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Preface

Revenue management (RM) has gained attention recently as one of
the most successful application areas of operations research (OR). The
practice has grown from its origins as a relatively obscure practice among
a handful of major airlines in the post-deregulation era in the U.S. (circa
1978) to its status today as a mainstream business practice with a grow-
ing list of industry users from Walt Disney Resorts to National Car
Rental and a supporting industry of software and consulting firms. Ma-
jor airlines‚ hotel chains‚ and car rental companies have large staffs of
developers and analysts working on RM‚ and major consulting and soft-
ware firms also employ large numbers of RM professionals.

There are now several major industry RM conferences each year: The
Airline Group of the International Federation of Operational Research
Societies (AGIFORS) sponsors an annual reservation and yield manage-
ment conference that attracts has attracted up to 200 professionals‚ and
The International Air Travel Association (IATA) hosts an annual RM
conference that has drawn up to 800 attendees in recent years. The
Professional Pricing Society also hosts professional conferences that ad-
dress science-based pricing methods and technologies and general pricing
strategy.

Over this same period‚ academic and industry research on the method-
ology of RM has also grown rapidly. The number of published papers
on RM has increased dramatically in the last ten years. INFORMS‚ the
leading professional society of OR‚ has started a Pricing and RM Section‚
which has now hosted several annual conferences on RM‚ each drawing
in excess of 100 researchers and professionals. And several universities
now offer specialized RM courses‚ at both the M.B.A and Ph.D. levels.

Despite this explosion of both professional and scholarly activity‚ no
book has comprehensively covered the field of RM. For any area in such
a mature state of development and with such widespread industry usage‚
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such a reference is desirable. However‚ for RM the need is particularly
acute for several reasons:

RM is very much a professional practice and as such there is a con-
siderable amount of “institutional” knowledge surrounding it that is
relatively inaccessible to those outside the profession.

Many of the early and even some more recent seminal ideas do not
appear in published journals. Even those that have been published
sometimes appear in relatively obscure sources such as AGIFORS
proceedings‚ industry newsletters‚ and standard industry practice.

The terminology‚ concepts‚ and notation have not been standardized
to date‚ so it is often confusing for an outsider to reconcile the various
contributions of the extant literature.

There is often a considerable gap between practitioners and acad-
emics in the field. Academics are often not aware of the real world
complexities faced by practitioners of RM‚ and industry practition-
ers are often not aware of the more recent advances in the academic
literature.

Our aim in writing this book is to meet this need. The book seeks—
as its title indicates—to cover both the theory and the practice of RM.
Fundamentally‚ RM is an applied discipline; its value and significance
ultimately derive from the business results it achieves. At the same
time it has strong elements of an applied science‚ and the technical
elements of the subject deserve rigorous treatment. Both these practical
and theoretical elements of the field reinforce each other‚ and to a large
extent this is what makes the topic exciting. It is this constructive
interplay of theory and practice that we have strived to capture in this
book.

Audience
We have two primary audiences in mind for this book—(1) analytically
trained (or at least “analytically tolerant”) practitioners in industry and
(2) academic researchers and teachers. We view our core reader as some-
one who has the equivalent of a master’s degree or higher in a technical
subject such as engineering‚ operations research‚ statistics‚ or economics.
However‚ significant portions of the text are accessible to general or
business readers‚ particularly the introduction‚ Chapter 10 on indus-
try profiles‚ and Chapter 11 on implementation issues. In addition‚ the
introductions to the technical chapters provide high-level overviews of
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each chapter‚ which are designed to provide a qualitative understand-
ing of the main topics covered and their business context‚ and give the
reader a sense of the essence—if not the details—of the material.

For experienced practitioners this book serves as a single-source ref-
erence for the major theory and application issues involved in RM. The
key technical results in the field are organized and presented precisely
and in consistent notation‚ so that practitioners can easily refer to rele-
vant models‚ formulas‚ and algorithms as needed. For new employees in
the RM industry our book also serves as a useful primer on the subject‚
allowing them to “get up to speed” on the details of the field quickly
through a consistent presentation of the material. For the technically
oriented user it serves as an unbiased‚ noncommercial source for un-
derstanding the competing methodologies available for RM and their
relative strengths and weaknesses.

We view the academic audience for the book as consisting of the many
researchers now working on various RM-related topics‚ as well as those
who work in related areas (such as supply-chain management)‚ who may
want a single-source‚ accessible overview of the main theory and practice
components of the field. Academics who teach management science or
operations management courses may also find the book useful‚ either
directly as a supplementary text or simply for the instructor’s personal
use as a reference on the subject. Our experiences with colleagues outside
the field has suggested that most are curious about RM but perhaps not
confident enough about the theory and practice to introduce the subject
in their classes. This book should help “demystify” the subject for them.

Finally‚ a growing number of courses have specifically focused on RM.
Though not designed particularly as a textbook‚ the book should serve as
a useful reading and reference in such courses. While we have not put in
homework exercises‚ we did include many small‚ technically uncluttered
examples throughout the book that illustrate the core concepts being
discussed.

We forewarn the reader that the material in some places in the book
has an airline bias. This is as it should be in our opinion; airline RM
practice remains an important topic in its own right. In addition‚ a large
number—indeed the vast majority—of RM practitioners and researchers
working in the field today are involved directly in airline RM practices.
So airline RM is deserving of rigorous and careful coverage‚ which is one
of our goals in writing this book.

At the same time‚ not every industry is like the airline industry and
“airlinelike” conditions are not‚ in our view‚ that necessary to apply
RM ideas. Therefore‚ we have attempted to present RM in as generic
terms as possible and included several topics and chapters that generalize
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beyond the airline industry. We have tried to be somewhat forward
looking in this regard‚ while at the same time not venturing too far into
the realm of pure speculation.

Content and Style
As for the choices of material‚ we have aimed for an applied technical
(engineering) level in our treatment of the subject. For example‚ we have
chosen to present all problems in discrete time. This eliminates several
technical complications‚ while still allowing us to address a wide range
of problems in a simple‚ yet rigorous way. Moreover‚ continuous-time
models and methods are not frequently used in practice‚ so the focus on
discrete-time methods is well justified from a practical standpoint.

Similarly‚ we have not included a large number of proofs. This is
both consistent with the applied orientation of the field and reflects our
view that RM models and theory do not share enough in common to
justify a highly formalistic‚ deductive approach to the subject. In a
few cases we provide proofs of the theoretical results‚ but even these are
relegated to appendices. When proofs are omitted‚ we provide references
to the original sources and if possible give either informal arguments or
intuition about the results.

In addition‚ the bodies of each chapter do not contain a large number
of literature references. This is because we want the reader to “see the
material for what it is” and not be sidetracked by a lot of discussion of
the literature. Where ideas are strongly associated with specific papers
and people‚ we‚ of course‚ point this out. Detailed references to the
literature and a discussion of sources are collected in a Notes and Sources
section provided at the end of each chapter. To further assist the reader‚
appendices containing basic results on probability theory‚ continuous
optimization‚ dynamic programming‚ and game theory are provided to
make the technical material in the book as self-contained as possible.

We tried to be comprehensive in our coverage of RM‚ covering both
quantity- and price-based RM as well as the supporting topics of fore-
casting and economics. While we might have risked over-extending our-
selves in this regard‚ we believe such a comprehensive approach is nec-
essary to fully understand the subject. Indeed‚ a key contribution of the
book is to unify the various forms of RM and to link them closely to
each other and to the supporting fields of statistics and economics. The
topics and coverage do‚ however‚ reflect our own personal choices about
what is and is not important to understand RM. While we have tried to
be as comprehensive‚ fair‚ and balanced as possible in arriving at these
choices‚ undoubtedly our choices have resulted in some biases. However‚
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the benefit to the reader is that the text has a point of view and is not
merely an uncritical inventory of all research results to date in the field.

Finally‚ we have also tried to come up with a notation that is generic
and consistent across all the chapters. Much of this notation will not co-
incide with the notation found in the original papers in the field‚ which
is by and large quite inconsistent anyway. A summary of notation is
provided in Appendix A for reference. The consistency of notation and
presentation‚ we believe‚ makes reading the book much easier than look-
ing at the corresponding collection of original-source articles‚ and it also
highlights the connections among topics.
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Chapter 1

INTRODUCTION

This chapter provides an introduction to the topic of revenue man-
agement (RM). We begin with an explanation of RM and its history
and origins. We then provide a conceptual framework for understanding
the objectives of RM, the types of business conditions under which it is
applied, and the ways RM systems work. Finally we conclude by giving
an outline of the remaining chapters of the book.

1.1 What Is “RM”?
Every seller of a product or service faces a number of fundamental

decisions. A child selling lemonade outside her house has to decide on
which day to have her sale, how much to ask for each cup, and when to
drop the price (if at all) as the day rolls on. A homeowner selling a house
must decide when to list it, what the asking price should be, which offer
to accept, and when to lower the listing price—and by how much—if no
offers come in. A stamp dealer selling on an Internet auction site has to
select the duration of the auction, what reserve price to set (if any), and
so on.

And anyone who has ever faced such decisions knows the uncertainty
involved. You want to sell at a time when market conditions are most
favorable, but who knows what the future might hold? You want the
price to be right—not so high that you put off potential buyers and not
so low that you lose out on potential profits. You would like to know
how much buyers value your product, but more often than not you must
just guess at this number.

Indeed, it is hard to find anyone who is entirely satisfied with their
pricing and selling decisions. Even if you succeed in making a sale,
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you often wonder whether you should have waited for a better offer or
whether you accepted a price that was too low.

Businesses face even more complex selling decisions. For example,
how can a firm segment buyers by providing different conditions and
terms of trade that profitably exploit their different buying behavior or
willingness to pay? How can a firm design products to prevent cannibal–
ization across segments and channels? Once it segments customers, what
prices should it charge each segment? If the firm sells in different chan-
nels, should it use the same price in each channel? How should prices be
adjusted over time based on seasonal factors and the observed demand
to date for each product? If a product is in short supply, to which seg-
ments and channels should it allocate the products? How should a firm
manage the pricing and allocation decisions for products that are com-
plements (seats on two connecting airline flights) or substitutes (different
car categories for rentals)?

RM is concerned with such demand-management decisions1 and the
methodology and systems required to make them. It involves managing
the firm’s “interface with the market” as it were—with the objective
of increasing revenues. RM can be thought of as the complement of
supply-chain management (SCM), which addresses the supply decisions
and processes of a firm, with the objective (typically) of lowering the
cost of production and delivery.

Other roughly synonymous names have been given to the practice
over recent years—yield management (the traditional airline term), pric-
ing and revenue management, pricing and revenue optimization, revenue
process optimization, demand management, demand-chain management
(favored by those who want to create a practice parallel to supply-chain
management)—each with its own nuances of meaning and positioning.
However, we use the more standard term revenue management to re-
fer to the wide range of techniques, decisions, methods, processes, and
technologies involved in demand management.

1.1.1 Demand-Management Decisions
RM addresses three basic categories of demand-management deci-

sions:

1These can be referred to as either sales decisions (we are making decisions on where and
when to sell and to whom and at what price) or demand-management decisions (we are
estimating demand and its characteristics and using price and capacity control to “manage”
demand). We use the latter consistently and use the shorter demand management whenever
appropriate.
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Structural decisions: Which selling format to use (such as posted
prices, negotiations or auctions); which segmentation or differentia-
tion mechanisms to use (if any); which terms of trade to offer (in-
cluding volume discounts and cancellation or refund options); how to
bundle products; and so on.

Price decisions: How to set posted prices, individual-offer prices, and
reserve prices (in auctions); how to price across product categories;
how to price over time; how to markdown (discount) over the product
lifetime; and so on.

Quantity decisions: Whether to accept or reject an offer to buy;
how to allocate output or capacity to different segments, products or
channels; when to withhold a product from the market and sale at
later points in time; and so on.

Which of these decisions is most important in any given business de-
pends on the context. The timescale of the decisions varies as well.
Structural decisions about which mechanism to use for selling and how
to segment and bundle products are normally strategic decisions taken
relatively infrequently. Firms may also have to commit to certain price
or quantity decisions, for example, by advertising prices in advance or
deploying capacity in advance, which can limit their ability to adjust
price or quantities on a tactical level. The ability to adjust quantities
may also be a function of the technology of production—the flexibility of
the supply process and the costs of reallocating capacity and inventory.
For example, the use of capacity controls as a tactic in airlines stems
largely from the fact that the different “products” an airline sells (differ-
ent ticket types sold at different times and under different terms) are all
supplied using the same, homogeneous seat capacity. This gives airlines
tremendous quantity flexibility, so quantity control is a natural tactic in
this industry. Retailers, in contrast, often commit to quantities (initial
stocking decisions) but have more flexibility to adjust prices over time.
The ability to price tactically, however, depends on how costly price
changes are, which can vary depending on the channel of distribution
such as online versus catalog.

Whether a firm uses quantity or price-based RM controls varies even
across firms within a given industry. For instance, while most airlines
commit to fixed prices and tactically allocate capacity, low-cost carriers
tend to use price as the primary tactical variable.

Firms can also find innovative ways to increase their ability to make
price or quantity recourse decisions. For example, retailers may hold
back some stock in a centralized warehouse and then make a mid season
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replenishment decision rather than precommit all their stock to stores
up front. Some major airlines have experimented with movable parti-
tions that allow them to reallocate seats from coach to business cabins
on a short-term basis. And other major airlines have recently experi-
mented with a practice called demand-driven dispatch in which
aircraft of different sizes are dynamically assigned to each flight depar-
ture in response to fluctuations in demand, and are not precommitted to
flights [50]. Car rental companies also may reallocate their fleet from one
city to another. In terms of pricing, using online channels or advertis-
ing products without price (“call for our low price”) provides firms with
more price flexibility. All these innovations increase the opportunity for
quantity and price-based RM.

Broadly speaking, RM addresses all three categories of demand-
management decisions—structural, pricing, and quantity decisions. We
qualify RM as being either quantity-based RM or price-based RM if it
uses (inventory- or) capacity-allocation decisions or prices as the pri-
mary tactical tool respectively for managing demand. Both the theory
and practice of RM differ depending on which control variable is used,
and hence we use this dichotomy as necessary.

1.1.2 What’s New About RM?
In one sense, RM is a very old idea. Every seller in human history has

faced RM-type decisions. What price to ask? Which offers to accept?
When to offer a lower price? And when to simply “pack up one’s tent”
as it were and try selling at a later point in time or in a different market.
In terms of business practice, the problems of RM are as old as business
itself.

In terms of theory, at a broad level the problems of RM are not new ei-
ther. Indeed, the forces of supply and demand and the resulting process
of price formation—the “invisible hand” of Adam Smith—lie at the heart
of our current understanding of market economics. They are embodied
in the concept of the “rational” (profit-maximizing) firm, and define the
mechanisms by which market equilibria are reached. Modern economic
theory addresses many advanced and subtle demand-management deci-
sions, such as nonlinear pricing, bundling, segmentation, and optimizing
in the presence of asymmetric information between buyers and sellers.

What is new about RM is not the demand-management decisions
themselves but rather how these decisions are made. The true inno-
vation of RM lies in the method of decision making—a technologically
sophisticated, detailed, and intensely operational approach to making
demand-management decisions.
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This new approach is driven by two complementary forces. First,
scientific advances in economics, statistics, and operations research now
make it possible to model demand and economic conditions, quantify
the uncertainties faced by decision makers, estimate and forecast market
response, and compute optimal solutions to complex decision problems.
Second, advances in information technology provide the capability to
automate transactions, capture and store vast amounts of data, quickly
execute complex algorithms, and then implement and manage highly
detailed demand-management decisions. This combination of science
and technology applied to age-old demand management is the hallmark
of modern RM.

And both the science and technology used in RM are quite new. Much
of the science used in RM today (demand models, forecasting methods,
optimization algorithms) is less than fifty years old, most of the infor-
mation technology (large databases, personal computers, Internet) is
less than twenty years old, and most of the software technology (Java,
object-oriented programming) is less than five years old. Prior to these
scientific developments, it would have been unthinkable to accurately
model real world phenomena and demand-management decisions. With-
out the information technology, it would be impossible to operationalize
this science. These two capabilities combined make possible an entirely
new approach to decision making—one that has profound consequences
for demand management.

The first consequence is that science and technology now make it
possible to manage demand on a scale and complexity that would be un-
thinkable through manual means (or would require a veritable army of
analysts to achieve). A modern large airline, for example, can have thou-
sands of flights a day and provide service between hundreds of thousands
of origin-destination pairs, each of which is sold at dozens of prices—and
this entire problem is replicated for hundreds of days into the future! A
similar complexity is found at most large retail chains, which can have
tens of thousand of SKUs2 sold in hundreds of stores and over the Web
with prices monitored and updated on a daily basis. The sheer scale
and complexity of the decision-making task in these cases is beyond the
ability of human decision makers. And if not automated, the task has
to be so highly aggregated and simplified that significant opportunities
for incremental gains—on particular products, at particular locations,
at specific points in time—are simply lost.

2 A SKU (stock-keeping unit) is the lowest level at which we identify inventory—such as men’s
Arrow blue Oxford shirts, long sleeves, size medium.
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The second consequence of science and technology is that they make
it possible to improve the quality of demand-management decisions. The
management tasks that are involved—quantifying the risks and rewards
in making demand-management decisions under uncertainty; working
through the often subtle economics of pricing; accurately interpreting
market conditions and trends and reacting to this information with
timely, accurate, and consistent real-time decisions; optimizing a com-
plex objective function subject to many constraints and business rules—
are tasks most humans, even with many years of experience, are sim-
ply not good at. Models and systems are better at separating market
signals from market noise, evaluating complex tradeoffs, and optimiz-
ing and producing consistent decisions. The application of science and
technology to demand decisions often produces an improvement in the
quality of the decisions, resulting in a significant increase in revenues.

Of course, even with the best science and technology, there will al-
ways be decisions that are better left to human decision makers. Models
can detect only what’s in the data. They cannot reason through the
consequences of a demand shock, new technologies, a sudden shift in
consumer preferences, or the surprise price war of a competitor. These
higher-level analyses are best left to experienced, human analysts. Most
RM systems recognize this fact and parse the decision-making task, with
models and systems handling routine demand-management decisions on
an automated basis and human analysts overseeing these decisions and
intervening (based on flags or alerts from the system) when extraordi-
nary conditions arise. Such man-machine interaction offers a firm the
best of both human and automated decision making.

The process of managing demand decisions with science and
technology—implemented with disciplined processes and systems, and
overseen by human analysts (a sort of “industrialization” of the entire
demand-management process)—defines modern RM.

1.2 The Origins of RM
Where did RM come from? In short, the airline industry. There are

few business practices whose origins are so intimately connected to a
single industry. Here we briefly review the history of airline RM and
then discuss the implications of this history for the field.

1.2.1 Airline History
The starting point for RM was the Airline Deregulation Act of 1978.

With this act, the U.S. Civil Aviation Board (CAB) loosened control of
airline prices, which had been strictly regulated based on standardized
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price and profitability targets. Passage of the act led to rapid change
and a rash of innovation in the industry. Established carriers were now
free to change prices, schedules, and service without CAB approval.
Large airlines accelerated their development of computerized reservation
systems (CRSs) and global distribution systems (GDSs), and the CDS
business became profitable in its own right. The majors developed hub-
and-spoke networks, which allowed them to offer service in many more
markets than was possible with point-to-point service but also made
pricing and operations more complex.

At the same time, new low-cost and charter airlines entered the mar-
ket. Many of these upstarts—because of their lower labor costs, simpler
(point-to-point) operations, and no-frills service—were able to profitably
price much lower than the major airlines. These new entrants tapped
into an entirely new and vast market for discretionary travel—families
on a holiday, couples getting away for the weekend, college students vis-
iting home—many of whom might otherwise have driven their cars or
not traveled at all. It turned out (quite surprisingly to some at the time)
that air travel was quite price elastic; with prices sufficiently low, people
switched from driving to flying, and demand from this segment surged.

The potential of this market was embodied in the rapid rise of People-
Express, which started in 1981 with cost-efficient operations and fares
50 to 70% lower than the major carriers. By 1984, its revenues were
approaching $1 billion, and for the year 1984 it posted a profit of $60
million, its highest profit ever (Cross [137]).

While these developments resulted in a significant migration of price-
sensitive discretionary travelers to the new, low-cost carriers, the major
airlines had strengths that these new entrants lacked. They offered more
frequent schedules, service to more city pairs and an established brand
name and reputation. For many business travelers, schedule convenience
and service was (and still is) more important than price, so the threat
posed by low-cost airlines was less acute in the business-traveler segment
of the market. Nevertheless, the cumulative losses in revenue from the
shift in traffic were badly damaging the profits of major airlines.

A strategy to recapture the leisure passenger was needed. Yet, for the
majors, a head-to-head, across-the-board price war with the upstarts
was deemed almost suicidal; with their much lower costs, airlines like
PeopleExpress could earn a profit at the new low prices, while most
majors would lose money at a staggering rate.

Robert Crandall, American Airline’s vice president of marketing at the
time, is widely credited with the breakthrough in solving this problem.
He recognized that his airline was already producing seats at a marginal
cost near zero because most of the costs of a flight (capital costs, wages,
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fuel) are fixed. As a result, American could in fact afford to “compete
on cost” with the upstarts using its surplus seats.

However, two problems had to be solved to execute this strategy.
First, American had to have some way of identifying the “surplus” seats
on each flight. The scheme would not be profitable if a sale of a low-price
seats displaced high-paying business customers.3 Second, they had to
ensure that American’s business customers did not switch and buy the
new low-price products it offered to discretionary, leisure customers.

American solved these problems using a combination of purchase re-
strictions and capacity-controlled fares. First, they designed discounts
that had significant restrictions for purchase: they had to be purchased
30 days in advance of departure, were nonrefundable, and required a
seven day minimum stay. These restrictions were designed to prevent
most business travelers from utilizing the new low fares. At the same
time, American limited the number of discount seats sold on each flight:
they capacity-controlled the fares. This combination provided the means
to compete on price with the upstart airlines without damaging their
core business-traveler revenues.

The new pricing scheme was launched in 1978 as American Super-
Saver Fares. The fares were quite successful at stemming the tide of
defections of discretionary travelers to the low-cost airlines.

Despite this initial success, American experienced some significant
problems implementing its new strategy. Initially, American’s capacity
controls were based on setting aside a fixed portion of seats on each
flight for the new low-fare products. But as American gained experi-
ence with its Super-Saver fares, it realized that not all flights were the
same. Flights on different days and at different times had very different
patterns of demand. Some had many excess seats and could profitably
support a higher allocation of discount seats; others had sufficient de-
mand for regular-priced seats and warranted very little if any allocation
to the new, discounted products.

American realized that a more intelligent approach was needed to
realize the full potential of capacity-controlled discounts. It therefore
embarked on the development of what became known as the Dynamic
Inventory Allocation and Maintenance Optimizer system (DINAMO).
These efforts on DINAMO represent, in many ways, the first large-scale
RM system development in the industry. (Though on a more modest
scale, the capacity-control problem dates back to the mid-1970s, and
other airlines and the Boeing Aircraft Company were experimenting with

3As we show in the chapters that follow, a notion of this sort of displacement cost is central
to the theory of RM.
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similar ideas at the time.) The DINAMO system was large and complex
and took several years to develop and refine.

DINAMO was implemented in full in January 1985 along with a new
fare program entitled Ultimate Super-Saver Fares, which matched or
undercut the lowest discount fares available in every market American
served.

DINAMO made all this possible. American could now be much
more aggressive on price. It could announce low fares that spanned
a large swath of individual flights, confident in its capability to accu-
rately capacity-control the discounts on each individual departure. If
a rival airline advertised a special fare in one of American’s markets,
American could immediately match the offer across the board, knowing
that the DINAMO system would carefully control the availability of this
fare on the thousands of departures affected by the price change. More-
over, the competition could not observe American’s capacity controls
unlike prices themselves, which, thanks to GDSs, instantly became pub-
lic information. This feature of pricing aggressively and competitively
at an aggregate, market level, while controlling capacity at a tactical,
individual-departure level still characterizes the practice of RM in the
airline industry today.

The effect of this new capability was dramatic. PeopleExpress was
especially hard hit as American repeatedly matched or beat their prices
in every market it served. PeopleExpress’s annual profit fell from an
all-time high in 1984 (the year prior to implementation of DINAMO)
to a loss of over $160 million by 1986 (one year after DINAMO was
implemented). It soon went bankrupt as a result of mounting losses,
and in September 1986 the company was sold to Continental Airlines.

Donald Burr, CEO of PeopleExpress, summarized the reasons behind
the company’s failure [137]:

We were a vibrant, profitable company from 1981 to 1985, and then we tipped
right over into losing $50 million a month. We were still the same company.
What changed was American’s ability to do widespread Yield Management in
every one of our markets. We had been profitable from the day we started
until American came at us with Ultimate Super Savers. That was the end of
our run because they were able to under-price us at will and surreptitiously.

Obviously PeopleExpress failed … We did a lot of things right. But we didn’t
get our hands around Yield Management and automation issues. … [If I were
to do it again,] the number one priority on my list every day would be to see
that my people got the best information technology tools. In my view, that’s
what drives airline revenues today more than any other factor—more than
service, more than planes, more than routes.”
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This story was played out in similar fashion throughout the airline
industry in the decades following deregulation. And airlines that did
not have similar RM capabilities scrambled to get them.

As a result of this history, the practice of RM in the airline industry
today is both pervasive and mature, and RM is viewed as critical to
running a modern airline profitably. For example, American Airlines’
estimates that its RM practices generated $1.4 billion in additional in-
cremental revenue over a three-year period starting around 1988 [477].
Many other carriers also attribute similar improvements in their revenue
due to RM.

1.2.2 Consequences of the Airline History
The intimate connection of RM to the airline industry is both a bless-

ing and a curse for the field of RM. The blessing is that RM can point
to a major industry in which the practice of RM is pervasive, highly
developed, and enormously effective. Indeed, a large, modern airline to-
day would just not be able to operate profitably without RM. By most
estimates, the revenue gains from the use of RM systems are roughly
comparable to many airlines’ total profitability in a good year (about
4 to 5% of revenues).4 And the scale and complexity of RM at ma-
jor airlines is truly mind-boggling. Therefore, the airline success story
validates both the economic importance of RM and the feasibility of
executing it reliably in a complex business environment. This is the
good-news story for the field from the airline experience.

The bad news—the curse if you will—of the strong association of RM
with airlines is that it has created a certain myopia inside the field.
Many practitioners and researchers view RM solely in airline-specific
terms, and this has at times tended to create biases that have hampered
both research and implementation efforts in other industries.

A second problem with the airline-specific association of RM is that
airline pricing has something of a bad reputation among consumers.
While on the one hand customers love the very low fares made possible by
RM practices, the fact that fares are complex, are available one minute
and gone the next, and can be drastically different for two people sitting
side by side on the same flight, has led to a certain hostility toward
the way airlines price. As a result, managers outside the industry are
at times, quite naturally, somewhat reluctant to try RM practices for
fear of engendering a similar hostile reaction among their customers.

4 Many skeptics point to Southwest Airlines as a counterexample, but Southwest does use
RM systems. However, because its pricing structure is simpler than most other airlines the
use of RM is less obvious to consumers and casual observers.
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Yet the reality is that, in most cases, applying RM does not involve
radically changing the structure of pricing and sales practices; rather, it
is a matter of making more intelligent decisions.

1.3 A Conceptual Framework for RM
So if airlinelike conditions aren’t strictly necessary for RM, then ex-

actly where does it apply? A short answer is: in any business where
tactical demand management is important and the technology and man-
agement culture exists to implement it. But this in turn begs the ques-
tion: when do these conditions arise? To answer this question, it helps
to begin with a conceptual framework for thinking about the demand
management process.

1.3.1 The Multidimensional Nature of Demand
A firm’s demand has multiple dimensions, including (1) the different

products it sells, (2) the types of customers it serves, their preferences for
products, and their purchase behaviors, and (3) time. Other dimensions
(such as, locations or channels) also affect the nature of a firm’s demand,
but these three dimensions—products, customers, and time—suffice to
illustrate the idea.

Figure 1.1 shows these three demand dimensions. A single cell in the
figure indicates a particular customer’s valuation for a particular product
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at a particular point in time. RM addresses the structural, price, timing
and quantity decisions a firm makes in trying to exploit the potential of
this multidimensional demand landscape.

For example, some RM problems look at exploiting heterogeneity in
valuations among customers for a single product at a single point in
time: they fix the product and time dimension and try to optimize over
the customer dimension. This problem is characteristic of the classi-
cal auction-design problems discussed in Chapter 6 and classical price-
discrimination problems discussed in Chapter 8. Other RM problems
look at dynamically pricing a single product to heterogeneous customers
over time: they fix the product dimension and optimize over the cus-
tomer and time dimensions. Such problems are addressed in Chapter 5.
Others, such as the network problems in Chapter 3, address manag-
ing demand decisions for multiple products over multiple time periods,
and the customer-behavior dimension is not explicitly considered. Of
course, all three dimensions are important factors in practice. However,
methodologically one often has to decompose and simplify the problem
to develop implementable solutions.

1.3.2 Linkages Among Demand-Management
Decisions

If the decisions affecting the demand landscape in Figure 1.1 were
independent, then the decision-making problem would be considerably
simpler. However, typically one or more of the following three factors
link the demand across these dimensions.

First, multiple products may share production capacity or have joint
production costs. In such cases, the demand-management decision for
different products or for a given product in different periods of time are
interrelated. For example, because of joint capacity constraints, accept-
ing demand from a customer for a particular product at a specific point
in time may mean giving up opportunities to accept demand at later
points in time, or because lowering the price of one product increases
its demand, this may reduce the capacity available for producing other
products.

Second, even if production constraints do not link demand decisions,
customer behavior often does. Customers may choose among substi-
tute products at any given point in time, or customers may strategize
over their timing in purchasing a given product. As a result, the price
or quantity decisions that a firm makes about one product may affect
demand for related products—or may affect the future demand for the
same product.
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Finally, demand decisions for different products, customers, and time-
periods may also be linked in terms of the information the firm gains.
The most common link is over time; observed demand to date may reveal
information about future demand. Thus, a decision about price today
may affect the information we gain about demand sensitivity, which will
affect future pricing decisions. Also, a firm selling the same product
in geographically separated markets or in different channels may gain
information in one location or channel as a result of observing demand
that impacts its decisions in other locations and channels. Or the ob-
served purchase decisions of a given customer may reveal information
about that customer’s future purchase decisions. Such linkages com-
plicate demand-management decisions, and managing the often subtle
tradeoffs they create is a key motivation for RM.

1.3.3 Business Conditions Conducive to RM
Given this conceptualization of the demand-management problem,

one can begin to gain insights into conditions in which RM is likely
to be beneficial. Here, we discuss a few such conditions.

1.3.3.1 Customer Heterogeneity
If all customers value a product identically and exhibit similar pur-

chase behavior, then the customer dimension of Figure 1.1 is essentially
lost. As a result, there is less potential to exploit variations in willing-
ness to pay, variations in preference for different products, and varia-
tions of purchase behavior over time. Therefore, the more heterogeneity
in customers, the more potential there is to exploit this heterogeneity
strategically and tactically to improve revenues.

Customers in the airline and hotel industries certainly exhibit this
characteristic. They have widely varying patterns of usage and behavior
in terms of when they purchase and how flexible their plans are, and
they place very different valuations on the need to travel.

1.3.3.2 Demand Variability and Uncertainty
The more demand varies over time (due to seasonalities, shocks and

so on) and the more uncertainty one has about future demand (the more
variance there is along the time dimension in Figure 1.1) the more diffi-
cult the demand-management decisions become. Hence, the potential to
make bad decisions rises, and it becomes important to have sophisticated
tools to evaluate the resulting complex tradeoffs.
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Consider the demand for air travel. It exhibits significant variations
(by season, time of day, day of week, holidays) and even correcting for
this predictable seasonal variation is highly uncertain for a given flight.

1.3.3.3 Production Inflexibility
As mentioned, joint production constraints and costs complicate the

demand-management problem. If a firm can “absorb” variations in de-
mand easily and costlessly through variations in supply, then the com-
plexity of managing demand diminishes; you just supply enough to meet
demand. However, the more inflexible the production—the more delays
involved in producing units, the more fixed costs or economies of scale
involved in production, the more the switch-over costs, the more capac-
ity constraints—the more difficult or costly it becomes to match demand
variations with supply variations. As a result, inflexibility leads to more
interaction in the demand management at different points in time, be-
tween different segments of customers, across different products of a
product line, and across different channels of distribution (the different
cells in Figure 1.1). The complexity increases and the consequences of
poor decisions become more acute. Hence, RM becomes more beneficial.

Again, the airline industry is one in which production is very inflexi-
ble. Essentially, when committing to fly a flight from A to B, an airline
both fixes the level of its output (the number of seats) and, for all prac-
tical purposes, the total cost of that output—independent of how many
customer actually fly on the flight. Its unit cost per seat sold, therefore,
varies tremendously with the volume of sales, and once the capacity
constraint is reached, no more production is possible. Worse yet, like
all services, output cannot be inventoried, so production of air transport
output in one period cannot be used to satisfy demand in later periods
(an unsold seat on Monday cannot be used to supply the need of an ex-
cess passenger on Tuesday). All these factors combine to create extreme
inflexibility in the technology of air transport service, and this is one of
the key driving factors in the importance of RM in this industry.

1.3.3.4 Price as a Signal of Quality
The extent to which price is a signal of quality is also a factor. For

example, people buy a $10,000 Patek Philippe watch partly for its aes-
thetics and functionality but also, to a large extent, because they want
the exclusivity of a $10,000 watch. The price is a key feature of the
watch, as it is with most luxury goods. They are status symbols, and to
lower or manipulate the price risks damaging this status.

A more subtle case is observed in situations where it is hard to assess
quality through other, objective means. For example, the hourly rate
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of a prominent attorney or consultant, the tuition at an Ivy League
university, and the price of a bottle of wine on a dinner menu—all play
important roles as signals of quality to consumers. Again, tampering
with prices for tactical reasons in such settings jeopardizes the signaling
value of prices. Therefore, RM is more suited to products where price
is not a status symbol and not a significant signal of value—where price
and quality are decoupled in the consumer’s mind.

Airlines are arguably a good example. While different airlines posi-
tion themselves differently with respect to price and quality (e.g., no-
frills discount carriers and full-service, mainstream carriers), consumers
generally do not associate the price of an airline ticket with the quality
of the particular flight. We do not expect a “nicer” flight when paying
$300 more because we booked our ticket at the last minute or because we
booked our flight on a holiday weekend as opposed to a normal weekday.
Moreover—despite what some airline marketers might like to believe—
most consumer do not have strong quality preferences among airlines,
at least not sufficient to outweigh even relatively small differences in
schedule and price. This is one of the main motivations behind the
introduction of loyalty schemes in the industry, which are really an at-
tempt to “synthesize” a high level of brand loyalty among a group of
consumers who innately have very little of it.

1.3.3.5 Data and Information Systems Infrastructure
To operationalize RM requires data to accurately characterize and

model demand. It also requires systems to collect and store the data
and to implement and monitor the resulting real-time decisions. In most
industries it is usually feasible—in theory, at least—to collect and store
demand data and automate demand decisions. However, attempting
to apply RM in industries that do not have databases or transactions
systems in place can be a time-consuming, expensive, and risky propo-
sition. RM, therefore, tends to be more suited to industries where and
transaction-processing systems are already employed as part of incum-
bent business processes.

Again, the airline industry is a perfect case in point. It is an industry
whose pricing and distribution processes were largely automated with
the introduction of GDSs in the 1960’s and 1970’s. In fact, it is one of
the earliest industries to move almost entirely to electronic selling and
distribution—decades before the advent of e-commerce. This long his-
tory of using information systems to automate business processes meant
that it was quite natural to implement RM in the airline industry when
the time came.
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1.3.3.6 Management Culture
RM is a technically complex and demanding practice. There is a risk,

therefore, that a firm’s management may simply not have sufficient fa-
miliarity with—or confidence in—science and technology to make imple-
menting a RM system a realistic prospect. The culture of the firm may
not be receptive to innovation or may value more intuitive approaches
to problem solving. This is often due to the culture of the industry and
its managers: their educational backgrounds, their professional experi-
ences and responsibilities en route to leadership positions, and the skills
required to succeed in the industry.

Again, the airline industry serves as a good example. Modern air-
lines cannot run without information systems: systems for ticketing and
reservations, scheduling crews and aircraft, handling baggage, planning
meals and operational control (rerouting aircraft because of delays and
breakdowns, and so on). Also, airline managers are accustomed to ap-
plying scientific methods in managing these various operations. In fact,
long before RM was practiced in the industry, most large airlines had
staffs of operations researchers working on complex problems of schedul-
ing and fleet assignment. When RM came along, the management and
culture in the industry were therefore well conditioned to accept it.

1.3.4 Industry Adopters Beyond the Airlines
What do these conditions imply for adopters of RM technology? Chap-

ter 10 reviews specific industry adopters in detail, so here we only briefly
mention some of them.

The production-inflexibility characteristics of airlines are shared by
many other service industries, such as hotels, cruise ship lines, car rental
companies, theaters and sporting venues, and radio/TV broadcasters, to
name a few. Indeed, RM is strongly associated with service industries.

Retailers have recently begun to adopt RM, especially in the fashion
apparel, consumer electronics, and toy sectors. Retail demand is highly
volatile and uncertain, consumers’ valuations change rapidly over time,
and with short selling seasons and long production and distribution lead
times, supply is quite inflexible. On the technology front, the introduc-
tion of bar codes and point-of-sale (POS) technology has resulted in a
high degree of automation of sales transactions for most major retailers.

The energy sector has been a recent adopter of RM methods as well,
principally in the area of managing the sale of pipeline capacity for gas
transportation. Again, energy demands are volatile and uncertain, and
the technology for generating and transmitting electricity and gas can
be inflexible. Also, thanks to deregulation in the industry, there has
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been a lot of experimentation and innovation in the pricing practices of
energy, gas, and transmission markets.

Manufacturing is potentially a vast market for RM methods, though
to date relatively few instance of the practice have been documented.
To a large extent this is due to the fact that supply is more flexible,
and, for durable goods, customers have more flexibility in their pur-
chase timing. This somewhat diminishes the impact of RM and creates
unique challenges for the methodology as well. Still, there is immense
interest in RM in manufacturing. Enterprise resource planning (ERP),
supply-chain management (SCM), and customer-relationship manage-
ment (CRM) systems are commonplace in the industry, and most man-
ufacturers have huge amounts of data and heavily automated business
processes, which could form the foundations for RM. Indeed, in the auto
industry Ford Motor Corporation recently completed a high-profile im-
plementation of RM technology [135].

What about future adopters of RM? Given the criteria outlined above,
one can argue that many industries are potential candidates. Almost all
businesses must deal with demand variability, uncertainty, and customer
heterogeneity. Most are subject to some sort of supply or production
inflexibility. Finally, thanks largely to the wave of enterprise software
and e-commerce innovation of late, many firms have now automated
their business processes. All of these factors bode well for the future of
RM.

Nevertheless, as with any technological and business-practice innova-
tion, the case for RM ultimately boils down to a cost-benefit analysis for
each individual firm. For some, the potential benefit will simply never
justify the costs of implementing RM systems and business processes.
However, we believe that for the majority of firms, RM will eventually
be justified once the technology and methodology in their industry ma-
tures. Indeed, the history of RM in industries such as airlines, hotels,
and retail suggests that once the technology gains a foothold in an indus-
try, it spreads quite rapidly. As a result, we would not be surprised to
see RM systems (or systems performing RM functions under a different
label) become as ubiquitous as ERP, SCM, and CRM systems are today.

1.4 An Overview of a RM System
Here, we give a brief description of the generic operations of a RM

system. This introduces the key components and gives an overview of
the information flows, controls, and design of a RM system. The details
of the science and systems involved in each component are covered in
later chapters.

RM generally follows four steps:
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1.

2.

3.

4.

Data collection: Collect and store relevant historical data (prices,
demand, causal factors).

Estimation and forecasting: Estimate the parameters of the demand
model; forecast demand based on these parameters; forecast other rel-
evant quantities like no-show and cancellation rates, based on trans-
action data.

Optimization: Find the optimal set of controls (allocations, prices,
markdowns, discounts, overbooking limits) to apply until the next
re-optimization.

Control: Control the sale of inventory using the optimized control.
This is done either through the firm’s own transaction-processing
systems or through shared distribution systems (such as GDSs).

The RM process typically involves cycling through these steps at re-
peated intervals. The frequency with which each step is performed is
a function of many factors such as the volume of data, the speed that
business conditions change, the type of forecasting and optimization
methods used, and the relative importance of the resulting decisions.
For example, most RM systems in airline and hotel applications stag-
ger the dates—data collection points (DCPs)—when they collect data,
reforecast, and reoptimize, with the cycle occurring more frequently (at
least daily) as the service time nears. This is because in these industries,
a substantial portion of the reservations occurs during the last few days
before the time of service.

Figure 1.2 shows the process flow in a RM system. Data is fed to
the forecaster; the forecasts become input to the control optimizer; and
finally the controls are uploaded to the transaction-processing system,
which controls actual sales.

1.5 The State of the RM Profession
On the practice side, the profession can be divided into users (the firms

and individuals who use RM methods to manage their business) and
vendors (the firms and individuals who develop and supply technology
and consulting services to users). Of course, this division is not always
sharp. Many users of RM, especially in the airline industry, have research
and development organizations that provide significant components of
their firm’s RM technology. Still, most users—even those with their own
RM staff—rely on vendors in part or whole for their technology. Often,
the role of a user’s R&D staff is to serve as in-house technology advisers
and consultants, helping senior management evaluate new technologies
and manage the relationships with the firm’s technology vendors.
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In most user organizations, the vast majority of RM staff are involved
in day-to-day RM operational activities: training and supervision of
field staff, managing pricing and capacity controls in individual mar-
kets, overseeing automated decisions and intervening where necessary or
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maintaining computer systems. The typical senior management titles in
such organizations are VP of RM or VP of pricing and inventory control.
The organization typically has a corporate staff that is responsible for
overall RM strategy, policy and systems and line management and staff
responsible for RM processes in specific business units and markets.

Except for a few large airlines that develop their own systems, RM
software is developed by a handful of RM vendors, many of whom spe-
cialize in a particular industry. Most of these firms have both a sci-
entific staff to develop models and algorithms (operations researchers,
marketing scientists, statisticians, economists), an IT and software staff
to develop the associated software and systems, and a consulting staff to
provide training and implementation services. The resulting products
are usually customized for each user’s particular business conditions.
Vendors also provide training and consulting in the use of the systems.
To this list of RM-specific vendors, one ought to add the major enterprise
software and technology companies and general IT consulting and soft-
ware companies that, though not specifically identified as RM vendors,
nevertheless provide some RM products and services.

1.6 Chapter Organization and Reading Guide
We next describe the organization of the book and then provide our

suggestions for how to approach the material.

1.6.1 Chapter Organization
The book is divided into three main parts. Part I addresses quantity-

based RM, in which the primary demand-management decisions concern
product rationing and availability control—how much to sell to whom,
whether to accept or reject requests for products, and so on. These are
the core set of problems behind traditional airline RM and closely related
industries like hotels and rental car industries. Part I is comprised of
these chapters:

Chapter 2, Single-Resource Capacity Control: This chapter looks at
capacity controls for a single resource (seats on a single flight, ho-
tel rooms on a single night) that is sold to differentiated demand
classes—the so-called single-leg problem in airline RM parlance. We
provide a comprehensive treatment of the classic exact and heuris-
tic approaches to this problem, as well as a number of more recent
advances.

Chapter 3, Network Capacity Control: This chapter looks at the
same capacity-control decisions, but in a setting in which products
require multiple resources—called the network problem. The main
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motivation is controlling availability of discount classes at an origin-
destination (O&D) level in an airline network. However, hotels face
a similar network problem when they control capacity by length of
stay. Because the network capacity-control problem is significantly
more complex than the single-resource problem, most of the methods
in this chapter are based on approximations.

Chapter 4, Overbooking: This chapter looks at the practice of
overbooking—accepting more reservations than physical capacity as
a hedge against cancellations. The topic is somewhat specialized
to reservation-based industries like airlines, hotels, and car rentals.
While in a sense overbooking is a demand-management decision, it
is somewhat different from the pricing and allocation decisions of the
other chapters. However, overbooking is intimately connected to RM
in the airline and hotel industries and is almost always implemented
in conjunction with RM capacity controls. It is also extremely im-
portant economically in these industries and forms a significant and
visible part of RM.

Part II of the book examines price-based RM, in which the primary
demand decisions are prices—how to price to various customer groups or
how to vary prices over time. Both posted price and auction mechanisms
are considered. These price-based RM problems are more typical of retail
and manufacturing RM. Part II has two chapters:

Chapter 5, Dynamic Pricing: In this chapter we look at a problem in
which the principle demand decision is how to adjust prices over time,
subject to demand variability and uncertainty and various constraints
or costs on re-supply. Many of the retail RM systems are based on
the types of models discussed in this chapter.

Chapter 6, Auctions: Auctions are an important and long-standing
pricing mechanism in many industries and, with the rise of e-
commerce, have gained popularity as a alternatives to posted pricing.
The basic types of auctions are discussed along with the theory of op-
timal auction design. We discuss the implications of this theory for
dynamic pricing in general and look at classical auctions, dynamic
auctions and network auctions.

Finally, the five chapters in Part III of the book examine components
of RM that are common to both quantity and price-based RM:

Chapter 7, Customer Behavior and Market-Response Models: This
chapter summarizes the core demand-modeling theory and methodol-



22 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

ogy underlying RM. We discuss the basic theory of consumer behav-
ior and develop several of the demand models used in both quantity
and price-based RM. Both individual customer choice and aggregate
market-demand models are covered.

Chapter 8, The Economics of RM: Here we discuss the economic
theory of RM. We briefly survey classical monopoly and oligopoly
pricing theory as well as the theory of price discrimination, peak-
load pricing, and pricing under demand uncertainty, all of which are
particularly relevant to understanding the strategies and tactics used
in RM practice.

Chapter 9, Estimation and Forecasting: This chapter addresses the
broad range of issues involved in estimating models from data and
building forecasts of future demand. We survey the main estimation
and forecasting methods commonly used in practice. The coverage is
not intended to be as in-depth as specialized books on these topics
but rather to review the basic assumptions and theory of each method
and its role in RM practice.

Chapter 10, Industry Profiles: This chapter provides detailed de-
scriptions of several industries practicing RM, including information
on consumers, products, sales practice and technology—all of which
impact the real world practice of RM. For experienced industry in-
siders, much of this material may be well-known. However, for new
employees in an industry, for academics, and for industry practi-
tioners looking at a different industry, the chapter provides useful
information on the institutional context in which RM is practiced.

Chapter 11, Implementation: This chapter discusses issues involved
in implementing a RM system, including product design, organiza-
tional and technology-management issues, all factors critical in mak-
ing a RM system effective in application.

1.6.2 Reading Guide
Some readers will not want to read the book in strict sequential or-

der. It is certainly possible to read Parts I and II independently of one
another. Readers who are interested primarily in traditional quantity-
based RM should begin with Part I, while those interested primarily in
price-based RM problems could begin with Part II and then look at Part
I afterwards. However, within Parts I and II chapters are interrelated,
with later chapters building on ideas developed in earlier chapters.

Each chapter provides a comprehensive introduction as well, so read-
ers may wish to begin by looking through each of the chapter introduc-
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tions to get a sense of the scope of each one and then read individual
chapters in detail according to their level of interest.

Parts I and II can also be read largely independently of Part III,
though the material in Part III provides useful background. While some
readers may choose to use Part III only as a reference, in our view each
chapter in Part III is also of significant independent interest. Readers
interested in the theory underlying RM will find Chapter 7 on demand
modeling and Chapter 8 on economics of particular interest. Those
interested primarily in the applied elements of RM will find Chapter 9
on forecasting methods and Chapters 10 and 11 on industry profiles and
implementation (respectively) most useful.

The chapters in Part III are not strongly interrelated and may be read
in any order. However, the material in Part III is best understood in the
context of the topics covered in Parts I and II; hence, we recommend
at least skimming the introductions of chapters in Parts I and II before
reading Part III in detail.

1.7 Notes and Sources
The 1997 book by Robert Cross, RM: Hard Core Tactics for Market

Domination [137] was influential in popularizing the story of airline RM
and introducing the concept of RM to the general business community.
Bob Cross was then chairman and CEO of Aeronomics, a RM consul-
tancy and software firm. It is a nontechnical and lively book for a general
audience , and is informative reading, providing nice descriptions of the
early history of RM in the airline industry, many practical anecdotes,
and insights into the philosophy and challenges of implementing RM.
Several other books on RM have been published recently. One is an
edited volume by Ingold, McMahon-Beattie, and Yeoman [263] that fo-
cuses primarily on the hotel industry. Another, Daudel and Vialle [146],
focuses on air transportation. Both, however, deal more with practical
and conceptual issues and do not cover the scientific methods of RM
in much depth. The book by Nagel and Holden [400] provides a com-
prehensive overview of many managerial issues involved in pricing and
is useful reading. However, it does not address tactical RM decision
making in depth.

Several survey articles provide general coverage of RM. The Hand-
book of Airline Economics edited by Jenkins [268] provides several good
practice-oriented articles on RM in the airline industry. Kimes [301] pro-
vides a conceptual introduction to RM with a hotel RM focus. Smith et
al. [477] provide a nice description of the practice of RM at American
Airlines and the DINAMO system.
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As for guides to the research literature, Weatherford and Bodily [556]
propose a taxonomy for classifying the sets of assumptions used in
many traditional RM models, although the taxonomy itself is little used.
McGill and van Ryzin [374] provide a comprehensive overview and an-
notated bibliography of the published academic literature in the field
through 1998. Elmaghraby and Keskinocak [177] provide a survey on
research in the area of dynamic pricing.
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QUANTITY-BASED RM
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Chapter 2

SINGLE-RESOURCE
CAPACITY CONTROL

2.1 Introduction
In this chapter, we examine the problem of quantity-based revenue

management for a single resource; specifically, optimally allocating ca-
pacity of a resource to different classes of demand. Two prototypical
examples are controlling the sale of different fare classes on a single flight
leg of an airline and the sale of hotel rooms for a given date at differ-
ent rate classes. This is to be contrasted with the multiple-resource—or
network—problems of Chapter 3, in which customers require a bundle of
different resources (such as two connecting flights or a sequence of nights
at the same hotel). In reality, many quantity-based RM problems are
network RM problems, but in practice, they are still frequently solved
as a collection of single-resource problems (treating the resources inde-
pendently). For this reason, it is important to study single-resource RM
models. Moreover, single-resource models are useful as building blocks
in heuristics for the network case.

We assume that the firm sells its capacity in distinct classes1 that
require the same resource. In the airline and hotel context, these classes
represent different discount levels with differentiated sale conditions and
restrictions. In the early parts of this chapter, we assume that these
products appeal to distinct and mutually exclusive segments of the
market: the conditions of sale segment the market perfectly into
segments—one for each class. Customers in each segment are eligible
for or can afford only the class corresponding to their segment. Later in

1In the case of airlines, these are called fare classes. Terms like rate products, rate classes,
revenue classes, booking classes and fare products are also used. We shall use the generic
term class in this chapter.
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the chapter, we look at models that do not assume that customers are
perfectly segmented, but instead that they choose among the classes.

The units of capacity are assumed homogeneous, and customers de-
mand a single unit of capacity for the resource. The central problem
of the chapter is how to optimally allocate the capacity of the resource
to the various classes. This allocation must be done dynamically as de-
mand materializes and with considerable uncertainty about the quantity
or composition of future demand. The remainder of the chapter focuses
on various models and methods for making these capacity-allocation de-
cisions.

2.1.1 Types of Controls
In the travel industry, reservation systems provide different mecha-

nisms for controlling availability. These mechanisms are usually deeply
embedded in the software logic of the reservation system and, as a re-
sult, can be quite expensive and difficult to change. Therefore, the con-
trol mechanisms chosen for a given implementation are often dictated
by the reservation system. The details of reservations systems and the
constraints they impose are discussed in greater detail in Chapters 10
and 11. Here, we focus on the control mechanisms themselves.

2.1.1.1 Booking Limits
Booking limits are controls that limit the amount of capacity that can

be sold to any particular class at a given point in time. For example, a
booking limit of 18 on class 2 indicates that at most 18 units of capacity
can be sold to customers in class 2. Beyond this limit, the class would
be “closed” to additional class 2 customers. This limit of 18 may be
less than the physical capacity. For example, we might want to protect
capacity for future demand from class 1 customers.

Booking limits are either partitioned or nested: A partitioned booking
limit divides the available capacity into separate blocks (or buckets) —
one for each class—that can be sold only to the designated class. For
example, with 30 units to sell, a partitioned booking limit may set a
booking limit of 12 units for class 1, 10 units for class 2, and 8 units for
class 3. If the 12 units of class 1 capacity are used up, class 1 would
be closed regardless of how much capacity is available in the remaining
buckets. This could be undesirable if class 1 has higher revenues than
do classes 2 and 3 and the units allocated to class 1 are sold out.

With a nested booking limit, the capacity available to different classes
overlaps in a hierarchical manner—with higher-ranked classes having
access to all the capacity reserved for lower-ranked classes (and perhaps
more). Let the nested booking limit for class be denoted Then
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is the maximum number of units of capacity we are willing to sell
to classes and lower. So in Figure 2.1, the nested booking limit on
class 1 and lower (all classes) would be (the entire capacity), the
nested booking limit on classes 2 and 3 combined would be and
the nested booking limit on class 3 alone would be We would
accept at most 30 bookings for classes 1, 2, and 3, at most 18 for classes
2 and 3 combined, and at most 8 for class 3 customers. Effectively, this
logic simply allows any capacity “left over” after selling to low classes
to become available for sale to higher classes.

Nesting booking limits in this way avoids the problem of capacity
being simultaneously unavailable for a high class yet available for lower
classes. Most reservations systems that use booking-limit controls quite
sensibly use nested rather than partitioned booking limits for this reason.
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2.1.1.2 Protection Levels
A protection level specifies an amount of capacity to reserve (protect)

for a particular class or set of classes. Again, protection levels can be
nested or partitioned. A partitioned protection level is trivially equivalent
to a partitioned booking limit; a booking limit of 18 on class 2 sales is
equivalent to protecting 18 units of capacity for class 2.

In the nested case, protection levels are again defined for sets of
classes—ordered in a hierarchical manner according to class order. Sup-
pose class 1 is the highest class, class 2 the second highest, and so on.
Then the protection level denoted is defined as the amount of ca-
pacity to save for classes combined—that is, for classes
and higher (in terms of class order). Continuing our example, we might
set a protection level of 12 for class 1 (meaning 12 units of capacity
would be protected for sale only to class 1), a protection level of 22 for
classes 1 and 2 combined, and a protection level of 30 for classes 1, 2,
and 3 combined. (Though frequently no protection level is specified for
this last case since it is clear that all the capacity is available to at least
one of the classes.)

Figure 2.1 shows the relationship between protection levels and book-
ing limits. The booking limit for class is simply the capacity minus
the protection level for classes and higher. That is,

where C is the capacity. For convenience, we define (the highest
class has a booking limit equal to the capacity) and (all classes
combined have a protection level equal to capacity).

2.1.1.3 Standard Versus Theft Nesting
The standard process for using booking limits or nested protection

levels proceeds as follows. Starting with C units of capacity, we begin
receiving bookings. A bookings for class is accepted provided (1) there
is capacity remaining and (2) the total number of requests accepted for
class to date is less than the booking limit (equivalently, the current
capacity remaining is more than the protection level for classes
higher than ). This is called standard nesting, and it is the most natural
and common way to implement nested-capacity controls.

Another alternative, which is less prevalent though still encountered
occasionally in practice, is called theft nesting. In theft nesting, a book-
ing in class not only reduces the allocation for class but also “steals”
from the allocation of all lower classes. So when we accept a request for
class not only is the class allocation reduced by one but so are the
allocations for classes This is equivalent to keeping
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units of capacity protected for future demand from class and higher.
In other words, even though we just accepted a request for class under
theft nesting we continue to reserve units for class and higher, and
to do so requires reducing the allocation for classes
Under standard nesting, in contrast, when we accept a request from class

we effectively reduce by one the capacity we protect for future demand
from class and higher.

The rationale for standard nesting is that the capacity protected for,
say, class 1 is based on a forecast of future demand for class 1. Once
we observe some demand for class 1, we then reduce our estimate of
future demand—and hence the capacity we protect for class 1. Standard
nesting does this by reducing the capacity protected for future class 1
demand on a one-for-one basis after each arriving request is accepted
(and similarly for other classes as well). To illustrate, suppose in our
example demand for class 1 is deterministic and equal to the protection
level Then if we receive 5 requests for class 1, we know for
certain that future demand for class 1 will be only 7 and hence that it
makes sense to reduce the capacity we protect for future demand from
12 to 7, which is precisely what standard nesting does. Theft nesting, in
contrast, intuitively corresponds to an assumption of “memorylessness”
in demand. In other words, it assumes the demand to date for class 1
does not affect our estimate of future demand for class 1. Therefore,
we continue to protect units of capacity for class 1 (and hence must
reduce the allocation for classes ).

The two forms of nesting are in fact equivalent if demand arrives
strictly in low-to-high class order; that is, the demand for class ar-
rives first, followed by the demand for class and so on.2 This is
what the standard (static) single-resource models assume, so for these
static models, the distinction is not important. However, in practice
demand rarely arrives in low-to-high order, and the choice of standard
versus theft nesting matters. With mixed order of arrivals, theft nesting
protects more capacity for higher classes (equivalently, allocates less ca-
pacity to lower classes). Again, however, standard nesting is the norm
in RM practice.

2.1.1.4 Bid Prices
What distinguishes bid-price controls from both booking limits and

protection levels is that they are revenue-based rather than class-based
controls. Specifically, a bid-price control sets a threshold price (which

2It is easy to convince oneself of this fact by tracing out the accept/deny decisions under
both forms of nesting, and doing so is an instructive exercise.
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may depend on variables such as the remaining capacity or time), such
that a request is accepted if its revenue exceeds the threshold price and
rejected if its revenue is less than the threshold price. Bid-price controls
are, in principle, simpler than booking-limit or protection-level controls
because they require only storing a single threshold value at any point
in time—rather than a set of capacity numbers, one for each class. But
to be effective, bid prices must be updated after each sale—and possibly
also with time as well—and this typically requires storing a table of bid
price values indexed by the current available capacity, current time, or
both.

Figure 2.1 shows how bid prices can be used to implement the same
nested-allocation policy as booking limits and protection levels. The bid
price is plotted as a function of the remaining capacity When
there are 12 or fewer units remaining, the bid price is over $75 but less
than $100, so only class 1 demand is accepted. With 13 to 22 units
remaining, the bid price is over $50 but less than $75 so only classes 1
and 2 are accepted. With more than 22 units of capacity available, the
bid price drops below $50 so all three classes are accepted.

Bid-price control is criticized by some as being “unsafe”—the argu-
ment being that having a threshold price as the only control means that
the RM system will sell an unlimited amount of capacity to any class
whose revenues exceed the bid price threshold. But this is true only if
the bid price is not updated. As shown in Figure 2.1, if the bid price is a
function of the current remaining capacity, then it performs exactly like
a booking limit or protection level, closing off capacity to successively
higher classes as capacity is consumed. Without this ability to make bid
prices a function of capacity, however, a simple static threshold is indeed
a somewhat dangerous form of control.

One potential advantage of bid-price controls is their ability to dis-
criminate based on revenue rather than class. Often (see Section 10.1.3.1)
a number of products with different prices are booked in a single class.
RM systems then use an average price as the price associated with a
class. However, if actual revenue information is available for each re-
quest, then a bid-price control can selectively accept only the higher
revenue requests in a class, whereas a control based on class designa-
tion alone can only accept or reject all requests of a class. Of course, if
the exact revenue is not observable at the time of reservation, then this
advantage is lost.

2.1.2 Displacement Cost
While the mathematics of optimal capacity controls can become com-

plex, the overriding logic is simple. First, capacity should be allocated
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to a request if and only if its revenue is greater than the value of the
capacity required to satisfy it. Second, the value of capacity should
be measured by its (expected) displacement cost—or opportunity cost—
which is the expected loss in future revenue from using the capacity now
rather than reserving it for future use.

Theoretically, the displacement-cost idea is captured by using a value
function, that measures the optimal expected revenue as a function
of the remaining capacity The displacement cost is then the difference
between the value function at and the value function at or

Much of the theoretical analysis of the capacity controls
boils down to analyzing this value function. But conceptually, the logic
is simply to compare revenues to displacement costs to make the accept
or deny decision.

2.2 Static Models
In this section, we examine one of the first models for quantity-based

RM, the so-called static3 single-resource models.
The static model makes several assumptions that are worth exam-

ining in some detail. The first is that demand for the different classes
arrives in nonoverlapping intervals in the order of increasing prices of the
classes.4 In reality, demand for the different classes may overlap in time.
However, the nonoverlapping-intervals assumption is a reasonable ap-
proximation (for example, advance-purchase discount demand typically
arrives before full-fare coach demand in the airline case). Moreover, the
optimal controls that emerge from the model can be applied—at least
heuristically—even where demand comes in arbitrary order (using ei-
ther bid prices or the nesting policies, for example). As for the strict
low-before-high assumption, this represents something of a worst-case
scenario; for instance, if high-revenue demand arrives before low-revenue
demand, the problem is trivial because we simply accept demand first
come, first serve.

The second main assumption is that the demands for different classes
are independent random variables. Largely, this assumption is made
for analytical convenience because to deal with dependence in the de-
mand structure would require introducing complex state variables on
the history of observed demand. We can make some justification of the

3The term static here is somewhat of a misnomer because demand does arrive sequentially
over time, albeit in stages ordered from low-revenue to high-revenue demand. However, this
term is now standard and helps distinguish this class of models from dynamic models that
allow arbitrary arrival orders.
4Robinson [445] generalizes the static model to the case where demand from each class arrives
in nonoverlapping intervals but the order is not necessarily from low to high revenue.
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assumption by appealing to the forecast inputs to the model. That is, to
the extent that there are systematic factors affecting all demand classes
(such as seasonalities), these are often reflected in the forecast and be-
come part of the explained variation in demand in the forecasting model
(for example, as the differences in the forecasted means and variance
on different days). The randomness in the single-resource model is then
only the residual, unexplained variation in demand. So, for example, the
fact that demand for all classes may increase on peak flights does not in
itself cause problems provided the increase is predicted by the forecast-
ing method. Still, one has to worry about possible residual dependence
in the unexplained variation in demand, and this is a potential weakness
of the independence assumption.

A third assumption is that demand for a given class does not depend
on the capacity controls; in particular, it does not depend on the avail-
ability of other classes. Its only justification is if the multiple restrictions
associated with each class are so well designed that customers in a high
revenue class will not buy down to a lower class and if the prices are
so well separated that customers in a lower class will not buy up to a
higher class if the lower class is closed. However, neither is really true
in practice. There is considerable porousness (imperfect segmentation)
in the design of the restrictions, and the price differences between the
classes are rarely that dispersed. The assumption that demand does
not depend on the capacity controls is therefore a weakness, though in
Section 2.6 we look at models that handle imperfect segmentation.

Fourth, the static model suppresses many details about the demand
and control process within each of the periods. This creates a potential
source of confusion when relating these models to actual RM systems. In
particular, the static model assumes an aggregate quantity of demand
arrives in a single stage and the decision is simply how much of this
demand to accept. Yet in a real reservation system, we typically observe
demand sequentially over time, or it may come in batch downloads.
The control decision has to be made knowing only the demand observed
to date and is usually implemented in the form of prespecified controls
uploaded to the reservation system. These details are essentially ignored
in the static model. However, fortunately (and perhaps surprisingly), the
form of the optimal control is not sensitive to this assumption and can
be applied quite independently of how the demand is realized within
a period (all at once, sequentially, or in batches). The simplicity and
robustness of the optimal control is in fact a central result of the theory
for this class of models.

A fifth assumption of the model is that either there are no groups, or
if there are group bookings, they can be partially accepted. Group book-
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ings cause significant methodological problems, and these are discussed
in Section 2.4.

Finally, the static models assume risk-neutrality. This is a reasonable
assumption in practice, since a firm implementing RM typically makes
such decisions for a large number of products sold repeatedly (for ex-
ample, daily flights, daily hotel room stays, and so on). Maximizing
the average revenue, therefore, is what matters in the end. While we
do not cover this case here, some researchers have recently analyzed
the single-resource problem with risk-averse decision makers (Feng and
Xiao [187]).

We start with the simple two-class model in order to build some basic
intuition and then examine the more general case.

2.2.1 Littlewood’s Two-Class Model
The earliest single-resource model for quantity-based RM is due to

Littlewood [347]. The model assumes two product classes, with asso-
ciated prices The capacity is C, and we assume there are no
cancellations or overbooking. Demand for class is denoted and its
distribution is denoted by Demand for class 2 arrives first. The
problem is to decide how much class 2 demand to accept before seeing
the realization of class 1 demand.

The two-class problem is similar to the classic newsboy problem in in-
ventory theory, and the optimal decision can be derived informally using
a simple marginal analysis: Suppose that we have units of capacity re-
maining and we receive a request from class 2. If we accept the request,
we collect revenues of If we do not accept it, we will sell unit (the
marginal unit) at if and only if demand for class 1 is or higher.
That is, if and only if Thus, the expected gain from reserving
the unit for class 1 (the expected marginal value) is
Therefore, it makes sense to accept a class 2 request as long as its price
exceeds this marginal value, or equivalently, if and only if

Note the right-hand side of (2.1) is decreasing in Therefore, there will
be an optimal protection level, denoted such that we accept class 2 if
the remaining capacity exceeds and reject it if the remaining capacity
is or less. Formally, satisfies

If a continuous distribution is used to model demand (as is often
the case), then the optimal protection level is given by the simpler
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expressions

which is known as Littlewood’s rule. Setting a protection level of for
class 1 according to Littlewood’s rule is an optimal policy. Equivalently,
setting a booking limit of on class 2 demand is optimal.
Alternatively, we can use a bid-price control with the bid price set at

We omit a rigorous proof of Littlewood’s rule since it is a special case
of a more general result proved below. However, to gain some insight
into it, consider the following example:

Example 2.1 Suppose is normally distributed with mean and standard devi-
ation Then by Littlewood’s rule, which implies the optimal
protection level can be expressed as

where and denotes the inverse of the standard normal
c.d.f. Thus, we reserve enough capacity to meet the mean demand for class 1, plus
or minus a factor that depends both on the revenue ratio and the demand variation

If the optimal protection level is less than the mean demand; and
if it is greater than the mean demand. In general, the lower the ratio

the more capacity we reserve for class 1. This makes intuitive sense because
we should be willing to take very low prices only when the chances of selling at a high
price are lower.

2.2.2 Models
We next consider the general case of classes. Again, we assume

that demand for the classes arrives in stages, one for each class,
with classes arriving in increasing order of their revenue values. Let the
classes be indexed so that Hence, class (the
lowest price) demand arrives in the first stage (stage ), followed by
class demand in stage and so on, with the highest price class
(class 1) arriving in the last stage (stage 1). Since there is a one-to-one
correspondence between stages and classes, we index both by Demand
and capacity are most often assumed to be discrete, but occasionally we
model them as continuous variables when it helps simplify the analysis
and optimality conditions.

2.2.2.1 Dynamic Programming Formulation
This problem can be formulated as a dynamic program in the stages

(equivalently, classes), with the remaining capacity being the state
variable. At the start of each stage the demand has
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not been realized. Within stage the model assumes that the following
sequence of events occurs:

The realization of the demand occurs, and we observe its value.

We decide on a quantity of this demand to accept. The amount
accepted must be less than the capacity remaining, so The
optimal control is therefore a function of the stage the capacity

and the demand though we often suppress
this explicit dependence on and in what follows.

The revenue is collected, and we proceed to the start of stage
with a remaining capacity of

1.

2.

3.

This sequence of events is assumed for analytical convenience; we
derive the optimal control    “as if” the decision on the amount to
accept is made after knowing the value of demand In reality, of
course, demand arrives sequentially over time, and the control decision
has to be made before observing all the demand However, it turns
out that optimal decisions do not use the prior knowledge of as we
show below. Hence, the assumption that is known is not restrictive.

Let denote the value function at the start of stage Once the
value is observed, the value of is chosen to maximize the current
stage revenue plus the revenue to go, or

subject to the constraint The value function
entering stage is then the expected value of this optimization
with respect to the demand Hence, the Bellman equation is5

with boundary conditions

The values that maximize the right-hand side of (2.3) for each and
form an optimal control policy for this model.

5Readers familiar with dynamic programming may notice that this Bellman equation is of
the form E[max{·}] and not max E[·] as in many standard texts. The relationship between
these two forms is explained in detail in Appendix D. But essentially, the max E[·] form can
be recovered by considering the demand to be a state variable along with While the
two forms can be shown to be equivalent, the E[max{·}] is simpler to work with in many
RM problems. In our case, this leads to the modeling assumption that we optimize “as if”
we observed
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2.2.2.2 Optimal Policy: Discrete Demand and Capacity
We first consider the case where demand and capacity are discrete.

To analyze the form of the optimal control in this case, define

is the expected marginal value of capacity at stage ex-
pected incremental value of the unit of capacity. A key result con-
cerns how these marginal values change with capacity and the stage
(See Appendix 2.A for proof.):

PROPOSITION 2.1  The marginal values         of the value function
defined by (2.3) satisfy

(i)
(ii)

That is, at a given stage the marginal value is decreasing in the
remaining capacity, and at a given capacity level the marginal value
increases in the number of stages remaining. These two properties are
intuitive and greatly simplify the control. To see this, consider the opti-
mization problem at stage         From (2.3) and the definition of
we can write

where we take the summation above to be empty if Since
is decreasing in by Proposition 2.1(i), it follows that the terms in the
sum are decreasing in Thus, it is optimal to
increase (keep adding terms) until the terms
become negative or the upper bound                       is reached, whichever
comes first.

The resulting optimal control can be expressed in terms of optimal
protection levels for (class and higher in the revenue
order) by

(Recall the optimal protection level by convention.) The optimal
control at stage is then

where the notation denotes the positive part of The
quantity is the remaining capacity in excess of the protection
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level, which is the maximum capacity we are willing to sell to class
The situation is shown in Figure 2.2.

In practice, we can simply post the protection level in a reserva-
tion system and accept requests first come, first serve until the capacity
threshold is reached or the stage ends, whichever comes first. Thus,
the optimal protection-level control at stage requires no informa-
tion about the demand yet it produces the same optimal decision
“as if” we knew exactly at the start of stage The reason
for this is that knowledge of does not affect the future value of ca-
pacity, Deciding to accept or reject each request simply involves
comparing current revenues to the marginal cost of capacity, and this
comparison does not depend on how many requests there
are in total.

Proposition 2.1(ii) implies the nested protection structure

This fact is easily seen from Figure 2.2. If  increases with and the
curve decreases with then the optimal protection level will
shift to the left (decrease). Together, this ordering produces the nested
protection-level structure.

One can also use booking limits in place of protection levels to achieve
the same control. Optimal nested booking limits are defined by
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with The optimal control in stage is then to accept

Note that is the total capacity sold prior to stage and
is the booking limit for class so is the remaining
capacity available for class The optimal booking limit is also shown
in Figure 2.2.

Finally, the optimal control can also be implemented through a table
of bid prices. Indeed, if we define the stage bid price by

then the optimal control is

In words, we accept the request in stage if the price
exceeds the bid price value of the unit of capacity that
is allocated. In practice, we can store a table of bid prices and process
requests by sequentially comparing the price of each product to the table
values corresponding to the remaining capacity.

We summarize these results in the following theorem:

THEOREM 2.1 For the static model defined by (2.3), the optimal control
can be achieved using either
(i) Nested protection levels defined by (2.4),
(ii) Nested booking limits defined by (2.6), or
(iii) Bid price tables defined by (2.7).

How to compute these various policies is discussed in Section 2.2.3.

2.2.2.3 Optimality Conditions for Continuous Demand
Next, consider the case where capacity is continuous and demand at

each stage has a continuous distribution. In this case, the dynamic pro-
gram is still given by (2.3); however and are now continuous
quantities. The analysis of the dynamic program is slightly more com-
plex than it is in the discrete-demand case, but many of the details are
quite similar. Hence, we only briefly describe the key differences.

The main change is that the marginal value is now replaced
by the derivative of with respect to This derivative
is still interpreted as the marginal expected value of capacity. And an
argument nearly identical to that in the proof of Proposition 2.1 shows
that the marginal value is decreasing in (equivalently,
is concave in ).



Single-Resource Capacity Control 41

Therefore, the optimal control in stage is to keep increasing
(keep accepting demand) as long as

and to stop accepting once this condition is violated or the demand
is exhausted, whichever comes first. Again, this decision rule can

be implemented with optimal protection levels, defined by

One of the chief virtues of the continuous model is that it leads to
simplified expressions for the optimal vector of protection levels

We state the basic result without proof (see Brumelle and
McGill [91] for a proof).

First, for an arbitrary vector of protection levels y and vector of de-
mands                                 define the following fill events

is the event that demand to come in stages exceeds
the corresponding protection levels. A necessary and sufficient condition
for to be an optimal vector of protection levels is that it satisfy the

equations

That is, the        fill event should occur with probability equal to the ratio
of class revenue to class 1 revenue. As it should, this reduces to
Littlewood’s rule (2.2) in the            case, since

Note that

so the event can occur only if occurs. Also, if
then Thus, if we must

have to satisfy (2.9). Thus, the optimal protection levels are
strictly increasing in if the revenues are strictly decreasing in

2.2.3 Computational Approaches
At first glance it may appear that the optimal nested allocations are

difficult to compute. However, computing these values is in fact quite
easy and efficient algorithmically. There are two basic approaches: dy-
namic programming and Monte Carlo integration.
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2.2.3.1 Dynamic Programming
The first approach is based on using the dynamic programming recur-

sion (2.3) directly and requires that demand and capacity are discrete—
or in the continuous case that these quantities can be suitably dis-
cretized. The inner optimization in (2.3) is simplified by using the op-
timal protection levels from the previous stage. Thus, substituting
(2.5) into (2.3) we obtain the recursion

where is determined using (2.4), and we define        This procedure
is repeated starting from and working backward to

For discrete-demand distributions, computing the expectation in
(2.10) for each state requires evaluating at most O(C) terms since

Since there are C states (capacity levels),
the complexity at each stage is The critical values can then
be identified from (2.4) in log(C) time by binary search as is
nonincreasing. Indeed, since we know the binary search can
be further constrained to values in the interval Therefore,
computing does not add to the complexity at stage Since these
steps must be repeated for each of the stages (stage need not be
computed as mentioned above), the total complexity of the recursion is

2.2.3.2 Monte Carlo Integration
The second approach to computing optimal protection levels is based

on using (2.9) together with Monte Carlo integration. It is most natu-
rally suited to the case of continuous demand and capacity, though the
discrete case can be computed (at least heuristically) with this method
as well.

The idea is to simulate a large number K of demand vectors,
from the forecast distributions for the

classes. We then progressively sort through these values to find thresh-
olds y that approximately satisfy (2.9).

In what follows, it is convenient to note that

Thus, (2.9) implies that the optimal must satisfy
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since The following algorithm computes the
optimal approximately using the empirical conditional probabilities
estimated from the sample of simulated demand data:

The complexity of this method is which is nearly linear
in the number of simulated demand vectors K. Thus, it is relatively
efficient even with large samples. It is also quite simple to program
and can be used with any general distribution. The following example
illustrates the method:

Example 2.2 Consider a three-class example, where the prices are
and The demand for each class is normally distributed. Class 1 has

a mean of 20 and standard deviation of 9; class 2 has a mean of 45 and standard
deviation of 12. (The statistics for class 3 do not affect the calculation.)

Figure 2.3 shows a plot of the partial sums and for 50
simulated data points of this problem. Since the first ratio the
Monte Carlo algorithm starts by finding a value  such that 70% of these points (35
points) have values above The result is shown in Figure 2.3 by the vertical line
at

In the next iteration of the algorithm, the 35 points to the right of this vertical
line are sorted again by their value and is chosen so that a fraction

of the points (21 points) lie above This occurs at
The algorithm then terminates with the estimates and

STEP 0: Generate and store K random demand vectors

For and compute the partial sums

and form the vector
Initialize a list and counter

STEP 1: Sort the vectors by their component values,
Let denote the element of in this sorted list so that

STEP 2: Set Set

STEP 3: Set and
IF STOP
ELSE GOTO STEP 1.
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2.2.4 Heuristics
As we have seen, computing optimal controls for the static single-

resource model is not particularly difficult. Despite this fact, exact op-
timization models are not widely used in practice. Indeed, most single-
resource airline RM systems use one of several heuristics to compute
booking limits and protection levels.

There are two main reasons for this state of affairs. The first is simply
a case of practice being one step ahead of the underlying theory. As men-
tioned, in the airline industry the practice of using capacity controls to
manage multiple classes quickly gained popularity following deregulation
in the mid 1970s. But this predates the theory of optimal controls by
more than a decade. The only known optimal controls in the 1970s were
Littlewood’s results for the two-class problem. As a result, heuristics
were developed for the general problem. During the decade fol-
lowing deregulation, RM software embedded these heuristics, and people
grew accustomed to thinking in terms of them. The inertia generated
from this early use of the heuristics is one reason for their continued
popularity today.
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Heuristics are also widely used because they are simpler to code,
quicker to run, and generate revenues that in many cases are close to op-
timal. Indeed, many practitioners in the airline industry simply believe
that even the modest effort of computing optimal controls is not worth
the benefit they provide in improved revenue performance. Proponents
of heuristics argue that the potential improvement from getting better
revenue data and improving demand forecasts swamps the gains from
using optimal controls—reflecting the philosophy that it is better to be
“approximately right” than it is to be “precisely wrong.”

While these points are well taken, such criticisms are somewhat misdi-
rected. For starters, using optimal controls does not mean one has to give
up on improvements in other areas, such as forecasting. These activities
are not mutually exclusive, though a understaffed development group
might very well consider refining optimization modules a low-priority
task. Yet given the very modest cost of coding and computing optimal
controls, the strong objections to the use of optimal controls are often
not entirely rational.

Regardless of one’s view on the use of heuristics, it is important to
understand them. They remain widely used in practice and can also
help develop useful intuition.

We next look at the two most popular heuristics: EMSR-a and EMSR-
b, both of which are attributed to Belobaba [38–40]. Both heuristics
are based on the static, single-resource model defined above
in Section 2.2. They differ only in how they approximate the prob-
lem. Static model assumptions apply: classes are indexed so that

denotes the c.d.f. of class demand, and low-
revenue demand arrives before high-revenue demand in stages that are
indexed by as well. Moreover, for ease of exposition we assume that
capacity and demand are continuous and that the distribution functions

are continuous as well, though these assumptions
are easily relaxed.

2.2.4.1 EMSR-a
EMSR-a (expected marginal seat revenue–version a) is the most widely

publicized heuristic for the single-resource problem. Despite this fact,
it is less popular in practice than its close cousin, EMSR-b, which sur-
prisingly is not well documented in the literature. Generally, EMSR-b
provides better revenue performance, and it is certainly more intuitive,
though EMSR-a is important to know just the same.

EMSR-a is based on the idea of adding the protection levels produced
by applying Littlewood’s rule to successive pairs of classes. Consider
stage in which demand of class arrives with price We are



46 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

interested in computing how much capacity to reserve for the remaining
classes, that is, the protection level, for classes and
higher. To do so, let’s consider a single class among the remaining
classes and compare and in isolation. Considering
only these two classes, we would use Littlewood’s rule (2.2) and reserve
capacity for class where

Repeating for each future class we could likewise
compute how much capacity to reserve for each such class in isolation.
The idea of EMSR-a, then, is simply to add up these individual protec-
tion levels to approximate the total protection level for classes and
higher. That is, set the protection level as

where is given by (2.11). One then repeats this same calculation
for each stage

EMSR-a is certainly simple and has an intuitive appeal. For a short
while it was even believed to be optimal, but this notion was quickly
dispelled once the published work on optimal controls appeared.

Indeed, it is not hard to see intuitively that EMSR-a can be exces-
sively conservative and produce protection levels that are larger than
optimal in certain cases. This is because adding the individual protec-
tion levels       ignores the statistical averaging effect (pooling effect)
produced by aggregating demand across classes. For example, for the
sake of illustration, suppose that at stage all future demand has
the same revenue, i.e., Then EMSR-a will set
protection levels so that

However, it is clear that all these future classes should be aggregated
since they have identical revenues, in which case we can apply Little-
wood’s rule (2.2) to obtain the optimal protection level, using
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Since for any random variables and any numbers

the optimal protection level is less than the EMSR-a protection level,
6 This behavior suggests that EMSR-a may perform badly

when there are large numbers of classes whose revenues are close to-
gether.

2.2.4.2 EMSR-b
EMSR-b (expected marginal seat revenue–version ) is an alternative

single-resource heuristic that avoids the lack-of-pooling defect in EMSR-
a mentioned above. EMSR-b is again based on an approximation that
reduces the problem at each stage to two classes, but in contrast to
EMSR-a, the approximation is based on aggregating demand rather
than aggregating protection levels. Specifically, the demand from fu-
ture classes is aggregated and treated as one class with a revenue equal
to the weighted-average revenue.

Consider stage in which we want to determine protection level
Define the aggregated future demand for classes by

and let the weighted-average revenue from classes denoted
be defined by

Then the EMSR-b protection level for class and higher, is chosen
by Littlewood’s rule (2.2) so that

It is common when using EMSR-b to assume demand for each class is
independent and normally distributed with mean and variance in

6To see this, consider a sample realization of demand, and note that if

then for at least one but the converse need not be true. So the

probability of the event cannot exceed the sum (over )

of the probabilities of the events
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which case

where is the mean and is the variance of the
aggregated demand to come at stage and
(recall is the inverse of the standard normal c.d.f.). Again, one
repeats this calculation for each (See Section 11.A for approximation
formulas for the normal and inverse normal distributions.)

EMSR-b clearly captures the pooling—or statistical averaging—effect
that is lacking in EMSR-a. This is an advantage of EMSR-b over EMSR-
a. However, using the weighted-average revenue is a somewhat crude ap-
proximation that can distort the resulting protection levels. In practice
EMSR-b is more popular and seems to generally perform better than
EMSR-a, though studies comparing the two have at times shown mixed
results. Belobaba [41] reports studies in which EMSR-b is consistently
within 0.5 percent of the optimal revenue, whereas EMSR-a can deviate
by nearly 1.5 percent from the optimal revenue in certain cases, though
with mixed order of arrival and frequent reoptimization, he reports that
both methods perform well. However, another recent study by Polt [425]
using Lufthansa airline data showed more mixed performance, with nei-
ther method dominating the other.

2.2.4.3 Numerical Examples
A few simple numerical examples give some sense of the protection

levels and revenues produced by these two approximations. The example
we consider is based on a slightly modified instance of the data reported
by Wollmer [576]:

Example 2.3 There are four classes, and demand is assumed to be normally distrib-
uted. Table 2.1 shows the demand data and Table 2.2 the protection levels produced
by EMSR-a, EMSR-b, and the optimal policy.
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Note from Table 2.1 that (in this example) there is a considerable
discrepancy between the protection levels computed under the heuristics,
both compared with each other and with the optimal protection levels.

The revenue performance of the methods from a simulation study are
shown in Table 2.2. Capacity is varied from 80 to 150 to create demand
factors (ratio of total mean demand to capacity) in the range 1.7 to
0.9. The percentage suboptimality is also reported (one minus the ratio
of heuristic revenues to optimal revenues). Note for this example that
EMSR-a is slightly better than EMSR-b, though both perform quite
well; the suboptimality gap of EMSR-b reaches a high of 0.52%, while
the maximum suboptimality of EMSR-a is only 0.30%.

Example 2.4 The demand statistics are the same as in Example 2.3, but the revenue
values are more evenly spaced. The data and resulting protection levels are shown in
Tables 2.3 and 2.4.

The revenue performance of the heuristics in Example 2.4 is shown in
Table 2.4. In this case, there is less discrepancy among the protection
levels computed under the heuristics and the optimal policy. The per-
formance of both heuristics is also very good, especially under EMSR-b,
which is for all practical purposes optimal. Performance such as this
helps explain why these heuristics are popular in practice.
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2.3 Adaptive Methods
We next examine an adaptive algorithm for determining optimal pro-

tection levels for the static, single-resource model of Section 2.2.2. The
optimal protection levels in this case are determined by the conditions
(2.8). Typically, application of the optimality conditions (2.8) requires
three steps. First, historical demand data are studied to determine suit-
able models for the demand distributions. Second, forecasting techniques
are applied to estimate the parameters of these distributions. Third, the
forecasts are passed to an optimization routine that solves for protec-
tion levels The resulting controls are then used to make individual
accept or deny decisions as reservations come in. In practice, bookings
from similar resources are fed back into the forecasting system, and the
process is repeated cyclically over time.

In this section, we look at a method for directly updating booking pol-
icy parameters for the next resource usage based on observations of the
performance of the parameters on previous instances, without recourse
to the complex cycles of forecasting and optimization. We show how
to construct a simple adjustment scheme of this sort that is based on
stochastic approximation methods (the Robbins-Monro algorithm [443])
and that provably converges to an optimal policy with repeated ap-
plication. The convergence, however, is guaranteed only for the case
of stationary, independent demand and may be quite slow, requiring a
large number of adjustments to reach a near-optimal set of protection
levels.

2.3.1 Adaptive Algorithm
Our starting point in developing an adaptive algorithm is condition

(2.9), which states that for to be an optimal set of protection levels,
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it must satisfy

For example, if the revenue ratio is 0.6, then this condition says
that the fill event defined by (2.8) should occur on 60% of the
service instances, on average, if  Note that it is easy to determine
the frequency of the fill events from historical records, since it
is necessary only to observe if demand reached the protection levels, not
the degree to which it exceeded them.7

To develop the algorithm, for define

where 1(E) denotes the indicator function of event E (a function that is
1 if event E occurs and is zero otherwise). The quantity will be
negative if the     fill event occurs and positive otherwise. If protection
levels are being adjusted, an occurrence of the       fill event (all of classes
1 through reached their protection levels) suggests that the protection
level should be adjusted upward. Thus – can be viewed
as an adjustment direction for protection level The corresponding
adjustment vector is Define

and let Thus,          – h(y) can be properly
viewed as the expected adjustment vector for protection levels given cur-
rent levels y. The optimality condition (2.9) stipulates that we should
seek a such that the expected adjustment for all protection levels is
zero; or,

The Robbins-Monro [443] algorithm (generalized for vector quantities)
constructs a sequence of parameter estimates, from a
sequence of independent instances, using the recursion

7There are two important exceptions to this statement. First, if happens to exceed the
maximum number of seats available for sale (usually the physical capacity plus an overbooking
pad), then the event is not observable (unless the rejected sales are
recorded). Second, if protection levels are revised during the booking period prior to the
usage of the resource, it can easily happen that a new protection level exceeds the remaining
capacity (a problem similar to the first one) that earlier, high protection levels constrained
demand during part of the booking period in one or more discount classes. In this case, total
demand is not observed (a variant of censorship of the demand data).



The simplest example of a suitable step size sequence is defined by
however, this simple averaging sequence takes small steps early in the

procedure, which can delay convergence. In the development to follow,
we use a sequence of the form where and are constants
chosen to give larger early steps.

The directions can be determined after the completion
of each instance (each departure in the airline case). If the fill event
occurs, and the protection level is increased by

if not, then and is reduced by
Thus protection levels are stepped up when high demand is observed and
stepped down when low demand is observed, with the step size becoming
smaller as the algorithm progresses.

Some relatively mild regularity conditions ensure that the procedure
(2.15) does converge (a.s.) to a value satisfying (See van
Ryzin and McGill [526] for exact conditions as well as bounds on the
rate of convergence.)
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where is a sequence of nonnegative step sizes satisfying

2.3.2 A Numerical Comparison with EMSR and
Censored Forecasting

We next look at a brief numerical example of the performance of the
adaptive algorithm compared with a procedure that combines censored
forecasting with EMSR-b protection levels. These comparisons are based
on simulated data in an idealized stationary setting, but do provide some
insight into the performance of each method.

The combined forecasting/EMSR-b (F/EMSR) scheme constructs a
demand forecast from censored data based on the Kaplan-Meier esti-
mator of the survivor function (See Section 9.4.3.)
Protection levels are set using EMSR-b.

The test problem has four classes (three protection levels). Demand is
modeled using a normal distribution. The distribution data, along with
optimal and EMSR-b protection levels, are shown in Table 2.5. The
protection level is the optimal level when demand is normally distrib-
uted, while is the protection level computed by the
heuristic. To illustrate convergence, starting protection levels are set far
from optimal, corresponding to cases of very high and very low starting
values (Table 2.6). There are two demand scenarios. The high-demand
scenario has a starting inventory of 124 seats, corresponding to a 125%
demand factor (ratio of expected total demand to capacity) and approx-
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imately a 95% load factor (ratio of average number of seats sold to ca-
pacity) under optimal protection levels. The low-demand scenario starts
with 164 seats, resulting in a demand factor of 95% and a load factor of
approximately 90% under optimal protection levels. For the stochastic
approximation procedure, the step size sequence is

Figure 2.4 shows three graphs of the data for the case of low demand
and high starting values. The top graph of Figure 2.4 shows the average
cumulative revenue as a percentage of the optimal revenue for the two
methods as a function of the number of iterations (flights). The error
bars show the 95% confidence intervals about these averages. The mid-
dle graph shows the average protection levels over time for the stochastic
approximation (SA) procedure. The horizontal dotted lines are the op-
timal protection levels. The lowest line corresponds to the middle
line to and the top line to The solid lines are the correspond-
ing average protection levels produced by the stochastic approximation
(SA) method. The error bars on the solid lines give the 25-percentile
and 75-percentile values for each protection level at each iteration, which
provides some sense of the variability in protection levels across sample
paths. The bottom graph shows the identical plot of protection levels
for the F/EMSR method.

Figure 2.4 shows that the F/EMSR procedure converges more quickly
than the SA procedure. In this case, the faster convergence of the
F/EMSR has a significant impact on the cumulative revenue perfor-
mance: F/EMSR generates about 2 to 3% higher revenue on average in
the early iterations. With low demand and low starting values, the two
methods perform comparably.
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The results are quite different in the high demand factor case. Fig-
ure 2.5 shows the simulation results for low starting protection values
and high load factor. Note, as indicated by the error bars in the bottom
graphs, that the F/EMSR procedure is very volatile and somewhat slow
to converge in the early iterations. The revenue effect of this behavior is
quite significant, with F/EMSR generating cumulative revenues roughly
8% lower than optimal and 2 to 3% lower than SA in the early iterations.
However, the performance and protection levels of F/EMSR improve af-
ter about 30 iterations. In contrast, the SA procedure is considerably
more stable, and it converges faster in the early iterations, which ac-
counts for its superior revenue performance. F/EMSR performs badly
in this case because the forecasting procedure suffers from the frequent
censoring caused by a combination of low protection levels and high de-
mand. For high starting protection levels, the F/EMSR performs better,
since there is less initial censoring of data.

This behavior suggests that adaptive methods may be useful as a
means of automatically adjusting protection levels in cases where very
little demand information is available (such as with new products) and
forecasting is difficult due to a high degree of censoring. In such cases,
adaptive methods provide a robust way to adjust protection levels and
may also help speed up the forecasting method itself by nudging pro-
tection levels in the right direction, thereby reducing the amount of
censoring.

2.4 Group Arrivals
Group arrivals can pose additional complications. A group request is

a single request for multiple units of capacity (such as a family of four
traveling together). We briefly describe this case but omit any detailed
formulations because the basic ideas follow readily from what we have
seen thus far (and the more complicated ideas are beyond the scope of
this text).

If groups can be partially accepted—that is, given a request for
units, we can sell any quantity in the range (and more
important, the customer is willing to buy any amount in this range,
something that is not unusual among tour operators)—then there is
little impact on the single-resource models discussed above. Indeed, the
static model (2.3) can be thought of as a group model where in each
period one “large group” of size arrives because we can sell units,
where and is the total available capacity. Thus,
with groups that can be partially accepted, we need only to keep track of
the aggregate demand for each class and the formulations are essentially
the same as those of the static case in Section 2.2.2.
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The real complication in group arrivals occurs when groups must be
accepted on an all-or-none basis—that is, given a request for units
we can sell only all units or none at all. This seemingly modest change
has a profound impact on the structure of optimal allocation policies.
First, we must specify the distribution of group sizes to model how much
demand we have from groups of various sizes. But this in itself does not
pose too much of a theoretical difficulty. The bigger problem is that the
value function may not be concave (the marginal value of capacity may
in fact increase), so using booking limits, protection levels, or bid prices
may not be optimal.

An example illustrates what can go wrong. Consider a static model
with only two stages. Suppose that in the last stage (stage
only groups of size two arrive. In the first stage (stage groups
of varying sizes can arrive. Now suppose that we have units of
capacity remaining. Note the marginal value of the last unit of capacity
in stage 1 is zero; that is, because we only
get demand for groups of size 2 in the last stage, and therefore having
only one unit of capacity is of no value. On the other hand, provided
we have some positive probability of demand for a group of size 2 in
stage 1, then the second unit of capacity will have a positive marginal
value; that is, Hence, the marginal value
of capacity is no longer decreasing in As a result, in first
stage it can be optimal to reject a request for a single unit of some class
when there are two units of capacity remaining but optimal to accept
the same request when there is only one unit of capacity remaining. So
the notion that there is a booking limit above which we will not sell to
a class is no longer valid.

Essentially, the requirement to completely accept or reject groups cre-
ates a combinatorial (bin-packing) phenomenon in allocating capacity.
The resulting nonmonotone value function means that optimal policies
are considerably more complex than in the case where groups can be
partially accepted. Intuitively, one might expect that if a sufficiently
large fraction of demand is from small groups (size one or two) and the
capacities are reasonably large, then these combinatorial effects could be
ignored and the nongroup models may be a good approximation. This
is the implicit assumption in most single-resource RM systems used in
practice.
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2.5 Dynamic Models
Dynamic models relax the assumption that the demand for classes

arrives in a strict low-to-high revenue order. Instead, they allow for an
arbitrary order of arrival, with the possibility of interspersed arrivals of
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several classes. While at first this seems like a strict generalization of
the static case, the dynamic models require the assumption of Markovian
(such as Poisson) arrivals to make them tractable. This puts restrictions
on modeling different levels of variability in demand. Indeed, this limi-
tation on the distribution of demand is the main drawback of dynamic
models in practice. In addition, dynamic models require an estimate of
the pattern of arrivals over time (called the booking curve), which may
be difficult to estimate in certain applications. Thus, the choice of dy-
namic versus static models essentially comes down to a choice of which
set of approximations is more acceptable and what data is available in
any given application.

Other assumptions of the static model are retained. Demand is as-
sumed independent between classes and over time and also independent
of the capacity controls. The firm is again assumed to be risk-neutral.
The justifications (or criticisms) for these assumptions are the same as
in the static-model case.

2.5.1 Formulation and Structural Properties
In the simplest dynamic model, we have classes as before with as-

sociated prices There are T total periods and
indexes the periods, with the time index running forward is the
first period, and is the last period; this is in contrast to the sta-
tic dynamic program, where the stages run from to 1 in the dynamic
programming recursion). Since there is no longer a one-to-one corre-
spondence between periods and classes, we use separate for
periods and for classes.

In each period we assume, by a sufficiently fine discretization of time,
that at most one arrival occurs.8 The probability of an arrival of class
in period is denoted The assumption of at most one arrival per
period implies that we must have

In general, the periods need not be of the same duration. For example,
early in the booking process when demand is low we might use a period of
several days whereas during periods of peak booking activity we might
use a period of less than an hour. Note also the arrival probabilities
may vary with so the mix of classes that arrive may vary over time. In

8 The assumption of one arrival per period can be generalized as shown by Lautenbacher and
Stidham [330], but both theoretically and computationally it is a convenient assumption.
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particular, we do not require lower classes to arrive earlier than higher
classes.

2.5.1.1 Dynamic Program

As before, let denote the remaining capacity and denote the
value function in period Let be a random variable, with
if a demand for class arrives in period and otherwise. Note
that Let if we accept the arrival (if there
has been one) and otherwise. (We suppress the period subscript

of the control as it should be clear from the context.) We want to
maximize the sum of current revenue and the revenue to go, or

The Bellman equation is therefore

where is the expected marginal value
of capacity in period The boundary conditions are 9

and

2.5.2 Optimal Policy
An immediate consequence of (2.17) is that if a class request arrives,

so that then it is optimal to accept the request if and only if

Thus, the optimal control can be implemented using a bid-price control
where the bid price is equal to the marginal value,

9The second boundary condition can be eliminated if we use the control constraint
instead of However, it is simpler conceptually and notationally to

use the boundary conditions instead.



Revenues that exceed this threshold are accepted; those that do not are
rejected.

As in the static case, an important property of the value function is
that it has decreasing marginal value (See
Appendix 2.A for proof.)

PROPOSITION 2.2 The increments of the value function
defined by (2.17) satisfy
(i)
(ii)

This theorem is natural and intuitive since one would expect the value
of additional capacity at any point in time to have a decreasing marginal
benefit and the marginal value at any given remaining capacity  to de-
crease with time (because as time elapses, there are fewer opportunities
to sell the capacity).

As a consequence, the optimization on the right-hand side of (2.17)
can also be implemented as a nested-allocation policy, albeit one that
has time-varying protection levels (or booking limits). Specifically, we
can define time-dependent optimal protection levels

that have the usual interpretation that is the capacity we protect
for classes Then the protection levels are nested,

and it is optimal to accept class if and only if
the remaining capacity exceeds The situation is illustrated in
Figure 2.6.

Time-dependent nested booking limits can also be defined as before
by

That the booking limits and protection levels depend on time in this case
essentially stems from the fact that the demand to come varies with time
in the dynamic model. The change in demand to come as time evolves
effects the opportunity cost and therefore the resulting booking limit
and protection levels.

As a practical matter, because the value function is not likely to
change much over short periods of time, fixing the protection levels or
booking limits computed by a dynamic model and updating them peri-
odically (as is done in most RM systems in practice) is usually close to
optimal. Still, the time-varying nature of the protection levels remains
a key distinction between static and dynamic models.

We summarize these results in the following theorem:
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THEOREM 2.2 For the dynamic model defined by (2.17), the optimal
control can be achieved using either:
(i) Time-dependent nested protection levels defined by (2.19),
(ii) Time-dependent nested booking limits defined by (2.20), or
(iii) Bid-price tables defined by (2.18).

2.5.2.1 Computation
Computationally, the dynamic model is solved by substituting the

optimal policy into (2.17). This yields the recursion

Starting with the boundary condition we proceed
with the recursion backward in time Each stage requires
operations, so the overall complexity is Usually, the value of T
is O(C) because in most practical problems the total expected demand is
the same magnitude as the capacity and the periods are typically chosen
so that there is O(1) arrival per period. So the complexity in terms of
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and C is approximately which is the same as that of the
dynamic program for the static model.

2.6 Customer-Choice Behavior
A key assumption in the models that we have described thus far is

that demand for each of the classes is completely independent of the
capacity controls being applied by the seller. That is, it is assumed
that the likelihood of receiving a request for any given class does not
depend on which other classes are available at the time of the request.
Needless to say, this is a somewhat unrealistic assumption. For example,
in the airline case the likelihood of selling a full-fare ticket may very well
depend on whether a discount fare is available at the same time and the
likelihood that a customer buys at all may depend on the lowest available
fare. When customers buy a higher fare when a discount is closed it is
called buy-up (from the firm’s point of view, this is also called sell-up);
when they choose another flight when a discount is closed it is called
diversion.

Clearly, such customer behavior could have important RM conse-
quences and ought to be considered when making control decisions.
We next look at some heuristic and exact methods for incorporating
customer-choice behavior in single-resource problems.

2.6.1 Buy-Up Factors
One approach to modeling customer-choice behavior that works with

the two-class model is to include buy-up probabilities—also called buy-up
factors—in the formulation.

The approach works as follows. Consider the simple two-class static
model, and recall that Littlewood’s rule (2.2) (slightly restated) is to
accept demand from class 2 if and only if

where is the remaining capacity—that is, if the revenue from accepting
class 2 exceeds the marginal value of the unit of capacity required to
satisfy the request. Now suppose that there is a probability that a
customer for class 2 will buy class 1 if class 2 is closed. The net benefit
of accepting the request is still the same, but now rather than losing the
request when we reject it, there is some chance the customer will buy
up to class 1. If so, we earn a net benefit of (the
class 1 revenue minus the expected marginal cost). Thus, it is optimal
to accept class 2 now if or
equivalently if
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Note that the right-hand side of the modified rule (2.22) is strictly larger
than the right-hand side in Littlewood’s rule (2.21), which means that
the modified rule (2.22) is more likely to reject class 2 demand. This is
intuitive because with the possibility of customers upgrading to class 1,
we should be more eager to close class 2.

The difficulty with this approach is that it does not extend to more
than two classes—at least not in an exact way—because the probability
that a customer buys class given that class is closed depends not only
on and but also on which other classes are also available. In other
words, with more than two classes the customer faces a multinomial
choice rather than a binary choice.

However, one can at least heuristically extend the buy-up factor idea
to EMSR-a or EMSR-b because these heuristics approximate the multi-
class problem using the two-class model.

For example, EMSR-b can be extended to allow for a buy-up factor by
modifying the equation for determining the protection level (2.14),
as follows:

where is the probability that a customer of class buys up to
one of the classes is the weighted-average revenue from
these classes as defined by (2.13); and is an estimate of the
average revenue received given that a class customer buys up to
one of the classes (for example, if customers are
assumed to buy up to the next-highest price class). Again, the net result
of this change is to increase the protection level and close down class

earlier than one would do under the traditional EMSR-b rule.10

While this modification to EMSR-b provides a simple heuristic way to
incorporate choice behavior, it is a somewhat ad hoc adjustment to an
already heuristic approach to the problem. Beyond the limitations of the
model and its assumptions, there are some serious difficulties involved
in estimating the buy-up factors. Indeed, in current applications of the
model, they are often simply made-up, reasonable-sounding numbers.
Moreover, the assumptions of the model can clash with unconstrain-
ing and recapture procedures that are subsequently applied, resulting
in double counting of demand. Despite these limitations, buy-up fac-
tors have proved useful as a rough-cut approach for incorporating choice
behavior in practice.

10That it increases the protection level about the usual EMSR-b value can be seen by noting
that in the usual EMSR-b case and thus, has to
increase to satisfy the equality (2.23).
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2.6.2 Discrete-Choice Models

2.6.2.1 Model Definition

We next look at a single-resource problem in which customer-choice
behavior is explicitly modeled using a general discrete-choice model. In
contrast to the heuristic approach of buy-up factors, this model provides
a more theoretically sound approach to incorporating choice behavior.
It also provides insights into how choice behavior affects the optimal
availability controls. The theory is first developed for the general choice
model case and then applied to some special demand models.

As in the traditional dynamic model of Section 2.5, time is discrete
and indexed by with the indices running forward in time is the
period of resource usage). In each period there is at most one arrival.
The probability of arrival is denoted by which we assume, for ease of
exposition, is the same for all time-periods There are classes, and we
let denote the entire set of classes. We let choice index
0 denote the no-purchase choice; that is, the event that the customer
does not purchase any of the classes offered. Each class has an
associated price and without loss of generality we index classes so
that We let denote the revenue of the
no-purchase choice.

Customer purchase behavior is modeled as follows. In each period
the seller chooses a subset of classes to offer. When the

set of classes is offered in period the probability that a customer
chooses class is denoted denotes the no-purchase
probability.

The probability that a sale of class is made in period is therefore
and the probability that no sale is made is

Note that this last expression reflects the fact that having no sales in a
period could be due either to no arrival at all or an arrival that does not
purchase. This leads to an incomplete-data problem when estimating
the model, as discussed in Section 9.4.1.2.

The only condition we impose on the choice probabilities is that
they define a proper probability function. That is, for every set
the probabilities satisfy
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This includes most choice models of practical interest (see Ben-Akiva and
Lerman [48]) and even some rather pathological cases.11 The following
running example will be used to illustrate the model and analysis:

Example 2.5 An airline offers three fare products—Y, M, and K. These products
differ in terms of revenues and conditions as shown in Table 2.7. The airline has

five segments of customers—two business segments and three leisure segments. The
segments differ in terms of the restrictions that they qualify for and the fares they are
willing to pay. The data describing each segment are given in Table 2.8. The second

column of Table 2.8 gives the probability that an arriving customer is from each given
segment.

Given this data for Example 2.5, the first four columns of Table 2.9
give the choice probabilities that would result.12

11For example, some psychologists have shown that customers can be overwhelmed by more
choices, and they may become more reluctant to purchase as more options are offered (see
Iyengar and Lepper (265)). Such cases would be covered by a suitable choice of that
results in the total probability of purchase, being decreasing in S.
12To see how the probabilities in Table 2.9 are derived, consider the set S = {Y, K}. If
S = {Y,K} is offered, segments Business 1 and Business 2 buy the Y fare because they
cannot qualify for both the SA stay and 21-day advance-purchase restrictions on K, so

Similarly, Leisure 1 cannot qualify for the SA stay restriction of K and
is not willing to purchase Y, so these customers do not purchase at all. Segments Leisure 2 and
3, however, qualify for both restrictions on K and purchase K. Hence,
Class M is not offered, so The other rows of Table 2.9 are filled out similarly.
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This particular method of generating choice probabilities is only for
illustration. Other choice models could be used and in general any proper
set of probabilities could be used to populate Table 2.9.

2.6.2.2 Formulation
As before, let C denote the total capacity, T the number of time-

periods, the current period, and the number of remaining inventory
units. Define the value function as the maximum expected revenue
obtainable from periods given that there are inventory
units remaining at time Then the Bellman equation for is

where denotes the marginal cost of
capacity in the next period, and we have used the fact that for all S,

The boundary conditions are

Note one key difference in this formulation compared to our analysis
of the traditional independent-class models of Section 2.2.2 and Sec-
tion 2.5—we assume the seller precommits to the open set of classes S
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in each period, while in the traditional models, we assume the seller ob-
serves the class of the request and then makes an accept or deny decision
based on the class. The reason for the difference is that in the traditional
models the class of an arriving request is completely independent of the
controls, so it doesn’t matter whether we precommit to the set of open
classes or not. However, in the choice-based model, the class that an
arriving customer chooses depends (through the choice model on
which classes S we report as being open. Hence, the formulation (2.24)
reflects this fact (we are taking max E[·] in 2.24 instead of E[max(·)]);
we must choose S prior to seeing the realization of the choice decision.

2.6.2.3 Structure of the Optimal Policy
The problem (2.24) at first seems to have very little structure, but

a sequence of simplifications provides a good characterization of the
optimal policy. The first simplification is to write (2.24) in more compact
form as

where

denotes the total probability of purchase, and

denotes the total expected revenue from offering set S. Table 2.9 gives
the values Q(S) and R(S) for our Example 2.5. For theoretical purposes,
we also consider allowing the seller to randomize over the sets S that
are offered at the beginning of each time-period, but this relaxation is
not strictly needed since there is always at least one set S that achieves
the maximum in (2.26).

The second simplification is to note that not all subsets need
to be considered when maximizing the right-hand side of (2.26). Indeed,
the search can be reduced to only those sets that are efficient as defined
below:

DEFINITION 2.1 A set T is said to be inefficient if there exist proba-
bilities with such that

A set is said to be efficient if no such probabilities exist.
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In words, a set T is inefficient if we can use a randomization of other
sets S to produce an expected revenue that is strictly greater than R(T)
with no increase in the probability of purchase Q(T).

The significance of inefficient sets is that they can be eliminated from
consideration:

PROPOSITION 2.3 An inefficient set is never an optimal solution to
(2.24).

The proof is omitted, but the fact that such sets should be eliminated
from consideration is quite intuitive from (2.26); an inefficient set T
provides strictly less revenue R(T) than do other sets and incurs at least
as high a probability of consuming capacity Q(T) (and hence incurs at
least as high an opportunity cost in (2.26)).

For Example 2.5, Table 2.9 shows which sets are efficient—namely, the
sets {Y}, {Y,K}, and {Y,K,M} . That these sets are efficient follows
from inspection of Figure 2.7, which shows a scatter plot of the values
Q(S) and R(S) for all subsets S. Note from this figure and Definition 2.1
that an efficient set is a point that is on the “efficient frontier” of the set
of points {Q(S), R(S)}, Here, “efficiency” is with respect to the
tradeoff between expected revenue R(S) and probability of sale Q(S).

The third simplification is to note that the efficient sets can be easily
ordered. Indeed, let denote the number of efficient sets. These sets can
be indexed such that both the revenues and probabilities of
purchase are monotone increasing in the index. That is, if the collection
of efficient sets is indexed such that
then as well. The proof of this fact is
again omitted, but it is easy to see intuitively from Figure 2.7. Note from
Table 2.9 that there are efficient sets {Y}, {Y, K}, and {Y, K, M}.
These can be ordered and with
associated probabilities of purchase and and
prices and as claimed.

Henceforth, we assume the efficient sets are denoted and
are indexed in increasing revenue and probability order. Also, to simplify
notation we let and and note and are
both increasing in So the Bellman equation can be further simplified
to

The final simplification is to show that when expressed in terms of the
sequence of efficient sets, the optimal policy has a simple
form as stated in the following theorem:
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THEOREM 2.3 An optimal policy for (2.24) is to select a set from
among the efficient, ordered sets that maximizes
(2.27). Moreover, for a fixed the largest optimal index is increasing
in the remaining capacity and for any fixed is increasing in time

The proof of this theorem is involved but derives from the fact that
the marginal value is decreasing in (see Appendix 2.A for
a proof) and the fact that the optimal index is decreasing in this
marginal value.

This characterization is significant for several reasons. First, it shows
that the optimal sets can be reduced to only those that are efficient,
which in many cases significantly reduces the number of sets we need
to consider. Moreover, it shows that this limited number of sets can be
sequenced in a natural way and that the more capacity we have (or the
less time remaining), the higher the set we should use in this sequence.

For example, applying Theorem 2.3 to Example 2.5, we see that the
efficient sets and would be
used as follows. With very large amounts of capacity remaining, is
optimal: all three fare classes are opened. As capacity is consumed, at



Finding the efficient sets is, in general, computationally complex. The
naive approach is to enumerate all subsets of and for each set
T solve a linear program (in variables to test for efficiency
using the conditions in Definition 2.1.

However, a more efficient alternative is to use the following largest
marginal revenue procedure. First, let Then successive sets can
be found by the following recursion. Let be the efficient set. Then
the efficient set, is found by checking among the sets S
with and for the one that maximizes the
marginal revenue ratio

(Note that this is simply the increase in expected revenue per unit in-
crease in expected demand.) The procedure starts with and stops
as soon as no sets S with and exist; it re-
turns the complete sequence Since there are subsets
to check at each step, the recursion has complexity where
is the number of efficient sets (which in the worst case could be
itself).

For small numbers of classes, this largest marginal revenue procedure
is practical, especially since it can be performed off line. But it is still
exponential in the number of classes For large numbers of classes,
heuristic or analytic approaches can be used to reduce the complexity
of identifying efficient sets. For example, one could enumerate a limited
collection of subsets S rather than all subsets and apply the largest
marginal revenue procedure to determine which subsets in the collection
are efficient relative to other sets in the collection. In some special cases,
as shown below, one can identify which subsets are efficient analytically,
thus eliminating the need to enumerate all possible subsets.
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some point we switch to only offering class M is closed, and only
Y and K are offered. As capacity is reduced further, at some point we
close class K and offer only class Y (set is used).

Note what’s odd here; it can be optimal to offer the highest fare Y and
the lowest fare K, but not the middle fare M. This is because opening M
causes some buy-down from Y to M, whereas K is sufficiently restricted
to prevent buy-down. Only when capacity is plentiful is M opened.

2.6.2.4 Identifying Efficient Sets
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2.6.2.5 Optimality of Nested-Allocation Policies
The optimization results above also have important implications for

the optimality of nested-allocation policies. Indeed, Definition 2.1 and
Theorem 2.3 can be used to provide a complete characterization of cases
in which nested-allocation polices are optimal. They also can be used to
provide conditions under which the optimal nesting is by revenue order.

We begin with a precise definition of a nested-allocation policy in the
context of the choice model:

DEFINITION 2.2 A control policy is called a nested policy if there is
an increasing family of subsets and an index
that is increasing in such that set is chosen at time when the
remaining capacity is

Though this is a somewhat abstract definition of a nested policy, it is
in fact a natural generalization of nested allocations from the traditional
single-resource models of Section 2.2.2 and 2.5 and implies an ordering
of the classes based on when they first appear in the increasing sequence
of sets That is, class is considered “higher” than class in the
nesting order if class appears earlier in the sequence. Returning to
Example 2.5, we see that the efficient sets are indeed nested according
to this definition because and
are increasing. Class Y would be considered the highest in the nested
order, followed by class K and then class M.

If the optimal policy is nested in this sense, then we can define opti-
mal protection levels such that classes lower in the
nesting order than those in are closed if the remaining capacity is less
than just as in the traditional single-resource case. The optimal
protection levels for are defined by

Nested booking limits can also be defined in the usual way,

We again return to Example 2.5 to illustrate this concept. Table 2.10
shows the objective function value for each of the
three efficient sets for a particular marginal value function

which we assume is given in this example. Capacities are in
the range The last column of Table 2.10 gives the index,

of the efficient set that is optimal for each capacity
Note that for capacities 1,2, and 3, the set is the optimal

set, so class Y is the only open fare. Once we reach 4 units of remaining
capacity, set becomes optimal and we open class K in
addition to class Y. When the remaining capacity reaches 13, set
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{Y, K, M} becomes optimal, and we open M in addition to Y and K.
As a result, the optimal protection level for set is and the
protection level for set is has a protection level equal to
capacity.

2.6.2.6 Nesting by Revenue Order
Revenues provide a natural nesting ordering, and, as described ear-

lier in this chapter, this is traditionally how most quantity-based RM
systems have been conceived and implemented. From a practical stand-
point, therefore, it is important to understand when a particular choice
model leads to nesting by revenue order. Yet Example 2.5 makes clear
that nesting by revenue order need not be the optimal policy in general.

Talluri and van Ryzin [500] provide conditions that guarantee a given
choice model will always have this property. The results show, for ex-
ample, why the optimal control for the traditional independent-demand
model is nested by revenue order. Talluri and van Ryzin [500] also show
that if the choice probabilities follow the multinomial-logit (MNL) choice
model (See Section 7.2.2.3.), then the optimal policy is always nested by

THE THEORY AND PRACTICE OF REVENUE MANAGEMENT



Single-Resource Capacity Control 73

revenue order. A similar result holds if customers’ choice behavior is such
that they always buy the lowest-price open class. However, in general
nesting by revenue order need not be optimal.

2.6.2.7 Comparisons of Optimality Conditions
The optimality conditions in the nested-by-revenue-order case also

provide some intuition into how choice-based controls differ from tra-
ditional controls. Let denote the set of the highest
classes (in revenue order). Then one can show it is optimal to open class

if and only if

where

is the change (usually an increase for most choice models) in purchase
probability for class as the result of not offering class This
expression is intuitive: The left-hand side is the probability of selling
class times the “net gain” from selling it; that is, the revenue we
get from class minus the opportunity cost, of using a
unit of capacity. The right-hand side is the net gain (loss) among the
other classes caused by eliminating (adding) class (the sum over
all the other class in of the change in purchase probability times
the net gain from selling Therefore, the condition (2.28) simply says
that if the expected gain on class exceeds the incremental loss on
the other classes caused by adding then it pays to open
otherwise, should be closed.

The expression (2.28) should be compared with the optimality condi-
tion for independent-demand model; namely, it is optimal to open class

if and only if

(Indeed, note that (2.28) reduces to the above expression for the
independent-demand model since for this model for all

Note that the right-hand side above is zero while the right-hand
side of (2.28) is nonzero (typically positive). This happens because in the
independent-demand model, if we close class we lose all demand
for that class. Therefore, it is optimal to accept class whenever

exceeds the opportunity cost However, in the choice-
based model, if we close class customers choose from among the
other classes that are offered (e.g., from Hence, the threshold on
the right-hand side of (2.28) is nonzero. This difference reflects the fact
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that customers may buy up to a higher class, so there is some nonzero
benefit to rejecting a request for

2.6.2.8 A Numerical Comparison to EMSR-b with Buy-Up
We next look at the results of a small simulation study comparing

choice-based methods to a traditional EMSR-b method with buy-up
as described in Section 2.6.1. While the EMSR-b model is developed
under the static-model assumptions, it is frequently used as a heuristic
in the dynamic case by simply aggregating the total demand to come for
each class. Also, it is one of the few models available that incorporates
some type of choice behavior. For these reasons, it serves as a useful
benchmark for comparison.

This simulations are based on our running three-class example, Ex-
ample 2.5. We compare the optimal control given by the choice dynamic
program with the traditional EMSR-b (buy-up) recommendations. (Re-
call that for Example 2.5 the optimal dynamic programming policy uses
the fare classes in the order Y, K, M, whereas the EMSR-b uses them in
the fare order Y, M, K.)

The capacity C = 20, and there are three population sizes: 15,20,
and 25. The fares, restrictions, and customer segments are as given in
Table 2.8. For a population size of 20 this results in an unconstrained
mean and variance as shown in Table 2.11. These statistics are used to
create inputs for EMSR-b. The buy-up factors are computed as shown

in Table 2.12, which lists the unconstrained choices and demands when
all classes are open. (N.E. signifies that the segment is not eligible.)
This estimate roughly mimics the traditional practice of unconstraining
and forecasting demand in each class. Table 2.12 then sums the uncon-
strained demands for each fare class. The buy-up factors are estimated
as follows. The buy-up factor for K is given by the percentage K cus-
tomers who would buy up to M if we go from offering {Y, M, K} to
{Y, M}. Similarly the buy-up factor for M is the fraction who buy up
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to Y when going from offering {Y, M} to Y. Table 2.12 shows these
demands and buy-up factors for a population size of 20, and Table 2.13
shows the computed EMSR-b protection levels for this population size.
The results for the three load factors are summarized in Table 2.14.

Note that the choice dynamic program shows significant improvements

on this example, achieving an 11.5% improvement in revenue in the high-
demand case. Again, part of this improvement can be attributed to the
fact that the choice dynamic program uses a different sequence of classes
(only the efficient sets {Y}, {Y, K}, {Y, M, K}).

2.7 Notes and Sources
The notion of theft versus standard nesting is not well documented

and is part of the folklore of RM practice. Our understanding, however,
greatly benefited from discussions with our colleagues Peter Belobaba,
Sanne de Boer, and Craig Hopperstad.

The earliest paper on the static models of Section 2.2 is Little-
wood [347]. Another early applied paper is Bhatia and Parekh [64].
But there are close connections to earlier work on the stock-rationing
problem in the inventory literature by Kaplan [288] and Topkis [515];
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see also Gerchak [209, 210] and Ha [246]. Indeed, Topkis’s [515] results
can be used to show the optimality of nested-allocation policies.

Optimal policies for the case were obtained in close succession
(using slightly different methods and assumptions) in papers by Brumelle
and McGill [91], Curry [139], Robinson [445], and Wollmer [576]. See
also McGill’s thesis [375]. Robinson [445] also analyzed the case where
the order of arrival is not the same as the revenue order. Brumelle et al.
[90] analyzed a two-class static model with dependent demand.

The Monte Carlo method for computing optimal overbooking limits
presented in Section 2.2.3.2 is due to Robinson [445].

The dynamic model of Section 2.5 was first analyzed by Lee and
Hersh [336]. However, the proofs of Propositions 2.1 and 2.2 in Ap-
pendix 2.A are due to Lautenbacher and Stidham [330], who provided a
unified analysis of both the static and dynamic single-resource models.
Walczak and Brumelle [543] relate this problem to a dynamic pricing
problem using a Markov model of demand that allows for partial infor-
mation on the revenue values or customer types. See Liang [342] for an
analysis of a continuous-time version of the dynamic model.

The EMSR-a and EMSR-b heuristics are both due to Belobaba. The
most detailed coverage of EMSR-a is contained in Belobaba’s 1987 the-
sis [39], but see also the published articles from it [38] and [40]. EMSR-b
was introduced in [41]; see also Belobaba and Weatherford [37].

The problem of group or batch request in Section 2.4 was addressed
by Lee and Hersh [336] for the partially accepted case. For the more
complex case where groups must be completely accepted, see Walczak
and Brumelle [544], Kleywegt and Papastavrou [307], and Van Slyke and
Young [530].

The adaptive algorithm in Section 2 3 is due to van Ryzin and
McGill [526]. The buy-up heuristics in Section 2.6.1 are due to Be-
lobaba [39, 38, 40]. See also Belobaba and Weatherford [37], Weather-
ford [555], and the simulation study of Bohutinsky [81]. See Titze [514]
for a discussion of passenger behavior in the simple two-class model.
The material in Section 2.6.2 on choice-based models is from Talluri
and van Ryzin [500]; see also Algers and Besser [7] and Andersson [18]
for an application of discrete-choice models at SAS. For a good refer-
ence on discrete-choice modeling, see Ben-Akiva and Lerman [48]. De
Boer [155] is another recent work that addresses customer choice in a
single-resource problem.

APPENDIX 2.A: Monotonicity Proofs
The proofs of monotonicity are based on a lemma of Stidham [487] originally

developed to analyze queueing-control problems. The lemma was adapted to provide
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a convexity proof for a general single-resource problem, which includes both the static
and dynamic models, in work by Lautenbacher and Stidham [330]. The proof here
follows theirs.

We begin with a definition:

DEFINITION 2-2.A.3 A function defined on the set of nonnegative integers,
is concave if it has nonincreasing differences. That is, is

nonincreasing in

LEMMA 2-2.A.1  Suppose is concave. Let be defined by

for any given and nonnegative integer Then is concave in
as well.

Proof
First, note that by changing variables to we can write
where

We first analyze Let Since is concave,
is also concave, and moreover is nondecreasing for values of and

nonincreasing for values of Therefore, for a given and

Therefore, in the range and using the fact that is concave

For it follows that so is trivially concave
in this range.

