbitrary policies Pα
t and P β

t at
time t and optimal “tails” P̂α

t and P̂β
t , and a similar function for the player β.

Then the optimal policies 〈P̂α
t , P̂ β

t 〉 for the time t can be obtained by solv-
ing, for all possible values of Rt and νt, the Nash equilibrium problem for the
functions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ṽ α
t (Rt, νt, p

α
t , pβ

t ) = vα
t (Rt, νt, p

α
t , pβ

t )
+ γαE(νt+1|νt)V̂

α
t+1(ρ(Rt, p

α
t , pβ

t , νt), νt+1),

Ṽ β
t (Rt, νt, p

α
t , pβ

t ) = vβ
t (Rt, νt, p

α
t , pβ

t )
+ γβE(νt+1|νt)V̂

β
t+1(ρ(Rt, p

α
t , pβ

t , νt), νt+1)

with respect to 〈pα
t , pβ

t 〉. Specifically, P̂α
t (Rt, νt) = p̂α

t and P̂ β
t (Rt, νt) = p̂β

t ,
where the pair 〈p̂α

t , p̂β
t 〉 attains Nash equilibrium to these functions for given

Rt and νt. Thus, the Nash equilibrium policies starting from the moment t and
〈V̂ α

t , V̂ β
t 〉 can be obtained recursively as

P̂α
t = 〈P̂α

t , P̂α
t+1〉, P̂β

t = 〈P̂ β
t , P̂β

t+1〉.

3.2.2 Delayed Information

This case looks very similar to the case of current knowledge except for the fact
that the policies and discounted values at time t depend not on νt but on νt−1,
i.e.,

pα
t = Pα

t (Rt, νt−1), pβ
t = P β

t (Rt, νt−1),
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and

V α
t (Rt, νt−1,Pα

t ,Pβ
t ) = E(νt,νt+1,...,νT |νt−1)

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

= E(νt|νt−1)E(νt+1,...,νT |νt)

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

= E(νt|νt−1)V̇
α
t (Rt, νt,Pα

t ,Pβ
t ),

where V̇ α
t denotes the discounted value function for the “current information”

case.
Thus, the case when the both players have delayed information leads to the

dynamic programming procedure with the following Nash equilibrium problem
at each step:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ṽ α
t (Rt, νt−1, p

α
t , pβ

t ) = E(νt|νt−1)

[
vα

t (Rt, νt, p
α
t , pβ

t )

+ γαV̂ α
t+1(ρ(Rt, p

α
t , pβ

t , νt), νt)
]
,

Ṽ β
t (Rt, νt−1, p

α
t , pβ

t ) = E(νt|νt−1)

[
vβ

t (Rt, νt, p
α
t , pβ

t )

+ γβV̂ β
t+1(ρ(Rt, p

α
t , pβ

t , νt), νt)
]
,

where V̂ α
t (Rt, νt−1) and V̂ β

t (Rt, νt−1) are Nash equilibrium values for these
functions. Optimal decision policies P̂α

t and P̂ β
t are defined as P̂α

t (Rt, νt−1) = p̂α
t

and P̂ β
t (Rt, νt−1) = p̂β

t , where the pair 〈p̂α
t , p̂β

t 〉 attains Nash equilibrium to
these functions for given Rt and νt−1.

3.2.3 Asymmetric Information: Current vs. Delayed

Now suppose that the first player has current knowledge of ν and the second
one has delayed information. Thus, the first player’s policy depends on νt and
νt−1, while the second player’s policy depends only on νt−1, i.e.,

pα
t = Pα

t (Rt, νt−1, νt), pβ
t = P β

t (Rt, νt−1).

In this case at each dynamic programming (DP) step we have an asymmetric
Nash equilibrium problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ṽ α
t (Rt, νt−1, νt, p

α
t , pβ

t ) = vα
t (Rt, νt, p

α
t , pβ

t )

+ γαE(νt+1|νt)V̂
α
t+1(ρ(Rt, p

α
t , pβ

t , νt), νt+1),

Ṽ β
t (Rt, νt−1, p

α
t , pβ

t ) = E(νt|νt−1)

[
vβ

t (Rt, νt, p
α
t , pβ

t )

+ γβV̂ β
t+1(ρ(Rt, p

α
t , pβ

t , νt), νt)
]
.
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Here the first player utilizes the knowledge of νt−1 to compute the second
player’s policy at time t. However, while the second player can calculate the
first player’s policy, he cannot know his opponent’s actual response (since he
does not know νt). Instead he can only assign to it a probability distribution.

Strictly speaking, the solution of this Nash equilibrium problem is a
pair of functions P̂α

t (Rt, νt−1, νt) and P̂ β
t (Rt, νt−1) among all the functions

Pα
t (Rt, νt−1, νt) and P β

t (Rt, νt−1) that attain Nash equilibrium to the following
pair of functions for all the values Rt, νt−1, and νt:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṽ α
t (Rt, νt−1, νt, P

α
t , P β

t ) = vα
t (Rt, νt, P

α
t (Rt, νt−1, νt), P

β
t (Rt, νt−1))

+ γαE(νt+1|νt)V̂
α
t+1(

ρ(Rt, νt, P
α
t (Rt, νt−1, νt),

P β
t (Rt, νt−1)), νt+1

)
,

Ṽ β
t (Rt, νt−1, P

α
t , P β

t ) = E(νt|νt−1)

[
vβ

t

(
Rt, νt, P

α
t (Rt, νt−1, νt),

P β
t (Rt, νt−1)

)
+ γβV̂ β

t+1(
ρ(Rt, νt, P

α
t (Rt, νt−1, νt),

P β
t (Rt, νt−1)), νt

)]
.

Note, that each player can adjust his policy “pointwise” i.e., for all the pos-
sible values of his policy arguments, provided the other player’s policy is fixed.
This, in fact, can be used for computing optimal policies iteratively. For some
α-policy we can find an optimum response β-policy. Then we fix this β-policy
and find the corresponding optimum α-policy, and so on.

3.2.4 Minimal Knowledge

Let us consider the situation where the players know nothing of the specific
realization of ν, but know only its transition probability matrix, and hence its
stationary asymptotic distribution. In this case policies and discounted values
depend on R but do not depend on the realization of ν, i.e.

V α
t (Rt,Pα

t ,Pβ
t ) = Eνt

E(νt+1,νt+2,...,νT |νt)

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

= Eνt
V̇ α

t (Rt, νt,Pα
t ,Pβ

t ). (3)

Here, the first (unconditional) expectation Eνt is taken over the “known” dis-
tribution of ν, i.e., its limit distribution. The limit distribution can be obtained
by taking the infinite power of the stochastic matrix that describes Markov
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process. The infinite power of the stochastic matrix has (under very general
conditions) equal columns representing the limit (stationary) distribution of ν.
Let us denote ν∗ a random variable that has this limit distribution.

Also, V̇ α
t denotes the discounted value function for the complete information

case. Finally,
pα

τ = Pα
τ (Rτ ), pβ

τ = P β
τ (Rτ ).

So, in the case where both players possess only minimal information about
ν, we can obtain optimal policies Pα

t (Rt) and Pβ
t (Rt) by finding the Nash

equilibrium for the functions⎧⎪⎨⎪⎩
Ṽ α

t (Rt, p
α
t , pβ

t ) = Eν∗
[
vα

t (Rt, ν
∗, pα

t , pβ
t ) + γαV̂ α

t+1(ρ(Rt, ν
∗, pα

t , pβ
t ))
]

Ṽ β
t (Rt, p

α
t , pβ

t ) = Eν∗
[
vβ

t (Rt, ν
∗, pα

t , pβ
t ) + γβV̂ β

t+1(ρ(Rt, ν
∗, pα

t , pβ
t ))
]

with respect to 〈pα
t , pβ

t 〉. Now P̂α
t (Rt) = p̂α

t and P̂ β
t (Rt) = p̂β

t , where the
pair 〈p̂α

t , p̂β
t 〉 attains Nash equilibrium to these functions for given Rt, and

〈V̂ α
t+1, V̂

β
t+1〉 are again the corresponding optimal discounted values.

3.2.5 Asymmetric Cases

As in Section 3.2.3 we can study other asymmetric situations. For example,
suppose that the first player has current information νt and his discounted
payoff is determined by (1) and the second player does not have any information
and his discounted value is given by (3). Now

pα
t = Pα

t (Rt, νt), pβ
t = P β

t (Rt)

and these policies can be found recursively by solving the following sequence of
Nash equilibrium problems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṽ α
t (Rt, νt, P

α
t , P β

t ) = vα
t (Rt, νt, P

α
t (Rt, νt), P

β
t (Rt))

+ γαE(νt+1|νt)V̂
α
t+1(ρ(Rt, νt, P

α
t (Rt, νt),

P β
t (Rt)), νt+1),

Ṽ β
t (Rt, P

α
t , P β

t ) = E(νt)

[
vβ

t (Rt, νt, P
α
t (Rt, νt), P

β
t (Rt))

+ γβV̂ β
t+1(ρ(Rt, νt, P

α
t (Rt, νt), P

β
t (Rt)))

]
.

3.3 Information Obtained from Imperfect Observation

Our assumption in Section 3.2 that the players possess precise knowledge of
the realization of a stochastic parameter νt clearly is an idealization. Typically,
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its value cannot be determined precisely but only with a certain error. In this
section we will introduce the notion of measurement error in observation of
stochastic parameters. This leads to a certain generalization of our previous
“incomplete information” case and introduces a continuum in the precision of
knowledge.

An imperfect observation of νt can be characterized through a transition
probability from the space of states of the parameter νt to the space of states
of the observation ξt. In a case where these spaces are finite, say the number of
states for νt and ξt are n and m, respectively, then a measurement is completely
determined by an m × n stochastic matrix. The i-th column of this matrix
represents the conditional distribution of the observation ξt when νt is in the
ith state.

We assume that the information that a player has at time t consists of the
current common recruitment Rt and the result of an imperfect measurement ξt

of the current parameter νt. Different players may have results of distinct mea-
surements ξα and ξβ or these measurements may be the same. Now a player’s
policies at time t depend on Rt and on ξα

t (for player α), i.e.,

pα
t = Pα

t (Rt, ξ
α
t ), pβ

t = P β
t (Rt, ξ

β
t ).

If players have the same measurement information, i.e., ξα
t = ξβ

t , we will denote
it ξt. The random sequence ν may be Markovian or, as a special case, indepen-
dent and identically distributed (i.i.d.).

3.3.1 Common Observations of I.I.D. Parameters

In this subsection we state the optimum harvesting problem as a problem of
optimizing discounted payoffs conditional on measurement results ξt:

V α
t (Rt, ξt,Pα

t ,Pβ
t ) = E(νt,νt+1,ξt+1,...|ξt)

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ ). (4)

Rewrite V α
t in recursive form:

V α
t (Rt, ξt,Pα

t ,Pβ
t ) = E(νt|ξt)E(νt+1,ξt+1,... )

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

= E(νt|ξt)

[
vα

t (Rt, νt, p
α
t , pβ

t )

+ γαE(νt+1,ξt+1)

T∑
τ=t+1

γτ−(t+1)
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )
]

= E(νt|ξt)

[
vα

t (Rt, νt, p
α
t , pβ

t ) + γαE(ξt+1)V
α
t+1(

ρt(Rt, νt, p
α
t , pβ

t ), ξt+1,Pα
t+1,P

β
t+1

)]
.



Incomplete Information in Stochastic Common-Stock Harvesting Games 279

Here we make use of the fact that expectation E(νt+1,ξt+1) over the joint dis-
tribution of the pair (νt+1, ξt+1) can be presented as a sequence of expectation
operations, i.e.,

E(νt+1,ξt+1) = E(ξt+1)E(νt+1|ξt+1).

This leads to the following DP algorithm, which involves computation of a
Nash equilibrium pair 〈pα

t , pβ
t 〉 for the following functions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ṽ α
t (Rt, ξt, p

α
t , pβ

t ) = E(νt|ξt)

[
vα

t

(
Rt, νt, p

α
t , pβ

t

)
+ γαE(ξt+1)V̂

α
t+1

(
ρt(Rt, νt, p

α
t , pβ

t ), ξt+1

)]
Ṽ β

t (Rt, ξt, p
α
t , pβ

t ) = E(νt|ξt)

[
vβ

t

(
Rt, νt, p

α
t , pβ

t

)
+ γβE(ξt+1)V̂

β
t+1

(
ρt(Rt, νt, p

α
t , pβ

t ), ξt+1

)]
.

Both functions 〈Pα
t , P β

t 〉 here can be found pointwise by defining P̂α
t (Rt, ξt) =

p̂α
t and P̂ β

t (Rt, ξt) = p̂β
t , where 〈p̂α

t , p̂β
t 〉 attain Nash equilibrium for the above

functions.
More precisely, computation of the optimal policies 〈P̂α

t , P̂ β
t 〉 at each step can

be performed in two different ways:
(a) Fix R and ξ, find the Nash equilibrium point 〈p̂α, p̂β〉 for the functions

Ṽ α
t (R, ξ, pα, pβ) and Ṽ β

t (R, ξ, pα, pβ) and set P̂α
t (R, ξ) = p̂α and P̂ β

t (R, ξ) = p̂β .
Thus, the problem reduces to a pointwise computation of a Nash equilibrium
for all possible values of R and ξ.

Note that the equilibrium pair 〈p̂α, p̂β〉 can be found iteratively: For a fixed
initial iteration pα

(1) find an optimal response pβ
(1), i.e.,

pβ
(1) = arg max

pβ
Ṽ β

t (R, ξ, pα
(1), p

β),

then find an optimal response pα
(2) for pβ

(1), etc. Typically, the sequence 〈pα
(i), p

β
(i)〉

will converge to a Nash equilibrium point 〈p̂α, p̂β〉.
(b) Fix some policy Pα

(1) and find an optimal response P β
(1), i.e., such

a policy, that for all R, ξ the function P β
(1) attains the maximum to

Ṽ β
t (R, ξ, Pα

(1)(R, ξ), P β(R, ξ)) with respect to P β . Then similarly find Pα
(2), etc.

It is obvious that at each step an optimal response can be found pointwise
(separately for each combination R, ξ) for any (!) policy used by another player.

3.3.2 I.I.D. Parameters, Distinct Observations

In a more general situation players may obtain information based on differ-
ent measurements ξα

t and ξβ
t of the random parameter νt. Then each player’s
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policy depends on the respective information available to him, and each player
maximizes his own conditional discounted payoff:

V α
t (Rt, ξ

α
t ,Pα

t ,Pβ
t ) = E(νt,ξ

β
t ,...|ξα

t )

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

and the similar expression for V β
t (Rt, ξ

β
t ,Pα

t ,Pβ
t ).

V α
t (Rt, ξ

α
t ,Pα

t ,Pβ
t ) = E(νt,ξ

β
t ,...|ξα

t )

T∑
τ=t

γτ−t
α vα

τ

(
Rτ , ντ , Pα

τ (Rτ , ξα
τ ),

P β
τ (Rτ , ξβ

τ )
)

= E(νt,ξ
β
t |ξα

t )

[
vα

t

(
Rt, νt, p

α
t , pβ

t

)
+ γαEξα

t+1

V α
t

(
ρt(Rt, νt, p

α
t , pβ

t ), ξα
t+1,P

α
t+1,P

β
t+1

)]
.

This leads to the following DP algorithm, which involves computation of the
Nash equilibrium pair 〈Pα

t , P β
t 〉 for the following functions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṽ α
t (Rt, ξ

α
t , Pα

t , P β
t ) = E(νt,ξ

β
t |ξα

t )

[
vα

t

(
Rt, νt, P

α
t (Rt, ξ

α
t ), P β

t (Rt, ξ
β
t )
)

+ γαEξα
t+1

V̂ α
t+1

(
ρt(Rt, νt, P

α
t (Rt, ξ

α
t ),

P β
t (Rt, ξ

β
t )), ξα

t+1

)]
Ṽ β

t (Rt, ξ
β
t , Pα

t , P β
t ) = E(νt,ξα

t |ξβ
t )

[
vβ

t

(
Rt, νt, P

α
t (Rt, ξ

α
t ), P β

t (Rt, ξ
β
t )
)

+ γβEξβ
t+1

V̂ β
t+1

(
ρt(Rt, νt, P

α
t (Rt, ξ

α
t ),

P β
t (Rt, ξ

β
t )), ξβ

t+1

)]
.

3.3.3 Markov Parameter, Common Observations

V α
t (Rt, ξt,Pα

t ,Pβ
t ) = E(νt,νt+1,ξt+1,...|ξt)

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

= E(νt,νt+1,ξt+1,...|ξt)

T∑
τ=t

γτ−t
α vα

τ (Rτ , Pα
τ (Rτ , ξτ ),

P β
τ (Rτ , ξτ ), ντ ).

(5)
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This leads to the following DP algorithm, which involves computation of a
Nash equilibrium pair 〈pα

t , pβ
t 〉 for the following functions:

Ṽ α
t (Rt, ξt, p

α
t , pβ

t ) = E(νt|ξt)

[
vα

t

(
Rt, νt, p

α
t , pβ

t

)
+ γαE(νt+1|νt)

E(ξt+1|νt+1)V̂
α
t+1

(
ρt(Rt, νt, p

α
t , pβ

t ), ξt+1

)]
Ṽ β

t (Rt, ξt, p
α
t , pβ

t ) = E(νt|ξt)

[
vβ

t

(
Rt, νt, p

α
t , pβ

t

)
+ γβE(νt+1|νt)

E(ξt+1|νt+1)V̂
β
t+1

(
ρt(Rt, νt, p

α
t , pβ

t ), ξt+1

)]
.

(6)

Both functions 〈Pα
t , P β

t 〉 here can be found pointwise by defining P̂α
t (Rt, ξt) =

p̂α
t and P̂ β

t (Rt, ξt) = p̂β
t , where 〈p̂α

t , p̂β
t 〉 attain Nash equilibrium to the above

functions.
Note that this section generalizes results of Section 3.2.1, in that we are here

assuming imperfect current knowledge of ν. With perfect information (ξ =
ν) our results here reduce to those in 3.2.1. Analogously, one could analyze
imperfect delayed knowledge of ν.

3.3.4 Asymmetry: Imperfect Current Observation vs. Minimal
Information

Suppose that one player, say, β does not know the results of measurements of
ν. Thus, his policy must be based on the asymptotic distribution of ν and does
not depend on ξ. His discounted payoff is defined as an average of the payoff
for the “measurement” case, i.e.,

V β
t (Rt,Pα

t ,Pβ
t ) = E(νt,ξt,νt+1,ξt+1,... )

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

= EξtE(νt,νt+1,ξt+1,...|ξt)

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

= Eξt V̇
β
t (Rt, ξt,Pα

t ,Pβ
t ),

where V̇ β
t is the payoff for the “measurement” case defined as in (5). The

expectation Eξt
is an expectation over a “limit” distribution of ξt, which can be

obtained by taking the limit distribution of νt and applying the measurement
transition distribution to it. Let us denote a random variable that has this limit
distribution by ξ∗.

This leads to the DP solution for the problem with Nash equilibrium functions
as in (6) and Ṽ β

t (Rt, ξt, p
α
t , pβ

t ) replaced by Eξ∗ Ṽ β
t (Rt, ξ

∗, pα
t , pβ

t ) with policies

pα
t = Pα

t (Rt, ξt), pβ
t = P β

t (Rt).
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3.3.5 Markov Parameter, Distinct Observations

V α
t (Rt, ξ

α
t ,Pα

t ,Pβ
t ) = E(νt,ξ

β
t ,...|ξα

t )

T∑
τ=t

γτ−t
α vα

τ (Rτ , ντ , pα
τ , pβ

τ )

= E(νt,ξ
β
t ,...|ξα

t )

T∑
τ=t

γτ−t
α vα

τ

(
Rτ , ντ , Pα

τ (Rτ , ξα
τ ),

P β
τ (Rτ , ξβ

τ )
)
.

This leads to the following DP algorithm, which involves computation of the
Nash equilibrium pair 〈Pα

t , P β
t 〉 for the following functions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṽ α
t (Rt, ξ

α
t , Pα

t , P β
t ) = E(νt,ξ

β
t |ξα

t )

[
vα

t

(
Rt, νt, P

α
t (Rt, ξ

α
t ), P β

t (Rt, ξ
β
t )
)

γαE(νt+1|νt)E(ξα
t+1|νt+1)V̂

α
t+1(

ρt(Rt, νt, P
α
t (Rt, ξ

α
t ), P β

t (Rt, ξ
β
t )), ξα

t+1

)]
Ṽ β

t (Rt, ξ
β
t , Pα

t , P β
t ) = E(νt,ξα

t |ξβ
t )

[
vβ

t

(
Rt, νt, P

α
t (Rt, ξ

α
t ), P β

t (Rt, ξ
β
t )
)

γβE(νt+1|νt)E(ξβ
t+1|νt+1)

V̂ β
t+1(

ρt(Rt, νt, P
α
t (Rt, ξ

α
t ), P β

t (Rt, ξ
β
t )), ξβ

t+1

)]
.

3.4 Cooperation by “Taking Care of Each Other”

It is easy to introduce some sort of cooperation (or contradiction) in our model
by modifying discounted payoffs V α and V β in a simple way, which reflects
“care” of one player for the other.

Specifically, player α may take care of β by optimizing a linear combination
of payoffs

V α = cααV α + cαβV β

instead of his original payoff V α. Similarly, β may optimize

V β = cβαV α + cββV β .

Effectively, this describes (in the case cαα + cβα = 1 and cαβ + cββ = 1) a game
with side payments, when one player knows that he will get a certain fraction
of another player’s payoff.

If cαβ > 0, player α tries to improve the income of β and if cαβ > cαα, then
α cares about β more than about himself. Conversely, cαβ < 0 means that α
tries to “disserve” β, possibly in order to exclude him from business.

An interesting particular case is when cαα = cαβ = cβα = cββ = 1/2. In
effect this represents a sole operator (monopolist) case.
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Note that if discount factors are equal, i.e., γα = γβ = γ, then introduction
of cooperation coefficients in the problem statement influences the DP solution
algorithm very slightly. Specifically, the expressions like vα

t (Rt, νt, p
α
t , pβ

t ) are
just replaced by cααvα

t (Rt, νt, p
α
t , pβ

t )+cαβvα
t (Rt, νt, p

α
t , pβ

t ). For example, in the
“current information” case we will have the following Nash equilibrium problem
at each step:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ṽ α
t (Rt, νt, p

α
t , pβ

t ) = cααvα
t (Rt, νt, p

α
t , pβ

t ) + cαβvα
t (Rt, νt, p

α
t , pβ

t )
+ γE(νt+1|νt)V̂

α
t+1(ρ(Rt, p

α
t , pβ

t , νt), νt+1)

Ṽ β
t (Rt, νt, p

α
t , pβ

t ) = cβαvα
t (Rt, νt, p

α
t , pβ

t ) + cββvα
t (Rt, νt, p

α
t , pβ

t )
+ γE(νt+1|νt)V̂

β
t+1(ρ(Rt, p

α
t , pβ

t , νt), νt+1).

3.5 Split Stream Harvesting with Separate Information about
Recruitments

Let us consider now the case of split stream harvesting (Section 2.1) when each
player knows only the recruitment to his own stream, but the total recruitment
R = Rα + Rβ . In this case his policy will depend on his partial recruitment
and his knowledge of stochastic parameters, i.e.,

pα = Pα(Rα, ξα), pβ = P β(Rβ , ξβ).

It is easily seen that if the current θ is known to the players (ξα = ξβ = θ) they
can easily “reconstruct” common recruitment and the problem reduces to the
problem considered in Section 3.2.1.

So, consider the case when the knowledge of θ is imprecise (obtained from
measurements). Define the total payoff at time t recursively as the conditional
average of the current payoff plus the discounted and averaged total payoff for
the next season, i.e.,

V α
t (Rα

t , ξα
t ,Pα

t ,Pβ
t ) = vα

t

(
Rα

t , pα
t

)
+ γαE(θt,ξ

β
t |ξα

t )E(θt+1|θt)

E(ξα
t+1|θt+1)V

α
t

(
Rα

t+1, ξ
α
t+1,P

α
t+1,P

β
t+1

)
.

Here
Rα

t+1 = θα
t+1F
(
σα(Rα

t , pα
t ) + σβ( θβ

t

θα
t
Rα

t , pβ
t )
)

.

This leads to the following DP algorithm, which involves computation of a
Nash equilibrium pair 〈Pα

t , P β
t 〉 for the following functions:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ṽ α
t (Rα

t , ξα
t , Pα

t , P β
t ) = vα

t

(
Rα

t , pα
t

)
+ γαE(νt,ξ

β
t |ξα

t )E(νt+1|νt)

E(ξα
t+1|νt+1)V̂

α
t+1

(
Rα

t+1, ξ
α
t+1

)
,

Ṽ β
t (Rβ

t , ξβ
t , Pα

t , P β
t ) = vβ

t (Rβ
t , pβ

t ) + γβE(νt,ξα
t |ξβ

t )E(νt+1|νt)

E(ξβ
t+1|νt+1)

V̂ β
t+1(R

β
t+1, ξ

β
t+1),

where Rα
t+1 and Rβ

t+1 are defined as

Rα
t+1 = θα

t+1F
(
σα(Rα

t , Pα
t (Rα

t , ξα
t )) + σβ( θβ

t

θα
t
Rα

t , P β
t ( θβ

t

θα
t
Rα

t , ξβ
t ))
)

,

Rβ
t+1 = θβ

t+1F
(
σα( θα

t

θβ
t

Rβ
t , Pα

t ( θα
t

θβ
t

Rβ
t , ξα

t )) + σα(Rβ
t , P β

t (Rβ
t , ξβ

t ))
)

.

3.6 Sequential Harvesting with Separate Information about
Recruitments

In this section we study the case of sequential harvesting (Section 3.1.2) when
each player knows only his respective recruitment Rα or Rβ . So his policy
depends on his respective recruitment and information about random parame-
ters.

For simplicity we assume that the only random parameter is in the growth
function ϕ, i.e.,

pα = Pα(Rα, ξα), pβ = P β(Rβ , ξβ).

The player’s escapement and immediate payoff depend on his recruitment and
his policy,

Sα = σα(Rα, pα), Sβ = σβ(Rβ , pβ),

vα = vα(Rα, pα), vβ = vβ(Rβ , pβ).

We can again define the total payoff at time t recursively as the conditional
average of the current payoff plus the discounted and averaged total payoff for
the next season, i.e.,

V α
t (Rα

t , ξα
t ,Pα

t ,Pβ
t ) = vα

t

(
Rα

t , pα
t

)
+ γαE(ϕt,ξ

β
t |ξα

t )E(ϕt+1|ϕt)

E(ξα
t+1|ϕt+1)V

α
t

(
Rα

t+1, ξ
α
t+1,P

α
t+1,P

β
t+1

)
,

and a similar expression for player β. Note that the total payoff functions look
very much the same, but essentially they are different, since the players’ recruit-
ments are very different:

Rα
t+1 = F

(
σβ(σα(Rα

t , pα
t ), pβ

t ), ϕt

)
,

Rβ
t+1 = σα

(
F (σβ(Rβ

t , pβ
t ), ϕt), pα

t+1

)
.

It is interesting that, due to the sequential nature of the players’ actions, the
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solution of the problem may also be constructed sequentially without involving
Nash equilibrium steps.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂ α
t (Rα

t , ξα
t )= maxpα

t

[
vα

t

(
Rα

t , pα
t

)
+ γαE(νt,ξ

β
t |ξα

t )E(νt+1|νt)E(ξα
t+1|νt+1)

V̂ α
t+1

(
F
(
σβ(σα(Rα

t , pα
t ), P̂ β

t (·)), ϕt

)
, ξα

t+1

)]
,

V̂ β
t (Rβ

t , ξβ
t ) = maxpβ

t

[
vβ

t (Rβ
t , pβ

t ) + γβE(νt,ξα
t |ξβ

t )E(νt+1|νt)E(ξβ
t+1|νt+1)

V̂ β
t+1

(
σα
(
F (σβ(Rβ

t , pβ
t ), ϕt), P̂α

t+1(·)
)

, ξβ
t+1

)]
,

(7)

where for shortness P̂ β
t (·) and P̂α

t+1(·) denote the corresponding optimal policies
applied to the preceding value as an argument.

Thus,
P̂ β

t (Rβ
t , ξβ

t ) = arg max
pβ

t

[·]

in the second expression of (7) and

P̂α
t (Rα

t , ξα
t ) = arg max

pα
t

[·]

in the first expression give us optimal policies, which can be computed step by
step, moving backwards from the horizon.

4 Concrete Details of Implementation

In this section we give a brief description of the algorithm and concrete param-
eters of the simulations demonstrated above.

4.1 Dynamic Programming Realization of the Algorithm

We describe first our basic algorithm, employing what is arguably the most
natural finite horizon sequence of approximations to the given infinite horizon
game. We then describe a series of variants of these finite time-horizon approx-
imations, intended to uncover any additional natural sequential-limit equilibria
of the infinite horizon game. We note that, in virtually all of the cases that
we have examined (with exceptions noted below), only a single infinite horizon
game-theoretic limiting equilibrium has been found, and that it is of the station-
ary target-escapement form that is also characteristic of cooperative centrally
managed and risk-neutral harvests.

To be specific, let us consider the case of i.i.d. parameters and distinct obser-
vations. Let T � 0 denote the finite time-horizon for an approximating harvest-
ing game. At each time stage t let Pα

t (Rt, ξ
α
t ) and P β

t (Rt, ξ
β
t ) be single-stage



286 R. McKelvey and P. V. Golubtsov

harvest policies, where Rt is the current recruitment and ξα
t , ξβ

t represent the
players’ current information on current and past random disturbances. Further-
more, let

Pα
t = 〈Pα

t , Pα
t+1, . . . , P

α
T 〉

denote a full end-game policy for player α, and similarly for β. Then the
expected payoffs V α

t and V β
t to the players in an end game beginning at stage

t can be written in dynamic programming formulation as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V α
t (Rt, ξ

α
t ,Pα

t ,Pβ
t ) = E(νt,ξ

β
t |ξα

t )

[
vα

t

(
Rt, νt, P

α
t (Rt, ξ

α
t ), P β

t (Rt, ξ
β
t )
)

+ γαEξα
t+1

V α
t+1

(
ρt(Rt, νt, P

α
t (Rt, ξ

α
t ),

P β
t (Rt, ξ

β
t ), ξα

t+1,P
α
t+1,P

β
t+1

)]
V β

t (Rt, ξ
β
t ,Pα

t ,Pβ
t ) = E(νt,ξα

t |ξβ
t )

[
vβ

t

(
Rt, νt, P

α
t (Rt, ξ

α
t ), P β

t (Rt, ξ
β
t )
)

+ γβEξβ
t+1

V β
t+1

(
ρt(Rt, νt, P

α
t (Rt, ξ

α
t ),

P β
t (Rt, ξ

β
t ), ξβ

t+1,P
α
t+1,P

β
t+1

)]
(8)

in terms of the current single-stage policy pair 〈Pα
t , P β

t 〉 and the subsequent
end-game policy pair 〈Pα

t+1,P
β
t+1〉.

Let 〈P̂α
t , P̂β

t 〉 denote a game-theoretic Nash equilibrium policy pair for the
harvesting end game beginning at time t, and let

V̂ α
t (Rt, ξ

α
t ) = V α

t (Rt, ξ
α
t , P̂α

t , P̂β
t ), V̂ β

t (Rt, ξ
β
t ) = V β

t (Rt, ξ
β
t , P̂α

t , P̂β
t )

denote the corresponding payoffs. Using the dynamic programming format, the
optimal period t policy pair, 〈P̂α

t , P̂ β
t 〉 can be expressed in terms of the subse-

quent end-game policy pair, 〈P̂α
t+1, P̂

β
t+1〉 as, respectively,

P̂α
t = arg max

P α
t

V α
t

(
Rt, ξ

α
t , 〈Pα

t , P̂α
t+1〉, 〈P̂

β
t , P̂β

t+1〉
)

,

P̂ β
t = arg max

P β
t

V β
t

(
Rt, ξ

β
t , 〈P̂α

t , P̂α
t+1〉, 〈P

β
t , P̂β

t+1〉
)

. (9)

Our basic algorithm consists of several nested loops. The external loop steps
backward over time, beginning with the terminal period t = T . In our initial
formulation, moving stage-by-stage backward in time via the solutions to (9),
the algorithm arrives at an equilibrium end-game policy pair for successively
larger time periods t. The algorithm compares the Nash policy pair at stage t
with that at stage t + 1 and, when these are deemed sufficiently close together,
regards 〈Pα

t , P β
t 〉 as a stationary policy pair for the infinite horizon game.

At each stage t, and with specified 〈P̂α
t+1, P̂

β
t+1〉, the algorithm’s inner loop

process carries out a reaction analysis leading to numerical evaluation of the
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pair of arg max values in (9): The process begins with arbitrary choice of an
initial approximate α-fleet stage t policy Pα

t to supplement the known end-
game policy pair 〈P̂α

t , P̂β
t 〉 and then determines, via the second equation of

(9), the optimal β-fleet stage t policy response P β
t . Next, the first equation in

(9) is used to find the best α-fleet stage t response to that β-fleet policy, and
so on. Then by dynamic programming based on the second equation of (8),
the algorithm determines the optimal response to this policy, and so on until
numerical convergence. The two processes must be carried out over a grid of
values of R and ξα for the first player and R and ξβ for the second one.

The first variation on this process is to alter the initial specification of period
T equilibrium policies by assigning a so-called “scrap value” to the terminal
stock left unharvested. In all cases, this alteration will lead to a terminally
distinct series of t-stage approximations in policies and payoffs, but by 5 to 10
backward iterations these differences will have disappeared.

Our second algorithmic variation is more elaborate. We note that in all cases
the policy sequences in our finite horizon approximations are non-stationary,
tending to stationarity only as the horizon becomes more remote. In this second
variation, we carried out our reaction analysis beginning always with stationary
policies and reacting with the best stationary policies. In this way we searched
for possible new equilibria for the infinite horizon problem, equilibria occupying
distinct “basins of attraction” from the originally determined equilibrium. But
we found nothing new in this way.

In order to find possible alternative Nash equilibria, several types of dis-
turbances were applied to the algorithms. One type of disturbance consists in
choosing specific initial iteration policies for the Nash equilibrium iterations at
each season t. Specifically, initial policies were chosen from the target escape-
ment class of policies with a target-escapement varied from zero harvesting to
full stock harvesting.

In the second type of disturbance a kind of “scrap value” end-point condition
was introduced. This kind of disturbance influenced the initial part of the iter-
ations, but after 5–10 seasons the algorithm completely forgot about the “scrap
value.”

In all simulations for all types of disturbances both algorithms converged to
the same pair of strategies (dependent on the game parameters only). So, in the
limit these all seem to yield the same solution of the infinite horizon problem—
generally a stationary solution of target escapement type. Of course, it does not
prove the uniqueness, but it at least demonstrates a kind of global stability of
the Nash equilibrium.

4.2 Immediate Payoff Function

We define policy as an escapement fraction, i.e.,

Sα = pαRα, Sβ = pβRβ .
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Then the players’ harvests are

Hα = (1− pα)Rα, Hβ = (1− pβ)Rβ .