Finally, for from the concavity of

Thus, is concave in and since is concave in
as well. QED

Proof of Proposition 2.1
We first prove part (i) of Proposition 2.1—namely, that the marginal value
is nonincreasing in (that is concave in The proof is by induction on the
stages. Note that in the terminal stage (stage 0), for all which is
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trivially concave. Now assume that is concave in and consider Note
that

The inner maximization is precisely of the form given by Lemma 2-2.A.1 with
Hence, it follows that for any realization of the function

is concave in Since it is a weighted average (nonnegative
weights) of concave functions, and hence it follows that is concave as well.

Part (ii) of the Proposition 2.1 says that the marginal value at a given capacity
at stage is less than at stage This is shown as follows:

where the first inequality follows because is the optimal protection level at stage
the second inequality follows from the nonnegativity of

and the last inequality follows from the fact that
is decreasing in QED

Proof of Proposition 2.2 Similarly, we can use Lemma 2-2.A.1 to show that the
increments of the value function defined by (2.17) are nonincreasing as
well: is concave in The proof is by induction on First, note
for all so is trivially decreasing in Next, assume is concave
and consider period The Bellman equation (2.17) is

The inner maximization is again in the form of Lemma 2-2.A.1 with Hence,
the function

is concave in for any realization of Since it follows
that is concave in as well.

To show monotonicity in note that
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where the last inequality follows from the fact that and
hence for any realization

QED

Proof of Monotonicity of Marginal Values from the Choice-Based Model
We next show for completeness that the marginal values in the choice-based models

are also decreasing in remaining capacity. Namely,

PROPOSITION 2-2.A.4 For the choice-based single-resource problem defined by
(2.24), the value function satisfies

and

Proof
The proof is by induction on First, the statement is trivially true for
by the boundary conditions (2.25a). Assume it is true for period and consider
period Let denote the optimal solution to (2.24) and note

From the optimality of the set defined by the following inequalities hold:

and
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Substituting into (2.A.1) we obtain

Rearranging and canceling terms yields

By induction, and
Therefore,

To show the marginal values are monotone increasing in the remaining time, note
that

From the monotonicity in we have that and therefore
for any value

Hence

QEDas well, and it follows that
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Chapter 3

NETWORK CAPACITY CONTROL

3.1 Introduction
In this chapter, we examine quantity-based revenue management of

multiple resources—commonly referred to as network RM. This class of
problems arises in airline, railway, cruise-line, and hotel RM—and in
general, whenever customers buy bundles of resources in combination
under various terms and conditions. In the airline case, the problem is
managing the capacities of a set of connecting flights across a network,
where flights can have a mix of connecting and local traffic A product
in this case is an origin-destination itinerary fare class combination—or
ODIF as it is called in airline terminology. In the hotel RM case, the
problem is managing room capacity on consecutive days when customers
stay multiple nights, where a mix of customers with different lengths of
stay share the capacity on any given day. (See Figure 3.1.)

When products are sold as bundles, the lack of availability of any
one resource in the bundle limits sales. This creates interdependence
among the resources, and hence, to maximize total revenues, it be-
comes necessary to jointly manage (coordinate) the capacity controls
on all resources.1 In the airline industry, this problem is also called the
passenger-mix problem or O&D (origin-destination) control, and in the
hotel industry, length-of-stay control. We use the now-standard term
network RM—though the term is something of a misnomer because the
theory and methodology do not require an explicit network structure as
such.

As in all quantity-based RM, we assume here that prices are fixed for all the products and
that we manage only the allocation of the resources to the different products.

1
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3.1.1 The Promise and Challenge of Network
Control

There can be significant revenue benefits in taking a network approach
to RM. Indeed, simulation studies of airline hub-and-spoke networks by
various researchers have demonstrated notable revenue benefits from us-
ing network methods over single-resource methods [36, 43, 565, 566].
While precise improvement numbers are dependent on the type of net-
work, the mix and variance of demand, the load factor, etc., improve-
ments on the order of 1.5% are not uncommon at moderate load factors,
and gains can be as high as 3% or more at higher load factors.2

2

In terms
of practice, the potential improvements have been sufficient to justify

Such gains have been observed in simulations on airline data, for networks with up to 100
flights, and under an independent-class assumption similar to that of Section 2.2.2.

2
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significant investments in network RM systems within the airline and
hotel industries and elsewhere.

While the potential benefit may be high, network RM poses significant
implementation and methodological challenges. On the implementation
side, network RM vastly increases the complexity and volume of data
that one must collect, store, and manage. The resulting data and infor-
mation systems requirements make the transition from single-resource
to network RM often a difficult and expensive one.

Network RM also creates organizational challenges. Since revenue de-
cisions and their effects now span an entire network, it is no longer easy
to assign revenue responsibility for a resource to a single analyst; rev-
enue losses at one point in the network may be offset by gains elsewhere
in the network. As a result, creating organizations and incentive struc-
tures that support the objectives of network RM is a challenging task.
Moreover, the transition to a network-oriented RM organization can be
difficult for employees who are used to a simpler view of the world.

Network RM creates methodological and operational challenges as
well. On the forecasting side, it requires a massive increase in the scale
of the forecasting system, which now must forecast demand for each
individual network product at each point in the booking process. In
addition, the sparsity of the data at this finer level of detail creates
numerical and estimation problems, and one has to wrestle with the
problem of combining forecasts at various levels of aggregation.

Optimization is more complex as well. In the case of a single-resource
problem, there are many exact optimization methods. However, in the
network case, exact optimization is for all practical purposes impossible.
Therefore, optimization methods use approximations of various types.
Achieving a good balance between the quality of the approximation and
the efficiency of the resulting algorithms becomes the primary challenge.

3.1.2 Types of Controls
As with single-resource problems, in network allocation problems there

are a variety of ways one can control the availability of capacity. The
objective is to find an effective and easy-to-implement mechanism to al-
locate capacity to requests for products that require a combination of
resources. The technological constraints imposed by the distribution sys-
tems, the revenue performance achievable by the method, and the overall
robustness of the control scheme are important criteria for choosing the
control mechanism.

We next look at the major categories of network controls. Most
are network versions of the controls used in single-resource RM (Sec-
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tion 2.1.1). But others—virtual nesting, in particular–are specific to
network RM.

3.1.2.1 Partitioned Booking Limits
Partitioned booking-limit control for network RM is an extension of

the partitioned control for single-resource RM (Section 2.1.1.1). In the
network case, partitioned booking limits allocate a fixed amount of ca-
pacity on each resource for every product that is offered. These allocated
amounts of capacity are non-overlapping—or partitioned; demand for a
product has exclusive access to its allocated capacity, and no other prod-
uct may use this capacity.

Partitioned booking limits for the network case have all the defects
mentioned in Section 2.1.1.1 and then some. Allocating fixed amounts
of capacity to each product results in dividing the capacity of each re-
source into a very large number of small allocations. This fragmenting
of capacity can result in tremendous inefficiencies when demand is sto-
chastic, and for this reasons partitioned booking limits are seldom used
in practice.3

Partitioned booking limits do have an important role to play both
theoretically and computationally, however. Theoretically, they are used
to provide bounds on the optimal network revenue. Computationally,
they are used in many approximate models (such as the deterministic
linear programming method discussed below).

3.1.2.2 Virtual Nesting Controls
Nested booking limits, of the type we saw in Section 2.1.1 for the

single-resource case, are difficult to translate directly into a network set-
ting. One difficulty is that the ordering of classes is no longer straight-
forward.4 A second difficulty is that the different capacities of the re-
sources involved makes it difficult to specify protection levels or booking
limits for products that are consistent across the resources in the net-
work. However, the ability of nested controls to dynamically share the
capacity of a resource—and thereby recover the pooling economies lost
in partitioned controls—is an attractive feature.

Though Ciancimino et al. [118] report study a RM model for the Italian railroad in which
partitioned allocations worked well (at least relative to first come, first serve), though in their
railroad problem the number of products using each resource was small (3 to 6).
Of course, we’ve seen in Chapter 2 that for even the single-resource case, the ordering is not

always simply the order of the prices. For example, when refunds are class dependent or one
models consumer choice behavior, nesting may not be optimal and the ordering of classes
may be different from the simple fare order.

3

4
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Virtual nesting control—a hybrid of network and single-resource
controls—provides one solution. American Airlines is credited with de-
veloping this control scheme (circa 1983) as a way of incorporating some
degree of network control within the single-resource nested-allocation
structure of American’s single-resource-based (at that time) reservation
system.

Virtual nesting uses single-resource nested-allocation controls for each
resource in the network. However, the classes used in these nested al-
locations are virtual classes, which group together sets of products that
use a given resource. Products are assigned to a virtual class through a
process known as indexing, which essentially provides a table that maps
every product to a virtual class on each resource. This indexing, which
attempts to cluster products based on their “network value,” may be
updated periodically as network demand patterns change.

Nested booking limits (or protection levels) for each resource are then
computed using these virtual classes. To decide on a request for a net-
work product, the system checks for availability of its corresponding
virtual classes on each resource. If all the virtual classes are available,
the request is accepted; if any one of the virtual classes is closed, the
request is rejected.

Virtual nesting has a few notable disadvantages. For one, the indexing
process can create potential difficulties in data collection and forecasting.
Specifically, if data is collected at the virtual class level, then reindexing
can alter the parameters of demand in a virtual class by changing which
products are mapped into each virtual class. As a result, the virtual
class demand statistics may shift dramatically even when the underlying
product-level demand is unchanged. In this way, indexing can introduce
its own “noise” into the data and forecasts. Virtual classes can also
cause confusion for analysts, who may not be able to easily interpret
virtual class demand. Finally, both the indexing process and the control
logic of mapping products to virtual classes create complexity.

At the same time, virtual nesting has several advantages. It preserves
the booking-class control logic of most existing GDSs, so no major in-
frastructure changes are required, yet it allows a RM system to incor-
porate some network information. It therefore provides an acceptable
compromise between single-resource and full network control and has
proven to be quite effective and popular in practice, especially in the
airline industry.

Virtual nesting was a genuine breakthrough in RM when it was in-
troduced by American Airlines and still has a strong contingency of in-
dustry and academic supporters. However, its main benefit—its ability
to preserve the single-resource, nested-allocation structure of control—is
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somewhat particular to the travel and hospitality industry, where such
controls are part of the industry’s legacy distribution systems. For in-
dustries without this legacy infrastructure, bid-price controls provide
simpler, more intuitive, and powerful means of network control. Even
within the airline industry, bid-price control is gaining popularity as
CDS and RM system vendors upgrade their technologies.

3.1.2.3 Bid-Price Controls
While nested allocations are difficult to extend directly to network

RM control, network bid-price control is a simple extension of the single-
resource version described in Chapter 2. In a network setting, a bid-price
control sets a threshold price—or bid price—for each resource in the
network. This bid price is normally interpreted as an estimate of the
marginal cost to the network of consuming the next incremental unit
of the resource’s capacity. When a request for a product comes in, the
revenue of the request is compared with the sum of the bid prices of the
resources required by the product. If the revenue exceeds the sum of the
bid prices, the request is accepted; if not, it is rejected.

Bid-price controls have many advantages. First, even in a network
setting the structure of the control remains simple: we have to specify
only a single value for each resource (not each product), so the number
of parameters involved is minimal.5 Second, evaluating a request for a
product requires only a simple comparison of revenue to the sum of bid
prices for the requested resources, so the transaction-processing task is
quick. Third, bid prices are intuitive and have a natural economic inter-
pretation as the marginal cost to the network of each resource. Finally,
if implemented correctly, bid prices have very good revenue performance
and can even be shown to be theoretically near-optimal under certain
conditions.

Despite these advantages, bid-price controls have generated consider-
able controversy among both RM practitioners and academics alike. The
debate about bid prices being “unsafe” was discussed in Section 2.1.1.4
in the single-resource context. The issues are essentially the same in
the network case. Also, in the airline industry, as simple as the bid-
price control logic may be, it is a vast departure from the control logic
used in existing GDSs, and their acceptance has not been immediate.
Bid-price control requires the GDS to support seamless availability (Sec-

Though to work properly, bid prices must be updated with changes in capacity and time.
This often necessitates storing a table of bid price values and the values are retrieved based
on the current remaining capacity and the current remaining time. (See Table 3.1.) Still,
only one such table is required for each resource, and the look-up is quick.

5
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tion 11.2.3.2) and other real-time capabilities to connect to the host CRS
and instantly respond to requests—technologies that have only recently
become widespread. Hotel RM systems, of more recent vintage and
without the legacy-system burdens of airlines, have been in a better po-
sition to adapt bid-price control, and it has become the dominant form
of control for network RM in the hotel industry.

We next look at the theory behind network controls. Network RM
is complex and difficult to analyze, and few exact theoretical results
are available. However, asymptotic analysis giving some insight into
the optimal form of control is sometimes possible, and we review it in
Section 3.6.

3.2 The Theory of Optimal Network Controls
We begin with a basic model of the problem. The network has

resources, and the firm sells products. (Each network product is a
combination of a bundle of the resources sold with certain purchase
terms and restrictions at a given price.) Let if resource is
used by product and otherwise. Define the incidence matrix

Thus, the column of A, denoted is the incidence
vector for product the row, denoted has an entry of one in
column corresponding to a product that uses resource We let

denote the set of legs used by product and to denote the set of
products that use resource so that the notation indicates that
resource is used by product and indicates that product uses
resource

The state of the network is described by a vector
of resource capacities. If product is sold, the state of the network
changes to To simplify our analysis at this stage, we will ignore
cancellations and no-shows. We will also omit the possibility of booking
requests for multiple units of capacity (say, corresponding to a group or
batch request) to simplify the presentation.

Time is discrete, there are periods, and the index represents the
current time (with the time indices running forward, so is the
time of service). Within each time-period as we did for the dynamic
single-resource case, we assume that at most one request for a product
can arrive; that is, the discretization of time is sufficiently fine so that
the probability of more than one request is negligible.

Note that there will be multiple identical columns if there are multiple ways of selling a
given bundle of resources. For example, in the airline case there may be many fare classes
for the same itinerary. Each would have an identical column in the matrix A, but they could
have different revenue values and different demand patterns.

6

6
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Demand in period is modeled as the realization of a single random
vector If this indicates a
request for product occurred and that its associated price is if

this indicates there is no request for product A realization
(all components equal to zero) indicates that no request from

any product occurred at time
For example, if we have products, then a value

indicates no requests arrived, a value indicates a re-
quest for product 1 with a price of $120, a value of
indicates a request for product 1 with a price of $140, and a value

indicates a request for product 2 with a price of $70,
and so on.

The sequence is assumed to be independent across time
with known joint distribution in each period Let the prices associated
with the products be This is the network version of the
independence by class assumption that we make in Chapter 2. (See also
Section 7.1.) We make this assumption for all models in this chapter.

Given the current time the current remaining capacity x, and the
current request the quantity-based RM decision is as follows: Do
we or do we not accept the current request?

Let the denote this decision, where if we
accept a request for product in period and otherwise. The
decision to accept, is a function of the remaining capacity vector
x and the price of product —that is, —and hence

Since we can accept at most one request in any period
and resources cannot be oversold, if the current seat inventory is x, then

is restricted to the set

3.2.1 The Structure of Optimal Controls
To formulate a dynamic program to determine optimal decisions

let denote the maximum expected revenue to go, given
remaining capacity x in period Then must satisfy the Bellman
equation

with the boundary condition
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It is easy to show that is finite for all finite x. Moreover, an
optimal control satisfies

The control (3.3) says that an optimal policy for accepting requests is of
the form: accept a request for product (at price ) if and only if we
have sufficient remaining capacity and

where is the price of product This reflects the rather
intuitive notion that we accept a booking request for a product only
if its price exceeds the opportunity cost of the reduction in resource
capacities required to satisfy the request.

3.2.2 Bid Price Controls
The displacement cost intuition of (3.3) leads naturally to bid-price

controls for network RM, and indeed the analogy to the role of dual
prices in deterministic optimization motivated the early development of
bid-price control schemes by Simpson [476] and Williamson [565, 566].
If we suppose, in a heuristic sense, that the value function has
a gradient then the condition for accepting product    can be
approximated by

where This line of reasoning motivates the follow-
ing definition:

DEFINITION 3.1 A control is a bid-price control  if there ex-
ist real-valued functions
(called bid prices) such that

In other words, a bid-price control specifies a set of bid prices for each
resource, at each point in time, and for each capacity level, such that we
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accept a request for a particular product if and only if there is available
capacity and the price exceeds the sum of the bid prices for all the
resources used by the product. Bid-price control can be implemented by
specifying a bid price table for each resource. Table 3.1 gives an example
of such a table.

3.2.3 Nonoptimality of Bid-Price Controls
Despite the generality of Definition 3.1, bid prices are not always an

optimal form of control. The following example shows that there are
cases where no set of bid prices is able to achieve the optimal control
decision (3.3):

Example 3.1 Consider a network with two resources. There is one unit of capacity
on each resource and two time-periods. The product data are shown in Table 3.2. In

period 1, demands for all three products can arrive: products 1 and 2 require resources
1 and 2, respectively, and each has a price of $250 and a probability of arrival 0.3.
Product 3 requires both resources and has a price of $500 and probability of arrival
0.4.

In the last period (period 2), there is demand only for product 3 with the same
$500 price and a probability of arrival of 0.8. Arrivals in each period are mutually
exclusive (only one product per period arrives).

It is not hard to see by inspection that an optimal policy is to reject product 1 and
2 in period 1 and accept product 3 in both periods. This is true because accepting
products 1 or 2 in period 1 yields $250 in revenue but prevents us from accepting
product 3 in period 2, which results in an opportunity cost of $400 (0.8 × $500). So
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it is optimal to reject both products 1 and 2 in period 1. However, we clearly want
to accept product 3 in period 1, since we cannot gain more than $500 in period 2.

This implies that the bid prices, and in period 1 must satisfy
and which is, of course, impossible. Therefore, no bid price

policy can produce an optimal decision in period 1.
Indeed, it is not hard to show that the best a bid price policy can do in this example

is to reject all demand in period 1 and accept only product 3 (if it arrives) in period
2, yielding a $400 expected revenue. The optimal policy, in contrast, generates an
expected revenue of $440—fully 10% more expected revenue than by the best possible
bid price policy.7

This counterexample illustrates the two main reasons that bid-price
controls may not be optimal. One reason that bid prices in this example
fail is that selling a seat is a “large” change in the capacity of a resource.
Large relative changes in capacity on several resources simultaneously
cannot, in general, be expected to produce the same revenue effect as the
sum of the individual changes. So gradient-based reasoning falls short
in explaining bid price optimality.

The second reason that bid prices may fail to capture the opportunity
cost is that future revenues may depend in a highly nonlinear way on the
displaced capacity. In the counterexample, note that the minimum ca-
pacity on the two resources determines future expected revenues. Hence,
the opportunity cost of using a single resource exactly equals the oppor-
tunity cost of using both resources simultaneously. This phenomenon
is analogous to degeneracy in mathematical programming, and it can
occur in the optimal value function or in various approximations to the
optimal value function, as shown below in Section 3.3.

3.2.4 Evidence in Support of Bid Prices
While most of these results on bid price optimality are negative, Sec-

tion 3.6 provides some theoretical results showing that bid-price controls
are asymptotically optimal under certain “large-number” scalings of the
network RM problem. Thus, there are conditions under which bid prices
are provably good. In addition, numerical simulation studies have largely
confirmed that bid prices (properly implemented) are an effective control
mechanism for network RM.

3.2.5 Bid Prices and Opportunity Cost
One interesting observation about bid prices is that there need not be

a one-to-one correspondence between optimal bid prices and the oppor-

The $440 optimal revenue is obtained by accepting product 3 only in both periods 1 and 2,
in which case the expected revenue is 0.4 × $500 + (1 – 0.4) × 0.8 × $500 = $440.

7
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tunity cost of capacity. That is, one can generate examples of bid prices
that give optimal accept or deny decisions but that at the same time are
very poor approximations to the marginal value of resource capacity.

Consider, for example, a single-resource problem in which high-
revenue products arrive strictly before low-revenue products. In this case,
it is clear that it is optimal to accept arrivals in a first-come, first-serve
(FCFS) order. Therefore, a constant bid price of zero is one optimal solu-
tion. On the other hand, the opportunity cost
at each point in time will in general not be zero.

In other words, while it is sufficient to compare the revenue with the
opportunity cost at each time to make optimal accept or deny decisions,
it is not necessary to do so; other threshold values may produce the
same accept or deny decision and the same optimal revenues, as in our
example. One might argue that this difference is not worth worrying
about as long as we can identify one bid-price value that is optimal.
However, in practice a good estimate of opportunity cost is desirable,
since opportunity-cost numbers from a RM system often support other
decision making, such as capacity planning or pricing. Thus, bid prices
that accurately approximate the opportunity cost of capacity are more
valuable than ones that do not, even if both perform equally well in a
RM system.

3.3 Approximations Based on Network Models
For any network of realistic size, computing the value function

in (3.1) exactly is essentially hopeless because of the large dimensionality
of the state space (e.g., a network with resources and capaci-
ties of C = 100 on each resource has states). Instead, one must
rely on approximations of various types. Most approximation methods
proposed to date follow one of two basic (not necessarily mutually ex-
clusive) strategies. The first, which we look at in this section, is to use
a simplified network model—for example, posing the problem as a sta-
tic mathematical programming problem. The second strategy, which we
look at in the next section, is to decompose the network problem into a
collection of single-resource problems. Whichever method is used, it is
useful to view all such methods as producing different approximations
of the optimal value function.

The most useful output of an approximation method are estimates of
displacement costs—or bid prices. These are used either directly in bid-
price control mechanisms or indirectly in other mechanisms like virtual
nesting. Given an approximation method M that yields an estimate of
the value function we can approximate the displacement cost of
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accepting product by

where is the gradient of the value function approximation
assuming the gradient exists. The bid prices are then defined

by

If the gradient does not exist, then is typically replaced (at
least implicitly) by a subgradient of If the approximation is
discrete, then first differences are used in place of partial derivatives.

Using a sum of bid prices to approximate displacement cost, rather
than the difference directly, is done mainly to
simplify the control. As mentioned above, one of the appeals of bid-
price control is that it requires only resource-level bid prices (one
for each resource) rather than product-level controls—and in large
networks, can be several orders of magnitude smaller than This
makes additive bid prices appealing on a practical level. Still, as shown
by Example 3.1, such additive approximations can be inaccurate in some
cases, and non-additive bid prices may be needed. (Berstsimas and
Popescu [61] examine this issue of additive versus non-additive bid-price
controls.)

Clearly, one objective for an approximation method is to produce a
good estimate of the value function—and more important, a good esti-
mate of the displacement costs or bid prices. On the other hand, speed
of computation matters as well. The approximation may be a
static approximation that must be re-solved quite frequently in prac-
tice to account for changes in remaining capacity x and remaining time

A static method that is accurate but computationally complex will
therefore be of little use in practice. An approximation that produces
dynamic estimates of displacement cost—for example, bid prices that
vary with capacity and time—can be solved less frequently, but still
changes in forecasts and fare input data inevitably occur and necessi-
tate recomputing the model. Thus, one should always keep these two
criteria—accuracy and speed—in mind when judging network approxi-
mation methods.

3.3.1 The Deterministic Linear Programming
Model

Let the aggregate demand to come at time for each product be
denoted (demand over the periods ) with mean
Let and denote the vector of demands
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and mean demands, respectively. The deterministic linear programming
(DLP) method uses the approximation

The decision variables represent the partitioned alloca-
tion of capacity for each of the products. The approximation effectively
treats demand as if it were deterministic and equal to its mean and
makes an optimal partitioned allocation accordingly. Using Jensen’s in-
equality, one can show that is in fact an upper bound on the
optimal value function [111, 112, 131].

Occasionally, the optimal primal solution to (3.6) is used to construct
a partitioned control directly. More often, the primal allocations are
discarded, and one uses only the optimal dual variables, denoted
associated with the constraints as bid prices. If the optimal
solution is not degenerate, that is, if the active constraints are linearly
independent at the optimal solution, then exists and is given
by the unique vector of optimal dual prices, if the optimal solution
is degenerate, then there are multiple optimal dual price vectors, each
of which is only a subgradient of the function

The main advantage of the DLP model is that it is computationally
very efficient to solve. Due to its simplicity and speed, it is popular in
practice. The weakness of the DLP approximation is that it considers
only the mean demand, ignoring all uncertainty in the forecasts, and
models only a partitioned control mechanism. One consequence of this is
that the dual values will be zero on any resource that has a mean demand
less than capacity, a behavior that can cause problems in practice.

Despite this deficiency, simulation studies (with the independent-class
assumption) by several researchers have shown that with frequent re-
optimization, the performance of DLP bid prices is rather respectable,
producing higher revenue than both the probabilistic nonlinear program-
ming model of Section 3.3.2 and a variety of leg-based EMSR heuristics
[36, 43, 565, 566], though other studies have reported more mixed re-
sults [42]. In general, the performance of the DLP method, like many
network methods, depends heavily on the type of network, the variance
in the demand forecasts, the order in which fare products arrive, and
the frequency of reoptimization.8

Cooper [131] provides a counterexample in which more frequent reoptimization of a DLP
model (using bid-price controls) results in worse revenue performance, though the prepon-
derance of numerical evidence suggests that frequent reoptimization is beneficial.

8
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One variation in the use of DLP proposed by Bertsimas and
Popescu [61] is not to use the dual prices produced by the model but to
use discrete differences as an estimate of the marginal value of capacity.
Specifically, for each product we compute the difference in the value
functions

determine controls for all products, one must solve a separate linear
program for each product which increases the computational effort
substantially relative to DLP-based bid price controls.9

3.3.2 The Probabilistic Nonlinear Programming
Model

The probabilistic nonlinear programming (PNLP) method uses the
approximation

where and are defined as in the DLP case. As in the DLP, the
decision variable represents a partitioned allocation of capacity to
product and the term is the expected sales of product

under this partitioned allocation. Since partitioned allocations are
certainly a feasible policy for the network problem, is in fact
a lower bound on the optimal value function [111].

While this model results in a nonlinear program, it is a relatively easy
one; the objective function is concave and separable in the variables

and the constraints are linear. A variety of specialized algorithms
for separable concave problems make the PNLP model feasible for large
networks.

If demand is discrete, one can also convert the model to a linear pro-
gram, albeit one with many more variables. This is achieved by assigning

Though “warm starting” the LP solver using the current solution for x reduces the compu-
tation time significantly.

9

and then use this value as a bid price for product The motivation
here is both to eliminate the potential problem of degeneracy and also to
better reflect the discrete change in capacity that occurs when accepting
a request. In numerical experiments, this modification appears to offer
a modest improvement over using additive bid prices based on the dual
variables A disadvantage of this approach, however, is that to
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a variable to each product and to each unit of capacity. Specifically, de-
fine variable to be the unit of capacity allocated to product
Then the PNLP model can be written

where is an upper bound on the capacity allocated to product (for
example, the minimum capacity remaining among the resources used
by product ). The equivalence of the formulations (3.7) and (3.8) fol-
lows from the fact that (for discrete distributions)

and that is decreasing in
Formulation (3.8) is sometimes referred to as the probabilistic lin-

ear programming model, but it is in fact equivalent to the PNLP for
discrete demand and is a close approximation to the PNLP for contin-
uous demand distributions. Because of the large number of variables
introduced in converting the PNLP model to a linear program—and the
simple structure of the nonlinear version of the PNLP model—it is often
more efficient to solve the PNLP model directly as a nonlinear program.
Another alternative is to attempt to reduce the size of the PNLP by ap-
proximating demand distributions with a coarser discretization, which
de Boer et al. [154] show does not affect the performance significantly.

Whichever approach is used to solve the PNLP, one can obtain bid
price values from the resulting dual variables. If the active constraints
are linearly independent at the optimal solution, then ex-
ists and is given by the unique vector of optimal dual prices associated
with these constraints; if the active constraints are dependent, then mul-
tiple optimal dual vectors are subgradients of the function

3.3.2.1 Qualitative Behavior of PNLP
On the surface, the PNLP approximation appears somewhat better

than the DLP approximation, in that the term in the
objective function captures the randomness in demand. For example,
unlike in the DLP approximation, the PNLP dual price of a resource
can be positive even when mean demand for the resource is strictly less
than capacity, reflecting the fact that there is some probability that
demand will exceed capacity. However, the assumption of partitioned
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allocations of capacity to each product can lead to poor behavior, and
simulation studies have generally confirmed that PNLP bid prices result
in lower revenues than DLP bid prices [154, 565, 566].

To understand the weakness of the PNLP approximation, consider
the following example:

Example 3.2 A network has leg and products on the leg, each of which is
identical. That is, each product has demand and each product has
the same revenue The PNLP formulation is then

Now, by symmetry the optimal solution is and hence the
Kuhn-Tucker conditions imply the optimal dual price satisfies

where is the c.d.f. of the standard normal distribution, then forms an estimate
of the marginal value of the seat.

However, since all products are identical, the marginal value in this problem should
be unchanged if we aggregate all products into one product with mean and vari-
ance Aggregating and applying the PNLP, we find the optimal dual multiplier
in this case satisfies

If and is large, (3.9) and (3.10) give very different estimates of the marginal
revenue. Of course, from first principles, the opportunity cost should be independent
of how we aggregate (or disaggregate) the identical products.

Example 3.2 shows how the partitioned allocation assumption of the
PNLP model can potentially lead to poor estimates of opportunity cost.
While on the surface this example seems contrived, it is not uncommon to
observe similar behavior in large airline networks. For example, in hub-
and-spoke networks if many uncongested in-bound legs have connecting
passengers traveling on a single congested out-bound leg and passengers
pay comparable revenues, then the situation is similar to the example
above; one would like to treat all passengers as a single class (“pool” the
products), but the PNLP allocates space to each one separately, resulting
in a distorted estimate of the marginal value. The DLP method does
not suffer this lack-of-pooling defect as shown below:
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Example 3.3 Consider the deterministic linear programming version of Exam-
ple 3.2. If we define the problem for the original products, we get the linear
program

If we aggregate all the demand in to one product, we get the linear program

It is not hard to see that these both have the same optimal dual solution and hence
produce the same estimate of the marginal revenue.

Essentially, the DLP makes one particularly bad assumption: demand
is deterministic. But once this assumption is made, there is no further
loss in optimality by formulating the model using partitioned allocations.
In the PNLP case, the demand assumption is more realistic, but under
this demand assumption, using partitioned allocations becomes highly
suboptimal.

3.3.3 The Randomized Linear Programming
Model

Randomized linear programming (RLP) is another approach for incor-
porating stochastic information into the DLP method based on replacing
the expected value of D in the constraint (3.6) by the random vector D
itself. The expected value of the resulting optimal solution then forms
an approximation to the value function. That is, define

The optimal value is a random variable. Let denote
an optimal vector of dual prices for the set of constraints and
note that is a random vector.

Next, consider approximating the value function by the expected value
of

Note the right-hand side corresponds to a “perfect-information” approx-
imation because it reflects a case in which future allocations (and rev-
enues) are based on perfect knowledge of the realized demand D; how-
ever, at time D is not yet realized so the right-hand side is the expected
value of this perfect-information solution. Assuming that the gradient
exists, we then use as a vector of bid prices.
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3.3.3.1 Estimating the Gradient via Simulation
The RLP approximation (3.12) requires a method to efficiently com-

pute One simple approach is to consider interchanging
differentiation and expectation. There are formal conditions under which
such an interchange is justified,10 but assuming it is, we have

This interchange, in turn, suggests a procedure for estimating
Simply simulate independent samples of the demand

vector, and solve (3.11) for each sample. Then estimate
the gradient using

In other words, simply average the dual prices from perfect-information
allocation solutions on randomly generated demands. This idea is called
the randomized linear programming (RLP) method.

The RLP method has several appealing features. First, it is a simple
modification to the DLP method, so it can be easily incorporated into
RM systems based on DLP. Second, it has the flexibility to model very
general demand distributions, since we need only the ability to simulate
demand to apply the method (for example, one could allow for different
coefficients of variation or correlations among the components of D). In
addition, the quality and complexity of the model can be controlled by
varying the number of random samples Finally, unlike the DLP, it
incorporates distributional information on demand.

3.3.3.2 Comparisons to DLP
To understand qualitatively how RLP compares with DLP, consider

the following simple example:

Example 3.4 Let (a single resource) and A = [1] (one product), so we have
scalar values and It is easy to see that and

so if D has a continuous distribution, then

which is precisely Littlewood’s rule (2.2) for the expected marginal value of capacity.
So the RLP method produces the exact expected marginal value in this case. In

The conditions essentially ensure that the linear program has a unique dual solution with
probability one, so that the gradient with respect to x is well defined. However, they are
somewhat difficult to verify in general. See Talluri and van Ryzin [499] for details.

10
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contrast, the DLP method produces a marginal value of zero if and a
marginal value of if —neither of which is correct.

RLP also retains the desirable pooling property of the DLP method. Indeed,
consider splitting up the demand D in this example into classes all with revenue
such that Then it is not hard to see that for each realization of
demand, the dual price is again if and
if Thus, the expected dual price is unchanged.

Example 3.4 suggests why the RLP method tends to produce a some-
what better approximation of the marginal value of capacity than the
DLP method.

Figure 3.2 show some simulation comparisons of DLP and RLP on a
hotel network. In these simulations, RLP provides a small but significant
benefit in revenue over DLP at high occupancy. Nevertheless, methods
like dynamic programming decomposition that we cover in Section 3.4.4
tend to dominate both DLP and RLP.

3.4 Approximations Based on Decomposition
Another strategy for generating network controls is to decompose the

problem into single-resource problems, each of which may incorpo-
rate some network information but are solved essentially independently.
Formally, one can think of such a decomposition method as follows. An
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approximation method decomposes the network problem into single-
resource problems and applies a single-resource method on each re-
source with value functions that depends on the time to go
and the remaining capacity of resource These may be constructed
by incorporating some static, network information into the estimates.
Then the total value function is approximated by

Typically, such approximations are discrete and yield bid prices

where is the marginal expected value
produced by the single-resource method applied to resource

Decomposition approximations have several advantages relative to
network approximations. First, because they are based on single-resource
models, the displacement costs and bid prices are typically dynamic,
varying as a function of capacity and time, and can be represented as a
table of outputs (in the case of dynamic programming models) or sim-
ple formulas (in the case of EMSR approximations). Thus, it is easy
to quickly determine the effect of changes in both the remaining time
and remaining capacity x on the bid prices. This should be contrasted
with network models, which must be re-solved to determine the effects
of such changes. Second, the simpler single-resource models used in de-
composition approaches allow for more realistic assumptions, such as
discrete demand and capacity, sequential decision making over time and
stochastic dynamic demand.

The primary disadvantage of decomposition methods is that in the
process of separating the problem by resources one can lose important
network information. Nevertheless, as we show below, hybrids of the two
approaches can be used to try to achieve the benefits of both network
and decomposition methods.

3.4.1 OD Factors Method
Origin-destination factors method, or OD factors method (also called

heuristic bid price), is a simple type of decomposition approximation. In
this method, one solves independent single-resource problems for each
resource without making any prior adjustment to the input data for
these problems. Typically, the total revenue of every product is used
on each resource to solve a single-resource problem for that resource.
The method may be either heuristic (such as EMSR-b) or exact (such
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as the dynamic program of Section 2.5). Let the value functions from
the problem on resource  be denoted

When evaluating a request for product on resource the price is
compared with a bid price of the form

where is the marginal value from the resource-level approx-
imation method and is a global “OD factor” that tries to capture
the displacement costs on resources other than Typically, and
is tuned by simulation. If exceeds the OD factor bid price, then prod-
uct is accepted on resource A similar calculation is performed on all
other resources used by product Product is accepted if it is accepted
on all these resources. In other words, should be greater than or equal
to the maximum of the bid prices on the resources it consumes.

Note the effect of this strategy. If product uses only resource then
the decision is the same as that under the single-resource problem
However, if product uses resources other than the bid price is higher
than it would be under problem alone. Intuitively, this is as it should be
since accepting product causes displacement at other resources
in the network. The reason for the OD factor is that each single-
resource problem tends to overestimate its own displacement cost as
each problem uses the total revenue of each product, yet displacing a
product that uses more than one resource frees up capacity elsewhere
in the network, and the loss in gross revenue is partially offset by the
marginal value of capacity that is freed up elsewhere in the network.

The motivation for this OD factor approach is simply to take single-
resource methods that one might already have in place and, in a simple
way, convert their outputs into estimates of network displacement costs.
Thus, it has the advantage of not requiring any new modeling or esti-
mation. With proper tuning of the OD factor it can produce revenue
benefits over simple, single-resource controls. Indeed, this later claim
is almost immediate since recovers the single-resource strategy
and another choice, of course, can potentially improve revenues further.
Nevertheless, the choice of the parameter is quite ad hoc, and the al-
ternative strategies that we present next almost always perform better.

3.4.2 Prorated EMSR
A slightly more sophisticated method for decomposition is to use pro-

rated revenues in a collection of single-resource problems. The idea was
first investigated by Williamson [566] with EMSR heuristics and is called
the prorated expected marginal seat revenue (PEMSR) scheme.
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The PEMSR schemes involve allocating a portion of the revenue of
each product to the resources used by the product. One then solves
single-resource problems using an EMSR heuristic, though other single-
resource methods can very well be substituted. The resulting marginal
values from each resource are then used as bid prices in a bid-price con-
trol scheme, or the allocations are used directly in resource-level nested
allocation controls.

Specifically, let be a nonnegative real vector. For
each product define new revenues, one for each resource used by the
product, by

Next, treat each resource independently as if it received demand but
with reduced revenue and solve the corresponding EMSR problem.
The approximation to the value function is then

where denotes the expected revenue of problem under
the allocation

Williamson [566] investigated several methods for determining the al-
location weights in airline problems, including prorating based on
mileage, number of resources, and the relative revenue value of local
demand on each resource. Her conclusion is that none of these fixed
allocations is very robust in general. Indeed, it is not hard to see that if
one resource used by a product is highly congested and all others have
abundant capacity, then the revenue of the product should be entirely al-
located to the congested resource. Depending on the forecast of demand,
however, the congested resource could be any of the resources used by
the product; hence, no fixed allocation scheme can be expected to work
well in all cases. Indeed, the iterative prorating schemes of Section 3.4.5
below are partially motivated by this insight.

3.4.3 Displacement-Adjusted Virtual Nesting
(DAVN)

Displacement-adjusted virtual nesting (DAVN) starts with a set of
static bid prices—or marginal value estimates—which we denote by

These estimates may be obtained, for example, from one of
the various network heuristic models presented in Section 3.3. Given the
bid prices one then solves a single-resource problem on each resource

as follows.
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First, for all products that use a displacement-adjusted revenue
is computed using

That is, the revenue of product on resource is reduced by the static bid
price values of the other resources used by product This adjustment
is intended to approximate the net benefit of accepting product on
resource

The next step is clustering, or indexing. In this step, the displacement-
adjusted revenue values on each resource are clustered into a specified
number of virtual classes, or buckets. (The number of virtual classes,

is a design parameter, but is typically on the order of 10. It may
also vary across resources.)

The indexing from product to virtual class on each resource can be
performed using a variety of algorithms. For example, one can simply
look at the range of displacement-adjusted revenue values on a given re-
source and split this range into equal intervals (equal-revenue-width
partitioning). All products with displacement-adjusted revenues in the
first interval are assigned to virtual class 1, all those with displacement-
adjusted revenues in the second interval are assigned to virtual class 2,
and so on. Because one would like the displacement-adjusted revenues in
each virtual class to be roughly the same, more sophisticated clustering
methods attempt to assign products to virtual classes so as to minimize
some measure of the variation of displacement-adjusted revenue values
within each virtual class. The particular indexing method and cluster-
ing criteria are also design decisions and vary from implementation to
implementation.

The following is an example of an advanced indexing scheme used by
American Airlines (see Vinod [537, 538]):

Example 3.5 (DYNAMIC PROGRAMMING BASED INDEXING) Consider a given re-
source For ease of exposition, we assume that products are renumbered so that
the displacement-adjusted revenue for product are ordered as follows:12

Let denote the mean demand for product (again under the revised numbering of
products).

11Observe that the displacement-adjusted revenue could be negative. In this case, product
is never accepted on resource and typically we either eliminate product from the problem
on resource or (equivalently) set the displacement-adjusted revenue value to zero.
12This can be achieved by simply sorting the displacement-adjusted revenue values while
keeping tracking of the original product numbers for each sorted value.

11
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We want to partition these products into virtual classes. To do so, we first
assume that the partitions are contiguous so that if and both products
and belong to the same partition, then products also belong to
the same partition. For a given contiguous partition define the squared
deviation of revenue within partition by

where

is the weighted-average displacement adjusted revenue for partition We would
then like to find contiguous partitions that minimize the total sum of the squared
deviations (minimizes the total within-group variation).

This can be solved by dynamic programming as follows. Let denote the
minimum squared deviation possible when partitioning the products into
contiguous groups. Then

with boundary conditions

Starting with groups, we solve (3.16) for successive values of until we reach
Then gives the minimum total squared deviation, and by backtracking in

the recursion (3.16) we can find the corresponding optimal partition. The complexity
of this DP is which is much more efficient than complete enumeration.

Vinod [537] reports that this DP-based indexing method significantly
improved the performance of American Airline’s virtual nesting imple-
mentation (by about 0.5%) relative to their prior indexing scheme, which
was based on a simple equal-revenue-width partitions. This suggests that
the performance of DAVN is sensitive to the choice of indexing method.
Indexing, however, is not a real-time process because changes to the
virtual class mappings can be quite disruptive for both host reservation
systems and human RM analysts alike; therefore it is usually performed
only periodically.

Once the virtual classes are formed and the indexing is determined, we
compute a representative revenue value for each class—which is usually
the (mean demand) weighted average displacement-adjusted revenue.
Then, we compute the distribution of aggregate demand in a virtual class
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by adding the means and variances of demand to come for all products
that are indexed to that virtual class. Finally, we solve a single-resource
problem (using any standard single-resource method) based on this data
to determine protection levels on each resource. We call this problem

This procedure yields a set of booking limits (or protection levels)
for the virtual classes on each resource and a value-function estimate

The control strategy then proceeds as follows. A request for product
is converted into a request for the corresponding virtual class on each

resource required by product using the indexing scheme. If the vir-
tual class on each resource is available, the request is accepted. If the
virtual class on one or more resources is closed, the request is rejected.
Thus, once the indexing from products to virtual classes is performed,
the control logic is an independent, nested allocation class-level control
on each resource in the network. This is the primary appeal of—and
motivation for—the method in the airline industry because it produces
the sort of booking-class-level controls that are widely used by GDSs.

An important point to note here is that even if the original prod-
uct demand arrives in low-to-high revenue order, it is unlikely that the
demand for virtual classes arrives in low-to-high displacement-adjusted
revenue order. Thus, the revenue-order assumptions of the standard
static single-resource model are likely to be violated under DAVN.

Finally, to gain some intuition into DAVN, it is helpful to examine the
control decisions that it produces on each resource. Assume, for illus-
tration, that an exact static model is solved for each resource. Let
denote the representative revenue value for virtual class on resource

(the weighted average or the median, depending on the implementa-
tion). By the optimality condition (2.7) for the single-resource model, a
request on resource in virtual class is accepted if and only if

Now if the indexing is done well, any product that is mapped into
virtual class on resource should have a displacement-adjusted revenue
close to hence, Substituting this approximation above
and using the definition of (3.15), we then obtain (approximately)

Observe the similarity of this condition to (3.4). In accepting a product
in virtual class on resource we are (approximately) comparing its

revenue to the sum of displacement costs on all resources it uses, where
is a dynamic (time and state-dependent) approximation
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of the displacement cost on resource itself and the values are static
approximations of the displacement cost on the other resources

This heuristic connection to (3.4) illustrates the basic intuition
behind the DAVN approach.

3.4.4 Dynamic Programming Decomposition
Dynamic programming decomposition is similar in spirit to DAVN in

that it uses displacement-adjusted revenues to decompose the network
into a series of resource-level problems. Indeed, the only real difference is
that while DAVN takes displacement-adjusted revenues and aggregates
them into a small number of virtual classes, in dynamic programming
decomposition, the revenue and demand remains disaggregated. As with
other decomposition methods, there are several possible variations to
the basic approach. However, for purposes of illustration we focus on
one special case here—specifically, the dynamic single-resource model in
which demand for product arrives in period with probability
(Using the dynamic model, one also does not have to worry about making
a low-before-high revenue-order assumptions, which as in DAVN is likely
to be violated as a result of the displacement-adjusted revenue step.)

We start the decomposition as in DAVN with a static vector of bid
price Again, this may be computed in a variety of ways—say, using
one of the network math programming models of Section 3.3. Then for
each resource we solve a single-resource dynamic program based on
displacement-adjusted revenues. That is, for each product that uses
resource compute the displacement-adjusted revenue

Then formulate a dynamic single-resource problem for resource (prob-
lem ) with arrival rates and revenues Let the resulting value
function be denoted The total value function approximation
is then

and the bid prices are given by

where is the marginal value from problem
Because dynamic programming decomposition is so similar to DAVN,

the choice of which one to use is most often dictated by the control
strategy one wants to use in the end. If the objective is to construct



108 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

virtual nesting controls, then aggregating and indexing as in DAVN will
accurately match the control strategy. If one is using bid-price controls,
then the aggregating and indexing of DAVN is not necessary, and a
dynamic programming decomposition will tend to yield more accurate
bid price approximations, and a bid price table (see Table 3.1) for better
control.

3.4.5 Iterative Decomposition Methods
Iterative decomposition methods are also closely related to DAVN. The

methods were originally based on the EMSR heuristics for the single-
resource problem and so were called iterative prorated EMSR methods,
but there are several variations of the general idea, and it can be used
with any single-resource model. We look at two basic versions that differ
primarily in the way they convert product revenues into resource-level
revenues.

3.4.5.1 Iterative DAVN
Iterative DAVN is essentially a method for computing the static bid

prices used by DAVN. The motivation for the approach is heuristic
but intuitively appealing. Suppose that indeed represents the marginal
displacement cost vector. Then once DAVN is solved, for consistency we
should have that

where the marginal value generated by
problem at the current time That is, the marginal costs produced
by the DAVN decomposition should match our static estimate

A natural question arises then. What happens if
The idea of iterative DAVN is that if these values do not match, we
simply feed back the estimates as new static bid prices into
the procedure and recompute the DAVN models.

Formally, let denote the static bid price at iteration in the
algorithm. The algorithm proceeds as follows:

STEP 0 (Initialize):
Initialize to an arbitrary starting value (say, zero).

STEP 1 (Compute new displacement-adjusted revenues):
FOR DO:
Compute the displacement-adjusted revenues for each product on
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resource  using

FOR

STEP 2 (Check for Convergence):
IF for STOP.
ELSE

and GOTO STEP 1.

Abstractly, this algorithm produces a mapping from the space of
bid price vectors onto itself. That is, The algorithm
terminates if it finds a fixed point of this map, However,
whether is a contraction mapping or not is not known, so convergence
of this method is not always guaranteed.

3.4.5.2 Iterative Prorated EMSR
Iterative prorated EMSR—denoted IEMSR—is nearly equivalent to

iterated DAVN except that it uses prorated rather than displacement-
adjusted revenues. It was originally proposed using the EMSR-b ap-
proximation, but other single-resource methods could be used in place
of EMSR-b.

Iterative prorated EMSR simply replaces Step 1 of the iterative DAVN
algorithm with the following:

STEP 1 (Modified):
FOR DO:
Compute the prorated revenues on each resource used by product

as

DO:
Cluster and index the products into virtual classes on resource and
solve a single-resource problem to generate the value-function esti-
mates and the marginal value estimates
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FOR DO:
Cluster and index the products into virtual classes and use the EMSR-
b method for the decomposed problem on resource to generate the
value-function estimates and the marginal value esti-
mates 13

revenue based on the static bid price vector New static bid prices
are then formed using the marginal values from an EMSR algorithm,
and the procedure is repeated. This continues until the marginal values
produced by the EMSR algorithm equal the static bid prices

Again, this iteration can be viewed as a mapping of the form
However, unlike the mapping produced by iterative DAVN,

Bratu [87] has shown that the mapping produced by iterative prorated
EMSR is a contraction mapping under certain conditions; namely, when
the demand is left disaggregated (there is no indexing to virtual classes)
and the EMSR-b heuristic is used. Thus, this version of the algorithm
always converges to a set of bid prices that satisfy

3.4.5.3 Comments on Convergence of Iterative Methods
While convergence guarantees are somewhat reassuring, one has to be

careful not to read too much into this fact. Indeed, despite the intuitive
appeal and simplicity of iterative methods, there are counterexamples
that show that the resulting convergent bid prices can be quite bad.
Consider the following example:

Example 3.6 Consider a three-resource line network, with nodes A, B, C, and D.
Each of the three resources AB, BC, and CD has one unit of capacity. Suppose there
are T = 2 periods and we have data for itinerary arrivals as shown in Table 3.3. If
we start with static bid price prorate the revenues in period 1
by these weights and then compute the exact expected marginal value of each leg, we
get a new static set of bid prices and We can
then prorate by these new bid prices and repeat the procedure.

The results of repeated applications of this procedure are shown in Table 3.4. Note
that the bid prices converge to and However, by
inspection of the data in Table 3.3, it is clear that we want to reject both of the
itineraries arriving in period 1, so we need and Such a policy

13How to compute the EMSR-b marginal value is somewhat nonobvious, but it can be ob-
tained easily using the functions where, as defined in Section 2.2.4,

is the weighted-average revenue for classes and higher and is the aggregate demand
for class and higher. Taking the maximum provides a (heuristic) marginal-revenue curve
for the EMSR-b model.

That is, the revenue used for product in problem is a prorated
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yields an expected revenue of $1,000. Because the iterative proration scheme produces
zero bid prices for legs AB and CD, it accepts both products AB and CD in period
1, generating an expected revenue of only $100—only 10% of the optimal revenue.

This example illustrates that iterative methods, even though they
converge, may not converge to values that yield good approximations of
the network opportunity cost. Despite such examples, the methods have
worked well in simulation studies.

3.5 Stochastic Gradient Methods
Another class of methods for network capacity control uses simulation

to optimize over a parametric family of control policies. Here, we look
at optimizing the nested protection levels of a virtual nesting scheme.
The idea is to first fix an indexing scheme and a nesting order on each
resource (for example, using DAVN) and then to set nested protection
levels (or booking limits) for each resource based on this nesting order.

Using a network-level simulation, one can generate samples of de-
mand and compute stochastic gradients—“noisy” estimates of the par-
tial derivatives of the network revenue with respect to the protection-
level parameters of the control policy. This gradient information can
then be used in a steepest decent algorithm to search for a network-
optimal (rather than resource-level optimal) set of protection-level pa-
rameters.

111
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One version of the approach is based on a continuous-demand,
continuous-capacity model that allows for gradient calculations. We look
at this method in detail, since it is the simplest and most direct method.
Discrete versions of the approach, which rely on first difference rather
than gradient sensitivity estimates, are also discussed briefly afterwards.

3.5.1 Continuous Model with Gradient Estimates
Assume continuous demands and capacities in the network model.

Let a realization of a sample path of network demand, denoted be
defined by a sequence of customer requests
where N is the total number of customers in the sequence (a random
variable), indexes the individual customers (in order of arrival), is
the product requested by customer and is the quantity of product

requested. In general, could be any nonnegative quantity (such
as a request for one unit or a batch request for five units). We can
generate these sample paths by essentially any demand model we like,
with no significant restrictions on the distribution (the only one being
that N is finite w.p.1). For example, there could be arbitrary order of
arrivals, demands could be correlated or coefficients of variation could
be arbitrary. This level of generality in the demand model is one of the
primary advantages of simulation-based optimization methods.

We assume there are virtual classes on each resource. Let
denote the protection level for virtual class and higher on resource
(We assume for notational convenience that for all ) Let

denote the vector of all protection
levels. The protection levels are nested on each resource, so we require

where is the capacity of resource Let the set of all y satisfying these
constraints be denoted A request for product is mapped to virtual
class on each resource used by product according to the fixed
indexing scheme.

Request for an amount of product is processed as
follows. First, let denote the vector of remaining capacities at the
time request arrives. The available capacity for product on each
resource is then That is, the remaining capacity

on minus the protection level for virtual classes higher than the
virtual class of or zero if this difference is negative. The amount of
the request accepted, denoted is given by the minimum
available capacity among all the resources required by product or if
there are at least units of capacity on all of these resources. Formally,
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Note here that we are allowing the system to partially accept a request
if the available capacity is positive but less than the quantity that
is requested. This assumption is necessary to make the revenue on the
sample path, denoted a smooth function of the protection levels
y. Indeed, one can show that is continuous and piecewise linear
in y and always has right and left derivatives with respect to each

Our objective is to maximize the expected revenue, over
the set of feasible protection levels

One method for solving this problem is to use an iterative gradient pro-
jection method of the form

where denotes a projection of the point x onto the set
is the gradient of and are appropriately

selected step sizes. The difficulty is computing However,
if we can interchange expectation and differentiation, so that

the gradient can be approximated by the stochastic gra-
dient the gradient of the revenue with respect to y on the
single sample path which is a random vector. One can use either an
average of a sample of such stochastic gradients as an estimate, or just a
single sample. Using the latter leads to the following stochastic gradient
method:

If the step sizes are nonnegative and satisfy and
and the stochastic demand sequence satisfies a bounded variance

condition,14 then the algorithm can be shown to converge (w.p.1) to at
least a stationary point of the optimization problem (3.18).15

3.5.1.1 Sample Path Gradient Calculation
Of course, we must be able to compute the sample path gradient

efficiently. For the continuous model presented here this can

14For example, will do, but other more effective, adaptive step-size rules are
available.
15These claims are deliberately informal. The reader is refereed to Bertsekas and Tsitsik-
lis [55] and Ermoliev [178] for precise conditions and convergence results on stochastic, iter-
ative algorithms of this type. These references also discuss step-size selection and stopping
criteria.
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be accomplished through a recursive calculation that—although some-
what messy algebraically—is not much more complex than simulating
the acceptance policy itself.

To proceed, define to be the revenue to go over arrivals
starting with a vector of remaining capacities and

protection levels y. We then have the following set of recursive forward
equations for determining the revenues

for with boundary condition x(1) = x and
The total sample path revenue is given by

By taking derivatives through this recursion, one can come up with a
gradient The details of this computation are summarized
in Appendix 3.A, but it results in a simple and efficient recursion for
determining the gradients based on a sample simulation of the network
demand.

The main advantage of this simulation-based optimization approach is
that the resulting gradients accurately estimate the true network revenue
effects of perturbing y. Moreover, as mentioned, the procedure is at
least locally convergent, so given good starting values it can potentially
find the network-optimal set of virtual nesting protection levels. At a
minimum, it is at least guaranteed to improve on any given initial set of
protection levels y. The disadvantage of the approach, however, is that
it can become computationally intensive.

3.5.1.2 Numerical Example
A numerical example from [528] illustrates the behavior of the sto-

chastic gradient algorithm. Here we consider an airline network with
five cities (nodes) and eight legs (resources) with 10 round-trip itineraries
and four fare classes per itinerary, producing 80 products as shown in
Figure 3.3. The data in Table 3.5 is from Williamson [566]. Demands
are assumed normally distributed with a standard deviation equal to the
square root of the mean. Each leg has the same capacity, which is varied
to generate different load factors. A version of DAVN as described in
Section 3.4.3 is used to define the indexing and find the initial set of pro-
tection levels. The results shown below are for 5,000 instances (sample
paths) run with the stochastic gradient method to improve on the initial
protection levels. Tables 3.6 and 3.7 show an example of the protection
levels produced by DAVN and the improved protection levels produced
by the stochastic gradient algorithm. Note that protection levels are
increased on some legs and decreased on others. Some virtual classes
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are, in fact, “merged” (virtual classes 1 and 2 are merged on the first
two legs; virtual classes 1, 2, and 3 are merged on leg 4). Virtual class
4 “disappears” on legs 1, 2, 5, and 6, meaning that there is no specific
capacity reserved for it. The same thing happens to virtual class 3 on
legs 6 and 7. In these examples, the improved protection levels produce
dramatically increased revenues (on the order of 5%), though this was
largely because the DAVN policy used theft nesting without any reop-
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timizations. More frequent reoptimization improves both methods and
narrows the performance gap, but the stochastic gradient method still
improves the performance of DAVN significantly.

3.5.2 Discrete Model with First-Difference
Estimates

Using simulation-based optimization of nested allocation controls first
appeared in a method proposed by Bertsimas and de Boer [60]. We only
outline their method because it is somewhat involved and is similar to
the continuous model discussed above. There are two key differences in
their approach, however. First, it is based on a discrete demand, discrete
capacity, and discrete parameter model, where each request is assumed
to be for a single unit of capacity for all and the requests
are either fully accepted or rejected. The protection levels y are also
integral. The resulting model is more realistic, but one must use first-
difference (rather than gradient) estimates, which cannot be computed as
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efficiently as in the continuous model. In addition, because it is a discrete
problem, even local convergence is not guaranteed. Second, because
of the complexity of propagating first-difference estimates, Bertsimas
and de Boer use an approximation of the revenue to go to simplify the
computation, so the method provides only approximate estimates of the
first differences. This approximation, however, also accounts for the
value of reoptimization (it is a true value-function estimate), which adds
another refinement to the simulation-based approach. Here, however, we
focus only on the simulation-based optimization portion of their overall
approach.

As before, let represent the revenue from a sample path and
let be the revenue to go over arrivals starting
with a vector of remaining capacities and protection levels y. Again,
we have a set of recursive forward equations for determining the revenues

where is either 0 or 1. Since the model is discrete, one must
look at first-difference estimates of sensitivity—that is,

where is the unit vector corresponding to parameter in the vector
y.

However, in contrast to the differential changes in the continuous
model, propagating discrete changes using the above recursion cannot
be done in parallel for all parameters y. Rather, one must trace the
effects of the change for each parameter in a separate calculation,
though only protection levels that are binding need to be calculated.

Since this is too computationally complex to be practical for large
networks, one can approximate the effects of a discrete change by sim-
ulating for a small number of arrivals and using an approximation

to estimate the revenue effects from time onward. Bert-
simas and de Boer [60] propose using a piecewise linear approximation
to the revenue function, based on recursively applying the stochastic
first-difference estimates over a successive number of periods.

That is, divide the problem into periods. In the last period, the first-
difference estimates are computed exactly for a sample of simulation
runs. The resulting averaged first differences are then used to form a
piecewise linear approximation of the revenue function in the last pe-
riod. In the second-to-last period, the simulation estimates of the first
differences are run again, but the approximation of the revenue function
is used to estimate the revenue effects over the last period. The resulting
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first-difference estimates for the second-to-last period are then used to
form a piecewise approximation of the revenue function in that period,
and so on.

Again, the complete method is somewhat involved, and the reader is
referred to Bertsimas and de Boer [60] for details. However, in their tests,
the method was computationally manageable and effective at improving
the revenue performance of the initial protection levels. The improve-
ments increased with load factor and ranged from 0.0 to 0.75%. These
results again suggest the potential to improve protection-level policies
using simulation-based optimization methods.

3.6 Asymptotic Analysis of Network Problems
Some asymptotic results have been proven for network problems,

which we briefly review here. The analysis essentially looks at the per-
formance of different policies as the capacity and demand are scaled
up by the same factor. It gives a rigorous—albeit somewhat crude—
characterization of optimal network policies. The first set of results
relates to partitioned controls, and the second to bid-price controls.

3.6.1 Asymptotic Optimality of Partitioned
Controls

We first consider simple partitioned allocation controls generated by
the deterministic linear programming approximation of Section 3.3.1.
Our analysis here is based on Cooper [131]. Consider the linear program
(3.6), which we restate here:

provides an upper bound on the expected revenue from any dynamic
allocation policy. This follows because any policy will have a cumulative
vector of product sales y that satisfies and pathwise.
Thus, E[N] is a feasible solution to the linear program (3.22). This,
together with Jensen’s inequality (see Appendix B) shows that is an
upper bound on

Moreover, an optimal solution y* defines partitioned allocations
for each product These partitions may not be integral, but in the
limiting case we consider here this is not significant, and hence we ignore
integrality. The (random) revenue produced by this allocation, denoted
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Let be a positive integer and consider a sequence of such problems
indexed by with capacities and demand vectors such
that  and

where denotes convergence in distribution. For example, could be
constructed by adding i.i.d. vectors D, in which case the above follows
by the law of large numbers. In this sequence of problems, demand and
capacity are scaled up proportionately by a factor

We can define a sequence of linear programs denoted analogous
to (3.22) by

and is again an upper bound on the optimal expected revenue,
in problem  Also, note that and that is

the optimal solution to the scaled problem. Finally, the random revenue
produced by this solution is

Now a simple scaling of these expressions by shows that

where the last convergence follows from the continuity of the min{·}
function.

is given by
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Thus, the scaled revenue of the partitioned allocation policy converges
in distribution to a constant; namely, the upper bound, Hence, the
revenue of the partitioned allocation policy converges almost surely to
the optimal revenue.

3.6.2 Asymptotic Optimality of Bid-Price
Controls

One can also show that bid-price controls have good asymptotic prop-
erties in the same scaling of the problem. The details of the analysis are
somewhat involved, but here we provide a brief description of the main
results.

Consider a sequence of scaled deterministic linear programs as in
(3.22). It is not hard to show that the dual prices for each program
in this sequence of problems are constant because the capacity and de-
mand are multiplied by the same factor Let denote this vector of
dual prices. Using this vector of dual prices, one can define a fixed bid-
price heuristic in which we accept a request for product with revenue

if and only if there is sufficient capacity and
One can then show via upper and lower bounds that the expected

revenue produced by this fixed bid-price heuristic converges (in ratio)
to the optimal expected revenue as the scale parameter increases.16

In particular, the expected revenue of the fixed-price heuristic is within
of the upper bound on the optimal expected revenue given

by (3.22). Since the is this shows the relative suboptimality
of the fixed bid-price heuristic tends to zero as increases.

For one, this result shows that, asymptotically, optimal bid prices are
constant. That is, a set of constant bid prices will be near optimal in
this scaling of the problem when demand and capacity are large. This
suggests that even though bid prices may be volatile, one should not
expect to see much of a drift in bid-price values over time, at least
for large problem instances. In addition, because the asymptotically
optimal bid prices are based on the DLP model, the results provide
some theoretical support for using DLP to compute bid prices.

3.6.3 Comments on Asymptotic Optimality
While these asymptotic results provide some theoretical insights, their

practical value is debatable. What these asymptotic results provide is,
essentially, a characterization of the first-order properties of a given pol-

16In this case, it is convergence of the expected values and not convergence in probability as
in the partitioned allocation case.
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icy. That is, the analysis averages out the randomness in the problem
and leaves only the mean demand effects. (Note that the asymptotic
bounds above depend only on the mean demand.) So we can conclude
that bid prices based on partitioned allocations of the deterministic lin-
ear program (3.22) will produce the optimal first-order revenues in this
sense.

However, this asymptotic first-order optimality is a rather crude mea-
sure of performance. One would certainly be suspicious of a policy that
does not have this property; but the fact that a policy does achieve
first-order optimality does not mean it is necessarily effective in prac-
tical settings. For example, the partitioned allocation policy typically
performs poorly in practice, despite the fact that it is first-order optimal.

3.7 Decentralized Network Control: Airline
Alliances

Thus far, we have looked at network control from the standpoint of a
single firm that manages the capacity of all network resources. However,
there are many instances where no single firm controls all of a network’s
resources. For example, in hotel chains or car rental operations, individ-
ual locations may be owned and operated by a franchisee who operates
as a profit center, yet there may be demands for multilocation stays or
one-way rentals that impact more than one of these locations. In the
airline industry, alliances between major carriers create integrated net-
works that jointly market products—code shared flights or connections
between the carriers’ networks, for example—but each firm has a sep-
arate profit motive. The management of such decentralized networks is
a relatively new problem area in RM. Here we briefly review this topic,
focusing on the case of airline alliances.

Alliances provide a variety of benefits in a network industry like air
transport. For one, airlines can cross-list each other’s flights through
code-sharing arrangements, in which the same physical flight is listed un-
der different flight numbers, one for each partner airline in the alliance.
When two networks are combined, connecting flights between one car-
rier’s network and another are created, which again can be cross-listed
and marketed by each carrier. Alliances also create economies of scale
in providing ground services such as checking, baggage handling, and
passenger lounges. Finally, the consolidation of loyalty programs ben-
efits consumers. Indeed, in many ways airlines alliances achieve many
of the benefits of an outright merger without the attendant labor and
regulatory difficulties.

Yet airline alliances have created new challenges for RM. On an oper-
ational level, one must find some mechanism for controlling the capacity
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on shared flights. The two broad categories of mechanisms used by air-
lines are the following:

Blocked-seat allotment In a blocked-seat allotment, the carriers
agree to partition the capacity of shared flights, with each carrier
having individual control over its allotment of seats. The allotments
may be updated periodically in various ways, but fundamentally the
seat inventory is managed as if it were two “virtual” flights, each one
controlled independently by its respective alliance partner.

Free sale Under free sale, capacity is not partitioned. Rather, the
carrier that is operating a flight provides some form of dynamic avail-
ability information to its alliance partners. For example, it may pro-
vide information about which booking classes are available and how
much capacity is available in each class. The nonoperating alliance
partners can then book seats subject to the capacity controls set by
the operating carrier. Alternatively, it may provide bid-price infor-
mation, in essence providing a spot price for the capacity at a given
point in time. The alliance partner may then sell the seat under some
revenue and cost-sharing terms that depend on the bid price.

While blocked-seat allotment is simpler operationally, it is not hard
to see, just as with partitioned controls in a centralized network, that
it can be quite suboptimal to divide capacity this way: one firm may
have excess capacity in its allotment and no demand, while another may
be sold out and be turning away requests. At the same time, parti-
tioned allocations can usually be accommodated within the current RM
practices of alliance partners. Free sale, while offering more flexibility
and the potential to provide enhanced revenues, is considerably more
complex to manage.

But beyond the simple mechanics of sharing capacity, firms in an al-
liance must find coordinated policies for managing their shared resources.
Moreover, they must do this in a way that provides proper incentives for
each party involved. For example, Boyd [86] argues that using bid prices
as a transfer price for charging alliance partners for seat capacity can co-
ordinate alliance revenues. His analysis is based on linear programming
theory.

3.8 Notes and Sources
The earliest reports and articles on network problems in the airline

industry are D’Sylva [163], Glover et al. [215], and Wang [550]. Dror et
al. [162] also analyze a network flow model that allows for deterministic



Network Capacity Control 123

cancellations on the arcs. See also network models by Phillips et al. [418],
Wong [578], Wong et al. [577], and Wysong [584].

Bid-price controls were first introduced by Smith and Penn [478] and
Simpson [476]. Williamson’s thesis [565, 566] provides variations of bid-
price controls and provides detailed simulation comparisons with other
control methods. See also Phillips [419] for an analysis of using and
computing marginal values.

The basic theoretical properties and asymptotic analysis of bid-
price controls in Section 3.2 and Section 3.6 are from Talluri and van
Ryzin [498] as is the bid-price counterexamples. The nonoptimality of
bid prices was first raised by Curry [140], who used an analogy to the
Taylor series expansion of the value function to argue that second-order
“interaction” terms may be significant in determining optimal revenue
thresholds. The asymptotic analysis of partitioned controls is due to
Cooper [131]. For path-wise theoretical bounds, see Cooper [130].

As for the approximation methods in Section 3.3, the determinis-
tic linear program (DLP) was among the first models analyzed in the
early work of D’Sylva [163], Glover et al. [215], Dror et al. [162], and
Wong [578, 577]. Wollmer [575] proposed the first linear programming
version of the PNLP model. A specialized nonlinear programming al-
gorithm for the PNLP model is provided by Ciancimino et al. [118].
Chen et al. [111, 112] investigate a bid-price approximation that com-
bines both the DLP and PNLP value function approximations using
multivariate adaptive regression splines (MARS). The randomized lin-
ear programming method was first discussed in Smith and Penn [478]
but was investigated in detail in Talluri and van Ryzin [499]. A cutting
plane method for joint pricing and allocation in network RM is provided
in Garcia-Diaz and Kuyumcu [201].

Descriptions of virtual nesting can be found in Belobaba’s thesis [39],
Smith and Penn [478], Williamson [565, 566], and Vinod [537, 538].
Vinod [537] provided an algorithm for the indexing step of virtual nest-
ing. Curry [139] analyzes a similar scheme in which classes are nested
by origin and destination.

The iterative methods for computing bid prices in Section 3.4.5
can be found in several sources, including Williamson [565, 566] and
Phillips [419]. Bratu’s master’s thesis [87] provides an analysis of the
iterative EMSR method and related network approximations.

The discrete stochastic gradient method in Section 3.5.2 for updating
virtual nesting booking parameters was first proposed by Bertsimas and
de Boer [60]; the continuous gradient model in Section 3.5.1 is due to
van Ryzin and Vulcano [528].
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The discussion of airline alliances in Section 3.7 is based on Boyd [86].
See also Brueckner and Spiller [89].

The network RM model with passenger routing control and customer-
choice behavior was investigated by Talluri [501]. Gallego, Iyengar and
Phillips [197] propose a more elaborate model with an airline offering
flexible products (at a lower price) and customers self-selecting according
to a discrete-choice model.

Finally, we note that in this section we largely ignore the stochastic
programming (Birge and Louveauz [68]) approach, as there have been,
to our knowledge, no RM implementations that use such techniques
directly. However, the basic ideas behind the DLP and RLP approxima-
tions are in fact standard ones in stochastic programming, de Boer et
al. [154] also apply stochastic programming ideas (i.e., scenario aggrega-
tion) to network RM.

APPENDIX 3.A: Computation of Sample Path Gra-
dients

To compute the sample path by gradients, we start by differentiating (3.20) and
(3.21) with respect to y and x, respectively, to obtain the set of backward equations
for the derivatives with respect to

Similarly, a set of backward equations for the derivative with respect to is:

with boundary conditions

(The reason for the use of the right and left derivatives above is somewhat subtle and
is explained in detail in [528].)
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Finally, from (3.17) we have that for all and

In words, the quantity of demand accepted from a request for product in state
x is reduced (one for one) by a slight increase in the protection level if and only
if all of the following hold: (1) resource is used by (2) the capacity available on
resource is a binding constraint, (3) the amount accepted is positive but constrained
by the protection levels, (4) class is higher in the nesting order than the virtual class
of product and (5) the protection level for class  is binding. In all other cases, a
small change in does not affect the amount of product we accept.

These conditions are further illustrated in Figures 3.A.1 and 3.A.2, which show a
request at time for units of product that uses resources 1, 2, and 3. The height
of the bars represents the capacity remaining at time and the quantities
represent the protection levels for product on each resource The unshaded areas
therefore represent the capacity available for product on each of the three resources.
Note in Figures 3.A.1 that there is sufficient capacity available on all three resources
to fully satisfy the request for product so Thus, a small increase in
will not affect the quantity of product accepted in this time period, and therefore

for all However, as shown in Figure 3.A.2, the requested
quantity exceeds the available capacity on resources 1 and 3, and the quantity accepted
is constrained by the protection-level constraint on resource 3, so
In this case, a small increase in will reduce the amount of product that
we accept in this period, so An increase in any of the
other protection levels on resources 1 and 2, however, will not affect the quantity
accepted because these protection levels are not binding. This example illustrates the
conditions leading to (3.A.3).

A similar reasoning provides the left derivatives with respect to

The recursions (3.20)–(3.21) and (3.A.1)–(3.A.2) together with (3.A.3) and (3.A.4)
provide the basis for an efficient method for computing the sample path gradient.
First, generate a sample sequence of demand and use (3.20)-(3.21) to compute
the sequence of acceptance decisions and remaining capacities by
simulating the system forward in time. With these data in hand, starting from N
and working backward in time down to use (3.A.1)-(3.A.2) to compute the
derivatives backward in time. The resulting set of derivative values for give the
gradient estimate of with respect to both y and x. The complexity of the
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backward pass for computing the gradient is the same as simulating the allocation
decisions in the forward pass.
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Chapter 4

OVERBOOKING

Overbooking is somewhat distinct from the core pricing and capacity-
control problems of revenue management. RM is mainly concerned with
how best to price or allocate capacity—how to achieve the best mix
of demand, in essence. In contrast, overbooking is concerned with in-
creasing capacity utilization in a reservation-based system when there
are significant cancellations.1 Its focus is increasing the total volume of
sales in the presence of cancellations rather than optimizing customer
mix. The problems of optimizing demand mix and volume are quite
related, however, and both are considered integral parts of RM.

Indeed, from a historical standpoint, overbooking is the oldest—and,
in financial terms, among the most successful—of RM practices. In the
airline industry it is estimated that approximately 50% of reservations
result in cancellations or no-shows2 and about 15% of all seats would go
unsold without some form of overbooking. [477] This is to be compared
to fare-class allocation, which by most estimates leads to incremental
revenues to the order of 5%. Despite its economic importance, many
researchers consider overbooking a somewhat mature area, and it has

1We note, however, that reservations are not used in all quantity-based RM industries. In
certain advertising markets, for example, one advertiser is allowed to preempt another if it’is
willing to pay more for the same ad slot. This effectively produces an auction in which the
current highest bidder has claim to the capacity.
2A cancellation is defined as a reservation that is terminated by a customer strictly prior
to the time of service. A no-show, in contrast, occurs when a customer does not cancel his
reservation but rather just fails to show up at the time of service. The distinction is important
because the firm has some opportunity to compensate for a cancellation by accepting more
reservations after the fact, while no such opportunities exist when a customer no-shows.
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received less attention in the recent research literature than fare-class
allocation or pricing.

As a business practice, the biggest challenges in overbooking are man-
aging the negative effects of denying service on customer relations and
dealing with the resulting legal and regulatory issues. On a planning
level, overbooking involves controlling the level of reservations to bal-
ance the potential risks of denied service against the rewards of increased
sales. Theoretically, this involves controlling parameters of a probabil-
ity distribution, which introduces somewhat unique methodology that is
not encountered in other areas of RM.

4.1 Business Context and Overview
A reservation is essentially a forward contract between a customer

and the firm. Reservations give customers the right to use a service in
the future at a fixed price and often also the option to opt out (perhaps
with a penalty) before the time of service.

Customers value reservations whenever the costs of unavailability at
the desired time of consumption are higher than the costs of unavailabil-
ity prior to the time of consumption. For instance, because customers
travel to attend business meetings, visit family members, or take vaca-
tions, they must coordinate their travel with hotel arrangements, busi-
ness appointments, scheduling of vacation days, and so on. Since it is
generally more costly to change or renege on these contingent arrange-
ments at the time of service than it is to change or renege on them in
advance, customers value reservations for travel services.

Yet committing to purchasing in advance has its own risks. Uncertain
future events (such as clients rescheduling meetings, illness, or more at-
tractive vacation opportunities) may make it impossible or undesirable
to use the service. Therefore, customers also value the option to cancel
reservations. Indeed, a reservation with a cancellation option gives cus-
tomers the best of both worlds—the benefit of locking-in availability in
advance and the flexibility to renege should their plans or preferences
change.

While advance reservations with a cancellation option are highly val-
ued by customers, they require a firm to take a two-sided risk—to honor
the reservation when customers show up (or provide suitable compen-
sation if it cannot honor the reservation), and in cases where customers
cancel or do not show up, to bear the opportunity cost of wasted capac-
ity. Firms try to manage this risk through a combination of cancellation
penalties and overbooking.

Cancellation and no-show penalties effectively allow customers and
the firm to share the risks of cancellations. In practice, penalties for
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cancellations and no-shows range from zero to full price and are most
often implemented as a sale condition of the product. In fact, the po-
tential for abuse without such penalties is substantial; customers may
make multiple reservations to preserve various options and then cancel
all of them except the one they want, not an uncommon practice in cer-
tain wholesale international air travel markets. Some minimal penalty
is necessary to curb such abuses. (Though firms in a surprising num-
ber of industries—the restaurant industry for one—do not penalize for
cancellations.) On the other hand, if the penalties are too large, the
cancellation option has little value or effectively becomes a nonoption
for customers.

To further reduce the costs of cancellations, a firm may also adopt a
strategy of accepting more reservations than it has capacity to serve, tak-
ing the chance that the number of surviving reservations will be within
capacity. This is the essence of planned overbooking.

A firm that chooses a strategy of planned overbooking is immediately
faced with several important problems. One is confronting the legal and
regulatory implications of failing to honor the reservation contract. Even
if the firm is on safe legal ground, it must have operational policies and
procedures in place to deal with the situation in which service must be
denied. Once these basic structural and policy elements are determined,
it must develop methodology to control the level of overbooking on an
operational basis. We look at each of these issues in turn.

4.1.1 A History of Legal Issues in Airline
Overbooking

Legally, overbooking involves the risk of failing to deliver on a contract
to provide service. While there are somewhat different legal requirements
in each industry in this regard, it is instructive to look at the evolution
of airline overbooking regulations in the United States as an example of
the legal issues involved.

Prior to 1961, intentional overbooking was practiced somewhat clan-
destinely by U.S. airlines and was not acknowledged publicly. Despite
this fact, Rothstein [449] reports that as director of Operations Research
at American Airlines he, “found much publicly available evidence that
all the major airlines were deliberately overbooking.” In 1961, the Civil
Aeronautics Board (CAB) reported a no-show rate of 1 out of every
10 passengers booked among the 12 leading carriers at that time. The
CAB acknowledged that this situation created real economic problems
for the airlines. As a result, the CAB implemented a no-show penalty
of 50% of the ticket price. At the same time, they explicitly required
airlines to pay a penalty of 50% of the ticket price to passengers who
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were denied boarding. However, the CAB still did not officially sanc-
tion overbooking practices. The no-show penalty was abandoned in 1963
largely because airline management felt that the penalties created ill will
among passengers and might be discouraging air travel in general.

The CAB conducted another study of overbooking during 1965-66.
They found that the denied-boarding rate at that time was approxi-
mately 7.69 per 10,000 passengers boarded [119]. Their conclusion was
issued in a 1967 docket [119]:

There is a substantial reservation turnover before flight time from cancel-
lations and no-shows. The airlines are engaging in deliberate or controlled
overbooking to compensate for it. Through carefully controlled overbooking,
the airlines can reduce the number of empty seats and at the same time serve
the public interest by accommodating more passengers.

The present reservation systems of the carriers greatly benefit the traveling
public. The Board is not prepared, therefore, to require changes in these
systems.

Thus, as of 1965, overbooking was an officially sanctioned practice, pro-
vided it was “carefully controlled,” a criterion that was never precisely
defined by the CAB.

In parallel, the CAB also increased the denied-boarding penalty to
100% of the coupon. Airlines controlled the percentage of denied board-
ings, and the CAB carefully monitored the denied-boarding performance
of each airline. The involuntary denied-boarding rate is still carefully
monitored in the United States by the Department of Transportation
(DOT) and currently hovers around 0.5 to 1.5 involuntary and 15 to 20
voluntary denied boardings per 10,000 passengers (see Table 4.1).

Despite this progress in formalizing the practice of planned overbook-
ing, the traveling public was still largely unaware of its existence. This
was to change in 1972 when Ralph Nader, the well-known U.S. consumer
advocate, was denied boarding on an Allegheny Airlines flight. Rather
than accept the standard compensation, he sued Allegheny, won, and
was awarded $25,000 in punitive damages. The judge’s ruling was based
on the fact that Allegheny did not advise passengers of its practice of
deliberate overbooking. The case was appealed all the way to the U.S.
Supreme Court, but the ruling was upheld. As Rothstein [448] noted at
the time:

... public policy may very well force the airlines into the position that a reser-
vation involves a definite, legal claim on a seat. And if this happens, most of
the operations research carried out on this problem will have to be discarded
and eventually redone.
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Rothstein proposed that airlines charge for reservations as a possible
solution:

In other words, the reservation itself, as opposed to the physical seat on the
plane, is to be considered of value . . . the reservation itself is a commodity to
be purchased for an amount of money and possibly to be relinquished for a
different amount of money.

In the wake of Mr. Nader’s suit—and after much debate—the CAB
revised its rules concerning overbooking as follows:

Denied-boarding compensation was doubled again to 200% of the
coupon.

Airlines were required to seek volunteers first before denying boarding
to any passenger involuntarily.

The traveling public was to be notified of the deliberate overbooking
practices of the airlines.

A statement warning passengers that their flight may be overbooked
and informing them of their rights was to be printed on every ticket.

As a result of this ruling, the DOT requires an overbooking notification
statement on all U.S. airline tickets (see Figure 4.1).

These basic regulations are still in existence today in the U.S. Since
deregulation in 1974, airlines have increasingly relied on vouchers and
payments to attract volunteers to give up their seats on oversold flights.
As a result, involuntary denied boardings are much less frequent today
than they were in the days when overbooking was a clandestine practice.
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4.1.2 Managing Denied-Service Occurrences
Managing the compensation and selection of customers in the event

of oversales can have a significant impact on denied-service costs and
customer perceptions of overbooking. We next briefly look at the main
issues involved in managing oversales.

4.1.2.1 Compensation for Denied Service
While legally mandated compensation often specifies payment of mon-

etary damage, this is often viewed as inadequate in the eyes of customers.
A car rental customer who is planning to take a tour of the California
coast would most likely find the prospect of getting a full refund plus
50% of the contracted rental rate as poor compensation for a ruined va-
cation. It is often more effective to offer customers a substitute service
(such as an upgrade) plus ancillary services that may make the short-run
disruption in their schedule more palatable.

To illustrate, the same car-rental customer may be much more satis-
fied with an offer to provide a ride to a competing rental company, a free
upgrade to a luxury car, plus a voucher for future rentals. Compensation
that is targeted to substitute for the denied service and perhaps enhance
it somewhat is frequently less expensive for a firm and more effective in
the eyes of the customer than pure monetary compensation.

4.1.2.2 Selection Criteria
Selecting which customers are to be denied service also can have a

significant impact on both the firm’s direct costs and customer goodwill.
Prom a legal standpoint, such selection must not be discriminatory. For
example, for airlines, current DOT regulations state that [523]

Every carrier shall establish priority rules and criteria for determining which
passengers holding confirmed reserved space shall be denied boarding on an
oversold flight in the event that an insufficient number of volunteers come
forward.

Such rules and criteria shall not make, give, or cause any advantage to any par-
ticular person or subject any particular person to any unjust or unreasonable
prejudice or disadvantage in any respect whatsoever.

The default option for allocating service to customers is usually to do
it on a first-come, first-serve (FCFS) basis. While a FCFS allocation is
perceived as fair and encourages customers to arrive on time, there are
many business situations where this allocation is quite undesirable.

A good example is hotel overbooking. Using a FCFS allocation for
a hotel means that the customers who are denied service are those who
arrive very late in the evening. This creates two difficulties. First, it
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is usually much more disruptive to relocate a customer who arrives late
at night. These customers are often tired and irritable and simply want
to go to bed as soon as possible. A customer who arrives in the late
afternoon, in contrast, may be willing to sightsee around the town for
several hours or go out for a meal while alternative accommodations are
secured and their baggage is transported. Second, late-arriving hotel
customers are typically business travelers who pay the highest rates,
travel often, and therefore represent the most profitable segment for
most hotels. In terms of the lifetime value, these customers are the most
costly to lose.

Hotels therefore do not always allocate rooms on a FCFS basis.
Rather, they monitor arrival rates and occupancy throughout the day
to anticipate a potential oversold condition. If at some point managers
expect an oversale, they may find alternative arrangements for early-
arriving customers to avoid denying service to customers due to check
in very late.

In other service situations, it is sometimes possible to select among
a pool of customers when allocating service. For example, in airline
boarding, customers usually gather to the gate before departure. This
gives gate agents a chance to see which passengers have arrived for the
flight and to selectively target specific passengers for denied-boarding
offers. Indeed, we are aware of one Australian airline that trains its gate
agents to solicit young, student travelers (“backpackers”) as volunteers.
The airline found that customers in this segment are eager to receive
a nice hotel room and a good meal in exchange for taking a flight the
following day.

4.1.2.3 Oversale Auctions
An alternative method of managing oversales is to conduct an auc-

tion to attract volunteers to give up their reservations in exchange for
monetary or other compensation. While this practice is now widespread
in airlines and familiar to most travelers, the idea was not well received
initially.

In 1968, economist Julian Simon proposed what he called “an almost
practical solution to airline overbooking, ” in which airlines would con-
duct a sealed-bid “reverse auction” to find passengers willing to accept
monetary compensation for being bumped. Simon predicted (rightly so,
as initial responses to his letters to airline executives later indicated)
that the airlines would object to the scheme

because such an auction does not seem decorous; it smacks of the pushcart
rather than the one-price store; it is “embarrassing” and “crass,” i.e., frankly
commercial, like ‘being in trade’ in Victorian England ([472]).



Overbooking 137

Simon cites this tongue-in-cheek reaction from airline executive Blaine
Cooke:

I greatly fear that your Overbooking Auction Plan suffers from a flawed
premise and a fatal defect. The flawed premise is that you assume that air-
line management and regulation is a rational exercise. It is not. It is more
accurately described as an exercise in applied insanity. The effect is your plan
offers a market-sensitive and sensible solution to a real problem but a solution
not conceived by an airline. Accordingly, the idea must be disallowed since it
is well established in airline marketing that only ideas which originate within
the airline industry are permissible.

Simon wrote many letters to executives, regulators, policy makers,
and customer groups arguing for his “oversale-auction” idea. Despite
these efforts, he failed to get even one airline to experiment with it
on even a single flight. Even prominent fellow economists questioned
the practicality of the idea. Simon [474] quotes a letter from Milton
Friedman:

If the plan is as good as you and I think it is, I am utterly baffled by the
unwillingness of one or more of the airlines to experiment with it. I conclude
that we must be overlooking something. I realize that you have tested this
quite exhaustively, and I have no reason to question your results; yet I find
it even harder to believe that opportunities for large increments of profit are
being rejected for wholly irrational reasons.

The scheme continued to flounder until 1977 when Alfred Kahn, an
economist, was appointed to head the CAB. Simon wrote to Kahn about
his proposal and Kahn liked and largely adopted it under the heading of
a “volunteer” denied-boarding plan, as mentioned above. At the same
time, Kahn increased penalties for involuntary denied boardings.

Simon [474] quotes an American Airlines internal newsletter from
April 27, 1979:

The happiest result of the volunteer plan is that airlines now have a fair and
efficient way to avoid denying seats to people who for business or personal
reasons have a pressing need to make their flights as planned. VP, Passenger
Services, Robert H. Phillips points out that the voluntary program has twin
virtues: “It enables us to reduce costs while maintaining customer goodwill
and thereby protecting future revenue”.

Given the success of this volunteer denied-boarding plan, it appears that
airline management has indeed inched closer to the notion of a “rational
exercise.”

4.1.3 Lessons Beyond the Airline Industry
There are several broader lessons to be learned from this history of

airline overbooking. One is that it takes time for customers to get
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used to and accept overbooking practices, and providers in turn have
to learn how to develop strategies and operational practices that make
overbooking as painless as possible for customers. In the airline indus-
try, this process took decades to develop. A second lesson is that some
seemingly fanciful techniques—in particular the oversale auction—can
in fact prove to be surprisingly popular and effective in practice, which
serves as a caution for those who are quick to criticize such innovations.
Finally, while there is no denying that overbooking is a well-developed
and refined practice in the airline and hotel industries, it nevertheless re-
mains a primary source of dissatisfaction for customers. Overbooking is
frequently cited in customer complaints, both to individual firms and to
government regulators. So even at its best, overbooking is a somewhat
awkward compromise between economic efficiency and service quality.

4.2 Static Overbooking Models
We next look at the methodology for making overbooking decisions.

The simplest and most widely used methodology is based on static over-
booking models. In static models, the dynamics of customer cancellations
and new reservation requests over time are ignored. Rather, the models
simply determine the maximum number of reservations to hold at the
current time given estimates of cancellation rates from the current time
until the day of service. This maximum number of reservations, or over-
booking limit, is then recomputed periodically prior to service to reflect
changing state and cancellation probabilities over time. While more so-
phisticated dynamic overbooking models have been developed and are
discussed in Section 4.3, the simplicity, flexibility, and robustness of the
simpler static models have made them more popular in practice.

Two types of events impact the overbooking decision—cancellations
and no-shows—with the difference simply related to the timing of the
events. (Again, a cancellation is a reservation that is withdrawn by a
customer strictly prior to the time of service; a no-show is someone who
does not cancel and does not show up at the time of service.) While
both result in a situation where a reservation does not “survive” to the
time of service, with a cancellation, the firm has an opportunity to possi-
bly replace the cancelled reservation; in contrast, there is little recourse
available to compensate for a no-show. Under a static model, the dis-
tinction between the two is unnecessary, since a static model assumes a
static overbooking limit is set without recourse to adjust it. Thus, all
that matters is the probability that a reservation survives to the time
of service (the show demand, as it is called). In dynamic overbooking
models, however, the distinction between no-shows and cancellations is
important.
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In airline and hotel practice, static models are used to compute over-
booking limits—also called virtual capacities or overbooking authoriza-
tion levels in the airline industry—which are, in turn, used as inputs to
capacity-allocation models. These static overbooking models are typi-
cally re-solved periodically to account for changes in the cancellation and
no-show probabilities over time, resulting in overbooking limits that vary
(typically decline) over time. The current overbooking limit gives the
maximum number of reservations one will accept at any time.

The situation is illustrated in Figure 4.2. The top, wide line is the
overbooking limit over time. Solving a static model gives one point on
this curve. Overbooking limits are set high initially because the proba-
bility of a reservation cancelling prior to the time of service or no-showing
is usually higher the longer the time till service. As the time of service
(T) approaches, the overbooking limits fall. At the same time, reserva-
tions are being accumulated in the system over time. The dark line in
Figure 4.2 shows that with overbooking in place, the reservations in the
system can exceed the capacity C, and we don’t stop accepting reserva-
tions until the overbooking limit is reached. At that point reservations
are rejected. The resulting show demand (demand that shows up finally)
at time T is ideally close to the capacity C. The lower line shows the
same trajectory of reservations without overbooking. In this case, the
reservations in the system are truncated at the capacity C early on in
the booking process. As a result, once reservations start to cancel and
no-show, the show demand is significantly less than capacity.

4.2.1 The Binomial Model
The simplest static model is based on a binomial model of cancellations

in which no-shows are lumped together with cancellations (that is, a no-
show is treated simply as a cancellation that occurs at the day of service).
The following assumptions are made:

Customers cancel independently of one another.

Each customer has the same probability of cancelling.

The cancellation probability is Markovian; it depends only on the
time remaining to service and is independent of the age of the reser-
vation.

Let denote the time remaining until service, C denote the physi-
cal capacity, denote the number of reservations on hand, and the
probability that a reservation currently on hand shows up at the time of
service is the probability that customers cancel prior to the time
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of service). Note that is really a function of the time remaining, since
in general the more time remaining the more likely it is that customers
cancel before the time of service. However, to keep the notation simple
we suppress the dependence of on Also, in practice estimates of
may be based on the ratio of show demand to reservations on hand (the
net bookings) rather than on individual customer cancellation rates; this
approach is discussed further in Section 4.3.2.

Under the assumptions stated above, the number of customers who
show up at the time of service given there are reservations on hand,
denoted (the show demand), is binomially distributed with p.m.f.:

and with c.d.f.:

with mean and variance It is
convenient to work with the complement of the distribution denoted
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by which is defined by

Several airline industry studies have validated this binomial model of
cancellations. For example, in one of the earliest investigations of over-
booking, Thompson [508] considers data from 59 flights from Auckland
to Sydney operated by Tasman Empire Airways. He eliminated groups
of six or more since they exhibited much lower cancellation rates and al-
though rare (11 total booking on the 59 flights), can significantly distort
the cancellation rate on the flights involved. Parties of six or fewer con-
stituted 99.6% of all bookings; 81% of the remaining were singles; 15%
were paired and 4% were parties of three to six. (See Table 4.4.) While
the results showed that group-cancellation behavior does invalidate the
binomial model for certain cabins on certain flights, overall he concluded
that the binomial model adequately fits the data. (Group-cancellation
effects are discussed further in Section 4.2.4.)

4.2.1.1 Overbooking Based on Service-Level Criteria
One measure of service is the probability of oversale at the time of

service, which we call the Type 1 service level. We assume the firm uses
an overbooking-limit policy to control the number of reservations that
are accepted. The overbooking limit is denoted In other words, we
assume the firm continues to accept reservations as long as the number
of reservations on hand is less than x and stops accepting reservations
once 3

The Type 1 service level is denoted and is given by

That is, if we assume that the number of reservations on hand reaches
our overbooking limit then will be the probability that we have
to deny service to one or more customers. Hence, setting an overbooking
limit of guarantees that the probability of oversale will not exceed

An arguably more natural measure of service is the long-run fraction
of customers who are denied service, which we call the Type 2 service

3Whether such a threshold policy is in any sense optimal for the dynamic decision-making
problem is addressed in Section 4.3. Here we simply assume such an overbooking policy is
used.
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level denoted by This fraction is given by4

Setting an overbooking limit of ensures that, at most, a fraction
of customer will be denied service. Through some algebraic simplifica-
tion, one can show that

which is a more convenient formula for computations.
Table 4.2 shows the Type 1 and Type 2 service levels for an example

with C = 150, and varying overbooking limit In practice,
we first specify a service level and then numerically search for the largest
booking level satisfying the specified service level. The resulting
is the overbooking limit. The quantity (the excess over capacity)
is referred to as the overbooking pad.

Example 4.1 Suppose we want no more than 0.1% of customers to be denied service
and our capacity is C = 150 and From Table 4.2, we should accept at most
168 reservations since this is the largest value for which less than
.001, (though 169 has a service level only slightly over the standard and might be a
candidate as well). Reservations would then be accepted as long as the number of
bookings on hand is less than 168. The overbooking pad would be 168 – 150 = 18.

Note that if we do not receive at least requests for reservations,
the service levels will in fact be higher than and In other
words, these measures predict the service level for instances in which
demand exceeds but the service level will be higher if demand is
strictly less than So effectively, we are considering a worst-case
service level (demand exceeding the overbooking limit) rather than an
average-case service level.

4As a technical aside, note that one may be tempted to define the Type 2 service level as

the average fraction denied service, rather than by (4.3). This is wrong, however, because it
does not account for the varying number of customers served. For example, if C = 100, then
it would count a day in which and a day in which equally as two days
with denied service fractions of zero, when in reality the second day represents 100 times as
many customers. The renewal-reward theorem leading to (4.3) provides the correct measure
of the long-run fraction of customers who are denied service.
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The average service level is, however, easy to calculate for a given dis-
tribution of demand. To illustrate, consider the Type 2 service level. Let
the random variable D denote the demand (unrestricted by capacity).
Then by the renewal-reward theorem, the average Type 2 service for an
overbooking level denoted is given by

One then searches for the largest value of that provides an average
service level that is within a given limit.
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The problem with using average service levels is that customers who
make reservations only on congested days will experience service levels
closer to than to This is a form of the inspection paradox
of probability theory, in which customers who book only on busy days
experience worse-than-average service. Thus, a service standard based
on is often justified since it guarantees that all customers, regard-
less of their patterns of usage, will experience at least the target service
standard.

4.2.1.2 Overbooking Based on Economic Criteria
An alternative to setting overbooking limits based on service levels is

to use an economic criterion. This approach requires an estimate of the
revenue loss from not accepting additional reservations and an estimate
of the cost of denied service. We first develop the details of the economic
model and then discuss some of the issues involved in estimating the
revenue loss and cost inputs.

Model and Basic Results Suppose customers show up on the day of
service (the show demand), and let denote the denied-service cost.
We shall assume is an increasing convex function of For example,
a common assumption in practice is that each denied-service costs the
firm a constant marginal amount in which case

An arguably more realistic assumption is to assume strictly increasing
marginal costs, reflecting the need to offer higher levels of compensation
(or incur higher goodwill costs) as each additional customer is denied
service.

Let denote the marginal revenue generated by accepting an addi-
tional reservation. One could also allow this marginal revenue to vary,
but it is a common simplification in practice to consider it fixed. (We
discuss this issue further below.) Then the total expected profit from
having reservations on hand is given by

where, as before, the random variable denotes the number of cus-
tomers who show up on the day of service out of reservations. One can
show for the binomial model that if is convex, then V(·) is concave, 5

in which case, since is concave, it follows that it is optimal to accept
the reservation as long as the marginal profit

5This follows from stochastic convexity arguments; see Appendix B for a discussion.
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is positive and to continue accepting reservations until this marginal
profit turns negative. Thus, the optimal booking limit is the largest
value of satisfying

For the binomial model with constant marginal costs and parameter
this condition reduces to

This expression can be argued intuitively by noting that when we accept
the reservation, we incur a marginal denied-boarding penalty of if
and only if (1) the current reservations on hand consume all the capacity

and (2) the customer shows up. The left-hand side
of (4.6) is simply the marginal penalty multiplied by the probability of
this event or equivalently the expected marginal cost. Then is the
largest value of for which the expected marginal cost is less than the
marginal revenue.

We can express (4.6) as

Note that this is equivalent to setting a fixed Type 1 service level for
a capacity of C – 1. For large capacities C, so
using economic criteria with constant marginal costs corresponds ap-
proximately to specifying a particular Type 1 service level. This fact
provides one justification for using Type 1 service levels.

To illustrate (4.7), consider the following example:

Example 4.2 Suppose C = 150, the overbooking cost is and
the marginal revenue is Then From Table 4.2 and (4.7), we
see that the optimal overbooking limit is then since this is the largest value
of for which The overbooking pad is then 172 – 150 = 22.

Cost and Revenue Parameters While overbooking based on eco-
nomic criteria is conceptually appealing, it requires good estimates of
the marginal revenues and costs. The marginal revenue is usually the
easier of the two to determine. If there is only one class, the marginal
revenue is simply the common price but with multiple classes determin-
ing the marginal revenue is more complex. A heuristic approach is to
use the weighted-average revenue. However, as shown in Chapter 2, the
marginal revenue produced by an additional unit of capacity is not, in
general, equal to the weighted-average revenue. Moreover, the marginal
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revenue is typically decreasing in the available capacity, so the linear
marginal revenue assumption is violated. Both these factors complicate
the estimation of marginal revenue in practice.

Estimating the denied-boarding cost involves other complications.
Some elements of this cost are clear: in particular, any refund of the
purchase price or monetary compensation or both is easy to quantify in
most cases. But if auctions are used to determine compensation, then
this compensation must be estimated. Vouchers for free service in the
future require a more careful accounting of the actual cost of providing
the service, as this is often less than the face value of the voucher.

Most difficult of all to quantify is the goodwill loss of upsetting a
customer. In principle, this can be taken to be equal to the discounted
potential revenue stream of future purchases from the customer (the so-
called lifetime value of the customer). This is rather difficult quantify,
but it is usually worth an attempt to make this calculation to at least
get the correct order of magnitude of goodwill losses.

One useful idea to get around these estimation problems is to com-
pute imputed costs based on subjective service-level criteria rather than
specifying a denied-service cost a priori. To obtain an imputed cost
from a given overbooking limit set according to Type 2 service levels,
one simply rearranges (4.7) to obtain

The following example illustrates the use of this formula:

Example 4.3 We saw above that if the service standard is 0.1% we
should accept at most reservations. Since if the
marginal revenue is this implies an imputed cost of denied service of

The figure looks rather large relative to the $100 revenue, so one might question if a
0.1% Type 2 service level is economically justified.

Often, these imputed cost numbers provide useful feedback, since they
translate service levels, which are tangible and somewhat easier to spec-
ify, into economic penalties, which most people find harder to quantify.
The economic costs, in turn, serve as a useful “sanity check” on the
reasonableness of a given service level by giving the magnitude of the
implied costs.
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4.2.2 Static-Model Approximations
While the binomial model is quite simple, it is often desirable to have

simpler, closed-form expressions for the overbooking limits. We next
look briefly at such approximations.

4.2.2.1 Deterministic Approximation
The deterministic approximation simply sets the overbooking limit so

that the average show demand is exactly equal to the capacity; namely,

As simplistic as this approximation is, we have seen several RM imple-
mentations that use it. The approximation is not completely unjustified,
however, as illustrated by the following example:

Example 4.4 Consider our continuing example where C = 150 and The
deterministic approximation yields an overbooking limit of From
Table 4.2, one can see that both service measures and begin to change
rapidly in the range of to which is approximately centered around
the deterministic level 176. So lacking detailed service standards or cost information,
a value around the deterministic level is not an unreasonable heuristic to use.

4.2.2.2 Normal Approximation
In practical implementations, it is common to use a continuous ap-

proximation to the binomial model to simplify computations. One pop-
ular choice is the normal approximation, in which the distribution
is replaced by the normal distribution with mean and variance
chosen to match the binomial, viz.,

The Type 1 service level is then approximated by

where

and is the c.d.f. of the standard normal distribution.
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The Type 2 service level is then approximated by6

Table 4.2 shows the estimates produced by the normal approximation
for our example with C = 150 and As can be seen, they are
reasonably close to the values of the binomial model.

The economic overbooking limit (4.7) for the constant marginal-cost
function (4.4) is approximated by choosing to satisfy

4.2.2.3 Gram-Charlier Series Approximation
The Gram-Charlier series improves on the normal approximation of

the binomial distribution by allowing for skewness of the distribution.
The standardized density function for this distribution is

where

is the squared coefficient of skewness. If this reduces to the
standard normal distribution. For the binomial model, the coefficient of
skewness is given by

Letting denote the standardized booking level as before,
the fraction of overbooked passengers is approximated by

where, as above, and are the standard normal density and
distribution, respectively.

6This follows from the fact that if Z is a normal random variable with mean
then

where

and variance
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Table 4.3 shows some numerical comparisons of the normal and Gram-
Charlier approximations of the binomial model. In general, the normal
approximation tends to overestimate the fraction of denied boardings.
The Gram-Charlier approximation also overestimates, but less so.

4.2.3 Customer Class Mix
One important practical issue that arises in overbooking is that differ-

ent classes may have quite different cancellation rates. For example, in
the airline case, full-coach customers often have no cancellation penalty,
while discount-class customers typically incur a significant fee for can-
celling a reservation. As a result, the two classes exhibit very different
rates of cancellation. Thus, the cancellation rate observed in a collection
of reservations may be highly dependent on the mix of classes.

Exact methods to handle this class-mix problem involve keeping track
of the inventory of each class as a separate state variable and then mak-
ing overbooking decisions based on this complete vector of state vari-
ables. Such an approach is described in detail for a multiclass model in
Section 4.5 below.

The difficulty with such exact approaches, however, is that they result
in significantly more complicated overbooking models and methodology.
As a result, most often in practice, one of several heuristic approaches
is used to account for customer class mix.

The most common practice is to use a cancellation probability that
is empirically estimated for each resource separately. In this way, one
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can capture at least the historical mix of customer segments booked on
each resource. Another approach is to estimate the cancellation proba-
bility for each class and then use estimates of the class mix on each re-
source to construct a weighted average cancellation probability for each
resource. Compared with straight estimation of the resource-level can-
cellation rate, this method has the advantage of reducing the variance
in the estimates and allows for a more rapid adjustment of cancellation
rates as the class mix changes over time.

4.2.4 Group Cancellations
The presence of groups also has an important effect on cancellation

models in practice. If a group decides to cancel, then all reservations are
cancelled simultaneously. The resulting positive correlation in cancel-
lations increases the variance of the show demand. When dealing with
large numbers of reservations, it is often possible to ignore the effect of
groups, but with small numbers of reservations, group effects can result
in significant deviations from the binomial model.

To gain some sense of the presence of groups in RM bookings, Ta-
ble 4.4 provides an empirical distribution of group sizes over approxi-
mately half a million airline reservations. About half of the reservations
are individual reservations, while the other half are from groups of two
or more.

One simple technique used in practice to adjust for group size is to
simply inflate the variance of the show demand by a factor that accounts
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for group size. For example‚ if we are using the normal approximation
to the binomial model as described in Section 4.2.2.2‚ then the estimate
of the mean show demand‚ is unchanged but the variance estimate‚

is modified as follows:

where is a factor to account for group cancellations—for example‚ the
average group size.7

A more refined technique for adjusting for groups is based on moment-
generating functions. Recall that the moment-generating function of a
random variable Z is We can then find the moments of
Z using the fact that

Let denote the overbooking limit and denote the number of groups
of size We will assume that

where is the historical fraction of reservations that are from groups
of size As an approximation‚ we allow to be nonintegral. Let
denote the probability that a group of size survives to the time of
service (called the utilization ratio in the airline industry). Then the
moment-generating function for the number of survivals from
total reservations‚ is

from which one can find the first three central moments of show demand‚

7Setting equal to the average group size is obtained by assuming that all reservations are
in groups of exactly size in which case with reservations on hand‚ there are groups
of size so the variance of the show demand is
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These three moments can then be used in the Gram-Charlier series
approximation (4.10); alternatively‚ the first two moments can be used
in the normal approximation (4.8).

4.3 Dynamic Overbooking Models
The static models do not explicitly account for the dynamics of ar-

rivals‚ cancellations‚ and decision making over time. Here we look at
models of overbooking that account for such intertemporal effects. We
first look at an exact dynamic overbooking model and then discuss heuris-
tic approaches.

4.3.1 Exact Approaches
The model presented here is a simplification of one due to

Chatwin [109]. The state variables are time‚ and the
number of reservations on hand‚ Let the value function be denoted

The terminal costs are

where C is the fixed capacity and is a convex cost function penalizing
denied service. The revenue received from accepting a new reservation
in period is denoted If a reservation is cancelled in period

the firm pays a refund of (Note that in this model the
refund depends only on the time the reservation is cancelled and not
on the time-period in which the reservation was made; this (somewhat
unrealistic) assumption is necessary to simplify the state space.)

Let denote the number of surviving reservations at the end of
period so that given reservations are on hand at the end of period

is the random number surviving to the start of period We
assume that has a binomial distribution with survival probability

Let denote the random number of new reservation requests in
period (the demand in period is assumed independent across
time and independent of

The order of events in a period is as follows: (1) there are reser-
vations on hand, and new reservation requests arrive; (2) booking
decisions are made for the new reservation requests, raising the booking
level to where then (3) cancellations are observed at
the end of the period. The dynamic programming recursion is then
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We then have the following result:

PROPOSITION 4.1 If the denied-service cost is convex, then an
overbooking-limit policy is optimal. That is, in each period there exists
a critical value such that it is optimal to continue accepting new
reservations until the total number of reservations on hand reaches

This result provides some theoretical support for the use of booking limit
policies. The following proposition in turn provides sufficient conditions
for optimal booking limits to be monotone in time:

PROPOSITION 4.2 Suppose the denied-service cost is convex and the
survival probabilities the revenues and the refunds satisfy

Then the optimal overbooking limit (or greatest optimal booking
limits if more than one optimal limit exists) decline with time. That is,

This declining-booking-limit situation corresponds to the overbooking
curve shown in Figure 4.2. Note that this condition is satisfied whenever
the revenues are decreasing over time and refunds paid
in period do not exceed the price in period 8

Another important monotonicity result concerns how overbooking
limits are affected by the magnitude of future demand. In particular,
let be a parameter of the distribution of arrivals so that
Then we have the following

PROPOSITION 4.3 Suppose the denied-service cost is convex and
is stochastically increasing in Then the optimal booking lim-

its (or greatest optimal booking limits if more than one optimal
limit exists) are nonincreasing in

8To gain some intuition for this condition‚ note it can be written as

Roughly‚ this can be interpreted as follows. Suppose we are willing to accept a booking in
period in state Then must exceed the opportunity cost of an additional
reservation in state in period Now consider state in period If we accept an
additional booking‚ we collect revenue If this reservation cancels at the end of period
we pay a refund this occurs with probability and the state (after the cancellation)
returns to If the reservation survives to period it creates an opportunity cost analogous
to accepting a request in period which by the argument above is at most (since
we accept a request in state in period this occurs with probability So if the
revenue exceeds the “average cost” of these outcomes‚ then we should be willing accept
an arrival in period in state as well. Hence‚ the booking limit in period is at least as
large as that in period



154 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

This result says that as demand to come increases (stochastically)‚
it is better to be less aggressive in overbooking at any given point in
time. The intuition is that if we have more opportunities to book seats
in the future‚ we do not need to take as great an overbooking risk in
the current period. The result also highlights the fact that the optimal
overbooking limits in general do depend on future demand‚ which is
something that the static overbooking models ignore. In particular‚ note
that the calculation of costs in the static overbooking model effectively
assumes there are no opportunities to replace cancelled reservations with
new reservations.9 Since the degenerate case of no future demand is
always stochastically smaller than any nontrivial distribution of future
demand‚ Proposition 4.3 implies that static overbooking models will
produce overbooking limits that are higher than optimal.

4.3.2 Heuristic Approaches Based on Net
Bookings

While dynamic overbooking models provide some nice insights‚ they
are not used very often in practice. This is due partly to their added
complexity and partly because to their similarity to the more general
combined capacity control and overbooking models that we look at in
Section 4.4 below.

In RM practice‚ the dynamics of cancellations and new reservations
and arrivals are more commonly accounted for by using relative changes
in bookings on hand (so-called net bookings) rather than customer-level
cancellation probabilities as a basis for estimating cancellation rates in
a static overbooking model. The idea of net bookings can be best illus-
trated by going back to Figure 4.2‚ which shows a sample of the level of
booking on hand over time. The change in bookings on hand from one
time-period to the next depends on both the number of cancellations and
the number of new reservations that are accepted. Looking at changes
in the bookings on hand gives us a measure of the net bookings. Quite
often in practice‚ net-bookings data is in fact the only data available for
use in estimating overbooking parameters.

Since net bookings reflect both cancellations and new reservations‚
they can be used to provide an alternative estimate of the cancellation

9More precisely‚ the assumption in the static model is that the show demand when the
booking limit is reached is a binomial random variable representing the number of
surviving reservations out of  total reservations. Hence‚ show demand consists only of those
reservations that survive from the current time until the time of service. If new reservations
are accepted to replace cancelled reservations‚ then the show demand will be larger than

which is what the dynamic model accounts for.
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rate‚ which one can interpret as an approximation to an exact dynamic
model. More precisely‚ one can estimate the survival “rate” as the
average ratio of show demand to the number of bookings on hand in time

(or to the number of peak bookings on hand if is before the peak;
see Figure 4.2.). This net-bookings approach to estimating cancellation
rates is again quite prevalent in RM practice and seems to lead to better
approximations of real world service levels and costs.

4.4 Combined Capacity-Control and Overbooking
Models

Thus far‚ we have analyzed the overbooking problem in isolation with-
out considering the interaction of overbooking decisions with capacity
controls. We next look at both exact and approximate methods to
model cancellations and no-shows together with the class allocations
of quantity-based RM.

Incorporating no-shows or cancellations in either the static or dy-
namic single-resource model is not too difficult theoretically‚ provided
one makes the following (not entirely satisfying‚ but analytically useful)
set of assumptions:

ASSUMPTION 4.1
(i) The cancellation and no-show probabilities are the same for all cus-
tomers.
(ii) Cancellations and no-shows are mutually independent across cus-
tomers.
(iii) Cancellations and no-shows in any period are independent of the
time the reservations on hand were accepted.
(iv) The refunds and denied-service costs are the same for all customers.

The assumptions imply that the number of no-shows and the costs in-
curred are only a function of the total number of reservations on hand.
As a result‚ we need only to retain a single state variable‚ and the re-
sulting dynamic programs are only slightly more complex than those
presented in Chapter 2.

The most restrictive of these assumptions in practice are (i) and (iv):
cancellation options and penalties are often linked directly to a class‚ so
cancellation and no-show rates and costs can vary significantly from one
class to the next. Ideally‚ these differences should be accounted for when
making allocation decisions. However‚ this significantly complicates the
problem‚ as we show below. As already mentioned‚ Assumption 4.1(ii)
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is often unrealistic because reservations from people in groups typically
cancel at the same time. Assumption 4.1(iii) is less of a problem in
practice and has some empirical support [508].

In most implementations‚ the overbooking problem is separated from
the capacity-allocation problem. Often‚ an approximate static overbook-
ing model can be solved that is able to relax (at least heuristically) some
or all parts of Assumption 4.1. However‚ given Assumption 4.1‚ the over-
booking and capacity-allocation problems can be combined exactly‚ as
we show next.

4.4.1 Exact Methods for No-Shows Under
Assumption 4.1

We first consider only no-shows and assume that there are no cancel-
lations prior to the time of service. Let denote the probability that a
customer with a reservation shows up for service is the no-show
probability). Assumption 4.1(i) says this probability is assumed to be
the same for all customers‚ and Assumption 4.1 (iii) that it is independent
of when the reservation was made.

Let if customer shows up for service and otherwise.
Given there are reservations on hand just prior to the time of service‚
the number of customers who show up at time zero (the show demand)‚
denoted is then

and by Assumption 4.1(iii) is a binomial random variable‚
with

By Assumption 4.1(iv), the total cost of denied service is only a func-
tion of the show demand Let denote the overbooking cost given
We will require that be increasing and convex with Con-
vexity in cost is quite natural since the marginal cost of denying service
to customers tends to increase with the number denied. For example,
we could have a simple linear cost per denied customer in which case

where, as before, C is the capacity.
Given this no-show model, the expected cost of service given

that there are reservations on hand at the time of service, is given by

Stochastic convexity arguments (see Appendix B) show that is
concave in if is convex. The above expression then replaces the
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boundary conditions of the dynamic program for the static and dynamic
models.

4.4.1.1 Static Model

Consider the static model of Section 2.2‚ where the classes are ordered
by prices and we assumed classes arrive in the order
of lowest to highest revenue. Classes and stages are indexed by The
state variable is now defined to be the number of reservations on hand

rather than the remaining capacity as in Section 2.2.
The Bellman equation (2.3) for the static model is then modified to

account for no-shows as follows

with boundary conditions (4.12) and for all where
is now interpreted as the expected net benefit (expected revenue minus
the expected terminal cost) of operating the system from stage onward
given that there are reservations on hand.10

Given the concavity of  the same argument as in Proposition 2.1
from Chapter 2 shows that the value function in (4.13) is concave
in for all and Since there is no hard capacity constraint in this
case‚ it is more meaningful to express the optimal policy in terms of
booking limits. The optimal nested booking limits are given by

where now has the interpretation as
the marginal cost of holding another reservation in stage and is
increasing in It is then optimal to accept class if and only if the
number of reservations on hand is strictly less than

4.4.1.2 Dynamic Model
Similarly‚ the optimality equations (2.17) for the dynamic model of

Section 2.5 are modified to account for no-shows as follows:

10Note that in this case is a decreasing function of since the more reservations we
have on hand now‚ the fewer the future opportunities to collect revenue or the higher the
expected future terminal costs.
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where‚ recall‚ is the random revenue in period equal to with
probability The boundary conditions are

and for all It is optimal to accept an arrival of class if and
only if

where again is interpreted as the
marginal cost of accepting another reservation.

Note that under this model‚ one can always justify accepting a suf-
ficiently high revenue provided the marginal cost is finite.
This makes perfect economic sense since we should in principle be will-
ing to accept an almost certain denied-service cost if some customer is
willing to pay enough to compensate us for this cost. For example‚ if
the overbooking cost is linear of the form then the
marginal cost is never more than so any request with revenue greater
than will always be accepted.

This property of not having an explicit limit on the number of reserva-
tions (rather‚ just an economic limit) has been called infinite overbooking
by some in the airline industry‚ since it is in sharp contrast to the usual
practice of setting a hard overbooking limit. Also‚ it highlights the po-
tential suboptimality of using fixed overbooking limits.

4.4.2 Class-Dependent No-Show Refunds
If one relaxes one or more parts of Assumption 4.1‚ then the problem

becomes considerably more difficult. The difficulty stems from the fact
that if no-show rates or costs depend on customer class or the time of
purchase or both‚ then one must retain a state variable for each class
or each time-period or both. The resulting increase in dimensionality of
the dynamic program makes it essentially intractable. However‚ it turns
out that class-dependent refunds can be readily incorporated through
an appropriate change of variable.

Suppose customers of class who no-show in period zero are given a
refund that is strictly less than the revenue we receive from them‚

However‚ all other assumptions in Assumption 4.1 hold. A
naive formulation of this class-dependent refund feature would require
keeping track of each class separately so that refunds can be properly
awarded at the time of service. However‚ whether a given customer no-
shows is completely independent of all other decisions and events in the
system. Thus‚ one can in fact charge for the expected refund at the time
the reservation is accepted rather than at the time of service‚ with no
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resulting difference in total expected revenues and costs. (This is merely
a bookkeeping change.)

More precisely‚ if we accept a reservation from a customer of class
it will yield a reduced revenue of

independent of everything else in the system. Therefore‚ we simply
use in place of in either (4.13) or (4.14) to modify the problem
formulation. Note‚ however‚ that depending on the refund‚ the ordering
of may be different from the ordering of For example‚ customers
in the high revenue class who receive a full refund if they no-show may
yield a lower net revenue than customers of a lower class who get
no refund if they no-show. Since the nested protection levels are now
based on the net revenue rather than the gross revenue the optimal
policy may reject the high gross-revenue customer in favor of the high
net-revenue one.

4.4.3 Exact Methods for Cancellations Under
Assumption 4.1

Cancellations complicate the dynamic program a little more than no-
shows‚ but they are still quite manageable under Assumption 4.1. Again‚
we look at the static and dynamic models in turn.

4.4.3.1 Static Model
Let denote the probability that a reservation in the system at the

start of stage survives to stage (recall that in the single-resource
static model of Section 2.2 stages go from N to 0). So is the
probability that a reservation cancels in stage By Assumption 4.1 (i)‚
(ii)‚ and (iii)‚ these probabilities are the same and independent for all
customers as well as the age of their reservations. Let denote the
number of reservations that survive stage given that there are reser-
vations on hand in stage are the number of cancellations
in stage

The Bellman equation (2.3) for the static model is then modified to
account for cancellations as follows

with boundary conditions (4.12)‚ where
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is the expected value function after cancellations in stage Again‚
stochastic convexity arguments show that if is concave in
then is concave in and hence a modification of the argument
in Proposition 2.1 shows that the value function defined by (4.16)
is concave in

Nested booking limits are optimal with the optimal booking limits
given by

where we accept class if and only if the number of reservations on hand
is strictly less than

4.4.3.2 Dynamic Model
Let denote the probability that a reservation in the system at the

start of period survives to period so by Assumption 4.1 (i)‚ (ii)‚
and (iii) the number of surviving reservations is again binomial.
The optimality equations for the dynamic model with cancellations be-
come

where

is the expected value function after cancellations in period The bound-
ary conditions are given by (4.15).

As a result‚ it is optimal to accept an arrival of class if and only if

4.4.4 Class-Dependent Cancellation Refunds
Again‚ relaxing the fact that cancellation rates or costs depend on

the class or the time of purchase (or both) requires expanding the state
space and is not practical if one has more than two classes. However‚
as with no-shows‚ a change of accounting can be used to allow for class-
dependent refunds. We illustrate the idea for the dynamic model only‚
but a similar idea applies for the static model.

Suppose a customer of class who cancels in period is given a refund
which is strictly less than the revenue we receive‚ All other

assumptions in Assumption 4.1 hold. As in the no-show case‚ one can
charge for the expected refund at the time the reservation is accepted
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rather than at the time of service‚ with no resulting difference in total
expected revenues and costs.

This is accomplished as follows. Let denote the expected refund
given to a class reservation from period through to the time of service.
We can solve for recursively using

with boundary condition

We then form the reduced revenue

and simply use in place of in (4.17) to modify the problem formu-
lation. Note‚ as in the case of no-show refunds‚ that the ordering of
may be different from the ordering of

Again‚ the key practical insight here is that the reduced-revenue
should be used in evaluating the economic benefit of accepting a class

customer—not the gross-revenue This is because even if a class
gives a higher current revenue‚ much of that revenue may be forfeited
on average‚ so the net benefit of accepting it can be quite different from
the gross revenue.

4.5 Substitutable Capacity
We next look at an overbooking problem with multiple classes and

multiple resources (types of capacity). Here‚ we assume classes corre-
spond to different products a customer can purchase‚ while resources
are physically different‚ albeit related‚ types of capacity. The multiple
capacity types may be used to satisfy the demand of a given class—or
multiple classes may use a single capacity type. A prominent example is
overbooking jointly in multiple cabins of an aircraft (coach and business
class)‚ where the first-class cabin serves as a substitute capacity if the
coach cabin is oversold. Another example is overbooking on back-to-
back scheduled flights between a pair of cities‚ where customers booked
on an early flight can be served (perhaps at a cost) on a later flight.
Hotels with multiple room types and car rental fleets with multiple car
types are further examples. The case of a single resource with multiple
classes can be applied to a traditional single-resource problem to control
overbooking when cancellation rates differ across classes (for example‚ to
determine separate overbooking limits for each class based on the joint
vector of reservations on hand for each class). All these problems share
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the feature that capacity of a different resource (such as a later flight‚
an alternative room type‚ or a vehicle type) can serve as a substitute in
the case of oversales.

In the presence of such substitution effects‚ the overbooking decisions
for the resources are related. For example‚ we might tolerate a higher
level of overbooking in the coach cabin of an aircraft if we know that
the number of bookings in the first-class cabin is low‚ and conversely we
would be more conservative about overbooking the coach cabin if the
first-class cabin was fully booked. Therefore‚ the key question in such
situations is how to jointly determine optimal overbooking levels.

4.5.1 Model and Formulation
One approach to joint overbooking across resources is to approximate

this problem as a two-period optimization problem. In the first pe-
riod (the reservation period)‚ we assume reservations are accepted given
only probabilistic knowledge of cancellations. In the second period (the
service period)‚ cancellations are realized‚ and surviving customers are
assigned to the various resources to maximize the net benefit of as-
signments (for example‚ minimize downgrading penalties). This gives
us essentially a multiclass version of the traditional static overbooking
model.

Let denoted the number of classes and denote the number of
resources. In the reservation period‚ assume that for each class we
currently have  reservations on hand. (This is the current “state.”) The
decision variables are the maximum number of reservations we are willing
to hold after the reservation period is over‚ denoted by
These decision variables have to satisfy for all since
the maximum number of reservations after the reservation period must
be at least as large as the number at the start of the reservation period.
(There are no cancellations during the reservation period.)

In the service period‚ cancellations and no-shows are realized‚ and
all remaining customers are either assigned to one of resources‚ in-
dexed by or they are denied service. This assignment of customers
to resources is modeled as a deterministic network-flow problem. The
following notation is used:

The net benefit of assigning a customer of class to resource
during service period (objective function coefficients).

The capacity of resource

The number of customers of class that show up at the service
period (number of survivals).
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The number of customers among the who showed up assigned
to resource during the service period (decision variables).

One can add a virtual resource, type to account for denied
service. This resource has finite but very high capacity, and assigning a
customer to it means that the customer is denied service. The assign-
ment variables corresponding to the virtual resource are and the
objective function coefficients take into account the loss-of-goodwill
cost incurred by denying service to customers of reservation class as
well as any other direct compensation costs.

Let z denote the of show demand and C denote the
of resource capacities (including the denied-service, virtual-

resource capacity, The maximum value obtained during the service
period is denoted by V(z, C). The allocation problem can be represented
as

(TP) is a transportation problem in which the supplies are customers
requesting service and demands are the available capacities. Let the
dual variables associated with constraints (4.18) and (4.19) in (TP) be

respectively.
To formulate the reservation-period problem‚ let be the show de-

mand for customers from class This show demand is‚ of course‚ a
function of the number of accepted reservations‚ so We
let denote the probability that a class reservation shows up in the
service period. Several models can be used for this show demand‚ most
naturally the binomial model discussed in Section 4.2.1. But it is use-
ful theoretically and computationally to approximate the binomial with
a Poisson distribution‚ in which case‚ booking limits can be treated as
continuous variables.

Let and
Let the price and refund (on cancellation) vectors for the classes be de-
noted by p and s‚ where we assume Finally‚ let G(x) be the
expected value of future revenues and costs (net revenue) as a function
of the final overbooking level‚ x.
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The reservation period problem is‚ then‚

where

and the expectation above is with respect to the random vector of sur-
vivals Z(x).

4.5.2 Joint Optimal Overbooking Levels
The following proposition shows how the overbooking levels for the

classes are related if show demand is modeled as a Poisson random vari-
able:

PROPOSITION 4.4 If for each is a Poisson distrib-
uted random variable with mean then the function G(x) defined by
(4.21) is component-wise concave in each and submod-
ular in x. That is‚ letting denote the unit vector‚ for all the
first differences

are decreasing in

The component-wise concavity of the expected net revenue function
implies that there are critical booking levels for each class beyondwhich
the expected value does not increase‚ provided booking levels of other
classes are kept constant. The submodularity property implies that the
optimal booking limit for class is nonincreasing in the booking limit
for any other class These are natural and intuitive properties.
They simply reflect the fact that low reservation levels in one class mean
that capacity will be less constrained in the service period‚ and this in
turn reduces the potential costs of overbooking in other classes because
more (or at least less costly) substitution options will be available.

In Appendix 4.A we give a stochastic gradient method for computing
the optimal joint overbooking limits. It solves (4.20) in the case of the
Poisson cancellation model using a simulation-based‚ stochastic gradient
algorithm. The following example illustrates how this method compares
with the independent binomial model:

Example 4.5 There are four consecutive flights between the same city pair. For
simplicity‚ assume that all four flights serve one class each and each flight has the
same capacity of 100. Flights are ordered in time (the earliest flight is flight 1).
Overbooking leads to substitution forward in time‚ so customers denied boarding on
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an oversold flight can take later flights with some loss of goodwill. Denying service
completely to a customer results in a higher cost compared with the cost of goodwill
due to delays. Delaying a customer by one flight costs $300; delaying by two flights
costs $400; delaying by three flights is $500. The cost of denying service to a customer
on any flight is $1‚000. The unit revenue for reservations is $500‚ which is fully
refundable on cancellation. There are 10 reservation periods in the planning horizon‚
and the survival probabilities are 0.81‚ 0.82‚ . . . ‚ 0.90 from the first period to the last.
Flights 1 and 4 receive 30% of reservation demand‚ while flights 2 and 3 receive only
20% each.

Figure 4.3 shows the overbooking limits and final average show demand for the
multiclass‚ stochastic gradient method (SOPT) and binomial model (BIN) for this
example. Note that the SOPT procedure is much more aggressive in overbooking
flight 1 than flight 4 even though they have the same demand. This is natural‚ since
overselling flight 1 is less costly because passengers can be put onto later flights;
oversold passengers on flight 4 must be denied service. Indeed‚ SOPT in a sense
deliberately “plans” oversales on flight 1‚ since delayed customers on these flights
generate more revenue than penalties. This results in nearly 5% of passengers being
delayed for one or more flights‚ while with the BIN procedure only 0.5% of passengers
are delayed. Nevertheless‚ the multiclass model produces a 1.4% increase in revenues
(net of penalty costs) over the independent binomial model‚ as the increased revenues
more than compensate for the increase in delay penalties.

While the parameters of this example are not the most realistic‚ the
example illustrates how coordinated overbooking policies for related re-
sources may differ from those computed using independent models.
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4.6 Network Overbooking
We next consider how to set overbooking levels on a network. The

capacities of network resources are key inputs to capacity-control prob-
lems. Using overbooking‚ these capacities may be inflated—defining
virtual capacities for each resource that exceed the physical capacity.
This increase in capacity‚ in turn‚ affects the accept or reject decisions
of the capacity-control method. On the other hand‚ capacity-control
decisions clearly influence the opportunity cost of capacity‚ which is a
key input to economic overbooking models. Hence‚ the total revenue for
a network (net of penalties) is affected both by overbooking and seat
inventory-control practices. Despite the strong interdependence of these
decisions‚ the two problems are typically separated in practice.

In this section‚ we look at one model for coordinating network-capacity
controls and overbooking decisions. The method combines the deter-
ministic linear programming model of Section 3.3.1 with a single-period
overbooking model‚ though it can be adapted to other network approx-
imations as well (such as PNLP and RLP).

As in Chapter 3‚ consider a network with products and resources.
We divide the time horizon into two periods: a reservation period‚ and
a service period. The reservation period spans (0‚ T] and is the period
the reservations can be made for any of the products. The reservation
period is followed by the service period‚ during which the customers with
reservations show up or become no-shows. During the service period‚ the
firm may deny service to customers who show up in case of insufficient
capacity‚ in which case it pays a penalty.

The demand or reservation requests arrive according to a stochas-
tic process during (0‚T] . As before‚ let denote the
vector of prices and the vector of resource capaci-
ties. There is a denied-service cost on each resource given by the vector

The denied-service cost may differ from one resource
to another‚ but it does not vary with time or product type. The matrix

is the usual network incidence matrix with if resource
is used by product and otherwise. Recall denotes the

row and the column of matrix A. For simplicity‚ we ignore
refund for cancellations or no-shows‚ but this can be included easily in
this model.

One way to formulate this overbooking problem is as a two-stage‚ sta-
tic model that combines the DLP model and the cost-based overbooking
models. The same formulation applies to a variety of network bid-price
methods‚ though we focus on the DLP method for simplicity.
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The decision variables are x‚ the vector of overbooking levels (virtual
capacities)‚ and y‚ the vector of primal allocations. (Note here we are
changing our running definition of y to conform with Chapter 3; that is‚
y is now a vector of capacity allocations not a vector of reservations on
hand.) The formulation is as follows:

The problem parameters are E[D], the vector of expected demand to
come for the classes. The objective function is the total revenue-to-
come, net of denied-service costs.

Note that the show demand for resource  in this formulation is ap-
proximated by the random variable The actual show demand,
however, will be less, since the show demand for is only if
the overbooking limit is reached. (Recall the discussion after Sec-
tion 4.2.1.1.) Otherwise, the number of reservation on resource will be
less than and so the show demand will be less than However,
this approximation greatly simplifies the model and is a good approxi-
mation in the important case where demand is high.

We let denote the overbooking-cost func-
tion and denote the revenue function in (4.22). The
overbooking-cost function H is a nondecreasing and convex function
of the overbooking limit x if the random variable associated with the
number of survivors for leg is assumed to follow the binomial or
Poisson model with survival probability Thus, the objective function
of problem (4.22) is jointly concave in y and x under these two models
of cancellation. One can use a general-purpose nonlinear programming
method to solve (4.22), but Appendix 4.B provides an algorithm spe-
cialized to this problem’s structure. The following numerical example
from [292] shows the performance of this method:

Example 4.6 The example here is based on the same network of Williamson [566]
as shown in Figure 3.3 of Chapter 3. The itinerary revenue values and base-case mean
demand values are show in Table 3.5 of Chapter 3 as well. The cancellation rate is
assumed to be 15%‚ and the denied service penalty is assumed to be $1‚000 on all legs.
Different load factors‚ proportions of local versus through traffic‚ and arrival order
were simulated to create 4 variations of the problem from the base case. A version
of the network overbooking model using binomial‚ rather than Poisson‚ assumptions
of cancellations (denoted BIN) was computed to find joint overbooking levels and
corresponding DLP solutions. The resulting overbooking limits and dual prices were
then tested by simulation.
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This BIN policy is compared with several versions of ad-hoc overbooking rules.
Four of these are cost-based overbooking models‚ denoted OBC-1 to OBC-4. They
differ only in terms of the revenue values used to compute the overbooking limits. Fi-
nally‚ a deterministic overbooking limit (DET) based on the approximation described
in Section 4.2.2.1 was also tested. Thus overall five methods are compared with BIN.
Once overbooking levels were determined‚ a DLP model was solved‚ and the resulting
bid prices were used to allocate capacity.

Since no exact methods are known for this problem‚ the deviation from the best of
the six methods was used as the performance metric. That is‚ the maximum expected
revenue (net of penalties) from all the policies is computed and for each individual
policy‚ and the percentage deviation from this maximum is recorded.

Figure 4.4 from [292] shows the average percentage deviation of the six methods.
Note that BIN is not always the best method (its average percentage deviation is
slightly positive)‚ but it is better than all the other methods.

Similar behavior is observed in other examples in [292]‚ where BIN
is not uniformly better than the ad-hoc overbooking mechanisms but is
never very far from the best policy and moreover is significantly more
robust than any of the ad-hoc methods. These and other tests of the
method show the importance of network overbooking; the deviations
between the best and worst policy can be quite large—several percentage
points of difference in net revenues.

4.7 Notes and Sources
Much of the material in Section 4.1.1 comes from the carefully docu-

mented work of Rothstein [447–449] on the development of overbooking
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in the airline industry. For papers on overbooking from a policy per-
spective‚ see Falkson [180] and Ruppenthal [450]. Overview articles on
overbooking include Bodily and Pfeifer [80]‚ Dunleavy [165] and Roth-
stein [447‚ 449].

There was also much lively debate surrounding the oversale-auction
idea‚ captured in a series of articles by Simon [472–475]. Vickery [534]
proposed using his second-price auction mechanism for the problem as
well.

The static overbooking problem of Section 4.2 first appeared in
a pair of papers by Beckmann [31‚ 32]. Other early treatments of
the static problem are Taylor [504]‚ Thompson [508]‚ and Rothstein
and Stone [446]. See also Bierman and Thomas [66] and Shlifer and
Vardi [465]. Martinez and Sanchez [362] test the memoryless property
of the binomial model empirically.

The Gram-Charlier approximation in Section 4.2.2.3 is due to Tay-
lor [504] as is the moment-generating-function method presented in Sec-
tion 4.2.4.

The material in Section 4.3 on dynamic overbooking is from Chatwin’s
thesis ([107]) and subsequent published articles [108‚ 109].

The material on combined allocation and overbooking problem of Sec-
tion 4.4 is from Subramanian et al. [494]‚ who also developed the cost
transformation technique of Sections 4.4.2 and 4.4.4.

The multiclass overbooking model with substitution (and associated
optimization algorithm) in Section 4.5 are from Karaesmen and van
Ryzin [290]. The network overbooking model and algorithm presented in
Section 4.6 is from Karaesmen and van Ryzin [291]; see also Karaesmen’s
thesis [292]. Ladany [320] analyzes a two-class version of this problem
for hotels using dynamic programming.

Some papers on practical considerations in hotel overbooking include
Lambert et al. [326] and Lefever [337]. The latter discusses handling
oversales situations in hotels. For models of hotel overbooking‚ see
Ladany [320‚ 321] and Liberman and Yechiali [343‚ 344]. Bitran and
Gilbert [71] analyze the problem of sequentially determining when to
deny service to arriving customers based on the relative costs of denying
service early and late in the evening.

APPENDIX 4.A: Computations for the Substitutable
Capacity Model

The optimization problem (4.20) with Poisson cancellations and continuous book-
ing limits can be solved numerically using a simulation-based optimization (stochastic
gradient) method. To do so we need an estimator of the gradient of the objective func-
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tion G(x). Let the vector denote a gradient estimator at the iteration of the
algorithm. (How this estimator is constructed is discussed below.) The algorithm re-
quires a sequence of step sizes‚ satisfying and
for example Then‚ the algorithm proceeds as follows:

STEP 0: Initialize: and

STEP 1: Get the next stochastic gradient:

 Randomly generate a new vector

 Compute the gradient estimate (discussed below).

STEP 2: Compute

where  projects onto

STEP 3: Set and GOTO STEP 1.

An estimator for can be constructed using the random function

Letting

one can show that

so is an unbiased estimator of the gradient of E[V(Z(x))]. The estimator
can be obtained easily by simulating Z(x) and solving a network-flow

problem to obtain V(Z(x)). Then each estimate  can be
determined by perturbing Z(x) and re-solving the network problem.

Let be a realization of show demand when the number of reservations on hand
is at the iteration of the stochastic gradient algorithm. Then the gradient
of the objective function at that time is given by the vector
where

for

APPENDIX 4.B: Alternating-Direction Method for
Network Overbooking

To determine the optimal solution (y* ,x* ) for the model (4.22), one can use an
alternating-direction method for the function. This method efficiently exploits the
structure of the problem.



APPENDIX 4.B: Alternating-Direction Method for Network Overbooking

Define the set and The augmented
Lagrangian function is

where is a positive (scalar) parameter. An alternating-direction method can be
used to find the maximizers of the augmented Lagrangian. The method proceeds at
iteration as follows:

The parameter initial vectors and are arbitrary. Let
One can show that a sequence generated by the algorithm (4.B.1)‚
(4.B.2)‚ and (4.B.3) is bounded and every limit point of is an optimal
solution to the original problem (4.22). Furthermore‚ converges to the optimal
dual variable associated with the virtual capacity constraints. A proof of this fact
and more details on the method are provided in Bertsekas and Tsitsiklis [56].

To apply this algorithm‚ we have to solve two different nonlinear programming
problems.

Finding requires solving the following problem:

for For the DLP model‚ this is equivalent to the following quadratic program:

Problem (QP) can be solved by any standard nonlinear programming method spe-
cialized to quadratic programming.

Finding requires solving

The function in (4.B.7) is separable‚ convex‚ and differentiable under the Poisson
model of cancellation‚ and can therefore be solved with a simple line-search method.

We summarize the steps of the algorithm:
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STEP 0: Initialize:

STEP 1: Solve problem (QP) and get

STEP 2: Solve problem (SP) and get

STEP 3: Compute using (4.B.3).

STEP 4: Set and GOTO STEP 1 if do not meet a stopping
criterion.

There are several options for the stopping criteria: (1) check that
satisfy the KKT conditions‚ (2) check that are not significantly different
from the values of or (3) reach a preset number of iterations;
this can be done if one has prior experience with the algorithm and the problems.
Karaesmen and van Ryzin [291] show that the algorithm is quite fast and stable on
many examples.
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Chapter 5

DYNAMIC PRICING

5.1 Introduction and Overview
In this chapter, we look at settings in which prices rather than quan-

tity controls are the primary variables used to manage demand. While
the distinction between quantity and price controls is not always sharp
(for instance, closing the availability of a discount class can be consid-
ered equivalent to raising the product’s price to that of the next highest
class), the techniques we look at here are distinguished by their explicit
use of price as the control variable and their explicit modeling of demand
as a price-dependent process.

In terms of business practice, varying prices is often the most nat-
ural mechanism for revenue management. In most retail and industrial
trades, firms use various forms of dynamic pricing—including personal-
ized pricing, markdowns, display and trade promotions, coupons, dis-
counts, clearance sales, and auctions and price negotiations (request for
proposals and request for quotes—RFP/RFQ processes)—to respond to
market fluctuations and uncertainty in demand. Exactly how to make
such price adjustments in a way that maximizes revenues (or profits, in
the case where variable costs are involved) is the subject of this chapter.

Dynamic pricing is as old as commerce itself. Firms and individu-
als have always resorted to price adjustments (such as haggling at the
bazaar) in an effort to sell their goods at a price that is as high as possi-
ble yet acceptable to customers. However, the last decade has witnessed
an increased application of scientific methods and software systems for
dynamic pricing, both in the estimation of demand functions and the
optimization of pricing decisions.
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5.1.1 Price versus Quantity-Based RM
Some industries use price-based RM (retailing), whereas others use

quantity-based RM (airlines). Even in the same industry, firms may use
a mixture of price- and quantity-based RM. For instance, many of the
RM practices of the new low-cost airlines more closely resemble dynamic
pricing than the quantity-based RM of the traditional carriers. What
explains these differences?

It is hard to give a definitive answer, and indeed Chapter 8 is devoted
to different theoretical explanations of RM practice. But in essence,
it boils down to a question of the extent to which a firm is able to
vary quantity or price in response to changes in market conditions. This
ability, in turn, is determined by the commitments a firm makes (to price
or quantity), its level of flexibility in supplying products or services, and
the costs of making quantity or price changes.

Consider airlines, for example. While arguably less true today than
in the past, airlines normally commit to prices for their various fare
products in advance of taking bookings. This is due to advertising con-
straints (such as the desire to publish fares in print media and fare
tariff books), distribution constraints, and a desire to simplify the task
of managing prices. For these marketing and administrative reasons,
most airlines advertise and price fare products on an aggregate origin-
destination market level, for a number of flights over a given interval of
time, and do not price on a departure-by-departure basis. This limits
their ability to use price to manage the demand on any given departure,
demand that varies considerably by flight and is quite uncertain at the
time of the price posting. At the same time, the supply of the various
classes is almost perfectly flexible between the products (subject to the
capacity constraint of the flight), since all fare products sold in the same
cabin of service share a homogeneous seat capacity. It is this combina-
tion of price commitments together with flexibility on the supply side
that make quantity-based RM an attractive tactic in the airline industry.
Hotels, cruise ships, and rental cars—other common quantity-based RM
industries—share many of these same attributes.

In other cases, however, firms have more price flexibility than quantity
flexibility. In apparel retailing, for example, firms commit to order quan-
tities well in advance of a sales season—and may even commit to certain
stocking levels in each store. Often, it is impossible (or very costly) to
reorder stock or reallocate inventory from one store to another. At the
same time, it is easier (though not costless) for most retailers to change
prices, as this may require only changing signage and making data en-
tries into a point-of-sale system. Online retailers in particular enjoy
tremendous price flexibility because changing prices is almost costless.
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Business-to-business sales are often conducted through a RFP/RFQ
process, which allows firms to determine prices on a transaction-by-
transaction basis. In all these situations, price-based RM is therefore
a more natural practice. Of course, the context could dictate a different
choice even in these industries. For example, if a retailer commits to
advertised prices in different regional markets yet retains a centralized
stock of products, it might then choose to manage demand by tactically
allocating its supply to these different regions—a quantity-based RM
approach.

However, given the choice between price- and quantity-based RM, one
can argue that price-based RM is the preferred option. The argument
is as follows (see Gallego and van Ryzin [199]). Quantity-based RM
operates by rationing the quantity sold to different products or to differ-
ent segments of customers. But rationing, by its very nature, involves
reducing sales by limiting supply. If one has price flexibility, however,
rather than reducing sales by limiting supply, we can reduce sales by
increasing price. This achieves the same quantity-reducing function as
rationing, but does it more profitably because by increasing price we
both reduce sales and increase revenue at the same time. In short,
price-based “rationing” is simply a more profitable way to limit sales
than quantity-based rationing.

In practice, of course, firms rarely have the luxury of choosing price
and quantity flexibility. Therefore, practical business constraints dictate
which tactical response—price- or quantity-based RM (or a mixture of
both)—is most appropriate in any given business context.

5.1.2 Industry Overview
To give a sense of the scope of activity in the area of dynamic pricing,

we next review pricing innovations in a few industries.

5.1.2.1 Retailing
Retailers, especially in apparel and other seasonal-goods sectors, have

been at the forefront in deploying science-based software for pricing,
driven primarily by the importance of pricing decisions to retailers’ prof-
its. For example, Kmart alone wrote off $400 million due to markdowns
in one quarter of 2001, resulting in a 40% decline in its net income [194].

Several software firms specializing in RM in retailing have recently
emerged. Most of this software is currently oriented toward optimizing
markdown decisions. Demand models fit to historical point-of-sale data
together with data on available inventory serve as inputs to optimiza-
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tion models that recommend the timing and magnitude of markdown
decisions.

Major retailers—including Gymboree, J. C. Penney, L. L. Bean, Liz
Claiborne, Safeway, ShopKo, and Walgreen’s—are experimenting with
this new generation of software [194, 214, 270, 379]. Many have re-
ported significant improvements in revenue from using pricing models
and software. For example, ShopKo reported a 24% improvement in
gross margins as a result of using its model-based pricing software [270]
and other retailers report gains in gross margins of 5% to 15% [194].
Academic studies based on retail data have also documented significant
improvements in revenues using model-based markdown recommenda-
tions [70, 247].

5.1.2.2 Manufacturing
Scientific approaches to pricing are gaining acceptance in the manu-

facturing sector as well. For example, Ford Motor Co. reported a high-
profile implementation of pricing-software technology to support pricing
and discounts for its products [135]. The project, started in 1995, fo-
cused on identifying features that customers were most willing to pay
for and changing salesforce incentives to focus on profit margins rather
than unit-sale volumes. Ford then applied pricing models developed by
an outside consulting firm to optimize prices and dealer and customer
incentives across its various product lines. In 1998, Ford reported that
the first five U.S. sales regions using this new pricing approach collec-
tively beat their profit targets by $1 billion, while the 13 that used their
old methods fell short of their targets by about $250 million [135].

5.1.2.3 E-business
E-commerce has also had a strong influence on the practice of pric-

ing [529]. Companies such as eBay and Priceline have demonstrated the
viability of using innovative pricing mechanisms that leverage the ca-
pabilities of the Internet. E-tailers can discount and markdown on the
fly based on customer loyalty and click-stream behavior. Since a large
e-tailer like Amazon.com has to make a large number of such pricing
decisions based on real-time information, automating decision making
is a natural priority. The success of these e-commerce companies—
inconsistent and volatile as it may appear at times—is at least partly
responsible for the increased interest among traditional retailers in using
more innovative approaches to pricing.

On the industrial side, e-commerce pricing has been influenced by the
growth of business-to-business (B2B) exchanges and other innovations
in using the Internet to gain trading efficiencies. While this sector too
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has had its ebbs and flows, it has produced an astounding variety of new
pricing and trading mechanisms, some of which are use regularly for
the sale products such as raw materials, generic commodity items and
excess inventory. For example, Freemarkets has had significant success
in providing software and service for industrial-procurement auctions,
and as of this writing claims to have facilitated over $30 billion in trade
since its founding in 1999. Covisint—an exchange jointly funded by
Daimler-Chrysler, Ford Motor Company, and General Motors—while
slow to develop, looks nevertheless to become a permanent feature of
the auto-industry procurement market. Most infrastructure software for
B2B exchanges—sold by firms such as Ariba, i2, IBM, and Commerce
One—also has various forms of dynamic pricing capabilities built in.

For all these reasons, e-commerce has given price-based RM a signifi-
cant boost in recent years.

5.1.3 Examples of Dynamic Pricing
We next examine three specific example of dynamic pricing and the

qualitative factors driving price changes in each case.

5.1.3.1 Style-Goods Markdown Pricing
Retailers of style and seasonal goods use markdown pricing to clear ex-

cess inventory before the end of the season. This type of price-based RM
is most prevalent in apparel, sporting goods, high-tech, and perishable-
foods retailing. The main incentive for price reductions in such cases is
that goods perish or have low salvage values once the sales season is over;
hence, firms have an incentive to sell inventory while they can, even at
a low price, rather than salvage it.

But apart from inventory considerations, there are other proposed
explanations for markdown pricing. One explanation, proposed by
Lazear [332] (see Examples 8.11 and 8.12) and investigated empirically
in Pashigan [415] and Pashigan and Bowen [414], is that retailers are un-
certain about which products will be popular with customers. Therefore,
firms set high prices for all items initially. Products that are popular
are the ones for which customers have high reservation prices, so these
sell out at the high initial price. The firm then identifies the remaining
items as low-reservation-price products and marks them down. In this
explanation, markdown pricing serves as a form of demand learning.

A second explanation for markdowns is that customers who purchase
early have higher willingness to pay, either because they can use the
product for a full season (a bathing suit at the start of summer) or be-
cause there is some cache to being the first to own it (a new dress style
or electronic gadget). Markdown pricing then serves as a segmenta-
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tion mechanism to separate price-insensitive customers from those price-
sensitive customers willing to defer consumption to get a lower price.

Warner and Birsky [554] give yet another explanation, with empirical
evidence, for markdown pricing. On holidays and during peak-shopping
periods (such as before Christmas), customers can search for the low-
est prices more efficiently because they are actively engaged in search,
making many shopping trips over a concentrated period of time. Even
those customers who normally do not spend much time searching for the
best price change their behavior during these peak shopping periods and
become more vigilant. The result is that demand during peak periods
is more price-sensitive and retailers respond by running “sales” during
these periods.

5.1.3.2 Discount Airline Pricing
Not all dynamic pricing involves price reductions, however. As we

mentioned earlier, discount airlines use primarily price-based RM, but
with prices often going up over time. These airlines (some examples are
easyJet and Ryanair in Europe and JetBlue in the U.S.) typically offer
only one type of ticket on each flight, a non-refundable, one-way fare
without advance-purchase restrictions. However, they offer these tickets
at different prices for different flights, and moreover, during the booking
period for each flight, vary prices dynamically based on capacity and
demand for that specific departure. To quote from one practitioner of
this type of dynamic pricing (Easyjet website, 2003):

The way we structure our fares is based on supply and demand and prices
usually increase as seats are sold on every flight. So, generally speaking, the
earlier you book, the cheaper the fare will be. Sometimes, however, due to
market forces our fares may be reduced further. Our booking system contin-
ually reviews bookings for all future flights and tries to predict how popular
each flight is likely to be.

Figure 5.1 shows the evolution of prices for a particular European
discount airline flight as a function of the number of weeks prior to
departure. Note that prices are highest in the last few weeks prior to
departure.

There are some fundamental differences between air travel and style-
and seasonal-goods products that explain this increasing price pattern.
For one, the value of air travel to customers does not necessarily go down
as the deadline approaches. Conversely, the value of a ticket earlier on
is lower for customers as customers multiply the value by the probabil-
ity that they will indeed use the ticket (especially for a non-refundable
ticket). Somewhat related to these points, additionally, although cus-
tomers purchase tickets at different points of time, all customers consume
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the product (fly the flight) at the same time. So two factors come into
play. Customers who purchased early may get upset to see prices drop
while they are still holding a reservation; indeed, many airlines give a
price guarantee to refund the difference if there is a price drop (to en-
courage passengers to book early), making it costly for the firms to lower
prices. And in the travel business, high-valuation high-uncertainty cus-
tomers tend to purchase closer to the time of service. Hence, demand is
less price-sensitive close to the time of service.

5.1.3.3 Consumer-Packaged Goods Promotions
In contrast to markdown and discount airline pricing, promotions are

short-run, temporary price reductions. Promotions are the most com-
mon form of price-based RM in the consumer packaged-goods (CPG)
industry (soap, diapers, coffee, yogurt, and so on).

The fact that customers purchase CPG products repeatedly has im-
portant implications for pricing and promotions. Specifically, customers
are aware of past prices and past promotions, so running promotions too
frequently may condition customers to view the brand as a frequently
discounted product, cutting into brand equity in the long run. Because
customers are aware of past prices, promotions impact their subjective
“reference price”—or sense of the “fair” price—for products. And cus-
tomers may stockpile products, so short-run increases in demand due to
promotions may come at the expense of reduced future demand.
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The institutional structure of promotions is also more complicated.
There are three parties involved—manufacturers, retailers, and end cus-
tomers. Promotions are run either by a manufacturer as discounts to
retailers (trade promotions), which may or may not be passed on to
the customers by the retailers (retailer pass-thru), or by retailers (re-
tail promotions or consumer promotions). In some forms of promotion
(e.g., mail-in coupons) manufacturers gives a discount directly to the
end customer.

The motivations of the manufacturer and the retailer are different as
well. While a manufacturer is interested in increasing sales or profits
for its brand, retailers are interested in overall sales or profits for a cat-
egory constituting multiple brands from multiple manufacturers. For
a retailer, discounting a particular brand may increase sales for that
brand but dilute overall category profits as customers switch from high-
margin brands to the discounted brand. So in designing optimal pro-
motions structures, one has to consider complex incentive compatibility
constraints.

5.1.4 Modeling Dynamic Price-Sensitive Demand
Any dynamic-pricing model requires a model of how demand—either

individual or aggregate—responds to changes in price. The basic theory
of consumer choice and the resulting market-response models are covered
in Chapter 7. We draw on these models in this chapter.

However, in dynamic-pricing problems some additional factors must
be considered. The first concerns how individual customers behave over
time—what factors influence their purchase decisions and how sophisti-
cated their decision-making process is, and so on. The second concerns
the state of market conditions—specifically the level of competition and
the size of the customer population. We next look at each of these
assumptions qualitatively.

5.1.4.1 Myopic- Versus Strategic-Customer Models
One important demand-modeling assumption concerns the level of

sophistication of customers. Most of the models we consider in this
chapter assume myopic customers—those who buy as soon as the offered
price is less than their willingness to pay. Myopic customers do not
adopt complex buying strategies, such as refusing to buy in the hope
of lower prices in the future. They simply buy the first time the price
drops below their willingness to pay. Models that incorporate strategic
customers, in contrast, allow for the fact that customers will optimize
their own purchase behavior in response to the pricing strategies of the
firms.
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Of course, the strategic-customer model is more realistic. However,
such a demand model makes the pricing problem essentially a strate-
gic game between the customers and the firm, and this significantly
complicates the estimation and analysis of optimal pricing strategies—
often making the problem intractable. In contrast, the myopic-customer
model is much more tractable and hence is more widely used. The issue
in practice is really a matter of how “bad” the myopic assumption is in
any given context. In many situations, customers are sufficiently spon-
taneous in making decisions that one can ignore their strategic behavior.
Moreover, customers often do not have the sufficient time or information
to behave very strategically. However, the more expensive and durable
the purchase, the more important it becomes to model strategic cus-
tomer behavior (for example, automobile buyers waiting to purchase at
the end of a model year).

One common defense of the myopic assumption is the following. The
forecasting models that use observations of past customer behavior in
a sense reflects the effects of our customers’ strategic behavior. For
example, if the customers who are most price-sensitive tend to adopt
a strategy of postponing their purchases until end-of-season clearance
sales, then the estimated price sensitivity in these later periods will tend
to appear much higher than in earlier periods. Therefore, even though
we do not model the strategic behavior directly, our forecasting models
indirectly capture the correct price response.

This view is plausible if the pricing strategies obtained from a model
are roughly similar to past policies, so that they can be viewed as “per-
turbations” or “fine tuning” of a historical pricing strategy—a strategy
that customers have already factored into their behavior. On the other
hand, if optimized pricing recommendations are radically different in
structure from past pricing strategies, then it is reasonable to expect
that customers will adjust their buying strategies in response. If this
happens, the predictions of myopic models that are fit to historical data
may be very bad indeed.

Yet even when the myopic approach works (in the sense of correctly
predicting price responses), it runs the risk of reinforcing “bad equilib-
rium” pricing strategies. For example, a myopic model fit to past data
may reconfirm the “optimality” of lowering prices significantly at the
end of a sales season or running periodic holiday sales because it esti-
mates, based on historical data, that demand is especially price-sensitive
in these periods. But this price sensitivity may be due to the fact that
customers have learned not to buy at other times, because they know
prices will be cut at the end of the season or during holidays. If the firm
was to adopt a constant price strategy—and customers were convinced
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that the firm was sticking to this strategy—then the observed price sen-
sitivity might shift. The resulting equilibrium might be more profitable,
but it is one that the firm would not discover using a myopic-customer
model.

Despite these limitations and potential pitfalls of the myopic model,
it is practical, is widely used, and provides useful insight into dynamic
pricing. We therefore focus on the myopic case for the most part in
this chapter. However, we consider strategic customers in Section 5.5.2
below and in considerably more depth in Chapter 6, where we look at
auctions, the analysis of which is entirely based on strategic-customer
models.

5.1.4.2 Infinite- Versus Finite-Population Models
Another important assumption in demand modeling is whether the

population of potential customers is finite or infinite. Of course, in
reality, every population of customers is finite; the question is really a
matter of whether the number and type of customers that have already
bought changes one’s estimate of the number or type of future customers.

In an infinite-population model, we assume that we are sampling with
replacement when observing customers. As a result, the distribution of
the number of customers and the distribution of their willingness to pay
is not affected by the past history of observed demand. This is often
termed the nondurable-goods assumption in economics because we can
view this as a case where customers immediately consume their purchase
and then reenter the population of potential customers (say, for a can of
Coke). This assumption is convenient analytically because one does not
need to retain the history of demand (or a suitable sufficient statistic)
as a state variable in a pricing-optimization problem.

The finite-population model assumes a random process without re-
placement. That is, there are a finite (possibly random) number of cus-
tomers with heterogeneous willingness to pay values. If one of the cus-
tomers in the population purchases, the customer is removed from the
population of potential customers, and therefore future purchases only
occur from the remaining customers. This is termed the durable-goods
assumption in economics because we can consider it as a case where the
good being purchased is consumed over a long period of time (for exam-
ple, an automobile) and hence once a customer purchases, he effectively
removes himself from the population of potential customers.

For example, suppose we assume a price is offered in period
and all customers who value the item at more than purchase in
period (myopic behavior). Then, under a finite-population model, we
know that after period the remaining customers all have valuations
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less than In particular, the future distribution of willingness to
pay is conditioned on the values being less than As a result, in
formulating a dynamic-pricing problem, we have to keep track of past
pricing decisions and their effect on the residual population of customers.

Which of these models is most appropriate depends on the context.
While often the infinite-population model is used simply because it is
easier to deal with analytically, the key factors in choosing one model
over the other are the number of potential customers relative to the num-
ber that actually buy and the type of good (durable versus nondurable).
Specifically, the infinite-population model is a reasonable approximation
when there is a large population of potential customers and the firm’s
demand represents a relatively small fraction of this population because
in such cases the impact of the firm’s past sales on the number of cus-
tomers and the distribution of their valuations is negligible. It is also
reasonable for consumable goods. However, if the firm’s demand repre-
sents a large fraction of the potential pool of customers or if the product
is a durable good, then past sales will have a more significant impact on
the statistics of future demand, and the finite-population assumption is
more appropriate.

Qualitatively, the two models lead to quite different pricing policies.
Most notably, finite-population models typically lead to price skimming
as an optimal strategy, in which prices are lowered over time in such a
way that high-valuation customers pay higher prices earlier while low-
valuation customers pay lower prices in later periods. Effectively, this
creates a form of second-degree price discrimination, segmenting cus-
tomers with different values for the good and charging differential prices
over time. In infinite-population models, there is no such price-skimming
incentive. Provided the distribution of customer valuations does not shift
over time, the same price that yields a high revenue in one period will
yield a high revenue in later periods, and thus a firm has no incentive
to deviate from this revenue-maximizing price.

5.1.4.3 Monopoly, Oligopoly, and Perfect-Competition
Models

Another key assumption in dynamic-pricing models concerns the level
of competition the firm faces. Many pricing models used in RM practice
are monopoly models, in which the demand a firm faces is assumed to de-
pend only on its own price and not on the price of its competitors. Thus,
the model does not explicitly consider the competitive reaction to a price
change. Again, one makes this assumption primarily for tractability and
is not always realistic.
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As with the myopic-customer model, the monopoly model can be
partly justified on empirical grounds—namely, that an observed histor-
ical price response has embedded in it the effects of competitors’ re-
sponses to the firm’s pricing strategy. So for instance, if a firm decides
to lower its price, the firm’s competitors might respond by lowering their
prices. With market prices lower, the firm and its competitors see an
increase in demand. The observed increase in demand is then mea-
sured empirically and treated as the “monopoly” demand response to
the firm’s price change in a dynamic-pricing model—even though com-
petitive effects are at work.

Again, while such a view is pragmatic and reflects the conventional
wisdom behind the pricing models used in practice, there are some dan-
gers inherent in it, paralleling those of the myopic-customer model. The
price-sensitivity estimates may prove wrong if the optimized strategy de-
viates significantly from past strategies because then the resulting com-
petitive response may be quite different from the historical response.
Also, the practice runs the risk of reinforcing “bad” equilibrium re-
sponses. Despite these risks, monopoly models have still proved to be
valuable for decision support.

It is worth noting that oligopoly models, in which the equilibrium-
price response of competitors is explicitly modeled and computed, also
have their pitfalls. Most notably, the assumption that firms behave ra-
tionally (or quasi-rationally, if heuristics are used in place of optimal
strategies) may result in a poor predictor of their actual price response.
These potential modeling errors together with the increased complexity
of analyzing oligopoly models—and the difficulty in collecting competi-
tor data to estimate the models accurately—has made them less popular
in practice. Shugan [468] provides a good summary of this point of view;
he notes that “the strong approximating assumption of no competitive
response is sometimes better than the approximating assumption of pre-
existing optimal behavior.” However, properly designed and validated,
oligopoly models can provide valuable insights on issues of pricing strat-
egy.

Finally, one can also consider perfectly competitive models—in which
many competing firms supply an identical commodity. As described in
Section 8.2, the output of each firm is assumed to be small relative the
market size, and this, combined with the fact that each firm is offer-
ing identical commodities, means that a firm cannot influence market
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prices.1 Therefore, each firm is essentially a price taker—able to sell as
much as it wants at the prevailing market price but unable to sell any-
thing at higher prices. Despite the importance of perfect-competition
models in economic theory, the assumption that firms have no pricing
power means that the results are not that useful for price-based RM.
Nevertheless, they do play a role in quantity-based RM. For example,
one can interpret the capacity-control models of Chapters 2 and 3 as
stemming from competitive, price-taking models; firms take the price
for their various products as given (set by competitive market forces),
and control only the quantity they supply (the availability or allocation)
at these competitive prices. As our focus in the chapter is on price-
based RM, we do not consider this model of competition further in this
chapter.

5.2 Single-Product Dynamic Pricing Without
Replenishment

The first problem we look at is dynamic pricing of a single product
over a finite sales horizon given a fixed inventory at the start of the
sales horizon. We assume that the firm is a monopolist, customers are
myopic, and there is no replenishment of inventory.

The models are representative of the type used in style and seasonal
goods retail RM. For such retailers, production and ordering cycles are
typically much larger than the sales season, and the main challenge is
to determine the price path of a particular style at a particular store
location, given a fixed set of inventory at the beginning of the season.

At one level, such models are simplistic: they consider only a single
product in isolation and assume customers are myopic, and therefore
demand is a function solely of time and the current price (although
other factors such as inventory depletion are sometimes included). They
therefore ignore competition, the impact of substitution, and the pos-
sible strategic behavior of customers over time. Despite these simpli-
fications, the models provide good rough-cut approximations and are
useful in practice. In addition, by decomposing the problem and treat-
ing products independently, it is possible to solve such models efficiently
even when there are hundreds of thousands of product-location combi-
nations. Finally, even with the simplifying assumptions, the analysis can

1This is in contrast to the Cournot model of quantity competition discussed in Section 8.4, in
which there are only a small number of firms whose quantity decisions do affect the market
price. Roughly speaking, Cournot competition approaches perfect competition as the number
of firms in the industry tends to infinity.
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still become complex if we allow stochastic demand and put constraints
on prices.

Since we consider only a single product, there is a single (scalar) price
decision at each time denoted which induces a unique (scalar)
demand rate The set of allowable prices is denoted and
denotes the set of achievable demand rates. We assume that these func-
tions satisfy the regularity conditions in Assumptions 7.1, 7.2, and 7.3
unless otherwise specified. These include several regularity properties,
which we summarize here:

The demand functions are continuously differentiable and strictly de-
creasing, Hence, they have an inverse, denoted

The demand functions are bounded above and below and tend to zero
for sufficiently high prices—namely,

The revenue functions (equivalently
are finite for all and have a finite maximizer interior to

The marginal revenue as a function of demand, defined by

is strictly decreasing in (Assumption 7.2)

Readers who are not familiar with demand functions are encouraged
to review Section 7.3 for more discussion of these and other related
properties of demand functions. As discussed in Section 7.3, the demand
function can also be expressed as where is
the market-size parameter and is the fraction of the market with
willingness to pay less than We let denote the inventory at time

where T is the number of periods in the sale horizon. The
initial inventory is

5.2.1 Deterministic Models
The simplest deterministic pricing model is formulated in discrete

time as follows. Given an initial inventory select a sequence
of prices (inducing demand rates of that maximize total
revenues. Formulating the problem in terms of the demand rates
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the optimal rates must solve

Let be the Lagrange multiplier on the inventory constraint, and
recall that denotes the marginal revenue. Then the
first-order necessary conditions for the optimal rates and multiplier

are

subject to the complementary slackness condition

and the multiplier nonnegativity constraint Under Assump-
tion 7.2, is decreasing in and so is concave; hence, these
conditions are also sufficient.

The optimality conditions are quite intuitive. The Lagrange multiplier
has the interpretation as the marginal opportunity cost of capacity.

The condition says that the marginal revenue should
equal the marginal opportunity cost of capacity in each period. This
makes sense because if marginal revenues and costs are not balanced, we
can increase revenues by reallocating sales (by adjusting prices) from a
period of low marginal revenue to a period of higher marginal revenue.
Finally, the complementary slackness condition says that the opportu-
nity cost cannot be positive if there is an excess of stock. If the op-
portunity cost is zero then if we maximize revenue without
a constraint in every period (pricing to the point where marginal rev-
enue is zero), we will still not exhaust the supply. This means it can be
optimal—even in the absence of any costs for capacity—not to sell all
the available supply.

Note that this problem is essentially equivalent to the problem of opti-
mal third-degree price discrimination (see Section 8.3.3.2) if we consider
customers in each period to be different segments who are offered dis-
criminatory prices Another way of viewing the above argument is
that the firm, faced with a capacity constraint, decides how much to sell
in each period, and its optimal allocation of capacity occurs when the
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marginal revenue in all the periods are the same. The following example
illustrates the idea:

Example 5.1 Consider a two-period selling horizon, where during the first period
demand is given by and in period 2 demand is given by

(Customers in the second period are more price-sensitive than those in the
first period.) Purchase behavior is assumed to be myopic. Considered separately,
the revenue-maximizing price for the first period (maximizing )
is given by and and in the second period by
(maximizing

Intertemporal effects come into play if the firm has only a limited number of items
to sell (less than 50+60). Suppose the firm’s capacity is 40. How should it divide the
sale between the two periods?

Note that here, and Consider the table
of marginal values, Table 5.1, at various allocations and the corresponding revenues.
The total revenue is maximized at the point where the marginal values for the two
periods are approximately the same (when ), conforming to our
intuition; if they were not equal, the firm would reallocate capacity to the higher
marginal-value period.

To see qualitatively how prices will change over time, we can write
the optimality condition (5.2) as

where is the elasticity of demand in period defined by
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See Section 7.3.1.3 for a further discussion of price elasticity. Thus, more
elastic demand in period implies a lower optimal price

For example, if customers that buy toward the end of the sales horizon
are more price-sensitive than those that buy early, then optimal prices
will decline over time. If customers early on are price-sensitive, and those
buying later are less price-sensitive, then optimal prices will increase over
time. This observation offers one explanation for why in some industries
(such as apparel retailing) prices tend to decline over time, while in
others (such as airlines) prices increase over time. Chapter 8 provides
additional explanations for intertemporal price patterns.

5.2.1.1 Computational Approaches
Problem (5.1) is a rather simple nonlinear program to solve. Each

value implies a value by (5.2). If the value is too low, these
demand rates will be too high, and the constraint will
be violated. If is too high, total demand will not exhaust supply, and
(5.3) will be violated. Of course, if results in a total demand that
is less than C, then this is the optimal dual value. Using these rules, it
is straightforward to derive a search procedure to find the optimal

Another computational approach is to apply a greedy allocation algo-
rithm, based on the observation that the marginal revenues in all periods
are equal at optimality. Specifically, discretize the capacity C into M
units of size each, so that The greedy algorithm then pro-
ceeds by allocating demand in discrete amounts so as to equalize the
marginal revenue:

STEP 0 (Initialize): Initialize solution Initial-
ize counter

STEP 1 (Evaluate marginal revenues): IF
THEN DO:
Increment the demand of this highest marginal revenue period

ELSE, IF STOP (Current solution optimal).

STEP 2 (Check capacity constraint and repeat): IF
STOP;
ELSE and GOTO STEP 1.
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This algorithm takes O( M log T) time and is quite simple to program.
Provided the marginal revenue is decreasing in each period, this greedy
procedure produces an optimal (discretized) solution. (See Federgruen
and Groenvelt [182].) The following example illustrates the algorithm:

Example 5.2 Consider a two-period problem with inverse-demand functions
and The corresponding marginal revenue

functions are

There are C = 6 units of capacity and we let the increment The algorithm then
proceeds as shown in Table 5.2. At the start, both periods have the same marginal
revenue of 10. We break ties arbitrarily by assigning demand to period 1, so we assign
the first unit to period 1. After this assignment, the marginal revenue in period 1
drops to 8 while the marginal revenue in period 2 is still 10, so we assign the next
unit to period 2. The process continues as shown in Table 5.2, assigning units to the
period with highest marginal revenue until all six units are used up. The algorithm
terminates with and all six units are allocated and the marginal
revenues are equalized

5.2.1.2 Solution in the Time-Homogenous Case
A few additional observations can be made from this model when

demand is time-homogenous, i.e., for all In this case, the
optimal price given by is the same in each period. This
shows that prices fluctuate from period to period in the deterministic
model (5.1) only as a result of changes in the demand function over time.

The optimal static price will either be the price that causes the supply
to run out exactly at the end of the horizon (if ) or the price
at which the unconstrained revenue is maximized (if is,
the revenue-maximizing price). Specifically, let be defined to be the
value at which marginal revenue is zero, called the revenue-
maximizing price. Let denote the value at which which
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we call the stock-clearing price. Then

so the optimal solution reduces to using the maximum of the revenue-
maximizing price and the stock-clearing price. Simply, one cannot do
better than pricing at at all times. If this price is feasible
because demand is less than supply. If not, and demand
at exceeds supply. We then have to raise the price, and is the
highest price at which we can still manage to sell all C units.

5.2.1.3 Discrete Prices
Often, in practice, we would like to choose prices from a discrete set.

For example, prices close to convenient whole dollar amounts (such as
$24.99 or $149.99), or fixed percentage markdowns (such as 25% off
or 50% off) are often used because they are familiar to customers and
easy to understand. In such cases, it may be desirable as a matter of
policy to constrain prices to a finite set of discrete price points, so that

where Equivalently, the sales rate is
constrained to a discrete set (time-varying in this case if
the demand function is time-varying), where
and denotes the sales rate at time when using the price

The discreteness of the prices imposes technical complications when
attempting to solve the dynamic pricing problem (5.1) because the prob-
lem is no longer continuous or convex. However, one can overcome this
difficulty by relaxing the problem to allow the use of convex combinations
of the discrete prices (or demand rates). In most periods, the optimal
solution will be to use only one of the discrete prices; in the remaining
periods, the solution has the interpretation of allocating a fraction of
time to each of several prices.

To see this, define a vector of new variables for each
which represent convex weights: they are nonnegative

and sum to one. Next, in each period replace the variable with the
convex combination

and replace the constraint with the constraint
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The optimization problem is then

where is the revenue rate at price This is a linear
program in the variables so it is easy to solve numerically.

To relate the solution to the unconstrained price case, introduce a dual
variable on the capacity constraint as before. The optimal solution

in each period is then characterized by solving

where and are convex weights satisfying the complementary
slackness condition

Since the objective function of (5.5) is linear in if there is a unique
index for which is greatest, then the optimal solution
is simply which corresponds to using the discrete price If
there is more than one such value then there will be multiple solutions
to (5.5), and determining which is optimal can be resolved by appealing
to the complementary slackness condition (5.6). Of course, such a choice
could result in a fractional solution in which for two or more
values However, this can be interpreted as saying that we should use
the price for a fraction of period Hence, the solution of (5.4)
can be converted in practice into a discrete-price recommendation. The
following example illustrates the calculation.

Example 5.3 Consider a two week selling season in which there is a linear-demand
function in week 1 and a demand function in
week 2. The firm is constrained to offer prices in the set {40, 50, 70}. The demand and
revenues are then given in Table 5.3. Solving the linear program (5.4) for different
value of the initial inventory C, we obtain the results in Table 5.4. For example, with
an initial inventory of 50, the solution has and and
This corresponds to pricing at $70 for all of week 1 and 36% of week 2 then lowering
the price to $50 for the remainder of week 2. Similarly, when the initial inventory is
70, the solution calls for pricing at $70 for half of week 1 and then lowering the price
to $50 for the remainder of the selling season. At very high levels of inventory (110
and 120), it is optimal to charge a price of $50 in week 1 and a price of $40 in week 2.
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5.2.1.4 Maximum Concave Envelope
In the discrete-price problem, certain discrete prices may never be

optimal to use and can in fact be eliminated from the problem. Indeed,
suppose that for a give price there exist convex weights such
that

Then the price is never optimal at time Intuitively, this follows since
a convex combination of other prices produces strictly higher revenue yet
consumes no more capacity than using This is in fact the same no-
tion of efficiency described in Section 2.6.2 for the discrete-choice model
of demand in the single-resource capacity-control problem. All such in-
efficient prices can be eliminated from consideration at time The
remaining efficient prices define the maximum concave envelope of the
pairs of values as shown in Figure 5.2.

5.2.1.5 Inventory-Depletion Effect
Another practical factor affecting dynamic pricing in many retailing

contexts is the adverse effects of low inventory levels. This is sometimes
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referred to in retailing as a broken-assortment effect. For example, if the
inventory-pricing model is applied at an aggregate item level, where an
item contains several SKUs—such as color-size combinations in apparel
retailing—then when inventories run low, certain SKUs may be out of
stock even though there is a positive inventory for the item as a whole
(for example, if a color or size runs out). The resulting reduction in
alternatives naturally reduces the sales rate at any given price. Indeed,
empirical studies have confirmed a positive correlation between inventory
levels and sales rates [65].

These inventory-depletion effects can be modeled by making the de-
mand rate a function of inventory as well as of price and time, so that
the demand rate becomes We can use a variety of func-
tional forms to represent this inventory-depletion effect. For example,
one proposed model is the following multiplicative form [480]:

where is a depletion-effect term. We will call the unadjusted
sales rate (the rate of sales if inventory were unlimited) and
the adjusted sales rate (the rate adjusted for inventory-depletion effects).
One choice for is

where is the minimum full-fixture inventory and is a
sensitivity parameter. Both and can be estimated from historical
data. Note that is concave in
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Another possible form is

where and have the same interpretation (see Smith and Achabal
[480]).

For this model with inventory depletion one must keep track of the
inventory at each time in the optimization problem. For example,
assuming the multiplicative inventory-depletion model of (5.8) and for-
mulating the problem in terms of the unadjusted sales rate the
inventory evolves according to the state equation

and the revenue-maximization problem can be formulated as

where is the unadjusted revenue-rate function.
While somewhat more complex than the case without inventory-

depletions effects, this is still a relatively simple nonlinear program to
solve because the objective function is separable and the constraints
are linear. (The objective function, however, is not necessarily jointly
concave even if and are both concave.)

One qualitative impact of this inventory-depletion phenomenon is
that optimal prices may decline over time even though the unadjusted
revenue-rate function is time-invariant. (Recall that in the problem
without inventory-depletion effects, a time-invariant revenue-rate func-
tion implied a time-invariant optimal price.) For example, Smith and
Achabal [480] show, for the continuous-time version of this model, that
if the unadjusted revenue-rate function is constant and the inventory-
depletion effect is multiplicative, then optimal prices decline over time
in such a way that the adjusted sales rate is constant; that is,
as inventory depletion reduces demand, the optimal prices fall to exactly
compensate for the drop in sales due to inventory depletion.

5.2.1.6 A Retail Markdown Application
Here we look at the study of Heching et al. [247] that applied deter-

ministic pricing models of the sort discussed above to analyze markdown
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pricing at an apparel retailer. The study provides an example of how
such models can be applied and gives an indication of their potential
impact.

The firm studied by Heching et al. [247] was a women’s specialty
apparel retailer with approximately 50 stores in the United States. The
firm sold primarily its own private-label products and generally stocked
items once at the beginning of the season. It then used markdowns to
clear slow-selling merchandize.

The data set included the majority of the firm’s sales over the spring
1993 season, spanning 184 styles in 25 groups (a collection of related
styles). Weekly sales were obtained for each style sold during this period.
Of all the styles in the data set, the firm took markdowns on 60 (the
markdown styles). The remaining 124 styles had no price changes. While
representing only one-third of all styles, markdown styles accounted for
42% of gross sales revenue.

There were strong seasonalities in sales due to major holidays and
traditional shopping seasons as shown in Figure 5.3. Total weekly sales
ranged from roughly 70% of average in slow weeks to 130% of average
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in the strongest weeks. The data also indicated that demand was in-
deed price-sensitive. After adjusting for seasonalities, the conditional
probability of a sales increase, given a markdown, was 85%, while the
unconditional probability of an increase was only 38%.

Sales of nearly all styles also tended to decline over time. Figure 5.4(i)
plots weekly sales for one style that maintained the same price over its
entire 12-week selling season. The weekly sales figures have been ad-
justed to eliminate any seasonality that can be attributed to traditional
shopping seasons. Figure 5.4(ii) plots weekly sales for one of the mark-
down styles. A 28.6% markdown was implemented in week 6. The graph
indicates a decline in sales over the weeks prior to the price change, as
well as a decline in sales after the markdown price is implemented. Ex-
planations for this declining-sales phenomenon include saturation of the
customer base, loss of customers to competitors, a decline in the per-
ceived value of an item as the selling season progresses and depletion of
inventories of individual stock-keeping units.

The following demand model was used to model these features,

where is a seasonality factor, is an age factor, and and are
demand-function parameters. The seasonality factor was estimated from
aggregate chainwide data. The age factor was estimated at the group
level, while the demand function coefficients and were estimated
using regression at the individual-style level. While there were signifi-
cant errors in the prediction of individual weekly sales using this simple
model, the average error in total revenues at the style level was only
1.2%; the error in the total revenue of all 60 markdown styles was only
0.53%.

The model was then used to estimate the effects of changes in the
firm’s markdown policy on the 60 markdown styles. The firm’s mark-
down policy was compared with the markdowns recommended by a RM
model that combined a simple online forecasting method with a deter-
ministic dynamic-pricing model. Each week the demand function was
reestimated, and an optimal price was computed based on this demand
estimate. The new price was implemented if it was at least 20% lower
than the initial price (a minimum markdown of 20%). The results are
shown in Table 5.5. Note that model-based policy marks down only
33 of the 60 styles and that its average markdown week is much ear-
lier than the firm’s, though the average markdown is approximately the
same. The estimated increase in revenue is 4.8%. This gain is due to
(1) a better selection of which styles to markdown and (2) taking earlier
markdowns on the styles that were marked down.
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5.2.2 Stochastic Models
Next, we look at the case where the price-sensitive demand is stochas-

tic. We separate the case of continuous-demand models from the case of
Bernoulli (discrete Poisson) demand, though qualitatively the two cases
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are similar. We assume that the stochastic regularity Assumption 7.6
(namely, that the demand has bounded variance) holds throughout.

5.2.2.1 Continuous Demand
Here we assume demand in each period is a continuous random vari-

able of the form discussed in Section 7.3.4 with expectation
Capacity is continuous as well. Also, we assume

initially that prices in every period have no constraint other than being
nonnegative.

As in the deterministic case, we assume that the demand function
has an inverse As a result, there is a one-to-one corre-

spondence between prices and mean demand in each period, so we
can express the random demand as a function of That is, is
the demand in period where In this way, we can view
the mean demand as our decision variable. We require the following
convexity assumption on the random demand:

ASSUMPTION 5.1 For all the random demand is convex and
increasing in on the set for every value That is,

for all and for all

This simply says the demand function is convex in for each real-
ization of the random-noise term (Such a random function is called
strongly stochastically convex; see Appendix B.) Note that both the
additive- and the multiplicative-demand models satisfy this convexity
assumption, as do combinations of the two models.

We also define the following truncated expected revenue function:

This is interpreted as follows. Given a remaining capacity and a price
in period then is the expected revenue received, since

what we sell is the minimum of the demand and the capacity
available We make the following additional assumption:

ASSUMPTION 5.2 For all and for every value both the inverse-
demand function and the random revenue are
concave in on the set

While somewhat restrictive, one can show that this assumption holds
for both the additive- and the multiplicative-demand models provided
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the inverse-demand function and revenue function are con-
cave, which is true, for example, for the linear- and log-linear-demand
functions.

The optimization problem can then be formulated as follows:

with boundary conditions are for all and for all
where we define

This function is like the value function, in that it gives the expected
revenue to go in stage as a function of certain state variables—in
this case, the current inventory and the demand rate decision The
difference is that it replaces the future inventory state in the value
function by the two variables that determine

and
The following proposition characterizes the properties of the functions

and

PROPOSITION 5.1 If Assumptions 5.1 and 5.2 hold, then for all
(i) is jointly concave in and
(ii) is concave in and
(iii) is increasing in and decreasing in

This proposition is proved in Appendix 5.A and has important con-
sequences for the optimal pricing policy. First, under Assumption 5.2

is concave in (it is the minimum of two concave functions),
and from Proposition 5.1(i) we know that is concave in as well.
Therefore, a necessary and sufficient condition for an optimal is ob-
tained by differentiating the term inside the maximization in the dy-
namic program (5.11) and setting the result to zero, which yields

By Proposition 5.1(iii), the right-hand side above is decreasing in and
since is decreasing in this means that higher inventory
levels imply a higher optimal sales rate consequently a lower
optimal price any period That higher inventories lead to lower
optimal prices is certainly intuitive.
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5.2.2.2 Bernoulli Demand

If the random demand is Bernoulli (discrete Poisson), then a different
analysis is required. Here we assume there is only one customer per
period and the customer in period has a willingness to pay that
is, a random variable with distribution Therefore,
if the firm offers a price of in period it will sell exactly one unit if

(with probability ). Letting denote
the (average) demand rate, we can define an inverse-demand function,

and revenue-rate function, as
before. The inventory and demand in this case are both assumed to be
discrete.

Letting denote the optimal expected revenue to go, the problem
can be formulated in terms of demand rates using the Bellman
equation:

with boundary conditions for all and for all
where is the expected marginal value

of capacity. Under the monotonicity Assumption 7.2 and assuming an
interior solution, necessary and sufficient conditions for the optimal rate

are

which again, as in the deterministic case of equation (5.2), has the in-
terpretation that we set the marginal revenue equal to the marginal
opportunity cost in every period One can show

PROPOSITION 5.2 If Assumption 7.2 holds, then the expected marginal
value of capacity, of the dynamic program (5.12) is decreasing
in and is,
(i) and (ii)

Again, this monotonicity has intuitive implications for the optimal
price. Consider, for simplicity, the case where the marginal revenue is
not time dependent, so Note that (5.13) and
Assumption 7.2 (that is decreasing) together imply that higher
marginal values correspond to lower optimal-demand rates—and hence
higher optimal prices. Thus, Proposition 5.2(i) above says that with
more time remaining, the marginal value of capacity increases and there-
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fore the optimal price increases as well.2 Conversely, if time elapses with-
out any sales taking place, the optimal price will fall. Proposition 5.2(ii)
says the opposite is true of capacity; the more capacity remaining at any
given point in time, the lower the optimal price. A numerical example
illustrates this behavior:

Example 5.4 Consider a problem with T = 333 time-periods, an initial inventory of
C = 25 units, and a time-homogeneous, exponential-demand function
in each period with parameters and A sample of the optimal-price
path is shown in Figure 5.5. The time axis is normalized to one and represents the
fraction of total time remaining. The points at which the price jumps correspond to
sales; each sale results in a step increase in price. As time elapses without any sales
taking place, prices decline. This is exactly the behavior implied by Proposition 5.2.

5.2.2.3 Comparing the Deterministic and Stochastic
Models

One fact that is useful theoretically and computationally is that the
deterministic model (5.1) provides an upper bound on the expected rev-
enue from the stochastic model (5.11). This can be shown in a variety of
ways. For example, by relaxing the capacity constraint in the stochastic

2Note this behavior does not necessarily hold if the marginal revenue varies with time, since
in such cases whether the condition results in rising or falling over
time for a fixed depends on how both and vary with time.
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problem with a multiplier we can form the relaxed problem

where the random variable if there is an arrival in period
using the control and otherwise. Note an opti-

mal policy for the original stochastic problem (5.11) satisfies
(a.s.); therefore, since if we evaluate the objective

function of (5.14) for such an optimal policy, it will give an upper bound
on the optimal expected revenue for the original problem (5.11). Hence,
maximizing (5.14) over all certainly provides an upper bound as
well. However, this function is separable in time so we can choose the
control in each period to maximize at each
time Since (5.14) is equivalent to maximizing

This is solved as in the deterministic case by setting the marginal rev-
enue in each period Since this upper bound is valid for
any we can take the optimal dual price in the deter-
ministic problem. This results in the optimal solution of
the deterministic problem. Moreover, by the complementary slackness
condition (5.3), the optimal dual price satisfies
so the bound (5.14) becomes

which is exactly the optimal deterministic revenue. Hence, the opti-
mal deterministic revenue is an upper bound on the optimal expected
stochastic revenue.

It’s also possible to show that the solution produced by the deter-
ministic dynamic-pricing problem is a reasonably good heuristic for the
stochastic-pricing problem. Numerically, it performs well, and theoret-
ically it can be shown to be asymptotically optimal for problems with
large demand volumes (such as a large number of time-periods) and
large initial inventories (see Gallego and van Ryzin [198]). Such proper-
ties provide support for using deterministic models as an approximation.
The following example illustrates the deterministic approximation:

Example 5.5 Consider a variation of Example 5.4, where we have T = 333 periods
and a time-homogenous exponential demand function with parameters
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and Since the demand function is not time varying, the optimal
deterministic price is constant. We denote this The unconstrained revenue-
maximizing price is Starting inventories C range from 1 to 20. Table 5.6
shows the prices and resulting revenues for this problem. As Table 5.6 shows, the

relative performance of the deterministic heuristic is poorest at C = 1 (13% below
the optimal revenue) and C = 10 (7.5% below the optimal revenue) but otherwise
performs reasonably well, especially in the very unconstrained case of initial inventory
approaching 20. Note that so C = 10 is the boundary between the
constrained and unconstrained regions of the deterministic problem (the constrained
region is where the multiplier and the stock-clearing price is used; the
unconstrained region is where and the revenue-maximizing price is used).

Intuitively, the deterministic prices perform well because they cap-
ture the correct “first-order” effect. That is, they maximize revenue
subject to the constraint that the mean demand is within the capacity
constraint. The stochastic policy does this as well but also adjusts prices
dynamically to respond to fluctuations about the mean demand. In ad-
dition, the stochastic policy has a tendency to price higher earlier in
the sales process (Figure 5.5), which reflects the option value of keeping
initial prices high in the event realized demand is stronger than aver-
age. These two “second-order” adjustments result in the improvement
in revenue exhibited in Table 5.6.
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Hence, there are really two separate benefits to dynamic pricing. The
first is simply to exploit the time-varying price sensitivity of customers;
if the demand function varies with then even the optimal de-
terministic price will vary with due to the optimality condition (5.2).
But in addition if demand is stochastic, dynamic pricing helps compen-
sate for random fluctuations in demand and the option value of holding
rather than selling units. This is seen in Figure 5.5, where the optimal
stochastic prices vary despite the fact that the optimal deterministic
prices for this example are constant. In general, both factors will be
present in practical problems, but it is useful to distinguish the different
forces at work in each case.

5.2.2.4 Prices Constrained to a Discrete Set
Just as in the deterministic case, it may be desirable in practice to

constrain the prices to a finite set, where
Equivalently, the sales rate are constrained to a discrete set,

where as before, de-
notes the sales rate at time when using the price and
denotes the corresponding revenue rate. For simplicity, we consider only
the Bernoulli demand case here (see Section 7.3.4.3).

Computationally, using discrete prices is not a difficult change and in
fact reduces the complexity of the dynamic program (5.12) because the
search at each stage is now reduced to a finite set of prices. As in the
deterministic case, the finite set of prices can be further reduced to only
those prices defining the maximum concave envelope (the efficient prices)
by using the efficiency criteria (5.7). The reasoning is identical to the
deterministic case; inefficient prices produce less expected revenue and
have a higher probability of consuming capacity than done by efficient
prices (or mixtures of efficient prices) and therefore are never an optimal
choice.

Theoretically, the analysis of the discrete problem can again be re-
laxed to put it in a form similar to the unconstrained price case by
allowing the firm to randomize over the discrete set of prices. As in
the deterministic case, define new variables that represent convex
weights, and in each period replace the variable in (5.12) with the
convex combination
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and replace the constraint with the constraint

The dynamic program then becomes

with the usual boundary conditions and for
all In the stochastic case, a fractional solution can be directly
interpreted as a randomization of the prices in Also,
one can eliminate inefficient prices using the maximum concave envelope
as in the deterministic case.

We can put this in a form similar to (5.12) by noting there is a corre-
spondence between the optimal choice of and the optimal value of

since for any fixed sales rate the optimal
that achieves this sales rate must maximize the expected revenue—that
is, it solves the linear program

The resulting in fact will define the maximum concave envelope
of the fixed set of prices. Hence, the optimization problem can be for-
mulated as

which has exactly the same form as (5.12) except that the maximum
concave envelope function though continuous and concave, is no
longer differentiable. (Like all objective functions of a maximization lin-
ear program, is a concave and piecewise linear function of the
right-hand side ) Thus, the optimality condition (5.13) must be re-
placed by
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where denotes the set of subgradients (the subdifferential)
of at the value (See Appendix C for a definition and
discussion of subgradients and nondifferentiable optimization.)

Practically speaking, the above condition implies that the optimal
will most often be at a corner point of the function (or there will
be multiple optimal solutions along an interval containing two adjacent
corner points) and we can always find one of the fixed prices that is op-
timal without randomizing. However, by formulating the problem this
way, we preserve the concavity of Therefore, the structure of the
optimal solution to (5.15) is the same as that of (5.12), and Proposi-
tion 5.1 continues to hold for this case.

5.3 Single-Product Dynamic Pricing with
Replenishment

We next consider situations in which inventory can be replenished
at a cost in each period, as in many production and supply-chain-
management contexts. In such cases, both pricing and inventory de-
cisions need to be made; pricing decisions are used to control demand,
while replenishment decisions are used to control supply. The central
problem is to optimally coordinate these demand and supply decisions.

As in the finite-supply case, we first look at deterministic models of
this problem and then examine stochastic models.

5.3.1 Deterministic Models
We assume a single good with an end-of-period inventory, denoted

that can be replenished over time. There is a per-unit holding cost
for inventory in period and a unit cost for replenishment We let

denote the amount ordered in period As in the finite-supply case,
we can formulate the problem in terms of the sales rate in which
case we let and denote, respectively, the revenue rate
and marginal revenue as before. Again, we assume that these functions
satisfy the regularity conditions in Assumptions 7.1, 7.2, and 7.3 unless
otherwise specified.

5.3.1.1 Unconstrained Capacity
We first consider the case where is no capacity constraint on the

amount ordered in each period. The problem can be formulated as
finding a set of rates and reorder quantities that solve
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where we assume the initial inventory for simplicity.
The problem as stated above is not difficult to solve. Indeed, for

define the coefficients

and note that is the cost of satisfying demand in period with supply
from period Let

denote the lowest cost for supplying period and let denote an
index that achieves the minimum on the right-hand side above.

The optimal sales rate in any period is then determined by
equating the marginal revenue to this lowest marginal cost,

And the optimal quantity to order in period is simply determined by
adding up the sales rates from later periods whose lowest-cost supply
is from period

An interesting observation for this problem is that even if the demand
functions are time-invariant for all ), the optimal price
can still vary over time due to changes in the cost of supply. In other
words, because the optimality conditions equate marginal revenue to
marginal cost, changes in the costs over time will
lead to time-varying prices, even though the marginal revenue function
is time-invariant.

5.3.1.2 Capacity Constraints on Ordering
The problem becomes somewhat more complex when there are capac-

ity constraints on the order quantities of the form

Such constraints, for example, could be due to limited production, trans-
portation, or handling capacity. While (5.17) can be solved as a non-
linear program with these added capacity constraints, there is a simpler
approach. If one discretizes the sales quantities, we can solve the prob-
lem using a greedy algorithm under the assumption that the marginal
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revenue in each period is decreasing. (See Chann, Simchi-Levi, and
Swann [105] for a proof.)

The greedy algorithm proceeds as follows. For a fixed vector of rates
define

where is the minimum cost for meeting the sales rates d, defined by
fixing d and solving the following optimization problem in the variables

Thus, is the optimal profit given the demand rates d. Computing
is efficient because the minimization problem to determine

(5.19), is simply a minimum-cost network-flow problem.
For notational convenience, let denote the unit vector (the vector

with a 1 in the component and a zero in all other components), and
let denote the discretization increment (all components of the vector

are assumed to be integral multiples of
The greedy algorithm is as follows.

STEP 0 (Initialize): Initialize solution

Calculate using (5.18).

STEP 1 (Compute marginal values): FOR DO:
Compute from (5.18).

STEP 2 (Find largest marginal increase): Chose the index for
which the marginal gain is largest.
IF STOP (optimal solution found);
ELSE, update d:

and GOTO STEP 1.
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In words, at each stage the algorithm simply adds an increment of
demand to the period that yields the largest net gain
and stops when no period produces a positive net gain. Biller et al. [67]
report a test of this model and algorithm on data from the automobile
industry.

5.3.2 Stochastic Models
A stochastic version of the dynamic-pricing problem with replenish-

ment can also be formulated as follows: As in Section 5.2.2, let
denote the inventory at the end of period and T be the number of
periods in the horizon. (We consider an infinite-horizon, stationary ver-
sion of the problem in Section 5.3.2.2.) Because demand is random, it is
possible that demand in a period can exceed the available inventory. In
such cases, we assume that the firm can back-order demand, and this is
represented by a negative inventory

As before, we represent demand in each period as a random vari-
able of the form discussed in Section 7.3.4, with expectation

with a unique inverse We assume that the
quantities and demand are continuous. Also, we assume that prices in
every period are unconstrained (with the only requirement). Fi-
nally, we assume that the demand satisfies the regularity con-
dition in Assumption 7.6 and the convexity condition in Assumption 5.1.
The random revenue in each period is

The inventory after ordering is denoted and hence the quantity
ordered is For notational convenience, we use as the
quantity-decision variable. We assume that we cannot dispose of items,
so

There is a per-unit ordering cost in period and a convex cost
on the ending inventory in period This cost typically will

penalize both positive inventories (due to capital costs, storage costs,
and so on), and negative inventories (due to lost goodwill or penalties
for late delivery). For example, a function of the form

is commonly used, where is the
cost of holding a unit, and is the penalty cost for back-ordering a unit.

5.3.2.1 Finite-Horizon Problem
In the multi-period case, the optimization problem can then be for-

mulated as follows:
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where we define

Using arguments that are essentially the same as those in Proposi-
tion 5.1, one can show the following:

PROPOSITION 5.3 (i)             is jointly concave in    and
(ii) is concave in
(iii)                  is increasing in
(iv) is increasing in

Proposition (5.3) (iii) and (iv) imply that is a supermodular func-
tion. (See Appendix C for a definition of the supermodularity property.)
These properties allow us to characterize the optimal pricing and order-
ing policy.

Specifically, let and denote the values that maximize (5.20)
without the constraint that is, they solve

Further, for simplicity assume an interior optimal solution for and
so that, by joint concavity of        the necessary and sufficient conditions
for and are then

(If there are two or more sets of values satisfying these conditions, take
the pair that is lexicographically the largest.)

It follows, then, that if the optimal policy in period is to
order up to and set the demand rate at (that is,
and since the unconstrained optimal solution
is feasible. However, if then one can show that it is optimal to
order nothing (for example, set and choose a demand rate that
is higher than Equivalently, set the price lower than
Moreover, the higher the inventory the higher the optimal rate
(equivalently, the lower the optimal price 3 The resulting policy

3To see this, we can argue informally as follows. Suppose that the optimal and satisfy
and Then since the constraint is not binding, these values
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is called a base-stock, posted-price policy. If inventory is less than the
base-stock level then order up to this level, and price at the posted
price If inventory exceeds the optimal base-stock level
then order nothing, and discount the price below the posted price, with
the discount being larger the more the inventory exceeds the optimal
base-stock level.

5.3.2.2 Infinite-Horizon, Stationary Problem
One can also extend this same analysis to an infinite-horizon setting.

We assume that all the parameters of the problem are time-invariant
and profits are discounted by a factor in each period.4

The value function in this case is also time-homogenous. The formu-
lation is

where

In this infinite-horizon case, one can show that a time-invariant, base-
stock, posted-price policy is optimal.  That is, there exist values
and such that if it is optimal to order up to and price at

If            we order nothing, and the optimal demand rate
is greater than and increasing in Note that in this infinite-horizon
case, once we reach a point where then in all remaining periods
we simply price at the posted price and order up to In other words,
we use dynamic pricing only to clear inventory that is higher than the
optimal base stock However, since such high inventory levels are only
transient, in the long run, the policy ends up using a constant price.

must satisfy the first-order condition,

But this contradicts the fact the are the lexicographically largest pair of values
satisfying the first-order conditions. Therefore, we must have and
Since the fact that is increasing in now follows from the fact that

that is decreasing in and that is decreasing in
See Federgruen and Heching [183] for a complete proof of these properties.
4Similar results hold for the case of the average profit criteria by considering the discounted
problem with See Federgruen and Heching [183].
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5.3.2.3 Fixed Costs

Another variation of the problem is to include a fixed cost for ordering.
The finite-horizon version of this problem was studied by Chen and
Simchi-Levi [113]. In this case, the cost function becomes

This results in a significantly more complex value function. However,
one can show, in certain cases, that properties of the optimal policy are
similar to those of classical inventory theory. For example, when the
demand function has additive uncertainty, then the optimal ordering
policy is of the form, wherein we order only in period if the
inventory drops below and in this case we order enough to restore
the inventory to the target level (order an amount However,
this property does not hold for other stochastic-demand functions.5

Moreover, the optimal state-dependent price is quite a bit more com-
plex. For example, Chen and Simchi-Levi [113] show that, as a function
of the current inventory, the optimal price may not be decreasing in the
inventory level between ordering epochs. This is because while there is
an incentive to decrease price to reduce inventory, there is also an in-
centive to increase price to delay reordering and postpone incurring the
fixed-ordering cost.

5.4 Multiproduct, Multiresource Pricing
Multiproduct, multiresource—or network—versions of dynamic pric-

ing problems arise in many applications. Two fundamental factors typi-
cally link the pricing decisions for multiple products. First, demand for
products may be correlated. For example, when products are substitutes
or complements, the price charged for one product effects the demand for
other related products. Then, a firm jointly managing the pricing of a
family of such products must consider these cross-elasticity effects when
determining its optimal pricing policy. Second, products may be linked
by joint capacity constraints. For example, two products may require
the same resource, which is available in limited supply. Even if there are
no cross-elasticity effects between the two products, the pricing decision
for one product will need to account for the joint effect on demand for
the other product that uses the limited resource.

As in the case of capacity controls, most problems in real life are mul-
tiproduct problems, either because of cross-elasticity effects or because

5A somewhat more complex variant of this policy does hold more generally, however;
see Chen and Simchi-Levi [113].



216 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

of joint capacity constraints, or both. For example, a grocery store that
is pricing brands in a food category—say, salty snacks—needs to con-
sider the cross-elasticity effects of its pricing decision for all products in
the category. An increase in the price of a packet of potato chips will not
just cause a drop in demand for potato chips but will likely also increase
the demand for corn chips. At the same time, these products may oc-
cupy the same limited shelf space, so stocking more of one product may
require stocking less (or none) of other products.

We can model such situations using multiproduct-demand functions
and joint capacity constraints on resources. However, like the network
problems of capacity control, such formulations quickly become difficult
to analyze and solve, which is the reason that many commercial appli-
cations of dynamic-pricing models make the simplifying assumption of
unrelated products and independent demands and solve a collection of
single-product models as an approximation.

Yet in cases where cross-elasticity or resource-constraint effects are
strong—for example, when products are only slightly differentiated, cus-
tomers are very price-sensitive, or joint capacity constraints are tight—
then ignoring multiproduct effects can be severely suboptimal. In such
cases, we must solve a pricing problem incorporating these effects—or
at least approximating them in some fashion. In this section, we look as
such multiproduct, multiresource models and methods.

5.4.1 Deterministic Models Without
Replenishment

Under a deterministic-demand assumption, it is relatively straight-
forward to formulate a multiproduct, multiresource version of dynamic
pricing similar to those described in Section 5.2. There are prod-
ucts, indexed by and resources, indexed by There is a horizon
of T periods, with each period indexed by As in Section 7.3.2, let

denote the demand rate for the products and
denote the inverse-demand function in period We further assume
that the revenue-rate function satisfies the regularity conditions
of Assumption 7.4.

Product uses a quantity of resource The matrix
therefore describes the bill of materials for all products. We assume
there are limited capacities of the resources.

The dynamic-pricing problem can then be formulated as finding a
sequence of demand vectors that maximizes the firm’s total revenue
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subject to the capacity constraints C:

By Assumption 7.4, is concave in d, and therefore, the following
Kuhn-Tucker conditions are necessary and sufficient for characterizing
an optimal solution to (5.21):

where is the marginal-value vector and is the op-
timal dual price on the joint-capacity constraints, having the usual inter-
pretation as the vector of marginal opportunity costs (marginal values)
for the resources. Condition (5.22a) says that at the optimal sales
rate, the marginal revenue for each product should equal the marginal
opportunity cost of the resources used by product or Con-
dition (5.22b) says that the marginal opportunity cost of resource   can
be positive only if the corresponding capacity constraint for resource
is binding. Finally, (5.22c) requires that the marginal opportunity costs
be nonnegative.

The nonlinear program (5.21) is relatively easy to solve numerically,
since the objective function is concave and the constraints are linear.
(See Bertsekas [58, 59] for specific techniques.)

Example 5.6 Consider the six-node airline network shown in Figure 5.6. Nodes 2
and 3 are “hub” nodes. (Leg seat capacities are as indicated in the figure.) For a
given path on the network, the revenue function is time homogeneous and log-linear

where      is interpreted as a reference price for itinerary           is the demand rate at the
reference price, and is the magnitude of the elasticity of demand at the reference
price. Demand-function parameters for all O-D pairs are shown in Table 5.7 along
with the path (itinerary) used by each O-D pair.

Because the demand functions are time-homogeneous, optimal prices are constant
over time. The optimal O-D prices and demand are shown in the last two columns in
Table 5.7. The solution gives a total revenue of $661, 200 across all O-D pairs.
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5.4.2 Deterministic Models with Replenishment
We can formulate deterministic multiproduct models with replenish-

ment, analogous to those in Section 5.3 as follows:

where is an of inventory levels at the end of period
is an of order quantities in period is a vector of holding
costs, is a vector of ordering costs, and is a vector of capacity
constraints on the order quantities.

The introduction of an inventory-state variable makes this a more dif-
ficult problem to solve. However, in certain specialized cases the greedy
allocation algorithm of the type described in Section 5.3.1.2 can be used
to solve it exactly. (See Swann [497] for details.) This greedy algorithm
can also be used as a heuristic in more general cases.



Dynamic Pricing 219

5.4.3 Stochastic Models
Stochastic multiproduct pricing problems, like stochastic multiprod-

uct capacity-allocation problems, are quite difficult to solve exactly.
While in principle they can be formulated as dynamic programs, the
size of the state space is often prohibitively large. Therefore, approxi-
mations offer the only practical hope to solve such problems.

One natural approach for a stochastic multiproduct problem is to
approximate it by its deterministic equivalent problem, which as we’ve
seen in Section 5.2.2.3 are reasonably easy to solve. As in the case
of the single-product problem discussed in Section 5.2.2.3, one can in-
deed show that deterministic solutions are asymptotically optimal (in
the same fluid scaling of the problem) in certain cases. That is, sup-
pose the revenue in period is random and we consider a
deterministic problem that replaces this random demand by its mean,

Then the optimal deterministic price trajectory
from the resulting deterministic problem, when applied as an open-loop
control for the stochastic problem, produces an expected revenue that is
provably close to the optimal stochastic expected revenue.

For example, Gallego and van Ryzin [199] show that for a continu-
ous time version of the multiproduct pricing problem of Section 5.4.1
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with Poisson uncertainty, the solution to the equivalent deterministic
problem is asymptotically optimal for the stochastic problem as the ca-
pacities and time horizon are scaled up proportionally. The arguments
and formal definition of the scaling are similar to the asymptotic analysis
of network capacity control problems presented in Section 3.6.2 and 3.6
and are omitted. However, the result does provide some intuition into
the connection between these two problems.

5.4.4 Action-Space Reductions
One simplification that is useful for multiproduct dynamic pricing

problems is to express the problem in terms of resource-consumption
rates rather than the demand rates d. This yields an equivalent for-
mulation with often a greatly reduced dimensionality that can be much
easier to solve. The approach is due to Maglaras and Meissner [354].

To illustrate the main idea, consider the case of the deterministic
model (5.21) where there is only resource but products.
For example, this could be a situation similar to the traditional single-
resource problem of Chapter 2 but one in which we control the demand
for each product by adjusting its price The deterministic
problem (5.21) in this case is then

To reduce the dimensionality of this problem, we express the problem in
terms of the aggregate-demand rate rather than the individual demand
rates d. To this end, define the aggregate-demand rate

and for a given define the maximized revenue-rate function by
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That is, is the instantaneous maximum revenue rate given that
the total demand rate (equivalently, the resource consumption rate) is
constrained to be It is easy to show that if is jointly concave
in d, then will be concave in

Using these new variables, we can then formulate (5.24) as

Note that this is now a problem that is equivalent to a single-product
pricing problem of the same form as (5.1) with a scalar demand rate
and revenue-rate functions Once we solve for the optimal demand
rates we can then convert these into optimal vectors of demand
rates by inserting into the optimization problem (5.25). Thus,
the solution proceeds in two steps: first solve (5.26) to determine the
optimal aggregate sales rate, and then solve (5.25) at each time to
disaggregate this optimal aggregate rate into a optimal vector of sales
rates (equivalently prices) for each product.

This same action-space-reduction approach also works for stochastic
versions of this problem, of the types examined in Section 5.2.2. To illus-
trate, consider the dynamic program (5.11) for the continuous, additive-
uncertainty-demand model, but now suppose there are products. The

version of (5.11) yields the dynamic program

where is the random demand for product
To reduce the action space, we again define the aggregate-demand

rate and a maximized expected revenue rate using (5.25),
where now Also, let

denote the aggregate noise term and
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denote the aggregate (random) demand. When these transformed vari-
ables are substituted into the dynamic program (5.27), it reduces to the
following equivalent single-product formulation

where

This has the same form as the single-product DP (5.11). Thus, the
single-resource, dynamic-pricing problem is really no more
difficult to solve than the single-product problem.

This action-space reduction idea also extends to the general multi-
product multiresource problem (5.21) as well. In this case,
one can show that the problem can be reduced to one with only de-
mand rates (one for each resource) rather than the original rates (one
for each product). Namely, let define the maximized
revenue rate at each time

This maximized revenue-rate function and the new demand-rate vari-
ables are then used to reformulate the general problem (5.21) as

What these reductions show, in essence, is that the complexity of the
multiproduct, multiresource dynamic-pricing problem is caused not by
the number of products but by the number of resources since
ultimately     determines the dimensionality of both the state and action
spaces.
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5.5 Finite-Population Models and Price
Skimming

We next consider what effect a finite-population assumption has on an
optimal dynamic-pricing policy.6 Recall that a finite-population model
assumes that we sample customers without replacement from a finite
number of potential customers. Thus, the history of demand (how many
customers have purchased, how much they paid, and so on) affects the
distribution of both the number and valuations of the remaining cus-
tomers.

Because the finite-population assumption is more complex, we focus
on deterministic models of this situation. However, we consider both a
myopic and strategic customer version of the problem.

5.5.1 Myopic Customers
Recall that a myopic customer is assumed to purchase the first time

the current price drops below his valuation Combined with the
finite-population assumption, this behavior can be exploited by the firm
to achieve price skimming—a version of classical second-degree price
discrimination.

Assume for simplicity that there is a finite population size N and
that customers in this population have valuations v that are uniformly
distributed on the interval As an approximation, we assume that
sales can occur in fractions, so the population can be regarded as con-
tinuous. The important point to note is that the fraction of customers
who purchased until time leave the population of customers for the
remaining sale period.

As a result of the myopic-customer assumption, if the firm offers a
price customers will buy. And by the finite-population
assumption, there will then be remaining customers, with valua-
tions uniformly distributed on the interval

Now, consider a firm that sells a fixed capacity C of a product to this
population over T time-periods. The firm is free to set different prices
in each period. What is the optimal pricing strategy?

First, it is not hard to see that the optimal prices are decreasing over
time, since (by the myopic-customer assumption) the only customers
left at time are those with values less than the minimum price offered
in periods (See Section 8.3 for further motivations for a

6Section 8.3.4 covers the economic aspects of a durable-goods monopolist under a finite-
population, strategic-customer assumption. Here we concentrate on more operational results
of dynamic pricing.
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firm setting a decreasing schedule of prices.) Hence, the firm will sell
nothing if it posts a price in period that is higher than the minimum
price offered in the past. This observation, applied inductively, shows
that the optimal prices must decline over time. Moreover, note that if

for all the revenue generated in period is given by

where we define This is because is the
number of customers with valuations greater than but less than the
lowest previous price

To see the effect the decreasing price schedule has on the optimal pric-
ing policy, assume for simplicity that C > N, so the capacity constraint
is never binding. In this case, the firm must solve

Note that the objective function is jointly concave in
It is not hard to see that the constraints (5.28b) are redundant, since the
objective function (5.28a) will penalize the use of a price

Therefore, ignoring constraints (5.28b) and defining
the first-order conditions imply the optimal unconstrained solution must
satisfy

One can easily verify that the solution

satisfies these first-order conditions. Since the optimization problem
(5.28a–d) is strictly concave and (5.29) satisfies the inequality constraints

for all it is in fact the unique optimal solution for
(5.28a–d). This solution is illustrated in Figure 5.7(i).

The optimal pricing strategy effectively exploits the myopic behavior
of customers to segment them into T+1 groups based on their valuations,
and then price discriminates based on this segmentation. Specifically,
as shown in Figure 5.7, segment consists of those customer whose
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valuations are in the range and these segments pay a
declining price given by (5.29). Segment T + 1 has values in the
range and is not served at all.

There are several interesting observations about this solution. First,
note we can write the optimal price in period as

The first term on the right, is simply the single-period
revenue-maximizing price, which follows from the fact that the remaining
customers in period have values uniformly distributed on
Therefore, the optimal price in period is higher than the single-period
revenue-maximizing price for period (except in the last period
where they are equal). Intuitively, this occurs because there is an addi-
tional benefit to the firm of raising its price in period in the multiperiod
setting; namely, it will have more customers to sell to in the future.

Second, note the price changes over time not because the distribution
of valuations changes over time—as in the infinite-population model of
demand—but because the firm seeks to price discriminate among the
finite population of customers. For example, in an equivalent infinite-
population model (essentially, the model of Section 5.2.1 with a linear-
demand function), the distribution of values of customers is unaffected
by past demand, and hence the distribution would still be uniform over

in each period. In this case, the optimal price to charge in each
period would be a constant rather than the declining price (5.29).
Therefore, a finite population of customers creates an incentive to offer
dynamically decreasing prices to achieve price discrimination, an incen-
tive that is not present in infinite-population models.
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Finally, note that if the number of periods T increases, the firm’s
revenues increase because one can show (after some algebra) that the
optimal total revenue for T periods is

Indeed, as T tends to infinity, the firm achieves perfect price discrimina-
tion and captures the entire consumer surplus each
customer ends up paying a price arbitrarily close to his valuation. In
particular, a continuous-time model of this problem can achieve perfect
price discrimination because the firm can continuously lower prices from

down to zero over the interval [0, T]. A number of customers
with values will buy when the price is so the firm achieves
a revenue of which is the entire consumer surplus.

The introduction of a binding capacity constraint does little to change
this basic story. Indeed, the solution (5.29) will not be feasible if C <
NT / (T +1). However, in this case, one can show that the optimal price
is simply modified so that only those customers above a lower limit
are segmented, where

The optimal price in this case becomes

and customers with valuations less than are not
served. This solution is illustrated in Figure 5.7(ii).

5.5.2 Strategic Customers
One might question why customers would behave myopically when

faced with a price-skimming strategy. Indeed, knowing that prices will
decline over time, rational customers could do better (increase their net
utility) by deviating from myopic behavior and delaying purchase until
the price is much lower than their valuation. Such behavior is quite
plausible and is a valid criticism of the myopic-customer model, but it
complicates the analysis of the firm’s optimal-pricing policy considerably.
Most significantly, it turns the pricing problem into a game between the
firm and its customers, in which we must analyze the equilibrium using
game-theoretic tools.

Strategic customer behavior is, in fact, a central feature of the the-
ory of optimal mechanism design discussed in Chapter 6 on auctions.
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Both auction and list-price mechanisms are analyzed in Chapter 6, and
we provide much of the analysis and insight about pricing with strate-
gic customer behavior there (see also Section 8.3.4). Here we focus on
the more limited topic of the effect of strategic customers on the price-
skimming strategy alone. Further, to keep things simple, throughout
this section we consider only the case where the firm has no capacity
constraint (C > N).

To proceed, one first has to make assumptions about whether the firm
can credibly commit to a schedule of prices over time or whether the firm
must follow a subgame-perfect equilibrium-pricing strategy. (See Appen-
dix F for a discussion of subgame perfection.) In our case, requiring a
subgame-perfect equilibrium means that the strategy for the firm at each
time has to be an equilibrium for the residual revenue-maximization
game over the horizon given whatever state the firm and
customers were in period

For example, if the firm can commit to a price schedule, then a rational
customer will simply look at the schedule of prices and (assuming no dis-
counting of utility) decide to purchase in the period with the lowest price,
and only customers with valuations above this lowest price will decide to
purchase. So effectively, it is only the lowest price among the T periods
that matters to customers. Given this fact (and ignoring capacity con-
straints), the firm will then set this minimum price as the single-period
revenue-maximizing price, which, in the case where customer valuations
are uniformly distributed on is just The firm will then set
arbitrary but higher prices in the other periods. Which period the firm
chooses for the minimum price doesn’t matter unless revenues are dis-
counted, in which case the firm would prefer collecting revenues sooner
rather than later and would choose period 1. The total revenue the firm
receives is then which is just the product of the price and the
number of customers willing to pay that price, One can formalize
this reasoning and show that this is indeed the equilibrium strategy in
the case where the firm has to commit to a price schedule.

Note that the fact that customers are rational has eliminated the
ability of the firm to price discriminate; the firm is forced to offer a
single uniform price to all customers. Moreover, the firm’s revenue is
strictly worse under this model. This is to be expected, the firm ought
to do worse when customers are “smarter.”

However, the single-period strategy outlined above is not always
subgame-perfect. To see why, suppose this lowest price occurs in
period 1. Then in period 2, there will be a population of customers
with values less than who have not purchased. If the firm has any
remaining supply after period it would rather sell the remaining stock
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at some positive price than let it go unsold. Thus, it has an incentive to
lower the price in period 2 to capture some of the remaining customers.
However, rational customers realize the firm faces this temptation after
period 1 and, anticipating the price drop, do not purchase in period
1, so offering the lowest price in period 1 cannot be a subgame-perfect
equilibrium.

Besanko and Winston [47] analyze the subgame-perfect pricing strat-
egy. The equilibrium is for the firm to lower prices over time, similar to
the price-skimming strategy of Section 5.5.1. In the case where revenues
are not discounted, this equilibrium results in the firm setting a declin-
ing sequence of prices, where the price in the last period T is simply
the single-period optimal price all customers buy only in the last
period. This case is essentially equivalent to the case where the firm can
commit to a schedule of prices, with the exception that the firm is forced
to offer the lowest price only in the last period.

The situation is somewhat more interesting if revenues and customer
utility are discounted at the same rate. In this case, the subgame-perfect
equilibrium has customers with high values buying in the early periods
and those with lower values buying in later periods, again, as in the price
skimming case of Section 5.5.1. However, unlike the price-skimming
case, the equilibrium price in each period is lower than the single-period
revenue-maximizing price for the customers remaining in that period.
In particular, in period 1 the equilibrium price is less than and
the equilibrium price declines in subsequent periods. Thus, the firm is
strictly worse off than when it can commit to a price schedule. This is
because when the firm can commit to its price schedule, it can force all
customers to purchase in period 1 by simply offering very high prices
in periods while setting a price of exactly in period 1. All
customers will then buy in period 1 at a price of

Besanko and Winston [47] show that with strategic customers, the
firm is always better off with fewer periods; that is, the firm’s equilib-
rium revenue is decreasing in the number of periods. This is because the
inability of the firm to commit to prices in later periods hurts it, and
the more periods, the more often the firm falls victim to the temptation
to lower prices. That is, it discounts early and often. This is to be con-
trasted with the case of myopic customers, where the firm’s revenues are
increasing in the number of periods. Thus, although the strategy looks
like price skimming, rational customers create a qualitatively different
situation for the firm than do myopic customers.
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5.6 Promotions Optimization
In this section we look at normative models for retail and trade pro-

motions. We first discuss promotions in general and how they differ from
the sorts of dynamic-pricing problems considered thus far. We then look
at two specific models of promotion optimization.

5.6.1 An Overview of Promotions
As mentioned in this chapter’s introduction, promotions are short-run,

temporary price changes that are frequently applied to replenishable
and consumable goods (such as CPG products). Promotions are run
either by the manufacturer (trade promotions) or by retailers (retail
promotions or consumer promotions). Manufacturer may also give a
discount directly to the end customer in the form of coupons and rebates.
While manufacturers are interested in increasing sales or profits for their
brand, retailers are interested in overall sales or profits for an entire
product category.

A promotion generally increases sales to both the retailer and manu-
facturer, but there are a variety of factors at work behind the increase.
Customers may increase their consumption of the product due to two
fundamental effects: higher household inventories lead to fewer stock-
outs and therefore an increase in consumption; and higher inventories
give customers greater flexibility in consuming the product because they
don’t have to worry about replacing the inventory at higher prices. For
instance, Wansink and Deshpande [553] and Chandon and Wansink [104]
show that larger household inventory causes faster usage rates if product-
usage occasions are flexible (snack foods), products need refrigeration,
or products occupy a prominent place in the pantry (for empirical evi-
dence of this based on scanner data, see Ailawadi and Neslin [5]). Some
other reasons promotions cause an increase in demand include customers
switching from nondiscounted brands to the discounted brands and cus-
tomers (or retailers for trade deals) stockpiling to take advantage of the
low price (forward buying).

Not surprisingly a dominating factor behind the demand increase is
the type of product. For example, products such as yogurt and potato
chips tend to see an increase because of increased consumption, while
for products such as tomato ketchup, diapers, and toilet paper, the sales
increase is primarily because of brand switching or stockpiling.

Promotions, in the framework of RM, can be thought of as either
(1) a manufacturer using price to dispose excess inventory, (2) a man-
ufacturer trying to gain market share to induce customers to try out
its products, (3) retailers experimenting with price to find optimal price
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points, (4) separating price-sensitive customers, who are willing to use
coupons or who wait for deals, (5) retailers trying to increase store traffic,
as customers once inside the store are likely to purchase other, nonpro-
motional items, or (6) a tactic for store brands or small firms to compete
against the large advertising budgets of the established brands.

5.6.1.1 Types of Promotions
As mentioned, the main dichotomy in promotions is between retail

promotions and trade promotions. Many promotional events are in fact
closely coordinated between the manufacturer and the retailer. For in-
stance, if the retailer runs an advertised promotion, the manufacturer
may agree to bear a share of the advertising cost, or the trade deal may
involve running an in-store display supplied by the manufacturer.

Retail promotions can be advertised or unadvertised (in-store promo-
tions), often coordinated with temporary in-store displays. The price
promotion part may take the form of a simple percentage off, coupons,
or a “multibuy” (discount for multiple items packaged together), or an
extra free (such as three for the price of two; or 15% more free). The
latter two types are usually manufacturer-driven, as packaging may have
to be changed.

Trade promotions traditionally are in the form of off-invoice as a per-
centage off the amount ordered during the promotion period. Surpris-
ingly, many off-invoice promotions do not require the retailers pass the
discount on to the customer, so they may just purchase more during the
promotion period and sell it at regular price. The manufacturer would
simply see a drop in orders once the promotion period is over.

More effective for the manufacturer is the use of mail-in coupons (di-
rect discount to the final customer), or scan-back deals, in which the
manufacturer reimburses retailers a certain amount for each unit sold,
so the discount is on units sold to end customers rather than on units
purchased by the retailer. Scan-back deals eliminate forward buying by
the retailer and aligns the retailer’s objectives with the manufacturer’s.

5.6.1.2 Empirical Findings
The promotions literature is rich in empirical work—based mostly on

scanner POS data—that analyzes the effects of promotions on sales and
profits in different categories. The common trends that emerge from this
research, summarized by Blattberg, Briesch, and Fox [74] as empirical
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generalizations,7 are valuable both for the practitioner as well as the
academic researcher. Table 5.8 gives the main findings. In addition to
the findings in Table 5.8, Blattberg, Briesch, and Fox [74] report some
conflicting findings with respect to the following four questions:

7Blattberg, Briesch and Fox [74] define an empirical generalization as follows: (1) the topic
being studied is well-defined; (2) there are at least three articles by at least three different
authors in which empirical research has been conducted in the specific area, and (3) the
empirical evidence is consistent.
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Does the majority of promotional volume come from switchers rather
than from customers increasing their consumption or category volume
growth? The most likely explanation for the variation in the findings
here may be the differences in the nature of the products; one can well
imagine promotions causing consumption increase for yogurt, but not
say, for toilet paper or ketchup.

Do promotional elasticities exceed long-run price elasticities? That
is, because of the temporary nature of a promotion, does it cause
a greater increase in demand than if the firm were to permanently
lower its price?

Is the trough after the deal due to customers’ accelerating their pur-
chases and stockpiling, creating a drop in the normal sales after a
promotion? Somewhat surprisingly, there is no consensus whether
this happens.

Is there is a negative long-term effect to promotions? Are promo-
tions detrimental to long-term brand equity? The findings have been
mixed, with some studies discovering a long-term negative effect, and
some finding both a positive and negative impact due to promotions.

5.6.2 Retailer Promotions
We next examine two normative models of promotion optimization. In

the first model, due to Greenleaf [221], a monopolist retailer is assumed
to maximize profits from promoting a particular brand. (A “brand” is
a particular-size of a given product.) Customers are assume to have
a reference price (see Appendix E), assumed to be an exponentially
smoothed average of past prices, as follows:

where is the smoothing parameter,8 and is a 0-centered
random variable representing the error term.

Demand is assumed to be composed of two separable factors, a base
demand              and a reference price factor as follows:

where

8Based on scanner data, Greenleaf [221] finds             for peanut butter, and Hardie,
Johnson, and Fader [237] find            for orange juice. It is also common in promotions
models to assume a priori —that is, the reference price is the previous period’s price.
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The parameters model customers’ asymmetric price sensitiv-
ity to loss or gain perception: if customers
value gains more than losses, and if they are loss averse,
(Again, see Appendix E for a discussion of consumer-choice theory based
on valuations of losses and gains.)

The reference-price dynamics given by (5.30) capture the effect of
current promotions on future profits; frequent and deep promotions will
reduce customers’ reference price for the brand, and as a result
they will start perceiving the normal price as a loss. So even though
promotions generate short-run profits, it is in the retailer’s long-run
interest not to run promotions too frequently.

The retailer is assumed to maximize its discounted profits over an
infinite planning horizon. The retailer’s discount factor is
and the marginal cost of production is c. This results in the following
dynamic program:

with a state evolution equation given by (5.30).
Greenleaf [221], using simulations, shows that the optimal policy for

the retailer obtained by solving (5.33) can be cyclical, oscillating be-
tween periods of high prices and periods of low prices. Kopalle, Rao,
and Assunção [310], using analytical and numerical techniques, derive a
number of interesting structural properties of (5.33). Specifically, they
show that if the entire customer population is loss averse a
constant-price policy is optimal. On the other hand, if customers value
gains more than losses then a cyclical policy of hi-lo pricing
is optimal for the retailer. In other words, the asymmetry in customer
valuations for gains and losses can be sufficient motivation to run promo-
tions. Moreover, they numerically show for this case that the difference
between the high and low price increases as the gain coefficient in-
creases for a fixed level of loss coefficient and the high price increases
as the memory parameter in (5.30) decreases.

As we mentioned, retailers are more interested in category profits than
in profits from promoting a particular brand. For a retailer managing
brands in a category, the objective therefore is to manage the prices
over time, This requires solving the following
optimization problem:
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where is an aggregate profit function, dependent on the prices of
all the brands but excluding reference price effects, which are captured
by the second term, and is of the same form as (5.32).
The state as before is the reference price, and the state equation is

Kopalle, Rao, and Assunção [310] analyze (5.34) and show once again
that when for all brands, a cyclical pricing policy of hi-lo pricing
is optimal, and moreover, the cycles are in phase—that is, all the brands
are priced high, or all the brands are discounted together. The reason
is that hi-lo prices in phase minimize the cross-price effect, at the same
time allowing the retailer to take advantage of the reference-price effect.

5.6.3 Trade-Promotion Models
As we discussed, a manufacturer offers rebates to retailers to promote

its own brand. The cooperation might take many forms (such as joint
advertising and store displays), and the contracts are varied (such as
scan-backs and sale guarantees).

On the one hand, models for optimizing the manufacturer’s promo-
tions tend to be simpler than the retailer’s problem, as the manufacturer
is concerned with only one brand. But on the other hand, one has to
model retailer pass-thru behavior. (Recall that pass-thru is the per-
centage of the discount the retailer passes on to the end consumer.)
This requires modeling the vertical competition between manufacturer
and retailer. In contrast to the previous section, however, one typically
ignores reference-price effects because the discount is offered to the re-
tailer rather than to the end customers.

The most widely used model for representing demand as a function
of deal price and displays is the SCAN*PRO model of Section 9.6.4.
Kopalle, Mela, and Marsh [309] analyze a Stackelberg game between a
manufacturer and retailer, where the demand is given by the SCAN*PRO
functional form. Silva-Russo, Bucklin, and Morrison [470] give a sim-
pler mixed integer programming formulation (see also Tellis and Zufry-
den [507]), where the manufacturer assumes that retailers are passive,
but they model retailers’ pass-thru percentages. They report an imple-
mentation of the model at a large CPG manufacturer. The formulation
does not by itself give insight into the optimal structure or policies for
the manufacturer, but it is reasonably practical and captures the main
concerns of the manufacturer in the formulation of its constraints.
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5.7 Notes and Sources
The book by Nagle [400] provides a good general-management

overview of pricing decisions. Elmaghraby and Keskinocak [177] pro-
vide a nice current survey on research in the area of dynamic pricing.
As for the connection between pricing- and capacity-allocation decisions,
see Walczak and Brumelle [543].

Smith and Achabal [480] study a continuous-time version of the prob-
lem with inventory-depletion effect as in Section 5.2.1.5. They also study
the problem of selecting the optimal initial inventory and report sum-
mary results of tests of the model at several major retailers. Heching,
Gallego, and van Ryzin [247] provide revenue estimates based on a re-
gression test of this same type of deterministic model on data from an
apparel retailer.

Gallego and van Ryzin [198] analyzed a continuous-time, time-
homogeneous version of the stochastic model of Section 5.2.2, providing
monotonicity properties of the optimal price, an exact solution in the
exponential demand case, and proving the asymptotic optimality of the
deterministic policy as in Section 5.2.2.3. Bitran and Mondschein [73]
analyze a discrete-time model of the problem essentially the same as
that presented in Section 5.2.2 and test in on apparel retail data. Zhao
and Zheng [589] analyze the continuous-time model with a time-varying
demand function and provide an alternative proof of monotonicity of
the marginal values they also provide results on the monotonic-
ity of optimal prices over time. See also Kincaid and Darling [304] and
Stadje [484]. Das Varmand and Vettas [145] analyze the problem of
selling a finite supply over an infinite horizon with discounted revenues,
where the discounting provides an incentive to sell items sooner rather
than later and there is no hard deadline on the sales season.

Stochastic models with discrete price changes are analyzed in the
continuous-time case in a series of papers by Feng and Gallego [185, 186]
and Feng and Xiao [188, 189]. The problems differ in terms of whether
there are two prices or more than two prices, whether the price changes
are reversible or one-way changes. Feng and Gallego [186] extend the
analysis also to the interesting case where demand is Markovian and may
depend on the current inventory level—for example, as in the classical
Bass model of new-product diffusion. The notion of the maximum con-
cave envelope of prices is due to Feng and Xiao [188]. See also You [586]
for a discrete-time analysis of the problem.

There is an extensive literature on production-pricing problems.
Eliashberg and Steinberg [175] provide of review of joint pricing and
production models. Single-period, convex-cost problems under demand
uncertainty are analyzed by Karlin and Carr [293], Mills [386], and the
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early paper of Whitin [564]. The literature on single-period pricing un-
der demand uncertainty (the price-dependent newsvendor problem) is
surveyed by Petruzzi and Dada [417]. Multiperiod, convex cost models
are analyzed by Hempenius [249], Thowsen [509], and Zabel [509].

Rajan, Rakesh, and Steinberg [433] analyze a deterministic model
of dynamic pricing within an inventory replenishment cycle, where the
motivation for dynamic pricing is the deterioration in the product as well
as its declining market value with age (for example, pricing perishable
foods).

The optimality of the greedy allocation algorithm for the determinis-
tic production-pricing problem with capacity constraints was shown by
Chann, Simchi-Levi, and Swann [105]. The optimality of the base-stock,
posted-price policy discussed in Section 5.3.2 was proved by Federgruen
and Heching [183]. The fixed-cost version of this problem was recently
analyzed by Chen and Simchi-Levi [113].

Multiproduct, multiresource dynamic-pricing problems were analyzed
in Gallego and van Ryzin [199], including bounds on the relationship
between the stochastic and deterministic versions of the problem. The
action-space-reduction approach is a recent result due to Maglaras and
Meissner [354]. A related network pricing we have omitted is congestion
pricing for communications service; see for example Pashalidis [413].

Stokey [490] analyzes a model of intertemporal price discrimina-
tion similar to that presented in Section 5.5.1. See also Kalish [279].
Stokey [491] analyzes a price-skimming model with rational customers
under the assumption that the firm can commit to a price schedule. The
material in Section 5.5.2 on the subgame-perfect pricing equilibrium for
a firm faced with strategic customers is from Besanko and Winston [47].

The artificial-intelligence community also has recently become inter-
ested in dynamic pricing, using autonomous software agents. The ap-
proach is simulation based, with experiments using various strategies
for the players. Although relevant, the approach is beyond the scope of
this book, though the interested reader can refer to Morris, Ree, and
Maes [393] and Morris and Maes [392].

The literature on promotions is rich in empirical work, which we
have summarized, somewhat tersely, in Table 5.8. The material in
Section 5.6.1.2 is entirely from Blattberg, Briesch, and Fox [74]. For
more empirical generalization articles, see Bell, Chiang, and Padmanab-
han [34] and Sethuraman and Srinivasan [458].

The standard reference on promotions is the book by Blattberg and
Neslin [76]. There is a large body of work that tries to understand
the interactions between the retailer and the manufacturer using game
theory, which we do not have the opportunity to cover here—see Lal and



APPENDIX 5. A: Proof of Monotonicity Results 237

Villas-Boas [322, 323], Lal [325, 324], Rao, Arjuni, and Murthi [436],
Gerstner and Hess [211] and Bell, Iyer, and Padmanabhan [35].

APPENDIX 5.A: Proof of Monotonicity Results
Proof of Proposition 5.1
Since there are multiple parts, we restate the proposition:

If Assumptions 5.1 and 5.2 hold, then for all
(i) is jointly concave in and
(ii) is concave in
(iii) is increasing in and decreasing in

We first need a preliminary result:

LEMMA 5-5.A.1 If Assumption 5.2 holds, then the truncated revenue function
is jointly concave in and on the for and

Proof
By definition,

By Assumption 5.2, the term is concave in and is concave
as well. Also note if then will also be jointly concave in and This
follows because the Hessian

is negative definite, since both and the determinant
Therefore, is jointly concave because it is the minimum
of two concave functions. Finally, taking expectations preserves concavity, hence

is jointly concave. QED

We are now ready to prove Proposition 5.1. Parts (i) and (ii) are related by
induction. Indeed, we first show that if is jointly concave in and
Assumptions 5.2 holds (so by Lemma 5-5.A.1 is jointly concave in and

then is concave in To do so, consider any two values nonnegative values
and and any real satisfying For notational convenience define the

convex combination and let denote the value that maximizes
for and define Then

where the last inequality follows from the joint concavity of and So
is concave in provided is concave (Assumption 7.2), and is jointly concave.

Likewise, we show that is jointly concave if is concave and Assump-
tion 5.1 holds. To see this, consider any four nonnegative and any real
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satisfying Define and Then

where the first inequality follows from Assumption 5.1, is increasing in and
the second inequality follows from the fact that   in concave.

Parts (i) and (ii) of Proposition 5.1 now follow from these two results using an
induction argument and the fact that for all which is concave.

Finally, to show part (iii), note that the fact that is decreasing in
follows from the concavity of in (part (i)). To show it is increasing in take a
nonnegative and note that the difference

is oppositive since by Assumption 5.1 and therefore is
increasing in by the concavity of Therefore, taking expectations above we
then have that the difference

is increasing in as well. Since

it therefore follows that is increasing in QED

Proof of Proposition 5.2
The proof here is essentially identical to Proposition 2-2.A.4 result for the discrete-
choice single-resource model in Appendix 2.A.

We first show that is decreasing in The proof is by induction on First,
this is trivially true for by the boundary conditions for all
Assume it is true for period and consider period Let denote the optimal
solution to (5.12) for inventory level that is, it is an optimal solution in the
recursion

and note that since we can write

From the optimality of the following inequalities hold:
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and

Substituting into (5.A.0) we obtain

Rearranging and canceling terms yields

By induction, and
and since values are at most one (expected demand in a period is at most one in the
discrete Poisson case), and Therefore,
(Note the concavity of is not required for this part of the proof.)

To show monotonicity in using the same notation note that

where the first inequality above follows by the fact that
Now by the concavity of we have that

But the first-order conditions imply
we have that

so substituting above

Substituting into (5.A.2) implies QED
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Chapter 6

AUCTIONS

6.1 Introduction and Industry Overview
Auctions provide an alternative means of dynamically adjusting prices

to match market conditions. An auction is simply a set of rules (called a
mechanism) for specifying how information is revealed among customers
and the firm, how goods are awarded to customers, and what payments
are made from customers to the firm based on the revealed information.
They differ from a dynamic posted-price mechanism in that typically
customers are the ones who offer a price they are willing to pay—their
bid—and the firm then decides which bids to accept. However, there are
some auction formats that rather resemble posted pricing, in that the
firm names a price, and customers simply indicate their willingness to
buy at the offered price. As we show below, the prices in an auction
depend both on the number of customers bidding and their valuations
for items—and, not surprisingly, the more customers there are, or the
more each customer values the items, the higher the prices generated
by an auction. In this way, auction prices effectively “adapt” to market
conditions, and hence they are often viewed as price-discovery mecha-
nisms.

Auctions are important both practically and theoretically. On a prac-
tical level, auctions are encountered in many markets, including those for
treasury bonds, livestock, used cars, electricity, foreign exchange, real es-
tate, art and rare collectibles, fish, fresh flowers, industrial procurement,
public-works contracts, and the sale of natural-resource rights (such as
offshore oil and gas leases, logging rights, radio spectrum licenses, and
so on). More recently, auctions have gained popularity with the success
of e-commerce auction sites such as eBay.
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From a revenue management perspective, in particular, auctions have
some appealing features. First, they hold out the potential of achieving
near-perfect, first-degree price discrimination, and although customers
still retain some “information rent” that prevents a firm from capturing
the entire consumer surplus, the revenue benefits over using a single
price—or even second- and third-degree price discrimination—can be
significant. Second, auctions have the potential to directly uncover these
near-optimal prices without the need to estimate customers’ demand
functions or willingness to pay, though this statement again must be
qualified somewhat as we explain shortly. Nevertheless, it is fair to say
that most auction mechanisms generally require less information about
customers than do alternative price-discrimination mechanisms.

On a theoretical level, auctions are important because they provide a
rich framework for studying pricing mechanisms in settings where cus-
tomers act strategically. Indeed, as we show in this chapter, auction
theory can often be used to design optimal mechanisms—that is, mech-
anisms that maximize revenues among essentially all possible pricing
mechanisms, under certain assumptions of course. In other cases, the
theory provides convenient ways to compare the revenues produced by
different pricing mechanisms. Also, the theory is based on a strategic
(rational) consumer model, which adds to the realism of auction models
relative to the (mainly) myopic models studied in Chapter 5.

We first look at some common examples of auctions in practice. Then,
in Section 6.2, we describe the classical auction models and theory. Next,
we look at dynamic auctions, both in the setting of selling a fixed capac-
ity as in Chapter 2 and in a replenishment setting, where the firm orders
and auctions over an infinite horizon as in the inventory-pricing problem
of Section 5.3.2. Finally, we consider network auctions and discuss their
relationship to the network RM problems of Chapter 3.

6.1.1 An Overview of Auctions in Practice
Auctions are used in a wide range of markets, including industrial,

financial, and consumer markets. We briefly survey next each of these
markets in turn.

6.1.1.1 Traditional Auction Houses
Traditional auction houses—the two largest being Christie’s and

Sotheby’s—provide auctions for selling art, antiques, jewelry, wine, and
other rare, high-value collectibles. Both have been doing so for a very
long time indeed; Sotheby’s was founded in 1744 and Christie’s in 1766.
Christie’s is the market leader with sales of $2.3 billion in 2000. Both
use a variation of an ascending, open-price (English) auction. (See Sec-
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tion 6.1.2 below for definitions of these auction types.) As of January
2000, Sotheby’s started offering online auctions. These traditional auc-
tion houses generally limit themselves to high-value items, and their
clientele are largely wealthy individuals and institutional collectors.

6.1.1.2
Auctions have been used for many years in financial markets. Most

government bonds and bills are sold at auctions, which are conducted at
regular intervals to finance national debts. Investors (both institutional
and individual) bid for the minimum interest rate they are willing to
receive. The selling agency then sorts the bids and the bonds or bills
are awarded to the lowest bidders until the desired amount of the issue
is reached.

Auctions are also used by securities exchanges for trading stocks,
bonds and foreign exchange. Typically, these are double auctions in
which bid offers are made by customers and ask offers are made by sell-
ers. A queue of bid and ask offers is maintained and trade takes place
when the highest bid offer in queue exceeds the lowest ask offer in queue.
(The rules for the price paid and how this matching takes place are usu-
ally specific to each exchange.)

6.1.1.3 Government Auctions
Governments use auctions for the sale of many public assets, including

public lands, public industries (privatization sales), and natural-resource
rights. A prominent example is the radio spectrum auctions for third-
generation (3G) cellular phone service in Europe and the United States
These spectrum auctions involved complex combinatorial features, in
which communications companies bid for combinations of geographical
areas to achieve coverage in a given market area. The sale prices pro-
duced by some of these auctions were staggering, and indeed the resulting
debts incurred to finance these purchases have left many of the winning
companies in a precarious financial position.

6.1.1.4 Industrial-Procurement Auctions
Auctions are also used in many industries for procurement of materi-

als, services, and general subcontracting of production. Typically, this
occurs through a request-for-quote (RFQ) process in which a buying
firm details its requirements for a certain input, and selling firms sub-
mit price quotes to supply the input. Factors other than price, such as
quality levels and delivery schedules, are typically important in the final
selection as well.

Financial-Market Auctions
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Online versions of procurement auctions have also increased in the
past several years. In the auto industry, the exchange Covisint was
formed in early 2000 as a joint venture by Daimler-Chrysler, Ford Motor
Company, and General Motors with technology provided by Commerce
One and Oracle. The goal of the exchange is to facilitate integration and
collaboration among suppliers and automakers, with the aim of lower-
ing costs and facilitating more efficient business practices. The Covisint
exchange supports a range of auction formats for procurement. FreeMar-
kets, which has been in operation since 1995, combines software products
with market-making services that help facilitate real-time procurement
auctions over the Internet. The company reports sales transactions of
over $35 billion to date on their reverse-price auction systems and ser-
vices. Many manufacturers also host their own private online auctions
for procurement.

6.1.1.5 Consumer Online Auctions
Online consumer auctions have become popular, largely due to the

success of eBay. eBay provides a platform for users to conduct auctions
to buy and sell a wide range of items—a sort of Sotheby’s OR Christie’s
for the common man.

An immense variety of items are sold on eBay—new, used, and col-
lectibles, by both individuals and small businesses. It is by some mea-
sures, the most popular shopping site on the Internet as of this writing.1

In 2001, eBay transacted more than $9.3 billion in gross merchandise
sales. Most significantly, the company has proven that the Internet can
be used to facilitate communication and trade among geographically dis-
persed individual buyers and sellers, allowing for the sort of real-time
auction mechanisms that in the past required the physical presence of
market participants.

Priceline.com provides a different online auction mechanism. It is
based on what they term a “buyer-driven conditional purchase offer”
mechanism,2 in which customers declare what they are willing to pay
for products and supplying firms accept or reject these offers. In return,
consumers agree to varying degrees of flexibility in the brand and prod-
uct features they receive for their offered price. This mechanism has
proved quite popular as a channel for selling surplus airline seats and
is gaining popularity for products such as discount phone service and
home mortgages.

1For example, in 2000 eBay was the shopping site with the highest number of total user
minutes according to Media Metrix.
2Priceline.com has been granted a United States patent for this invention.
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Priceline is attractive to sellers in large part because the mechanism
does not divulge the identity of the seller until after the purchase of-
fer is accepted. (Customers bid on generic products and features, not
specific brands.) This creates less of a pricing risk for a firm because it
can discount without fear that its discounted prices will become widely
known to other customers and to competitors. This feature produces
brand shielding and such selling formats are often referred to as opaque
channels in industry terminology. However, as we show in Section 6.3.3
below, under certain assumptions, this mechanism theoretically offers
no benefit over list prices. (Priceline.com is discussed further in Chap-
ter 10.)

6.1.2 Types of Auctions
There are a variety of mechanisms one can use to conduct an auction.

For simplicity we focus first on the case of a firm auctioning a single
indivisible good to a group of N customers. We then consider several
variations of these simple, single-unit auctions.

6.1.2.1 Standard Auction Types
There are four common types of auctions for selling a single object:

Open ascending (English) auction In an open ascending auction,
the firm announces a progressively increasing sequence of prices. Cus-
tomers indicate (say by raising their hand or showing a number) their
willingness to buy an item at the announced price. The firm increases
the price until only one customer is left willing to buy at the an-
nounced price. This is the mechanism commonly used to sell art and
valuables at major auction houses such as Christie’s and Sotheby’s.

Open descending (Dutch) auction In an open descending auc-
tion, the firm announces a progressively decreasing sequence of prices.
The first customer to indicate willingness to buy at the announced
price wins the item and pays the current price. The Aalsmeer and
Naaldwijk flower markets in Holland have long used this type of auc-
tion, which explains the name.

Sealed-bid, first-price auction In the sealed-bid, first-price auc-
tion, customers submit sealed bids to the firm. The customer submit-
ting the highest bid wins the auction and pays the amount of his bid.
This form of auction is used (in its minimization form) for awarding
many government contracts.

Sealed-bid, second-price (Vickrey) auction In the sealed-bid,
second-price auction, customers again submit sealed bids, and the
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customer submitting the highest bid wins the auction. However, the
amount the winner pays is equal to the second-highest bid submitted.
While this auction form has certain desirable theoretical properties,
as shown by Vickrey [533], it is somewhat less common in practice.3

These basic auction types can be varied: for example, one may impose
a reserve price or minimum bid increments. Moreover, there are other,
less standard, auction types that are encountered in practice as well,
such as the uniform price auction used in many financial markets. The
above four types, however, are the most common.

An auction is called a reverse auction if customers are competing to
sell to the auctioneer by submitting cost (or willingness to sell) bids
rather than price (or willingness to buy) bids, such as in a procurement
auction. Reverse auctions are essentially equivalent to regular auctions
if we put a “minus sign” on the rewards (one involves maximization of
price while the other involves minimization of cost), and hence we do
not address them separately here.

6.1.2.2 Multiunit Auctions
Multiunit versions of the above auction types can also be defined in the

natural way. For example, suppose the firm has C homogeneous items
to sell and each customer wants only at most one item. Then in the C-
unit open ascending auction, the firm announces increasing prices, and
customers indicate their willingness to pay the offered prices. The price
is increased until only C customers remain and each is awarded an item
at the prevailing price. In an open descending auction, the price declines
until a customer indicates willingness to pay the announced price. The
customer is awarded a unit at that price, and the firm continues to
decrease the price until a second customer is willing to pay the announced
price, and so on until all C units have been awarded.

In a sealed-bid, first-price auction, the C highest bids are accepted,
and each pays his bid; in a sealed-bid, second-price auction, the C highest
bidders are awarded the item and each pays the highest bid.

Again, more complex multiunit auctions exist in practice. For exam-
ple, customers may bid for multiple units. In a sealed-bid, first-price
auction, this is accomplished by having customers submit a demand
schedule—a list of quantities and prices they are willing to pay for each
marginal unit they buy. The firm then awards items to the C highest
marginal values, which may involve awarding multiple units to a sin-

3Though Lucking-Reily [351] points out that the Vickrey auction is more commonly used
than most people realize.



Auctions 247

gle customer. In this chapter, we only consider the simple, single-unit
demand version of multiunit auctions.

6.1.2.3 Combinatorial Auctions
Another complexity in many procurement auctions is that a customer

may require several products simultaneously. For example, to complete
production of a product, a manufacturer may need both metal and plas-
tic resin, or to provide cell phone service in a particular region, a com-
munications company may need licenses in several contiguous regions.
Such problems create dependencies, in which customers are willing to
pay more for certain combinations of items than the sum of what they
would be willing to pay for each item alone.