In our simulations the cost of harvesting is taken into account. We assume
that the cost of harvesting is inversely proportional to the current fish stock in
a given stream. Thus, the price of harvesting may be obtained as an integral
from the current player’s recruitment R down to his escapement S = pR:

cost =
∫ R

S

c

x
dx = −c log(p)

and the total immediate payoff

v(R, p) = H − cost = H + c log(p).

4.3 Growth Function

In our studies we utilized various types of growth functions. Different types
may reflect different specifics of a growth function. Simple growth functions
are monotone increasing, concave, and have a compensatory behavior, i.e.,
F (S) > S (at least for small stock S). However, there may be some deviations of
a growth function from this simple type. First, it may not be increasing every-
where, e.g., decreases at high stock level due to overpopulation. Second, it may
have depensatory behavior, when F (S) < S for small enough S, i.e., falling
below a certain level will lead the stock to complete extinction (even without
harvesting). Typically, not everywhere increasing and/or depensatory growth
functions lose their concavity for some regions of S.

In order to study depensatory (critical and non-critical) and compensatory
cases in a uniform way we consider a growth function, which is specified as a
cubic curve

F (S) = a3S
3 + a2S

2 + a1S

that goes through the points (0, 0) (obviously) and (1, 1) and satisfies additional
conditions

F ′(0) = A, F ′(1) = b.

These conditions uniquely determine a curve:

a1 = A, a2 = 3− b− 2A, a3 = b− 2 + A.

By keeping b fixed we can keep the behavior of the growth function almost the
same at high S, while by changing A we can change the level of “depensation”
(at low A) or compensation (at high A) of the growth function.

We say that there is “depensation” whenever low S gives convex F (S), with a
point of inflection over to concavity at higher S. “Critical depensation” requires
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an interval (0, Scrit) in which F (S) < S. It is easily seen that there is “critical
depensation” whenever 0 < A < 1 and critical escapement is given by

Scrit = −a2 + a3

a3
=

A− 1
A + b− 2

.

At the same time the curve has a point of inflection (from convexity to con-
cavity) if A < 1.5 − b/2. Thus, we have “depensation” if 0 < A < 1.5 − b/2,
which becomes critical if 0 < A < 1.

Figure 15 demonstrates three curves for the same b = 0 and different values
of A: “critical depensation” A = 0.6 (top), “non-critical depensation” A = 1
(middle), “compensation” A = 3 (bottom).

4.4 Parameters of Simulations

All simulations presented in this chapter were performed for the split stream
harvesting game. The default parameter values were the following:
• Payoff function (Section 4.2) with cost = 0.2;
• Growth function (Section 4.3) b = 0, A = 0.6 (critical depensation, Fig-

ure 15 top)
• States of θ: θ1 = 0.1 and θ2 = 0.9, i.i.d. with equal probabilities (P (θ =

θ1) = P (θ = θ2) = 0.5);
• Discount factor: γα = γβ = 0.9;
• Cooperation weights (Section 3.4): cαα = 1, cαβ = 0, cβα = 0, cββ = 1

(for no cooperation), or cαα = 0.5, cαβ = 0.5, cβα = 0.5, cββ = 0.5 (for
complete cooperation).

In order to vary the “completeness” information about θ we use imperfect
observations (see Section 3.3). We change the “measurement precision” param-
eter π, which determines the measurement matrix

M =
(

P (ξ = ξ1|θ = θ1) P (ξ = ξ1|θ = θ2)
P (ξ = ξ2|θ = θ1) P (ξ = ξ2|θ = θ2)

)
(i.e., matrix of conditional probabilities of observable ξ for various values of θ)
in the following way:

M =
(

(1 + π)/2 (1− π)/2
(1− π)/2 (1 + π)/2

)
.

Thus, if π = 1 (maximum precision), M =
(

1 0
0 1

)
, which corresponds

to “identical” measurement, while if π = 0 (minimum precision), M =(
1/2 1/2
1/2 1/2

)
, which results in observations “independent” of θ states.

We now list the parameters of the simulations that are different from the
default ones:
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Figure 15: Cubic growth function (b = 0): “critical depensation” A = 0.6 (top),
“non-critical depensation” A = 1 (middle), “compensation” A = 3 (bottom). Circle
shows critical escapement Scrit and cross indicates point of inflection.

Figure 1. Influence of harvesting cost for different types of knowledge. “Com-
pensatory” cubic growth function.

Compensation factor: A = 3.0 (Figure 15 bottom)
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Variable parameter: Cost for both players from 0 to 1 with 0.05 increment.
Figure 2. Influence of harvesting cost for different types of knowledge. Growth
function with “non-critical depensation.”

Compensation factor: A = 1.0 (Figure 15 middle).
Variable parameter: Cost for both players from 0 to 1 with 0.05 increment.

Figure 3. Influence of harvesting cost for different types of knowledge. Growth
function with “critical depensation.”

Variable parameter: Cost for both players from 0 to 1 with 0.05 increment.
Figure 4. Compensatory harvesting with information from imperfect observa-
tion.

Compensation factor: A = 3.0 (Figure 15 bottom)
Variable parameter: Measurement precision from 0 to 1 with 0.05 increment.

Figure 5. Depensatory harvesting with information from imperfect observation.
“Non-critical depensation.”

Compensation factor: A = 1.0 (Figure 15 middle)
Variable parameter: Measurement precision from 0 to 1 with 0.05 increment.

Figure 6. Depensatory harvesting with information from imperfect observation.
“Critical depensation.”

Variable parameter: Measurement precision from 0 to 1 with 0.05 increment.
Figure 7. Harvesting at various degrees of depensation.

Variable parameter: Compensation factor A from 0.5 to 1 with 0.025 incre-
ment.
Figure 8. Harvesting at various degrees of compensation.

Variable parameter: Compensation factor A from 1 to 3 with 0.1 increment.
Figure 9. Influence of measurement precision in asymmetric natural environ-
ment case.

States of θ: θ1 = 0.1 and θ2 = 0.8. Thus, asymmetry in natural environment
favors the second player.

Variable parameter: Measurement precision from 0 to 1 with 0.05 increment.
Figure 10. Influence of measurement precision in asymmetric economic envi-
ronment case.

Costs of harvesting are different: cost1 = 0.2, cost2 = 0.15. Again, asymmetry
in economic environment favors the second player.

Variable parameter: Measurement precision from 0 to 1 with 0.05 increment.
Figure 11. Influence of the level of environmental variability.

Variable parameter: variability v of θ from 0 to 1 with 0.05 increment. θ takes
states θ1 = (1− v)/2 and θ2 = (1 + v)/2 with equal probabilities.
Figure 12. Increasing degree of cooperation. Current vs. minimum knowledge.

Variable parameter: degree of cooperation c from 0 to 1 with 0.05 increment.
Cooperation weights are determined by c as follows: cαα = 1− c/2, cαβ = c/2,
cβα = c/2, cββ = 1−c/2. Thus, when c changes from 0 to 1, cooperation weights
change from “no cooperation” to “complete cooperation.”
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Figure 13. Increasing degree of cooperation in asymmetric environment case.
Current and minimum knowledge. Critical depensation case.

States of θ: θ1 = 0.1 and θ2 = 0.8. Asymmetry in natural environment favors
the second player.

Variable parameter: degree of cooperation c from 0 to 1 with 0.05 increment.
Figure 14. Increasing degree of cooperation in asymmetric environment case.
Current and Minimum knowledge. Compensatory growth function.

Compensation factor: A = 3.0 (Figure 15 bottom).
States of θ: θ1 = 0.1 and θ2 = 0.8. Asymmetry in natural environment favors

the second player.
Variable parameter: degree of cooperation c from 0 to 1 with 0.05 increment.
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Abstract
In this chapter we propose a dynamic game-theoretic modeling framework
for the international climate change negotiations that should take place
at the end of the Kyoto Protocol agreement if the necessity to drastically
curb carbon emissions is confirmed. The model is composed of a set of
optimal economic growth models corresponding to the different groups of
nations that will be parties in the negotiations. Emissions of greenhouse
gases (GHGs) are represented as by-products of the economic production
process. Two types of capital (clean vs. dirty) can be used to produce the
economic good with different emissions effects. The negotiations should
determine a set of allowances that define caps on GHG emissions such
that a long-term constraint on total emissions is satisfied. At each instant
of time, given the emissions caps, an international emissions trading sys-
tem is organized. In order to be self-enforcing, the emissions caps and the
economic growth paths have to satisfy a noncooperative equilibrium con-
dition. We describe this two-level game structure mathematically and give
the necessary optimality conditions that must be satisfied by the equilib-
rium solution under the coupled global emission constraint.
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1 Introduction

The aim of this paper is to propose a differential game formalism to represent
the negotiation of a self-enforcing agreement on global greenhouse gas (GHG)
emissions reduction for a group of nations in different states of development.

The climate change process due to GHG emissions (in particular, CO2 due to
fossil fuel combustion) poses a delicate international negotiation problem. The
Kyoto Protocol which has recently entered into force for a group of developed
countries is typical of an agreement that stipulates quantities (emission caps)
rather than prices (e.g., carbon taxes). It lies with each participating country
to agree on a cap for its own emissions and to participate in an international
emissions trading system to achieve the global emission reduction aim at min-
imal global cost. In the current situation, developing countries (DCs) are not
part of the agreement, and the United States, Australia and a few other indus-
trialized countries have not signed the protocol. Furthermore, the global aim of
the Kyoto Protocol, in terms of global abatement, is modest. Climate research
is making progress, and it appears more and more probable that there could
soon be a universal scientific consensus on the need to drastically curb GHG
emissions in order to avoid a disastrous climate change. This global constraint
should be imposed on the total cumulated emissions of all countries, includ-
ing DCs.1 The agreement will therefore have to find an appropriate trade-off
between the development needs and the limits to emissions imposed upon these
countries. Furthermore, to be self-enforcing, an agreement should be a Nash
equilibrium, in that each national policy should be the best reply to the policies
decided by the other nations, while keeping the global environmental constraint
satisfied. This calls naturally for the definition of the agreement as a normal-
ized equilibrium, according to the definition proposed by J.B. Rosen [16], for
games where the strategies of players are coupled by a common constraint that
must be satisfied.

The use of Rosen’s normalized equilibrium concept in the modeling of envi-
ronmental negotiations has been proposed in [5] and [9], and the mathematical
theory of open-loop infinite-horizon differential games with coupled constraints
has been fully developed in [3]. Application of the concept to games described
by distributed parameter systems has been considered in [2]. Applications of the
concept to the modeling of local pollution problems have been proposed in [6]
and further explored in [11]. The application we describe herein is original in
the sense that the negotiation game has a two-level hierarchical structure. Once
the emissions caps are decided for each country, the actual emission reductions
will be decided via the implementation of an emissions trading scheme. These
competitive markets for carbon emissions ensure an efficient abatement policy
worldwide and generate transfer payments that can help the growth of DCs.
1Under the business-as-usual scenario, DCs will soon be responsible for more than
50% of the total GHG emissions.
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The combination of a general equilibrium model determining the growth paths
of different nations and of a noncooperative game structure to decide on the
abatement policies of the different (groups of) nations was first proposed in [14].
In [10] the concept of a two-level hierarchical game has been proposed, where
nations decide on their allowances while an international emissions trading sys-
tem is organized. This approach has been extended in [4] to a multi-country
general equilibrium framework. A similar two-level hierarchical game structure
has been used in [8] to represent the dynamic competition between Russia and
China in the exploitation of “hot air” in the Kyoto Protocol. Another two-level
hierarchical game based on the computable general equilibrium model (CGEM)
GEMINI-E3 has been used in [1] to represent the strategic behavior of European
countries in the allocation of allowances for the implementation of the Kyoto
Protocol. This chapter presents a generalization of the model proposed in [10]
to a dynamic setting and to the concept of normalized equilibrium applied to
the negotiation of long-term climate policy. A related game-theoretic approach
to emissions reduction and emissions trading is considered in [17,18].

The chapter is organized as follows. In Section 2 we recall the context of
international climate negotiations and the concept of self-enforcing agreement.
In Section 3 we detail the multi-region optimal economic growth framework
and the economic equilibrium conditions on the international emissions trading
market. In Section 4 we formulate the upper-level dynamic game to determine
the allowances (emission caps) that will lead to the satisfaction of the long-term
constraint on cumulative emissions; the definition of a normalized equilibrium is
recalled, and the necessary conditions for equilibrium are obtained. In Section 5
these characterizations are given an economic interpretation, and in Section 6
we conclude by announcing the possibility of extending the approach to a model
using a fully fledged CGEM, in order to take into account the terms of trade
effects.

2 The Context

We consider the following situation. (i) After a comprehensive research effort,
the scientific community arrives at a clear understanding of the climate change
effect of GHGs; this determines a precise constraint on the long-term accumu-
lation of GHGs in the atmosphere that must be satisfied globally on the planet.
(ii) Given these scientific conclusions that cannot be dismissed by any coun-
try, an international agreement should be reached on the relative development
paths of the different countries and their use of GHGs to foster their develop-
ment. (iii) GHGs can be used as a by-product in the economic production pro-
cess, permitting the use of cheaper “dirty” technologies, but their abatement
can also be used as a source of income in an international emissions trading
system. (iv) The agreement should be self-enforcing. This means that a non-
cooperative equilibrium condition must hold under which the development and
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emissions cap paths for each country are the best reply to the decisions of the
other countries.

We now describe the representation of the long-term constraint on cumulative
emissions. GHGs are long lived and their effect on climate change is relatively
slow compared to the economic dynamics. We therefore propose to represent
the limit to growth in GHG accumulation by the following total discounted sum
of emissions: ∫ ∞

0

e−ρtē(t) dt ≤ Ē, (1)

where Ē is a given bound, ē(t) represents the total emissions at time t and ρ
is a pure time preference rate. This extends the representation of the impact
of climate changes on the world economies proposed by Labriet and Loulou in
[12] to an infinite-horizon setting. In their work, these authors established a
direct link between cumulative emissions and damages. In our model, the time
horizon being infinite, we propose to represent the damage as a function of the
total discounted sum of emissions. To provide some justification for the use of
such a constraint, let us assume that the damage at time t is a linear function2

of the total emissions up to time t,

d(t) = α

∫ t

0

ē(s) ds. (2)

Now consider that the planner wants to limit the total discounted damage,
represented as

D =
∫ ∞

0

e−ρtd(t) dt =
∫ ∞

0

e−ρt

(
α

∫ t

0

ē(s) ds

)
dt. (3)

Integrating (3) by parts we obtain

D =
[
α

∫ t

0

ē(s) ds×
(
−e−ρt

ρ

)]∞
0

+
α

ρ

∫ ∞

0

e−ρtē(t) dt. (4)

The term between the square brackets vanishes and we have

D =
α

ρ

∫ ∞

0

e−ρtē(t) dt. (5)

Therefore, the constraint on the discounted sum of emissions is equivalent to a
constraint on the discounted sum of damages.
2Damages are usually represented as a nonlinear function of the surface average tem-
perature change which is due to the radiative forcing of GHG concentrations (itself
a nonlinear function of these concentrations). In [12] it has been observed that the
damage functions used in the literature can be accurately summarized by a linear
dependence on the total cumulative emissions.
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In summary, the situation that is described here corresponds to a set of
growing economies which emit GHGs as a by-product of their economic output
and which must find a mutually agreeable emissions abatement plan in order
to collectively obtain satisfaction of the long-term constraint (1).

3 The Modeling Framework

In this section we describe the economic model that will serve to define the
game problem.

3.1 The Dynamic Multi-Country Economic Growth Model

We consider a set of countries, each described by an economic growth model
according to Ramsey [15]. Each country produces a homogenous good that can
be either consumed or invested in two types of productive capital. The capital
of type 1, denoted K1

j , is dirty in the sense that it generates a high amount
of emissions e1

j as a by-product, whereas the capital of type 2, denoted K2
j , is

clean as it generates a low amount of emissions e2
j as a by-product. We now

summarize this economic growth model.
Players: Set of negotiating countries j = 1, . . . , m.
Welfare: Discounted sum of utility derived from consumption for each country∫ ∞

0

e−ρtLj(t) log[cj ] dt, j = 1, . . . , m,

where cj(t) = Cj(t)/Lj(t) denotes per capita
consumption in country j.

Population dynamics: Exogenous population growth

L̇j(t) = gj(t)Lj(t).

Production functions: Output3 of country j depends on emissions ej , dirty cap-
ital K1

j , clean capital K2
j and labor Lj

Yj = Fj(ej , K
1
j , K2

j , Lj), j = 1, . . . , m.

3We may assume the following form for the production function:

Fj(ej , K
1
j , K2

j , Lj) = max
e1

j ,e2
j :ej=e1

j+e2
j

Lα
j (A1

je
1
j

β1

K1
j

γ1

+ A2
je

2
j

β2

K2
j

γ2

).

In general, we also assume the production function to be concave in all its arguments.



298 A. Haurie, F. Moresino, and L. Viguier

Capital dynamics: The usual accumulation equations with constant deprecia-
tion rates,

K̇i
j = Ii

j − µi
jK

i
j , j = 1, . . . , m, i = 1, 2.

Allocation of output: The flexible good can be consumed or invested,

Cj ≤ Yj − I1
j − I2

j , j = 1, . . . , m.

3.2 The Emissions Cap Negotiation Game

The negotiation is undertaken under an international aegis and concerns the
establishment of GHG emissions caps at each time t and for each country j
in order to maintain a sustainable climate. The negotiation boils down to the
choice of the strategic emissions caps with a coupled constraint linking these
caps over the infinite planning horizon.
Strategic variable: Emission caps schedule for each country,

êj(t), j = 1, . . . , m.

We shall denote by ē(t) =
∑

j=1,...,m êj(t) the total emissions level defined at
time t by the emissions caps of the m countries.
Coupled constraint: A global long-term bound on total emissions,

∫ ∞

0

e−ρt

⎛⎝ ∑
j=1,...,m

êj(t)

⎞⎠ dt =
∫ ∞

0

e−ρtē(t) dt ≤ Ē. (6)

3.3 The Lower-Level Emissions Trading Equilibrium

At each time t, a market for emissions trading is organized and each country
j = 1, . . . , m determines its output and emissions level by solving the following
local optimization problem:

max Lj(t) log
[
Cj(t)
Lj(t)

]
(7)

s.t.
Yj(t) = Fj(ej(t), K1

j (t), K2
j (t), Lj(t)) + π(t)(êj(t)− ej(t)) (8)

Cj(t) ≤ Yj(t)− I1
j (t)− I2

j (t), (9)

where the market price π(t) ≥ 0 is such that the global emissions constraint
holds and the market clears:∑

j

ej(t) ≤
∑

j

êj(t) = ē(t) (10)
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π(t)

⎛⎝∑
j

ej(t)− ē(t)

⎞⎠ = 0. (11)

In the preceding expressions (11) is the usual complementarity slackness con-
dition which tells that the price is zero when the constraint is not active.

In this problem the decision variable for each country j is simply the emissions
level ej(t); all the other variables, Lj(t), K1

j (t), K2
j (t), I1

j (t), I2
j (t) are fixed and

the consumption level Cj(t) is a direct consequence of the choice of ej(t).
This set of local optimization problems in the variables ej(t), j = 1, . . . , m is

equivalent to solving the following auxiliary optimization problem:4

max
∑

j=1,...,m

Fj(ej(t), K1
j (t), K2

j (t), Lj(t)) (12)

s.t.∑
j

ej(t) ≤ ē(t). (13)

The global cap at time t thus determines the price of permits π(t), defined
as the Kuhn–Tucker multiplier associated with the constraint (13) and the
respective emissions levels. At the optimum one has equalization of the marginal
productivities of emissions:

∂

∂ej
Fj(ej(t), K1

j (t), K2
j (t), Lj(t)) = π(t), j = 1, . . . , m, (14)∑

j

ej(t) = ē(t). (15)

It will be convenient to denote by sj(t) = (K1
j (t), K2

j (t), Lj(t)) the state variable
values at time t for country j.

3.3.1 How Post-Trading Emissions Depend on Total Emissions Limit

We adapt to our setting the analysis of [10] to show how emissions levels of each
country will be determined in the carbon market at time t. First we differentiate
(14) with respect to π(t) and (15) with respect to ē(t) to get

∂2

∂e2
j

Fj(ej(t), sj(t))e′j(π(t)) = 1, j = 1, . . . , m, (16)

m∑
j=1

e′j(π(t))π′(ē(t)) = 1. (17)

4It suffices to write the optimality conditions for the two problems to see the equiva-
lence.



300 A. Haurie, F. Moresino, and L. Viguier

This yields, after substitution and rearranging,

π′(ē(t)) =
1

m∑
j=1

1
∂2

∂e2
j

Fj(ej(t), sj(t))

< 0. (18)

Now we differentiate (14) w.r.t. ē(t) to get

∂2

∂e2
j

Fj(ej(t), sj(t))e′j(ē(t)) = π′(ē(t)). (19)

Substituting π′(ē(t)) from (18) yields

e′�(ē(t)) =
1

m∑
j=1

∂2

∂e2
�

F�(e�(t), sj(t))

∂2

∂e2
j

Fj(ej(t), sj(t))

∈ [0, 1]. (20)

It thus appears that, when the total emissions limit ē(t) increases, the carbon
market price decreases and the emissions of each country will increase by a
fraction determined by the ratio (20).

3.3.2 The Reduced Welfare Function

In brief, for each country j at time t, given the capital stocks, K1
j , K2

j , the
population level Lj , the investment rates I1

j , I2
j and the cap levels êj and ē there

is a welfare gain
Lj(Lj , K

1
j , K2

j , I1
j , I2

j , êj , ē),

which is determined by the solution of the local optimization problem (7)–(9).
It will be useful for the analysis of the upper-level differential game to express
the partial derivative5 (∂/∂êj)Lj . From (7)–(9) we get

∂

∂êj
Lj =

1
cj

∂Cj

∂êj

∂Cj

∂êj
=

∂Fj

∂ej

∂ej

∂êj
+ π

(
1− ∂ej

∂êj

)
+

∂π

∂êj
(êj − ej).

Taking into account that ∂Fj/∂ej = π at equilibrium on the carbon trading
market and that ∂π/∂êj = π′(ē), we finally obtain

∂Lj

∂êj
=

1
cj

(π + π′(ē)(êj − ej)). (21)

5To simplify notation we omit the running variables.
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4 The Upper-Level Differential Game Problem

We can now reformulate the problem of determining together the capital accu-
mulation paths and the emissions caps for the m countries in the form of a
noncooperative differential game with a coupled constraint.

Equil. =
∫ ∞

0

e−ρtLj(Lj(t), K1
j (t), K2

j (t), I1
j (t), I2

j (t), êj(t), ē(t)) dt,

j = 1, . . . , m,

s.t.
K̇i

j(t) = Ii
j(t)− µi

jK
i
j(t) i = 1, 2, j = 1, . . . , m,

Ē ≥
∫ ∞

0

e−ρt

⎛⎝ ∑
j=1,...,m

êj(t)

⎞⎠ dt =
∫ ∞

0

e−ρtē(t) dt.

4.1 Normalized Equilibrium Solutions

We represent the result of the international negotiation on GHG emissions as
a normalized equilibrium in a dynamic game with a coupled constraint. This
concept has been introduced by Rosen [16] to deal with situations where the
players are bound by a constraint that links all their strategies together.

Let us recall briefly the definition of an equilibrium under a coupled con-
straint. Let Uj be the strategy set of player j = 1, . . . , m and let U ⊂ U =
Πm

j=1Uj be a proper subset of the cartesian product of strategy sets. Player j
has a payoff defined by the function Ψj(u1, u2, . . . , um).

Definition 4.1. The strategy vector u∗ ∈ U is an equilibrium under the cou-
pled constraint U if

Ψj(u∗
1, . . . , uj , . . . , u

∗
m) ≤ Ψj(u∗

1, . . . , u
∗
j , . . . , u

∗
m)

∀uj ∈ Uj s.t. (u∗
1, . . . , uj , . . . , u

∗
m) ∈ U . (22)

Let α = (αj)j=1,...,m be a set of positive weights given to the m players. We
construct the weighted payoff function

Φ(u;α) =
m∑

j=1

αjΨj(u) (23)

and define the reaction function

Θ(u, v;α) =
m∑

j=1

αjΨj(u1, . . . , vj , . . . , um) (24)
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with the point-to-set map

Ξ(u;α) =
{

v∗ ∈ U : Θ(u, v∗;α) = max
v∈U

Θ(u, v;α)
}

. (25)

The following lemma is proved in [16]

Lemma 4.1. A fixed point of the point-to-set map Ξ(u;α), i.e., a strategy
vector u∗ such that u∗ ∈ Ξ(u∗;α) is an equilibrium under the coupled constraint
U .

Finally, if the constraint U is defined by a set of inequalities h(u) ≥ 0, where
h(·) is a vector-valued function, we can associate with the fixed point condition
of Lemma 4.1 a Kuhn–Tucker6 multiplier ν ≥ 0.

Definition 4.2. The strategy vector u∗ is a normalized equilibrium if the
following conditions hold:

Ψj(u∗) +
1
αj

νT h(u∗) = max
uj∈Uj

Ψj([u∗−j , uj ]) +
1
αj

νT h([u∗−j , uj ])

j = 1, . . . , m (26)
0 = νT h(u∗) (27)
0 ≤ h(u∗). (28)

According to this definition, the players share a common Kuhn–Tucker multi-
plier, but use it with a weighting reflecting their relative importance in sharing
the benefits. The conditions (26) define a Nash equilibrium for a game with an
extended payoff system built from the common multiplier and the weights given
to the different players. The multiplier ν is chosen such that, at equilibrium,
the conditions (27), (28) are satisfied.

4.2 First-Order Conditions

The application of Rosen conditions to open-loop differential games has been
explored in several papers [9,5,6,3]. We write these first-order conditions assum-
ing that enough regularity holds.

4.2.1 Hamiltonians

Consider the costate (adjoint) variables λi
j , j = 1, . . . , m, i = 1, 2 expressed

in current value terms and the Kuhn–Tucker multiplier ν associated with the
coupled constraint. Define the current-valued Hamiltonians

Hj(Lj , K
1
j , K2

j , I1
j , I2

j , êj , ē;λ1
j , λ

2
j , ν, αj) =

6Assuming that the constraint qualification conditions hold.
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Lj(Lj , K
1
j , K2

j , I1
j , I2

j , êj , ē) +
∑

i=1,2

λi
j

T
(Ii

j(t)− µi
jK

i
j)−

ν

αj
êj .

The necessary optimality conditions for a normalized equilibrium are given, for
each player j, by

0 = êj
∂

∂êj
Hj(Lj , K

1
j , K2

j , I1
j , I2

j , êj , ē;λ1
j , λ

2
j , ν, αj) (29)

0 ≤ êj (30)

0 = Ii
j

∂

∂Ii
j

Hj(Lj , K
1
j , K2

j , I1
j , I2

j , êj , ē;λ1
j , λ

2
j , ν, αj); i = 1, 2 (31)

0 ≤ Ii
j (32)

λ̇i
j = − ∂

∂Ki
j

Hj(Lj , K
1
j , K2

j , I1
j , I2

j , êj , ē;λ1
j , λ

2
j , ν, αj) + ρλi

j ;

i = 1, 2. (33)

Here the parameter ν is the common Kuhn–Tucker multiplier associated with
the coupled global emissions constraint (6) which verifies

0 ≤ ν (34)

0 ≤ Ē −
∫ ∞

0

e−ρtē(t) dt (35)

0 = ν

(
Ē −
∫ ∞

0

e−ρtē(t) dt

)
(36)

ē(t) =
∑

j=1,...,m

êj(t). (37)

4.2.2 Determination of Emissions Caps

Country j is informed of the value of the common multiplier ν and its relative
weight αj > 0. Then the cap at time t is determined by the condition (29),
which can be written as

∂Lj

∂êj
=

ν

αj
(38)

or, also, in view of (21),

1
cj

(π + π′(ē)(êj − ej)) =
ν

αj
. (39)
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4.2.3 Determination of Investment Rates

The determination of investment rates is defined by condition (31), which can
be written, for country j, when the positivity constraint is not active, as

∂Lj

∂Ii
j

= −λi
j , i = 1, 2. (40)

It is an easy matter to express ∂Lj/∂Ii
j in terms of consumption at time t and

to get

1
cj

= λi
j , i = 1, 2, (41)

which is the usual equalization of marginal utility of consumption with marginal
productivity of capital.

5 Interpretation

It is interesting to compare the results obtained in this formulation with the
one obtained in [10] for a static model where a standard Nash equilibrium has
been defined for a group of countries that are exposed to different environmental
damages due to the total emissions stock. In addition to the introduction of the
dynamic effect of investment in clean technologies and development, the model
proposed herein provides a way to determine, as part of the negotiation process,
the share of the burden that will be incurred by each country. This is clear when
one looks at the conditions that determine the permit sellers and buyers.

5.1 Permit Sellers Have High Weights

From (39) we can express the permit supply at time t as

êj − ej = −
π − cjν

αj

π′(ē)
. (42)

We can then observe the effect of increasing the relative weight αj for country j.
If αj is high enough, it will cause this country to be a permit seller on the
carbon market at time t. In other terms, the parameter ν is a global marginal
cost due to the long-term accumulation of GHGs; the term cjν/αj is the share
of that cost that is allocated to nation j.

5.2 Global Abatement Will Be Effective

It is important to emphasize the fact that the global marginal cost ν and the
relative weights αj , j = 1, . . . , m are jointly defined in such a way that the
equilibrium solution satisfying (29)–(33) will also satisfy in the long run the
global cumulative emissions constraint (6).
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6 Conclusion

In this chapter we have extended the model of international emissions trading
with endogenous allowance choices proposed in [10] in two directions. First we
have proposed a dynamic framework retaining the two-level structure, with an
international market for GHGs at each time period t; we have also replaced
the cost-benefit analysis framework proposed in [10], where each nation has a
specific damage function, with a cost-effectiveness framework, where the equi-
librium must be reached under a coupled constraint that imposes a global
limit on cumulative emissions. The interpretation of the necessary conditions
for equilibrium shows the close relationship between the results of [10] and
those reported here. However, a major difference lies in the determination of
the global marginal cost parameter ν, together with the weighting scheme αj ,
j = 1, . . . , m, which leads to an equilibrium that satisfies, in the long run, the
global environmental constraint, with a sharing of the burden that could con-
tribute to development aid via the trading of emission rights. We feel that the
formalism proposed in this chapter could therefore contribute to a better under-
standing of the terms of the forthcoming international agreements that seem to
be necessary in order to tackle climate change threats.

Indeed, the model proposed here has no representation of international trade,
except for the GHG emissions. It could be easily extended to include such
a description, e.g., following the description made in the RICE model [14].
Another promising approach consists in implementing the normalized equilib-
rium model in a multi-country and multi-sector CGEM with full representation
of the terms of trade effects. Preliminary results in this direction are reported
in [7].
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Abstract
This paper deals with a definition of intergenerational equity in a stochastic
game formulation. We propose a piecewise deterministic control model
where the control is exerted by a succession of generations, each having a
random life duration. Each generation has a concern in both the expected
reward received during its own life and the expected reward that will accrue
to the next generation when it will take control at the end of the present
generation’s life. An intergenerational equilibrium is defined. The model
is then specialized to the case of exponential random life duration and
stationary state equations. A complete characterization of the equilibrium
solution is proposed through the use of a family of auxiliary infinite horizon
control problems. A numerical approximation method is proposed. The
model and the equilibrium concepts are then used in the context of an
integrated assessment model of global climate change impacts.

1 Introduction

This paper proposes a game-theoretic approach to deal with the thorny issue of
discounting and intergenerational equity in cost-benefit analyses for very long-
lived projects. We base our approach on an interpretation of the discounting
process as a representation of a random life duration for the economic agent,
described as an exponential random variable with mean 1/ρ where ρ is the dis-
count rate. In our approach we explore the equilibrium solution to a continuous-
time piecewise deterministic game where players represent successive genera-
tions, each having a random life duration. The players control a deterministic
system and derive a reward at a rate depending on state and control. One
assumes that the payoff to one generation is a function of the expected sum
of rewards to this generation and the expected sum of rewards to the next
generation. This introduces a form of altruism in the behavior of the players.
One defines and characterizes the intergenerational equilibrium solution to this



310 A. Haurie

game when the system is stationary and the life duration is described by an
exponential random variable, hence the link with the discounting schemes. A
computational method is proposed for the stationary case.

The approach is then applied to a model of integrated assessment of climate
change. The concern about the economic impacts of global climate change gives
a new impetus to the search for a rational way to balance current generation
and future generation welfare gains when deciding about policies that will have
long-lived consequences (see articles [4,9,11,12] and the informative book [34]).
The stochastic game model defined above is used to propose an approach that
provides a rationale for valuing time in long-term policies without falling into
the trap of time inconsistency. The solution concept that is proposed is fully
time consistent and even subgame-perfect (more precisely Markov-perfect). This
approach could be compared with the one where the players in a stochastic
game use a convex combination of discount rates as proposed by Filar and
Vrieze [17,18] and recently surveyed by Feinberg and Schwartz [15]. The main
difference lies in the consideration of a sequence of generations playing the
game, instead of a set of players who are in the same generation and compete
in a dynamic game. Also, our approach leads to a time-consistent amd Markov-
perfect equilibrium, whereas the games in [18] and [15] lead to equilibria that
are not time consistent. From an economic point of view, the approach proposed
here introduces an extra valuation for the state variables, i.e., the capital stocks
and the environmental state variables, which takes into account the fact that
they will impact the welfare of forthcoming generations.

The paper is organized as follows. In Section 2 one briefly recalls the impor-
tant debate among economists, concerning the proper way to represent a soci-
ety’s concern toward the welfare of future (unborn) generations. In Section 3 a
general multigeneration stochastic game model is defined, and the concept of
intergenerational equilibrium is introduced. In Section 4 the stationary case is
studied in detail and a numerical approximation scheme is proposed. In Sec-
tion 5 this characterization is applied to a reduced form of an integrated assess-
ment model proposed in [30], and the solution obtained is compared with those
coming from a standard cost-benefit analysis. In conclusion, the contribution of
this game formulation to the altruism/time discounting debate is discussed.

2 Altruism and the Time Discounting Issue

When dealing with economic choices over time, economic and finance theories
introduce discounting functions that are used to represent “pure time prefer-
ence” by the economic agents. In continuous-time models it is common to use
an exponential discounting term e−ρt to represent the marginal rate of substi-
tution between consumption in year t and consumption now (at t = 0).

It is well known that the discounting process can be given an interpretation in
terms of a stochastic process as indicated thereafter. Assume that an economic
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agent will receive a stream of income c(t) : t ∈ [0, T ], where T is a random
time horizon characterized by an exponential law of parameter ρ (recall that
an exponential random variable has the half line [0,∞) as support with a dis-
tribution function P[T ≤ t] = 1 − e−ρt). The expected value of T is then 1/ρ.
The expected total income is defined as

C = E

[∫ T

0

c(t) dt

]
.