In such cases, one can construct auctions where the customers submit
bids for various combinations of items rather than individual bids for
each item alone, and the firm must then decide on which combinations to
award based on these bids. Such problems may require solving complex,
combinatorial optimization problems to simply determine the winners of
the auction. Understanding the customers’ behavior in the face of such
complex auctions is quite difficult. We examine one such combinatorial
auction in Section 6.5 below, in which customers bid for “products” that
require a subset of “resources” and the firm has to allocate a finite supply
of these resources to the customers based on their bids. This problem
closely matches the network problems of Chapter 3.

6.2 Independent Private-Value Theory
In this section, we present the basic theory of auctions for the so-

called independent private-value model, which is the most widely studied
in the literature. In addition, we focus here on the revenue-generating
properties of auctions and largely ignore welfare and allocative efficiency
properties. Readers interested in these properties and other extensions
of the basic theory are referred to survey papers by Klemperer [305],
Matthews [366], McAfee [369], and Milgrom [381].

6.2.1 Independent Private-Value Model and
Assumptions

Consider an auction in which we are selling one or more homogeneous
objects to N potential customers. Each customer desires at most one
of the objects. Customer values an object at The valuations
are private information to the individual customers, but it is common
knowledge that are i.i.d. with a distribution F. We assume that
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F is strictly increasing with a continuous density function and has
bounded support on the interval so F(0) = 0 and

Note that the assumption that customers have i.i.d. valuations and all
know F is not equivalent to saying all customers are the same. Indeed,
because customers valuations are draws from a distribution, some cus-
tomers will have high valuations, and some will have low ones; F merely
describes the distribution of valuations in the customer population. In
addition, customers know their valuation; thus, a customer with a high
(low) valuation will know that his valuation is higher (or lower) than av-
erage and will bid accordingly. The assumption of i.i.d. valuations and
symmetry is more precisely a statement about the views the participants
hold about the market. It is equivalent to saying that all customers and
the firm have the same belief about the likely valuations of other cus-
tomers and that there is no discernable difference among customers a
priori.

6.2.2 An Informal Analysis of Sealed-Bid, First-
and Second-Price Auctions

First, to build some initial intuition we start with a somewhat informal
analysis of the sealed-bid, first- and second-price auctions. A formal
equilibrium analysis is then provided in Section 6.2.3.

A key feature of auction models is that they assume customers are
rational; that is, they bid so as to maximize their surplus (the value
of the item minus the price they pay). Hence, for each mechanism we
need to analyze customers’ bids as a function of their valuations—called
their bidding strategy. When formulating his bidding strategy, a ratio-
nal customer will take into account the bidding strategies of the other
customers. Our auction analysis therefore relies on the concept of an
equilibrium set of strategies; that is, a set of strategies such that each
customer has no incentive to change his strategy provided the other cus-
tomers do not change their strategies (Nash equilibrium in game-theory
terminology; see Appendix F).

We are also interested in the revenues produced by a given auction.
These revenues depend on the strategic, equilibrium response of cus-
tomers. So changes in the mechanism will lead to changes in the equi-
librium bidding strategies of customers, which in turn will affect the
revenues the firm generates. Thus, a “good” mechanism induces a more
profitable equilibrium, and this makes the revenue analysis of auctions
qualitatively different from the analyses we have seen in the previous
chapters.
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6.2.2.1 Equilibrium Strategies for a Second-Price Auction
Consider first a single-unit, sealed-bid, second-price auction with N

customers. Recall that in this case each of the N customers submits a
bid, the firm awards the item to the customer with the highest bid, and
the winner pays the value of the second-highest bid. Let
denote the vector of bids submitted by the N customers and let
denote the reverse-order statistic: that is, Hence,

denotes the value of the second-highest bid (the winner’s payment).
A bidding strategy for customer specifies the bid customer will submit
as a function of his valuation and is denoted A bidding strategy
that is an equilibrium strategy is denoted (to denote that it is an
optimal response to the strategies of other customers).

How would a rational customer bid in this type of auction? The
answer, it turns out, is surprisingly simple. Each customer cannot do
better than to simply bid his own valuation that is, the strategy of
bidding is optimal for all customers

To see this, note that the amount the winner pays in a second-price
auction is not affected by his bid since he pays an amount equal to the
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second-highest bid. In other words, a customer’s bid affects whether he
wins but not how much he pays if he wins. Now suppose customer
bids Consider the two possible cases—customer wins or customer
loses—and see whether customer can do better by changing his bid
in either case. The situation is shown in Figure 6.1.

First, consider case (i) on the left of Figure 6.1, where customer
wins the auction by bidding In this case, customer has a surplus
of Now if he increases his bid to it has no effect
because he is still the highest bidder and still pays an amount equal to
the second-highest bid. So customer  cannot do better by increasing his
bid. If customer is a winner and decreases his bid to there is
again no change in his surplus as long as he remains the highest bidder.
However, if—as shown on the left-hand side of Figure 6.1—he lowers his
bid enough to become the second-highest bidder, then he is no longer the
winner and his surplus is zero. Since his surplus was positive beforehand,
this is not an improvement either. Thus, customer cannot do better
than bidding in case (i).

Now consider case (ii) on the right of Figure 6.1, in which customer
bids and loses. Customer surplus in this case is zero because he does
not get the item and pays nothing. Note also in this case, the highest
bid is strictly greater than that is, Now if he decreases
his bid to he remains one of the losers, and his surplus is still
zero. If he increases his bid to again there is no change unless he
increases his bid enough to become the new highest bidder. But in this
case, he must pay an amount equal to the previous high-bidder’s bid,
which is strictly greater than his own valuation (else he would have
been the high bidder originally). So his surplus in this case is negative,
he is worse off. Hence, he cannot do better than bidding in case (ii)
either. Therefore, in both cases (i) and (ii), bidding   is an optimal
decision for customer

Note that this strategy is optimal regardless of the bids placed by other
customers. Indeed, our analysis did not make any assumptions on the
strategies used by other customers; the strategy is optimal for
any realization of competing bids. Such a strategy is called a dominant
strategy, and the set of such strategies is called
a dominant-strategy equilibrium for the auction. (See Appendix F.)

A dominant-strategy equilibrium is a robust equilibrium. It applies
under very general conditions; essentially, we need assume only that
customers have private valuations (the valuation that customer has
for the item is not influenced by the valuations of other customers) and
customers are rational so that they recognize the benefit of this strat-
egy. We need little else beyond these two assumptions. For example,
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customers can have different distributions of valuations, have different
information about the distributions, and may be risk-averse. None of
these change the equilibrium under the second-price mechanism because
of the strong dominance of the bidding strategy.

Under this equilibrium, the firm earns a revenue equal to the sec-
ond reverse-order statistic of the distribution        a quantity that is
not difficult to evaluate (at least numerically). The following example
illustrates both the equilibrium and the revenue calculation.

Example 6.1 There are N customers with valuations uniformly distributed on [0,1],
so           on this interval. Under the second-price auction, it is a dominant-strategy
equilibrium for each customer to adopt the strategy

The expected revenue earned by the firm is just        —the value of the second
highest bid. It is not hard to show for the uniform distribution that

Thus, the firm’s average revenue increases with the number of bidders N.

6.2.2.2 Equilibrium Strategies for a First-Price Auction
Consider next a first-price auction, in which the highest bidder wins

the item and pays his bid. We consider only symmetric bidding strate-
gies in this case. That is, we assume each customer uses the same
bidding strategy and therefore bids an amount This is
a reasonable assumption given that customer valuations are symmetric
(have valuations independently drawn from the same distribution
We also assume that a customer’s bid is increasing in his valuation (cus-
tomers with higher valuations bid more), so the bid strategy is
increasing in This assumption is verified afterward. As before, an
equilibrium strategy is denoted

Again, we are looking for an equilibrium bid function such that if
all customers are using the strategy then no customer is able
to improve his expected surplus by bidding anything other than
We then use the first-order conditions for this equilibrium to derive a
differential equation for the bid function

To begin, note that a customer with valuation will win the item
if he is the highest bidder; that is, if for all So
customer probability of winning is4

4Equation (6.1) contains a minor abuse of notation: the P(·) on the left-hand side represents a
function of the bids (albeit a probability), while the right-hand side P(·) stands, as throughout
the book, for probability of an event.
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where the second inequality follows from the assumption that strategy
is strictly increasing in Since the argument is generic to any

customer we henceforth drop the subscript and consider an arbitrary
customer with valuation

Now suppose our customer could improve his expected surplus by
adopting the strategy of a customer with valuation different from
Specifically, the customer would bid and thus win with probability

but would still value the item at In this case, his expected
surplus would be

If the strategy is truly an equilibrium, this surplus should be max-
imized at (otherwise, would not be the customer’s optimal
bid). Therefore, applying the first-order optimality conditions, we can
differentiate (6.2) with respect to set the result to zero at and
obtain the following differential equation for

The solution to this differential equation is somewhat tedious to derive,
but one can verify that it is5

where is the probability of winning given by (6.1).6

Note that the equilibrium strategy (6.4) is continuous and increasing
in  and increasing in N (higher-valuation customers bid more; and the
more customers there are, the higher a given customer bids). One can
also show that it is the unique symmetric equilibrium for this problem
(Riley and Samuelson [441]).

Note from (6.4) that so customers in a first-price auction
will bid strictly less than their valuation. Hence, unlike in the second-
price auction, they shade their true valuations when bidding. This is to
be expected because customers are required to pay what they bid, so
they must shade their bids to make a positive surplus from winning.

5To check this, just use the fact that and substitute (6.4)
into the right-hand side of (6.3).
6A boundary condition of is required as well; see Appendix 6.A.
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Finally, the revenue to the firm is the expected value of the highest
bidder’s bid because the winner pays his valuation. So the firm’s ex-
pected revenue is Again, the mean of this order statistic is
not difficult to compute numerically or by simulation.

To illustrate, consider again the example of uniformly distributed val-
uations:

Example 6.2 There are N customers with valuations uniformly distributed on [0,1],
so              on this interval. In this case,                   and the equilibrium bidding
strategy is

So each customer bids a fraction            of his valuation; hence, customers with higher
valuations bid more, and the more customers N, the closer each bids to his actual
valuation.

Since the highest bidder wins, the expected revenue to the firm is then
It is not hard to show for the uniform distribution that

Therefore, the firm’s expected revenue is

Note that the expected revenue for the firm is the same in this example
and in Example 6.2 for the second-price auction. In other words, the firm
generates the same expected revenue regardless of which auction it runs.
As we show below, this is not a coincidence; rather, it is a consequence
of general conditions that guarantee that these two auctions are always
revenue equivalent under the private-value model.

6.2.2.3 Strategic Equivalence of Open and Sealed-Bid
Auctions

In the private-value model, the open descending (Dutch) auction is
strategically equivalent to the sealed-bid, first-price auction in the sense
that the equilibrium strategies for the two mechanisms are the same.
That is, if is a symmetric equilibrium in a sealed-bid, first-price
auction, then it is also a symmetric equilibrium in a open descending
auction, and vice versa. This is true because in an open descending
auction, each customer (knowing his valuation calculates his expected
surplus at each price given that there are no other customers willing
to buy at He then determines the value at which this surplus is
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maximized and bids when the price drops to But this is exactly
the same calculation the customer must make when submitting a bid in
a sealed-bid, first-price auction. Hence, the equilibrium strategies are
the same.

Likewise, an open ascending auction can be shown to be strategi-
cally equivalent to a sealed-bid, second-price (Vickrey) auction under
the independent private-value model. In an open ascending auction, it
is always optimal for a customer to stay in the bidding as long as the an-
nounced price is below his valuation —and to drop out once the price
exceeds But this is equivalent to the strategy of bidding
in a second-price auction, since in both cases if the customer wins, he
ends up paying the valuation of the second-highest customer. And as
we showed in Section 6.2.2.1, is a dominant-strategy equilib-
rium in the Vickrey auction. Hence, the two auctions are strategically
equivalent.

Because of this equivalence, we henceforth refer to these two cases
as simply the first-price and second-price auctions—without specifying
whether the mechanism is the open- or sealed-bid version.

6.2.3 Formal Game-Theoretic Analysis
We now formalize and generalize the analysis of bidding equilibria

for a general auction mechanism. Formally, a bidding strategy for cus-
tomer  is a function that specifies the bid that customer will
submit conditional on his valuation We let de-
note the vector of valuations and denote
the vector of bidding strategies used by the N customers. We let

that is, the vector v without the compo-
nent. Similarly, let

denote the bid strategies for all customers other than
An auction mechanism is specified by a pair of mappings

that defines the allocations of the goods and
that defines payments made by the customers (equivalently, revenue re-
ceived by the firm) as a function of their bids. The firm chooses the
auction mechanism before the auction is conducted and announces it to
all customers, so the mechanism too is common knowledge.

Suppose customer chooses a strategy Then
is the allocation of goods to customer which is equal to 1 if he is
awarded a unit, and 0 otherwise. Given his bid        the probability
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that customer is awarded a unit is given by

Similarly, is the payment made by customer given
the bid vector b(v), and his expected payment is

Note the expected payment is the expected revenue received by the firm.
When the number of players N is random, each player computes his op-
timal action by conditioning both on the valuations of the other players
and the total number of players in the game.

Customers are assumed to be rational and attempt to maximize their
expected net utility (the value of the item less the price paid to the
firm). Therefore, customer chooses his strategy to maximize his
expected surplus

For example, in the case of the single-unit, first-price auction, the item
is awarded to the highest bidder who pays the auctioneer the value
of his bid; all other bidders pay nothing. Then if is the
highest bidder and wins the item), then and

and if is not the winning bidder),
and So the expected

net utility is simply
We assume that customers choose their strategies without collusion.

In this case, they play a noncooperative game of incomplete information.
An appropriate solution concept in this context is that of the Bayesian
equilibrium of Harsanyi [241], an extension of the ordinary Nash equi-
librium [402]. Specifically, a vector of strategies is an
equilibrium strategy if, for all customer best response is to maintain
his strategy provided all other customers maintain their strategies

Formally,

In other words, no customer has an incentive to change his strategy if all
other customers maintain their strategies. We further restrict ourselves
and consider only symmetric equilibria; that is, strategies for which the
equilibrium strategy is the same for all As mentioned, this
assumption is reasonable given that customer valuations are assumed
symmetric; however, it is a restriction nevertheless, and one cannot rule
out the fact that asymmetric bidding strategies may exist. Henceforth,
we let denote such a symmetric equilibrium strategy.
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6.2.3.1 Direct-Revelation Mechanisms
The analysis of equilibrium bidding strategies is greatly simplified by

considering what are called direct-revelation mechanisms. Essentially,
a direct-revelation mechanism is one in which a customer’s equilibrium
strategy is to bid his true valuation For any mechanism that has
an equilibrium it turns out, we can always find an equivalent direct-
revelation mechanism.

To see this, note that if is a symmetric equilibrium for some
given auction mechanism, then the firm can always define an alterna-
tive mechanism (the direct-revelation mechanism) in which customers
submit bids, the firm inserts these bids into the function and the
resulting values are treated as bids under the rules of the original auction
mechanism. The situation is illustrated in Figure 6.2. Since is an
equilibrium strategy, it follows that under the direct-revelation mecha-
nism it is an optimal strategy for every customer to bid his valuation

since otherwise it would contradict the fact that is an equi-
librium strategy. Conversely, if there does not exist a direct-revelation
mechanism defined by some in which bidding is an equilibrium,
then there cannot be any equilibrium bidding strategy under the original
mechanism, otherwise the corresponding equilibrium would define
such a direct-revelation mechanism.

In this way, we can reduce the equilibrium analysis of any mecha-
nism to an analysis of the corresponding direct-revelation mechanism,
in which case we can view the allocation and payments as being di-
rectly a function of the customers’ valuations—denoted and

respectively (because the optimal strategy is for customers
to bid their valuations). This approach is illustrated in Figure 6.2.

Let denote customer expected payment
under a direct-revelation mechanism. The equilib-

rium can be analyzed by noting that the expected surplus in the direct-
revelation mechanism, defined by

must satisfy

for all customers In other words, for each customer revealing his
true valuation is no worse than pretending to have another valuation

This condition is called the incentive compatibility constraint because
it requires that it be in customer self-interest to truthfully reveal his
valuation.
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6.2.4 Revenue Equivalence
How much revenue is generated for the firm by a given auction mech-

anism? At first, answering this question would appear to be a hopeless
task because each auction mechanism leads to different equilibrium bid-
ding strategies and equilibrium payments. Finding and evaluating these
various equilibria for a reasonable range of mechanisms (or ideally all
possible mechanisms) is a daunting task. However, it turns out that the
expected revenue generated by a private-value auction can be reduced to
an analysis only of the resulting allocations without explic-
itly solving for the equilibrium bidding strategies. The only conditions
required are that the functions are increasing in (so that
higher valuations lead to a higher probability of allocation)7 and cus-
tomers with valuation zero have zero expected surplus in equilibrium.8

Specifically, we have:

7Verifying that the allocations are increasing in the valuations   may require analyzing
monotonicity properties of the equilibrium strategy—that higher-valuation customers    bid
higher in equilibrium.
8The requirement that customers with valuations zero have zero expected surplus is called a
participation constraint; intuitively, it means we cannot force a customer to participate in an
auction in which his expected surplus is negative.
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THEOREM 6.1 [Revenue Equivalence Theorem] Consider the private-
value model, in which there are C items and N customers with i.i.d.
valuation independently drawn from continuously differentiable, strictly
increasing distribution F on Consider any mechanism in which
(i) the allocation to customer is increasing in for all
and (ii) customers with valuations of zero have zero expected surplus.
Then the expected revenue for the firm is given by

where

A proof of the this theorem is given in Appendix 6.A. Moreover, this
revenue equivalence holds for the customers as well; a customer’s ex-
pected payment is the same under all mechanisms satisfying the above
conditions. However, the equivalence in both cases is only in expecta-
tion; the payments on a sample-path basis may be quite different under
different mechanisms.

Note is precisely the marginal revenue function (7.14) encoun-
tered in our analysis of revenue-maximizing prices in Chapter 7. This
is not a coincidence; Bulow and Roberts [95] show the revenue function
(6.6) can in fact be interpreted as a variant of third-degree monopoly
price discrimination among the N customers (see Section 8.3.3.2).

In auction theory, is sometimes referred to as customer virtual
value because (6.6) implies that the firm can hope to collect only

from customer (in expectation) and not his entire valuation The
difference            is referred to as the information rent of customer

because it is the surplus that customer retains due to his private
information about his own valuation

As a result of Theorem 6.1, note that any two mechanisms that pro-
duce the same allocation for every realization of (the same
customers are awarded units under each mechanism) produce the same
expected revenue for the firm. This is true despite the fact that the
bidding strategies and payments may be very different under each mech-
anism. For this reason, Theorem 6.1 is referred to as the revenue equiv-
alence theorem.

To illustrate, consider a standard first-price auction on a single unit.
We saw in Section 6.2.2.2 that the equilibrium bidding strategy was
strictly increasing in the value and that the item is awarded to the
highest bidder. In a second-price auction, the customer with the highest
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valuation also wins that auction. Thus, by Theorem 6.1, the expected
revenue to the firm must be the same in each case. We illustrate this
result with a continuation of our previous example:

Example 6.3 Suppose there are N = 2 customers with valuations uniformly distrib-
uted on [0,1]. Let and From Example 6.2
we know that in a first-price auction, the customers will bid in
equilibrium. The highest bidder will win, and the firm’s expected revenue is

Now consider a second-price auction of Example 6.1. The highest bidder wins but
pays the price of the second-highest bid, and each customer bids his valuation in
equilibrium. The firm’s expected revenue is

Hence, the two expected revenues are equal. Moreover, note that since
and therefore since in both auctions if and only if

we have

as well. Finally, for N > 2 customers, the customer with valuation wins, and
the same analysis shows that

which is precisely the expected revenue found in Examples 6.1 and 6.2.

Similarly, in a standard C-unit auction, one can show that both the
first-price and second-price auctions award the goods to the customers
with the C highest valuations. Thus, the allocation is the same
for each and hence the two mechanisms generate the same expected
revenue for the firm.

6.2.5 Optimal Auction Design
The revenue expression (6.6) can be used to design an optimal mech-

anism by simply choosing the allocation rule y*(v) that maximizes
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subject to any constraints one might have on the allocation.
Toward this end, it is useful to make the same regularity Assump-

tion 7.2 on the distribution function F that we impose in dynamic pric-
ing problems: namely, that is strictly increasing in Note that

where is the hazard rate of the distribution F. The marginal revenue
satisfies this monotone condition as long as the hazard rate is

increasing—or not decreasing too quickly with 9

To illustrate, consider designing an optimal C-unit auction using (6.6).
Note that with C units to allocate and given a realization of v, we want
to maximize (6.7) subject to the constraint that

and for all It is easy to see what the optimal allocation
is by inspection. Indeed, define

(and by convention, if Then since J ( . ) is assumed
to be increasing, it follows that it is never optimal to allocate a unit
to a customer with valuation because awarding units to such
customers results in a negative contribution to the sum (6.7). Among
the remaining customers with we want to award units to those
with the highest valuations Thus, the optimal allocation is to award
units to the C highest-valuation customers above and if there
are less than C customers with to award units only to those
customers and discard the remaining units.

How can we achieve such an allocation? One possibility is to introduce
a reserve price into the standard first- or second-price C-unit auction
mechanism. A reserve price is a lower bound on bids that the firm
sets before the auction; only bids above the announced reserve price are
considered.

To illustrate, consider a first-price auction; it is easy to see that if
we set a reserve price of customers with valuations will not
submit bids. One can show that the remaining customers with valuations

9More precisely, it is satisfied when                              for all              One can show that this
condition is satisfied by many standard distributions, including the uniform, normal, logistic,
exponential, and extreme value (double exponential) distributions [25].
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will submit bids according to an increasing equilibrium strategy
similar to (6.4). Indeed, the resulting symmetric equilibrium strategy is
now

The C units are awarded to the C highest bids above the reserve price,
and the resulting allocation is exactly the same as the optimal allocation.
Hence, the first-price mechanism with reserve price is optimal. A
similar argument holds for the second-price auction, in which case one
can show that it is optimal to post a reserve price of where winners
pay the minimum of the highest bid above or if there
are fewer than C + 1 bids above We therefore have the following
theorem:

THEOREM 6.2 Under the private-value model, the standard C-unit first-
price and second-price auctions with reserve price (given by (6.8)) are
optimal for the firm.

Hence, with a properly chosen reserve price, the standard first-price and
second-price auctions are revenue maximizing among all possible pricing
mechanisms. This is a rather remarkable result; under the private-value
model assumptions, a firm simply cannot do better than to sell using
one of these two auction formats. Again, we illustrate this result by
returning to our uniform-distribution example:

Example 6.4 Suppose there are N customers with valuations uniformly distributed
on [0, 1]. Since implies the optimal reserve price
since this satisfies From (6.9), the customers with valuations over 1/2
therefore bid

which is strictly greater than the bid of                    submitted by these same customers
in the first-price auction without reserve prices. Also, since the item is allocated to the
highest-value customer and the distribution of the highest valuation is
the firm’s optimal expected revenue is

which is again larger than the expected revenue of (N – 1)/(N + 1) generated when no
reserve prices are used but approaches the no-reserve-price revenue when N is large.
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The fact that a reserve price primarily benefits the firm most when
there are few customers is intuitive. In essence, the reserve price serves to
create “extra competition” for customers—forcing them to bid higher in
a first-price auction or pay more if they win in a second-price auction—
than they otherwise would without a reserve price. However, with lots
of competition from other customers, the need for the firm to introduce
this extra incentive is less important, as the customers themselves create
sufficient competition.

6.2.6 Relationship to List Pricing
How is the optimal auction mechanism related to a traditional list-

price mechanism? There are several close connections worth examining.
First, note that a list-price mechanism qualifies as one of the possible

allocation and payment mechanisms studied above for the C-unit auc-
tion. In particular, using a fixed list price customers indicate their
willingness to pay (just as in an ascending auction). If there are C
or fewer customers willing to pay each receives a unit and pays the
fixed amount if there are more than C customers willing to pay
the C units are randomly rationed to these customers. This produces
an allocation and payment rule just as in the standard auction types. In
the list price case, it is easy to see that it is a dominant strategy for a
customer to “bid” (indicate his willingness to pay   ) if his valuation   is
more than Thus, a dominant, symmetric equilibrium strategy exists
in which all customers with valuations greater than attempt to buy.

Given this observation, it is easy to compute the firm’s expected rev-
enue. Let denote the number of customers with valuations greater
than Then the expected revenue to the firm as a function of is

Another way of deriving this revenue is to use the expression (6.6) for the
firm’s equilibrium revenue and to note that for the list-price mechanism

since units are allocated, and each customer to which
we allocate a unit has a valuation so is
the expected value of the corresponding term Using the fact that

it is then a simple exercise to show that
which gives us the same expression as (6.10).

A direct optimization of (6.10) does not lead to a clean expression,
but several special cases are simple and provide useful insight. We look
at these next.
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6.2.6.1 Capacity Is Unconstrained
The first case is where the number of customers so there are al-

ways fewer customers than there are units. In this case,
and the revenue for a list price of is

Differentiating and setting the result equal to zero, we
find that the optimal price satisfies

But since (F is strictly increasing), rearranging this is equiv-
alent to which is the condition for the revenue-maximizing
price and is also the condition for determining the optimal reserve price.
Thus, the optimal price when is the same as the optimal reserve
price—that is, Moreover, the revenue under this optimal price
can be written

where is the indicator function of the event But the
expression above is simply the optimal
auction revenue when is strictly increasing and Thus we
have

PROPOSITION 6.1 If capacity is not constrained in   C-unit, private-
value auction                then using a fixed list price      satisfying

is an optimal mechanism for the firm.

6.2.6.2 Large Capacity and Sales Volumes
Another case in which list pricing is provably good is when both the

number of customers and the number of units for sale is large. Specifi-
cally, let be a positive integer, and consider a problem with units
and customers for some N > C > 0. If we set a fixed price of
then the number of customers willing to purchase at this price is denoted

with mean Moreover, by the law of large numbers,
as

and the firm’s revenue satisfies



264 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

Just as in the capacity-constrained pricing problem of Section 5.2.1.2,
the asymptotically optimal price is given by

where is the revenue-maximizing price, determined by and
is the run-out price, determined by equating the expected number of

customers willing to pay to the supply C, so When
the expected revenue is and when the expected

revenue is
Similarly, one can analyze the scaled optimal auction revenue. Note

that the scaled expected optimal auction revenue can be written

where denotes the largest valuations
First, consider the case Then as with

probability one So the above becomes

which is exactly the asymptotic fixed-price revenue given by (6.11) when

In the alternative case where as with
probability one and similar reasoning shows that the

which is again exactly the asymptotic fixed-price revenue given by (6.11)
when These arguments can be formalized to show

PROPOSITION 6.2 If the number of customers and the number of units
for sale in the private-value auction model are, respectively,     and
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for some integers and N > C > 0. Then as a list-
price mechanism is asymptotically optimal, in the sense that the ratio of
the optimal expected list price revenue to the optimal expected auction
revenue tends to one.

As a result, in high-sales-volume settings, using a fixed price will be
near optimal. This implies auction benefits are something of a “small-
numbers” phenomenon, which is consistent with the auctions one en-
counters in practice.

6.2.6.3 Dynamic Pricing
Another close connection between auctions and list-price mechanisms

is obtained by considering a dynamic pricing policy as a particular alloca-
tion and payment mechanism in a private-value auction model. Making
this connection yields several important insights.

For example, consider the problem of selling a single unit to a pop-
ulation of N strategic consumers. As in the price-skimming model of
Section 5.5.2, the private-value model considers the N customers to have
i.i.d. private valuations for the item. The Dutch-auction mechanism
calls for the firm to continuously reduce the price over time until a cus-
tomer decides to bid at the offered price. The customer then pays this
offered price. However, this is precisely what happens in a (continuous-
time) dynamic pricing policy as well, so a descending dynamic price can
effectively achieve the Dutch-auction outcome. By simply adding an op-
timal reserve price below which we will not lower the price, such a
dynamic pricing mechanism becomes optimal.

More generally, by the revenue equivalence theorem, any dynamic
pricing policy that results in the C highest-valuation customers, with
valuations in excess of receiving the units, will be revenue-maximizing
for the firm and thus produce the same expected revenue as the optimal
auction.

For example, Bulow and Klemperer [94] analyze the C-unit, private-
value model under a dynamic pricing mechanism. In their mechanism,
the firm uses a list price that is lowered continuously until one or more
customers offers to buy at the current price. If the number of customers
willing to buy at the current price is less than the remaining supply, these
customers are awarded the items at this price, and the firm continues to
lower the price. If the number of customers willing to pay the current
price exceeds the remaining supply, the firm does not sell the items;
it instead increases the price discontinuously and then tries again to
lower the price. Since a customer’s probability of getting an item is
higher when he attempts to buy early (if he attempts to buy and fails,
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he can always try again later, so his probability of obtaining the item
cannot decrease by attempting to buy early), it is not hard to show that
customers with the highest valuations are the ones that attempt to buy
first. Therefore, the firm allocates the items first to the customers with
the highest valuation. As a result, Bulow and Klemperer [94] argue that
by revenue equivalence, if the firm does not lower the price below
this dynamic pricing mechanism is optimal. Similar arguments hold for
many other dynamic pricing policies as well.

This shows there is a rather close connection between optimal auc-
tion theory and dynamic pricing theory with strategic consumers. In-
deed, using the revenue equivalence theorem, the seemingly difficult task
of analyzing the customer equilibrium produced by a dynamic pricing
strategy is greatly simplified, and it shows in fact that a range of pricing
mechanisms are optimal.

6.2.7 Departures from the Independent
Private-Value Model

Many of our conclusions thus far depend to a greater or lesser extent
on the assumptions of the independent, private-value model. What hap-
pens when these assumptions are relaxed? In this section, we look briefly
at a few cases that are especially relevant for RM. Each has implications
for the types of auctions that are optimal for the firm.

6.2.7.1 The Common-Value Model
The private-value model assumes that each customer’s valuation is

independent of the valuations of other customers. Thus, if a customer
learns the value that another customer places on the item, it has no
impact on his valuation. Such an assumption is reasonable if the item
is going to be used for personal enjoyment or consumption. However,
in other cases the item may have a common commercial value, may be
resold at some future point in time, or may be of uncertain quality, so
the valuations others have on the item could reveal useful information
about the value of the item to a given customer.

A canonical example of such a setting is selling an offshore oil lease.
The value of the lease to a customer is dependent on two key factors: the
volume of oil it contains and the cost of extracting that oil. Typically,
there is a high degree of uncertainty about both these factors. Because of
differences in survey data or technological expertise, different customers
may have independent information on the value of a given lease, and so
on. As a result, knowing how another customer values the lease may
change your assessment of its profitability.
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A simple model of such a setting is the following: consider auctioning
a single item that has a common value which is the same for all
customers. However, the value is uncertain. All customers have the
same prior knowledge of embodied as a distribution over values of
This distribution is common knowledge. A value of is drawn from this
distribution, and then each customer receives a (noisy) signal of the
form

where are i.i.d. random-noise terms with mean zero. The
distribution of      is also common knowledge.

Note that given only the signal customer expected value for the
item is

with variance given by the variance of However, if one were to aggre-
gate the customers’ signals by averaging them, the estimate would be

which provides a much better (lower variance) information
on the value than do the signals alone.10 More generally, customer

estimate of may be altered by information he receives about the
signals of other customers. This sort of behavior significantly affects the
auction outcomes.

For example, one phenomenon that arises in this setting is the so-
called winner’s curse. To illustrate the idea, consider a sealed-bid,
second-price auction. Suppose customer were to bid his expected
valuation for the item, as in the private-value case. The customer
might (incorrectly) reason that bidding his own expected valuation is
a dominant strategy because bidding more than increases his chance
of winning only in cases where his expected surplus is negative, and bid-
ding less than decreases his chances of winning only in cases where his
expected surplus is positive. The reasoning is false, however, because
customer expected valuation conditional on winning the auction is
less than his unconditional expected valuation Indeed,

since (provided that has nonzero
probability of exceeding its mean zero).

Intuitively, winning should indicate to customer that his noise term
is the largest and therefore his initial estimate is upwardly biased.

Therefore, if he were to bid his unconditional estimate winning the

10For example, the variance of the aggregate signal                      is a factor              smaller than
the variance of
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auction would indeed be bad news. It would indicate his expected sur-
plus was negative; hence the winner’s curse. To overcome this “curse,”
a rational customer must adjust his bid downward, considering the fact
that it is the expected valuation of the item conditioned on having the
highest signal that matters in determining his winnings.

The tendency of customers to reduce their bids to avoid the winner’s
curse changes the revenue equivalence of the basic auction types. In
particular, while the sealed-bid auction conveys no information to cus-
tomers, the Dutch (open descending price) and English (open ascending
price) auctions provides them some information because they can ob-
serve how many customers are still willing—or not willing—to buy at
the current price, when each drops out, and so on. The information
about other customers’ valuations tends to reduce the negative impact
of the winner’s curse.

For example, when an item has a common-value component, one can
show the firm is better off using an English (open ascending price) auc-
tion than a sealed-bid, second-price auction—auctions that are strategi-
cally equivalent under the private-value model. Moreover, one can show
that if the firm has its own signal (some private information) positively
correlated with the item’s value (like past price data of similar items
or an appraisal), it benefits by sharing that information with the cus-
tomers. This is because customers will tend to increase their estimate of
the item’s value as a result and bid more aggressively. Reserve prices also
benefit the firm, but unlike in the private-value case, the optimal reserve
price may vary with the type of auction and the number of customers.

6.2.7.2 Risk Aversion
Another factor affecting the results of the independent, private-value

model is the assumption that both the firm and customer are risk-
neutral. (See Appendix E for a discussion of risk preferences.) While the
assumption of risk neutrality for a firm is often reasonable (for example,
when the firm is a large, participating in many auctions over time), the
assumption of risk neutrality for individual consumers is typically less
realistic. However, it is easy to determine the relative performance of
the standard auction types under risk aversion.

First, consider the case where the firm is risk-neutral and the cus-
tomers are risk-averse. By revenue equivalence, note that a customer

expected payment conditioned on his valuation being the high-
est is the same under the first- and second-price auctions, since this
expected payment is simply the expected revenue to the firm. How-
ever, the customer who wins a first-price auction pays a certain amount

while the same customer in a second-price auction will pay an
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uncertain amount with the same mean—namely, the valuation of the
second-highest customer conditioned on the fact that is the highest
valuation. Thus, a risk-averse customer will prefer the first-price auc-
tion to the second-price auction. Given this preference, in the first-price
auction risk-averse customers will tend to increase their bids above the
risk-neutral equilibrium bid (Bidding one’s own valuation is still
a dominant strategy under risk aversion in the second-price auction, so
the bidding strategy in this case is not affected.) The higher resulting
equilibrium bids in the first-price auction mean that the firm’s expected
revenue is higher as well, so the firm prefers this auction format.

Now consider the opposite case, where the firm is risk-averse and the
customers are risk-neutral. By the same reasoning as above, the firm’s
revenue in the first-price auction conditioned on the winning value being

is certain while in the second-price auction it is uncertain. Therefore,
unconditioning on the revenue in the second-price auction is more
variable as well—also with the same mean as in the first-price auction.
Thus, a risk-averse firm will also prefer the first-price auction.

The fact that the firm prefers the first-price auction in both cases (and
is no worse in the second-price auction if all parties are risk-neutral) has
been offered as one explanation for the relative popularity of first-price
auctions over second-price auctions in practice.

6.2.7.3 Asymmetry Among Customers
Yet another departure from the private-value model is to relax the

assumption of symmetry. The simplest case is to assume that there
are two types of customers, types 1 and 2, with different valuations for
the item drawn from different distributions, denoted and
with corresponding marginal revenue (virtual value) functions and

For example, type 1 customers may be experienced customers,
and type 2 customers may be novice customers, or type 1 customers may
be individuals while type 2 are industrial customers.

To see what can happen in this case, assume the first      customers
are of type 1 and the next are of type 2, and assume the marginal
revenue functions are both increasing. The optimal allocation for the
firm is obtained by maximizing
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subject to the constraint that the total allocation is one

As before, it is optimal to allocate the item to the customer with the
highest marginal value. However, note since        and        may differ,
the customer with the highest marginal value is not necessarily the one
with the highest valuation

This has important consequences for the optimal auction. For exam-
ple, it means that it can be optimal for the firm to set different reserve
prices for different types of customers, and the firm may systematically
favor one class of customers over another in awarding the item. Indeed,
one can show that in certain cases, it is optimal for the firm to favor
the type of customers that tend to value the item less. The rationale for
this is that by favoring these low-value types, the firm encourages the
high-value types to bid even higher. The resulting higher equilibrium
bids it receives from the high-value types more than compensates the
firm for the loss he occasionally takes in favoring the low-value types.

In other words, it is optimal for the firm to discriminate among cus-
tomers in the offering terms for the auction. This behavior is similar to
the classical third-degree price-discrimination policy of offering different
prices to different customer groups based on their different willingness
to pay. (See Section 8.3.3.1.)

6.2.7.4 Collusion
The private-value model assumes the firm defines a game among the

customers, intended to extract the highest prices possible from them. A
key assumption in this game is that customers do not cooperate. Yet in
practice, there is the possibility of collusion among customers, in which
a coalition of customers (popularly called a bidding ring) cooperates and
agrees to submit bids that are designed to reduce the price paid by the
winner. Such collusion has been reported, for example, in the awarding
of some government contracts.

There are several practical devices to reduce the likelihood of col-
lusion among customers, most of which involve reducing the ability of
customers to communicate among themselves. For example, one tech-
nique is to keep the identity of all customers secret, so customers cannot
identify each other and form a bidding ring. (Though this may fail
if the number of potential customers is so small that most customers
know, a priori, the pool of likely participants—such as major suppliers
in a procurement auction). Another technique is to reduce the amount
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of information relayed about bids to the minimum necessary to conduct
the auction. For example, the firm might report only the highest current
bid in an ascending auction, not the number of bids received, the time
bids were received, or the history of bid values. This prevents customers
from using such data to “signal” their intentions to each other.11

Because collusion can take so many forms, it is difficult to make
general recommendations on the firm’s “optimal response” to collusion.
Nevertheless, to give some sense of the effect that it has consider a case
where all N customers in the private-value model can collude perfectly.
That is, they can get together and agree to submit bids, make payments,
and allocate the item among themselves to maximize the surplus they
receive as a group. In this case, the group of N customers effectively
acts as a single “big customer” with valuation
with distribution

where F(·) is the distribution of the valuations for the N customers with
density The marginal value for this distribution is

Of course, when faced with a single customer, the optimal auction is still
the usual one: conduct a first or second-price auction with a reserve price
set according to the marginal value of the single customer. So assuming

is increasing, the firm should set a reserve price satisfying

In this case, the bidding ring will be forced (yet willing) to pay when
its maximum valuation, is at least this large. Also, one can show that
this optimal reserve price is higher than the noncooperative optimal
reserve price and that it increases with the number of customers N in
the coalition. Thus, the possibility of collusion creates an incentive to
use higher reserve prices than when customers do not collude. Indeed,
the desire to thwart collusion is one of the main motivations for using
reserve prices in practice.

11For example, at a keynote address to the Institute for Mathematics and its Applications
(IMA) in December 2000, Robert Weber reported an instance in which bidders in a auction
used the least significant digits in their bid amounts as a signaling mechanism. To overcome
this, the auctioneer imposed larger minimum bid increments, thus reducing—or at least
raising the cost of—this sort of signaling.



272 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

6.3 Optimal Dynamic Single-Resource Capacity
Auctions

We next consider a dynamic auction problem that is in essence the
auction equivalent of the single-resource problem of Chapter 2. In con-
trast to the traditional auction problem, in this case the firm receives
bids from T groups of customers who are separated over time. In par-
ticular, in each period we assume that a new set of customers arrives
and bids for the remaining capacity. The firm must determine winners
in period before observing the bids (or even the number of customers)
in future periods. This dynamic feature parallels the traditional RM
model, in which the firm must determine the capacity to sell in a given
period before observing demand in future periods.

Such separation of customers over time is common in RM practice, a
canonical example being the airline industry. Leisure travelers typically
make travel plans months in advance of departure because they fre-
quently must coordinate their vacation travel with other arrangements,
like reserving resort accommodations, taking time off work or finding
child care, and so on. In contrast, business travelers may not even know
of their need to travel until a few days in advance of departure. As a
result, if an airline were to conduct a single auction months in advance
of departure, they would likely lose many business travelers; if they con-
ducted a single auction a week before departure, they would likely lose
many leisure travelers. This creates an incentive for them to conduct
auctions at multiple points in time.

Other industries face similar situations, in which customers’ needs are
realized at different points of time (the need to buy a gift for a birthday,
for example)—or are based on other contingent events (a new order
to a manufacturer triggering a need for new supplies) that effectively
separate customers in time. In such situations, a firm attempting to use
a single auction at a single point in time would find itself eliminating
many potential customers. By conducting multiple auctions over time,
it can reach a larger pool of customers.

We next look at the optimal auction-design problem for this dynamic
auction setting. We also compare the optimal auction to a traditional
RM mechanism based on using dynamic list prices and capacity controls.

6.3.1 Formulation
A firm has an initial capacity of C units of a good that it wants to

sell over a finite time horizon T. It does this by conducting a sequence
of auctions indexed by
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Customers are separated in time. In period risk-neutral potential
customers arrive. is a nonnegative, discrete-valued random variable
distributed according to a known p.m.f. with support {0,..., M}
for some M > 0 and strictly positive first moment.

The assumptions parallel the private-value model: Each customer
wishes to purchase at most one unit and has a reservation value

When the context is clear, we omit the time index and
write Reservation values are private information, i.i.d. samples from
a distribution F(·), which, as in the private-value model, is assumed
strictly increasing with a continuous density function on the sup-
port with and To simplify notation and
subsequent analysis, we assume that the distribution functions and
F do not depend on the time but the extension to time-dependent
distributions is straightforward.

The distributions F and    are assumed common knowledge to the firm
and all potential customers (although this assumption can be relaxed for
the second-price mechanism below). In addition, customer knows his
own (private) valuation Without loss of generality we assume that
the unit salvage value for the firm at time is

The firm's problem is to design an auction mechanism that maximizes
its expected revenue. To do so, it must solve for an optimal allocation

in each period, given the values of in each period and knowing
only the probabilistic information (distributions) of these values in future
periods.

Define the value function as the maximum expected revenue
obtainable from periods given that there are units in
period Using (6.6) for the expected revenue in each period, the Bell-
man equation for in terms of the allocation variables can be
written

where is the total number of units awarded in period The boundary
conditions are

where C denotes the initial capacity. An allocation that achieves the
maximum above given and will be an optimal dynamic allocation
policy. (See Appendix D.)
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6.3.2 Optimal Dynamic Allocations and
Mechanisms

We first analyze the theoretical properties of the dynamic program
(6.12)–(6.13). From this structure, one can show that variants of the
classic first- and second-price auctions are optimal for this problem.

6.3.2.1 Optimal Allocations
As in the traditional single-resource RM model, the solution of the

dynamic program (6.12)–(6.13) hinges on the monotonicity of the mar-
ginal values Indeed, one can show the
following [542]:

PROPOSITION 6.3             is decreasing in   for any fixed   and is de-
creasing in     for any fixed

These are quite natural economic properties. At any point in time,
the marginal benefit of each additional unit declines because the future
number of customers is limited; therefore, the chance of selling the mar-
ginal unit—and the expected revenue if we sell it—decreases. Similarly,
for any given remaining quantity the marginal benefit of an addi-
tional unit decreases with because as time progresses, the number of
future customers declines; therefore, the chance of selling the marginal
unit—and the expected revenue if we sell it—goes down.

Proposition 6.3 simplifies the optimal allocation. To see this, note
that since J(·) is assumed to be increasing, if the firm decides to award

units, it is optimal to allocate them to the highest (that is, to
the highest Therefore, define

and note that

Also, define Then the formulation (6.12) can
be rewritten in terms of as follows:

where the sum is defined to be 0 if Let be the optimal solution
above (the optimal number of bids to accept) at time in state
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Let denote a realization of the random variable and be a
realization of customers’ types. The following proposition characterizes
the optimal allocation and follows from (6.15) and Proposition 6.3:

PROPOSITION 6.4 For any realization        the optimal number of
units to allocate in state is given by

if and by otherwise. Moreover, it is optimal to
award these units to those customers with the highest valuations

This shows how the firm should run the auction—provided it can in-
fer the valuations of the customers. In particular, note that

for so the decision rule in Proposition 6.4
about the optimal number of bids to accept is simply based on sorting
the values and progressively awarding items to the highest-value cus-
tomers until drops below the marginal opportunity cost

The situation is illustrated in Figure 6.3. Thus, given the customer
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valuations and the value function the optimal allocation rule
is simple.

6.3.2.2 Optimal Mechanisms
We next demonstrate that appropriately modified versions of two

standard procedures—the first- and the second-price auctions—achieve
the optimal dynamic allocation.
Second-price auction In a straightforward application of the second-
price mechanism in the dynamic auction setting, it is no longer optimal
for customers to bid their valuation. The following informal reasoning
shows why. Suppose it is optimal to bid truthfully under the second-price
mechanism and let

The thresholds are directly computable from the solution of (6.23) de-
scribed in the previous section, which uses common knowledge informa-
tion, and are in principle known to all customers and the firm. Following
Theorem 6.4, the firm will accept bid as long as Now sup-
pose the firm decides to award units. That means
and However, if the first loser, had bid

instead (which in fact verifies the firm would
include him among the winners and award units, and the customer
would pay only and make a positive profit. Hence, customers have
some incentive to bid above their own valuations (a pure second-price
mechanism fails to elicit truthful bids).

However, the following modification to the second-price mechanism
avoids this pitfall. In each period the firm first computes the thresholds

using the current capacity Given the vector of submitted bids b,
the firm will award units, where

and if and all winners will pay

where is the highest bid and is the threshold to award
the unit. Ties between bids are broken by randomization. For sim-
plicity we refer to (6.17)-(6.18) as the modified second-price mechanism.
One can then show the following result [542]:

PROPOSITION 6.5 For the modified second-price auction with allocation
and payments given by (6.17)-(6.18), customer’s dominant strategy
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is to bid his own valuation. Moreover, under this dominant-strategy
equilibrium, the modified second-price mechanism is optimal.

First-Price auction In a first-price auction, items are awarded to the
highest bidders, and winners pay their bids. This type of mechanism
may be more natural in many applications.

To establish that the first-price auction achieves the same expected
revenue as the second-price mechanism described above, one needs to
show that (1) items are again awarded according to the optimal allo-
cation rule derived in the previous section and (2) customers with zero
value have zero expected surplus. To do this, it suffices to show that
there exists a symmetric equilibrium bidding strategy that is strictly
increasing in the customer’s valuation. In this case, the firm can use this
bid function to invert a bid and infer the customer’s valuation, which it
can then use to correctly compute the number of items to award.

The main result for this case is the following [542]:

PROPOSITION 6.6 Under the first-price auction, there exists a symmet-
ric, strictly increasing, bidding strategy equilibrium The strategy

depends on the current values of and as given by

where is the probability that a customer with valuation is among
the winners,

and by convention
Moreover, under this symmetric equilibrium, the first-price auction is
optimal.

Note that (6.19) shows—since winners are required to pay what they
bid—that under a first-price mechanism customers shade their valua-
tions to make some positive surplus. Since is strictly increasing,
the units are sold to the players with the highest valuations. Moreover,
once the firm observes bids it can calculate the valuations

through the well-defined inverse bidding function
An important practical observation from this result is that the opti-

mal first-price mechanism is not greedy, in the sense that it does not
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maximize the sum of observable revenue in the current period plus the
expected revenue to go, because the firm compares the values of
with the marginal value rather than with the bids themselves.
As a result, the firm may (1) accept bids below the marginal value when

and (2) reject bids that are above
marginal value when Numerical
experiments show that both cases may occur.

This behavior is somewhat counterintuitive because at first blush is
seems that any bid that exceeds the marginal value of capacity ought
to be worth accepting. However, such reasoning neglects the effect that
the acceptance policy has on the bidding strategy of the customers. If
the firm accepts all bids that are ex post profitable, then customers end
up bidding less in equilibrium than they do when the firm follows the
optimal acceptance strategy. The net result is to lower the firm's total
revenue. In short, the firm has to occasionally refuse profitable bids to
induce the customers to bid more aggressively—and in equilibrium it
benefits by taking these short-run losses. This is simply an extension of
the rationale for using reserve prices in a standard auction.

6.3.3 Comparisons with Traditional RM
We next compare the optimal auction mechanisms with a variation of

a traditional quantity-based RM mechanism as in Chapter 2. The firm
sets a list price at the beginning of each period and calculates a threshold
on the number of units it is willing to award at the list price. Both the
price and the capacity limit are optimized. We call this mechanism
the dynamic list price, capacity-controlled mechanism (DLPCC). Note
that unlike in a traditional RM mechanism, in DLPCC prices are set
optimally rather than being given exogenously.

Customers who are interested in acquiring one unit at that list price
submit acceptances (an offer to buy). If the number of acceptances ex-
ceeds the capacity limit set by the firm, the units are randomly rationed
to the customers. It is easy to see in this case that a dominant strategy
for customers is to submit an acceptance if and only if their valuations
exceed the firm’s reserve price.

6.3.3.1 Theoretical Comparisons
One can show that the DLPCC mechanism is, in fact, optimal in

several cases. Indeed, we have [542]

PROPOSITION 6.7  The DLPCC is optimal if the following cases:
(i)  There is at most one customer per period
(ii) There are more units to sell than there are potential customers
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(iii) Asymptotically as the number of customers and units to sell grows
large

That is, unless customers can be aggregated in time, the number of
customers and objects is not too large, and there is some scarcity, there
is no advantage to using a bidding mechanism over simple list pricing.
These results are analogous to those in Section 6.2.6 for the single-period
auction.

6.3.3.2 Numerical Comparisons
We next consider some numerical examples that illustrate the con-

ditions under which an optimal pricing mechanism significantly out-
performs DLPCC. In the examples that follow, the dynamic program
associated with the optimal mechanism is solved using simulation, and
customers’ valuations are assumed to be uniformly distributed.

The first experiment shows how the revenue changes as the concen-
tration of customers, defined as the number of customers per period,
is varied. The firm starts with C = 16 units, and the total number of
customers in all periods is constant at 64. The number of periods varies
from 1 to 64, so that the number of customers per period varies. That is,
the example runs from 64 customers in one period (high concentration
of customers) to one customer in each of 64 consecutive periods (low
concentration of customers).

The results are given in Table 6.1. Observe that the optimal revenue
increases as the concentration of customers increases. This is intuitive,
since as the firm observes more customers’ valuations per period, it is
making allocation decisions with reduced uncertainty about future bid
values. Moreover, an increase in concentration increases direct bidding
competition amongst customers. The gap reaches over 6% in the ex-
treme case of a single period with 64 customers, which is significant.
The second experiment compares the suboptimality gaps of the DLPCC
mechanism under various levels of capacity and demand. The number of
periods is kept constant at T = 5. The number of customers per period
is fixed at 30, 50 and 100; and for each of these, three choices
of capacity–C = 0.1 T C = 0.3 T and C = 0.5 T —are used.
Results are shown in Table 6.2. The gaps for DLPCC tend to decrease
from left to right (which corresponds to increasing the capacity to de-
mand ratio) and from top to bottom (which corresponds to increasing
proportional number of customers per period and number of units in
stock) in each table. Note that the gaps of 2% or more occur only in the
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case where the number of customers is moderate (such as 10) and the
capacity is constrained

Other numerical experiments of [542] show that the relative benefit of
the dynamic auction increase as the variance in the customer’s reserva-
tion value increases and as the variance in the number of customers

increases. Hence, variability in the demand environment appears to
favor the use of a dynamic auction mechanism.

6.4 Optimal Dynamic Auctions with
Replenishment

We next consider an infinite-horizon auction problem with replenish-
ment, which is essentially the auction equivalent of the dynamic pricing
and inventory problem of Section 5.3.2. A firm orders, stores, and then
sells units of a homogeneous good over an infinite time horizon. The
firm starts a period with an initial (integral) inventory and it reorders
at a unit cost at the end of the period. Replenishment orders arrive
instantly, and we do not allow backlogging. In each period, a convex,
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strictly increasing holding cost of is charged on the starting inven-
tory level 12

The firm sells its goods through a sequence of auctions indexed by
The problem is assumed to be stationary, so the statistics of demand

are the same for all periods Private-value assumptions apply. In each
period, N risk-neutral customers arrive. N is a nonnegative, discrete-
valued random variable distributed according to a known probability
mass function with support [0, M] for some M > 0 and with a
strictly positive first moment. Each customer requires one unit and
has a private valuation i.i.d. with a distribution F(·),
which is strictly increasing with a continuous-density function on
the support We assume that the marginal value J(·) derived from
F(·) is strictly increasing.

As in the single-resource capacity auction case, we use v both for
the random vector of valuations (from the firm’s perspective) and for a
particular realization. The distribution functions and F are constant
through time and are assumed common knowledge to the firm and
all potential customers. We assume that both the number of customers
N and their valuations v are independent from one period to the next.
Thus, each period is an independent draw of N and v.

The firm’s problem is to design an auction mechanism and find a
replenishment policy that maximizes its expected discounted profit. As
before, we analyze this by first finding an optimal allocation and then
finding mechanisms that achieve the optimal allocation.

6.4.1 Dynamic Programming Formulation
We analyze this problem using a dynamic programming formulation

in terms of allocation variables Define the value function
as the maximum expected discounted profit given an initial inventory

which satisfies the Bellman’s equation:

12One can also analyze the case where holding cost is charged on the ending inventory level.
The results are qualitatively the same as long as the holding cost is linear.
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where is the discount factor, is the total number of units
awarded, and is the replenishment order for the next period. Note
from first principles that the state space can be bounded by M because
at most M customers will arrive in any period, and since we can reorder
at the end of every period, there is no need to stock more than M.
Our objective is finding an optimal stationary policy consisting of an
allocation y(·) and a replenishment order that achieves

Assuming J(·) is monotone increasing (Assumption 7.2), it again fol-
lows that if the firm allocates units, it is optimal to allocate them to
the highest (to the highest So, as before, define

and note that is a random function that solves

Therefore, we can rewrite (6.21) in terms of as follows:

Note that above we are assuming that excess stock can be eliminated
without cost (free disposal) when This assumption is not
essential for the analysis, but it helps to simplify the notation.

6.4.2 Optimal Auction and Replenishment Policy
We next characterize the optimal auction and replenishment policy for

this problem. The first statement is presented in algorithmic form [527]:

PROPOSITION 6.8 Consider the inventory-pricing problem described
in (6.23). Define the optimal base-stock level by

Then the optimal stationary policy is to allocate units to customers and
replenish stock as follows:
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STEP 1 (Allocate units):
FOR allocate the unit if either:
(i) and
(ii) and
ELSE GOTO STEP 2.

STEP 2 (Replenish stock):
IF then order up to i.e., ELSE order
nothing

The policy says that while the current inventory is above the optimal
base-stock level (case (i)), then we will award the unit if the benefit
from accepting the bid (its virtual value exceeds the profit
of keeping the unit for the next period less the marginal holding cost
for keeping it. The unit is not replenished in this case. Once the
inventory reaches the optimal level (case (ii)), the firm awards a unit
as long as the benefit from accepting a bid exceeds the cost of replacing
the unit awarded; each such unit is replenished. This policy is illustrated
in Figure 6.4.

An interesting result of this allocation policy is that when the inven-
tory is less than the optimal base-stock level the firm can achieve the
optimal allocation by simply running a standard first-price or second-
price auction in each period with a fixed reserve price

Indeed, the following characterization of the optimal policy in this
case [527]:

PROPOSITION 6.9 Once the inventory reaches units, the optimal pol-
icy in all subsequent periods is to (i) run a standard first- or second-price

auction with fixed reserve price and then (ii) at the end of each
period, order up to the optimal base-stock level

Since the problem is over an infinite horizon and the optimal policy
calls only for ordering when the inventory drops below the firm even-
tually reaches a point where the above simple auction and replenishment
policy are optimal for all remaining time. That is, is the unique re-
current state in the resulting Markov chain that governs the evolution
of the inventory over time under the optimal policy.

This result is significant on several levels. First, it shows that the
classical first-price and second-price mechanisms remain optimal in the
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dynamic-inventory setting. These are both familiar auction mechanisms,
which are easy for customers to understand and easy for firms to imple-
ment. The inventory-replenishment policy is also a familiar and simple
base-stock policy. This combination makes the optimal policy quite prac-
tical. On a theoretical level, the result is as simple as one could hope
for in this setting. Finally, it is convenient as well from a computational
perspective because it reduces the optimal policy to a search over the
single parameter as we show next.

6.4.3 Average-Profit Criterion
Consider maximizing the long-run average profit. One can show that

the optimal policy for the problem is in fact Blackwell op-
timal;13 that is, it is simultaneously optimal for all discounted problems
with discount factors for some As a result, one
can show (see [527]) that the optimal average-profit policy will again be
to run a standard first-price or second-price auction in each period with

13See Bertsekas [57, Section 4.2, Definition 1.1]) for a formal definition of Blackwell optimality.
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reserve price and then order up to a fixed base-stock level
at the end of each period.

Indeed, because of this fact, one can develop a simple procedure for
finding the optimal base-stock level Let

be the average profit when following a policy of reordering up to a fixed
base-stock level We know that such a policy will be optimal for some

therefore, we simply need to search for a value that maximizes
In fact, one can verify that the profit function is concave in and
that can be evaluated by simulation and in special cases
by closed-form expressions. Taking advantage of the concavity of
a binary search over the range for therefore gives an overall algorithm
complexity of O(N log M). Henceforth, we denote the optimal objective
value

6.4.4 Comparison with a List-Price Mechanism
We next consider how the optimal auction policy compares with a

traditional, fixed-price policy. Specifically, we consider the base-stock,
list price policy of Section 5.3.2, in which the firm sets a fixed list price
in each period and then replenishes by ordering up to a fixed base-stock
level To be consistent, we assume we incur the holding cost at the
beginning of the period, and we assume customers who are interested
in acquiring one unit at the posted price submit acceptances. If the
number of acceptances exceeds the current inventory of the firm, we
randomly ration the units to the customers. It is easy to see that under
this pricing mechanism, a dominant strategy for customers is to submit
an acceptance if and only if their own valuations are higher than the list
price.

We compare the profits earned under the optimal mechanism with
those under the base-stock, list-price mechanism for an optimal choice
of  and  We give theoretical comparisons first, followed by a numerical
comparison of the two policies.

6.4.4.1 Theoretical Comparisons
We restrict ourselves to the average-cost case, where the optimal profit

is given by optimizing (6.25) over though similar results can be devel-
oped for the discounted case. One can show the following [527]:

PROPOSITION 6.10 The base-stock, list price policy is optimal when
(i) The number of customers is at most with probability
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one.
(ii) The number of customers is large, and the holding cost is
linear,
(iii) The holding cost is zero,

Part (i) shows that if the firm is receiving isolated bids (as in some
consumer online auctions, such as Priceline.com’s mechanism), there is
no inherent advantage to using auctions over list pricing. Some aggrega-
tion of customers is needed to gain a strict advantage through an auction
mechanism. Intuitively, this is because one needs to generate some bid-
ding competition among customers to realize a benefit from an auction.
With at most one customer bidding, there is no competition. Part (ii) is
analogous to the finite-horizon problem. As the number of customers in
each period becomes large, the fraction with valuations above any given
price converges to a deterministic function of and hence the ratio
of the auction and the fixed-price revenues tends to one. The intuitive
reason for part (iii) is that with no holding cost, the firm will stock the
maximum inventory M at the start of each period under both the op-
timal auction and list price policies. As a result, there is no rationing
of product, and thus customers do not face any bidding competition.
Without bidding competition, the auction produces the same profits as
the base-stock, list price policy.

6.4.4.2 Numerical Comparisons
We next present the results of some numerical simulations from [527]

with the average-profit criterion. The following base case is used as a
starting point. The ordering cost is normalized at customers’
valuations are assumed uniform of width centered at (that
is, customers’ valuations are centered at the cost, with representing
the dispersion in valuations); there are a constant N = 50 customers
per period; and the holding cost is linear of the form where

is the one-period interest rate.
The individual parameters of this base case are varied to see the effect

on the absolute and relative performance of each policy. Along with
expected profit, a fill rate is computed for each policy, defined as the
expected number of customers who are awarded an item divided by the
expected number who attempt to purchase (those with valuations above
the reserve price in the auction or those with valuations above the fixed
price in the base-stock, list price case).14 The fill rate gives a measure of

14 Formally, if denotes the number of customers with valuations greater than
then the fill rate is the ratio in the auction case and

in the list price case, where is the optimal list price.
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the scarcity of inventory relative to demand and is a traditional service
measure in inventory problems.

The first experiment shows how the profit is affected by the number
of customers in each period. The number of customers N is assumed
constant, but N is varied from 1 to 1,000. All other parameters are the
same as in the base case. The results are summarized in Table 6.3. As

one would expect, the profits and inventory levels increase in both poli-
cies as the number of customers increases. Also, as shown theoretically
in Proposition 6.10, the base-stock, list-price mechanism is optimal in
the limiting case of just one customer per period. In the other extreme,
as N gets large, again the base-stock, list price profit approaches the
optimal auction profit, as predicted by the asymptotic result of Propo-
sition 6.10. The biggest benefit from the auction occurs at a moderate
value of five customers per period, where it achieves a 3.2% increase in
profits over list pricing.

Note that the fill rate and inventory level are also higher in the base-
stock, list price case. This suggests that the auction policy deliberately
introduces some scarcity in the available goods to create more bidding
competition among the customers.

The next experiment shows the effect of varying the interest rate
equivalently varying the holding cost rate since (with
in our case). Typically, this interest rate represents a cost of capital plus
a rate of depreciation in the product’s value over time. Table 6.4 shows
the results. The small difference in the expected profits for the lowest
interest rate confirms the result of Proposition 6.10—low holding cost
leads to high inventory levels, which reduces the bidding competition and
hence the benefit of the auction. As the interest rate rises, the auction
performs relatively better, achieving a large 21.67% improvement over
list pricing when the interest rate reaches 10%. This is simply the reverse
effect: a high holding cost means the firm is unwilling to stock much
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inventory. Since the number of customers per period is unchanged, the
number of customers per unit of inventory increases; more competition
among customers is created and hence the auction mechanism performs
relatively better.

It is worth pointing out, however, that there are few practical situa-
tions where interest rates of over 1% per period are observed, especially
if one is considering auctions that are held relatively frequently (such
as weekly). Rates this high are observed for products such as personal
computers, which become obsolete quickly, but for most goods, weekly
rates of less than 1% are the norm. This suggests that either the prod-
uct has to suffer rapid depreciation or selling events have to be relatively
infrequent (such as monthly or semiannual periods, not weekly) for the
firm to realize a significant benefit from using auctions over list pricing.

Finally, as in the finite-horizon problem without replenishment, nu-
merical experiments show that variability in the valuations or vari-
ability in the number of customers N increases the relative benefits of
the auction policy.

6.5 Network Auctions
We next consider an auction mechanism for a network RM prob-

lem of the type studied in Chapter 3, which is based on Cooper and
Menich [129]. Customers in this case bid for products (combinations of
resources), and the firm awards resources based on these product-level
bids. Such auctions are also relevant to procurement settings, where
customers bid for a mix of inputs required to produce a given product.
Customers desire the entire bill of materials (the complete set of re-
sources) and a firm, with stockpiles of the various resources, must solicit
bids and award the resources given a collection of package bids.

We next look at such an auction based on a network version of the
Vickrey (second-price, sealed-bid) auction (a so-called Vickrey-Clarke-
Groves mechanism [533, 120, 226]). We describe the basic mechanism
and the resulting equilibrium bidding strategies and then explore the
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connections between this problem and traditional, network-capacity-
control problems.

6.5.1 Problem Definition and Mechanism
The problem definition and notation are similar to those in Chapter 3,

but are slightly modified to be consistent with the auction notation of
this chapter. There are N customers, each with a private valuation
for one unit of product which requires one or more of resources.
We define if the product required by customer uses resource

and otherwise. The incidence matrix is defined by
The vector of current remaining capacities of the resources is

Because the mechanism is based on a generalized Vickrey
auction, minimal assumptions about customers and their valuations are
needed, as we show below. In fact, we require only that customers are
rational and that their valuations are finite.

The mechanism is defined as follows. As in the classical auction set-
ting, let denote the allocation vector,
denote the payment vector, and denote the
vector of bidding strategies. Customers submit a sealed bid for
their desired product The firm collects all N bids
and then solves the following integer program:

Let  denote an optimal solution to this integer program. The set
of winning customers is denoted

It is important to note that the optimal value of this integer program
is not the revenue earned by the firm; rather, it is solved simply as a
means of determining winners and losers in the auction. The revenue
to the firm will be determined by the vector of payments p(b) that are
requested from the winning customers, which we look at next.

Note that the surplus of customer is

Let denote the unit vector and note that is the vector of
bids with the component replaced by zero—that is, the vector of bids
without the bid of customer Then the scheme calls for the winning
customers to pay
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Note that the term is simply the network benefit
of having customer bid. And also clearly
since when adding customer bid of the optimal value of the problem
(6.26) cannot increase by more than If it is
because other winning bids were displaced to include the bid of customer

in the optimal solution. Hence, represents
the displacement cost produced by including customer in the winning
set, and hence in this scheme a customer pays his displacement cost.
As we show below, this displacement-cost interpretation of the payment
has a close connection to the bid-price values from the network problems
studied in Chapter 3.

6.5.2 Equilibrium Analysis
We next analyze the equilibrium produced by this mechanism. An

important relation is obtained by rewriting (6.28) as

This holds because

which is trivially true when when then it is true
because in this case

Therefore, substituting (6.29) into (6.27), we find that the customer
net utility can be written as

This shows that customer payoff does not depend on his bid but
only on whether his bid places him in the winning set

Thus, as in a second-price auction, one can show that if a
customer bids less than his valuation, it reduces his chances of winning
only in cases where he would have a positive net surplus, and bidding
more than his valuation increases his chance of winning only in cases
where his net surplus is negative. Indeed, one can prove

PROPOSITION 6.11 Under a sealed-bid mechanism with allocations de-
termined by an optimal solution to (6.26) and payments deter-
mined by (6.28), then is a dominant strategy for all cus-
tomers, and hence is a dominant-strategy equilibrium.
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As a result of this fact, we can assume b = v, and the equilibrium
revenue collected by the firm is therefore given by

Note that this revenue is less than since and
when So the revenue collected by the firm is less than the
optimal solution to the integer program (6.26) as claimed.

6.5.3 Relationship to Traditional Auctions
We next show that this mechanism is indeed the network generaliza-

tion of the second-price mechanism in a traditional C-unit auction. To
see this, note we can formulate the C-unit auction as an instance of
the network auction with and In this case, solving the
integer program (6.26) is trivial. We simply award the C items to the
C customers with the highest bids which is the same as the classical
second-price allocation. Also, note that the optimal value is

where denotes the highest bid. As a result, by (6.28) each winner
pays

which is just the usual second-price auction payment with no reserve
price. Thus, the allocations and payments reduce to those of the classical
C-unit second-price auction in the case.

Relationship to Traditional Network RM
This network-auction mechanism also has an interesting connection

to bid prices in traditional network RM. We proceed informally here to
illustrate the ideas, but the connections can be made rigorous.

6.5.4
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Consider the linear programming relaxation of (6.26), which is

Note that this is the exactly same form as the deterministic linear pro-
gramming (DLP) model of Section 3.3.1, interpreting the demands for
product to be one for all Let denote the optimal solution of
(6.30). As in the DLP model, let denote a vector of
optimal dual variables for the capacity constraints

Note that if we remove customer from the problem, then the re-
duction in revenue in this relaxed problem is zero if while if

it is approximately given by15

since removing customer eliminates his bid but frees up a unit of
capacity on each resource used by product and gives the mar-
ginal benefit of this freed-up capacity. So the right-hand side above is
approximately the net benefit of having customer in the problem.

As a result, the amount a winning customer pays from (6.28) is
approximately

Thus, roughly speaking, winning customers pay the bid prices of the set
of resources required by the product they are bidding for.16 Of course,
the actual bidding mechanism uses an integer program rather than a
linear program, but the connection is still close.

For example, if we allow continuous allocations in the auction (cus-
tomers can receive a fractional quantity of the product they bid on and
are willing to accept any quantity between 0 and 1), the two problems

l5Here, we are ignoring the possibility that the dual is degenerate, and we are assuming the
allowable decrease in the right-hand side of the constraints is at least one, so that

measures the change in the optimal objective function when the capacity is reduced by
the vector
16Despite the close connection between bid prices and the price paid by customers in this
network Vickrey auction, the use of the term bid price is purely a coincidence; the two
problems were not connected in the literature or in practice until quite recently.
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coincide exactly. In this case, by linear programming duality, one can
say that a customer gets a positive allocation only if his bid is at
least as large as the sum of the bid prices, The payment of
these customers with positive allocations is also given by the sum of the
bid prices.

6.5.5 Revenue Maximization and Reserve Prices
While the network mechanism outlined above has a well-defined,

dominant-strategy equilibrium, it is not revenue maximizing for the firm.
To see this, suppose that for any customer
This would occur, for example, if the resources required by the product
requested by customer are not capacity constrained, so that includ-
ing as one of the winners would not displace any other winners. In
this case, the payment according to (6.28) is simply There-
fore, any customers requesting unconstrained resources would win and
pay nothing. However, clearly, the firm would increase its revenue by
charging these customers something positive.

Just as in the classical auction, reserve prices can be used to increase
the revenue in the network case. However, there is no theory showing
how to construct optimal reserve prices in this case. Still, one can heuris-
tically consider a scheme whereby the firm imposes reserve prices, de-
noted on each resource and requires each customer to submit bids
that exceed the sum of the reserve prices of the resources requested—
that is, It is still a dominant strategy for customer to bid
his valuation provided it exceed otherwise, his dominant
strategy is not to bid at all.

Numerical results show that one can increase revenue significantly by
using such reserve prices. For example, Table 6.5 shows the simulated
revenues for an example with two resources and three customer types.
Type 1 customers require only resource 1, type 2 customers require only
resource 2, and type 3 customers require both resources 1 and 2. The
number of customers of each type is an independent Poisson random
variable. Customers of types 1 and 2 have valuations with a mean of
100 and variance of 10; customers of type 3 have a valuation with mean
200 and variance of 20. There are 20 units of capacity for each of the two
resources. Two demand scenarios are tested—a high-demand scenario
in which the mean number of customers of each type is 15 and a low-
demand scenario in which the mean number of customers of each type is
5. Symmetric reserve prices are used for each of the two resources, but
they are varied.

Table 6.5 shows the effect of the reserve prices on the average revenues
in the two scenarios. Note that in the high-demand scenario (Poisson-
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15), the reserve price has a minimal effect on the average revenue for low
reserve prices, with a maximum occurring at $70. However, revenues
decrease significantly once the reserve price approaches $100, the mean
valuation that customers have for each resource. In contrast, in the low-
demand scenario (Poisson-5), the reserve price significantly increases
revenues, achieving a maximum with a reserve price of $80. Again,
revenues fall when we increase the reserve price beyond this point. This
behavior is consistent with a traditional C-unit auction, where reserve
prices affect only the revenue when there are fewer than C customers
willing to bid above the reserve price.

6.6 Notes and Sources
The formal study of auctions stems from the seminal work of Vick-

rey [533], who derived the equilibrium strategies and the revenue equiv-
alence of standard first and second-price auctions. The extensive two-
volume collection edited by Klemperer [306] provides an excellent source
for much of the literature on auction theory; see also Klemperer’s [305]
excellent survey article contained therein. Other survey articles on
the private-value model are Matthews [366], McAfee [369], and Mil-
grom [381].

The analysis of optimal auction mechanisms for the private-value
model, as described in Section 6.2.5, stems from the seminal paper of
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Myerson [398], Maskin and Riley [364] extended Myerson’s optimal auc-
tion analysis to multiunit auctions. The optimal discriminatory auction
discussed in Section 6.2.7.3 is addressed in more detail in the survey
of McAfee and McMillan [369] but was again originally due to Myer-
son [398].

The dynamic RM auction model in Section 6.3 is from Vulcano, van
Ryzin, and Maglaras [542]. The infinite-horizon version with replenish-
ment discussed in Section 6.4 is from van Ryzin and Vulcano [527].

The problem and results in Section 6.5 on network auctions are from
Cooper and Menich [129]. For a an in-depth survey of other combinato-
rial auctions, see de Vries and Vohra [156].

APPENDIX 6.A: Proof of the Revenue-Equivalence
Theorem

This surprisingly simple proof of the revenue-equivalence Theorem 6.1 is from
Klemperer [305]:
Proof
Consider any symmetric equilibrium. Let denote the probability that a customer
winning under this equilibrium given his valuation is (a type customer), and let

denote the expected surplus of a customer with valuation defined by

where is the expected payment. Since we are assuming an equilibrium, we must
have that

This follows because is the probability a customer wins if they were to follow
the strategy of a customer with valuation instead of And if a customer with a
valuation wins by doing so, they value the item an amount different from
a type customer. Hence, the right-hand side above is the expected surplus for a
customer of valuation if he follows the strategy of a type customer. However, as
we are in equilibrium, a type customer’s surplus cannot be improved by deviating
from the equilibrium strategy

Considering that a type customer would not want to mimic a type cus-
tomer, we then have

and similarly since a type customer would not want to mimic a type customer,

Combining these two inequalities and we have that

Since by assumption the allocation is increasing in for all then
is increasing in (since , so the above inequalities are
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always feasible. Letting shows

where upon integrating, we obtain

where the last equality follows by the assumption 5(0) = 0 (i.e., customers with
valuation zero have zero expected surplus).

Next, note that the expected payment, is equal to the
expected revenue received by the firm. This means the firm’s expected revenue from
type customer is

To evaluate this, note that by (6.A.1), we have

where the last equality is obtained by integrating by parts, since

Substituting (6.A.3) into (6.A.2), the firm’s expected revenue from each customer
is

where recall that (which is always well defined since, by assumption,
F is strictly increasing, so we always have that Summing over all N
customers, the firm’s total expected revenue is
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Finally, noting that the allocation variable if customer is awarded
an item and is zero otherwise, we have that Hence, the
above expected revenue can be written

QED
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Chapter 7

CUSTOMER-BEHAVIOR AND
MARKET-RESPONSE MODELS

This chapter reviews the basic theory of consumer choice, aggregate
demand, and the operational, market-response models that are used in
both quantity- and price-based revenue management. Because demand
results from many individuals making choice decisions—choices to buy
one firm’s products over another, to wait or not to buy at all, to buy
more or fewer units—we begin by looking at models of individual-choice
behavior. When added up, these individual purchase decisions deter-
mine aggregate demand, so we next discuss aggregate-demand functions
and their properties. Our treatment of the theory is somewhat abbrevi-
ated, aimed more at developing an intuitive and practical understanding
of the concepts. The Notes and Sources section at the end of the chap-
ter provides references that offer more extensive treatment of consumer
behavior theory. Appendix E at the end of the book provides a basic ref-
erence on consumer theory, including utility theory, reservation prices,
and risk preferences.

7.1 The Independent-Demand Model
Before delving into more complex models of demand, we first briefly

review the independent-demand model, which is the basis of much of
the material in Chapters 2 and 3 on quantity-based RM. This model is
rather simple: it assumes that demand for each product is an indepen-
dent stochastic process, not influenced by the firm’s availability controls.
Further, as we have seen in Section 2.2, static models of quantity-based
RM also assume that the demand for products arrives in a specified or-
der over the booking period, with demand for the lower-priced products
appearing first. Thus, the independent model does not endogenize cus-
tomer behavior, neither choice behavior nor purchase-timing behavior.
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While it is easy to criticize the simplistic nature of this model, one
can make a few theoretical and practical arguments in support of it.
As discussed in Chapter 2, in standard quantity-based RM practice the
customer is faced with a menu of possible products differentiated by
prices and restrictions. As a result, if the firm offers products, cus-
tomers are approximately segmented into separated populations (one
for each product) according to their preference for the different product
restrictions and prices. If customers are sufficiently well segmented by
the restrictions (in the sense that most of the customers who are eligi-
ble to purchase one product are not eligible to buy another), then the
independent-demand assumption is not unreasonable. However, this ar-
gument is admittedly weakened by the fact that (at least in the airline
case) most restrictions are progressively relaxed as the fares get higher.
So a customer who is eligible for one fare class is normally eligible for
all classes with higher fares. We must then assume that customers are
unwilling to purchase these higher fares.

Second, the independent-demand model is reasonable if the market
is competitive and products are commodities—defined as products in
which the identity of the supplier is of little importance to customers. In
such cases, firms are price takers and can control only the quantity they
sell; customers, in turn, base their choices only on price and are willing
to buy from any firm offering the market price. (See Section 8.2.) Hence,
if a given commodity product is not available at one firm—in particular,
if its availability is closed by RM system controls—then demand for
that product effectively disappears because customers will purchase the
product from a competitor rather than switching to alternative products.

Third, the model reflects the current airline and hotel industry prac-
tice of separating pricing and capacity-control decisions, reflecting the
different scope of the two in these industries—pricing decisions are made
infrequently, while capacity-control is done in real-time; prices are set
at a market level that includes a large number of flight departures (for
airlines) and for an entire season (for a hotel) while capacity control is
exerted on individual flights and dates. The implicit assumption in tra-
ditional quantity-based RM is that when prices for the products change,
the change in the demand being observed will influence the forecasts
and this changed forecasts, together with the new price of each product,
will lead to changes in the capacity controls on each flight. This sort
of quasi-static view of the price-demand relationship lies at the heart of
current RM practice, and indeed the success of traditional RM method-
ology points to the practical utility of the overall approach.

Finally, the independent-demand model considerably simplifies the
RM forecasting and optimization tasks. Forecasting can use historical
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demand data in standard time series forecasting methods, and we can
solve stochastic optimization models based on the independent-demand
model (at least approximately) relatively efficiently.

Yet despite these arguments in support of the independent-demand
model, the fact that it ignores consumer behavior is conceptually unsat-
isfying and, more important, limits the full potential of RM methods.
To counter its simplifications, a number of ad-hoc methods, such as the
sell-up model discussed in Section 2.6, have been proposed. The discrete-
choice model of Section 2.6 is a more recent alternative that overcomes
the limitations of the independent-demand model. This latter model
has more in common with the customer-choice-behavior view of demand
that is the focus of this chapter.

7.2 Models of Individual Customer Choice
We next look at the basic approaches for modeling individual customer

purchase decisions. In Chapter 9, we discuss methods for estimating the
parameters of these models.

7.2.1 Reservation-Price Models
The simplest practical models of customer choice directly model cus-

tomers’ reservation prices for particular items. Each customer is as-
sumed to follow a simple decision rule: if his reservation price (or val-
uation) equals or exceeds the offered price the customer purchases
the product; otherwise, he will not purchase the product. Moreover, he
buys at most one unit of the product.

A customer’s reservation price is specific to each individual and typ-
ically is private information unknown to the firm. However, based on
management judgment, historical observed purchase behavior or other
observable characteristics of the individual (such as place, time, and
channel of purchase), the seller can attempt to model the distribution
of the reservation prices across a population of customers and estimate
at least the parameters of the distribution. This leads to a problem of
finding a distribution F(·) such that the probability that a customer’s
reservation price is below is given by

Often, however, the distribution of reservation prices is modeled in-
directly by assuming an aggregate-demand function, as we discuss in
Section 7.3 below. Hence, we postpone further discussion of reservation-
price modeling until that point.
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7.2.2 Random-Utility Models
Random-utility models are based on a probabilistic model of indi-

vidual customer utility. (See Appendix E for a formal discussion of
utility theory.) They are useful for several reasons. First, probabilistic
models can be used to represent heterogeneity of preference among a
population of customers. Second, they can model uncertainty in choice
outcomes due to the inability of the firm to observe all the relevant
variables affecting a given customer’s choice (other alternatives, their
prices, the customer’s wealth, and so on). Third, they can model sit-
uations where customers exhibit variety-seeking behavior and deliber-
ately alter their choices over time (movie or meal choice, for example).
Finally, probabilistic choice can model customers whose behavior is in-
herently unpredictable—that is, customers who behave in a way that is
inconsistent with well-defined preferences and at best, exhibit only some
probabilistic tendency to prefer one alternative to another. Luce [349]
developed a model of this type of random-choice behavior based purely
on a set of axioms on choice probabilities, analogous to the axioms used
to define classical deterministic utility functions. (See Appendix E.)1

For all these reasons, it is often reasonable to assume that a firm has
only probabilistic information on the utility function of any given cus-
tomer, and this can be modeled by assuming that customers’ utilities
for alternatives are themselves random variables. Specifically, let the

alternatives be denoted A customer has a utility for
alternative denoted Without loss of generality we can decom-
pose this utility into two parts, a representative component that is
deterministic and a mean-zero random component, Therefore,

and the probability that an individual selects alternative from a subset
S of alternatives is given by2

In other words, the probability that has the highest utility among all
the alternatives in the set S.

The representative component is often modeled as a function of
various observable attributes of alternative A common assumption is

1The distinction between models based on randomized preferences and those based on
random-choice behavior is important primarily to behavioral theorists. A seminal work in
this area is Block and Marschak [79]. However, for most RM problems what matters most is
the demand process produced by a given model.
2That customers choose based on maximizing utility is itself an assumption. See Appendix E
for a discussion of utility maximization as a model of customer choice.
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tomer the utility of alternative is For simplicity, we ignore customer-specific charac-
teristics here, but they can be incorporated into all the models that follow.
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the linear-in-attributes model

where is a vector of parameters and is a vector of attribute values
for alternative which could include factors such as price, measures of
quality and indicator variables for product features. Variables describing
characteristics of the customer (segment variables) can also be included
in 3

This formulation defines a general class of random-utility models,
which vary according to the assumptions on the joint distribution of the
utilities Random-utility models are no more restrictive in
terms of modeling behavior than are classical utility models; essentially,
all we need assume is that customers have well-defined preferences so
that utility maximization is an accurate model of their choice behavior.
(Theorem E.3 in Appendix E.) However, as a practical matter, certain
assumptions on the random utilities lead to much simpler models than
others. We look at a few of these special cases next.

7.2.2.1 Binary Probit
If there are only two alternatives to choose from (such as buying or

not buying a product) and the error terms are independent,
normally distributed random variables with mean zero and identical vari-
ances then the probability that alternative 1 is chosen is given by

where denotes the standard normal distribution. This model is
known as the binary-probit model. While the normal distribution is an
appealing model of disturbances in utility (it can be viewed as the sum
of a large number of random disturbances), the resulting probabilities do
not have a closed-form solution. This has led researchers to seek other,
more analytically tractable, models.

7.2.2.2 Binary Logit
The binary-logit model applies also to a situation with exactly two

choices, similar to the binary-probit case, but is simpler to analyze. The
assumption made here is that the error term has a logistic
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distribution—that is,

where µ  > 0 is a scale parameter and Here has a

mean zero and variance The logistic distribution provides a good
approximation to the normal distribution, though it has “fatter tails.”
The probability that alternative 1 is chosen is given by

7.2.2.3 Multinomial Logit
The multinomial-logit model (MNL) is a generalization of the binary-

logit model to alternatives. It is derived by assuming that the are
i.i.d. random variables with a Gumbel (or double-exponential) distribu-
tion with cumulative density function

where is Euler’s constant (= 0.5772...) and µ  is a scale parameter.
The mean and variance of are

The Gumbel distribution has some useful analytical properties, the
most important of which is that the distribution of the maximum of
independent Gumbel random variables with the same scale parameter µ
is also a Gumbel random variable. If two random variables and are
Gumbel distributed with mean 0 and scale parameter µ , then
has a logistic distribution with mean 0 and variance, leading to the
binary-logit model.

For the MNL model, the probability that an alternative is chosen
from a set that contains is given by

If has a unique maximum and then the variance of
the tends to zero and the MNL reduces to a deterministic
model—namely
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Conversely, if then the variance of the tends to
infinity and the systematic component of utility becomes negligible.
In this case,

which corresponds to a uniform random choice of the alternatives in S.
Hence, the MNL can model behavior ranging from deterministic utility
maximization to purely random choice.

The MNL has been widely used as a model of customer choice. How-
ever, it possesses a somewhat restrictive property known as the indepen-
dence from irrelevant alternatives (IIA) property—namely, for any two
sets and any two alternatives the choice
probabilities satisfy

Equation (7.7) says that the relative likelihood of choosing and is
independent of the choice set containing these alternatives. This prop-
erty is not realistic, however, if the choice set contains alternatives that
can be grouped such that alternatives within a group are more similar
than alternatives outside the group because adding a new alternative
reduces the probability of choosing similar alternatives more than dis-
similar alternatives. A famous example illustrating this point is the
“blue-bus/red-bus paradox,” (Debreu [150]):

Example 7.1 An individual has to travel and can use one of two modes of trans-
portation: a car or a bus. Suppose the individual selects them with equal probability.
Let the set S = {car, bus}. Then

Suppose now that another bus is introduced that is identical to the current bus
in all respects except color: one is blue and one is red. Let the set T denote
{car, blue bus, red bus}. Then the MNL predicts

However, as bus color is likely an irrelevant characteristic in this choice situation, it
is more realistic to assume that the choice of bus or car is still equally likely, in which
case we should have
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As a result of IIA, the MNL model must be used with caution. It
should be restricted to choice sets that contain alternatives that are, in
some sense, “equally dissimilar.” Example 9.18 provides one empirical
test for the IIA property.

Despite this deficiency, the MNL model is widely used in marketing.
(See Guadagni and Little’s [227] work on determining brand share in
the presence of marketing variables such as advertising and promotion.)
It has also seen considerable application in estimating travel demand.
(See Ben-Akiva and Lerman [48].) The popularity of MNL stems from
the fact that it is analytically tractable, relatively accurate (if applied
correctly), and can be estimated easily using standard statistical tech-
niques. (See Example 9.6.)

Variations of the MNL have been introduced to avoid the IIA problem,
the most prevalent of which is the nested MNL [49]. Our next section
looks at some generalizations of the MNL that avoid the IIA property.

7.2.3 Customer Heterogeneity and Segmentation
RM often relies on the premise that different customers are willing

to pay different amounts for a product. For example, demand functions
arise from heterogeneity in the reservation prices of customers. In many
situations, this level of modeling of heterogeneity is sufficient or is the
only practical approach.

Yet a more accurate representation of demand is achievable if cus-
tomers can be segmented into groups with similar preferences and price
responses. This entails classifying customers into K segments, where
each segment has its own choice model. If done properly, each of these
segment-level models predicts the behavior of the segment better than a
common choice model. In the extreme case, one could potentially define
a different segment for each customer. However, a model of heterogene-
ity has to find the right balance between estimability and accuracy; each
segment should not be so narrowly defined or so small as to make estima-
tion impossible, yet it should be sufficiently small that customers within
a segment have relatively homogeneous price and marketing variable re-
sponses. The aim is to maximize between-group variation but minimize
within-group variation with respect to market responses. (Many of the
techniques used to identify and segment customers are based on cluster
analysis.) We next look at a few common approaches along these lines.

7.2.3.1 Finite-Mixture Logit Models
In the basic MNL model with linear-in-attribute utilities, the coeffi-

cients in (7.3) are assumed to be the same for all customers. This may
not be an appropriate assumption if there are different segments with



Customer-Behavior and Market-Response Models 309

different preferences. Moreover, as we’ve seen, the assumption leads to
the IIA property, which may not be reasonable in certain contexts. If
we can identify each customer as belonging to a segment, then it is an
easy matter to simply fit a separate MNL model to the data from each
segment. However, a more sophisticated modeling approach is needed if
segment membership is not observable.

Assume that customers within each segment follow a MNL model
with identical parameters and that customers have a certain probability
of belonging to a segment (called a latent segment), which has to be
estimated along with the MNL parameters for each segment. This results
in the so-called finite-mixture logit models.

Assume that there are L latent segments and that the probability that
a customer belongs to segment is given by

All customers in segment are assumed to have utilities determined by
an identical vector of coefficients Then the probability of choosing
alternative in this finite-mixture logit model is given by

One then tries to estimate the coefficients of the model and
using, for example, maximum-likelihood methods. This model

often provides better estimates of choice behavior than the standard
MNL model, at the expense of a more complicated estimation procedure.

7.2.3.2 Random-Coefficients Logit Models
Another approach to modeling heterogeneity is to assume that each

customer has a distinct set of coefficients that are drawn from a
distribution—usually assumed normal for analytical convenience—over
the population of potential customers. This leads to what is called the
random-coefficients logit model. The coefficients may also be correlated,
both within themselves as well as with the error term, though we focus
here on the simpler case where the coefficients are mutually independent.

Here again the utility of alternative is given, similar to the MNL
model, as

However, is now considered a vector of random coefficients, each el-
ement of which is assumed to be independent of both the other coeffi-
cients in and the error term Furthermore, the components of
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are assumed to be normally distributed with a vector of means b and a
vector of standard deviations The components of the random vector

corresponding to characteristic denoted can be decomposed
into

where is a collection of i.i.d. standard normal random
variables.

It is convenient to express the utility as a systematic part and a mean-
zero error term as before: To this end, define the composite random-error
term

Then a customer’s random utility is given by

where is given by (7.8). Hence, the key difference between the stan-
dard MNL and the random-coefficient logit is that the error terms
are no longer independent across the alternatives (and somewhat less
important, they are no longer Gumbel distributed). The following ex-
ample illustrates the idea:

Example 7.2 Suppose that there are three alternatives with two char-
acteristics each and that the values of the characteristics are given as in
Table 7.1.

If the parameter means are estimated as then the logit model
would have a customer choosing one of the three products with an equal probability.
In contrast, the random-coefficients logit model would have customers with a high
preference for characteristic1 high) consider alternatives 1 and 2 as closer substi-
tutes than alternative 3. Customer preferences and product characteristics interact
via (7.8).

Note also that the IIA property of standard logit is partially mitigated in this
model. A customer with a high preference for characteristic will choose
alternative 2 with high probability if the choice set {2,3} is offered and will choose 1
or 2 with equal probability if the choice set {1,2, 3} is offered.

7.3 Models of Aggregate Demand
Even with transaction-level data, it is often easier to model and es-

timate aggregate demand rather than individual customer-choice deci-
sions. Figure 7.1 illustrates how the heterogenous reservation prices of
individual demand translate into a price versus quantity relationship for
aggregate demand. Depending on the model, this aggregate demand



Customer-Behavior and Market-Response Models 311

could be defined at the product, firm, or market level. If defined at
the product or firm level, interactions with demand for other products
(cross-elasticities) and dependence on historical demand or product at-
tributes may have to be incorporated in its specification. In this section,
we look at some commonly used aggregate-demand models.

7.3.1 Demand Functions and Their Properties
For the case of a single product, let and denote, respectively,

the (scalar) price and the corresponding demand at that price. Also
let denote the set of feasible prices (the domain) of the demand
function. For most demand functions of interest, but some
functions (such as the linear-demand function) are not well defined for
all nonnegative prices.
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7.3.1.1 Regularity
It is often convenient to make the following regularity assumptions

about the demand function:

ASSUMPTION 7.1 (REGULARITY: SCALAR CASE)
(i) The demand function is continuously differentiate on
(ii) The demand function is strictly decreasing, on
(iii) The demand function is bounded above and below:

(iv) The demand tends to zero for sufficiently high prices—namely,

(v) The revenue function is finite for all and has a finite
maximizer that is interior to the set

These are not restrictive assumptions in most cases and simply help
avoid some technical complications in both analysis and numerical op-
timization. For example, consider a linear demand model (defined for-
mally in Section 7.3.3.1)

This is trivially differentiable on is strictly decreasing if is
nonnegative and bounded for all tends to zero for and
the revenue and has a finite maximizer

7.3.1.2 Market-Share and Reservation-Price Distribution
It is sometimes convenient to express the demand function in the form

where is a cumulative distribution function and N is interpreted as
the market size. is then interpreted as the fraction of the market
that is willing to buy at price equivalently, is the distribution of
reservation prices in the customer population. The derivative of
is denoted

For example, consider again the linear-demand function (7.10). This
can be written in the form (7.11) if we define and
Since F(.) is the probability distribution of a customer’s reservation price

reservation prices are uniformly distributed in the linear-demand-
function case.
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7.3.1.3 Elasticity of Demand

The price elasticity of demand is the relative change in demand pro-
duced by a relative change in price. It is defined by

Note that elasticity is defined at a particular price
To illustrate, for the linear-demand function (7.10), so the

elasticity is

Products can be categorized based on the magnitude of their elasticities.
A product with is said to be elastic, while one with a elasticity
value is said to be inelastic. If demand for the
product is said to be perfectly elastic, while if demand is
said to be perfectly inelastic. Table 7.2 shows a sample of estimated
elasticities for common consumer products. While many factors affect
elasticity, these estimates give some sense of the relative magnitudes of
elasticities.

7.3.1.4 Inverse Demand
The inverse-demand function, denoted is the largest value of

which generates a demand equal to —that is,

Given an inverse-demand function, one can view demand rather than
price as the decision variable, since every choice of a demand implies
a unique choice of price This is useful, as it is often easier ana-
lytically and computationally to work with demand rather than price as
the decision variables in optimization problems.

The inverse may not be well-defined, however—for example, for values
of corresponding to points at which the demand function has a
jump discontinuity. Also, there may be not be a price that produces
any given value of demand (for example, if demand remains bounded
as tends to zero yet is large). Since not all values of may be
obtainable, we let denote the set of achievable demand values. This
set plays a role analogous to for the demand function.

Under the regularity Assumption 7.1, the demand function is strictly
decreasing and continuously differentiable on so the inverse-demand
function is always well defined and continuously differentiable on the
set Indeed, under Assumption 7.1, the
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demand function is continuous, decreasing, and bounded and tends to
zero for sufficiently high prices. One can also verify that the domain of
the inverse-demand function is always an interval of the form
for some upper bound

Equation (7.11) expressed in terms of the reservation-price distribu-
tion, the inverse-demand function is defined by
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where is the inverse of F(.).
To illustrate, the inverse of the linear-demand function (7.10) is

and the set of feasible demand rates is

7.3.1.5 Revenue Function
The revenue function, denoted is defined by

This is the revenue generated when using the price and is of fun-
damental importance in dynamic-pricing problems. For example, the
linear-demand function (7.10) has a revenue function

For most dynamic-pricing problems, we require that this revenue func-
tion be concave, as in the linear example above. This condition leads to
well-behaved optimization problems.

7.3.1.6 Marginal Revenue
Another important quantity in pricing analysis is the rate of change

of revenue with quantity—the marginal revenue—which is denoted
It is defined by

It is frequently useful to express this marginal revenue as a function of
price rather than quantity. At the slight risk of confusion over notation,
we replace by above and define the marginal revenue as a function
of price by4

4By the inverse-function theorem,
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Note that above is still the marginal revenue with respect to
quantity— —but expressed as function of price rather than quan-
tity; in particular, it is not the marginal revenue with respect to price.5

Expressing marginal revenue in terms of the reservation-price distri-
bution we have that

where is the hazard rate of the distribution
6 The marginal revenue function plays an important role in pricing

problems. It is also central to the design of revenue-maximizing auctions,
where it is referred to as the virtual utility, for reasons that are discussed
in Chapter 6.

To illustrate, consider the marginal revenue of the linear-demand func-
tion of (7.10) as a function of

Substituting for above we obtain the marginal revenue
as a function of price

It is frequently useful to make the following assumption about the
marginal revenue:

ASSUMPTION 7.2 (MONOTONE MARGINAL REVENUE) The marginal
revenue defined by (7.11) is strictly decreasing in the demand
Equivalently, the marginal revenue defined by (7.13) is strictly
increasing in the price

5The relationship between the marginal revenue with respect to price and quantity is as
follows: since then and Therefore,

(This also follows from the chain rule.)
6To see this, note that so

where the first equality follows from (7.13) and the next two from (7.11).
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Note that this condition guarantees that the revenue function is
a concave function of the demand which again is a useful property in
optimization models because it guarantees that first-order conditions are
sufficient for determining an optimal price. This property is satisfied,
for example, by the linear-demand function.

Slightly weaker conditions than those of Assumption 7.2 will also en-
sure that pricing-optimization problems are well behaved. In particular,
if the revenue function is strictly unimodal,7 this is often sufficient to
ensure that there is a unique optimal price. (This is true for simple un-
constrained pricing problems, for example.) Recall that denotes the
reservation-price density (derivative of and
denotes the hazard rate. Then the following sufficient conditions on the
reservation-price distribution ensure strict unimodality of the revenue
function (see Ziya et al. [591]):

PROPOSITION 7.1 Suppose that the reservation-price distribution
is twice differentiable and strictly increasing on its domain

and Suppose further that F(·) satisfies any one
of the following conditions:
(i) for all

(ii) for all

(iii) for all

Then the revenue functions is strictly
unimodal on (equivalently, the revenue function is
strictly unimodal on

Ziya et al. [591] show there are demand functions that satisfy one
condition but not the others, so the three conditions are distinct.

Another desirable property of the marginal revenue function is that it
spans the range as ranges over (equivalently, ranges over

). This is because in optimization problems, the first-order conditions
typically involve equating marginal revenue to a nonnegative value (such
as a cost or a Lagrange multiplier). If the marginal revenue spans the
range then the solutions of the first-order conditions are always
in (or ), and therefore, the explicit price (or demand) constraints
can be safely ignored. We formalize this property in the following as-
sumption:

7 A function defined on the domain is said to be a unimodal function if there exists
an such that is strictly increasing on and is strictly decreasing on
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ASSUMPTION 7.3 The range of the marginal revenue defined by (7.11)
and (7.13) spans That is, for every such
that equivalently, such that

Note that the linear-demand function does not satisfy this condition
because the marginal revenue is and so
the marginal revenue ranges over Other common demand
functions, however, do satisfy this assumption, as described below.

7.3.1.7 Revenue-Maximizing Price
Under Assumption 7.2, the revenue is maximized at the point where

the marginal revenue becomes zero. Assumption 7.1, part (v), requires
that the maximizer is an interior point of the domain in which case
the revenue-maximizing price is determined by the first-order condi-
tion

Similarly, the revenue-maximizing demand, denoted is defined by

They are related by

For example, for the linear-demand function we have
so an interior point of the set The revenue-
maximizing demand is

Note from (7.13) that since (from Assump-

tion 7.1, part (ii)), and is the price elasticity, we have

Thus, marginal revenue is increasing if demand is elastic at (that is,
if ), and marginal revenue is decreasing if demand is inelastic
at (that is, if ). At the critical value marginal
revenue is zero and revenues are maximized.

If is not monotone but one of the conditions of Proposition 7.1
is satisfied, then is a price such that is increasing for and
is decreasing for moreover,

Figure 7.2 illustrates the idea. Here, the revenue function for
the linear-demand function is plotted above, while the marginal-revenue
function is plotted below. Moving to the right corresponds to in-
creasing the demand and decreasing the price The inelastic-demand
region is to the right of and the elastic region is to the left of
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Starting at the far right with a price of zero, the demand is very
inelastic; large relative changes in price (for example, doubling the price
from to ) result in small relative changes in demand. As a result,
raising the price increases revenues. To the left, at very high price levels,
relatively small decreases in price result in large increases in demand.
Consequently, decreasing price improves revenues. The optimal price
is the boundary of these two regions.

If there is a cost for providing the product—either a direct cost or
opportunity cost—it is always optimal to price in the elastic region. To
see this, let denote the cost, so that is the firm’s profit.
Then the optimal price will occur at a point where
Assuming cost is strictly increasing in quantity, the optimal
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price will be at a point where marginal revenue is positive—in the elastic
region. Thus, it is almost never optimal to price in the inelastic region.8

7.3.2 Multiproduct-Demand Functions
In the case where there are products, let denote the price

of product and denote the vector of all prices. The
demand for product as a function of p is denoted and

denotes the vector of demands for all products.
Again, will denote the domain of the demand function. We also use
the notation to denote all prices other
than

Paralleling the single-product case, the following regularity assump-
tions for the multiproduct-demand function help ensure the resulting
optimization models are well behaved:

ASSUMPTION 7.4 (REGULARITY: CASE) For

(i) demand is strictly decreasing in for all
(ii) The demand function is continuously differentiable on
(iii)The demand function is bounded above and below:

(iv) The demand function tends to zero in its own price for sufficiently
high prices—that is, for all

(v) The revenue function is bounded for all and has a
finite maximizer that is interior to

As in the scalar case, we let p(d) denote the inverse-demand distrib-
ution; it gives the vector of prices that induces the vector of demands d.
In the multiproduct case, this inverse is more difficult to define generally,
and in most cases we simply assume it exists. (For the common demand
functions of Section 7.3.3, the inverse can be defined either explicitly or
implicitly.) Likewise, we denote by the domain of the inverse-demand
function, the set of achievable demand vectors d.

The revenue function is defined by

which again represents the total revenue generated from using the vector
of demands d—or equivalently, the vector of prices p(d). Paralleling

8The only exception is if the firm benefits from disposing of products—that is, if it has a
negative cost. For example, this could occur if there is a holding cost incurred for keeping
units rather than selling them. In such cases, it may be optimal to price in the inelastic
region.
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Assumptions 7.2 and 7.3, in the multiproduct case it is often convenient
to make the following assumption:

ASSUMPTION 7.5 The multiproduct revenue function satisfies
(i) is jointly concave on
(ii) For every there exists a such that

Again, these assumptions help simplify the resulting pricing optimiza-
tion problems and, and though more difficult to check than in the single-
product case, are satisfied by several common demand functions.

The cross-price elasticity of demand is the relative change in demand
for product produced by a relative change in the price of product It
is defined by

If the sign of the elasticity is positive, then products and are said
to be substitutes; if the sign is negative, the products are said to be
complements. Intuitively, substitutes are products that represent dis-
tinct alternatives filling the same basic need (such as Coke and Pepsi),
whereas complements are products that are consumed in combination
to meet the same basic need (such as hamburgers and buns).

7.3.3 Common Demand Functions
The demand function of a product can depend on variables other

than its price (such as product attributes or, marketing variables such
as advertising, brand name, competitor’s prices and past market share),
and modeling demand as a function of all relevant variables makes a
model more realistic and accurate. The variables can either be current
or lagged, when past-period variables affect demand. Here we focus
on demand functions that depend only on current prices. A few other
market-response functions that include nonprice variables are discussed
in Section 9.6.4.

Table 7.3 summarizes the most common demand functions and their
properties, and Figure 7.3 shows graphs of a few of these. All these
functions satisfy the regularity conditions in Assumptions 7.1 and 7.4,
the exception being the constant-elasticity-demand function, which does
not satisfy part (v) of either assumption as explained below.
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7.3.3.1 Linear Demand
We have already seen the case of a linear-demand function in the

scalar case. To summarize, it is

where and are scalar parameters. The inverse-demand
function is

The linear model is popular because of its simple functional form.
It is also easy to estimate from data using linear-regression techniques.
However, it produces negative demand values when which can
cause numerical difficulties when solving optimization problems. More-
over, as mentioned, it does not satisfy Assumption 7.3. Hence, one must
typically retain the price constraint set when using the
linear model in optimization problems.

In the multiproduct case, the linear model is

where is vector of coefficients and is a matrix
of price sensitivity coefficients with for all and the sign of

depending on whether the products are complements
or substitutes If B is nonsingular, then the inverse-demand
function exists and is given by
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One sufficient condition for to exist is that the row coefficients
satisfy9

Roughly, this says that demand for each product is more sensitive to a
change in its own price than it is to a simultaneous change in the prices
of all other products. An alternative sufficient condition for to exist
is that the column coefficients satisfy

Equation (7.17) says that changes in the price of product impacts
the demand for product more than it does the total demand for all
other products combined. In the case of substitutes
this is equivalent to saying there is an aggregate market expansion or
contraction effect when prices change (for example, the total market
demand strictly decreases when the price of product increases, and
demand for product is not simply reallocated one for one to substitute
products).

7.3.3.2 Log-Linear (Exponential) Demand
The log-linear—or exponential—demand function in the scalar case

is defined by

where and are scalar parameters. This function is defined for
all nonnegative prices, so The inverse-demand function
is

The log-linear-demand function is popular in econometric studies and
has several desirable theoretical and practical properties. First, unlike
the linear model, demand is always nonnegative so one can treat price
(or quantity) as unconstrained in optimization problems. Second, by
taking the log of demand, we recover a linear form, so it is also well
suited to estimation using linear regression. However, demand values
of zero are not defined when taking logarithms, which is problematic in
settings where sales are infrequent.

The multidimensional log-linear form is

9 As noted by Maglaras and Meissner [354] from conditions in Horn and Johnson [258].
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where is a scalar coefficient and is a vector of
price-sensitivity coefficients. Letting and as
in the linear model, and taking the logarithm, we have

so again the log-linear model can be estimated easily from data using
linear regression provided the data is not too sparse.

The inverse-demand function can be obtained as in the linear case if
B is nonsingular, in which case

and one can again use the sufficient conditions (7.16) or (7.17) to check
that exists.

7.3.3.3 Constant-Elasticity Demand
The constant-elasticity-demand function in the single-product case is

of the form

where and are constants. The function is defined for
all nonnegative so Since the
elasticity is

a constant for all values (hence the name). The inverse-demand func-
tion is

Note that because elasticity is constant, from (7.15) the marginal rev-
enue will always be positive or will always be negative for all values of

(unless by chance in which case it is zero for all values
of ). Thus, this function usually violates Assumption 7.1, part (iv),
because either the marginal revenue is always positive so or
the marginal revenue is always negative, so both extreme points
of the set (unless, again the elasticity is exactly one, in which case
all values of are revenue maximizing). From this standpoint, it is a
somewhat ill behaved demand model in pricing-optimization problems,
though in cases where revenue functions are combined with cost func-
tions this behavior is less problematic.

The multiproduct constant elasticity model is
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where the matrix of coefficients defines the cross (and own)
price elasticities among the products, since

Note that the inverse-demand function p(d) exists if the matrix B
is invertible, since (here

and log(·) is a strictly increasing function.

7.3.3.4 Logit Demand
The logit demand function is based on the MNL model of Sec-

tion 7.2.2.3. Recall that in the MNL the utility of each alternative
is assumed to be of the form

where is the mean utility of choice and is an i.i.d., random-noise
term with a Gumbel distribution with mean zero and scale parameter
one. For the logit-demand function, we also include a no-purchase alter-
native (indexed by zero) with utility

where is an independent Gumbel random variable with mean zero
and scale parameter 1. Since utility is ordinal, without loss of generality
we can assume The choice probabilities are then given by (7.6)
with the no-purchase alternative having a value

As mentioned, it is common to model as a linear function of several
known attributes including price. Assuming the representative compo-
nent of utility is linear in price and interpreting the choice probabili-
ties as fractions of a population of customers of size N lead to the class
of logit-demand functions.

For example, in the scalar case, we assume and this gives
rise to a demand function of the form

where N is the market size, is the probability that a
customer buys at price , and is a coefficient of the price sensitivity.
The function is defined for all nonnegative so There
is no closed-form expression for the inverse-demand function, but it is
easy to see that is strictly decreasing in so the inverse exists and
is well defined.
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In the multiple-product case, the demand function is given by

where again is a vector of coefficients and

is the MNL probability that a customer chooses product as a function
of the vector of prices p.

One potential problem with the MNL demand model is that it inherits
the IIA property (7.7). This causes problems if groups of products share
attributes that strongly affect the choice outcome. To illustrate what
can go wrong, consider the cross-price elasticity of alternative with
respect to the price of alternative This is given by

Notice that this cross-price elasticity is not dependent on and therefore
cross-elasticity is the same for all alternatives other than

The implications of this constant cross-price elasticity can be illus-
trated by an example of automobile market shares.10 Consider a pair of
subcompact cars and an expensive luxury car. If we lower the price of
one of the subcompact cars by 10%, then (7.18) says that the percentage
change in the demand for the other subcompact car will be the same as
the percentage change in the demand for the luxury car (if the other
subcompact car demand drops by 20%, then the luxury car demand will
also drop by 20%). Such behavior is not very realistic. This IIA behav-
ior stems fundamentally from the i.i.d. assumption on the random-noise
terms of the MNL model. (See Berry [53] for a discussion, and a
possible way around these restrictions on cross-price elasticities.)

7.3.4 Stochastic-Demand Functions
A deterministic demand function can be used to define a stochas-

tic model of demand in a variety of ways. In the stochastic case, we let

10If the population is homogeneous, the choice probabilities represent market share, and the
MNL can be used to estimate market shares.
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denote the random demand as a function of the price and a
random-noise term The three most common random-demand models
are discussed below.

7.3.4.1 Additive Uncertainty
In the additive model, the demand is a continuous random variable

of the form

where is a zero-mean random variable that does not depend on the
price. In this case, the mean demand is and the noise term shifts
the demand randomly about this mean.

Note that this additive disturbance has the property that the elasticity
of demand depends on This follows since

where is the deterministic elasticity. So if a realization
of is less than zero, the elasticity of demand in the stochastic model
is greater than the deterministic elasticity, and if the realization of is
greater than zero, it is smaller.

One potential problem with the additive uncertainty model is that
demand could be negative if is small and the variance of is large.
For this reason, the additive model should be used with caution in ap-
plications where the coefficients of variation for the demand uncertainty
is high.

7.3.4.2 Multiplicative Uncertainty
In the multiplicative model, the demand is again a continuous random

variable but of the form

where is a nonnegative random variable with mean one that does not
depend on the price In this case, the mean demand is again and
the noise term simply scales the mean demand by a random factor.
For the multiplicative model, the elasticity of demand for any given
realization of is the same as the deterministic elasticity, since

where again is the deterministic elasticity. Thus, the random-noise
term does not affect the elasticity of demand; it affects only the magni-
tude of demand.
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Note also that one can also combine the multiplicative and additive
uncertainty models, leading to a demand function of the form

where is a zero-mean random variable and is a nonnegative, unit-
mean random variable.

7.3.4.3 Poisson and Bernoulli Uncertainty
Poisson and Bernoulli models of uncertainty are used in the dynamic

models of demand discussed in Chapter 5. In the Bernoulli model,
is simply a probability of an arrival in a given period. So is the
probability that demand is one in a period, and is the probability
demand is zero. As a result, the mean demand in a period is again
and we can represent the demand as a random function

where is a uniform [0,1] random variable.
For example, consider a situation in which the buyer in the period has

a reservation price that is a random variable with distribution F(·). If
the firm offers a price of they will sell a unit if which occurs
with probability This corresponds to setting
above.

In the Poisson model, time is continuous, and is treated as a
stochastic intensity or rate. That is, the probability that we get a unit
of demand in an interval of time from to is and the
probability that we see no demand is (all other events
have probability ).

The Poisson and Bernoulli models are useful for several reasons. First,
they translate a deterministic demand function directly into a stochas-
tic model, without the need to estimate additional parameters (such
as variance). They also are discrete-demand models—as opposed to the
continuous demand of the additive and multiplicative models—and more
closely match the discreteness of demand in many RM applications. At
the same time, the Poisson and Bernoulli models assume a specific coeffi-
cient of variation, which may or may not match the observed variability.
The additive and multiplicative models, in contrast, allow for different
levels of variability in the model, as the complete distribution of the
noise term can be specified.
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7.3.4.4 Stochastic Regularity
As in the deterministic case, it is useful analytically to make some

regularity assumptions about the stochastic demand functions. In par-
ticular:

ASSUMPTION 7.6 (STOCHASTIC-DEMAND-FUNCTION REGULARITY)
The variance of demand is uniformly bounded,
for

This condition is not very restrictive and is required only to ensure
that stochastic optimization problems are well behaved.

7.3.5 Rationing Rules
A final demand-modeling issue concerns how capacity is allocated to

customers in cases where demand exceeds supply. For example, suppose
capacity is 100 units and the firm commits to a fixed price of $10 per
unit before knowing the demand realization. If the demand at this price
turns out to be 120, then what assumptions do we make about which
customers get the capacity and which do not? Do we assume that the
capacity is allocated to customers with the highest valuations (thereby
increasing the customer surplus), or should we assume that it is allocated
randomly—for example, on a first-come, first-serve basis? The rules used
for allocating capacity to customers when demand exceeds capacity are
called rationing rules in economics.

There are two classical rationing rules: (1) The efficient-rationing rule
(also called parallel rationing), in which it is assumed that units are allo-
cated to customers with the highest valuations, and (2) the proportional-
rationing rule (also called randomized rationing), in which it is assumed
that capacity is allocated randomly, so the allocation is independent of
the customers’ valuations. While the former is more efficient from a con-
sumer surplus standpoint, it is difficult to achieve in most posted-price
settings (though some types of auctions implement it very well).

In quantity-based RM applications the most natural assumption is
the proportional-rationing rule because when a given product is open,
it is normally purchased on a first-come first-served basis. Therefore,
provided there is no correlation between valuations and order of arrival,
the inventory is sold independent of valuations.

7.4 Notes and Sources
Kreps [313] provides a comprehensive and readable treatment of the

classical rational theory of consumer choice, including preference rela-
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tions, utility theory, and choice under uncertainty. See also the micro-
economics text of Mas-Collel et al. [365].

Random-utility models originated with the early work of the math-
ematical psychologist Thurston [511, 510] and were later formalized by
economists, most notably Manski [358] and McFadden [372, 373]. (See
also the edited volume by Manski and McFadden [357].) The limita-
tions of the MNL as a model for transportation demand are discussed
in detail by Oum [412]. The Gumbel distribution, which plays a central
role in the MNL, is one of the distributions of extremes examined in
Gumbel [229].

Kamakura and Russell [286], Chintagunta [117], and Allenby, Arora
and Ginter [8] are some marketing-science papers that use the finite-
mixture logit models. The finite-mixture and random-coefficient mod-
els are said to be heterogeneous in preferences; that is, customers use
the same choice model but have different preferences (for example,
use different coefficients) within that choice model. Another source of
heterogeneity—called structural heterogeneity—is when customers in dif-
ferent segments use fundamentally different decision processes in mak-
ing their purchase decisions. Such structural heterogeneity is studied in
Kannan and Wright [287] and Kamakura, Kim, and Lee [285]. Finally,
Dirichlet distributions have been used to model heterogeneity in brand-
choice behavior (Fader and Lattin [179]; Jain, Bass, and Chen [266]).

An excellent comprehensive text on both the theory and application
of discrete-choice models for demand estimation is Ben-Akiva and Ler-
man [48]. See also the book by Anderson et al. [16] for another good
text on discrete-choice theory and economic-modeling applications of the
theory.
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Chapter 8

THE ECONOMICS OF RM

8.1 Introduction
Many topics traditionally studied by economists are central to un-

derstanding revenue management. After all‚ using price as a means for
balancing supply and demand and achieving an efficient allocation of
goods is one of the central themes of economics. Economic theories
on rationing‚ free entry‚ price discrimination‚ monopoly pricing‚ pric-
ing under capacity restrictions‚ oligopoly pricing‚ multiproduct pricing‚
differentiated products pricing‚ among others‚ provide explanations and
predictions of price formation under various market conditions. This
body of work is more theoretical than operational in nature but pro-
vides fundamental insights into RM—insights that are often lost in the
morass of operational details surrounding the main-stream RM method-
ology that has been our focus thus far.

While economic theory has much to say about RM practice‚ at the
same time RM is an anomaly of sorts‚ insofar that the practice often
deviates from classical economic predictions in important respects. For
example‚ on the one hand‚ products such as airline seats are widely con-
sidered to be commodities and the markets free (for example‚ the service
is not highly differentiated‚ competition is fierce‚ prices are transparent‚
efficient electronic markets exist in the form of central reservation sys-
tems‚ and so on); yet prices exhibit wide dispersion and are far from
being equal to marginal cost even under intense competition. What
can explain this? Is it that airline markets are not as competitive as
one might imagine‚ and the practice of RM is just a manifestation of
monopoly price discrimination? Alternatively‚ can it be explained by
other factors‚ such as high fixed costs or uncertain and variable de-



334 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

mand? How can airlines and hotels sustain the sale of the same physical
product at multiple prices in a competitive market?

Indeed‚ many papers in the economics literature point to airline RM as
an example of price discrimination—a monopoly practice—while others
cite the deregulation of the airline industry and the subsequent drop
in prices (on average) as a model of the benefits of a competitive free
market. Which is it? Similarly‚ while retail markdown pricing might
look like monopoly price skimming‚ retailing is notoriously competitive‚
especially in this modern era of transparent online prices. So should we
use the monopoly or competitive explanation of pricing in this industry?

Unfortunately‚ the answer to such questions is often “all of the above‚”
in the sense that in most real-world RM contexts there are many eco-
nomic forces at work operating at different levels and different time
scales. Economic theory‚ in contrast‚ tends to isolate and study one ef-
fect at a time. This fact is important to keep in mind when reading this
chapter.

Still‚ one can attempt to organize RM practice in a hierarchy‚ similar
to what was discussed in Chapter 1. At a high level‚ RM can be consid-
ered to be a three-stage “game.” In the first stage‚ firms make structural
design decisions. They may design their products based on customer
preferences‚ on existing competitive products‚ or in anticipation of new
products that might be offered by rivals. For instance‚ a retailer making
stocking decisions prior to a season decides what assortments‚ styles‚ and
colors to stock. An airline picks its routes and schedules and may create
discount products with restrictions as a result of the entry (or threat of
entry) of a low-cost carrier. A hotel picks its location‚ the quality and
size of its rooms‚ the level of service it offers‚ and so forth.

In the next stage‚ firms may commit to either a quantity or price
decision. A retailer might commit to an order quantity before the start
of a sales season; a hotel commits to the number of rooms it provides;
an airline commits to a flight schedule and an assignment of aircraft
to each route‚ and so on. Firms may commit to prices as well. For
example‚ as mentioned in earlier chapters‚ airlines typically commit to
market-level prices for a wide range of flight departures. (This fact is the
basis for the exogenous-price assumptions in the classic single-resource
and network RM problems.) This is done both for advertising purposes
(say‚ to advertise only one fare for all flights in a market)‚ for competitive
reasons (say‚ to match a marketwide fare offered by a competitor)‚ and
for administrative reasons—such as reducing the complexity and cost of
managing pricing decisions.

Once these precommitment decisions are made‚ firms may have some
recourse decision that allows them to adjust to changes in market con-
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ditions. Again‚ this might be a price or quantity recourse decision‚ and
the scope and flexibility of the recourse decisions vary from industry
to industry. For example‚ the ability to change prices often depends
on the channels used: price changes may be rapid and costless in an
electronic distribution channel (such as a central reservation systems or
website) but may be much less flexible in physical channels like retail
stores. Also‚ prices may have to be fixed if they are advertised heav-
ily or have to be published in a physical catalog. If prices are rigid‚
firms may be able to adjust their quantity decisions—how much to sell‚
to whom‚ and through which channels. Again‚ this is the situation in
the classical quantity-based RM industries like airlines and hotels. The
ability to use quantity as a recourse decision is highly dependent on the
type of product and the technology and costs of production and distri-
bution. Airlines and hotels benefit from the fact that their “products”
(different fare classes and rate categories) are all supplied by the same
physical inventory; hence‚ they have a high degree of flexibility in re-
allocating capacity. In contrast‚ an automaker cannot use subcompact
cars to satisfy demand for luxury vehicles and therefore has much less
quantity flexibility. As another example‚ while retailers can in theory
reallocate stock from one store to another as a recourse‚ often they find
the handling and transportation costs prohibitive.

At each of these three stages of the game—structural design‚ pre-
commitment and recourse—economic forces come into play. And the
nature of the market often changes dramatically from one stage to the
next; firms may face a highly competitive decision at the precommit-
ment stage but enjoy near monopoly power once they reach the recourse
stage—or vice versa. Although analyzing a complete model of RM—
from product design to the final recourse decisions—is currently beyond
the field’s technical scope‚ as a start one can construct simple models
that isolate one or two stages of the game and impose one or two relevant
variations at a time. Taking this point of view‚ there is indeed a rich
body of economics work that becomes relevant to RM.

In particular‚ economic analysis allows us to address the following
resource-level questions: How would a monopoly set the multiple prices
in quantity-based RM? How do they compare with single prices? Is there
equilibrium in capacity‚ allocations‚ and prices for two competing firms
practicing RM? Why do firms fix prices and manipulate allocations in
quantity-based RM?

We can also address the following industry-structure and competition
questions: Why does an industry have products with such similar restric-
tions for the sale of its products? Is there an equilibrium in the types of
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restrictions? Is RM the best sale mechanism for a monopolist? What
about in an oligopoly? Why do we see “price wars” or “fare sales”?

Finally‚ economic theory provides insights into the following welfare
and regulatory questions: Does RM provide the optimum number of
products (variety) for customers (as would a welfare maximizer)? Can
RM be sustained under perfect competition? Is dynamic pricing con-
ducive to tactical collusion? Does RM increase overall welfare? Is it
beneficial to the consumer (increasing total consumer surplus)?

This remainder of the chapter looks at these questions and is organized
as follows. The next three sections (Sections 8.2– 8.4) look at economic
models of RM and pricing by market conditions: perfect competition‚
monopoly‚ and oligopoly. The strategic variables in each case could be
price or quantity—or both. For instance‚ capacity might be chosen first‚
followed by price competition. For each market condition‚ we start with
the basic economic models and then specialize to models that incorporate
additional features relevant to RM industries.

For the sake of the reader not familiar with standard economics mod-
els of competition‚ we begin with the basics‚ though our coverage here
is brief. Also‚ some basic notions of game theory are assumed in the dis-
cussion that follows. Appendix F provides a primer on game theory‚ and
the Notes and Sources section at the end of this chapter has additional
references.

8.2 Perfect Competition
Perfect competition represents an extreme form of market competi-

tion in which the decisions of individual firms are severely constrained
by market forces. It should be considered more as an abstraction of
market conditions than a literal model of real world markets‚ though
some centralized financial and commodity markets do come close to
achieving perfect competition. Here we briefly review the assumptions
of the competitive-market model and then examine some variations of
the model relevant to RM.

8.2.1 Perfectly Competitive Markets
A market under perfect competition has two main characteristics.

The first is that the goods produced by all firms are commodities—
defined formally as goods for which customers exhibit no preference over
the source of supply. In other words‚ customers simply do not care
from whom they buy a commodity. A bushel of wheat‚ a gallon of
gasoline‚ a megawatt of electricity or a share of IBM stock—all are goods
typically considered to be commodities. Note that simply saying “goods



The Economics of RM 337

are identical” is not sufficient to define a commodity. For example‚ you
may prefer gas station A to gas station B simply because station A is
located on your side of the road and station B is not. So factors like
location‚ timing of availability (such as winter fruit from the Southern
Hemisphere)‚ terms of trade‚ and costs of switching suppliers may create
preferences for suppliers even if the goods themselves are identical. Most
often in real world markets‚ perfect competition arises only when goods
are traded in a centralized (physical or virtual) location and the terms
of trade are standardized. Were you to buy shares of IBM stock on
the New York Stock Exchange‚ you would have no idea who previously
owned these shares—and would most likely not care to know either.
Such a situation defines a true commodity market.

If a firm is selling a commodity‚ it cannot control the price at which
it sells. This follows because if a firm were to demand a price even
marginally higher than the market price‚ then customers would simply
buy from an alternative (and perfectly equivalent) source‚ and the firm’s
demand would drop to zero. Conversely‚ a firm has no incentive to sell
at less than the market price either because customers are willing to pay
it the same market price as other (again perfectly equivalent) sources.
Thus‚ in a perfectly competitive market firms are simply price takers‚
able to sell at the market price but unable to directly control this price.
This feature of competitive markets is also referred to as the law of one
price.

The second key characteristic of a perfectly competitive market is that
there are a large number of firms and each supplies only a negligible frac-
tion of the total supply. The key assumption here is that the individual
quantity decisions of a firm have no impact on the market price (each
firm is only a drop in the bucket of total supply‚ as it were). For example‚
selling your 100 shares of IBM will have a negligible impact on the price
of IBM because upward of 10 million shares might be traded in a single
day. This is to be contrasted with the case of oligopolistic commodity
markets (see the discussion of Cournot competition in Section 8.4.1.1)‚
where there are several large firms that—while not directly controlling
the market price—can influence it because their volume represents a sig-
nificant fraction of the total market (for example‚ how much oil Saudi
Arabia decides to sell on the world oil market influences the price of oil‚
even if Saudi companies cannot demand a price higher than the market
price).
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8.2.2 Firm-Level Decisions Under Perfect
Competition

Under perfect competition‚ firms can sell as much as they want at
the market price1‚ and the only factors limiting a firm’s output are their
own capacity constraints or costs of production. More precisely‚ if is
the market price‚ is the quantity supplied‚ and is the firm’s cost
function (either direct or opportunity costs or both)—which we assume
for simplicity is increasing and convex—then a firm in a competitive
market chooses its quantity by solving

which leads (assuming an interior solution) to the first-order condition

Hence‚ the market price is equal to the marginal cost of production for
each firm supplying the market. Note that the firm’s decisions are en-
tirely supply-driven in this case—based only on their technology and
costs of production rather than any demand-side considerations. There-
fore‚ under the competitive model it would seem there is little scope for
the sorts of demand decisions that lie at the heart of RM. Yet as we
show below‚ adding some small modifications to the competitive model
leads to interesting insights about RM practices.

If marginal costs are constant the first-order profit con-
dition reduces to in other words‚ the market price just covers
the marginal cost of production‚ and hence firms earn zero profit. This
fact leads to the so-called zero-profit equilibrium‚ in which a zero-profit
condition for all firms is assumed as essentially the “definition” of a com-
petitive market. The zero-profit equilibrium is a convenient assumption‚
obviating the need to perform a complex game-theoretic analysis of a
large number of competing firms‚ and in places we assume it in this
section. But this assumption in not completely innocuous and arguably
oversimplifies the effects of competition.

8.2.3 Precommitment and Demand Uncertainty
One important modification of the perfect-competition model occurs

when firms precommit to capacity and price in a market where aggregate
demand is uncertain. We have already mentioned several examples of

1Here, the phrase “selling as much as they want” should be interpreted in light of the as-
sumption that the maximum quantity any firm would choose to supply is still a negligible
fraction of the total market supply.
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RM industries where both precommitment and demand uncertainty are
central features of the industry.

To see the effect that these factors have, consider a commodity market.
Let be the marginal cost of adding one more unit of capacity and  be
the marginal cost of serving an additional customer. Further, suppose
that a firm precommits to both the capacity it provides, and the
price it charges, Finally, assume that aggregate market demand, D,
is uncertain. However, the market is competitive, so each firm earns
zero profit in equilibrium. We show that under these conditions, the
law of one price breaks down, and different firms may offer different
prices (price dispersion)—or a single firm may sell the same commodity
at multiple prices, a situation reminiscent of traditional quantity-based
RM.

To take a simple concrete case, suppose the total market demand D is
with probability (the low-demand scenario) and with probability
(the high-demand scenario). Then consider the following perfectly

competitive equilibrium: the total market capacity is with units
priced at a low price and the remaining units priced at a high
price Note that because customers (as in any commodity
market) have no preference for the source of supply, they first buy from
the firm with the lowest price (those pricing at Since

these low-price firms always sell out and earn a per-unit
profit of

On the other hand‚ if demand is high a total of customers
will be forced to buy from the high-price firms at a price of
(We assume for simplicity in this example that all customers are willing
to buy at this price.) However‚ these suppliers also earn an expected
per-unit profit of zero‚ since

In effect‚ the high-price firms “specialize” in supplying the market in
the high-demand scenario. Their high prices compensate them for not
selling as often‚ yet on average they earn the same zero profit as their
low-price competitors. Note that this equilibrium is also beneficial to
customers in the sense that it meets demand under all scenarios.

This same outcome can be interpreted in a way that even more closely
resembles quantity-based RM; namely‚ each individual firm could price
half of its output at and the other half at The firm would then sell
its low-price allocation under both scenarios but would sell the high-price
allocation only under the high-demand scenario.
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This example of price dispersion in zero-profit equilibrium was first
pointed out by Prescott [428] and is referred to as the Prescott equilib-
rium. To generalize the result‚ let denote the fraction of customers
with reservation values less than (the reservation-price distribution)‚
and let N denote the market size‚ so is the aggregate-demand
function. Suppose N is a discrete random variable‚ taking on discrete
levels with Then
Prescott [428] shows that the unique competitive equilibrium involves
price dispersion and is given by the set of prices

and corresponding capacities

Again‚ this could be interpreted as each firm specializing and offering one
of the prices or as individual firms offering a menu of price levels and
limiting the quantity they sell at each price point. Dana [142] extends
this equilibrium to the case where the market size has a continuous
distribution‚ in which case the equilibrium then has a continuum of
prices.

The main point is that by simply introducing two features into the
classical competitive model—capacity and price precommitment and
aggregate-demand uncertainty—the law of one price breaks down‚ and
price dispersion (either among firms or within a single firm) is the unique
competitive equilibrium. Moreover‚ as Dana [142] points out‚ this equi-
librium provides one possible explanation for classical airline RM‚ as it
clearly reflects the important characteristics of multiple prices and ca-
pacity controls on the quantity sold at each price. The important feature
to emphasize here is that the prices and capacity controls arise because
of precommitment and demand uncertainty alone; they are not used to
achieve other objectives like price discrimination or revenue maximiza-
tion per se.2

2Though a firm may still price to break even‚ which may require maximizing its profits to
avoid a loss.
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8.2.4 Peak-Load Pricing Under Perfect
Competition

RM is strongly associated with service industries. Because services
are not storable‚ the capacity that a firm provides in one period cannot
be used to supply demand in future periods‚ and the manufacturer’s
classic strategy of building inventory to meet future demand is not an
option. Consequently‚ any capacity level the firm chooses may turn out
to be excessive during low-demand periods and inadequate during high-
demand periods.

Peak-load pricing is one solution to this dilemma. The basic idea
is to try to level out demand by pricing differently in peak and off-
peak periods‚ thereby achieving more efficient capacity utilization. Peak-
load pricing has been extensively studied by economists (see Crew et
al. [136])‚ both in the context of regulated industries (electric utilities‚
postal service‚ telecom) and in degregulated contexts. It provides one
economic explanation for classical quantity-based RM practices and also
explains differential pricing in other contexts. We first look at the case
where peak periods can be identified a priori and then discuss the case
where the peak period is uncertain.

8.2.5 Identifiable Peak Periods
Here we consider a simple model of peak-load pricing‚ due to

Bergstrom and MacKie-Mason [51]‚ in which the peak period is known.
There are two periods: period 1 is the peak period‚ and period 2 is the
off-peak period (a Friday versus Saturday flight‚ weekday versus week-
end hotel night‚ prime-time versus late-night TV slot‚ and so on). A firm
must first select a capacity for use in both periods‚ and the demand
served in each period denoted cannot exceed this capacity. The unit
capacity cost is and the unit variable cost for servicing customers is
Bergstrom and MacKie-Mason [51] assume that customers have a utility
for consumption that is homothetic (a utility function that can
be written as where is a monotonically increasing
function and is homogeneous of degree 1)‚ twice differentiable and
strictly concave.

Denote the marginal rate of substitution between peak and nonpeak
consumption by
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Assume that the firm is in a competitive market and is constrained to
operate at zero profit.3

Under the assumptions on the utility‚ given any prices on the
peak and off-peak periods‚ respectively‚ demand will be determined by
the same ratio of prices. That is‚ the demand function satisfies

Define the function implicitly by so that
is the ratio of demand for the peak period to demand for the non-peak
period corresponding to a price ratio of Because period 1
is the peak period‚ we assume that is‚ demand for period
1 is higher than demand for period 2 when both are priced the same.
For any such that there exists a unique set of equilibrium
prices and demands that makes the peak demand equal to
capacity.

The following simple example from Bergstrom and MacKie-Mason [51]
illustrates this equilibrium:

Example 8.1 (PEAK-LOAD PRICING WITH SUBSTITUTION) Suppose the marginal cost
is zero and customers’ utility is linear of the form

so customers value a unit from the peak period twice as much as a unit from the
off-peak period. If the firm used only a single price‚ all customers would buy in the
peak period‚ and therefore by the zero-profit constraint the firm would have to charge
a price of to recover its capacity cost (the price would be set equal to the
marginal cost of capacity).

Now consider the effect of allowing the firm to charge different prices in each
period. In this case‚ so the ratio of prices is also At
this ratio of prices‚ customers are indifferent between the peak and off-peak periods
because although they value the peak twice as much‚ its price is twice as high. Hence‚
they split their consumption evenly over both periods. In this case‚ the firm sells all
its output in both periods‚ and therefore by the zero profit condition it must have

to recover its capacity cost. Combining this condition with the fact that
implies that and both prices are strictly less than the

marginal cost of capacity.

Notice in this example that by using peak-load pricing‚ the firm uses
strictly lower prices in both the peak and nonpeak periods compared
with uniform pricing. Thus‚ the differential pricing benefits customers.

3Bergstrom and MacKie-Mason [51] allow the slightly more general assumption that the firm
is constrained to operate at a fixed return on capital‚ which could be due to either regulation
or competition.
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However‚ this is not always the case. Other utility functions lead to
peak-period prices that are higher than those charged under uniform
pricing (though the off-peak price is always lower).

As for the impact on capacity‚ peak-load pricing is commonly thought
to reduce the amount of capacity a firm provides because customers are
encouraged to shift their consumption from peak to off-peak periods.
However‚ as in Example 8.1 above‚ peak-load pricing may lower prices
in all periods‚ which can stimulate overall demand relative to uniform
pricing. If the demand stimulation effect of these price reductions is
strong enough‚ the capacity provided by the firm may actually increase
to meet the increased demand. Bergstrom and MacKie-Mason [51] show
that whether capacity increases or decreases under peak-load pricing
depends in a simple way on the price elasticity of demand.

8.2.6 Uncertainty over the Timing of Peak Loads
The above analysis assumes the firm knows which periods are peak

and which are off-peak. However, a firm may face uncertainty about the
periods customers prefer. For example, a heat wave may cause a surge in
the demand for electricity on random days or a surprise play-off victory
by a football team may cause a jump in demand for flights to, and hotels
in, the winning team’s home town. With random peaks like this, it is
not possible to set peak prices ex ante as in the previous section. So how
should a firm in this situation respond? Here we look at a model from
Dana [143] that addresses this question, as the results closely resemble
classical quantity-based RM. For concreteness, we place the work in the
context of airlines, but the model applies more generally.

Consider a market with two flight times, morning and afternoon,
which are served using the same aircraft (same capacity); sales occur
over two periods. The cost to supply a single unit of capacity, which
can be used at both flight times, is (or per-unit-per-flight), and the
variable cost to serve each customer is (incurred only when the unit
is sold). Firms precommit to both their prices and the capacity they
provide at each price, as in the Prescott model.

There are N customers who want to fly on these flights, but one
departure time (the peak time) is more popular than the other,
will prefer the peak flight, and will prefer the off-peak flight, with

and The customers’ preferred flight is (in
the aggregate) uncertain, however; specifically, we assume that with
probability 1/2, customers prefer the morning flight and prefer
the afternoon flight, while with probability 1/2 the reverse is true:
prefer the afternoon flight, and prefer the morning flight. The flight
capacity is N/2.
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Customers have identical utility for travel but have heterogeneous
disutility (waiting cost) for traveling at their less preferred time. is
assumed to be an i.i.d. random variable with a continuous distribution
function defined on The waiting costs are assumed uncorre-
lated with the preferred flight time. We call customers with waiting costs

leisure customers (L) and those with waiting costs busi-
ness customers (B). Let and denote,
respectively, the number of leisure and business customers.4 Customers
arrive in random order to make their purchases (proportional rationing,
Section 7.3.5).

Dana [143] shows that if so some customers are always willing
to pay the capacity cost to fly at their preferred time, there exists a
unique competitive equilibrium for this model in which units are
offered at each flight time at a high price and units are
offered at each flight time at a low price where

and

Arriving customers buy their preferred flight as long as the low price is
available. Once the low-price seats sell out‚ however‚ leisure customers
will buy their less preferred flight at the low price because their waiting
cost is less than the price premium of for the high-price units on
their preferred flight. Business customers‚ however‚ would rather pay
the higher price on their preferred flight because their waiting cost
is greater than the price differential In this way‚ customers with low
waiting costs (leisure customers) are shifted to the off-peak flight‚ while
customers with high waiting costs (business customers) are accommo-
dated on the peak flight. Moreover‚ note that this shifting of demand
occurs without firms’ prior knowledge of which flight time is preferred
by customers.

The model also has interesting implications as to which customers
benefit from the differential pricing equilibrium in the case when
(everyone prefers the peak flight). In this case‚ the expected price paid

4This sort of law-of-large-numbers assumption concerning individual uncertainty is typical
of many economics models; for example‚ it is the reason that in Chapter 5 we express a
deterministic demand function as where N is the market size and
is the distribution of individual’s reservation prices. It is reasonable if the population is large.
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by business customers is given by

which is decreasing in the number of leisure customers and is strictly
less than which would be the equilibrium price if business cus-
tomers were to be served separately.5 Thus‚ business travelers pay less
than they would if they were to be served without leisure customers‚ and
the more leisure customers‚ the lower the average price paid by business
customers. Leisure customers pay a price of but are sometimes
forced to fly at their less preferred time‚ and as a result one can show
that leisure customers have an expected utility that is decreasing in the
number of business customers (the more business customers‚ the
worse things are for leisure customers because they are forced to fly at
less preferred times more often).

For these reasons‚ this model suggests that in quantity-based RM‚ it
may be that it is leisure customers who subsidize business customers—
and not the other way around—despite the fact that business customers
are the ones paying more on average. The following remark of a Marriott
Hotels manager reinforces this point of view:

The fact of the matter is, if it weren’t for incremental leisure guests, business
guests would have to pay a higher price for their rooms in order for the hotel
to meet financial obligations. I’d like to offer all our guests a $79 room, but
in order to cover the costs of the hotel and ensure returns to our investors
we must differentiate. The bottom line is this: either we accommodate both
guests, one paying $79 and one paying $125, or we ask the business guest to
pay $145.6

8.2.7 Advance Purchases in Competitive Markets
A common feature of quantity-based RM is the use of reservations and

advance-purchase discounts. But why do such discounts exist‚ and what
economic purpose do reservations serve? Here we look at an explanation
based on the competitive model proposed by Dana [141]. The model can
be viewed as an extension to Prescott’s model of Section 8.2.3 that adds
several essential features of advance-purchase markets. We provide a
simplified example of Dana’s model‚ described in the airline context.

5This follows since business travelers are willing to pay more than the capacity cost per
customer if loads were balanced‚ to fly on their preferred flight; hence‚ the business-customers-
only equilibrium has all business customers traveling on the peak flight at a cost per customer
of
6This quote is from Richard Hank in Yield Management: Strategies and Tactics‚ Educational
Institute of the American Hotel and Motel Association‚ 1990 (Dana [143]).
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The key feature of the model is that there are two types of customers—
those who are certain early on of their need to travel but who have low
valuations (such as leisure travelers) and those with a high degree of
uncertainty early on about their need to travel but with high valuations
given the need to travel (such as business travelers). Let B denote the
business customers and L denote the leisure customers‚ with willingness
to pay (given the need to travel) of and respectively‚ where

Let and denote the number of type B and L customers‚
respectively.

Sales take place in two periods. Period 1 is an advance-purchase
period where the product can be purchased for later consumption in
period 2. In period 2 there is a spot market where the product can
also be purchased for subsequent consumption. Customers are served in
random order in each period (proportional rationing‚ Section 7.3.5).

The demand of low-valuation customers is certain; that is‚ all
customers are sure they want to travel in period 2. However‚ the demand
of high-valuation customers is subject to two types of uncertainty. First‚
the aggregate number of business customers is uncertain. We assume
there is a population of total business travelers and aggregate-
demand states each occurring with probability where

In demand state out of the business customers
want to travel. We assume demand states are ordered so that

Second‚ we assume each type B customer has individual uncertainty
about the need to travel.7 Let denote the conditional proba-
bility that a type B customer wants to travel in aggregate demand state

The number of customers is assumed large‚ however‚ so exactly
customers will want to purchase in period 2 in aggregate-demand state

The unconditional probability that a type B customer wants to travel‚
denoted is then given by

On the supply side, the production costs are the same as in the
Prescott model; there is a marginal cost of capacity which is incurred
whether service is provided or not, and a marginal cost of service which
is incurred only if service is provided. Further, firms must precommit to
both their capacities and prices in the two periods.

7Dana [141]’s full model allows for individual uncertainty over the need to travel among both
types of customers as well as aggregate uncertainty over the number of customers of each
type. He also allows for parallel as well as proportional rationing.
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8.2.7.1 Equilibrium Without Advance Purchase
We first consider the equilibrium of this model without an advance-

purchase market‚ in which all customers are served in a single spot mar-
ket. This situation is simply the Prescott equilibrium of Section 8.2.3.
Specifically‚ there will be prices offered in the spot market given by
the Prescott prices (8.1). We illustrate this outcome with an example:

Example 8.2 (Dana [141]) Suppose there are leisure customers with
valuations and business customers with valuations
The aggregate number of business customers takes on three states,

each with probability 1/3 for all The capacity cost is
and the variable cost of service is The resulting equilibrium prices, capacities,
and sales are shown in Table 8.1.

The prices in Table 8.1 follow from (8.1). In demand state 3, there are 100 total
customers, no business customers and leisure customers, all of
whom are willing to purchase at the $6 price. In demand states 1 and 2, only business
customers will purchase at the higher prices because they value travel at
which is greater than and while leisure customers value travel only at
which is less than both and However, by proportional rationing, a fraction

of the low-price ($6) units sell to business customers. Thus, in state the
residual number of business customers remaining after the low-price units sell out is

In demand state 2 this residual demand is equal to 50; hence, the market
provides an additional 50 units at the price In demand state 1
the residual business demand is 225, of which 50 units are sold at hence,
the market provides an additional 175 units at the highest price to satisfy
demand in this last state. Note that for all units, however, the expected price is equal
to the capacity cost of $6.

8.2.7.2 Equilibrium with Advance Purchase
Now consider the same model with an advance-purchase market. We

assume that resale is prohibited‚ so customers buy for their own use and
not for speculation. Further‚ we assume that a firm that sells an advance-
purchase ticket must provide a unit of capacity and then service each
such purchase. Let denote the price in the advance-purchase market.
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Then the zero-profit condition implies that the advance-purchase price
must be The prices in the second period will then follow a
Prescott-like equilibrium and will in general be no less than because
of the aggregate-demand uncertainty.

Now consider the effect on leisure (type L) customers. Since they face
an expected price greater than in period 2‚ the leisure customers
(who are certain to want to travel) prefer purchasing in the advance-
purchase market. If a business customers (type B) purchases in ad-
vance‚ their expected surplus is which they compare with the
expected surplus they get if they purchase in period 2. This surplus is

provided the prices for all (The term inside the parentheses
is simply the type B value minus the expected price paid in demand

and the demand state is If the business customers choose period 2‚
then the advance-purchase mechanism segments the market. The result
is easiest to see by continuing Example 8.2:

Example 8.3 Consider the data given in Example 8.2‚ but suppose there exists an
advance-purchase market. Table 8.2 shows the equilibrium prices and capacities that
result.

The table is explained as follows. Note that 100 units are provided in the advance-
purchase market; the leisure (type L) customers buy these 100 units. The equilibrium
prices in period 2 are also shown and are identical to those in Example 8.2. The
equilibrium sales follow assuming only business (type B) customers purchase in period
2. Since there are of these customers who want to purchase‚ in state 1‚ 100
units are sold at and the remaining 200 type B customer purchase at the highest
price in state 2‚ 100 units are sold at a price in state 3‚ no units
are sold.

To verify that type B customer will indeed purchase in period 2‚ note they have
an unconditional probability

of needing to travel. Hence‚ their expected surplus in the advance-purchase market is

while their expected surplus if they purchase in period 2 is

Since this later surplus is clearly greater (and positive)‚ the type B customers prefer
to purchase in period 2 as claimed.

8

state this is multiplied by the probability a type B will want to travel
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This example is not unique. Indeed‚ Dana [141] shows the market is
always segmented provided This is true regardless of the values

and and holds for all distributions of aggregate uncertainty; type B
customers always buy in period 2‚ while type L customers always prefer
buying in the advance-purchase market. In particular‚ it is not necessary
to have valuations correlated with individual demand uncertainty as in
our examples. This segmentation outcome is also the unique competitive
equilibrium.

Finally‚ note that comparing Examples 8.2 and 8.3‚ the leisure (type
L) customers significantly benefit from the advance-purchase market;
they are never rationed out of the market (as they are in the spot-market
case)‚ and they pay lower prices.

8.3 Monopoly Pricing
A monopoly arises when a single firm (the monopolist) becomes the

exclusive provider of a given product or service. It is the polar opposite
of the competitive-market model because a monopoly firm dominates
its market and can dictate the terms of trade‚ including both prices
and quantities. A monopoly firm has considerable market power and—
unless regulated—attempts to extract the maximum possible profit from
its market.

Like the model of perfect competition‚ a perfect monopoly is essen-
tially a theoretical abstraction‚ as often‚ viable substitutes exist that
reduce the market power of a monopolist. To take an airline example‚
if the price of a short-haul flight is too high‚ potential customers may
choose to drive or take the train instead. Such a carrier may find it-
self without much market power despite the fact that it is nominally a
monopolist. On the other hand‚ the same carrier in a long-haul market
would likely ignore the competition from automobile and train modes of
transport. Therefore‚ the extent of monopoly power often depends on
the availability and quality of substitutes. Alternatively‚ one can view

8If the equilibrium price exceeds the customers’ valuation then customers will not buy‚
and their surplus in state is zero. Thus‚ the corresponding terms in the sum will be zero.
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substitute products as making the monopolist’s aggregate demand more
price elastic.

Even if a monopolist has significant market power‚ the possibility of
entry by competitors may reduce its pricing power. That is‚ the monop-
olist may have to price low enough to discourage potential competitors
from entering its market. For instance‚ going back to the airline ex-
ample‚ if a monopoly carrier made disproportionately high profits‚ its
success would likely tempt other carriers to enter its market and provide
competing service. Anticipating the competition and the lower profits
that would result‚ the monopolist might conclude it is better off in the
end to price less aggressively. Indeed‚ if the threat of entry is severe—
the so-called case of free entry—the monopolist might even be forced to
price as if it were in a competitive market. This phenomenon is called
contestability—or monopolistic competition—and has had considerable
influence on the economic debate surrounding market regulation.

In this section‚ we begin by examining pricing of a single product
in a perfect monopoly. Next‚ we look into reasons for a monopolist to
use multiple prices and practice price discrimination—a commonly cited
explanation for RM practices.

8.3.1 Single-Price Monopoly
The monopolist is assumed to know the aggregate (deterministic) de-

mand as a function of price‚ Let be the inverse-demand func-
tion and the cost of producing items. We assume that
and are twice differentiable functions‚ is an increasing function‚
and is a decreasing function. Then the monopolist’s problem is to
set a price to maximize its profit‚ defined as

Taking the derivative of V(·) with respect and setting the result to
zero‚ we obtain the following necessary condition for the optimal price

where recall from Chapter 7 that is the marginal
revenue defined by (7.14). The firm will produce (and sell) the quantity
at The conditions (8.3) says that at the optimal price‚
marginal revenue is equal to marginal cost.9 We call the optimal

9Note that under perfect competition the price is equal to marginal cost‚ whereas for a
monopoly the price will exceed the marginal cost‚ and hence the quantity produced will be
lower. The resulting welfare loss is called the deadweight loss of monopoly.
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unconstrained price for a monopolist selling a single product at a single
price. The following example illustrates this calculation:

Example 8.4 (LINEAR-DEMAND FUNCTION) Consider the demand function
where is a constant. Let be a constant marginal cost Then the

profit function for the monopolist is given by

The single price that maximizes V(·) is (differentiating V(·)
with respect to and setting the result to zero), and the optimal quantity is

We can also rewrite (8.3) in terms of demand elasticity at
to obtain

The left-hand side can be interpreted as the profit margin (ratio of the
price in excess of the marginal cost to price)‚ while the right-hand side
is the inverse of the magnitude of demand elasticity. Hence‚ the more
elastic the demand‚ the lower the monopolist’s profit margin.

8.3.2 Monopoly with Capacity Constraints
If the monopolist faces capacity constraints‚ it may affect its opti-

mal price. In particular‚ this will occur if the aggregate demand at the
optimal unconstrained price exceeds the capacity‚ in which case the mo-
nopolist will want to set a price higher than the optimal unconstrained
price. The higher price will ensure that demand is within the capacity
constraint.

This intuitive fact is formalized as follows: Let C denote the capacity
of the monopolist. The profit optimization problem for the monopolist
is

The Kuhn-Tucker necessary conditions for (8.4) imply that a nonnega-
tive Lagrangian multiplier exists such that and satisfy
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If then and the optimal price will be the same as
the optimal unconstrained price. If the optimal capacity-
constrained price will in general be higher than the unconstrained price.
This is the same phenomenon we observed in Section 5.2.1.2‚ where the
optimal constrained price is simply the maximum of the unconstrained
optimal price and the stock-clearing price (the price at which demand is
exactly equal to capacity).

8.3.3 Multiple-Price Monopoly and Price
Discrimination

While the monopolist can earn a positive profit by maximizing its
selling price‚ it can earn even more profit by selling its product at mul-
tiple prices. Many of these multiprice strategies have been offered as
explanations of RM. Here we look at the variety of reasons a monopolist
might want to use multiple prices‚ beginning with price discrimination.

8.3.3.1 Price Discrimination
Price discrimination is said to occur when two or more similar

goods are sold at prices that are in different ratios to marginal costs
(Stigler [489]). This definition‚ though somewhat technical‚ allows us to
precisely compare prices of products that may differ in some respects;
however‚ it also opens up ambiguities about when to consider two prod-
ucts similar goods. Two hotel rooms for the same day and for the same
length of stay may appear to be clearly identical. Yet if the time of
purchase is considered an attribute of the products‚ then a hotel room
sold two days in advance and one sold two months in advance may not
be identical. (See Phlips [420] for a discussion of many such examples.)
The essential question‚ however‚ is whether differences in price can be
explained by differences in costs alone or by other factors‚ like attempts
to extract consumer surplus.

Classification of Price Discrimination Price discrimination can be
classified into three types‚ depending on the degree of discriminating
power (this classification first given by Pigou [421]):10

First-degree (or perfect) price discrimination involves charging each
customer the maximum amount he is willing to pay. To do so‚ the
firm must have information on each customer’s willingness to pay
and be able to vary price by customer and by unit. First-degree price

10Though the definitions here are more modern and do not correspond exactly to Pigou’s
original taxonomy.
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discrimination is essentially a theoretical abstraction‚ as it is nearly
impossible to elicit each customer’s individual reservation price‚ ex-
cept in situations where the firm knows customers extremely well‚
and even then‚ it may require a protracted negotiating process.

Second-degree price discrimination occurs when the firm discrimi-
nates by offering a menu of possible purchase contracts (terms of
trade) and customers decide which contracts to purchase. Exam-
ples include quantity discounts‚ two-part tariffs (fixed plus variable
fees)‚ and bundle pricing. The key characteristic is that customers
self-select the purchase contract that they like best.

The advance-purchase and Saturday-stay restrictions of traditional
airline RM can be considered a form of second-degree price discrimi-
nation. The restrictions attempt to segment the customer population‚
exploiting correlations between price sensitivity and product prefer-
ences. They are designed so that customers self-select the product
(and pay the price) targeted for their segment. Hotels follow a similar
practice; they may set a weekly rate targeted at vacation guests and
a daily rate targeted at business guests (this is a form of nonlinear
tariff). Notice that self-selection is bound to be rather porous‚ in
the sense that it is difficult to make sure that customers from one
segment will not buy contracts targeted to other segments.

Third-degree price discrimination occurs when the firm divides the
customers into different groups based on some identifiable character-
istics (called a sorting mechanism) and then sets a separate price for
each group. It is assumed that the firm can identify‚ at the time
of purchase‚ the characteristics that identify the segment of the cus-
tomer. All the members of a group pay the same amount‚ but they
are prohibited (or are in someway discouraged) from purchasing at
the price set for other groups. Prices that differ by geographic re-
gion‚ discounts for senior citizens‚ tour-group rates and conference
rates offered by hotels and cruise-lines are some examples.

In some industries like broadcasting and media‚ a combination of first-
degree and second-degree price discrimination occurs when a bundle is
priced individually based on the customer relationship‚ customer bud-
gets‚ as well as the quantity purchased. Indeed‚ in practice the various
forms of price discrimination are more commonly used in combination
than in isolation.

Conditions for Price Discrimination Several conditions are required
to implement price discrimination:
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Variance in customer preferences If all customers are exactly identi-
cal in terms of price sensitivity and nonprice preferences‚ there is little
scope for price discrimination. Moreover‚ in the case of second-degree
discrimination it must be possible to find self-selection mechanisms
that are correlated with differences in willingness to pay‚ so it is in
a customer’s interest to buy at the prices targeted for their group
(called incentive-compatible mechanisms). In the case of third-degree
price discrimination‚ the firm has to identify observable characteris-
tics that are correlated with willingness to pay (the sorting mecha-
nism).

No resale To implement price discrimination‚ the product should also
be either impossible to resell after purchase or contractually prohib-
ited from resale‚ else arbitrage is possible. That is‚ someone (or a
firm) could buy at the lower prices and resell the good to those cus-
tomers who face higher prices‚ undercutting the firm’s ability to price
discriminate. Such nontransferability is implemented in various ways
in RM situations. Airlines and hotels prohibit transferability con-
tractually and add high penalties on change of itinerary or dates. In
industries such as broadcasting or energy‚ private contracts prohibit
transferability. Personal services such as health care are also not
transferable. Rules against scalping prevent resale in ticket markets.
And so on.

Monopoly power Firms should have some degree of monopoly power
to sustain a structure of price discrimination. As we mentioned be-
fore‚ under perfect competition in a commodity market‚ firms have
no power to set prices‚ and the law of one price applies. Nevertheless‚
the monopoly power need not be absolute‚ in the sense that there is
a single seller without any threat of entry. When products are differ-
entiated in some way or sold in dispersed markets‚ it is possible to
maintain price discrimination even with limited market power‚ and
a competitive equilibrium with multiple prices can still exist. The
degree to which such discrimination can be practiced decreases as
the number of competitors increases or the product differentiation
decreases.

8.3.3.2 Optimal First- and Third-Degree Price
Discrimination

How does a monopolist price if it can price discriminate? We begin
with the case of first- and third-degree price discrimination‚ which are
the easiest to analyze.
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Graphical Analysis Consider a simple linear-demand curve as shown
in Figure 8.1. For simplicity, assume that marginal costs are zero. The
shaded area in Figure 8.1(i) represents the maximum revenue obtained
by selling at a single price, and denotes the revenue-maximizing price.

Now consider what happens if the monopolist sells at multiple prices.
To make the situation concrete, suppose three prices are offered,

Further, suppose the monopolist can exercise perfect price dis-
crimination, in the sense that those customers with reservation prices
above buy at price those with reservation prices in the interval

buy at and those with reservation prices in the interval
buy at 11 Then the shaded area in Figure 8.1(ii) represents the rev-
enue that is obtained.

As is evident by comparing the shaded areas in Figure 8.1, the revenue
that can be obtained by discriminating and selling at three prices is
significantly greater than the revenue obtained by selling at a uniform
price. And as is intuitively clear from the picture, the more prices used,
the greater the revenue generated by the monopolist.

Indeed, as the number of prices tends to infinity, we achieve first-
degree price discrimination, since in the limit every customer will end

11A monopolist who can implement this “perfect price discrimination” is also called the
Pacman monopolist by von der Fehr and Kühn [540] because the monopolist “eats its way
down” the demand curve with this pricing.
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up paying exactly his reservation price for the product. The monopolist
then captures the entire consumer surplus (the entire area under the
demand curve in Figure 8.1).

While this graphical argument is commonly used to explain price dis-
crimination‚ it sidesteps the issue of how such a perfectly discriminating
outcome might actually be achieved. One possibility is that the monop-
olist offers the product for sale in high-to-low price order (first then

then and customers behave myopically‚ buying the first time
the price drops below their reservation price.12 Another possibility is
that there is some observable attribute (such as height) that is perfectly
correlated with a customer’s reservation price and the monopolist price
discriminates based on this observable attribute (for example‚ taller peo-
ple pay more). As both examples suggest‚ however‚ such perfect price
discrimination is a bit far-fetched in practice.

General Analysis A more general (and realistic) case of third-degree
price discrimination is to assume that there exists some sorting mech-
anism that allows the monopolist to divide customer into segments.
For simplicity‚ assume a constant marginal cost of For example‚ in the
airline case we might have where the sorting is based on whether
a customer is staying a Saturday night or not. Let be the demand
function from segment when it is offered the price The aggregate
demand function is then

That is‚ if the uniform price is offered to all groups‚ the total demand
from all groups is exactly the aggregate demand.

The monopolist’s optimal prices are then obtained by solving

As the problem is separable by groups‚ the optimal prices are simply
determined by applying (8.3) to each group‚ yielding

where is the marginal revenue of group
Assuming the monopolist can prevent customers from switching to

products not intended for him‚ then any sorting mechanism will result

12See Chapter 5 for a discussion of this myopic-behavior assumption.
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in (weakly) higher profits‚ since

However‚ if there is no correlation between the segments and willingness
to pay‚ then the discrimination will simply produce “copies” of the
original demand function; for all where
In this case‚ the inequality above is tight and there is no benefit from
discrimination. If there are correlations between price sensitivity and
segment (that is‚ the demand elasticity varies from segment to segment)‚
there will be a strict benefit to discrimination.

Of course‚ all this hinges on the ability of the monopolist to maintain
the separation of segments. Indeed‚ if the separation breaks down‚ the
monopolist may be worse off using price discrimination‚ as the following
example illustrates:

Example 8.5 Demand is given by as in Example 8.4. The marginal
cost is

Optimistic monopolist The monopolist believes it can perfectly segment customers
and set two prices for the product and that all customers with valuations
greater than or equal to will buy at and those with valuations between and

will buy at Then its problem is

One can verify that the optimal solution to this problem is to set and

Worst-case monopolist The worst that can happen is that the sorting mechanism
cannot be maintained and all customers buy at the lowest price. In this case‚ the
monopolist’s profit from and is

In short‚ the profit function and outcome are the same as those of the single-price
monopolist. However‚ since the price is strictly less than the optimal single-price
of this will result in lower profits. Hence‚ there is a danger that if the
monopolist has optimistic beliefs about its ability to sort customers yet the sorting
mechanism is easy to bypass‚ then price discrimination will generate lower profits
than the single-price strategy.

The issue of creating incentives for customer to “stay in their des-
ignated segment” is the essence of second-degree price discrimination‚
which we look at next.

8.3.3.3 Optimal Second-Degree Price Discrimination
Now suppose the monopolist cannot discriminate based on any ob-

servable characteristics. In other words‚ customers reveal their “types”
only through their purchase behavior‚ and they are not ex ante identifi-
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able. In this case, the monopolist is forced to design a mechanism such
that customers self-select the designated product.

To make things simple, suppose the monopolist identifies a purchase
condition—a contract—for which customers have a utility or disutility
(the Saturday stay) that divides customers into groups of size

Assume further that all customers in group have the same
reservation price for contract denoted We assume for all

that is, customers in group prefer contract Assume for simplicity
the marginal cost is

If the monopolist sets a price of for contract then a customer in
group receives a utility from purchasing it. The customer will
then self-select contract if it provides positive utility,

and it has the highest utility among all contracts; that is‚ if

Equation (8.6) is called the participation constraint because it ensures
customers have nonnegative surplus from participating (purchasing).
Equation (8.7) is called the incentive compatibility constraint and ensures
that customers in group have an incentive to in fact select contract
The monopolist then must solve the problem

subject to satisfying (8.6) and (8.7) for all groups
Note that if the monopolist could identify a customer’s group and

charge them based on their identity (third-degree discrimination)‚ then it
could eliminate constraint (8.7). In this case‚ it would charge each group

a price just sufficient to satisfy the participation constraint (8.6)—
namely‚ their maximum willingness to pay However‚ because
of the need to induce customers to self-select and satisfy the incentive
compatibility constraint (8.7)‚ the monopolist may be forced to charge
some groups strictly less than their maximum willingness to pay
The monopolist will therefore in general make less profit under second-
degree price discrimination because of the need to create self-selection
incentives. The following example illustrates this idea:

Example 8.6 An airline offers an unrestricted full-price fare and a Saturday-stay
discounted fare Business travelers want to return before the weekend and have a
valuation for returning midweek and a value for staying over on
Saturday. Leisure customers have no time preference and value both times at 100‚ so
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their values are Suppose there is one business customer‚ two leisure
customers‚ and no capacity constraints.

If the airline could identify the business and leisure passengers and charge them
accordingly (third-degree discrimination)‚ it would be optimal to charge the business
customer $700 for his desired flight and the two leisure customers $100. However‚ if
it cannot identify customers‚ then the airline must ensure that the business customer
prefers the full-fare ticket. This will happen only if This
constrains the monopolist’s price. In fact‚ an optimal set of prices to charge in this
case is and This ensures that the business customer’s surplus

from the full-fare is no less than his surplus from staying
a Saturday night and buying the discounted fare‚
Hence‚ we see the monopolist is forced to lower its full-price ticket by $100 to induce
self-selection.

A multiprice policy need not be motivated by price discrimination
alone. A monopolist might use multiple prices because of uncertainty in
aggregate demand or because it fetches revenue with more consistency‚
among other reasons‚ as we discuss next.

8.3.3.4 Capacity Constraints
Capacity constraints combined with aggregate uncertainty in demand

can create an incentive to use multiple prices‚ as illustrated in the fol-
lowing example:

Example 8.7 (Wilson [568]) Suppose the capacity is 100 and there are two types of
customers: there are 50 customers who are willing to pay $12 and an additional 100
customers willing to pay only $10. Customers arrive at random order (with a pro-
portional rationing)‚ and there is no way to distinguish the high-valuation customers
from the low-valuation ones.

Charging a single price of $12 fetches $600‚ and charging a single price of $10
fetches $1‚000. However‚ if the first 75 units are sold at $10 and the remaining 25
at $12‚ then on average‚ one-third of the first 75 units (or 25 units) are sold to the
high-valuation customers (at less than the price they are willing to pay‚ $10)‚ and the
remaining 50 units are sold to the low-valuation customers. The last 25 units will be
sold only to the remaining high-valuation customers at $12. So the expected revenue
will be $1‚050.13

Example 8.7 works because total demand exceeds capacity‚ and there-
fore multiple prices serve to efficiently ration capacity to high-value cus-
tomers. The next case shows multiple prices will lead to more revenue
even when total demand is no more than capacity.

13The calculation‚ admittedly somewhat crude‚ goes like this. Of the first 75 seats‚ 25 are
sold to the $12 customers by proportional rationing. So 25 of the $12 customers remain to
buy the last 25. So the revenue is $750 from the first 75 units and $300 from the last 25
units.
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8.3.3.5 Precommitment and Demand Uncertainty
Just as in the Prescott equilibrium in the competitive case (Sec-

tion 8.2.3)‚ the need to commit to prices combined with aggregate de-
mand uncertainty create an incentive for a monopolist to use multiple
prices. The following example illustrate this idea:

Example 8.8 (Dana [142]) A monopolist must commit to both its capacity C and
its prices prior to the realization of demand. The capacity cost is and the
variable cost to serve is zero. Demand is high with a probability of 0.5 and low with
probability 0.5. In the low-demand state‚ there are 50 customers with a reservation
value of $10; in the high-demand state‚ there are 100 customers with a reservation
value of $12.

If the monopolist sets a single price of $10‚ it is optimal to provide C = 100
units of capacity‚ and the monopolist’s expected profit is $750 – $200 = $550. If the
monopolist sets a price of $12‚ it is optimal to provide C = 50 units of capacity and
the expected profit is $600 – $100 = $500.

However‚ by using multiple price and capacity controls‚ the monopolist can gener-
ate more profit. Specifically‚ the monopolist could provide capacity of C = 100‚ sell
the first 50 units at and sell the remaining 50 at a price of There-
fore‚ if demand is low‚ its revenue will be $500‚ and if demand is high‚ its revenue will
be $1‚100‚ giving an expected profit of $800 – $200 = $600; hence‚ setting multiple
prices and limiting sales at the lower price generate more revenue.

Note that in this example the quantities supplied as the low and high
price are exactly the Prescott quantities from Section 8.2.3; however‚ the
prices are different. Namely‚ the Prescott prices (8.1) in this example
are and The difference here is that the
monopolist sets prices based on the maximum willingness to pay in each
scenario rather than on the need to simply cover capacity costs‚ as is
required in the zero-profit competitive equilibrium.

8.3.3.6 Risk Reduction
Even if there is no increase in expected revenue‚ a monopolist might

still prefer a multiprice policy in the face of aggregate demand uncer-
tainty because it lowers the variance of its revenue (for example‚ the
monopolist may be risk-averse)‚ as shown by the following example:

Example 8.9 Suppose that the firm has a resource with two units of capacity and
there are three customers each demanding one unit. There is uncertainty in the
valuations of the customers: the firm knows only that the customer will buy with
probability 1 if it prices at $62.5 and with probability 0.5 if it prices at $100.

Then the best single-price policy can be verified to be $100‚ with a total expected
revenue of $1‚100/8 (the firm will sell zero units with a probability 1/8‚ exactly one
unit with a probability 3/8 and two units with a probability 1/2). A multiprice policy
of selling the first seat at $62.5 but the second at $100 fetches the same expected
revenue of $1‚100/8 (the firm will sell no units with a probability zero‚ exactly one
unit at $62.5 with a probability 1/4 and 2 units‚ one at $62.5 and the other at $100
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with a probability 3/4). However‚ the variance of the revenue obtained is reduced
from 4‚843.75 to 1‚875‚ as seen from the calculations in Table 8.3 for the single-price
policy and in Table 8.4 for the multiple-price policy.

In this example‚ the firm can cut its uncertainty in the number of
units sold by selling the first few at a low price more consistently and
then taking the risk of having unused capacity on only the final few
high-priced units.

8.3.3.7 Fairness
An oft-forgotten consequence of selling at a fixed price is the inher-

ent unfairness of the distribution of goods (see Section 7.3.5 on models
of rationing). Customers who happen to arrive first get served with a
higher probability‚ regardless of their valuations. A monopolist might be
motivated to enforce fairness for the sake of long-run customer satisfac-
tion. Multiple prices may be seen as one way to rectify this unevenness
in allocation.

Example 8.10 Consider again a set of customers with private valuations  for a
single unit of a good. The firm has one unit for sale‚ and there are exactly two
customers in the market who arrive sequentially‚ in period 1 and period 2 respectively.
The firm knows only that the valuations  are normally distributed with a mean of
$200 and standard deviation of $30.

The optimal single price for the firm can be verified to be equal to $179.56 as
follows. Let F(200‚30) be a normal distribution representing customer valuations
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with mean 200 and standard deviation 30. For the single price case‚ we need to
solve which yields The optimal
single price of $179.56 fetches a revenue of $168.53. The first customer then gets the
good with probability 0.752‚ and the second with probability 0.186‚ even though their
valuations follow the same distribution.

What if the monopolist wants both customers to have the same probability of
obtaining the good? Let be the price charged in period 1 and for period
2. If we impose the restriction that customers have equal probabilities of getting
the item‚ we need to solve subject to

This yields for a revenue of
$172 and both the first and the second period customer will take home the good with
a probability of 0.47.

While the firm gives up some revenue as well as increases its risk of
not selling the item‚ it decreasing the variance in customer surplus‚ and
one can argue that this might have a long-term benefit to the firm. Con-
ceivably other fairness criteria can also be used—equal ex post expected
payments‚ equal expected surplus‚ are some possibilities.

8.3.3.8 Demand Learning
The price and demand in a given period provides information to the

monopolist that it can potentially use to adjust the price in the sub-
sequent period. This learning can lead to different prices in different
periods as illustrated in the following two-period model:

Example 8.11 (Lazear [332]) A firm has one unit of a good remaining and two
periods in which to sell it. All customers have a uniform valuation unknown to the
firm. The firm has a prior distribution of as uniform between 0 and 1.

If the monopolist prices at a price in the first period and the unit does not
sell, it knows that The firm’s posterior distribution of is then uniformly
distributed between 0 and It can then use this updated information to set its
price in the second period.

Let be the prior c.d.f. in period 1 (and p.d.f. and the posterior
c.d.f. in period 2. Then the monopolist’s problem is to solve

The optimality condition for (8.8) is

The solution to (8.8) turns out to be

8.3.3.9 Changing Customer Valuations over Time
Finally‚ multiple prices could be used just because customer valuations

change over time. A fashion good is not as fashionable after a while‚

which implies has to be greater than For the case of uniformly distributed‚
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and customers might value it less. The following example illustrates this
phenomenon:

Example 8.12 (Lazear [332]) Customers value a good at during the first period,
and at during the second The firm estimates the distribution of as
uniform between 0 and 1. Then its pricing problem is

Solving the optimality conditions result in optimal prices:

8.3.3.10 The Effects of Discounting
We next illustrate the effect of discounting as discussed in Lazear [332].

Consider the two-period learning model of Example 8.11. Let’s say the
firm now has a discount rate (a discount factor of so a
sale at price in period 2 has a present value of Then its
objective function changes from (8.8) to

The optimal solution (with a prior distribution of uniformly distrib-
uted between 0 and 1) changes to

Note the difference between this and the solution to (8.9).
The argument is that given any price in period 1‚ the firm should

set the monopoly price in period 2‚ based on the posterior distribution.
This would give for the uniform case. Now substitute this in
(8.10)‚ and differentiate to get

Notice that the policy in the second period does not change from
Example 8.11. For large values of the firm prefers to sell in period 1
than in period 2‚ so it prices lower than in Example 8.11 (for example‚

during the first period.

8.3.4 Strategic Customer Behavior
Customer are said to be strategic if they optimally adapt their be-

havior in response to changes in a firm’s pricing policies or sales mech-
anism. We have already considered strategic behavior in Section 5.5.2
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in the context of price skimming‚ and in Chapter 6 in the context of
strategic bidding in auctions. Here we reexamine the effect of strate-
gic behavior—in particular‚ strategic purchase-timing behavior—on the
optimal pricing decisions of a monopolist.

8.3.4.1 The Coase Problem Without Discounting
Questions concerning a monopolists’s ability to charge different prices

over time were raised as far back as Coase [124]. The Coase conjecture14
‚

applied to a durable good15 with an infinite life‚ goes like this. Consider
a monopolist selling a durable good with a constant marginal cost of
production. As in our graphical example of third-degree price discrimi-
nation in Section 8.3.3.2‚ a monopolist would ideally like to price its good
high at first to sell to high-valuation customers. Once this high-value de-
mand is exhausted (the durable-goods assumption)‚ the monopolist then
lowers the price to sell to the remaining customers with lower valuations‚
and so on. This results in a decreasing sequence of prices. However‚ ra-
tional customers will anticipate the lower future prices and refuse to buy
until the price drops to the minimum price‚ so the monopolist can sell
only at the lowest price. Hence‚ the firm is forced to sell at a uniform
price.

Moreover‚ the monopolist may be forced to set its uniform price at
marginal cost. This occurs‚ as in the price skimming model of Sec-
tion 5.5.2‚ if the monopolist cannot credibly commit to its pricing strat-
egy. Any fixed price higher than marginal cost is not subgame perfect
because once the firm sells to the high-valuation customers‚ it is then
optimal for it to subsequently lower the price (provided the initial price
is above the marginal cost). Anticipating the firm’s temptation to lower
prices‚ rational customers will not purchase at the initial high price.
Pricing at marginal cost‚ therefore‚ is the only strategy that is subgame-
perfect. This gives the Coase conjecture: a durable-goods monopolist is
forced to price at marginal cost‚ recovering the competitive outcome.

As McAfee and Wiseman [370] point out‚ intuitively this result oc-
curs because the monopolist is‚ in a sense‚ forced to “compete with
itself in future periods; purchasing in the future is a perfect substi-

14The Coase Conjecture‚ verified under certain conditions in the models of Stokey [491]‚
Bulow [93]‚ and Gul‚ Sonnenschein‚ and Wilson [228] for high discount factors‚ is still referred
to as a conjecture‚ and is distinct from the Coase theorem.
15By durable good‚ we mean here a good that does not need to be replaced in the foreseeable
future‚ usually taken to be three years (automobiles‚ major household appliances‚ personal
computers‚ and so on)‚ so that once customers buy‚ they do not need to buy again in sub-
sequent periods. This is in contrast to nondurable goods (groceries‚ gasoline‚ electricity)‚
which need to be purchased frequently over time.
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tute for purchasing now (assuming either arbitrarily fast price decreases
or no discounting of utility over time‚ or both). A qualitative recom-
mendation that results from the Coase conjecture is that it is better
for the monopolist to lease at a uniform price rather than sell outright
because then a change in its lease price affects both current and future
customers equally. The firm can then credibly commit to offering the
optimal monopoly price. (Wilson [569] offers this as an explanation for
IBM’s traditional emphasis on leasing mainframe computers.)

While airline seats‚ retail fashion goods‚ and hotel rooms may seem
the antithesis of a durable good‚ the differences are not as great as they
appear at first blush. For one‚ a customer who purchases a unit of a
perishable resource (either a fashion item‚ an airline seat‚ or a hotel
room) is unlikely to buy another unit during the relevant life cycle (sale
period) of the product‚ so the product effectively has an infinite life in
this sense. There may be a limited number of potential customers as
well‚ so as for the durable good‚ customers are exhausted over time. If
the product is perishable and capacity is limited‚ most customers are
aware that the RM monopolist has considerable difficulty committing
to its price.16 Most important‚ the RM monopolist is asking the same
questions as the durable-goods monopolist. A retailer may wonder if
its markdown pricing policy will induce some high-valuation customers
to delay their purchase until the markdowns occur. Similarly‚ an air-
line or hotel manager might wonder if business customers are buying
advance-purchase discounts‚ resulting in a dilution of revenue. For all
these reasons‚ the durable-goods monopoly is a relevant model for un-
derstanding RM practice.

8.3.4.2 The Coase Problem with Discounting
The above discussion ignores customers’ discount factors. We next

describe the Coase problem and results with discounting. Our model
and notation follow von der Fehr and Kühn [540].

Assume that initially there is a group of customers who are willing
to buy during the subsequent periods but that customers (the buyers‚
B) discount their valuations by a rate and the firm (the seller‚
S) discounts its revenues at a rate of Let and

be the corresponding discount factors. The monopolist
sells to a set of customers who demand exactly one unit of the good‚
which has a marginal cost of zero to produce. can either be finite

16A good industry example of this behavior is seen in the cruise-line industry‚ where last
minute discounts are pervasive. As a result‚ most industry insiders feel customers are now
“trained” to wait until the last minute to purchase.
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or a continuum Customers’ valuations
are given by and we assume that the customers are
indexed by nondecreasing valuations. The utility for a customer with
value who purchases in period at price is given by The
firm can choose its prices from a set P‚ which can be either a discrete
price grid or a continuum The number of periods T can be either
finite or infinite.

The firm sets a price in period based on past history. Given a
price in period and the history of all prices up until time customers
decide whether to purchase or wait for the next period. The firm can
potentially condition its strategy based on the purchase behavior of each
single customer. Both customers and the firm are assumed to be risk-
neutral utility maximizers. The following result then holds:

THEOREM 8.1 ([26]; proof in [540]) If is finite and the price-set
then for every there exists a such that for all

the unique subgame-perfect equilibrium in prices is perfectly
discriminating.

Note that this is solely an existence result. Essentially‚ Theorem 8.1
says that if the firm is sufficiently patient‚ it will (credibly) threaten to
wait as long as it takes for the high-valuation customer to buy. Only
then will it lower the price. Since there is a finite number of customers‚
each customer has a significant impact on the firm’s profit‚ again making
the threat credible. Customers faced with a firm like this are better off
purchasing immediately as soon as the price drops below their valuations;
that is‚ it is optimal for customer to behave myopically. Although the
number of periods can be infinite‚ this is not strictly necessary‚ provided
the firm can condition prices on which customers purchased so far‚ as
the following example from Bagnoli et al. [26] shows:

Example 8.13 The market has two customers with reservation values and
there are two periods of sale. Assume Assume also that customers
purchase at any price that gives them a nonnegative utility (as opposed to the utility
maximizers of Theorem 8.1). In period 2‚ both customers are better off buying if the
price is below their valuations. The firm knowing this sets if customer
1 has not yet purchased the good‚ and if customer 1 already purchased in
period 1. (Note that this policy requires the firm to know who bought in the first
period.) Given that the second stage is played this way‚ we can verify that the firm
obtains the maximum payoff by setting (by calculating the payoff for the two
options and The firm will discriminate perfectly‚ and its discounted payoff is
then

For the next result, assume that and let the marginal cost
be a real number but not an integer. (This is an odd—yet not that
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restrictive—assumption‚ but if c is integer‚ von der Fehr and Kühn [540]
show that multiple equilibria can exist.) P is a set of uniformly spaced
grid of prices‚ We then have

THEOREM 8.2 ([228], [21]; proof in [540]) There exists a
such that for all and all there exists a unique
subgame-perfect equilibrium with the Coase property; that is, is the
competitive price and all customers with valuations greater than

buy in the first period.

For this result to hold two conditions are important. First‚ there is a
continuum of customers‚ so no customer by himself is important enough
to the firm‚ and therefore the firm’s threat not to reduce prices until a
measure of high-value customers buys ceases to be credible. Second‚ the
firm can cut the price only in discrete amounts (here by 1‚ but more gen-
erally by an amount as in [540])‚ so if the customers’ discount factor
is sufficiently close to 1‚ they can wait for a price cut. (If prices are con-
tinuous‚ no matter how patient the customers‚ the firm can cut in small
enough increments to force the customers to purchase immediately.)

While the opposing conclusions of Theorems 8.1 and 8.2 might appear
confusing at first‚ the important point is the dependence of the results on
the relevant factors‚ such as the number of customers‚ the relative value
of the discount factors‚ the firm’s knowledge of customer valuations‚ and
the information the firm gains after each sale about who bought and who
didn’t.

These relationships provide insights into RM. For one‚ they suggest
a firm’s ability to discriminate intertemporally depends on who is more
patient‚ the firm or the customer. If the firm is patient‚ it can credibly
sustain price discrimination; conversely‚ if consumers are patient‚ it can-
not. This is key issue when selling a perishable product; if customers
know that the good is perishable or has a fixed deadline for sale‚ they
know that the discount factor for the firm is low. On the other hand‚
customers are aware that there is a fixed capacity‚ and there is a chance
that demand will exceed capacity and they will be rationed out of the
market. The longer customers wait‚ the smaller their chances of getting
the good‚ so their discount factor is also low (unless of course they know
that demand is certain to be below capacity). However‚ it is likely that
only the firm knows the information about aggregate demand (say from
the historical demand). This suggests it is strategically important for the
firm not to reveal information on its demand state—such as remaining
capacity‚ historical demand‚ or current rate of sale. For their part‚ cus-
tomers have an incentive to conceal information about their valuations‚
even ex post‚ because otherwise the firm can identify who purchased and
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who did not and change its pricing based on the history of valuations.
This latter point serves as something of theoretical justification for the
often wary public reaction to the concept of personalized pricing. (See
Johnson [269].)

Finally‚ we have also assumed that all customers want to purchase the
items at time zero and discount their valuations in each subsequent pe-
riod. For the monopolist‚ this leads at best to a price-skimming policy or
at worst to a constant-price policy. A more general assumption would be
that customers’ desired purchase times are randomly distributed during
the horizon and that they discount both having to buy earlier or later
than they would like.

8.3.4.3 Quasi-Myopic Behavior
Somewhat in between the myopic- and strategic-customer model is a

model where the firm sets its prices so that it is in the best interests
of the strategic customer to be myopic (myopic behavior is incentive-
compatible). This‚ of course‚ gives the firm more leeway and leads to a
revenue that‚ while not as good as the perfect-discrimination price‚ is not
as bad as the Coasian prediction. One such model is found in Harris and
Raviv [239]‚ which we describe as given in Wilson [569] (pp.242–244).

Example 8.14 (MYOPIC INCENTIVE CONSTRAINED PRICING) A monopolist faces N
potential customers whose valuations are distributed over the discrete set of values

with a known, discrete distribution. Each customer demands
one unit of the product. The firm has an inventory of C units and assume N > C.
The firm sets a declining price schedule with price valid in
period The probability of the inventory is still available in period is given by
It is assumed that the customer is able to calculate this number. A customer with a
valuation that is planning on purchasing in period will have an expected
surplus of Period is targeted at the customer with valuation The
firm sets the prices such that each customer is indifferent between purchasing at the
intended time or delaying to a later period. That is, the prices satisfy the indifference
constraint

This recursive constraint‚ in fact‚ determines the prices set by the monopolist:

The monopolist’s decision is essentially to determine the lowest-valuation customer
that it is willing to sell to. (Note that only the lowest-valuation customers that can
buy are left with zero surplus.)
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8.3.5 Optimal Mechanism Design for a
Monopolist

Thus far we have assumed that the selling mechanism of the monopo-
list is given. But what if the monopolist has the freedom to chose among
all possible mechanisms? Which is the optimal one to use?

In a sense, this question was answered in Section 6.2.5 on optimal
auctions. There we saw that under the assumptions of the private-value
auction model, a first- or second-price auction with an appropriately
chosen reserve price is optimal among all possible selling mechanisms,
including simple posted prices, price discrimination, and dynamic pric-
ing. (See the discussion in Section 6.2.6.) Here we consider a variation
of this same optimal-mechanism design result, due to Harris and Ra-
viv [239], in which customers take on a discrete number of types. (This
contrasts with the private-value auction model, in which customers take
on a continuum of types.) We show that an alternative pricing mecha-
nism is optimal in this case, though it is closely related to an auction
mechanism and is essentially a variation of the optimal auction results.

There are N potential customers indexed by and the firm has a finite
capacity C. The firm and all customers are risk-neutral. The marginal
cost of serving a customer is zero. Customer is willing to pay an amount

to acquire the product. Customers’ valuations are private information,
and the firm and customers other than know only that the distribution
of is equally likely to be one of values (So
the situation is one of asymmetric information.) For simplicity, assume
the values are on an equally spaced grid so that

where and are given constants. Customers’ valuations are
independent draws from this discrete distribution. Let
with denoting as usual the vector without the component.

As in the optimal auction analysis of Section 6.2.3‚ the monopolist’s
problem can be reduced to a search for an optimal direct-revelation
mechanism‚ in which the customers truthfully reveal their valuations and
the monopolist’s problem is to find only the optimal direct-revelation
mechanism. Formally‚ a direct-revelation mechanism is defined by an
allocation rule (a collection of functions that describe the num-
ber of units allocated to each customer as a function
of the values v) and a payment rule (another collection of functions

that describe what each customer is required to pay
in return for his allocation). Customers are asked to report their values
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v‚ and then they receive their allocation and make payments according
to the announced allocation and payment functions. One can show it is
sufficient to consider only symmetric allocation and payment rules‚ in
which case the allocation to customer  is only a function of his value
and the values of the other customers. That is‚
and for all So in what follows‚ we consider only
symmetric mechanisms.

For the mechanism to be a direct-revelation mechanism‚ each cus-
tomer should have an incentive to report his true value rather than
some other value This is enforced by the following incentive compat-
ibility constraint:

where S(·) is a customer’s expected surplus‚ given by

where denotes the probability of obtaining the
good and denotes the expected payment of
customer

Harris and Raviv [239] analyze this problem and show that‚ as in
the optimal-auction problem‚ the above optimization problem can be
reduced to a function of the allocation variables alone; namely‚

where

The function is analogous to the virtual value we saw in Chapter 6;
note that it is strictly less than the customer’s value because‚ as in an
auction‚ customers retain some “information rents” due to the asymme-
try of information. Like the virtual value in the auction‚ also has
the interpretation as the monopolist’s marginal-revenue function. To see
why‚ let denote the expected demand at price and observe that



The Economics of RM 371

(increasing price decreases demand). The expected revenue
at price is then

Therefore‚ the marginal revenue obtained by increasing demand from
to is

And again as in the auction-design problem‚ the optimal allocation
above is straightforward to implement: rank the customers

by their virtual values and allocate the items to those customers
with the highest virtual values stopping when either all C units
are exhausted or the virtual value of the customers drops below zero.

Harris and Raviv show that the following priority-pricing scheme
achieves this optimal allocation: the firm announces a schedule of prices

and each customer self-selects the price he is willing
to pay. However‚ customers selecting higher prices have higher priority
because the firm allocates items to customers in order from highest to
lowest price. Formally‚ let be a cut-off index defined such that

Then we have the following result:

THEOREM 8.3 ([239]) (i) If C < N‚ the optimal scheme is a priority-
pricing scheme with priority prices is defined by (8.12))
given by

where is the probability of purchase for a customer with valuation
under the optimal allocation:

(ii) If the optimal marketing scheme is to set a single price
equal to where again‚ is as given by (8.12). This is the smallest
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reservation value such that the marginal expected value is greater than
or equal to zero (the marginal cost).

One can interpret Theorem 8.3 in terms of our earlier optimal auction
results of Chapter 6 as follows. The priority price is equivalent to
the optimal bid that a customer of type would make in a first-price
auction‚ and is equivalent to the optimal reserve price. And as in
a first-price auction‚ customers are sorted and awarded units according
to their bid values. Here‚ because types are discrete‚ the firm can pre-
compute the optimal bids and offer them as posted priority prices.17

Customers will pick the priority price that corresponds to their optimal
first-price bid. In this sense‚ the priority pricing mechanism is essentially
equivalent to an optimal first-price auction mechanism.

8.3.6 Advance Purchases and Peak-Load Pricing
Under Monopoly

As mentioned in Sections 8.2.7 and 8.2.4‚ advance-purchase markets
and peak-load pricing are common features of many quantity-based
RM industries. Here we look at the monopoly analysis of Gale and
Holmes [196] of these two phenomena‚ who use mechanism design tech-
niques to show that advance-purchase discounts achieve the revenue of
the best possible sale mechanism (and is superior to peak-load pricing).
We present their explanation in terms of an airline example‚ although
similar reasoning can be given for other industries where identical (sub-
stitutable) inventory is sold for use in different periods.

The model is similar in spirit to the one discussed in Section 8.2.6.
Consider a monopoly that has two flights for a future day of departure‚
one flight departing at a time of high demand and the other at a time
of low demand. The capacity of each flight is C. The total number of
customers N exceeds C but is less than 2C‚ The time before departure
is divided into two periods‚ an early period (call it period 1) and a
late period nearer the time of departure (call it period 2). We assume
that there is a continuum of customers and that the capacity and the
population size are normalized so that the total population size is one
(N = 1). All the customers are identical and have a reservation price of

The customer purchase model is essentially identical to that of Sec-
tion 8.2.6; during period 1‚ customers are uncertain which one of the
flight times they prefer. They will realize this only during period 2.

17Indeed‚ note the similarity between the formula for the optimal price above and the
optimal bidding strategy (6.4) of Section 6.2.2.2 for the first-price auction.
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However, throughout they know their private waiting cost (even dur-
ing period 1) for taking their less preferred flight. The waiting cost
varies from individual to individual and (from the perspective of the
firm) is an i.i.d. random draw from a distribution with density

over A customer then, is willing to pay for his less
preferred flight. Of the total number of customers, a fraction
will realize in period 2 that they prefer the first flight. So there is con-
gestion on this flight, but there is enough capacity to satisfy all potential
demand on the second flight—that is, The monopolist is
aware that the first of the two flights is going to be the peak-demand
flight.

The monopolist would like to design a mechanism that maximizes its
profits. However, since the customers’ cost information is private, the
mechanism should be such that it is in the customers’ best interests to
truthfully reveal their costs.

There are a number of different pricing options: using a single-price
for both flights, a peak price for the first flight and a lower price for the
second flight, or an advance-purchase discount (APD) in period 1. In
fact, there are an infinite number of possible sales mechanisms. Although
one could use the theory of mechanism design to find the best among all
possible forms of pricing policies, here we focus on comparing peak-load
pricing with advance-purchase discounts.

In peak-load pricing the peak flight is sold at a price of and
the off-peak flight at a lower price of (A single-price policy will
lead to equal or lower revenue than a peak-load pricing policy as the
monopolist has the option of setting

Let be the unique solution satisfying

Then at a price of for flight 1 and for flight 2‚ the monopolist
is assured of filling flight 1. Indeed‚ it is not hard to show that
(a price of for flight 1) is always optimal and that it is optimal to have

So the optimal maximizes the total revenue
defined by

The first-order conditions imply

and is the solution to this equation.
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If‚ instead‚ the monopolist prices both flights at a cost of during
period 1 and offers an advance-purchase discount of during period 1
for the low-demand flight‚ any customer with a time cost below will
find it beneficial to buy the low-demand flight early; if he waits‚ he has
to pay but if he buys in advance‚ he has to pay only (with
a probability that it won’t be his desired flight and he will incur an
expected time cost of So it is incentive compatible for the customer
to follow the monopolist’s plan.

The monopolist will set to maximize its profit function under the
advance-purchase discount scheme which is given by‚

Differentiating we get as the solution to

We assume is increasing in so this solution is uniquely

defined.18 Comparing (8.15) with (8.13)‚ as shown in Ap-
pendix 8.A‚ the revenue from giving advance-purchase discounts exceeds
that from peak-load pricing—that is‚

The intuition behind this result is that in a peak-load pricing scheme‚
the monopolist has to give a discount to all customers who fly on the low-
demand flight—even those customers with high valuations who prefer
the low-demand flight. In contrast‚ the advance-purchase mechanism—
because it is a self-selection mechanism—gives discounts only to cus-
tomers with low waiting costs.

Note also that the discounts are offered in period 1‚ before customers
know their preferences. This uncertainty plays a role: the monopolist
can offer a discount of instead of in the earlier period‚ because
there is some chance customers will end up on their preferred flight. The
lower discount that results makes this a profitable policy. This advan-
tage of advance-purchase selling is reiterated by Shugan and Xie [467]‚
who note that in the advance-purchase market a firm sells to customers
who are uncertain about their time preferences‚ and this puts the firm in
a better position during the consumption period when customers (pri-
vately) know their time preferences. In this sense‚ the information asym-

18This assumption is equivalent to the familiar monotone marginal-revenue assumption‚ As-
sumption 7.2‚ but expressed in terms of distribution of the waiting cost rather than in
terms of the distribution of the utility
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metry between customers and the firm is lower in the advance-purchase
market‚ which benefits the firm.

From a social-welfare point of view also‚ the advance-purchase dis-
count mechanism turns out to be superior‚ as the overall sum of cus-
tomer and firm surplus is maximized. Those with high costs for taking
the less desirable flight do not take it‚ and those with lower costs take
the low-demand flight. Here‚ advance-purchase restrictions serve as the
optimal mechanism for allocating resources‚ while being compatible with
customers’ interests in revealing their private information.

8.4 Price and Capacity Competition in an
Oligopoly

An oligopoly is a market in which a limited number of firms compete
to supply the same (or similar) good. As in a monopoly‚ individual firms
are sufficiently large so that their actions (prices and quantities) affect
market demand. Yet‚ firms do not operate in isolation as in a monopoly‚
and the actions of one firm affect the demand of its competitors as well.
This creates a strategic interaction among the firms’ decisions‚ which
is the distinguishing feature of oligopolistic competition. Oligopoly is
arguably the most interesting market condition for studying RM because
it is the prevailing competitive situation in many RM industries.

The two classic models of oligopoly are the Cournot model (com-
petition in quantities [132]) and the Bertrand model (competition in
prices [54]). The standard equilibrium concept for an oligopoly is the
(pure-strategy) Nash equilibrium. (See Appendix F for basic definitions
and concepts related to Nash equilibria.) The equilibria need not be
unique.

The goal of oligopoly analysis is to derive Nash equilibria‚ analyze
their properties‚ and study the resulting implications for individual firms
and the market as a whole. When multiple Nash equilibria exist‚ the pre-
dictive power of the model is diminished because it is not clear which of
the multiple equilibria will emerge in an industry.19 Therefore‚ prov-
ing there is a unique equilibrium—if this is the case—is important.
Sometimes‚ no pure-strategy equilibrium exists at all. In such cases‚
a mixed-strategy equilibrium may exist‚ in which firms randomize over
their strategies‚ though such equilibria typically give less insight into
market outcomes.

19 Ways to predict the “most-likely” equilibria when multiple equilibria exist is an active topic
of research in game theory. See Samulson [453].
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We begin by looking at static (one-shot) oligopoly models where firms
sell a homogeneous product. We then look at dynamic models with
repeated interactions between firms. Finally‚ we consider models where
firms sell differentiated products.

8.4.1 Static Models
Static models of oligopoly are one-stage models of competition in

which firms make their decisions simultaneously. We look first at compe-
tition in quantities (Cournot competition) then at competition in prices
(Bertrand competition).

Do firms practicing RM compete on price or quantity? It’s difficult
to say. On the one hand‚ as capacity is fixed in many RM contexts‚ this
would suggest that price is the relevant strategic variable. So Bertrand
competition might seem more appropriate. On the other hand‚ the main
decision variables in quantity-based RM are capacity allocations‚ which
are quantity variables. This would seem to imply that Cournot models
are more relevant for quantity-based RM. Yet‚ neither the Bertrand
nor the Cournot model is completely adequate for describing quantity-
based RM. In Section 8.4.3‚ we model dynamic RM interactions in price
and allocations in a duopoly (two-firm) market‚ which comes closer to
fully describing RM competition. Still‚ for broad questions on long-term
market behavior‚ strategic-capacity investment‚ and price competition‚
Cournot and Bertrand models are relevant to RM.

8.4.1.1 Static Cournot Model

Cournot’s paper [132] is one of the earliest models of oligopolistic
competition. He studied a market of   firms that choose their production
quantity simultaneously. The market then determines the price that
clears total output.

Let denote the output of the   firms‚ and
denote the aggregate supply. The price at which the market

clears the supply X is given by an inverse-demand function Note
that the exact mechanism by which this supply is sold is unspecified
in the model‚ though one can imagine a fictional auctioneer who sells
the total supply by searching for a price that exactly clears the market.
(Indeed‚ the absence of a realistic price-setting mechanism is a persistent
criticism of the Cournot model.) Nevertheless‚ the model captures many
important aspects of strategic interaction and as a result has become a
mainstay of the industrial organization literature.
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For simplicity we assume a constant marginal cost c for each firm.
Then firm   maximizes its profit

This leads to the first-order condition (called the Cournot pricing for-
mula):

The Cournot equilibrium is given by the simultaneous solution of these
first-order conditions‚ and it exists under quite general conditions.

For instance‚ a sufficient condition is that the profit function V(·) be
quasiconcave in and the strategy spaces compact. The markup of
firm i is given by if The size of the
markup indicates the degree of market power that firms have.

denote the market-demand elasticity (with respect to
quantity) at X. Rewriting the Cournot pricing formula in terms of
these quantities‚

Thus‚ a firm’s markup is directly proportional to its market share and
is lower if the demand elasticity is higher. All firms that produce make
positive profits. However‚ if all the firms have the same marginal costs‚
as the number of firms increases‚ Cournot profits approach zero; equiva-
lently‚ the equilibrium approaches that of perfect competition. We illus-
trate this outcome for the case of linear demand and constant marginal
costs in the following example:

Example 8.15 (COURNOT WITH LINEAR-DEMAND FUNCTIONS) Consider a market
with    firms with a constant marginal cost  of production and linear inverse-demand
function So firm    payoff function is

Differentiating (8.17) with respect to and setting it to 0 yields

The symmetric equilibrium is given by

Let denote the market share of firm and
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and the market-clearing price at the Cournot equilibrium by

So the equilibrium price is strictly above marginal cost‚ but as the
competitive price.

For general (nonquasiconcave) payoff functions‚ an equilibrium need
not exist.

8.4.1.2 Cournot with Uncertain Demand and Exogenous
Price

We next look at a variation of the Cournot model with demand un-
certainty that more closely matches quantity-based RM situations. It is
the oligopoly analogue of the well-known newsvendor problem in opera-
tion management‚ and one can think of it as a stylized model of firms
competing in capacity allocations under demand uncertainty.

Consider first the following monopoly newsvendor model. A firm faces
a stochastic demand D for its good and must produce before observing
the value of D.  D is a continuous random variable with known distri-
bution F(·). There is a variable cost  for producing units‚ and each
unit sells at a fixed price The newsvendor problem is a good model
for situations where prices are exogenous‚ and capacity decisions have
to be made ex ante and cannot be changed after observing high or low
demand states.

The (monopolist) newsvendor problem is to order a quantity to
maximize the firm’s expected profits (assuming salvage value of 0)

This is a well studied problem (see Winston [571]‚ pp.907–909) and serves
as the basic template for the overbooking problems of Chapter 4. From
the first-order conditions for (8.21)‚ one can show that the optimal out-
put quantity satisfies

This result is analogous to Littlewood’s rule (2.2) from Chapter 2.
The oligopoly version of the newsvendor problem can be considered

as Cournot competition with uncertain demand and an exogenously de-
termined price. The exogenous price can be thought of being set com-
petitively at a aggregate level‚ while capacity allocations take place at
a lower‚ operational level (for example‚ airlines matching fares in broad
O-D markets but tactically competing in terms of allocating capacity on
individual flight departures).
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Each firm chooses a quantity before demand is realized. Customers
choose among the available firms‚ and if a firm is out of stock‚ customers
may switch and purchase from a competing firm. (Customers are willing
to substitute among firms.) Hence‚ the demand that firm   sees depends
on the quantity decisions of its competitors‚ Specifically‚ firm
payoff function is given by

where is the effective demand function (a random variable)
for that is a function of D and the quantities x‚ supplied by all firms.
Because price is not guaranteed to adjust to the supply‚ as in the Cournot
model‚ there is a possibility of the market supplying too much or too
little capacity for a given demand realization.

The effective demand may be defined by various reallocation rules or
through discrete-choice models of customer behavior. (See Lippman and
McCardle [346] and Mahajan and van Ryzin [355].) The only assump-
tions required‚ however‚ are (1) that the effective demand for firm   is
stochastically decreasing in that is‚ the more capacity its competi-
tors provide‚ the lower the demand seen by firm    and (2) the distribu-
tion of the effective demand is continuous on a bounded interval
for all

The payoff function (8.22) for each firm    is concave in the firm’s own
quantity Hence‚ by a standard result in game theory for games with
quasiconcave payoff functions (see Appendix F)‚ it follows

THEOREM 8.4 ([346]) There exists a pure-strategy equilibrium in in-
ventory levels in the n-firm competitive newsvendor
game.

A quantity of interest is the total capacity provided by the firms and
how it compares with that of the monopoly case. Consider for illustra-
tion purposes the following duopoly setting:

Example 8.16 Consider a duopoly newsvendor competition‚ and let denote the
“native demand” for firm    That is‚ these are the customers whose first preference
is for firm   However‚ customers will buy from the competing firm if their preferred
firm has no remaining capacity. The effective demand for firms 1 and 2 is then given
by

where are the capacities of the two firms. The aggregate demand is
and it is assumed to have a continuous‚ strictly increasing c.d.f. F(·).

Each firm has a variable cost for its capacity.
Recall that for the monopoly case‚ the optimal quantity is determined by

The equilibrium duopoly quantities‚ in contrast‚
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satisfy

Now suppose that is‚ the total equilibrium capacity is less than the
monopoly capacity. Then

a contradiction. So we must have the total duopoly capacity is
therefore at least as large as the monopoly capacity.

This example suggests that if firms compete in allocations‚ they will
tend to use allocations that are higher than the monopoly allocations.
Lippman and McCardle [346] show that this result holds in general
for certain reallocation rules‚ and Mahajan and van Ryzin [355] show
that it holds when customers choose sequentially according to a general
discrete-choice model. However‚ Netessine and Rudi [405] provide ex-
amples where competitive quantities can be lower than the monopoly
quantities‚ at least for one of the firms.

An interesting case in point is when “competing goods” are in fact
really substitute goods offered by the same firm. For example‚ they
could represent different departure times offered by the same airline. The
model here suggests that if firms are not aware of customer substitution
behavior‚ they may in effect be “competing with themselves” in setting
allocations for their substitute goods. This can lead to distortions in
the capacity allocations and lower profits compared with the case where
allocations are coordinated.

8.4.1.3 RM Duopoly Games
Consider the case of a duopoly in which both firms have a fixed capac-

ity but sell in two classes‚ denoted H (high) and L (low). Each firm offers
identical prices Customers substitute among airlines within
the same class‚ and the strategic decisions are how much of the capacity
to allocate to class L. This problem has been studied by Netessine and
Shumsky [404]‚ and we review their model here.

Demand for each firm and class is modeled as random variables        for
and with demand reallocation occurring as follows.

If class H is closed for firm 1‚ all residual H demand for 1 goes to class
H of firm 2 and vice versa. Similarly‚ if class L is closed for firm 1‚ all
residual L demand for firm 1 goes to class L of firm 2 and vice versa.
Note there is no buy-up; a L customer is assumed to never purchase a
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H fare, and a H customer never purchases a L fare. We also assume
that all L demand appears before H demand. This corresponds to a
duopoly version of the independent-class assumption of Chapter 2 and
Appendix E.

We next argue that a pure-strategy Nash equilibrium should exist for
this game, using a bipartite graph framework and Littlewood’s rule (Sec-
tion 2.2.1). Let the strategy space for firm 1 be the high-fare protection
level, over the set of integers between [0, C], and for firm 2, let its
strategy space be defined over [0, C], where is firm 2’s high-fare
protection level.

By Littlewood’s rule, the optimal protection level for H is independent
of the demand from L customers. As L demand does not buy up, this
two-class RM game can be defined in terms of the protection levels for
H demand only.

Form a bipartite graph with C nodes on one side representing firm
1’s strategy and C nodes on the other side, with node representing
firm 2’s strategy of protecting units (Figure 8.2). Call this the
equilibrium graph. Arc represents firm 1’s best response (order
units) if firm 2 protects units. The following proposition is proved
in Appendix 8.A:

PROPOSITION 8.1 Let and Then the equilibrium graph
for the duopoly RM game cannot have the two best-response arcs for firm
1 of the form and Similarly for firm 2.

If the graph has no crossing arcs, as in Proposition 8.1, then there
has to exist an equilibrium pair of arcs, as seen by simply following
a sequence of best-response arcs: we either have an equilibrium pair
of arcs, or we have to double back and create a crossing pair of arcs
(Talluri [503]). Thus, the game has an equilibrium.

Littlewood’s rule assumes that the demands for the two classes are not
correlated. However what if demand is correlated across the two firms
(but still without buy-up from L to H)? That is, the L demand for
firm 1 is correlated with the L demand for firm 2, and similarly, the H
demand. Notice that in this case, each firm will still set its best-response
using Littlewood’s rule: For a fixed protection level of the other firm,
the L and H demand each firm sees is uncorrelated. So with this type of
correlation in demand, the protection level set for B is still independent
of the demand forecast of L, and by the above argument there is still a
guaranteed equilibrium.

Netessine and Shumsky [404] analyze this game for the more com-
plicated case where there is a correlation between the L demand and
H demand, and also for the case of “vertical competition” with two
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airlines serving different markets and operating connecting itineraries.
For the case of correlation between L and H demand‚ they show that
an equilibrium need not always exist. The best response functions for
their example without an equilibrium (under their continuous model)
are shown in Figure 8.3.

The correlations between the L and H demands can cause a firm’s
objective function (say firm 1) to be multimodal (for a fixed allocation
of the other airline). As the other firm increases its booking limit for
the lower class‚ the optimal solution for firm 1 can jump from one of the
peaks of the multimodal function to another peak‚ causing the jump seen
in Figure 8.3. In addition‚ one of the main results of [404] are conditions
on the correlation matrix for existence of pure-strategy equilibrium.

8.4.1.4 Static Bertrand Models
The second fundamental model of oligopoly competition is the

Bertrand model of price competition. The main assumptions in this
model are that firms produce an identical commodity and that, as in
the case of perfect competition, all customers buy only from firms offer-
ing the lowest price. Firms compete on price, and each firm produces
a quantity sufficient to satisfy all the demand it faces at its offered
price. Firms choose their prices noncooperatively and simultaneously.
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We present the model for a duopoly, but the analysis extends easily to
the  firm case.

Assume there are two firms, denoted 1 and 2. Also, for simplicity
assume each firm has the same marginal cost As earlier, let the
market-demand function be denoted by The demand for firm 1 at
price is given by the demand function

(Similarly for firm 2.) Note the inherent discontinuity in the demand
function. If firm 2 prices are even a tiny amount below 1’s price‚ firm 1
will lose all its demand. Firm 1’s profit function is then given by

Let the Nash equilibrium in prices be denoted The equilib-
rium in the Bertrand model is in fact very clear-cut: the unique equi-
librium is for both firms to price at the marginal cost identical to the
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perfectly competitive prediction. The explanation is as follows. From
firm 1’s perspective‚ if firm 2 prices at firm 1 has to price at least
at or else it receives no demand at all. If it is in firm 1’s
interest to undercut firm 2 slightly and price at for some
small It then receives all the demand and makes a positive profit.
But the symmetric argument holds for firm 2‚ which in turn has an in-
centive to slightly undercut firm 1. This downward sequence of prices
continues until both firms’ prices reach marginal cost‚ which is the only
equilibrium.

Thus‚ under Bertrand’s model‚ firms make zero profits‚ even when
faced with just one competitor. This result suggests that if the only
differences between firms are their prices‚ the competitive outcome will
be quite bleak indeed. While stylized‚ the intuition behind the Bertrand
model is compelling and helps explain why firms often strive so hard
to differentiate themselves and avoid head-to-head price competition as
much as possible.

The situation is different‚ however‚ if one firm’s marginal cost is lower
than the others. For example‚ if              (firm 1 is the “low-cost leader”)‚
then by the same reasoning as above the unique equilibrium is

In this case‚ the low-cost firm makes a positive profit since
but the high-cost firm makes zero profit. It makes sense then

in this situation for the low-cost firm to emphasize price as the main
point of differentiation‚ since it benefits from pure price competition.
A real world example of this situation is the low-cost airlines‚ which—
because of their lower cost structures—benefit greatly by emphasizing
price competition. Walmart is another well-known example of a firm
with a clear low-cost‚ low-price strategy of this sort.

The extreme prediction of the Bertrand model‚ however‚ demands
that we examine the main assumptions of the model more closely:

Products are homogeneous and identical.

There are no capacity constraints on a firm’s production.

Firms have constant marginal costs of production.

There is one and only one opportunity for strategic interaction.

The demand model is deterministic.

Relaxing any one of these assumptions leads to more realistic predic-
tions‚ albeit at the expense of more complicated analysis. In particular‚
for RM industries products are usually differentiated‚ capacity restric-
tions are important‚ demand is uncertain‚ and firms interact frequently
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over time. Although we don’t know of static models of oligopoly competi-
tion that incorporate all these features‚ there are a number of economic
models in the literature that relax one or the other and derive alter-
native equilibria predictions. Repeated interactions are the subject of
Section 8.4.2‚ and Section 8.4.3 covers competition between firms with
differentiated products. In the next section‚ we look at the effects of
capacity constaints on the Bertrand model.

8.4.1.5 Bertrand-Edgeworth
Consider Bertrand’s model in which firms have capacity constraints.

Demand in excess of the capacity constaints is reallocated to other firms
according to a rationing rule. In this case‚ multiple prices can exist in the
market. For instance‚ firm 1 can price higher than firm 2 and still sur-
vive by receiving all the residual demand that exceeds firm 2’s capacity
(assuming that the demand is high enough to cover its costs). In general‚
when there are decreasing returns to scale (the marginal cost increases as
capacity increases)‚ the model is called the Bertrand-Edgeworth model
of price competition. Edgeworth showed that an equilibrium need not
exist in such a case. (However‚ mixed-strategy equilibria exist as shown
below.) The market will never settle down‚ and prices will cycle between
high and low values—a pricing pattern known as the Edgeworth cycle.
This is illustrated in the following example:

Example 8.17 An extreme instance of increasing marginal cost occurs when there
are rigid capacity constraints (marginal costs above the capacity constraint are in-
finite). In the presence of capacity constraints‚ we have to specify a rationing rule.
We assume the randomized rationing rule (Section 7.3.5)‚ where customers arrive at
random and purchase the lowest-priced product that provides them with a positive
surplus.

Suppose there are two firms‚ each with a capacity of 1 and a marginal cost of $1.
The demand consists of three customers‚ two of whom have a willingness to pay of $1
and the third with a willingness to pay of $3. Note if one firm prices at $1‚ the other
firm has an incentive to price at $3 since it will then capture the $3 customer with
probability 1/2‚ generating a positive expected profit of $3(1/2)–$1 = $0.5. However‚
if one firm prices at any price then the other firm can increase its expected
profit by pricing at to take away the $3 customer from its competitor. This
means that each firm has an incentive to undercut its competitor if the competitor
prices above marginal cost‚ and yet each firm also has an incentive to raise its price
if its competitor prices at marginal cost. Firms therefore cycle continuously between
high and low prices (the Edgeworth cycle).

This example shows that capacity constraints provide an explanation
for unstable pricing. For example‚ the volatility in airline pricing—
and the on-and-off price wars observed in that industry—are arguably
examples of this type of Bertrand-Edgeworth phenomenon.



386 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

Although there may be no pure-strategy equilibrium for the Bertrand
model with capacity restrictions‚ one can show that there exists a mixed-
strategy equilibrium. Assume a linear inverse-demand curve

Each of the   firms faces a strict capacity limit of C and
sets prices simultaneously and independently.

THEOREM 8.5 ([341]‚ [314]‚ [88]) Assume the efficient-rationing rule
(customers with the highest valuations are served first (7.3.5)). Then
(i) If an equilibrium is given by
and firms make zero profits.
(ii) If the equilibrium is given by

(iii) If a mixed-strategy equi-
librium exists and in any such equilibrium‚ expected profit is given by

There may be many other factors besides capacity constraints that
lead to the nonexistence of pure-strategy equilibria in a Bertrand style
competition or lead to equilibria with positive profits. Indeed‚ consider
a duopoly where there is a fixed cost F of entry‚ in addition to the
marginal cost of production‚ so that for and

otherwise. Then according to the assumptions of Bertrand
competition‚ each firm if it entered would price at the marginal cost

but then both firms would end up making negative profits‚ so no
firm supplies the market (assuming both firms make simultaneous entry
decisions). There are a number of such variations of the basic Bertrand
model. (See Vives [539] and Tirole [513].)

8.4.1.6 Cournot Then Bertrand-Edgeworth
Here we consider a two-stage oligopoly model in which firms choose

capacities in the first stage, and then in the second stage—knowing each
others’ capacities—they choose prices. This is a reasonable abstraction,
for example, of competing retailers ordering quantities at the beginning
of the season and then pricing the products to clear their stocks; or
airlines making short-term schedule and capacity decisions in a market
and then pricing their products afterward.

Consider a duopoly with a linear-demand function
and identical marginal costs of capacity as given in Example 8.15 and
Theorem 8.5.20 We assume Once capacity is chosen in stage 1,

20We limit our discussion to a linear-demand model for simplicity. The results of Kreps and
Scheinkman [314] apply to more general, differentiable, and concave demand functions.
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there are no further costs; that is‚ the marginal cost to serve demand
is zero. Kreps and Scheinkman [314] show that in this two-stage game
under efficient rationing (Section 7.3.5)‚ there is an equilibrium in which
firms choose exactly the Cournot capacities in the first stage. Thus‚ the
severe zero-profit outcome of Bertrand price competition is considerably
tempered when firms must precommit capacity. (However‚ Davidson
and Deneckere [147] show that this result is sensitive to the form of
rationing‚ specifically‚ it holds only for efficient rationing.)

To show this outcome‚ we use Theorem 8.5‚ extended to a duopoly
with asymmetric capacities and To do so‚ let denote
the optimal quantity response of firm   to firm    capacity choice
assuming there is no cost to capacity. That is‚

Kreps and Scheinkman [314] show the following crucial result

THEOREM 8.6  ([314]) (i) A pure-strategy equilibrium exists only if
and and the prices at this equilibrium are given

by
(ii) If or there exists a mixed-strategy equi-
librium‚ and the highest-capacity firm (that is firm 1) makes a profit in
the second stage equal to

We can use this result to show that the Cournot symmetric equilib-
rium‚ denoted is an equilibrium of the two-stage game. For our
linear-demand function‚ (equation (8.19))‚ and

So‚
To show that is an equilibrium‚ assume that firm 2

chooses Then if firm 1 chooses

So by Theorem 8.6(i)‚ it has a pure-strategy equilibrium price
and its revenue‚ So

If by Theorem 8.6(ii) firm
1 is the higher-capacity firm)‚ the revenue in the second stage and cost
in the first stage sum to

But it follows from (8.19) that
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So is indeed an equilibrium in capacity choices as
claimed. Kreps and Scheinkman [314]‚ in fact‚ show that this Cournot
equilibrium in the first stage is unique.

8.4.2 Dynamic Models
While static models of competition provide important insights on RM

competition‚ in real life‚ competitors often interact with each other re-
peatedly over time. For example‚ retailers order and price their products
every sales season and repeatedly compete with each other in each sea-
son; airlines periodically adjust schedules fleet assignments‚ and prices
over time‚ competing with each other in each period. Such repeated
competitive interaction can lead to very different equilibrium outcomes.

One important consequence of repeated interaction is the possibility
of collusion. Of course‚ overt collusion in setting prices or quantities
is nearly always prohibited by law (although there are some significant
exceptions‚ such as the OPEC oil cartel). Yet under repeated oligopolis-
tic competition‚ another form of collusion‚ called tacit collusion‚ is a
possible equilibrium outcome. Even though firms do not communicate
with each other or form explicit agreements to collude‚ it can be in each
firm’s interest in equilibrium to set prices that approach collusive levels.
In this section‚ we look at models and conditions to sustain or break
such tacit collusion.

Chamberlin [103] was one of the first economists to point out that
repeated interaction between oligopolists can facilitate collusion. With
repeated interactions firms can threaten retaliation (price wars) and thus
ensure that competitors do not deviate from collusive prices. Stigler [488]
modeled factors‚ such as the credibility of threats‚ the speed with which
competitive moves are detected‚ and the speed of information transmis-
sion‚ and studied how they affect collusion. While a number of static
models (kinked-demand theory and conjectural variations theory) have
been developed to address collusion‚ modern industrial organization the-
ory relies on repeated games to model competitive interactions in an
oligopoly.

Models of finitely repeated pricing games‚ somewhat surprisingly‚ turn
out to say little more than what their static counterparts do. The
subgame-perfect equilibrium (see Appendix F) of a T-period Bertrand
game turns out to be the Bertrand equilibrium (that is‚ marginal-cost
pricing) repeated T times. The argument for this is relatively simple
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and follows by backward induction: In the last period‚ the static equi-
librium is the unique marginal-cost equilibrium. Given this outcome for
the last period‚ the equilibrium for the next-to-the-last period is again
the marginal-cost equilibrium‚ and so on. This is disappointing‚ be-
cause with a repeated game one would like to uncover new equilibrium
possibilities.

In infinite games the situation changes; threats‚ retaliation‚ and pun-
ishment become credible as firms can punish a deviating firm with a price
war for a sufficient number of periods and then revert back to collusive
pricing. The basic requirement for this to be implementable is that each
oligopolist be able to observe defections from collusive pricing quickly.
When such detection lags are short and price changes are costless and fre-
quent‚ a collusive outcome is a possible—albeit nonunique—equilibrium.
On the other hand when detection is difficult‚ the collusiveness breaks
down‚ and firms revert to marginal-cost pricing even in supergames.

Thus secret price cuts and private deals undermine collusive pricing.
Most RM industries have a mixture of public and private prices. Air-
lines post their fares on reservation systems (public tariffs) and at the
same time make numerous private arrangements with corporations or
individual travel agents (negotiated tariffs). A similar situation holds
for hotels‚ cruise lines‚ and rental-car companies. It is not unusual to
see identical pricing by firms for products posted publicly but large vari-
ations for prices negotiated privately. Retail prices by and large are
public information‚ but at the same time‚ it is also difficult to gather
price information.21

8.4.2.1 Dynamic Finite Bertrand-Edgeworth
As we mentioned‚ the finite-stage version of the Bertrand pricing

game leads to an equilibrium where firms follow the static Bertrand
equilibrium (Section 8.4.1.4) in each stage. This need not be the case if
firms have capacity constraints‚ however. We consider here a finite-stage
duopoly version of the Bertrand-Edgeworth model of Section 8.4.1.5‚ due
to Dudey [164].

Consider two firms with capacities and that sell a homogeneous
good to N customers (N is assumed to be known to both firms) at
prices and respectively. Each customer has a reservation price
and chooses to buy from the low-price firm‚ and if both prices are the
same‚ will choose one of the two firms with equal probability. If

21Notable exceptions occur in the U.S. pharmaceutical industry‚ which maintains a database
of prices‚ and e-commerce sites—however‚ even the latter make it difficult for robots to gather
prices automatically.
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and the customer does not purchase from either firm. Firms
can change the price dynamically and quote a price for each customer
separately. If a firm sells out its capacity‚ its price is assumed to be set
at Assume the marginal cost of a sale is where Assume
the discount factor is one for both firms.

Let period correspond to customer At any given
period there are remaining customers. Let and
represent remaining capacities for the firms at the beginning of period

and Let and represent prices
quoted by the firms for the customer in period Firms are assumed
to know     N‚ and the history of prices prior to but not necessarily

and However‚ knowing the price history‚ N‚ and     firms
can accurately infer and

These informational assumptions of the model are rather restrictive‚
as in practice firms usually do not know either or N (and hence cannot
infer or the remaining capacities of the other firm). However‚ this
model is a reasonable stylized representation of RM dynamics under
competition.

The equilibrium analysis breaks up into different cases:
Case 1: Firm 1 cannot supply the entire market‚ but
firm 2 can. In this case‚ let firm 1’s strategy be

and firm 2’s strategy

These strategies are shown in [164] to be a unique equilibrium to the
finite-stage game. Note that if at any time the result
is a dynamic Bertrand game from onward, and both firms make zero
profits. So it turns out that firm 2 is better off letting the smaller-
capacity rival sell out and then move to monopoly price. To see why,
consider a point when, say, firm 1 has a capacity of units, there
are 101 remaining customers and firm 2 has a capacity of
Firms have no reason to price at values other than or Given
firm 1’s strategy, if firm 2 prices at   until                 (until at least
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one customer buys from firm 2 first)‚ its expected profit22 is

However‚ if it follows the strategy (8.27)‚ waiting for firm 1 to sell out‚ its
profit is Firm 1 earns and firm 2 earns
Depending on N and firm 1‚ the one with the smaller capacity‚ can
make higher profits.
Case 2: Both firms set their prices equal to unless
their capacity is 0‚ in which case they set it to Firm 1 makes a
profit of and firm 2 a profit of

In general‚ if at any period and
both firms set their prices equal to

Case 3: Both firms set their prices equal to unless
their capacity is 0‚ in which case they set it to Both firms make
0 profits.

In general if at any period both firms set
their prices equal to
Case 4: Both firms set their prices equal to

or in general‚ if at any stage
both firms set their period prices equal to

This is the strangest case because firms can price below cost. Say
and If customer 101 purchases from one of

the firms‚ then the subsequent equilibrium yields for the other
firm and for the firm that made the sale to customer 101. If
instead‚ both firms set their prices equal to then both
firms earn This is an equilibrium because‚ given the other firm
sets raising the price above will fetch
and lowering it below will fetch less than

So even though the static Bertrand-Edgeworth need not have a pure-
strategy equilibrium‚ the finite-stage version can have unique equilibrium
strategies in a duopoly. While the existence of the equilibrium makes
this model appealing‚ the conclusions are rather odd indeed (especially‚
Case 4). There is also a disproportionate sharing of profits‚ with the
firm with the smaller capacity always coming out best. One is therefore
led to suspect the assumptions of the model.

22Calculated as follows: The first term represents the next customer buying from firm 2‚
after which‚ they revert to Bertrand. This makes firm 2 a profit of The second
term represents the next customer buys from firm 1‚ and the one after that buys from firm
2‚ in which case firm 2 makes and so on.
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8.4.2.2 Dynamic Infinite Bertrand
We next consider infinitely repeated Bertrand competition. It turns

out that almost any price up to the monopoly price can be sustained
in equilibrium‚ and there are an infinite number of possible equilibria.
Nevertheless‚ it is a good place to start understanding the supergame
framework.

Consider two firms competing in a repeated Bertrand game over an
infinite horizon. In each period there is exactly one customer who pur-
chases based on the Bertrand formula (8.24). Future profits are dis-
counted by a factor In period firms simultaneously set prices
and and collect a payoff

Firms maximize

The one-shot Bertrand equilibrium‚ where both firms price at marginal
cost can be shown to be a (stationary) equilibrium to this infinite
game.

However‚ there are many other possible equilibria based on the con-
cepts of credible threats and trigger strategies. Let be the monopoly
price (maximizing A trigger strategy for a firm is to price at

if the other firm has priced at for all preceding periods and to price
at otherwise. So each firm threatens the other firm with marginal-cost
pricing forever if the other firm deviates in any period from the (collu-
sive) price

A trigger-price strategy is an equilibrium as long as To see
this‚ note that if a firm deviates by from in period it receives a
profit of in that period and zero from then on. On the other
hand‚ if it sticks to the trigger strategy‚ it receives a profit of

as long as In fact‚ one can substitute any between and
and reason the same way to show that it too can be sustained in

equilibrium.

8.4.2.3 Cournot Followed by Dynamic Infinite
Bertrand-Edgeworth

The two-stage Kreps and Scheinkman model of Section 8.4.1.6 showed
that an equilibrium for the first-stage Cournot game in which the payoff
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is given by a second stage of Bertrand-Edgeworth competition is the
same as the one-shot Cournot capacity prediction of Section 8.4.1.1‚ and
both firms set the market-clearing price in the second stage. Do the
results change if the second-stage game is an infinite-period Bertrand-
Edgeworth game? That is‚ firms‚ after they choose their capacities‚ have
many opportunities to adjust their prices. This question was explored
by Benoit and Krishna [46]‚ and we present their results below.

First of all‚ one equilibrium to this Cournot and infinite Bertrand-
Edgeworth game turns out to be setting Cournot capacities in the first
stage and the Cournot prices for every period during the price competi-
tion phase. Call this the stationary Cournot equilibrium. But—and this
is generally no surprise in a supergame—there are many other equilibria
for this Cournot and infinite Bertrand-Edgeworth game.

THEOREM 8.7 ([46]‚ [88]) For all discount factors and for
all choice of capacities chosen by the firms‚ there exists a price
such that is a subgame-perfect equilibrium for the
second-stage infinite-horizon Bertrand-Edgeworth game.

All equilibria other than the stationary Cournot equilibrium share
some common properties. All equilibria for the Cournot and infinite
Bertrand-Edgeworth game‚ except the stationary Cournot equilibrium‚
will have the firms choosing excess capacity in the first stage—excess
capacity in the sense that firms do not use this capacity in the second
stage but build it solely to threaten their rivals with a price drop if
they deviate from the collusive prices. We show this informally by the
following arguments:

If firms will share the demand equally‚ and if firm 1
will first get a demand of

and firm 2 will get a residual demand of

If firm 2 gets the demand first and then firm 1 will get the
residual demand. Excess capacity is defined as when either firm chooses
capacity

Define firm 1’s minmax revenue as the least amount firm 2 can hold
firm 1’s revenue down to. That is‚
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and vice versa for firm 2.
Suppose that both firms choose in the first stage

in a stationary perfect-equilibrium path‚ and that are not the
Cournot equilibrium capacities (say‚ because is not a best-response
for firm 1 in the first stage Cournot game). Then there exists some
capacity such that

Consider

as So firm 1 would prefer to use capacity and
get its minmax revenue for the second-stage price game than use
Similarly for firm 2. Hence must be the Cournot equilibrium.

If exactly one firm—say‚ firm 1—has excess capacity; that is‚

Then (shortening to

and using the same argument as of (8.29)

So firm 1 would use capacity rather than in the
stationary perfect-equilibrium path‚ and we can say:

PROPOSITION 8.2  If and is a stationary
perfect equilibrium path of this (two-stage‚ infinite) game‚ then either
(i) is a Cournot equilibrium or (ii) for all  both firms have
excess capacity.

Benoit and Krishna [46] furthermore prove the following theorem for
nonstationary equilibrium paths:

THEOREM 8.8 ([46]) If and form a
subgame-perfect equilibrium path of the Cournot and infinite Bertrand-
Edgeworth game‚ either
(i) is a Cournot equilibrium and Cournot prices‚
for all t or
(ii) for an infinite number of periods
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The intuition is that firms cannot avoid excess capacity; if they
both choose small capacities‚ each has an incentive to expand because
its capacity-constrained competitor is unable to retaliate in the price-
competition phase. Yet if both choose large capacities‚ it is unprofitable
for each to fully utilize their capacities.

8.4.3 Product Differentiation
Thus far we have assumed that firms produce an identical‚ perfectly

substitutable product (a commodity). Yet this is rarely the case in real
world markets. Customer tastes and preferences differ‚ and it is in the
firms’ interest to differentiate their products‚ both to exploit customers’
willingness to pay for different features and to mitigate the effects of
competition. RM industries are characterized by their rich diversity
of products and features. The features may differ physically (fashion
apparel‚ airline schedules and service‚ hotel location‚ network ratings)
or may differ in their terms of trade. For such differentiated products
markets‚ what does economic theory say about competitive outcomes?

The effect is significant. Even in a Bertrand-style pricing game‚ equi-
librium prices can exceed marginal cost. The premium is directly pro-
portional to a measure of the customer’s taste for diversity and also the
number of firms in the market.

8.4.3.1 Static Model
Consider a static-pricing game of a duopoly with a product each. For

illustration‚ we derive the equilibrium price assuming customer purchase
behavior follows a multinomial-logit (MNL) model.

Let N denote the number of customers‚ denote the price of firm
1 and that of firm 2. The products are differentiated by a set of
attributes‚ and customers preference for these attributes may make them
choose a product from a firm even if the product is priced higher than
the other.

The customer’s taste for such diversity is modeled by a factor
The probability that a customer will buy product i is given by

When tends to zero‚ it means customers are indifferent to the product
characteristics and buy based purely on price‚ whereas when is very
high‚ they are quite insensitive to price and buy each product with equal
probability.
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Let  be the marginal cost of production and K the fixed cost of
production. Then the profit function for firm  is given by

This function turns out to be strictly quasiconcave (under the logit
assumption of our model; see [16]‚ p.222). Differentiating the profit
functions of firms 1 and 2 with respect to and and setting them to
zero simultaneously gives the symmetric equilibrium for the firms as

The result can be extended to a oligopoly to give

Thus‚ the equilibrium price is above marginal cost‚ and the lower the
price sensitivity‚ the higher the premium above marginal cost—quite a
different outcome than the one obtained in the commodity Bertrand
competition case. This outcome suggests why firms strive so hard to
differentiate their products and services; it is one way to avoid the
zero-profit outcome of head-to-head price competition. (For variations
and analysis on optimal product diversity‚ see Anderson‚ de Palma‚ and
Thisse [16].)

8.4.3.2 Dynamic RM Competition in Allocations and
Prices

In Section 8.4.2.1‚ we have seen a dynamic model of price competition
in a duopoly where the firms have fixed capacities: The price competi-
tion in each period was modeled as a Bertrand game—firms can observe
each others’ remaining capacities‚ and the buyers are assumed to always
purchase from one of the firms. In this section‚ we relax these assump-
tions the following way. Firms sell differentiated products and make
available an offer set as in quantity-based RM. Customers consider the
offer sets from each firm and make a purchase decision based on a choice
rule. Customers have a no-purchase option‚ and they decide not to pur-
chase with a certain positive probability. In contrast to the findings of
the model in Section 8.4.2.1‚ an equilibrium need not always exist under
this model‚ and the no-purchase option plays a crucial role on whether
it does or not.

Model The model‚ in fact‚ can be considered the duopoly version of the
dynamic discrete-choice model of quantity-based RM of Section 2.6.2
(with elements from the differentiated products competition model of
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Section 8.4.3.1). Let’s recall some of the elements of this model. Time is
discrete‚ and there are T periods until the time of service. The resources
of both firms are consumed simultaneously at time T. Bookings occur
during the intervals 0 to T with at most one arrival during each period.
A customer arrives in a period‚ observes the available choices of the two
firms‚ and then‚ based on the prices and attributes of the fare products‚
either decides to buy one of the products of one of the firms or decides
not to purchase any of the available products. Let 0 represent this no-
purchase alternative.

We assume a MNL customer choice model with a no-purchase alter-
native. In each period there is a probability of a customer arrival. If
a customer does not purchase in a period‚ he does not reappear in a
later period. Since the choice model is MNL‚ a customer’s probability
of choosing an available product of firm  when firm 1 offers the set

and firm 2 offers the set can be represented for convenience by

where the weights and are formed by the prices and and
possibly other attributes of the products and firms‚ and is the weight
of the no-purchase alternative.

Firms have capacities of and units and and RM products
respectively that share the capacities. Firms can observe each others’
remaining capacities and choose offer sets simultaneously in each period.
They fix the prices of the products and
initially and keep them fixed throughout the booking horizon. At the
beginning of each period‚ each firm makes available a subset of its fare
products. So even though prices are fixed‚ the firms can influence the
prices that a consumer sees in each period by changing the offer set.
Although specific to a choice rule with the the logit functional form‚ this
model captures both customer choice and the dynamics of availability
controls in quantity-based RM.

Equilibrium Analysis The state space is the firms’ remaining capac-
ities‚ and The reaction function of a firm is based on its own
remaining capacity‚ its competitor’s remaining capacity‚ and its com-
petitor’s current offer set.

As we saw in Section 2.6.2‚ under the MNL customer-choice model in
the monopoly case a firm’s optimal offer set has the nested-by-revenue
order property‚ which means that each firm needs to consider only com-
plete sets. That is‚ for firm 1‚ sets of the form for

and for firm 2‚ sets of the form for
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are optimal. This property carries over to the duopoly
case‚ so we assume from now on that the strategy spaces for the firms
are these complete sets. We represent the collection of all complete sets
as for firm 1 and for firm 2. We will say that if
or‚ as the sets are nested‚ If we denote the set
difference as

The value function for firm 1 at time  given firm 2 offers is given
by the following:

where is the equilibrium revenue to go from period onward.
There are two things to note about (8.30): (1) it is defined at time

only if there is an equilibrium from until T‚ and (2) if there are multiple
equilibria‚ we assume (exogenously) that one equilibrium is chosen so
that the value function is again uniquely defined. The value function
for firm 2 is defined similarly. We let denote firm 1’s
revenue if it uses to react to firm

While equation (8.30) looks complicated‚ in words it simply says that
given that firm 2 chooses offer set firm 1’s revenue is the current
period’s revenue plus the expected revenue to go in the next period‚
which depends on the new capacity state for each firm in the next period.
To analyze this recursion‚ let us rewrite equation (8.30)‚ using the fact
that

as
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Let and
Let represent the term

For simplicity we just write as whenever there is no
room for confusion. Notice that  for firm 1 is independent of the
strategies of firm 2‚ and vice versa for firm 2.

The following relationships are intuitive and not hard to show rigor-
ously:

and

Note that
As prices are decreasing in as  firm offers larger sets‚ the func-

tion increases monotonically first and then decreases monotoni-
cally (that is‚ it is unimodal). The function can also be negative.
It could be the case that is negative for all strategies of firm   Fig-
ure 8.4 shows the two possibilities for  firm  where is the set that
has the maximum value of We call the case where as Case
I‚ and Case II when

PROPOSITION 8.3 [503] When both firms are in Case I‚ or both are in
Case II‚ there exists an equilibrium in offer sets.

The difficulty is if one firm is in Case I and the other in Case II.
Consider the following example:

Example 8.18 Suppose firm 1 and firm 2 have the data given in the following table:

Then the payoff and best-response arcs are as given in Figure 8.5‚ and it can be seen
that there is a cycle and no equilibrium‚ even for the MNL choice function.

Firm 1

100
50
1
1
10
200
67

Firm 2

100
10
1
10
10
300
108.18
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So even though the single-period problem always has an equilibrium
the competitive game over a finite number of periods‚

may end up having no equilibrium. Notice that this is not a repeated
game: the dynamic program has strong intertemporal relationships‚ and
the parameters of the game change over time.

One can give some conditions on the choice model parameters that
guarantees existence of an equilibrium. Define for

which represents the weighted-average price for the products from to
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PROPOSITION 8.4 If for and for any the parameters of
the choice model satisfy

then there exists a pure-strategy Nash equilibrium in the subsets that each
firm offers at every time interval

The condition for Proposition 8.4 holds, for instance, when
That is, if a period has a customer arrival and available inventory, that
period will have a sale.

In the finite Bertrand-Edgeworth game of Section 8.4.2.1 an equilib-
rium always exists. In that model too firms can observe each other’s
capacities, but the customer in each period will always purchase from
one of the two firms to if there is available inventory.
So the no-purchase option plays a crucial role indeed; its relative mag-
nitude determines whether we have an equilibrium in the game or not.
Figure 8.6 shows the intuition behind why modeling the no-purchase
option introduces the instability into the game under certain circum-
stances.

While Example 8.18 is somewhat discouraging, it is not indicative of
a nonequilibrium in many interesting cases, such as the following: if the
two firms have equal capacities, identical products, and customers, then
will we see equilibrium in the offer sets? Example 8.18 is not applicable,
and it is possible that one can derive conditions on and to show the
existence of an equilibrium. Indeed, Example 8.18 is not even conclusive
for the general case; it does not show that the and used actually arise
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in a dynamic game. So there are still many gaps in our understanding
of quantity-based RM competition, even for a duopoly.

The results of this section also extend to a choice model where cus-
tomers choose the lowest-available product in the offer sets. If there is a
single segment (as we assumed here) of customers, then this is essentially
equivalent to firms offering a single price in each time-period—that is,
dynamic pricing. Customers then have three options: no-purchase or
purchase at the price offered by firm 1 or from firm 2. One needs to
impose a few conditions on the parameters of the choice model, how-
ever: the weights are decreasing functions of the price, and is uni-
modal. For instance, the logit model with weights of the form used in
Section 8.4.3.1 satisfy this property.

8.5 Notes and Sources
A good rigorous treatment of the foundations of microeconomics can

be found in Mas-Colell, Whinston, and Green [365]. Economic theory
specifically related to prices and price formation can be found in Si-
mon [471] and Stigler [489]. Good references to the study of industrial
organization are Tirole [513] and Shy [469].

Advances in proving the existence of Cournot equilibrium for gen-
eral functions have been made by McManus [378], Roberts and Son-
nenshein [444], Bamon and Fraysee [27], Novshek [408] and Amir [13].
Vives [539] covers oligopoly pricing using results on submodular func-
tions. In addition, consult the survey of Shapiro [463] on models of
oligopoly. Stigler [488] is the classic article on tacit collusion and pun-
ishment strategies that spurred the application of repeated-games frame-
work to firm interactions in an oligopoly.

Price discrimination, classification of discrimination policies, economic
reasoning, along with a large number of examples can be found in
Phlips [420] and in the survey of Varian [531]. In multiproduct firms,
Clemens [121] is one of the earliest articles that talks about price dis-
crimination.

Many of the monopoly models and examples we discuss in the chapter
are standard, or have their sources cited in the text. The mechanism de-
sign principles used in the Harris and Raviv [239] model and the Gale and
Holmes model on advance-purchase discounts come from Myerson [398]
and Harris and Townsend [240] and are also quite standard now.

The literature on intertemporal price discrimination and the Coase
conjecture is extensive, and besides the references given within the chap-
ter, the reader can consult Stokey [490, 491].

In addition to the pricing methods mentioned in the text, there are
many randomized pricing strategies that allocate the sale of the good
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with a certain probability and the price varies according to the proba-
bility. In other words‚ the dimension of differentiation is the reliability
of the service. See‚ for example‚ Tschirhart and Jen [517].

The relationship between auctions and posted-price selling is a fasci-
nating topic that can use further investigation. Some useful references
on this topic are Wang [551‚ 552] and Ziegler and Lazear [590].

Economists have also studied retail store price dispersion and tacit
collusion and price extensively. Here we mention some of the classical
papers. Sales Salop and Stiglitz [452] explain price dispersion in retail
stores due to customers’ uncertainty of retail prices. Sobel [482] studies
the timing of sales in an oligopoly to attract low-valuation customers.
Models of price wars are given in Green and Porter [222] and empirical
evidence in Porter [427]. Eaton and Engers [170] study collusive price
formation among firms selling differentiated products (the ones covered
in this chapter were for homogeneous products).

The standard reference on discrete-choice models of product differen-
tiation is Anderson‚ de Palma‚ and Thisse [16]. (See also Anderson and
de Palma [17].) An interesting topic that we have ignored in this chapter
is how firms choose the features of their product (product-design com-
petition). The survey article of Lancaster [328] is a good introduction to
the economics of product variety. Optimal provision of products in an
oligopoly has been studied by Anderson‚ de Palma‚ and Nesterov [15].
Shaked and Sutton [459] study a three-stage game of entry (first stage)‚
choice of product quality (second stage) and then price (third stage) to
understand how firms differentiate their products.

The bipartite graph construction and related equilibrium proofs in
the chapter appendix are from Talluri [503].

The problem of peak-load pricing dates back to the work of
Steiner [486] and Boiteux [82]. Crew et al. [136] provide a survey of
the literature on peak-load pricing. See also Bergstrom and MacKie-
Mason [51] for a concise analysis of the problem.

In terms of literature on advance-purchase discounts‚ Shugan and
Xie [467] provides a nice analysis of the topic‚ including conditions under
which advance selling are profitable and resulting managerial implica-
tions. Dana [141] analyzes advance-purchase discounts under perfect
competition. Shugan and Desiraju [466] also analyze the economics of
advance purchases combined with capacity rationing and overbooking.

There is considerable literature analyzing trade and retail promotions
and the interactions between manufacturers‚ retailers‚ and customers in
a game-theoretic framework‚ that we have not covered. A few references
on this topic are Lal [325‚ 324]‚ Lai and Villas-Boas [322‚ 323]‚ Bell‚ Iyer‚
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and Padmanabhan [35]‚ Rao‚ Arjuni‚ and Murthi [436]‚ and Gerstner and
Hess [211].

APPENDIX 8.A: Proofs
Proof that
Proof

From optimality of

which can be expanded as

and optimality of implies

which can be expanded as

After some algebraic manipulation‚ the right-hand side of (8.A.1) can be written
as

So as claimed. QED

Proof of Proposition 8.1
Proof

implies If firm 2 chooses firm 1’s best response was
If firm 2 chooses (that is‚ protects less for its H demand)‚ then firm 1 should see
more of a spillover of firm 2 H demand (firm 1’s demand is stochastically more than
if firm 2 chooses So by Littlewood’s rule‚ its protection level should increase‚ or

QED

Proof of Proposition 8.3
Proof
Suppose there exist two such arcs. So if firm 2 offers the complete set then firm
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1’s best response is and if firm 2 offers the complete set then firm 1’s best
response is Because the customer’s choice rule is the MNL‚ this means that

Similarly‚ when firm 2 offers

Now note that since the denominator of the left-hand side of (8.A.3)
is greater than that of the right-hand side and that this implies

Now if and then for any
constant Since

But this contradicts the fact that if firm 2 offers the largest best-response set for
firm 1 is it is‚ in fact‚ QED
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Chapter 9

ESTIMATION AND FORECASTING

9.1 Introduction
A revenue management system requires forecasts of quantities such as

demand, price sensitivity, and cancellation probabilities, and its perfor-
mance depends critically on the quality of these forecasts. Indeed, some
industry estimates suggest that a 20% reduction of forecast error can
translate into a 1% incremental increase in revenue generated from the
RM system (Poelt [424]). While it is difficult to generalize from such
figures, there is little doubt that good forecasting is vitally important for
RM. In practice, forecasting is a high-profile task of RM, consuming the
vast majority of development, maintenance, and implementation time.

The term forecast may conjure up the notion of a single number, such
as the demand for a specific day on a specific flight in the future or
demand for a particular item at a retail store (a so-called point esti-
mate). A. certain amount of misunderstanding about RM forecasting is
not uncommon among nontechnical analysts and managers, who are ac-
customed to thinking of forecasts as a single number. However, a point
estimate is almost never accurate; a forecast is more complicated than
a single number and needs to be understood in statistical terms that
account for the inherent uncertainty in predicting future outcomes.

In this chapter, we examine forecasting for RM. We start with an
overview of the role of forecasting in RM—surveying the available data
sources, forecasting strategies and methodologies, and factors involved
in actually operationalizing a RM forecasting system. The remainder of
the chapter describes estimation and forecasting methods in more depth.

While our discussion is centered on RM forecasting, most of the tech-
niques we describe are not particular to RM and as such can safely
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be described as standard. Indeed, there are many excellent textbooks
devoted to estimation and forecasting, and it is not our intention to
approach them in scope and depth. Rather, this chapter is intended
as a primer on the subject—sufficient in coverage to give a good sense
of the range of methods and issues involved in RM forecasting but not
providing an in-depth reference on any one method. We do, however,
give enough detail to understand and implement at least a basic version
of each method. To implement and maintain a high-quality, production-
level RM forecasting system, one needs to know more about the nuances
of each forecasting method, and the reader in this situation is encour-
aged to consult a specialized source for such information. (The Notes
and Sources section at the end of the chapter contains references to a
number of books dedicated to estimation and forecasting.)

9.1.1 The Forecasting Module of RM Systems
RM forecasting presents many challenges to a system designer. For

one, a significant amount of programming work is involved in collecting
and manipulating the data to convert it into the required data feeds for
the forecasting module. Large volumes of transactional data have to be
gathered from multiple sources, either in real time or on an overnight
batch basis. The database design is an important issue because in many
large-scale implementations, an immense number of records have to be
retrieved, updated, and added within a small time window. Data back-
up procedures take up further time. All these data and systems issues
must be addressed prior to actual forecasting itself.

Figure 9.1 shows a schematic of the process flow of a typical quantity-
based RM system and where the forecasting module resides in the process.
The outputs of the forecasting module are fed to the optimization mod-
ule, which produces RM controls such as markdown prices, booking
limits, bid prices, and overbooking limits. In the stage between forecast-
ing and optimization, most RM systems also give analysts monitoring
and overriding ability over the forecasts. These so-called user influ-
ences are used to either increase or decrease the forecasts at different
levels of aggregation before they are used in optimization. Indeed, in
most quantity-based RM systems, analysts are not permitted to change
capacity controls directly but can change them only indirectly by manip-
ulating the forecast inputs. This practice is based on the belief (wide-
spread among RM practitioners) that knowledge of markets or special
conditions can sometimes make human analysts better than algorithms
at forecasting demand, but rarely, if ever, can human analysts set RM
controls better than optimization algorithms.
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In most RM systems, forecasting is automated, transactional, and
data-driven—as opposed to qualitative (such as expert opinion) or
survey-based. This is primarily due to the sheer volume of forecasts
that have to be made and the tight processing-time requirements. These
practical constraints limit the choice of forecasting algorithms. They also
limit the types of data that can reasonably be collected and the amount
of time a user can spend calibrating and verifying forecasts. Often, cer-
tain forecasting procedures, even if they give superior forecasts, may not
be a viable option because they take too long to run, require data that is
too expensive to collect (say, using surveys), or require too much expert,
manual effort to calibrate.

For quantity-based RM, most systems use time-series methods, which
use historical data to project the future. For price-based RM systems
(retail RM, for example), one is usually interested in forecasting demand
as a function of marketing variables such as price or promotion. As a
result, causal forecast models, which use explanatory variables such as
prices, weather or economic indicators, play a bigger role in price-based
RM.

9.1.2 What Forecasts Are Required?
RM forecasting requirements are driven by the input requirements

of the optimization module. As we saw in previous chapters, most op-
timization models use stochastic models of demand and hence require
an estimate of the complete probability distribution or at least parame-
ter estimates (e.g., means and variances) for an assumed distribution.
Moreover, forecasting aggregate demand is just one of a host of quan-
tities that need to be estimated in a RM system. Many other features
of the demand—how it evolves over time, what percentage cancel, how
it responds to a promotion—are also important in making good control
decisions, and need forecasting.

Quantity-Based RM Forecasts Quantity-based RM industries like
airlines and hotels have a wide variety of forecasting requirements. For
example, in addition to the demand data, characterizing the way reser-
vations for different customer types arrive during the booking period is
important for some optimization models. Thus, so-called booking-curve
or booking-profile forecasting is usually an important task.