Now, since the elementary probability of T being in the interval θ, θ + dθ is
given by ρe−ρθ dθ, we can rewrite C as

C =
∫ ∞

0

(∫ θ

0

c(t) dt

)
ρe−ρθ dθ.

Integrate by parts to obtain

C =
∫ ∞

0

e−ρtc(t) dt,

which is the discounted value of the infinite stream of income. The discount rate
ρ is therefore associated with uncertainty about the duration of the consump-
tion period (i.e., the random duration of the agent life). The parameter ρ is
also called the killing rate since ρ dt is the elementary probability that a “death
occurs” in the elementary time interval [t, t + dt], given that the agent has sur-
vived up to time t. A discount rate of 5% corresponds to a random life duration
with expected value 1/0.05 = 20 years. According to this interpretation, dis-
counting occurs because of the finite life of economic agents. It is because we
are not sure of still being around in 20 years from now that we discount heavily
our consumption in this distant future. The use of a zero discount rate would
correspond to the consideration of an infinitely lived species. In such a case the
early consumption could be sacrificed in the perspective of higher long-term
consumptions.

Discounting plays a crucial role in cost-benefit analysis and therefore in the
selection of investment projects (see, e.g., [3]). Economists have recognized early
that some long-lived projects should be justified on another basis that would
take into account both the finiteness of the economic agents’ life and their desire
to leave to the next generation a valuable bequest. This need for a rationale
to decide on very long-lived investments has become an important issue in the
current debate concerning the assessment of global climate change economic
impacts. There is a growing consensus about the anthropogenic global climate
change (GCC) induced mainly by the emissions of greenhouse gases (GHGs)
due to fossil fuel energy uses, industry and agriculture activities. To cope with
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anthropogenic GCC, economies can rely on abatement, mitigation and adap-
tation. An interesting aspect of the problem is that abatement decided by the
current generation, if any, will be made for the benefit of generations in a rather
distant future and for the benefit of populations that are not currently the prin-
cipal emitters. In such a context, using a relatively high discount rate will tend
to minimize the long-term consequences (welfare losses) due to climate change;
however, using a zero discount will penalize unduly the current generation who
will invest heavily for the benefit of their descendants.

There have been a variety of attempts to define axiomatic foundations of
sustainability [11,12], and to introduce time-dependent discount rates (the dis-
count rate tending to 0 when t → ∞) [1,13,40,41]. The consequences of non-
exponential discounting were first studied in [38]. The problem with many of
these attempts is that the solution concept is not time consistent. It implies
that the present generation is able to force the future generations to use a lower
discount rate than the present one. If the present generation is not perfectly
altruistic it has to recognize that the future generation will also behave with
this limited altruism. The solution will then take the form of an intergenera-
tional equilibrium in a dynamic game controlled by a succession of generations.
There have been attempts to represent (imperfect) altruism in multigeneration
games. In [33] an economic growth model has been proposed where the cur-
rent generation controls only the initial period decision but has a vested inter-
est in what happens to all the other forthcoming generations. This model has
been generalized to a stochastic game framework in [2]. More recently, similar
models have been studied in [28]. These ideas have received a new impetus in
recent papers dealing with the discounting issue for global warming assessment
[5,14]. In these papers, the deterministic economic growth format of [33] is used.
More recently, an interesting contribution [37] has proposed a way to construct
time-consistent economic plans in a discrete-time model with quasi-geometric
discounting and a generation (player) for each time period. Most of the work
on non-exponential discounting has been done in discrete-time models. There is
a recent contribution, using continuous time and exponentially distributed life
duration [21], but these authors do not introduce a stochastic game similar to
the one we propose here.

In this chapter we propose a continuous-time model that includes intergen-
erational altruism and we characterize a Markov-perfect equilibrium solution
between players corresponding to the successive generations. The model is based
on a stochastic interpretation of the discounting process. It implies both time-
consistency and Markov-perfectness of the equilibrium solution that is defined.

3 A Multigeneration Game Model

In this section a general multigeneration game over a controlled dynamical sys-
tem is introduced and an intergenerational equilibrium is defined. This dynamic
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game structure will be used in Section 4 to introduce intergenerational concern
in the economic discounting schemes.

Consider a dynamical system defined by the state equations

ẋ(t) = f(t, x(t), u(t)) (1)
u(t) ∈ U(t, x(t)) (2)

x(tk) = xk. (3)

A reward rate L(t, x(t), u(t)) is associated with the state and control variables.
The functions f(·, ·, ·), L(·, ·, ·) and U(·, ·) satisfy the usual smoothness assump-
tions used for optimal control (see [10] p. 9, for details).

The system is controlled by a succession of players, each one representing a
generation denoted k ∈ N = {1, 2, . . . , N}. The life duration of generation k is
a continuous random variable θk with support [0,∞) with expected value 1/ρk,
ρk ≥ 0.

The state of the system is represented by s = (t, x), where t ≥ 0, ζ ∈ N and
x ∈ X ⊂ R

n. When the game begins, at t1 = 0, generation 1 is in control. After
a random lifetime θ1 generation 1 dies and leaves control to generation 2, etc.

Definition 3.1. A strategy for generation k is a mapping γk from [0,∞)×X
into the class of mappings w(·) : [0,∞)→ U . When generation k takes control
of the system at time tk, with initial state xk = x(tk), then its control will
be u(t) = w(t − tk) where w(·) = γ[tk, xk]. This control generates a trajectory
x(·) : [tk,∞) → X, with x(tk) = xk. The control generated is admissible if it
satisfies u(t) ∈ U(x(t)).

The payoff to generation k = 1, . . . , N − 1, when it takes control at time
tk =
∑k−1

�=1 θ�, with state xk is defined as

Vk[sk; γk, γk+1]

= αEγk

[∫ tk+θk

tk

L(t, x(t), u(t)) dt|sk = (tk, xk)

]

+ (1− α)Eγk+1

[∫ tk+θk+θk+1

tk+θk

L(t, x(t), u(t)) dt|(tk + θk, x(tk + θk))

]
,

(4)

where α (resp. 1 − α) ∈ [0, 1] is a relative weight given to the present (resp.
future) generation. This represents a situation where each generation has a
vested interest in its own and immediate successor rewards.1 In the preceding
1Indeed one may also consider situations where each generation has an interest in what
will happen to grandchildren and great-grandchildren, etc. In a companion paper [25]
we consider such an extension. In this chapter we keep the simplest form of an inter-
generational dependence as it is often supposed in overlapping generation models in
economic literature. See also Remark 3.4 below.
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expressions the state trajectory x(·) : [tk, tk + θk]→ R
n is a solution of (1)–(3)

with initial state xk, induced by the control generated by γk at time tk; the rest
of the trajectory x(·) : [tk + θk), [tk + θk + θk+1) → R

n is a solution of (1)–(3)
with initial state x(tk + θk), induced by the control generated by γk+1 at time
tk+1 = tk + θk.

The total duration of this game is random and given by
∑N

k=1 θk. The payoff
of the Nth generation is defined as

VN [sN ; γN ] = EγN

[∫ tN+θN

tN

L(t, x(t), u(t)) dt|sN

]
(5)

since there is no descendent.

Definition 3.2. An intergenerational equilibrium is a sequence γ∗ = (γ∗
k :

k ∈ N ) such that

∀k ∈ N, ∀sk ∈ S, Vk(sk; γ∗
k , γ∗

k+1) = max
γk

Vk(sk; γk, γ∗
k+1). (6)

According to this definition, each generation reacts optimally to the strategy
that will be used by the next generations. Because each generation has a vested
interest in what happens to the next generation, this equilibrium concept links
all the generations together.

Remark 3.1. In this game structure the current generation determines the
initial point of the trajectory controlled by the next one. This is where the
coupling between the games played by successive generations occurs.

Remark 3.2. The conditions for existence of an equilibrium for such a game
should not be too difficult to meet. In fact, it would suffice to have the possibility
of implementing a dynamic programming method where the value functions

V ∗
N (t, x) = VN (t, x; γ∗

N ) = max
γN

VN (t, x; γN ) (7)

and

V ∗
k (t, x) = Vk(t, x; γ∗

k) = max
γk

αEγk

[∫ t+θk

t

L(τ, x(τ), u(τ)) dτ

]
+ (1− α)Φ∗

k+1[t + θk, x(t + θk)], (8)

where we have denoted

Φ∗
k+1[t + θk, x(t + θk)]

= Eγ∗
k+1

[∫ t+θk+θk+1

t+θk

L(τ, x(τ), u(τ)) dτ |(t + θk, x(t + θk))

]
(9)

for k = N − 1, . . . , 1, are computed recursively and keep enough regularity for
the maximum strategy to exist at each step.
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Remark 3.3. It is conceptually possible to extend the equilibrium definition
to the case of an infinite number of generations (N = N). The existence issue
will be more difficult to settle, though. However, in the remainder of the chapter
we focus on the case of an infinite number of generations, but in a stationary
environment.

Remark 3.4. A more general payoff form could be defined as follows:

Vk[sk; γk, γ̃k+ ] =
∑
�≥k

α(k, �)Eγ�

[∫ t�+θ�

t�

L(t, x(t), u(t)) dt|x� = x(t�)

]
. (10)

In the above expressions the state trajectory x(·) is a solution of (1)–(3) with
initial state xk at initial time tk, when the control is generated by the strate-
gies γ�. The weights α(k, �), � > k, reflect the concern of generation k for the
welfare of generation �. In [25,26] this type of multigeneration game is studied,
in particular when α(k, �) = β�−k, with β < 1. In this chapter we keep the
simplest form of intergenerational concern, where each generation has a vested
interest in the immediately following one.

Definition 3.2 is very general, with a random life duration that can be dis-
tributed in many different ways. In the rest of the chapter we shall specialize
to the case of exponentially distributed life durations, as they are linked with
the discounting process. We shall also restrict our analysis to the case of a sta-
tionary system, leaving for further exploration the time-varying case.

4 The Stationary Exponential Case

In this section one assumes an infinite number of generations (k ∈ N) and a life
duration of generation k defined as an exponentially distributed random variable
θk with expected value 1/ρ. One also assumes that the controlled dynamical
system is stationary,

ẋ(t) = f̃(x(t), u(t)) (11)
u(t) ∈ Ũ(x(t)) (12)

x(tk) = xk, (13)

with reward rate L̃(x(t), u(t)).

4.1 Interpretation as a Time-Varying Discount Rate

It is interesting2 to look at the problem from the point of view of a generation if
it could commit the behavior of the next generation and so decide a trajectory
2 This interpretation has been kindly provided by an anonymous reviewer.
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x(·) : [0,∞) → X generated by a control u(·) : [0,∞) → U(x(t)) with the
reward flow L̃(x(·), u(·)). Since

E

[∫ θ

0

L̃(x(t), u(t)) dt

]
=
∫ ∞

0

e−ρtL̃(x(t), u(t)) dt (14)

and similarly

E

[∫ θ+θ′

θ

L̃(x(t), u(t)) dt

∣∣∣∣ θ
]

= eρθ

∫ ∞

θ

e−ρtL̃(x(t), u(t)) dt, (15)

we obtain readily by applying the law of iterated expectations and changing
the order of integration once more

E

[∫ θ+θ′

θ

L̃(x(t), u(t)) dt

]
=
∫ ∞

0

ρte−ρtL̃(x(t), u(t)) dt. (16)

Therefore,

αE

[∫ θ

0

L̃(x(t), u(t)) dt

]
+ (1− α)E

[∫ θ+θ′

θ

L̃(x(t), u(t)) dt

]

=
∫ ∞

0

[α + (1− α)ρt]e−ρtL̃(x(t), u(t)) dt. (17)

So if a generation could commit the control and trajectory for itself and the next
generation, it would obtain a utility which is the discounted sum of rewards,
with a discount factor at time t given by

dα(t) = [α + (1− α)ρt]e−ρt. (18)

This corresponds to a time-dependent discount rate

rα(t) = −d′α(t)
dα(t)

=
ρ[(1− α)ρt + (2α− 1)]

α + (1− α)ρt
. (19)

We notice that r(t) increases with t and reaches asymptotically the value ρ. At
t = 0 one has rα(0) = ρ(2α − 1)/α. So for α = 0.5 one has r0.5(0) = 0 and for
α < 0.5 one observes rα(0) < 0.

It is interesting to notice that introducing a concern for the welfare of the
next generation means an increasing discount rate. The asymptotic value ρ is
easily understood, since, when t increases the probability that it is the second
generation which is in charge tends to one, and when the second generation is
in charge, the problem boils down to the ρ-discounted optimization.

The system is controlled by a sequence of sovereign decision makers, who use
the rα(t) time-varying discount rate, and have exponentially distributed life-
times. As each generation cannot commit the control used by the next one, the
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control policy is the result of an intergenerational equilibrium. The first gen-
eration has a vested interest in the rewards accrued to the second generation,
knowing that this second generation will have an interest in the reward accrued
to the third, etc. As indicated before, the equilibrium concept links all genera-
tions together because of the overlapping structure of the generations’ rewards.
In the remainder of this section we characterize the equilibrium solution.

4.2 Stationary Dynamic Programming Equations

Because of time stationarity, the problem will have the same structure for each
generation and one can define a generic generational payoff as

Ṽ (xo; γ, γ′) = αEγ

[∫ θ

0

L̃(x(t), u(t)) dt|xo

]

+ (1− α)Eγ′

[∫ θ+θ′

θ

L̃(x(t), u(t)) dt|x(θ)

]
, (20)

where γ, resp. γ′, is the current (resp. next) generation strategy, θ (resp. θ′) is
the life duration of the present (resp. next) generation, xo is the initial state
and x(·) is the trajectory solution to the state equations (11)–(13) induced by
these strategies.

Since we aim at implementing a numerical method we have to content our-
selves with an approximate equilibrium solution defined as follows.

Definition 4.1. A stationary ε-equilibrium is defined as a strategy γ∗ that
satisfies

∀x ∈ X, Ṽ (x; γ∗, γ∗) ≥ max
γ

Ṽ (x; γ, γ∗)− ε. (21)

A stationary equilibrium corresponds to the case where ε = 0.

Theorem 4.1. A stationary intergenerational equilibrium is characterized by
the following equations:

γ∗(xo) = argmax
u(·)

[∫ ∞

0

e−ρt
(
αL̃(x(t), u(t)) + ρ(1− α)Φ̃∗(x(t))

)
dt|x(0) = xo

]
(22)

Φ̃∗(xo) = Eγ∗

[∫ θ

0

L̃(x(t), u(t)) dt|x(0) = xo

]
. (23)

Proof. Define

Φ̃∗(xo) = Eγ∗

[∫ θ

0

L̃(x(t), u(t)) dt|x(0) = xo

]
. (24)
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Since the elementary probability of the interval [θ, θ + dθ) is given by ρe−ρθ dθ,
using Equation (20) one can write

Ṽ (xo; γ∗, γ∗) =
∫ ∞

0

(∫ θ

0

αL̃(x∗(t), u∗(t)) dt + (1− α)Φ̃∗(x∗(θ))

)
ρe−ρθ dθ,

where x∗(·) is the trajectory generated at initial state xo by the control u∗(·)
defined by the strategy γ∗. Integrate by parts the first integral to finally obtain

Ṽ (xo; γ∗, γ∗) = α

∫ ∞

0

e−ρtL̃(x∗(t), u∗(t)) dt + (1− α)
∫ ∞

0

Φ∗(x∗(t))ρe−ρt dt.

(25)

=
∫ ∞

0

e−ρt

(
αL̃(x∗(t), u∗(t)) + ρ(1− α)Φ̃∗(x∗(t))

)
dt. (26)

It suffices to write the equilibrium conditions to obtain the conditions (22),
(23). �

There is an existence issue, for a stationary equilibrium, that will not be com-
pletely addressed in this chapter.3 In [2] it has already been shown how the exis-
tence proof of approximate equilibria, given by Whitt [42] for stochastic sequen-
tial games and based on the Kakutani fixed-point theorem, can be adapted to
the framework of multigeneration stochastic games. However this proof needs
to be adapted to the infinite-dimensional state space context, which requires
a heavy mathematical apparatus. We shall proceed differently and use a con-
structive numerical method to approximate an equilibrium solution. Obtaining
a numerical solution satisfying the ε-equilibrium solution conditions will then
provide a “local” existence proof.

4.3 The Associated Implicit Infinite Horizon Control Problem

Theorem 4.1 characterizes the equilibrium strategy of a generation as the solu-
tion of a family of auxiliary infinite horizon ρ-discounted optimal control prob-
lems having an implicitly defined reward function

L∗(x(t), u(t)) = αL̃(x(t), u(t)) + ρ(1− α)Φ̃∗(x(t)). (27)

We call it “implicit” because the function Φ̃∗(x(t)) is itself defined by the very
strategy γ∗ characterized by the solution of this control problem. There is a
fixed-point property which is very typical of equilibrium characterizations. The
auxiliary infinite horizon control problem is defined as

max
∫ ∞

0

e−ρtL∗(x(t), u(t)) dt (28)

3 In [25] an existence proof is given for a particular case where each generation considers
the welfare of all coming generations k with a geometrically declining weight βk.
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s.t.
ẋ(t) = f̃(x(t), u(t)) (29)
u(t) ∈ Ũ(x(t)) (30)
x(0) = xo. (31)

4.4 Turnpikes and the limit cases when α→ 1 or ρ→ 0

Under sufficient concavity and curvature assumptions (see [10], Chap. 6 for
details) the infinite horizon optimal control problem (28)–(31) may have an
attractor x̄ common to all trajectories, emanating from different initial states xo.
These concavity properties should be verified by the extended reward function
αL̃(x, u) + (1 − α)ρΦ̃∗(x). As Φ̃∗(x) is a value function associated with the
equilibrium policy as defined in (24), it is not easy to give conditions under
which this function is concave. However, as will be observed in Section 5 dealing
with our numerical experiment, we can obtain (for some interesting problems)
a good approximation of Φ̃∗(x) by an affine function. In that case the concavity
property of L̃(x, u) would also impose concavity for the extended function and
we can expect the turnpike property to hold. This attractor is a trajectory
steady state that solves the following implicit programming problem (as shown
in [16]):

maxL∗(x, u) = αL̃(x, u) + (1− α)ρΦ̃∗(x) (32)
s.t.

0 = f(x, u)− ρ(x− x̄) (33)
u ∈ U(x), (34)

where x̄ is the turnpike itself. When the selfishness parameter α tends to 1,
the above turnpike will tend to coincide with the one associated with the usual
discounted reward optimal control problem.

max L̃(x, u) (35)
s.t.

0 = f(x, u)− ρ(x− x̄) (36)
u ∈ U(x). (37)

So, in terms of asymptotic behavior of the optimal trajectories, altruism is mod-
ifying the attractor by replacing the optimized reward L(x, u) with a modified
reward L(x, u) = αL(x, u) + (1− α)ρΦ̃∗(x). We can perform a static compara-
tive analysis to assess the impact of this modification on the asymptotic steady
state.

When ρ→ 0 one may expect the expression ρ Φ̃∗(x) to tend toward g∗ which
is the maximal sustainable reward, solution of

g∗ = max L̃(x, u) (38)
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s.t.
0 = f(x, u) (39)
u ∈ U(x). (40)

Therefore, the limit steady-state problem will be

maxL∗(x, u) = αL̃(x, u) + (1− α)g∗ (41)
s.t.

0 = f(x, u) (42)
u ∈ U(x). (43)

Clearly, as g∗ is a constant, this problem admits the same solution as the maxi-
mal sustainable reward defined in (35)–(37). So, when the discount (killing) rate
ρ → 0 the optimal trajectory is similar to the one associated with the infinite
horizon, undiscounted control problem.

4.5 Strategy Synthesis

We may represent the optimal strategy as a feedback loop by solving the aux-
iliary control problems by a dynamic programming approach. For that purpose
we introduce the notation

Ṽ ∗(x) = Ṽ (x; γ∗, γ∗) (44)

to represent the equilibrium value function for the current generation. Now
assuming regularity for this value function and using standard dynamic pro-
gramming arguments (see, e.g., [19]) one can characterize the value function as
the solution to the algebraic equation

ρṼ ∗(x) = max
u∈Ũ(x)

{
L∗(x, u) +

∂

∂x
Ṽ ∗(x)f̃(x, u)

}
, (45)

which may also be written as

ρṼ ∗(x) = max
u∈Ũ(x)

{
αL̃(x, u) + (1− α)ρΦ̃∗(x) +

∂

∂x
Ṽ ∗(x)f̃(x, u)

}
. (46)

4.6 Time Consistency and Markov-Perfectness

The multigeneration equilibrium solution concept is time consistent. If one
restarts the whole game at any time t and state x(t) the same strategies will
be used and the same trajectory will continue to be optimal for the current
generation. When one synthesizes the control used by a generation in a synthe-
sized way (i.e., when one finds an optimal feedback law), the solution is even
Markov-perfect, in the sense where the equilibrium strategies remain the same
even if for some time a generation has not played correctly.
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4.7 Numerical Approximation

To numerically solve the stationary intergenerational equilibrium problem one
has to approximate the value function Ṽ ∗(x) and the associated optimal control
strategy γ∗, as well as the second generation reward function Φ̃∗(x). These
evaluations are coupled since Ṽ ∗(x) depends on Φ̃∗(x) which, in turn, depends
on γ∗. A natural way to proceed is to implement a cobweb approach where, for a
given candidate for Φ̃∗(x), one computes the associated Ṽ ∗(x) and γ∗ by solving
a dynamic programming optimization problem and, for a given candidate for the
strategy γ∗, one updates the second generation reward function Φ̃∗(x). At both
stages one can use the Dupuis-Kushner scheme, fully described in the book [27],
to approximate the value functions via the solution of the DP equations of an
associated approximating Markov decision process (MDP). For that purpose
one uses a finite grid G with nodes g ∈ G. For each component i = 1, . . . , n of x
one defines xmin

i , xmax
i , with xmax

i − xmin
i = N h, where h is the mesh size and

N is the number of sampled values on each axis. So, to each node g ∈ G there
corresponds a discretized (or sampled) state value xg with components xg

i given
by xg

i = xmin
i + ng

i h, ng
i ∈ {0, 1, . . . , N}.

4.7.1 Evaluating the Equilibrium Strategy

For a candidate second generation reward function Φ̃(x) one solves, via dynamic
programming, the auxiliary control problem. In Equation (46), one approxi-
mates the partial derivative (∂/∂xi)Ṽ ∗(x) by finite differences taken in the
direction of the flow, that is:

∂

∂xi
Ṽ ∗(x)→

{
(Ṽ ∗(x + eih)− Ṽ ∗(x))/h if f̃i(x, u) ≥ 0

(Ṽ ∗(x)− Ṽ ∗(x− eih))/h if f̃i(x, u) < 0
(47)

where ei is the unit vector of the ith axis. Define

f̃+
i (x, u) = max{0, f̃i(x, u)}

f̃−
i (x, u) = max{0,−f̃i(x, u)}.

Substituting the differences to the partial derivatives in Eq. (46), one obtains

ρṼ ∗(x) = max
u∈Ũ(x)

{
αL̃(x, u) + (1− α)ρΦ̃∗(x)

+
n∑

i=1

(
(Ṽ ∗(x + eih)− Ṽ ∗(x))

h
f̃+

i (x, u)

+
(Ṽ ∗(x)− Ṽ ∗(x− eih))

h
f̃−

i (x, u)

)}
. (48)
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0 = max
u∈Ũ(x)

{
(αL̃(x, u) + (1− α)ρΦ̃∗(x))h

− Ṽ ∗(x)

(
ρ h +

n∑
i=1

(f̃+
i (x, u) + f̃−

i (x, u))

)

+
n∑

i=1

(f̃+
i (x, u)Ṽ ∗(x + eih) + f̃−

i (x, u)Ṽ ∗(x− eih))

}
.

(49)

Define the interpolation interval

∆h =
h

ρ h +
∑n

i=1(f̃
+
i (x, u) + f̃−

i (x, u))
. (50)

One considers an MDP with discrete states xg, g ∈ G and control u ∈ Ũ(xg).
The transition rewards are given by (L̃(xg, u) + ρΦ̃∗(xg))∆h. The transition
probabilities Πi(xg, xg′

, u) are defined as follows:
• When g ∈ G\∂G the transition probabilities xg to any neighboring sampled

value xg ± eih are given by

π±
i (xg, u) =

f̃±
i (xg, u)

n∑
i=1

(f̃+
i (xg, u) + f̃−

i (xg, u))

.

• On the boundary ∂G of the grid, the probabilities are defined according to
a reflecting boundary scheme.
• All the other transition probabilities are 0.
A discounting term is defined by

β(xg, u) =
n∑

i=1

(f̃+
i (xg, u) + f̃−

i (xg, u))
∆h

h
.

The DP equations for this approximating MDP are given by

v(xg) = max
u∈Ũ(xg)

{
(αL̃(xg, u) + (1− α)ρΦ̃∗(xg))∆h

+ β(xg, u)
∑
g′∈G

Πi(xg, xg′
, u)v(xg′

)

}
, (51)

where we use the general notation Πi(xg, xg′
, u) to describe the transition prob-

abilities of the MDP defined above.
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4.7.2 Evaluating the Second Generation Reward Function

The solution of (51) defines an optimal policy denoted ug∗. A new second gen-
eration reward function Φ̃∗(xg) is then obtained by solving

Φ̃∗(xg) = L̃(xg, ug∗)∆h + β(xg, ug∗)
∑
g′∈G

Πi(xg, xg′
, ug∗)Φ̃∗(xg′

). (52)

To solve both DP equations (51) and (52) one uses a linear programming for-
mulation, as indicated in [35] p. 223.

It is well established that the approximating MDPs will lead to estimates of
the value functions that converge weakly toward the continuous-time solutions
of the DP equations. Using the classical verification theorems of DP, we conclude
that the equilibrium solutions obtained from the approximating MDPs provide
ε-equilibrium solutions to the continuous-time game.

5 Application to Integrated Assessment of
Global Climate Change

As already indicated in Section 2, the cost-benefit analysis of global climate
change mitigation policies poses acutely the question of intergenerational soli-
darity. In this section the intergenerational equilibrium criterion is applied to a
well-known integrated assessment model, and the results are interpreted.

5.1 A Reduced Model Based on DICE94

An integrated model describes the dynamic interplay between the climate sys-
tem, economy and polity. GHGs are emitted as a by-product of economic activ-
ity. A reduction of emissions can be obtained, using our current technology, at
a cost that corresponds to a loss of product for consumption or investment pur-
poses. Emissions increase concentrations of GHGs in the earth’s atmosphere
which defines a forcing effect on the earth’s surface temperature. This tem-
perature increase may have a negative economic effect, also expressible as a
loss of economic product. These interactions have been nicely summarized by
Nordhaus in the models DICE94 [30] and DICE99 [31], which are designed for
performing a cost-benefit analysis (CBA) and assessing GCC economic policies.
These models are extensions of the classical Ramsey optimal economic growth
paradigm [36]. The economy produces a single homogenous good that can be
either consumed, with instantaneous utility log(c(t)) for per capita consump-
tion c(t), or invested to obtain more physical capital. The economy produces
the good using two factors, labor and capital. There is an exogenous population
growth process and an exogenous technical progress process. The production
of the economic good generates GHG emissions. An abatement activity can
be harnessed with a cost measured in product losses. The emissions generate
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atmospheric concentrations. Part of these concentrations are captured by the
oceans. The temperature increases due to the greenhouse forcing and this gener-
ates an economic damage, also expressed as production losses. In references [30]
and [31] this integrated assessment model is fully explained. We will summa-
rize this approach in the following, very simplified, continuous-time dynamical
system. The variables and parameters are defined in Table 1.

max
c(·)

∫ ∞

0

e−ρtU(c(t), L(t)) dt (53)

U(c(t), L(t)) = L(t) log(c(t)) (54)
L̇(t) = gL(t)L(t) (55)

ġL(t) = −δLgL(t) (56)
Q(t) = Ω(t)A(t)K(t)γL(t)1−γ (57)
Ȧ(t) = gA(t)A(t) (58)

ġA(t) = −δAgA(t) (59)
Q(t) = C(t) + I(t) (60)

c(t) =
C(t)
L(t)

(61)

K̇(t) = I(t)− δK(t) (62)
E(t) = (1− µ(t))σ(t)Q(t) (63)
Ṁ(t) = βE(t)− δM (M(t)− 590) (64)

F (t) = 4.1
log[M(t)]− log[590]

log[2]
+ O(t) (65)

Ṫ (t) =
1

R1
{F (t)− λT (t)} − R2

τ12
{T (t)− T ∗(t)} (66)

Ṫ ∗(t) =
1

τ12
{T (t)− T ∗(t)} (67)

D(t) = Q(t)θ1(T (t) + θ2T (t)2) (68)
TC(t) = Q(t)b1µ(t)b2 (69)

Ω(t) =
1− b1µ

b2

1 + θ1(T + θ2T 2)
. (70)

This system is not time homogenous because of population growth and technical
progress. However, the model implies asymptotic values for these exogenous
variables that are given below:

Ā = 0.063
L̄ = 12000
Ō = 1.15.
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Table 1: List of variables in the DICE94 model.

List of endogenous state variables
K(t) = capital stock
M(t) = mass of GHG in the atmosphere
T (t) = atmospheric temperature relative to base period
T ∗(t) = deep-ocean temperature relative to base period

List of control variables
I(t) = gross investment
µ(t) = rate of GHG emissions reduction

List of exogenous dynamic variables
A(t) = level of technological progress
L(t) = labor input (= population)
O(t) = forcing exogenous GHG

List of auxiliary variables
C(t) = total consumption
c(t) = per capita consumption
D(t) = damage from GH warming
E(t) = emissions of GHGs
F (t) = radiative forcing from GHGs
Ω(t) = output scaling factor due to emissions control

and to damages from climate change
Q(t) = gross world product

We therefore use these asymptotic values in our computations of an asymptotic
attractor or “turnpike” for the optimal trajectory. In Table 2 we show the
turnpike values for that control system, when there is no altruism (α = 0)
and when ρ = 0% or ρ = 6%, respectively.4 When ρ = 0% the turnpike is
the asymptotic steady state of an optimal trajectory for a generation having
an infinite life duration. When ρ = 6% the turnpike is the asymptotic steady
state of an optimal growth trajectory for a generation having a life duration of
100/6=16.66 years.5 From these results we see the dramatic influence of discount
rates on the asymptotic values for the optimal growth paths. Remember that,
in the global climate change context, these asymptotic values become highly
relevant. The zero discount rate leads to a much higher capital stock, much lower
emissions, much lower GHG concentrations and higher per capita consumption
than the 6% rate does. We see very clearly that discounting, even at a moderate
4More details on the computation of these turnpike values can be obtained from [23].
5The reader may wonder about an infinite time horizon associated with a life expec-
tation of 16.66 years. Indeed one has to recall that an exponential random life with
killing rate ρ is such that the expected remaining life, given that one has already lived
θ, is still 1/ρ.
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Table 2: Turnpike values when ρ = 0 and ρ = 6% respectively.

State variables
K̄ = 943
M̄ = 911
T̄ = 2.64

Control variables
Ī = 94.3
µ̄ = 0.68
Exogenous variables
Ā = 0.063
L̄ = 12,000
Ō = 1.15

Auxiliary variables
C̄ = 291
Ē = 41.83
F̄ = 3.72
Q̄ = 400

ρ = 0%

State variables
K̄ = 505
M̄ = 1170
T̄ = 3.69

Control variables
Ī = 50.5
µ̄ = 0.33
Exogenous variables
Ā = 0.063
L̄ = 12,000
Ō = 1.15

Auxiliary variables
C̄ = 278
Ē = 75.45
F̄ = 5.20
Q̄ = 342

ρ = 6%

rate, means that in the long term the environment will be quite degraded. Also,
discounting discourages capital accumulation.6 Imposing a 0 discount rate is not
feasible because the current generation has a pure time preference linked to its
finite life expectation. This is why many economists using these types of models
consider discount rates �(t) that are dependent on time and that converge to
0 as t→∞. With such a choice the economy will have a turnpike (asymptotic
steady state) corresponding to the ρ = 0 case7 but will start with investment
decisions related to a high value of ρ. This solution is not satisfactory either
since it does not satisfy the time consistency rule, because the forthcoming
generations are not committed to use the ρ = 0 discount rate.

In the next section we look at the effect of introducing altruism in the eco-
nomic evaluation scheme.

5.2 Intergenerational Equilibria

This model has exactly the format of the control system (1)–(3). We implement
the intergenerational equilibrium scheme developed above. Taking the asymp-
totic value for the exogenous variables, we obtain a time stationary system hav-
6Typically for GHG abatement, one could envision investment in high-level production
capital like the fusion power processes. These types of investments are discouraged by
high discount rates.
7We refer to [24] for a discussion of turnpikes in optimal economic growth models with
uncertain or variable discount rates.
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ing turnpikes. We shall compare the turnpikes when ρ = 0.06 and α = 1 (total
selfishness) or α = 0.5, respectively. To compute these turnpikes we implement
the approximation scheme with a grid of 10× 10× 10 nodes. The mesh value is
taken at h = 50; the temperature state equation is normalized (multiplied by
200) to harmonize the three dimensions of the grid.

We proceed as indicated in Section 4, using the approximating MDPs to
compute the optimal value function and the strategy γ∗ for a candidate Φ̃∗(·)
function and updating Φ̃∗(·) when a new γ∗ is obtained.8

The phase 1 criterion is the sum of values
∑

g∈G v(xg); the phase 2 criterion
is
∑

g∈G Φ̃∗(xg). The convergence is reached when two successive phase 1 or
phase 2 criteria are equal. The following array shows the convergence obtained
through the implementation documented in the appendix.

Phase1 = 2656.218
Phase2 = 5312.437
Phase1 = 5278.196
Phase2 = 5308.574
Phase1 = 5276.634
Phase2 = 5308.487
Phase1 = 5276.613
Phase2 = 5308.484
Phase1 = 5276.613
Phase2 = 5308.486
Phase1 = 5276.613
Phase2 = 5308.484

. . .

When displaying the value function and the next generation reward function,
at convergence one observes that these functions are almost affine. We obtain,
with an excellent least squares fit R2 = 0.999,

ρΦ̃∗(K, M, T ) = 311.33 + 0.0265K − 0.0091M − 0.0019T. (71)

We are now in a position where we can compare the asymptotic behavior
of the growth trajectory with and without altruism. These calculations are
made by solving the implicit programming problems defined in Section 4.4. The
turnpike, when α = 1 and ρ = 0.06 (i.e., with total selfishness), is given by

K̄1 = 505.37
M̄1 = 1169.84
T̄1 = 3.69

8In an appendix available on demand from the author, the linear programming models
used to solve the approximating MDPs are given in the AMPL format [20].
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with steady state controls

Ī1 = 50.537
µ̄1 = 0.33
C̄1 = 278.46.

We notice that the sustainable consumption level is lower than in the case ρ = 0,
while the capital stock is higher, the GHG concentration and temperature being
lower. When the selfishness coefficient is set to 0.5, the turnpike becomes

K̄0.5 = 638.58
M̄0.5 = 1080.43
T̄0.5 = 3.35

with steady state controls

Ī0.5 = 63.86
µ̄0.5 = 0.47
C̄0.5 = 285.42.