Cancellation and no-show probabilities usually have to be estimated
as well. Cancellation probabilities tend to be a function of time. (A
customer who books early may have a higher probability of cancelling
than one who books later.) Therefore, forecasting a cancellation curve
over time may be more appropriate, giving better information to the
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optimization module. No-shows occur at the time of service; hence,
assuming that a customer shows up with a certain probability is often
an appropriate model of no-shows (see Chapter 4). Both no-show and
cancellation-rate forecasts have to be calculated for future customers as
well as customers who have already booked. For existing reservations,
however, additional sources of information, such as the customer’s own
past history of cancelling, whether the reservation has been paid and
ticketed, and characteristics of how the reservation was made (channel,
time, etc.) can be used, increasing the data-gathering requirements.

Revenue values are also critical inputs to optimization modules. Of-
ten, these values change over time or are uncertain, so the prices at which
the products will be sold in the future may have to be forecasted. Pre-
dicting revenue values can be a major challenge, especially when prices
change rapidly and competitive forces drive pricing.

Optimization models may also require estimates of cross-selling and
up-selling probabilities. The buy-up factors discussed in Section 2.6.1
may have to be estimated from historical data. Spill and recapture are
two other quantities that are sometimes required in setting (or at least
managing) RM controls. Spill refers to the amount of demand that is
lost by closing down a class or because a compartment is sold out, while
recapture is the amount of this spilled demand that is recaptured by the
firm’s substitute products. The discrete-choice model of Section 2.6.2,
requires estimates of the parameters of a choice model, sometimes by
channel of distribution or by customer segment.

Price-Based RM Forecasts For price-based RM, somewhat different
forecasts are required. One common requirement is an estimate of the
parameters of a demand function—or at least an estimate of the price
sensitivity at the current price. Cross-price elasticity estimates may
also be required when there are significant substitution effects (say, for
category pricing in a retail store), which vastly increases the scale of the
forecasting task. In addition, forecasts of demand at the current price,
the size of the potential customer population, stockout and low-inventory
effects, and switching behavior may be required. Such estimates require
looking at the historical price-demand relationship of the product or
similar products or at intertemporal panel tracking data. Some retailers
have also tried intelligent experimentation in real time to estimate how
consumers will respond to various price changes (live price testing).

In summary, the forecasting requirements in even a modestly large RM
system are daunting, indeed. It is little wonder, then, that developing
a good forecasting system is so vitally important for a successful RM
implementation.
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9.1.3 Data Sources
Data is the life-blood of a forecasting system. Therefore, identifying

which sources of data are available and how they can best be used is an
important first step in developing a forecasting system.

Most RM systems in practice rely primarily on historical sales data
to construct forecasts. While this leads to highly efficient systems for
data collection, forecast calibration, and automated forecasting, relying
on historical data has its weaknesses. For example, in industries where
products change frequently—when an airline offers service to a new city
or at a new time for instance—there is often little historical data on
which to base forecasts. Similarly, in media RM, forecasts for rating of
new programs must be constructed despite the fact that their ratings
often have little relationship to the ratings observed for past programs.
Fashion apparel retailers, for instance, have to estimate sales of new
styles that may be only vaguely similar to the styles sold in the past.
In addition, even if the product stays constant, major changes in the
economy, competing technologies, or industry structure may render past
data of little use in predicting the future.

In short, if no explicit relationships with external data sources are
tracked, the forecasting system will be “blind” to outside events. The
same is true with respect to changes in competitors’ products and prices.
In cases where such external data is ignored, it is common practice in
RM to rely on analysts to monitor outside events and compensate by
adjusting forecasts appropriately through so-called user influences.

9.1.3.1 Sales-Transaction Data Sources
The main sources of data in most RM systems are transactional

databases—for example, reservation and property management systems
(PMSs), CRM and ERP databases, and retail inventory and scanner
databases. Further descriptions of these data sources are given in Chap-
ters 10 and 11. These sources may be centralized, independent entities
shared by other firms in the industry (such as GDSs of the airline in-
dustry selling MIDT data), a centralized facility within a company that
interfaces with several local systems (a retail chain’s point-of-sale (POS)
system linking all its stores), a local reservation system (a hotel PMS), or
customer-oriented databases with information on individual customers
and their purchase history (customer-relationship management (CRM)
systems and PNR databases).

For quantity-based RM, the most widely used transactional data
source is the reservations database. Reservation databases typically
store customer data in two formats: either as an aggregate number
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of bookings in a class (total bookings) or as information about each
individual booking, called a customer booking record (passenger name
record (PNR) in the airline industry). Forecasts may be based on either
the aggregate bookings or individual customer booking records. The
aggregate bookings data contain information only on the total number
booked in each fare class, while the individual booking records contain
much more specific information on each customer—such as their name,
address, booking time, number of units booked, amount paid, frequent
flyer or other loyalty program number, booking class, cancellation time,
capacity used (length of stay and room number for a hotel, car type and
duration for a rental-car company, or itinerary for an airline), ancillary
spending (dining expenses, telephone calls). The customer record may
also contain links to other customer records (for example, for a group
booking) that may be useful for forecasting.

For retail RM, factory-shipment data, store-level scanner data,
consumer-panel data, regional demographic data, and advertising and
promotions data are the primary data used. Industry-wide aggregate
scanner data (sold by firms such as Information Resources, Inc. and
A.C. Nielsen). Warehouse-shipment data can be obtained from Selling
Areas Marketing, Inc. (SAMI), which provides sales, average price, and
distribution information for the U.S.

Panel data, obtained from tracking purchases of a group of panelists
over time, provides valuable information on cross-sectional and intertem-
poral purchase behavior. Such data are widely used in retail and media
industries. A panel member’s purchase data is also linked to promotions,
availability, displays, advertising, couponing, and markdowns through
the time of purchase, allowing for precise inferences on preferences and
marketing influences. Many marketing research companies provide such
panel-data services.

9.1.3.2 Controls-Data Sources

In addition to sales information, databases often store information
on the controlling process itself. Examples of this kind of data include
records of when a class is closed for further bookings, snapshots of bid
prices used in the control, overbooking authorizations, past prices, and
promotion activities. Such information is of great use in correcting for
unobservable no-purchase decisions by potential customers (Section 9.4).

Industrywide database systems (such as a GDSs in the travel indus-
try) may also yield additional information for forecasting—for example,
the availability of competitor bookings, prices of competing products,
and market share. Many airline GDS companies make this information
available on a weekly or monthly basis on tapes called market infor-
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mation data tapes (MIDT). Although few airlines at present use this
information in their RM systems, it is useful for estimating competitive
market share, and for longer-term, strategic planning and analysis.

For markdown pricing and other price-based RM applications, the
control decisions are past history of prices and promotions. Most retail
POS systems store this information routinely. For in-store displays or
bundle pricing, the POS data has to be merged with a marketing data-
base. Inventory data is also provided by many retail POS systems, and
this data is useful for correcting for stockouts and broken-assortments
effects (missing color-size combinations).

9.1.3.3 Auxiliary Data Sources
A few auxiliary data sources also play a big role in RM forecasting

in some industries. For instance, currency exchange-rate and tax infor-
mation is necessary to keep track of revenue value for sales in different
countries. In the airline industry, the schedules and possible connections
(provided by firms such as OAG) are required to determine what markets
are being served. If a ticket is sold across multiple airlines, the various
prorating agreements affect the ultimate revenue value of each product
sold. A revenue accounting system keeps track of such agreements and
calculates the net revenue.

In broadcasting, ratings, customer location, and demographic infor-
mation is required. A causal forecasting method may take into account
information on the state of the economy, employment, income and sav-
ings rates, among other factors. A rental-car firm can use advance travel
bookings to predict its own demand at airport locations. Information on
ad-hoc events (special events) like conferences, sports events, concerts,
holidays, is also crucial in improving the accuracy of forecasts. Many
forecasting systems allow the users to manually enter information on
such events.

Many retail RM systems also use weather data, which is supplied
by several independent vendors via daily automated feeds. Short-term
weather forecasts guide discounting and stocking decisions (for example,
a snow-storm could suggest high demand for snow shovels). Weather
data also plays an important role in energy forecasting for electric power
generators and distributors.

Macroeconomic data (such as GNP growth rates and housing starts)
is rarely used in automated, tactical forecasting but frequently plays a
role in aggregate forecasts of factors such as competitors’ costs, industry
demand and market share, and broad consumer preferences. Statistics
on cost of labor are published by the Bureau of Labor Statistics (BLS)
in the United States in a monthly publication called Employment and
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Earnings, which provides average hourly earnings for workers by product
category. BLS also provides monthly producer price indexes on raw
materials.

For products sold through distributors, important data is not always
available. For example, an automobile manufacturer may not know the
final price paid by a customer because dealers have no obligation to
report this information back to the manufacturer. Similarly, trade pro-
motions may lead to increased shipments for the manufacturer, but the
distributor may simply stock up during the trade deal and sell at a
normal price, reducing the impact of the promotion. Lack of such infor-
mation is one of the impediments for many firms contemplating RM.

9.1.3.4 Partial-Bookings Data
In most quantity-based RM applications, bookings occur over an ex-

tended period of time, yet the product or service is provided on a very
frequent basis, often daily. For example, an airline may sell seats on a
flight that operates every day, but bookings can occur over a period of
12 months prior to departure; hotels take reservations for rooms for each
day, yet bookings are made many days or weeks in advance. In such sit-
uations, there are often large quantities of so-called partial-booking data
in the reservation system. While incomplete, such data is quite useful
for forecasting.

Figure 9.2 shows an example of partial-bookings data, indicating the
number of bookings observed each day for capacity in the past as well
as the future. The represents the date of service (such as the
departure date in the airline case or the check-in date for a hotel), and
the represents the number of days prior to the date of the service.

One way to use these partial histories of bookings is to forecast the
increments of demand for each booking day, rather than forecasting the
total demand to come. Thus, for example, data on the demand received
on the day prior to service can be used to predict demand on the

day prior to service in the future, even though the data may be
from a booking history that is incomplete. Such methods are discussed
in more detail in Section 9.3.9.

9.1.4 Design Decisions
After the data sources are identified, one has to make a number of

design decisions regarding the forecasting strategy and methodology.
Here we look at the main design decisions in qualitative terms.
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9.1.4.1 Parametric or Nonparametric Forecasts?
As mentioned in Section 9.1.2, in most RM forecasting we are in-

terested in estimating a probability distribution of future demand—or
in estimating demand as a function of price variables or product at-
tributes. Such estimates can be made in one of two ways. The first is
to assume a specific functional form and then estimate the parameters
of this functional form. This approach is called parametric estimation.
Alternatively, distributions or functions can be estimated directly based
on observed historical data, without assuming any a priori functional
form. This approach is called nonparametric estimation. Choosing be-
tween a parametric or nonparametric approach to forecasting is a basic
design decision.

While nonparametric methods are in a sense more general, they are
not necessarily a better choice. Nonparametric estimates suffer from
two serious drawbacks: First, because they do not use a functional form
to “fill in” for missing values, they often require much more information
than is available in many RM applications to obtain reasonable estimates
of a distribution or demand function. Second, even with sufficient data,
nonparametric estimates may not be as good at predicting the future,
even if they fit the historical data well. Parametric models are better
able to “smooth out” the noise inherent in raw data, which often results
in a more robust forecast. Indeed, we know of no RM systems that use
purely nonparametric methods to estimate demand, though several use
nonparametric methods in selected places. Neural networks, which are
sometimes viewed as semiparametric methods, have been reported in
several RM applications, and these we cover later in this chapter.



Estimation and Forecasting 417

Parametric methods usually are much more modest in their data re-
quirements, have the advantage of providing estimates of demand that
extend beyond the range of the observed data (allow for extrapolation),
and are generally more robust to errors and noise in the data. The
disadvantage of parametric techniques is that some properties of the
distribution must be assumed—for example, that it is symmetric about
the mean, has certain coefficients of variation, or has certain tail behav-
ior (the characteristics of the demand distribution for extreme values
of demand). Thus, parametric methods can suffer in terms of overall
forecasting accuracy if the actual demand distribution deviates signifi-
cantly from these assumptions (called specification errors). Because they
are more widely used in RM, we focus on parametric methods in this
chapter.

9.1.4.2 Levels of Aggregation
Forecasts can be made at different levels of aggregation as well, and

how to aggregate data and forecasts is another important design decision.
To give an example, airlines price their products by fare-basis codes
with a large number of fares-basis codes sold within each booking class.
Capacity control, however, is usually performed at the booking-class
level. How, then, should forecasting be handled? Should the demand
be forecast for each fare product (basis code) or each booking class?
That is, should we aggregate all the fare products in a booking class
and forecast at the level of the booking class? Or should we forecast at
the fare-product level and aggregate these forecasts into a forecast for
booking-class demand?

Another level-of-aggregation design decision comes up in network RM
(Chapter 3), where the optimization system requires a forecast of de-
mand for each multiresource product in the network. In principle, the
forecasts should be at the level of the network products (O&Ds or lengths
of stay) as this is the level required by network-optimization models.
However, many reservation systems do not collect data at this level of
detail. In the airline case, for example, reliable data may exist only
for individual flight legs, and we may have to heuristically disaggregate
leg-level forecasts into O&D, product-level forecasts.

Ultimately, however, we need to produce the forecasts required by the
optimization module. Continuing the airline example, this would imply
generating forecasts at the fare-product level if we were using a bid-price
control, but perhaps at the booking-class level if we were using a resource
level, booking-class-based control. On the other hand, the requirements
of the optimization module can often be manipulated. For example,
one can simply forecast at the booking-class level and then assume that
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all the demand in this booking class has the same (say, the average)
fare. In the network case, the RM system might be using a simple
single-resource heuristic to approximate the network RM problem, in
which case an aggregate forecast for each resource independently may
do just fine. Thus, the forecasting and optimization design decisions are
intimately related. Indeed, in practice it is hard to change one without
affecting the other.

In retail RM as well, the level of aggregation in forecasting is largely
governed by the data and optimization requirements. Store-level pricing
requires store-level estimates of demand and price sensitivity for each
product, whereas a model that optimizes prices set on a chainwide ba-
sis may not require this same level of detail. If household purchase
data (panel data) is available or if experiments or surveys can be con-
ducted, then one can forecast based on models of individual purchase
behavior and combine these to determine an aggregate demand function.
However, if only aggregate POS sales data can be obtained, one has to
estimate the aggregate demand function directly.

9.1.4.3 Bottom-Up versus Top-Down Strategies
Broadly speaking, there are two different strategies for aggregating

forecasting. In a bottom-up forecasting strategy, forecasting is performed
at a detailed level to generate subforecasts. The end forecast is then
constructed by aggregating these detailed subforecasts. In a top-down
forecasting strategy, forecasts are made at a high level of aggregation—a
superforecast—and then the end forecast is constructed by disaggregat-
ing these superforecasts down to the level of detail required. The follow-
ing are examples of bottom-up and top-down forecasting strategies.

Example 9.1  (BOTTOM-UP FORECASTING) An airline is interested in getting fore-
casts of load factors (occupancy) for each flight in each compartment for an upcoming
season. The airline stores data of each past customer, itinerary, and fare class. This
itinerary-level data is first used to make forecasts for the number of customers ex-
pected to book for each itinerary and fare-class combination for every day of the
season. Next, these detailed forecasts are added together to produce an aggregate
forecast for the seasonal load-factors.

Example 9.2  (TOP-DOWN FORECASTING) A hotel is interested in a forecast of the
number of people expected to book for each future date in each room-category and
length-of-stay combination. The hotel first forecasts the total number of guests who
will book to arrive on each day in each rate category (the superforecast). Then it
forecasts the fraction of guests that stay for a specified length of time (a length-of-stay
distribution). Finally, it combines these two components to arrive at an end forecast
of expected number who will start their stay on a specific date and stay a certain
number of days by multiplying the forecast for the aggregate number of guests on a
specific date by the estimate of the fraction that will stay for a given length of time.
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Which strategy is most appropriate is not always clear-cut. It depends
on the data that is available and accessible to an automated system on
a daily basis, the outputs required, and the types of forecasts already
being made and available for use. Moreover, the “right” answer in most
cases is that both strategies are required because certain phenomena can
be estimated only at a low level of aggregation, while others can be
estimated only at a high level of aggregation.

For example, it is clear that in an airline network if one wants an
estimate of demand for each itinerary and fare-class combination, then
aggregate booking-class or flight-leg data will not be sufficient; data for
each passenger itinerary is required. At the same time, such passenger-
level data is sparse, with often only a handful of bookings occurring for
any given combination in a year. Hence, aggregate phenomena such as
daily or weekly seasonalities, holiday effects, or upward or downward
trends in total demand are—for all practical purposes—unobservable
at the disaggregate level; one must look at aggregate booking data over
many itinerary and fare-class combinations to observe such effects. Even
with good passenger-level data, one may therefore need to aggregate
data and perform aggregate forecasts to identify important “large-scale”
phenomena. As a result, hybrid combinations of bottom-up and top-
down approaches are the norm in practice.

9.2 Estimation Methods
Estimation is the problem of finding model parameters that best de-

scribe a given set of observed data. Forecasting, in contrast, involves
predicting future, unobserved values. Thus, estimation is generally de-
scriptive (characterizing what has been observed), while forecasting is
predictive (characterizing what will be observed). Roughly, in the RM
context, estimation is the calibration of a forecasting model’s parameters
(hence it also is called forecast calibration) and is done relatively infre-
quently; while forecasting is the use of the estimated model to predict
future values, and is performed frequently on an operational basis.

For example, an estimate of price sensitivity based on past sales data
may be used in a forecast of future demand. Similarly, many forecasting
methods are based on estimating the parameters of a dynamic model
from historical demand data, which is subsequently used to predict fu-
ture values of demand. Yet this distinction between estimation and fore-
casting is not always very sharp. In some methods, such as the Kalman
filtering, estimation and forecasting work in lock-step, one after another.

Here we examine methodology for parameter estimation and discuss
some of the theoretical and practical issues that arise.
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9.2.1 Estimators and Their Properties
An estimator represents, in essence, a formalized “guess” about the

parameters of the underlying distribution from which a sample (the ob-
served data) is assumed to be drawn. Estimators can take on many
forms and can be based on different criteria for a “best” guess. We use
demand estimation as our example, but the ideas apply more generally.

9.2.1.1 Nonparametric Estimators
Let the random variable denote the observation of demand,

and let denote the distribution of Nonparamet-
ric estimation methods do not make any assumptions on the underlying
distribution F(·). For example, we could estimate         by simply com-
puting the fraction of observations in the sample that are less than or
equal to for each value of This empirical distribution then forms a
nonparametric estimate of the true distribution

Nonparametric estimates of this type have the advantage of not re-
quiring any assumptions on the form of the distribution. However, as
mentioned earlier, they typically require more data to produce accurate
estimates and do not allow one to extrapolate beyond the observed data
easily. For example, if there were no observations less than 10 in a data
set, then the empirical distribution would estimate that
for all values of less than 10.

9.2.1.2 Parametric Estimators
For a parametric estimator, we assume that the underlying distribu-

tion of is of the form

where is a vector of M explanatory (independent)
variables (time, indicators of holiday events, prices, lagged observations
of itself, and so on) and is a M-dimensional vector
of parameters. For ease of exposition, we assume that the dimension of

and are the same, though this is not necessary.
Assume we have a sequence of N independent observations

with values for the explanatory vari-
ables, alternatively represented by vectors or by a N × M
matrix The estimation problem, then, is to
determine the unknown parameters using only the sample of the N ob-
servations (the data) and the values of the explanatory variables Y
corresponding to each observation (characteristics of the observed data).
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It is usually convenient to express the relationship between the de-
mand and the explanatory variables by a simple functional form con-
sisting of a systematic (deterministic) component and an additive noise
component:1

where the randomness comes from the error term Many of the re-
gression and time-series forecasting models of this chapter can be viewed
as manifestations of (9.2). The following is a common example of (9.2):

Example 9.3  (LINEAR MODEL) Consider the linear model of demand

where are i.i.d. random variables, independent also of the explanatory
variables y. Z is often referred to as the dependent variable and the vector y as the
independent variables. The distribution of Z in terms of (9.1) is then

where is the standard normal distribution.

9.2.1.3 Properties of Estimators
If the N observations, are considered independent

realizations of then the estimator based on these
observations is a function of N i.i.d. random variables, and is
therefore itself a random variable. What properties would we like this
(random) estimator to have?

Bias For one, it would be desirable if the expected value of the estimator
equaled the actual value of the parameters—that is, if

If this property holds, the estimator is said to be an unbiased estimator,
otherwise, it is a biased estimator. The estimator of the parameter,

is said to have a positive bias if its expected value exceeds and
a negative bias if its expected value is less than

If the estimator is unbiased only for large samples of data—that is, it
satisfies

then it is called an asymptotically unbiased estimator. All unbiased es-
timators are, of course, also asymptotically unbiased.

We drop the notation conditioning on and y, when it is obvious from the context.1
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Efficiency An estimator is said to an efficient estimator if it is
unbiased and the random variable has the smallest variance among
all unbiased estimators. Efficiency is desirable because it implies the
variability of the estimator is as low as possible given the available data.
The Cramer-Rao bound2 provides a lower bound on the variance of
any estimator, which can be used to prove an estimator is efficient. In
particular, if an estimator achieves the Cramer-Rao bound, then we are
guaranteed that it is efficient. An estimator can be inefficient for a finite
sample but asymptotically efficient if it achieves the Cramer-Rao bound
when the sample size is large.

Consistency An estimator is said to be consistent if for any

that is, if it converges in probability to the true value as the sample
size increases. Consistency assures us that with sufficiently large samples
of data, the value of can be estimated arbitrarily accurately.

Ideally, we would like our estimators to be unbiased, efficient, and
consistent, but this is not always possible. We revisit these properties
in Section 9.5.1.2 on specification errors.

9.2.2 Minimum Square Error (MSE) and
Regression Estimators

One class of estimators is based on the minimum mean-square error
(MSE) criterion—also referred to as regression estimators. MSE estima-
tors are most naturally suited to the case where the forecast quantity
has an additive noise term as in (9.2). Given a sequence of observa-
tions and associated vectors of explanatory variable values

the MSE estimate of the vector is the solution to

where is as defined in (9.2). The minimization problem (9.4)
can be solved using standard nonlinear optimization methods such as
conjugate-gradient or quasi-Newton. However, the problem is greatly
simplified if the function and the error terms have a specialized
form, as shown next.

Ordinary Least-Squares (OLS) and Linear-Regression Estima-
tors If the function in (9.1), the error terms in (9.2), and explana-

See DeGroot [151], pp. 420–430 for a discussion of the Cramer-Rao bound.2
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tory variables satisfy the assumptions listed in Table 9.1, the MSE
estimates are also known as the ordinary least-squares (OLS) estima-
tors—or linear-regression estimators. Specifically, suppose the observa-
tions are linear functions of M explanatory variables of the form,

Furthermore, suppose the explanatory variables are uncorrelated and
the error term are independent, normal random variables that have
means of zero and identical variances (homoscedasticity). Then the OLS
estimators are the values that solve

We can write equation (9.2) in matrix form as

where and The MSE
estimates for given N observations are then

assuming the matrix is invertible.

Example 9.4 Consider the following model of demand:

This model has one scalar parameter which is constant over time, and is equivalent
to having M = 1 and Y = (1,...,1) in (9.5). Assume    is normally distributed with
mean 0 and constant variance. Then if we have N observations,                   the MSE
estimate based on this data solves

Applying (9.6) and noting that and we obtain

which is simply the sample mean of the data.
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From (9.6) it can be seen that the OLS estimator is a linear func-
tion of the random observations Z, which makes computing the estimates
quite easy. In addition, the OLS estimators have several desirable prop-
erties: they are consistent, unbiased, and efficient under very general
conditions. For these reasons, the MSE/linear-regression estimator is
popular in practice.

Regression is widely used in price-based management for estimating
price sensitivity, market shares, and the effects of various marketing
variables (such as displays and promotions) on demand. Regression es-
timates are somewhat less common in quantity-based RM forecasting
application such as airline and hotel RM because in these applications it
is often difficult to obtain data on the exogenous explanatory variables
as an automated data feed. When regression is used in quantity-based
RM, typically the only explanatory variables in the model are the his-
torical demand data itself (the explanatory variables are past demand
observations). However, in such cases formal time-series models of the
type discussed in Section 9.3.2 are usually preferred.

When any of the assumptions of the OLS regression in Table 9.1
is violated, one has to resort to more advanced regression techniques
such as generalized least squares (GLS), seemingly unrelated regressions
(SUR), and two-stage and three-stage least squares (2SLS, 3SLS) (see
Greene [220]). A description of these methods is beyond the scope of
this chapter.

9.2.3 Maximum-Likelihood (ML) Estimators
While regression is based on the least-squares criterion, maximum-

likelihood (ML) estimators are based on finding the parameters that
maximize the “likelihood” of observing the sample data, where likeli-
hood is defined as the probability of the observations occurring. More
precisely, given a probability-density function of the process gener-
ating which is a function of a vector of parameters
and the observations of the explanatory variables, the likelihood of
observing value as the observation is given by The
likelihood of observing the N observations is then

The ML estimation problem is to find a that maximizes the likelihood
It is more convenient to maximize the log-likelihood, In because

this converts the product of functions in (9.8) to a sum of functions.
Since the log function is strictly increasing, maximizing the log-likelihood
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is equivalent to maximizing the likelihood. This gives the ML problem:

In special cases, this problem can be solved in closed form. Other-
wise, if the function is a differentiable function, gradient-based
optimization methods such as Newton’s method can be used to solve it
numerically.

ML estimators have good statistical properties under very general
conditions; they can be shown to be consistent, asymptotically normal,
and asymptotically efficient, achieving the Cramer-Rao lower bound on
the variance of estimators for large sample sizes.

Example 9.5  (ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION) Consider the
following model of demand from Example 9.4:

Recall that the model assumes that the scalar parameter is constant over time, and
is normally distributed with mean 0 and constant variance Suppose we have N

observations, Then the ML estimator solves

Taking the log of the objective function yields

Differentiating with respect to and setting the result to zero, one can show that the
ML estimator is

which is just the sample mean. Note despite the fact that the estimation criterion is
different, this estimator is the same as the MSE estimator of Example 9.4.

Example 9.6  (ESTIMATING THE PARAMETERS OF MULTINOMIAL-LOGIT MODEL) The
MNL discrete-choice model is described in Section 7.2.2.3. The data consists of a set
of N customers and their choices made from a finite set S of alternatives. Associated
with each alternative is a vector of explanatory variables (assume for simplicity
there are no customer-specific characteristics). The probability that a customer selects
alternative is then given by (assuming that all customers face the same choice-set
of products)
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where     is a vector of (unknown) parameters. Let          be the choice made by customer
The likelihood function is then

The maximum-likelihood estimate is then determined by solving

While this maximum-likelihood problem cannot be solved in closed form, it has
good computational properties. Namely, there are closed-form expressions for all first
and second partial derivatives of the log-likelihood function, and it is jointly concave
in most cases (McFadden [372]; Hausman and McFadden [244]). The ML estimator
has also proved to be robust in practice. (See Ben-Akiva and Lerman [48] for further
discussion and case examples.)

9.2.4 Method of Moments and Quantile
Estimators

While MSE and ML estimators are the most prevalent, several other
estimators are also used in practice. Two common ones are the method
of moments and quantile estimators.

In the method of moments, one equates moments of the theoretical
distribution to their equivalent empirical averages in the observed data.
This yields a system of equations that can be solved to estimate the
unknown parameters The following example illustrates the idea:

Example 9.7 (ESTIMATING THE PARAMETERS OF A NORMAL DISTRIBUTION) Sup-
pose we want to estimate the parameters of a normal distribution. The sample mean
and sample second moment are computed as follows:

Equating these to the theoretical mean and second moment yields the system of
equations

Solving for and gives the estimates and

Alternatively, we can use quantile estimates based on the empirical
distribution to estimate the parameters of a distribution. For example,
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we might estimate the mean of a normal distribution by noting that as
the normal distribution is symmetric, the mean and median are the
same. Hence, we can estimate the mean by computing the median of a
sequence of N observations. More generally, one can compute a number
of quantiles of a data set and equate these to the theoretical quantiles
of the parametric distribution. In general, if parameters need to
estimated, different quantiles are needed to produce equations in

unknowns (for a normal distribution, for example, one could equate
the 0.25 and 0.75 quantiles of the data to the theoretical values to get two
equations for the mean and variance). Quantile estimation techniques
are sometimes preferred, as they tend to be less sensitive to outlier data
than are MSE and ML estimators.

9.2.5 Endogeneity, Heterogeneity, and
Competition

Table 9.1 lists the standard problems associated with classical
regression—correlation of the error terms, collinearity, and so on—and
techniques for dealing with violations of the assumptions. Such prob-
lems and their corrective measures are well known and can be found in
many standard econometric books. In this section, we focus on a few
nonstandard estimation problems that are of particular importance for
RM applications—endogeneity, heterogeneity, and competition.

9.2.5.1 Endogeneity
The model (9.2) is said to suffer from endogeneity if the error term is

correlated with one of the explanatory variables in y. This is a common
problem in RM practice, both in aggregate-demand function estimation
and in disaggregate, discrete-choice model estimation.

For example, products may have some unobservable or unmeasurable
features—quality, style, reputation—and the selling firm typically prices
its products accordingly. So if there are two firms in the market with
similar products and one has higher nonquantifiable quality, we may
observe that the firm with the higher-quality product has both a larger
market share and a higher price. A naive estimation based on market
shares that ignores the unobserved quality characteristics would lead
to the odd conclusions that higher price leads to higher market share!
Such effects are widespread in price-elasticity estimation because we can
rarely observe all relevant product and firm characteristics and price is
usually correlated with many of these unobservable characteristics.

Econometricians call this problem endogeneity or simultaneity. The
technical definition is that the random-error term in (9.2) is correlated



Estimation and Forecasting 429

with one of the explanatory variables, or equivalently (in
the case of linear regression) these vectors are not orthogonal. So while

is supposed to represent all unobservable customer and product char-
acteristics that influence demand for a given set of explanatory variables
(Z|y), some of the explanatory variables y also contain information on
the unobservable attributes through their correlation with

Econometric techniques to correct endogeneity fall under a class of
methods called instrumental-variables (IV) techniques, attributed to
Reiersøl [438] and Geary [202]. Two-stage and three-stage least-squares
methods (2SLS and 3SLS) are some of the popular IV techniques. In-
strumental variables are exogenous variables that are correlated with an
explanatory variable but are uncorrelated with the error term If there
are such IVs, we can use them to “remove” the problematic correlation
between the independent variables y and

We illustrate the idea for the case of linear regression. In (9.5) suppose

However, suppose there exist M instrumental variables (we can use some
of the to construct this vector of IVs) for each observation so that
we have a N × M matrix V with the property that and

is nonsingular. Then the IV estimator is

where The IV estimator is a consistent estimator of
which can be shown by substituting in (9.12):

For a given set of N observations the IV estimator
can be calculated by the sample average

which converges by the weak law of large numbers to w.p.1 as

and w.p.1.
A regression with an IV transformation is called an IV regression

(see Greene [220] and Woolrdige [581] for details and examples of IV
methods) and a generalized IV regression if we use more than M IV
variables. There are no mechanically generated IVs that work for all
cases. It often requires considerable ingenuity to find good IVs and to
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argue that they can in fact serve to correct for endogeneity. This is what
makes the technique rather difficult to apply, requiring the skills of an
experienced econometrician.

In nonlinear problems, IV techniques become more difficult to apply.
For example, one often encounters endogeneity when estimating discrete-
choice demand models such as the MNL model from aggregate data
(prices correlated with unobservable product characteristics). However,
the problem is hard to correct because the aggregate demand is a nonlin-
ear function of the utilities of each product and the endogeneity is present
in the equation for the utilities. So using any IV technique for correcting
for endogeneity becomes computationally challenging, as pointed out by
Berry [53]. Berry [53] and Berry, Levinsohn, and Pakes [52] recommend
that for the case of discrete-choice models in an oligopoly setting, one
use measures of the firm’s costs and the attributes of the products of the
other firms as IVs. See also Besanko, Gupta, and Jain [63] for estimating
a logit model in the presence of endogeneity due to competition.

9.2.5.2 Heterogeneity
Customer heterogeneity is important to understand in RM. In Sec-

tion 7.2.3 we examined a few models of heterogeneity—namely, the finite-
mixture logit model and the random-coefficients discrete-choice model.
Here, we discuss how to estimate these models.

Estimation of the finite-mixture logit model is relatively straightfor-
ward. First, we must determine the number of segments. If there is no
a priori knowledge of the number, we iterate the estimation procedure,
increasing or decreasing the number of segments in each round, using
suitable model-selection criteria (see Section 9.5.1) to decide on the op-
timal number of segments. For a given number of segments L, we find
the parameters that maximize the log-likelihood function. For the finite-
mixture logit model of Section 7.2.3.1, this would amount to maximizing
the following likelihood function based on the purchase histories of N
customers:

where is the choice made by customer The only difficulty, from
an optimization point of view, is that taking logs on both sides does not
convert the right-hand side into a sum of terms, so the maximization is
somewhat more challenging than the estimation of standard logit models.

Estimation of the random-coefficient logit, likewise, uses maximum-
likelihood estimation and is more difficult in general than the standard
multinomial logit. Consider the model given in Section 7.2.3.2. Assum-
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ing the parameters follow a normal distribution, the likelihood function
that needs to be maximized is given by

where is the M-dimensional joint normal p.d.f. (with an identity covari-
ance matrix if the taste parameters are independent). If the distributions
of the parameters are modeled as a joint normal distribution with a
general covariance matrix structure, then evaluation of the integral is
quite difficult in practice. However, the extreme value distribution has
been integrated out in (9.13), and we do end up with a logit-like term
inside the integrals.

One of the problems dealing with unobservable heterogeneity in the
population is that we often have to assume a distribution of hetero-
geneity without having much evidence as to its specification. Many
times, a distribution is chosen for analytical or computational conve-
nience. Unfortunately, a situation can arise where two radically differ-
ent distributions of heterogeneity equally support the aggregate demand
observations. This was pointed out by Heckman and Singer [248], who
illustrated this overparameterization with the following example:

Example 9.8 Consider an aggregate-demand function based on a heterogeneity pa-
rameter The variance on the distribution of represents the degree of heterogeneity.
Let the demand for a particular value of be given by the distribution

and let be equal to a constant with probability 1 (essentiallysaying the population
is homogeneous). The aggregate-demand distribution then is

Consider another possible specification where

and the distribution of given by This also turns out to lead to an aggregate-
demand distribution given by So based only on aggregate demand data, it
is impossible to identify which specification is correct.

Therefore, one should proceed with caution when inferring a func-
tional form for unobserved heterogeneity from aggregate data.

Nonparametric methods avoid the problem of having to specify a dis-
tribution, and Jain, Vilcassim, and Chintagunta [267] follow this strat-
egy. Assume that the coefficients of the MNL model in (9.10) are
randomly drawn from a discrete multivariate probability distribution

That is, the customer is assumed to make his choice us-
ing whose components are drawn from G(·) is considered
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a discrete distribution with support vectors They estimate
the number of support vectors L, the location of the support vectors,
and the probability mass associated with the support vector from
observed data.

9.2.5.3 Competition
If one has access to information on prices and demand for an en-

tire market (such as MIDT data for airlines and scanner-panel data
sold by marketing research firms), it is possible to separately estimate
competitive- and own-price effects. A common strategy in such cases is
to assume a model of competition between the firms, derive the equilib-
rium conditions implied by this model, and then estimate the parameters
subject to these equilibrium conditions. We illustrate this approach with
an example:

Example 9.9 Assume a homogeneous population of customers who choose among
products according to the MNL choice rule. Then the theoretical share of product
is given as in Section 7.2.2.3,

where price is one of the explanatory variables in One way to estimate the
parameters is by equating the observed market share to the theoretical prediction
of equilibrium. It is convenient to take logs in doing this, which yields the following
system of equations relating market shares to choice behavior:

Next assume that prices are formed by a Bertrand-style competition in prices (see
Section 8.4.1.4). Let be the constant marginal cost of production for product
The profit function for product is given by

where N is the size of the population. Let be the coefficient of price in (9.14).
Differentiating (9.16) with respect to and setting it to zero, we get the first-order
equilibrium conditions,

The vector of parameters is then estimated by attempting to fit a solution to
(9.15) and (9.17) simultaneously. This can be done using, say, nonlinear least-squares
estimation.
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9.3 Forecasting Methods
We next turn to forecasting methods, which explicitly attempt to

“predict” the future values of a sequence of data. For RM, we are mostly
interested in forecasting demand (demand to come, as well as aggregate
demand for the resource and at various levels of aggregation), though in
many cases one also needs to forecast quantities such as market prices,
length of stay (in hotel RM), cancellation and no-show rates, and so
on. Indeed, the methods presented here, by and large, apply to a wide
variety of forecasting tasks, though for purposes of illustration we focus
on demand forecasting as our canonical application.

Forecasting is a vast topic, spanning a diverse range of fields includ-
ing statistics, computer science, engineering, and economics. Over the
years, a core set of forecasting methods have been developed and new
improvements continue despite the maturity of the field. Some of these
forecasting methods are based on rigorous mathematical and statistical
foundations, while others are largely heuristic in nature.

Yet despite this long history and vast body of research on forecast-
ing, there are few published reports that document the performance of
various forecasting methods in RM applications. Presentations on fore-
casting by practitioners at industry conferences often suffer from the
proprietary nature of the material, with key details either omitted or
disguised. The same can be said of most presentations by RM system
vendors. Nevertheless, one can still glean some useful insights into cur-
rent practice from these sources.

For one, most forecasting algorithms in RM practice are variations of
standard methods, and most are not particularly complicated or math-
ematically sophisticated. Also, many vendors use multiple algorithms,
which allow users the option of choosing one or more methods, or, alter-
natively, the system may combine the forecasts from the various methods
itself (see Section 9.3.11). Finally, the majority of forecasting effort in
practice is directed at data-related tasks—collection, preprocessing and
cleansing—rather than on forecasting methodology per se.

In terms of forecasting methods, the emphasis in RM systems is on
speed, simplicity, and robustness, as a large number of forecasts have to
be made and the time available for making them is limited. For example,
if an airline has 50,000 itineraries in 10 fare classes that it reforecasts 40
times during a sales period (typical numbers for a medium-size airline),
then they must forecast nearly 2 million demand quantities every day!
And this does not include forecasts of important auxiliary quantities
such as cancellation and no-show rates. It is little wonder, then, that
fast, simple methods are preferred in RM systems.

433
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Forecasting is normally performed overnight in a batch process and
then fed to the optimization modules, so the time window for completing
all control operations ranges from six to eight hours at most. Forecasting
model calibration (estimation), in turn, can only be done off line and
infrequently.

Robustness of the forecasts is also important in practice for these
same reasons. If a large number of forecasts are off widely and the
system starts generating exceptions, analysts may be overwhelmed by
the amount of manual intervention required. Hence, performance—in
terms of forecast accuracy under “normal” data conditions—while al-
ways a desirable criteria, has to be balanced against these “real world”
speed constraints and robustness considerations. We next provide an
overview of RM forecasting algorithms, starting with ad hoc and time-
series methods and progressing to Bayesian, state-space (Kalman filter),
and machine-learning (neural network) methods.

9.3.1 Ad-Hoc Forecasting Methods
The first-class of methods we look at are known as ad-hoc forecasting

methods because their reasoning is largely heuristic in nature. The term
ad hoc is somewhat misleading, however, as many of these methods turn
out to have good theoretical properties despite their heuristic origins.
They are also sometimes referred to as structural forecasting methods
because they proceed by assuming a compositional structure on the data,
breaking up and composing the series into hypothesized patterns (see
Figure 9.3). These include the following three types of components:

Level The typical or “average” value of the data, though in ad-hoc
methods the level is not defined as a statistical average in any formal
sense.

Trend A predictable increase or decrease in the data values over
time. Most often these are modeled as linear increases or decreases,
but other functions may be used.

Seasonality A periodic or repeating pattern in the data values over
time—for example, as produced by day-of-week or time-of-year ef-
fects.

Ad-hoc forecasting methods are intuitive, are simple to program, and
maintain and perform well in practice. For these reasons, they are preva-
lent in RM practice.

A common strategy of ad-hoc forecasting methods is to try to
“smooth” the data or average-out the noise components to estimate the
level, trend, and seasonality components in the data. These estimates of
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the smoothed series are then used to forecast future values, as we show
next.

9.3.1.1 M-Period Moving Average
Let represent the current time, and suppose we want to forecast

values at time in the future, called the ahead forecast.
Let denote the observed demand data, and
denote the forecasts. To forecast one period ahead, one simple approach
is to use the average of the past M observations. That is, the forecast
for period is given by

called the simple M-period moving-average forecast. M is called the span
of the moving average. The formula for the ahead forecast is
given by
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A different way of writing (9.18) is

which is computationally faster. If is less than M (that is, in the initial
stages of forecasting), one can use

The moving-average method is very simple and fast, but its motivation
is largely heuristic. The idea is simply that the most recent observations
serve as better predictors for the future than do older data. Therefore,
instead of taking the forecast as the average of all the data, we average
only the M most recent data observations.

The moving-average forecast responds more quickly to underlying
shifts in the demand process if the span M is small, but a small span
results in a more volatile forecast (one that is more sensitive to noise
in the data). In practice, M may range from 3 to 15, but the value
depends heavily on the data characteristics and the units used for the
time intervals.

When the data exhibits an upward or downward trend, the moving
average method will systematically under forecast or overforecast. To
handle such cases, variations such as double or triple moving average
have been developed, but for such data one of the exponential smoothing
methods given next is usually preferred.

9.3.1.2 Exponential Smoothing
Exponential-smoothing methods are among the most popular fore-

casting methods used in RM practice because they are simple and robust
and generally have good forecast accuracy. We look at three variations of
exponential smoothing. First, however, we formally define the following
component estimates of the forecast:

= the estimate of the level (average) for period
= the estimate of the trend for period and
= the estimate of the seasonality factor for period

See Figure 9.3 for an illustration of these components.

Simple Exponential Smoothing This simplest version of exponen-
tial smoothing is defined by a single parameter, called the
smoothing constant for the level.  The forecast for time-period is
given by

The ahead forecast is then simply
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The choice of is a design decision and is usually calibrated prior to
starting the forecasting system. Smaller values of smooth the fore-
casts more, leading to more stability, while larger values of make the
forecast more responsive to recent changes in level but also more sus-
ceptible to noise. In practice, is typically set between 0.05 and 0.3
in RM applications. In addition, more advanced adaptive variations of
the smoothing methods attempt to automatically optimize the value of

based on its observed performance.
Some motivation for the exponential smoothing method can be ob-

tained by expanding the recursive formula (9.19), substituting repeat-
edly for

Thus, we see the forecast for period is a weighted combination
of all previous observations with the weights “exponentially” decreasing
at a rate of High values of make the decrease rapid, and the
forecasts will be more responsive to recent observations, while low values
of will spread the weights over a longer period, and the forecasts will
react more slowly to changes in demand. Figure 9.4 illustrates the role
of the smoothing parameter on a sample time series of data.

The smoothing parameters play a similar (albeit more complicated)
role in the next two models.
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Exponential Smoothing with Linear Trend Let and
be two parameters representing the smoothing factors for

the underlying level and trend, respectively. Then the forecast for time-
period is given by the following formulas:

The ahead forecast is given by

Note is the estimate of the trend factor in each period and is smoothed
using

Exponential Smoothing with Trend and Seasonality (Holt-
Winter’s Method) This method is applicable to data series that ex-
hibit seasonal variations (for example, monthly, quarterly, or half-yearly
variations). Let and be three para-
meters used to control the smoothing on the underlying level, trend,
and seasonality, respectively. Let L represent the periodicity of the
seasonality—that is, the number of periods after which the seasons re-
peat. L depends on the length of the periods and the seasonality—for
instance, if we are constructing quarterly forecasts and the seasonality
is by quarter, L = 4, or if we are constructing monthly forecasts and the
seasonality is by month, L = 12. Then the forecast for time-period
is given by the formula,

and the three components of this forecast are updated as follows:

In (9.23c), is the new estimate of the seasonality factor for period
These factors are updated once each season and are smoothed with the
previous estimate of the seasonality factor, of L periods in the past, using

Equation (9.23a) “deseasonalizes” the data by replacing by
and then updates this deseasonalized data using the same procedure as
in exponential smoothing with a linear trend.
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The deseasonalized forecast is “reseasonalized” in (9.22) by multiply-
ing by the estimated seasonality factor to generate the forecast

More than one seasonal factor can be incorporated into the model
(such as both a day-of-week factor and a monthly factor) by simply keep-
ing two multiplicative seasonal factors and updating them as in (9.23a)
and (9.23c).

9.3.2 Time-Series Forecasting Methods
In contrast to ad-hoc forecasting methods, time-series methods are

based on well-specified classes of models that describe the underlying
time series of data. These models have relatively simple mathematical
structures, yet the model classes are rich enough to represent a wide
range of data characteristics. Since the models are well specified, it
is possible to derive “optimal” (MSE or ML) forecasting methods for
each one. In this way, the forecasting procedure is specifically tailored
to the underlying data-generation model. This formal representation of
the dynamics governing the time series and the rigorous development of
optimal forecasting methods is what distinguishes time-series methods.

The collection of random variables is called a time series if it
represents successive observations taken over time. The values are
assumed to be generated by a dynamic system, which may depend on
past values for and a series of random disturbances At time

we have observations of the past data values and would like
to forecast the future values of the time series—for example, forecasting
the value units in the future, or We might be interested in a
single point estimate, of this future value or an estimate of
the parameters of its distribution.

A time-series forecasting process proceeds in two basic steps. First,
we make a hypothesis about the specific type of process generating the
time series of data. Various model-identification techniques can be em-
ployed to help determine which models best fit the data. Once the
model is identified, we estimate its parameters. Finally, we apply the
corresponding optimal forecasting method specific to that model.

One distinct advantage of time-series methods is that they explicitly
model the correlations between successive data points and exploit any
dependence to make better forecasts. However, it is up to the RM sys-
tem designer to decide if such correlations exist (for example, whether
there are “runs” in the data, where high-demand observations are often
followed by other high-demand observations). Moreover, even when cor-
relation exists, the designer must decide if it is worth building in this
extra complexity to obtain better forecasts because these models require
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relatively large samples of data (usually at least 50 observations) to cal-
ibrate accurately.

In what follows, we present several time-series models and methods
for forecasting and updating estimates of their parameters. But first,
we introduce two important concepts central to time-series forecasting:
stationarity and autocorrelation.

9.3.2.1 Stationary Time Series
Stationarity is an important property of a time series that greatly

simplifies the forecasting task. Simply put, a time series is stationary
if its statistical properties do not change over time. More formally, if

and are two sets of random variables
from the series, then the series is said to be stationary if the joint distri-
bution of these two sets of variables is the same for all choices of time
and all pairs of values and

To understand why the stationarity assumption simplifies forecast-
ing, consider the problem of estimating the first two moments (means,
variances, and covariances) of a collection of N random variables from
a nonstationary time series. Nonstationarity means that these N ob-
servations were generated by a random process whose joint distribution
could be different at each time. Therefore, to estimate the first and sec-
ond moments, we need to estimate N expected values, N variances, and
N(N – 1)/2 covariances—a total of                    parameters. However,
if the series is stationary, all the expected values and variances will be the
same, as and have the same marginal distribution. Moreover,
there are only N – 1 distinct covariances because the joint distribution
of and is the same as that of and (for all and

), and hence their respective covariances are the same. Therefore, the
number of parameters we need to estimate if the series is stationary is
only 2 + (N – 1), a much more manageable task.  To simplify things even
further, one often makes further structural assumptions that guarantee
that a large number of the covariances are identically zero, making the
estimation problem even simpler.

How serious is the assumption of stationarity? At first glance, it seems
quite restrictive. In fact, many time series encountered in practice are
clearly nonstationary. For example, any time-series data with a trend
or seasonal pattern is not stationary (if the series shows an increasing
trend, the underlying distributions of the successive random variables
are certainly not identical). However, even if the time series itself is not
stationary, transformations of the series—such as the difference between
successive values—may be stationary. Indeed, time-series forecasting
methods for nonstationary data typically involve transforming the data
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to obtain related stationary series; forecasts based on this transformed
stationary series are then used construct a forecast for the original time
series.

9.3.2.2 Autocorrelation
As we show below, entire classes of stationary time-series methods

are specified through their covariance structure over time—that is, the
covariance of and for all The autocorrelation function (ACF)
and partial autocorrelation function (PACF) are the key tools to analyze
this covariance structure. They serve as “signatures”, as it were, of a
time-series model, and by comparing these signatures to the “sample”
signatures obtained from our data we can determine which models are
most appropriate.

Specifically, the autocovariance function is defined as the covari-
ance between and

The autocovariance function measures the dispersion or variance of the
process. However, two data series that are identical except for the scale
of measurement will have different autocovariance functions. Therefore,
it is better to deal with the autocorrelation function, defined as the
autocovariance function divided by the variance

which is scale invariant.
Given a data series                    the       sample autocovariance function

is given by

The sample autocorrelation function is given by

The partial autocorrelation function (PACF) is defined as

where is the sample mean
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and can be shown to be equal to the ratio of two determinants involv-
ing the autocorrelations (see Wei [560], pp.15–22). A sample PACF can
be defined analogous to the sample ACF, but it is considerably more
complex to compute. However, most statistical packages automatically
compute and plot the sample ACFs and PACFs, so the complexity of
the calculations is not a major concern. An example of a sample auto-
correlation function and a partial autocorrelation function is shown in
Figure 9.5.

9.3.3 Stationary Time-Series Models
We first consider stationary time-series models. To begin, define a

linear filter as a stochastic process that can be written as an infinite
weighted sum of random variables as follows:

(the minus sign on the is by convention), where and are constant
parameters and the random variables (called white-noise disturbances)
are assumed to be i.i.d. normally-distributed random variables with a
mean of 0 and standard deviation for all The stochastic process

is therefore a stationary process. We define to be the level of the
series, which is assumed to be constant. If the sequence is
finite or is infinite and convergent, then one can show that the process

is stationary and is the mean of the series
We can rewrite equation (9.24) to express      in terms of

and  as follows:

First, eliminate from (9.24), and write in terms of the
remaining variables and parameters,

Substitute (9.26) in (9.25) to obtain

Repeat this process to eliminate and so on to obtain an
equation where is expressed solely in terms of and
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where and are a new set of constants that depend on
and

The random variable can represent either a stationary or nonsta-
tionary process depending on the properties of the parameters (equiv-
alently, Three important stationary time-series models arise from
using (9.24) and (9.28):

Moving average process  This process requires that only
a finite number of be nonzero in (9.24). A order MA process
is given by

Autoregressive process  This process requires that only
a finite number of      be nonzero in (9.28):

Autoregressive moving average process                This
process is a combination of MA and AR process

An AR process is stationary if the roots of the polynomial
are greater than one. An MA process is called invertible if

all the roots of the polynomial are greater than
one. One can show that a finite-order stationary AR process can be
expressed as an infinite-order MA process, and conversely, a finite-order
invertible MA process can be written as an infinite-order AR process.
This relationship is useful because if a fitted AR model contains a large
number of parameters, it is possible that the corresponding MA model
will have fewer parameters, and vice versa. An ARMA model, being
a combination of an AR and an MA process can, in principle, reduce
the number of parameters even further. Every model has
what is called a pure MA representation—that is, it can be written as
the following infinite sum (see Wei [560], p.58 for a derivation):

In most practical applications of these models, and rarely ex-
ceed 2. The means and covariances for ARMA series with small values
of and are given in Table 9.2. Recall denotes the covariance
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Note that for stationary processes, the covari-
ances are independent of with representing the variance. In some
cases (as for AR(2)), the covariances do not have a closed-form formula
but can be derived as solutions to a set of equations (see Wei [560]
for derivations). The AR and MA processes have distinctive ACF and
PACFs. Figure 9.6 shows some typical theoretical ACF and PACFs.
The forms of these ACF and PACFs provide important clues as to
which model is most appropriate for the observed data. Such model-
identification issues are discussed in Section 9.3.5.

Once we decide that a set of time-series data is an or an
process, we can proceed to identify the parameters of the model by using
ML or MSE criteria. We can then use the models for forecasting in a
relatively straightforward manner, as shown in the following example.

Example 9.10  We illustrate the forecasting process on the following data set

Assume the data comes from an AR(2) process,

The forecasting process proceeds as follows:
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Parameter estimation  We first estimate the parameters and in (9.32) by
MSE estimation. This we do by solving the following optimization problem (note
that an AR(2) process requires at least two initial points, so we begin with data
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point 3):3

Let and denote the parameters that minimize the mean-square error
on these data. For an AR(2) process, (9.33) has a closed-form solution, but in
general numerical optimization is required to find the minimum. (Most statistical
software packages solve this optimization problem automatically.) The parameters
that minimize the mean-square error for the data set (9.10) turn out to be

and

Forecast For an AR(2) process, the one-step forecast depends on the two previous
observations. In general, the forecasts for are then
given by (assume

The results of the forecast are given in Table 9.3.

9.3.4 Nonstationary Time-Series Models
As mentioned, most time-series data encountered in practice are non-

stationary. In such cases, stationary time-series models may not fit the
data well and can produce poor forecasts. Techniques to deal with non-
stationary data try to make the data stationary by a suitable transfor-
mation, so that one can then apply a stationary time-series model to
the transformed data. The resulting stationary forecasts are then trans-
formed back to their original nonstationary form. Differencing successive
points in the time series is one such technique.

Time series that are stationary after successive differencing are called
homogenous nonstationary series. This means that after differencing
the series is adequately represented by an ARMA model of the form
(9.31). Other transformations, such as taking the logarithm of the series,
can make a series stationary if the relative or percentage changes are
stationary rather than the differences. For ease of exposition, however,
we focus only on differencing in this section.

Given a time series define a new time series as
is called the first-difference of the series. As we mentioned, there

is often good reason to suspect that even if is not stationary, might
be. A series with a linear trend, for instance, has constant differences and

3Solving the minimization problem (9.33) could be computationally quite intensive, espe-
cially if it has to be re-solved after each observation. A practical alternative is to estimate
parameters only periodically—say, after every 50 observations.
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its first-difference series would be stationary. If      still is not stationary,
we can construct a new series that is the differences of and examine
if it is stationary, and so on.

An autoregressive integrated moving-average process,
is one whose differenced series is an process. As for the
case of ARMA models, the parameters are usually small (less than
or equal to 2) in real-world forecasting models.

How do we decide how many differences to take or whether to differ-
ence at all? The ACF is helpful in this regard. If the series is nonsta-
tionary, the sample ACF shows high values for many periods, whereas
if the series is stationary, it damps down to zero quickly, often within
four or five periods. We can then difference the data and analyze the
resulting ACF to see if the results indicate stationarity. If not, then
more differencing may be needed.

The model is designed for homogeneous, nonstation-
ary time series. For example, when there is a trend (linear or nonlinear),
then successive differencing of ARIMA converts the series to a station-
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ary series. If, however, the data has a seasonal pattern in addition to
a trend, a more involved procedure is required. One option is to con-
sider the series as a product of two stationary series—one that represents
the seasonal component and another that represents a stationary time
series. We can then difference the seasonal component by the period
of seasonality, and the other component can be treated as a stationary
time series. However, model identification, parameter estimation, and
forecasting are considerably more complicated for this sort of model and
are beyond the scope of this chapter.

Finally, we note there is a heuristic relationship between ARIMA
process and the simple exponential smoothing method (9.3.1.2). To see
this, consider the following ARIMA(0,1,1) series:

and

Substituting successively for in the form (9.36) into (9.35),
we obtain

Note the similarity with the simple exponential smoothing
method (9.20), where Box and Jenkins [85] and Har-
vey [243] derive many connections like this between ad-hoc models and
ARIMA models.

9.3.5 Box-Jenkins Identification Process
Determining the model that best represents a given time series is more

of an art than a science. Often many different models must be tried
before one can narrow down the choice of a “best” model. However,
the Box-Jenkins method provides a framework to formalize the model-
selection process. It recommends an iterative methodology of choosing
the model, validating it, and modifying it to identify the best possible
time-series model. Here, we briefly review this methodology.

The first step in the process is identification. In this step, the sample
ACF and PACF functions are plotted to tentatively identify the most
likely candidate for a model. These correlograms are then compared
with the correlograms of a standard process such as or

for small values of and For instance, if the sample
ACF stops after spikes, an model would be appropriate; if the
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sample PACF stops after spikes, an model would be appropriate;
if neither looks like the right model but the correlograms still decline
exponentially toward zero, an ARMA model would be more suitable.

The next step is an estimation step in which the model parameters are
estimated from the data. Usually, these are least-squares or maximum-
likelihood estimates.

The final step is the diagnostic step, which verifies that the chosen
model and parameters indeed fit the data well. We do this by taking
the ACF of the residual series (actual data values subtracted from the
model prediction data) and performing various statistical tests (such
as the Box-Pierce test) to see if it represents white noise. If the model
performs poorly on these tests, the model is rejected, and another model
is tested.

Once the model has been selected, we can then use it to generate
forecasts as illustrated in Example 9.10. In practice, once a system is
operational, the model itself is rarely altered. In contrast, nonparamet-
ric or semiparametric methods, such as neural-network methods, adapt
the model automatically based on recently observed data. Indeed, the
substantial amount of manual work and statistical skills required to im-
plement the Box-Jenkins methodology are its main disadvantages in
practice, especially in a RM context where one needs a highly auto-
mated forecasting system with minimum manual intervention. As a
result, time-series methods have not found much favor in current RM
practice. But their performance, when sufficiently tuned and calibrated,
can be significantly better than the simpler ad-hoc forecasting methods
of Section 9.3.1. So even if they are not used operationally, time-series
methods play an important role as reference methods when evaluating
simpler forecasting methods.

9.3.6 Bayesian Forecasting Methods
Bayesian methods are a large class of forecasting methods that use

the Bayes formula to merge a prior belief about forecast values with
information obtained from observed data. The methods are especially
useful when there is no historical data, a common occurrence when new
products are introduced. For example, an airline may start flying on
a new route and have no historical demand information on the route.
Fashion apparel products often change every season, and hence demand
may be unrelated to the historical sales of past products. Similarly, a TV
broadcaster has no historical demand information on demand for a new
series. Nevertheless, in each of these cases forecasters may have some
subjective beliefs about demand, based on human judgment or alterna-
tive data sources (such as test marketing and focus groups). Bayesian
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methods provide a rigorous and systematic way of specifying such prior
beliefs and then updating them as demand data is observed. Hence,
they make it possible to combine subjective knowledge with information
obtained from data and observations.

9.3.6.1 Basic Bayesian Forecasting
As before, let be a sequence of i.i.d. random variables repre-

senting a data-generation process. We assume has a density function
that is a function of a single, unknown parameter For example,

might have a Poisson distribution, and the parameter might be the
mean Since is unknown, it too is assumed to be a random variable
with a probability density This density, called the prior, represents
our current belief about the value of the parameter     Roughly, if we are
confident about the value of then the density would be tightly
concentrated (have a low variance); conversely, if we are very unsure
about the value of then it would be more spread out (have a higher
variance). A prior with a large variance is called a diffuse prior.

When new data is observed, we may change our belief about the
parameter The procedure for formalizing this updating is given by
Bayes rule. Let represent our initial prior distribution
and denote our first observation. Then after observing demand, our
posterior distribution of is given by

The Bayes estimator of is then the expected value of based on the
posterior distribution (that is, once the information from the observed
demand had been incorporated):

The estimator has several nice theoretical properties. In particular,
one can show that it minimizes the variance of the forecast error.

The value is used in forecasting by setting Once
the next data value is observed, we repeat the procedure to get
and so on. Thus, represents our current (time belief about
(Note that it is a function of the history of observations,

What makes Bayes estimation practical is that for certain prior dis-
tributions of the parameters and certain corresponding sample dis-
tributions of the random variable Z, the posterior distributions of the
parameters in (9.37) have the same distributional form as the prior, and
their parameters are given by closed-form updating formulas. A pair of
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distributions that has this property is said to be a conjugate family of
prior distributions. We list below some well-known pairs of conjugate
families of prior distributions (see DeGroot [151] for derivations):

Beta-binomial are 0-1 random variables from a
Bernoulli distribution with and has a beta dis-
tribution with parameters After observing has
a beta distribution with parameters and

Poisson-gamma  have a Poisson distribution with
mean and has a Gamma distribution with parameters After

and variance

The following example illustrates the use of these formulas for fore-
casting:

Example 9.11  (BAYESIAN FORECASTING) Consider the following time series:

where is normally distributed with a mean of 0 and a known variance —that
is, the random variables are assumed to be from a normal distribution

Suppose our prior distribution on     is modeled as being normal with mean      and
variance The value can be thought of as representing our “best guess” of
and the value as representing our degree of confidence in this guess.

After an observation is made, our estimate on the distribution of is updated
using the update formulas in (9.39) and (9.40).

observing has a gamma distribution with parameter
and

Normal-normal                 have a normal distribution with a
known variance but an unknown mean and suppose
has a normal distribution with mean and variance The posterior
distribution of is a normal distribution with mean
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After the next observation is made, they are again updated as follows:

and so forth. After each observation the revised forecast of is given by

Notice the ease with which new forecasts can be computed in Exam-
ple 9.11. The method is also parsimonious with data: only the current
estimates need to be stored and updated; all the previous information is
contained in the current estimates. However, for distributions that are
not conjugate, the updating formulas get complicated, and the Bayesian
method loses its attractive properties.

9.3.6.2 Hierarchical and Empirical Bayes Methods
Hierarchical Bayes methods are an appealing way to combine sales

data from multiple locations or sources. For example, a manufacturer
might be forecasting the sales of its brand across multiple retail chains,
a retailer might combine the demand data for a product from multiple
stores locations, or an airline might combine data from multiple flights
serving a given market.

The method works as follows: Let be the number of sources and
represent the random variables of demand at each source. Let

denote N-vectors of observations of demand at each source
is assumed to be a vector of N i.i.d. realizations of the random variable

Let be the parameters of the distributions of
respectively, with densities We assume for simplicity that the
are scalars.

How should we combine these observations? The answer depends on
how the parameters are related. If the parameters are com-
pletely unrelated, we can estimate each independently. If they are all the
same, we can simply pool all the data together to forecast
a single number. However, neither assumption may be satisfactory in a
given practical forecasting situation. That is, the sources may be related
but not necessarily identical. Hierarchical Bayes methods address this
intermediate case. They posit the parameters as realizations
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of a common (across the sources) prior distribution of and use the
information from “all other” data to obtain a prior for the parameter of
each specific source, which is then updated in a Bayesian manner using
that source’s data.

Figure 9.7 shows the hierarchical Bayes model for forecasting First,
are assumed to be i.i.d. realizations of a density where

is a hyperparameter from a hyperprior density Both as well
as are unknown. Then we estimate in this framework using not
just    but also the other data                        Let
and Using the other data, we perform a Bayesian
update on the hyperparameter to obtain the posterior distribution of
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4

The integral term in (9.43) is the probability of observing  for
a given We can use this to obtain a prior density for using Bayes
rule:

From this prior density, we calculate the posterior density of     based
on the data set

where is the likelihood function of given We can interpret
as the information on obtained solely from while

is the “correction” based on the information from the other data
Notice that throughout, we do not need to estimate or know the value
of it is integrated out in (9.44). However, we do need to know the
form of the function      to calculate (9.44). This hyperprior density is
somewhat removed from the actual data and hence is difficult to interpret
or assign a priori.

One way of avoiding specifying the hyperprior density is to use
what is called an empirical Bayes approximation to The em-
pirical Bayes approximation proceeds as follows. Suppose we represent
the likelihood (with respect to given the other data as

4To avoid excessive notation, we do not write down the normalizing factor and just represent
the density as being proportional to the right-hand side. So the use of Bayes rule in
(9.43) should be read as

The density can easily be recovered by dividing by the integral. We do likewise for all
subsequent applications of Bayes rule in this section.
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and let denote the ML estimate

Then instead of using the exact density             of (9.44) in (9.45b), we
use the approximation          to obtain the MLE posterior density of

Of course, (9.46) should be easy to solve or else this approximation
will be difficult to implement. One can even substitute a MSE estimator
or a method-of-moments estimator (Sections 9.2.2 and 9.2.4) instead of
the ML estimate of (9.46) if these make the computations more tractable.
So one has to choose the densities of          and judiciously for com-
putational convenience. But in the end, the advantage of this method of
empirical approximation is that it does not require an estimate of

We illustrate the hierarchical Bayes model with a retail RM example:

Example 9.12 (SHRINKAGE ESTIMATION OF RETAIL PRICE AND PROMOTIONAL
ELASTICITIES ([75])) A manufacturer sells a product through multiple    chains
(collection of stores). Periodically the manufacturer offers promotions and wants to
gauge the effect of the promotions on sales. The model of sales during a promotional
campaign is the following:

where
= logarithm of sales in period
= relative price in period (regular price divided by

an average of competitive regular prices)
= deal discount in period (normal shelf price minus

actual divided by normal shelf price)
= feature advertising in period (proportion of

stores in chain using the ad)
= display in period (proportion of

stores in chain displaying the brand)
= 0-1 indicator variable, 1 if period is the final period

of a multi-week deal, and 0 otherwise
= maximum deal discount for competing brands in chain in period

The data consists of T periods of sales data from the    chains. Let represent the
log sales of chain-brand           at time        and                  the              covariate (explanatory variable
in (9.47), (M = 7)) value for period for chain The regression
models for the log sales for the    chains are given by
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where the are assumed to have a normal distribution with mean zero and a common
variance and to be independent. Let and
We assume is known,5 and let denote

Let , and the matrix whose elements are
Then the regression equation for store in matrix form is

The MSE estimates for are given by (same as (9.6))

However, estimating by chain reduces the size of the data sets and often leads to odd
predictions with wrong signs on the coefficients or similar calibration problems.

We can build instead a hierarchical model assuming that each parameter comes
from a prior normal distribution

are the hyperparameters with an unknown dis-
tribution generating the parameters Let

and
If we knew  and we had a prior       of the parameters,

then we could have estimated the mean of the posterior distribution of     by Bayes
theorem as (using a vector version of the formulas in Example 9.11)

where

The new updated mean of (9.48) is in a sense a convex combination of the prior mean
and the actual (unknown) mean The mean is “shrunk” toward the hyperparameter

by the shrinkage factor
The estimate (9.48) is unusable however as we do not know

(i.e., and ). If we had estimates of the hyperparameters from “other”
data however, we can use them instead in (9.48) for any given chain So the estimates
of would be a convex combination of a hyperprior estimate of from data other
than from chain and the data of chain This is the idea behind the hierarchical
Bayes method.

In practice, obtaining the ML estimates of from the other data may be too
difficult. But this does not prevent us from using any reasonable estimate that we
can obtain based on the other data. Blattberg and George [75] give a variety of
alternatives for the hyperparameter estimates for this regression problem. Also, here

5 For any given set of estimators of a good estimate of is

This is a straightforward regression problem if the     stores are estimated separately.
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we have constrained the to have identical variances See [75] for alternative
constraints with different interpretations. Blattberg and George [75] also consider
weekly sales data for a national brand and show that hierarchical Bayes methods
improve predictive performance.

9.3.7 State-Space Models and Kalman Filtering
Like time-series methods, state-space methods assume the time series

is driven by an underlying dynamic system. The system is defined
by a “state” together with a system of equations for describing how
the state and observable outputs (say, the time-series data) evolve over
time as function of possibly random inputs. The future behavior of
the system can be completely described by the present state and future
inputs, a feature known as a Markovian representation of the system.
However, the current state most often is not directly observable and must
be estimated based on observed data. The following example illustrates
a simple case of such a system:

Example 9.13 Consider a series being generated by the following model:

where is the underlying mean of data Here the mean (a scalar) is the
state of the system, which we cannot observe directly. The mean evolves according
to the state equation (9.49b), which is a linear function of the past state and
a process noise term The observable output is described by the observation
equation (9.49b) and is equal to the mean plus a measurement noise term

For a time series generated by (9.49a)–(9.49b), a forecasting method might proceed
as follows: (i) keep a current estimate of the underlying state (ii) forecast

(iii) after observing the data at time update our current estimate of state
to and repeat. (Details of how this can be done are discussed below.)

One can view many forecasting models in a state-space framework.
For example, in simple exponential smoothing equation (9.19), the level
factor can be interpreted as the unobservable state, while Bayesian
forecasting methods can be viewed as an attempt to estimate an unob-
servable “state” (the unknown parameters of the distribution). More
generally, if we define the “state” at time as consisting of the com-
plete history of observations and actions up to time then this state
would contain all the information relevant for forecasting. Thus, at an
abstract level, all forecasting models can be cast in a state-space model
framework. However, such an abstract description is of little practi-
cal value because the dimension of the state increases without bound
over time. Hence, for the state-space approach to be useful, we need
a more compact (finite-dimensional) representation of the state, as in
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Example 9.13. In this section, we focus on the best known state-space
forecasting method: the Kalman filter.

9.3.7.1 The Kalman Filter Formulation

The Kalman filter is based on a finite-dimensional system of linear
state and observation equations and zero-centered Gaussian (normally
distributed) noise terms. Under these conditions, the Kalman filter pro-
vides an efficient algorithm for estimating the state and for forecasting.

Formally, let the dimensional real vector represent the state at
time The state is assumed to evolve according to a linear system
equation:

where is a of random variables, called the process noise,
and A is a known matrix of parameters. We assume is a
Gaussian (white-noise) process—a set of i.i.d. random variables from a
normal distribution N (0, Q), where Q is a known matrix called
the process-noise covariance matrix.

There is a   vector  of observations,6 which is related
to the state by the following observation equation:

where H is a known matrix of parameters, and is a
of i.i.d. random variables, called the measurement noise, that we assume
has a normal distribution N(0, R), with a known         measurement
noise covariance matrix R. While we assume the matrices A, H, Q,
and R are known, in practice they are usually estimated from data as
discussed later.7 To illustrate this formulation, we give an example of
the AR(2) model in state-space form:

Example 9.14  Consider the AR(2) process described in Section 9.3.2, where

6Note that the observation is a vector here, in contrast to the scalar observations of previous
sections. We also use z and y to represent the random variables generating z and y, instead of
Z and Y as in the rest of this chapter, to avoid confusion with our matrix notation convention.
7Here we have also assumed that the matrices A, H, Q, R are constant across time. However,
the theory and the Kalman filter forecasting equations hold even when this data changes over
time. The Gaussian distribution assumption on the error terms is also not strictly necessary,
although it is commonly assumed in most applications.
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We can rewrite equation (9.51) as a system of state-space equations, as a combi-
nation of a state-evolution equation,

and as a measurement equation,

In a similar fashion, the general model can also be formu-
lated in a Kalman-filter framework (see Wei [560], p.385), as can many
of the other time-series models of Section 9.3.2 (see Harvey [243]).

In a forecasting context, the state can be viewed as the (unobservable)
parameters of the true underlying demand-generation process. Each ob-
servation gives additional information of the parameters, and this infor-
mation can be used to update our current estimate of the state via the
state-evolution equation. With the updated state, a forecast for period

can be made using the prediction equation for period sub-
stituting the state obtained for period The Kalman filter provides an
efficient recursive algorithm for performing these operations.

9.3.7.2 The Kalman Filter Forecasting Algorithm
We first state the Kalman filter forecasting algorithm, and then ex-

plain the intuition behind it and some of its formal properties.
The algorithm proceeds as follows. Let the subscript indexing

denote the value of the variable at time based on all the information
up to time (before the observation in period ). At each time we
keep an estimate of the underlying state that encapsulates all the
information gained from past observations. After time we get a new
observation and update our estimate of state to using and

(by (9.50)). We then make a forecast for time
with

Let and represent, respectively,
errors from the true state before and after the state estimates have been
updated. Let and represent,
respectively, the error covariance matrices. The algorithm is as follows:
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Initialization: Let time Assume initial values of (say I)
and the initial state

Forecasting step: At time project the error, state, and forecast:

Measurement updating step: After observing update

where the matrix is given by

Update the error covariance

The matrix       is known as the Kalman gain. The crucial step is (9.52),
which calculates the a posteriori estimate of the state after observ-
ing the measurement in period from the a priori estimate (be-
fore observing the measurement in period ). If the disturbances
are normal, the distribution of the initial state will be normal, and
the mean and variance of the a priori estimate of the state are given
by and The conjugate distribution of a normal distribu-
tion is again normal and after observing the measurement the a
posteriori distribution of is also normal with mean given
by (9.52). This mean-state vector also turns out to be the minimum
mean-square estimate of given all the information up to time

Even when the disturbances are not normal, the Kalman filter
equations can be shown to be the best linear estimator, in the sense of
minimizing the mean-square error among all linear updates of the form

that is, the Kalman gain is the matrix
K that minimizes

An attractive property of the Kalman filter is the recursive nature
of the algorithm. At each step, we need only to maintain the current
estimate of the state and the estimate of the covariance matrix. As new
observations come in, we can then easily update these two quantities.
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Moreover, updating these estimates by the Kalman filter equations is
computationally very efficient, which is one of the most appealing fea-
tures of the algorithm. The following is a simple example of the operation
of the Kalman filter:

Example 9.15  (FORECASTING USING THE KALMAN FILTER) Let the state evolution
equations for a 1-dimensional state be given by

and the measurement be given by the process

where and Then the state update equations of the Kalman
Filter are

and the measurement equations to update the state and measurement are

where is given by

Update the error covariance by

To start off the forecasting process, at we need to assign some values to
and Rather arbitrarily let’s set As with Bayesian methods, the

quantity  should reflect our degree of certainty about our estimate of the state
A value of would imply that we are completely sure of our initial estimate;
more often, we choose some value The precise value is not critical—the
Kalman filter algorithm is quite robust this way—but the more uncertain we are of
our estimate, the higher this value should be (something like                would generally
suffice for this case).

Notice the similarity between (9.53), which can be rewritten in terms
of and as

and the simple exponential smoothing formula (9.19), repeated here:



Estimation and Forecasting 463

Indeed, the Kalman gain can be considered as an adaptive smoothing
factor that changes over time based on the observed data. As
one can also show the Kalman gain converges to a constant matrix K,
which means, after many observations, the Kalman filter will converge to
the simple exponential smoothing formula (9.19). However, the Kalman
gains are in fact the “optimal” weighting factors, in the sense that for
linear state and measurement processes, they minimize the mean-square
error.
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9.3.7.3 Estimating the Matrices A, H, Q, and R
Lastly, we address the question of estimating the matrices A, H, Q,

and R. Although the Kalman filter equations are easy to apply if these
matrices are known, in practice it is highly unlikely that we know their
exact values. For instance, in the state-space formulation of the AR(2)
process (9.51), we do not know the components and of the matrix
A. However, these parameters can be estimated by maximum-likelihood
methods based on an initial set of observations (see Harvey [242] and
Harvey [243], p.91). The values used for Q and R will also affect the
behavior of the algorithm. If the values we choose for Q and R are
much higher than the true variance in the process and measurement
error terms, then the forecasts tend to be very reactive to noise, and if
they are much smaller than the actual variances, the forecasts are much
smoother (see Figure 9.8). Again, these variances can also be estimated
by maximum-likelihood methods.

9.3.8 Machine-Learning (Neural-Network)
Methods

All the forecasting methods we have discussed thus far follow the
same underlying strategy: posit a functional form for the relationship
between the observed data and various factors (such as noise terms, time,
past observations, and causal factors) and then estimate the parameters
of this function using historical data. In contrast, machine-learning—
or specifically, neural-network—methods do not make a functional as-
sumption a priori; rather, they use interactions in a network-processing
architecture to automatically identify the underlying function that best
describes the demand process. The methods are based on artificial in-
telligence approaches that mimic the way the human brain learns from
experience. In theory, with the appropriate architecture and training
procedure, neural networks are capable of approximating any nonlin-
ear functional form after a sufficient degree of “learning” on samples
generated by that function.

Neural networks have found wide applicability in pattern recognition,
classification, reconstruction, biology, computer game playing, and time
series forecasting. Business applications have been reported in market
analysis, bond rating, credit-risk evaluation, and financial series forecast-
ing. Some RM vendors and airlines have implemented neural-network
forecasting methods as well [496].

Neural-network forecasting encompasses a large class of architectures
and algorithms, and the literature is extensive. Here we only describe
the workings of a simple neural network with the most basic of training
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algorithms. However, this introduction should provide a good sense of
the overall approach.

9.3.8.1 An Overview of Neural Networks
A neural network consists of an underlying directed graph and a set

of additional quantities defined on the graph. In an important class of
neural networks, the nodes of the network are arranged in consecutive
layers, and the arcs are directed from one layer to the next, left to right
as shown in Figure 9.9. Such networks are called feed-forward networks
or perceptrons and form the most important class of neural networks used
for forecasting. We limit our discussion here to feed-forward networks.

The first layer is called the input layer and the last is called the out-
put layer, with the layers in the middle being the hidden layers. Most
networks in practice have at most one or two hidden layers. A network
with a single hidden layer has been shown to be able to approximate
most nonlinear functional forms [397]. The training data is “fed” to the
input layer, and the forecasts are “read” from the output layer. Typi-
cally, in demand-forecasting applications, each node in the input layer
corresponds to an explanatory variables (analogous to the in the
linear-regression equation (9.3)), and each node in the output layer cor-
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responds to a future forecast. For example, if we want to use the 20
most recent historical observations to make forecasts for the next three
periods, the network would have 20 input nodes (one for each histori-
cal observation) and three output nodes (one for each forecast), with a
certain number of hidden nodes in between.

More generally, a neural-network architecture is defined by a graph
where is a set of nodes and is a set of directed arcs.

The following quantities are defined on the network:

A state variable, associated with each node Typically, state
is binary (every node is either active (state 1) or inactive (state 0))
or it is continuous, usually taking on values between 0 and 1. The
state can change for each set of inputs or in an online forecasting
application after every new observation. Thus, states are said to
evolve over discrete units of time and we represent
the state of node at time (observation) as

A weight, associated with each directed arc

An activation threshold value associated with each node
Typically, the activation threshold value serves as a threshold for
making the node active or inactive. For example, if the sum of the
weights of incoming arcs exceeds then consider node active and
inactive otherwise.

An activation function (or transfer function), which determines the
state of node as a function of the states of other nodes with arcs
into (with arcs of the form the arc weights and the
activation threshold The activation
functions can be different for each layer (or even each node). Typi-
cally, the activation functions act on the sum of the weights of arcs
from active nodes coming into node in which case, the activation
threshold for can be represented as Acti-
vation functions serve to make the nodes active or inactive.

Some examples of transfer functions include the following:

A linear function, where

The Heavyside step function, which is a simple threshold value
comparison between and
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The logistic sigmoid functions (Figure 9.10), which are a class of
monotonic, differentiable functions with

and

An example of a logistic sigmoid function is the Fermi function:

The tanh function:8

The value of the transfer function is taken to be the state of the
node. The state is binary (0 or 1) for the Heavyside step function and
continuous for the linear function (from ) and the logistic
sigmoid functions (between 0 and 1).

9.3.8.2 Training and Forecasting
Calibration of a neural network is called training the network. A set

of training data is used to calibrate the weights and the values of the
threshold functions. Once these parameters are determined, the network
can be used for forecasting. Thus, the three main steps are defining the

8The tanh function can be shown to be equivalent to the Fermi function after a linear trans-
formation of the inputs and outputs (see Bishop [69], p.127). However, the tanh function has
been found to give faster training convergence and is generally preferred.
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network, training, and forecasting. We illustrate these steps on the
three-layer network of Figure 9.9.

Defining the Network The input is a set of I values of independent
variables associated with each observation, represented by I input nodes,
and the output is a forecast for K future periods, represented by K out-
put nodes. The inputs could consist of all variables that would influence
the demand. For instance, if the forecast is for demand in a particu-
lar market for an airline, the input variables, in addition to historical
demand in that market, could consist of variables such as schedule fre-
quency, capacity, time in market or economic indicators. Assume there
are J nodes in the hidden layer. We index arcs from the input layer to
the hidden layer as and arcs from the hidden layer to the output
layer as

We next need to define the transfer functions. We use the tanh func-
tion (9.55) as the activation function for the nodes of the hidden
layer and a linear function as the activation function for the
nodes of the input and output layers. These functions are defined by the
activation thresholds the arc weights and the parameter
of the tanh function.

Let represent the state of input node and the state of node
of the hidden layer, and the state of node of the output layer.

The inputs to the hidden layer are formed by a weighted combination of
values of the states of the input layer

and the state of the hidden node is therefore

The inputs to the output layer in turn are a weighted combination of
the states of the hidden layer and the activation thresholds of the output
nodes:

The state of the output node is then This completes the
definition of the network.

Training Once a network topology is chosen, we have to determine val-
ues for the arc weights and node activation thresholds. This training is,
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in all respects but terminology, equivalent to estimating the parameters
of any other forecasting model from historical data—except that we are
not working with a simple functional form for the demand generating
process but rather from a complicated network of interacting functions.

One of the first, and still quite popular, methods of training is the er-
ror back-propagation method. The method uses a squared error criterion
and prescribes an iterative procedure to update the weights to minimize
the squared error. Appendix 9.A gives an application of this algorithm
to the three-layer network of Figure 9.9.

Forecasting Once training is complete, we have a set of values for the
parameters of the network, and the parameters of the tanh
function. Since the state of the input nodes is equal to and
since we chose to be the linear function, the input state is simply the
input to node Again, the inputs to the hidden layer are a weighted
combination of values of the states of the input layer

so the state of the hidden node is computed as

The inputs to the output layer are again a weighted combination of the
states of the hidden layer and the activation thresholds of the output
nodes:

The final forecast is then given by state of the output nodes:

9.3.8.3 More Advanced Neural Networks
The network architecture and training algorithms described thus far

form the most basic neural-network methodology. But other variations
of this method are available. Even for the simple method presented here,
we have not delved into procedures to choose the number of hidden layers
or the number of nodes in each layer, or the best choice of the transfer
functions. For example, there are many procedures to automatically
prune or grow the network topology based on the observed data and the
network’s predictive performance.
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As far as training goes, we have described only one of the earliest and
the most basic of training algorithms. A significant amount of the neural
network literature is devoted to improving training, in terms of speeding
up the convergence or ensuring the convergence is to the right parameters
(global convergence), and avoiding overfitting (Section 9.5.1.4). The
interested reader should consult a textbook on neural networks before
deciding among these various options.

9.3.9 Pick-up Forecasting Methods
Pick-up forecasting methods exploit some unique characteristics of

reservation data in quantity-based RM, where the period between re-
peated service offerings is shorter than the period over which reserva-
tions are made (for example, an airline offers a daily flight between two
cities but accepts reservations for these flights up to 90 days prior to
departure). They are best viewed as a forecasting strategy—specifying
a method for disaggregating and aggregating reservations data—rather
than a class of fundamentally new forecasting algorithms.

As we mentioned in Section 9.1.3.4, reservations data has a “wedge-
shaped” form, in which one has a partial and evolving picture of demand
over time. Figure 9.11 shows this evolution of demand in matrix and
graphical form for resources sold on consecutive dates. Rather than re-
lying only on complete booking histories for forecasting, pick-up meth-
ods exploit both the complete and partial-bookings data to make better
forecasts. The main idea is to forecast incremental bookings (booking
obtained over short intervals of time prior to service) and then aggregate
these increments to obtain a forecast of total demand to come.

We illustrate this idea with the additive pick-up method. Suppose
for the data in Figure 9.11, we want to forecast for 13-June when we
have one day remaining. The historical observed bookings on the day of
departure are 8, 2, and 13 (for the service dates 12 June, 11 June and 10
June respectively). From this data {8, 2, 13}, we make an incremental
forecast for zero-day prior for 13 June (bookings expected on 13 June)
as, say, the mean value of 7.6. Similarly, for the forecast for 14 June,
we first construct two incremental forecasts, one for zero-day prior and
the other for one-day prior; sticking to our averaging method, this yields
incremental forecasts of 7.6 and 3.75, respectively. Then the forecast
of demand to come for 14 June is the sum of these two increments or
7.6 + 3.75 = 11.35, and so on, for the other dates in the future.

Formally, the ahead forecast of demand to come is given by
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where represents the incremental bookings forecast days prior to
the time of service. The forecasts are constructed using the
available historical incremental bookings. In principle, any
time-series method can be used to make these incremental forecasts.

In the multiplicative pick-up method, the forecast is performed on
data normalized as a fraction of current bookings. So if days prior
to the resource usage date there are 100 total bookings on hand and
on days prior 10 bookings were observed, then the incremental
increase is 10% or 0.1. The incremental bookings data is first converted
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to such fractions. In our example in Figure 9.11, to make a forecast
for 13 June, we convert the zero-day prior incremental bookings into
{8/14, 2/55, 13/54} (14, 55, and 54 are the total bookings on hand for
12 June, 11 June, and 10 June, respectively). Similarly, the one-day
prior fractions for 14 June are {2/22, 6/14, 4/55, 3/54}. We can take the
average of these fractions to obtain the forecast of the pick-up fraction
zero-day prior and one-day prior. This would be 0.284 for zero-day prior
and 0.162 for one-day prior, the average multiplicative “pick-up” over
current bookings. A forecast of demand to come for 14 June would be
0.284 × (33 + 0.162 × 33) + 0.162 × 33 = 16.23. This is higher than given
by the additive pick-up method, reflecting the underlying assumption of
the multiplicative method that future bookings are positively correlated
with current bookings. Other aggregation strategies and variations are
possible.

Again, the advantage of pick-up methods is that they use all the
available bookings information. Moreover, as partial bookings are recent
data, using this data can make the forecast more responsive to shifts in
demand. While the idea is simple and mostly heuristic, pick-up methods
are widely used in quantity-based RM and reported to perform well.

9.3.10 Other Methods
Several other methods of forecasting have been reported in RM. The

Delphi method is a formal procedure for extracting analyst and managers’
opinion on expected demand. It is used primarily in cases where there is
no historical information, where there is an unexpected demand shock,
or in some cases when RM is done manually. Fuzzy logic (Ting and
Tzeng [512]) and expert systems (Basgall [29]) have been proposed as the
basis for a second level of automation in RM forecasting. These systems
attempt to replicate the rules used by human analysts when monitoring
and overriding a RM system. Chaos-theoretical models for forecasting
market response have been proposed by Mulhern and Caprara [394], al-
though we are not aware of widespread use of these techniques in RM.
Another forecasting method proposed for RM is based on fitting histori-
cal booking to a set of cumulative booking curves. The current bookings
on hand are extrapolated using these curves to give the forecast. This
approach is similar in spirit to the multiplicative pick-up method dis-
cussed above.

9.3.11 Combining Forecast Methods
With computing power and storage becoming cheaper by the day, an

increasingly feasible forecasting strategy is to simultaneously use several
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forecasting methods and pick the “best” one. Of course, identifying
which method is best becomes another forecasting exercise in itself, and
there have been many proposals for such a model-picking strategy.

Moreover, it may not even be necessary to identify the best-performing
method: a linear combination of the forecasts with an appropriate set
of weights can turn out to be consistently superior to any one of the
constituent methods. This idea was proposed in an article by Bates
and Granger [30] and subsequently much investigated by forecasting
researchers. The intuition behind this result is that if the errors produced
by two forecasting methods are negatively correlated, then combining
them will reduce the overall forecast error.

So what is the best set of weights for such a linear combination? This
can be determined by finding weights that minimize the mean-squared
error of the combined forecast. Although it is difficult to obtain such
weights analytically, various heuristics have been proposed (see the Notes
and Sources of this chapter for references). The weights themselves can
adapt to fresh data and be updated from period to period.

We give one set of weights proposed by Bates and Granger [30] to
combine forecasts from two different models. Let be the mean-
squared error of model Let be the coefficient of correlation
between the errors in the forecasts of the two models. Then define the
weights as and where is given by:

Then the combined forecast is given by

Another combination scheme, this time using adaptive weights that
vary over time, is to set at time where

where is the mean squared error of model at time The
interested reader should consult Montgomery et al. [388], Gupta and
Winston [230], and Foster and Vohra [192] for other similar rules and
their properties.

9.4 Data Incompleteness and Unconstraining
We next look at forecasting from data that is either missing or par-

tially observable, a common situation in RM. Indeed, once a product is
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closed or capacity is sold out, we normally stop observing demand at
that point because most reservation systems record only actual book-
ings and not “attempted bookings.” Ignoring this censoring can cause a
significant bias in the forecasts, For instance, consider a product that
had been closed consistently in the past. Its observed demand would be
uniformly zero, and a forecast based on this data would forecast demand
as zero. However, if the optimization system had opened this product,
a positive demand might have been observed.

Incompleteness can occur in price-based RM when sales (and no-sales)
are not directly observable. This can make it difficult to obtain complete
information on customer purchase behavior. For example, if a customer
decides not to purchase because some alternative is not available in the
retail store, this information frequently goes unrecorded. Ignoring these
lost sales can lead to a bias in the forecasts if the data is not corrected
to account for the missing information.

Of course, companies that sell directly through their own call centers
or websites have the potential, in theory, to capture attempted reserva-
tions or no-purchase outcomes. However, in our experience few actually
do. And given the significant role that third-party reservations systems
and distribution channels play in many RM industries, the problem of
incomplete data remains an important one in RM forecasting.

Fortunately, there are several good methods available for correcting
for incomplete data, which we discuss here. Our description of these
methods is focused primarily on quantity-based RM because this is where
the incomplete-data problem is most acute. However, the techniques are
also used for estimating parameters in price-based RM, such as when
correcting for stock-outs or unobservable heterogeneity in retail RM.

9.4.1 Expectation-Maximization (EM) Method
The expectation-maximization (EM) method is the most widely used

method for correcting for constrained data in quantity-based RM. While
the algorithm can be described in generic form, it is easiest to understand
it by looking at specific examples. Because of its importance, we give
two such examples below, one for the independent fare class model and
the other for the discrete choice demand model.

9.4.1.1 Unconstraining in an Independent Booking Class
Model Using EM

Consider the independent-demand model of Section 2.2, in which the
demand for each product is assumed to be independent of the demand for
other products. Since most current quantity-based RM implementations
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assume independent demand for products, the method described here (or
variations of it) is very prevalent in practice.

Suppose we have M + N observations of bookings for a given prod-
uct, of which M observations are constrained because the
product was closed. We ignore the time-series aspect of the observations
and treat as an unordered set of observations generated
by an i.i.d. process. Specifically, if the time-series data has trend or sea-
sonality, the EM algorithm cannot be applied as shown below. (Com-
bining unconstraining with time-series forecasting is more complicated.
See McGill [376].) Our goal is to find the parameters of an underlying
demand distribution for these observations.

Assume that the underlying demand distribution is normal with mean
and standard deviation (The same unconstraining procedures can

be applied—albeit with different formulas—for many other distribution
as well.) We further assume that all the observations come from a com-
mon distribution and that the observations are constrained at random,
i.e., they appear randomly in the sample.9 Since we are treating the
observations as unordered, assume are constrained (right cen-
sored) at booking limits so that The
remaining N observations are unconstrained.

If the data were not constrained, then it would be easy to construct
the complete-data likelihood function. Namely,

with the complete-data log-likelihood function given by

The and that maximizes ln L(·) in (9.57) are given by the closed-form
solution

9In the RM context this assumption implies that there is no correlation among demand on
days when the product is sold out. Strictly speaking, this assumption rarely holds in RM
practice, but it is common to ignore this correlation possibility as the alternative statistical
methods are considerably more complicated.
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(See Example 9.5.) However, we do not know the true values of the
M constrained observations and therefore cannot use this
procedure directly.

The EM method uses this complete-data likelihood function in an
iterative algorithm with an alternating E-step and M-step (hence the
name). The E-step replaces the censored data by estimates of their
uncensored values using the current estimates of the mean and standard
deviation. The M-step then maximizes the complete-data log-likelihood
function based on this updated data to obtain new estimates of the
mean and standard deviation. The procedure is then repeated until
the parameter estimates converge. The advantage of this approach is
that it is much easier to estimate the complete-data likelihood than it
is to estimate the incomplete-data log-likelihood function. Hence, even
though we have to solve the complete-data likelihood problem many
times, the overall algorithm is still very efficient.

Specifically, for our normal distribution example, let repre-
sent the estimates of the parameters of the normal distribution after the

iteration of the algorithm. The steps of the EM algorithm for our
time series follow:

STEP 0 (Initialize): Initialize and to be and Good
candidates for these starting values are the sample mean and sample
standard deviation of all the unconstrained observations.

Let be a small number, to be used as a stopping criterion.

STEP 1 (E-step) : Calculate the expected value of the censored data
in the log-likelihood function assuming that they come from a normal
distribution X with parameters That is, for

calculate

and

The formulas for these conditional expectations are somewhat com-
plex but involve simply evaluating two integrals.
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Next, for each censored observation replace by
and by to form the complete-data log-likelihood function

as in (9.57). Note in this way we are simply replacing the con-
strained values in the log-likelihood function by their expected values
given the current estimates of the mean and standard deviation.

STEP 2 (M-step): Maximize with respect to and to ob-
tain yielding

and

STEP 3 (Convergence test): IF and
THEN STOP;

ELSE, GOTO STEP 1.

If the expected log-likelihood is continuous in the parameters ( and
in our case), a result by Wu [582] shows that if the sequence of EM

estimates converges, the limiting value will be a stationary point of the
incomplete log-likelihood function. Whether the sequence diverges—
or converges to something other than the global maximum—is more
difficult to determine and depends on the characteristics of the data set.
In practice, however, the EM method has proved to be very robust.

Once convergence has been achieved—say, in iteration K—the uncon-
strained values for can be taken as where
X is normally distributed with

Example 9.16 Consider the data set of bookings in Table 9.4 from 11 Jan to 29
Jan. The data on 13 Jan, 16 Jan and 18 Jan is constrained at the booking limit 17,
22, and 15 respectively. Assume the data comes from a normal distribution. Based
on the constrained data, the parameters of the normal distribution

Let C be the capacity constraint, D the demand,       the unconstrained value at
the iteration, and Then at the iteration, replace by
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given by the following formula for the normal distribution

So at the first iteration, replace 17 by 23.544, 22 by 25.416, and 15 by and 23.579.
At the second iteration, replace 23.544 by 24.216, and so on. As can be seen from
Table 9.4, the algorithm quickly converges (in this case; convergence is much slower
in general) to

9.4.1.2 Unconstraining in a Discrete-Choice Dynamic
Model Using EM

We next consider the problem of unconstraining under the dynamic
discrete-choice model of Section 2.6.2. Recall that in this model there is
an arrival probability in each period and consumers select among the
available classes according to a discrete-choice model. The RM control
problem is then to decide which products to make available at each
point in time. We consider here a multinomial-logit model similar to
Example 9.6, where the probability that an arriving customer purchases
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alternative from a set S is given by

where is a vector of attributes of alternative and is a vector of
parameters. The no-purchase probability is

The difficulty here is estimating the parameters and from purchase
data. Specifically, if we have only purchase data, it is impossible to dis-
tinguish a period without an arrival, from a period in which there was
an arrival but the arriving customer did not purchase. With this incom-
pleteness in the data, the complete-data maximum-likelihood estimation
procedure of Example 9.6 cannot be used.

However, we can again apply the EM algorithm to correct for the
missing data. The broad strategy is the same as the one for the normal
distribution case in Section 9.4.1: start with arbitrary initial estimates
of the parameters and the arrival rate Then use these estimates to
compute the conditional expected value of (the expectation
step). Maximize the resulting expected log-likelihood function to gener-
ate new estimates and (the maximization step), and repeat till the
procedure converges.

Suppose there are T periods. Let P denote the set of periods in which
customers purchase and denote period in which there are no purchase
transactions. Let if there is an arrival in period and
if there is no arrival. Let denote the choice made by an arrival in
period We can then write the complete log-likelihood function as

The unknown data are the values in the second sum. How-
ever, given estimates and we can determine their expected values
(denoted ) easily via Bayes rule:
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where

is the no-purchase probability for an arrival in period given
Substituting into (9.58) we obtain the expected log-likelihood

As in the case of the complete log-likelihood function, this function is
separable in and Maximizing with respect to we obtain the
updated estimate

This is intuitive; our estimate of lambda is the number of observed
arrivals plus the estimated number of arrivals from unobservable
periods divided by the total number of periods
We can then maximize the first two sums in (9.60) to obtain the updated
estimate Note that this expression is of the same functional form as
the complete data case (9.11). The entire procedure is then repeated.

Summarizing the algorithm:

STEP 0 (Initialize): and

STEP 1 (E-step): For use the current estimates and
to compute from (9.59).
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STEP 2 (M-step): Compute using (9.61).
Compute by solving

STEP 3 (Convergence test): IF
THEN STOP;
ELSE AND GOTO STEP 1.

One interesting fact is that there can be multiple pairs that
produce the same probabilities of sales. In this case, the EM and logit
estimates will find only one such pair. To take a trivial case, suppose
there is only fare product and that and are scalars. The
probability that we observe a sale if this fare product is open is then

It is clear that there are a continuum of values that will produce the
same value However, the maximum-likelihood estimate will identify
only one such pair. This difficulty is not a fault of the EM or logit method
per se; it is a reflection of the fact that—as in this simple example—
there may be more than one model that produces the same purchase
probabilities. In such cases, it is simply not possible to uniquely identify
the model from observed data; there is, in effect, a degree of freedom
that we cannot resolve.

9.4.2 Gibbs Sampling
While the EM algorithm is the most popular and widely used method

for unconstraining in RM applications, there are alternative statistical
methods to deal with constrained data. We briefly describe one tech-
nique here, called Gibbs sampling, which is part of a broader set of meth-
ods called Markov-chain Monte Carlo (MCMC) methods. Although not
widely used in forecasting for quantity-based RM, they have found ap-
plication in price-based RM (Allenby and Rossi [10], Allenby, Arora, and
Ginter [8]), econometrics (Chib and Greenberg [115]), and missing-data
problems (Schafer [456]).

MCMC methods simulate a (typically intractable) target distribution
of a (multidimensional) random variable Z by repeatedly simulating
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a sequence where each element in the sequence de-
pends on the previously generated element, and the limiting distribution
of as is the target distribution By generating enough
of these sequences, we can reconstruct the entire distribution

We first describe the Gibbs sampling method in general and then
apply it to the censored normal example in Section 9.4.1.1. Let a random
vector Z be partitioned into J subvectors

Let be the joint distribution of Z —-that is, the target distribu-
tion. The Gibbs algorithm is applicable whenever is unknown, in-
tractable, or difficult to sample from, but all the distributions
for is the vector X but without the block) have
known distributions that are easy to sample from.

Let be the generated sample at the
iteration.

Gibbs algorithm: Repeat the following steps till convergence (the cri-
teria for which are discussed later) :

Generate from

Generate from

Generate from

The stationary distribution of the sequence under rela-
tively mild conditions, can be shown to converge to the joint distribution

The use of Gibbs sampling for parameter estimation usually proceeds
in a Bayesian framework, in which we assume a prior distribution on the
parameters, and—from a practical point of view—choose a conjugate
family of distributions for the parameters.

To illustrate, let’s see how to apply Gibbs sampling method to esti-
mate the unconstrained mean and variance of a sample from a censored
normal distribution with unknown mean and standard deviation,

Assume as in the previous section that we have a sequence of M +
N independent observations where the first M observations are
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constrained at Our problem is to estimate and
It is convenient to assume that ( given ) has a “prior” normal
distribution and a “prior” inverted chi-square distribution,10 denoted
by This particular choice of distributions ensures the posterior
distributions of and are normal and inverted chi-square again.

The vector Z is then assumed to consist of two blocks—the first, of
the unknown parameters and the second, the vector of censored
observations The Gibbs algorithm begins with initial val-
ues for these two subvectors. For instance, as we did in the case of the
EM application, take initially equal to the sample mean and stan-
dard deviation of and set the vector equal
to the vector of censored values

At the step, generate

as M independent draws.
Next generate new values for

from a normal and inverted chi-square distribution, respectively, as fol-
lows:

where and are the sample mean and standard deviation of the M
generated values and the N unconstrained values:

This procedure is repeated until the distributions of
reach stationarity. However, testing for stationarity of a distribution can
be problematic (Section 9.3.2.1), so in practice a number of heuristic
termination criteria are used [456]. The resulting expected value of
and can then be used as our parameter estimates.

9.4.3 Kaplan-Meir Product-Limit Estimator
The Kaplan-Meir product-limit (PL) estimator ([289]) is another ap-

proach to censored-data estimation. Its origins lie in survival analysis
(with continuous distributions), but here we present it in terms of cen-
sored demand observations. It is a nonparametric method, the output of

10A random variable Y has an inverted chi-square distribution if has a chi-square dis-
tribution.
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which is an estimate of the complete distribution (as in Gibbs sampling)
rather than the parameters of an assumed distribution.

As before, assume we have M+N observations with the
first M being constrained (right-censored) at the values So
the observations are of the form where is the booking-
limit (called the limits of observation; the event is called a loss).
As earlier, is considered independent of The survival function of

is defined as and an estimate of it is equivalent to
an estimate of the distribution of Z.

The PL estimate of the survival function is then given as follows.
List and label the M + N observations in order of increasing magnitude,
so that For a particular value let

That is, is the set of indices in the
ordered list that are not constrained by the booking limits and have
values less than Then

where each term above is an estimate of the conditional probability that
the demand exceeds given that it exceeds The main idea behind
Kaplan-Meir estimate is best explained via a simple example:

Example 9.17 Suppose that we have four observations with bookings
{5, 10*, 11, 18}, where the superscript * signifies a constrained observation. Suppose
we are interested in the probability that If we ignore the constrained
observation (that is, base our estimate on the unconstrained reduced sample), we get
an estimate of 1/3 (one of the three unconstrained values exceeds 15).

However, we can also view as equal to
Then we estimate (based on the full sample) and

(based on the sample of last two observations), and we obtain
So the estimate of helps in obtaining a better estimate of

Kaplan and Meier show that the estimator in (9.62) gives the dis-
tribution that maximizes the likelihood of the observations. The curve
given by (9.62) is remarkably easy to compute and makes no parametric
assumptions. However, it can be inefficient (Miller [384]) and difficult
to compare by eye (Efron [173]), and it is also difficult to compute con-
fidence intervals for a Kaplan-Meier estimator.

9.4.4 Plotting Procedures
A hybrid parametric/nonparametric approach to censored data is

based on simply fitting a parametric distribution to an nonparametric
survivor function estimate such as derived using the Kaplan-Meir
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estimator. Such methods are called plotting procedures, because they
correspond to plotting an empirical distribution and then inferring pa-
rameters from this plotted distribution.

To take a simple case, if the distribution is assumed to be exponential,
so that then we have that

Hence, if we plot the empirical function it should roughly be
linear, with slope equal to One could estimate this slope via linear
regression, for example. In the case of a normal distribution with mean

and standard deviation the distribution is

where is the standard normal distribution. Hence,

where is the inverse of the standard normal distribution. There-
fore, by plotting we should expect to see roughly a straight
line with slope and intercept Again, values for the slope and
intercept can be determined using linear regression.

While somewhat less rigorous in a strict statistical sense than other
censored-data methods, plotting procedures can be attractive in practice
because they are simple and intuitive.

9.4.5 Projection-Detruncation Method
The projection- detruncation method is similar in spirit to the EM al-

gorithm. It has been used in the PODS simulations for quantity-based
RM and its origin is credited to Hopperstad ([256, 42, 587]).

The variation over the EM method of Section 9.4.1.1 is that in the
E-step of the algorithm, instead of replacing the constrained values

by an estimate of the conditional mean

it replaces the values by the solution of the following equation

where is a fixed constant throughout the algorithm. While there is no
formal theoretical justification of (9.63) or a proof of convergence, the



486 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

heuristic interpretation is as follows. Note that (9.63) can be written

So corresponds to selecting a fixed fractile of the conditional
distribution given the current parameter estimates For
example, selecting would correspond to estimating as
the median of the conditional distribution, whereas the EM method uses
the mean of the conditional distribution. Hence, by using a small
value the constrained observations are unconstrained more aggressively
than may be the case in the EM method. Whether this leads to more
accurate estimation of the mean or a faster convergence than the EM
algorithm is not known, however. Zeni [587] gives an example comparing
the estimates of the two methods for             and the estimate of the
mean of the projection-detruncation method is nearly 10 percent higher
than that given by the EM algorithm, though one can arguably attribute
this to the choice of

9.5 Error Tracking and System Control
As mentioned, all forecasts are subject to some degree of error. Hence,

understanding and responding correctly to forecast errors are important
tasks in practice. Here we review the main methods for error tracking
and system control.

A forecaster needs to consider several types of errors. The differ-
ence between the observed data and a model fit to this data is called
the estimation error. Such error could be due to many factors: nat-
ural randomness in the demand process, unobservable characteristics of
the products or demand, mispecifications, unrealistic model assumptions
such as independence of the variables or error terms. We group all such
errors—errors in the estimation of the parameters of the model or the
specification of the model—as estimation errors.

Forecasting error, on the other hand, is the difference between a
model’s predictions for a future observation and the subsequent observa-
tion. The difference between forecast and estimation errors is a matter
of timing. Large estimation errors might compel us to refine the model
or “fix” it in some way now because we are aware of the errors. Fore-
casting errors, on the other hand, are unknown at the time of the model
specification and are realized only over time. There is also a dynamic,
online aspect to forecasting error and system control that is distinct from
the one-shot nature of estimation.

It is natural to suppose that a model that fits historical data well
that, say has low estimation errors, will also generalize well and give



Estimation and Forecasting 487

low forecast errors. This, however, is not the case. As we show in
Section 9.5.1.4, it is not uncommon to fit a model to give near-zero esti-
mation errors based on observed data, but then find that it has atrocious
predictive power. Indeed, forecasting can be said to be the art of under-
standing estimation errors (their sources and reasons) and then selecting
and training a model properly for optimum prediction power.

9.5.1 Estimation Errors
We first look at issues involved in analyzing estimation errors—in par-

ticular, bias, specification error, model-selection criteria, and overfitting.

9.5.1.1 Bias Detection and Correction
Bias in the parameter estimates of a model is called estimation bias.

This could arise because of the lack of a good estimator, incomplete data,
or nonconvergence of the estimation procedures. A bias in the parameter
estimates of a model leads to a bias in the forecasts, and in general, it is
desirable to eliminate it. If the cause of the bias were known, we would,
of course, fix the bias by eliminating the cause, but this is not always
possible—for lack of development time, investigation time, or data, and
so on. If this is the case, a simple and general method for correcting
for parameter bias is the so-called jackknife estimator (Quenouille [431];
Tukey [519]), which we describe next.

Suppose is a parameter and an estimator of the parameter based
on an i.i.d. sample Suppose that is a biased estimator of
the following form

That is, a order 1/N term and a second-order error term. The jackknife
estimator is calculated as follows. Let be the estimator applied to
the sample with the observation removed. Define

Define the (first-order) jackknife estimator as

which has the rather nice property that

Higher-order jackknife estimators can be defined that eliminate
higher-order biases. Besides bias correction, the jackknife is a valuable
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tool for interval estimation and has connections to bootstrap methods
(Miller [385]; Davison and Hinkley [148]).

While bias is usually undesirable, biased estimators may occasionally
be beneficial if they lead to lower variance (more efficient) estimates. To
give an example, if some of the explanatory variables in a linear regres-
sion are correlated (multicollinearity), the coefficients of the regression
will have a high variance. A method for reducing this variance is ridge
regression, which minimizes an objective consisting of the sum of the
variance of the parameter estimates and the bias squared, so a small
amount of bias is deliberately accepted (Judge et al. [273]).

9.5.1.2 Specification Errors
Specification errors are errors resulting from flawed model assump-

tions; that is, errors arising from a model that does not reflect the un-
derlying data-generating process. In short, how can we be certain that
the function used (9.2) is indeed the “right” function to use, both ex-
plaining observed values of Z as well as providing good predictive power
for future observations? Managerial judgment, visual inspection, data
analysis, and statistical tests all play a role in answering this question.

Specification tests are designed to test whether a given model and
its corresponding assumptions are correct. Failure to pass such a test
could mean one of the following: the functional form is inadequate to
represent the data-generating process; the functional form is correct,
but the wrong set of independent variables have been used in the model;
both the functional form and variable choice are correct, but the error
term distribution is misspecified; or assumptions on the error term of the
model (such as homoscedasticity or independence of errors) are violated.

There are several tests to check for misspecification (see also Sec-
tion 9.2.2). The simplest ones are graphical, such as plotting values
of the empirical distribution against the fitted distribution to look for a
straight-line relationship, or Q-Q plots, in which the quantiles of the the-
oretical distribution are plotted on the and the ordered fractions
of the observed values on the (a good fit is when all the values are
along the diagonal). Testing an empirical distribution against a given
theoretical distribution can be done using statistical procedures such as
the Kolmogorov-Smirnov test. We refer the reader to DeGroot [151],
pp. 554–559 for details on such tests.

Coefficient of Determination for Regressions The statistic most
widely used in regressions to measure goodness of fit is the coefficient of
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determination defined as follows for N observations:

where are the observations, is the estimate for observation based
on the estimated parameters, and   is the mean of N observations.
The value varies between 0 and 1 and signifies the percentage of the
total variation in the dependent observations explained by the regression
relationship. Thus, a high value of is desirable. Most commercial
statistical programs (SAS, SPSS, R, S, IMSL, MINITAB, Statistica, and
so on) compute this statistic automatically.

However, the choice of functional form is important, and one should
not rely on quantitative measures alone. A forecaster’s business intuition
about the relationships and causal variables ought to play as big a role
as formal statistical tests. A good value or a good visual fit does not
imply a regression has good explanatory power, as we discuss below in
Section 9.5.1.4 on overfitting.

The statistics of regression is concerned with many more issues than
just estimating parameters and calculating values. Statistical tests
exist for determining which of the independent variables is redundant,
their degree of importance in determining the independent variable, their
goodness of fit to the functional form, the appropriateness of the func-
tional form and the assumptions on the errors, and so forth. For exam-
ple, if the parameter estimates are assumed to be normal, then a
can be used to determine if the estimate is within a given interval about
the true parameter value with a certain level of confidence. Similarly,
a F-test can be used to test if some of the parameters are effectively
redundant (values close to zero) and can be eliminated. The details
of such tests are beyond the scope of this chapter, but these tests are
standard and described in most statistics or econometrics texts (Kvanli
et al. [318]; Judge et al. [273]; Draper and Smith [161]; Guttman [231];
Neter and Wasserman [403]).

Tests Against an Alternate Specification One form of a specifica-
tion test is to test a null hypothesis that a given specification is correct
against an alternate (usually more general) specification hypothesis. De-
pending on the type of null hypothesis, there are three classical specifi-
cation tests one can use: likelihood ratio (LR), Wald, and the Lagrange
multiplier (LM) tests. We describe only the LR test here.

Let denote the vector of model parameters. Let the null hypothesis
be that and the alternate hypothesis be that where

typically Then the likelihood of the observed data is as defined
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in (9.8). The likelihood ratio is

If this ratio is small, the null hypothesis is rejected. That is, there is a
significant loss of likelihood by restricting the parameter set to One
attractive feature of the likelihood ratio is that the statistic

is asymptotically distributed, and this fact can be used for hypothesis
testing.

Tests for Misspecification In contrast to the tests in the previous
section, a test for misspecification does not specify a single alternate hy-
pothesis. Instead, the null hypothesis is that the specification is correct
and the alternate hypothesis is that there is a misspecification. Nat-
urally, this is appealing as we are testing against a large number of
alternative specifications using a single test. We describe next, infor-
mally, a general misspecification test strategy due to Hausman (Haus-
man [245]; also attributed to Durbin [169] and Wu [583]). We illustrate
it by applying it to testing the IIA property in a discrete-choice model
(Section 7.2.2.3).

To describe the idea behind the Hausman test, consider a specifica-
tion test as in the previous section. The null hypothesis is that a
given specification is true; the alternate hypothesis is that another
specification is true. Let be a consistent and asymptotically efficient
estimator achieving the Cramer-Rao bound on the variance of the para-
meters (Section 9.2.1.3) of the specification under (In most cases,
there would exist such an estimator if the null hypothesis were true;
for instance, the maximum-likelihood estimators are consistent and as-
ymptotically efficient [220] under some mild regularity conditions.) If
instead were true, then will be biased and inconsistent under

(provided and are sufficiently different and assuming that the
specification of uses the same vector of parameters as that of
Let be some other estimator for the specification of
but asymptotically inefficient under but consistent under also.
If such estimators exist, then one can construct a test statistic out of
the difference as this difference should be approximately
centered at zero.

Hence, to test for misspecification when there is no alternate specifi-
cation, one can proceed by choosing two distinct estimators for the null
hypothesis specification—one efficient and one not efficient but more ro-
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bust (consistent even under a mispecification) than the first one. Then,
if the model is correctly specified, the difference between the estimators
will very likely have a mean away from zero. To apply the statistic,
the variance of has to be calculated, which fortunately turns
out to be equal to the difference of the variances of and The
test statistic used is which can be shown to have an asymp-
totically distribution (Hausman [245]; MacKinnon [352]). With no
misspecification, will tend to 0 w.p.1.

This specification test strategy, called the Hausman-type test, is quite
general and has found many applications in econometrics. We illustrate
the test by an example relevant to RM and price-response estimation.

Example 9.18 (HAUSMAN-McFADDEN SPECIFICATION TEST FOR THE MNL
DISCRETE-CHOICE MODEL ([244])) Given a set of observations of choices among
alternatives made by a population of N individuals, we would like to know if the
MNL model is the correct specification for the choice process. Assume that the no-
purchase choices are also observed.

Recall that the MNL model is characterized by the IIA property (Section 7.2.2.3):
the ratio of the probabilities of choosing any two alternatives is independent of the
attributes or the availability of a third alternative. Let be the set of
alternatives, the probability of choosing alternative i is given by (7.6)

where is the M-vector of attributes and relevant characteristics of the decision
maker for alternative and is a M-vector of parameters to be
estimated (assumed to be jointly normal with a covariance matrix

If S a subset of the alternatives, then if the IIA property holds, for

where

If the IIA property fails to hold, there has to be a set 5 where (9.67) fails to hold.
So if we restrict our population to customers who purchased only in S, we obtain an

Note that there may be some elements of the M-vector of parameters that may not
be identifiable from data restricted to purchases in S (for instance, alternative-specific
variables where the alternatives are not in S). If such is the case, we have to restrict
ourselves to a subvector corresponding to explanatory variables that vary within S,
but for simplicity, assume that this subvector coincides with the full M-vector of
explanatory variables.

The Hausmann specification test is based on the difference If
the IIA property holds, the two estimates and should coincide, and will

estimate based only on this data, with its covariance matrix estimated by
be the corresponding estimates for the full choice set.Let
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be a consistent estimator of 0. Then if is the variance-covariance matrix of
the test statistic

is asymptotically distributed with degrees of freedom given by the rank of
The null hypothesis can then be accepted or rejected with a specified degree of

confidence. In principle, this has to be tested for all possible subsets S of Also,
there is no guarantee that the variance-covariance matrix is invertible. Haus-
mann and McFadden report that the test is not very powerful unless deviations from
MNL are substantial.

9.5.1.3 Model Selection
Model selection is one of the most subtle tasks in estimation. There

are no clear-cut rules; intuition, judgment, experience, and repeated
testing are required to find a model that generalizes well and has good
predictive power. We have already seen one iterative process for choosing
a model—the Box-Jenkins methodology of Section 9.3.5 for time-series
models. In this section we present additional statistical guidelines, less
elaborate than Box-Jenkins, for selecting a model.

Formally, these are decision rules for selecting one of K possible mod-
els The models can be time-series models or regression
models or others, each with a set of parameters that we assume are
estimated by a maximum-likelihood procedure. Let represent
the maximum-likelihood of model based on the N observations

where is the parameter vector of model of
dimension

Selection Criteria The simplest way to select a model is to rank
the models according to some goodness-of-fit criterion and choose the
highest-ranking one. Various decision rules have been proposed to do
this, the two classical ones being the following:

Bayes information criterion (BIC) The BIC of model is defined
as

and the best model is the one with the smallest BIC.

Akaike information criterion (AIC) The AIC of model is de-
fined as

and the best model is the one with the smallest AIC.

A number of competing criteria have been proposed, including the
Fisher information criterion (FIC) [442, 559], cross-validation (CV) [492,
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12], final prediction error (FPE) [464], generalized information criterion
(GIC) [435].

Bayesian Selection Both the BIC and AIC have theoretical roots in
the Bayesian model-selection methodology, which we describe next. Let

be the density function of model Let be the prior
distribution of the parameters of model

Given the data, which model is most likely? By Bayes formula,

where is the likelihood function for model with the prior
Consider the posterior odds of a model over

The Bayes factor indicates whether model is preferred to model
if is > 1, then is preferred.

Varying and summing over we get the posterior prob-
ability of model as

Computing the Bayes factors can be difficult in practice, as calculating
involves multiple integration over the prior density

One alternative is to use a holdout sample to get estimates of and
then use instead of computing the integral explicitly. The
prior distribution is typically also calculated from a holdout sample.

Variable Selection Another task in model selection is deciding, within
a given model class, which variables should be included. It is generally
undesirable to include too many variables. Correlations among inde-
pendent variables can lead to erroneous coefficient estimates, as in the
phenomenon of multicollinearity in linear regression. Even if the ex-
planatory variables are independent, the principle of Occam’s razor11

11 The Occam’s razor principle of scientific investigation states that if E represents the evi-
dence and P(H|E) the probability of a specified hypothesis H given the evidence, if
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prescribes that one should make do with as few variables as possible to
achieve a given level of predictive power.

Formally, given a choice of M possible explanatory variables
which is the best subset to use? We can use the model-

selection criteria discussed above (AIC, BIC, FIC), treating each subset
choice as a different model. However, for large M this is computationally
quite burdensome as there are possible combinations of variables.
A simpler methodology, often employed in practice, is to begin with an
initial subset and then try adding one variable at a time—testing to
see if it increases some measure of predictive power. Similarly, one can
begin with a full set and remove one variable at a time, testing for loss
of predictive power at each step. See Miller [382] for a comprehensive
treatment of subset selection procedures.

More sophisticated search techniques for variable subset selection,
based on hierarchical Bayes models and Gibbs sampling, have also been
proposed (Mitchell and Beauchamp [387]; George and McCulloch [207]).

9.5.1.4 Overfitting
In this section we look at a common problem with fitting a model to

training data—namely, overfitting. Rather than discuss it generally, we
illustrate the problem of overfitting with an example.

Consider a set of data that is generated by the following formula
(unknown to the forecaster):

If we perform a nonlinear regression on the first 10 points using a
degree polynomial of the form we obtain

the fit shown in Figure 9.12. This on surface appears to fit the data
well. A cubic polynomial fit to the same data set does not providing
as exact a fit on the first 11 points. However, using the formula for
the degree polynomial for forecasting is disastrous; for instance, its
projection for the data point is -21.77, while the actual value is 0.66,
and the accuracy of projections further in the future is even worse. The
cubic polynomial, in contrast, has less forecast error. The degree
polynomial is an over-fit; it has too many degrees of freedom (in this case,
11 parameters for 11 data points!). We are in effect “fitting our model to
noise” by using it. A model is said to generalize well if it performs well
on data that it has not been trained on. In forecasting, we are looking

for hypotheses then the simplest of is to be preferred (Kotz
and Johnson [311]).
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for good generalization properties rather than good explanations of past
data.

Such overfitting problems come up during the model-selection phase
for model-based methods and can be limited by considering only models
that are “reasonable” from a subjective, business point of view, rather
than trying blindly to find the best-fitting model based on past data.
For neural networks, the problem is more subtle and difficult to detect.
Because there is no explicit functional form that we choose—and because
three-layer neural networks can approximate practically any function—
the danger that we might overtrain and fit the network to noise is very
high indeed. A good strategy to avoid overfitting is to keep a holdout
sample and use the forecast errors on the holdout sample rather than on
the training data to guide training.
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9.5.2 Forecasting Errors and System Control
An analysis of the forecast errors is often as important as the forecast

itself. Forecast error analysis is useful for the several reasons. First, the
historical observed forecasting errors give a measure of the confidence
one can have in the forecasting system or algorithm. Forecast errors can
be used to estimate the variance in the underlying demand process and
hence can be used to estimate second-order parameters of the distribu-
tion. Errors can also be used to filter out outlier data. Finally, errors
can be used to track the forecast and signal unusual events or instability
in the system. We look at each of these applications below.

9.5.2.1 Measures of Forecast Errors
Suppose we have been running our forecasting system for N periods

and have already constructed N forecasts and made observations of the
forecast relative to the actual values on these N periods. Then the
forecast error for a particular period is given by

where is the observed value and is the forecasted value for period

The following are some measures of forecast error that are used in
practice:

Sum of forecast errors:

Mean error:

The mean error is an estimate of the forecast bias. If the forecasting
system is unbiased, the mean bias should converge to 0 as N increases.

Smoothed error: This is given by the following recursive formula:

where is a smoothing constant.

Mean absolute deviation (MAD):
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Mean squared error (MSE):

Mean absolute percentage error (MAPE):

The quantity is called the relative error and is not defined if
is 0; hence the MAPE calculation should omit such values.

Tracking signal (TS):

It is strongly recommended that at least one of MAD, MSE, or MAPE
and the TS be used to monitor a forecasting system. The primary role
of MAD, MSE, and MAPE measures is to evaluate the performance of
the forecasting system. Lower numbers mean better forecasts.

Among MAD, MSE and MAPE, the choice of which one to use de-
pends strongly on the nature of the forecasts. MSE penalizes large errors
for a single observation much more than MAD. Therefore, it is a better
measure to detect if a few observations have large errors. If we are in-
terested in overall performance, then MAD is generally a better choice.
MAPE is useful for comparing performance across different time series,
as the errors are measured relative to the data values.

9.5.2.2 Bias Detection and Correction
In addition to measuring forecast performance, a system should also

monitor forecast bias. Tracking signal (TS) tests are used to monitor
automated forecasts to see if the system is generating consistently biased
forecasts. Typically, if the TS number exceeds a bound, an alert is
generated for analysts to investigate. Most often in practice such bias is
caused by a special, one-off event, but occasionally a recalibration may
be required because of a fundamental change in the demand process.

There are two common tests for detecting a systematic bias in the
forecast from observed errors. First, assume that the forecast is mea-
sured on a set of N observations. Let



498 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

Then if the forecast is unbiased, the statistic has approximately a
with degrees of freedom, where is the number of

parameters in the model that are being estimated. (See Abraham and
Ledolter [1], p.372.) For large N, is approximately a standard normal
(mean zero, variance one) random variable. For a given significance
level, a statistical test can then be devised with the null hypothesis that
the forecast is unbiased.