As expected, the attractor is more capital intensive, and sustains a higher con-
sumption and a lower concentration and temperature. However, these turnpike
values are dominated by those corresponding to ρ = 0 shown in the previous
section, in conformity with what was expected.

As indicated in Equation (27), the approach results in the introduction of
a modified utility function, in the problem solved by the current generation,
which in the present case will take the form

L(t) log(c(t)) + 311.33 + 0.0265 K − 0.0091 M − 0.0019 T. (72)

The intergenerational equilibrium has introduced a utility function that depends
directly on the capital stock and the environmental variables, since they are the
bequest for the forthcoming generation.

6 Conclusion

The intergenerational equilibrium defined in this model is fully characterized
through dynamic programming. It is therefore both time consistent and Markov-
perfect. No generation could object to the proposed equilibrium strategy. This
property is certainly important when one designs policies that should encompass
the life of more than one generation. As shown in the complete analysis of the
time stationary case, one may expect the equilibrium trajectory to lie between
the two extreme cases of the purely egocentric first generation and the infinitely
lived single generation problem, respectively. This property has been illustrated
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by applying this solution concept to a reduced version of the DICE94 integrated
assessment model.

The introduction of this multigeneration equilibrium structure in an
economic-environment growth model has permitted the consideration of a form
of altruism in the definition of the utility functions of the decision makers.
This might bring an interesting contribution to the debate concerning the
proper social discount rate to apply when dealing with long-term environmen-
tal problems. In a companion paper [25] we extend this stochastic game model
to the case where each generation has an interest in the rewards gained by all
the forthcoming generations. This variant of the intergenerational stochastic
game structure also provides a coherent and time-consistent way to modify the
discounting schemes for the consideration of the welfare of future generations.
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Abstract
We investigate a differential game motivated by a problem in mathemati-
cal finance. This game displays two interesting features. On the one hand,
one of the players, Pursuer say, may, and will, use infinitely large controls,
i.e., impulses, producing “jumps” in the state variables. Standard optimal
trajectories are made of such a jump followed by a “coasting period” where
P exerts no control. This leads to barriers of a somewhat new type. But
because the cost of jumps is only proportional to their amplitude, some
singular optimal trajectories arise where P uses an intermediary control,
nonzero but finite. (In classical impulse control, there is a minimum posi-
tive cost to any use of the control, forbidding such a mixed situation.)

On the other hand, the complete solution of the game exhibits a type of
singularity, the existence of which had long been conjectured (noticeably
by Arik Melikyan in discussions with the first author) but, as far as we
know, never shown in actual examples: a two-dimensional focal manifold
traversed by noncollinear optimal fields depending on the control used by
Evader. It is on this manifold that intermediary controls for P arise.

Finally, we show that the Isaacs equation of a discrete-time version of
the problem provides a discretization scheme that converges to the value
function of the differential game. This is done through the investigation of
a (degenerate) quasi-variational inequality and its viscosity solution, with

∗We acknowledge an important numerical work performed by intern students at the
University of Nice-Sophia Antipolis: Nicéphore Allaglo, Carole Bouvelot, Charlotte
Pouderoux, and Laetitia Richter.
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the help of an equivalent, but nonimpulsive, differential game—a method
of interest per se that we credit to Joshua—to which we apply essentially
the classical method of Capuzzo Dolcetta extended to differential games
by Pourtallier and Tidball, with some technical adaptations.

1 The Differential Game Considered

We consider a differential game arising in finance, specifically in the theory of
option pricing with an “interval model.” (We refer to [4,16] for the context in
finance.) This is a game in two dimensions plus time with an integral payoff,
or three dimensions plus time with a terminal payoff, and two scalar controls
(pursuer P and evader E), with the peculiarity that the pursuer may, and will,
use arbitrarily large control values, up to the point of producing “impulses.”
Thus, this player may cause discontinuities in some state variables, incurring a
related cost.

1.1 Dynamics

The (3-D) dynamics are as follows. We call (x, y, z) the state variables, and u and
v the controls of pursuer and evader respectively. The continuous (nonimpulsive)
part of the dynamics is given in terms of ε = sign(u) and two numbers C+1 and
C−1, also written C+ and C− respectively, with C+ > 0, C− < 0, as follows:

ẋ = vx , (1)
ẏ = vy + u , (2)
ż = vy − Cεu , (3)

with the control constraints on v specified by two positive numbers α and β as

−α ≤ v ≤ β . (4)

Since u is not bounded, we allow the pursuer to cause discontinuities in the
state variables at isolated time instants tk according to the rule

y(t+k ) = y(t−k ) + uk , (5)
z(t+k ) = z(t−k )− Cεk

uk . (6)

Of course, we have set y(t−k ) = limt↑tk
y(t) and y(t+k ) = limt↓tk

y(t) and likewise
for z. The jump amplitude in y is uk ∈ R, and εk = sign(uk).

To avoid an unessential discussion later on, we shall further assume that

α ≤ β , and 0 < (1 + C+)(1 + C−) ≤ 1 . (7)
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1.2 Payoff

The game is played over a fixed time interval [0, T ], and is a capture-evasion
game of kind, with capture defined in terms of a given positive number Z as

z(T ) ≥ max{0 , x(T )− Z} =: M(x(T )) . (8)

Again this rather strange setup is motivated by its finance application in [4].
We may notice that, since z does not appear in the right-hand side of its

dynamics, it integrates so that (8) is equivalent to

z(0) ≥
∫ T

0

(−vy + Cεu) dt +
∑

k

Cεk
uk + M(x(T )) .

As a consequence, we may consider the game of degree in dimension 2 plus time
with state variables (x, y), the same dynamics (1) (2) and (5)(6), and payoff
minu maxv G with

G =
∫ T

0

(−vy + Cεu) dt +
∑

k

Cεk
uk + M(x(T )) . (9)

Let W (t, x, y) be its value function, an initial state is capturable iff z ≥
W (0, x, y), so that the graph of the value function W is the barrier of the game
of kind.

1.3 Strategies

In this game, the pursuer chooses the function u(t), the jump instants tk, and
the jump amplitudes uk. It does so knowing past values of the state. It is
a classical fact that it will only use an (instantaneous) state feedback which
we write symbolically u = ϕ(t, X(t)), where X stands for the whole state.
Admissible strategies are those such that the dynamical equations have for
any initial state a unique solution with y(·) uniformly bounded over admissible
v(·)’s.

We are looking for capturable states of the game of kind. It is known that this
is equivalent to looking for the upper value of the game of degree, and that then,
whether the evader plays open loop or closed loop is irrelevant. Thus we may
always assume that v is chosen open loop, as a measurable time function from
[0, T ] into [−α, β]. (This remark will play an important role in the investigation
of the convergence.)

2 A Geometric Analysis: The Isaacs–Breakwell Theory

2.1 Jumps as Ordinary Trajectories

In [4], we introduced a quasi-variational inequality (QVI) naturally related to
the game of degree with impulse controls. However, due to its very degenerate
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nature, it is not accounted for by the literature on viscosity solutions of first
order QVI such as [3,2]. We prefer to use the 3-D plus time representation (1),
(2), (3), (5), (6), and the formulation as a game of kind, and apply to it the
geometrical tools of the semipermeability.

In that representation, jumps are just trajectories orthogonal to the t axis.
As a matter of fact, Equations (5) and (6) show that these trajectories are also
orthogonal to the x axis and have a slope either −C+ or −C− in the (y, z)
plane. We stress the following fact.

Proposition 2.1. Given a smooth two-dimensional manifold M transverse
to the jump trajectories, the hypersurface made of jump trajectories of the same
slope through each point of M is a “safe hypersurface” for P, (i.e., E cannot
force the state to cross it against P’s will).

Proof. Indeed by choosing a jump, P causes the state to traverse these trajec-
tories in no time, so that E’s control v has no time to act. (P has chosen to be
in the dynamics (5), (6) where v does not enter.) �

We shall in effect construct manifolds y = y̌(t, x), z = ž(t, x) for some func-
tions y̌ and ž, construct barriers made of jump trajectories reaching that mani-
fold, and show that upon reaching it, P still has a means of preventing a crossing
of the composite surface.

2.2 The Natural Barrier

We proceed with the classical construction of the natural barrier through the
boundary of the capture set, which here is t = T , z = M(x), y arbitrary. This
has been published in [4]. We summarize it here.

The natural barrier is made up of two sheets, one towards x ≤ Z and one
towards x ≥ Z. They are given below, together with a corresponding inward
semipermeable normal as the vector (n, p, q, 1) (corresponding to the state vari-
ables (t, x, y, z)), leading to Isaacs’“main equation”

0 = max
u

inf
v∈[−α,β]

[
n + v
(
px + (q + 1)y

)
+ u(q − Cε)

]
,

and the adjoint equations

ṗ = −vp , (10)
q̇ = −v(q + 1). (11)

The analysis depends on the fact that the maximum in u of (q − Cε)u is
reached at u = 0 provided that C− ≤ q ≤ C+. (Remember that ε = sign(u).)
When q leaves that range, there is no maximum anymore. (Or u should be
infinite: we shall have a jump.)
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Sheet ααα towards xxx ≤≤≤ ZZZ. We set the parameters x(T ) = s ≤ Z, y(T ) = r.
It yields v∗ = −α and

sheet (α) semipermeable normal να

t = t n(t) = αr ,
x(t) = seα(T−t) , p(t) = 0 ,
y(t) = reα(T−t) , q(t) = e−α(T−t) − 1 ,
z(t) = r(eα(T−t) − 1) , 1 = 1 .

This is a valid solution as long as q ≥ C−, i.e., for t ≥ tα with

e−α(T−tα) = 1 + C− , i.e., T − tα =
1
α

ln
(

1
1 + C−

)
. (12)

Sheet βββ towards xxx ≥≥≥ ZZZ. On this sheet, x(T ) = s ≥ Z, y(T ) = r. We find
that v∗ = β, and

sheet (β) semipermeable normal νβ

t = t n(t) = β(s− r) ,
x(t) = se−β(T−t) , p(t) = −eβ(T−t) ,
y(t) = re−β(T−t) , q(t) = eβ(T−t) − 1 ,
z(t) = r(e−β(T−t) − 1) + s− Z , 1 = 1 .

This is a valid solution as long as q ≤ C+, i.e., for t ≥ tβ with

eβ(T−tβ) = 1 + C+ , i.e., T − tβ =
1
β

ln(1 + C+) . (13)

From the hypothesis (7), we have tα < tβ .
Moreover, from final states on the boundary z = x−Z ≥ 0 of the admissible

set, a 2-D singular sheet can be constructed with r = s, v arbitrary, leading to

x = y = z − Z = s exp

(
−
∫ T

t

v(τ) dτ

)
, −p = q + 1 = exp

(∫ T

t

v(τ) dτ

)
.

Intersection and Composite Barrier. The two main sheets (α) and
(β) intersect along a two-dimensional edge D that spans the domain t ≥ tβ ,
Ze−β(T−t) ≤ x ≤ Zeα(T−t), and that can be parametrized by (t, x) as y =
y̌(t, x), z = ž(t, x) given by

y̌(t, x) =
(xeβ(T−t) − Z)

eβ(T−t) − e−α(T−t)
, ž(t, x) = (1− e−α(T−t))y̌(t, x). (14)

Notice that for x = Z exp(−β(T − t)), we have y̌ = ž = 0, which corresponds
to the sheet (α) with r = 0. For smaller x’s, only the sheet (α) plays a role.
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We find it convenient to extend the definition of y̌ and ž by 0 for both. For
x = Z exp(α(T − t)), we have y̌ = x, ž = x−Z, which corresponds to the sheet
(β) with r = s = Z exp((α+β)(T − tβ)). For larger x’s, only the sheet (β) plays
a role. Again, we extend the definitions of y̌ = x and ž = x− Z to larger x’s.

We easily check that D is an E-dispersal line. States “above” (with larger
z’s) are indeed capturable, and the edge does not “leak” since P’s control on
both sheets is the same: u = 0. Therefore, this same control prevents crossing
of both barrier sheets.

The singular sheet x = y = z + Z is imbedded in the sheet (β). But it can
be used against v = −α until time tα. In the region x ≤ Z exp(α(T − t)) it
plays no role. However, it will be seen to play a prominent role in the region
x ≥ Z exp(α(T − t)) for t ≤ tβ , when the sheet (β) does not exist. There it
behaves as a manifold drawn on an extension of the sheet (α) for s ≥ Z.

2.3 Junction of a Jump Manifold and the Natural Barrier

For t ≤ tβ , the sheet (β) of the natural barrier does not exist, since it would
entail a q ≥ C+, leading to u = +∞. We therefore expect a positive jump man-
ifold, i.e., trajectories in the (y, z) plane with slope −C+. They must join on a
two-dimensional manifold E drawn on the sheet (α), and such that, whatever
v, P can maintain the state on or above both that sheet and the jump man-
ifold. The manifold E will indeed be an “equivocal” one (in Isaacs’ parlance),
constructed according to the technique of a “safe contact” on a barrier, as orig-
inally discovered by Breakwell and Merz [9,12].

We first determine a control u(v) that maintains the state on the barrier
sheet (α). Let να be the normal to that sheet; we have

〈να, Ẋ〉 = e−α(T−t)(v + α)y − u(1 + Cε − e−α(T−t))

so that we keep the state on the sheet (α) by choosing

u =
e−α(T−t)(v + α)y

1 + C+ − e−α(T−t)
.

With that control, keeping in mind that the normal to the jump manifold, say
νj , has to be of the form νj = (nj , pj , C

+, 1), we get on E :

〈νj , Ẋ〉 = nj + v(pjx + (1 + C+)y) .

Furthermore, we want E to join on the boundary of D at t = tβ . Therefore, νj

there should be normal to that boundary. This gives pj = −(1 + C+), i.e., the
same as in νβ as it should be, and hence at t = tβ ,

〈νj , Ẋ〉 = n− v(1 + C+)(x− y) .

The domain considered thus far, the boundary of D, is such that x ≥ y. As
a consequence, the minimizing v is v = β. Furthermore, if we construct the
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manifold E using v = β in the above construction, we can check1 that nj remains
positive, hence (pjx+(1+C+)y) is negative. Hence v = β is indeed minimizing,
or, equivalently, we check that the strategy u(v) above guarantees that the state
lies on the sheet (α) and on the desired side of the jump manifold.

We therefore obtain the following.

Theorem 2.1. The equations of the equivocal manifold E are

ẋ = βx , x(tβ) = s
1+C+ ,

ẏ = β(1+C+)+αe−α(T−t)

1+C+−e−α(T−t) y , y(tβ) = s−Z

1+C+−e−α(T−tβ) ,

ż = β(1+C+)(1−e−α(T−t))−C+αe−α(T−t)

1+C+−e−α(T−t) y , z(tβ) = (1− e−α(T−tβ))y(tβ).

(15)

We can integrate these backwards as long as the sheet (α) exists, i.e., down to
t = tα. However, due to our restricted set of initial conditions, this will only
take care of the domain s ∈ [Z, Z exp((α+β)(T −tβ))], i.e., Z exp(−β(T −t)) ≤
x ≤ Z exp(α(T − tβ)−β(tβ− t)). We need to find the extension of the manifold
E to all values of (t, x) for t ∈ [tα, tβ ].

In the region x ≤ Z exp(−β(T − t)), the above equations are to be taken with
terminal conditions y = z = 0, and thus yield y = z = 0 down to t = tα.

In the region x ≥ Z exp(α(T − t)), we do not have the sheet (α) to perform
the above construction, but we do it with the singular sheet y = x, z = x− Z.
A completely similar analysis yields a u proportional to y − x, i.e., zero on the
singular sheet, which turns out itself to be the manifold E .

This joins smoothly with D in the region t ≥ tβ . We shall use it as terminal
conditions for the equations of E along the boundary x = Z exp(α(T − t)),
tα ≤ t ≤ tβ . That way, we have defined the manifold E in all the required
domain. Again, for t ∈ [tα, tβ ], let y = y̌(t, x), z = ž(t, x) describe this manifold.
The functions y̌ and ž thus defined extend continuously those for t ≥ tβ defined
on D.

It turns out that the equations for y integrate analytically. See Appendix A.

2.4 The Focal Manifold

2.4.1 Principle

For t ≤ tα, neither of the two sheets of the natural barrier exist. We must
therefore replace them both by jump manifolds that will join on a new manifold,
which is thus a focal surface, (but with adjoining trajectories that are jump
trajectories). Let us call it F .

To explain how to construct F , we need to introduce some notation. We shall
have two jump manifolds, one with negative jump and one with positive jump.
1We did it numerically. There should exist an analytical proof.
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Let ν− and ν+ be the corresponding normals. They are of the form

ν− =

⎛⎜⎜⎝
n−

p−

C−

1

⎞⎟⎟⎠ , ν+ =

⎛⎜⎜⎝
n+

p+

C+

1

⎞⎟⎟⎠ .

Let also Ẋ = f(X, u, v) denote the dynamics. Upon reaching F , player P will
have to choose a control u(v) that will maintain the state on F or above the
composite barrier thus constructed. Assume that for the extreme values of v,
i.e., −α and β, the state can just be maintained on F . Let uα and uβ be the
corresponding controls. Now, we must have the following equalities:

0 = 〈ν−, f(X, uα,−α)〉 , 0 = 〈ν+, f(X, uα,−α)〉 ,
0 = 〈ν−, f(X, uβ , β)〉 , 0 = 〈ν+, f(X, uβ , β)〉 .

We have six unknowns, n−, p−, n+, p+, uα, uβ . We need two more equations to
determine them.

2.4.2 Trajectories v = βv = βv = β

We choose to describe F as the set of trajectories obtained for v = β. Later we
shall discuss this arbitrary choice. In this description, let Xβ(s, t) be our state,2

depending on the parameter s characterizing the trajectory (say reaching the
boundary of E at tα at the point u = s exp(β(T − tα)) and on t. Thus

∂Xβ

∂t
= Xβ

t = Ẋβ = f(X, uβ , β) .

We need further express that all trajectories lie in the same manifold F . Hence,
let Xβ

s := ∂Xβ/∂s; we must further have

0 = 〈ν−, Xβ
s 〉 , 0 = 〈ν+, Xβ

s 〉 .

We now have six equations in six unknowns at each X. We want to use them
to recover uβ and put it in the equations of the dynamics. Surprisingly, this is
rather easy to do. The first four equations yield

uα =
α + β

C+ − C− [p+x + (1 + C+)y] , uβ =
α + β

C+ − C− [p−x + (1 + C−)y] .

The equation 0 = 〈ν−, Xβ
s 〉 yields

p−xβ
s = −(C−yβ

s + zβ
s ) .

2Obviously, β here is a superindex, not a power!
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Now, we still have ẋβ = βx, i.e., xβ = s exp(−β(T − t)). Thus xβ(s, t) = sxβ
s .

Hence, the above equation reads

p−x = −s(C−yβ
s + zβ

s ) .

Put this back in uβ ; this finally yields a pair of coupled partial differential
equations (PDEs). We use the notation

γ =
α + β

C+ − C− , (16)

to get the following fact (we have dropped the superindices β).

Theorem 2.2. The focal manifold satisfies the following system of partial
differential equations:(

yt

zt

)
= sγ

(
−C− −1

C+C− C+

)(
ys

zs

)
+
(

β + γ(1 + C−)
β − C+γ(1 + C−)

)
y . (17)

Domain and Boundary Conditions. We need to know F for all t ≤ tα
and all x ≥ 0. However, for x ≤ Z exp(−β(T − t)), we have previously argued
that we expect the optimal (y, z) to be (0, 0). Also, for x ≥ Z exp(α(T − t)),
we expect the optimal (y, z) to be (x, x − Z). Notice first that each of these
two pairs, with x = s exp(−β(T − t)), satisfies the PDE (17). It remains to fill
the domain Ω := {t ≤ tα, Z exp(−β(T − t)) ≤ x ≤ Z exp(α(T − t))}, using
the above known values at the boundaries in x, and the previously computed
values on E at t = tα for Z exp(−β(T − tα)) ≤ x ≤ Z exp(α(T − t)).

This may entail discontinuities of the gradients of y and z along the “lat-
eral” boundaries of Ω. Appendix B provides a proof that these two lines are
precisely the possible support of such discontinuities. It also provides a further
mathematical and numerical investigation of this PDE.

We therefore have a manifold F defined for all t ≤ tβ , all positive x’s. We
still call y̌(t, x), ž(t, x) this manifold, and observe that the functions y̌ and ž
are continuous.

2.4.3 Trajectories v = −αv = −αv = −α

As stressed above, the choice to analyze F through the trajectories generated
by v = β was arbitrary. The same analysis could have been made using the
trajectories v = −α. Let them be parametrized by u = r exp(α(T − t)), and
Xα(r, t) be the resulting manifold. One obtains the PDE(

yt

zt

)
= rγ

(
−C+ −1

C−C+ C−

)(
yr

zr

)
+
(
−α + γ(1 + C+)
−α− C−γ(1 + C+)

)
y . (18)

(Notice that one gets these equations upon interchanging in (17) −α with β on
the one hand, and C− with C+ on the other hand.)
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Proposition 2.2. The PDEs (17) and (18) (with the same boundary condi-
tions) describe the same manifold in the (t, x, y, z) space.

Proof. Let us pick

s = r exp((α + β)(T − t)) (19)

so that the coordinates x coincide. Let Y = (y z)t. We want to show (with
transparent notation) that Y α(r, t) = Y β(r exp((α + β)(T − t)), t). Therefore,

Figure 1: A 2-D sketch of the 4-D geometry of the barrier.
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we should have

Y α
r = e(α+β)(T−t)Y β

s , (20)

Y α
t = −(α + β)re(α+β)(T−t)Y β

s + Y β
t . (21)

Write (17) and (18) respectively as

Y β
t = sAβY β

s + BβY β , Y α
t = rAαY α

r + BαY α .

We also need the notation D :=
⎛⎝ 1 0

1 0

⎞⎠ . We therefore have

Aβ = γ

(
−1
C+

)
(C− 1) , Bβ = (βI −Aβ)D ,

Aα = γ

(
−1
C−

)
(C+ 1) , Bα = (−αI −Aα)D .

Substituting both (17) and (20) into (21) and also using (19), we get

Y α
t = r[−(α + β)I + Aβ ]Y α

r + BβY α . (22)

The proposition then results from the easy fact that (remembering (16))

Aα = Aβ − (α + β)I , and therefore Bα = Bβ ,

so that (22) coincides with (18). �

2.5 Synthesis

The boundary of the set of capturable states is given by z = W (t, x, y) defined,
in the domain t ∈ [0, T ], x ≥ 0, y ∈ [0, x], by

W (t, x, y) = ž(t, x) + Dη(y − y̌(t, x)) ,

where
• The functions y̌ and ž are given by the requirement that they be continuous

(which specifies the boundary values of the differential equations) and

(i) y̌ = ž = 0 if x ≤ Z exp(−β(T − t)),
(ii) y̌ = x, ž = x− Z if x ≥ Z exp(α(T − t)),
(iii) if x ∈ [Z exp(−β(T − t)), Z exp(α(T − t))],

· if t ≥ tβ , equations (14)
· if t ∈ [tα, tβ ], differential equations (15) with terminal conditions

as in (15) t = tβ , and and by continuity with region (ii) above on
the boundary in x,
· if t ≤ tα, equations (17) with terminal conditions by continuity

with the above at t = tα, and by continuity with (i) and (ii) on
the boundaries in x,
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• η = sign(y − y̌), and D+1 = D+ and D−1 = D− are given by

D+ =
{
−C− if t ≤ tα ,
1− e−α(T−t) if t ≥ tα ,

D− =
{
−C+ if t ≤ tβ ,
1− eβ(T−t) if t ≥ tβ .

This function W is therefore also the upper value function of the game of
degree in (x, y) with payoff given by (9). Figure 1 shows a sketch of this com-
pound manifold.

3 Discretization

3.1 The Multistage Game

In [4], we investigated a discrete-time version of the same problem. In dis-
crete time, there are no such things as impulse controls (or there are only
such things!), so that this is now a classical multistage game. Let h = T/N ,
with N an integer, be our time step. We shall often use a dyadic division,
i.e., N = 2d, with d an integer. Write x(kh−) = xk, and likewise for y, z and
W (kh, x, y) = Wk(x, y).

The following system is the natural discretization of our game (and is of
interest per se in the finance application):

xk+1 = (1 + vk)xk , (23)
yk+1 = (1 + vk)(yk + uk) , (24)
zk+1 = zk + vk(yk + uk)− Cεuk , (25)

αh = 1− exp(−αh) , βh = exp(βh)− 1 , vk ∈ [−αh, βh] . (26)

It is also convenient to separate the effect of the two controls via the two-step
description:

x+
k = xk , xk+1 = (1 + vk)x+

k ,
y+

k = yk + uk , yk+1 = (1 + vk)y+
k ,

z+
k = zk − Cεuk , zk+1 = z+

k + vky+
k .

The 3-D plus time game of kind is the same pursuit-evasion game as in
the continuous theory, and capturable states are here again defined by zk ≥
Wk(xk, yk) where the sequence of functions {Wk}k∈N is the uppervalue function
of the 2-D plus time game of degree (23), (24) with payoff

G = M(xN ) +
N−1∑
k=0

(
−vk(yk + uk) + Cεk

uk

)
. (27)

Straightforward application of Isaacs’ equation (see [4]) yields
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Proposition 3.1. The value function of the above discrete-time game is the
only solution of the recursion

Wk(x, y) = min
u

max
v∈[−αh,βh]

[Wk+1((1 + v)x, (1 + v)(y + u))− v(y + u) + Cεu]

(28)

with

∀x, y , WN (x, y) = M(x) . (29)

Equation (28) is equivalent to the two-step procedure

W+
k (x, y+) = max

v∈[−αh,βh]
[Wk+1((1 + v)x, (1 + v)y+)− vy+],

Wk(x, y) = min
u

[W+
k (x, y + u) + Cεu].

The two-step formulation separates the maximization and minimization opera-
tions. It proves useful in the numerical implementation.

We also recall the following theorem from [4].

Theorem 3.1. The functions (x, y) →Wk(x, y) are all convex.

Proof. Notice that (x, y) → M(x) is convex. Assume that Wk+1 is convex.
Then (x, y) → Wk+1((1 + v)x, (1 + v)y) − vy is convex, so that W+

k is the
maximum of a family of convex functions, and hence is convex. Now, changing
u in −u′, Wk appears as the inf-convolution of W+

k and the convex extended
function Γ(x, y) equal to +∞ if x 	= 0 and to Cε(−y) (with ε = sign(−y)) if
x = 0. Hence it is convex. �

This, in turn, helps us in devising an efficient numerical procedure to compute
that value. Because the functions v → Wk((1 + v)x, (1 + v)y) are convex, the
maximum in v is reached at either v = −α or v = β. As for the inf-convolution,
it is easy to see that, for each fixed (k, x), one should look for

y−
k (x) = max{y | −C+∈ ∂yWk(x, y)} ,

y+
k (x) = min{y | −C−∈ ∂yWk(x, y)} .

(30)

Then, for y ∈ [y−, y+], Wk and W+
k coincide. For y ≤ y−, Wk must be extended

continuously with a slope in y equal to −C+. For y ≥ y+, Wk must be extended
continuously with a slope equal to −C−:

Wk(x, y)=

⎧⎪⎪⎨⎪⎪⎩
W+

k (x, y−
k (x))− C+(y − y−

k (x)) if y ≤ y−
k (x) ,

W+
k (x, y) if y−

k (x) ≤ y ≤ y+
k (x),

W+
k (x, y+

k (x))− C−(y − y+
k (x)) if y ≥ y+

k (x) .

(31)
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Implementing that procedure is much faster than computing a min via a stan-
dard search procedure.

Understanding the shape of the functions Wk will be useful in the sequel. We
emphasize it in the following remark.

Remark 3.1.
• For y < y−, for 0 < h < y−−v, Wk(x, y) = Wk(x, y+h)+C+h ≤W+

k (x, y),
and Wk(x, y) ≤Wk(x, y − h)− C−h,

• for y ∈ [y−, y+], for all h > 0, Wk(x, y) = W+
k (x, y) ≤Wk(x, y− h)−C−h,

and Wk(x, y) ≤Wk(x, y + h) + C+h,
• for y > y+, for 0 < h < v−y+, Wk(x, y) = Wk(x, y−h)−C−h ≤W+

k (x, y),
and Wk(x, y) ≤Wk(x, y + h) + C+h.

3.2 Convergence

3.2.1 Main Theorem

We introduce the function Wh(t, x, y) defined as the linear interpolation in time
of the functions Wk(x, y) and Wk+1(x, y) where kh ≤ t < (k + 1)h, and where
the functions Wk are given by Equations (28) and (29) for a time step h (in
(26)). The objective of this section is to prove the following theorem.

Theorem 3.2. Let h = 2−dT . As d goes to infinity, the sequence of functions
{Wh} converges uniformly on every compact (and monotonously decreasing) to
the value function W of the continuous-time, impulse control game of degree.

To prove this theorem, we need to introduce another way of looking at the
impulse control problem, via yet another game. Thus we name our games. Let G
be the original, continuous-time game, with controls u either finite or impulsive.
Its (upper) value function is W . We shall also use the game G′ which is the
same as G, but where P may only use impulses. Let Gh be the discretized game
of this section, and its upper value the sequence {Wh

k }k (the Wk’s above). Let
also Gh,� be the discrete-time game with time step h where, in addition, the
variable u has been discretized with a step �, i.e., uk ∈ �Z. Its value function
is a sequence {Wh,�

k }k∈N, which we interpolate in a function Wh,�(t, x, y) as we
did for Wh.

3.2.2 Joshua’s Transformation

Finally, we introduce a game J according to an idea initially due to Joshua [11].
The players are still P and E as previously, but P has a control j which can
take only the values -1, 0 or +1. We shall for convenience let j̄ = 1 − |j|. The
game happens in an artificial time that we call τ . We denote with a prime the
derivatives with respect to τ . The natural time is now a state variable, and the
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final τ is defined as the first instant τ = T such that t(T ) = T . The dynamics
of the game are

t′ = j̄ ,

x′ = j̄vx ,

y′ = j̄vy + j ,

and the payoff is

J = M(x(T )) +
∫ T

0

(−j̄vy + Cjj) dτ ,

(with C0 arbitrary, 0 for instance).
Observe that this is now a standard differential game, which no longer has

impulse controls. Its Isaacs equation can be written in the following way:

0 = min

{
∂W

∂t
+ max

v∈[−α,β]
v

[
∂W

∂x
x +
(

∂W

∂y
− 1
)

y

]
,

∂W

∂y
+ C+,−

(
∂W

∂y
+ C−
)}

.

This is a less degenerate form of the quasi-variational inequality of [4]:

0 = min

{
∂W

∂t
+ max

v∈[−α,β]
v

[
∂W

∂x
x +
(

∂W

∂y
− 1
)

y

]
,

min
u

[W (t, x, y + u)−W (t, x, y) + Cεu]

}

(where we required ∂W/∂y ∈ [−C+,−C−] everywhere).
We claim the important following fact.

Proposition 3.2. The game J has the same value as the game G.

Proof. The game J is in fact completely equivalent to the game G′. When P
chooses a control j = 0, the game proceeds exactly as the game G′ between two
impulses. When P chooses j = +1 or −1, the time stops (hence the reference
to Joshua), and y evolves in no real time of a quantity equal to j times the
duration, in artificial time, of that control, at a cost Cε times the variation of y.

The rest of the proof depends on the following easy lemma.

Lemma 3.1. For any P’s control strategy ϕ in the game G, and any positive
δ, there exists an admissible (causal) strategy in the game G′ that yields against
any admissible v(·) a payoff within δ of the payoff obtained with ϕ in the game
G.
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The proof of the lemma is given in Appendix C. We immediately have the
following:

Corollary 3.1. The games G and G′ have the same value.

And this, together with the fact that J and G′ have the same value, proves the
proposition. �

To complete the proof of the theorem, we need two more lemmas.

Lemma 3.2. For every positive h, � and every (t = kh, x, y), N ≥ k ∈ N, one
has

W (t, x, y) ≤Wh
k (x, y) ≤Wh,�

k (x, y) . (32)

Proof. We notice that due to our choice of αh and βh in (26), the quantity

exp
(∫ t

t−h

v(τ) dτ

)
exactly spans the interval [−αh, βh]. As a consequence, due to the linearity of
the dynamics, the game Gh is an exact time sampling of the game G′ where P is
further constrained to placing its impulses at time instants tk = kh, k ∈ N. Since
constraints have been placed on the admissible strategies of the minimizer, but
not on the controls of the maximizer, we have the first inequality in (32). (Here
and in the next lemma, the fact that v(·) can be taken open loop in defining
the upper value plays a crucial role.)

In the game Gh,�, further constraints are placed on the admissible strategies
of P. Hence the second inequality follows. �

Lemma 3.3. The functions Wh and Wh,h with h = 2−dT decrease as d→∞
and converge, uniformly on any compact, to functions Ŵ and W̃ respectively.

Proof. We have noticed that the various games Gh are variants of the game
G′. They differ by the frequency at which player P is allowed to play. The
game with h = 2−dT can be considered itself as a variant of the game with
h = 2−(d+1)T but where P is constrained to play u = 0 at every odd-numbered
stage. Since P is minimizing, this constraint increases the value of the game.
Hence Wh(t, x, y) is decreasing for every fixed (t, x, y). Being bounded from
below by zero, it converges to some Ŵ (t, x, y). Now, the Wh are convex, thus
continuous, in (x, y), and continuous in time by construction. We therefore have
a monotonous convergence of continuous functions, hence it is uniform on every
compact.

Concerning the functions Wh,h
k , they correspond to games where a further

constraint has been imposed on u. And again, for h = 2−dT , the admissible
u’s for d + 1 are a superset of those admissible for d. Hence the value function
decreases also. The rest follows. �
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The main theorem is now a consequence of a last lemma.

Lemma 3.4. Let W be the value function of the game G and W̃ =
limh→0 Wh,h. Then

W̃ = W . (33)

Proof. The detailed proof is given in Appendix C. It uses the method of [10] for
the game J , whose value is W according to Corollary 3.1, and uses the fact that
it follows from our analysis of (28), and specifically from Remark 3.1, that the
sequence {Wh,h

k }k can be identified with the value function of the discretized
version of the game J . Hence (33) follows. �

Proof of the Main Theorem. of the main theorem: It follows from
Lemma 3.3 that Wh converges to some Ŵ as h→ 0 in a dyadic way. It follows
from (32) that W ≤ Ŵ ≤ W̃ , and from (33) that Ŵ = W . �

4 Numerical results

We have implemented the recursion (28). We have used the two-step formulation
and the procedures of Section 3.1 for the maximization and minimization. We
are, of course, obliged to discretize x and y. To evaluate W and W+ between
discretization points, we have used a piecewise affine interpolation on triangles,
and to evaluate them beyond the domain of discretization (the evaluation at
((1 + β)x, (1 + β)y) may require that), a linear extrapolation. Notice that this
affine interpolation is essentially equivalent to the space discretization procedure
analyzed in [13,14]. Hence, we may expect it to converge to the desired function
as the discretization step goes to zero.