A second, more popular operational test for bias is to compare the
absolute value of the tracking signal with a constant. (See Mont-
gomery [388].) The forecasting system is declared biased if

The constant is usually set to be between 4 and 6. Similar tests exist
using variations of the tracking signal formula, one with smoothed error
in the numerator of the TS definition and a constant between 0.2 and
0.5 in the right-hand side of the bias test, and another where MSE is
used instead of MAD in the denominator of the tracking signal formula
and the constant in the bias test changed to be between 2 and 3.

If one knows that the forecasting system has a bias, then it would
appear trivial to fix the bias—just multiply or add a correction factor.
Or better still, recalibrate the system or modify the forecasting algo-
rithms; for instance, the forecast bias could be because of a bias in the
estimation of the parameters of the model (Section 9.2.1.3). But this
assumes we have a precise idea of the magnitude of the bias and that
it is more or less constant. As for recalibrating the model, this is often
an expensive process and can involve a considerable amount of research
and experimentation to come up with a better (unbiased) estimate.

9.5.2.3 Outlier Detection and Correction
Outliers are extreme values of data that are caused by corrupted

records or special nonrecurring conditions in the demand process.
Outlier data can severely disrupt a forecasting system. Smoothing
methods—like the moving-average method—are especially susceptible
to outliers because the presence of an unusual data point will distort the
forecasts for several successive periods.

One technique to guard against outliers is to presmooth the data to
make them more robust to the presence of outliers. The moving-median
smoothing method in one example. Here the data is preprocessed by the
following transformation:
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and the forecast is trained as if were the real data sequence. This is an
example of a nonlinear smoothing method. Many such nonlinear data
smoothers exist. (See Tukey [520].) Care should be exercised, however,
when the data has seasonality or other periodic effects. The data may
first have to be deseasonalized before using such filters.

Another technique is to try to identify and remove outliers before feed-
ing the data to the forecasting system. One such outlier identification
test is to consider a data point an outlier if

where the value of is chosen to be between 5 and 6.

9.6 Industry Models of RM Estimation and
Forecasting

In this section we give some examples of specific RM forecasting mod-
els. The models are intended to be representative of those used in a par-
ticular industry to forecast a particular quantity of interest: for example,
no-shows, cancellations, and groups forecasting in the airline, rental-car,
and hotel industries; ratings forecasting in the media industry; sales re-
sponse functions in the retail industry; promotion effects forecasting for
manufacturers; and load forecasting in the electricity and gas industries.
Many variations of these models are possible, and the examples presented
here are intended only as illustrations—not recommendations—of fore-
casting approaches.

9.6.1 Airline No-Show and Cancellations
Forecasting

Forecasts of cancellation and show-up rates are key inputs to the over-
booking module of an airline RM system. In addition to the statistical
and operational techniques discussed in this chapter so far, this example
also highlights the use of data-mining algorithms for forecasting.

The first problem in cancellation forecasting is coping with reserva-
tions data. If one uses only net-bookings data for forecasts—not un-
common in RM systems—new bookings may hide cancellations. For
instance, if in a period there are 100 bookings on hand, and during
the period 20 new bookings are realized, but 10 current bookings cancel,
then net-bookings data may make it appear that there have been 10 new
bookings and 0 cancellations. Cancellation forecasts based on such data
will then be biased. Similarly, go-shows or walk-ups—that is, people
who show up without reservations (distinguished from regular bookings
by the fact that it is lumpy demand occurring at the time of service)—
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may also hide no-shows. So depending on the data being used and the
requirements of the overbooking optimization, we may need to decide
whether we are forecasting gross (actual) cancellations or net (observed)
cancellations (Figure 9.13).

Both no-show and cancellation rates can be defined at different levels
of aggregation, for the entire cabin or by fare class. Defining rates by
fare class is more accurate as significant differences may exist between
fare classes—for example, some may have penalties for cancelling while
others may not. Cancellations can also be defined over different inter-
vals of time, as incremental cancellations over a given period or total
cancellations over the entire booking period.

Besides the level of aggregation, the cancellation rate and no-show
rate can have different interpretations—(1) as the probability that a
given individual booking will cancel or no-show or (2) as a fraction of
the total number of bookings at a given point of time (either current
time or some time in the future) that are likely to cancel or no-show.
The second interpretation leads to the concept of a cancellation curve
over the booking period. The cancellation rate may change over time
as very early bookings tend to have higher cancellation rates than later
ones (see Figure 9.14). A full cancellation curve is usually needed only
in dynamic overbooking models.

For illustration, consider the binomial model of Section 4.2.1. If there
are N current bookings, the cancellation rate is the probability that
a booking will cancel before the time of service. We define the no-show
rate similarly. Both and are assumed to be constant and
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equal for all bookings, irrespective of when they booked. They can
change over time but in a Markovian sense; they will depend only on
the current time but not on the history of the bookings. We will also
assume that the probabilities are independent of the number of current
bookings (this only determines the expected number of cancellations and
no-shows by the Binomial distribution).

The simplest procedure for forecasting is to construct a time series
of historical fractions who cancelled at a given point in time and use a
standard forecasting method on this time series of data. For the case of
cancellations, the series is constructed by taking

Final bookings are bookings just before no-shows and go-shows are ac-
counted for. Net no-shows are calculated as final bookings less final
consumed inventory. If there are customers who are denied service, then
they would be subtracted from the net no-shows.

Net no-shows rate can be forecasted from the time series of his-
torical no-show fractions. The fractions of no-shows and cancellations
over time are calculated by dividing final consumed inventory and final
bookings by the bookings on hand at each point of time. If the data is
detailed enough to extract actual cancellations and no-shows (as opposed
to net cancellations and no-shows), then these can be used to calculate
a time-series forecast of the actual cancellation and no-show rates.



502 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

No-shows and cancellation forecasting can further be divided into two
parts: forecasting the cancellation behavior of customers who already
booked and those who will book in the future. For the former, it is
possible to exploit correlations between customer cancellation probabili-
ties and purchase characteristics like time of booking, source of booking,
amount paid, cancellation penalties, and refund policies associated with
the fare, to improve the forecasts.

Kalka and Weber [280], Feyen and Hüglin [190], and Westerhop [561]
report airline no-show and cancellation forecasting for existing customers
using data-mining and data-discovery tools on PNR data. Some of the
attributes used are origin, destination, flight time, return trip, booking
class, number of passengers traveling together, flight time, number of
connections, and connection time. Feyen and Hüglin [190] use logistic
regression on the attributes and the observed rates for prediction while
Kalka and Weber [280] use induction trees. (See Quinlan [432].)

The methodology in Kalka and Weber [280] can be illustrated in Fig-
ure 9.15 for two attributes—flight time and booking class. The historical
bookings and cancellations are mapped to the attribute space, and we
partition the space by partitioning the ranges on the attributes. This is
somewhat analogous to clustering points into groups, except that we are
now interested in rules for partitioning each attribute dimension, rules
that subsequently will be used to categorize new observations with its
likelihood of cancellation. A cancellation probability is calculated for
each box as the fraction of bookings in that box that cancel. For any
new booking, its cancellation probability is derived by looking up the box
it falls in and taking its corresponding cancellation probability. Data-
mining tools use artificial intelligence rules-based techniques to partition
the customer attribute space and construct an induction tree that gives
a sequence of rules to be applied to classify observations.

9.6.2 Groups Demand and Utilization Forecasting
Bookings for units of five or more are usually classified as groups.

Groups in RM can either be ad-hoc groups (one-shot groups such as
school excursions or crews) or series groups (repeating groups—for ex-
ample, bookings by a package-tour operator). (See Sections 10.1.2
and 10.2.1.) In this section we describe the forecasting tasks associated
with groups.

Forecasting of group bookings demand is rarely done. This is because
ad-hoc groups are such rare events that it makes it difficult to try to
forecast demand from such sources. Series groups, on the other hand,
are negotiated so far in advance that they make forecasting unnecessary.
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However, group-utilization forecasting is an important task. Group
utilization is defined as the percentage of a group reservation that will
eventually show up. In principle, it is no different from cancellations and
no-show forecasting. However, it is treated separately because groups
may act as a unit, with strong correlation between the members of the
unit. For instance, a group may cancel as a whole, in which case there is
a sudden lumpy change in the available capacity. Because of its potential
impact on availability and the higher risk involved in groups canceling
as a whole, group utilization is usually tracked separately from regular
cancellations and no-shows by dedicated analysts or managers.

Analysts also have better information about groups reservations than
individual bookings because the reservation is usually made directly
through personal contact. The source of a group reservation (such as a
tour operator, cruise-line or agency) and type of group (such as a corpo-
rate meeting or convention) also helps in tracking historical usage rates.
Group utilization forecasting differs if the group is an ad-hoc group or
a series group. Ad-hoc groups are more likely to cancel as a whole (or
not pay by the deadline), while series groups, being negotiated contracts
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for a long period, tend to survive till the usage date with only partial
cancellations.

A forecast of group utilization is made on a historical series of uti-
lization ratios constructed for groups with similar characteristics (same
group type, group booking source, market, and so on). The forecast
is usually made for each individual group reservation and updated con-
stantly as new information and confirmations come in. Causal models
are widely used to forecast group reservations because of the rich data
available specific to each individual group. Group utilizations have been
found to be correlated with group type (ad hoc or series), origin loca-
tion of bookings, group size, penalty costs, historic cancellations, book-
ing source, time of booking, and group travel purpose, among others.
Bayesian models are also suitable because they allow analysts’ beliefs on
the group’s utilization to be incorporated into the forecast.

9.6.3 Sell-Up and Recapture Forecasting
Sell-up and recapture are used in some RM models as discussed in

Section 2.6.12 The sell-up probability for a class is the probability that
customers for that class will buy-up to at least one of the other higher
classes (of the same resource) if their class is closed (this is called differ-
ential sell-up rate in Gorin [217]; the sell-up rate used in Belobaba and
Weatherford [37] is only between the class and the next highest class).
Recapture occurs when the customer buys an alternative resource (say,
on a different date or time) if their requested class is closed.

There are several difficulties in estimating buy-up and recapture prob-
abilities. For example, how do we tell if a customer is an “original”
customer or a “recaptured” customer? Looking at transactional data
alone, this is impossible to determine. It is common practice to pass
this burden on to analysts, who are required to input buy-up and recap-
ture probabilities for each market using their best judgment. Given the
number of markets / resources / date combinations, often a single number
is used for each market or for the firm as a whole.

Other approaches are based on data. Gorin [217] proposes the fol-
lowing formula for estimating the sell-up rate of a class for a resource:
Let represent total number bookings in class (over a collection of
sample historical data for the resource). Assume the classes are indexed
with the lower index having a higher fare. Then Gorin [217] defines the

12Andersson [18] defines a customers who neither sells-up nor is recaptured but buys an
alternative product from a competitor, as a deviation.
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sell-up rate as

However, he also states that this estimate likely is biased, so it should
be used with caution. Recapture effects are not considered by Gorin.

Consumer-choice models provide a more systematic approach to buy
up and recapture estimation. An early attempt at such a model is by
Maynes and Wood [368], who build an econometric model of demand for
three latent market segments as a function of price, schedule attributes,
and competitor prices and availability. The ratio of the forecasts of de-
mand for a class on a resource and a lower fare class on the same resource
provides the sell-up probability for the lower class. This approach can
be extended to estimate recapture rate as well. However, these rates are
calculated on a pairwise basis only, independent of what other options
are available at that time.

Andersson [19] presents a richer model of consumer behavior based on
utilities and discrete-choice theory. At any given point of time, a choice
set S is defined as a set of competing resource / class combinations for
class on resource If is closed on then define as the set S
without class on resource The estimate of the recapture rate is then
defined as follows:

= Probability that resource class is chosen
when is closed but all other choices in are open.

= Probability that resource class is chosen
when all choices in S are open.

Then the recapture rate by combination from denoted
is defined as

The probabilities and can be estimated using an
appropriate discrete-choice model. Andersson [19] (see also Köhler [308])
reports a study at Scandinavian Airlines where the choice probabilities
were estimated using a MNL model fit from both transactional data and
passenger surveys. The passenger surveys were in the form of games
(lasting around 10 minutes), presenting alternatives of price, departure
time, restrictions, and airline brand name.

9.6.4 Retail Sales Forecasting
Retail RM requires an estimate of a demand function. Besides price,

advertising, product features, past sales, economic conditions, store lo-
cation, brand effects, weather, and competitor actions are some factors
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that strongly affect sales. Consequently, in retail marketing forecasts, in
contrast to airline or hotel RM, causal models are widely used.

As discussed in Chapter 7, there are two basic approaches to demand
function modeling. One way of incorporating the effects of marketing
variables on sales is through models of individual consumer choice behav-
ior. Then in a bottom-up forecasting fashion, these individual choices
are aggregated to get total demand. Another approach—called aggre-
gate forecasting—is to model aggregate demand directly as a function of
price and other marketing variables. We focus on this latter approach
here, as it is prevalent both in marketing theory and practice, and as we
covered discrete-choice models earlier.

Let Z denote sales, and let the marketing variables be represented
by for multivariate models and by for univariate models:
Consider a basic sales response model of the form

The functional forms are usually designed such that either (1) absolute
change in the marketing variables leads to an absolute change in sales
or (2) percentage (relative) change in the marketing variables leads to
an absolute change in sales. For instance, the function is of the
former kind (since while the function is the latter
kind

The function can be a static function of variables of the cur-
rent period only, or a dynamic function capturing the effects of mar-
keting variables in past periods (for example, advertising done in the
past month has an effect on the sales of this month). Below are some
examples of static sales response functions.

Semilogarithmic model:

Percentage sale in a marketing variable leads to an absolute change
in the sales.

Multiplicative or power model:

The have the interpretation of elasticities. A more general form
of (9.70) is called the interactive model and is given by the sum of all
possible products of the variables:



Estimation and Forecasting 507

It is rarely used in this full form.

Exponential model:

Sales exhibit increasing returns to scale as the value of the marketing
variable (say price) goes down to zero. represents the maximum
possible sales.

Log-reciprocal or S-shaped model:

This function possesses an inflection point at Sales show
increasing marginal returns for less than the inflection point and
decreasing marginal returns from then on.

Other S-shaped curves are possible using logistic models such as the
following log-linear and double-log models:

Gutenberg model:

is a reference value for the marketing variable (for instance aver-
age competition price). The Gutenberg model is a complicated but
flexible function. Simon [471] gives an application using this model.

Next we give some examples of dynamic sales response functions, in
which the sales in a period is a function of variables of the past (lagged)
periods, future (lead) customer actions or the current period:

Geometric distributed-lag model: This is a dynamic model that
relates the sales in period to observed values in previous periods
with exponentially decreasing weights:
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SCAN*PRO model: This is a widely used store-sales model (pro-
posed by Wittink et al. [572]) for determining the effect of promotions
on sales. Denote, for brand in store in period

Sales
Week-of-the-year indicators
Discounted price
Nondiscounted price
0-1 indicator variable, for feature
0-1 indicator variable, for display
Inventory
Error term.

Then the model is given by

The and for each period have to be estimated from data.

There are literally hundreds of models such as these studied by mar-
keting scientists, with many empirically tested on real-world data. Once
a model has been fixed, regression is the most common approach for
estimating static models, while time-series methods (Section 9.3.2) are
common for estimating dynamic models.

9.6.5 Media Forecasting
Forecasting for broadcast media presents some unique challenges.

(Media RM is discussed in detail in Chapter 10.) Prices for adver-
tising are quoted as cost per thousand impressions. For print and tele-
vision firms, the circulation and ratings determine how much the firm
can charge for their advertisement space. Internet media rates are based
on page-views or click-through metrics. Market-research firms such as
Nielsen, IRI, and Media Metrix are dedicated to measuring the size of
the circulation (print), page-views (Internet) and audience (television,
radio).

A broadcaster faces two main forecasting tasks. One is to forecast
ratings for shows by day-of-week and season; the other is to forecast
demand for advertising slots for these shows. Forecasting the latter is
usually much easier than the former because the network has knowledge
of its customers—their historical preferences and buying patterns, re-
quired demographics, and in many cases, even their advertising budget.
A forecast of demand is first constructed by making an estimate of each
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customer’s demand (often manual, based on last year’s demand) and
then making a tentative sales plan satisfying the customer’s preferences
based on the ratings forecasts (Bollapragada et al. [83]). In this section,
we concentrate on ratings forecasts, which is a good example of a rather
difficult causal forecasting problem.

Few TV or radio managers rely on formal ratings forecasting models
for their own programming decisions; surveys, gut feeling, and innate
programming intuition seem to be the dominant methodologies in prac-
tice. These forecasts, though often subjective, can be helpful for RM
purposes as well, as they reflect managerial judgment (for instance, they
can be used to form priors in a Bayesian framework).

Recently, several methods have been proposed based on formal models
of consumer viewing behavior. Television viewing habits are conceptu-
alized as a two-stage process. In the first stage, the individual decides
whether or not to watch TV. This leads to a forecast of the total ag-
gregate TV viewing population at any given time. Once a decision to
watch TV is made, the individual chooses one of the available programs,
which leads to show-level ratings. (See Gensch and Shaman [206].) This
two-stage model suggests using a time-series model to predict aggre-
gate viewership by time and day of week based on recent programming
data, and then a discrete-choice model to predict ratings by show. Past
viewership, viewing time, seasonality, and regional differences are good
predictors of aggregate viewership, while the show characteristics, slot,
show-promotion, lead-ins (the popularity of the program before) and
lead-outs (and the program that runs after) influence the market share
of a show.

For example, Reddy, Aronson, and Stam [437] building on the work
of Horen [257], use a regression model to predict the ratings of TV
shows running for multiple seasons and hence with some historical data.
Shows are classified into homogeneous types, based on their character-
istics (movie, news, afternoon talk show). The model is:

with the following variable definitions,
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Rating of show in time slot
Measure of the relative perceived attractiveness
of show of type (managerial rating from 0 to 10)
0-1 indicator variable, 1 if show is of type 0 otherwise
0-1 indicator variable, 1 if show if show
is scheduled on day 0 otherwise
0-1 indicator variable, 1 if show is in time slot 0 otherwise
0-1 indicator variable, 1 if show is an hour-long show, 0 otherwise
0-1 indicator variable, 1 if show

(of type ) leads into show (of type ), 0 otherwise
Residual error term.

9.6.6 Gas-Load Forecasting
We next look briefly at a gas-load forecasting system using neural-

network methods, reported to be implemented at Williams Gas (Lamb
and Logue [327]). The model forecasts short-term (between one to five
days ahead) demand for gas in a pipeline. The pipeline has thousands
of meters drawing gas from it, each with variable demand. The factors
that affect this demand were identified as

Weather parameters (such as temperature, humidity, wind direction,
and so on supplied by weather data vendors)
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Historic load

Calendar (hour of the day, day of the week, holiday, month)

Expected gas demand for each meter.

Price (historical, current and competitor prices).

Figure 9.16 shows an example of a three-layer neural network using some
of these potential inputs.

9.7 Notes and Sources
We have given many reference in the text of the chapter. Here we

gather some general references on the topics of the chapter along with
some additional pointers.

Regression-related topics can be found in any advanced statistic or
econometric books. Here are some references: DeGroot [151] and
Kvanli [318] for introductory statistics; Maddala [353], Greene [220],
and Judge et al. [273] for econometrics. Some books devoted exclusively
to regression are Draper and Smith [161], Guttman [231], and Neter and
Wasserman [403].

Books on forecasting are available at all levels. We recommend Mont-
gomery et al. [388] for a general introduction to operational forecast-
ing and Harvey [242, 243] for a more advanced treatment of time-series
analysis and Kalman filtering.

For books on neural networks, we recommend Bishop [69] for a very
readable yet rigorous introduction to neural networks (albeit for pat-
tern recognition) Our treatment follows also Müller, Reinhardt, and
Strickland [397]. Some useful survey papers on the use of neural net-
works in forecasting are Poli and Jones [423], Cheng and Tittering-
ton [110], Zhang, Patuwo, and Hu [588], Hill, Marquez, O’Connor, and
Remus [252], Hill, O’Connor, and Remus [253]. The application of neural
networks to predict consumer choice can be found in West, Brockett, and
Golden [562] and Dasgupta, Dispensa and Ghose [144].

For estimation of price-response functions and market-share mod-
els, see the following marketing science text books: Eliashberg and
Lilien [174], Wedel and Kamakura [558], Hanssens, Parsons, and Schultz
[235], Cooper and Nakanishi [127], Dasgupta, Dispensa, and Ghose [144],
Hruska [259], West, Brockett, and Golden [562], Hill et al. [253], Zhang
[588], and Lee et al. [335]. Kalyanam [283] proposes a Bayesian mixture
model of pricing specifications when there is no consensus on the right
model.

See Berry, Levinshohn, and Pakes [52], Berry [53], Besanko, Gupta,
and Jain [63] and Chintagunta, Kadiyali, and Vilcassim [116] for es-
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timation in a competitive market similar to the method described in
Example 9.9. The problem of endogenity in estimation has received
much recent attention in the marketing science literature spurred by
the paper of Berry [53]. See also Chintagunta, Kadiyali and Vilcas-
sim [116] and Villas-Boas and Winer [536] for further studies on en-
dogeneity. Nevo [406] gives an excellent practical guide to estimating
random-coefficient logit models of demand.

The Bayesian method of updating of parameters can be incorporated
into many of the time-series methods of Section 9.3.2 also in a fairly
straightforward manner. (See, for instance, Montgomery et al. [388].)
The empirical Bayes method that we cover in this chapter is not the only
possibility for handling hierarchical Bayes methods. See Lindley and
Smith [345] and Blattberg and George [75] for alternatives. Hierarchical
Bayes methods have also found application in modeling heterogeneity in
preferences in discrete-choice models (Albert and Chib [6]; Allenby and
Rossi [11]; Huber and Train [260]), and in conjoint analysis (Allenby and
Ginter [9]; Lenk et al. [339]).

Literature on combining forecasts is also quite vast, given its promise
of returning more than the sum of its parts. The standard references in
this area are Newbold and Granger [407], Granger and Newbold [218],
Makridakis and Winkler [356], Clemen and Winkler [122], Clemen [123],
Gupta and Wilson [230], Schmittlein, Kimm, and Morrison [457], Mor-
rison and Schmittlein [391], and Foster and Vohra [192]. See also Mont-
gomery et al. ([388], p.192).

One of the few textbooks dedicated to the EM algorithm is McLach-
lan and Krishnan [377]. The book also contains many applications,
convergence properties and lists a large number of EM references. Con-
nections with the Gibbs method is mentioned, but the reader should
refer to Schafer [456] dedicated to MCMC methods. For an introduc-
tion to Gibbs Sampling, see the article of Casella and George [101] and
Gilks, Richardson and Spiegelhalter [212]. For Gibbs algorithm applied
to missing-data problems, see Gelfand, Smith and Lee [203].

Both the origins of EM and Gibbs sampling (at least their ideas)
can be traced far back, but Dempster et al. [152] and Geman and Ge-
man [205] are credited with their invention and popularization.

The original paper of Kaplan and Meier [289] is still a good introduc-
tion to the Kaplan-Meier estimator. Many books on survival analysis
(Miller [383]; Cox and Oakes [134]) also describe the method in detail.
Logistic regression has been proposed as a parametric alternative to the
Kaplan-Meier curve, with good properties and flexibility, and with all
the advantages of a parametric form (Efron [173]).
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The unconstraining methods described here are not the only alterna-
tives though. It is possible to use the bootstrap, jackknife as well as
regression with censored data to get estimates of the parameters of a
censored sample. See Efron [171] and Davison and Hinckley [148] for
an introduction to using bootstrap for unconstraining and for regression
with censored data.

APPENDIX 9.A: Back-Propagation Algorithm for
Neural-Network Training

We illustrate the back-propagation algorithm for training a neural network on our
example of Figure 9.9.

Because we chose the linear function as the activation function for input
and output nodes, we represent, by a slight abuse of notation, the instance of
an input and its corresponding output of the neural net as and

respectively. As always, let be the actual observation at the
instance. Assume we are given a set of N training data instances (a set of N

input-output pairs that we will use to determine weights of
the neural network).

For training instance the state of node in the hidden layer is then
where

where
and the state of node of the output layer is

For the given set of transfer functions our objective is to choose the
weights and the activation threshold values such that they minimize
the squared deviation between the output values of the network and the actual ob-
servations:

The error back-propagation method performs this minimization iteratively in two
stages (for a three-layer network), the first stage corresponding to the output layer and
the second stage to the hidden layer. At each stage, the weights and threshold values
are updated in the spirit of the steepest-descent algorithm of nonlinear optimization
(see Bertsekas [59]), as follows:

STEP  0:  Choose an initial set of values for the       and       Choose a step-size
(which can either be fixed or chosen according to a step-size selection rule; see
Bertsekas [59]).

STEP 1: Update the for arcs between the hidden layer and the output layer as
follows:

where
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Update the of the output layer as follows:

where

STEP 2: Update the     for  arcs between the input layer and the hidden layer as
follows:

where (applying differentiation using the chain rule)

Update the of the hidden layer as follows:

where

STEP 3: If convergence criterion is not met, GOTO STEP 1.



Chapter 10

INDUSTRY PROFILES

Implementing revenue management requires an understanding of real
world market conditions. Regulations, technology standards, consumer
behavior, product characteristics, pricing policies, and industry distri-
bution practices are all important factors that affect the way RM is
practiced. This chapter explores these institutional factors affecting RM
in industries that are both mature and emerging users of RM. For each
industry we begin by describing its products, consumers, and pricing
practices. We then summarize the current state of RM in the indus-
try and the key issues affecting its RM practices. Our progression is
from industries in which RM is a mature practice to those in which it a
relatively new or emerging practice.

A word of caution is in order here, however. Industry practices can
change rapidly as new technologies and business models emerge, and
such changes can fundamentally alter the way RM is practiced. Conse-
quently, this chapter represents at best a snapshot of current RM prac-
tice. Continuing innovations in business models and technologies will no
doubt keep RM an evolving discipline for many years to come.

As the earliest and largest user of RM, the airline industry deserves
special attention. Hence, we begin our industry discussion with an in-
depth look at RM practices in the airline industry.

As mentioned in Chapter 1, RM has its origins in the rise of capacity-
controlled discount fares after the deregulation of the U.S. airline indus-

10.1 Airlines

10.1.1 History
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try. Before deregulation, the only service options offered by commercial
airlines were first-class and coach-class service. Fares on a route were
identical for all carriers and set by the Civil Aeronautics Board (or by the
International Air Transport Association (IATA) on international flights)
based on standard costs.

The first innovation in fare structures occurred in international mar-
kets with the development of APEX—advance-purchase excursion—fares.
APEX fares offered travelers the option of buying a coach-class seat at a
discount but were restricted to round-trip travel and required an advance
purchase and a minimum stay.

The period after deregulation in the United States was character-
ized by successive innovations in creating discounted products. As dis-
cussed in Chapter 1, American Airlines introduced “Super Saver” fares
in 1975. These fares had a seven-day advance-purchase requirement
and minimum-stay conditions and required round-trip travel. Advance-
purchase restrictions were lengthened progressively over the years, culmi-
nating in 1985 with American Airlines’ introduction of “Ultimate Super
Saver” fares that required a 30-day advance purchase. In 1987, Texas
Air Corporation introduced a “Max Saver” fares that had the further re-
striction of being non-refundable. The practice of limiting refundability
(or imposing cancellation or change-of-itinerary fees) became an indus-
trywide practice shortly thereafter. In the mid-1980s, airlines introduced
Saturday-night stay requirements to further prevent business travelers
from buying discounted products.

Today, most airlines offer discounts based on a relatively stable set of
restrictions, typically a combination of advance-purchase restrictions of
7, 14, 21, and 30 days, the requirement to stay a Saturday night, non-
refundability, and penalties for changes in the itinerary after purchase.
The low-cost carriers, which concentrate primarily on the leisure market,
use primarily advance-purchase discounts and change penalties.

10.1.2 Customers, Products, and Pricing
Airlines serve a wide range of customers, both individual travelers

as well as groups. The classic segmentation of individual travelers is
between business and leisure customers.

Those traveling for business purposes have strong time preferences.
They thus tend to value schedule convenience and booking/cancellation
flexibility and are considered relatively price-insensitive, because, in
most cases, their travel expenses are paid by their employers or charged
to clients.

Leisure travelers, on the other hand, tend to be more sensitive to price
because they are paying from their own pockets. However, because they



are traveling for discretionary purposes, they tend to have more flexi-
bility in their travel dates and will modify their schedule to find a good
deal. They are also willing, and even prefer sometimes, to precommit to
travel many days ahead of departure.

The two segments differ also in their travel-time preference, with busi-
ness travelers preferring to leave on weekdays and return by the weekend,
and leisure travelers preferring to depart at the end of the week and stay
over a weekend. Leisure travel peaks around major holidays, while busi-
ness travel drops at these points in time.

Of course, this is at best a crude description of the behavior of the
many customer segments an airline serves. Some leisure travelers with
high disposable incomes are more sensitive to schedule convenience and
in-flight amenities than they are to price. Many business travelers are
as price-sensitive as leisure customers (for example, those who are self-
employed). Business travelers sometimes travel over the weekend, and
leisure travelers often need to travel midweek. Some business travelers
can easily commit to an advance reservation with no refund, while some
leisure customers decide to travel at the last minute. Therefore, in gen-
eral, there are many variations in preferences for schedules, routings,
and in-flight service among travelers, and there are many differences in
their ability to plan and commit to their travel plans.

Besides individual travelers, airlines also serve various wholesale travel
groups. For example, cruise lines will often book blocks of seats connect-
ing to their various sailings for packaged holidays. Tour operators also
purchase blocks of seats to offer as part of combined air-hotel packages.

Airline sales can also be classified by sales channel. Travel agencies
have long been the dominant sale channel, but Internet sales (either
own-website sales or third-party travel sites) are rapidly growing in im-
portance. Consolidators and wholesalers are two other significant sales
channels in many airline markets.

All these differences in sales channels, customer types, and behavior
affect RM and are targeted by various airline products, as explained
below.

1Most full-service carriers have significant network traffic. The newer low-cost carriers deal
exclusively in point-to-point service and do not offer connections.
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10.1.2.1 Itineraries and Combinability Rules
Airline products are itineraries (seats on a routing on a date and

time in the future) on its network of flights. An itinerary may involve
multiple connections.1 Because of the many connection possibilities, an
airline with 500 flights a day may offer hundreds of thousands of possi-
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ble itineraries for sale. Added to this complexity, airlines offer different
compartments of service (first, business, coach), and within each com-
partment, multiple fare products with different rules and restrictions—
all offered for travel up to a year in the future. Prices are set at the level
of itinerary, date of travel, fare product, and point of sale—requiring
hundreds of thousands of products to be priced regularly.

Because of the immense number of combinations involved, airlines
post prices for only a fraction of their itineraries. They then define
rules on how these simpler fares can be combined (so-called combinabil-
ity rules). Another pricing method—called constructed fares—involves
specifying a base fare between regions (such as Spain to North America)
and then defining add-on charges based on specific origins and destina-
tions (for example, Spain-Chicago, +30 Euros). It is the responsibility
of the reservation system and the travel agent to follow these combin-
ability and fare-construction rules, interpret them properly, and charge
customers the correct fare.

10.1.2.2 Interlining

10.1.2.3 Pricing Itineraries

An itinerary can also consist of flights involving several airlines (called
interlining). The price for interline flights depends on the agreements
between the two carriers. The revenue is then split by a mutual proration
agreement or, lacking such an agreement, by IATA-specified guidelines.
The prorated revenue settlement is most often done by agencies dedi-
cated to this task, which introduces significant delays in even accounting
for revenue.

Even if all flights are on a single airline, pricing an itinerary is com-
plicated by the fact that there are often many different ways to do so.
Figure 10.1 shows an example of an itinerary and some ways of pricing it
as a combination of one-ways, round-trips, open-jaws and one-ways with
stopovers, and so on. A pricing solution is made up of these components.
For each one of these components, in turn, there are many possible fare
products. Each fare product has its own rules and restrictions attached
to it. If a passenger qualifies for all the restrictions and all the com-
binability rules are satisfied and the airline reservation system indicates
that the booking classes for the desired fares on all the legs are open,
then the agent can book the itinerary. The rules indicate conditions on
the amount of time available for purchase, the cancellation penalties,
and so forth, and footnotes indicate exceptions and clauses. This rule
and footnote interpretation is complicated, with sequential sets of logical
clauses specified at one or more levels (such as flight level, geographic
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level and periods of application). Indeed, the industry at present time
has more than thirty categories of rules, restrictions, and footnotes. As
a result, an itinerary such as the one shown in Figure 10.1 can have
several thousand possibilities for pricing.

A travel agent or GDS searches among the valid combinations (usu-
ally to find the cheapest). However, because of the large number of
possible combinations involved and the difficulty in interpreting the com-
binability and footnote rules, even automated systems sometimes miss
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the lowest possible price. This is one reason that one travel agent can
sometimes produce a lower price than another. Web-based price search
engines (e.g., Expedia, Orbitz, Travelocity) also show differences in their
ability to search these combinations correctly and find the best price, as
their performance depends on the quality of the rules interpretation code
and the number of combinations priced.

10.1.2.4 Managing Prices
Prices are distributed through two agencies, ATPCO and SITA.2 AT-

PCO (Airline Tariff Publishing Company) is an industry organization
that aggregates fares and rules from a large number of airlines and dis-
tributes them to GDSs. Anyone can subscribe to its service for a fee.
Distribution is electronic with different frequency of downloads that can
be restricted by filters to reduce the volume of data. A change service
sends new and changed fares only, by market and region.

Airline pricing departments price their fare products by monitoring
competitors’ prices and their own traffic data. Airline analysts closely
monitor competitor price changes. Pricing departments respond to com-
petitors’ price moves very quickly, often filing a response on the same
day.

Fares available for such public distribution are called public fares.
However, in addition to public fares, airlines offer a large number of pri-
vate fares. Private fares are discounts or special rates given to important
travel agencies, wholesalers, and corporations. They are not revealed to
the public (or competition) and are available only by corporate agree-
ments or qualified agents. In some international markets, private fares
constitute 90% of sales, though in Europe and the United States, they
are a smaller fraction of total sales. Private fares are sometimes sold
via GDSs (a special code is required to access them), though many are
off line paper agreements. Field sales agents monitor these private fares
and send intelligence back to the airline when possible, though pricing
analysts usually have only a vague idea of the private fares offered by
competitors.

10.1.2.5 Priceline.com and Internet-Only Fares
The Internet has opened up a new sales channel for airline tickets

with its own fare structure and sale practices. Many airlines use their
websites to make last minute fares available at very low prices, a tactic

2Schedule information is distributed mainly by another organization called the Official Airline
Guide (OAG).
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little used previously. These fares are not advertised ahead of time and
are usually not sold through any other channel.

Intermediaries, such as Priceline.com and Hotwire.com, have also cre-
ated new channels and pricing mechanisms in the U.S. airline industry,
and similar sites have emerged in other countries. Priceline.com defines
its process as a “buyer-driven commerce,” and it has many similari-
ties with reverse auctions (see Section 6.1.2). A customer specifies an
itinerary and a price they are willing to pay. The request is a commit-
ment by the customer to buy at the offered price; if an airline accepts
the offer, the flight is booked and the customer is charged. However,
customers must accept considerable uncertainty over the details of their
itinerary, including not knowing the airline they will fly, the number
of connections it will have, or the exact time of arrival and departure.
Moreover, they cannot change or cancel the booking once it is made.
Customers can also buy only economy, round-trip tickets and cannot
use frequent-flyer points.

Once a request is made, the Priceline.com system searches for an
airline willing to sell below that price and sends an accept / reject decision
back to the customer within 15 minutes. Priceline.com keeps the margin
between the customer-quoted price and the airline price.

The Priceline.com mechanism is designed to appeal to price-conscious
customers who are flexible about their travel times and routings. The
deliberate uncertainty introduced into the transaction (in airline, arrival
time, routing) makes it unattractive for most business travelers (and
many leisure travelers as well). The fact that the airline’s identity is un-
certain also offers brand shielding, allowing airlines to discount without
making the discounts widely known, thus limiting the threat to their
main channels of distribution. (For these reasons, such fares are called
opaque fares in the industry.)

Several airlines have also started similar sale procedures on their own
websites, combining them with regular sales and last minute, Internet-
only offers and posted-price offers.

10.1.3 RM Practice
Since the practice of RM in the airline industry is quite mature, several

standard practices have developed. Here we summarize and discuss these
practices.

10.1.3.1 Fare Classes and Fare Basis
RM systems for airlines book reservations in fare classes (or booking

classes). Each compartment (first, business, and coach) has a number of
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fare classes—typically eight or more for coach, one or two for business,
and one or two for first. These booking classes are represented by letters;
some industry-standard booking classes are F for first-class, J and C for
business class, Y for full-fare coach with no restrictions, and M, B, K,
H, Q, Z, and others for the discounted fare classes in coach. The exact
codes used for the classes vary from airline to airline.

Each fare class is used to book tickets sold under different fare codes
or fare-basis codes. Each of these fare-basis codes (with names such
as “QXE30”) have specific fares associated with them, and the main
requirements for booking under that fare basis code is encoded (some-
what cryptically) into the name of the fare code. For example, the 30 in
QXE30 represents a 30-day advance-purchase requirement. Table 10.1
gives an example of fare codes and their mappings to booking classes
and restrictions. The primary reason for grouping fare-basis codes into

fare classes is that many reservation systems can accommodate only a
relatively small number of fare classes (typically five to eight) per cabin.
Thus, grouping fare codes into fare classes allows an airline the flexibil-
ity to post a wide range of fares yet control their availability through a
smaller number of fare classes.

10.1.3.2 Booking Processes and Availability
Airlines start selling seats on flights up to a year before departure.

However, since flight schedules are usually not finalized until three months
prior to the departure date, most bookings that are made very early on
are tentative, consisting mostly of group bookings by tour operators.
Most regular fare class bookings come in during the last two or three
months before departure. Typically leisure passengers book earlier than
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business passengers and the restrictions imposed on the cheaper fare
classes try to exploit this preference of business passengers to book late.

A typical booking process proceeds as follows. An airline posts avail-
ability in each fare class to the reservation systems stating the availability
of seats in each fare class. This is done using codes such as Flight 314:
Y4 M4 BO ..., a notation that indicates up to four seats are available
in Y class, four in M class, and zero in B (put another way, Y and M
are open, B is closed). When a customer requests an itinerary, a travel
agent retrieves this availability information from the GDS. If a fare class
is open, the travel agent is allowed to make a booking in that fare class.
Within a fare class the agent quotes a fare for the itinerary based on one
of the fare codes. The fare code is then recorded under the passenger
name record (PNR).

Booking data are also grouped based on fare classes rather than fare
codes for forecasting purposes in most RM systems. This aggregation
often makes it difficult to precisely estimate demand and revenues from
historical data.

10.1.3.3 Global Distribution Systems (GDSs)
A global distribution systems (GDS) provides centralized control and

distribution of bookings. There are a number of GDSs currently in op-
eration worldwide (see Table 11.5). The operation of these GDSs is
governed by regulations intended to prevent the host airline or airlines
from biasing the display to their advantage, though there has been con-
siderable controversy surrounding “display bias” over the years.

GDSs communicate with the host reservation system of each airline to
periodically obtain availability information. A travel agency subscribes
to a GDS and makes bookings through it. The GDS in turn sends
messages to the host reservation system of each airline involved in the
itinerary of a given booking. Airlines are charged a fee for each one of
these GDS booking transactions.

When the host reservation system of an airline closes a booking class,
it sends a message to all GDSs indicating that a particular class on a par-
ticular flight is closed. The GDSs in turn display the new availabilities
to travel agents’ queries. The communication requirements between the
travel agent, GDS, and the host reservation system are very demanding,
usually requiring that the connect and transaction be completed in a
second or less. A few million transactions are processed by the GDSs
each day.

For competitive purposes, so as not to reveal their inventory decisions
to competing airlines, airlines do not reveal their complete availability
information to GDSs. For example, an airline may post an availability
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of Y4 to a GDS; meaning four seats are authorized for sale in Y class,
even though there may be 50 seats remaining on the flight.

10.2 Hotels
The hotel industry is another industry in which RM is well estab-

lished. Hotels are categorized as business, extended-stay, resorts, or a
mix of business and leisure and also by size (large, small) and location
(airport, urban, central business district or CBD, highway, beach). Ho-
tels may be managed by independent owners, as part of a chain that
is managed directly by employees of a single corporation, or as part of
a franchise. Some hotel companies manage only individual properties,
while large hotel chains can own thousands of properties under multiple
brand names. Chains sometime manage a property without taking own-
ership. This diversity in the types and operations of hotels means RM
practices in the industry also vary quite a bit.

10.2.1 Customers, Products, and Pricing
Like airlines, hotels have both individual and group customer seg-

ments. Free individual travelers (FITs), are guests who book their own
rooms, whether for business or leisure. Some FIT segments include
corporate, long-stay guests (those who stay greater than one week), in-
dividual vacation packages marketed by the hotel itself (such as honey-
moon or golf), weekend packages, and walk-in customers. In addition
to FITs, hotels receive demand for single rooms from travel packages
sold by travel agencies or airlines. The groups segment is made up of
tour groups, conference groups, incentive groups (such as salesforce re-
ward parties), ad-hoc groups (an excursion group), and recurring groups
(airline crew, cruise-line).

However, despite some of the similarity with airline customer types,
the segmentation mechanisms used in hotel RM are somewhat different
from those used by the airlines. For example, advance-purchase dis-
counts, a prominent segmentation mechanism of airlines, are not that
commonly used by hotels. The equivalent of the Saturday-night-stay re-
striction of airlines—intended to restrict access for business customers—
is the weekend rate, applicable only for stays on Friday and Saturday
nights.

10.2.1.1 Room Revenues
Rooms are the primary source of revenue in most hotels, but hotels

also generate significant revenues from secondary sources such as food
and beverage sales, function space, activities (golf, ski, entertainment),
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and gambling (in the case of casinos). For this reason, the value of a
customer to the hotel may be hard to determine exactly. For example,
a customer’s restaurant spending for food and beverages is uncertain at
the time of booking. Table 10.2 summarizes the typical revenue sources
for a hotel. Despite their importance to customer profitability, these
additional sources of revenue are often not accounted for in hotel RM
systems, though some RM systems do work with the average net revenue
for each rate product.

10.2.1.2 Room Types
The rooms of a hotel are usually classified into several room types with

up to 40 room types, each with a potentially different rate. Some exam-
ples of room types are presidential suites, suites, deluxe rooms, business-
floor rooms, standard rooms, executive rooms, lower-floor rooms, prefer-
ential rooms and room with a view. Other classifications include smoking
or nonsmoking rooms, and single or double bed, with small differences
in prices between these classifications.

Even though there can be many different room types, they are nor-
mally grouped together into three or four categories for capacity-control
purposes. For example, the classification may be reduced to suites, busi-
ness rooms, and standard rooms, equivalent to airline compartments.
There is normally a gradation of rates in these categories and a large
difference in the average rate between categories. The rates for each
room type are again grouped together into only a few classes for RM
purposes.

10.2.1.3 Room Rates
Rates start off with what is called a rack rate—or the published rate—

which is the highest rate for a given room type (equivalent to Y for the
coach class in airlines). Rates go down as a percentage off the rack rate.
The rates are usually referred to as 90%, or 80% (off rack).

A customer can qualify for a particular rate based on his affiliation
(company, government, diplomats), membership (automobile clubs such
as AAA), or individually negotiated discounts. Travel agencies negoti-
ate discounted rates, called wholesaler’s rates, which can be lower than
corporate rates. Even these wholesalers’ rates vary significantly from
one vendor to another. It is not unusual for a large hotel to end up with
up to 150 rates. The rates are usually adjusted only once or twice a
year. Hotels typically aggregate both the rates and the customer types,
leading to about 10 to 12 rate bands (or classes) for inventory control.

Pricing for a multiresource inventory (multinight stay request) for
hotels is almost universally taken as the sum of the daily rates. This is
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in contrast to airline pricing where the fares of a multileg itinerary have
little to do with the prices on the individual segments. This difference
arises because a multinight stay does not constitute a different “market”
per se, whereas in the airline industry different itineraries serve quite
distinct geographical markets with potentially very different levels of
competition. The only exception to this simple way of pricing multiday
stays is when a hotel offers one or two nights free for longer stays (akin
to a volume discount).

10.2.2 RM Practice
As mentioned, hotel RM practices tend to exhibit greater variation

than airline RM practices, mainly due to the more fragmented nature of
the industry. Still, one can identify common elements.
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10.2.2.1 Booking Process
In a typical large hotel, approximately 60 to 80% of bookings are made

directly with the hotel, either locally, through the Internet, or through
a centralized call center. The remaining bookings come from GDSs.3

Customer bookings arrive anywhere from one to 18 months in ad-
vance. However, a large part of the reservation activity—at least corpo-
rate and transient bookings—happens during the last few days preced-
ing the room-usage date. Reservations may or may not be guaranteed
by credit card, though this practice varies by region and country. Not
surprisingly, cancellation rates are quite different when reservations are
guaranteed by a credit card versus when they are not guaranteed.

Hotels typically follow one of two distinct policies with respect to rate
quotations. One policy is for the reservation agent to quote the “best-
available rate”; the second is to use a “top-down” quotation policy, where
the quote starts with the higher rates and the agent in essence “bargains
down” the rate depending on the customer response, by offering different
room types or packages. This latter policy is partly due to the richer
variety of the inventory in hotel products and can be considered a type
of information discovery mechanism between the agent and customer.
However, the practice of negotiating rates, which is a rather unpleasant
experience to many customers, is declining with the increased use of
Internet booking engines where the norm is to offer a menu of available
rooms and packages and customers self-select the class and room-type
combination.

Corporate bookings in many hotels follow a somewhat different process.
If the request is turned away because that corresponding class is closed,
then reservation agents typically attempt to sell a higher room cate-
gory, rather than quote a higher rate for the requested category. This
is normally because of contractual restrictions between the hotel and
the corporation or wholesaler. Some corporate contracts guarantee last-
room availability, which ensures the customer can book a room if one is
physically available.

10.2.2.2 Property Management Systems (PMS)
Hotel reservations are controlled by a property management system

(PMS) that automates the flow of the vast information required in the
operation of a hotel.

3The Hotel Electronic Distribution Network Association (HEDNA) reported that in 1999 the
GDSs delivered over 43 million bookings for hotels, with a value in excess of $12.5 billion [96].
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The PMS records many transactions, like meal and beverage sales,
in real time, and many others, like arrival updates and billing, in batch
mode at night. In addition, the PMS controls many other functions such
as accounting, billing, employee records, security, and supplies inventory
and ordering. The features of a modern PMS are given in Table 10.2.

The PMS is usually linked to external GDSs or, for a hotel chain, to
a hotel’s own corporate reservation system. Most of the principal GDSs,
as well as many travel and tourism Internet sites, list hotels with live
(seamless) connections either to the hotel-chain reservation system or
directly to the hotel PMSs. The GDSs list room types and attributes
(bed type) and typically store only the rack rate and one or two discounts
below the rack rate. Therefore, GDS bookings come only in a relatively
limited number of classes.

The PMS communicates with a GDS through a consolidating system
(belonging to so-called switch companies). The two leading consolidat-
ing systems belong to Pegasus (formerly THISCO—The Hotel Industry
Switch Company) and WizCom (owned by Cendent Corp. and previ-
ously owned by Avis Rental Car Company). These consolidating systems
broadcast the PMS availability message to the major GDSs and also con-
solidate the GDSs’ booking messages. As a result, the communication
between PMSs and GDSs is not instantaneous, but the systems are mov-
ing toward a query-reply mode.4 Hotels have to pay a fee for each book-
ing through a GDS (approximately $4.50), the switch company (approx-
imately $0.45), and also a commission to the hotel chain / representative
(if applicable). In addition, frequent-flier costs (about $8 to $9 per book-
ing) and travel-agent fees (about 10% of revenues), reduce the revenue
received for a room.

10.2.2.3 Overbooking and Cancellations
No-show rates in hotels range from 7% to 20% depending on the rate

category. Cancellations and no-show depend on time of booking (later
bookings tend not to no-show), credit card guarantees, whether the room
is being shared, and so on. A cancellation happens not only when the
customer calls to cancel but also if the customer decides to check out
early. This means that the future capacity of the hotel is often uncertain.

Overbooking is widely practiced in the hotel industry. The hotel
equivalent of an airline denied-boarding is when a customer is “walked”
to another hotel. In general, hotels are conservative in overbooking, and
walking a customer is a relatively rare event. Sometimes hotels walk a

4See the discussion of seamless availability in Section 11.2.3.2. Many GDSs today have this
capability.
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“less valuable” customer (a one-night stay guest) even when a room is
available, to avoid walking a “more valuable” customer (long-stay guest)
who is slated to arrive later. Aggregate supply and demand in the lo-
cality is taken into consideration when setting overbooking limits. For
example, if there is a convention or festival in the city and all the sur-
rounding hotels are likely to be full, a lower overbooking limit is normally
set.

Overbooking of a different type occurs in resorts and leisure hotels
that work with tour operators. The hotels sign an agreement with the
tour operator to guarantee a minimum number of rooms (allotments),
but the tour operator is usually not obliged to fill the rooms. The hotel
can sign for more allotments than it has rooms, hoping that by pooling
the allotments across tour operators the final show demand will be less
than its capacity.

10.2.2.4 Capacity Controls
Hotel capacity controls follow the traditional nested allocation and

bid price5 schemes of airlines, with a few important differences. For one,
control is often based on the length of stay. A minimum length-of-stay
control is often used to accept only stays over a certain duration. The
rationale for this type of control is that during high-demand period, the
hotel does not want short-stay customers occupying rooms for a small
number of days and displacing demand of longer-stay customers. A
maximum length-of-stay control is the opposite; it sets an upper bound
on the duration of stay, so lower-revenue, long-stay guests do not displace
higher-revenue, short-stay guests. A closed-to-arrival control restricts
bookings that start on a selected date. An open-for-day use means only
bookings with zero nights (only day use) will be offered (in a specified
rate code).

These length-of-stay controls are somewhat redundant if a hotel RM
system uses a bid price system; nevertheless, many PMS systems still of-
fer them to support incumbent hotel pricing structures and management
practices. (See Table 10.2.)

Most hotel RM systems make intraday forecasts and optimize much
more frequently than do airline systems. It is not unusual to see opti-
mization being run every hour as the date of usage nears.

5With bid price implementations dominating. In the hotel industry, bid prices are sometimes
referred to as hurdle rates.
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10.3 Rental Car
RM practices in the rental-car industry have similarities to both the

airline and hotel RM. However, again there are differences worth noting.

10.3.1 Customers, Products, and Pricing
There are six major rental-car companies in the U.S.: Hertz, Avis,

National, Budget, Alamo, and Dollar, with nearly 95% market share
between them. The business is somewhat similar to that of hotel chains:
some own all their properties, some work on a franchise basis, and a few,
especially at remote locations, just take bookings and subcontract out
actual car rentals to a local company.

A significant percentage of their business comes from airport loca-
tions, so it is no surprise that the customer segments for rental cars
closely mirror those of airlines. The deregulation of the airline industry
also affected rental-car companies significantly, increasing the volume of
business and changing the mix of business and leisure customers.

The product of a rental-car company is a combination of car type
(there can be up to 20 car types), insurance options, pickup and drop-
off location, advance purchase restrictions, and length of rental. Many
corporations and travel agencies negotiate special rates with car-rental
companies, which are accessed through special discount codes. These
contracts are usually for a fixed-per-day price across all or most loca-
tions for a given period. Segmentation also occurs in the channels of dis-
tribution, with special discounts for booking directly on the company’s
website.

There are some subtle differences in customer booking and rental be-
havior compared with airlines and hotels. A customer who shows up at
a hotel or for an airline flight at the last minute (called a walk-up) is
usually willing to pay a high price for the service because the limitations
imposed by airline schedules or hotel locations restrict their alternatives.
Such walk-ups, therefore, pay near full price in those industries.

On the other hand, most car-rental counters are located at airports,
clustered together; so walk-up customers have many alternatives to
choose from with little search costs for shopping around. Therefore,
the prices quoted to such walk-up customers are heavily influenced by
the local availability of cars and competition. In periods of low demand,
prices may actually be lower on the day of the rental than they are when
booked in advance. On the other hand, during peak-demand periods,
carefully setting aside inventory for walk-ups can have revenue benefits,
just as in the airline industry. Such last minute pricing for day-zero
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customers is typically the responsibility of local field managers, and RM
systems have to account for the resulting uncertainty in day-zero prices.

10.3.2 RM Practice
One significant feature of car-rental RM is the nature of capacity. Ca-

pacity is much more flexible than it is in either airline or hotel RM. For
example, a rental-car company may operate more than one location in a
city or a geographical area (for example, a downtown and an airport lo-
cation). Inventory at each one of the locations can be pooled (intrapool),
allowing greater flexibility in adjusting capacity to meet demand. Even
if there is only one location in a given area, capacity can usually be
increased or decreased by interpool moves, by moving cars from nearby
cities, and also by controlling the sale of older vehicles and turn-backs
to manufacturers. Small adjustments to the fleet size at a location can
therefore be made on a weekly basis if need be.

Available capacity is also affected by customers who rent at one
location and drop off at another (migratory inventory, Carroll and
Grimes [100]), creating a network imbalance, or by customers who re-
turn the car earlier or later than their planned return date (akin to a
hotel guest who understays or overstays). This means the capacity itself
is often uncertain.

Free upgrading, in which a customer is given a car of higher rental
value for no extra charge, is also an important factor in rental-car RM.
Indeed, when demand for a lower car type exceeds the available inven-
tory and the forecasted demand for a higher category car type is low,
car-rental companies often plan to give free upgrades. This practice is
analogous to planned overbooking over multiple compartments by air-
lines, where economy passengers who cannot be accommodated in the
coach compartment get free upgrades to business-class (see Section 4.5).
However, the practice is more prevalent in car-rental RM because there
are many more inventory types and the capacities are more evenly bal-
anced across the different car types.

Business customers typically select mid- and full-size vehicles, have
insurance protection and gas included in the rate, and rent and return
during the week. Leisure customers drive smaller cars or vans and on
average rent longer than business customers. As a result, RM product-
segmentation restrictions include Saturday-night stay, minimum length
of stay, and weekend rates to stimulate midweek rentals. Many rates
have blackout periods where they are not available (such as holiday
weekends).

Carroll and Grimes [100] describe an implementation of a RM system
at Hertz. Although at the core, the system calculates marginal values
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and uses a bid-price control to make accept / reject decisions for bookings,
it differs from airline RM systems in some significant ways. Most no-
tably, RM is very closely integrated with capacity planning—how many
cars to purchase, where to deploy them, what products to offer and
sell. Figure 10.3 shows the relationship between the RM system and the
capacity management systems.

10.4 Retailing
RM in retailing is a relatively new but growing practice. Apparel

and grocery retailers have to deal with highly perishable and seasonable
products. High-tech retailers (PCs, consumer electronics) have simi-
lar problems, as their inventory loses value rapidly due to technological
obsolescence. These characteristics mean that tactical demand man-
agement is important economically for retailers. Recently, a number of
specialized software firms have entered the market for providing RM sys-
tems to retailers, and several major retailers have adopted or are testing
these systems. Retail RM differs from the industries we’ve discussed
thus far in that dynamic pricing, in the form of discounts, markdowns,
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and promotions—rather than capacity controls—are used to manage de-
mand.

10.4.1 Customers, Products, and Pricing
Characterizing retailing practices is difficult because retailers sell very

different products using a variety of different formats and channels.
Broadly, retailers can be classified as either selling durable or nondurable
goods. Durable-good sales constitutes between 35 to 45% of total retail
sales in the U.S. [485]. Table 10.3 gives a list of the top 10 retailers
of the world and their revenues for the year 2002. The revenue of the
largest retailer, Walmart, exceeds $200 billion, which gives an idea of the
importance of even small incremental gains from RM. Table 10.3 also
shows the different categories of stores for each of the firms. Among the
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top 200 retailers of the world, the breakdown by store type is shown in
Figure 10.4.

Some retailers—such as a grocery stores, department stores, and e-
commerce sites like Amazon.com—sell an assortment of products from
different manufacturers and suppliers. Others sell only own-brand or
private-label merchandize—such as direct-to-consumer firms like Gate-
way and Dell and private-label retailers like The Gap or Eddie Bauer.
There are specialty stores that carry a deep selection of one type of prod-
uct, and mass merchants and department stores that sell a tremendous
range of products. Retailers may sell through physical stores, catalogues,
and online—or some combination of all three. Competition is generally
considered intense in the retailing industry because consumers typically
have many alternatives and can buy through many different retail chan-
nels. Profit margins in the retail industry rarely exceed 3%, as can be
seen from Table 10.3.

However, customer do vary in terms of their geographical location,
their preference for different channels, the importance they place on
customer service and the in-store experience, their preference to buy
early rather than late in the season, and their willingness to spend time
searching products and prices. As a result, time of purchase, sales chan-
nel, and location tend to be the major segmentation mechanisms used
in retail RM.

Regardless of the format, most retailers have to manage prices for
thousands of stock-keeping units (SKUs) and control a large number of
in-store and out-of-store promotional campaigns. Moreover, prices can
vary based on the channel of distribution and by geographical region or
country. There are also several ways of implementing price changes—
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including coupons, promotions, markdowns, and tie-ins. Thus, the num-
ber of prices that need to be managed can be very large indeed.

The challenges of RM vary depending on the type of retail environ-
ment. As a sample of these differences, we next look at RM practices in
apparel, grocery, and Internet retailing.

10.4.1.1 Apparel Retailing
Apparel has short life cycles and is usually progressively marked down,

and at the end of the sales season taken off shelves and sold at clearance
prices or through discount outlets. Figure 10.5 shows the magnitude of
markdowns over the last 20 years. Indeed in retail management, a firm’s
markdown dollar budget, defined as the original list price minus the final
sale price, is a closely tracked number.

The duration of the apparel sales season may be anywhere from a few
months to a year. Most apparel is manufactured overseas (for U.S. and
Europe) and has to be ordered well ahead of the sales season. The pro-
duction and ordering cycle is often too long to reorder during a season,
so retailers must precommit to the quantity stocked of each item.6

Forecasting is an important and difficult task in apparel retailing.
Items have to be ordered by size, color, and style. For a retailing chain,
inventory also has to be allocated by store and the retailer may occa-
sionally need to redistribute inventory. As apparel items are often new
and unique every season, there may be little historical data available
for forecasting. Hence, the judgment of store buyers plays an impor-
tant role and some RM systems use Bayesian forecasting techniques to
merge a buyer’s prior beliefs with observed in-season sales data (see
Section 9.3.6).

The initial price of items in apparel retailing is generally determined
manually (at least for “designer merchandize” [506]) because of the judg-
ment required to evaluate brands, quality, and design attractiveness. In
addition, price targets are often part of the initial product planning for
an item. Once prices are set, RM systems are used to manage the timing
and depth of markdowns based on sales trends (at the store or regional
levels), inventory levels, forecasts and managerial targets, and business
rules. Promotional events also influence the markdown strategy. RM
systems also typically provide “what-if” analysis that allows managers
to estimate the impact of markdowns. In addition to markdown deci-
sion support, the RM system may provide forecasts, initial buy recom-

6The exception is the use of “quick response” supply strategies, which attempt to provide
within-season replenishment of apparel, using both fast logistics and domestic manufacturers.
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mendations, store-level allocations, size allocations, and replenishment
recommendations.

10.4.1.2 Grocery
Grocery retailing differs from apparel in several respects. First, most

goods are consumables that are purchased repeatedly by consumers over
time. In addition, goods are replenished frequently. As a result, inven-
tory constraints and seasonalities are less of an issue in grocery retail
RM. However, there are significant substitution effects in grocery re-
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tailing. Consumers have choices of many brands, and brand-switching
behavior is common. Consumers also stockpile, buying many units of
a product when the price is low, which reduces their future purchases.
Therefore, grocers have to consider the value of consumers’ purchases
over time and plan to attract both current and repeat purchases. Con-
sumers also tend to be more price-sensitive with repeat-purchase prod-
ucts, and in general, there is less differentiation of products and am-
bience among grocers. All this leads to more direct and intense price
competition. Margins in the grocery business are also very low.

Other factors link the RM decisions for related products in grocery
retailing. Stores are often more concerned with the profits they generate
on a category of products than on the profits they generate on any given
brand or given product within a category. This has led many stores to
adopt a category management approach to pricing and inventory deci-
sions.

Additionally, consumers often shop a grocery store for a bundle of
goods. As a result, stores may stock and price certain products more
for their effect on consumers’ store-choice decisions rather than for the
profits they generate directly. Also, consumer perceptions on whether
the retailer has high or low prices are formed largely through repeat-
purchase items (such as milk or bread). Low prices (even at or below
cost) on these items can drive traffic to a store and benefit overall sales
and customer satisfaction. However, a low-price “loss-leader” strategy
is normally applied only to a small subset of products. These so-called
market-basket effects play an important role in RM in the grocery sector.

Grocery stores also carry a tremendous variety of products. An av-
erage grocery store may stock nearly 40,000 SKUs. The product mix
consists of both perishables (meat, vegetables and diary products), non-
perishables (consumer packaged-goods or dry goods; toilet paper, canned
tomatoes, pet food), and frozen and chilled goods, each requiring a dif-
ferent pricing strategy.
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Because of the large assortment of products, menu costs—the costs
of changing prices—is an important consideration for grocery retailers.
Electronic devices that are connected to a database and can change
prices automatically (electronic shelf labels or ESLs) reduce these costs
but are not yet widely deployed. In the vast majority of cases, grocers
implement price changes by having clerks manually retag products with
new price labels. This process is both expensive and time-consuming.
Consequently, prices for many items are relatively stable and change only
for competitive reasons or for manufacturer promotions or discounts.

The initial price for fruits and vegetables tends to follow a market
price determined by overall supply and demand in wholesale markets.
Retail prices are then marked down as the expiration date nears. For
nonperishables, the price is influenced strongly by the manufacturer’s
wholesale pricing. Volume discounts (truckload pricing) is common and
may influence a retailers ordering and pricing strategy. Trade promo-
tions at the wholesale level are also a common practice and retailers may
or may not pass these trade promotions on in the form of lower retail
prices.

Promotions are very common in the grocery industry, and retail RM
systems help grocery stores plan and execute promotions optimally. RM
models recommend which product in which category to promote, the
size of the products to promote, the best advertising strategy (amongst
display, local ad or regional ad) and the optimal discounting to meet
the store’s objectives. RM software may also recommend baseline prices
for products, depending on the store positioning (for example, quality
products, convenience store, warehouse food market), store location, and
local demographics.

10.4.1.3 Internet Retailing
The RM issues faced by Internet retailers are somewhat distinct from

those of bricks-and-mortar retailers. For one, an unprecedented level of
customization and customer profiling can be performed while the cus-
tomer is shopping online. The Internet also makes prices more transpar-
ent to consumer, which makes price comparison easier; “shopbots” and
price-comparison sites gather information from multiple vendors, allow-
ing consumers to compare prices easily and in real time. At the same
time, prices can be changed by online retailers at near-zero cost.

These features have led to two early predictions on how the Internet
would affect retail pricing practices: first, that Internet prices would be
significantly lower than in traditional brick-and-mortar store prices, and
prices would vary little from one retailer to another; and second, that re-
tailers would move to real-time dynamic pricing, customizing price based
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on supply and demand and their knowledge of the individual customer.
However, neither of these predictions has proved to be true. Internet
prices show significant variations among retailers—as much, if not more,
than the price variations observed among bricks-and-mortar retailers—
with the largest retailers not necessarily selling at the lowest price. A
survey by McKinsey [126] showed that Internet shoppers rate price as
relatively low in importance in their purchase decisions; brand, prod-
uct information, and customer service rate consistently ahead of price.
The same McKinsey survey [126] finds only 8% of Internet shoppers are
bargain hunters, who would buy only at the cheapest e-retailer.

To quote Eli Katz, president of e-Commerce for Fragrance Counter
and Cosmetics Counter [505], a retailer that does not discount heavily:

There’s always going to be customers who look for price, and there’s always
going to be customers who look for service, just like some people shop at Saks
and some shop at Walmart. That will hold true on the Web as well.

The second prediction, that firms would practice dynamic pricing,
has also only partially borne out. To quote Ken Harris, CIO of Gap
Inc. [250]:

I wouldn’t rule it [dynamic pricing] out. Right now, I don’t think it’s quite
ready. It’s important that consumers understand how pricing is determined
and that they feel it’s fair.

Stephen Hamlin, VP of operations for iQVC, the Internet arm of the
QVC Shopping Network [250] echoes this sentiment:

One thing we really believe in is unilateral prices. If it’s on TV for one price,
it’s on the website for that same price; if it changes on TV, it changes on the
Web.

Moreover, there has also been some high-profile consumer backlash
against dynamic pricing online. The most famous such incident occurred
in 2000 when Amazon.com was discovered to be offering different prices
for the same DVDs to different customers based on their profiles.7 An
incident with one consumer was widely reported in the news media, and
Amazon quickly stopped the practice in the wake of this publicity. (See
Section 11.5 for further discussion in a RM implementation context.)

While explicit price manipulation has not been well received by con-
sumers, other marketing tactics are practiced very efficiently on the Web.
Tools such as collaborative filtering (a data-mining technology that infers
customer tastes based on “similar” customer purchases) create product

7 “On the Web, Price Tags Blue,” Washington Post, September 27, 2000.
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recommendations and presentations in real-time based on customer in-
formation and current shopping behavior. Volume discounts are offered
to encourage customers to buy larger quantities or bundles are created
to increase their buy size. Online promotions and coupons are tailored
to separate the price-sensitive customer and induce a customer to make
a purchase. Such tactics are largely rules-based in current e-CRM appli-
cations, though it is likely that models and algorithms will play a more
significant role in optimizing these decisions in the future.

Another new use of the Internet for e-tailers is online price testing.
Selling at a single price provides very little information about the price
sensitivity of customers. Because of the low menu costs for e-tailing,
experiments are conducted online to gauge price sensitivity. A few price-
optimization vendors provide this capability in their products.

10.4.2 RM Practice
There has been significant commercial activity in retail RM in recent

years, with several new technology vendors offering software systems
targeted at different segments of the retail industry. These retail RM
applications focus on improving gross margins by optimizing base prices,
markdowns, and promotions.

As mentioned, a key difference between retail RM and traditional air-
line and hotel RM is that it is price-based rather than quantity-based—
that is, market-response models are utilized for dynamic pricing. This
requires an ability to estimate the demand effects of short-term price
changes.

Another important difference is that historical data is often inade-
quate for making good demand forecasts, especially for seasonal, fashion
and high-tech products. Thus, there is more emphasis on forecasting
demand for an item based on its in-season sales and the sale of “compa-
rable” items. Experimenting with price changes at a sample of locations
is also a common technique for gauging price sensitivity.

10.4.2.1 Features of a Retail RM System
Besides the price-optimization functions, retail RM applications pro-

vide important operational and productivity benefits, such as

Automating routine price changes by location and channel,

Monitoring profit or sales targets for items and categories,

Tracking the performance of promotions and advertising campaigns,

Maintaining consistent pricing and rounding rules,
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Automating price matching based on competitor prices,

Supporting price-sensitivity experiments, and

Generating periodic reports and statistics to track pricing perfor-
mance.

Retail RM systems may also include other nonprice decision support
tools for initial store allocation and assortment decisions, and reordering
and replenishment of products. Indeed, the current trend is for retail RM
to be combined within a SCM system under the label retail analytics.

10.4.2.2 Data Sources
The data available for retail RM is very rich indeed. Point-of-sale

(POS) scanner data provides detailed and complete transaction data in
an electronic format and is available almost instantaneously to retail-
ers (and manufacturers). E-commerce channels add click-stream data,
making it possible to monitor shopper browsing behavior and estimate
customer responses.

In addition, panel data tracking total household purchases for a sample
of consumers, available from market-research firms like IRI and Nielsen,
allows companies to track and estimate brand-switching and market-
share information over time. Other firms, such as AWIS Weather Ser-
vices and Meteorlogix, supply forecasts of weather by micro-region that
can be incorporated into sales-forecasting models for traffic and weather
related items. Demographic data (age, income level, housing costs) by
micro-region is also sold by many firms.

Finally, most large retailers have inventory-control systems, ERP sys-
tems, and SCM systems that link to supplier inventory systems, ac-
counting systems (for cost and labor rates), financials, and inventory-
management systems.

Retail RM systems use some or all of these data sources to perform
demand forecasting and pricing optimization. They download current
data from a store’s POS and ERP/SCM systems and combine this with
the store’s historical data to calibrate forecasting models of demand. The
models often require some input from buyers and analysts—for example,
to identify a past product that is “similar to” a new product the store
is introducing.

10.5 Media and Broadcasting
As with retailing, RM in the media and broadcasting industry is a

relatively new practice. Indeed, to date, only a few networks and tele-
vision stations are reported to practice RM. These include the Seven
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Network in Australia, NBC in the U.S. [83], and CBC of Canada [184].
Still, the advertising market is large and has many of the characteristics
conducive to the practice of RM. The sale of advertising time in broad-
casting, though superficially similar to the sale of airline seats or hotel
rooms in the sense that it too is a sale of a perishable commodity, has
features and practices that make it quite distinct.

10.5.1 Customers, Products, and Pricing
Advertising time is normally bought by ad agencies on behalf of

clients. The station either sells the space directly or through national
sales representatives working on behalf of the television station or net-
work. Advertising agencies also sometimes buy blocks of time in antic-
ipation of demand from clients. Advertisers can be local, regional, or
national and are additionally classified by industry (beverage product
category, automotive or local dealers, and so on).

Advertisers also vary in their time sensitivity. Some are advertising for
specific promotional events, so timing and placement of ads are critical,
and they may require this space on very short notice. For others, their
ads are for general brand awareness or for public information campaigns,
so the exact timing of ads is less important and moreover can be planned
well ahead of time.

10.5.1.1 Advertising Product
The advertising product is classified based on demographics (such as,

adults 18+ or females 13–18) and also the time of the spot (prime-time,
late-night). Table 10.6 shows how inventory is specified in television,
radio, and print media.

Demographic differences in a show’s viewership mean that the value
of a particular slot for a particular advertiser can vary, so segmentation
of buyers based on demographics is common. The demographics-based
requirements of advertisers also give broadcasters the flexibility to sub-
stitute times and programs. For example, if it turns out that a particular
time slot is oversold, a customer will usually accept a different time slot
with similar demographics, though many advertisers have strong prefer-
ences for specific programs.

10.5.1.2 Sales Process
Advertising space is typically sold in both an upfront (long-term) and

scatter (short-term) markets—and also on an opportunistic basis (called
remnant space for print media). The television market is further divided
into national, cable, and local (spot) markets.
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Up to 90% of national sales are upfront. Upfront sales are made
at least a year in advance of airing, usually during the June and July
period. Scatter sales are made each quarter, roughly three to six weeks
in advance of airing. Opportunistic sales (similar to airline last minute
sales) are the sale of distressed inventory just before airing. The prices
for upfront sales tend to be 20% to 40% less than for scatter sales; prices
for opportunistic sales can be as low as 50% below those of scatter sales.

Customers can purchase inventory as well as options on additional
inventory, with a deadline for exercising the option. The combination is
called a purchase plan. Table 10.7 shows a sample purchase plan.

10.5.1.3 Prices and Ratings
The sale price of an advertising slot is based on its gross rating points

(GRP)—the percentage of a demographic group in a market viewing
a program at a point in time. The GRP is measured after the show
goes on air, based on a sample of viewers that keep a meter or a diary
record. Therefore, at the time a slot is sold, the exact GRP of the slot
is uncertain, and only estimates can be provided. Yet buyers pay for
the actual GRP, typically on a cost per thousand impressions (CPM)
basis. Consequently, if the GRP turns out to be less than the promised
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GRP, the station may have to compensate the advertiser—usually by
means of free additional time (called make-goods in the industry). On
the other hand, if the GRP turns out to be more than that specified
in the contract, the buyers usually do not have to pay more, and hence
the station or network has lost a revenue opportunity. Ratings for new
television shows in particular are highly uncertain.

CPM is usually guaranteed for upfront sales, and the advertisers spec-
ify the target CPM, demographics, frequency, and any other restrictions
that they may have. In the scatter market, ratings are not normally
guaranteed, and prices can vary depending on the viewership.

10.5.1.4 Preemption
Preemption of scheduled advertisements is an accepted practice in the

broadcast industry. That is, even if the station sells a particular time
slot to an advertiser, if a higher offer is subsequently received from an-
other advertiser the station may preempt the original advertiser, offering
either to substitute another slot or return their money. This preemption
is common in large media markets but less prevalent in smaller markets,
where maintaining customer relations takes precedence. Hybrid prac-
tices, in which only a certain number of slots are sold as preemptable
slots, also exist in the industry.

10.5.1.5 Print Media
The sale of advertising in the print media is similar to broadcasting.

The prices are based on readership and demographics, on the size of
the advertisement, and on the number of issues that the advertisement
will be run. Magazines tend to be much more willing than broadcast-
ers to negotiate prices because their capacity is more flexible. Despite
the similarities between print and broadcast media, we know of no re-
ported implementations of RM in the print media, though it remains a
promising area for applying RM principles.

10.5.2 RM Practice
Broadcasters use a wide variety of pricing structures in an attempt

to enhance revenues. For example, the price for a slot may be based
on the loyalty of the advertisers (the frequency rate card), whether the
advertiser is a local or a national advertiser (the national and regional
rate cards), the ratings (the grid rate card), and finally on how rapidly
the inventory is being sold. These structures evolved partly to segment
customers based on location and access to information, partly to differen-
tiate the product based on demographics, and are also partly rough-cut
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attempts at RM (for example, the prices may be raised based on re-
maining inventory levels). Taking a cue from airlines, some stations are
attempting to further segment their customers based on time of purchase
and penalties for cancellations.

The actual prices for each category of inventory are determined by
competition and historical rates. In addition, many stations raise prices
after a certain percentage of inventory is sold or offer last-minute dis-
counts if time is unsold. Again, as mentioned above, it is not unusual to
see (at least in major U.S markets) a system of preemption. However,
advertisers typically get a lower price if they agree to allow their ads to
be preempted. Controlling the use of preemptable and nonpreemptable
slots is an important challenge for RM in the industry.

Another important factor in the sale of airtime is that it is rarely
sold in units of a single time slot. Rather, a package deal is normally
negotiated between the agency and station representatives. For example,
the advertising agency may have a target GRP and demographic in
mind for its client for a campaign over a certain period of time, and
the agency’s goal is to buy a package from a range of television stations,
programs and time slots to meet that target. This makes it important for
the broadcaster to know the value of each of its time slots to negotiate
effectively. Therefore, estimates of the marginal opportunity costs of
time slots (their bid prices) are useful information to a broadcaster.

This package-deal nature of sales introduces network effects into the
evaluation and negotiation process. Just as an itinerary for an airline
is a collection of resources, a package for a television or radio station is
the sale of capacity for a collection of its shows. A station may therefore
decide to accept an entire package even if it is losing money on certain
time slots in the package, provided the overall net revenue contribution
of the deal is positive.

Finally, a significant obstacle to RM in broadcasting is that sales
practices in the industry vary widely, often depending on the traditions
of each local market. This makes it difficult to construct a common RM
model and system that is appropriate for a large number of media firms.

10.6 Natural-Gas Storage and Transmission
The natural-gas industry in the United States has undergone a process

of deregulation since the mid-1980s. These structural reforms have led to
a number of innovations, including experimentation with RM techniques.
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10.6.1 Customers, Products, and Pricing
In 1985, Federal Energy Regulatory Commission (FERC) of the United

States issued Order 436, which required pipelines to provide open access
to their facilities, allowing consumers to contract separately for pur-
chases of gas and for transportation services. This encouraged better
balancing of supplies of gas among producers and consumers. The Nat-
ural Gas Wellhead Decontrol Act of 1989 required the removal of all
price controls on wellhead sales by 1993, allowing natural-gas prices to
be freely set in the market. Similar deregulation is in progress in a
number of other parts of the world as well.

Because of these reforms, the gas industry has gradually moved away
from long-term minimum-purchase contracts between the pipelines and
producers toward short-term contracts and spot-markets for buying and
selling gas. This has tremendously increased the volatility of both prices
and demand for pipeline services.

The gas-industry distribution structure consists of local distribution
companies (LDCs), pipeline companies, retail marketing companies, and
wholesale marketing companies. The customer base of these firms is
diverse, ranging from large industrial users to individual homeowners.
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LDCs form the end stage of the gas supply chain, delivering gas to
customers. They typically have to purchase in spot markets (at least
for excess requirements), where prices are volatile, and sell at relatively
fixed prices to their consumers. Futures contracts, swaps, and options
are extensively used to manage the resulting risk. Retail marketing
companies, which do not own physical distribution facilities, handle only
the marketing and billing functions and contract with LDCs for delivery.

Wholesalers are one level up in the natural-gas supply chain. They
buy from gas producers and deliver to LDCs and large industrial ac-
counts. Their orders are based on forecasts of the demand from large
customers as well as aggregate demand from LDCs and retail marketers.



Industry Profiles 549



550 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

Wholesalers purchase delivery services from pipeline companies, who
route gas from the source (wellhead) to the end market. As part of
deregulation in the U.S., pipeline companies were required to unbundle
purchase and delivery of natural gas (FERC Order 636, April 1992).
Thus, pipeline companies generally are restricted only to transmitting
or storing gas.

Besides these traditional firms in the industry, new intermediaries
have entered as a result of deregulation. Some of these firms are simply
asset management companies who hedge risks and make profits through
trading energy-related contracts. Some are market makers who create
packages and contracts from different pipeline vendors and suppliers and
become “virtual suppliers” themselves. Internet market places, such as
Intercontinental Exchange (ICE) and (the now defunct) EnronOnline
(EOL), were started to facilitate trading of these new instruments.

10.6.2 RM Practice
For pipeline companies, in particular, the unbundling of transporta-

tion and purchases of gas has increased their dependence on transporta-
tion revenue, which is now estimated to constitute nearly 93% of their
total revenue. These changes and the increased uncertainty in demand
has made revenue managing pipeline capacity sales all the more critical.

Pipelines are essentially involved in the sale of space—the capacity
for transmission or storage. Indeed, pipeline RM is somewhat similar to
airline RM in that demand is for transport over a network with many
interconnection points and routings. Pipelines have to price their space
based on future demand forecasts as well as available capacity. Demand
is realized in the form of forward contracts (essentially reservations)
with various forms of options (analogous to airline cancellations and
no-shows).

To give an example of a RM problem in the industry, consider the
pipeline in Figure 10.6 connecting cities A, B, C, and D. For a certain
date the residual capacities of the network are as shown in the figure.
Consider the following bids for future capacity (Dth=Dekatherms):

A-B 2,000 Dth at 0.15$/Dth

A-C 5,000 Dth at 0.20$/Dth

B-C 3,000 Dth at 0.12$/Dth

Selling A-C would fetch the highest revenue, but it would exhaust
capacity on B-C and prevent future sales. If the bids are indivisible,
the firm may be better off rejecting the A-C bid. If bids are divisible, a
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maximum-revenue network-optimization problem gives the optimal al-
location. For a future date, a RM system would make a forecast of all
future bids (volume and price, by origin and destination) for capacity
on this network and use one of the network methods of Chapter 3 to
determine which bids should be accepted now for this future date.

In addition to the capacity optimization illustrated above, current
RM systems for gas storage and transmission include the following fea-
tures [524]:

Storage and park-and-loan service optimization, in which the pipeline
company stores a producer’s gas at its storage locations. A park-and-
loan service is where the provider puts in gas for later use (parking) or
takes out gas to meet a temporary imbalance, to be returned within
a specified period (loaning). Using park-and-loan, shippers can gen-
erally avoid buying at high spot prices.

Firm transportation revenue optimization, in which delivery is pro-
vided at the guaranteed delivery tariffs.

Dynamic pricing of interruptible transportation tariffs (Table 10.9).

Capacity contract optimization.

10.7 Electricity Generation and Transmission
The electricity industry has seen significant deregulation in the mid-

1990s in the United States and many European Union countries. While
in principle RM fits in nicely with these newly deregulated markets for
electricity—and there has been considerable speculation on how RM
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could be applied in the industry [4]—to date we know of no electricity
RM implementations per se, in the sense of market segmentation and
capacity controls.

Still, the electricity industry has many characteristics that make it
well suited to RM methods. Demand for energy is highly variable, vary-
ing by time of day, day of week, temperature, and season, yet generation
and transmission capacity is relatively inflexible. Firms use a mix of
generation technologies (hydro, nuclear, coal, and gas) in an attempt
to respond to demand variations, but generating capacity has limits,
and near-peak-capacity wholesale prices can rise to nearly 300 times the
average price [426]—even in regions with 20% reserve capacity [125].
Finally, the industry has long used risk and demand management and
sophisticated trading technologies, so it has the scientific and software
culture to adapt RM.

10.7.1 Industry Structure
Much of the deregulation in the electricity industry has focused on

separating the generation and transmission (distribution) functions, cre-
ating competitive wholesale markets for generators to sell to distributors
and competitive retail markets for distributors to sell to end consumers.
Figure 10.7 shows the four main models of electricity competition (Hunt
and Shuttleworth [261]). In the complete monopoly model (10.7(i)), a
single monopoly controls generation, transmission, and retail sales. In
the purchasing-agency model, (10.7(ii)), there is competition in gen-
eration between the IPPs (independent power producers), but a single
monopolist controls buying and distributing the electricity. In the whole-
sale competition model (10.7(iii)), there is competition in generation and
among distribution companies (Distcos). In the model of retail compe-
tition, there is competition in the generation, wholesale, and retail mar-
kets for the final consumers (10.7(iv)). Models (i) and (ii) are generally
followed by the traditional—usually state-owned or regulated—utility
companies, while models (iii) and (iv) are a result of deregulation.
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The pricing structures and the management of prices have also changed
significantly in the wake of deregulation. Wholesale markets have moved
toward dynamic, market-based pricing, while retail prices have, to a large
extent, remained fixed (or have been capped by regulators). This has
created often devastating problems for distributors that have to buy in
wholesale markets and sell in retail markets.8 Risk-management tech-
niques are widely used by energy-sector companies in an attempt to
manage such risks, but many of these problems are structural.

Wholesale markets in electricity are organized at various regional lev-
els: state, country, pan-Europe, and global exchanges, such as the Am-
sterdam Power Exchange. The organization of these wholesale markets
varies considerably from market to market. For example, trade may be
through a central compulsory pool market or consist of bilateral trades
between generators and consumers; prices may be set by bid/ask mecha-
nisms, market makers, or auctions; the products traded may be electric-
ity dispatch contracts, options or derivatives; settlement may be based
on ex ante or ex post pricing; time of bid submission varies (real-time, 5
minutes ahead, 30-minute blocks) as do scheduling and dispatch rules;
start-up costs and incumbent adjustments (price adjustments to account
for the incumbents’ sunk costs during the regulated period) may be fac-
tored in as well. Regardless of the exact form and rules of each market,
the overall goal is to allow supply and demand to determine prices—
often in real-time—and encourage efficient utilization and allocation of
energy resources.

8For example, only a few years after the deregulation of California’s energy markets, one
of the state’s largest distributors, Pacific Gas and Electric, filed for Chapter 11 bankruptcy
protection with accumulated debts of over $8.9 billion due to soaring wholesale power costs.
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10.7.2 Customers, Products, and Pricing

10.7.3 RM Practice
The electricity industry is making some preliminary attempts to im-

plement dynamic pricing for end consumers—at least for larger industrial
clients [545, 181]. Indeed, industrial customers have long paid differential
prices depending on the quantity (nonlinear tariffs) and time (peak-load
pricing) of their energy usage. However, such schemes require new tech-
nologies, such as time-of-usage meters, to enable real-time monitoring
and accurate billing.

These same meters can, in principle, be used for individual households
and small businesses. Radio control of the meters give utilities the capa-
bility to shut off large appliances (such as air-conditioners and swimming



pool pumps) during periods of peak loads in exchange for lowered rates
on electricity. Such practices have been reported in trials (see [545]) and
exhorted by consultants (see [125] and [254]), but applications of such
technologies and pricing schemes is not common yet.

The RM challenges in the electricity industry will undoubtedly be dis-
tinct from traditional RM industries. RM systems will need to determine
the value of futures and long-term contracts for generators, evaluate
complex contract conditions (such as preemptability) and handle new
forecasting requirements (weather, economic condition, price sensitivity,
market-price predictions).

Fortunately, the data available in the electricity industry is quite de-
tailed and accurate. Historical hourly demand and price information
by market is often publicly available. For example, the Electric Power
Research Institute (EPRI) in California sells a database (StatsBank)
of observed load responses to various types of risk-managed prices in
the United States and United Kingdom. EPRI also has many ongoing
projects on customer behavior and responses to electricity pricing. Load
forecasting is also based on weather forecasts, which are commonly avail-
able. Publicly available macroeconomic factors (aggregate inventories,
GDP, income data) can also be used for long-term energy forecasting.

Though traditional RM methods are not yet common in electricity
markets, there is research on applying scientific methods to optimize the
market pricing decisions of electric generators and distributors. For ex-
ample, Anderson and Philpott [14] describe a body of work on optimizing
“offer stacks” (price-quantity bids) in electricity pool markets. (See also
Day et al. [149] and Neame et al. [274].) Researchers have also looked at
how to optimally release power from hydroelectric dams (see Pritchard
and Zakeri [430]) in response to dynamic, uncertain market prices. This
work is very much in the spirit of RM, both in terms of the technical
methods employed (such as large-scale stochastic optimization) and its
philosophy of using scientific, model-based approaches to quantity and
price-setting decisions.
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10.8 Tour Operators
Tour operators sell packages of air and ground travel, cruises, and

board. Some tour operators run their own charter air services, though
most contract some amount of capacity from third-party suppliers. Tour
operators share some of the same RM problems encountered by airlines
and hotels. Yet their RM challenges are unique as they have to manage
flexible capacity and multiple types of capacity with different costs and
ownership.



Tour operators almost exclusively target leisure and vacation cus-
tomers. Sometimes a package is organized around a group—schools,
businesses, associations, etc.—but many packages are unaccompanied,
aimed at individuals and families, with the tour operator selling only
a package of air travel, rental car, and hotel. Packages are published
in catalogs or on the Internet and are offered for repeated dates for a
season or a year. Distribution is through an operator’s own retail offices,
via the Internet, and through travel agencies.

To the leisure traveler, buying a package offers convenience (low search
costs) and a low overall price for a trip, at the expense of some loss of
flexibility. For the suppliers—airlines, car rental companies, and hotels –
that sell their capacity to tour operators, tour operators offer them a
chance to reach a very well targeted segment of demand.

A tour operator’s product is therefore a complex mix of capacities of
different types, and tour operators offer a large number of such prod-
ucts. The products are put together by negotiations with the airlines,
ground transport operators, hotels, and rental-car companies. To price
a product and plan its sales operations, tour operators either purchase
blocks of capacity from their suppliers at fixed prices, or they negotiate
just the rates and let their suppliers control the availability of capacity.

The planning and process for the tour operator consists of three stages:
(1) capacity planning, where routes and capacities are fixed tentatively;
(2) a pricing and purchasing stage, where capacity is purchased from
various sources and prices for the packages are fixed; and (3) a RM
stage, where discounts and promotions are used to stimulate demand
during the booking period.

RM for tour operators—as in the rental car industry, which also has
somewhat flexible capacity—is closely integrated with capacity manage-
ment, which we describe briefly next.

10.8.2 Capacity Management and Base-Price
Setting

As we mentioned, large tour operators use a mix of their own fleets
and third-party carriers. The goal of capacity planning is to optimize the
balance between own-fleet utilization and third-party purchases. Fig-
ure 10.8 shows an example of a capacity planning exercise of a tour
operator.

Setting base prices by and large is guided by expected load factors,
margins, competition, costs, and the previous year’s prices. Figure 10.9
gives good insight into the price-setting process at a tour operator. It is

10.8.1 Customers, Products, and Pricing
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essentially cost-based pricing allowing for margins and risks (load-factors
as well as price-dilution risks). The planning process (purchases and
price setting) is finalized around six weeks prior to the first departure.
In the final five to six weeks of the booking period, a combination of
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capacity adjustments and RM is used to manage sales, which we describe
next.

10.8.3 RM Practice
A tour operator can increase its revenue by (1) segmentation of its cus-

tomer base (family holiday, weekend packages, exotic tours, back-packers
tours, organized tours, school trips, cruise packages) marketing special
packages to each segment; (2) allocating scarce capacity to more prof-
itable packages by using capacity controls that make low-profit packages
available only on unconstrained dates; and (3) using price-sensitivity
estimation and dynamic pricing tools to adjust prices to stimulate de-
mand.

Industry presentations indicate that to date only a few tour operators
have implemented some form of RM [439, 557, 579, 264]. Current usage
appears limited to long-term sales forecasting, booking-trends forecast-
ing, and statistical reporting for package sales. Little optimization and
control of availability appears to be used at present. The role of RM is
to monitor demand during the booking period, and if demand exceeds
the planned load factors, increase, or shift capacity from low-demand
products, and if demand is below the planned load factors, advertise
and run promotions to stimulate demand (Figure 10.10).
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Part of the difficulty in implementing multiclass quantity-based RM
in the tour industry is that there are no standard reservation systems for
automating distribution and sales. Some industry standards are being
developed specifically for the tour industry [518] by the EDI standards
body Travel Technology Initiative (TTI) using XML, but these standards
are not yet in widespread use.

10.9 Casinos
RM is applicable in casinos in two areas: renting out the casino’s hotel

rooms and managing capacity and pricing in the gaming area. We look
at each in turn.

10.9.1 Customers, Products, and Pricing
The core business of a casino is gambling; renting rooms and meeting

space is a secondary line of business in most casinos, whose main purpose
is to attract gambling revenues. Two popular edicts in the industry are
that gamers play more when they stay, and gamers play where they stay.
The average daily gambling revenue from the different gamer types can
range from $20 to $20,000 [422], so it is understandable that the revenue
from rooms is not the highest priority for a casino. Indeed, many casinos
give rooms away free to their top, “high-roller” customers.

10.9.2 RM Practice
The RM problem in casinos, therefore, is one of controlling availability

based on a combination of room revenues and the amount a customer
is expected to spend on the casino’s gambling floor. To facilitate the
latter, many casinos have instituted special loyalty-card programs for
their repeat customers that are a cross between the debit cards of banks
and the frequent flyer cards of airlines. These cards track how much the
customer has spent on the floor. Hence, when a customer calls in to
make a booking and gives his card number, the casino can assess how
much revenue the customer will potentially bring in and the RM system
quotes availability and price based on this information.

RM systems implement this customer value assessment through a
gaming value function. The software recognizes and ranks repeat guests
by their gambling history. Harrah’s, a large U.S. casino, reports a modi-
fication in which its RM system was customized to work with their Total
Rewards Player (TRP) program [92]. Guests in this program are ranked
in tiers. High-rollers are identified and receive the lowest room rates,
while first-time guests and nongamblers get the rack room rate. When
a customer calls Harrah’s for a reservation, the system automatically
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generates a customized room rate based on the customer segment of the
caller. Harrah’s has up to 64 segments and each segment has a code
(such as AEP for avid experienced player [361]).

Another potential use of RM in casinos, mentioned in industry talks
but not implemented yet, is to control capacity on the gaming floor
itself—to determine the minimum bets at each table, and to adjust the
number of tables of each game which are opened.

10.10 Cruise Ships and Ferry Lines
Even though both cruise and ferry lines have superficially similar oper-

ations (they transport people by ship), there are considerable differences
between the two businesses when it comes to RM practices.

10.10.1 Customers, Products, and Prices
Cruise lines can vary from small harbor cruise boats to large interna-

tional operators offering long multiport itineraries. Ferry lines operate
regular scheduled transportation service to move both people and cargo.
There are further subdivisions called fast-ferry and cruise/ferry.

Cruise ships are essentially floating hotels. There are a wide variety
of cabin types and a large spread of fares, some of which are sold with
advance-purchase restrictions. Sales are made either directly by the
cruise company or through tour operators and travel agencies.

Unlike airlines and hotels, however, cruise customers are almost ex-
clusively discretionary travelers. This has historically created some dif-
ficulties in maintaining price discipline in the industry. For example,
there is a significant market for people willing to take a cruise on short
notice at very low prices. Cruise lines facing an underutilized vessel are
frequently tempted to lower prices and offer last minute bargain rates
on some sailings. However, customers have, over time, learned of this
practice and as a result are often unwilling to buy advance-purchase
products.

Ferries, in contrast, have commercial, commuter, and leisure seg-
ments. Ferry traffic has more in common with the airlines or passenger
railways than it does with hotels. They segment based on volume of
purchases (monthly commuter passes), one-way and return purchase,
peak and off-peak times, and customer type (student, child, senior citi-
zen). Long-haul ferries also offer advance-purchase fares, and some offer
private-cabin service.
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10.10.2 RM Practice
Cruise lines have some special characteristics that distinguish their

RM practices from hotels. First, all stays are of the same length; though
some multiport cruises let customers join and leave at different ports.
Also, overbooking for the ship as a whole is generally not practiced, as
it is difficult to “walk” a cruise passenger; overbooking at a cabin-type
level is more common.

Cruise operators also have to coordinate with airlines to bring cus-
tomers to and from their various ports of departure. Cruise operators
may purchase a block of seats from an airline and must therefore man-
age the air-travel capacity along with the ship capacity, similar to the
problem faced by tour operators.

Finally, even if the cruise is all-inclusive, customers have many shop-
ping opportunities on board, and the cruise lines consider shopping rev-
enue in assessing the overall net revenue contribution of the different
customer segments.

Ferry operators also face some unique RM challenges. For example,
ferry lines have to manage passenger space and vehicle space jointly.
Combination cruise/ferry lines have to manage inventories of cabins, pas-
senger space, and vehicle space. Thus, they too are faced with multiple-
resource RM problems.

Most large cruise lines, such as Norwegian Cruise Lines and Royal
Caribbean, practice some form of RM for controlling sales on their ships.
Smaller river and harbor cruise companies, like New York Cruise Lines,
are also known to use GDSs and practice some simple RM. Ferry line
RM implementation is more sporadic and less known, but there are a
few firms, such as Transmediterranea, that are reported to have RM
systems.

10.11 Passenger Railways
Passenger railroad RM is similar to airline or hotel RM, albeit with

some differences.

10.11.1 Customers, Products, and Pricing
A large passenger railway company can have over 2,000 trains daily.

Because many railways are nationalized, it is common to have only one
passenger railway operating in a market. Consequently, they do not face
direct price competition and have greater flexibility in pricing than do
airlines or even hotels. Nevertheless, railways compete with the other
modes of transportation such as airlines, automobiles, ferries, or buses,
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and hence pricing is influenced by the prices and availability of these
transportation alternatives.

In addition to the prices of competing travel alternatives, pricing for
trains also depends on the speed of the train, the time of operation, and
the distance of travel. High-speed trains (such as the TGV in France)
offer service that is comparable or better than airlines in terms of travel-
time between city centers and on-board amenities and consequently are
priced higher than ordinary trains.

The passenger mix varies depending on whether the route is a short-
haul or long-haul and on the time of day. For example, a Washington-
Philadelphia train at 6:00 PM will have a large number of business
passengers, while a Washington-Chicago train carries primarily discre-
tionary travelers. As a result, one sees multiple fares more often in
short-haul markets. However, the number of fares offered by railways is
typically small—two or three—with advance-purchase restrictions of five
or fourteen days. For instance, Rail Canada sells seats in four classes Y,
B, Q, and V with progressive advance-purchase discounts.

Long-haul trips rely more on product differentiation (type of accom-
modation) and identifiable customer types than on booking characteris-
tics. Further segmentation and discounts are based on youth rail-passes,
senior-citizen passes, and family packages with discounts for a family
traveling together. Cancellation fees and other penalties normally apply
for discount fares. Table 10.11 shows the product types and fare types
for Amtrak’s long-distance (overnight) train service. Prices for the ac-
commodation part of the tariff range from $347 to $1,067 (standard
versus deluxe bedroom going from Chicago to Emeryville). Dynamic
pricing in the form of weekly promotions, which usually carry some
sort of advance-purchase and cancellation restrictions, is becoming more
prevalent.
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10.11.2 RM Practice
AmTrak in the U.S, VIA Rail Canada, and Eurostar and Société Na-

tionale des Chemins de Fer Francais (SNCF) in France are a few large
passenger railways that are known to actively use RM techniques. The
network structure for a railway is a cross between that of hotels and
airlines. A single railway line resembles the length-of-stay network of
a hotel; however, there are many connection points where passengers
can switch trains, making it a more complicated network. Amtrak is
reported to use five fare buckets, opening and closing them depending
on demand to come (Johnston [271]), with the capacity decisions made
jointly between the train or corridor manager and the central RM de-
partment.

10.12 Air Cargo
RM is a nearly universal mission-critical tool for passenger airlines,

so cargo would seem a logical area for airlines to apply their RM skills.
However, the use of RM in airline cargo at present is rather sporadic.

10.12.1 Customers, Products, and Pricing
Most passenger airlines accept cargo to fill the empty holds of their

passenger aircraft. The bulk of the space is sold under long-term con-
tracts to a small number of shippers, normally through a bidding process
conducted only once or twice a year.

Still, the larger carriers have partially segmented their market and
sell both premium (fast) and regular (slow) shipping. Ad-hoc requests
and long-term contracts are some other segmentation criteria used. Re-
strictions or advance-purchase requirements are not prevalent at present.
Pricing is primarily distance-based and the typical tariff structure does
not segment the market significantly, though the potential exists to seg-
ment based on factors such as the quantity shipped and day of week.

10.12.2 RM Practice
Airline cargo RM is more complex than passenger airline RM. For

one, the hold space of the carrier is limited both by the weight and
volume it can carry, so shipments have to be controlled based both on
their weight and volume. Also, the weight constraint of the aircraft
depends on both the number of passengers carried and the cargo. Thus,
the decisions for both passenger and cargo are interrelated and ideally
should be coordinated by a single RM system.

The long-term nature of customer relationships also makes capacity
control difficult. Air cargo carriers rarely—if ever—reject a shipment
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when they have available space. Long-term customer relations take pri-
ority because unlike passenger sales, which are anonymous and numer-
ous, air cargo carriers work closely with a few important customers who
ship large volumes. Still, there are occasional small-volume shippers in
addition to large shippers, and some segmentation between the large,
contract shippers and the smaller, “spot-market” shippers is possible.

To date, only the largest carriers practice some form of cargo RM, and
even in these cases, the systems are not comparable in sophistication to
the airline’s passenger RM systems. Many cargo RM systems in opera-
tion do mostly simple reporting, overbooking, and aggregate forecasting.
Unlike passenger systems, few make automated accept/reject or block
allocation decisions.

The few airlines that have implemented or are currently implement-
ing cargo RM are also cautious when evaluating the success of their
systems. Edward R. O’Meara, senior director of cargo RM for Conti-
nental Airlines, cites the complexity of implementing RM in air cargo as
one factor [483]:

It’s been a success story but it’s not been a slam dunk either. It’s a very
difficult process because you’re changing a lot of roles. I see it as an extra
tool you don’t use blindly. You always have to keep the customer in mind and
that’s the thing with RM: you don’t want to do something stupid that hurts
your customer.

According United Airline’s Lung, the low status of air cargo in the in-
dustry is another factor [483]:

Cargo is not as glamorous and is viewed more as a byproduct or an after-
thought. Typically you have lots of investment opportunities within the airline
and cargo is not viewed as your core business.

Another obstacle is data. Historical data is often collected only by
weight or volume (usually weight), so many airlines don’t have adequate
data to implement a RM system. Legacy systems to manage cargo are
also a significant barrier to implementing RM.

10.13 Freight
Shipping, trucking, railway, and intermodal companies transport bil-

lions of dollars worth of cargo every year. The emergence of global
supply chains and just-in-time (JIT) manufacturing have increased the
strategic importance of logistics, and companies are often willing to pay
a premium to have reliable, fast deliveries. Freight transport is sub-
ject to significant capacity and time constraints. Together, these factors
make freight transport a natural candidate for RM methods.
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10.13.1 Customers, Products, and Pricing
Most commercial freight today is moved in containers over one or

more transport modes (ship, rail, and truck). (If the transportation
involves more than one form of transport, it is called intermodal ship-
ping.) Intermodal shipping offers a high level of service at a relatively
low cost. It is often cheaper than moving a shipment entirely by truck,
while offering comparable flexibility in routing and timing. Standard
containerization also reduces transfer and handling costs considerably,
as most rail yards and shipping docks today have specialized facilities
for handling containerized freight.

Freight customers can have different service level requirements. For
instance, package delivery companies and the U.S. Postal Service require
strict service commitments and schedules tightly integrated with their
own operations. Often a carrier has dedicated trucks and trains assigned
to these customers. Other customers, such as less-than-truckload (LTL)
shippers and freight forwarders, are less sensitive to delivery time and
willing to accept longer delivery times and less reliable service for lower
shipping charges. These time-price sensitivity differences provides a nat-
ural means for segmenting customers in the industry; a sample portfolio
is shown in Table 10.12. Rates are also segmented based on the type
of good being shipped, as well as by the weight and volume of each
shipment. Many shippers purchase freight services through long-term
contracts. The contracts require the freight company to guarantee ca-
pacity on demand. However, shippers have little obligation to use the
services they contract for—or even to pay the prices agreed to in the con-
tract. Indeed, if spot prices are cheaper, shippers commonly bypass their
contract carriers and ship using the cheaper spot carriers [426]. These
practices make it difficult for carriers to maintain pricing discipline.

Long-term contracts also make customer relations extremely impor-
tant and—as shippers are reluctant to renegotiate long-term contracts—
make RM type innovations hard to introduce. However, there is signifi-
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cant business from low-volume, smaller shippers, with whom the freight
companies have some degree of pricing flexibility.

Tariffs for terminal-to-terminal shipping are usually different for
wholesale agreement customers and retail customers and whether the
shipping is domestic or international. Intermodal and rail pricing plans
also differ considerably. For ocean carriers, the freight rate is normally a
percentage of the value of the cargo. Ocean carriers can also be members
of a conference that controls both the capacity members can introduce
into the market, as well as monitors tariffs—but as the revenues depend
on the cargo value, there is nothing to prevent the carrier from using
RM-type controls to manage the cargo mix [360].

10.13.2 RM Practice
A few large freight companies, including Sea-Land [213] (Sea-Land is

now integrated into CSX Intermodal), have implemented RM systems.
However, RM is not yet widely practiced in freight, although the po-
tential is significant. For example, low-value demand often fills up the
weight limits of a ship or truck well before the volume limit is reached,
forcing the carrier to reject low-volume/weight, high-value demand. In-
deed, Maragos [360] reports that in the shipping industry, low-value cus-
tomer demand tends to appear before the high value demand, creating
conditions similar to those in the airlines.

Structurally, the RM problem in freight is similar to airline or ho-
tel network problems, in that carriers provide a network of routes and
scheduled service with capacity constraints on each link. In addition,
orders are taken over a period of time, and there is a mix of customer
types, ranging from high-value, low-weight items (PC components) to
low-value, heavy-weight or large-volume items (raw materials). Internet
websites (such as Rezl and nacsfirst) are facilitating freight reservations.

Capacity conditions are somewhat different, however. For example,
in the case of rail freight, there is considerable flexibility in adding or
removing capacity to a train because the cars or car blocks are easy to
add and remove. The capacity of the locomotive at some point prevents
such additions, but the range is significant. Thus, at present it is rare for
a railroad to reject a shipment because of capacity constraints. Trucking
firms are also able to adjust capacity on routes by reallocating tractors
and drivers. Ships, in contrast, have more of a hard capacity constraint,
analogous to an airline flight.
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10.14 Theaters and Sporting Events
Theaters and sporting events have many characteristics that seem

well suited to RM methods. Indeed, the existence of “scalpers”—and
the often exorbitant prices they charge for tickets for popular shows
and events—is evidence of the demand management potential in this
industry. Also, many firms are experimenting with auctions and dynamic
pricing, driven mainly by the Internet.

10.14.1 Customers, Products, and Pricing
Tickets for events are purchased in advance or on location at the time

of the event. There are many different customer segments—corporations,
annual subscription customers, families, tourists—each with varying us-
age patterns and willingness to pay. There are few regulations on the
prices that event sponsors can charge or on the sale conditions, with the
exception of some local municipal laws against scalping.

Ticket prices for theaters and sporting events depend on factors such
as the location relative to the stage, the expected demand for the
event, group affiliation of customers, seasonalities, bulk-sales terms and
advance-purchase restrictions—besides the draw of the performance it-
self. Table 10.13 gives an example of the different rate categories for a
Broadway show [340].

Demand can be highly variable for events, and while historical data is
sometimes available to make forecasts, there is often considerable uncer-
tainty about the popularity of a new show or a particular sports event.
For example, the success of a local sports team or the presence of a star
player has a significant impact on attendance. For instance, A.T. Kear-
ney [23] reports an Atlanta Hawks game with an overflow of 20,772 one
day, and an attendance of 8,772 two days later—Michael Jordan played
the first day; both days had the same prices with no capacity controls,
a clear inefficiency in pricing.

The number of seats in the venue, of course, strictly limits capacity.
However, there are different categories of seats based on location in the
venue. In terms of the sales process, prices are sometimes published a
year ahead (as in the case of opera or concert halls).

10.14.2 Ticket Scalping and Distribution
Unlike airline or hotel products, event tickets are almost always trans-

ferable (even many subscription tickets for opera/sports events can be
passed on to others). A scalper ticket market shows both a missed op-
portunity to increase revenues for event sponsors as well as a potential
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impediment to the practice of RM. We examine both aspects in this
section, beginning with a brief look at the legality of ticket scalping.

10.14.2.1 Scalping Laws
Somewhat surprisingly, most legislation against scalping is at the state

or municipal level, so there are many variations in the law. In the United
States around half of the states have either no laws or give jurisdiction
to municipalities; the other half have strict antiscalping laws. Most of
the states that limit ticket resales (either a blanket law, or by type of
event) specify that tickets cannot be resold above face value or face value
plus a small amount.9

9 Source: eBay Event Tickets Resale Policy.
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The public reaction to scalping is generally not against individuals
selling their tickets (on eBay or in newspaper ads) but against profes-
sional scalpers buying up large blocks of seats in anticipation of a popular
event and also the nuisance caused by the presence of scalpers in front
of event venues. To prevent scalping, many events in fact restrict the
number of tickets they sell to each individual, though this is not always
enforceable.
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From an economics point of view, there is no reason to prevent a
spot market just before the event time. There is also no reason to
believe that scalpers will always charge a premium, as they do take a
risk in buying up tickets ex ante. Indeed, Happel and Jennings [236]
report the case of the Phoenix City Council, which allowed scalping by
law but restricted scalpers to selling in a centralized lot in front of the
Phoenix Suns stadium. The prices obtained for tickets went down as
the event time approached, similar to markdown dynamic pricing. An
econometric study by Williams [567] found that NFL teams in states
with anti-scalping laws charged lower prices. His explanation is that
secondary markets provide valuable information to event organizers if
the event is underpriced (if it is overpriced, they know it themselves),
allowing them to raise prices. So antiscalping laws may in fact hurt more
than help event sponsors.

10.14.2.2 Primary Sales and Ticket Distribution
In contrast to ticket resales, there are few restrictions on the primary

sale of tickets. (Primary sales are sales by the artist, team, promoter,
or organizer of the event.) So in theory, there is little to prevent event
organizers themselves from conducting auctions or using dynamic pricing
if the public finds this acceptable.

At present most primary ticket sales in the United States are sold
either by subscription, through an event website or box office, or through
one of the electronic ticketing agents like TicketMaster (which bought
up an earlier rival Ticketron). There are many Internet-only sellers such
as Tickets.com and Ticketmall.com.

In addition, there are the ticket brokers. The U.S. National Associ-
ation of Ticket Brokers, which boasts over 150 member firms, defines
their role as to (1) provide tickets to events that are sold out through
the primary market, (2) provide premium upfront seats which are the
most desirable, and (3) to provide ticket holders a place to sell their
unwanted or extra tickets.

There are a few auction marketplaces for event tickets currently, but
as distribution moves increasingly to the Internet they are likely to gain
in popularity. For instance, on a recent day eBay listed over 30, 000
items in their Tickets category (including both primary and secondary
sales). While this number is minuscule compared to what Ticketmaster
sells on a given day (they recently sold more than a million tickets on a
single day), it is growing. A recent New York Times article [157] reports
that Ticketmaster is experimenting with online auctions and used them
recently for a boxing match. Another online ticketing firm, StubHub,
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works with artists and entertainers to auction off front-row seats for
charity.

10.14.2.3 Secondary Markets

Why don’t event organizers create their own resale markets and ex-
tract the money that is now going to the scalpers? Some have. USA
Today reports [251] that eight Major League Baseball teams have started
online programs to facilitate the resale of seats, though the websites are
only to facilitate sales, and they do not yet conduct auctions. In these
systems, the holder of the ticket posts it for sale at a virtual exchange
window. When he finds a buyer, the original ticket’s bar code is invali-
dated and a ticket with a new bar code is created. This removes one of
the main consumer risks in the scalper market—fraud.

The biggest impediment to dynamic pricing seems to be the fear
of negative consumer reactions—the fear that along with the scalper’s
money, event organizers may also acquire the scalper’s reputation. There
is a concern that this could cause long-run damage that more than off-
sets any short-run boost in revenues. Indeed, in many cases, the ticket
revenue for a single event is a small fraction of the total lifetime value
of a customer. A performing artist, for instance, normally makes more
money from album sales than from ticket sales, and a loss of fan goodwill
could jeopardize future album sales. Sold out concerts also generate good
publicity. Similarly, opera houses form long-term relationships with their
clients and do not want to risk losing that patronage. For many sports
teams, secondary spending in the arena is as important as the ticket rev-
enue, so they would rather make sure someone gets in by facilitating the
exchange of unused tickets than make money on the transaction per se.
According to a survey on Fan Cost Index [440], an average major league
baseball ticket costs $18.69, but a family of four spends an average of
$148.66 for a single game, on souvenirs, snacks, drinks, and program.
Yet none of this precludes some innovative applications of RM, as we
discuss next.

10.14.3 RM Practice
Many microeconomic text books cite movie-ticket discounts for stu-

dents and seniors as examples of third-degree price discrimination and
discounts for midweek shows and matinees as examples of peak-load
pricing. As can be seen from Table 10.13, for this Broadway event there
are many rate categories with different prices even for the same inven-
tory type (akin to airline fare classes in a cabin) and a price structure
in the form of discounts off the top rate for the seating area (akin to
percentage off the rack rate for hotels). Notice however that most of the
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rate categories in Table 10.13 are based on identifiable customer char-
acteristics (third-degree price discrimination), so there is a fundamental
difference between the segmentation as practiced in event ticketing and
traditional airline RM.

Nevertheless, whenever the demand exceeds capacity for an event
space, there is a need to manage the capacity intelligently. Not many
venues manage their discounted demand in any systematic, scientific
way. So although at first glance this seems like an industry tailor-
made for RM, there are relatively few reported implementations in event
ticketing. The few implementations include opera houses (San Fran-
cisco Opera [479], Washington Opera [137]), Internet event sellers (Tick-
ets.com, [338]), sports teams (Mariners [22], Mets [454])—and RM has
been proposed for movies [409]. However, even these reports point to
somewhat tentative and limited implementations in this sector. Fear of
negative customer reactions and consequent loss of customer goodwill
are the main reasons firms seem to be avoiding bolder demand manage-
ment strategies.

The Washington Opera is one of the pioneers of RM in the opera busi-
ness. In 1994–1995 it initiated a rate plan consisting of nine categories
based on the location of the seats (Table 10.14 shows the 2003–2004
season prices). Figure 10.11 shows the physical layout of the various
categories. In addition, specially priced tickets and group tickets are
also sold, the former at reduced prices, and the latter at normal prices.
Subscription tickets are sold the earliest, with those subscribing to more
shows given first priority. Next come group sales, around three months
prior to the season beginning. After groups are booked, the box office
opens for individual sales. Finally, excess demand is sold on the day of
the performance at student or senior discounts or standing-only. Rather
than lowering prices for low-demand shows (thereby upsetting the sub-
scription customers), the preferred tactic is bundling where individual
tickets to popular shows are sold only bundled with low-demand shows.
So even though prices are fixed and there are no capacity controls, there
is demand management going on—giving preference to customers who
bring high value (lifetime value of the customer) and creating and pricing
ticket bundles to smooth out demand and increase sales.

In baseball, the Mets pricing plan, shown in Table 10.15, varies prices
by game rather than by segmenting customers and controlling capacity
for each game. So it is more in the spirit of peak-load pricing than tac-
tical RM. Other baseball teams, such as the Cubs, Yankees, and Giants
have also implemented similar schemes, in which prices vary by game.
Notice that significant efficiencies are lost, as prices are set ex ante, once,
for the whole season, and there is little scope for demand management
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on per-game basis. This can be considered a preliminary, experimental,
step toward a full-fledged RM, and is a significant improvement over uni-
form pricing. However, the Mets’ management ruled out, for now, the
possibility of raising and lowering prices for individual games based on
their popularity [454]. Theater and sporting events present some unique
challenges for RM. For example, as mentioned, the popularity of an
event or the success of a sports team must be factored into the forecasts
of demand, which makes for a challenging forecasting. Also, seating in
theaters suffers from bin-packing effects; having isolated empty seats in
different locations is not appealing to couples or groups that want to sit
together, so sales often drop off as a venue fills even though there are
nominally many available seats. Assigning groups to seats and manag-
ing the configuration of available blocks of seats therefore becomes an
important issue.
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10.15 Manufacturing
There is significant interest in applying RM in manufacturing. How-

ever, it is fair to say that to date there have been relatively few implemen-
tations. But manufacturing is clearly a vast sector of the economy and
many SCM and ERP technology vendors are starting to offer pricing-
optimization systems for manufacturers. It therefore warrants careful
attention.

10.15.1 Customers, Products, and Pricing
Manufacturing spans a vast and diverse set of firms, so our discus-

sion here is, of necessity, somewhat generic. A make-to-stock (MTS)
manufacturer produce standardized products, typically in large volumes,
based on forecasts of future demand. Most consumer goods (autos, elec-
tronics, food products, apparel) fall in this category. A key challenge
in MTS manufacturers is to balance the need to meet demand, which
is often variable and uncertain, against inventory and production costs.
For most MTS manufacturers, pricing tends to be an aggregate deci-
sion and dynamic pricing is not routinely used to manage supply and
demand. However, end-of-life-cycle discounting is a common practice
in many sectors (such as automotive manufacturer rebates at the end
of the model year). Also, trade promotions—discounts given by man-
ufacturers to retailers and distributors—are a long-established practice
among many MTS manufacturers. We mentioned one implementation
of promotion and incentive optimization at Ford Motor Company earlier
in Section 5.1.2 [135].
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A make-to-order (MTO) manufacturer generally produces in smaller
lots based on specific orders from end customers, who are often other
manufacturers. MTO firms typically have to price a continuous stream
of bids and request for quotes (RFQ). Most of these pricing decisions are
made manually based on tactical factors, such as estimated costs, as well
as strategic factors, such as the value of a long-term relationship with
a buyer. Cost calculations are critical in MTO manufacturing. Such
calculations are based on estimates of material costs, machine time, and
labor rates, most often provided by a management accounting system.
A variety of methods, such as activities-based costing (ABC), are used
to arrive at these cost estimates. The volume of such request is high;
a pricing department at a large manufacturing company may have to
respond to over 250,000 RFQs every year.

Once a bid is accepted, the order is then scheduled into the firm’s pro-
duction planning and SCM system. SCM systems optimize the schedul-
ing of current and new orders. Traditionally, they do not consider price
explicitly as a mechanism to regulate orders, nor do they use price incen-
tives to shift customer demand away from peak-load periods. Meeting
the delivery deadlines at the lowest possible cost is the core objective
of most SCM systems today. However, as mentioned above, many SCM
vendors are currently working on incorporating price-optimization and
demand-management functions into their systems, and some already of-
fer pricing-optimization products. (See, for example, [262].)

10.15.2 RM Practice
Because variable costs and production planning are so important in

manufacturing, manufacturing RM systems must coordinate their data
and decisions with ERP, SCM, and management-accounting systems.
Revenue has to be balanced with cost considerations in determining the
profitability of accepting bids or adjusting prices. The interdependence
of SCM and RM decisions is well recognized as the main reason why
SCM vendors are leading the development of RM methods in the man-
ufacturing sector.

Manufacturing RM differs from service RM in other important ways as
well. For example, although idle capacity can be considered a perishable
item, physical inventory of parts and raw materials can be stored for
future use. This gives manufacturers more production flexibility. On
the other hand, in high-tech manufacturing raw materials and parts
lose valuable rapidly, so there is some degree of perishability. Another
difference is that a manufacturing order need not be rejected outright;
rather, it can be delayed, much as a bumped passenger on an overbooked
flight can be flown on a later flight. As a result, RM can potentially be
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used for demand smoothing, delaying production of low-value demand
to off-peak times, while ensuring prompt production and delivery of
high-value demand during peak times.

The dynamic pricing tactic of choice for MTS manufacturers has been
trade promotions. This is when the distributors and retailers are given
a discount (which may or may not be passed on to consumers) if they
buy a certain quantity or if they run a promotion special.

Applications of RM among MTO manufacturers are growing, with
several vendors specializing in the area. Product configuration software
tools (such as the ones used to order a PC online) incorporate pric-
ing information and perform some segmentation (large business, small
business, government, and so on), though most of the technology is
rules-based. A form of RM where discounts are given based on advance
purchase, lead-time, and delivery-time flexibility have been proposed in
the literature, but we know of no major implementations at this stage.
Applications of configuration-based pricing are reported in the trade lit-
erature, but few details have been published.

Finally, dynamic pricing, in the form of Internet auctions, has also had
a significant impact in manufacturing recently. Excess inventory is now
routinely auctioned off on the Internet, and procurement departments
often source supplies (at least in-direct materials) from B2B exchanges.
RM systems are likely to play a role in managing these surplus inventory
auctions in the future.

10.16 Notes and Sources
The main source for the airline pricing description are a variety of

ATPCO Rules and Footnotes documents. The discussion on airline op-
erations draws on Barnhart and Talluri [28].

For a description of hotel operations, see Kimes [299, 300], Hanks,
Cross and Noland [234], Orkin [411], Varini et al. [532], Burns [96], and
Bitran and Mondschein [72]. Hadjinicola and Panayi [233] is one of
the few papers that explicitly touches on hotel overbooking and tour-
operator agreements. Pinchuk [422] gives a description of RM strategy
for casinos, and Ladany and Arbel [319] for cruise lines.

Fellman [184] and Kuyumcu and Higbie [317] discuss media RM im-
plementations. Our discussion of the television ad markets comes from
Rust [451]. Bollapragada et al. [83] describe RM implementation at
NBC.

Kasilingam [295] and Kasilingam and Hendricks [294] discuss cargo
models and an implementation of cargo RM at American Airlines. The
thesis of Maragos [360] advocates RM for ocean carriers, Campbell [97]
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for intermodal, and a McKinsey article by Pompeo [426] argues the case
for the freight industry in general.

In addition to the sources mentioned in the text on event pricing,
Courty [133] provides a good survey of ticket pricing in the entertainment
industry.

The two main sources for our description of rental car RM practice
comes from Geraghty and Johnson [208], and Carroll and Grimes [100],
describing RM implementations at National and Hertz respectively.

Passenger railway RM descriptions can be found in Kraft and
Srikar [312], Di Pillo, Lucidi, and Palagi [158] and Ciancimino, Inzerillo,
Lucidi, and Palagi [118].

Retail RM system information has been culled from vendor literature
and also from Girard [214], Johnson [270] and Mantrala and Rao [359].
For background on the industry, see Leamon [333], Standard and Poor
industry surveys [485], Subrahmanyan and Shoemaker [493] and Hech-
ing, Gallego, and van Ryzin [247].

For the natural-gas industry and RM descriptions, we have consulted
Homes [255], Valkov and Secomandi [525] (the example comes from
there), and Anthony and Harrington [20], and the tariff examples come
from the Tennessee Gas Pipeline published tariffs for 2003. We consulted
Hunt and Shuttleworth [261] and Wilson [569] for the electricity indus-
try competition structure. See also Simth [481], Hirst [254], Wald [545],
Colledge, Hicks, Robb, and Wagle [125] and Denton [153].

Harris and Pinder [238] describe an application of variable pricing
in manufacturing at a repair facility, and Kay [297] describes dynamic
pricing at Boise Cascade Office Products (retail) and Campbell Soups
(manufacturing). The operations research literature has concentrated
on models for joint inventory and pricing in manufacturing. (See the
references at the end of Chapter 5.) Elimam and Dodin [176] and
Kalyan [284] give examples of segmentation and RM applications from
a ready-mix concrete plant and high-tech component procurement. See
also Gray [219] for the potential of RM in manufacturing.

In addition to the industries mentioned in this chapter, RM appli-
cations have also been mentioned (although we are not aware of many
implementations) in the following industries: bandwidth (Martin [363]),
restaurants (Kimes, Barrash, and Alexander [298], and Bertsimas and
Shioda [62]), golf courses (Kimes [303]), health care at the Duke Univer-
sity Diet and Fitness Center (DFC) (Chapman [106]), the nonprofit sec-
tor (Metters and Vargas [380]), and ISPs (Nair, Bapna and Brine [401]).
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Chapter 11

IMPLEMENTATION

While models and science form the core of a revenue management sys-
tem, in practice RM success hinges critically on the quality of implemen-
tation. Implementation involves more than software and hardware, the
most visible aspects of the system. It requires designing products, align-
ing incentives and organizational structures, changing business processes
to support the firm’s RM objectives, and training employees properly.
In this chapter, we examine these and other RM system-implementation
issues.

11.1 Segmentation and Product Design
Segmentation and product design are the first steps in a RM imple-

mentation. Segmentation is the process of classifying customers into
groups (segments) based on observed—or inferred—characteristics, be-
haviors, and preferences. The objective of segmentation is to understand
who is buying the product, how they buy, what attributes they value
(and don’t value), and what price they are willing to pay—and then
to classify them into groups based on these characteristics. Segmen-
tation is then followed by product design, the objective of which is to
construct bundles of product/service features to target each customer
segment. Correlating customers’ willingness to pay with their prefer-
ences and purchase behavior is the key to good product design.