We have found that in some very narrow ranges of discretization steps,
depending on the parameters, one may get wide numerical instabilities. Yet,
being carefull to validate the results as “reasonable,” we have a very efficient
program. With a 600×600 grid in the (x, y) domain, it runs in about .22 second
per time step on a 1.7 GHz PC.

The numerical results corroborate our continuous-time theory. The results
we discuss here correspond to the following set of parameters: a time step of
h = 0.02, α = .10, β = .15, c0 = .02, c1 = .05, and a discretization step of .005
in x and y.

For large t’s (the first time steps) the program finds y− and y+ at both ends
of the domain of y. Then for T−t larger than .52, it finds y− within the range of
discretization and y+ at the boundary. The theoretical value is T−tβ = .46. For
T−t larger than .70, it finds y− and y+ either equal or within one discretization
step, the latter being a normal discretization effect. The theoretical value is
T − tα = .71. Thus tα has been recovered with a good accuracy (within one
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time step) while tβ is recovered with an error of three time steps. When y− and
y+ differ within one discretization step, we have taken (1/2)(y− + y+) as the
approximation of y̌, and the smallest W as the approximation of ž.

We have also implemented a numerical integration of the differential equa-
tions for E (or used the closed form found later. It makes no observable differ-
ence) and of the PDE for F . The latter can exhibit numerical instabilities with
bad choices of method. We got good results with a second-order centered finite
difference scheme in “space” and a Runge–Kutta method of order two in time.
Our computer code (in MATLAB) is still far from being optimized in terms of
computing time. Thus this aspect will not be discussed here.

We have made the comparisons with a short maturity of T = 5 to save
computation time in the computation of the focal surface. Both methods gave
the same graphs for y̌ within one or two discretization steps (.005Z), except
close to the boundary of the discretized domain, and almost the same graphs
for ž to within two discretization steps, the discrete time ž being slightly larger,
as expected. Both graphs are plotted in Figure 2.

5 Variants and Related Works

5.1 Another Terminal Target

Another game, maybe more significant for the finance application, but less
rich in terms of game theory, is obtained by replacing M(x) by N(x, y) :=
M(x) + Cε(−y), with ε = sign(−y). (See [4] for a motivation.) Then the sheet
(α) of the barrier does not exist any longer, and thus neither does the dispersal
manifold. The first singularity met (rearward) is an equivocal junction on the
sheet (β), and before (in forward time) a focal surface. The theory is essentially
the same.

5.2 The Viability Approach

In a series of papers [1,15] and in private communications, Aubin, Saint-Pierre,
Pujal, and collaborators have considered, with the same motivation, essentially
the same continuous-time problem, slightly more general in some aspects (they
allow for constraints that were not considered in our work). They put a bound
on the magnitude of our u to avoid impulses. But this is mainly for theoretical
reasons, to get existence results for the viscosity solution of Isaacs’ equation,
an issue we did not tackle. They use a capture basin type of approach (similar
to our game of kind approach) and discretize the corresponding PDE, leading
to the same recursion (28) as ours, or a slightly different one depending on
whether they use an explicit or implicit scheme. There, if taken large enough,
the bounds on u are inactive.

A noteworthy feature is Saint-Pierre’s “decoupling algorithm,” which, for the
above variant (Section 5.1), let him compute the locus y̌ and ž, as the locus of
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Figure 2: Cut of the focal manifold F : y̌(t, x) and ž(t, x) for T − t = 5. Dotted line:
discrete time. Solid line: continuous time.
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the minimum in y of the solution, with a computing effort comparable to two
dynamic programming algorithms in dimension one instead of one in dimension
two. Coupled with our theory as synthesized above, this is the fastest known
way to compute the value of that game.

6 Conclusion

We have provided two closely related ways of investigating impulse controls
in a differential game, both linked to the fact that “jump trajectories” can be
regarded as ordinary trajectories. In this game, the optimal strategy of the
pursuer contains both an impulse at initial time, and finite controls later on as
the state traverses the singular manifolds. Admittedly, here the optimal strategy
has the weakness that it needs to sense instantaneously the opponent’s control,
i.e., here the time derivative of the first state variable. Breakwell has discussed
this feature and approximate implementation in other papers [7,8]. Here, our
discrete-time theory points to a practical solution of that problem.

This approach is feasible only because the cost of jumps was supposed to be
proportional to the amplitude of the jump. It would be interesting to consider
a cost affine in the amplitude, with a positive infimum. This would probably
entail an investigation of the QVI according to the theory of [3].

More significantly perhaps, this analysis proves correct an old conjecture by
Arik Melikyan that in higher dimensions, focal surfaces would be traversed by
noncollinear optimal fields of trajectories. We have shown in detail that this is
indeed the case here.

There remains to derive from the above analysis a general construction of
higher-dimensional focal surfaces, which was missing in our constructive theory
of singularities of co-dimension one in the Isaacs equation of (deterministic)
two-person zero-sum differential games [5,6].

We have also proved and checked numerically that the continuous-time solu-
tion can be approached by the natural discrete-time game associated to our
differential game. Yet, while that approach lets one numerically compute the
value function, it does not give the more explicit form of Section 2.5, nor our
detailed description of the optimal continuous-time strategies.

Appendix A: Equations of the Manifold EEE

We recall the equations of the manifold E :

ẋ = βx ,

ẏ =
β(1 + C+) + αe−α(T−t)

1 + C+ − e−α(T−t)
y ,

ż =
β(1 + C+)(1− e−α(T−t))− C+αe−α(T−t)

1 + C+ − e−α(T−t)
y ,
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to be integrated backwards from the terminal states (t0, x(t0), y(t0), z(t0)) either
on the boundary of the manifold D at t = tβ or on the boundary parametrized
by x = Ze(α(T−t)), tα ≤ t ≤ tβ . These equations admit a closed form solution
as follows:

x(t) = x(t0)eβ(t−t0) ,

y(t) = y(t0)eβ(t−t0)

(
1 + C+ − eα(t0−T )

1 + C+ − eα(t−T )

)α+β
α

,

z(t) = (1− e−α(T−t))y(t) + z(t0)− (1− e−α(T−t0))y(t0),

as can be checked by direct differentiation. The expressions for y and z can be
rewritten in terms of x and t, upon substituting for t0, y(t0), and z(t0), to yield
y̌(t, x) and ž(t, x).

Let x̃(t) = Ze(α+β)(T−tβ)e−β(T−t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if x ≤ x̃(t):

⎧⎪⎨⎪⎩
t0 = tβ ,
y(t0) = xeβ(T−t)−Z

1+C+−e−α(T−tβ) ,
z(t0) = (1− e−α(T−tβ))y(t0) ,

if x ≥ x̃(t) :

⎧⎨⎩
t0 = 1

α+β (αT + βt) ln
(

x
Z

)
,

y(t0) = xeβ(T−t0) ,
z(t0) = y(t0)− Z .

We can remark that in the region x ≤ x̃(t) we still have w(t) = (1−e−α(T−t))y(t)
as on the manifold D.
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Appendix B: The PDE for the Focal Manifold FFF

B.1 Analysis

As the trajectories v = β and v = −α describe the same focal manifold F in
(s, x, y, z) space, we only solve the PDE system (17), which we rewrite as

Y β
t = sAβY β

s + BβY β .

Let us pick

σ = ln
( s

Z

)
,

which transforms the PDE system in a linear PDE system of first order with
constant coefficients in (t, σ):

Y β
t = AβY β

σ + BβY β . (34)

Moreover, the domain of interest Ω simplifies into the new domain in (t, σ):
Ωσ := {t ≤ tα, 0 ≤ σ ≤ (α + β)(T − t)}.

We notice that the known solutions y̌ and ž outside Ω, namely (0, 0) to the
“left” of Ω and (x, x − Z) to the right, satisfy the PDE for F (34). Moreover,
we have the following fact.

Proposition B.1. If (34) admits a continuous solution on [0, T ]×[−∞,∞] (in
the domain (t, σ)) with simple discontiuities in (∇y,∇z), these discontinuities
are born by lines of slope 0 or −(α + β) in the plane t, σ.

Hence, if such discontinuities follow from the discontinuity in σ = 0 at ter-
minal time, they will precisely be born by the boundaries of Ω.

Proof. Let ∆yt, ∆yσ, ∆zt, and ∆zσ be the discontinuities. Let (p, q) be the
direction of a smooth curve bearing the discontinuity in the (t, σ) domain. The
continuity of both y and z implies that

p

(
∆yt

∆zt

)
+ q

(
∆yσ

∆zσ

)
= 0 .

Moreover, because at the discontinuity both sides satisfy the PDE (34), it fol-
lows that (

∆yt

∆zt

)
= Aβ

(
∆yσ

∆zσ

)
.

Hence, combining these two equations, we obtain

(pAβ + qI)
(

∆yσ

∆zσ

)
= 0.

Since, by hypothesis, the vector is nonzero, p cannot be 0, and −q/p is an
eigenvalue of Aβ . These are 0 and α + β. �
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B.2 Numerical Integration

We decided to use the fact that y̌ and ž are known outside of the domain
of interest Ω in the numerical procedure. We compared this approach with a
global integration relying on the preceding analysis. But the latter gave, not
surprisingly, less precise results close to the boundary of Ω.

Hence, the boundary conditions in (t, σ) are also affine but the domain is
not rectangular, the range in σ is a function of t. Let σ� = σ0 + �δσ where
� = 0, . . . , N − 1 are the values of the discretization of the variable σ with a
step of δσ on the domain (t, σ) = [0, tα] × [0, (α + β)T + δσ] including Ωσ. We
shall explain this choice hereafter.

At any time t ≤ tα, we consider the vector of fixed dimension 2N × 1:

Y β(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

Y β(t, σ0)
...

Y β(t, σ�)
...

Y β(t, σN−1)

⎞⎟⎟⎟⎟⎟⎟⎠ with Y β(t, σ�) =
(

y(t, σ�)
z(t, σ�)

)
.

We denote by Y β
σ (t) the vector of the derivatives in σ of the vector Y β(t). We

will approach it by finite differences in σ. Thus the PDE system leads to an
ODE system of 2N equations of the form

Y β
t (t) = M(t)Y (t). (35)

The interest of the new domain is that we will work with a matrix M(t) of
constant dimension.

In the domain σ ≥ (α + β)(T − t), we replace the PDE system (34) by the
system satisfied by x = y, z = x− Z with ẋ = βx, i.e.:{

ẏ = βy ,
ż = βy .

(36)

This leads to a matrix M(t) whose lines corresponding to σ ≤ (α + β)(T − t)
implement Equation (34) while those corresponding to σ ≥ (α + β)(T − t)
implement Equation (36). Hence, M is time varying.

To solve the ODE system (35), we have tried different numerical methods of
lower order (1 or 2). Some methods exhibit numerical instabilities, but we got
good results with a second-order centered finite difference scheme in “space”
and a Runge–Kutta method of order two in time.
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Appendix C: Proofs of the Lemmas

C.1 Proof of Lemma 3.1

Lemma 3.1. For any P’s control srategy ϕ in the game G, and any positive δ,
there exists an admissible (causal) strategy in the game G′ that yields against
any admissible v(·) a payoff within δ of the payoff obtained with ϕ in the game
G.

Proof. We shall only prove that y can be approximated uniformly arbitrarily
well. The proof for its integral follows. In fact, integrating (2) yields

y(t) = y(0) exp
(∫ t

0

v(τ) dτ

)
+ ȳ(t),

where only ȳ depends on u. Thus it suffices to approximate ȳ. Let δ be a given
positive number; we shall show how to approximate ȳ(t) within δ uniformly in
t and v(·).

Pick a strategy ϕ. For a disturbance v(·) given, it generates a time function
(or distribution) u(·) that may contain impulses. One has

ȳ(t) =
∫ t

0

exp
(∫ t

s

v(τ) dτ

)
u(s) ds .

We decompose u(·) as u(t) = u+(t) − u−(t), its positive and negative parts
(including the positive and negative impulses). In an obvious way, this induces
a decomposition ȳ = ȳ+ − ȳ−.

Proposition C.1. Under our hypotheses, we may assume that both ȳ+ and ȳ−

are uniformly bounded over all admissible v(·)’s for any initial state.

Proof of the Proposition. In investigating the value of the game G, we may
restrict our attention to strategies ϕ that do better than a given strategy ϕ0.
Choose, for instance, ϕ0 as the strategy made of an initial jump to y = 0 at
time t = 0 (i.e., t0 = 0 and u0 = −y(0)), and u = 0 from then on. It yields
z(T ) = z(0) − Cε(−y(0)). Thus we restrict our attention to strategies ϕ that
yield a larger z(T ) for all admissible v(·)’s. Now, since y(t) is by hypothesis
uniformly bounded, so is

∫ T

0
v(t)y(t) dt. According to (3), z(T ) = z(0)+

∫ T

0
(vy−

Cεu) dt. Therefore,
∫ T

0
Cεu(t) dt is also uniformly bounded. But if we let C =

max{C+,−C−} (C is positive), we have Cεu ≥ C|u|. Hence the integral of |u|
is uniformly bounded, and a fortiori those of u+ and u−, and finally also ȳ+

and ȳ−. �

We shall do the approximation for each of these two parts separately. Hence,
from now on, we may assume that u(t) ≥ 0, or more precisely that

∫
|u(s)|ds =∫

u(s) ds.
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Let therefore ymax be an (uniform) upper bound of ȳ(t), pick ε (< 1 and)
such that εymax ≤ δ/2, and let h be a positive number such that, for every
admissible v(·), and ∀t ∈ [h, T ],∣∣∣∣exp

(∫ t

t−h

v(τ) dτ

)
− 1
∣∣∣∣ ≤ ε

2
≤ 1

2

(this is possible uniformly in v(·) because |v(t)| is bounded), and thus a fortiori,
∀s ∈ [t− h, t],∣∣∣∣exp

(∫ t

s

v(τ) dτ

)
− 1
∣∣∣∣ ≤ ε

2
≤ ε exp

(∫ t

s

v(τ) dτ

)
. (37)

We advocate the impulses-only strategy using impulses of amplitude uk at
the instants tk = kh, k ∈ N as follows:

uk =
∫ tk

tk−h

u(t) dt .

This yields for ȳ a time function that we denote ỹ:

ỹ(t) =
∑

k|tk<t

uk exp
(∫ t

tk

v(τ) dτ

)
.

The difference ∆(t) = |ȳ(t)− ỹ(t)| can be written as

∆(t) =

∣∣∣∣∣∣
∑

k|tk<t

∫ tk

tk−h

[
exp
(∫ tk

s

v(τ) dτ

)
− 1
]

u(s) ds exp
(∫ t

tk

v(τ) dτ

)∣∣∣∣∣∣ ,
hence

∆(t) ≤
∑

k|tk<t

∫ tk

tk−h

∣∣∣∣exp
(∫ tk

s

v(τ) dτ

)
− 1
∣∣∣∣u(s) ds exp

(∫ t

tk

v(τ) dτ

)
.

According to (37),

∆(t) ≤ ε
∑

k|tk<t

∫ tk

tk−h

exp
(∫ tk

s

v(τ) dτ

)
u(s) ds exp

(∫ t

tk

v(τ) dτ

)
= εȳ(t) .

Hence, for each of the positive and negative parts of ȳ we have

ỹ(t) ∈ [(1− ε)ȳ(t) , (1 + ε)ȳ(t)] ⊂
[
ȳ(t)− δ

2
, ȳ(t) +

δ

2

]
.
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C.2 Proof of Lemma 3.4

We consider the following discrete scheme associated to Joshua’s transform:⎧⎪⎨⎪⎩
t((k + 1)h) = t(kh) + hj̄,

x((k + 1)h) = x(kh) + hj̄vx(kh),

y((k + 1)h) = y(kh) + h(j̄vy(kh) + j),

with the payoff defined with t(T ) = T and

J = M(u(T )) +
N−1∑
k=0

h(−j̄vy(kh) + Cjj) ,

and the controls j ∈ {−1, 0, 1} and v ∈ [−αh, βh], where (see (26)):

αh =
αh

h
=

1
h

(1− e−αh) , βh =
βh

h
=

1
h

(eβh − 1) .

We notice that αh → α and βh → β as h→ 0.
The Isaacs equation of the above multistage game concerns a function V h

and reads:

∀(t, x, y) ∈ [0, T ]× R
+ × R ,

0 = min
j∈{−1,0,1}

max
v∈[−αh,βh]

[
V h(t + hj̄, x + hj̄vx, y + h(j̄vy + j))

−V h(t, x, y) + h(−j̄vy + Cjj)
]
,

∀t ≥ T , V h(t, x, y) = M(x).

(38)

Now, we want to prove that V h converges towards V , where V is the viscosity
solution of the following Isaacs equation, associated to the continuous Joshua
form:

0 = min
j

max
v∈[−α,β]

[
∂V

∂t
j̄ +

∂V

∂x
j̄vx +

∂V

∂y
(j̄vy + j) + (−j̄vy + Cjj)

]
with the same boundary condition.

We recall the definition of a viscosity solution of the last Isaacs equation. A
bounded uniformly continuous function V is called a viscosity solution of the
Isaacs equation above if for each φ ∈ C1(R3), the following hold:

(1) if V − φ attains a strict local maximum at a0 = (t0, x0, y0), then

min
j

max
v

[
∂φ

∂t
(a0)j̄ +

∂φ

∂x
(a0)j̄vx0 +

∂φ

∂y
(a0)(j̄vy0 + j)− j̄vy0 + Cjj

]
≥ 0 ,
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(2) if V − φ attains a strict local minimum at a1 = (t1, x1, y1), then

min
j

max
v

[
∂φ

∂t
(a1)j̄ +

∂φ

∂x
(a1)j̄vx1 +

∂φ

∂y
(a1)(j̄vy1 + j)− j̄vy1 + Cjj

]
≤ 0 .

Proof. Notice first that, expanding the minj according to the three possible
values of j, and replacing hv ∈ [−αh, βh] by

v ∈ [−αh, βh], (38) also reads

min
{

max
v∈[−αh,βh]

[
V h(t + h, (1 + v)x, (1 + v)y)− V h(t, x, y)− vy

]
,

V h(t, x, y − h)− C−h , V h(t, x, y + h) + C+h
}

,

so that, using Remark 3.1 we may conclude that V h coincides with Wh,h. Thus,
we know from Lemma 3.3 that there exists a V (called W in the body of the
paper) such that

V h → V uniformly on any compact of R
3when h→ 0 . (39)

Let φ ∈ C1(R3) and a0 be a strict local maximum for V − φ. Then there exists
a closed ball B centered at a0 such that

(V − φ)(a0) > (V − φ)(a), ∀a ∈ B. (40)

Let now ah
0 be a maximum point for V h − φ over B.

Lemma C.1.

ah
0 → a0, when h→ 0. (41)

Proof. ah
0 remains in the compact B. Let ā be a cluster point of the sequence

{ah
0} and {ahi

0 } be a subsequence converging to ā. By definition we have that
(V hi − φ)(ahi

0 ) ≥ (V hi − φ)(a), for all a ∈ B, and then, by continuity of V hi

and φ and using (39), we get (V − φ)(ā) ≥ (V − φ)(a), ∀a ∈ B. By unicity of
the maximum, we have that ā = a0. The cluster point ā is then unique, so the
whole sequence ah

0 converges towards a0. �

Now since h→ 0, we have that (th0 + hj̄, xh
0 + hj̄vxh

0 , yh
0 + h(j̄vyh

0 + j)) remains
in B. Since ah

0 is a maximum point for V h − φ over B, we have

V h(th0 , xh
0 , yh

0 )− φ(th0 , xh
0 , yh

0 )

≥ V h
(
th0 + hj̄, xh

0 + hj̄vxh
0 , yh

0 + h(j̄vyh
0 + j)

)
− φ
(
th0 + hj̄, xh

0 + hj̄vxh
0 , yh

0 + h(j̄vyh
0 + j)

)
,
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Using the last inequality together with Equation (38) and also using the mono-
tonicity of the “minmax” operator, we get the following, where v is always
understood to lie in [−αh, βh]:

0 = min
j

max
v

[
V h(th0 + hj̄, xh

0 + hj̄vxh
0 , yh

0 + h(j̄vyh
0 + j))

−V h(th0 , xh
0 , yh

0 ) + h(−j̄vyh
0 + Cjj)

]
≤ min

j
max

v

[
φ(th0 + hj̄, xh

0 + hj̄vxh
0 , yh

0 + h(j̄vyh
0 + j))

−φ(th0 , xh
0 , yh

0 ) + h(−j̄vyh
0 + Cjj)

]
.

Since φ ∈ C1(Rn), from the last inequality, we get

0 ≤ min
j

max
v

h

[
∂φ

∂t
(bh)j̄ +

∂φ

∂x
(bh)j̄vxh

0 +
∂φ

∂y
(bh)(j̄vyh

0 + j)− j̄vyh
0 + Cjj

]
,

where bh is in the segment [(th0 , xh
0 , yh

0 ), (th0 + hj̄, xh
0 + hj̄vxh

0 , yh
0 + (j̄vyh

0 +j))].
Since h > 0, we may divide through by h; then it follows that

0 ≤ min
j

max
v

[
∂φ

∂t
(bh)j̄ +

∂φ

∂x
(bh)j̄vxh

0 +
∂φ

∂y
(bh)(j̄vyh

0 +j)− j̄vyh
0 + Cjj

]
.

Since ah
0 converges towards a0 and since h converges towards zero, it follows that

bh also converges towards a0. Moreover, the bracket is continuous in (v, (t, x, y)),
therefore in (v, h) and therefore uniformly continuous in (v, h) in a (closed)
neighborhood of [−α, β]×{0}. Thus we may pass to the limit for each value of
j to conclude that

min
j

max
v∈[−α,β]

[
∂φ

∂t
(a0)j̄ +

∂φ

∂x
(a0)j̄vx0 +

∂φ

∂y
(a0)(j̄vy0 + j)− j̄vy0 + Cjj

]
≥ 0.

The proof is the same, mutatis mutandis, for point (2) of the definition of the
viscosity solution of the Isaacs equation considered. �
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Abstract
This chapter analyzes a differential game model of a two-member mar-
keting channel. A manufacturer invests in national advertising with the
purpose of improving (or sustaining) the image of one of her brands, and
her retailer makes local promotions for the brand. The game is played
à la Stackelberg with the manufacturer as leader. We characterize and
compare equilibria for two scenarios. In the first one, the manufacturer
designs an incentive strategy to affect the retailer’s promotion strategy
with the objective of maximizing the total channel profit. In the second,
the manufacturer’s objective is the maximization of her own payoff.

Key words. Incentive strategies, channel coordination, advertising and
promotion, Stackelberg equilibrium.

1 Introduction

This chapter considers a two-member channel of distribution and the setup con-
cerns the sales of a particular brand of a manufacturer to the retailer. In the
∗Research supported by NSERC, Canada. We wish to thank an anonymous reviewer
for constructive comments on an earlier draft.
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absence of cooperation, channel members determine their marketing decision
strategies independently and noncooperatively. It is well known, in the litera-
ture and in practice, that uncoordinated decision making can create “channel
inefficiencies,” in the sense that channel members’ noncooperative payoffs are
less than those they could obtain in a coordinated setup.

Assume that the manufacturer can, and will, take the role of a channel leader,
and that the retailer agrees to take the role of a follower. By a channel leader we
mean an agent who announces her strategy in advance and commits to playing
that strategy. The manufacturer wishes to induce the retailer to implement a
certain outcome and, given the leader’s announcement, the retailer can do no
better than to react rationally to the leader’s strategy.

The timing of events is the following. At the start of the game the manufac-
turer announces and commits to an incentive strategy. Note that commitment
to a strategy does not mean commitment to a predetermined course of action.
Rather, a strategy specifies what type of action to take at a decision point, con-
tingent on available information. Typically, an incentive strategy of the man-
ufacturer is conditioned upon the retailer’s past or present actions (and even
upon the past actions of the manufacturer).

The paper provides an answer to the question of how to achieve channel
coordination, in two specific senses. How can the manufacturer, through her
choice of marketing strategy, induce the retailer to implement an outcome that
(i) is favored by both channel members or (ii) is favored by the manufacturer
only? Each scenario involves a coordination problem and an assumption on
what the manufacturer has in mind when attempting to coordinate the channel.

(1) The manufacturer wishes to induce the retailer, through the announce-
ment of an incentive, to act in accordance with a cooperative outcome. By
a cooperative outcome we mean the one which maximizes the sum of the
two channel members’ individual payoffs. In the sequel we refer to this as
the joint maximization outcome. Note that the manufacturer acts in the
best interest of the channel when seeking to maximize the overall profit.
The resulting outcome is Pareto optimal (group rational). When the man-
ufacturer acts in the best interest of the channel, it is plausible that the
retailer will accept the role of a follower.

(2) The manufacturer wishes to induce the retailer, through the announcement
of an incentive, to act in such a way that the manufacturer’s individual
payoff is maximized. The manufacturer acts in her own best interest and it
is not evident that the retailer will accept the role of a follower. However,
since the manufacturer announces and commits to her strategy, the retailer
has no better option than to accept the role of a follower (and implements
her best reply to the manufacturer’s strategy).

The incentive problem under consideration is asymmetric (one-sided). One
channel member (the manufacturer) assumes the role of a channel leader who
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designs an incentive for the retailer. The latter acts as a follower. Clearly,
the roles of channel members can be reversed, making the retailer the chan-
nel leader. This is observed in practice when nation-wide or international retail
chains deal with individual manufacturers. Also note that the assignment of
roles is exogenous, that is, the manufacturer is the channel leader by assump-
tion.

Studies of marketing channels have identified a number of mechanisms that
can lead to coordination, under alternative hypotheses about the manufacturer’s
objective. Coordinating mechanisms are, for instance, quantity discounts, adver-
tising allowances, and retailer promotion cost subsidies. Most of these works
have assumed a static environment and the prime example of coordination is to
remedy pricing inefficiency (the double marginalization problem). Here, incen-
tives can be designed such that a retailer will choose a consumer price that
maximizes total channel profits. Jeuland and Shugan [3] studied profit sharing
as a coordinating device. Through a quantity discount scheme the manufacturer
induces a relationship between total channel profits and channel members’ indi-
vidual profits such that if any one of these is maximized, they are all maximized.
Moorthy [9], on the other hand, advocates an asymmetric relationship where
the manufacturer assumes responsibility for the implementation of a coordi-
nated outcome. Bergen and John [1] analyzed a situation where the manufac-
turer decides a transfer price and a subsidy for the retailer’s local advertising
expenditures.

Marketing decisions often have carry-over effects, and therefore they do not
only affect the current payoff but also future ones. Capturing the full impact of
decisions thus requires a dynamic model. There are still not many attempts to
examine the channel coordination issue in an intertemporal setting. Jørgensen
and Zaccour [4,5], Jørgensen, Sigué, and Zaccour [6,7], and Jørgensen, Taboubi,
and Zaccour [8] use differential games to demonstrate that channel coordina-
tion can be achieved, primarily through advertising allowances. However, these
studies did not address the question of whether coordinated outcomes can be
sustained (enforced) over time. This issue is important and is actually the cen-
tral point in this chapter. We shall show that sustainability can indeed be
achieved; the key to this result is to design the incentive in such a way that a
coordinated outcome becomes a (Nash) equilibrium.

In the scenario where the manufacturer wishes to implement the joint max-
imization outcome, the follower must be induced to select her part of the out-
come at any instant of time. This means (among other things) that as of any
instant of time, the retailer will obtain a payoff-to-go in the coordinated solu-
tion which exceeds that of the uncoordinated (noncooperative) solution. If such
a “dynamic individual rationality” constraint is not satisfied at some instant of
time, the retailer has an incentive to switch to noncooperative play. In the two
scenarios to be considered here, the individual rationality problem is resolved
from the viewpoint that the manufacturer announces and commits to her strat-
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egy in advance, and the retailer has no better choice than to implement her best
reply. Under the assumption that the retailer cannot withdraw from the chan-
nel relationship, the manufacturer does not need to care about the satisfaction
of dynamic individual rationality.

The paper proceeds as follows. Section 2 introduces a differential game model
of the distribution channel. Section 3 addresses the incentive problem and iden-
tifies in Section 3.1 the joint maximization solution and the incentive needed for
sustaining this outcome. Thus, Section 3.1 analyzes the problem posed above
in Scenario 1, and establishes an equilibrium of the incentive game in which
the manufacturer wishes to have the joint maximization outcome implemented.
Section 3.2 establishes an equilibrium of the incentive game in which the manu-
facturer wishes to have her individual maximization outcome implemented, cf.
Scenario 2. In Section 4 we compare the results obtained for the two scenarios.
Section 5 states our conclusions.

2 A Differential Game

Consider the sales of a particular brand of a manufacturer to a single retailer.
The manufacturer advertises the brand in national media, whereas the retailer
promotes the brand locally. Suppose that the channel members have infinite
planning horizons and let t denote time, t ∈ [0,∞). Let A(t) represent the
manufacturer’s national advertising rate which influences the brand image, rep-
resented by the state variable G(t). (In a capital accumulation sense, the brand
image can be seen as a stock of advertising goodwill.) The evolution of the stock
G is assumed to follow the rather classical formulation à la Nerlove–Arrow, i.e.,

Ġ(t) = A(t)− δG(t), G(0) = G0 > 0, (1)

where δ > 0 is a decay rate. Since a feasible control A(t) must be nonnegative,
it follows from (1) that the state constraint G(t) ≥ 0 is satisfied for all t. This
means that the brand image is never negative (which would mean negative
goodwill (badwill)).

The retailer controls her local promotional activities, represented by the effort
rate P (t). Following Jørgensen, Sigué, and Zaccour [6,7], we assume that the
retail sales revenue rate is given by

S(t) = θ + βP (t)
√

G(t),

where θ > 0 is a constant representing the baseline sales revenue for the brand,
in the absence of promotional effort. The hypothesis here is that the retailer
needs to promote the brand locally if she wishes to increase her sales revenue
above its baseline level. The parameter β > 0 represents the effect of promotion
on sales revenue. Note that retailer’s promotional efforts are reinforced by the
level of goodwill, but at a decreasing marginal rate.



Incentives for Retailer Promotion in a Marketing Channel 369

We assume that both channel members face convex cost functions which we
take as quadratic for tractability,

CM (A(t)) =
uMA(t)2

2
, CR (P (t)) =

uRP (t)2

2
.

Obviously, the controls must take nonnegative values, A(t) ≥ 0, P (t) ≥ 0. Fol-
lowing Chintagunta and Jain [2] we suppose that a fixed percentage 0 < π < 1
of retail sales revenue accrues to the manufacturer. Thus, a fixed profit sharing
mechanism has been agreed upon before playing the game.

Letting ρ denote a constant and positive discount rate, the objective func-
tionals of the manufacturer and the retailer, respectively, are

JM =
∫ ∞

0

e−ρt

[
πS(t)− uMA(t)2

2

]
dt

JR =
∫ ∞

0

e−ρt

[
(1− π)S(t)− uRP (t)2

2

]
dt.

3 Incentive Strategies

In this section we solve the two incentive problems outlined in Section 1. Section
3.1 deals with the case in which the manufacturer wishes to design a promotion
incentive for the retailer such that the joint maximization outcome is imple-
mented. In Section 3.2 we solve the analogous problem with the maximization
of the manufacturer’s individual profit as the objective. Section 4 compares the
outcomes of the two incentive problems.

3.1 Joint Maximization

To identify the joint profit maximization (cooperative) outcome, we solve an
optimal control problem with objective

JC = JM + JR =
∫ ∞

0

e−ρt

[
S(t)− uMA(t)2

2
− uRP (t)2

2

]
dt,

subject to the state dynamics in (1). Note that in the above objective, the rev-
enue sharing parameter π vanishes and hence the optimal strategies and coop-
erative outcome will be obviously independent of π. The superscript C refers to
“cooperative.” The solution of the joint maximization problem is summarized
in the following lemma.

Lemma 3.1. The joint profit maximization problem has the following solution:

AC =
β2

2uMuR (ρ + δ)
(2)
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PC(G) =
β
√

G

uR
(3)

V C(G) =
β2G

2uR (ρ + δ)
+

θ

ρ
+

β4

8uMu2
Rρ (ρ + δ)2

. (4)

Proof. We use a sufficiency theorem for the optimal control problem. One
needs to find a bounded and continuously differentiable function V C(G) which
for all G ≥ 0 satisfies the Hamilton–Jacobi–Bellman (HJB) equation

ρV C = max
AC ,P C≥0

[
S − uR

2
P 2 − uM

2
A2 +

dV C

dG
(A− δG)

]
.

Cooperative strategies, whenever they take positive values, are given by

AC =
1

uM

dV C

dG
, PC =

β
√

G

uR
.

Substituting AC and PC into the HJB equation yields

ρV C = θ +
1

2uM

(
dV C

dG

)2

+
[

β2

2uR
− δ

dV C

dG

]
G. (5)

It is readily verified that the ordinary differential equation in (5 ) admits the
solution

V C(G) =
β2G

2uR (ρ + δ)
+

θ

ρ
+

β4

8uMu2
Rρ (ρ + δ)2

.

Finally, substituting dV C/dG = β2/[2(ρ + δ)uR] into the expressions for AC

and PC gives the results stated in (2) and (3). �

Lemma 3.1 shows that the manufacturer’s national advertising rate is con-
stant and positive. (The advertising rate being constant is a non-essential arti-
fact of the model structure.) The retailer’s local promotional rate is represented
as a feedback (or Markovian) strategy such that promotion efforts are positively
affected by the brand image G. Thus, the retailer promotes more intensively a
brand with a strong image than one with a weak image. Promotional efforts
are, however, increasing at a decreasing rate in G, which means that there is
a saturation effect1. The value function V C(G) represents the optimal cooper-
ative payoff-to-go when one starts out at time t in state G. In the absence of
1It could be interesting to test the result empirically, i.e., to check if retailers do
indeed promote more the products enjoying a high goodwill than otherwise. A possible
explanation of this would be that the higher the goodwill, the higher the sales of
the product and also the sales of other products via the increase of the number of
customers of the store attracted by the promoted product.
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any promotion one would have V C(G) = θ/ρ, that is, the present value of a
perpetual constant stream of baseline sales revenue.

Notice that neither AC , PC , nor V C depends on time. The reason is that
we have confined our interest to stationary strategies, that is, strategies which
depend on state G only (i.e., not on time). Restricting one’s interest to sta-
tionary strategies is a standard working hypothesis in autonomous dynamic
optimization problems with infinite time horizon. (A problem is autonomous if
the instantaneous payoffs and the right-hand side of the state dynamics do not
depend explicitly on time.)

Remark 3.1. By (4) the value function is linearly increasing in G. To verify
that the value remains bounded for t −→∞, insert AC into the state dynamics
(1). Solving the differential equation provides the optimal state trajectory

GC(t) = G0 exp {−δt}+
AC

δ
[1− exp {−δt}] ,

which shows that GC(t), and hence V C (G(t)), converges for t −→∞. Conver-
gence of GC(t) is intuitive, in view of (1). Since advertising effort is constant,
the decay term −δG guarantees that GC(t) does not diverge.

In order to implement the joint maximization outcome identified in Lemma
3.1, the manufacturer designs an incentive strategy DC(P ). The assumption is
that at time t = 0 the manufacturer announces her advertising strategy AC

and the incentive DC(P ). The manufacturer commits to use these strategies
throughout the game.