Segmentation and product design are not operational processes, in the
sense that they are seldom done on a day-to-day, routine basis (although
there is scope for some fine-tuning of products after they are introduced).
This affords more time for off-line analysis, but it also means that design
should be robust and sustainable for a reasonably long period.
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While both customer segmentation and product design are complex,
data-intensive processes and therefore well suited to analytical meth-
ods, in practice they are still based primarily on managerial judgment
and intuition. Yet RM managers are beginning to test analytical tools
to support product design and to understand customer segments and
preferences. Here we describe a few simple models and one such tool,
conjoint analysis.

11.1.1 Segmentation
As mentioned, the goals of a segmentation analysis are to understand

which customers are buying, how they buy, what they value, and how
much they are willing to pay. Its aim is to uncover correlations between
willingness to pay and segment characteristics and to exploit this seg-
ment behavior in some practical way that increases revenues. Toward
this end, the following six criteria are widely used to evaluate a segmen-
tation strategy [193, 558]:

Identifiability Is it possible to identify customers as belonging to a
segment, either prepurchase or postpurchase? If not, the segmenta-
tion, though perhaps conceptually valid, cannot be operationalized.

Substantiality How large is the segment? If segments are too small,
the costs of segmentation may not justify the benefits, though for
some online channels the cost of customizing can be quite low.

Reachability Can a segment be targeted by marketing techniques
or product design? Or can the segment be induced to self-select their
targeted product? If not, it may be impossible to reach the segment.

Stability Do the segments change rapidly over time? If they do,
it may be difficult to identify and estimate the characteristics of the
segment. Stability is also necessary if a firm needs to design relatively
static products.1

Responsiveness Do customers in the same segment respond simi-
larly to a product or marketing campaign? That is, are customers
in each segment approximately homogenous in terms of their pref-
erences and market response? If not, the resulting response from
segmentation my be unpredictable or ineffective.

1Note that stability is not the same as saying a particular customer’s behavior does not
change: A customer who travels for both business and pleasure is one whose behavior changes
depending on the occasion of purchase. However, his behavior fits either that of a business
segment or leisure segment, and the behavior of the segment itself does not change.
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Actionability Is it feasible to price or market differently for each
segment? That is, can we base product design or marketing deci-
sions on the segmentation? Is the segmentation helpful in terms of
suggesting practical ways to target customers?

A particular segmentation strategy should be evaluated along each
of these criteria. For instance, consider a segmentation of families with
more than two children. This segmentation might be difficult to reach
in a direct-marketing campaign to households, but is reachable when
selling a travel or hospitality product, for example, by giving a discount
for three or more children. In the latter case, the segment is identifiable,
substantial, reachable, and actionable. However, it may not necessarily
prove to be responsive if families of size five or more do not have different
price sensitivity than other customers.

11.1.1.1 Segmentation Bases for RM
A segmentation basis is the set of product attributes or customer char-

acteristics that define a segment. For instance, the time of booking is
a segmentation basis for many RM applications: a customer who books
21 days in advance is classified as a leisure customer (or more precisely,
likely to be a leisure customer).

There could be more bases than there are segments. To give an ex-
ample, a hotel could define only two broad customer segments (business
and leisure) but use a number of different bases in combination (for in-
stance, week day, time of booking, source of booking) to identify the
customer with different degrees of certainty.

Note that some bases are observable (for instance, zip codes because
of store location), and some are not (say, family size) and have to be in-
ferred from data such as sales transactions, observed itinerary, and panel
data. Table 11.2 gives a classification of segment bases as observable or
unobservable and as customer or product-specific. For any basis that is
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observable, one can distinguish it further depending on whether it can
be observed at the time of purchase or after purchase. For instance, a
casino may classify some customers as high-rollers if they spend a lot
on gambling, but the casino may not know this information at the time
of purchase unless they used a separate mechanism to track customers
(such as a loyalty card). Table 11.3 lists some common segmentation
bases used in RM and their characteristics and purpose.

Quantity-based RM segmentation has some unique features: cus-
tomers preferences are not necessarily based on the product itself2 but
rather on the conditions of purchase (such as advance-purchase restric-
tions, nonrefundability). In fact, one hesitates to use the term prefer-
ences in terms of these restrictions because, given the option, everyone
would unequivocally prefer not to have restrictive conditions on pur-
chases at all. Rather, some customers simply cannot meet certain pur-
chase conditions while other customers can, or are willing to meet them
in exchange for a lower price. The conditions of purchase can include de-
livery time (logistics, manufacturing), preemptability (advertising), and
nonrefundability (airlines), among others.

11.1.1.2 Segmentation Mechanism
There are two basic approaches to constructing a segmentation mech-

anism. The first is to use an explicit screening mechanism based on
observable characteristics—to restrict products and pricing to individ-
uals based on their observed “types.” Example of such mechanisms in-
clude age-based segments (child’s and senior citizen’s prices), geographi-
cal segments (zonal pricing), and group affiliation (corporate discounts);
these are all mechanisms that use observable segment bases listed in

2For service industries, like hotels or airlines, we ignore minor differences in the product (such
as view for hotel rooms and legroom for airline seats).
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Table 11.2. Such segmentation is equivalent to third-degree price dis-
crimination as discussed in Section 8.3.3.1.

The second approach is to use self-selection segmentation. This is
necessary if a firm cannot observe or control which segment buys which
product. It must attempt to induce customers to self-select the product
targeted at them, which is the essence of second-degree price discrimi-
nation as discussed in Section 8.3.3.1. To give an everyday example, in
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the consumer packaged-goods industry, price-sensitive customers choose
to use coupons more; and price-sensitive customers with large families
choose to buy in bulk to get savings. When sales are anonymous or
through third parties, then segmentation by self-selection is often the
only viable alternative for a firm.

Using an explicit sorting mechanism to segment is relatively easy from
an implementation standpoint, though one may face legal and customer
acceptance issues in the process. With self-selection, legality is rarely
an issue, but the firm risks a large amount of dilution—many customers
in one segment ending up purchasing products not designed for them.
Indeed, there is little a firm can do to prevent a rich consumer cutting
out coupons or a business traveler staying over a Saturday night to get
cheaper airfare. Still, the segmentation is considered successful if a suf-
ficient number in each segment respond the way the firm had envisioned
(substantiability). It is important, therefore, that the segment not be
defined too narrowly as customer behavior is hard to predict except in
an aggregate probabilistic sense. Most RM segmentation is of the self-
selection type.

11.1.2 Product Design
Product design is the flip side of segmentation—“differentiating” the

products to target the identified segments, with the idea of charging
more for products targeted at customer segments with higher willingness
to pay. As is the case for customer segmentation, there are very few
models and analysis techniques currently used for RM product design.
We present one methodology, conjoint analysis, that has found some
success as a tool for physical product design and can conceivably used
to design RM products also.

11.1.2.1 Product Design Using Conjoint Analysis
Conjoint analysis originated from statistical work by Luce and

Tukey [348] and is widely used in marketing [224, 574]. Its role has
expanded, from an initial positive goal of multiattribute utility measure-
ment, to more normative uses such as new product design, segmentation,
product positioning, and even pricing.

Many market-research firms now offer conjoint analysis as a service
and commercial PC and Web-based software (Sawtooth Software, SAS)
has become widely available to support it.
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Conjoint studies are numerous in the CPG and automobile industries,
and applications of conjoint analysis to design travel and hospitality
industry facilities, products and amenities have been reported in [570,
102, 573, 574, 532, 216], but we know of no applications of conjoint
analysis for quantity-based RM product “restriction” design as such. A
second caveat is that current market environment often guides product
design: what products the competition is providing and what prices they
are charging. This presents an especially vexing problem for RM because
(available) products and prices can change rapidly, making comparisons
difficult. Barring these two caveats, the methodology has the potential
to be useful in making rational product-design decisions.

The customer-behavior model of conjoint analysis is similar to the
discrete-choice models discussed in Section 7.2.2, both having roots in
microeconomic theories of preferences. There are M possible attributes
of a product, and the firm can choose the level of attribute in designing
its product. Table 11.4 gives an example of the attributes and their
levels for a hotel product. The choice of attributes and their levels is
usually a result of management judgment or analysis of a survey among
customers. It is advisable to be parsimonious and list only the most
important attributes and the most reasonable range of their values.

A profile is a particular combination of the M attribute levels that
can make up a potential product, Customers form
a utility for a product that has the combination of attribute levels x.
The most common model3 used for this utility formation is an additive
composition of the part-worths, of attribute

One can simplify this further and assume linear part-worth functions
and a finite set of profiles. So if attribute is assumed to have one of

is an indicator variable equal to 1 if attribute is at level in the

the attribute at level We would like to estimate these part-worth

3Other, more complicated, utility functions have been proposed, but we stick to this popular
one for ease of exposition.

levels, the utility of a customer for a profile is hypothesized to be

profile and 0 otherwise, and is the part-worth for customer for
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functions, so that the utility functions can be used in an optimization
model for segmentation, product design or pricing.

The motivation behind conjoint analysis is the following. First, asking
some sample customers to directly map their part-worths (say, for price)
may be meaningless as they are convolved with all the other attributes.
As an alternative, we can ask respondents to compare a discrete number
of profiles, but the number of such profiles can quickly grow large even
for a small number of attributes and levels. For instance, if there are five
attributes, each with five different possible levels, then the number of
possible profiles is an immense number to test out in a survey. Even
if many of these combinations can be eliminated as being unreasonable,
we would still typically be left with too many profiles to test, since
survey participants are unlikely to respond reliably to more than 5 to 10
rating questions at a time. To overcome this problem, conjoint surveys
use experimental design techniques to construct an orthogonal subset of
profiles for each respondent that is parsimonious yet ensures the results
are statistically significant.

Next, even if presented a profile, most respondents are not able to
give a utility value for each one, let alone break utilities down into part-
worths. Rather, what a survey can meaningfully do is to ask respondents
to compare one profile with another and rate which one they like better—
or, given a set of profiles, pick the one they like best. The seminal work of
Luce and Tukey [348] lays out the statistical methodology of extracting
the part-worth measurements (or parameters of a hypothesized utility
model) given only rankings data from a group of participants.

Current conjoint analysis software programs automate this analysis.
A designer chooses a model and creates the relevant attributes and lev-
els. The software then presents profiles to each survey participant and
extracts part-worths based on statistical analysis of the resulting rank-
ings data. The software is typically PC or Web-based and simulates
a realistic choice environment by presenting graphics, images, or even
videos.

Once the part-worth utilities have been extracted, they can be put
to many uses. For example, the customer population can be segmented
based on their part-worths (such as nonsmokers and exercise buffs for
a hotel). One can also estimate the price sensitivity of each segment
separately or design special marketing programs based on each segment’s
part-worths. A customer-behavior model can be fit using the utilities
for various products under consideration, and their market shares and
profitability can be estimated in a market-simulation model. Finally,
product assortments can be designed for optimal positioning and overall
profitability.
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Our brief description here glosses over many details and decisions
involved in a conjoint study: for example, whether to do pairwise com-
parison of attributes or full profiles; whether respondents should rate
their preferences (say, on a scale of 1 to 10) or rank-order profiles (first
choice, second choice, and so on). The interested reader should consult
the references at the end of this chapter for such details.

11.1.2.2 RM Product Design Model
As mentioned, few firms currently utilize models to design their RM

products. Nevertheless, it is conceptually useful to formulate the prob-
lem as an optimization problem to understand the many factors that
impact product design.

Consider designing a set of K RM products for one particular resource
with a capacity of C.4 RM products are distinguished by the restric-
tions. Let there be M bases of restrictions (such as advance-purchase
restrictions, min-stay, max-stay (see Table 11.3)). For each basis, there
are multiple possibilities for creating a restriction. For example, for the
advance-purchase basis, a RM product can use a restriction of three-day
advance-purchase, seven-day advance-purchase and so on, or none at all.
A RM product is composed of a set of restrictions, one along each basis.

Let represent a collection of sets, with each set being a combination
of M restrictions. Our design problem is then to pick K sets of restric-
tions from fix prices for the K products, and in addition, decide on
the portion of the capacity C to allocate to each of the
K products (representing RM capacity controls).

of course, could grow exponentially with the number of bases and
the number of potential restriction values along each basis. In practice
the number of bases would be small, and the number of values along
each bases, four or five; hence, the size of would be within reasonable
limits.

The M bases and their values can be represented in an M-dimensional
space. The potential restriction values create a grid in this M dimen-
sional space with each block in the grid representing a potential product.
Figure 11.1 gives an example of a 2-dimensional grid representing the
product space with the advance-purchase and max-stay segmentation
bases.

Let there be N customers. Each customer has a set of valuations
for the products in This valuation could be represented by

4K is considered an exogenous number fixed a priori by the firm. Alternatively, K could
be an endogenous decision variable and we could model a fixed cost for introducing each
additional product.
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customer’s valuation for product This however would create esti-
mation difficulties, so below we use a simpler additive model in the spirit
of the conjoint utility model of Section 11.1.

Let customer have an ideal point defined as follows: it is the most
restrictive product for which he has his maximum valuation. For ex-
ample, in Figure 11.1, customer uncertainty about his trip is resolved
somewhere between 7 and 14 days before his trip date, and his trip
takes more than 6 days and less than 1 month. Then his ideal point is
represented by the potential product with restrictions of max-stay of 1
month and advance-purchase restriction of 7 days. Let his valuation for
the product at this ideal point be If however, for reasons of price or
availability, he is forced to purchase 14 days in advance, his willingness
to pay would be lower. We model this as a reduction in valuation for
purchasing less-than-ideal products.

Let represent the disutility for a customer whose ideal point is
product if he has to purchase product (It is conceivable that this
reduction is zero, especially when a customer purchases a less restrictive
product.) If consumer ideal product is then his net utility for pur-
chasing product is given by where is the price charged
by the firm for product So far we have assumed all the valuations

and are deterministic, but they could also be modeled as random
variables to be more realistic. To keep the exposition simple, we assume
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deterministic valuations (see Talluri [502] for extension to stochastic pri-
vate valuations). To keep things even simpler, the disutilities can
be taken as the sum of the reductions along each basis between and
Figure 11.2 shows the graphic of the customer utility model.

If all the customers have the same deterministic valuation (equiv-
alently, there is a single segment), RM is not really necessary; the firm
would just sell a single unrestricted product at a price This is be-
cause of the nature of RM products—customers will very likely have a
disutility of zero for purchasing a less restrictive product, and the firm
is better off not reducing the valuations by imposing restrictions.

So to justify designing multiple products the market should have mul-
tiple segments with different valuations and different disutilities
for the restrictions. We can define segments as groups of customers who
have identical valuations for their ideal products and identical disutility
functions.5 The firm can then use the multiple products to separate

5It would be more appropriate to model the valuations (for each segment) as random variables
(from the firm’s point of view), in which case the distinct segments will be groups with distinct
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high valuation and low valuation customers. So, RM product design
can be thought of as an optimal segmentation problem—taking a set of
underlying segments (defined only by variations in their valuations and
disutilities) and their purchase preferences (ideal points) and creating
K segments (and, of course, the consequent operational problem of allo-
cating capacity to the K resulting products). For the moment, assume
that valuations are deterministic and there is a single segment. The de-
scription that follows generalizes to multiple segments in a transparent
way.

Let be the number of customers whose ideal point is product
The firm’s decision problem is to come up with prices and allocations

subject to and
is taken to imply product is not offered, so designing K RM

products amounts to the restriction that at most K of the have
non-negative values.

The firm’s objective function then is given by

represents the actual demand observed by the firm. We discuss how
this is formed shortly. The restriction on number of products are cap-
tured by adding the following integer programming constraints to (11.2).
Let be a binary decision variable such that

Then, these restrictions are modeled by

Customers are utility maximizers in the sense that they will purchase
the product (among the available products) that gives them the maxi-
mum positive net utility. The consumer’s decision is of course influenced
by the prices and allocations set by the firm.

Let be a binary variable equal to 1 if a customer with ideal point
purchases and 0 otherwise Let B be a sufficiently

distributions of valuations. The notion of “distinct” is necessarily vague. The definition is
akin to cluster analysis, where we want to define distinct clusters that are similar within the
cluster and as dissimilar as possible across the clusters.
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large number (say > ). The customer decision making is modeled as
follows. Let be the net utility of a customer with ideal
point purchasing product at price A customer with ideal point
ranks and chooses the highest available one, provided his net

says that customer buys at most one product; (11.5b) that if net utility
for customer (with ideal point ) to purchase is less than zero, then
he does not purchase (11.5c) gives the total demand for product
as sum of all the customers who choose (11.5d) sets the number of
customers with ideal point as Finally, (11.5e) and (11.5f) impose
the utility-maximizing condition that for customer if then

unless there is no remaining capacity for is a binary
variable, equal to 1 if product is not available for customer (it had
been sold out to other customers) and 0 if there is available capacity for
product (11.5f) sets the values for

The above linear integer program captures many important elements
of RM such as utility-maximizing customers, customer preferences, prices
and restrictions (even if it is rather hopeless to solve—at least in its
entirety—in practice). Note that customers are not strategic as in Sec-
tion 5.5.2—they do not change their purchase behavior anticipating the
firm’s or other customers’ actions. As with any posted price mecha-
nism, the sequence of arrivals of the customers makes a difference (high
valuation before low, etc.). The integer programming formulation here

utility is nonnegative. This is the equivalent to saying if then

Notice not all customers are assured of being able to buy the product
(even if they have some product with positive net utility) because of
rationing. We capture the utility maximization of customers by the
following set of linear integer programming constraints added to (11.2).

The set of constraints (11.5a–11.5f) model demand as follows: (11.5a)
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assumes the best possible ordering (from the firm’s revenue-maximizing
point of view).

11.2 System Architecture, Hardware, Software,
and Interfaces

RM is a computationally intensive process. Huge amounts of data
have to be collected and stored in databases. It must then be extracted
and processed by the forecasting system to make thousands of forecasts
on a daily basis. Finally, the optimization module uses the forecasts to
come up with detailed quantity or price controls or both. Both forecast-
ing and optimization can be computationally intensive tasks.

Figure 11.3 shows the flow of a nightly batch-process RM system.
Figure 11.5 (repeated from Chapter 1) illustrates a prototypical process
flow of RM. The steps involved in a forecasting module for an airline ap-
plication (under the independent-demand model covered in Section 7.1)
are shown in Figure 11.4, and the steps involved in the processing of a
reservation request to a GDS are shown in Figure 11.8.

11.2.1 Hardware Requirements
Hardware requirements for RM systems can be immense.6 That said,

not every firm needs a million-dollar mainframe to run RM software.
Some of the smaller, simpler applications (say, in a medium-size hotel)
can be run on a PC. A multiprocessor database server and a powerful
workstation for forecasting and optimization are usually sufficient for all
but the largest RM systems. Current RM systems run on a large variety
of platforms, from stand-alone PCs to Unix workstations and servers
to mainframes. Reliability, redundancy, and good back-up procedures
are important as RM is a mission-critical application; if a RM system is
down, critical controls are not being set properly, which could lead to a
significant loss of revenue.

11.2.2 User-Interface Design
The user interface (UI) is an important component of a RM system.

They serve as the analysts’ “window” on both market conditions and the
RM system’s response to these conditions. As mentioned in Chapter 1,
RM is a man-machine process, with systems automating most of the
routine decisions but under the oversight of analysts who intervene as
necessary to respond to unusual market conditions or system errors. The

6United Airlines, to take a case in point, is reported to use several of IBM’s “deep blue”
supercomputers for portions of its RM system.
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ability of an analyst to interact effectively and productively with a RM
system hinges on the quality of the UI design.

While the primary functionality of the UI is to allow analysts to ana-
lyze and monitor RM system controls and forecasts, the UI should also
enforce security, so that only users with permissions have access to a spe-
cific functionality. For instance, analysts for a particular market should
be prevented from overriding controls on markets outside their respon-
sibility. Administrators should have the ability to maintain databases,
set passwords, or otherwise monitor activity. In short, the UI supports
all the basic functionality of the system (user administration, groups,
forecasts, prices, availabilities, controls).
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Many hotel, rental-car, ferry, and cruise-line RM systems feature a
color-coded calendar screen, with information on exceptions, booking
curves, special events, and occupancy data. Alerts come with colors,
sounds, and other notifications. As with any UI, ease-of-use and effi-
ciency are important, as they reduce training costs and the chance that
analysts will make mistakes.

At a technical level, the UI of most RM systems is written in one
of any number of commercial programming languages including Visual
Basic, Power Builder, C++, Motif (Unix) and Java/XML/HTML. Some
older systems still use a DOS interface.
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The current trend is to have a Web interface for both analysts as well
as system administrators, and therefore, Java/XML is the language of
choice in UI design. With a Web interface, no special software needs to
be installed on the client machines; any standard browser can be used
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to download and run the interface. Administration and control can be
performed remotely as well, since only an Internet connection is needed.
This is especially useful for a firm such as a hotel chain, which has to
manage physically dispersed properties. Managers at the properties can
access the system through a browser. In theory, the Web UI can be
viewed from any browser, although in practice differences in browser
versions, platforms, and capabilities create their own problems.

Figures 11.6 and 11.7 show two examples of RM software user
interfaces—a screen shot of a quantity-based RM for the airline industry
and a screen shot of a markdown pricing-optimization software system.

11.2.3 GDS, CRS, and PMS Interfaces
Hotels, airlines, and rental-car companies receive a substantial num-

ber of their bookings through global distribution systems (GDSs). The
GDSs communicate with a firm’s reservation system (host CRS for an
airline or directly to the property management system (PMS) of a hotel),
either periodically or for each booking request, to query for availability,
retrieve passenger records, or process bookings (see Section 11.2.3.2 on
seamless availability). Different GDSs are popular in different parts of
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the world. Table 11.5 gives a list of the major GDSs and their owners (as
of 1998). GDSs charge per transaction (with different fees for different
types of transactions) or per booking. GDS fees can quickly add range
anywhere from 2% to 8% of distribution costs [191]. Because some GDSs
are owned by airlines themselves and the order in which flights appear on
travel agents’ screens affects sales, there have been persistent concerns
in the industry that GDSs are biased in favor of their owners [410]. In
response to these concerns, today all GDSs are governed by regulations
that attempt to ensure there is no such display bias. The governing
rules also specify that any data generated by the system be available to
all participants at equal and reasonable fees. The latter requirement is
important because GDSs sell market share and sales data that can be
used in RM systems.

11.2.3.1 GDS Interface Technology
The host CRS or PMS and GDSs interact thousands of times a day

as travel agencies and other distributors (for instance, the switch com-
panies in the hotel industry) query the CRS for availability and make
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bookings. The communication to and from GDSs follow standard pro-
tocols (such as TCP/IP or X25) and can occur over dedicated or shared
lines or even dial-up modems; essentially the client computer connects
to the mainframe of the GDS and exchanges messages in each session.
Table 11.6 gives a sample of an availability request for airline seats in
its software form and in raw-data format. Hotel PMSs and rental-car
reservation systems communicate in a similar fashion using industry-
specific messages. Many of these message formats have EDI origins
(Section 11.2.4.3), following data layouts similar to industry EDI stan-
dards, though each GDS can have significant variations or may even use
its own proprietary message formats. The RM system may occasionally
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need to communicate directly with the GDS, but more often, the RM
system communicates only with the firm’s own host reservation system.

Prior to the forecasting and optimization run, the RM system needs
to download the total current reservations and remaining capacities. Ta-
ble 11.7 shows some sample data tables from a hotel PMS used by a RM
system. Similar, albeit more complex, tables exist in an airline CRS.
Most PMS vendors license their data dictionaries to interface with RM
systems. Table 11.8 shows the fields of a bid price implementation of
a hotel PMS. The RM system periodically updates this table with new
values. For interfaces, there has been an industry push recently to XML
and other open messaging standards. This trend parallels the emergence
of Internet sales channels. Internet travel sites may either query a GDS
for availability or interface directly with the firm’s CRS or PMS.
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11.2.3.2 Seamless Availability
Seamless availability is a technology for real-time communications be-

tween the host (internal) reservation system and (external) GDSs in the
travel and transportation industry. It is a messaging standard devel-
oped under the auspices of IATA and is part of the EDI standards. The
standards development body is a group called PADIS (Passenger and
Airport Data Interchange Standards), and all new messaging standards
have to be approved by its board.

The purpose of seamless availability is to replace periodic, batch up-
loads of static availability controls with real-time availability queries to
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the host reservation system. Because the host reservation system has
the most up-to-date information, by consulting it in real time the GDSs
are able to provide travel agents and customers with accurate price and
availability data.

Beyond the mechanics of encryption, data transfer, packaging, and
hand-shakes, the main contents of a seamless-availability messages are
(1) information on the travel request from the GDS to the airline and
(2) information on price and availability from the airline to the GDS.
Figure 11.9 shows two typical messages between an airline and GDS.

Seamless availability provides several advantages. For one, it allows
the airline to base its accept/deny decisions on passenger characteristics
(reducing the anonymity of the transaction somewhat) such as point of
sale and frequent-flyer number. It also reduces errors in pricing and
availability. Seamless availability also helps enforce married logic, a sys-
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tem whereby flights can only be sold and cancelled as units.7 Finally, it
allows airlines to track rudimentary “click” behavior.

Seamless availability comes at a cost, though. To provide a response
within the prescribed time limits, a firm usually needs to set up dedi-
cated communication links and hardware. Also, GDSs charge more to
implement this feature as it puts a heavy strain on their own systems.

11.2.3.3 GDS Abuse in the Travel Industry

While RM is not directly concerned with the inner workings of a GDS,
limitations of GDSs often create challenges for a RM system implemen-
tation. One potential problem is abuse by travel agents. To give an
example, if a GDS stores a multisegment itinerary as independent seg-

7 Married logic is an airline industry practice to counter travel agents abusing the system by
booking an itinerary to get cheaper fares and then cancelling part of the itinerary.
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ments, and if the fare for an O-D itinerary is lower than one of its con-
stituent components (not uncommon in market-based pricing, as there
may be competition on the O-D but not on the segments), a travel agent
may be able to book the multisegment itinerary and cancel the unnec-
essary segment later. Or a travel agent may be able to book a block
of seats on a fictional PNR to lock in cheap fares and then later fill in
the passenger details or cancel them at will. A travel agent may be also
able to make reservation on one GDS, then transfer it to another, and
issue the tickets on the new GDS, doubling the GDS costs. And so on.
The list of possible GDS abuses is endless and causes significant revenue
leakage to airlines. Some of these are plain flaws in the product and
restriction design, but if the GDS has limitations in implementation, a
clever travel agent can always find ways around any restriction.

While the large airlines monitor travel-agency behavior and penalize
violating firms (say, by cutting discounts), smaller airlines and hotels
have little leverage to prevent these practices. In response, many RM
systems have added functionality—and at times rather ad-hoc features—
to prevent GDS flaws. For instance, as mentioned, airlines use married-
segment logic to prevent agents from booking a through itinerary as
two locals or from booking a through itinerary and then cancelling one
segment to gain availability on a local flight. Managers in charge of the
RM system must have a good working knowledge of the GDSs in order
to intervene appropriately to prevent such abuse.

11.2.4 Retail Management Systems
Point-of-sale (POS) transaction databases are the central source of

information for retail RM. These systems collect information from the
point of sale, that—combined with product, inventory, price, and promo-
tion information—gives a highly accurate picture of all shopping trans-
actions in a store. A retail store management system (RMS) consists of
a number of elements: POS terminals with attached bar-code readers,
databases with product and inventory information, and EDI to connect
to suppliers’ ERP and supply-chain systems.

11.2.4.1 Bar Codes and POS Systems
Optical-scanner technology has revolutionized retail management. Al-

most all retail products today are encoded by a Universal Product Code
(UPC),8 a code consisting of 12 digits. The first digit represents the

8There are various flavors of UPC, but we describe the simplest and earliest one, what is called
version A. Other standards include EAN (European Article Numbering), JAN (Japanese
Article Numbering), ISBN, and code 39.



606 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

product type, the next five the manufacturer’s code, the next five the
product code and finally, a digit is reserved for check sum. The dig-
its are encoded into bars and spaces that are read by bar-code readers.
There have been many advances in bar-code technology, but essentially
bar-code readers first scan and decode the bars and spaces to the correct
UPC digits and then transmit the information to the retail system.

POS terminals are simply computer- and communication-enabled cash
registers. They are connected to the bar-code and card (debit and credit
and shop loyalty cards) readers on one end for fast, error-free check-out,
and on the other end, to the store retail systems for real-time price
lookups and updates to the inventory. As soon as the bar-code reader
scans in an item, the POS system sends a PLU (price look up) query to
the database to get unit price, tax, discount, and promotion information.
Thus, the exact price (including shop discounts and coupons), time of
sale, and shopping-basket composition are all recorded.

11.2.4.2 Pricing and Inventory Modules
The RMS database usually consists of the following tables: inven-

tory, products, transactions, suppliers, purchasing, promotions, goods,
customers, orders, contacts, and users, as well as others related to em-
ployees, and store layouts. On the pricing and promotions side, some
tasks that a typical RMS can perform are given in Table 11.9.

11.2.4.3 Electronic Data Interchange (EDI)
In many business transactions, the output from one computer appli-

cation is an input to another application. For instance, a purchase order
by a retailer is an order entry for a manufacturer; an availability request
by a reservation system is a query to a hotel bid price server. How-
ever, the formats and structure of the data required by each application
can differ considerably. In order for applications to communicate, they
must adopt a common format for data interchange. EDI provides such
formatting standards.

Using EDI standards, a developer can create one single EDI inter-
face that any application can understand. This promotes a low-cost,
efficient way for multiple partners to implement automated transac-
tions. EDI allows applications to “talk” to other applications, broadcast
queries across multiple partners or otherwise communicate on a “many-
to-many” basis.

EDI is a global standard, governed internationally by the United
Nations Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) with participation by regional and national standards
bodies (in the U.S., the Accredited Standards Committee (ASC)). EDI



Implementation 607

is technology independent and uses agreed-on message codes and struc-
tures to provide a secure and seamless exchange of data between trading
partners. It is further extended by various industry-specific groups‚ each
developing messaging standards suitable for their industry. There are
standards for the retail‚ manufacturing‚ and travel and tourism indus-
tries. Most messaging between retailers and manufacturers‚ between
reservation systems and travel providers occurs using EDI standards.
EDI software is usually present as a module in enterprise applications
and most retail systems and ERP applications have EDI modules built
in.

The EDI standard for the travel‚ tourism‚ and leisure industry is called
Unicorn. It is based on the traditional EDI “batch” message construc-
tion‚ although a more interactive version is also being developed by the
standards body at the time of this writing.

Unicorn messages support the following business applications:

Product information‚ enquiries‚ tariffs‚ schedules‚ and availability‚

Making of reservations‚

Enquiry on‚ amendment to‚ or cancellation of reservations‚
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Pricing‚ ticketing‚ and production of similar documents‚ and

Free text.

The Unicorn message set includes air‚ ferry‚ rail‚ most types of ac-
commodation‚ car hire‚ package holidays‚ insurance‚ for sale of associ-
ated travel products and financial transactions such as statements and
payment remittances. In addition‚ there are messages that allow the re-
mote printing of travel documents‚ such as paper tickets and automated
ticketing and boarding (ATB2). Any principal‚ agent‚ intermediary‚ or
service provider is free to use a Unicorn message. Table 11.10 shows the
functionality of Unicorn messaging.

11.3 Revenue-Opportunity Assessment and
Revenue-Benefits Measurement

Because RM systems are expensive‚ time-consuming to implement‚
and require organizational changes that are disruptive to normal op-
erations‚ it is natural for senior management to question whether the
benefits justify the costs. It is important‚ therefore‚ to analyze a RM
investment before implementation and then later‚ after the system is up
and running‚ to validate the system benefits. The first type of analysis‚
performed during the preimplementation phase‚ is called the revenue-
opportunity assessment and the latter‚ done post-implementation‚ is
called revenue-benefits measurement. Most RM vendors perform a revenue-
opportunity assessment as part of an engineering study phase and follow
up with a benefits measurement study after system cutover.

11.3.1 Revenue-Opportunity Assessment
There are two basic approaches to revenue-opportunity assessment.

The first is based on a perfect-hindsight estimate of revenue potential.
This estimate is constructed as follows. First‚ historical data is ana-
lyzed‚ and corrections for censoring are made to estimate the control-
unconstrained underlying demand. In a price-based RM setting‚ one fits
demand functions directly to historical data based on observed price re-
sponses. Given this a posteriori estimate of demand‚ it is then possible
to analyze the quantity or price controls that would have been optimal
with perfect knowledge of demand. In quantity-based RM‚ this usually
involves solving a deterministic linear integer program as discussed in
Section 3.3.1 to optimally allocate capacity; in price-based RM‚ deter-
ministic dynamic-pricing models of the type discussed in Section 5.2.1
can be used.
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These perfect-hindsight calculations then form an (estimated) upper
bound on the revenue that might have been obtained in the past. Com-
paring this estimated maximum revenue to the historical revenue pro-
vides a measure of the potential gain. While this number clearly over-
estimates the revenue gains of a real system‚ it is common to assume
some fraction of this potential gain is achievable. Often these estimated
revenue gains are quite large‚ so even if the system achieves only a frac-
tion of the gain‚ it provides more than enough justification for a RM
investment.

The second methodology used for revenue-opportunity assessment is
simulation. (See Section 11.4.) Simulation is more time-consuming but
arguably more accurate in gauging potential revenue gains because in a
simulation study it is possible to model consumer behavior‚ and repli-
cate the exact forecasting and optimization methods being proposed. A
simulation model can also model uncertainty and mimic salient features
of the sales practices. Unlike historical perfect-hindsight studies‚ simula-
tion can also be used to evaluate “what if” scenarios that have not been
observed in the past. The disadvantage of simulation is that one must
make a series of modeling assumptions‚ which may or may not reflect
real-world conditions. Thus‚ it is important to get management approval
of the model’s validity prior to doing a detailed simulation study.

11.3.2 Revenue-Benefits Measurement
While in principle the benefits from a RM system should match the

numbers given out by the revenue-opportunity assessment‚ this is rarely
the case in practice. But this is to be expected. For one‚ business con-
ditions change rapidly: recessions‚ economic shocks (wars) and currency
changes all have a bigger impact than the effects of a RM system. In-
deed‚ in RM one is often trying to measure benefits of the order of 1%
to 2%‚ which can easily get washed out by even a mild demand shock
or change in competitive conditions. Nevertheless‚ it is important to do
such a study to attempt to validate the performance of a RM system.
And it is best to aim for as unbiased a measurement as possible‚ ideally
by a “neutral” internal team or an outside third-party.

Benefits measurement can and should be based on actual data. For
this reason‚ it is important to collect and store all relevant data (prices
and products‚ competitor prices and products‚ customer booking records‚
allocations) for a significant period—both prior to and after implemen-
tation of the RM system. The preimplementation data serves as the
baseline for comparison. By collecting data over a long period‚ there is
a better chance of being able to pick a period that is relatively stable or
free from major outside shocks.
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If there are major changes in the marketplace or economic conditions‚
benefits measurement becomes more difficult and potentially fraught
with controversy. The data should ideally be “corrected” to account for
these changes‚ but such corrections are difficult to make. So the judg-
ment‚ fairness‚ and skills of the managers‚ statisticians‚ and consultants
involved in the study play an important role in the credibility of the
numbers.

One way to avoid such controversies is to perform a parallel test of the
new system versus the old system. That is‚ selectively apply the new RM
system to a sample of products and markets while continuing to manage
the remaining products and markets with the old system and procedures.
This allows for a controlled experiment of the revenue performance of
the new and old systems under the same economic conditions. Many
RM vendors use this approach‚ especially for first-time adopters of RM.

Of course‚ this approach has some drawbacks. One has to take care
that the selected products and markets are representative of the total
population and that analysts behave as “normally” as possible when us-
ing each system. And it may be technically or operationally difficult to
try to run two systems in parallel. But the results of such side-by-side
comparisons are often much more credible than those based on compar-
ing performance of an entire system pre- and post-implementation.

Whichever approach is used for benefits measurement‚ it is impor-
tant that such studies not be undertaken solely as a reward and valida-
tion process. Rather‚ they should be also viewed as an opportunity for
process improvement—as a way to find and fix hidden bugs in the system
or to determine areas where the system and models can be improved.
As such‚ benefits measurement should ideally be part of a continuous
improvement process.

In addition to revenue measurements‚ senior management is usually
interested in tracking before and after measures along a number of di-
mensions. Table 11.11 lists some commonly used performance measures
that are tracked pre- and post-implementation.

11.4 RM Simulation
As mentioned‚ simulation is a flexible and powerful methodology to

evaluate RM system performance. It is also useful in basic R&D studies
to evaluate the performance of new forecasting and optimization meth-
ods. Here‚ we look briefly at some RM-specific simulation issues.

The idea of simulation is to mimic both the customer demand process
and the RM system responses to this simulated demand. A variety of
questions can be addressed using a simulation study‚ such as: What is
the potential revenue impact of changing to a new forecasting or opti-
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mization system? What are the benefits of moving from a leg-level con-
trol to a network-level control? What is the revenue difference between
different types of controls: Bid-price control or virtual nesting control?
How robust is the system to errors in forecasting? How much revenue
is lost by bad or biased forecasts? What are the revenue impacts of dif-
ferent types of customer-choice behavior (including sell-ups and revenue
dilution)? And so on. The ability to provide detailed answers to such a
wide range of questions is the main advantages of simulation.

For the results of a simulation study to be meaningful‚ the program
has to model the current business and control processes and the planned
processes as accurately as possible. Customer booking streams are nor-
mally generated using a pseudo-random number generator based on his-
torical booking patterns. A simulation clock governs the progress of
the simulation. At various points in time‚ one or more events occur.
For example‚ events for a quantity-based RM simulation include book-
ing requests‚ cancellations‚ no-shows‚ and optimization and forecasting
runs. For a price-based RM simulation‚ events include price changes‚
customer arrivals‚ and purchase decisions (purchase‚ delay purchase‚ or
no-purchase).

By carefully modeling the firm’s sale practices and customer behav-
ior‚ a reasonably accurate picture of revenue benefits can be obtained
via simulation. But even at its best‚ it is important to remember that
a simulation is only an abstraction of a real system—and it can only
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represent phenomena that the analyst programs into it. Thus‚ the level
of detail it provides can give a false sense of precision. Such caveats
aside‚ simulation remains by far the most common method in practice
for evaluating RM systems.

11.4.1 Generating Aggregate Number of
Customers

Pseudo-random number generators are used for generating arrivals
according to a specified distribution. While there are many subtleties
involved in the algorithms used to generate pseudo-random numbers‚ a
suite of well tested‚ fast‚ and stable algorithms have emerged over time
that have good statistical properties. The basic pseudo-random number
generators generate a random number uniformly distributed between 0
and 1. Prom this uniform random variable‚ a number of general tech-
niques (such as transformation methods or rejection methods [429]) can
be used to generate random numbers from a wide variety of distributions.

11.4.2 Generating the Customer-Arrival Pattern
In RM‚ the timing and order of customer arrivals has an impact on

revenue gains. For instance‚ whether customers with a high willingness
to pay arrive before those with low willingness to pay has an impor-
tant effect on revenue as well as the effectiveness of the forecasting or
optimization methods. For this reason‚ the RM simulation should be
able to generate customer arrivals following the observed patterns for
the various segments.

Mathematically‚ for each simulation run‚ we would like to generate a
random number from a target probability distribution (such as a left-
truncated normal distribution) representing the total number of cus-
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tomers of a particular segment‚ and then distribute these arrivals over
the sale period‚ following a given arrival pattern. To avoid confusion
with the distribution of the total number of customers‚ we call the dis-
tribution over time an arrival pattern.

The following procedure achieves this objective. First‚ generate a
random number from the (assumed) distribution for the total number
of arrivals‚ representing the aggregate number of customers. Then for
each one of these customers‚ generate their arrival time by considering
the arrival-pattern curve as a cumulative distribution over time. That
is‚ generate a uniform random variable between 0 and 1 and use the
inverse of the given arrival pattern to generate an arrival time‚ as shown
in Figure 11.10.

While this procedure gives a distribution of customers over time that
conforms to both the aggregate demand distribution as well as the arrival
pattern‚ it is important to note that the number of arrivals will not‚ in
general‚ be independent across disjoint time intervals. Put another way‚
a RM forecasting system could gain an advantage by basing its forecasts
on observed demand to date‚ since the expectation of future demand
conditional on observed demand may be different from the unconditional
expected demand. Whether this is as it should be is a matter of debate
among RM professionals‚ but one should be aware that with arbitrary
distributions‚ biases may be introduced into a simulation by using an
unconditional distribution when forecasting demand to come.9

11.5 Customer Perceptions and Reactions
While firms‚ for understandable reasons‚ may be enthusiastic about

RM‚ they may find that their customers are less so. Here we discuss
strategies for making RM more palatable in the eyes of customers.

11.5.1 RM Perception Problems
One well-reported incident that highlights the potential customer per-

ception problems with RM occurred in the fall of 2000 when Amazon.com
conducted a price experiment‚ quoting different prices on DVDs to dif-
ferent customers. Several customers discovered the practice by logging
onto Amazon.com’s site at different times. What they found‚ which
Amazon.com later confirmed‚ was that customers were given random
discounts of between 20% and 40% on selected DVDs. For example‚
during one online price test conducted by the E-Commerce Times‚ the

9If aggregate demand is Poisson‚ however‚ then the unconditional distribution of demand to
come is the same as the conditional distribution.
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price for the DVD Mission Impossible was offered for sale at $17.99‚ a
40% discount off list price; several hours later‚ the price had risen to
$20.99.10

The incident was picked up quickly by the press and created signif-
icant negative publicity for Amazon.com. The following are some cus-
tomer reactions to Amazon.com’s dynamic pricing experiment (Source:
DVDtalk.com):

This is a very strange business model‚ to charge customers more when they
buy more or come back to the site more.

I find this extremely sneaky and unethical.

If you walk into a store‚ you aren’t charged more based on how many times
you pick up the DVD to look at the cover‚ are you?

(Amazon.com is a) shyster.

Amazon.com denied setting prices based on customers’ past purchases
or demographic information. According to Amazon.com CEO Jeff Bezos:

We’ve never tested and we never will test prices based on customer demo-
graphics. What we did was a random price test‚ and even that was a mistake
because it created uncertainty for customers rather than simplifying their
lives.11

And on September 27‚ 2000‚ Amazon issued a statement regarding the
price test of early September:

Price testing was not based on customer demographic information. These re-
ports were incorrect and were not based on the facts. We have never tested
and we never will test prices based on customer demographics. Contrary to
these reports‚ Amazon varied the discount levels on a totally random basis.
The purpose of the test was to determine how much sales are affected by
lower prices. In retrospect‚ this random testing was a mistake‚ and we regret
it because it created uncertainty and complexity for our customers‚ and our
job is to simplify shopping for customers. That is why‚ more than two weeks
ago in response to customer feedback‚ we changed our policy to protect cus-
tomers should we ever do random price testing again (and currently we have
no plans to do so). Now‚ if we ever do such a test again‚ we will automati-
cally give customers who purchased a test item the lowest test price for that
item at the conclusion of the test period—thereby ensuring that all customers

10Lori Enos‚ “Amazon Apologizes for Pricing Blunder‚” E-Commerce Times‚ September 28‚
2000.
11Ibid.
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pay the lowest available price. Under this new policy‚ by September 14‚ we
had refunded to 6‚896 customers an average of $3.10 as a result of the DVD
random-price test.

This incident raises an interesting question: How can airlines get away
with charging different prices to different customers while Amazon.com
had such trouble doing‚ at least on the surface‚ the same thing? Cer-
tainly‚ the range of prices that airlines typically charge is much more
than the range Amazon.com charged for its DVDs. (The highest ticket
price can be ten times more than the lowest price on some flights.)

There are several explanations. For one‚ airline prices come with
restrictions‚ so the products are in fact differentiated by sale condi-
tions (even though the physical product is the same). Also‚ unlike in
Amazon.com’s case‚ customers self-select what airline fare they want to
pay (second-degree price discrimination)‚ whereas Amazon offered dis-
counts to selected customers only (third-degree price discrimination).
And while airline fares change over time as allocations close down‚ at
any given point in time‚ everyone is given the same choices‚ and no one is
treated differently. Airlines‚ moreover‚ do not control sales by changing
fares directly; they change the allocation of capacity to each fare. So
rather than prices rising‚ discounts “sell out‚” which seemingly creates
a more acceptable perception among customers. Airline customers have
also grown accustomed to frequent price changes based on many years of
experience. In contrast‚ dynamic pricing in retail is a more recent prac-
tice‚ so it may take time before customers accept it. Finally‚ dynamic
pricing is often perceived of as an irritating practice for low-priced items
because the search cost for customers is high relative to the value of the
item. In contrast‚ for expensive items like airline tickets or automobiles‚
customers are more willing to spend time and effort to shop around for
a bargain. Jeff Bezos‚ the CEO of Amazon.com‚ acknowledged as such
in a subsequent press statement.12

This list of differences should give a clue to what customers may or
may not find acceptable about RM. If customers perceive that there is
a tangible reason for price differences‚ they tend to be more accepting.
Examples include early bird or advance-purchase discounts‚ volume dis-
counts‚ a price that is related to dwindling or excess capacity (clearance
sales)‚ or prices related to the distress of the firm (going out of business
sales). In short‚ if customers can “rationalize” the price differences they
see‚ they are more accepting.

12Reuters news report‚ September 27‚ 2000.
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Also‚ customers perceive RM as more fair if they can self-select options
and all customer receive the same options at each point in time. We have
already discussed this in the context of airline fares. As another example‚
consider auction mechanisms. They neither guarantee a uniform price
to all customers nor offer stable prices over time. Yet most people regard
auctions as “fair‚ ” in the sense that the mechanism is transparent and
customers win based purely on what they are willing to bid. Since each
customer wins or loses based on his or her own self-determined bid‚ it is
hard to argue that one is ever “cheated” out of winning as a result. If‚
however‚ the firm were to (hypothetically) perform the same allocation—
that is‚ set prices and allocate units by customer valuation—then it is
likely that customers would indeed question the fairness of the process.

Customers also appear more willing to tolerate differential prices if
the product is expensive. In fact‚ for low-price products one can think
of stable “fair” pricing as producing a beneficial equilibrium between
customers and the firm‚ in which customers adopt a strategy of not
searching for lower prices (thereby avoiding search costs) and in turn
the firm adopts a strategy of not taking short-run advantage of loyal
customers (thereby inducing loyal customers not to shop around). This
perhaps explains the sense of “betrayal” among loyal Amazon.com cus-
tomers to the price experiments. When the price of the product is high
relative to search costs‚ however‚ this equilibrium is harder to sustain
because customers have a much stronger incentive to comparison shop.
Both parties seem to tolerate (or at least understand) “disloyal” behavior
as a result.

When a firm raises prices because supply is low‚ it could easily be
viewed as price gouging‚ especially for essential items. However‚ a firm
can usually avoid this stigma if there are viable alternatives to the prod-
uct and customers are made aware of these alternatives. So‚ for example‚
if demand is high for a particular resort hotel on a particular day‚ cus-
tomers should be informed of other dates with lower prices. In this way‚
the customer makes the tradeoff between a higher price and convenience.

A sense of fairness can also be explained in terms of psychological and
social factors. One theory from economics and marketing holds (see Ap-
pendix E) that customers form a reference price about an item based on
past purchases‚ market prices and prices of comparable products. The
principle of dual entitlement‚ another theory from economics and mar-
keting [522‚ 275]‚ says that customers believe that they are entitled to
a reasonable price (say‚ the reference price) and firms in turn are enti-
tled to a reasonable profit. Customers’ views of fairness‚ so the theory
goes‚ arise from these principles. Therefore‚ customers may perceive
high prices during periods of high demand as “unfair” even though the
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economic law of supply and demand would justify such pricing [275‚ 276‚
98‚ 296].

11.5.2 Managing Perceptions
The perception of unfairness is indeed a problem for RM. It is espe-

cially so if the customers come in contact (as in an airplane) and ex-
change information on the prices they paid and less of a problem when
customers are more isolated (say a hotel). For example‚ it is reported
that RM has often caused negative reactions in the cruise-line business
because customers are confined together on a ship for many days and
inevitably end up sharing information on the prices they paid.

This does not mean one should abandon thinking of implementing
RM. Rather‚ it should suggest a need to identify strategies to manage
customer perception on unfairness as part of an overall RM implemen-
tation.

How‚ then‚ can a firm appeal to the principle of dual entitlement to
convince customers that it is not price gouging? Some possible strategies
and tactics include the following.

Clarify exactly why the firm charges different prices‚ whether limited
supply‚ peak versus off-peak time‚ or advance-purchase discounts that
reduce risk—and at the same time on what bases the firm does not
charge different prices (such as knowledge of the customer). This en-
hances the sense of fairness of RM practices. In short‚ it is important
to emphasize the rationale associated with discounts and not simply
quote a price.

Emphasize any differences in the product itself‚ no matter how small
(room with a view‚ larger room). The additional value of these fea-
tures may not justify the price differences‚ but if customers feel that
the physical product itself has variations and that these variations
are the reason the firm is charging different prices‚ they will tend to
perceive the prices as fairer.

Stress alternatives that the firm offers at a lower price. So‚ for ex-
ample‚ if a discount is not available on a particular date‚ offer other
dates on which the discount is available. This not only encourages
efficient usage of capacity but also allows customers to decide‚ based
on their individual valuations‚ which of the alternatives they want to
buy.

Emphasize self-selection wherever possible. Present a full menu of
prices and products so that customers can choose for themselves.
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To the extent possible‚ discourage price disclosure among customers.
For example‚ do not display price overtly on tickets and other paper-
work‚ and keep sale interactions as private as possible.

11.5.3 Overbooking Perceptions
One area of RM where customer expectations have to be managed

especially carefully is overbooking. Customers who make a reservation
and pay for it expect to receive the product. At the same time‚ customers
who reserve and cancel expect a full refund‚ since from their point of view
they have not used the product. Overbooking‚ as discussed in Chapter 4‚
is the fine art of balancing these customer expectations while maximizing
utilization of capacity.

Managing overbooking is certainly not limited to just the science and
models. No matter how well the models perform‚ there will inevitably
be a day when a customer with a guaranteed reservation cannot be
accommodated. So policies and procedures need to be put in place to
handle these inevitable denied-service situations.

Customer acceptance of overbooking depends to a large part on tradi-
tion and industry norms. In the airline industry in the United States for
instance‚ it is pretty much accepted as part and parcel of airline travel.
This can be attributed to a number of reasons. First‚ the voluntary
denied-boarding system discussed in Section 4.1.1‚ whereby volunteers
are requested to take an alternative flight in return for compensation‚ is
widely perceived as a fair means of selecting who will be denied service.
Second‚ airline travelers usually have a number of alternatives flights.
Third‚ the process is transparent; all passengers are gathered together
at one spot at the time of departure‚ so everyone realizes that the flight
is oversold and that someone has to be left behind. (This cannot be said
for a hotel‚ for instance‚ as an arriving customer sees no queue or clear
evidence of a full hotel.) Finally‚ there is a long history and tradition
of overbooking in the airline industry‚ and airline ticketing staff are well
trained to handle denied boardings.

Planning‚ training of customer-relations staff‚ and well-established
policies and procedures are the key factors in managing overbooking.
Firms usually have advance notice that an overbooking situation is go-
ing to arise. By adequately making plans in advance‚ customers can
often be accommodated with substitute arrangements.

If customers have to be denied service involuntarily‚ the procedures
should be fair and minimize inconvenience to the customer as much
as possible. Compensation should be flexible and geared toward the
interests of the customer. If the customer expects cash (in lieu of‚ say‚ a
50% discount for the next stay at the hotel)‚ the firm should specify how
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much cash can be offered. Customer-service staff also needs to be trained
to manage customer expectations about the level of compensation.

It should be pointed out that in the airline industry‚ despite the highly
refined practices and many years of experience‚ overbooking still ranks
among the most prominent customer-service problems. Thus‚ the prac-
tice is something of an awkward compromise between service quality and
efficiency.

11.6 Cultural‚ Organizational‚ and Training
Issues

With all the sophisticated models and mathematical techniques em-
ployed in RM‚ it is easy lose sight of the human and organizational chal-
lenges involved in implementing and maintaining a RM system. The
huge investments in technology also tend to overshadow important or-
ganizational issues. Yet poor organizational planning is often the reason
cited for the failure of a RM implementation‚ and poor training is fre-
quently blamed for subsequent inadequate performance. In this section‚
we look at the main RM organizational and training issues.

11.6.1 Changes in Responsibility by Function
Organizational and business process changes are usually required at

the time of the introduction of RM‚ and once the RM system stabi-
lizes‚ even broader organizational changes may be desirable. As a RM
system implementation cuts across multiple departments and functional
areas‚ it requires significant cross-functional coordination. Product de-
sign‚ capacity planning‚ pricing‚ inventory control‚ operations‚ IT‚ sales
and marketing‚ and finance departments are all affected to some degree
or the other by a RM system implementation. Let us first review how
the main groups are affected.

11.6.1.1 Analysts
If a firm is managing pricing or inventory manually‚ the analysts who

make the day-to-day decisions are the most affected by a RM system‚ in
the sense that it is their work routines and roles that change the most.
As the technology behind RM is alien to most analysts‚ they are of-
ten intimidated by the sheer complexity of a RM system and suspicious
that an automated system could replace their own intuition and expe-
rience. They also often may feel their jobs are threatened by a move to
automated decision making.

Therefore‚ top management ought to emphasize that RM is first and
foremost a philosophy and a set of business practices and is secondarily a
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decision support technology. It is important to stress that the technology
is a tool intended to help them make better decisions not a machine to
replace them. It is worth emphasizing the vital role of analysts in both
monitoring the system’s recommendations and intervening when special
conditions warrant intervention. Analysts should also be educated about
the basics of the science behind the system’s functionality, to demystify it
as much as possible. They should understand its inputs, outputs, and the
underlying assumptions behind the methodology. Emphasizing that they
will be upgrading their skills and learning “leading-edge” technology also
helps motivate the transition. Once the analysts understand and buy in
into the RM concept, they will be more comfortable using the system.

The quality of analysts’ jobs almost always improves once a RM sys-
tem is implemented. Their role changes from making routine inventory
or pricing decisions manually to monitoring the output relative to the
current business situation. For example, if an unexpected event happens
that affects demand, they can adjust forecasts manually to compensate;
if business objectives require more or less aggressive overbooking, they
can adjust the parameters to get the desired effect. Rarely do analysts
need to override optimization outputs directly. However, if the business
need arises, they can open up or close a particular booking class (for
quantity-based RM) or set markdown rates manually across stores (in
price-based RM). Analysts can also use the system to perform “what if
analysis, eliminating a large part of the guesswork involved in making
decisions. Or they can let the system come up with the optimal decisions
automatically based on revised inputs. In short, whereas the former role
of analysts could be described as allocation or price setters, their new
role becomes one of model calibrators, data analysts, problem solvers,
system performance monitors, and business controllers.

11.6.1.2 Sales Teams
Sales teams are frequently effected by a RM implementation, espe-

cially if their compensation is based on sales volume. Volume of sales is
not the primary objective for RM, of course; increased revenue is. And
meeting this revenue objective may mean lower unit sales. More impor-
tant, while the salesforce might have had the right to sell at their own
discretion, once a RM system is in place they may be prevented from
offering discounts. Sales representatives may view this as undermining
their relationship with customers and limiting their ability to meet sales
goals.

The expectations of the salesforce therefore also have to be managed.
As with analysts, the salesforce has to be educated about the basic prin-
ciples of RM. They should be trained to sell products using the forecasts
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and system allocations as guidelines. So instead of seeing closed alloca-
tion or discounts as a lost opportunity for selling, they should be encour-
aged to shift demand to products or period where discounts are open
or persuade customers to upgrade. Their role should also include gath-
ering market intelligence on private deals that competitors are offering,
so products and discounts to match the competition can be introduced.
Indeed, sales has always performed a market intelligence function, it is
just made more challenging by RM because of the increase in the number
of products and the complexity of the sale restrictions.

Finding the right incentive structure for sales teams in a RM frame-
work is also an important challenge. Ideally, one would like to set incen-
tives for the salesforce to generate profitable sales, while still maintaining
the correct valuation for new incremental business. A few approaches
have been tried using non-volume-based measures. For example, in air-
line RM group sales, the salesforce may be rewarded based on the revenue
they generate in excess of the estimated bid prices (opportunity costs)
for the capacity they sell. Such incentives have the potential to better
align the saleforce’s efforts with the objectives of the new RM system.

11.6.1.3 IT Department
Because of the massive technological development involved in RM,

IT departments are frequently placed in charge of implementation. A
RM system, however, is not like many other IT systems, in the sense
that it is based on scientific models that are highly data-fragile. The
system can be easily corrupted by data that is out of date, insufficient,
or not cleaned properly, even while it keeps giving out reasonable-looking
numbers.

RM systems also need data collected at the lowest possible level, and
they need data stored for a relatively long time in operational databases.
Storage costs have come down so much that it is no longer that expensive
or difficult to store detailed customer data over many periods. Rather,
the issue is more about developing the systems and procedures so that
data is automatically stored, retrieved, and analyzed quickly. If the firm
is not collecting the data suitable for RM, then the IT department must
start working on such data collection far ahead of a RM implementation,
so that the models have enough historical data to build on. Indeed, the
IT department may need to start collecting data even prior to choos-
ing a vendor or defining the need for a RM system, which may create
budgetary and staffing conflicts that require high-level intervention to
resolve. Also, there is the potential for something of a chicken-and-egg
dilemma in this regard, as a RM system won’t perform well without data,
and the data is not worth gathering if the system is not performing well.
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11.6.1.4 Other Functions
Other functional areas of the organization will be affected by a RM

implementation as well. Pricing analysts and product-design groups
have to input their knowledge on customer preferences and behavior so
appropriate RM products can be created. Business rules and existing
business contracts have to be respected and the RM system needs to
conform to these rules.

Operations and customer-service divisions are affected by overbooking
decisions made by a RM system. If the firm never practiced overbooking
in the past, or did it in an ad-hoc way, then customer-service represen-
tatives and field managers have to be involved in the implementation
and develop proper customer-service procedures to handle oversale sit-
uations.

11.6.2 Project and Organizational Structure
Given the interdepartment coordination and rapid communication

that is required, any RM implementation should involve careful review
and planning for the new organizational design, both at the project stage
and at the operational stage.

11.6.2.1 Project Organization
The project leadership role could be taken by the operations research

group—or lacking one, by the pricing or inventory-control group. How-
ever, IT and sales organizations have to be involved even from the
project-conception stage. All this will be feasible, of course, only if
senior management buys in and backs the project wholeheartedly. A se-
nior officer has to be actively involved in the implementation to smooth
over interdepartmental frictions and priorities. Indeed, most industry
experiences of RM cite top-management leadership as a key success fac-
tor. It is also important to have all teams involved every step of the
way—from initial proposal, to implementation, to training, to perfor-
mance measurement. Table 11.12 shows a task list for a typical RM
implementation.

11.6.2.2 Operational Organization
It is also important to think through the organizational design that

will support RM on an ongoing basis. One important issue is how an-
alysts are organized (by product, market, or resource). For example,
in airline single-resource quantity-based RM, analysts are normally as-
signed collections of flights to manage. The flights may be related by
geographical market (flights into or out of the same city) or by “type”
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(leisure versus business markets). In retail RM, analysts (buyers) are
typically organized by product category (women’s casual sportswear),
though they are occasionally organized by geographic region. Hotels are
usually managed on an individual property basis, while car-rental ana-
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lysts are most often organized on a regional basis. Figure 11.11 shows
some typical organizational charts in RM industries.

Each such organizational design involves a tradeoff; reducing the com-
plexity of the decision-making task by decomposing the problem versus
maintaining synergy and coordination among decisions by expanding
the domain of control. There is no perfect solution to this problem, and
different firms have had success with different organizational designs.
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A second organizational issue is how to manage the various levels of
decision making. For example, traditionally most airlines had separate
marketing, pricing, and inventory-control groups. The marketing group
was responsible for high-level decisions about branding, fare structure,
and promotions; the pricing group was responsible for monitoring and re-
acting to fare changes in each O-D market; finally, the inventory-control
group was responsible for day-to-day overbooking and capacity-control
decisions on each flight. Today, however, many airlines are integrating
all three functions into a single group, as the three sets of decisions are
interrelated. Again, the main tradeoff here is between a desire for coor-
dination versus a need to keep the analysts’ job focused and manageable.

A final issue concerns which functional area has overall responsibility
for RM. It is common to have both inventory control and pricing as mar-
keting responsibility, although there are many firms where the finance
department or even operations department is responsible for both, and
some where pricing and inventory control are organized in a separate
department reporting directly to the CEO.

11.6.2.3 Organizing for Network RM
Organizing for network RM presents special challenges. For one, if

the current organization has analysts responsible for a limited number
of markets, then as a network RM system makes decisions that cut across
market boundaries, reorganizing analysts’ responsibilities is almost al-
ways necessary to avoid conflicts. For example, if analysts make changes
to a forecast, should they be allowed to reoptimize the network? What if
multiple users are making changes at the same time? Such concurrency
and locking issues frequently come up in a network RM system.

A network RM organizational structure normally has some analysts
work at the market level and some at the network level, responsible
for resolving any conflicts that arise across the different markets and
for coordinating and batching forecast and parameter changes, Such
network coordinators can also liaison with groups desks and network
(product) designers.

If the RM system is implemented across multiple resources (a retail
chain using price-based RM across multiple stores, a hotel chain imple-
menting a RM system across all its properties, or a freight company
managing inventory over many branch offices), then the question of cen-
tralized versus decentralized control arises. That is, should the system
reside at head office and forecast and optimize across all the dispersed
resources, or should each unit have its own decentralized RM system?

The argument for decentralization is that local field managers are in
closer touch with their markets, so they are perhaps in a better position
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to manage the system’s decisions. On the other hand, from a system’s
point of view, it is a lot easier to manage a centralized system. More-
over, a central system enables a firm to dedicate a set of skilled and
experienced RM professionals focused solely on managing, developing,
and maintaining the system. If the firm is using multiresource optimiza-
tion, then RM by necessity has to be performed centrally as information
has to be aggregated in real time. (For example, the hierarchical Bayes
models of Section 9.3.6 requires information from multiple resources.)

With the increasing use of Web-enabled applications and interfaces, a
compromise solution is to do the processing at a central office for all the
units but let unit managers control the results, prices, or allocations, via
a Web-enabled interface.

11.6.2.4 Operational Responsibility
Once the system is in operation, a different set of organizational issues

comes up. To begin with, who should have operational responsibility of
the system? Again, some interdepartmental coordination is unavoidable.
While certainly the inventory control or pricing department “owns” the
system as they are the daily users, they need the IT department to
support the system, the operations research department to support the
models and the science, and the pricing, sales, and marketing depart-
ments to coordinate prices, deals and promotions.

As mentioned, many firms with ongoing RM practices are finding that
it is best to merge pricing and inventory-control departments. Pricing
and RM are so strongly linked that unless one unit is responsible for
both, no real coordination can be achieved. For instance, if prices are
changed, forecasting based on historical data (as is done currently) can
be unreliable. Analyst intervention is then required to manually adjust
the forecasts. However, the processes for such close communication get
complicated if the responsibility resides in different departments. An-
other reason for having pricing and inventory control under the same
roof in the airline industry is the emergence of pricing decision support
systems that complement RM systems.

11.6.3 Training
As regards training employees for RM, the abiding sentiment in indus-

try is that there can never can be enough it. Most vendors offer on-site
training programs. In addition, many consulting firms and professional
schools have customized education and training programs by industry.

Training classes, both before and after implementation, should be
conducted at various levels of management. For midlevel managers, the
main emphasis should be on the principles of RM. For supervisors, more
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training is needed on the details of the technology (at least at a concep-
tual level) and how the system “thinks” in terms of coming up with its
recommendations. Analysts and line managers need this same training,
but they also need specific training in how to use the software effectively
and when and when not to override the system recommendations.

Training should also be extended to groups that are not direct users of
the system but are affected by it. This includes sales, customer service,
pricing, and groups desks.

11.7 Notes and Sources
The standard technical book on market segmentation is Wedel and

Kamakura [558]. A few more technical methods for segmentation can be
found in Moorthy [389] and Kamakura and Russell [286] A nontechnical
guide to market segmentation is McDonald and Dunbar [371].

Apart from the articles mentioned in the text, surveys on conjoint
analysis and implementations can be found in Cattin and Wittink [102],
Wittink, Vriens, and Burhenne [574], Wittink and Cattin [573], and
Carroll and Green [99]. For applications of conjoint analysis for travel
industry product design specifically, see Varini, Engelmann, Claessen
and Schleusener [532] and Wind, Green, Schifflet, and Scarbrough [570].
Issues in estimation from conjoint analysis can be found in Green, Gold-
berg, and Montemayor [223] and Lenk, DeSarbo, Green and Young [339].
In addition, all the conjoint analysis software vendors’ websites carry
many articles on both technical and nontechnical aspects of conjoint
analysis (e.g., www.sawtoothsoftware.com).

The product design model of Section 11.1.2 is due to Talluri [502].
A history of GDSs, PMSs and CRSs and their operations can be found
in Gellman and Fitzgerald [204], Flint [191], Lee [334], and U.S. GAO
report [410].

Further details on random number generation, with excellent com-
puter codes, can be found in Press, Teukolosky, Vetterling, and Flan-
nery [429]. Furthermore, there are many excellent books on simulations.
We recommend Law and Kelton [331] for an introductory-level text.

Human-resources aspects of a RM implementation can be found in
Donaghy and McMahon-Beattie [160, 159], Jones and Hamilton [272],
Luciani [350], Peters and Riley [416], and Yeoman and Watson [585].

Discussions on fairness and consumer perceptions can be found in
the following articles: Kimes [302], Campbell [98] and Kaufmann, Ort-
meyer, and Smith [296]. Besides, the prospect theory of psychology and
economics also has relevance on consumer perceptions of price discrimi-
nation (Kahneman and Tversky [278]).
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The material on organizational issues has been gathered from many
industry presentations and conversations with industry RM practition-
ers.

APPENDIX 11.A: Normal and Inverse Normal Ap-
proximations

Most spreadsheet programs and mathematical libraries have functions for the nor-
mal distribution and its inverse. The formulas in this appendix are useful for any-
one programming a RM system (say, an EMSR algorithm). There are a number of
such approximations circulating as folklore in the scientific programming community.
The normal approximation we present is due from Abramowitz and Stegun [2] and
Bagby [24] and is accurate up to four digits. The inverse normal distribution is based
on Halley’s method ([455]) and presented here as implemented by Acklam [3].

It is common in quantity-based RM practice to assume that the aggregate number
of customers follows a normal distribution truncated to the left at zero. As is well-
known, there are no closed-form expressions for the normal distribution and its inverse.
In simulations (as well as in RM optimization algorithms such as the EMSRb) rational
approximation functions to the normal distribution are used, which we describe next.
Both are highly accurate and sufficient for most practical applications in RM.

The following approximation is accurate up to four digits.
Approximation formula for where X ~ Normal (0,1):

if stop
if stop
let

if let

else

end if
The next approximation method for inverse normal is considered accurate to nine

digits.

Approximation formula for and
if and only if where X ~ Normal (0,1):

let
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if
let

end if

if
let

end if

if
let

end if
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Notation

Scalars, Vectors, and Matrices
Scalars Scalars are denoted by plain (not boldface) characters, such as

Vectors Vectors are denoted by boldface characters, so, for example,

Matrices Matrices are denoted by boldface uppercase characters, such as
where denotes the element in the row and column of A. The       row
of a matrix A is denoted and the column is denoted

Inner products The inner product of two vectors x and y is denoted and is
defined by

The inner product of a matrix A and a vector x is denoted and is defined
as the vector

The following is a list of variables along with a description of their typical meanings
throughout the text.

Roman Variables
Incidence matrix for a network model where if resource is
used by product and otherwise; rows, columns.

The row of the incidence matrix A.

The set of products that use resource

The column of the incidence matrix A. Also used to denote the set of re-
sources used by product

The set of resources used by product

Booking limit or nested booking limit.

The        “fill event.”

A
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Variable cost of production; cost function. Used in economics and overbooking
models

C Initial capacity of resource vector of initial capacities. Also used to denote
the complete set,

d, d(p) Demand (deterministic or mean) for product vector of demands.
A demand function depending on price vector demand function.

D Demand (random variable) for product vector of demand random variables.

h Cost parameters or vector of cost parameters in an overbooking models.

Generally indexes resources but also used as a generic index.

Generally indexes products but also used as a generic index.

The marginal revenue as a function of price; the virtual value of a buyer
with value

Capacity cost in economics models; generic integer variable.

The number of resources; generic integer variable.

The number of products; generic integer variable.

N Population size or market potential in a pricing or an auction model.

Denotes the set {1,2, . . . , } (e.g., set of choice alternatives).

p(t), p Price of product at time or vector of prices at time static price
of product vectors of static prices.

q The probability that a customer shows up (e.g., the probability that class
does not cancel); vectors of probabilities.

Expected revenue in an auction for buyer with value

S, A subset of product classes or alternatives in a choice model; also used to
represent a sum of random variables.

Used to index time, either in discrete or continuous time.

T The number of periods in a discrete-time problem or the length of the horizon in
a continuous-time problem. Also used to denote a generic set.

u, u(t), Control variables in a dynamic program or other optimization prob-
lem, most often an accept or deny decision or a quantity decision. Also, is used
to denote the mean of a random-utility in a random-utility model or to denote
a utility function in economics models as in is the utility of

U Random utility (random variable); vector of random utilities.

v Reservation price (private value) of customer vector of reservation price (pri-
vate values).

Optimal value function.

A given approximation M to the optimal value function (e.g., is the
approximation of the value function produced by the deterministic linear program
(DLP) model).

x Capacity variable; vector of capacities. For example, the remaining capacity
of resource in a dynamic program or the quantity of capacity chosen by firm
Also used as the decision variable in overbooking models, where it represents the
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overbooking limit (virtual capacity). Vector of such state variables or capacities.
Finally, used as capacity- or quantity-choice variable in economic models.

y Allocation variable or protection level for product vector of allocations or
protection levels. Used in models for finding partitioned or nested allocations.
Also the state variable (number of reservations on hand) in overbooking models.

Notation used in forecasting. Data value of a forecast observed at time (realiza-
tion of random variable

Notation used in forecasting. Forecast (point estimate) of time-series value at time
(estimate of unrealized value

Notation used in forecasting. The random variable in a time series

Number of customers who show up (number of survivals) from a given
number of reservations on hand. Used in overbooking models.

Number of customers who cancel from a given number of reservations on
hand;

Greek Variables
An arrival rate in a deterministic demand model and arrival intensity or arrival

probability in a probabilistic-demand model.

The first-difference operator; if is a function, then

The elasticity of demand; the cross-price elasticity of demand for product
with respect to the price of product

The mean of a random variable.

A constraint set; the contraint set of prices and demand rates

A bid price value or function—or a dual price from a math program.

The variance of a random variable.

A generic parameter of a distribution or a scaling parameter.

The standard normal distribution (i.e.,

The standard normal density (i.e.,

The moment-generating function of a random variable X.

An elementary outcome in a probability space (e.g., a random variable is

Miscellaneous Symbols and Notation
The set of real numbers the set of nonnegative real num-

bers the real plane and the positive orthant.

The set of integers, {. . . ,–2,–1,0,1,2, . . .}.

The transpose of a vector x or a matrix A.

The positive part of x equal to the positive part of the quan-
tity

The negative part of equal to the negative part of the
quantity
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The unit vector; a vector with one in the component and zero in all other
components.

The vector x without the component; that is, the vector

The class of continuously differentiable functions on         the class of all twice-
continuously differentiable functions on

Abbreviations
a.s. Almost surely.

c.d.f. Cumulative distribution function.

i.i.d. Independent and identically distributed.

p.d.f. Probability-density function.

p.m.f. Probability mass function.
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Probability

Probability Spaces and Random Variables
A probability space is defined by a triple where is a given set of

elementary outcomes, is a collection of subsets of (each such subset B is called
an event), and P(·) is a probability measure that assigns a nonnegative number P(B)
to each subset B in

The collection of subsets must satisfy

If B is in then so is its complement

If are events in then and are also in

The probability measure must satisfy

for all

If are disjoint events, the

A random variable is a function mapping elementary outcomes to real numbers,
and is denoted —or simply X, where the dependence on is

implicit. The cumulative distribution function (c.d.f.) of a random variable X—or
just distribution function for short—is defined by

If X takes on only countable values, we define the probability-mass function (pmf) by
the function

Such a random variable is said to be discrete. If F is differentiate, then the probability-
density function is defined by

Such a random variable is said to be continuous.
Let denote a vector of random variables and a

real vector. Then we define the joint distribution of X by
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The random variables are said to be independent random variables if

where (which is referred to as the marginal distribution of
If, in addition, for all then the random variables are said to be
independent and identically distributed—or i.i.d. for short.

Expectations and Moment-Generating Functions
The expected value—or mean—of a random variable X is defined by the integral

where the right-hand side above is equal to if X is continuous and
when X is discrete. For a general function the ex-

pected value of is defined by

The variance of X is defined as

If X and Y are two random variables, the covariance is defined by

The moment-generating function of X is defined as

The moment of X is defined as If the moment-generating function exists
then one can determine the moment of X using the fact that

where denotes the derivative with respect to
The moment-generating function is also useful for analyzing sums of random vari-

ables. Indeed, if X and Y are two independent random variables with moment-
generating functions and respectively, and Z = X + Y, then

That is, the moment-generating function of a sum of independent random variables
is simply the product of their individual moment-generating functions.
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Inequalities
Jensen’s inequality states that if is a convex function, then

This is often useful in obtaining bounds on stochastic optimization problems.
Another useful bound in RM problems is due to Gallege [200] and involves a bound

on the function (the positive part of X — It states
that for any random variable X with mean and finite variance

For example, if X is demand and is a capacity level, then is the rejected
demand (spilled demand) and the above bound provides an upper bound on the
expected spilled demand

Some Useful Distributions
We next provide the basic definitions of the most commonly used distributions in

RM problems.

Discrete Distributions
Bernoulli
A random variable X has a Bernoulli distribution if it takes on only two values, 0 and
1. A Bernoulli distribution is characterized by a single parameter (the probability
that X = 1) with In RM, it is often used as the model of a single
cancellation.

The basic definitions and properties are

Binomial
A random variable X has a binomial distribution if it is the sum of independent
Bernoulli random variables. For example, the number of cancellations in a group
of reservations when each independently cancels with probability A binomial
distribution is characterized by the two parameters and with and

The basic definitions and properties are
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Poisson
In RM, the Poisson distribution is used as a model of demand or as a (continuous
parameter) approximation to the Binomial distribution. It is characterized by a single
nonnegative parameter (its mean).

The basic definitions and properties are

Continuous Distributions
Uniform
A uniform distribution is defined by two constants and represents a case where
the random variable is equally likely to assume any value in the interval

The basic definitions and properties are

Exponential
The exponential distribution is defined by a single parameter

The basic definitions and properties are
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Normal
The normal (or Gaussian) distribution is frequently used as a model of demand. It is
characterized by two parameters, its mean and its variance

The basic definitions and properties are

The normal has the property that if X and Y are two independent normal random
variables, then the sum X + Y also has a normal distribution (it is “closed under ad-
dition”). For example, if X and Y are independent with means and variances

(respectively), then their sum X + Y has a normal distribution with mean
and variance

Gumbel
The Gumbel (or double-exponential) distribution is frequently used in discrete-choice
models because it is “closed under maximization.” That is, the maximum of two
Gumbel random variables is also a Gumbel random variable. It is characterized by
two parameters, a scale parameter and location parameter

The basic definitions and properties are

where  is Euler’s constant and is the extension of the factorial function
to real numbers

If and are two independent Gumbel random variables with parameters
and respectively, then is a Gumbel random variable with para-
meters

Stochastic Monotonicity and Convexity
Consider a random variable X that depends on some parameter so that

That is, is a random function of For example, X could be the number
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of customers who show up out of reservations, in which case

where are i.i.d. Bernoulli random variables with and

Given a function suppose we are interested in determining properties of the
expected value as a function of For example, if is increasing in is

increasing in If is convex in is convex in Stochastic
monotonicity and convexity identify classes of random variables for which such
statements can be made. A good source for this material is the series of papers by
Shaked and Shantikumar [460, 461] and their subsequent book [462].

DEFINITION B.1 The random function is stochastically increasing in
if for all

A random function is stochastically decreasing in if — is stochastically
increasing. An equivalent definition is provided by the following proposition:

PROPOSITION B.1 is stochastically increasing in if for any
there exists two random variables and defined on a common probability space

such that and are equal in distribution to and (respec-
tively), and they satisfy for all

Continuing our example, we see that if where are i.i.d.
Bernoulli random variables, then is stochastically increasing, since we can con-
sider to define an infinite sequence and consider to be the sum of
the first   variables in this sequence. For every the sums and
will have the required distribution and for every such sequence

The following proposition follows easily from this sample path definition of monotonic-
ity:

PROPOSITION B.2 is stochastically increasing in if and only if for any
real valued, increasing function is increasing in

Similarly, one can define a notion of stochastic convexity for

DEFINITION B.2 is stochastically convex (SCX) if for any real valued,
convex function is convex in

We say is stochastically concave (SCV) if  –   is stochastically convex, and
we say is stochastically linear if it is both stochastically convex and stochastically
concave.

To verify whether the above holds is often difficult. However, two stronger notions
of stochastic convexity are quite useful and both imply stochastic convexity. These
are:

DEFINITION B.3 is said to be strongly stochastically convex  (SSCX) if
where Z is a random variable independent of and is convex in

for every value of Z.
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For example, suppose where Z is a standard normal random
variable. Then is normal with mean and standard deviation and is
strongly stochastically convex in

A somewhat weaker version of stochastic convexity is the following:

DEFINITION B.4   is stochastically convex in the sample-path sense
(SCX-sp) if for any four values satisfying and

there exist random variable defined on a common
probability space such that is equal in distribution to
and

for all

To illustrate, we show that the sum of Bernoulli random variables is stochastically
convex (and concave) in this sample path sense. To do so, let be
integers satisfying and and let define an
infinite sequence of i.i.d. Bernoulli random variables as before. Note that

(else and define

Note is equal in distribution to since each is the sum of i.i.d. Bernoulli
random variables, and by construction

so is stochastically convex in the sample path sense.
The following proposition relates these versions of stochastic convexity:

PROPOSITION B.3

So showing is either strongly stochastically convex or stochastically convex in
the sample path sense, implies that is stochastically convex. Again, returning to
our example, this implies that if is the sum of i.i.d. Bernoulli random variables
and is a convex function, the is convex in
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Appendix C
Convexity and Optimization

Here we review the basic theory of optimization problems and associated defini-
tions.

Convex Functions and Sets
Convexity is central to the theory of optimization. We begin with a definition of

a convex function:

DEFINITION C.5  A function is convex on a set if, for all

If the inequality above is strict for all then is said to be strictly convex. A
function is said to be concave if is convex and strictly concave if is strictly
convex.

Convexity can also be defined for sets:

DEFINITION C.6 A set  is a convex set if, for all  and

A point of the form is referred to as a convex combination of the points x
and y. A convex set, therefore, is one with the property that any convex combination
of points in the set is also contained in the set. We also have

DEFINITION C.7 A point x is said to be an extreme point of a  convex set X if
there are no two distinct points y, with such that for
some

In other words, x cannot be expressed as the convex combination of two distinct
points in X.

Let denotes the class of continuously differentiable functions on and
denote the class of all twice-continuously differentiable functions on (See below.)
Here are some properties of convex functions:



Let denote the unit vector (the vector with all components zero except
for the component, which is one). Then the partial derivative of a function

is defined by

provided the limit exists (where here denotes tending to zero from above or
below). If all partial derivatives exist, the gradient is defined as the (column) vector

If each of the partial derivatives of at x is itself a differentiable function of then
we define the second partial derivatives by

The matrix of second partial derivatives is called the Hessian of at and is
denoted

Consider a vector direction The directional derivative is defined by

provide the limit exists. The function is said to be differentiable at x if and only if
exists and

A function is said to be continuously differentiable on a set X if the gradient
exists for all and is continuous on X. The class of all continuously differentiable
functions on is denoted denotes the class of all functions with continuous
second partial derivatives on

For a convex function the gradient exists almost everywhere (at all but a count-
able number of points in X). If is convex but the gradient does not exist everywhere,
it is useful to define a generalization of the gradient called a subgradient of

644 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

PROPOSITION C.4
(i) If and are convex, then is convex.
(ii) If is convex, then is convex for all and is concave for all

(iii) If is convex function on a convex set X, then the level set
is a convex set.

(iv) If then is convex over a convex set X if and only if
for all x,

(v) If then is convex over a convex set X containing an interior point if
and only if the Hessian, is positive semidefinite throughout X.

Derivatives and Subderivatives
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DEFINITION C. 8 Let be a convex function defined on A subgra-
dient of at point x is a vector satisfying

The subdifferential of a at x, denoted is defined as the set of all subgradients
of at x. The definition for concave functions simply has the above inequality
reversed.

Optimization Problems
Let denote a vector of decision variables, be a given objective

function and be a constraint set. A point x in the set X is called feasible, and
points not in X are called infeasible. In a maximization problem, we seek a feasible
solution —called a global maximum (or global optimum)—such that

Equivalently,  solves

We say such an is globally optimal. If X is the empty set, then the above optimiza-
tion problem is said to be infeasible; otherwise, the problem is feasible. If
the problem is said to be unconstrained. The problem is called unbounded if there
exists a sequence of feasible points with for all and

A minimization problem reverses the inequality above and is equivalent to maxi-
mizin  –   We focus here on only the maximization version. If is concave and
X is convex, then the problem (C.3) is called a convex optimization problem.

Let denote the ball of radius about the point x. A
solution is called a local maximum (or local optimum) if there exists an such
that

We say such an is locally optimal. Note all global optima are also locally optimal.
In the convex case, local and global optima coincide:

PROPOSITION C.5   If is a concave function defined on a convex set X, then
any local maximum is a global maximum. If is strictly concave, then if a global
maximum exists, it is unique.

Optimality Conditions
Optimality conditions help identify and characterize optimal solutions. They are

useful both theoretically and computationally.
Suppose Then we have the following first-order necessary conditions for
to be an optimal solution:

PROPOSITION C.6 If       and is a local maximum, then there exists an
such that

In particular, if (the unconstrained case), then this condition reduces to
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If is concave, then these conditions are also sufficient:

PROPOSITION C.7 Suppose is a concave function and X is a convex set.
Then if a point satisfies

it is a global maximum.

In the nonconvex unconstrained case, local optimality is guaranteed by the follow-
ing second-order sufficiency conditions:

PROPOSITION C.8 If and  then if a point satisfies
(i)
(ii) is positive definite,
it is a local maximum.

There are no general sufficient conditions for global optima in the nonconvex case.

Equality and Inequality Constraints
Suppose the set X is defined by a set of linear equalities. That is,
where (i.e., so the optimization problem

to solve is

We require the following definition:

DEFINITION C.9 A point satisfying is said to be a regular point  of
the constraints h(x) = b if the vectors are linearly independent.

The assumption of regularity of is an example of what is called a constraint qual-
ification, a condition that ensures that the first-order conditions correctly identify a
local optimum.

We then have the following first-order necessary conditions:

PROPOSITION C.9 Suppose and is a local maximum of the function
over the constraint set Then if is a regular point, there exist
a vector such that

A vector above is called a Lagrange multiplier of the constraints h(x) = b.
If the constraint set is defined by inequalities, so the problem is

where                    then similar conditions apply. Indeed, the definition of a regular
point in this case is:
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DEFINITION C.10   A point      satisfying   is said to be a regular point
of the constraints if the vectors in the set are
linearly independent,

This leads to the following first-order necessary conditions (called the Kuhn-Tucker
conditions):

PROPOSITION C.10 Suppose and is a local maximum of the function
over the constraint set Then if         is a regular point, there

exist a vector with such that

In the convex case, both Propositions C.9 and C.10 provide sufficient conditions
for optimality. That is, if is concave, the set X defined by the equality or inequality
constraints is convex, and we find a feasible solution and an associated multiplier

satisfy the conditions of Propositions C.9 (or Proposition C.10 in the inequality
case), then is a global maximum.

Sensitivity Analysis
The Lagrange multipliers have an interpretation as giving the rate of change of

the objective function as a function of the right-hand side vectors. Indeed, let

Then under some relatively mild regularity conditions (see Bertsekas [59]), one can
show

where is the Lagrange multiplier associated with an equality-constrained optimal
solution Similarly, if

then

where is the Lagrange multiplier associated with the corresponding optimal
solution The multipliers therefore measure the effect that small changes in the
right-hand-sides have on the optimal objective function value.

Parametric Monotonicity
Paramteric monotonicity addresses the question of how optimal solutions vary as a

function of the parameters of an optimization problem. These parametric monotonic-
ity results are used, for example, in the analysis of the base-stock, list price policies of
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Section 5.3.2, which show that the optimal list price in an inventory-pricing problem
(the optimal solution) is decreasing in the inventory on hand (the parameter).

More abstractly, let be a constraint set, be a set of parameter
values and be an objective function. We need the following definition:

DEFINITION C. 11 A function is said to have increasing differences
in if for all and

Define the component-wise minimum (the meet) of two vectors x and y in by

and the component-wise maximum (the join) of the vectors by

A set is called a lattice if for all x,y in X, the meet and joint of x and y
are also in X. If in addition X is compact (closed and bounded), then the set X is
called a compact sublattice. A point is said to be a greatest element (respectively,
least element) of the sublattice X if (respectively, for all We
then have

PROPOSITION C.11   If X is a nonempty, compact sublattice, then X has a greatest
and least element.

That is, if X is a compact sublattice, we can always identify a “largest” and “smallest”
(component-wise) element of the set X.

Consider next the following definition:

DEFINITION C.12 A function is said to be supermodular in z if for
all z and in

If above is a function, then it is supermodular if and only if the cross-partial
derivatives satisfy

So for functions, supermodularity corresponds to nonnegativity of the cross-partial
derivatives.

Now consider the following optimization problem, for fixed

and define the optimal action correspondence (such as a set of optimal solutions)

We want to determine when these optimal solutions are in some sense “increasing”
in
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The following theorem (see Sundaram [495] and Topkis [516] for proofs) shows that
the property of decreasing differences and supermodularity can be used to establish
such parametric monotonicity.

THEOREM C.1 Suppose that (i) the optimization problem (C.5) has at least one
optimal solution for each (ii) satisfies decreasing differences in and
(iii) is supermodular in x for each Then for each there exist a greatest
optimal solution This greatest optimal solution is nondecreasing in
the parameters that is, for all

This result says that higher values of lead to higher optimal decisions Cor-
responding definitions of decreasing difference and submodularity are used to show
when optimal solutions are decreasing in a given parameter.

Linear Programs
An optimization problem is called a linear program if the objective function and

all the equality and inequality constraints are defined by linear functions. That is,
for some vector and the constraint set is of the form X = {Ax =

we can always write an equality constraint as two inequality constraints,
and and we can always write a variable x as where

and - any linear program can be converted into the form

Many problems can be expressed as linear programs, and there are specialized, highly
efficient algorithms for solving them; hence, they warrant special attention. We have
the following proposition, which shows that we can restrict our search for optimal
solutions to extreme point solutions:

PROPOSITION C.12 If the linear program (C.6) has an optimal solution, then it
has an optimal solution that is an extreme point of the set

The popular simplex algorithm for solving linear programs is based on searching
the extreme points of the set X.

The linear program (C.6) has an associated dual linear program (or dual problem)
defined by

The original problem (C.6) is called the primal linear program (or primal problem).
The primal and dual problems are related as follows:

PROPOSITION C.13 If either the primal problem (C.6) or the dual problem (C.7)
has a finite optimal solution, then so does the other, and the optimal objective function
values are equal. Moreover, if the primal is unbounded, then the dual is infeasible,
and if the dual is unbounded, then the primal is infeasible.

b} or (or combinations of inequality and equality constraints). Since



650 THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

A linear program is called a network flow problem if there is a directed graph
G = (N, A), where is a set of nodes and A is a set of directed arcs
connecting the nodes in N. That is, an arc is an ordered pair Define to be
the flow on arc Then a minimum-cost network-flow problem is a linear program
of the form

where are cost coefficients, are upper bounds on the flows (equal to zero if no
arc exists) and are source/sink quantities satisfying Network-
flow problems can be solved even more efficiently than general linear programs using
specialized algorithms.

NonDifferentiable Optimization
In nondifferentiable-optimization problems, the gradient may not always

exist everywhere on the constraint set X. For example, may be a scalar contin-
uous, piecewise linear function of of the form

This function has a corner point at where the derivative does not exist. In such
cases, we have the following necessary and sufficient condition for optimality in the
unconstrained, convex case:

PROPOSITION C.14 If is concave, and then is a global maximum
if and only if

Note that for the example given above, is concave and so zero is
contained in the subdifferential at and hence is a maximum. Also observe
that if is differentiable at the above condition reduces to (C.4).



Appendix D
Dynamic Programming

Fundamentally, dynamic programming addresses how to make optimal decisions
over time. While it can be applied to both deterministic and stochastic problems, our
focus here is on stochastic problems because making decisions under uncertainty is
central to revenue management. Our treatment largely follows that in Bertsekas [57]
with some slight variations in notation. We summarize only the key results for the
discrete-state, discrete-time, finite-horizon problem, again because it is the most fre-
quently encountered one in RM. The reader is referred to Bertsekas [57] for an ex-
tensive treatment of other cases of dynamic programming and a discussion of further
theoretical and computational issues.

Elements of a Dynamic Program
Dynamic programming involves the optimal control of a system over time. The system
is dynamic and its state evolves over time as a function of both control decisions and
random disturbances according to a system equation. The system generates rewards
that are a function of both the state and the control decisions. The objective is to
find a control policy that maximizes the total expected rewards from the system.

There are T time-periods. Time is indexed by and the time indices run forward,
so is the first period and  is the last period. The key elements of a dynamic
program and related technical assumptions are

The system state. Assumed to be discrete and belonging to a finite-state space

The control decision. Assumed discrete and constrained to a finite set,
that may depend on time and the current state

The random disturbance. Assumed to be a discrete random variable (or vector)
with known distribution, belonging to a countable state space The distur-
bances are independent.

A system function, which determines the next state as a function
of the current state the decisions and disturbance according to
the system equation:
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A real-valued reward function, specifying the reward in period
as a function of the current state the decisions and disturbance
The reward is assumed to be finite for all The total reward is additive,

where is a terminal reward.

The objective is to maximize the total expected reward

by choosing control actions u(1), u(2),..., u(T). We will assume that the functions
and the disturbances are such that this expectation is always finite for any

feasible sequence of control decisions.1

These control actions may be functions of the current state of the form
2 A collection of such functions is called a policy and is

denoted simply by A policy is called admissible if for all and
The class of all admissible policies is denoted For a given initial state

the expected reward of a policy is

An optimal policy, denoted is one for which

The optimal expected reward is denoted simply so

The Principle of Optimality
The principle of optimality, due to Bellman [33], lies at the heart of dynamic pro-
gramming. It is a strikingly simple idea; namely, that if a policy is optimal for the
original problem stated above, then it must be optimal for any subproblem of this
original problem as well. That is, define the reward-to-go for policy at time by

1For example, the expectation is always finite if the reward function, state space, and distur-
bance space are all bounded.
2Note that we have explicitly assumed here that it is sufficient that the control depend only
on the current state and the current time and it does not need to depend on any other
information about the history of the process up to time Such controls are called Markovian
controls. Since the disturbances are independent over time and the system function only
depends on the current state, disturbance, and control, one can show that there always exists
an optimal Markovian policy, so it is sufficient to consider only policies of this form.
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The function gives the expected reward starting in state x at time over the
remainder of the truncated horizon We call this truncated problem the

The principle of optimality then states the following:

THEOREM D.2  If                      is an optimal policy for the problem
(D.1), then the truncated policy is optimal for the
That is,

We omit a formal proof of this fact, but it is easy to see why it holds. Indeed,
suppose was not optimal for the and another policy,

yields strictly greater expected reward. If this were true, then the policy

would produce a strictly greater expected reward than does the policy for the
original problem, which contradicts the optimality of Hence, must be optimal
for the

The Dynamic Programming Recursion
The principle of optimality leads naturally to a recursive procedure for finding the
optimal policy. First, for all and all define the optimal reward-
to-go, called the value function, by

The value function gives the optimal expected reward from time onward given that
we are in state x at time Note that is the optimal expected reward for the
original problem with initial state x. The principle of optimality leads to the following
recursive procedure for determining the value function:

PROPOSITION D.15 The value function is the unique solution to the recur-
sion

for all and all with boundary conditions

Moreover, if achieves the maximum in (D.2) for all and then
is an optimal policy.

We omit a formal proof of this fact, but again the reasoning is quite intuitive—namely,
since measures the optimal expected reward given state in the
next time-period, the optimal value of the should be the result
of maximizing the sum of the current expected reward, and the ex-
pected reward from the
This is precisely what (D.2) does. The result yields the optimal value
function and the process is repeated.

The complexity of this recursion depends on the size of the state space control
space and number of time-periods T. The worst-case complexity is
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since for each time and each state we have to search for the control that
maximizes the right-hand side of (D.2).

The usual difficulty with dynamic programming in practice is that the state space
can become quite large, making the recursion above computationally complex.

For example, in a RM problem with inventory classes, each with capacities in
the range 0 ,1 , . . . , C, the size of the state space is For even moderate values
of C and this becomes prohibitively large. This “curse of dimensionality” is the
main drawback to dynamic programming. However, for problems with a moderate
state space, dynamic programming provides a general procedure for computing and
analyzing optimal decisions.

Systems with Observable Disturbances
We next consider a variation of this traditional dynamic programming formulation
that helps simplify many RM models. Specifically, consider a case in which we can
base our control action u on perfect knowledge of the disturbance In other
words, we allow the control to be a function of both the state x and the disturbance

so that The idea here is that in such systems, we can observe
the disturbance before making our control decision and therefore base our decision
on the realized value of

In this case, the basic dynamic programming recursion becomes

where emphasizes that we can select a different control u for each value
of However, since we can choose a control based on knowing the above
recursion can be rewritten as

The recursion (D.3) can in fact be represented in the traditional form by expanding
the state space. First, reindex the disturbances so that we have a new sequence of
disturbance terms

Consider adding the new system-state variable which along with is updated
by the system equations

where is the same function as in (D.3). The initial state is
and the traditional dynamic programming recursion is

for all and all To see this can be converted to the same form as (D.3),
define
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where expectation is with respect to and note that

Now substituting and taking expectations with respect to on both
sides above we obtain

which gives us a recursion exactly of the form (D.3).
Note, however, that by using this transformation we have reduced the original

dynamic programming recursion from one with a state space to one with only
a state space of The function has a similar interpretation as for this
reduced state—namely, it is the optimal expected reward-to-go from time onward
given we are in the reduced state at time where still uncertain (recall

Indeed, one can think of this new recursion as propagating
the system in two stages: first, the state x is realized but y remains uncertain. We
measure the optimal expected reward at this point, yielding Then the value

is realized, and we make our optimal decision. This takes us to a new
state and the process repeats. Finally, note that this reduced-form recursion
results in an optimization step of the form E[max{ }] rather than the max E[{ }]
found in traditional dynamic programming formulations.

Here’s a typical example of how this transformation arises in RM. Suppose is
a scalar capacity, is the revenue of the request in period and if we
decide to accept a request and zero otherwise. So the reward function is simply

Capacity evolves according to the system equation

and the revenue is driven by a random process

Formulated in traditional terms, we obtain

However, with the transformation above, we can rewrite this in observable-disturbance
form as

Since most dynamic programs in RM are of this observable-disturbance form, we
typically use the simpler E[max{ }] rather than the traditional max E[{ }] form.
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Appendix E
The Theory of Choice

In this appendix, we briefly review the theory of consumer choice. It is provided
both as a background and reference on the core concepts of choice theory.

The most widely used theories of choice assume customers are rational decision
makers who intelligently alter when, what, and how much to purchase to achieve the
best possible outcome for themselves. This is a quite plausible assumption. Moreover,
an important consequence of this rationality assumption is that customer behavior
can be “predicted” by treating each customer as an agent that optimizes over possible
choices and outcomes. Optimization theory can then be used to model their behavior.
Indeed, for these reasons rational-customer models are the basis of most economic
theory.

Yet despite the theoretical and intuitive appeal of the rationality assumption, in-
stances of deviations from rational behavior are observed in experiments and in real
life. Alternative theories of choice have emerged to explain such behavior. These
models assume customers are not perfectly rational—that there are limits to how
cleverly they behave or that they exhibit irrational biases in their choice decisions.
These so-called behavioral theories are surveyed below as well.

Choice and Preference Relations
Given two alternatives, a choice corresponds to an expression of preference for one
alternative over another. Here, “alternatives” may refer to different products, different
quantities of the same product, bundles of different products or various uncertain
outcomes (such as buying a house at the asking price versus waiting and bidding
in an auction against other buyers). Similarly, given alternatives, choice can be
defined in terms of the preferences expressed for all pairwise comparisons between
the alternatives.

The mathematical construct that formalizes this notion of choice and preference is
a preference relation. Customers are assumed to have a set of binary preferences over
alternatives in a set X. That is, given any two alternatives and in X, customers
can rank them and clearly say they prefer one over the other. This is represented by
the notation A customer strictly prefers to denoted if he prefers

to but does not prefer to (that is, he is not indifferent between the two
alternatives).
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Consider a complete set of all such pairwise binary preferences between alternatives
in X. The following two properties might be reasonably assumed about “rational”
preferences:

Asymmetry If is strictly preferred to then is not strictly preferred to

Negative transitivity If    is not strictly preferred to   and   is not strictly
preferred to then is not strictly preferred to

Asymmetry and negative transitivity can be considered as “minimal consistency prop-
erties” for an expression of preference among a set of alternatives. A binary relation

on a set X is called a preference relation, if it is asymmetric and negatively tran-
sitive. While asymmetry is quite plausible, negative transitivity is not a completely
innocuous assumption, as illustrated by the following example:

Example E.1 Suppose you are choosing among jobs in three different cities. Sup-
pose the two factors that matter most to you are income and the climate. The job
in city has a high salary of $100,000, and the climate is average. The job in city
offers a salary of only $50,000, but the climate is terrific. The job in city offers a
moderate salary of $70,000 and the climate is poor. You might not strictly prefer
to because although offers a great salary, offers a great climate. Likewise, you
might not strictly prefer to because again, while offers a great climate, offers
a higher salarv. However, you may very well prefer to since has both a higher
salary and a better climate than does These preferences would violate negative
transitivity.

Despite such shortcomings, the properties of asymmetry and negative transitivity
form the classical basis for modeling customer preferences. The following are some
examples of preference relations:

Example E.2  (LEXICOGRAPHIC MODEL) This model of preferences, due to Tver-
sky [521], assumes customers rank order various attributes of a product and then
evaluate them using a lexicographic rule. For example, a tennis racquet comes in
three models A, B, and C with the following features:

The customer’s decision rule is to rank all attributes from most important to least
important and then eliminate alternatives which do not possess the most important
attributes. If more than one alternative remains, the next most important attribute
is chosen as a criterion for elimination of alternatives, and so on.

For example, a customer may care most about whether a racquet has a wide
body, then whether it is graphite, and lastly whether it is black. He would then
prefer racquets with a wide body to all others without a wide body (regardless of the
other attributes). Among all those with wide bodies, he would then select those that
have graphite construction; among the remaining, he may select only the ones that
are black, and so on. So for our three products above, this customer would prefer
product in the order B, A, C. One can verify that the lexicographic model generates
a preference relation among the alternatives.
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Example E.3  (ADDRESS MODEL) Address models link attributes to preference with-
out imposing the restriction that some attributes strictly dominate others as in the
lexicographic model. Suppose we have alternatives and each alternative has at-
tributes that take on real values. Alternatives can then be represented as points,

in which is called attribute space. For example, in a travel context
attributes may include departure time, arrival time, and price.

Each customer has an ideal point (“address”) reflecting his most preferred
combination of attributes (such as an ideal departure time, arrival time, and price).
A customer is then assumed to prefer the product closest to his ideal point in at-
tribute space, where distance is defined by a metric on (such as Euclidean
distance). These distances define a preference relation, in which if and only
if that is, if is “closer” to the ideal point of the customer.

Utility Functions
Preference relations are intimately related to the existence of utility functions. Indeed,
we have the following theorem (See Kreps [313] for a proof.):

THEOREM E.3 If X is a finite set, a binary relation   is a preference relation if
and only if there exists a function (called a utility function), such that

Intuitively, this theorem follows because if a consumer has a preference relation,
then all products can be ranked (totally ordered) by his preferences; a utility function
then simply assigns a numerical value corresponding to this ranking. Intuitively, one
can think of utility as a measure of “value,” though in a strict sense its numerical
value need not correspond to any such tangible measure. Theorem E.3 applies to
continuous sets X (such as travel times or continuous amounts of money) as well under
mild regularity conditions, in which case the utility function is then continuous.
The following examples illustrate the construct of utility:

Example E.4 A utility function corresponding to the lexicographic model of Ex-
ample E.2 can be constructed as follows: Suppose there are alternatives with
attributes each. Let the attributes be ordered so that 1 represents the highest-valued
attribute and the lowest. Let be binary digits representing
whether alternative possesses attribute Then a utility satisfying Theorem E.3
is the binary number,

Maximizing over these utilities leads to the same customer decisions as the lexico-
graphic model.

Example E.5 Consider the address model of Example E.3. Again, Theorem E.3
guarantees that an equivalent utility maximization model exits that generates the
same choices. In this case, it is easy to see that for customer the continuous utilities

where is an arbitrary constant, produce the same decision rule as the address model.
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Utility for Money and Consumer Budgets
It is often convenient to narrow the choice of utilities further and express utility in
monetary terms. To do so, one can pose the question: Given the customer’s preference
for     goods (purchase alternatives), a vector of market prices                           for these
goods, and a level of monetary wealth how would a customer “spend” his wealth?
To make matters simpler, we assume quantities of each good are continuous
and our customer has a continuous utility function Let The
consumer budget problem can then be formulated as1

In other words, customers purchase quantities of each good to maximize their
total utility subject to the constraint that they can spend at most their total wealth

The optimal solution gives the customer’s utility for wealth (or money) the
optimal solution, gives the customer’s demand for each of the goods.

Utility for money is increasing in since one can always “not spend” the wealth
Also, since the utility for money depends on the prices of goods, if prices change, both
the demand and the utility for money may change. The marginal utility of money

also depends on the customer’s wealth The utility for money is concave
if is concave,2 in which case the consumer has decreasing marginal utility for
money. Intuitively, this is because at low levels of wealth only highly essential goods
are purchased (food, water, clothing, shelter)—all of which have very high utility
to most of us. As wealth rises, each marginal dollar is allocated to somewhat less
important purchases.

If the function is continuously differentiable and we let denote the optimal
Lagrange multiplier on the budget constraint in (E.1), then the marginal value of
money is

We can use this fact to redefine utilities in monetary terms. Indeed, since our cus-
tomer’s monetary utility for an additional dollar should be one dollar, we should have

if utilities are measured in dollars. This change of units can be ac-
complished by rescaling the customer’s utility functions by to form the
modified utilities

1Dynamic versions of this consumer budget problem can also be formulated by allowing
customers to purchase over multiple periods and invest money at a given interest rate for
future consumption. Other variations introduce wages and a utility for leisure time and allow
customers to increase their monetary wealth by varying their time allocated to labor, and so
on.
2This follows easily from the convexity of the budget constraint and the fact that (E.1) is a
maximization problem. Concavity of the utility function corresponds to having decreasing
marginal utility of consumption for goods, which is a natural assumption.
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Reservation Prices
A reservation price is the monetary amount a consumer is willing to give up to acquire
an extra marginal unit of some good. Reservation prices are also referred to as the
customer’s willingness to pay. Formally, if      denotes the optimal solution to (E.1),
the reservation price, denoted for an additional unit of good is given by

where is the monetary utility (E.2). The first-order conditions of the budget
problem imply since when utilities are measured in dollars.
Combining this with (E.3) implies that Thus, a customer’s reservation price
for goods that are currently consumed is simply the current market price. The reason
for this equivalence, intuitively, is that if our customer valued another unit of good
at strictly more than its market price, then he would be able to increase his utility
by reducing consumption of other goods and increasing his consumption of good
Since our customer is assumed to be maximizing utility, this cannot occur.

On the other hand, for goods that are not being consumed, so the first-
order conditions to (E.1) imply or equivalently In other words,
by (E.3) the customer’s reservation price for the first unit of good is strictly less than
its current market price. Moreover, the customer would change only his allocation
and buy good if its price dropped below his reservation price

This formal analysis of reservation price is arguably less important in practice than
the informal concept—namely, that the reservation price is the maximum amount a
customer is willing to pay for an additional unit of good And to entice a customer
to buy good the price must drop below his reservation price. Still, the analysis
highlights the important fact that reservation prices are not “absolute” quantities.
Like utility for money, they depend on customers’ preferences, wealth, their current
consumption levels, and the prices of other goods the customers may buy; change one
of these factors, and customers’ reservation price may change.

Lotteries and Stochastic Outcomes
Many choices in life involve uncertain outcomes, such as buying insurance, making
investments or eating at a new restaurant. How do customers respond to these sorts
of uncertainties? The theory of choice under uncertainty is a deep and extensive topic.
Here, we outline the basic ideas and highlight the main concepts.

Consider again a discrete, finite set of alternatives, . Let
be the class of all probability distributions defined on X. That is, is a
function satisfying and for One can think of
each P as a “lottery,” the outcome of which is that the customer is left with one of
the alternatives according to the distribution P.

What can we say about the customer’s preference for these various lotteries?
Specifically, when can we say that for any two lotteries and customers “prefer”
one over the other (denoted by

To answer this question we again need to make some assumptions on customer
preferences. First, we will assume there exists a preference relation on the
different outcomes as before. Second, for any two lotteries and consider a
compound lottery parameterized by as follows:
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STEP 1: A coin is flipped with probability of heads equal to

STEP 2: If the coin comes up heads, the customer enters lottery otherwise, the
customer enters lottery

Denote this compound lottery by Note this compound lottery
is also contained in the set (i.e., is a convex set). We then require the following
consistency properties on a customers preference for lotteries:

Substitution axiom For all and in and all if
then

Continuity axiom For all and in with there exist
values and such that

Roughly, the first axiom says that if one gamble produces strictly preferred out-
comes for any realization of uncertainty, then the customer should strictly prefer it.
The second axiom says that if a customer strictly prefers one gamble to another, then
he should be willing to accept a sufficiently small risk of an even worse outcome to
take the preferred gamble. Both are reasonable assumptions.

Under these two axioms, there exist utilities on outcomes such that the expected
utility of each lottery defines a customer’s preference relation among lotteries. Specif-
ically,

THEOREM E.4  A preference relation on the lotteries    exists that satisfies the
substitution and continuity axioms if and only if there exists a utility function
such that if and only if

That is, if and only if the expected utility from lottery exceeds the expected utility
of lottery In addition, any two utility functions and satisfying the above must
be affine transformations of each other; that is,

for some real and

This result is due to von Neumann and Morgenstern [541] and is known as the von
Neumann-Morgenstern expected-utility theory. Essentially, it allows us to extend util-
ity as a model of customer preference to the case of uncertain outcomes, with expected
utility replacing deterministic utility as the criterion for customer decision making.
Since the original deterministic outcomes (e.g., outcome occurs with probability

are included in the von Neumann-Morgenstern expected utilities also
help us “narrow down” the list of possible utility functions for the customer.

Risk Preferences
An important special case of expected-utility theory is when outcomes represent dif-
ferent monetary amounts, so alternatives correspond to different levels of wealth and
lotteries correspond to different gambles on a customer’s ending wealth level. For
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this discussion, we assume the wealth levels are continuous and that the customer has
preferences for wealth that satisfy the conditions of Theorem E.4. Also, assume the
lotteries are now continuous distributions F on 3

Consider now any given lottery F (a distribution on possible wealth outcomes)
and     denote the mean of the distribution. A customer is said to have risk-averse
preferences if he prefers the certain wealth to the lottery F itself for all possible
lotteries F. That is, the customer always prefers the certainty of receiving the ex-
pected wealth rather than a gamble with the same mean. The customer is said to
have risk-seeking preferences if he prefers the gamble F to the certain outcome for
all F. Finally, he has risk-neutral preferences if he is indifferent between the lottery
F and the certain reward 4 We then have the following result:

THEOREM E.5  A customer’s preference    for lotteries exhibits risk-aversion (risk-
seeking) behavior if and only if their von Neumann-Morgenstern utility function
is concave (convex). Their preference is risk-neutral if and only if         is affine.

Thus, risk preferences are linked directly to concavity or convexity of the customer’s
utility function. The reason is quite intuitive; with a concave utility function for
wealth, a customer gains less utility from a given increase in wealth than he loses in
utility from the same decrease in wealth. Hence, the upside gains produced by the
volatility in outcomes do not offset the downside losses, and customers therefore prefer
the certain average to the uncertain outcomes of the lottery. Since most customers
have a decreasing marginal utility for wealth, risk aversion is a good assumption in
modeling customer behavior.

Still, the concept of risk aversion has to be addressed with care in operational
modeling. While it is true that most customers are risk-averse when it comes to
large swings in their wealth, often the gambles we face as consumers have a relatively
small range of possible outcomes relative to our wealth. For example, a customer
may face a price risk in buying a CD or book online. However, the differences in
prices for such items are extremely small compared to his total wealth. In such cases,
the utility function is “almost linear” in the range of outcomes affecting the decision
and the customer tends to behave “as if” he were risk-neutral.5 Similar statements
apply to firms. Generally, they are risk-averse too, but for decisions and gambles
that involve “small” outcomes relative to their total wealth and income, they tend to
be approximately risk-neutral. Hence, risk-neutrality is a reasonable assumption in
operational models and, indeed, is the standard assumption in RM practice.

3The extension of Theorem E.4 to the continuous case requires some additional technical
conditions that are beyond the scope of this chapter. See Kreps [313].
4Note that a customer’s preferences may not fall into any of these three categories. For exam-
ple, many consumers take out fire insurance, preferring a certain loss in premium payments
every year to the gamble between making no payments but potentially loosing their house,
yet simultaneously play their local state lottery, which has an expected loss but provides a
small probability of a large wealth pay-off. Such behavior violates a strict risk preference.
5Formally, one can see this by taking a Taylor series approximation of the utility function
about the customer’s current wealth to; the first-order approximation is affine, corresponding
to risk-neutrality.
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Information Asymmetry
Another important fact related to customer choice is that normally much of a cus-
tomer’s information is private, information that only the customer “knows” and in-
formation that cannot be directly observed by a firm. Normally, both a customer’s
preferences and wealth are private information. One can perhaps gain clues to a
customer’s preference by observing their purchase behavior over time (their so-called
revealed preferences), and partial information on their wealth may be garnered from
surveys and transactional data. But in general, much of the data affecting customers’
choice behavior remains hidden.

This “information asymmetry” between customers and firms has implications for
pricing and RM as discussed in detail in Chapters 6 and 8. To give a quick sense of the
effect, consider how customers react to a posted price. Due to information asymmetry,
the selling firm rarely knows a customer’s true reservation price for their product.
If they did, they could potentially offer the customer a price only marginally less
than their reservation price and maximize the revenue obtained from each customer.
Instead, most firms have to guess at each customer’s reservation price. As a result,
sometimes they price too high, and the customer does not purchase at all; other times
they price too low, and although the customer may decide to purchase, they lose an
opportunity for a revenue gain as the customer would have been willing to pay more.
In this way, the private information of customers often allows them to retain some
surplus, even from a monopoly seller.

Deviations from Rational Behavior
While rational behavior is the standard assumption underlying most of the theory
and practice of RM, it is far from being completely accepted as a model of how an
actual customer behaves. Indeed, much of the recent work in economics and customer
behavior has centered on explaining observed, systematic deviations from rationality
on the part of customers.

The seminal work in this area is that of Kahneman and Tversky [278, 277], who
showed that customers often exhibit consistent biases when faced with simple choices
in an experimental setting. Their key insight is that most individuals tend to evaluate
choice in terms of losses and gains from their status quo wealth, rather than evaluating
choices in terms of their terminal wealth as in classical utility theory. People also show
a tendency toward “loss aversion” rather than risk aversion, and they have a strong
preference for certainty of outcomes when evaluating choices. Finally, how gains and
losses are expressed matter as well.

They showed that how questions of choice are “framed” have a large impact on
customer choice. When choices are framed in terms of gains versus losses, customers
typically care more about avoiding losses than about making gains. This is true even
if the “gains” and “losses” amount to exactly the same choice. For example, if a public
health policy choice is framed as a gain (200 of 800 diseased people will be saved) or
as a loss (600 of 800 diseased people will die), most people respond differently, even
though the outcomes are identical.

Other experiments revealed that people put a much higher value on a product
they already own than one that they don’t own because giving up a product they
have feels like a loss. This behavior is part of the rationale behind the common
marketing strategy of offering products on a “free 30-day trial”–that customers are
much more willing to pay to “avoid losing” the trial product than they are willing to
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pay to acquire that same product initially. (Of course, other simpler explanations—
such as reassuring the customer of the quality of the product—can also explain such
guarantees.)

Another bias people exhibit is due to what is called mental accounting, in which
customers tend to evaluate gains and losses for different categories of goods differ-
ently because they have “mental budgets” for each category of goods. For example,
suppose you purchase a $1,000 watch and then immediately lose it. You might then
be reluctant to replace it because in some sense your “budget” for purchasing watches
has been exhausted. However, suppose you lost $1,000 in the stock market and you
did not own a watch at the time. Then you might be willing to buy a new $1,000
watch because there is no direct association between the $1,000 dollar loss and the
amount you might have “mentally allocated” to spend on a watch (for example, you
might account for this as “an investment loss” not a “expensive-watch loss”). Such
heuristic accounting again violates the rationality assumptions of classical consumer
behavior.

Kahneman and Tversky [278] developed what they termed prospect theory to ex-
plain such effects. Prospect theory differs from expected-utility theory in several
respects. For one, it handles the probabilities of outcomes differently, treating them
as “decision weights” that may or may not correspond to actual probabilities. In-
deed, prospect theory postulates that the subjective decision weights used by most
customers tend to overweigh small probabilities and underweigh high probabilities.
Prospect theory also uses the notion of “value” rather than “utility,” where value
is defined in terms of deviations from a reference point (the customer’s status quo
wealth). They postulate an S-shaped curve for the value function, which is convex
for losses below the reference point and concave for gains above the reference point.
Using this construct, Kahneman and Tversky [278] are able to model and explain
many observed deviations from rational behavior.

Do such findings mean that expected utility theory is “dead”? Not really. In
a gross sense, people do tend to behave in accordance with rationality assumptions.
However, what this behavioral theory shows quite clearly is that the axioms of rational
behavior, plausible as they are, do not apply uniformly and that there are situations
in which deviations from rational behavior are systematic and substantial.

The main consequence of these findings for RM practice is that one should always
understand the “environment” in which choices are made; the details of the buying
situation matter in terms of customers’ responses. How prices are presented, what
“reference point” the customer perceives, the framing of the choice decision, their
sense of “ownership” over the product—all can potentially influence their responses.
While many of the tactics used to influence these factors lie in the domain of general
marketing and are beyond the scope of this book, the general message that the choice
environment matters is nevertheless an important one for RM practitioners and re-
searchers to heed. Indeed, we expect these behavioral theories of demand to influence
RM practice more directly in the years ahead.
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Appendix F
Game Theory

This appendix provides some elementary facts about game theory and equilibrium
concepts and should serve as a refresher for those readers with some background in
game theory. However, for a proper and more complete explanation of the theory,
the reader should refer to Fudenberg and Tirole [195], Myerson [399] or Mas-Colell,
Whinston, and Green [365] (from which the material in this appendix is obtained).
Also, Tirole [513] provides a User’s Manual on Game Theory.

The Normal Form of Games
A game consists of a set of players, the actions that they can take (or in other

words, the rules of the game), and the information that each player possesses at the
time he takes his action. For each possible set of actions, the game defines a set of
outcomes and payoffs for each player (such as how much profit or utility each player
gets).

For instance, in the Bertrand pricing game (Section 8.4.1.4), there are players
(firms in the oligopoly). Their action space is the prices they set. Each possesses
information that all the demand goes to the lowest-priced firm, and all have the same
marginal costs. The outcome is that the demand goes to the lowest-priced firm. The
payoffs are the revenues minus costs (profits).

Formally, let there be players, let be the collection of player information
sets and be the set of actions possible for player with information set H.

A (pure) strategy for player is a function —that is, the player has a
mapping from each possible information set to a unique action. Moreover, the actions
have to be feasible, so we assume that the strategy map is such that
for all Each player, given a set of pure strategies, can also randomize over
these strategies (his strategy is to choose one of his pure strategies with a certain
probability). This creates what are called mixed strategies.

A game’s actions, outcomes, and payoffs can be defined by an extensive form or
a normal form. Here we concentrate on the normal form. The normal form of the
game is a specification of a set of possible strategies for player and a payoff
function if each player plays strategy The game

is defined as the triple
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For example, in the Bertrand pricing game with two players, the strategy space for
player is and the payoff if player 1 plays is where

and is the market-demand function.

Simultaneous Move Static Games
In the simultaneous move static game, all players move exactly once and make

their moves simultaneously. Hence, no player knows what the other players’ moves
are going to be, nor do they have any information on past moves of their opponents
(as it is a one-move game).

These are rather restrictive assumptions. Nevertheless, such games are applicable
in some situations (for instance, a sealed-bid auction), and they serve as the basis for
the study of more complicated repeated games.

Game theory is concerned with predicting the outcomes of a game assuming the
players are rational (utility-maximizing players). To this end, we define the concept
of equilibrium, essentially a prediction of the possible outcomes of the game. There
are many equilibrium concepts, depending on the nature of the information, and the
assumptions on players’ behavior.

We assume that players have complete information about the game. Each player
knows the strategy sets, utility functions, and any other relevant parameters for all
other players, and they also know that all the other players are rational and, like
themselves, have complete information.

Dominant Strategies
A strategy              is a dominant strategy for player    if his payoff from playing      is
no less than that from playing any other of his strategies, for all possible strategies
of the other players.

Formally, let the the vector represent strategies
of all players other than and the set of all vectors of all possible strategies of
all the players other than

Then, for a game is a dominant strategy if for all

If rational player has a strictly dominant strategy, it is reasonable to predict he
would always play that strategy. There are very few games, however, where such
dominant strategies exist.

Nash Equilibrium
Perhaps the most important and widely accepted notion on the outcome of games
with rational players is the Nash equilibrium.

Nash equilibrium, definition A strategy vector s is a (pure strategy) Nash equilib-
rium for the game if for every player given the
strategies of the other players his strategy    is optimal, that is,
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If we allow players to randomize over their strategies, then a vector of mixed
strategies, is a mixed-strategy Nash equilibrium if for every player

given a profile of mixed strategies of the other players player mixed strategy
is optimal. A game can have no Nash equilibrium, a unique Nash equilibrium, or

many equilibria (pure-strategy or mixed).
Here are two basic results on the existence of pure and mixed-strategy Nash equi-

libria.

PROPOSITION F.16 Every game with finite strategy sets for all the players has a
mixed-strategy Nash equilibrium.

PROPOSITION F.17 If the strategy sets for the players   are nonempty, convex
and compact subsets of is continuous in s and quasiconcave in  for all
then the game has a pure-strategy Nash equilibrium.

However, in either case, there is no guarantee that the equilibrium is unique.

Bayesian Nash Equilibrium
Games with incomplete information model situations where the players do not know
with certainty what the other players’ strategy sets, parameters, and utility functions
are. Each forms a probabilistic view of the other players’ private information (akin to
a Bayesian prior; this probabilistic view may be updated in a repeated game as the
game reveals more information to the players).

The model is as follows: Player payoff function is now given by where
is a random variable whose realization is observed only by player Let

and However, the joint probability
distribution of is common knowledge among the players. The Bayesian
game is then

A pure-strategy for player is in this case a decision rule His strategy is
a function of the realization of his Given a vector of pure strategies for all the
players player payoff is given by the expectation over the

The extension to the Nash equilibrium concept is then as follows. A (pure-strategy)
Bayesian Nash equilibrium is a vector of decision rules such
that

Repeated Games
Finite repeated games are one-shot games that are repeated over a number of

periods. At the beginning of each period, firms are aware of the others’ past moves
and make their decisions simultaneously and noncooperatively for that period.

For example, a repeated Bertrand game would have firms setting prices simultane-
ously at the beginning of each period, and a repeated Cournot game would have firms
deciding how much to produce at the beginning of each period. For instance, when
all the firms in the market post their prices on a centralized industrywide reservation
system every day, the repeated game’s period is one day, and at the beginning of each
day firms set prices simultaneously without knowing how the other firms will choose
their prices that day.
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Models where moves don’t occur simultaneously but have a leader-follower struc-
ture are called Stackelberg games. It can be shown that the first mover in a Stackelberg
game has an advantage under certain scenarios [195].

To analyze repeated games, we need a refinement of the Nash equilibrium concept
known as a subgame-perfect equilibrium. Roughly, a subgame-perfect equilibrium is
one in which the initial equilibrium is simultaneously a Nash equilibrium for any sub-
game (the game from any subsequent stage assuming all the information on actions
from the previous stages) of the initial game.

The idea is best illustrated by an example. Consider a T period, two-
player, Bertrand pricing game where prices are the strategic variables. Then

is subgame-perfect equilibrium if (i) it is a Nash-
equilibrium and (ii) for all the decisions
is a Nash equilibrium for the subgame starting from period to period T.

The subgame-perfect equilibrium refinement allows one to restrict attention to
strategies that only contain credible threats or promises. For instance, in a two-player,
two-period Bertrand pricing game, suppose firm one adopts a strategy of pricing high
in period one and promises to continue to price high in period two provided the
other firm does not undercut its price in period one. While this may result in a
Nash equilibrium with both firms pricing high in each period, it does not constitute a
subgame-perfect equilibrium because once the firms reach period two, it is in firm 1’s
interest to deviate from it’s announced strategy and undercut its rival’s price. Thus,
the promise to continue to price high is not credible.

Infinitely repeated games (called supergames) provide a richer set of results than
do finite repeated games. The assumption of infinite interaction may seem excessive,
but in situations where there are many opportunities for frequent interactions or when
the end of a game is uncertain, it is a reasonable modeling assumption.
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