The incentive is supposed to be a promotion allowance where the manufac-
turer pays DC(P ) per unit of P . (Alternatively, the manufacturer might pay
the retailer an allowance per unit of sales, or a fraction of the retailer’s promo-
tion cost.) The promotion incentive strategy then is

DC(P )(t) = wCP (t), (6)

where wC (“the incentive coefficient”) is a positive constant, to be determined
by the manufacturer at the start of the game. Note that the manufacturer offers
promotional support only when the retailer makes some promotional effort of
her own. Also note that the incentive strategy is fully determined by the choice
of wC . Since AC and wC both are constants, fixed at the start of the game, the
manufacturer’s strategy commitment amounts to keeping the values AC and
wC fixed throughout the course of the game.

Remark 3.2. The choice of the functional form of the incentive is assumed
here. In general, given the retailer’s best reply, the manufacturer must solve a
(nonstandard) optimal control problem that involves the (unknown) strategy
DC(P ). This can be any function, and it is not clear how to obtain an optimal
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incentive strategy. The simplest (and the standard) way to resolve this difficulty
is to restrict the family of functions from which the manufacturer can choose,
for example, to linear strategies (as was done in (6)).

The following proposition characterizes the solution of the incentive problem
when the manufacturer wishes to implement the cooperative solution.

Proposition 3.1. The incentive coefficient wC = πuR/2 leads to an imple-
mentation of the channel joint maximization solution. The incentive strategy
depends on the state and is given by DC(G) = πβ

√
G/2.

Proof. Given the manufacturer’s commitment, the retailer wishes to design
an equilibrium strategy P (G). For this purpose she solves an optimal control
problem, having the HJB equation

ρVR(G) = max
P≥0

{
(1− π) [θ + βP

√
G]− uRP 2

2
+ wCP 2 + V ′

R(G)
[
AC − δG

]}
.

Maximizing the right-hand side of the above HJB equation with respect to P
leads to

P (G) =
β (1− π)

√
G

uR − 2wC
. (7)

To implement the desired promotion rate PC(G), given by ( 3), the manufac-
turer needs to select the incentive coefficient wC in (6) such that PC(G) equals
P (G) in (7). Thus wC must satisfy

β
√

G

uR
=

β (1− π)
√

G

uR − 2wC
,

which leads to

wC =
πuR

2
> 0. (8)

Finally, substituting wC into (6) yields the incentive strategies

DC(G) = wCPC(G) =
πβ
√

G

2
. (9)

�

The retailer promotes the brand (i.e., P (G) > 0) if and only if uR− 2wC > 0
which is obviously satisfied by the manufacturer’s optimal choice of the coeffi-
cient wC . Note that the inequality uR − 2wC > 0 is equivalent to uRP 2/2 >
wCP 2. Hence, the manufacturer’s total support (wCP 2) is less than the full
cost of promotion. From (9) we see that the promotion allowance DC is always
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positive. Hence, in the joint maximization scenario the manufacturer always
supports the retailer’s promotion efforts. To interpret the incentive strategy,
note that

DC(G) =
πβ
√

G

2
=

π

2
∂S

∂P
,

which tells that the per unit of promotion support provided by the manufacturer
to the retailer is equal to half of the manufacturers’s share in revenue times the
marginal sales revenue with respect to promotion. This is a kind of “fair” sharing
rule of marginal revenue due to promotion. To establish a relationship between
total promotional cost and total amount of support given by the manufacturer
to the retailer, recall that

CR (P (G)) =
uRP (G)2

2
=

β2G

2uR

TSC(G) = DC(G)PC(G) = π
β2G

2uR
,

where TSC(G) denotes the total support provided by the manufacturer in this
scenario. It is easy to see that

TSC(G) = πCR (P (G)) ,

showing that the manufacturer applies the same agreed-upon splitting rules of
the revenues to the promotional cost (recall that π is the share of the manufac-
turer in the total revenue). Hence, the higher her share in revenues, the higher
her support. Further, the relationship between the total support and the good-
will is linear increasing. It is of interest to note that the elasticity of the total
support with respect to the goodwill is precisely equal to one. Indeed, this elas-
ticity, denoted ε, is given by

ε =
∂TSC(G)

∂G

G

TSC(G)
=

πβ2

2uR

2uRG

πβ2G
= 1.

3.2 Manufacturer Profit Maximization

We now consider the scenario where the manufacturer wishes the retailer to
implement the promotion rate that follows from the maximization of the manu-
facturer’s profit. The manufacturer announces and commits to a national adver-
tising rate AI and an incentive strategy DI(P ) = wIP . The superscript “I”
refers to “individual.” The manufacturer then needs to determine an advertis-
ing rate AI and an incentive coefficient wI such that her individual payoff JM

is maximized, subject to (1). This problem admits the following solution.
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Proposition 3.2. The equilibrium strategies and manufacturer’s value func-
tions are given by

P I(G) =

{
β(1+π)

√
G

2uR

β(1−π)
√

G
uR

}
for
{

π > 1
3

π ≤ 1
3

}
(10)

AI =

{
β2(1+π)2

8uM uR(ρ+δ)
β2π(1−π)

uM uR(ρ+δ)

}
for
{

wI > 0
wI = 0

}
(11)

wI =

{
(3π−1)uR

2(1+π)

0

}
for
{

π > 1
3

π ≤ 1
3

}
(12)

V I
M (G) =

β2 (1 + π)2 G

8 (ρ + δ) uR
+

πθ

ρ
+

β4 (1 + π)4

128uMu2
Rρ (ρ + δ)2

for π > 1/3 (13)

V I
M (G) =

β2π (1− π) G

(ρ + δ) uR
+

πθ

ρ
+

β4π2 (1− π)2

2uMu2
Rρ (ρ + δ)2

for π ≤ 1/3.

Proof. The derivation follows the same approach as the one used in the proof
of Proposition 3.1. The retailer’s best response is derived from her HJB equation

ρV I
R = max

P≥0

[
(1− π)S − uRP 2

2
+ wIP 2 +

dV I
R

dG
(A− δG)

]
.

Indeed, performing the maximization on the right-hand side yields

(1− π)β
√

G + (2wI − uR)P = 0 if P > 0

from which the best reply retailer’s strategy follows:

P (G) =

{
β(1−π)

√
G

uR−2wI

β(1−π)
√

G
uR

}
for
{

wI > 0
wI = 0

}
. (14)

The manufacturer’s HJB equation is

ρV I
M = max

AI≥0,wI≥0

{
πθ +

πβ2 (1− π) G

uR − 2wI
− uMA2

2
− wIβ2 (1− π)2 G

(uR − 2wI)2

+
dV I

M

dG
(A− δG)

}
.

Maximization of the term in braces yields

AI =
1

uM

dV I
M

dG
, (15)

wI =
(3π − 1)uR

2(1 + π)
, (16)
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which shows that AI is positive whenever the shadow price dV I
M/dG is positive.

Furthermore, wI is positive whenever π > 1/3. If π ≤ 1/3 we have wI = 0. From
(14) and (16) we get the result for wI . Inserting AC and wI on the right-hand
side of the manufacturer’s HJB equation provides

ρV I
M = πθ − δG

dV I
M

dG
+

1
2uM

(
dV I

M

dG

)2

+
β2(1 + π)2G

8uR
for π > 1/3

ρV I
M = πθ − δG

dV I
M

dG
+

1
2uM

(
dV I

M

dG

)2

+
β2(1− π)πG

uR
for π ≤ 1/3.

It is straightforward to verify that this differential equation admits the solution
V I

M (G) stated in (13). AC follows from (15) and (13). �

The proposition shows that the retailer’s promotion is always positive and
depends on the goodwill. The equilibrium advertising rate is constant and pos-
itive. It shows also that the optimal value of the incentive coefficient wI is pos-
itive only if the manufacturer’s share in sales revenue is greater than one-third.

In the event of positive support, the total cost and support are given by

CR (P (G)) =
uRP I(G)2

2
=

β2 (1 + π)2 G

8uR

TSI(G) = DC(G)PC(G) =
β2 (1 + π) (3π − 1)G

8uR
,

where TSI(G) denotes the total support provided by the manufacturer in this
scenario. It is easy to see that

TSI(G)
CR (P (G))

=
(3π − 1)
(1 + π)

,

showing that the proportion of the promotional cost paid for by the manufac-
turer is an increasing function in her share in the revenues π. Although in this
scenario the total support does not obey a simple rule as in the previous case,
the previous elasticity result still holds. Indeed, this elasticity, denoted ξ, is
given by

ξ =
∂TSI(G)

∂G

G

TSC(G)
=

β2 (1 + π) (3π − 1)
8uR

8uRG

β2 (1 + π) (3π − 1)G
= 1.

4 Comparing Strategies and Outcomes

In this section we compare the promotion and advertising strategies as well
as incentive coefficients identified in Sections 3.1 (joint maximization) and 3.2
(individual maximization). Furthermore, we compare manufacturer’s profits in
the two scenarios. We have the following results.
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Proposition 4.1. Promotion and advertising strategies obtained in the two
scenarios are related as follows:

(a) AC > AI ,∀wI and AI is largest when wI is positive.
(b) PC(G) > P I(G) for all feasible G and irrespective of wI .
(c) wC > wI .

Proof. The first part in (a) is straightforward from (11) and (2) and the second
part from (11). Comparing (10) to (3) leads to (b). Item (c) is straightforward
from (12) and (8). �

The proposition shows that the manufacturer advertises more in the joint
maximization solution than under individual maximization. Interestingly, this
result does not depend on whether or not the manufacturer supports the
retailer’s promotion in the individual maximization case. Further, when the
manufacturer implements the individual maximization outcome she advertises
at the highest rate when she supports the retailer’s promotion. Similarly, the
retailer promotes more in the joint optimization case than under individual
maximization; this result does not depend on whether or not the manufacturer
supports the retailer’s promotion in the individual maximization case.

The result in (c) shows that in the joint maximization case the manufacturer
offers a higher promotion support rate to the retailer than in the individual
maximization case.

Assuming that higher advertising and promotion levels mean better infor-
mation to the consumer, the latter would prefer a manufacturer who optimizes
total channel profit to one focusing on her own interest. However, what is impor-
tant for the manufacturer is her own profit; hence, choosing between the two
options would simply result from a comparison of the profits under the two
regimes. Recall that in the joint maximization solution, the sharing parameter
π vanishes, and hence comparing the two profits requires one first to make an
assumption on how the joint profits would be shared between the two players.
There are many possible ways in which to divide joint profits. One option which
is rather intuitively appealing is to apply the same sharing rule to the joint
profit as the one used for the sales revenue. Then the manufacturer receives the
profit share πV C (G0) (where V C (G0) follows from ( 4)).

First we suppose that π > 1/3, i.e., the manufacturer will offer positive
support in the individual maximization case. Using the value functions V C(G)
and V I

M (G) from (4) and (13), respectively, yields

πV C (G0)− V I
M (G0) > 0⇐⇒ G0 <

β2(π3 + 5π2 + 11π − 1)
16uMuRρ (ρ + δ) (1− π)

� f1(π). (17)

Noting that π > 1/3 implies that π3+5π2+11π−1 > 0 which shows that f1(π) is
positive. From (17) we see that it is in the manufacturer’s best interest (in terms
of maximal individual payoff) to implement the joint maximization outcome if
the initial brand image is sufficiently weak (G0 < f1(π)). The intuition is that
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the manufacturer wishes to improve a (weak) brand image which most efficiently
is done by implementing the joint maximization outcome, in which advertising
and promotion rates are higher than in the individual maximization case.

On the other hand, if the brand image already is “strong” (G0 ≥ f1(π)), the
manufacturer has no incentive to implement the joint maximization outcome
and hence acts in her own best interest (maximizing her individual profit).

Next suppose that π ≤ 1/3. Then the manufacturer offers no support in the
individual maximization case. Use value functions V C(G) and V I

M (G) from (4)
and (13), respectively, to obtain

πV C (G0)− V I
M (G0) =

πβ2(2π − 1)G0

2uR (ρ + δ)
+

β4π(1− 4π(1− π)2)
8uMuRρ (ρ + δ)2

. (18)

From this we conclude that if π ≤ 1/3, then

πV C (G0)− V I
M (G0) > 0⇐⇒ G0 <

β2[1− 4π(1− π)2]
4uMuRρ (ρ + δ) (1− 2π)

� f2(π).

The result in (18) is qualitatively similar to the result in (17). Thus, the manu-
facturer implements the joint maximization outcome if the initial brand image
is sufficiently weak (G0 < f2(π)).

5 Concluding remarks

This chapter has considered a two-member marketing channel in which the
manufacturer assumes the role of a channel leader and offers the retailer an
incentive in the form of a promotion allowance. The allowance is paid per unit
of the retailer’s promotion effort. Depending on the share of retail sales revenue
that the manufacturer receives, and the initial brand image level, the manufac-
turer can implement joint as well as individual maximization outcomes. Such
outcomes are enforceable since they are Nash equilibria.

The reader should be aware that our results depend critically on one specific
assumption, viz., that the manufacturer’s share of the retail sales revenue π is
constant. The hypothesis here is that the transfer price is negotiated between
channel members at the start of the game, and the manufacturer commits to
maintain this price level throughout the game. (Similarly, but less restrictive in
the context at hand, the consumer price has been assumed constant.) It may
happen, however, that the manufacturer does not want to commit to a fixed
transfer price; rather she wishes to use the transfer price as a strategic variable,
the choice of which will influence the share π. This puts the manufacturer in an
even more dominating position, since then she can, by choosing an appropriate
transfer price, dictate the outcome (joint or individual maximization) that will
be implemented.
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The derivation of the analytical results has been simplified by the assumed
functional forms of the dynamics, revenues, and costs. The methodology pro-
posed would remain unaltered if one adopts other forms, but of course the
results will be affected. As a final remark we wish to note that an important
issue in incentive problems, which has not been addressed in this chapter, is
the assignment of roles. In practice it may very well happen that the roles are
reversed, making the retailer the channel leader who wishes to design an incen-
tive to make the manufacturer implement a particular outcome. More interest-
ing than just a change of roles, it may be worthwhile to investigate the impacts
of making the assignment of roles endogenous. Then the channel members will
decide (on the basis of their individual payoffs) whether or not they will accept
a particular assignment of roles. Another research avenue here would be to
abandon the concept of a channel leader and consider a “symmetric” channel
in which no member has a first-mover advantage (cf. Jeuland and Shugan [3]).
A first attempt in this direction has been made in the dynamic game analyzed
in Jørgensen and Zaccour [5].

REFERENCES

[1] Bergen M. and John G., Understanding cooperative advertising participa-
tion rates in conventional channels, Journal of Marketing Research, 34, 3,
357–369, 1997.

[2] Chintagunta P.K. and Jain D., A dynamic model of channel member strate-
gies for marketing expenditures, Marketing Science, 11, 168–188, 1992.

[3] Jeuland A.P. and Shugan S.M., Managing channel profits, Marketing Sci-
ence, 2, 239–272, 1983.

[4] Jørgensen S. and Zaccour G., Equilibrium pricing and advertising strategies
in a marketing channel, Journal of Optimization Theory and Applications,
102, 1, 111–125, 1999.

[5] Jørgensen S. and Zaccour G., Channel coordination over time: Incentive
equilibria and credibility, Journal of Economic Dynamics and Control, 27,
5, 801–822, 2002.
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Abstract
This chapter studies the farsighted behavior of firms in Cournot and
Bertrand duopoly markets. The solution concepts used here are the von
Neumann–Morgenstern stable set with indirect domination and the con-
sistent set. Principal findings are: (1) in both Cournot and Bertrand
duopoly markets, the largest consistent set consists of all possible out-
comes, and (2) the stable set with indirect domination yields firms’ joint
profit maximization in a Cournot duopoly, and monopoly pricing by two
firms in a Bertrand duopoly. In both duopoly markets, the stable set with
indirect domination leads to efficient outcomes for the firms.

1 Introduction

This chapter studies what results from firms’ farsighted behavior in duopoly
markets.

It is well known that, in one-shot duopoly markets, Nash equilibrium out-
comes are not efficient in general (from the standpoint of the firms). If duopoly
competition is repeated without end, then the Folk theorem holds; there exist
too many equilibrium outcomes, though efficient ones are included in them.
∗The authors wish to thank an anonymous referee for valuable comments. The second
author wishes to acknowledge the support from the Japan Society for the Promotion
of Science through Grants-in-Aid for Scientific Research (#16310107, 2004).
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A different analysis of a firm’s behavior in a duopoly is given in Greenberg
[3]. The “individual contingent threats situation” assumes that each player, fac-
ing a pair of strategies, declares against its rival, “If you stick to the current
strategy, I will shift to a new strategy.” Each firm can make such contingent
threats realizing the rival can make contingent threats in turn. Firms can revise
their strategies; no one is committed to anything. The stability notion that
Greenberg used was the stable set originally defined by von Neumann and Mor-
genstern [10].1 Muto and Okada [8,9] applied Greenberg’s idea to Bertrand and
Cournot duopoly markets. Though several interesting outcomes, such as “equal
pricing” of two firms in a Bertrand duopoly, were obtained, puzzling results,
e.g., strategy pairs in which neither firm gains positive profit, also appeared as
stable outcomes.

Later Chwe [2] criticized the myopic behavior of players assumed in von Neu-
mann and Morgenstern [10] and also in Greenberg [3]. He introduced players’
farsightedness into the definition of the stable set.2 That is, he assumed that a
deviating player took into consideration not only a direct response by the rival
but also a sequence of responses between two players that might ensue. He pro-
posed two solutions: one was the stable set with a sequence of deviations, and
the other was its modification, which he called a consistent set.3 He claimed
that his solution, the consistent set, was superior to the stable set by showing
examples in which a consistent set (precisely, the largest consistent set) existed
but no stable set existed.

The aim of this chapter is to study in detail the two solutions, the stable set
with a sequence of deviations and the largest consistent set, in Cournot and
Bertrand duopoly markets.

Principal findings are the following. (1) In both duopoly markets, the sta-
ble set with a sequence of deviations produces only efficient outcomes (from
the viewpoint of the firms): firms set the (equal) price that maximizes their
profits in the Bertrand duopoly and produce the amounts that maximize their
joint profit in the Cournot duopoly. (2) The largest consistent set is very large,
and contains most of the possible pairs of strategies in both the Bertrand and
Cournot duopolies.

Thus the von Neumann–Morgenstern stability together with the firms’ far-
sighted behavior produces only efficient outcomes even though the firms act
independently.

The rest of the chapter is organized as follows. Section 2 describes the duopoly
markets under discussion. Section 3 gives definitions of the stable set with a
sequence of deviations and of the consistent set, together with definitions of
1Though the stable set has been considered a solution for cooperative games, von
Neumann and Morgenstern [10] defined this concept in a more general setting.
2Harsanyi [4] gave a similar criticism of the myopic behavior; but his notion of far-
sightedness was slightly different.
3These solutions were defined not only in 2-person but also in n-person games.
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other basic terms. Section 4 presents the main theorems, which describe sta-
ble sets and the largest consistent sets in Cournot and Bertrand duopoly mar-
kets. Sections 5 and 6 give proofs of the theorems. Section 7 ends the paper
with remarks on relations between our analysis and equilibrium analyses by
Bhaskar [1] and by Maskin and Tirole [5–7] in alternating move games.

2 Duopoly Markets and Nash Equilibria

We consider two types of duopoly markets: the Cournot quantity-setting
duopoly and the Bertrand price-setting duopoly. To simplify the discussion,
we will consider a simple duopoly model in which firms’ cost functions and a
market demand function are all linear. Similar results, however, hold in more
general duopoly models.

There are two firms, 1, 2, each producing a homogeneous good with the same
marginal cost c > 0. No fixed cost is assumed.

(1) Cournot duopoly: The firms’ strategic variables are their production
levels. Let x1 and x2 be the production levels of firms 1 and 2, respectively. The
market price p(x1, x2) for x1 and x2 is given by

p(x1, x2) = max(a− (x1 + x2), 0),

where a > c. We restrict the domain of production of both firms to 0 ≤ xi ≤
a − c, i = 1, 2. This is reasonable since a firm would not overproduce to make
negative profits. When x1 and x2 are produced, firm i’s profit is given by

πi(x1, x2) = (p(x1, x2)− c)xi.

Thus the Cournot duopoly is formulated as the following strategic form game:

GC = (N, {Xi}i=1,2, {πi}i=1,2),

where the set of players is N = {1, 2}, the players’ strategy sets are X1 =
X2 = [0, a − c] , a closed interval between 0 and a − c, and the players’ payoff
functions are the profit functions πi, i = 1, 2. The product of strategy sets
X1 × X2 is denoted by X. The total profit of two firms is maximized when
x1 + x2 = (a− c)/2.

(2) Bertrand duopoly: The firms’ strategic variables are their price levels.
Let

D(p) = max(a− p, 0)

be the market demand at price p. Then the total profit at p is

Π(p) = (p− c)D(p).
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We restrict the domain of price level p of both firms to c ≤ p ≤ a. This
assumption is also reasonable since a firm would avoid negative profits. The total
profit Π(p) is maximized at p = (a + c)/2. The price is called the “monopoly
price.”

Let p1 and p2 be the prices of firms 1 and 2, respectively. We assume that
if firms’ prices are equal they equally share the total profit; and otherwise all
sales go to a lower pricing firm. Thus firm i’s profit is given by

ρi(pi, pj) =

⎧⎨⎩ Π(pi)
Π(pi)/2
0

if pi < pj

if pi = pj

if pi > pj

i, j = 1, 2, i 	= j.

Thus the Bertrand duopoly is formulated as the strategic form game

GB = (N, {Yi}i=1,2, {ρi}i=1,2),

where N = {1, 2}, Y1 = Y2 = [c, a], and ρi (i = 1, 2) is i’s profit function. The
product of strategy sets Y1 × Y2 is denoted by Y .

It is well known that the Nash equilibrium is uniquely given in either market:
x1 = x2 = (a− c)/3 in the Cournot duopoly, and p1 = p2 = c in the Bertrand
duopoly.

3 Stable Sets and Consistent Sets

Let G = (N, {Si}i=1,2, {ui}i=1,2), N = {1, 2}, be a two-person strategic form
game where Si and ui are i’s strategy set and payoff function, respectively.

For any two strategy pairs s = (s1, s2) and t = (t1, t2) ∈ S = S1×S2, we say
s is induced from t via player 1, denoted t →1 s, if s2 = t2; i.e., s is reached
from t by player 1’s unilateral move. Similarly, s is induced from t via player 2,
denoted t →2 s, if s1 = t1. We say s indirectly dominates t, denoted s indom
t, if there exist a sequence of strategy pairs t = s0, s1, . . . , sm−1, sm = s and a
sequence of players i1, i2, . . . , im such that for all j = 1, . . . , m, sj−1 →ij sj and
uij (s) > uij (sj−1).4 Hence s indirectly dominates t when there are a sequence
of strategy pairs starting from t and ending at s and a corresponding sequence
of deviating players such that in each deviation a deviating player is better off
at the end point s. We sometimes say that s indirectly dominates t starting
with i1, denoted s indomi1 t, to specify the player who first deviates from t. If
m = 1, we say s directly dominates t, denoted s dom t. The direct domination
is considered in von Neumann and Morgenstern [10] and Greenberg [3]. The
indirect domination is borrowed from Chwe [2], which is slightly different from
the definition of indirect domination by Harsanyi [4].

4We may assume ij−1 �= ij for all j = 1, . . . , m since consecutive moves by the same
player can be combined into one move.
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By just replacing direct domination in the stable set of von Neumann and
Morgenstern [10] by indirect domination, we obtain the stable set with indirect
domination. A set K ⊆ S is called a stable set with respect to (w.r.t.) indirect
domination (indom) if (1) for any s, t ∈ K, neither s indom t nor t indom s,
and (2) for any t ∈ S −K, there exists s ∈ K such that s indom t. Properties
(1) and (2) are called internal and external stability, respectively.

Chwe [2] defined a notion of consistent set by slightly altering the definition
of internal and external stability. A consistent set is a set L ⊆ S satisfying the
following two properties. (1) For any s ∈ L, u ∈ S, and any i (i = 1 or 2) such
that s →i u, there exists t ∈ L, t = u or t indom u, such that ui(s) > ui(t)
holds. (2) For any t ∈ S − L, there exist u ∈ S and i (i = 1 or 2) such that for
all s ∈ L, s = u or s indom u, ui(s) > ui(t) holds. We call properties (1) and
(2) internal and external consistency, respectively. The largest consistent set is
a consistent set that contains all others.

It should be noted that in the definition of the consistent set if we replace
“there exists” in (1) by “for all” and “for all” in (2) by “there exists” then we
obtain the definition of the stable set w.r.t. indirect domination. Thus it can be
shown that any stable set w.r.t. indirect domination is contained in the largest
consistent set. See Chwe [2], Proposition 3. Moreover, the largest consistent set
is always unique, but stable sets w.r.t. indirect domination are generally not
unique.

We will use symbols K and L to denote the stable set w.r.t. indirect domi-
nation and the largest consistent set, respectively.

4 Main theorems

The following two theorems, Theorems 4.1 and 4.2, are for the Cournot duopoly.

Theorem 4.1. Take any strategy pair (x1, x2) ∈ X such that x1 + x2 =
(a− c)/2. Then the singleton set {(x1, x2)} is a stable set. Furthermore, every
stable set is of the form {(x1, x2)}, x1 + x2 = (a− c)/2, x1, x2 ≥ 0.

As mentioned before, any strategy pair (x1, x2) with x1 +x2 = (a− c)/2 and
x1, x2 ≥ 0 maximizes two firms’ joint profit. Therefore we would claim that
the stable set together with the firms’ farsighted behavior produces joint profit
maximization even if the firms act independently.

The next theorem shows that the largest consistent set is too large, i.e., it
consists of all strategy pairs that give nonnegative profits to both firms.

Theorem 4.2. Let L = {(x1, x2) ∈ X : x1 + x2 ≤ a − c}. Then L is the
largest consistent set.

As for the Bertrand duopoly, the following two theorems hold. Theorem 4.3
claims that the monopoly price pair is itself a stable set and that no other stable
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set exists. Therefore the stable set together with the firms’ farsighted behav-
ior also attains efficiency (from the standpoint of the firms) in the Bertrand
duopoly.

Theorem 4.3. Let p∗ = (p∗1, p
∗
2) be the pair of monopoly prices, i.e., p∗1 =

p∗2 = (a + c)/2. Then the singleton set {p∗} is a unique stable set.

The next theorem shows that the largest consistent set is the whole set of
strategy pairs. Thus the largest consistent set can give a sharp prediction of
stable outcomes in neither duopoly market.

Theorem 4.4. Y = Y1 × Y2 is the largest consistent set.

5 Proofs of Theorems 4.1 and 4.2—Cournot Duopoly

Before proving the theorems, we present a simple lemma on the firms’ profits.
Its proof is omitted since it is straightforward.

Lemma 5.1. Let

A = {(x1, x2) ∈ X | x1 + x2 < a− c, x1 > 0, x2 > 0},
B = {(x1, x2) ∈ X | x1 = 0, 0 < x2 < a− c},
C = {(x1, x2) ∈ X | 0 < x1 < a− c, x2 = 0},
D = {(x1, x2) ∈ X | x1 = x2 = 0},
E = {(x1, x2) ∈ X | x1 + x2 = a− c} and

F = {(x1, x2) ∈ X | x1 + x2 > a− c}.

See Figure 1. Then (1) π1(x1, x2) > 0, π2(x1, x2) > 0 if and only if (x1, x2) ∈
A, (2) π1(x1, x2) = 0, π2(x1, x2) > 0 if and only if (x1, x2) ∈ B, (3) π1(x1, x2) >
0, π2(x1, x2) = 0 if and only if (x1, x2) ∈ C, (4) π1(x1, x2) = 0, π2(x1, x2) = 0
if and only if (x1, x2) ∈ D ∪ E, (5) π1(x1, x2) < 0, π2(x1, x2) < 0 if and only if
(x1, x2) ∈ F .

Proof of Theorem 4.1. Take a strategy pair x = (x1, x2) ∈ X such that
x1 + x2 = (a− c)/2. The internal stability of {x} is clear; so we will show only
the external stability.

Take any strategy combination y = (y1, y2) ∈ X, y 	= x = (x1, x2). Then
at least one firm’s profit in y is lower than its profit in x. Without loss of
generality, we suppose π1(x) > π1(y). First consider the case of y2 = x2. In
this case x directly dominates y since π1(x) > π1(y). Suppose y2 	= x2. Pick a
sequence of strategy pairs y0 = y = (y1, y2), y1 = (a − c, y2), y2 = (a − c, x2),
y3 = x = (x1, x2) and a sequence of firms i1 = 1, i2 = 2, i3 = 1. See Figure 2.
Then for all j = 1, 2, 3, yj−1 →ij yj and πij (y3) > πij (yj−1), j = 1, 2, 3. In
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Figure 1: Regions A, B, C, D, E, F in Lemma 5.1.

fact, since π1(x) > π1(y), π1(y3) > π1(y0) is trivial; π1(y3) > π1(y2) holds since
π1(y3) ≥ 0 (= holds when x1 = 0 and thus x2 = (a − c)/2), π1(y2) ≤ 0 (=
holds when y2

2 = 0), and x2 = y2
2 ; and π2(y3) > π2(y1) holds since π2(y3) ≥ 0

(= holds when x2 = 0), π2(y1) ≤ 0 (= holds when y1
2 = 0), and y1

2 = y2 	= x2.
Therefore x indirectly dominates y, and thus the external stability holds.

We next show that any stable set must be of the form {(x1, x2)}, x1 + x2 =
(a− c)/2, x1, x2 ≥ 0. Take any strategy pair y = (y1, y2) ∈ X that is not of
this form. Thus y1 + y2 	= (a − c)/2. We will show that y is not contained in
any stable set. Then any stable set must contain a pair (x1, x2), x1 + x2 =
(a− c)/2, x1, x2 ≥ 0. From the proof of the external stability above, each such
pair dominates all other strategy pairs, and thus the latter half of the theorem
follows.

Suppose y is in a stable set. Call this stable set K. Since two firms’ joint
profit is maximized on the line segment x1 + x2 = (a− c)/2, x1, x2 ≥ 0, we can
take a strategy pair z = (z1, z2) such that z1 + z2 = (a− c)/2, z1, z2 ≥ 0 and
π1(z) > π1(y) and π2(z) > π2(y). Hence if z1 = y1 or z2 = y2, then z directly
dominates y. Thus we can assume z1 	= y1 and z2 	= y2. As for the strategy pair
z = (z1, z2), Lemma 5.1 shows the following: π1(z) ≥ 0, π2(z) ≥ 0, π1(z) = 0 if
and only if z = (0, (a− c)/2), and π2(z) = 0 if and only if z = ((a− c)/2, 0).

We now show that z indirectly dominates y. Suppose first y2 = 0. Lemma 5.1
shows the following: π1(y) ≥ 0, π2(y) = 0, and π1(y) = 0 if and only if y1 =
0, a− c. Since π1(z) > π1(y) and π2(z) > π2(y), we have π1(z) > 0 and π2(z) >
0. Take a sequence of strategy pairs y0 = y = (y1, y2), y1 = (a − c, y2), y2 =
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Figure 2: Illustration: x indom y.

(a − c, z2), y3 = z = (z1, z2), and a sequence of firms i1 = 1, i2 = 2, i3 = 1.
Then π1(z) > π1(y), π2(z) > 0 = π2(a − c, y2), and π1(z) > 0 ≥ π1(a − c, z2)
since π1(a−c, y2) = 0 and π1(a−c, z2) ≤ 0. Therefore z indirectly dominates y.

Suppose next y2 	= 0. Take the same sequence of strategy pairs as above.
Then π1(z) > π1(y) and π2(z) ≥ 0 > π2(a−c, y2). The latter holds since y2 	= 0
implies π2(a − c, y2) < 0. Recall Lemma 5.1. Moreover, π1(z) > π1(a − c, z2)
holds. In fact, Lemma 5.1 shows that if z2 = 0, then π1(z) > 0 = π1(a− c, z2),
and that if z2 	= 0, then π1(z) ≥ 0 > π1(a − c, z2). Therefore z indirectly
dominates y.

Since y is in the stable set K, by the internal stability of K, we must have
z /∈ K. Hence by the external stability of K, there must exist v = (v1, v2) ∈ K
that dominates z. Since v dominates z, π1(v) > π1(z) or π2(v) > π2(z). W.l.o.g.
we assume π1(v) > π1(z), and thus π1(v) > π1(y) since π1(z) > π1(y). Since
π1(z) ≥ 0, π1(v) > 0 holds. Then if v2 = y2, v directly dominates y, which
contradicts the internal stability of K since v, y ∈ K. Thus we suppose v2 	= y2

in the following.
Suppose first y2 = 0. Then Lemma 5.1 shows that π1(y) ≥ 0, π2(y) = 0 and

that π1(y) = 0 if and only if y1 = 0 or a−c. Since π1(v) > π1(y) ≥ 0, v must be
in region A∪C in Lemma 5.1. Since v2 	= y2 = 0, v must be in region A. Hence
π2(v) > 0. Take a sequence of strategy pairs y0 = y = (y1, y2), y1 = (a− c, y2),
y2 = (a−c, v2), y3 = v = (v1, v2), and a sequence of firms i1 = 1, i2 = 2, i3 = 1.
Then π1(v) > π1(y), π2(v) > 0 = π2(a − c, y2), and π1(v) > 0 > π1(a − c, v2).
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Figure 3: Illustration: y3 indom y.

Note that π1(a − c, v2) < 0 since v2 	= y2 = 0. Recall Lemma 5.1. Therefore v
indirectly dominates y.

Suppose next y2 	= 0. Take the same sequence of strategy pairs as above.
Then π1(v) > π1(y), π2(v) ≥ 0 > π2(a − c, y2), and π1(v) > 0 ≥ π1(a − c, v2)
hold. Therefore z indirectly dominates y. �

Proof of Theorem 4.2. We first show that L is a consistent set. To show
the internal consistency of L, take any x = (x1, x2) ∈ L and suppose firm 1
induces y = (y1, x2). Note that π1(x) ≥ 0 and π2(x) ≥ 0. Recall Lemma 5.1. If
y1 = 0, then y ∈ L and firm 1 is not better off since π1(y) = 0 ≤ π1(x). Suppose
y1 	= 0. Take a sequence of strategy pairs y0 = y = (y1, x2), y1 = (y1, a − c),
y2 = (0, a − c), y3 = (0, (a− c)/2) and a sequence of firms i1 = 2, i2 = 1,
i3 = 2. See Figure 3. Then π1(y3) = 0 > π1(y1). Note that y1 	= 0 implies that
π1(y1) = π1(y1, a − c) < 0. Recall Lemma 5.1. Since y3 = (0, (a− c)/2) is on
the joint profit maximization line and firm 2 gains the whole profit, π2(y3) >
π2(y0), π2(y2). Note that y1 	= 0 and thus y3 	= y. Therefore y3 indirectly
dominates y. Note that y3 ∈ L. Since π1(y3) = 0 ≤ π1(x), firm 1 is not better
off in y3 than in x. Thus the internal consistency of L holds.

To show the external consistency of L, take any y = (y1, y2) /∈ L. Then
π1(y) < 0, π2(y) < 0, and y1 > 0. Recall Lemma 5.1. Suppose that firm 1 induces
z = (0, y2). Then z ∈ L and firm 1 is better off in z since π1(z) = 0 > π1(y). Take
any x = (x1, x2) ∈ L that dominates z. Then since x ∈ L, π1(x) ≥ 0 > π1(y).
Thus the external consistency of L holds.
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We now show that L is the largest consistent set. Take any y = (y1, y2) /∈ L
and suppose y is in a consistent set. Call this set L′. Note that π1(y) < 0,
π2(y) < 0. Suppose that firm 1 induces z = (0, y2). Then since π1(z) = 0 >
π1(y) holds, by the internal consistency of L′, there must exist x ∈ L′ such
that x dominates z and firm 1 is not better off in x than in y. Suppose that
firm 1 first deviates from z in the indirect domination. Then π1(x) > π1(z) = 0.
Therefore firm 1 is better off in x than in y. Assume that firm 2 first deviates
from z and induce z′ = (0, y′

2). Then π1(z′) = 0 > π1(y); thus firm 1 is better
off in z′ than in y. If firm 1 deviates from z′, it gains a positive profit at the end
of the indirect domination sequence since π1(z) = 0. Thus firm 1 is better off
at the end than in y. Therefore the internal consistency of L′ does not hold. �

6 Proofs of Theorems 4.3 and 4.4—Bertrand Duopoly

We first present a simple lemma on the firms’ profits. Its proof is omitted since
it is straightforward.

Lemma 6.1. Let

A = {(p1, p2) ∈ Y | c < p1 = p2 < a},
B = {(p1, p2) ∈ Y | c < p2 < p1 ≤ a},
C = {(p1, p2) ∈ Y | c < p1 < p2 ≤ a}
D = {(p1, p2) ∈ Y | c = p2 < p1 ≤ a},
E = {(p1, p2) ∈ Y | c = p1 < p2 ≤ a} and

F = {(p1, p2) ∈ Y | p1 = p2 = c or p1 = p2 = a}.

Then (1) ρ1(p1, p2) > 0, ρ2(p1, p2) > 0 if and only if (p1, p2) ∈ A, (2)
ρ1(p1, p2) = 0, ρ2(p1, p2) > 0 if and only if (p1, p2) ∈ B, (3) ρ1(p1, p2) > 0,
ρ2(p1, p2) = 0 if and only if (p1, p2) ∈ C, (4) ρ1(p1, p2) = 0, ρ1(p1, p2) = 0
if and only if (p1, p2) ∈ D ∪ E ∪ F . See Figure 4. Furthermore, the following
hold. (5) In A, ρ1(p1, p2) = ρ2(p1, p2) and ρ1(p1, p2)(= ρ2(p1, p2)) is maxi-
mized when p1 = p2 = (a + c)/2; it is monotone increasing in p1(= p2) when
c < p1 = p2 < (a + c)/2; and it is monotone decreasing in p1(= p2) when
(a+c)/2 < p1 = p2 < a. (6) In B, if p1 > (a+c)/2, then ρ2(p1, p2) is maximized
when p2 = (a+c)/2, monotone increasing in p2 when p2 < (a+c)/2, and mono-
tone decreasing in p2 when p2 > (a + c)/2. If p1 ≤ (a + c)/2, then ρ2(p1, p2) is
monotone increasing in p2. (7) In C, if p2 > (a + c)/2, then ρ1(p1, p2) is max-
imized when p1 = (a + c)/2, monotone increasing in p1 when p1 < (a + c)/2,
and monotone decreasing in p1 when p1 > (a + c)/2. If p2 ≤ (a + c)/2, then
ρ1(p1, p2) is monotone increasing in p1.

Proof of Theorem 4.3. We will show the external stability of {p∗} where
p∗ = (p∗1, p

∗
2), p∗1 = p∗1 = (a + c)/2. Its internal stability is clear. Note that
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Figure 4: Regions A, B, C, D, E, F in Lemma 6.1.

ρ1(p∗) = ρ2(p∗) > 0 and that ρ1(p∗) = ρ2(p∗) > ρ1(p) = ρ2(p) for all p =
(p1, p2) with p1 = p2 	= (a + c)/2.

Take any strategy pair q = (q1, q2) ∈ Y , q 	= p∗. Then at least one firm’s
profit is lower than in p∗. W.l.o.g. we suppose ρ1(p∗) > ρ1(q).

Assume first q1 	= c. Take a sequence of strategy pairs p0 = q = (q1, q2),
p1 = (c, q2), p2 = (c, p∗2), p3 = (p∗1, p

∗
2) and a sequence of firms i1 = 1, i2 = 2,

i3 = 1. See Figure 5. Then for all j = 1, 2, 3, pj−1 →ij pj and ρij (p3) >
ρij (pj−1), j = 1, 2, 3. Therefore p∗ indirectly dominates q; thus the external
stability holds.

Assume next q1 = c and thus ρ1(q) = ρ2(q) = 0. Recall Lemma 6.1. If
q2 = p∗2, then p∗ dominates q. If q2 	= p∗2, then take a sequence of strategy pairs
p0 = q = (q1, q2) = (c, q2), p1 = (c, p∗2), p2 = p∗ = (p∗1, p

∗
2) and a corresponding

sequence of firms i1 = 2, i2 = 1. Then for j =1,2, pj−1 →ij pj and ρij (p3) >
ρij (pj−1), j = 1, 2, 3. Thus p∗ indirectly dominates q.

We next show the uniqueness. It suffices to show that (p∗1, p
∗
2) is contained in

any stable set. In fact, if (p∗1, p
∗
2) is contained in a stable set, the stable set must

consist only of this point since (p∗1, p
∗
2) satisfies the external stability as shown

above.
Suppose (p∗1, p

∗
2) is not contained in a stable set. Call this stable set K.

Then by the external stability of K, there must exist p = (p1, p2) in K which
dominates (p∗1, p

∗
2). Note that p1 	= p2 holds since if p1 = p2 then we must have

ρi(p) < ρi(p∗) for i =1,2; and thus indirect domination is impossible. Hence
one firm gains zero profit in p = (p1, p2).
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Figure 5: Illustration: p∗ indom q.

W.l.o.g. suppose (p1, p2) indirectly dominates(p∗1, p
∗
2) starting with firm 1.

This indirect domination never involves two firms since one firm gains zero
profit in (p1, p2). Recall that zero is the minimum profit in the Bertrand duopoly
game. See Lemma 6.1. Thus (p1, p2) directly dominates (p∗1, p

∗
2). Suppose (p1, p2)

directly dominates (p∗1, p
∗
2) via firm 1; thus p2 = p∗2 and ρ1(p1, p

∗
2) > ρ1(p∗1, p

∗
2).

If p1 > p∗1, then ρ1(p1, p
∗
2) = 0 < ρ1(p∗1, p

∗
2); thus we must have p1 < p∗1. We

take p′1 such that p1 < p′1 < p∗1. See Figure 6. Then (p′1, p
∗
2) directly dominates

(p1, p
∗
2) via firm 1 since p1 < p′1 < p∗1 implies ρ1(p′1, p

∗
2) > ρ1(p1, p

∗
2). Since

(p1, p
∗
2) is in K, (p′1, p

∗
2) must not be in K by the internal stability. Then by the

external stability, there must exist (p′′1 , p′′2) in K, which dominates (p′1, p
∗
2).

If this indirect domination involves more than one firm, then we must have
p′′1 = p′′2 ; otherwise one firm’s profit is zero and thus the indirect domination
is impossible. Further, the indirect domination must start with firm 2 since
ρ1(p′1, p

∗
2) > ρ1(p∗1, p

∗
2) > ρ1(p′′1 , p′′2). Thus ρ2(p′′1 , p′′2) > ρ2(p′1, p

∗
2) = 0.

Consider two cases: p1 = p′′1 and p1 	= p′′1 . Suppose first p1 = p′′1 . Then
(p′′1 , p′′2)(= (p1, p1)) directly dominates (p1, p

∗
2) via firm 2 since ρ2(p′′1 , p′′2) > 0 =

ρ2(p1, p
∗
2). Suppose next p1 	= p′′1 . Take a sequence of strategy pairs (p1, p

∗
2),

(p1, c), (p′′1 , c), (p′′1 , p′′2), and the corresponding sequence of firms i1 = 2, i2 =
1, i3 = 2. See Figure 6. Then ρ2(p′′1 , p′′2) > 0 = ρ2(p′′1 , c) = ρ2(p1, p

∗
2) and

ρ1(p′′1 , p′′2) > 0 = ρ1(p1, c) hold. Recall Figure 4. Hence (p′′1 , p′′2) dominates
(p1, p

∗
2) starting with firm 2. Since (p′′1 , p′′2) and (p1, p

∗
2) are both in K, this

contradicts the internal stability of K.
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Figure 6: Points (p∗
1, p

∗
2), (p1, p

∗
2), (p′

1, p
∗
2), (p′′

1 , p′′
2 ).

Hence (p′′1 , p′′2) directly dominates (p′1, p
∗
2). If the domination is done via firm 1,

then ρ1(p′′1 , p′′2) > ρ1(p′1, p
∗
2) > ρ1(p1, p

∗
2); and thus (p′′1 , p′′2) directly dominates

(p1, p
∗
2) via firm 1. This contradicts the internal stability of K.

Suppose that the domination is done via firm 2; thus p′′1 = p′1. Note that
(p′1, p

′′
2) must be on or below the main diagonal in Y . In fact, if (p′1, p

′′
2) is above

the main diagonal and thus p′1 < p′′2 , then ρ2(p′1, p
′′
2) = ρ2(p′1, p

∗
2) = 0. Hence

(p′1, p
′′
2) cannot indirectly dominate (p′1, p

∗
2) via firm 2.

Take first the case where (p1, p
′′
2) is below the main diagonal in the space Y ,

i.e., p1 > p′′2 . See Figure 7. Then (p1, p
′′
2) directly dominates (p1, p

∗
2) via firm 2

since ρ2(p1, p
′′
2) > 0 = ρ2(p1, p

∗
2). Thus (p1, p

′′
2) is not in K; and there must

exist (p′′′1 , p′′′2 ) in K which indirectly dominates (p1, p
′′
2). This indirect domina-

tion must involve two firms. In fact, if (p′′′1 , p′′′2 ) directly dominates (p1, p
′′
2) via

firm 1, (p′′′1 , p′′′2 ) also directly dominates (p′1, p
′′
2) via firm 1 since p′′′2 = p′′2 and

ρ1(p1, p
′′
2) = ρ1(p′1, p

′′
2) = 0. This contradicts the fact that (p′′′1 , p′′′2 ) and (p′1, p

′′
2)

are both in K. When (p′′′1 , p′′′2 ) directly dominates (p1, p
′′
2) via firm 2, (p′′′1 , p′′′2 )

directly dominates (p1, p
∗
2), contradicting the fact that (p′′′1 , p′′′2 ) and (p1, p

∗
2)

are both in K. Therefore the indirect domination must involve two firms. Thus
ρ1(p′′′1 , p′′′2 ) = ρ2(p′′′1 , p′′′2 ) > 0 and p′′′1 = p′′′2 .

Take a sequence of strategy pairs (p1, p
∗
2), (p1, c), (p′′′1 , c), (p′′′1 , p′′′2 ), and the

corresponding sequence of firms i1 = 2, i2 = 1, i3 = 2. See Figure 7. Then
(p′′′1 , p′′′2 ) dominates (p1, p

∗
2) since ρ2(p′′′1 , p′′′2 ) > 0 = ρ2(p1, p

∗
2) = ρ2(p′′′1 , c) and

ρ1(p′′′1 , p′′′2 ) > 0 = ρ1(p1, c).
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Figure 7: Illustration: Case (p1, p
′′
2 ) is below the main diagonal.

When (p1, p
′′
2) is on or above the main diagonal in Y , i.e., p1 ≤ p′′2 , (p1, p

′′
2)

directly dominates (p′1, p
′′
2) via firm 1 since ρ1(p1, p

′′
2) > 0 = ρ1(p′1, p

′′
2). Thus

(p1, p
′′
2) is not in K; and there must exist (p′′′1 , p′′′2 ) in K which indirectly dom-

inates (p1, p
′′
2). Then a proof similar to the above applies. Figure 8, similar to

Figure 7, illustrates indirect domination, which leads to a contradiction. �

Proof of Theorem 4.4. It suffices to show the internal consistency. Take any
strategy combination (p1, p2) ∈ Y . W.l.o.g. assume p1 ≤ p2.

First consider the case p1 = c. Thus ρ1(p1, p2) = ρ2(p1, p2) = 0. Even if firm 2
moves, 2’s profit remains zero since p1 = c. Recall Lemma 6.1. Suppose that
firm 1 moves to p′1, c < p′1 < a. If p2 = c, then 1’s profit remains zero. Thus
suppose p2 > c. If p′1 > p2, then 1’s profit is zero. Thus suppose c < p′1 ≤ p2. If
p2 = a, then suppose c < p′1 < p2. Then ρ1(p′1, p2) > 0 and 1’s profit increases.
But then 2 moves to p′2 such that c < p′2 < p1. See Figure 9.

Firm 2’s profit increases and 1’s profit goes down to zero. Thus for each of
1’s moves, there exists 2’s move, which decreases 1’s profit down to zero.

Next suppose c < p1 < p2; then ρ1(p1, p2) > 0 = ρ2(p1, p2). Suppose that
first firm 1 moves to p′1. If p′1 > p2 or p′1 = c, then 1’s profit decreases to zero.
If c < p′1 ≤ p2, firm 2 then lowers his price to p′2, c < p′2 < p′1, which gives a
positive profit to firm 2 and makes firm 1’s profit zero. Next suppose that firm 2
moves. If p′2 > p1 or p′2 = c, then firm 2’s profit remains zero. If c < p′2 ≤ p1,
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Figure 8: Illustration: Case (p1, p
′′
2 ) is on or above the main diagonal.

Figure 9: Case: c < p′
1 ≤ p2.
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Figure 10: Case: c < p′
1 ≤ p2.

then firm 1 moves to p′1 such that c < p′1 < p′2. See Figure 10. This move gives
a positive profit to 1 and makes 2’s profit zero.

Finally consider the case c < p1 = p2. A proof similar to the above applies.
A deviating firm becomes worse off or even if it temporarily becomes better, its
profit goes down to zero by its rival’s successive move. �

7 Concluding remarks

In this chapter we studied stable outcomes in duopoly markets when firms acted
with farsightedness. The solution concepts that we used were the stable set and
the (largest) consistent set. We showed that only efficient outcomes (from the
standpoint of firms) were stable (in the sense of a stable set) when firms acted
with farsightedness, even though they acted independently. Our analysis also
revealed that the largest consistent set of Chwe was too large and gave no sharp
prediction of stable outcomes.

The result obtained in a Bertrand duopoly reminds us of the result of
Bhaskar [1], who considered an alternating-move preplay of two firms in which
both firms’ interests were only in a final outcome in which neither firm deviated.
He showed that the Markov-perfect equilibrium with no dominating strategy
in any subgame gave us a unique outcome, that is, the pair of monopoly prices.
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It would be interesting to study more in detail relations between equilibrium
analyses of alternating-move games such as those of Bhaskar [1] and Maskin and
Tirole [5–7] and the stable set analysis. An extension to a general n-person case
would also be interesting. As for the extension, Harsanyi’s idea of interpreting
a stable set in coalitional form games as an equilibrium in a certain bargaining
game [4] would be helpful.
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Abstract
The problem of tax evasion is modelled as a zero-sum two-person gen-

eralized stochastic game with incomplete information. This model incor-
porates the classical statistical classification procedures used in classifying
a random observation from a mixed population. The model incorporates
the secrecy of the tax office and lack of information about the past his-
tory of the taxpayer. With full information, the model is closer to certain
structured classes of stochastic games that admit efficient algorithms for
optimal solutions.

1 Historical Introduction

Tax evasion as a topic for theoretical investigation was first suggested by J.A.
Mirrlees in a paper prepared for the International Economic Associations Work-
shop in Economic Theory, in Bergen, Norway in 1971 (Allingham and Sandmo
[2]). Independently Allingham and Sandmo [2],[1] and Srinivasan [45] consid-
ered static models which were almost identical but still different in terms of tax
function and taxpayer’s aim. The following is their model: Suppose the income
y of a taxpayer when reported results in a tax T (y). Let λ be a proportion by
which y is understated. Since the government can find it only when the return
is audited, the government does not know y, but only the reported (1− λ) y.
Let π be the chance for being audited (of course π can depend on y). Let P (λ)
be the penalty multiplier, i.e., P (λ)λy is the penalty on the undeclared income
λy. Let us assume that the individual chooses λ that minimizes his expected
income (or suitable expected utility function of income). If the taxpayer is risk
averse and if his expected payment on unreported income is less than what
he/she has to pay otherwise, he/she will declare less when π (y) = π. When the
probability of audit increases, the optimal proportion λ∗ by which income is
understated decreases. If the audit chances are independent of the income level,
then, richer income is underreported at greater λ’s. However, this will not be
the case when π depends on income levels. When the actual income varies, the
fraction declared increases or decreases according to the relative risk aversion in
the sense of Arrow [4] is an increasing or decreasing function of income. Alling-
ham and Sandmo [2] also considered a dynamic model for a constant tax rate
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with t periods. They assumed that by audit, the government could recover all
the dues up to that day from the remote past. They showed that the optimal
strategy for the taxpayer would be to choose a period T and evade until period
T and report fully after period T . This line of research presupposes that while
the government is ignorant of a taxpayer, the taxpayer is fully informed of their
audit chances! Based on a survey conducted in Belgium, Frank and Dekeyser-
Meulders [17] calculated certain tax discrepancy coefficients. They found that
wage earners and salaried persons gained the least by tax evasion and that cer-
tain types of evasions could not be caught even after an audit. Balbir Singh [6]
observed in Srinivasan’s model that with fixed chance π for audit, if π < 1/3,
taxpayers could even evade income tax completely. Kolm [21] pointed out that
their models never involved any auditing costs. Based on a survey, Monk [24]
suggested that greater resources should be allocated to auditing higher income
groups. Spicer and Lundstedt [44] pointed out that tax evasion was more than
just gambling. A psychological survey conducted by Spicer and Lundstedt [44]
(also see Spicer [42]) revealed the following phenomena.

(1) Evasion is less likely when sanctions against evasion are perceived to be
severe.

(2) Evasion is less likely when probability of detection is perceived to be high.
(3) Evasion is more likely when a taxpayer perceives that his terms of trade

with the government are inequitable compared to others.

Vogel, in a survey conducted in Sweden [47], observed that taxpayers were
vulnerable for tax evasion when their aspirations were not matched by the gov-
ernment’s services. They also observed that direct cash flow resulted in greater
tax evasion. Cross and Shaw [9] corroborated the same view on many profes-
sionals who were self-employed. Allingham, by a simple model, pointed out [1]
that progressive taxation need not be a solution for removing inequities.

The models by Reinganum and Wilde [34], [35] and Erard and Feinstein [13]
were clearly game theoretic and allowed strategic behavior by the Internal Rev-
enue Service (IRS) against taxpayers. Reinganum and Wilde [34] through a
simple model showed that an audit cut-off policy would be more desirable as
it would dominate any random audit policy. Erard and Feinstein [13] expanded
on the model of Reinganum and Wilde [34] and showed that unlike the model
of Allingham and Sandmo [2] where honest taxpayers had no influence on the
rest of the population indulging in tax evasion strategies, in their extended
[13] model, in equilibrium, honest taxpayers had indirect peer pressure on tax
evaders. Mookherjee and Png [25] develop a model and find sufficient conditions
for random audits to be optimal.

There is a small amount of recent empirical work on what determines tax
compliance (see [8], [11]). By partitioning the set of all taxpayers into three
distinct classes, called 1. honest, 2. susceptible, and 3. evading types, Davis,
Hecht and Perkins [10] study the problem via an explicit law of motion and its
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solution. For example, they assume that the rate of change of the population of
honest taxpayers with respect to time is a negative proportion of the product of
honest and evasive taxpayers. Justification for this assumption of their model is
based on the empirical observation by Vogel [47] and Spicer and Lundstedt [44]
that even honest people can become evaders in the future when their colleagues
are evaders. One can contrast this with the assertions of Erard and Feinstein
[13].

While many of these models are static, tax evasion and tax compliance are
dynamic phenomena. One of the earliest dynamic game models of tax evasion
was initiated by Greenberg [19]. See also Landsberger and Meiljison [22]. Green-
berg, who formulated the problem as a repeated game with absorbing states,
imposed some strong assumptions on the law of motion in order to achieve
an elegant characterization of the optimal strategies. These were all zero-sum
models.

The model proposed here is a generalized zero-sum stochastic game but with
incomplete information. For the case when past history and immediate payoffs
and transitions are common knowledge, these games reduce to tractable classes
admitting efficient algorithms for computing good strategies (see Parthasarathy
and Raghavan [28], Filar and Vrieze [15], Raghavan and Syed [30],[31]). The
model is capable of incorporating empirical evidences via the immediate payoffs
and transition probabilities.

Tax agencies like the IRS will show greater interest in the game theoretic
approach only when the suggested solutions are further refinements that are
closer to their current audit procedures developed in cooperation with their
electronic data processing (EDP) units. Even popular books by IRS agents and
supervisors (see Murphy [27], Monk [24] and informative articles by tax agency
directors (Pond [29], Smith [39]) agree on the power and usefulness of discrimi-
nant analysis. Our models here complement and refine the discriminant function
approach. We will still need the valuable and ingenious techniques of conduct-
ing sample surveys as in Frank and Dekeyser [17], Monk [24], Strumpel [46] to
gather information about psychological behavior patterns of taxpayers in form-
ing immediate payoffs. In this context the psychological studies in simulating
income tax evasion by Friedland, Maital, and Rutenberg [18] and Spicer and
Becker [43] will be very useful.

2 Secrecy and Lack of Information

An essential feature of taxation is the secrecy behind auditing procedures imple-
mented by the tax office and the lack of full information about any taxpayer
and his possible tax evasion strategies. These aspects have not been effectively
incorporated into the models of tax evasion considered thus far in public eco-
nomics literature. Often, in order to characterize equilibrium strategies and
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optimal strategies in closed form, model builders tend to make drastic assump-
tions. Our approach to modelling tax evasion is certainly not to look for closed
form solutions but to look for models that retain the notions of incomplete infor-
mation and secrecy of actions intrinsic to the tax evasion problem. At the same
time, these models are quite close to existing stochastic game models where
efficient solution techniques have already been developed. The notions of cap-
turing secrecy and asymmetry in information have both been part of substantial
research in the area of game theory known as games with incomplete informa-
tion. Existence theorems are much harder to obtain in many such games with
incomplete information. Here we propose a dynamic game theoretic approach
to the study of the tax compliance problem that incorporates the dual secrecy
inherent in the problems of tax evasion and auditing. The problem is viewed as
a multistage game between the IRS (player I) and a taxpayer in a socioeconomic
group (player II). The taxpayer adopts, either by choice or by ignorance of tax
laws, a strategy to evade taxes on certain selected taxable items. Based on the
particular socioeconomic group of the person, the IRS has a prior perception
about the taxpayer with respect to his methods and modes. This perception is
modified from year to year based on the tax returns and the dictates of the dis-
criminant function and the norms of the IRS. This is modelled as a stochastic
game with transition laws and states unknown to the taxpayer (player II) but
known to the IRS (player I).

3 Detecting Tax Evasion via Discriminant Analysis

Fisher, in his seminal paper on taxonomic problems [16], suggested an inge-
nious procedure to classify any observation drawn randomly from a mixture of
populations into one of them, based on the densities of the sub-populations.
For many practical applications see [26], [3], [32], [33]. The procedure is easily
adaptable to problems involving classifications in many other areas including
bankers lending credit facilities for small businesses, taxation, and credit card
approvals. Intuitively, we can describe this procedure for tax evasion problems
as follows.

Although the tax paying population is quite heterogeneous, people in each
professional group are relatively homogeneous. They tend to associate with
people in the same professional group and inherit similar socioeconomic patterns
of life. Thus, the population can be made more homogeneous by stratifying
according to profession. Having stratified the population into sub-populations,
such as executives, doctors, lawyers, salesmen etc., the next problem is to further
divide each sub-population into two types, namely those filing legally correct
and honest returns and those filing legally incorrect or manipulated tax returns.
Apparently, in the early 1940s nearly 25% of the tax returns belonged to the
second type [27]. While deductions in income tax returns accounted for less
than 12% in 1947, a decade later the same deductions were almost 15% of the
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reported gross income [27]. Apparently, tax loopholes and manipulations were
used in the process.

The classification of all members of a professionally homogeneous group into
the above two distinct types is much more complex. This could only be achieved
when persons in the profession were targeted earlier with a foolproof audit. As a
first step one needs norms for auditing, so that tax items violating these norms
conspicuously can be considered as candidates for auditing. Only expert tax
inspectors can be relied upon to come to grips with this initial data classification
problem.

Assume that there is data available from the past for this classification. Our
hunch is that the IRS will know from past data the chance that a random tax
return from a specified professional group is legally correct and honest. Need-
less to say, this chance will vary from profession to profession. It is known that
many self-employed professionals and especially those who deal exclusively with
cash transactions are often involved in tax evasions. Given all tax returns, the
main statistical approach is to partition data into two disjoint sets where data
in one set is classified as honest and requires no prima facie reason for audit-
ing and the data from the complement is classified as incorrect or dishonest
reports that need auditing. There are two costs associated with any such clas-
sification. If an honest return is audited, the cost of auditing time is wasted on
the return. If a manipulated return is not audited, then the cost is the loss in
taxes properly due. We have to convert all costs into money for proper compar-
isons. Now any tax return x is simply a vector whose coordinates correspond
to tax items such as 1) married or single, 2) gross income, 3) dividend or inter-
est income, 4) employee business expense, 5) real estate taxes paid, etc. Thus,
in general x = (x1, x2, . . . , xp) is a vector of observations. Some are qualitative
and some quantitative. For simplicity, we will assume all are quantitative. Then
the past data collected from the two sub-populations adjusted for inflation will
give mean values and variances and covariances for each sub-population. Let
f1(x) and f2(x) be the densities that represent the populations. If the popula-
tions are normal, f1 and f2 are uniquely determined by the mean vectors µ1

and µ2 and variance covariance matrices Σ1 and Σ2. Thus, an optimal proce-
dure is one that minimizes expected costs of misclassification. For example, if
population 1 corresponds to the honest and correct tax returns, then c12 = cost
of classifying 1 into 2 for auditing = audit costs. Now a tax audit procedure has
to decide which observations x have to be audited. Let (R, Rc) be a partition
of all observations into don’t audit, audit classifications. Then given the prior
ξ = (ξ1, ξ2) and R the expected cost is simply

c12ξ1

∫
Rc

f1(x) dx + c21ξ2

∫
R

f2(x) dx.

We could rewrite the same as

c12ξ1 +
∫

R

(c21ξ2f2 − c12ξ1f1) dx.
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Thus, when the integrand is less than zero on R the expected cost is minimized,
which is the same as saying that the optimal classification procedure R

∗ satisfies

R
∗ =
{

x :
c21ξ2

c12ξ1
≤ f1(x)

f2(x)

}
.

Equivalently, by taking logs, the procedure R
∗ reduces to

R
∗ =
{

x : log
f1(x)
f2(x)

≥ c

}
,

where c is known since c21, c12, ξ1, ξ2 are known.
If Σ1 = Σ2, log(f1/f2) to within some constant factor reduces to �(x) =

(µ1 − µ2)
T Σ−1x. This is the famous linear discriminant function of Fisher ([3],

[33]). The function �(x) is simply a linear combination of the xi’s for some
suitable weights wi’s. We have the following intuitive interpretation of the dis-
criminant function.

Each tax item i with reported xi is given a weight wi. The return is
not audited if

∑
wixi > c, otherwise an audit is suggested.

Of course, what is mathematically easily said is quite hard to implement. Even
statistical problems with cost coefficients, prior distributions, etc., are quite
difficult to compute exactly.

For example, when certain professions are hard hit by federal regulations, the
changes in the pattern of expenditures may not come through immediately. Say
that doctors and hospitals are being pressured to charge only a fixed amount
for a certain diagnostic treatment, then clearly the income of the profession is
much affected. The life style cannot be changed and the temptation to get away
from tax payments increases. One needs to study such complex phenomena with
suitable models. As the priors (ξ1, ξ2) will also change, we need to find suitable
models to analyze them.

4 A Need for Further Game Theoretic Refinement of
the Discriminant Function Approach

In the discriminant function approach, though the individual returns are clas-
sified into one of two sub-populations within each professional category, the
dynamics of tax evasion from tax year to tax year and the strategic audit manip-
ulations to curb the evasions are not at all captured by such a purely statisti-
cal model. Straightforward discriminant analysis ignores the strategic manipu-
lations of individual taxpayers, a key element in tax returns.

As a further refinement of the statistical discriminant function approach we
propose to formulate various game theoretic models of multistage games that
conceptually capture the essence of tax games between the IRS and individual
returns.

Before modelling in full generality, we will introduce the notion of a zero-sum
two-person stochastic game with two states and two actions for each player.
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A Stochastic Game with Two States and Two Actions Consider two
players playing one of the games A or B. In both games players secretly select
one of the numbers 1 or 2. Depending on their choices an immediate reward is
received by player I from player II. Their choices and the current game they
play determine which game will be played next time. The following is a simple
example of such a game:

A
5/A 0/B
0/B 3/A

B
4/B 0/A
2/A 1/B

Let player I secretly select one of the rows and II secretly select one of the
columns. If in A row 1 and column 2 are chosen, player I receives nothing and
the game moves to playing B next round. If in B row 2, column 1 are their
choices the game moves to A after a reward of 2 to player I from player II. The
payoff accrues and future payoffs are discounted at a fixed discount rate β. The
aim of player I is to maximize the total discounted payoff. The aim of player II
is to minimize the same. If xn is the payoff on the nth day,

∑∞
n=0 βnxn is the

total payoff where 0 < β < 1.
Shapley [38] proved the remarkable theorem that these games can be intelli-

gently played by locally randomizing the selection of rows in each matrix inde-
pendant of the history of the play leading to the given game. For example if
β = .8, the game value starting in A is approximately 6.79; in B it is approxi-
mately 5.43. A good strategy for I is to choose row 1 in matrix A with a chance
0.223 and to choose row 1 all the time in matrix B. Player II should choose
column 1 in A with chance 0.223 and column 2 all the time in matrix B.

5 A Simple Model of a Tax Return-Audit Game

Consider the population of professional engineers employed by engineering
firms. Suppose that from past auditing the IRS has a hunch that 10% of them
manipulate returns, while 90% are honest. Given a tax return x, the IRS can
compute the discriminant function which could decide whether to audit or not.
However, the IRS may have an initial perception on a return, which may cause
the agency to audit, even though the discriminant function may indicate the
opposite. Namely, besides the two actions available to the IRS, the perception
of the IRS is a variable which could vary from year to year depending on the
years past. This year’s data may not reveal it. Last year’s perception alone could
give some clue. Thus, the perception of the IRS can be thought of as states
of the game which, for example, can also vary between the two states: honest
and manipulating. Only an audit can make perceptional changes. Even if the
discriminant function favors auditing, it cannot be immediately implemented
for want of staff. One may have to manage with existing staff, which means
limiting thee auditing facility. In such a case, strategic selection of auditing



404 T.E.S. Raghavan

may be the only alternative. Thus, we can think of a tax return as a game with
the following interpretation.

- Players: I - IRS, II - individual or firm filing tax return
- Pure strategies:

For player I: 1. audit 2. don’t audit
For player II: 1. honest return 2. cheat

- States:
A. IRS perceives a return as honest
B. IRS perceives a return as manipulating.

- Law of motion or transition probabilities:
If a return is not audited, then the perception of the IRS is the same as
it was the previous year. If an audit finds someone guilty of manipulation,
the perception changes from honest to manipulating. This is our stochastic
game. The other situations are given below as in our mathematical example
of a stochastic game. The perception of the IRS in states A and B is given
below:

state A = (honest)
Honest Manipulate

Audit
Don’t audit

[
a1/A b1/B
c1/A d1/A

]

State B = (manipulating)
Honest Manipulate

Audit
Don’t audit

[
a2/.5A b2/B
c2/B d2/B

]
For example, in state B, the IRS could perceive a taxpayer as being sus-
ceptible for manipulations even if the current audit finds no tax evasion on
the items audited. As a measure of deterrence, the IRS continues to view
any past tax violators with a 50:50 suspicion even after a current audit
finds them honest.

- Rewards:
In parlor games the immediate rewards are well defined simply by the rules
of the game. In modelling real problems as games the most thorny issue
is to define meaningful payoffs. In the case of tax returns, the actual tax
collected with or without audit can be taken to be the immediate payoff
corresponding to independent choices by the tax office and taxpayer. This
immediate payoff can be defined as the expected tax paid when not audited
and the expected tax collected with suitable fines imposed when audited
finds someone guilty or not guilty less audit costs.

First one needs to estimate the prior perception probabilities. The IRS will
have on k random persons, data x1, x2, . . . , xk on tax item i and y1, y2, . . . , yk
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on tax item j where i and j are independent deduction items and where the k
persons were audited for the first time. Let ξ1, ξ2, . . . , ξk and η1, η2, . . . , ηk be
the revised amount for the same two items after audit. Let x̄, ȳ, ξ̄, and η̄ be the
averages.

1
k

[
|i : xi − x̄ > 0, yi − ȳ > 0| −

∣∣i : ξi − ξ̄ < 0 or ηi − η̄ < 0
∣∣]

is a rough overestimate of the proportion of people who would have manipulated.
The credibility is maintained until an audit proves otherwise. The threat of

audit should always be on any person to discourage any future manipulation.
This is incorporated in the first row first column entry in matrix B. The game
is played as an ordinary stochastic game with discounted payoff. The above
model, though completely in line with a model of an ordinary stochastic game,
misses an important ingredient of our tax return problem.

Suppose a tax officer has two file cabinets to store all tax returns. Depending
on the current perception of the tax officer that a taxpayer is honest or cheating,
he stores honest ones in cabinet A and the rest in cabinet B. Thus the actual
cabinet in which one’s current tax return is saved will be known only to the tax
officer. A taxpayer can assume that his file is in file cabinet A when he has never
been audited. If a taxpayer was, after an audit, found cheating some time in
the past, even if he is found honest by later audits, the taxpayer cannot be sure
where his file will be stored by the officer. Thus, the taxpayer is often ignorant
of the current state (perception of the officer) of the stochastic game. Similarly,
if the taxpayer cheats, the tax office will not know this without auditing. Thus
the tax office is in general not fully informed about the past actions of the
taxpayer. Full information about the current state and past actions, namely
the partial history of the game is not fully known to both players. Currently,
all the standard existence theorems for zero-sum stochastic games assume full
information about past history of actions for both players. See [41].

6 Generalized Stochastic Game

A population Π is partitioned into n sub-populations π1, π2, . . . , πn. Player II
selects secretly a sub-population πj and chooses a random observation x from
πj . Only the observation x is revealed to player I. Independent of the observation
revealed, player I has a fixed prior distribution ξ = (ξ1, ξ2, . . . , ξn) on the sub-
population selected by player II. Initially player I selects secretly a Pi according
to ξ. Given the data x from πj unknown to player I, based on the observation
x revealed he computes a set Ai = i(x), a finite set of actions available in
Pi. Now he chooses secretly an action a ∈ i(x) and receives from player II an
immediate reward r (x, i, a) and the game moves to Pk from Pi with chance
q (k/i, x, a). Player II secretly chooses a new j and a random x′ from π′

j and
the x′ is revealed to player I. He computes possible actions Ak = k (x′) and
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selects an action a′ ∈ k (x′). Again he receives a reward r (x′, k, a′) and so on.
The payoff accrues each time and the future payoffs are discounted at a fixed
discount rate β, 0 < β < 1. The aim of player I is to maximize the expected
discount reward. The aim of player II is to minimize the same.

It will be convenient to motivate our above generalized stochastic game both
from the point of view of statistical decision theory (Wald [49], Blackwell and
Girshick [7], Ferguson [14] and multistage game theory (Filar and Vrieze [15]).
First we will set up the correspondence between our generalized stochastic game
and tax return-audit game. This is shown in Table 1.

Let A be the maximal finite set of all possible actions for all possible tax
returns. Suppose that the set A has � elements {a1, a2, . . . , a�}. For each x
one can associate a probability distribution

{
φs

1(x), φs
2(x), . . . , φs

�(x)
}

on the

exhaustive action space A = {a1, a2, . . . , a�} , where
�∑

i=1

φs
i (x) = 1. Here s is

the current perception of the IRS. Thus, we can associate a stationary strategy{
φs

1, φ
s
2, . . . , φs

�

}
on the action space A for each x and current perception s. Let

ψ1, ψ2, . . . , ψN be a probability distribution on {π1, π2, . . . , πN}. We are now
ready to state some open problems.

Problem 6.1. Does the generalized β-discounted stochastic game admit a
stationary optimal strategy for player I assuming the following conditions (1)–
(4)?

(1) The partition π = (π1, π2, . . . , πN ) is the same for both players.
(2) q (k/x, i, ai) is known to both players.
(3) The discriminant function i(x) and the associated norm violation resulting

in possible audit action set Ai = i(x) is known to player II, for each data x.
(4) The perception s of player I about player II is also known to player II.

Problem 6.2. When the data x comes from continuous densities correspond-
ing to π1, π2, . . . , πn and when the conditions of Problem 6.1 are satisfied, can
one replace the stationary strategies {φs

1(x), φs
2(x), . . . , φs

r(x)} by a pure strat-
egy? That is, given data x do we have a single action for each perception
Ps which is equivalent to {φs

1(x), φs
2(x), . . . , φs

r(x)} in the sense of equivalent
rewards?

In this context we want to recall the theorem of Dvoretsky, Wald, and Wolfowitz
[12] in statistical decision theory.

Theorem 6.1. Let Ω be a finite set of parameters representing states of
nature. Let A be a finite subset of R

n representing actions of a statistician. Let
f� for each � be a continuous density function. Let D be the space of deci-
sions where each d ∈ D is a map d : X → A where X is the sample space. Let
L (�, a) be a bounded measurable loss function. Then any randomized decision
φ : x → {φ1(x), φ2(x), . . . , φk(x)}, where φi(x) = the chance action i is taken



A Stochastic Game Model of Tax Evasion 407

Table 1: Correspondence between the two games.

Player I IRS

Player II Individual taxpayer
sub-populations
π1, π2, . . . , πn

Those within the professional group who manip-
ulate a specific set of tax items in the tax return.

P1, P2, . . . , Pn In the eyes of IRS possible sets of items that are
being manipulated by various types of persons in
the profession. (Partition according to perception
based on past data.)

Ai For perception Pi, the set of actions available to
IRS. (For example, if IRS suspects on, say, items
1) moving expenses and 2) charitable contribu-
tions. They may choose to audit on item 1, 2,
both or none. These are 4 possible actions.)

x = (x1, x2, . . ., xp) A vector of items filled in the tax return with
some of the xi’s as qualitative variables such as
marital status, filing status, etc.

i(x) With each tax data vector x, a set Ai of audit
actions that are needed to correct the norm viola-
tions, as found in the data via discriminant anal-
ysis. Whereas the perception of the IRS is based
on past tax returns by the taxpayer, the actions
at the current time are dictated by the current
discriminant function. Thus the importance of
the discriminant function lies in not just classify-
ing the observation, but also suggesting possible
audit actions, based on the current data.

q (k/x, i, a) The chance that the tax return x, with an initial
perception Pi and an action a ∈ Ai = i(x) by
IRS, changes the perception of the IRS from Pi

to the new perception Pk.
r (x, i, a) The actual tax collected when the return reports

data x, when the perception by IRS is Pi and
when action a is taken by the IRS.

β Discount factor accounting for inflation rate, etc.
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when x is observed, can be equivalently replaced by a pure decision d : x → A
in the sense that the expected risk r (�, d) = r (�, φ) for all � ∈ Ω.

Our Problem 6.2 is to extend this theorem in the context of our generalized
stochastic games.

7 Stochastic Games with Incomplete Information

From the point of view of our actual tax return-audit problem we need to handle
the more difficult problem of lack of information from either side.1 For example,
the perception Pi of the IRS is rarely known to player II, the taxpayer. Also
the law of motion q (k/s, x, ai) is unknown to the taxpayer. Actually, the the-
ory of stochastic games with incomplete information has few computable solu-
tions. The theory of structured stochastic games has many existence theorems
and efficient algorithms to compute value and optimal or equilibrium strate-
gies ([28],[48],[15],[30],[31]), and for structured repeated games (a very special
class of stochastic games) with incomplete information of a special type, one
has some existence theorems. However, there are very few computational tools.
See [23], [40], [41], [36], and [37] (this volume) in recent years. The researches in
the area of stochastic games with incomplete information that are close to our
model are the ones by Melolidakis [23] and Rosenberg, Solon, and Vieille [36].
We could call our tax return-audit problem a statistical extension of stochastic
games with incomplete information. In the next section, we will briefly discuss
the notation of stochastic games with lack of information and show what our
generalized stochastic game is with reference to this setup.

8 Games with Lack of Information on One Side

Games with incomplete information were pioneered by Harsanyi [20], and later
formulated in some precise mathematical models for certain special kinds of
information lags by Aumann and Maschler [5]. For more recent developments on
stochastic games with incomplete information, see Sorin [41]. For our tax model
what we will need is a certain subclass of games called stochastic games with lack
of information on one side (SGLIOS) in the sense of [23], an adaptation of the
Aumann–Maschler model for discounted and undiscounted stochastic games.

SGLIOS Model: A stochastic game with lack of information on one side con-
sists of:

(i) A set of m × n matrices S =
{
A1, A2, . . . , AN

}
called the “states” of the

game. We identify As with state s.
1 This critical aspect of the problem was first pointed out to the author by Professor
Ritzburger, of the Institute of Advanced Study, Vienna, Austria.
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(ii) A prior distribution ξ0 =
(
ξ0
1 , . . . , ξ0

N

)
on S.

(iii) A law of motion q (t/s, i, j) where the game moves to state t from state
s, when row i and column j are chosen secretly by the players in state s

resulting in an immediate payoff (As)ij = a
(s)
ij .

(iv) Player I alone knows the true state. Each time the choices i, j are revealed
to both players after the choices are made.

(v) The immediate payoff a
(s)
ij is kept secret from player II, though player I

knows the same.
(vi) The payoff is evaluated by discounting each time with a discount factor β

(0 < β < 1).

The following is the main theorem.

Theorem 8.1 (Melolidakis). Let Γ be a β-discounted stochastic game of the
above type SGLIOS. We can associate an ordinary stochastic game, Γ∗ where
player I has a pure optimal stationary strategy f∗ (ξ) and player II has a sta-
tionary optimal strategy g∗ (ξ). Here the game Γ∗ is played as follows. Let player
I, as in SGLIOS, use his usual information in selecting his behavioral strategy.
Unlike in Γ, here player II is informed of the posterior distribution at each stage
based on the state of the game, the actions of the player, and the law of motion.
One of the main observations of Melolidakis is that the value v (Γ) = v (Γ∗) ,
for player I loses nothing by revealing the posterior.

As player I knows all about the law of motion, prior, state of the game, etc.,
one can consider the following stochastic game.
Game Γ∗∗: Let the action space of I be {f(s) : s ∈ S} where f(s) is a mixed
strategy on the rows of As. Let the action space of II be the set {1, 2, . . . , N}.
Let the state space be all probability vectors in R

N . Let the law of motion Q
be q (./ξ, f, j) where the new prior at t is the posterior given f, j, To clearly
understand the new prior, as the posterior given the actions of the players in
the original game, we evaluate the posterior probability of the game to be in
state s, given the actions i, j of the two players. This is η (s/f, j, ξ) where for i
fixed the entry is

η (t/i, j, ξ) =
∑

s

q (t/s, i, j) fi(s)ξ(s)/
∑

s

fi(s)ξ(s).

r (ξ, f, j) =
∑

s

∑
i

ξ(s)fi(s)r (s, i, j) .

Here (As)ij = r (s, i, j). This is the stochastic game induced by SGLIOS. An
important observation is that the value of this stochastic game coincides with
the value of the original stochastic game.
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9 Similarities and Differences between the SGLIOS
and Our Tax Return-Audit Game

In our tax return game player I (the IRS) knows about the actual state (the
perception). The prior is also known to the IRS (based on past data). Instead
of a finite set of actions for player II, the selection involves a partition and the
selection of a random observation from a partitioned sub-population. While the
actual actions are revealed in SGLIOS, here only the data x and action i, corre-
sponding to the audit decision by the IRS, are known to each other. Whereas the
actual payoff is unknown to player I but the law of motion q (t/s, i, j) is known
in SGLIOS, here the actual payoff is known but the law of motion q (t/s, x, j)
corresponding to data x, action j and change of perception to t from s is kept
secret by the IRS. Intuitively the change of perception of the IRS about a tax-
payer is kept secret even though the audit resulting in tax payments is known
to both sides.

10 Some Thoughts on Norms for Audits and Some
Questions on Revealing Audit Policies

In a penetrating paper on deriving norms for income tax audits, Pond [29]
makes the following remarks: “There are always some, who through inadver-
tence or design, minimize their tax liability. Deductions offer one of the greatest
avenues for minimizing tax liability and it is evident that to be most success-
ful with the available staff, the audit program should concentrate on taxpayers
whose deductions are excessive in relation to others in a comparable income
classification. The first step in deriving the norms is to determine a frequency
distribution for each deduction “and” calculate the ratio of net income to gross
income! The carefully chosen tax returns for closer audit saves audit time with-
out losing tax arrears. Such carefully chosen returns represent 5/6 of the total
on all the cases. Since the audit agency was handling only 2/3 of all cases on
a nonselected basis and therefore only was producing 4/6 of the potential, the
application of norm method has an imputed gain of 25%.”

In a sense many statistically heuristic procedures are already perhaps adopted
by the IRS! As part of the deduction of Pond’s paper the first question raised
was whether it was possible for a taxpayer to become familiar with the selection
criteria and thus become able to evade taxes and be sure of escaping detection.
Two factors were seen mitigating against this: 1) The norms are kept secret, and
2) they are constantly being reevaluated. There was no general agreement on
how the norms were to be evaluated. Fault was found with putting emphasis on
assessment/cost ratio; the failure to audit in such cases might reduce voluntary
compliance within those groups.

In our opinion, the verbal language above and the discussions pertaining to
the problem of tax are in the spirit of multistage games. Thus a proper analysis
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of the problem via models of stochastic games is only desirable from both the
theoretical and practical points of view. Perhaps solutions to such models might
reveal answers to unanswered questions like the following.

Problem 10.1. Can the norms for auditing tax returns be made public?

An answer to Problem 10.1, though volatile, might still be valuable to look into
for suitable models. With reference to our formulated model, this is the same
as the following mathematical interpretation.

Problem 10.2. In our game with incomplete information if the state (IRS’s
perception) alone is kept secret, but not the actual law of motion of the game
and the discriminant function and the partition P1, P2, . . . , PM by the IRS, will
the value of the stochastic game change?

We could conceptually understand Problem 10.1 by modelling the game as the
following single controller stochastic game with incomplete information.

11 A Single Controller Game with Incomplete Information

Players I and II know that a population Π is a mixture of sub-populations
Π1,Π2, . . . ,Πn with densities f1(x), f2(x), . . . , fn(x), respectively. Player II
chooses secretly a j ∈ {1, 2, . . . , n} and then selects a random observation
x from Πj . The choice j is not revealed to player I. However, the randomly
selected observation x from density fj is revealed to player I. Player I has prior
ξ1, ξ2, . . . , ξn on his perceptions about the current choice of player II. We call
player I’s current perception the state of the game. The perception of player I
remains unchanged and stays at state s with probability l−φ(s), unknown to
player II (here 0 ≤ φ(s) ≤ 1). With probability φ(s) the perception of player I
changes to a new state k taking into account the posterior dictated by the data
x. Based on x, he selects an action i ∈ {1, 2, . . . , n} with probability ψi(x). In
the case i 	= j, player I receives a reward ci(s) from player II. In the case i = j
he receives an amount uj(x) from player II. The play continues with the pos-
terior as the new prior. The payoff accrues at a fixed discount rate β. The aim
of player I is to maximize the total discounted reward. The aim of player II is
to minimize the same.

We could convert the above model into the following single controller stochas-
tic game with incomplete information. We need to define immediate rewards
and transition probabilities.

Let q (k/s, ψ, j) = expected transition probability of the perception of player
I to move from perception s to perception k given the strategies ψ and j by
players I and II, respectively. Since the transition depends only on the posterior
and the preassigned norms for remaining in status quo or following the decision
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based on the data, we get

q (k/s, ψ, j) =

⎧⎨⎩ φ(s) ·
∫ [ ξkfk(x)∑

t ξtft(x)

]
· fj(x) dx, k 	= s

[1− φ(s)] + φ(s) ·
∫ [ ξsfs(x)∑

t ξtft(x)

]
· fj(x) dx, k = s.

Notice that ξkfk(x)/[
∑

t ξtft(x)] is the posterior probability given the data and
q gives the expected transition probability.

An important observation is that this transition probability q (k/s, ψ, j)
depends only on the action of player II. Since φ(s) is unknown to player II, the
actual law of motion is unknown to player II, although he controls the law of
motion! The expected immediate reward r (s, i, j) to player I can be written as

r (s, ψ, j) =
∫

Ω

⎛⎝∑
i�=j

ψi(x)ci(s)

⎞⎠ fj(x)dx +
∫

Ω

ψj(x)uj(x)fj(x)dx.

Thus, our problem reduces to an ordinary one player control game if the per-
ceptions of player I, uj , ci, ξi, etc., are common knowledge. Even if ci’s and φ’s
are known to player II, as long as the actual perception of player I about player
II is kept secret, the game will still be a single controller stochastic game with
lack of information on the law of motion for player II.

Thus we are led to the following problem.

Problem 11.1. Let Γ be a single controller stochastic game with reward
r (s, ψ, j) , transition probabilities q (k/s, j), and discount factor β, 0 < β < 1.
A prior distribution ξ on the states is chosen. Though the prior is known to
both players, the actual state is known only to player I.

The law of motion q (k/s, j) will be known to player I if action j of II is
known. Even if φ(s) is revealed to player II, only the law of motion will be
known to player II, but the true state s of the game will still be unknown to
player II. The reward r (s, ψ, j) is unknown to player I as he does not know j,
the choice of player II. If ci(s) is independent of s, the reward in each state is
r (ψ, j), which depends only on the actions of players I and II. Even in this case
the immediate payoff is unknown to either player as each one’s choice remains
secret in each round. A final case is when player II chooses a fixed j once and
for all and all he does from one round to the next is choose an independent
observation from the same density fj . This is the closest to the single control
games considered by Rosenberg, Solon, and Vieille [36]. In this case we are led to
the one player control game with known reward, but unknown law of motion for
the controlling player. The main problem is to find whether such games admit
value and, given the data, to solve for the value and good strategies if any.

This game captures the spirit of tax return-audit in the following sense. The
perceptions about a taxpayer by the IRS as honest, moderate, cheats on moving
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expenses, etc., have to be solely based on the data x the taxpayer submits and
the action he chooses to get x. Thus, his own actions essentially contribute
towards any changes in the perception of the IRS. The threat to keep him
obedient to tax laws needs the secrecy of the perception (state). The norms
governing the status of an audited taxpayer are captured by the function φ(s).
We will briefly summarize the research findings of some earlier models that are
found in the literature on public finance.

Generalized stochastic games: We have already described these games earlier.
To focus just on the mathematical formulation of these games, we need only to
modify our preceding formulation on stochastic games.

Generalized stochastic game: Players I and II play the following game. The
game has a finite number of states 1, 2, . . . , S. In each state player I has m
actions and player II has n actions. Player II selects an action j in state s. This
is revealed to a referee. The referee picks a random observation x according to
the density function fj(x) and reveals x to player I. Not knowing j, but knowing
x, player I selects an action i among his m actions. Then he receives an amount
r (s, i, x), and the game moves to a state k with chance q (k/s, i, j), and so on.
The payoff as before is the total discounted payoff. Here a stationary strategy
for player II is the same as before. However, a stationary strategy for player I is
of the type φs

i (x) where φs
i (x) = the chance action i is selected in state s when

observation x is given. It is a pure stationary strategy if φs
i (x) = 0 or 1 for each

x, s. The law of motion is common knowledge and the reward is known to both
players.

Our problem is to check whether the game has optimal stationary strategies:
Also, we are interested in the situation where the optimal stationary strategies
are replaceable by pure stationary optimals. We have already discussed the
special subclasses of such single controller games with incomplete information
as a model of our tax problem.

12 A Model of Tax Evasion as a Stochastic Game with
Incomplete Information on the States

Consider a population of taxpayers all belonging to a single professional cate-
gory. A tax return is simply a p-vector X = (X1, X2, . . . , Xp) with X1 as the
adjusted gross income and Xp as the tax due, as reported by the taxpayers in
their tax returns. Based on their past tax returns and past audit actions by
the IRS, the current tax returns are stratified and stored in S distinct file cabi-
nets 1, 2, . . . , S. In the perception of the IRS, based on most recent audits, the
returns stored in file cabinet j > i are viewed as higher-order tax violations
than those in file cabinet i. We will assume that, by an audit, the tax office can
always find out the true values (Y1, Y2, . . . , Yp) for a taxpayer’s tax return. If a
taxpayer resorted to, say, the kth level of tax violation, then his reported tax
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return will be taken to be a vector function of the true values defined by

Xt = φk
t (Y1, Y2, . . . , Yp), t = 1 . . . , p.

Let f1(x), f2(x), . . . , fS(x) be the joint density functions corresponding to
the reported tax dues of the population of tax returns in file cabinets 1, . . . , S.
We will often use the random variables (X1, Xp) with marginal joint densities
gj(x1, xp), j = 1, . . . , S. In general the tax office maintains secrecy of the loca-
tions of individual files, and information about the marginal densities and joint
densities of the returns stored in various file cabinets. When the IRS decides to
audit a tax return from file cabinet k, the taxpayer will be notified about the
current location k from where the return was chosen for audit.

Since the number of auditors is fixed, the tax office has to allocate the avail-
able auditing time A efficiently. An intuitive policy would be to rearrange the
files in each file cabinet i from the smallest to the largest values of R where

R =
Adjusted Gross income

Tax due
=

X1

Xp

and target the upper end among them, namely those for whom R > ρ for some
ρ chosen secretly by the tax office. Obviously, there should be many deductions
of various kinds to arrive at a relatively small tax, and the auditing hours will
be longer on such tax returns. Just because R is large one cannot immediately
conclude that the person is a cheater. The deductions could be genuine and the
person could be honest. It could have been a bad year for the taxpayer with
large hospital bills beyond insurance coverage. However, this ratio R is more
likely to exceed the given value ρ in a population of higher-order tax violators
than in a population of lower-order tax violators and in particular for honest
taxpayers. Therefore, for any random tax return Xj from file cabinet j, let Rj

denote the above-mentioned R value. Then for any random tax return Xi from
file cabinet i, P (Rj > ρ) ≥ P (Ri > ρ) if j > i.

A strategy for the tax office is to choose a threshold value ρ and to target for
audit all tax returns with R > ρ. Thus by the stochastic ordering assumption, a
greater proportion of tax returns from file cabinet j will be targeted than from
file cabinet i < j. For simplicity let us suppose the audit time to audit a tax
return with value R is cR. Let hi(r) be the density of the reported value of R
for the tax returns in the file cabinet i. Thus the expected audit time for file
cabinet i is given by

c

∫ ∞

ρ

rhi(r)dr = qi.

This will also immediately fix the total audit time for all file cabinets as∑
i

c

∫ ∞

ρ

rhi(r)dr =
∑

i

qi.
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Let ui(xp) denote the density of the random variable Xp representing the tax
amount on any random tax return from file cabinet i.

If by an audit the IRS comes to know that a taxpayer has indulged in a tax
violation of order k > i, then the IRS classifies the current and future returns
of the taxpayer in file cabinet k. If the audit reveals that the tax violation is
of order k < i, the IRS classifies the current return and future returns of this
taxpayer in file cabinet k. The following is the intuition for such a transition. If a
person’s return, either based on prior allocation or on recent audit was found to
be a tax violation of a certain order, when audited currently is found to be one
of a higher order, he/she deserves to be watched with immediate reclassification
with necessary caution. The persons who are found from current audit to be
improved with lower levels of violation are recognized for their acceptance of
law and order with a slight bit of reservation. When a tax return is not audited
the IRS loses tax on a taxpayer when he/she becomes a tax evader of a higher
order. However when a tax return from a taxpayer who has considerably toned
down from his/her original level of tax evasion is audited, the tax office incurs
higher cost due to unnecessarily prolonged auditing. The transition probability
based on the preceding intuitive principles can be defined as follows.

Let the transition probability be q(j/s, k, ρ) where s is the current location
(file cabinet) of the return from where the return with data X was picked for
audit using ρ strategy and found to be of violation level k. In case k ≥ s the
file is immediately transferred to file cabinet k with probability one. Suppose
that the audit reveals a violation level k < s; then with a small probability α
it is kept in the same file cabinet and with probability 1 − α it is moved to
file cabinet k. Thus if a tax return X from file cabinet s is audited and if the
taxpayer has chosen a tax violation level k currently, then the tax return moves
to state j with transition probabilities given by

q(j/s, k, ρ) = 1 if j = k and k ≥ s

= α if j = s and k < s

= 1− α if j = k and k < s.

Suppose that the audit strategy ρ is chosen by the IRS. If a taxpayer has
never been audited, then he can assume that his tax return is located in file
cabinets 1, 2, . . . , S with respective priors ξ1, ξ2, ξS . The priors are known to
all taxpayers. If a taxpayer was audited in the past, based on the most recent
audit he can evaluate the posterior probabilities for the current location of his
tax return.

The revenue for the IRS from a taxpayer will depend on the following:
• Was he ever audited and if so what was the violation level of the most

recent audit?
• Is he currently being audited?
• What is the current level of violation of the taxpayer?
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Suppose that the taxpayer chooses currently a level j = j(X) for tax violation.
Including the current year suppose he has never been audited. Since his return
could be from file cabinet i with stationary prior probability ξi it would have
escaped the current audit if the calculated R value X1/Xp < ρ. When it is
not audited, he pays only Xp. Since he has chosen level j, the tax return can
be thought of as a random observation from file cabinet j with density f j(x)
and with R < ρ. Thus the conditional expected payoff to the tax office given
that the tax return was in file cabinet i, and the current choice was j by the
taxpayer, and it escaped audit currently is given by∫ ∫

{(x1,xp):x1<xpρ}
xpg

j(x1, xp)dx1dxp.

Thus the expected income to the IRS from such a never-audited tax return is
given by ∑

j

ξj

∫ ∫
{(x1,xp):x1<xpρ}

xpg
j(x1, xp)dx1dxp.

Suppose that audit costs are w dollars per hour. The IRS charges a suitable
penalty for tax violations depending on the level of tax violation when audited.
Let each dollar due be multiplied by a penalty factor θk for tax returns audited
from file cabinet i found to be a tax violation of level k. If the IRS charges a
penalty proportional to the difference between the true tax due and reported
tax amount Xp specified in the tax return, then the net expected income to the
IRS from an audited tax return from file cabinet i with violation level k > i
is r(i, k) = θk(µ1 − µk) + µk − cw

∫∞
ρ

rgi(r)dr. Here gi(r) is the density of the
statistic R from file cabinet i and µi = expected tax from file cabinet i for
all files that escaped audit. Also θk > θk−1 · · · > θ1 = 1. In the case k < i,
and if the taxpayer is audited then the tax office finds that the taxpayer is
relatively reformed and the expected income to the tax office is θi(µ1 − µi) +
µi − cw

∫∞
ρ

rgi(r)dr. The expected income to the tax office with the ρ strategy
when the taxpayer in file cabinet i wants to choose tax violation level k is given
by

Pi(R < ρ)θi(µ1 − µi) + µi − cw

∫ ∞

ρ

rgi(r)dr

+ Pi(R > ρ)θk(µ1 − µk) + µk − cw

∫ ∞

ρ

rgi(r)dr.

If the tax form for a taxpayer has p items to fill in with numerical values, any
subset S among those items can be misrepresented by the taxpayer by deviating
from the true value. Suppose that the tax office can identify the deviated items
by audit; then the set of such deviators will constitute a sub-population with
a density function fS . In our model we assume that their tax returns are to be
stored in a file cabinet labelled S. When a tax office calls a taxpayer for audit,
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and spells out where they have doubts on the tax return, they essentially reveal
the label of the file cabinet from which this return is chosen for audit on the
labelled items. Given the information that a taxpayer’s file was stored in file
cabinet S, after the most recent audit, a simple class of pure strategies for the
taxpayer who wants to act like a random person from file cabinet A can be
generated by any scale vector a = (a1, a2, . . . , ap) that is used to fudge the true
data X and report it as Y = (Y1, . . . , Yp) where Yi = aiXi, i = 1, . . . , p and
A = {i : ai 	= 1}. Similarly, a simple pure strategy for the tax office is a choice
of ρ that selects in the first round all tax data whose R value exceed ρ. If there
are too many selected this way, a suitable stratified random sampling scheme
can be used to select the size that is manageable with existing audit resources.

REFERENCES

[1] Allingham, M., Inequality and progressive taxation, J. Public Economics,
11, 273–274 (1979).

[2] Allingham, M. and A. Sandmo, Income tax evasion: A theoretical analysis,
J. Public Economics, 1, 323–338 (1972).

[3] Anderson, T.W., An Introduction to Multivariate Statistical Analysis,
Wiley, New York (1972).

[4] Arrow, K.J., Essays in the Theory of Risk Bearing, Markham, Chicago
(1971).

[5] Aumann, R.J. and M. Maschler, Repeated Games with Incomplete Infor-
mation, M.I.T Press, Cambridge, MA (1995).

[6] Balbir, S., Making honesty the best policy, J. Public Economics, 2, 257–
263 (1973).

[7] Blackwell, D. and G.A. Girschick, Theory of Games and Statistical Deci-
sions, Wiley, New York (1955).

[8] Clotfelter, C., Tax evasion and tax rates: An analysis of individual returns,
Review of Economics and Statistics, 65, 363–373 (1983).

[9] Cross, R.B. and G.K. Shaw, The evasion-avoidance choice: A suggested
approach, Nat’l Tax Journal, 34, 487–491 (1981).

[10] Davis, J.S., Hecht, G., and J.D. Perkins, Social behaviors, enforcement and
tax compliance, The Accounting Review, 78, 39–69 (2003).

[11] Dubin, J.A., Graetz, M.J., and L.L. Wilde, Are we a nation of tax cheaters?
New econometric evidence on tax compliance, The American Economic
Review, 77, 240–245 (1987).



418 T.E.S. Raghavan

[12] Dvoretzky, A., Wald, A., and J. Wolfowitz, Elimination of randomization
in certain statistical decision procedures and zero-sum two person games,
Ann. Math. Stat., 22, 1–21 (1951).

[13] Erard, B. and J. S. Feinstein, Honesty and evasion in the tax compliance
game, Rand J. Economics, 25, 1–19 (1994).

[14] Ferguson, T.S., Mathematical Statistics: A Decision Theoretic Approach,
Academic Press, New York (1967).

[15] Filar, J.A. and O.J. Vrieze, Competitive Markov Decision Processes,
Springer-Verlag, Berlin (1996).

[16] Fisher, R.A., The use of multiple measurements in taxonomic problems,
Ann. Eugenics, 7, 179–188 (1936).

[17] Frank, M. and M. Dekeyser, A tax discrepancy coefficient resulting from
tax evasion or tax expenditures, J. Public Economics, 8, 67–78 (1977).

[18] Friedland, N., Maital, S., and A. Rutenberg, A simulation study of income
tax evasion, J. Public Economics, 10, 107–116 (1978).

[19] Greenberg, J., Avoiding tax avoidance: A (repeated) game theoretic
approach, J. Economic Theory, 32, 1–13 (1984).

[20] Harsanyi, J., Games with incomplete information played by Bayesian play-
ers, I–III, Management Science, 14, 159–182; 320–334; 486–502 (1967–68).

[21] Kolm, S.C., A note on tax evasion, J. Public Economics, 2, 265–270 (1973).

[22] Landsberger, M. and I. Meiljison, Incentive generating state dependent
penalty system: The case on income tax evasion, J. Public Economics, 19,
333–352 (1982).

[23] Melolidakis, C.A., Stochastic games with lack of information on one side
and positive stop probabilities, pp. 113–126, in: Stochastic Games and
Related Topics, Raghavan, T.E.S., Ferguson, T.S., Parthasarathy, T., and
O.J. Vrieze (eds.), Kluwer Publishers, Dordrecht, The Netherlands (1991).

[24] Monk, K.A., Income tax evasion: Some empirical evidence, J. Public
Finance, 30, 70–76 (1975).

[25] Mookherjee, D. and I. Png, Optimal auditing, insurance and redistribution,
The Quarterly J. Economics, 104, 399–415 (1989).

[26] Morrison, D.F., Mutivariate Statistical Methods, Fourth Edition, Duxbury
Press, Pacific Grove, CA (2002).

[27] Murphy, J.H., EDP and tax administration in New York, Nat’l Tax Jour-
nal, 14, 223–227 (1961).



A Stochastic Game Model of Tax Evasion 419

[28] Parthasarathy, T. and T.E.S. Raghavan, An order field property for
stochastic games when one player controls transition probabilities, J. Opti-
mization Theory and Appl., 33, 375–392 (1981).

[29] Pond, C.B., Derivation and application of norms in selecting audit, Nat’l
Tax Journal, 14, 227–231 (1984).

[30] Raghavan, T.E.S. and Z. Syed, A policy-improvement type algorithm for
solving zero-sum two-person stochastic games of perfect information, Math.
Program., 95, 513–532 (2003).

[31] Raghavan, T.E.S. and Z. Syed, Computing stationary Nash equilibria of
undiscounted single-controller stochastic games, Math. Oper. Res., 27, 384–
400 (2002).

[32] Rao, C.R., Advanced Statistical Methods in Biometric Research, Wiley,
New York (1952).

[33] Rao, C.R., Discrimination among groups and assigning new individuals:
The role of methodology of classification in psychiatry and psychopathol-
ogy, 229–240, U.S. Dept. of Health Education and Welfare (1966).

[34] Reinganum, J. and L. Wilde, Income tax compliance in a principal agent
framework, J. Public Economics, 26, 1–18 (1985).

[35] Reinganum, J. and L. Wilde, Equilibrium verification and reporting policies
in a model of tax compliance, International Economic Review, 27, 739–760
(1986).

[36] Rosenberg, D., Solon, E., and N. Vieille, Stochastic games with a sin-
gle controller and incomplete information, SIAM Journal on Control and
Optimization, 43, 86–110 (2004).

[37] Rosenberg, D., Solon, E., and N. Vieille, Stochastic games with imperfect
monitoring (this volume).

[38] Shapley, L.S., Stochastic games, Proc. Nat’l Acad. Sci. U.S.A., 39, 1095–
1100 (1953).

[39] Smith, W.H., Developing a new technique in selecting returns for audit, J.
Accountancy, 123, 22–23 (1967).

[40] Sorin, S., Big Match with lack of information on one side, Internat. J.
Game Theory, 14, 173–204 (1985).

[41] Sorin, S., A First Course on Zero-Sum Repeated Games, Springer-Verlag,
New York (2002).

[42] Spicer, M.W., A behavioral model of tax evasion, Ph.D. Thesis, Ohio State
University, Columbus, OH (1974).



420 T.E.S. Raghavan

[43] Spicer, M.W. and L.A. Becker, Fiscal inequity and tax evasion: An exper-
imental approach, Nat’l Tax Journal, 33, 171–175 (1980).

[44] Spicer, M.W. and S.B. Lundstedt, Public Finance, 31, 295–305 (1976).

[45] Srinivasan, T.N., Tax evasion: A model, J. Public Economics, 2, 339–346
(1973).

[46] Strumpel, B., Contributions of survey research, in: A. Peacock (ed.), Quan-
titative Analysis in Public Finance, 29–32, Praeger Publ., New York (1969).

[47] Vogel, J., Taxation and public opinion in Sweden: An interpretation of
recent data, Nat’l Tax Journal, 27, 499–514 (1974).

[48] Vrieze, O.J., Stochastic games with finite state and action spaces, Ph.D.
Thesis, Free University of Amsterdam, The Netherlands (1983).

[49] Wald, A., Statistical Decision Functions, Wiley, New York (1950).


	front-matter
	1Stochastic Games with Imperfect Monitoring
	2Level Sweeping of the Value Function in Linear Differential Games
	3Optimal Feedback in a Dynamic Game of Generalized Shortest Path
	4New Approach to Improve the Accuracy in Delayed Information Pursuit-Evasion Games
	5Game Problems for Systems with Fractional Derivatives of Arbitrary Order
	6On Two Problems of Group Pursuit
	7Cooperative Stochastic Games
	8The Uniqueness of a Reduced Game in a Characterization of the Core in Terms of Consistency
	9The Formation of Adaptive Coalitions
	10On Assignment Games
	11The Folk Theorems in the Framework of Evolution and Cooperation
	12Stackelberg Problems
	13Extended Self, Game, and Conflict Resolution
	14Game of Timing in Gas Pipeline Projects Competition
	15The Effects of Incomplete Information in Stochastic Common-Stock Harvesting Games
	16A Two-Level Differential Game of International Emissions Trading
	17A Stochastic Multigeneration Game for Global Climate Change Impact Assessment
	18An Impulsive Differential Game Arising in Finance with Interesting Singularities
	19Incentives for Retailer Promotion in a Marketing Channel
	20Farsighted Behavior Leads to Efficiency in Duopoly Markets
	21A Stochastic Game Model of Tax Evasion



